

Lecture Notes in Artificial Intelligence 3690
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Michael Pěchouček Paolo Petta
László Zsolt Varga (Eds.)

Multi-Agent Systems
and Applications IV

4th International
Central and Eastern European Conference
on Multi-Agent Systems, CEEMAS 2005
Budapest, Hungary, September 15 – 17, 2005
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Michael Pěchouček
Czech Technical University in Prague
Department of Cybernetics
Czech Republic
E-mail: pechouc@labe.felk.cvut.cz

Paolo Petta
Medical University of Vienna
Institute of Medical Cybernetics and Artificial Intelligence
Centre for Brain Research
Austria
E-mail: Paolo.Petta@MedUniWien.ac.at

László Zsolt Varga
Computer and Automation Research Institute
of the Hungarian Academy of Sciences
Hungary
E-mail: laszlo.varga@sztaki.hu

Library of Congress Control Number: 2005932125

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2, H.5.3

ISSN 0302-9743
ISBN-10 3-540-29046-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29046-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11559221 06/3142 5 4 3 2 1 0

Preface

The aim of the CEEMAS conference series is to provide a biennial forum for
the presentation of multi-agent research and development results. With its par-
ticular geographical orientation towards Central and Eastern Europe, CEEMAS
has become an internationally recognised event with participants from all over
the world. After the successful CEEMAS conferences in St. Petersburg (1999),
Cracow (2001) and Prague (2003), the 2005 CEEMAS conference takes place in
Budapest. The programme committee of the conference series consists of estab-
lished researchers from the region and renowned international colleagues, show-
ing the prominent rank of CEEMAS among the leading events in multi-agent
systems.

In the very competitive field of agent oriented conferences and workshops
nowadays (such as AAMAS, WI/IAT, EUMAS, CIA, MATES) the special profile
of CEEMAS is that it is trying to bridge the gap between applied research
achievements and theoretical research activities. Our ambition is to provide a
forum for presenting theoretical research with an evident application potential,
implemented application prototypes and their properties, as well as industrial
case studies of successful (but also unsuccessful) agent technology deployments.
This is why the CEEMAS proceedings volume provides a collection of research
and application papers. The technical research paper section of the proceedings
(see pages 11–499) contains pure research papers as well as research results in
application settings while the application papers section (see pages 500–530)
contains papers focused on application aspects. The goal is to demonstrate the
real life value and commercial reality of multi-agent systems as well as to foster
communication between academia and industry in this field.

CEEMAS is also very special and unique in the fact that it is constantly con-
tributing to building an agent research community. The programme committee
has decided to create a special collection of short papers to provide an oppor-
tunity to present ongoing research work with the potential of achieving mature
and higher-impact research results in the near future. This allows researchers to
expose their work for constructive criticism and discuss their projects with other
experts in an early phase of their research. On the other hand this also provides
the audience with fresh, innovative and highly motivating ideas that may de-
serve further investigation. Short papers have been also divided into research
(see pages 531–631) and application (see pages 632–664) tracks.

The topics of the CEEMAS proceedings cover an enormously wide range of
areas such as: abstract and specific agent architectures, methods and modelling
approaches for agent oriented software engineering, agent communication and
protocols, and also classical problem domains such as learning, planning, trust
and reputation. Besides formal domains such as logical modelling and game-
theoretical approaches to agency, substantial attention has been paid to scal-

VI Preface

ability, robustness and performance issues as well as methods for coordination
and teamwork. CEEMAS also features papers about applications from the field
of manufacturing, utility distributions, Internet trading, virtual enterprises or
defence.

We received 113 submissions, and each paper was reviewed by at least two
independent reviewers. Of the submitted papers, 48 were accepted as full research
papers and 3 as full application papers. In addition, 8 short application and 25
short research papers were accepted.

Many individuals and institutions have supported the organisation of this
conference and made CEEMAS 2005 a high-quality event. Our special thanks
go first to the authors and invited speakers for their invaluable and strenuous
work. Also, the work of the Programme Committee members who accepted the
heavy load of the two-phase review of a large number of contributions is grate-
fully acknowledged. We are especially thankful to the conference department of
the Computer and Automation Research Institute of the Hungarian Academy
of Sciences, and in particular to Magdolna Zsivnovszki, for their excellent or-
ganisational activities and the computer work related to the preparation of the
electronic versions of this volume.

Separate thanks go to AgentLink, the European Coordination Action for
Agent-based Computing, for the continual support of the CEEMAS conferences
from their very initiation in 1999 in St. Petersburg, and to AITIA Inc., for
supporting CEEMAS 2005.

As a result, the present collection of papers provides a valuable resource for
researchers in the field of multi-agent systems and open distributed systems in
general.

July 2005 Michal Pěchouček
Paolo Petta

László Z. Varga

Organisation

CEEMAS Steering Committee

Barbara Dunin-Keplicz, Poland
Michael Luck, UK
Jörg Müller, Germany
Michal Pěchouček, Czech Republic
László Z. Varga, Hungary
Vladimir Gorodetski, Russia
Vladimír Marík, Czech Republic
Edward Nawarecki, Poland
Paolo Petta, Austria

CEEMAS 2005 General Co-chairs

General Chair: László Z. Varga, Hungary
Programme Co-chair: Michal Pěchouček, Czech Republic
Programme Co-chair: Paolo Petta, Austria
Tutorials Chair: Andrea Omicini, Italy
Industrial, Demonstrations Track Chair: Gábor Tatai, Hungary
Posters Chair: Katalin Bognár, Hungary

CEEMAS 2005 Programme Committee

Stanislaw Ambroszkiewicz, Poland
Magnus Boman, Sweden
Luís Botelho, Portugal
Monique Calisti, Switzerland
Cristiano Castelfranchi, Italy
Krzysztof Cetnarowicz, Poland
Helder Coelho, Portugal
Ulises Cortés, Spain
Frank Dignum, The Netherlands
Grzegorz Dobrowolski, Poland
Danail Dochev, Bulgaria
Edmund H. Durfee, USA
Shaheen Fatima, UK
Stephan Flake, Germany
Martyn Fletcher, UK

Roberto A. Flores, Italy
Matjaz Gams, Slovenia
Marie-Pierre Gleizes, France
Piotr Gmytrasiewicz, USA
Chihab Hanachi, France
Karin Hummel, Austria
Toru Ishida, Japan
Catholijn Jonker, The Netherlands
Matthias Klusch, Germany
Jirí Lazansky, Czech Republic
John-Jules Meyer, The Netherlands
László Monostori, Hungary
Luc Moreau, UK
Eugenio Oliveira, Portugal
Andrea Omicini, Italy

VIII Organisation

Mihaela Oprea, Romania
Sascha Ossowski, Spain
Marek Paralie, Slovakia
Radoslav Pavlov, Bulgaria
Jeremy Pitt, UK
Agostino Poggi, Italy
Stefan Poslad, UK
Omer Rana, UK
Alex Rogers, UK
Robert Schaefer, Poland
Onn Shehory, Israel
Carles Sierra, Spain
Alexander Smirnov, Russia

Olga Stipánková, Czech Republic
Niranjan Suri, USA
Simon Thompson, UK
Robert Tolksdorf, Germany
Chris van Aarts, The Netherlands
Wiebe van der Hoek, The Netherlands
József Váncza, Hungary
Rineke Verbrugge, The Netherlands
Filip Verhaeghe, Belgium
Herbert Wiklicky, UK
Steven Willmott, Spain
Franco Zambonelli, Italy

Additional Reviewers

Alexander Adrowitzer
Eric Andonoff
Holger Billhardt
Tibor Bosse
Henrique Lopes Cardoso
Mehdi Dastani
Alberto Fernández
Pierre Glize
Mark Hoogendoorn
Bernhard Klein
Francesca Marzo
Simon Miles
Nicoleta Neagu
Brendan Neville

Luis Nunes
Fabio Paglieri
Daniel Ramirez-Cano
Luis Paulo Reis
Giovanni Rimassa
Ana Paula Rocha
Alexei Sharpanskykh
Victor Tan
Ivan Trencansky
Peter-Paul van Maanen
Giosue Vitaglione
Pavel Vrba
Joachim Zottl

CEEMAS 2005 Local Organisers

Local arrangements chair: Gusztáv Hencsey, Hungary
Secretariat: Magdolna Zsivnovszki, Hungary

Table of Contents

Invited Paper

Palpable Computing and the Role of Agent Technology
Giovanni Rimassa, Dominic Greenwood, Monique Calisti 1

Research Papers

Agent Communication, Interaction Protocols and
Mechanisms

A Dynamic Joint Protocols Selection Method to Perform
Collaborative Tasks

José Ghislain Quenum, Samir Aknine . 11

A Formal Framework for Interaction Protocol Engineering
Fernando Alonso, Sonia Frutos, Genoveva López, Javier Soriano 21

Towards a Conversational Language for Artificial Agents in Mixed
Community

Alexandra Berger, Sylvie Pesty . 31

Adaptive Mobile Multi-agent Systems
Alexandru Suna, Amal El Fallah Seghrouchni . 41

Agent Models and Architectures

Agent Encapsulation in a Cognitive Vision MAS
Bernhard Jung, Paolo Petta . 51

A Model of Multi-agent System Based on Policies and Contracts
Beishui Liao, Ji Gao . 62

Case-Based Student Modeling in Multi-agent Learning Environment
Carolina González, Juan C. Burguillo, Martin Llamas 72

Intelligent Virtual Environments for Training: An Agent-Based
Approach

Angélica de Antonio, Jaime Ramı́rez, Ricardo Imbert,
Gonzalo Méndez . 82

X Table of Contents

Patient Driven Mobile Platform to Enhance Conventional Wheelchair,
with Multiagent System Supervisory Control

A.B. Mart́ınez, J. Escoda, T. Benedico, U. Cortés, R. Annicchiarico,
C. Barrué, C. Caltagirone . 92

SECMAP: A Secure Mobile Agent Platform
Suat Ugurlu, Nadia Erdogan . 102

What Is Context and How Can an Agent Learn to Find and Use it
When Making Decisions?

Oana Bucur, Philippe Beaune, Olivier Boissier . 112

Agent Oriented Software Engineering, Modelling
and Methodologies

A Formal Modelling Framework for Developing Multi-agent Systems
with Dynamic Structure and Behaviour

Petros Kefalas, Ioanna Stamatopoulou, Marian Gheorghe 122

Discovery of Crises via Agent-Based Simulation of a Transportation
System

Edward Nawarecki, Jaros�law Koźlak, Grzegorz Dobrowolski,
Marek Kisiel-Dorohinicki . 132

Evaluating the Feasibility of Method Engineering for the Creation of
Agent-Oriented Methodologies

Brian Henderson-Sellers . 142

Formalizing Compatibility and Substitutability of Rolebased
Interactions Components in Multi-agent Systems

Nabil Hameurlain . 153

MAS Meta-models on Test: UML vs. OPM in the SODA Case Study
Ambra Molesini, Enrico Denti, Andrea Omicini . 163

Programming an Agent as Abstract State Machine
Grzegorz Dobrowolski . 173

The PASSI and Agile PASSI MAS Meta-models Compared with a
Unifying Proposal

Massimo Cossentino, Salvatore Gaglio, Luca Sabatucci,
Valeria Seidita . 183

The Synthesis Stage in the Software Agent Development Process
Fernando Alonso, Sonia Frutos, Löıc Mart́ınez, F. Javier Soriano 193

Table of Contents XI

Use Case and Actor Driven Requirements Engineering: An Evaluation
of Modifications to Prometheus

Mikhail Perepletchikov, Lin Padgham . 203

Coordination, Teamwork, Social Knowledge and
Social Reasoning

Agent-Based Management of Non Urban Road Meteorological
Incidents

Vicente R. Tomás, Lúıs A. Garćıa . 213

Arguing and Negotiating in the Presence of Social Influences
Nishan C. Karunatillake, Nicholas R. Jennings, Iyad Rahwan,
Timothy J. Norman . 223

Cooperative Behavior of Agents Based on Potential Field
Takashi Katoh, Kensaku Hoshi, Norio Shiratori . 236

The “Dance or Work” Problem: Why Do not all Honeybees Dance with
Maximum Intensity

Ronald Thenius, Thomas Schmickl, Karl Crailsheim 246

Towards an Institutional Environment Using Norms for Contract
Performance

Henrique Lopes Cardoso, Eugénio Oliveira . 256

Virtual Games: A New Approach to Implementation of Social Choice
Rules

Dániel L. Kovács . 266

Formal Methods and Logic in MAS

How Our Beliefs Contribute to Interpret Actions
Guillaume Aucher . 276

The Effect of Flag Introduction on the Explosion of Nogood Values in
the Case of ABT Family Techniques

Ionel Muscalagiu . 286

Toward a Formal Theory of Belief, Capability and Promise
Incorporating Temporal Aspect

Xinyu Zhao, Shaofeng Fan, Runjie Zhang, Anbu Yue,
Zuoquan Lin . 296

XII Table of Contents

Learning and Evolution of MAS

A Multi-agent Fuzzy-Reinforcement Learning Method for Continuous
Domains

Erkan Duman, Mehmet Kaya, Erhan Akin . 306

An Adaptive Approach for the Exploration-Exploitation Dilemma for
Learning Agents

Lilia Rejeb, Zahia Guessoum, Rym M’Hallah . 316

Personal Agents and Agent-Based User Interfaces

A Multi Agent Approach to Interest Profiling of Users
P.H.H. Rongen, J. Schröder, F.P.M. Dignum, J. Moorman 326

vBroker: Artificial Agents Helping to Stock Up on Knowledge
Gábor Tatai, László Gulyás, László Laufer, Márton Iványi 336

Planning and Scheduling in MAS

Cooperative Planning in the Supply Network – A Multiagent
Organization Model

Péter Egri, József Váncza . 346

Diagnosis of Plans and Agents
Nico Roos, Cees Witteveen . 357

Dialectical Theory for Multi-agent Assumption-Based Planning
Damien Pellier, Humbert Fiorino . 367

Keeping Plan Execution Healthy
Femke de Jonge, Nico Roos, Jaap van den Herik 377

Stochastic Reactive Production Scheduling by Multi-agent Based
Asynchronous Approximate Dynamic Programming

Balázs Csanád Csáji, László Monostori . 388

Scalability, Robustness and Performance Issues

Do Agents Make Model Checking Explode (Computationally)?
Wojciech Jamroga, Jürgen Dix . 398

Multiagent Resource Allocation in the Presence of Externalities
Paul E. Dunne . 408

Table of Contents XIII

On Communication in Solving Distributed Constraint Satisfaction
Problems

Hyuckchul Jung, Milind Tambe . 418

Towards Reliable Large-Scale Multi-agent Systems
Zahia Guessoum, Nora Faci . 430

Self-organising Systems in Emergent Organisations

Emergent Timetabling Organization
Gauthier Picard, Carole Bernon, Marie-Pierre Gleizes 440

Experiments in Emergent Programming Using Self-organizing
Multi-agent Systems

Jean-Pierre Georgé, Marie-Pierre Gleizes . 450

Trust, Reputation, Reliability, Security and Intrusion
Detection

A Direct Reputation Model for VO Formation
Arturo Avila-Rosas, Michael Luck . 460

Adversarial Behavior in Multi-agent Systems
Martin Rehák, Michal Pěchouček, Jan Tožička . 470

Bayesian Dynamic Trust Model
Dimitri Melaye, Yves Demazeau . 480

Behavior Evaluation with Actions’ Sampling in Multi-agent System
Krzysztof Cetnarowicz, Renata Ci ↪eciwa, Gabriel Rojek 490

Application Papers

Agent-Based Control of a Municipal Water System
Lucilla Giannetti, Francisco P. Maturana, Frederick M. Discenzo 500

Agent-Based Framework for Simulation and Support of Dynamic
Engineering Design Processes in PSI

Vladimir Gorodetsky, Vadim Ermolayev, Wolf-Ekkehard Matzke,
Eyck Jentzsch, Oleg Karsaev, Natalya Keberle,
Vladimir Samoylov . 511

Situated Agents and the Web: Supporting Site Adaptivity
Stefania Bandini, Sara Manzoni, Giuseppe Vizzari 521

XIV Table of Contents

Short Research Papers

Agent Communication, Interaction Protocols and
Mechanisms

An Operational Model for Mutual Awareness
Flavien Balbo, Julien Saunier, Suzanne Pinson,
Mahdi Zargayouna . 531

Chomsky: A Content Language Translation Agent (Extended Abstract)
António Lopes, Lúıs Botelho . 535

Agent Models and Architectures

Roles and Hierarchy in Multi-agent Organizations
Emmanuel Adam, René Mandiau . 539

Semantic and Virtual Agents Model in Adaptive Middleware
Architecture for Smart Vehicle Space

Qing Wu, Zhaohui Wu . 543

Towards an Authority Sharing Based on the Viewpoint Action Model
Abdenour Bouzouane . 547

Coordination, Teamwork, Social Knowledge and
Social Reasoning

Application of Multi-agent Systems and Social Network Theory to
Petrol Pricing on UK Motorways

Alison J. Heppenstall, Olga E. McFarland,
Andrew J. Evans . 551

Combining Rule-Based and Plug-in Components in Agents for Flexible
Dynamic Negotiations

Costin Bădică, Maria Ganzha, Marcin Paprzycki,
Amalia Pı̂rvănescu . 555

Group Interests of Agents Functioning in Changing Environments
Sarunas Raudys, Alvydas Pumputis . 559

Policies for Common Awareness in Organized Settings
Ioannis Partsakoulakis, George Vouros . 564

Table of Contents XV

Learning and Evolution of MAS

Learning in a Multi-agent Approach to a Fish Bank Game
Bart�lomiej Śnieżyński, Jaros�law Koźlak . 568

Modelling of Agents’ Behavior with Semi-collaborative Meta-agents
Jan Tožička, Filip Železný, Michal Pěchouček . 572

Pareto-Q Learning Algorithm for Cooperative Agents in General-Sum
Games

Meiping Song, Guochang Gu, Guoyin Zhang . 576

Selection in Scale-Free Small World
Zsolt Palotai, Csilla Farkas, András Lőrincz . 579

Personal Agents and Agent-Based User Interfaces

A Multi-agent System Architecture for the Adaptation of User Interfaces
Vı́ctor López-Jaquero, Francisco Montero, José P. Molina,
Pascual González, Antonio Fernández-Caballero 583

ACE Agents – Mass Personalized Software Assistance
Jarogniew Rykowski . 587

Assisting Robotic Personal Agent and Cooperating Alternative Input
Devices for Severely Disabled Children

Gy. Hév́ızi, B. Gerőfi, B. Szendrő, András Lőrincz 591

Planning and Scheduling in MAS

Building Agent-Based Systems in a Discrete-Event Simulation
Environment

Botond Kádár, András Pfeiffer, László Monostori 595

Complexity of Task Coordination for Non Cooperative Planning Agents
Adriaan ter Mors, Jeroen Valk, Cees Witteveen . 600

Resource Coordination on MAS Multi-plans Context
Weihua Yi, C.H. Zhang, Z. Liu, Xueguang Chen 604

Using Negotiation Techniques as Time-Restricted Scheduling Policies
on Intelligent Agents

Patricia Maldonado, Carlos Carrascosa, Vicente Botti 608

XVI Table of Contents

Scalability, Robustness and Performance Issues

Performance Comparison of Multi-agent Systems
Tomasz Babczyński, Zofia Kruczkiewicz, Jan Magott 612

Self-organising Systems in Emergent Organisations

A Complexity Based Feature to Support Emergence in MAS
Joris Deguet, Yves Demazeau . 616

Adaptive Document Analysis with Planning
Csaba Dezsényi, Tadeusz P. Dobrowiecki, Tamás Mészáros 620

A Self-configuring Agent-Based Document Indexing System
Liu Peng, Rem Collier, Angel Mur, David Lillis, Fergus Toolan,
John Dunnion . 624

Trust, Reputation, Reliability, Security and Intrusion
Detection

Managing Trust for Secure Active Networks
Jian-Jun Qi, Zeng-Zhi Li . 628

Short Application Papers

A Case Study of Agent-Based Virtual Enterprise Modelling
Mihaela Oprea . 632

Agent-Based Support for Open Communities
Lorenzo Lazzari, Marco Mari, Alessandro Negri,
Agostino Poggi . 636

Architecture-Centric Development of an AGV Transportation
System

Danny Weyns, Kurt Schelfthout, Tom Holvoet, Tom Lefever,
Jan Wielemans . 640

Goodness and Lacks of MAS Methodologies for Manufacturing
Domains

Soledad Valero, Estefania Argente, Adriana Giret, Vicente Julian,
Vicente Botti . 645

Multiagents Applied to Humanitarian Demining
Pedro Santana, José Barata, Lúıs Flores . 649

Table of Contents XVII

Simulating Automatic High Bay Warehouses Using Agents
Cornelia Triebig, Tanja Credner, Franziska Klügl, Peter Fischer,
Titus Leskien, Andreas Deppisch, Stefan Landvogt 653

Strategies for Distributed Underwater Survey
Milan Rollo, Petr Novák, Pavel Jisl . 657

The Role of Ontologies in a Multi-agent Based Data Integration System
Rahee Ghurbhurn, Philippe Beaune, Hugues Solignac 661

Author Index . 665

Palpable Computing and the Role
of Agent Technology

Giovanni Rimassa, Dominic Greenwood, and Monique Calisti

Whitestein Technologies AG, Pestalozzistrasse 24, 8032 Zürich, Switzerland
{gri, dgr, mca}@whitestein.com

Abstract. This paper presents a computing approach, called Palpable
Computing, complementing and extending Ambient Computing notions
and techniques. The main contribution of this paper lies in defining and
discussing what role Agent Technology can play in Palpable Computing,
and which of its ideas and technical approaches are (or are not) well
suited to be adopted as a support for the Palpable Computing vision.

1 Introduction

Ambient computing has been associated with various trends and definitions. Re-
gardless of which perspective is taken, the common and central focus is on a
new paradigm for user centric computing and interaction. In the near future,
people will have access to distributed networks of intelligent devices populating
their daily environments and providing them with information, communication
and diverse services at any time and in any location. These networked systems
are expected to adapt themselves to user requirements and even anticipate their
needs. The ability to appropriately engineer such systems has generated and is
continuously triggering challenging questions in several areas of computer sci-
ence, engineering and networking.

Palpable computing aims to provide some concrete answers by extending and
complementing the ambient computing vision, concepts and techniques. The
key idea, as detailed in the following sections, is to define systems that users
can intuitively notice, understand, use and control in the most appropriate way
according to the specific context/situation. Software that adapts to changes in
the environment, minimizing human intervention and service interruption, is
the central foundation of such an approach. Our proposition is that Agent Tech-
nology offers powerful concepts and consolidated techniques to specify, design
and build palpable software systems [1] - as discussed in the second part of
this paper.

2 The PalCom Project

Defining and investigating Palpable Computing is the overall goal of the PalCom
project [4]. PalCom is an integrated project in EU’s 6th Framework Programme

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 G. Rimassa, D. Greenwood, and M. Calisti

under the initiative “The Disappearing Computer” in the Future and Emerging
Technologies (FET), part of the Information Society Technologies. The project
started in January 2004 and will last four years.

The project consortium is composed by twelve partners, mostly academics,
with a very diverse set of skills and interests. A significant percentage consists
of Computer Science departments and IT companies, but other partners deal
with Architecture, Interaction Design, and Ethnography. The chosen approach
to effectively leverage this broad set of know-how and expertise was to act si-
multaneously in a technology-driven and a user-driven fashion.

The term “palpable” is meant to denote systems that can be noticed and
mentally apprehended. Palpable systems should support people in understanding
and controlling their operation, letting the users choose the level of information
provision and automation they see most fit for a specific situation. While a pre-
cise definition of “palpable system” and “palpability” will be built throughout
the project duration, a first step was to set up a dialectic relationship between
Palpable Computing and Ambient Computing. This was achieved with the def-
inition of six pairs of palpable qualities:

1. Invisibility complemented by Visibility
2. Scalability complemented by Understandability
3. Construction complemented by De-construction
4. Heterogeneity complemented by Coherence
5. Change complemented by Stability
6. Sense-making complemented by User control

The first element of each pair in the list above is generally a cornerstone of Am-
bient Computing, whereas the second element opposes it and represents the new
focus added by Palpable Computing. In true dialectic fashion, the advancement
is expected to be made by overcoming the conflict and finding an innovative,
better, balance.

The PalCom project is expected to provide two major results. On the one
hand, the technology-driven activity and the user-centered prototyping and sce-
nario evaluation will yield an Open Architecture to drive design and implemen-
tation of software system that can exhibit palpability. On the other hand, the
overall effort in characterizing what palpability is and which systems and use
circumstances are palpable, will result in the production of a Conceptual Frame-
work serving as guidance to conceive, understand, and assess palpable systems
in the broadest perspective.

2.1 The PalCom Open Architecture

The Open Architecture is the technical nexus of the PalCom project. Its goal is
to serve as the means of transcribing the palpable qualities discussed in Section 2
into a set of interrelated, computationally realised concepts drawn into a coherent
and encompassing structure. This implies that it must capture the essence of how
human actors interact with, and within, their everyday environments through
distributed populations of palpable and non-palpable resources.

Palpable Computing and the Role of Agent Technology 3

To some degree, the existing architectural specification builds upon estab-
lished concepts in relevant fields of software engineering expertise. But it also
specialises this know-how to weave a consistent computational fabric that, as the
sum of its parts, delivers the means to pragmatically enable aspects of palpability
in genuine and useful ways.

Realised as a set of documents, the scope of the architecture includes:

– PalCom Runtime environment (PRE). An optional infrastructual ele-
ment, the PRE allows PalCom Software Components to execute across mul-
tiple hardware devices and operating systems. It defines a virtual machine
that has a common object format and common binary standard, and is
designed to be language independent. In use, it enables strong portability,
mobility and dynamic updating of software components.

– PalCom Communication Model. Connectivity is a fundamental aspect of
the PalCom Architecture as it empowers devices and services to collaborate.
PalCom devices are required to be network enabled, but not bound to any
particular media or protocol. The basic model supports announcement and
discovery of deployed services via publish/subscribe. Peer to peer messaging
is also supported.

– PalCom Component Model. This model defines the common unit of
software functionality, deployment, and composition in PalCom. As a unit
of functionality, a PalCom Component represents both infrastructure and
domain-specific software building-blocks. Components can be composed to
form aggregated behaviours and are instantiated as PalCom Runtime Com-
ponents.

– PalCom Resource Model. Resources are those elements of the Architec-
ture that can be manipulated and reasoned about. This spans from available
memory on a device, to a human user in terms of their role and associated ac-
tions. The Resource Model defines the relationships between these resources
and how they may be manipulated to realise palpable applications.

– PalCom Contingency Model. Closely associated with the Resource
Model, this addresses a core quality of palpability - resilience. It defines how
contingent plans can be devised to ensure continued, seamless operation of
active systems whilst providing visibility over the reasons why a problem has
occurred.

– PalCom Assembly Model. A PalCom Assembly defines the scope of an
application in terms of the resource interrelationships required for its deliv-
ery. At the highest level assemblies consist of a set of interacting devices.

The relationship between these models is described by an Architecture Over-
view document that consolidates the major concepts, qualities and usage guide-
lines to provide an abstract specification to guide system designers in the creation
of concrete palpable applications.

The key concepts identified by the PalCom Architecture are illustrated in
Figure 1. As can be seen, the notion of resource is envisioned as a central concept,
encompassing both low-level device-based resources such as memory, and high-
level resources such as components, services, devices and actors.

4 G. Rimassa, D. Greenwood, and M. Calisti

Fig. 1. Key concepts of the PalCom Open Architecture

Actors interact with a PalCom system through assemblies, which realize the
notion of a task whose execution is adaptable toward actor-specific needs. To
execute their tasks, assemblies orchestrate appropriate domain-specific and in-
frastructure services available within the PalCom System and configure them
according to the tasks quality of service requirements. When orchestrated into a
specific assembly, services must interact cooperatively with one another to fulfil
their respective and collaborative tasks. This requires a runtime infrastructure
that allows PalCom assemblies and services to execute and communicate with
one another in, what is, an inherently distributed computing environment. This
runtime infrastructure must also support the concurrent execution of multiple
assemblies, which may compete with one another for available resources. The
PalCom Open Architecture follows a strict component-based approach. This
helps in the realization of services in a strictly modular fashion and will typi-
cally employ a shared repository to promote reusabability.

2.2 The PalCom Conceptual Framework

As shown in Section 2.1, the PalCom Open Architecture, albeit covering many
aspects, is basically a high-level specification for the design of software that
can run on a variety of devices with strong networking capabilities. However,
PalCom features both the ambitious goal to go beyond Ambient Computing and
a diverse expertise set in the project consortium. In engineering-driven efforts the
most general conceptual document is the system architecture: the Conceptual
Framework is both wider in scope and more general in abstraction than the
PalCom Open Architecture. It generalizes some concepts and ideas from it, but
also adds an entirely new dimension.

The added dimension relates to use. While the Open Architecture guides the
designers of palpable systems and applications, the Conceptual Framework is
supposed to allow both users and designers to understand and organize knowl-

Palpable Computing and the Role of Agent Technology 5

 Use Use QualitiesPalpable

Surfaces
~ How people work

QualitiesMaterials Palpable Material

~ How palpable programs,
systems etc. functions

Fig. 2. The basic metaphor of PalCom Conceptual Framework

edge about palpable systems. The use dimension stems from the multidisci-
plinary approach adopted in PalCom, one of the main staples of which is partic-
ipatory design [7].

The PalCom Conceptual Framework is still a work in progress. So far, a
first metaphor has proven to be useful in relating technology-centered and use-
centered aspects of PalCom. Three items compose the metaphor:

1. Materials. This item represents how palpable systems function.
2. Use. This item represents how people work/interact with palpable systems.
3. Surfaces, representing the boundary between palpable systems and the peo-

ple using them.

The elements of the metaphor and their relationships are depicted in Figure 2.
The material concept aims at suggesting that a computational system, due

to the way it has been built, has some properties of its own (akin to the physical
and chemical properties of a “real” material). Properties of the materials in this
metaphor are some of the familiar non-functional software qualities: flexibility,
resilience, security, scalability.

Such properties affect what can and cannot be done with the system, but
they are by no means sufficient to predict how the system will be used once
made available to real people. The use concepts, instead, consider exactly what
happens in that case. Most of the qualities that concern the use are then relating
to how people perform their tasks. Some examples of PalCom use properties are:

– Indexicality. This property is also named situatedness. It refers to the prop-
erty that people’s action and sentences have, of receiving (part of) their
meaning through the context in which they are performed.

– Intersubjectivity. This property relates to the fact that people usually
assume that their own actions and language will be understood by others in
a way that will facilitate interaction.

– Reciprocity of Perspective. This property signifies that people generally
assume that, if they put themselves into someone else’s shoes, they would
see the situation in the same way.

As the list above shows, key properties belonging to the use dimension are
strongly dependent upon a context that is extremely volatile and hard to cap-
ture, being linked to social and behavioral traits of users and of their operating
environment.

6 G. Rimassa, D. Greenwood, and M. Calisti

The Conceptual Framework bridges materials and use dimensions with the
concept of surfaces. Physical materials lend themselves to use only through their
surfaces; likewise, palpable systems will have to expose only a part of themselves
to the outside. Surfaces must not be reduced merely to the idea of interfaces in
a software engineering sense. What is exactly a surface still depends on the use
dimension: two different users could form two equally effective models of the same
system. In the PalCom metaphor, the two are using the same material through
two different surfaces. Most of the concepts pertaining to the surfaces dimension
show an external view on some technical entities in a computing system. As an
example, the definition of Connection, in the context of the surfaces part of the
PalCom metaphor, is not what a network engineer would give, but rather what a
person that is proficient with using wireless devices, though potentially unaware
of the technical details of their working, would.

3 Agent Technology and Palpability

Previous sections described the PalCom project goals. The main question is
now whether, and how, can Agent Technology provide conceptual and practical
contributions to this effort. Quite a few hints suggest a positive answer: ideas
and requirements emerged in the initial phases of work are pretty much in line
with essential features of the Agent Technology approach.

At the Open Architecture level, a loosely coupled and very dynamic compo-
nent model is advocated. It is also stated that, in order to support the emergence
of effective usage from human actors, palpable systems will have to follow a
task-oriented model (as opposed to a more standard, application-oriented one),
focussing on implementing user goals. The communication model fosters asyn-
chronicity, relying on publish-subscribe discovery and communication protocols,
while resorting to direct message passing between mutually aware components.

All the above prescriptions nicely match multi-agent systems (autonomous
software components, perceiving from and acting on their environment, manag-
ing their own resources, communicating asyncronously with one another either
through direct messaging or through a shared environment).

At the Conceptual Framework level, the materials dimension is a more ab-
stract rendering of the Open Architecture and matches Agent Technology the
same way. Slightly more surprising, instead, is that the use dimension also has
many agent-friendly concepts. Indexicality immediately recalls agent situated-
ness, while intersubjectivity and reciprocity of perspective can readily point to
behavioral implicit communication [2] or mutual agent modeling.

This is not due to chance at all, but follows from the multi-agent systems
approach, where researchers have since long drawn inspiration from the social
sciences. However, social sciences concepts and theories must be distinguished
from their versions adopted and implemented in software multi-agent systems.
When taking agency in its broadest meaning, it is true that agent situatedness
is exactly indexicality. However, when considering a software agent, the situat-
edness it can exhibit is just a stripped down version of what a human can do.

Palpable Computing and the Role of Agent Technology 7

While situatedness is effective in improving its behavior, it by no means make a
software agent comparable to a human.

Thus, software agents should be left out of the use dimension. Actually,
their exhibiting lesser versions of most use properties suggests a critical Agent
Technology contribution in the materials and surfaces dimensions.

Much work is still needed to bring about the overall Palpable Computing
vision and to precisely define the role of Agent Technology into it. The next
subsections consider the two first research directions the authors are presently
following.

3.1 User-Aware Surfaces

Applying Agent Technology at the surfaces level naturally recalls user agents.
Surfaces in PalCom Conceptual Framework are the contact point between human
users and a software system, where user agents reside. The more or less common
design is to select one specific software agent and attach it to a human user.

Often, system designers follow the presentation approach of giving that soft-
ware agent an antropomorphic or zoomorphic semblance. The user is then invited
to think of the software system as being somehow inhabited by a kind of syn-
thetic creature, helping with the user tasks. Other times, a more standard GUI
or VUI is used. Anyway, from the point of view of the system, the human user
is wrapped and shielded by her own user agent. The resulting situation is thus:

– Human users are invited to see interacting with the software system as being
like interacting with another human.

– The software system is designed to consider interacting with human users as
being like interacting with another autonomous software entity (agent).

A very interesting critique of this approach, from a sociological perspective, is
made in [5], and partly in [6]. With no completeness ambition, some relevant
points made there are:

– User agents foster the idea of a perfect, almost invisible infrastructure at the
service of the user, abstracting away the human labor that is still involved
in performing most high-tech tasks.

– While trying to keep the previous promise, the software models humans as
autonomous, rational entities. It then engineers the human-machine interac-
tion as between equals (i.e. both parties are autonomous and rational).

– However, it is generally the case that agency doesn’t lie in the qualities of
the human or of the machine. Instead, agency is a relational capacity that
is enacted when a (specific) human and a (specific) machine come together
and interact within a context that is made by the whole history of both.

Willing to accept this critique, an antropomorphic user presentation risks being
counterproductive for an user agent. The level of agency in an interaction de-
pends on the unique human-machine shared context. Inducing the human user
to think of the software agent as another human would generate behaviors and
expectations that are unsuited to actual system capabilites.

8 G. Rimassa, D. Greenwood, and M. Calisti

Fig. 3. An UML model of Actor-System interaction structure

Even more important, though, is the converse: having the software agent
modeling its user as just another software agent ends up unduly restricting
the interaction. The system must be aware of when it is interacting with a
human user. Some interaction properties will stay the same whether the user
is a human or not, but in order to obtain a palpable system, other interaction
traits will drastically change. A possible UML diagram describing this awareness
is depicted in Figure 3.

As Figure 3 shows, a software agent can both be a part of a system and
also act as the external user (named Actor in the Conceptual Framework). The
association “is a user of ” connects an actor and the system it uses, and regard-
less whether the actor is a human or a software agent. However, the derived1

association “is a (human) user of ” captures the fact that just knowing that the
actor is a human adds valuable information for the system.

The following list presents the features that a software agent needs to have
in order to be able to effectively exploit that valuable information. An agent:

– Needs to know whether a perceived event was sent to it by a human or not
(thus enabling human-to-machine behavioral implicit communication).

– Needs to model which effects of the actions it can perform can be perceived
by the humans it is interacting with (thus enabling a machine-to-human
behavioral implicit communication).

– Must know or infer the effect that its modification of the environment can
have on the humans it is aware of.

The authors believe that, if software agents acting at the system boundary have
these features, Agent Technology can provide a significant push towards realizing
the vision of Palpable Computing, improving user experience with the system
while leaving the interaction space open for emergence of new uses. In the terms
of the PalCom Conceptual Framework metaphor, such software agents can be
the key to engineer user-aware surfaces.
1 In UML, a derived association is an association whose pairs can be computed from

the association it derives from. In this case, each (HumanUser; System) pair in the
is a (human) user of association is also an (Actor; System) pair in the is user of
association.

Palpable Computing and the Role of Agent Technology 9

3.2 Autonomic Materials

The PalCom Conceptual Framework chose to use the materials element of its
metaphor to suggest that human users can perceive software systems as having
some basic properties, which can be leveraged to flexibly create usages. In order
to discuss a possible role of Agent Technology at the materials level, a first step
is to initially consider physical materials and see how some consideration can be
transferred to computational systems.

Some properties of physical materials, though natural, can be described by
the same feedback loop idea that is commonly used in engineering (e.g., an elastic
material is subject to a feedback force proportional to its displacement from the
equilibrium position). It is also well known that the sense-compute-act loop of
a software agent configures it as a kind of feedback controller with respect to its
environment.

Recently, the IBM-fueled vision of Autonomic Computing [3] has added yet
another perspective on feedback loops and software, claiming that software sys-
tems should be self-regulating, self-configuring and self-protecting. The overall
emphasis here is on automation through all-in-software feedback control of com-
putational systems.

Within this perspective we see that Palpable Computing arises from the
situated and contextual use of some computational materials within the fabric
of an application. A material is perceived as a resource that projects a tangible,
yet often transient, presence into the feedback field persisting between the user
surface and the computational infrastructure enacting a palpable application.

As such, a resource, whether it be e.g. memory, a physical device or human
user2, automatically reflects its functional and embodied properties to both its
human and computational consumers. By positioning an agent with deliberative
capabilities within this field we can tune the use of resources to the changing
context of an extant application while maintaining a coherent understanding
of the effect on human engagement. This balance between the management of
potentially complex and dynamically fluxing task structures, and the reflective
condition of participating human users is one that requires the agent be embodied
with decisiveness and thus the ability to take initiative in determining solutions
within a changing resource landscape.

Another aspect of the agent role is to effect contingent reasoning in resolving
problem conditions arising from within the computational environment. If a
device fails, for example, the agent will use its comprehension of that device’s
influence both on the environment and its human users to assess the impact
and take contingent actions to enact a repair or other resolution. Contingency
is essentially the capability of adapting to both predictable and unpredictable
events, the former resolveable with contingent planning, but the latter requiring
a degree of reasoning to determine courses of action. This positions the agent as
a means to regulate stability through causal adaptation.

2 A human user can be treated as a resource in terms of their role and the operational
characteristics associated with that role.

10 G. Rimassa, D. Greenwood, and M. Calisti

4 Conclusions

Today, there is a significant amount of work that is attempting to understand
how we, as humans, will continue to explore and experience interaction with
computing machinery throughout our everyday lives. Palpable Computing aims
at extending and complementing the Ambient Computing vision by focusing on
the definition of palpable systems as systems that can be noticed and mentally
apprehended by users.

This paper has proposed two main research directions the authors are cur-
rently pursuing to understand and propose how Agent Technology concepts and
mechanisms can contribute to ground and consolidate the definition of palpabil-
ity and the implementation of palpable systems.

Acknowledgements. The authors would like to thank Thomas Lozza for his
valuable contribution and all PalCom partners for their collaboration. Part of
the research work described in this paper has been funded thanks to the Swiss
State Secretariat for Education and Research (SER) 03.0495-2 Grant.

References

1. Calisti, M., Greenwood, D., (2003) “On the Road to Ambient Intelligence”, Euro-
pean Workshop on Multi-Agent Systems, Oxford, U.K.

2. Castelfranchi, C. “SILENT AGENTS: From Observation to Tacit Communication”.
In Proc. of First Int’l Workshop on Modeling Other Agents from Observations (MOO
2004), pages 25-32.

3. IBM Research. “Autonomic Computing Manifesto”.
Available at http://www.research.ibm.com/autonomic/manifesto/

4. The PalCom project Home Page.
http://www.ist-palcom.org/

5. Suchman, L. “Figuring Service in Discourses of ICT: The case of software agents”.
In Wynn, E. et al (Eds.) Global and Organizational Discourses about Information
Technology . Dordrecht, The Netherlands: Kluwer, pp. 15-32.

6. Suchman, L. “Figuring Personhood in the Sciences of the Artificial”. Available at
http://www.lancs.ac.uk/fss/sociology/papers/suchman-figuring-personhood.pdf

7. Winograd, T. “Bringing Design to Software”. Addison-Wesley, 1996

A Dynamic Joint Protocols Selection Method
to Perform Collaborative Tasks

José Ghislain Quenum and Samir Aknine

Laboratoire d’Informatique de Paris6,
8 rue du Capitaine Scott, 75015 Paris, France

{jose.quenum, samir.aknine}@lip6.fr

Abstract. The work achieved in multi-agent interactions design mostly relates
to protocols definition, specification, etc. In this paper we tackle a new problem,
the dynamic selection of interaction protocols. Generally the protocols and the
roles agents play in protocol based interactions are imposed upon the system
at design time. This static selection severely limits the openness, the dynamic
behaviours agents are expected to exhibit, the integration of new protocols, etc.
To address this issue, we developed a method which enables agents to select
protocols themselves at runtime when they need to interact with one another.
We define the concepts and the mechanisms which enable agents to perform this
dynamic selection.

1 Introduction

Generally, the interaction protocols which support the execution of agents collaborative
tasks are imposed upon multi-agent systems (MAS) at design time. This static protocols
selection severely limits MASs in the openness and dynamic integration of new proto-
cols perspectives. As an illustration of this problem, consider a goods transportation
multi-agent system composed of trader agents (Tı) and three kinds of carrier agents:
air carrier agents (ACı), land carrier agents (LCı) and rail carrier agents (RCı). Let’s
consider that two independent designers, A and B, modelled the agents of the system.
A trader agent T1 from designer A expects an air carrier agent AC0 from designer B
to transport a good g. To carry out this collaborative task, both agents need to execute
an interaction which we assume is based on a protocol. Consider that A has chosen
the FIPA Request Protocol [FIP01] for this interaction while B has chosen the FIPA
Contract Net Protocol (CNP) for the same interaction. At runtime, when T1 sends the
(request1) message to AC0, the latter will reply a not-understood message and
the desired interaction won’t take place. Hence, because the protocols A and B stati-
cally selected are different the needed interaction can’t take place thus cancelling the
execution of the related collaborative task. To address this drawback agents should be
enabled to select their coordination mechanisms in order to execute collaborative tasks.

As yet, there have been some efforts [BETJ00, Dur99] to enable agents to dynam-
ically select the roles they play during interactions using Markov Decision Processes,
planning or even probabilistic approaches. However, these efforts don’t suit protocol

1 We designate messages by the performative they contain.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 11–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

12 J.G. Quenum and S. Aknine

based coordination mechanisms. Indeed, as protocols are partially sorted exchange se-
quences of pre-formatted messages, selecting them to execute a task requires that their
descriptions match that of the collaborative task. The solutions proposed so far do not
explicitly focus on protocols and do not check such compliance either. To address this
void, we developed a method which enables agents to dynamically select protocols and
roles in order to interact. Our method puts the usual assumptions about multi-agent in-
teractions a step further. First, some interaction protocols may appear at runtime. Thus,
starting from a minimal version, agents interaction models can grow-up by integrat-
ing these protocols from safe and authenticated libraries of interaction protocols when
needed. Second, there may be different designers in the system, therefore several pro-
tocols specification formalisms may coexist.

Rather than explicitly indicating the protocols and the roles to use for all the agents
which will execute the underlying interaction, we suggest that agents designers simply
describe collaborative tasks in the model of the agents which should start their execu-
tion. As soon as an agent locates such a description, it looks for a set of protocols which
may help execute the collaborative task. Switching from collaborative tasks models to
protocols requires the agents to analyse both models and detect their adequacy. In this
paper, we focus on the selection mechanism and assume that agents are able to per-
form conversions from tasks descriptions to protocols. Two important questions greatly
impact the dynamic protocols selection method: (1) are the agents able to interpret all
the protocols specification formalisms currently in use in the MAS? (2) do they rely
on one another during the protocol selection? We identified two possible responses to
these questions and therefore two possible ways to dynamically select protocols in or-
der to execute collaborative tasks: a joint protocol selection where all the agents decide
together which protocol to use and an individual protocol selection where each agent in-
dividually makes its decision which it may adjust depending on the exchange sequence.
In this paper, we only describe the joint protocol selection mechanism.

We argue that our method suits MASs openness and introduces more flexibility in
protocols execution since it copes with the dynamic integration of protocols. In this
paper we detail the principles, concepts and algorithms of our method. We exemplify it
using the goods transportation MAS briefly described above.

The paper is organised as follows. Section 2 formally defines the protocol selection
problem and sheds some light on the solution we propose. Section 3 details the joint
selection variant we developed. Section 4 discusses some related work and section 5
draws some conclusions.

2 The Dynamic Protocol Selection Problem

We formally define a protocol as a triple {R,M,Ω} where R is a set of interacting
roles which can be of two types: initiator and participant, M is the set of messages
exchanged during the protocol execution and Ω the sequence of messages exchange. An
initiator role is the unique role in charge of starting the protocol whereas a participant
role is any role taking part in the protocol. We assume that each agent is provided with
an interaction model, I = {r1, r2, . . . rn}, which contains the configured roles this
agent can play during interactions [QSA03]. We also define a collaborative task as a

A Dynamic Joint Protocols Selection Method 13

set of automata which execute independently but coordinate their inter-related activities
by exchanging some messages. Moreover, we classified the protocols used in MASs in
three categories: (1) 1-1 protocols, which are protocols made of two roles (initiator and
participant) both of them having only one instance (e.g. Request protocol); (2) 1-1N

protocols, again protocols made of two roles with several instances of the participant
(e.g. CNP); (3) 1-N protocols, which are protocols with several distinct participant roles
each of them having only one instance (e.g. an auction protocol with one buyer, one
seller and one auctioneer).

The dynamic protocol selection problem consists in enabling agents to map proto-
cols to collaborative tasks instead of leaving the designer to decide. Concretely, given
a collaborative task tj which a set A = {a1, a2, . . . ak} of agents can execute, we state
the selection problem as how can any of these agents select a protocol and a role inside
this protocol to execute tj? The solution to this problem is triple (A, pj ,m) where A
is the set of participant agents, pj the protocol to use and m an associative array which
maps each agent to the role(s) it will play in pj . To find out this solution, we developed
two variants of a dynamic selection method. First, all the agents which will execute the
task collectively select a protocol and assign roles to each agent in this protocol. This
is the joint protocol selection which assumes that agents trust one another and that they
don’t dread publishing their knowledge and preferences during the selection. Second,
each agent individually selects its role and execute the interaction adjusting its choice
to the messages exchange sequence. This variant is called the individual protocol selec-
tion. It is carried out concomitantly to the targeted interaction. This variant assumes that
agents do not trust one another and/or the system is heterogeneous and several agents
systems with different protocols specification formalisms are plugged together. In the
remainder of this paper we only describe the joint protocol selection.

3 Joint Protocol Selection

In the joint protocol selection all the agents which will perform the collaborative task
validate together the protocol they’ll use to interact. In order to contrast the messages
exchanged during the joint selection and those of typical interactions, we introduced
five new performatives which we define as follows.

call-for-collaboration the sender of this performative invites the receiver to
take part in an interaction based on the protocol described in the content field.
The related task is also described in this field.

unable-to-select the sender of this performative informs the receiver that it can-
not play a participant role in the referenced protocol. An agent may reply this per-
formative, though identified as a potential participant for the protocol, because of
its autonomy or some errors occurred in some fields.

stop-selection the sender of this performative asks the receiver to stop the selec-
tion process the message is associated with.

ready-to-select the sender of this performative notifies the receiver of the par-
ticipant roles, listed by order of preference, it can enact regarding the protocol and
task it received. To avoid going back and forth about protocols sharing the same

14 J.G. Quenum and S. Aknine

background we extended the list to compatible roles. Roles of protocols are com-
patible when they can execute safe interactions albeit the difference in their respec-
tive specifications. As an example the initiator role of CNP can interact with either
the participant role of CNP or that of Iterated CNP (ICNP [FIP01]); while the ini-
tiator of ICNP can’t interact with the participant of CNP because of the probable
iterations.

notify-assignment the sender of this performative informs the receiver about the
role the latter has been assigned to in the jointly selected protocol.

As outlined earlier, once the initiator agent finds the description of a collaborative
task it identifies some protocols and for each protocol a set of potential participants.
Both steps provide the initiator agent with a sparse matrix: potential participants linked
to protocols. The initiator agent may direct the matrix exploration near protocols or
agents or the both of them. Whatever exploration direction the initiator adopts, it can
overcome the matrix sparsity by selecting as next element (protocol or agent) the one
holding the least sparse vector. This strategy can be refined by adding some knowledge
whether about protocols or agents. And coupling this knowledge to the description of
the task the initiator agent will prefer selecting an agent for a given protocol because
it better suits the collaborative task to perform, or find out a protocol for a given agent
because of its efficacy in performing such a task.

Once the initiator has constructed its matrix and identified an exploration strategy, it
invites one or several potential participants sending a call-for-collaboration
wherein it encapsulates the descriptions of a protocol and a task. Each of the contacted
participants may decline the invitation replying an unable-to-select. They may
also accept the invitation sending a ready-to-select. When the initiator agent
receives some proposals, it tries to select one of the protocols. If it succeeds, it notifies
the participant(s) through a notify-assignment. The initiator may also reject all
the proposals sending a stop-selection. The latter message is also sent in reply to
an unable-to-select. When no protocol has been selected after an iteration, the
initiator agent will take the process again until a solution is found or no more exploration
is possible.

3.1 1-1 Protocols

Since the 1-1 protocols only contain one participant role played by only one agent, the
solution to the dynamic selection problem can be refined to a couple (ai, pj) where pj

is the selected protocol and ai the agent which will play the participant role. For this
class of protocol, the potential participant agents are contacted one after the other.

Consider, by way of illustration, a trader agent T1 which needs the air transportation
of a delicate good g2 in such a quantity that at least one air carrier agent can achieve it.
This collaborative task, of course, requires an interaction based on a 1-1 protocol. Let’s
consider that T1 identified two 1-1 protocols: FIPA Request and Incremental Problem
Solving (IPS); IPS protocol allows an initiator and a participant to incrementally come
up with a solution to a given problem. The sequence diagrams of both protocols are
given in Figures 1(a) and 1(b). If only one air carrier agent has been identified, the
selection process is performed in one iteration and if it fails the related collaborative task

A Dynamic Joint Protocols Selection Method 15

Initiateur Participant

X

not−understood

refuse

agree

X

request

failure

inform−done

inform−ref

[agree]

(a) FIPA-Request Proto-
col

declare problem

ask about processing

respond

stop processing

add information

Problem
Solver

Problem
Submitter

refuse to solve

accept to solve

(b) IPS Protocol

Fig. 1. Request and IPS protocols sequence diagrams

Table 1. Matrix for task t1

AC0 AC1 AC2 AC3 AC4 AC5 AC6

IPS x x x x x
Request x x x x

fails. If several air carrier agents have been identified, let’s consider that the matrix in
Table 1 is the one T1 constructed for this task. Consider T1 explores the matrix visiting
protocols and exploits some knowledge about protocols. If the task is described so that
T1 should provide the participant agent with richer information during transportation
(e.g. the air route to follow), T1 will prefer the IPS protocol and contact agents from the
set {AC0, AC1, AC3, AC4, AC6}.

When the selection fails with the current agent and as long as there are still unex-
plored potential participant agents for IPS, T1 will continue contacting them. In absence
of solution when the potential participants set has been thoroughly explored for a pro-
tocol, the same process is taken again upon another protocol if there is any. In case
no solution has been found and no more protocol or participant can be explored, the
dynamic protocol selection fails and the subsequent task remains not executed.

3.2 1-1N Protocols

Because 1-1N protocols are like 1-1 with several instances of the unique participant
role, we can also refine the solution to the dynamic selection to a couple (A, pj) where

16 J.G. Quenum and S. Aknine

AC0 AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10

IPS1−1N x x x x x x x x x x x
CNP x x x x x x x x
Request1−1N x x x x x x x x x x x

(a) Matrix for task t2

IPS1−1N CNP Request1−1N

AC0 2 1
AC1 3 1 2
AC2 1 2
AC3 1
AC4 2 1
AC5 1 2
AC6 1 3 2
AC7 2 1
AC8 2 1 3
AC9 1
AC10 1

(b) Agents preferences

Fig. 2. Matrix and agents preferences for task t2

A is the set of participant agents and pj the protocol to use. For this category of proto-
cols the matrix is explored only in a protocol-oriented way since all the identified agents
for a protocol should be contacted at the same time. Once all the contacted agents have
replied, the initiator agent selects a common protocol for the agents which replied a
ready-to-select. We devised several strategies to perform this selection but here
we only describe one, the largest set strategy, which looks for the role the highest num-
ber of agents selected. If there exists a role ri that all the agents pointed out, then this
one is selected. Otherwise, we look for a role that involves the largest set of agents.
Therefore, we consider the protocols that the highest number of agents mentioned in
their ready-to-select. If there are several such protocols, we look among them
for one that the highest number of agents prefer. If there are still several such protocols,
for each role rı, we compute the difference difı between the set of agents eı which
pointed out rı and the union of such sets for all the other most preferred roles except
eı: difı = (eı −

⋃
j

{ej}, j �= ı). Then, we select the largest difı which corresponds to

the role selected by agents which didn’t much vary in their choices. Finally, if there are
still several protocols we perform a random selection among the remainders.

As an example, let’s consider that T1 needs an air transportation of g2 in such a
quantity that no air carrier agent is able to transport it and that time and other resources
constraints prevent any air carrier agent from performing more than one transportation
turn. Thus T1 needs to make several air carrier agents transport some quantity of g2.
This collaborative task should then be performed by means of a 1-1N protocol. In sake
of illustration we introduce variants to Request and IPS protocols which we call re-

A Dynamic Joint Protocols Selection Method 17

spectively Request1−1N and IPS1−1N . In Request1−1N there are several instances
of the unique participant role. Such a protocol better suits situations where there is a
need to split the task in smaller parts and make participants execute them in parallel. In
IPS1−1N there are also several instances of the unique participant role and the initiator
discusses with each of them. The protocols T1 identified as well as the agents which
can enact participant roles in these protocols are given Figure 2.

Using the default strategy (the least sparse vector) with protocols, T1 sent a
call-for-collaboration to all the agents identified for IPS1−1N . The pref-
erences of the agents are given in Figure 2(b). We use digits 1, 2 and 3 to express the
degree of these preferences (1 is the highest and 3 is the lowest). Figure 2(b) reveals that
IPS1−1N and Request1−1N are the protocols the highest number of agents mentioned
but IPS1−1N is the most preferred protocol. So T1 selects this protocol and interacts
with AC1, AC2, AC4, AC5, AC6, AC7, AC8 and AC9. AC0, AC3 and AC10 will be sent a
stop-selection message.

3.3 1-N Protocols

Here again, the matrix is explored only in a protocol-oriented way. The initiator agent aı

waits for all the participants it contacted to reply and gathers the ready-to-select
messages. The roles are clustered following the protocols they belong to and the proto-
cols which have not been identified by the initiator agent are eliminated. For each proto-
col p, aı maps each role rj to a set of agents which mentioned it in their

ready-to-select: candidates(rj) =
⋃
k

{ak}. If candidates(rj) = ∅, the proto-

col rj belongs to is no more considered in the selection process. Moreover, as there
exists several participant roles in 1-N protocols, some of them may receive their first
message from other participant roles. Thus, we introduce a new relation, father, which
we define as follows: given two roles r1 and r2 of a 1-N protocol, if r1 is the sender of
the first message r2 receives then r1 is the father of r2 and we note r1 = father(r2).
For each protocol the initiator agent constructs a tree t from the candidates set it con-
structed. The nodes of this tree are the roles of the protocol. A node rm is child of
another node rn if rn = father(rm). t is explored in a breadth-first way and for each node
rj of t an agent aj (actually as many as the cardinality of the role imposes) is assigned
to rj from candidates(rj). Assigning a role to an agent can be performed by any well
known resource allocation algorithm (e.g. election algorithm). An improvement during
the roles assignment is to avoid situations where the same agent plays several roles in a
protocol. Thus, when candidates is a singleton, its only one agent is removed from
all other candidates sets it appears in when these are not singletons. As well, while
exploring t, once a role has been assigned to an agent we should remove this agent from
all the candidates sets it appears in provided these are not singletons.

As an example consider that the trader agent T1 needs the transportation of a good
g3 stored in a particular warehouse which can only be reached by a land carrier agent.
But, time constraints prevent us from performing this transportation only by land. Hence
T1 should coordinate different types of carrier agents so that g3 gets transported on
time. Concretely, a land carrier agent will move g3 from the warehouse to the nearest
railway station and a rail carrier agent will move it to the nearest airport and finally an

18 J.G. Quenum and S. Aknine

Table 2. Agents preferences

r1 r2 r3 r4 r5 r6

AC0 1 2
AC1 1 2
AC2 1
LC3 2 1
LC4 2 1
RC5 1
RC7 1
LC10 2 1

air carrier agent will bring it to the location T1 mentioned. Such a collaborative tasks
requires a 1-N protocol wherein the carrier agents play different participant roles.

Here again, we introduce new variants of Request and IPS which we call
Request1−3

2 and IPS1−3 respectively. In Request1−3 an initiator requests a partic-
ipant r′ to perform some processing. As soon as r′ agrees in performing the task it
requests another participant r′′ which will later request a third participant r′′′. Finally,
when r′′′ completes its processing it sends the resulting information to r′′ which en-
capsulates it in its own result and sends it to r′ which eventually sends the whole result
to the initiator. In IPS1−3 we organised the three participants in quite a similar way
adding the discussion between roles. In this example we designate by r1, r2 and r3 the
participant roles of Request1−3 and r4, r5 and r6 the participant roles of IPS1−3. T1
contacted agents {AC0, AC1, AC2, LC3, LC4, RC5, RC7, RC8, AC9, LC10} for the pro-
tocol Request1−3 and the preferences of these agents are given in Table 2. This table
reveals that RC8 and AC9 replied unable-to-select and that no agent mentioned
r5 thus excluding the IPS1−3 from the selection process. Finally, T1 constructs the
candidates tree following the father relation and assigns each role to an agent (LC10
for r1, RC5 for r2 and AC2 for r3). All the other agents receive a stop-selection
message.

4 Related Work

Protocols selection in agents interactions design is something generally done at design
time. Indeed, most of the agent-oriented design methodologies (Gaia [WJK00] and
MaSE [DW00] to quote a few) all make designers decide which role agents should
play for each single interaction. However dynamic behaviours and openness in MAS
demand greater flexibility.

To date, there have been some efforts to overcome this limitation. [Dur99] intro-
duces more flexibility in agents coordination but it only applies to planning mecha-
nisms of the individual agents. [Bou99] also proposes a framework based on multi-
agent Markov decision processes. Rather than identifying a coordination mechanism
which suits best for a situation, this work deals with optimal reasoning within the con-
text of a given coordination mechanism. [BETJ00] proposed a framework that enables

2 Since we only need three participants for the task at hand.

A Dynamic Joint Protocols Selection Method 19

autonomous agents to dynamically select the mechanism they employ in order to coor-
dinate their inter-related activities. Using this framework, agents select their coordina-
tion mechanisms reasoning about the rewards they can obtain from collaborative tasks
execution as well as the probability for these tasks to succeed. The main requirement
the selection process faces in protocol based coordination mechanisms is whether or
not there exists in the agent interaction model roles capable of supporting the desired
interaction. To fill this void, we proposed a method to enable agents to dynamically
select protocols basing on their interaction capacities.

5 Conclusion

Designing agents for open and dynamic environments is still a challenging task, espe-
cially in regard to protocol based interactions. Two main concerns arise from interac-
tions modelling and design in such systems. First, how to configure interactions which
are based on generic protocols so that consistent messages exchange will take place?
Second, does it sound that designers always decide which protocols and roles to use
every time an interaction is asked for? We address both issues by developing several
methods. In this paper we focus on the second concern. We argued that due to openness
and dynamic behaviours more flexibility is needed in protocols selection. Furthermore,
in the context of complex applications demanding multi-protocols agents, moving from
static to dynamic protocol selection greatly increases the efficiency of the system and
properly handles situations closer to openness where all the protocols are not known at
design time. Thus, we enabled agents to dynamically select protocols upon the prevail-
ing circumstances.

One outcome of the dynamic protocol selection is that the protocols to use are no
more hard-coded in all agents model. Rather, designers mention collaborative tasks
descriptions in the initiator agent model making the latter in charge of initiating the
interaction. Then, using the dynamic selection method we developed, they will se-
lect the adequate protocols and execute the underlying interactions. Alongside this
method are three other components: the task model, the protocol model and the mech-
anisms to match both models. Currently these components depend on each agent de-
signer/programmer and we aim at unifying all these components in a whole.

References

[BETJ00] R. Bourne, C. B. Excelente-Toledo, and N. R. Jennings. Run-time selection of coor-
dination mechanisms in multi-agent systems. In Proceedings of the 14th European
Conference on Artificial Intelligence, pages 348–352, Berlin, Germany, August 2000.

[Bou99] C. Boutilier. Sequential optimality and coordination in multiagent systems. In
Proceedins of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI-99), pages 478–485, 1999.

20 J.G. Quenum and S. Aknine

[Dur99] E. H. Durfee. Practically coordinating. AI Magazine, 20(1):99–116, 1999.
[DW00] S. Deloach and M. Wood. An overview of the multiagent systems engineering

methodology. In P. Ciancarini and M. Wooldridge, editors, Proceedings of the
1st Interational Workshop on Agent Oriented Software Engineering, volume 1957.
Springer Verlag, June 2000.

[FIP01] FIPA. Fipa interaction protocol library specification. Technical report, Foundation
for Intelligent Physical Agents, 2001.

[QSA03] J. G. Quenum, A. Slodzian, and S. Aknine. Automatic derivation of agent interaction
model from generic interaction protocols. In P. Giorgini, J. P. Muller, and J. Odell,
editors, Proceedings of the Fourth International Workshop on Agent-Oriented Soft-
ware Engineering. Springer Verlag, 2003.

[WJK00] M. Wooldridge, N. Jennings, and D. Kinny. The gaia methodology for agent-oriented
analysis and design. Autonomous Agents and Multi-Agent Systems, 3:285–312, 2000.

A Formal Framework for Interaction
Protocol Engineering

Fernando Alonso, Sonia Frutos, Genoveva López, and Javier Soriano

Facultad de Informática, Universidad Politécnica de Madrid,
28660 Boadilla del Monte, Madrid, Spain

{falonso, sfrutos, glopez, jsoriano}@fi.upm.es

Abstract. This paper presents a formal framework devised to support
interaction protocol (IP) engineering. The proposed framework is organ-
ized into three views that consider all the stages of a protocol engin-
eering process, i.e. the design, specification, validation, implementation
and management of IPs. The modeling view allows visual IP design. The
specification view automatically outputs, from the design, the syntactic
specification of the IPs in a declarative-type language called ACSL, which
improves IP publication, localization and machine learning by agents. Fi-
nally, the implementation view provides a formal operational semantics
for the ACSL language. This semantics allows protocol property verifica-
tion and eases automatic code generation from the ACSL specification
for the purpose of simulating code execution at design time, as well as
improving and assuring correct IP compliance at run time.

1 Introduction

In the context of multi-agent systems (MASs), the approach to interaction based
on Speech Act Theory [6] is one of the most widely used mechanisms for support-
ing activities such as information, task and resource sharing, action coordination
and distribution, conflict resolution and agreement management. This approach
assumes that agents carry out communicative actions in the same manner as
other actions, i.e. to further their intentions, in an attempt to appropriately
influence the mental state and behavior of other agents. On the basis of these
premises, several Agent Communication Languages (ACLs) have been conceived
that model communicative actions, also referred to as speech acts, as typed mess-
ages that constitute the building blocks for communication. KSF’s KQML [7]
and FIPA-ACL [8] are the two most significant examples of ACLs.

However, agents do not participate in isolated message exchanges, they enter
into conversations, i.e. coherent message sequences designed to perform spe-
cific tasks that require coordination, such as negotiations or agreements. This
exchange sequence may emerge spontaneously [12] or have been agreed upon
beforehand and specified by means of an interaction protocol (IP) [11]. A priori
specification of IPs and agreement on the particular protocol to be used in a
given conversation eases the design of agents capable of entering into coherent
conversations with other agents in open environments. The importance of IPs in

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 21–30, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

22 F. Alonso et al.

the design of an agent society is evident not only from their fitness for structuring
behavior, but also as an organizational factor [1].

This a priori approach necessarily depends on the provision of a framework
to support the modeling of interactions between agents that considers all the
stages of a protocol engineering process, i.e. the design, specification, validation,
implementation and management of IPs, considered as resources. Some aspects
to be taken into account when building such a framework are:

– The ease of modeling the communicative agent behavior, mainly, the beha-
vior of agents that obey complex interaction patterns, especially open (in
terms of number of roles and/or agents) and concurrent patterns.

– Protocol maintainability and ease of reuse at both the design and specifica-
tion level.

– Reliability, from the viewpoint of design validation and property verification
and as regards assuring proper protocol compliance by participant agents.

– Availability and accessibility of both the protocols (i.e. designs and speci-
fications) and ongoing conversations (i.e. protocol instances, protocol state
and participant agents). This aspect is related to agent interoperability in
terms of interaction.

– Scalability of both the designs and specifications (ease of composition) and
the ongoing conversations for adaptation to large MAS.

This paper presents a formal framework, organized into three views, which
deals with all these aspects at the IPs architectural design, formal specification
and implementation level. The qualities of the developed framework have been
extensively tested as part of research project TIC2001-34511 , the purpose of
which was to develop an architecture, based on the cooperative and strongly
distributed paradigm, to manage telecommunications infrastructures holonically
by means of autonomous agent societies.

The remainder of the paper is organized around the three views of the proposed
framework as follows. Section 2 presents an overview of the framework. We then
describe the fundamental elements of first the modeling view (section 3) and then
the specification view (section 4) in detail. Section 5 deals with the implementation
view. Finally, section 6 compares our approach with other related work.

2 Overview of the Proposed Framework

The problem of IP specification is not new to MAS developers, and a wide range
of solutions have been proposed (cf. [5]). We find, however, that there is a huge
void between the existing proposals based on formal techniques, whose design
is extremely complex (e.g. colored Petri nets [9]), and the graphic notation-
based techniques (e.g. AUML [10]), which are devoid of precise semantics and
rule out automatic specification exchange and interpretation for the purpose
of specification simulation, validation and execution. The proposed framework
intends to fill this gap by means of three interrelated views:
1 Work on this project has been partially funded by the Spanish Ministry of Science

and Technology.

A Formal Framework for Interaction Protocol Engineering 23

Fig. 1. Tools and products of the proposed framework

– The modeling view eases the visual design of IP architecture by means of
an AUML-based graphic notation. The proposed notation extends existing
AUML and furnishes this notation with formal semantics. This is essential
for developing the specification view.

– The specification view automatically outputs the syntactic specification of
an IP from its architectural design in a declarative-type language, developed
by the authors, called ACSL [2]. This improves IP publication, localization
and machine learning by agents. ACSL is an abstract syntax for which an
XML grammar has been developed by means of the XML Schema formalism,
in order to be able to validate the specifications syntactically, and to make
easier their use in Internet environments.

– The implementation view is based on the provision of an structural opera-
tional semantics (SOS) for the ACSL language. The developed formalism
allows us to verify the properties of the designed IPs, such as their ter-
mination in finite time, conversational state reachability or the absence of
deadlocks or starvations. On the other hand, the developed formalism auto-
matically outputs code from the ACSL specification for the purpose of (1)
simulating protocol execution at design time and (2) improving and assuring
correct IP compliance at run time.

Figure 1 shows the products of the IP engineering process and the tools of
the proposed framework. These tools allow: (1) the visual composition of IPs in
AUML∗ notation, (2) automatic ACSL specifications generation(using an XML
grammar) for models built in AUML∗, (3) the output of a semantic interpreter
associated with these specifications, and (4) the generation, by means of code
reflection techniques, of conversational proxies that improve IP compliance at
run time.

24 F. Alonso et al.

3 Modeling View: AUML∗ Notation

To support the modeling phase, the developed framework includes a graphic
notation, called AUML∗, supported by a visual modeling tool. The proposed
notation is an extension of the notation used in the AUML initiative Protocol
Diagrams, which has also been furnished with formal semantics.

The Protocol Diagrams proposed by the AUML initiative are extremely help-
ful for designing IPs. Nevertheless, while AUML notation is fine for providing
a simple representation of the designer’s view of an IP, it is a basic and semi-
formal notation (just consider the widespread use of informal annotations). It
is, therefore, inadequate as a starting point for automatically outputting the
syntactic expression of the IP in a formal specification language as developed in
the proposed framework.

First, we had to extend AUML notation to include other important aspects
that need to be taken in account in complex interactions:

Correlation and causality Generally, agents participate in more than one di-
alogue at the same time. Therefore, relationships of correlation and causality
between messages need to be specified so that each message can be associ-
ated with the specific IP instance to which it belongs, and messages from
different IPs involved in the interaction can be related.

The time factor The time factor needs to be considered in IP design. It should
be possible to specify a pause between exchanges for a finite time and estab-
lish deadlines for both an exchange sequence and for the global interaction.

Protocol exceptions Apart from describing the basic message exchange pat-
tern, a protocol diagram should also consider the interaction flow triggered
by the occurrence of a protocol exception as a result of out-of-sequence mess-
age reception, message loss, time-outs, etc.

Event management An IP should consider the occurrence of given events as
triggers of a given exchange pattern.

Compensation protocols It should also be possible to express transactional
contexts within the main exchange pattern and associate compensation pro-
tocols (cancellations, renegotiations, etc.) with such contexts.

Figure 2 shows a screenshot of the AUML∗2ACSL tool which has been
developed as part of the proposed framework. It illustrates the Iterated Contract
Net protocol design, proposed by FIPA [11], in AUML∗ notation. The symbol
palette shows the new constructs. Section 4 explains what they are used for in
more detail.

Apart from the AUML extension, this notation had to be formalized semant-
ically as a provision for formalizing the other views of the proposed framework,
principally the specification view. To be able to output an ACSL specification,
we needed a lot of information not covered in the notation proposed by AUML
or, alternatively, expressed informally by annotations, apart from additional con-
structs not included in AUML notation. Figure 2 also shows a dialogue including
some semantic elements associated with an ACL counterPropose exchange. The
meaning of these elements is described in section 4.

A Formal Framework for Interaction Protocol Engineering 25

Fig. 2. AUML∗2ACSL tool screenshot

4 Specification View: ACSL Language

ACSL defines an abstract syntax that establishes a vocabulary that provides
a standard formal description of the contractual aspects of IPs modeled using
AUML∗ for use by design, implementation and execution monitoring libraries
and tools. ACSL separates internal agent IP implementation from its external
description. This is a key point for improving communication interoperability
between heterogeneous agent groups and/or agents that run in heterogeneous
agencies (platforms). It is based on ACL messages specifying the message flow
that represents an IP between two or more agents and requires no special-purpose
implementation mechanism. The following sections describe briefly the structure
of ACSL. See [2] for a more detailed description of the language.

Figure 3 illustrates the overall structure of a protocol specification in ACSL.
It shows how the specification is composed of a name, a header and a body, all

defined in the context of a block element protocol. The name element identifies
the protocol for the purpose of referencing from other specifications in which
it is to be embedded or with which it is to be interlinked. The header element
declares the correlation sets (cSetDecl) and the properties (paramSetDecl) used
in the message exchanges for correlation and dynamic linking and to specify
the semantic elements, respectively. The body of the protocol contains the spe-

26 F. Alonso et al.

Fig. 3. Syntactic organization of a protocol specification

Fig. 4. Language constructs for specifying a thread of interaction

cification of the basic exchange pattern(body block). This item is formed by
the composition of many threadOfInteraction elements that fork and regroup
to describe the communicative behavior of the agent. The threadOfInteraction
element is used to directly specify an exchange pattern or reference a proto-
col definition included in another specification by means of a qualified name. A
threadOfInteraction (Figure 4) combines zero or more basic actions, references to
subprotocols, conditional and iterative constructs and other threadOfInteraction
that are interpreted sequentially, in the same order in which they are referenced.

Message exchanges (exchange element) are the fundamental atomic actions
in agent interaction. ACSL includes only the exchange properties that are part
of the protocol specification.

A threadOfInteraction eases the composition of an exchange pattern by means
of a set of control constructs (ControlGroup in figure 4) that express conditional,
concurrent and iterative interaction flows.

Switch: A switch expresses a conditional behavior equivalent to the XOR con-
nector in AUML notation. The Boolean multiChoice attribute allows the
switch to also express conditional behavior equivalent to the OR connector
in AUML notation.

While: The while construct repeats the exchange pattern determined by a
thread of Interaction an undefined number of times. The specified beha-

A Formal Framework for Interaction Protocol Engineering 27

Fig. 5. Language constructs for the pick element

vior is executed until the given (condition) is no longer true. The condition
is opaque, as discussed earlier.

All: The all construct expresses the concurrent execution of a set of interaction
flows that is not subject to any time order. All expresses the semantics of
the AND connector in AUML notation.

Pick: The pick construct (figure 5) expresses precondition waits. It waits for
the reception of an event (or set of events) and then executes an exchange
pattern associated with this event. The possible events are message reception
and end of a delay action. If the times modifier is specified, pick will be
repeated a predefined number of times (for example, to specify wait for n
messages) before finally executing the exchange pattern associated with the
construction onTimes.

Repeat: The repeat construct repeats the exchange pattern given by a thread
of interaction a pre-established number of times. The actual number of times
it is repeated is opaque, i.e. is not part of the ACSL specification.

Synchronize: The Synchronize construct establishes the set of threads of in-
teraction that should be synchronized after an All, a multiple-choice Switch
or anOr.
The atomic action raise in Figure 4 represents the firing of an exception

related to the IP and can model real situations that call for cancellation or ab-
normal or unexpected termination of the protocol in question. The raise action
causes the invocation of the IP that allows the agents to recover from abnormal
situations or finish if recovery is not possible. This protocol is specified by means
of an exception block element declared after defining the flow pattern (thread-
OfInteraction block) of the context with which the exception is to be associated.

In the event of an error occurring during a complex interaction that involves
one or more protocols, the agent involved should be given the chance to start up
a conversation characterized by one or more appropriate IPs that compensate, as
far as possible, for this error, taking the system back to a state similar to what
it was at the start of the interaction. This conversation is called compensation
protocol. Figure 4 showed the language constructs that participate in the descrip-
tion of this behavior. A compensation protocol is defined in a context by means
of a named compensation block. A compensation block is explicitly invoked by

28 F. Alonso et al.

means of the compensate process that references the block name. Accordingly,
the initiation of the compensation protocol by this agent can be asynchronous
with respect to its main exchange pattern.

5 Implementation View: Specifying the Dynamics of IPs

The definition of an XML grammar for ACSL by means of the XML Schema
formalism can only validate the IP specifications syntactically. To be able to
validate and evaluate these specifications semantically, the ACSL language needs
to be furnished with formal and operational semantics that can unambiguously
describe the dynamic meaning of its syntactic constructs.

The features of ACSL have led to the use of the concept of Structural Opera-
tional Semantics (SOS) [4] as an approach for specifying the dynamic meaning of
IPs. The dynamic meaning of a protocol is obtained from the dynamic meaning
of the different syntactic constructs that appear in its specification. It covers the
execution of the specification, including expression evaluation, message sending
and reception and the execution of other non-communicative actions.

The SOS denotes a formalism that can specify the meaning of a language by
means of syntactic transformations of the programs or specifications written in
this language. Some special points had to be taken into account to apply the SOS
formalism, designed for programming languages, to a specification language such
as ACSL. The definition of operational semantics suited for ACSL represents a
three-step process:

1. Definition of a terminal and labeled transitional term-rewriting system based
on the operational semantics described in [3],

2. Definition of the interpreter I for this system, as proposed in [4], whose
behavior is specified by a set of production rules. I is modeled as a function
whose argument is a protocol P specified in ACSL in an environment ω, and
describes the behavior of 〈P , ω〉 as an (in)finite series of productions like
〈P , ω〉 → 〈P1, ω1〉 → 〈P2, ω2〉 → . . . If P ends, then the result is 〈END , ωn〉.

3. Process of outputting the interpreter for each ACSL construct.

The provision of formal semantics for ACSL means that the IP specification
can be analyzed to find out whether the IP has certain properties, such as ter-
mination in finite time, conversational state reachability or no deadlocks and
starvations. On the other hand, the provision of operational semantics makes it
possible to automatically derive IP implementation from protocol specification,
easing its simulation and the automatic generation of proxies that assure that
each participant effectively complies with the protocol rules and provides assis-
tance for protocol machine learning. The details of this view are left for a later
paper.

6 Related Work and Conclusions

Other work has been completed along the lines presented in this paper. Thus,
[13] presents a coordination language called COOL, which is founded on speech

A Formal Framework for Interaction Protocol Engineering 29

act-based communication and a structured conversational framework that cap-
tures the coordination mechanisms used by agents. COOL has been used to
design and validate coordination protocols for multiagent systems. The coordi-
nation activity is modeled as a conversation between two or more agents and is
specified by means of a declarative language whose syntax is intrinsically linked
to the finite state machine model, which is an impediment to its use in concur-
rent coordination environments. More recently, [14] explored the conversion of
COOL policies to Petri Nets to enable their analysis. The language provides sup-
port for conversation embedding, error recovery and conversation continuation,
but it does not cover aspects like message correlation and obscures specification.
[15] presents the Z specification language, which is applied to contract-net pro-
tocol formalization as a goal-directed system. The Agentis framework presented
later in [16] also specifies the IPs in Z. [17] presents the AgenTalk coordination
language, which adds the notion of inheritance to conversation specification.
[18] introduces the notion of a conversation suite as a collection of widely used
conversations known by many agents and [19] uses definite clause grammars to
specify conversations. Finally, [1] proposes a coordination model for specifying
IPs, possibly open and concurrent. The model is supported by a high-level Petri
Net-based Object-Oriented language called CoOperative Objects (COO) that
covers all the steps of protocol engineering, enabling it to express concurrency
or validate and simulate the specified protocol. But this is at the cost of obscuring
their interpretation, because the model does not have a graphic representation
close to the designer’s view of the protocol. Although each of these approaches
contributes in one way or another to our general understanding of the concept
of framework, more work is needed to improve the design, sharing and use of
IPs by agents. This paper has attempted to contribute to this effort by pre-
senting a formal framework organized as three viewpoints which improves IP
modeling, publication, localization, exchange and machine learning by agents. It
also allows protocol property verification and eases automatic code generation
(protocol synthesis) for the purpose of simulating code execution at design time,
as well as improving and assuring correct IP compliance at run time.

References

1. Hanachi, C., Sibertin-blanc, C.: Protocol Moderators as Active Middle-Agents in
Multi-Agent Systems. In Autonomous Agents and Multi-Agent Systems, Vol. 8.
Kluwer Academic Publishers, The Netherlands (2004) 131-164

2. Soriano, J., Alonso, F. and López, G.: A Formal Specification Language for Agent
Conversations. In: Marik, V., Mller, J.P. and Pechoucek, M. (eds.): Multi-Agent
Systems and Applications III. LNCS 2691, Springer-Verlag, Berlin (2003) 214-225

3. Eijk, R., Boer, F., Hoek, W. and Meyer, J-Ch.: Operational Semantics for Agent
Communication Languages. In Dignum, F and Greaves, M. (eds.): Issues in Agent
Communication, LNCS 1916, Springer-Verlag, Heidelberg (2000) 80–95

4. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DAIMI FN-19. Aarhus University, Computer Science Department, Denmark (1981)

5. Dignum, F., Greaves, M. (eds.): Issues in Agent Communication. LNCS 1916,
Springer-Verlag, Heidelberg (2000)

30 F. Alonso et al.

6. Searle, J.R., Vanderveken, D.: Foundations of Illocutionary Logic. Cambridge Uni-
versity Press, Cambridge (1985)

7. Finin, T. et al. Specification of the KQML agent-communication language. ARPA
Knowledge Sharing Initiative, External Interfaces Working Group (1993)

8. FIPA-Foundation for Intelligent Physical Agents: FIPA ACL Message Structure
Specification. http://www.fipa.org/specs/fipa00061, FIPA (2002)

9. Cost, R.S. et al. Modeling agent conversations with CPN. In Bradshaw, J. (ed.):
Workshop on Specifying and Implementing Conversation Policies (1999) 59–66

10. Odell J. et al. Representing agent interaction protocols in UML. In Ciancarini,
P. and Wooldridge, M. (eds.): Agent Oriented Software Engineering (AOSE’00)
Workshop, Limerick, Ireland (2000) 121–140

11. FIPA-Foundation for Intelligent Physical Agents. FIPA Interaction protocol Lib-
rary Specification. http://www.fipa.org/specs/fipa00025, FIPA (2003)

12. Dignum, F.: From Messages to Protocols. In Dignum, F. and Sierra, C. (eds.):
European Perspective on Agent Mediated Electronic Commerce. Springer-Verlag,
Heidelberg (2000)

13. Barbuceanu, M and Fox M.S.: COOL: A Language for Describing Coordination
in Multiagent Systems. In Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS’95). AAAI Press, San Francisco, USA (1995) 17–24

14. Galan, A. and Baker, A.: Multi-agent communications in JAFMAS. Workshop on
Specifying and Implementing Conversation Policies, Washington (1999)

15. d’Inverno, M. and Luck, M.: Formalising the Contract Net as a Goal-Directed
System. In W. V. de Velde and J. Perram (eds.): Agent Breaking Away. LNAI
1038. Springer-Verlag, Heidelberg (1996) 72–85

16. d’Inverno, M., Kinny, D. and Luck, M.: Interaction Protocols in Agentis. In Pro-
ceedings of the International Conference on Multi-Agent Systems ICMAS’98 (1998)

17. Kuwabara, K. et al.: AgenTalk: Describing multiagent coordination protocols with
inheritance. In Proceedings of the Seventh IEEE International Conference on Tools
with Artificial Intelligence (ICTAI’95), Herndon, Virginia (1995)

18. Bradshaw, J.M. et al.: Kaos: Toward an industrial-strength open agent architec-
ture. In Bradshaw, J.M. (ed.): Software Agents. AAAI/MIT Press, Cambridge
(1997) 375–418

19. Labrou, Y. and Finin, T.: Semantics and conversations for an agent communication
language. In Huhns, M. et al. (eds.): Readings in Agents. Morgan Kaufmann (1997)
584–591

Towards a Conversational Language for Artificial
Agents in Mixed Community

Alexandra Berger1,2 and Sylvie Pesty1

1 Laboratoire Leibniz-IMAG - Equipe MAGMA,
46, avenue Félix Viallet 38031 Grenoble Cedex

2 Département de Philosophie, Université du Québec à Trois-Rivières,
3351, Boul. des Forges, CP 500 Trois-Rivières, Québec, Canada G9A 5H7

{Alexandra.Berger, Sylvie.Pesty}@imag.fr

Abstract. Present agent and interaction (agent communication language: ACL)
models have been conceived for pure artificial agent communities, most often
strongly linked with knowledge exchange. But these models are not adapted to
conversational interactions, and particularly to mixed community melting artifi-
cial and human agents. We first underline these model limitations. We propose
a first step towards a conversational agent language fitting with a BDI agent
model in respect with Speech Acts Theory and integrating essential elements of
the conversational background. This proposition is a continuation of Chaib-draa
and Vanderveken’s work [1] on a recursive semantics for ACL according to the
situation calculus.

1 Introduction

Artificial agent models like BDI (Belief, Desire, Intention) agents [2,3] and models of
interaction between agents like KQML (Knowledge Query Manipulation Language) [4]
and FIPA ACL (Foundation for Intelligent Physical Agent) [5], have always been con-
ceived for precised application tasks, and mostly for information exchange. These com-
munication languages are only dedicated to artificial agents systems. However, we are
meeting a new step in the evolution of computing systems in which these models are not
enough efficient, the task being not yet the exclusive issue for multi-agent systems. Be-
cause we now need to count with human agents in agent communication, we also need
to ensure more common conversations between artificial and human agents evolving
into mixed community.

Considering these mixed communities, usual pure artificial agent communication
languages are no more adapted. Usual ACLs are too task-linked and do not take the
background parameters into account, and as far as we are concerned the conversational
background ones. We then propose a first step towards a Conversational Language be-
tween artificial agents of mixed community fitting as close as possible with Speech Acts
theory [6,7,8], a valid theory of human interaction.

So as to build this language, we propose to lean our research on Vanderveken’s
work [8] on speech act theory and those in recursive semantics for an agent communi-
cation language [1]. We carry on and complete this research by a formal definition of
the set of speech acts and take into account the conversational background essential for
speech acts comprehension.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 31–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

32 A. Berger and S. Pesty

Our aims in this article is to consider the current interaction languages, then to
introduce a formalization of speech acts theory and finally to propose, in accordance
with the theory, a possible capture of the conversational background for an efficient
agent Conversational language between human and artificial agents.

2 BDI Agents and Agent Communication Languages Nowadays

2.1 BDI Agents

BDI agent model roots in Bratman’s [9] research on intentions integration into action
theory, taking future directed actions and consequently partial planning into account.
Cohen and Levesque [2] have formalized this philosophical research on which the BDI
intelligent agents of Rao and Georgeff [3] was constructed. These BDI agents have
mental states : beliefs (B), desires (D), and intentions (I) which permit them to act
rationally. These are parts of the field of cognitive agents which aims to create agents
not only intelligent, but also rational because they can reason before acting. BDI models
are nowadays a crucial paradigm for human like agent actions modeling [10]. But, if
action theory is surely adapted for basic actions, we believe that conversational actions
need a particular management such as the contextualization that could be captured by
means of speech act theory.

2.2 Agent Communication Languages

Agent Communication Language, like KQML and FIPA ACL have the same seminal
idea from ordinary language philosophy [11,6] that each utterance is an act – i.e., an ac-
tion – which aims to accomplish, to do something. So that FIPA ACL and KQML mes-
sages, like speech acts, express an illocution value – i.e. an action specification – applied
to a propositional content. The essential difference between these two languages stands
in theoretical considerations, more precisely in the language semantics which roots in
different agent theory. For FIPA ACL, the theoretical aspects dealing with the formal
semantics of interaction languages were largely developed by Sadek [12]. Although
these languages were founded on Speech Act theory [6,8], they do not define language
primitives in each act categories, but only in assertive and directive primitives – i.e.,
respectively, Inform and Request and their derived acts. So that agent communication
capabilities are sharply restricted : agents cannot produce commissive or expressive
acts, such as: promise, felicitate, or apologize. Primitives are essentially task-oriented
which seems to be justified because FIPAs project was to propose specifications for
an interaction langage so as to maximize agent-based applications interoperability, and
only for artificial agents.

As Singh [13] noticed, these languages are neither conceived nor usable for ex-
changes such as dialog ones. Recent Phd Thesis of Guerin [14] also supports this idea.
Singh argues also that acts should not be defined anymore exclusively on agent mental
states, because this provide an unique model of agency which reduces the set of real-
izable agent models. Interactions are over-controlled and sometime counter-intuitives,
e.g. an agent cannot repeat so as to confirm a proposition. According to Singh, it is nec-
essary to take account of social aspects in order to evolve from mental agency to social

Towards a Conversational Language for Artificial Agents 33

agency to consider current situation, and in particular the agents social context which
needs to be apprehended, according to us, by the consideration of the conversational
background. Then, so as to permit artificial agents to ensure dialog with other agents,
humans included, with a larger autonomy of interpretation and expression, we propose
to keep the use of speech act theory but to exploit it deeper, consequently we could
make use of the overall set of existing performative verbs.

In the next section, we expose speech act theory and its advantages for the definition
of a conversation language between agents (Conversational-ACL).

3 Speech Acts Theory

3.1 Theory Presentation

According to the ordinary language philosophy initiated by Austin [11], primary units
of meaning in the natural language use and comprehension are illocutionary acts with
felicity conditions (success and satisfaction conditions), despite of simple truth con-
ditions of propositions as in the classical logical trend. By attempting to perform il-
locutionary acts that the speaker expresses and communicates his minds by means of
discourse. The speaker expresses propositions with diverse defined forces, he refers to
objects under concepts, makes predication acts and expresses a propositional content
with certain conditions. So that, elementary illocutionary acts are like F(P): they are
composed by an illocutionary force F and a propositional content P. We can then ex-
press a proposition P with some constraints with the help of the illocutionary force
applied on this proposition. By studying the illocutionary force and the propositional
content, illocutionary logics appears to be an efficient tool for formal semantics to anal-
yse the meaning of every type of sentences which expresses every type of illocutionary
acts. Illocutionary logics, for speech acts theory, is essential and complete for discourse
analysis and synthesis. Speech acts theory, considering each utterance as a whole ac-
tion, is entirely enrolled in action theory’s domain. So that, it looks relevant to prac-
tically make use of it, by defining a Conversational-ACL, inside a BDI agent model
which roots in a compatible theory of action.

3.2 Speech Acts Theory Taxonomy

As we have mentioned it, elementary speech acts are formally traduced by F(P), where
F stands for the illocutionary force with which the act is performed on P, the propo-
sitional content. The illocutionary force components define conditions which must be
observed for the speech act to be performed with success and satisfaction. The six il-
locutionary force components are: the illocutionary point, the mode of achievement,
the degree of strength, the propositional content conditions, the preparatory condi-
tions, the sincerity conditions. There is five primitive illocutionary forces which have
respectively an illocutionary point, no particular mode of achievement, a neutral de-
gree of strength, and propositional content, preparatory and sincerity conditions deter-
mined by the illocutionary point. The five primitive illocutionary forces are: assertive
to describe states of the world, directive to attempt to make someone do something by

34 A. Berger and S. Pesty

telling him, commissive to commit yourself to do something, declarative to do some-
thing only by performing the corresponding illocutionary act, expressive to express
feelings and attitudes. These five forces are expressed through five verb classes named
performative verbs. The set of performative verbs of each class is obtained by varying
the different primitive forces components applying the following operations: addition
of propositional content, preparatory or sincerity conditions, restriction of the mode of
achievement or modulation of the degree of strength.

3.3 Success and Satisfaction Conditions

Like all human actions, illocutionary acts have success conditions considering that they
can succeed or not (e.g. when I order something to someone on which I have no au-
thority). Illocutionary acts have also satisfaction conditions because they are directed
to some states of affairs on which the speaker has no control (e.g. if someone who has
authority on me orders me something and I do not obey). Success conditions are those
that must be observed in the context of utterance for the speaker to perform the speech
act.An illocutionary act F(P) is performed with success if and only if the speaker: (i)
has achieved the illocutionary point of the force F on the propositional content P with
the correct mode of achievement, and P respects all the propositional content conditions
of F in this context; (ii)presupposes all the propositions determined by the preparatory
conditions of F; (iii) expresses, with the right degree of strength, mental states noted
m(P) having the psychological modes m deduced from the sincerity conditions of F
(joy, sadness, compassion,. . .).

The satisfaction conditions must be met in the world of an utterance context for
an illocutionary act to be satisfied. An illocutionary act F(P) is satisfied in a context of
utterance if and only if P is true considering the right direction of fit of the illocutionary
point F. As a conclusion, giving a complete set of practical tools for utterance analy-
sis [7], illocutionnary logics allows to complete a cognitive approach of BDI agents.
Moreover, the ”catalogue” of performable speech acts for conversation is multiplied
by the great combinatory possibility of the illocutionary forces components of speech
acts theory; we can then go through the carency of slight differences and types of per-
formative verbs in ACL as a response to Singh [13].

4 Towards an ACL for Conversational Agents

In Chaib-draa and Vanderveken [1], the authors propose a recursive semantics based on
success and satisfaction conditions for agent communication langages. This work roots
in Vanderveken’s general semantics [8] and in illocutionnary logics [7], in accordance
with speech acts theory. This work constitutes a semantical base for an ACL which
seems to us particularly relevant to evolve towards an efficient Conversational-ACL.
As a conclusion, giving a complete set of practical tools for utterance analysis [7],
illocutionary logics allows to complete a cognitive approach of BDI agents. Moreover,
the catalogue of performable speech acts for conversation is multiplied by the great
combinatory possibility of the illocutionary forces components of speech acts theory;
we can then go through the deficiency of slight differences and types of performative
verbs in ACL as a response to Singh [13].

Towards a Conversational Language for Artificial Agents 35

In order to clarify this presentation, we expose briefly, in the next section, the propo-
sition of Chaib-draa and Vanderveken [1]. Then, we introduce our proposition to com-
plete this semantics and illustrate it through two essential primitive illocutionnary acts
(as in FIPA ACL): Inform and Request, we then propose a formal definition of the per-
formative verb Promise which may expand the capabilities of expression of artificial
agents in mixt community. The entire set of available speech acts in not described here.

4.1 The Recursive Semantics of Chaib-draa and Vanderveken

Chaib-draa and Vanderveken [1] proposed the use of the situation calculus as to formal-
ize an adequate reasoning about action (language or not) and its effects in the world.
The situation calculus is originally a first order formalism for action modelization. In the
case of actions to communicate, the situation calculus enables the representation of the
preconditions and the consequences of each action. As far as FIPA ACL is concerned,
we should talk about FP – i.e., feasibility preconditions – and RE – i.e., rational effects.
The most important point, according to us, in the situation calculus is that it allows
to formalize strong context dependent utterances, because it takes the current situation
(conversational background included) and the immediate next one into account. So that,
the situation calculus appears to be an efficient tool for action formalization in multi-
agent systems, and, particularly, for conversation between agents. According to this
point of view, Chaib-draa and Vanderveken [1] have proposed a semantics based on the
situation calculus integrating intensional logics’ and illocutionary logics’ semantics.

In the situation calculus, terms represent complete states of the world – i.e. situa-
tions. To perform – i.e. to accomplish with success and satisfaction – an action α in
a situation s will be noted by do(α,s). The possibility to perform α in a situation s
will be formalized by Poss(α,s). The initial situation will be noted S0 and the situa-
tions will be arranged by the relation �, where s’�s means s’ can be achieved from
s by performing one or more actions. The authors [1] have introduced a set of binary
accessibility relations on situations for an adequation with speech acts theory. These
operators are the following : belief (bel(i,p)), desire (wish(i,p)), goal (goal(i,p)) (non-
primitive operator contrary to Cohen and Levesque [2]), capability (can(i,a,p)), com-
mitment (cmt(i,p)), has.plan (planning) (has.plan(i,π,p)), intention (int(i,p)) defined
on the base of commitment and has.plan, and obligation (oblig(i,j,p)) in connection
with a norm. The definition of these operators allows the expression of the success (suc-
cess(ACT)) and satisfaction (satis(direction of fit)(ACT)) conditions of each act type also
formalized by the enunciation of six propositions permitting to express all the possible
nuances of the illocutionary force components of an act, and then, all the performable
illocutionary acts.

As a result, the situation calculus enables to express the different states of affairs
encountered in speech acts theory in agreement with a rational BDI modeled agent.
Moreover, as we will illustrate it, mental attitudes can be embedded in a background,
in this case conversational, and we think this is the power of this semantics to evolve
from mental agency to social agency [13]. Actually, Chaib-draa and Vanderveken have
suggested that it is possible to take into account some elements of the background nec-
essary for the definition of the success and satisfaction conditions of an act, such as
the degree of strength or the role of an agent. We then propose a solution to include

36 A. Berger and S. Pesty

them, considering the fundamental role of the context -i.e., conversational background.
Moreover, by considering the conversational background, we reach a higher level of
interpretation -i.e., a pragmatical level- and not only a semantical or syntactical level
of meaning without any context.

Remark 1. This formalization is a compromise between theory and computation in or-
der to allow the use of speech acts theory into artificial agents so as to permit them to
converse as adequately as possible in natural language with human agents. As a result,
it is not a formalization of human-human interaction but of a possible human-agent
interaction.

4.2 A Conversation Language Between Agents: Conversational-ACL

Among all elements of the conversational background that an agent must take into ac-
count when he analyses and interprets speech acts, the degree of strength and the role of
agents are certainly the most important ones [15]. Actually, they are necessary for the
contextualization of an act: the degree of strength to quantify the emphasis with which
the act was performed, and the role to interpret acts where the hierarchy is needed
for comprehension and for production too. These variables were not included in the
proposition of Chaib-draa and Vanderveken [1], we then make a proposition of inclu-
sion: to evolve from do(says.to(i,j,〈f, p〉),s)) to do(says.to(i,j,〈f, p〉),s), degree, role).
The degree of strength and the role are expressed by relative integer number (positive
or negative) clearly pointing out the power more or less important of the illocutionary
act. The role is expressed by a relative integer number too interpretable from a given
semantics. We can then think over to precise some elements (e.g. the sex or the age of
agents) or to take other elements into account, like variables denoting emotional aspects
involved in a rational contextualized reasoning.
Remark 2. The force f is a primitive one (assertive, directive,. . .) and the degree of
strength is rejected outside its scope for more visibility and flexibility.

The possibility of verifying the success and satisfaction conditions of illocutionary
acts is essential, in particular for a conversational agent because we cannot perform ad-
equately an illocutionary act if these conditions are not encountered. These constraints
also allow to form attempts on the subsequent situations since the situation of utterance
only by placing some clues of comprehension in the linking of actions. For example,
in the case of a command which is satisfied only when it is obeyed, we then emit the
attempt for the performance of an action satisfying the illocutionary act, in other words
the illustration of obedience. For an act of promising that should be successful only
if the speaker commit himself to accomplish a given action, we should then construct
a list of commitments – i.e., commitment stores – of the conversation members no-
ticeable with the consideration of the subsequent situations. The formalization of the
natural language utterance into speech acts can permit to extract commitments and then
use them into dialog games for a dynamical management of interaction [16]. Finally the
ability to manage a large variety of parameters into the same communication language
allows a dynamical management of acts sequencing, whereas classical interaction pro-
tocols define a priori and consequently fix series of actions. So that we should organize
conversations between agents in function of a dialog taxonomy like the one of Walton

Towards a Conversational Language for Artificial Agents 37

and Krabbe [17], or in function of the agent capability coming from its role, or else in
function of dialog strategies in accordance with game theory [18].

So as to illustrate our proposition, we propose a re-definition of two of the primitive
communicative acts of FIPA ACL Inform and Request using the recursive semantics
to carry out interesting aspects. We then give the formal definition of the performative
verb Promise to show the possibility to allow artificial agents to interact with human
agents as close as it is permitted by speech acts theory.

Inform. In speech acts theory, the performative verb Inform is not a primitive but
an assertive verb of degree of strength 2 (+2) in reference to the assertive primitive
assert, because informing of a proposition p is not only asserting a proposition p, but
it means believing the proposition (having reason(s) for the truth of proposition p) and
also believing that the hearer do not already believe it and then having the intention of
causing him to believe it. We consider here that the agents role is neutral (0 value) and
not relevant for the example. The speech act Inform in a given situation s is formalized
by:

s = do(says.to(i, j, 〈inform, p〉), su, 2, 0) (1)

with (∀s′)(s′ � s)
su = bel(i, p)[s] ∧ bel(i, (¬bel(j, p)))[s] ∧ int(i, bel(j, p))[s′] (2)

and s′ = bel(j, p)[s′] (3)

The speech act depends on the preconditions defined in the situation of utterance su

and has effects on the following situation s′ – i.e. the next complete state of the world
–, in other words, a perlocutionary effect which might be verified by the agent in the
following conversation. The satisfaction conditions will then be:

success(says.to(i, j, 〈inform, p〉), s) ≡ cond.success(〈inform, p〉)[s] (4)

satiswl
wd(says.to(i, j, 〈inform, p〉), s) ≡ p[s] ∧ p[su] ∧ bel(j, p)[s′] (5)

The success conditions (4) of this speech act must then be verified in the cognitive
state of the agent. The speech act do(says.to(i,j,〈inform, p〉),su,2,0) will be performed
successfully if and only if: (i)The speaker i has achieved the illocutionary point of in-
forming on the propositional content p; (ii) without any particular mode of achievement;
(iii) with the propositional content condition that p is true in the given context; (iv) i
presupposes the preparatory condition that the hearer j does not know p; (v) i expresses
this speech act that he believes p with the degree of strength 2, and his mental state is
bel(i,p); (vi) and the speaker i is sincere.

Finally, the satisfaction conditions (5) of this illocutionary act should be verified
considering the following situation, next complete state of the world resulting from
the speech act. The illocutionary act do(says.to(i,j,〈inform, p〉),su,2,0) will then be
satisfied if and only if: (i) p is in fact true in situation s and (ii) if j believes p because
of i’s performance of the Inform speech act.

Request. Among the communicative acts of FIPA ACL, Request is the directive pri-
mitive. According to speech acts theory, it is not the directive primitive which is the

38 A. Berger and S. Pesty

performative verb question, although request has a neutral degree of strength. Request
has the particular mode of achievement that the hearer has an option to refuse the re-
quest. Moreover, the directive verbs class has the particular preparatory condition that
the speaker believes his hearer is able to perform the action expressed by the condi-
tional content. This action could be a simple demand of information. The verb request
has also the sincerity condition that the speaker desires that proposition p becomes true
because of the action performance of his hearer. Request definition will then be:

s = do(says.to(i, j, 〈request, p〉), su, 0, 0) (6)

with (∀p′)(∀a)(p⇒ a)(∀s′)(s′ � s)
su = bel(i, can(j, a, p′))[s] ∧ bel(i, Poss(j, a))

∧wish(i, p)[s] ∧ int(i, do(j, a))[s′] ∧ ¬oblig(j, i, a) (7)

and s′ = a[s′] ∧ p[s′] (8)

Success and satisfaction conditions will be:

success(says.to(i, j, 〈request, p〉), s) ≡ cond.success(〈request, p〉)[s] (9)

satiswd
wl (says.to(i, j, 〈request, p〉), s) ≡ (∃s′, s′′)(s′′ � s′ � s)

Poss(a, s′), ..., Poss(a, s′′) ∧ success(says.to(i, j, 〈request, p〉), s′′)
⊃ p[do(a, do(a, do(a, s′′))] (10)

do(says.to(i,j,〈request, p〉),su,0,0) will be successfully (9) performed if and only if:
(i)the speaker i has achieved the illocutionary point of requesting on the propositional
content p; (ii) with the particular mode of achievement that the hearer has the option
to refuse the request; (iii) with the propositional content condition that p becomes true
in a subsequent situation because of performance of j of the action a expressed by the
propositional content; (iv) the speaker i presupposes the preparory condition that his
hearer j is able to perform the action expressed by the propositional content p; (v)i per-
formed this act with the neutral degree of strength; and (vi) with the sincerity condition
that i has sincerely the desire that p becomes true.

Finally, the satisfaction conditions (10) of this act will be verified from the cognitive
state of the agent, in function of its conditions of success and of the situation resulting
from the speech act. do(says.to(i,j,〈request, p〉),su,0,0) will be satisfied if and only if:
(i) action a implied by p is in fact possible in the following situation(s) (future action(s));
(ii) the speech act is successfully performed in s; and (iii) j makes p becoming true
because of his action(s) in the following situation(s).

We have presented here two examples of illocutionary acts used in FIPA ACL in
an other format and with other specifications. As we have seen before, from the five
primitive speech acts based on recursive semantics we can derive all the possible speech
acts, in all categories, by varying the illocutionary forces components. And oppositely
to FIPA ACL and KQML, it is possible to define the entire set of illocutionary acts
including speech acts like promising, congratulating, confirming and apologizing. . .

Promise. So as to illustrate the possibility for agents to express the act of promising,
here comes the formal definition of the performative verb Promise from which derive

Towards a Conversational Language for Artificial Agents 39

all the comissive performative verbs. This permitting to express commitments and then
to list commitment stores and to verify them. The formal definition of Promise will
then be:

s = do(says.to(i, j, 〈promise, p〉), su, 0, 0) (11)

with (∀p′)(∀a)(p⇒ a)(∀s′)(s′ � s)
su = bel(i, can(i, a, p′)[s] ∧ bel(i, Poss(i, a))

∧wish(j, p)[s] ∧ int(i, do(i, a))[s′] (12)

and s′ = a[s′] ∧ p[s′] (13)

The success and satisfaction will be defined as:

success(says.to(i, j, 〈promise, p〉), s) ≡ cond.success(〈promise, p〉)[s] (14)

satiswd
wl (says.to(i, j, 〈promise, p〉), s) ≡ (∃s′, s′′)(s′′ � s′ � s)

Poss(a, s′), ..., Poss(a, s′′) ∧ success(says.to(i, j, 〈promise, p〉), s′′)
⊃ p[do(a, do(a, do(a, s′′))] (15)

The performance of the speech act depends on given preconditions in the situation
of utterance su and has effects on the next situation s′ – i.e., the next complete world
state –, in other words, the act has a perlocutionary effect which is expected and which
could be verified in the dialog continuation.

The success conditions (14) of this act will be verified from the cognitive state of
the agent. The speech act do(says.to(i,j,〈promise, p〉),su,2,0) will then be successful if
and only if: (i) The speaker i has achieved the illocutionary point of promising on the
propositional content p; (ii) without any particular mode of achievement; (iii) with the
propositional content condition that p becomes true in a subsequent context because of
i’s performance of action a implied by the propositional content p; (iv) i presupposes
the preparatory condition that he is himself able to perform action a and that the hearer
j has an interest for it; (v) i express this act with the neutral degree of strength ; and (vi)
the particular sincerity condition is that i sincerely desires that p becomes true because
of his performance of the action a.

Finally, the satisfaction conditions (15) will be verified from the cognitive state of
the agent, in function of its conditions of success and of the situation resulting from the
speech act. do(says.to(i,j,〈promise, p〉),su,0,0) will be satisfied if and only if: (i) the
action a implied by the propositional content p is actually possible in one of the subse-
quent situations, in other words, if a is a future action; (ii) the speech act is successfully
performed in s; (iii) and if i makes p becoming true because of his performance of the
action a in the subsequent situation(s).

These three examples pointed out the possibilities offered by the use of this forma-
lism for an adequate application of speech acts theory and open real perspectives for a
Conversational-ACL between agents in mixed communities. In order to evaluate agents
in which this ACL can be used, we are now defining both the whole catalogue of agent
speech acts and specifying a real application of web services in which human agents
could converse with multiple artificial agents in order to construct complex plans, such
as a trip planning.

40 A. Berger and S. Pesty

5 Conclusion

The recursive semantics of Chaib-draa and Vanderveken [1] using the situation calculus
appears to be an efficient tool to formalize communication between artificial and human
agents in mixed community. It adequately takes the advantages of speech acts theory,
insufficiently exploited in current ACL, like FIPA ACL or KQML. We can then achieve
an essential computational dimension of speech act theory implementation for artificial
agents.

We have proposed to carry on Chaib-draa and Vanderveken’s work to reach a formal
definition of agent speech acts strongly linked with the conversational background (sit-
uation, degree of strength, role,...) and to conform it with a rational BDI agent model.
Moreover, this proposition takes mental attitudes into account like other communication
languages semantics, but also the social clues which are fundamental for conversation
in context.

References

1. Chaib-draa, B., Vanderveken, D.: Agent communication language: A semantics based on the
success, satisfaction and recursion. In: Proceedings of ATAL’98. (1998)

2. Cohen, P., Levesque, H.: Intention is choice with commitment. AI 42 (1990) 213–261
3. Rao, A.S., Georgeff, M.P.: Bdi agents: From theory to practice. In: Proceedings of IC-

MAS’95, MIT Press (1995) 312–319
4. Finin, T., Labrou, Y., Mayfield, J.: KQML as an agent communication language. Software

Agents (1997)
5. FIPA: Agent communication language. http://drogo.cselt.stet.it/fipa (1997)
6. Searle, J.: Speech Acts. Cambridge U. P. (1969)
7. Searle, J.R., Vanderveken, D.: Foundation of Illocutionary Logic. Cambridge U. P. (1985)
8. Vanderveken, D.: Meaning and Speech Acts. Volume 1 & 2. Cambridge U. P. (1990)
9. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press (1987)

10. Wooldridge, M.: Reasonning about Rational Agents: Intelligent Robots and Autonomous
Agents. MIT Press (2000)

11. Austin, J.: How To Do Things With Words. Oxford University Press (1962)
12. Sadek, M.D.: Attitudes mentales et interaction rationnelle: Vers une thorie formelle de la

communication. PhD thesis, Universit de Rennes 1, France (1991)
13. Singh, M.: Agent communication languages: Rethinking the principles. IEEE Computer 31

(1998) 40–47
14. Guerin, F.: Specifying Agent Communication Language. PhD thesis, Dept. of Electrical and

Electronic Engineering, Imperial College, University of Aberdeen (2002)
15. Fasli, M.: From social agents to multi-agent systems : Preliminary report. In et al., V.M.,

ed.: Proceedings of CEEMAS 2003, Springer Verlag (2003) 111–121
16. Flores, R.A., Pasquier, P., Chaib-draa, B.: Conversational semantics with social commit-

ments. In Boissier, O., Z.Guessoum, eds.: Proceedings of AAMAS-04 Workshop on Agent
Communication (AC’2004). (2004)

17. Walton, D., Krabbe, E.: Commitments in Dialogue. State University of New York (1995)
18. Maudet, N., Chaib-draa, B.: Commitment-based and dialogue-game based protocols: new

trends in agent communication languages. Knowledge Engineering Review 17(2) (2002)

Adaptive Mobile Multi-agent Systems

Alexandru Suna and Amal El Fallah Seghrouchni

LIP6, University of Paris 6
{Alexandru.Suna, Amal.Elfallah}@lip6.fr

Abstract. This paper presents a framework called Himalaya enabling
to design and implement adaptive and distributed mobile multi-agent
systems (MMAS). A distributed MMAS in our framework is a set of
hierarchies of intelligent and mobile agents connected with respect to a
topology. An MMAS is adaptive if its topology is flexible (agents are
created or removed, the links between agents change in a dynamic man-
ner) and if the internal structure of the agents may dynamically change,
by acquiring new knowledge or capabilities. The features of Himalaya
favor a dynamic adaptability and reconfiguring of systems.

1 Adaptive MMAS

This paper presents a framework called Himalaya, dedicated to the design of
mobile multi-agent systems (MMAS) to be deployed on a network of computers.
Our main objective is to meet the requirements of mobile computation and
to ensure the adaptability of distributed MMAS faced to both cognitive and
computational challenges.

The mobile computation is often required to improve the systems’ perfor-
mances, since it provides powerful programming constructs for designing dis-
tributed and mobile applications. Thanks to the mobile agents paradigm, it
becomes easy to design active entities that move through the network and per-
form tasks on hosts (sites or computers), thus reducing the network traffic and
increasing the scalability and the flexibility of such applications.

Despite the plethora of approaches and platforms for mobile agents, the main
focus remains on the development of mobile objects and processes. Mainly imple-
mented using object-oriented frameworks, these platforms provide a collection
of extensible classes modelling simple concepts of agent that are specified rather
at the implementation level.

The adaptability usually deals with open and dynamic environments in order
to overcome the increasing complexity and dynamics of distributed and cooper-
ative applications. Nevertheless, the adaptability feature remains the quest for
the Holy Grail in the multi-agent systems (MAS) field. Indeed, the numerous
existing approaches often tackle the adaptability issue from the cognitive point
of view, i.e. the agents’ behavior (represented by mental states, plans, reasoning
mechanisms, etc.) is adapted according to some changes, usually concerning the
environment, including other agents.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 41–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

42 A. Suna and A. El Fallah Seghrouchni

In Himalaya framework, mobility and adaptability are introduced for the
following reasons:

1. From a cognitive point of view, we are interested to design intelligent agents
as basic building blocs of MMAS rather than simple mobile objects. Indeed, the
agents in Himalaya are mobile but are also endowed with “intelligent skills”
leading to more autonomy at the agent level and also at the MAS level as a whole.
Thanks to the mobility and to some specific features we developed, our agents
and consequently the MAS are able to reconfigure themselves autonomously, to
acquire new knowledge and capabilities and to dynamically adapt their structure
according to the changes in the environment and the demands of target appli-
cations. Hence, two levels of adaptability can be distinguished in Himalaya:

– an MMAS can adapt its structure (e.g. number of agents, topology, the
location of its components, etc.) and consequently can improve the services
it offers, i.e. since new skills (capabilities) can be created dynamically from
other elementary or composite skills.

– an adaptive agent can exchange with other agents more than usual mes-
sages: an agent can transfer his capabilities, acquire new ones, move from an
execution environment to another one, etc.

2. From the computational point of view, mobility and adaptability allow
the MMAS reconfiguring and consequently the optimization of distributed exe-
cutions of MMAS deployed on a network of computers.

Mobility and adaptability raise at least two questions: which structure is
flexible enough to enable this dynamics and which kind of operations can make
easy and effective the improvements we propose at the agent and MAS levels?
To answer these questions, Himalaya is based on three fundamental concepts:
mobility, hierarchical representation of agents and mechanisms for inheritance
as allowed by the underlying representation. Himalaya is composed of two el-
ements: CLAIM, an agent oriented programming language and SyMPA, a plat-
form supporting the deployment and the execution of agents written in CLAIM.

The Himalaya environment is functional and has been used for developing
several complex applications that proved the expressiveness of the language and
the robustness of the platform: an e-commerce application [6], research of infor-
mation in a network [7], a network of distributed cooperative digital libraries [12],
an application for load balancing and resource sharing [19] using mobile agents
or the modelling of the coffee market in Veracruz, Mexico [20].

The rest of this paper is organized as follows. The next section summarizes
the related work, section 3 emphasizes the features of our framework, section 4
illustrates the adaptability mechanism through an example and section 5 con-
cludes this paper and outlines our future work.

2 Related Work

The work presented in this paper is situated at the intersection of three domains:
agent-oriented programming, concurrent languages and mobile agent platforms.

Adaptive Mobile Multi-agent Systems 43

On one hand, agent-oriented programming (AOP) languages, such as
AGENT-0 [17], AgentSpeak [21], or 3APL [10] allow representing mental states
of agents, containing beliefs, goals, intentions or abilities, offer reasoning capa-
bilities and communication primitives, but do not support agents’ mobility. On
the other hand, concurrent languages such as the ambient calculus [4], the safe
ambients [13] or Klaim [5] have been proposed to formalize concurrent processes,
that can communicate and migrate in a distributed environment. They have well
defined operational semantics, but in none of these languages it is possible to
represent intelligent agents, with explicit believes, plans, goals or reasoning. A
detailed presentation of all these languages can be found in [6]. Quantum [15]
or CyberOrgs [11] use a hierarchical model, with primitives similar to those in
our framework, including mobility. However, these approaches focus on resource
consumption and do not treat intelligent aspects of agents.

CLAIM is a high-level programming language combining in a heterogenous
framework elements from AOP languages and from concurrent languages. Agents
are hierarchically represented and use mobility primitives inspired by the am-
bient calculus. In addition an agent contains cognitive elements, explicitly pro-
grammed within agents, enabling powerful reasoning mechanisms, while the mo-
bility primitives have been adapted for reconfiguring intelligent agents. To our
knowledge, this feature is a novelty in the field of ambient based formalisms.

Several platforms supporting MMAS exist nowadays [18], such as Aglets [1],
D’Agents [9] or Grasshopper [2]. All of them offer mechanisms for agents’ cre-
ation, communication, migration and management, while insuring a high level
of security. However, the supported agents are actually mobile objects while
a higher level of abstraction is required. MobileSpaces [16] is a platform that
uses a hierarchical representation of agents, allowing adaptability, similar to our
approach. However, the agents are Java objects.

SyMPA is a distributed platform offering all the necessary mechanisms for
a secure execution of MMAS written in CLAIM (an agent oriented language,
not object oriented as in other platforms). In addition, the platform supports
the implementation of all the reconfiguring operations that will be presented
below.

Agents concepts have been often used to bring adaptability to distributed
systems and application, but the implementation of these concepts is never done
(to our knowledge) using an agent oriented approach, as presented in this paper,
where not only knowledge can be exchanged between agents but also capabilities.

Considering all these existing approaches, we noticed the necessity for a uni-
fied framework allowing to design and implement intelligent and mobile adaptive
multi-agent systems and Himalaya tries to fill this gap.

3 Supporting Adaptive MMAS: The Himalaya
Framework

The Himalaya framework (figure 1) is composed of two elements already pre-
sented in previous articles. This paper focuses on adaptability issues.

44 A. Suna and A. El Fallah Seghrouchni

CLAIM [6] is a high-level agent-oriented programming language that allows
to design MMAS, to define agents or classes of agents. It combines cognitive
and computational elements, allowing to deal with a hierarchical representa-
tion of agents and with dynamic gathering of intelligent elements. The language
has an operational semantics [8] useful for the verification of the built MMAS.

Fig. 1. Himalaya Framework

The second component of our framework is SyMPA [18], a distributed plat-
form implemented in Java, compliant with the specifications of the MASIF [14]
proposition from the OMG, that supports MMAS written in CLAIM and offers
all the necessary mechanisms for agents’ management, communication, mobility,
security and fault-tolerance. It also provides a CLAIM interpret and graphical
interfaces for monitoring agents’ execution and behavior.

3.1 An MMAS in Himalaya

An MMAS in Himalaya is a set of hierarchies of agents deployed on several
computers connected via a network. An agent is a node in a hierarchy, an au-
tonomous, intelligent and mobile entity which contains sub-agents, running pro-
cesses and cognitive elements.

The agents in Himalaya are implemented using CLAIM [6]. The main com-
ponents of an agent, presented below using a simplified notation, are:

The knowledge base. (denoted by Kα for an agent named α) contains pieces
of information about the other agents’ classes and capabilities or user-defined
propositions about the environment he is acting in.

The goals (denoted byGα). An agent has goals given a priori or goals generated
(his own or requested by other agents) during his execution.

The capabilities. (denoted by Cα) are the main elements of an agent. A ca-
pability allows to execute a process if a certain message is received and if an
(optional) condition is verified, having possible effects (post-conditions).

The processes. Once a capability activated, the corresponding process is exe-
cuted, in parallel with the already running processes of the agent. Therefore, an
agent α contains a set of concurrent running processes, Pα = pi | pj | ... | pk. An
agent can execute several types of processes, but their description is outside the

Adaptive Mobile Multi-agent Systems 45

scope of this paper (see [6] for details). In the next section we present only the
processes related to dynamic adaptability of an MMAS.

The sub-agents. Because of the hierarchical representation, an agent may have
several sub-agents. This structure evolves during the execution, i.e. the set of
sub-agents changes when they migrate or are eliminated.

An agent, e.g. α, is denoted by α(Gα,Kα, Cα, Pα), representing his goals,
knowledge base, capabilities and his concurrent running processes.

The previous elements concurrently allow for Himalaya agents a reactive
behavior (an agent activates capabilities when the corresponding messages arrive
and the conditions are verified) and a goal-driven behavior (an agent executes
capabilities in order to achieve goals).

3.2 Adaptability Operations

Himalaya framework enables a dynamic reconfiguring of MMAS. With respect
to the hierarchical representation of agents, the adaptability operations allow a
dynamic evolution of the topology and of the cognitive components of agents. We
distinguish three types of primitives: for mobility, for inheritance and for dynamic
creation and removal of agents. They are briefly described below and represented
in a graphical manner. The hierarchies’ modifications will be obvious on the
figures and the agents’ components that change will be explicitly represented.
For readability reasons, an agent e.g. written α will be read as α(Gα,Kα, Cα, Pα).
For a detailed presentation, in particular concerning the operational semantics
of these primitives, the reader is invited to see [8].

The mobility primitives. are inspired by the ambient calculus [4]. Thus, an
agent moves as a whole, with all his components (intelligent elements, running
processes and sub-agents). Using in (figure 2), an agent can enter another agent
from the same level in the hierarchy (i.e. having the same parent) and using out,
an agent can exit his parent (figure 3). For security reasons, these operations
are controlled by an asking/granting permission mechanism. The move mobil-
ity operation is a direct migration into another agent, anywhere in the MMAS
(figure 4). Nevertheless, the move operation is subject to permissions using a
specific protocol (see [6]).

Fig. 2. In operation Fig. 3. Out operation

46 A. Suna and A. El Fallah Seghrouchni

Fig. 4. Move operation

Fig. 5. Open operation (absorption) Fig. 6. Acid operation (dissolution)

The inheritance primitives. are inspired by the ambient calculus, but they
have been adapted to suit our goal: dynamic reconfiguring of intelligent MMAS.
Taking full advantage of the hierarchical representation of agents and using the
open primitive, an agent can open the boundaries of one of his sub-agents, thus
inheriting the latter’s running processes and sub-agents, as in the ambient cal-
culus, but also the knowledge base and capabilities (figure 5). In this case, we
say that the sub-agent is absorbed by his parent. The acid primitive (figure 6)
is similar to open, but it is an agent who decides to open his own boundaries,
and as a consequence, his components are inherited by his parent. In this case,
we say that the sub-agent dissolves himself into his parent.

Thence, both in absorption and in dissolution situations, an agent dynami-
cally gathers new capabilities and enriches his knowledge base; it is what we call
inheritance in our framework (quite different from the inheritance concept in the
object-oriented programming). Both operations are controlled by permissions.

Dynamic creation and removal of agents. Another important element to-
wards the system’s adaptability is the possibility to create and remove agents

Fig. 7. New Agent operation Fig. 8. Kill operation

Adaptive Mobile Multi-agent Systems 47

dynamically. New agents are created using the newAgent primitive (figure 7)
and an agent can completely remove (without inheriting his computational or
cognitive components) one of his sub-agents using the kill primitive (figure 8).

4 Case Study: Adaptive MMAS

In order to illustrate the dynamic adaptability of MMAS in Himalaya and to
show that the framework is operational, we implemented an application inspired
by a strategy games, Age of Empires. A village of people in a prehistoric era
tries to survive by gathering resources. There are sites of resources distributed
on computers of a network. Each site can contain three types of resources: wood,
stone and food. The population is represented by a Creator agent that can create
Seeker agents and resource gatherer agents, one type for each type of resource:
WoodCutter, Miner and Hunter. Each type of agent has capabilities for gathering
only his corresponding resource. The goal is to gather all the resources. We
implemented two scenarios for gathering resources, one where agents do not use
the dynamic gathering of cognitive elements and the second where they are using
inheritance primitives.

4.1 Using Specialized Agents

In the first scenario (figure 9), the Creator creates (using newAgent, (9.1.) in
the figure) a Seeker agent which finds the list of sites and migrates to them
(using move, (9.2.)). Arriving on a site, he finds the available resources and
requests specialized agents from the Creator, who will create (using newAgent,
(9.3.)) one specialized agent for each type of resource, agents that migrate (9.4.)
to specific resource agents on the site. After gathering the resources, they return
to the village (9.5.) with the resources, give them to the Creator and wait for
other requests. Meanwhile, the Seeker moves to other sites (9.6.), searches for
resources and asks for specialized agents. If there is no specialized agent available
when a new request arrives, a new one is created.

Fig. 9. First Scenario Fig. 10. Second Scenario

48 A. Suna and A. El Fallah Seghrouchni

4.2 Using Absorption

In the second scenario (figure 10), we are using the inheritance features of our
framework. The Seeker is first created (using newAgent, (10.1.) in the figure),
then the specialized agents are also created, they enter the Seeker (using in,
(10.2.)) and are absorbed by him (using open). In this way, the Seeker will
acquire their capabilities and will be able to gather the three types of resources.
Thus, he dynamically readapts himself in order to be able to execute tasks not
possible before. He migrates next to the known sites (using move, (10.3.)), enters
each resource agent (10.4.), gathers resources, returns to the Creator with the
resources (10.5.) and goes on with the gathering process to other sites (10.6.).

4.3 Test and Results

In order to test our application, we implemented the agents in the two scenarios
using CLAIM and we deployed the platform on ten computers connected via a
local network. We started 10 sites of resources on these computers, with identical
resources (20 units of wood, 20 of stone and 30 of food). There is one population
and a Creator was started, having initially 50 units of wood, 50 of stone and 50
of food. Resources are consumed when creating new agents.

In the first scenario, a Seeker was created, he went to the first known site
and requested help for the resources he found. Consequently, three specialized
agents were created by the Creator, one for each resource, they went to the site,
gathered resources and returned to the Creator. Meanwhile, the Seeker went to
other sites. At site 3, a new Hunter was created because the first one had not
arrived yet at the Creator, and at site 5 a new Miner was created. Next, there
were always available specialized agents.

The second scenario followed the behavior presented in section 4.2. One
Seeker having all the capabilities for gathering the three types of resources (af-
ter absorbing the three specialized agents) travelled through all the sites and
gathered the resources.

The results show that the time for gathering all the resources is shorter when
there are specialized agents for each type of resources (figure 11a, representing
the time for gathering resources growing progressively with the sites’ discov-
ering), because they can gather resources in parallel. Nevertheless, using the
inheritance primitives, only one dynamically reconfigured agent able to gather
all types of resources will gather all the resources in an almost similar time as 6
agents (1 Seeker and 5 specialized agents). Figure 11b represents the evolution
of number of agents in the course of time. Also, the final amount of resource
is bigger in the second scenario (as we can see in the figure 11c, for the food’s
evolution in time; the evolution of the other resources is similar), because re-
sources were spent for creating additional specialized agents. The implemented
scenarios shows the expressiveness of our framework. We do not state that one
of the scenarios is better: one is faster; the other allows to have more resources
at the end. The scenarios were started from identical configurations and we just
provided the system’s behavior in both cases.

Adaptive Mobile Multi-agent Systems 49

Fig. 11. Results

5 Conclusion and Future Work

In this paper we proposed a framework for building distributed and adaptive
MMAS, based on a flexible hierarchical topology of the multi-agent system
and on dynamic mental states of agents that can continuously evolve in an
autonomous manner, thanks to the adaptability operations. Thus, the number
of agents and the links between them change; the agents can also gather, dur-
ing their execution, computational elements (processes, sub-agents) and cogni-
tive elements (knowledge, capabilities), allowing a dynamic reconfiguring of an
MMAS, giving the system a full scope to adapt its structure in order to meet
the requirements of target applications.

Our short term future work is two-folds. First, we would like to experiment
our framework in more open environments, and on a bigger number of com-
puters connected through the Internet. Secondly, we would like to apply the
emphasized concepts to real systems. We intend to develop a planner for sys-
tems’ reconfiguring. The designer should specify the initial configuration of his
application/system and the target configuration that fulfills his requirements;
the system should be able to reconfigure itself even if the execution environment
changes, by adapting its structure and by transferring intelligent elements. As
target applications, we would like to tackle the domain of ambient intelligence.

References

1. Aglets workbench on-line: http://www.trl.ibm.co.jp/aglets.
2. Grasshopper on-line: http://www.grasshopper.de.
3. Bordini R.H., Hübner J.F., Vieira R.: Jason and the Golden Fleece of Agent-

oriented Programming. In Multi-agent Programming. Kluwer (to appear) 3-38
4. Cardelli L., Gordon A.D.: Mobile ambients. In Foundations of Software Science

and Computational Structures. LNAI 1378 (1998) 140-155

50 A. Suna and A. El Fallah Seghrouchni

5. de Nicola R., Ferrari G., Pugliese R.: Klaim: a kernel language for agents interaction
and mobility. In IEEE Transactions on Software Engineering (1998) 315-330

6. El Fallah Seghrouchni A, Suna A.: Claim: A computational language for au-
tonomous, intelligent and mobile agents. LNAI 3067 (2004) 90-110

7. El Fallah Seghrouchni A, Suna A.: An unified framework for programming au-
tonomous, intelligent and mobile agents. LNAI 2691 (2003) 353-362

8. El Fallah Seghrouchni A, Suna A.: Programming mobile intelligent agents: an op-
erational semantics. In Proceedings of IAT’04, Beijing, China. IEEE Press (2004)

9. Gray R., Kotz D., Cybenko G., Rus D.: D’agents: Security in a multiple-language,
mobile-agent system. In Mobile Agents and Security, LNCS, 1419 (1998) 154–187

10. Hindriks K., deBoer F.S., der Hoek W., Meyer J.J.Ch.: Agent programming in
3APL. In Intelligent Agents and Multi-Agent Systems, 2 (1999) 357-401

11. Jamali N, Agha G.: Cyberorgs: A model for decentralized resource control in multi-
agent systems. In Proceedigd of Workshop on Representations and Approaches for
Time-Critical Decentralized Resource/Role/Task Allocation of AAMAS (2003)

12. Klein G., Suna A, El Fallah Seghrouchni A.: A methodology for building mobile
multi-agent systems. In Proceedings of SYNACS (2004)

13. Levi F., Sangiori D.: Controlling interference in ambients. In Proceedings of the
27th ACM SIGPLAN-SIGACT symposium (2000) 352-364

14. Milojicic D., Breugst M., Busse I, Campbell J., Covaci S, Friedman B., Kosaka K,
Lange D., Ono K, Oshima M., Tham C., Virdhagriswaran S., White J.: MASIF,
the OMG mobile agent system interoperability facility. In Mobile Agents (1998)
50-67

15. Moreau L., Queinnec C.: Design and semantics of Quantum: a language to control
resource consumption in distributed computing. In Usenix Conference on Domain-
Specific Languages (DSL) (1997) 183-197

16. Satoh I.: Mobilespaces: A framework for building adaptive distributed applications
using a hierarchical mobile agent system. In IEEE International Conference on
Distributed Computing Systems (2000) 161-168

17. Shoham Y.: Agent oriented programming. Artificial Intelligence 60 (1993) 51-92
18. Suna A, El Fallah Seghrouchni A.: A mobile agents platform: architecture, mobility

and security elements. In Proceedings of ProMAS’04, LNAI 3346 (2005) 126-146
19. Suna A., Klein G., El Fallah Seghrouchni A.: Using mobile agents for resource

sharing. In Proceedings of IAT’04, Beijing, China. IEEE Press (2004)
20. Suna A., Lemaitre C., El Fallah Seghrouchni A.: E-commerce using an agent ori-

ented approach. In Proceedings of the Iberagents Workshop, Puebla, Mexico (2004)
21. Weerasooriya D., Rao A., Ramamohanarao K.: Design of a concurrent agent-

oriented language. In ATAL ’95. LNAI 890 (1995) 386-402

Agent Encapsulation in a Cognitive Vision MAS

Bernhard Jung1 and Paolo Petta1,2

1 Austrian Research Institute for Artificial Intelligence (OFAI),
A-1010 Vienna, Freyung 6/6, Austria

2 Dept. of Med. Cybernetics and AI, Centre for Brain Research, Med. Univ. of Vienna,
A-1010 Vienna, Freyung 6/2, Austria

{bernhard.jung, paolo.petta}@ofai.at

Abstract. We cast a baseline cognitive vision design into a multi-agent frame-
work and therein address the questions how and to what extent explicit considera-
tion of coordination may affect the design and performance of such systems. In an
analysis of our decomposition into task-dependent entities using both, functional
and physical approaches to encapsulation, we show that different kinds of algo-
rithms with different notions of architecture and representation become possible.
We describe the evolution of our implementation out of a traditional monolithic
design. Functionalities akin to notions of conventional tracking and reasoning
now emerge out of the distributed interaction between component agents, with a
performance at least on par with the baseline system.

1 Introduction

This work was carried out in the context of an Austrian Joint Research Project (JRP)
“Cognitive Vision” (see Sect. 6). The domain of Cognitive Vision emerged out of tra-
ditional Computer Vision, as “an attempt to achieve more robust, resilient, and adapt-
able computer vision systems by endowing them with a cognitive faculty: the abil-
ity to learn, adapt, weigh alternative solutions, and even the ability to develop new
strategies for analysis and interpretation” [ECVision Roadmap V4.2, p.2]. The scien-
tific foundations for Cognitive Vision include visual sensing; architecture; represen-
tation; memory; learning; recognition; deliberation & reasoning; planning; communi-
cation; and action: issues not independent of each other. Furthermore, the definitions
of architecture (a “minimal set of information processing modules and their network
of inter-relationships”) and representation (“any stable state of a cognitive systems”)
[ibid. p.11] reflect a classical view. In our interaction with project partners from tradi-
tional Computer Vision, we challenge the view that a vision architecture can be seen
as a functionally (in the sense of processing or transformation functions) reduced set of
processing modules when the system should be goal-directed and purposive; that repre-
sentations are stable when visual input is noisy, imprecise, or ambiguous; and that vision
algorithms necessarily deliver valid results at all times (i.e., are perfect functions).

We show how a traditional vision architecture was recast into a multi-agent design
that does not follow the typical functional decomposition into detector, tracker, and
reasoner, but employs a combination of the functional and physical approaches to en-
capsulation [Shen & Norrie 1999, Parunak et al. 2001]. Consequently, within this new

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 51–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

52 B. Jung and P. Petta

solution, representation is not a stable state of the system and cannot be pinned down to
specific data in some components, but is distributed among agents and their interaction
patterns. Following an agent-based design process, we switched from a design perspec-
tive that regards vision as a transformation process to one in which cognitive vision is
realised as interaction of task- and purpose-dependent agents.

Section 2 describes our point of departure in terms of the scenario and the classical
vision solution used to derive and evaluate our approach. In Sect. 3 our MAS-based
solution is presented in detail; Sect. 4 reports results; Sect. 5 discusses related work on
agent-based systems in computer vision; and Sect. 6 concludes with a discussion and
future perspectives.

2 The Point of Departure

The starting point of our work was an implementation of the classical functional trans-
formation approach to solve the Hide&Seek M6 (aka “shell game”) scenario of the
Austrian JRP “Cognitive Vision”. It consists of a stationary camera, two black cups and
an orange ball on a table, and a single human hand moving and lifting the cups in turn to
hide and unhide the ball (see Fig. 1).1 Questions to be answered by the system include:
“Where is the ball?”; “What is hiding the ball?”; and “What was the trajectory of a cup,
the ball, or the hand?”. To this end, beyond detection and tracking of objects, capability
to reason about occlusion is also required.

Fig. 1. A sequence from the JRP Hide&Seek M6 scenario (covering only part of the activity)

A MatLab-based implementation follows the transformational approach to derive
trajectories and occlusion relations of objects in the scene.2 It comprises three object
detectors that perform colour-based segmentation and calculate different properties for
the blobs (=contiguous regions) derived, including area; centre of gravity; bounding

1 To be available at <URL:http://www.acin.tuwien.ac.at/groups/robtec/fsp/fsp.htm>
2 Provided by A. Opelt, G. Schweighofer, A. Pinz & R. Tomasi from the Institute of Electrical

Measurement & Measurement Signal Processing (EMT), Graz University of Technology.

Agent Encapsulation in a Cognitive Vision MAS 53

box; and solidity. Object detection is then based upon these properties. These detectors
are used by trackers that consider objects detected in subsequent frames to be the same
as long as the distance between their centres of gravity remains below a given threshold.
The trackers can thus detect new objects as well as the loss of previously detected
and tracked ones. This information is used by a reasoner to maintain an occlusion tree
registering which object is currently hidden by which other one. For each lost object,
a hiding object is looked for: if successful, the lost object is assigned to its hider and
hereafter assumed to move together with it. New objects are first assumed to have been
unhidden and a match is attempted to hidden object entries in the occlusion tree. If a
match is found, the hitherto hidden object is unlinked from its hider and updated with
the information about the newly detected object. The new object is thus unified with
the old one. In this manner, stable reasoning about occlusion of the ball and temporary
occlusions by the hand hiding the cups is achieved.

To obtain an efficient baseline system3, this solution (referred to as “EMT solution”)
was cast into the JRP’s common framework by modularising the monolithic MatLab-
based architecture into specialised detectors and associated trackers for balls, cups, and
skin; and an occlusion tree reasoner. This application was used subsequently to assess
and compare correctness, performance, and architectural features of our new design.

3 Tracking and Reasoning by Agent Coordination

MAS coordination [Lesser 1998] aims at ensuring coherent behaviour of a system con-
sisting of multiple autonomous agents pursuing interdependent activities—e.g. intend-
ing to work on the same or overlapping subproblems; disposing of alternative methods
or data to generate a solution; or producing results of one subproblem that also con-
tributes to the solution of another. Coordination typically requires the detection of in-
terdependencies; a decision which coordination action to apply; and coordination mech-
anisms (for an overview of available techniques, see e.g. [Omicini & Ossowski 2003])
that shape the way the agents perform these tasks. In our architecture, each task-relevant
object in the scene is represented by a dedicated agent. These object agents are sup-
ported by a limited number of specialised detector agents, that provide an anchoring
to entities detected in the current image. In this design, tracking and reasoning func-
tionalities emerge out of the interactions among object agents, and between object and
detector agents (see Fig. 2). Roles with responsibilities and authorities are assigned to
agent types at design-time (see Sect. 3.1 and 3.2). This leads to organisational restric-
tions: e.g. each object agent is associated to a specific detector agent. At run-time, agent
coordination is guided by creation and termination of agents; auctioning; contracting;
and matchmaking. This is implemented via agent communication following a prede-
fined conversation policy [Greaves et al. 1999].

Even though the design of this conversation policy was guided by the ideas of
tracking and (occlusion tree) reasoning, and it does include specific “tracking” and
“reasoning” phases (see Sect. 3.3), the overall tracking and reasoning capabilities ex-
pressed by the system cannot be pinned down to particular component agents, but come

3 The MatLab code was found to be an order of magnitude slower than its C/C++ equivalent.

54 B. Jung and P. Petta

Image server

Cup Detector
 Process Image

Ball Detector Hand Detector

Process Im
ageProcess Image

Cup0 Cup4

Cup6
Cup2

Cup3
Ball0 Ball1

Hand0

cup object agents

ball object agents

hand object agents

Forward Image

Fig. 2. The architecture, consisting of an image server agent and detector agents interacting with
object agents (Cup1 and Cup5 are supposed to have come and gone in the observed scene).
Unlabelled arrows indicate communication paths.

about in a distributed fashion, relying also on properties (e.g. continuity) of the envi-
ronment. In the following, we first describe the responsibilities of detector and object
agents and then discuss the conversation policy governing agent interaction in more
detail.

3.1 Detector Agents

A detector agent is responsible for the detection of object blobs of a given type in the
images provided by an image server agent (connected to a live camera or accessing an
image sequence store). It distributes the information about these blobs to interested ob-
ject agents of the same type (see Sect. 3.2). The interest of an object agent is expressed
in terms of multiple regions of interest in the image and is specified on demand.4 A de-
tector agent is further responsible for mediating among multiple object agents claiming
a blob, by holding an auction and awarding the blob to the object agent that submitted
the bid expressing the highest confidence in this blob representing itself (=the particu-
lar object) in the current image (see Sect. 3.3). A detector agent will spawn new object
agents for unmatched blobs (i.e., not claimed by the existing object agent population),
and serves as a matchmaker agent [Wong & Sycara 2000] distributing requests to ob-
ject agents to identify hider objects for objects that disappeared with the current frame.
Furthermore, it is the joint responsibility of the set of all detector agent instances to
coordinate the tracking and reasoning phases in the conversation policy (see Sect. 3.3).

3.2 Object Agents

An object agent represents an object detected in the scene and is associated to the de-
tector agent that spawned it. Object agents are responsible for the matching of blobs

4 The specification of more than one area is required to handle reappearance after occlusion
correctly, as explained in the following.

Agent Encapsulation in a Cognitive Vision MAS 55

offered by their detector agents to the data maintained locally about the most recent
blob of their scene objects and thereby for coherent tracking of objects. The distance
between centres of gravity of blobs serves as coherence measure and must lie below
a given threshold. This presupposes a certain coherence of information across subse-
quent frames (cf. end of introduction to Sect. 3). They further handle disappearance and
reappearance events in the scene by linking and unlinking themselves to hider objects.
Once linked, a contract is established [Jennings 1996] between the agents representing
the hider and the hidden objects, and the “hider object” agent subsequently propagates
position changes to the “hidden object” agents. Object agents also send updates of their
areas of interest to their detector agent. These areas are usually extended bounding
boxes around currently assumed object positions (and, in the case of hidden objects,
also the locations of their disappearance).

By these means, detector agents automatically offer blobs also to object agents rep-
resenting hidden objects; reappearance can be detected, and no “object merging”—
unification of newly instantiated re-appearances of objects with representations of their
earlier occurrences—as in the original EMT approach is necessary. If the object re-
ferred to by an object agent goes undetected for some time without identification of an
appropriate hider, the object agent will eventually assume its object disappeared from
the scene for good, and die.

3.3 Conversation Policy

Coordination among agent instances is governed by an encompassing conversation pol-
icy, articulated into a tracking and a reasoning phase. A simplified diagram of the policy
is shown in Fig. 3. The tracking phase of the policy is started by the image server agent
that sends ProcessImage messages to the (three) detector agents available. In case a
detector agent fails to identify any blobs of its kind in the current image within the
regions of interest of its object agents, it sends them NoBlobFound messages, to be
confirmed by a BlobConfirmed return message. Otherwise, the detector agents try to
assign each of the blobs detected to one of their existing object agents, based on the
location of the blob and the areas of interest of the object agents being managed: a
blob may be offered to multiple object agents, and an object agent may have multiple
blobs offered by its detector agent. To this end, detector agents send DetectedBlobs
messages to their object agents. Each of these returns a BlobSelection message, with
the index of the blob assessed the most likely reference to the object it represents and a
confidence measure5, or an index value of -1 to report that no blob of interest was iden-
tified. The detector agent waits for all BlobSelection messages to be returned and
resolves ambiguous selections by sending a ConfirmBlob message to the object agent
that expressed the highest confidence. In subsequent iterations, blobs remaining are of-
fered to object agents not yet awarded a blob, and the sub-policy ends with a (possibly
empty) remainder set of not assignable blobs for which the detector agent spawn new
object agents. The tracking phase thus ends with receipt of the messages confirming

5 Calculated over the centre of gravity of the blob offered and the last known object position or
location of disappearance.

56 B. Jung and P. Petta

ImageServer Detector Object i Object j

ProcessImage
assign blobs
to objects

DetectedBlobs or
NoBlobFound

BlobSelectiondisambiguate
blob selection

ConfirmBlob

BlobConfirmed

StartNewAgent

BlobConfirmed

repeat until all
blobs assigned

or none of all blobs
offered is selected

StartReasoning

RemoveLink

LinkRemoved

MoveSubObjects

MoveSubObjects

LookForHiders

CanHide HiderFound or
HiderNotFound

LinkSet

SetLink

UpdateArea
ForwardImage

tr
ac

ki
n

g
 p

h
as

e
re

as
o

n
in

g
 p

h
as

e

acts as broker and
forwards message

to other objects

wObject 1...n

Fig. 3. Schematic sequence diagram for the conversation policy. Mandatory messages are set
in bold font. Parallel messages, conditions for messages, and synchronisation between detector
agents, are omitted for clarity. See main text (Sect. 3.3) for details.

creation of new agents (if any). Before starting the reasoning phase, all detector agents
must have finished the tracking phase.

In the reasoning phase, detector agents act as matchmakers. We adopted this as
approach of choice, given that detector agents know about all object agents they have
spawned and message broadcasts are not necessarily desirable, as detector agents have
information about the area an object is located in and can thus perform a kind of tar-
geted multi-casting for CanHide messages (see below). This phase is initiated by the
detector agents sending StartReasoning messages to all known object agents. These
determine whether they have reappeared, in which case they send RemoveLink requests
to their hider object agents, which confirm link removal (LinkRemoved). Next, every
hider object agent remaining sends a MoveSubObjects message to the hidden object
agents linked to it, thus propagating the relative movement of its own object. This mes-
sage is forwarded recursively to further hidden objects. Acknowledge messages for
MoveSubObjects are not sent because no explicit synchronisation before further policy
steps is required, and we also assume reliable communication.

Agent Encapsulation in a Cognitive Vision MAS 57

Table 1. Timing results of the baseline and the MAS-based systems

Framework components time (s)
None (image server only) 6.0
Baseline detector 37.5
Baseline detector+tracker 41.7
All three baseline components 46.6
MAS-based solution 40.5

approximate tracking & reasoning times (s)
Baseline solution 9.1
MAS-based solution 3.0

The next policy step is to identify hider objects for all disappeared objects. Disap-
peared object agents broadcast LookForHiders messages to all detector agents; these
forward these requests as CanHide messages to all objects they know to be in the neigh-
bourhood of the disappeared objects. Potential hiders determine confidence values for
them being the cause of specific occlusions and accordingly return HiderFound or
HiderNotFound messages to the disappeared object agent. In the case of multiple possi-
ble hiders, the disappeared object agent selects the one with the highest confidence and
sends a SetLink request to it. This request is confirmed by a LinkSet message from
the hider object agent. Object agents end their participation in the policy by adjusting
their area of interest via an UpdateArea message to their detector agent. Upon receipt
of all UpdateArea messages from their object agents by the different detector agents,
the reasoning phase ends, and the image server is asked by means of a ForwardImage
message to proceed to the next image.

4 Results

Performance measurements were obtained for the baseline system (Sect. 2) and our
MAS solution (Sect. 3) on a Pentium M 1.6 GHz notebook under Gentoo Linux.6 Both
cases processed 100 frames of the scenario (with all objects visible and one occlusion
of the ball); the time of the whole process was measured. To assess relative processing
times of the three sub-components in the baseline solution, we added one component af-
ter the other. The results summarised in Table 1 clearly identify the detector algorithms
as the major bottlenecks. As the same detector algorithms are used in all configura-
tions, the difference of about six seconds between the baseline and the MAS solutions
can be attributed to tracking and reasoning. MatLab-generated code seems to be inher-
ently slower than hand-written C/C++ code, so these results cannot be interpreted as
the agentified solution being three times faster at tracking and reasoning. However, it
does indicate the agentified solution to be no worse. Correctness of both approaches
was assessed merely by visual inspection of bounding boxes and names of tracked ob-
jects with links to bounding boxes and names of hidden objects overlayed on the image
sequence. The approaches show slight differences in the times of object reappearance
during phases of occlusion, but all objects are tracked and labelled correctly at the end
of the occlusion episode. Concerning architectural features, our approach is easier to

6 Working memory requirements appear to be secondary, on the order of 40MB resident and
160MB virtual size of a multi-threaded process.

58 B. Jung and P. Petta

maintain due to the modularisation and decoupling of processing steps (a prerequisite
for further work on asynchronous operation in decelerated real-time, Sect. 6), and to
extend by adding new detector agents and more complex object interaction models.
Scalability can be achieved by distribution of agents over multiple machines.

5 Related Work

The modularisation of the EMT solution was guided by the structure of the available
MatLab code, resulting in detector, tracker, and reasoner components. Out of these,
our final solution uses detector and object agents only. The modules of neither solu-
tion correspond directly to what [Boissier & Demazeau 1992] termed basic agents, i.e.,
cells of a two-dimensional matrix of focus (contours, highlights, range data, stereo-
vision, . . .) and representation (image, image features, scene features, . . .) dimen-
sions, following the traditional decomposition of [Marr 1982]. [Bianchi & Rillo 1996]
follow up on the work of Boissier & Demazeau and present a distributed con-
trol architecture applied to purposive computer vision tasks. The system is speci-
fied in terms of a set of behaviours which are decomposed into tasks and dele-
gated by autonomous agents to basic agents. In contrast, our agents follow more
or less a functional decomposition (EMT, Sect. 2) or represent task- and purpose-
dependent entities (object-agents, Sect. 3). [Graf & Knoll 2000] propose a MAS ar-
chitecture with a greater degree of flexibility than Boissier & Demazeau and Bianchi
& Rillo. Their agents accomplish specific vision tasks by a goal-driven commu-
nication process. Master agents with complex planning and interpretation capabili-
ties are distinguished from slave agents encapsulating image processing algorithms.
The papers of a special issue of Pattern Recognition on agent-based computer vi-
sion [Rosin & Rana 2004] provide a recent snapshot of the state of the art in the
area. They demonstrate how MAS technology can be applied to a variety of vi-
sion tasks while underscoring that the full potential of the agent and multi-agent
paradigm is still to be uncovered. The editorial addresses also the criticism of agent-
based systems that “they are just an elaborate and unnecessary metaphor, and of-
ten do not actually provide better results than traditional techniques” [ibid.], sug-
gesting that agent-based systems should be considered as an alternative approach
to computer vision, and that “it would be useful for the vision community to con-
sider the full potential of the “agent” and multi-agent paradigm” [ibid.] The his-
tory of MAS in vision reflects to some extent the evolution from strict control to in-
creasingly flexible coordination; from decomposition according to [Marr 1982] (trans-
formation functions) to increasingly more flexible run-time behaviours (online ser-
vice realisation). In our approach, we try to go a step further and provide a dif-
ferent perspective by moving from functional, transformational decompositions that
can be aggregated to service realisation to task- and purpose-dependent agents (cf.
[Shen & Norrie 1999, Parunak et al. 2001]).

Relating the idea of representation as a stable state of a cognitive system as defined
in [ECVision Roadmap V4.2, p. 11] to our approach reveals that representation can-
not be pinned down to particular data in specific agents. The concept of occlusion for
instance is “represented” in the contracts between the hider and the hidden objects: it

Agent Encapsulation in a Cognitive Vision MAS 59

evolves dynamically over time. We cannot look at the system’s state at a certain time
and derive occlusion relations from it. A contract might be setup by momentary failure
of a detector leading to the illusion of an occlusion; this fact is nothing but a distraction
when the task is to interpret the scene, and this bad contract is soon resolved as the
object is detected again. An occlusion relation requires some stability of information
in the agents and interaction patterns between them to arise. It cannot be found in the
micro-states of an agent or the states of a conversation, nor is it modelled explicitly as a
reified macro-state. Even so, this dynamic and active form of representation allows for
the system’s interpretation of occlusion.

Due to our research focus on architectures for building computer vision systems
rather than modelling cognitive behaviour, our approach is not directly comparable to
typical cognitive architectures like ACT-R or SOAR. At this early stage, we also do not
yet have entities comparable to short/long-term memory or explicit knowledge. De-
centralisation and decoupling in our solution may remind of distributed blackboard
based interpretations [Lesser & Erman 1980] or blackboard architectures in general
(e.g. [Hayes-Roth 1995]). There are important differences between HEARSAY and
our approach concerning both the domain and the processing: Relations between ut-
terances occur over time only; in the visual domain relations occur over both time and
space and are mediated via two-dimensional image sequences. Hypothesis processing
in HEARSAY is transformational, based on grammar hypotheses, and not interpreta-
tional; while HEARSAY focuses on constraining the search space of a given problem,
we focus on permanent (re-)interpretation of continuous input, that is driven not by
internal state but by events in the scene.

6 Discussion and Outlook

We have shown that taking the agent perspective on computer vision can lead to al-
gorithms with different decompositions (reflected in the scope and responsibilities of
agents) and to solutions that are inherently distributed. Even so, the solution presented
is still a far cry from exploiting the full potential of MAS. In the following, we dis-
cuss selected aspects, some limitations, and conclude with an outlook of how to try
overcome them.

The conversation policy of our current design has two major synchronisation
points7, one after the tracking phase, and the other after the reasoning phase. Both
are necessary to perform consistent tracking and reasoning and to keep in sync with the
image data. Whether and how this explicit synchronisation can be removed—e.g., by
another conversation policy or intelligent scheduling—is subject of future work. Imple-
mentation of conversation policies can be facilitated by framework support for hierar-
chical finite state machines. As this support is currently not available in our framework,
the actual implementation is not well structured, and the description of the conversation
policy was assembled from existing code and design fragments that guided the imple-
mentation. The autonomy of agents in our system is not yet an absolute necessity for the
kind of coordination we investigate, as various timing issues have been ignored for the

7 There are also some minor ones, e.g. after link removal for a disappeared object, right before
the MoveSubObject messages.

60 B. Jung and P. Petta

time being. In particular, all agent behaviour is synchronised with the video frame rate
and not real-time. Nevertheless, the agent paradigm already is of value in the design of
the overall system and of the interactions to be coordinated.

As an alternative to the agentified solution, one could come up with two functions
corresponding to the tracking and reasoning phases that perform the same kind of track-
ing and reasoning our system does. Arguably, these could be easier to implement, not
requiring an agent framework nor mechanisms for explicit synchronisation with the im-
age stream. We propose, however, that a main feature of our approach lies in the change
of viewpoint on the problem of tracking and reasoning it affords. Although the design
of appropriate conversation policies requires more (or at least different) skills and leads
to a complex system, it does simplify the integration of heterogeneous detectors and
coverage of specific objects (e.g., objects not capable of hiding or being hidden). Even
so, we grant that thinking and designing locally from an agent’s viewpoint as well as
locally in space (in terms of regions of interest), requires non-local dependencies to
be captured explicitly (e.g., the impact of changes in lighting or cast shadows) and
may lead to unpredictable (for better or worse) system behaviour (a typical problem of
complex systems). But while these properties of such a MAS may be seen as disad-
vantages when building industrial systems, they may in fact be an important advantage
when it comes to grasping the complexity of vision. As the current results show, the
presented agentified solution does not differ significantly from the original design in
terms of correctness or speed while introducing a new perspective on decomposition of
vision systems.

Acknowledgements

The authors would like to acknowledge the discussions and interactions within the Cog-
nitive Vision JRP, that all formed valuable contributions to this work. The original EMT
solution was provided by A.Pinz (FWF S9103-N04) and R.Tomasi. JRP partner ACIN
provided zwork as the common framework of the JRP. This research was carried out in
the context of the projects S9103-N04, S9106-N04 and S9107-N04 of the FWF Aus-
trian Science Fund. The Austrian Research Institute for Artificial Intelligence is sup-
ported by the Austrian Federal Ministry for Education, Science and Culture and by the
Austrian Ministry for Transport, Innovation and Technology.

References

[Bianchi & Rillo 1996] Bianchi R.A.C., Rillo A.H.R.C.: A Distributed Control Architecture for
a Purposive Computer Vision System, Proc. IEEE Intl. Joint Symposia on Intelligence and
Systems (IJSIS’96), 288–294, 1996.

[Boissier & Demazeau 1992] Boissier O., Demazeau Y.: A Distributed Artificial Intelligence
View on General Purpose Vision Systems, in Werner E., Demazeau Y., Decentralized AI 3,
North-Holland Amsterdam/New York, 311–330, 1992.

[ECVision Roadmap V4.2] A Research Roadmap of Cognitive Vision. ECVision: The European
Research Network for Cognitive Computer Vision Systems. IST–2001–35454. 4.2 11–2–05,
2005. <URL:http://www.ecvision.org/research planning/ECVisionRoadmapv4.2.pdf>

Agent Encapsulation in a Cognitive Vision MAS 61

[Graf & Knoll 2000] Graf T., Knoll A.: A Multi-Agent System Architecture for Distributed
Computer Vision, International Journal of Artificial Intelligence Tools, 9(2):305–319, 2000.

[Greaves et al. 1999] Greaves M., Holback H., Bradshaw J.: What Is a Conversation Policy?,
in Bradshaw J. et al. (eds.), Workshop Notes, ”Specifying and Implementing Conversation
Policies”, Third Intl. Conf. on Autonomous Agents (Agents ’99), Seattle WA, 1999.

[Hayes-Roth 1995] Hayes-Roth B.: An Architecture for Adaptive Intelligent Systems. Artificial
Intelligence 72:329–365, 1995.

[Jennings 1996] Jennings N.R.: Coordination Techniques for Distributed Artificial Intelligence,
in O’Hare G.M.P., Jennings N.R. (eds.), Foundations of Distributed Artificial Intelligence,
Wiley Chichester/London/New York, 187–210, 1996.

[Lesser 1998] Lesser V.: Reflections on the Nature of Multi-Agent Coordination and Its Impli-
cations for an Agent Architecture. AAMAS, 1(1):89–111, Kluwer Academic Publishers, 1998.

[Lesser & Erman 1980] Lesser V., Erman L.D.: Distributed Interpretation: A Model and Exper-
iment, IEEE Transactions on Computers, 29(12):1144–1163, 1980.

[Marr 1982] Marr D.: Vision, Freeman and Company, New York, 1982.
[Omicini & Ossowski 2003] Omicini A., Ossowski S.: Objective versus Subjective Coordination

in the Engineering of Agent Systems, in Klusch M. et al.(eds.): Intelligent Information Agents:
The AgentLink Perspective. LNAI 2586. Springer Berlin Heidelberg, 179–202, 2003.

[Parunak et al. 2001] Parunak H.Van Dyke, Baker A.D., Clark S.J.: The AARIA Agent Ar-
chitecture: From Manufacturing Requirements to Agent-Based System Design. Integrated
Computer-Aided Engineering. 8(1):45–58, IOS Press Amsterdam, 2001.

[Rosin & Rana 2004] Rosin P.L., Rana O.F. (eds.): Pattern Recognition, Special Issue on Agent
Based Computer Vision, 37(4):627–855, 2004.

[Shen & Norrie 1999] Shen W., Norrie D.H.: Agent-Based Systems for Intelligent Manufactur-
ing: A State-of-the-Art Survey, Knowledge and Information Systems, 1(2):129–156, Springer
Berlin Heidelberg, 1999.

[Wong & Sycara 2000] Wong H., Sycara K.: A Taxonomy of Middle-Agents for the Internet,
in Durfee E. et al. (eds.), Proc. 4th Intl. Conf. on MultiAgent Systems (ICMAS-2000), July
10–12, 2000, Boston, MA, IEEE Press, New York, NY, 465–466, 2000.

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 62 – 71, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Model of Multi-agent System
Based on Policies and Contracts*

Beishui Liao and Ji Gao

Institute of Artificial Intelligence,
Zhejiang University, Hangzhou 310027, China

Beishui@126.com, gaoji@mail.hz.zj.cn

Abstract. Due to the dynamic nature of virtual organizations (VOs), it is neces-
sary that the multi-agent system for VO formation and cooperation should be
aware of the mutable business requirements or user’s preferences within VO
environments and integrate these dynamic business requirements into its deci-
sion making process. We present a model of multi-agent system based on poli-
cies and contracts, in which the requirements for both the system and the indi-
vidual agents can be defined dynamically by means of policies. On the one
hand, at the system level, the duties and rights of roles can be specified or modi-
fied in terms of policies presented by the VO administrators. And on the other
hand, role enacting agents are guided by policies defined by their owners. The
policy and contract extended agent model (BGIPDC) is the core of the system,
which is formally specified in this paper.

1 Introduction

Currently, a large number of research efforts have been made to cope with the chal-
lenges about service integration under the context of virtual organization (VO), in-
cluding web services, grid computing, policy-based management, and multi-agent
technology, etc. Among them, agent technology is an ideal candidate. In order to
make explicit, predictable and stable the interactions between participating agents of
multi-agent system, much recent research such as [1,2,3,4] extended the traditional
BDI-based agent model with some social mechanisms, including norms and contracts.
However, these methods can’t reflect the dynamic requirements of the VO. When
norm-based multi-agent systems are developed, the system’s objectives (require-
ments) usually should be pre-determined, so they can’t fully support those VO appli-
cations whose objectives (high-level business requirements) should be modified fre-
quently at run time. Fortunately, the ideas of policy-based management (PBM) are
useful to treat this problem. According to [5,6], policies are a means to dynamically
regulate the behavior of system components. While sharing much in common with
norm-based approaches, policy-based perspectives differ in subtle ways. Feltovich
pointed out that norms are designed offline, while policy-based approaches support
dynamic runtime policy changes, and not merely static configurations determined
in advance [7].

* This work is supported by the National Grand Fundamental Research 973 Program of China

under Grant No.2003CB317000.

 A Model of Multi-agent System Based on Policies and Contracts 63

So, in this paper, we introduce the idea of policy-based management into tradi-
tional multi-agent system model. On the one hand, we propose a structure of multi-
agent system based on policies, roles and contracts. There are three characteristics of
this structure. First, the duties and rights of each role are specified in terms of policies
that may be modified frequently before the role enactment, then the objectives of the
role are indirectly fulfilled by role enacting agent (REA), thus the system is able to
timely response to the variation of high-level business requirements. Second, the
cooperation of individual agents of a multi-agent system is associated by means of
contracts that are signed by REAs and VO management agent. Third, the owner
(stakeholder) of each individual agent in the system can specify policies to influence
the agent’s behavior so that the agent’s decision making is made as consistent as pos-
sible with its owner’s objectives. On the other hand, as to individual agent, its motiva-
tions include both internal ones (its own desires) and external ones, therefore the
traditional BDI agent is not feasible in that it only considers the internal motivations.
We extend the traditional BDI agent model with obligations arose from guidance
policies (P-Obligations for short) and obligations from contracts (C-Obligations for
short), called BGIPDC agent model.

This paper focuses on the policy-driven multi-agent model, while the details of the
representation and deployment of policies are not involved, the reader is referred to
[5,6]. The structure of this paper is organizes as follows. In section 2, we propose the
architecture of multi-agent system based on policies and contracts. In section 3, the
policy and contract extended BDI agent (BGIPDC) formal model is presented, which is
the core of the multi-agent system. Then in section 4, a case is put forward to show
how the proposed system works. And finally, section 5 is related work and
conclusions.

2 The Architecture of Multi-agent System Based on Policies and
 Contracts

The focus of the approach proposed here is the idea that the multi-agent system and
the individual agents are driven by the requirements that can be specified dynamically
in terms of policies, rather than those only defined statically in advance. We propose a
policies and contracts based multi-agent system (P-MAS for short) as shown in Fig-
ure1. Corresponding to this figure, P-MAS model is defined formally as a tuple: P-
MAS = P-OM, P-REA, CRE where P-OM denotes policy-based organization model,
P-REA denotes a set of policy-driven role enacting agents, and CRE denotes a set of
contracts signed by the role enacting agents and the VO manager. Now, we describe
in details the definition of policy, P-OM, CRE and P-REA respectively as follows.

Firstly, policy is the driven element of the system. There are two dimensions of
policy: the role-based VO policy (RVP for short) and the individual agent policy,
called guidance policy (GP for short). The former is defined by VO administrator
(VO Admin in figure 1) the rights and the duties of a role, while the latter is specified
by specific agent’s owner (Owner or VO Admin in figure 1) to express the local ob-
jectives or preferences. Formally, a policy can be defined in the form of EBNF
as follows.

64 B. Liao and J. Gao

Policy ::= RVP| GP
RVP ::=‘Obl(’Role1 [Role2] Pred1 [Pred2] ‘)’ |
 ‘Pms(‘Role1 [Role2] Pred1 [Pred2] ‘)’ |
 ‘Prh(’Role1 [Role2] Pred1 [Pred2] ‘)’
GP ::=’Obl(’Owner Agent1 [Agent2]Pred1 [Pred2]‘)’|
 ’Pms(’Owner Agent1 [Agent2] Pred1 [Pred2]‘)’|
 ’Prh(’Owner Agent1 [Agent2] Pred1 [Pred2]‘)’

In this definition, Role1and Role2 are a role identity as the subject and target of the
policy respectively, Pred1and Pred2 are a predicate expression as the policy objective
and policy precondition respectively, Owner is the owner (stakeholder) of individual
agent, and Agent1 and Agent2 are policy subject and target respectively. There are
three modalities of RVP, i.e., obligations, permissions and prohibition. We use
Obl(r1, r2, φ|ψ), Pms(r1, r2, φ|ψ), and Prh(r1, r2, φ|ψ) to denote them respectively.
The GP is denoted by OblY(i, j, φ|ψ), PmsY(i, j, φ|ψ), or PrhY(i, j, φ|ψ), in which Y is
the owner of the agent i.

Fig. 1. The Architecture of Multi-agent system based on policies and contracts

Secondly, policy-based Organization Model (P-OM) is the abstract level of a
multi-agent system. The formal definition of P-OM is a tuple P-Roles, P-IR where
P-Roles is a set of policy-based roles and P-IR is a set of interaction relations between
roles.

The policy-based role (r1, r2, rn in figure 1) is different from the traditional ones in
that here the duties and rights of a role are specified by the policies that can be speci-
fied at run time. Formally, a policy-based role (P-Role) is defined in the form of
EBNF as follows.

P-Role::= ‘Rol(’ Role-ID Objective Right Duty ‘)’
Right ::={RVP} Duty ::={RVP}

In this definition, Role-ID is a role identity, Objective is a set of objectives required
by the role, and RVP is defined as the above definition. On the other hand, the P-IR
illustrates the interaction scenes of roles, and P-IR ⊆ P-Roles × P-Role.

Thirdly, CRE is a set of contracts. A contract (“C” in figure 1) is signed when a
role enacting agent reaches an agreement with VO management agent. The contract

 A Model of Multi-agent System Based on Policies and Contracts 65

clauses (C-Clauses) include rights and duties defined in a role and other clauses arose
during negotiation. A contract is defined in the form of EBNF as follows.

Contract ::=‘Contract(’ N Ag VMA {C-Clause}‘)’
C-Clause ::=‘Obl(’N subject Object Pred-1 [Pred-2]‘)’|
 ‘Pms(‘N subject Object Pred-1 [Pred-2]‘)’|
 ‘Prh(’N subject Object Pred-1 [Pred-2] ‘)’
Subject ::= VMA|Ag
Object ::=VMA|Ag|Other-Role|Other-Agent

In this definition, N is a specific authority, which monitors the contract enforce-
ment and carries out the sanctions when some violations arise. Ag and VMA are role
enacting agent and VO management agent respectively. The Subject of a contract can
be VMA or Ag, while the Object of a contract can be VMA, Ag, other role, or other
agent. Pre-1 and Pred-2 are the objective and the condition of a contract respectively.
We use OblN(i, j, φ|ψ), PmsN(i, j, φ|ψ), and PrhN(i, j, φ|ψ) to denote the three classes
of contract clause respectively.

Finally, P-REA is a set of policy-driven role enacting agents. During the formation
of a VO, the VO management agent (VMA) will recruit prospecting agents to take up
the roles. Each agent may negotiate with the VMA about the duties and rights of the
specific roles that are defined in terms of policies. When they reach an agreement, a
contract will be signed by the two parties. Then, the agent will take up the role. We
call this type of agent policy-driven role enacting agent (P-REA, for example, a1, a2,
an in figure1). From the perspective of a P-REA, its owner (stakeholder) can also
specify guidance policies to guide or constrain its behavior to meet the high-level
business requirements. So, the motivation sources of P-REA include its owner de-
sires, P-Obligations and C-Obligations. Obviously, the traditional BDI agent is not
feasible in policies and contracts based multi-agent system. In this paper, we propose
an extended BDI agent model, call BGIPDC agent model, which is formulated in details
in the next section.

3 BGIPDC Agent Model

3.1 Syntax

The logical language (BGIPDC) for policy-driven agent representation is based on the
BDI logic presented in [8] which is in turn an extension of CTL* logic, a propositional
branching-time logic. The temporal operators A (universal path quantifier, or inevita-
ble), X (next), and U (until) express properties over time. The operators E (existential
path quantifier, or optional), F (sometimes), and G (always) are defined in terms of the
primitive temporal operators as E (φ) ¬ ¬φ), F(φ) trueUφ and G(φ) ¬F(¬φ).
We distinguish agent’s internal motivations, desires (DES), from its external motiva-
tions, the obligations produced by contracts (COblN) and guidance policies (PObl),
while agent’s goals are the outputs of the decision making on these motivation inputs,
as shown in the decision process of BGIPDC agent (figure 2). In addition, operators

66 B. Liao and J. Gao

CPmsN, CPrhN, PPms and PPrh are defined as CPmsN(φ) ¬COblN ¬φ),CPrhN(φ)
COblN ¬φ), PPms(φ) ¬PObl(¬φ) and PPrh(φ) PObl(¬φ) respectively.

Fig. 2. The Decision Process of BGIPDC Agent

The state formula and path formula of BGIPDC are defined as follows:

• any primitive proposition is a state formula;
• if φ1 and φ2 are state formulas and x is an individual or event variable, then ¬φ1,

φ1∨φ2, and ∃xφ1(x) are state formulas;
• if φ is a state formula and i, j are agents then BEL(i, φ), GOAL(i, φ), INT(i, φ),

PObl(i, φ), COblN(i, j, φ) and DES(i, φ) are state formulas;
• if ψ is a path formula, the E(ψ), A(ψ) is a state formula;
• any state formula is also a path formula; and
• if ψ1 and ψ2 are path formulas, then ¬ψ1, ψ1∨ψ2, ψ1Uψ2, ψ1 are path

formulas.

3.2 Formal Semantics of BGIPDC

A model for BGIPDC is a tuple M = W, E, T, , U, B, G, I, D, OP, OC, π where W is a

set of worlds, E is a set of primitive event types, T is a set of time points, is a bi-
nary relation on time points, U is the universe of discourse which is a tuple itself U =

UP-REA, UP-Roles, UCRE, UGP, Uothers , B is belief accessibility relation, B: UP-REA

℘(W×T×W), and G, I, D, OP and OC similarly for goals, intentions, desires, P-

Obligations and C-Obligations respectively, and finally π interprets the atomic formu-
las of the language.

In the following, we give the semantics of beliefs, goals, intentions, desires, and
two kinds of obligations, while the semantics of the other state and path formulas are
similar to those defined in [8,9] and not presented here.

Beliefs, Goals, and Intentions. A belief φ of an agent i is represented as BEL(i, φ).
There are three classes information as inputs of belief component, including
observations about the environments, contracts signed with other agent and guidance

 A Model of Multi-agent System Based on Policies and Contracts 67

policies for individual agents (GPs) specified by its owner. The semantics for the state
formulas BEL(i, φ) is as follows:

,BEL, (,) . . (,),t tt i tv wt iff w Mv wM i s t w w φφ ∀ '' ' B

For the beliefs of agents we use a KD45 axiomatization relative to each agent.
A goal of an agent i is represented as GOAL(i, φ). We assume a KD axiomatization

to ensure the consistency of the goals. A goal of BGIPDC agent is the production of
three motivations, i.e., desires, P-Obligations and C-Obligations. The semantics of
GOAL(i, φ) is defined in the standard way in the Kripke model.

OAL(), (),, ,. . ,t i t tG ifft tM i w Mv w v ws t w wφ φ∀ '' ' G

An intention of an agent i is represented as INT(i, φ). Just like goals, intentions
have a KD axiomatization and its semantics is as follows.

NT(,), ,. . (,),t i t tt tM I i iff Mv w v ww s t w wφ φ∀ '' ' I

Desires, P-Obligations and C-Obligations. A desire φ of an agent i is represented in
the logics as DES(i, φ). For the desires, the inconsistencies are allowed, so the D
axiom is not satisfied. In order to decide the preference order of different desires, we
adopt the methodology proposed by F.Dignum et al [10] that related to the set of
desires there is a preference ordering on the set of possible worlds indicating their
relative desirability.

The formal semantics of the obligations are based on the standard deontic logic
(SDL) as presented in [11]. We extend SDL to allow for multiple modalities to denote
P-Obligations and C-Obligations from different motivation sources. So, in BGIPDC

logic, there are two kinds of obligations, i.e., P-obligations PObl(i, j, φ) and C-
obligations COblN(i, j, φ), where i and j can be the same entity. When i = j, PObl(i, j,
φ) and COblN(i, j, φ) are written as PObl(i, φ) and COblN(i, φ) respectively. The acces-
sibility relation OP and OC for PObl(i, j, φ) and COblN(i, j, φ) respectively yield the

deontically ideal worlds relative to a world w at time point t. The OP and OC are

formed according to the preference ordering of obligations. As for obligations
COblN(i, j, φ) arose from sanction-based contract clause OblN(i, j, φ|ψ), the preference
ordering of them is based on the sanctions (s) for their violations. For each situation
wt there is a value of that world for agent i, with respect to its relation to agent j and
VO authority N: CS(wt, i, j, N). This value can be seen as the cost of the sanction
(CS) in case i does not fulfill its obligation towards j and defines the preference order-
ing for the operator COblN(i, j, φ). On the other hand, as far as obligations PObl(i, j, φ)
created by the individual agent policies are concerned, the preference ordering of
them is based on the utility losses and utility gains when the agent violates and fulfills
the obligations, similar to the utilitarian semantics proposed by Lang et al [12]. For
each situation wt, there is a value of utility u(wt) which defines the preference order-
ing of the operator PObl(i, j, φ).

68 B. Liao and J. Gao

So the accessibility relation OP and OC can be defined as O P(wt, wt’) iff u(wt) ≤

u(wt’), and O C(wt, wt’) iff CS(wt’, i, j, N) ≤ CS(wt, i, j, N), respectively. Thus, we

define the semantics of these two kinds of obligations as follows.

,PObl(), ,. . (),, , ,t t
P
i jt tiv w t v wM ff w s t Mi j w w φφ ∀ O '' '

N ,CObl () . . (),, ,,, , t t
C
i jtt t

w s t w w Mv w v wM iffi j φφ ∀ O '' '

We adopt D system for P-Obligations and C-Obligations. This ensures that there
may not be deontic conflicts.

3.3 Other Basic Axioms

In BGIPDC logic, we adopt the strong realism, so there are the following axioms:

(A1) DES(i, φ) BEL(i, φ)
(A2) PObl (i, j, φ) BEL(i, PObl (i, j, φ))
(A3) COblN(i, j, φ) BEL(i, COblN(i, j, φ))
(A4) INT(i, φ) GOAL(i, φ)

As for BGIPDC agent, goals are chosen from three sources: desires, C-Obligations,
and P-Obligations. Due to the requirement that in policies and contracts based multi-
agent system, each participating agent should do its best to fulfill the enacted role so
that the system’s objectives can be achieved as well as possible, and then it should
comply with its owner’s guidance policies to carry out the dynamic requirements of
the stakeholder, we have the following rule:

Rule1: If a BGIPDC agent has to make a choice for a goal between mutual exclusive
situations, then it should choose an alternative preferred by its C-Obligations first, one
preferred by its P-Obligations second, and one preferred by its own desires third.

According to the Rule1, we have the following axioms stating the compatibility be-
tween desires, C-Obligations, and P-Obligations of BGIPDC agent respectively.

(A5) DES(i, φ) ¬COblN(i, j, ¬φ)
(A6) DES(i, φ) ¬PObl(i, j, ¬φ)
(A7) PObl(i, j, φ) ¬COblN(i, j, ¬φ)

In addition, C-Obligations and P-Obligations are arisen from the Contracts and
guidance policies respectively. We have the following axioms:

 (A8) OblN(i, j, φ|ψ) ⇔ A(E(ψ) XCOblN(i, j, φ))
 (A9) OblY(i, j, φ|ψ) ⇔ A(BEL(i, Y)∧E(ψ) XPObl (i, j, φ))

Finally, violation of C-Obligation will give rise to sanctions by the VO authority.
Then there is a following axiom (We suppose proposition s(N, i) denotes that agent i
is sanctioned by N):

(A10) COblN(i, j, Fφ) ∧A (¬φ) A INT(N, s(N, j))

 A Model of Multi-agent System Based on Policies and Contracts 69

4 A Case Study

Suppose that there is a souvenir production VO (SP for short). A souvenir is com-
posed of several accessories from different accessory providers (AP1, AP2 …, APn).
When the accessories for a specific souvenir are prepared, they will be assembled by a
souvenir assembler (SA) to produce a souvenir product. Roles AP1, Ap2, …, APn and
SA can be enacted by specific agents at run time by means of negotiations and signing
contracts. In this VO, a management agent (called m) take charge of the negotiations

with role enacting agents, signing contracts with them, and treating other VO affairs.
Now, a user u1 signs a contract (C1) with m as follows (We suppose that the souve-
nirs’ type is “A” which is composed of two accessories A1 and A2):

C1:{OblN(m, u1, φ1), OblN(u1, m, φ2|φ1), OblN(m, u1, φ3|¬φ1), OblN(u1, m,
φ4|¬φ2)} in which

OblN(m, u1, φ1) ⎯ Agent m is obliged to provide 200 pieces of type A souve-
nirs before 2005-3-17 (φ1) to user u1;

OblN(u1, m, φ2|φ1) ⎯ User u1 is obliged to send 5000$ within 2 days (φ2) to m
if m has done φ1 before the deadline;

OblN(m, u1, φ3|¬φ1) ⎯ If m hasn’t done φ1 before the deadline, agent m is
obliged to provide 50$ within two days (φ3) to user u1;

OblN(u1, m, φ4|¬φ2) ⎯ If u1 hasn’t done φ2 before the deadline, it is obliged to
send 5100$ within 2 days (φ4) to m.

With this contract, the administrator of SP specifies the policies Obl(AP1, SA, φ5),
Obl(AP2, SA, φ6), Obl(SA, m, φ7) and for role AP1, AP2 and SA respectively, in
which

Obl(AP1, SA, φ5)⎯Role AP1 is obliged to submit the accessory A1 before 2005-
3-12 (φ5) to SA;

Obl(AP2, SA, φ6)⎯Role AP2 is obliged to submit the accessory A2 before 2005-
3-12 (φ6) to SA;

Obl(SA, m, φ7)⎯Role SA is obliged to submit the souvenir A before 2005-3-15
(φ7) to m.

Based on these policies, the three roles are represented as follows:
AP1: {produce (A1), Obl(AP1, SA, φ5)}; AP2: {produce (A2), Obl(AP2, SA, φ6)};
SA: {assemble (A), Obl(SA, m, φ7)}.

Then, agents who are able to take up these roles join the VO and enact the roles re-
spectively by contracts. Now, take the agent who enacts the role AP1 for example to
show how the decision of an individual agent is influence by three motivations: inter-
nal desires, P-Obligations, and C-Obligations. Suppose that the agent a1 signs a con-
tract C2 with the VO management agent m as follows:

C2: { OblN(a1, SA, φ5), OblN(m, a1, φ8|φ5), PmsN(m, a1, φ9|¬φ5), OblN(m, a1,
φ10|¬φ8)} in which

OblN(a1, SA, φ5)⎯ Agent a1 is obliged to submit the accessory A1 before 2005-
3-12 (φ5) to SA;

OblN(m, a1, φ8|φ5) ⎯ Agent m is obliged to send 4000$ within 4 days (φ8) to
a1 if a1 has done φ5 before the deadline;

70 B. Liao and J. Gao

PmsN(m, a1, φ9|¬φ5) ⎯ If a1 hasn’t done φ5 before the deadline, Agent m is
permitted to set a bad reputation (φ9) to a1;

OblN(m, a1, φ10|¬φ8) ⎯ If m hasn’t done φ8 before the deadline, it is obliged to
send 4200$ within 2 days (φ10) to m.

Meanwhile, agent a1 has a belief BEL(a1, φ11) which gives rise to a desire D1:
DES(a1, φ11), in which

ϕ11⎯ The accessory A3 is more profitable than A1, so it is desirable to take A3
(φ11) as a goal (a1 believe that producing A3 means giving up producing
A1 (B1)).

In additional, the owner of a1 (owner1) may define a policy G1: Obl owner1(a1, φ12)
in which

Oblowner1(a1, φ12) ⎯ Agent a1 is obliged to prefer reputation to the profit (φ12).
According to C2, D1, G1 and the Axiom A8 and A9, a1 has the following three

motivation sources for selection: COblN(a1, SA, φ5), PObl(a1, φ12) and DES(a1,
φ11). Based on the beliefs BEL(a1, φ5 ¬ϕ11) (B1), BEL(a1, φ12 φ5) and the
Rule1, a1 forms its goal GOAL(a1, φ5).

On the other hand, if a new user u2 submits another request and signs contract C3,
the VO administrator can specify new policies to define roles, while the owners of
role enacting agents can specify different policies to guide the behavior of corre-
sponding agents. So, in this way, the formation and operation of multi-agent system
are driven by dynamic policies.

5 Related Work and Conclusions

Recently, a great amount of research efforts have been made on the multi-agent mod-
eling based on norms, contracts and roles [1,13,14]. While our work presented in this
paper sharing much in common with these approaches in that we also adopted roles
and contracts for multi-agent organizing, our work was focused on introducing policy
management idea to multi-agent system to let the multi-agent system be aware of the
dynamic business requirements and integrating these dynamic business requirements
into its decision making process. On the other hand, there were also a lot of researches
focused on the extended BDI logic based on the obligations and norms [10,15,16]. By
comparison, the BGIPDC logic concentrated on how to accommodate the desires, P-
Obligations and C-Obligations into the extended BDI logic.

In conclusion, the multi-agent system and the BGIPDC logic proposed in this paper
formulated a logic framework that is feasible to be applied in the open and dynamic
VO environment in which the requirements of both systems and individuals are muta-
ble. Compared to the traditional multi-agent system, the main novelties of this paper
are two-fold. First, duties and rights of a role are defined by policies. In this way, the
VO administrators have the approaches to specify high-level business requirements to
the system from the perspective of a VO. On the other hand, owners of individual
agents are able to direct the behavior of the agents by defining guidance policies.
Second, by extending traditional BDI agent model with obligations that arise from
policies and contracts, we introduce the BGIPDC agent that is capable of treating both

 A Model of Multi-agent System Based on Policies and Contracts 71

the internal and external motivations and forming consistent goals when it works in
the policies and contracts based multi-agent system.

However, there is a great deal of further work required to make the policies and
contracts based multi-agent system and BGIPDC logic more comprehensive, including
an automatic policy refinement mechanism for translating high-level policies (reflect-
ing the business goals and human’s preferences) into low-level ones (understandable
and enforceable by agents), a belief revision model that is able to cope with conflict
policies, a more flexible approach for goal choosing from three sources (desires, C-
Obligations, and P-Obligations) rather than only in terms of Rule 1 specified in
Section 3.3, etc.

References

1. Vazquez-Salceda, V.Dignum, and F.Dignum 2005. Organizing Multiagent Systems.
JAAMAS, Kluwer. Forthcoming.

2. V. Dignum, et al 2002. Formal Specification of Interaction in Agent Societies. In Proceed-
ings of FAAB 2002, 37-52. Springer-Verlag..

3. Boella and van der Torre 2004. Contracts as legal institutions in organizations of autono-
mous agents. In Proceedings of AAMAS'04,948-955, IEEE, Inc.

4. F.Dignum 1999.Autonomous Agents with Norms. Artificial Intelligence and
Law,Vol7:69-79.

5. G. Tonti, J.M. Bradshaw, et al.Semantic Web Languages for Policy Representation and
Reasoning: A Comparison of KAoS, Rei, and Ponder. Proc. Second International Semantic
Web Conference (ISWC2003). October,2003.

6. Beishui Liao, et al. Ontology-Based Conceptual Modeling of Policy-Driven Control
Framework: Oriented to Multi-agent System for Web Services Management. In Proceed-
ings of AWCC 2004, 346-356, Springer-Verlag, 2004.

7. Feltovich,et al 2003. Order and KAoS: Using policy to represent agent cultures. In Pro-
ceedings of the AAMAS 03 Workshop on Humans and Multi-Agent Systems. Melbourne,
Australia.

8. Rao and Georgeff 1991. Modeling rational agents within a BDI architecture. In Proceed-
ings of the KR’91, 473-484. Morgan Kaufmann Publishers.

9. Fasli 2003a. Interrelations between the BDI primitives: Towards heterogeneous agents.
Cognitive Systems Research 4(2003): 1-22.

10. 10.F.Dignum, Kinny and Sonenberg 2001. Motivational Attitudes of Agents: On Desires
Obligations and Norms. In Proceedings of the CEEMAS 2001, 61-70. Spring-Verlag.

11. Wright 1951. Deontic logic. Mind, 60:1–15, 1951.
12. Lang, van der Torre and Weydert 2002, Utilitarian Desires. Autonomous Agents and

Multi-Agent Systems, 5:3, 329-363.
13. Fasli 2003b. From Social Agents to Multi-agent Systems: Preliminary Report. In Proceed-

ings of CEEMAS 2003, 111-121. Spring-Verlag.
14. Dastani, V. Dignum, and F. Dignum 2002, Organizations and Normative Agents. In Pro-

ceedings of EurAsia ICT2002, 982-989. Spring-Verlag.
15. Broersen, Dastani, and van der Torre 2003. BDIO-CTL: Obligations and the Specification

of Agent Behavior, In Proceedings of IJCAI2003, 1389—1390.
16. Fasli 2002. On Commitments, Roles, and Obligations.In Proceedings of CEEMAS 2001,

93-102. Spring-Verlag.

Case-Based Student Modeling in Multi-agent
Learning Environment

Carolina González1,2, Juan C. Burguillo1, and Martin Llamas1

1 Departamento de Ingenieŕıa Telemática, Universidad de Vigo, Vigo 36200, Spain
{cgonzals, jrial, martin}@det.uvigo.es

2 Departamento de Sistemas. Universidad del Cauca, Popayán, Colombia
cgonzals@unicauca.edu.co

Abstract. The student modeling (SM) is a core component in the de-
velopment of Intelligent Learning Environments (ILEs). In this paper we
describe how a Multi-agent Intelligent Learning Environment can pro-
vide adaptive tutoring based in Case-Based Student Modeling (CBSM).
We propose a SM structured as a multi-agent system composed by four
types of agents. These are: the Case Learner Agent (CLA), Tutor Agent
(TA), Adaptation Agent (AA), and Orientator Agent (OA). Each stu-
dent model has a corresponding CLA. The TA Agent selects the adequate
teaching strategy. The AA Agent organizes the learning resources and
the OA Agent personalizes the learning considering the psychological
characteristics of the student. To illustrate the process of student model-
ing an algorithm will also be presented. To validate the Student Model,
we present a case study based an Intelligent Tutoring System for learning
in Public Health domain.

1 Introduction

Many developers of educational systems consider Intelligent Tutoring Systems
(ITS) and Learning Environments as different and even contradictory ways of
using computers in education. The recent success of such well-known Intelligent
Learning Environments [1] showed that these ways are not contradictory, but
rather complementary. ITS are able to control learning adaptively at various
levels, but generally do not provide tools to support free exploration. Learning
environments support exploratory learning [2], but they lack the control of an
intelligent tutor. Without such control the student often works inefficiently and
may never discover important features of the subject.

ILEs can monitor students, help them to perform their tasks and provide
them with feedback in a manner that contributes to their learning process. For
the students to learn effectively and efficiently, ILEs should provide teaching
strategies according to the specific domain knowledge and objectives.

The Student Model is the main component within the Intelligent Learning
Environment and, contains information about the student knowledge. It obtains
the information by dinamically observing and recording the student’s behaviour,
answers, problem-solving strategies, and analyzing them in order to deduct their

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 72–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Case-Based Student Modeling in Multi-agent Learning Environment 73

level of understanding about the domain. This information is processed and used
to individually adapt the system to each student.

Intelligent agents have been quite successful at observing student’s behav-
iour and, therefore, they have been widely used in learning environments in or-
der to capture the characteristics of the student and perform student modeling
tasks [3].

Building a student model involves defining; the ”who”, is modelled; the
”what”, or the goals, plans, attitudes, capabilities, knowledge, and beliefs of
the student; the ”how” the model is to be acquired and maintained; and the
”why” , including student’s information to give assistance, to provide feedback,
or to interpret the student behaviour [4]. The need for simplicity and ease of
understanding in Student Models is very high. It derives from the fact that
distance education is addressed to students who vary greatly in their educa-
tional background. Due to the lack of physical tutor-student contact, some-
times the distance student has the feeling that the teacher is unreachable when
needed. This is the reason why Student Models should provide bi-directional
benefit to both instructors and students, by enabling students to monitor their
own progress and utilise the feedback provided by the model on a continuous
basis.

There are many techniques for generating student models; however most of
these techniques are computationally complex and time consuming for exam-
ple: Bayesian Networks [5], Fuzzy student modeling approach [6], the Dempster-
Shafer theory [7]. Other techniques can only record what a student knows and not
the students’ behaviour and features. Examples are: overlay model [8], stereo-
type and combination model [9]. A comparison of Case-Based Reasoning and
Bayesian Networks for student modeling is realized in [10]. This study shows
that CBR is the best and easiest approach for constructing a student
modeling.

We propose a multi-agent approach to student modeling in which each stu-
dent model has a corresponding Case Learner Agent. This agent uses the CBR
paradigm [11] to generate the student profile. The CBR paradigm is simple
and do not require complex inference algorithms, moreover offers well-founded
methodologies and experiences with respect to both mathematic and algorith-
mic aspects. In our approach, we included an Orientator Agent to customize the
learning considering the psychological characteristics of the student. In order to
constructing the knowledge of the students, we used CaseML [12] a semantic
enriched markup language.

In our approach the student model is improved because: it is easy to handle
and to maintain beneficiating to both the tutor and the student; to promote stu-
dent reflection because reporting the student’s misconceptions and the reasons
why they have happened; and to facilitate the supervision of the students by en-
abling the tutor to have a solid and continuous view of the student performance.

The outline of this paper is as follows: Section 2 describes an overview on
Student Models. Section 3 presents the Student Modeling Process. In Section
4, the construction of the Student Model by Case-based Reasoning is described.

74 C. González, J.C. Burguillo, and Martin Llamas

Section 5 presents the modeling algorithm. Section 6 exposes a case of study: An
Intelligent Tutor System for learning in Public Health. Finally in the Section 7
some conclusions are presented.

2 An Overview on Student Models

Many researchers have tried to classify and formalize the student model in a
unified framework. VanhLehn [13] uses three dimensions (bandwidth, knowl-
edge type and differences between student and expert) to construct the student
model. Ragnemalm [14] regards the student modeling problem as a process to
connect the student’s input in the ILE, the conception of the system and the
representation of the correct knowledge. Self [15] tries to provide a theorical
computational basis for student modeling, which is psychologically neutral and
independent from the applications.

Generally the student models are classified into three traditional model types
according to the assumptions about the student’s knowledge: (1) overlay, (2) an-
alytical, and (3) predictive models [16]. Most ITS use the overlay model. It
considers the student’s knowledge as a part of the expert’s knowledge and use a
set of concept-value pairs to represent the student’s knowledge. The analytical
model makes a distinction between the student’s knowledge and the expert’s
knowledge. The system determines whether students have knowledge or not by
checking how the student uses the knowledge that the system defines. An expe-
rience using this model is WEST [17]. The predictive model takes into account
that the student’s knowledge can be extended beyond the expert knowledge.
This model provides more flexibility as new perturbations can be added into an
existing model when needed, while the overlay and differential models always
consider the student’s knowledge as a subset of the expert knowledge. However,
the perturbation model brings more difficulty. This model was implemented in
DEBUGGY and IDEBUGGY systems [18].

These traditional models have some disadvantages (1) the student may follow
different problem solving approaches; (2) cannot predict what student knows; (3)
may hold different beliefs that are not a subset of the domain knowledge; and (4)
most models represent knowledge with procedural net increasing the complexity
model. Case-based paradigm is another approach to student modeling, which
has been used by some authors to conceive and develop a student model for In-
telligent Tutoring Systems. We propose a case-based student modeling (CBSM)
structured as a multi-agent system that takes into account several components
that are essential for efficient adaptive teaching process. They are: (1) knowledge
level, (2) learning style, (3) learning goals, and (6) psychological characteristics.

3 Student Modeling Process

In order to construct the Student Model, information about student should be
acquired.

Case-Based Student Modeling in Multi-agent Learning Environment 75

Fig. 1. Content of the Student Model

3.1 Content of the Student Model (SM)

A comprehensive student model should contain information about the previous
student’s knowledge, the student’s progress, preferences, interests, goals, per-
sonal information and any other information related to the student. Based on
the dependence upon the subject domain, the content held in student models
consists of two parts: domain specific information and domain independent in-
formation.

– Domain specific information (DSI): it is also named student knowl-
edge model (SKM) which represents a reflection of the student’s state and
level of knowledge in term of a particular subject domain.

– Domain independent information (DII): it is slightly different from
system to system. The domain-independent information about a student may
include learning goals, cognitive aptitudes, measures for motivation state,
preferences about the presentation method, factual and historic data, etc.

We propose a student model that includes individual and cognitive character-
istics grouped in a component named Knowledge Component. This component
contains information related to the (1) knowledge level of the student, (2) per-
sonal information, (3) learning preferences, and (4) psychological characteristics.
Figure 1 shows the content of the student model.

4 Constructing the Student Model by Case-Based
Reasoning

The student modeling has been recognized as a complex and difficult but im-
portant task by researchers. The method of student modeling includes a repre-
sentation of the knowledge and reasoning of the student, and the way how the
student acquires new knowledge in order to perform intelligent learning.

Case-Based Reasoning (CBR) is a problem-solving paradigm that is able to
utilize the specific knowledge gained from previous experiences in similar situ-
ations (cases) to solve a new problem. Instead of relying on exact reasoning in

76 C. González, J.C. Burguillo, and Martin Llamas

a well ordered world, CBR focuses on inexact reasoning by a similarity mea-
surement among objects. The process involved in CBR has been described as a
cyclic process that integrates four phases: Retrieve, Reuse, Revise and Retain.

4.1 Student Model Initialization

The initialization of the Student Model is a task of great importance to makes
initial estimations of the new knowledge level of the student. When a student
starts a new learning session, the system has no previous knowledge about his
learning skill.

In this study, the information about the students is regarded as cases. When
the student starts learning, the information about the students is extracted from
the student model and is converted into a new case. When there is a new student,
he is asked to take some tests, then the system analyses his tests results to gather
information and initialize the student model. For representing cases, we have
revised several types of methods from unstructured cases to structured problem
solving episodes and we had selected CaseML because it is a semantic enriched
markup language.

Additionally, CaseML solves the problems presented in traditional case repre-
sentation as: (1) needs a human interpreter, (2) fails to describe complex objects,
and (3) needs of approaches for similarity assessment that allow to compare twodif-
ferently structured objects. Basically CaseML define a Case Ontology for describ-
ing cases, it defines a set of classes and properties between classes. The

Fig. 2. CaseML Scheme

Case-Based Student Modeling in Multi-agent Learning Environment 77

Fig. 3. Student Model Stages

figure 2 shows a scheme for representing cases that include the classes and their rela-
tionships. The student model presented here is structured as a multi-agent system
integrated by: (1) Case Learner Agent (CLA), (2) Tutor Agent (TA), (3) Adapta-
tion Agent (AA), and (4) Orientator Agent (AO). The student modeling process
by these agents taking account the student model stages presented in Figure 3.

Case Learner Agent (CLA): It is an CBR-Agent. It is responsible for retrieve
the information about the student and identifies his profile. In the retrieval
process, the CLA agent evaluates cases and uses the k-nearest algorithm [19]
to determine the matching grade. After the evaluation, the most similar cases
are selected (if there is more than one case, the case with the highest rank
is selected and prepared for adaptation). After the process is completed, the
CLA agent storages the new case in the casebase. Additionally, this agent keeps
communication with the Tutor Agent and updates the student model.

Tutor Agent (TA):It selects a specific teaching strategy for the different stu-
dents profiles, personalizing the learning process. It interacts with the CLA to get
information about the students and to produce changes in the teaching paradigm.

Adaptation Agent (AA): It organizes the learning resources according to the
teaching strategy implemented by the TA. It takes into account the student
profile to present the contents and information, making a customized learning.

Orientator Agent (ACG): It gives an emotional guide to the student when
he/she fails in the learning process due to pshychological problems as: memory,
motivation, personality, and learning ability.

5 The Modeling Algorithm

Let us illustrate a modeling algorithm. Below we explain the process referencing
every line in the pseudo-code. Figure 4 shows the modeling algorithm. Line 3.

78 C. González, J.C. Burguillo, and Martin Llamas

Fig. 4. Pseudo-code for the Student Modeling Process

Case-Based Student Modeling in Multi-agent Learning Environment 79

Initialize the student model: When the student interacts with the system for the
first time, the information is acquired.

Line 8. The ProcedureStudenProfile generates the student profile. First the
CLAAgent evaluates and filters the cases. This agent combines searching and
matching techniques. In line 36, the new case is analyzed, and evaluated (e.g.
cases with the same goals than the current case).

Line 47. The ProcedureMatching is implemented to check the corresponding
features in the cases stored using the k-nearest neighbour algorithm. Based on
the result of the matches, CLA identify those that best address the requirements
of the new situation, ranking the cases from highest to lowest, getting the student
profile.

Line 10. The CLAAgent sends a request to the TAAgent with the student
profile. Then the TAAgent selects the teaching strategy in line 11.

Line 12. The TAAgent sends a request to AAAgent in order to organize
the learning resources according to the student preferences. This information is
returned to the students through the CLAAgent in line 14.

Line 15 and 16. The CLAAgent monitorizes the students’ tasks and evaluates
the students’ answers.

Line 17. If the students’ answers corresponding to misconceptions or fails, the
ProcedureMisconceptions will be called. If the fail is related with an inadequate
teaching strategy, the CLAAgent sends a request to the TAAgent in order to
modify the teaching strategy in line 22. If the fail is due to personality problems
the ProcedureEmotionalGuide is called in line 25.

Line 31. If the students’ answers are correct, the session finished and the
CLAAgent updates the student model in line 26.

6 Intelligent Tutoring System for Learning in Public
Health

The ITS was developed within the SINCO project [20] considering the MAS-
CommonKads methodology [21]. The system is developed under a multi-agent
approach compatible with the FIPA standards [22]. In the development Java,
JavaScript and XML are used. The ITS modules are distributed and divided
in smaller parts called agents. These agents work like autonomous entities, and
act rationally in accordance with their environment perceptions and knowledge
status.

The principal purpose of the Intelligent Tutoring System in Public Health
was the learning improvement and the decisions making process, by means of
the use of personalized tutoring, letting adaptation to new teaching strategies
according to the student profile. For this purpose, the system used an Evaluator
Agent (EA) that was responsible for evaluating the student behaviour.

We have considered necessary to redesign the student model to improve the
student performance. For this, we structured the student model as a multi-agent
system that uses the CBR paradigm to obtain the student profile.

80 C. González, J.C. Burguillo, and Martin Llamas

The kernel of the new student model contains student individual characteris-
tics together with psychological aspects like level of concentration, intelligence,
motivation, etc.

7 Conclusions

The aim of this paper is to show the use of case-based reasoning with multiagent
systems in student modeling within a Intelligent Learning Environment. With
our approach is possible to categorize students according to their knowledge
level and learning preferences, to motivate them to learn in user friendly envi-
ronments that suits with their learning style. The multiagent system integrates
a set of agents that realizes continuous student assistance and tutoring during
the learning sessions. The use of an Orientator Agent is very important to give
an emotional guide to the students when misconceptions or fails are reported.

Acknowledgments

We want to thank “Ministerio de Educación y Ciencia” for its partial support to
this work under grant “MetaLearn: methodologies, architectures and languages
for E-learning adaptive services” (TIN2004-08367-C02-01).

References

1. Moundridoud, M., Virvou, M.: Authoring intelligent tutoring system over the world
wide web. Proceedings IEEE First International Symposium in Intelligent Systems
1 (2002) 160–165

2. Kashihara, A., Kinshuk, O.R., Rashev, R., Simm, H.: A cognitive load reduction
approach to exploratory learnig and its application to an interactive simulation-
based learning system. Journal of Educational Multimedia and Hypermedia 9(3)
(2000) 253–276

3. Crews, T.R., Jr: Intelligent learning environments: using educational technology to
assist complex problem solving. Frontiers in Education Conference. 27th Annual
Conference. ’Teaching and Learning in an Era of Change’.Proceedings. 2 (1997)
911–916

4. Khuwaja, R.A., Evens, M.W., A, R.A., Michael, J.A.: Architecture of circsim-tutor:
a smart cardiovascular physiology tutor. Proceedings IEEE Seventh Symposium
on Computer-Based Medical Systems 3 (1994) 158–163

5. Petrushin, V.A., Sinista, K.M.: Using probabilistic reasoning techniques for learner
modelling. World Conference on AI in Education (1993) 418–425

6. Hawkes, L.W., J, D.S., A, R.E.: Individualized tutoring using an intelligent fuzzy
temporal relational database. International Journal of Man-Machine Studies 33
(1990) 409–429

7. Bauer, M.: A dempster-shafer apporach to modeling agent references for plan
recognition. User modelling and User-Adapted Interaction 5 (1996) 317–348

8. F, S.A., Kinshuk: Model for distance education system in maldives. Proceedings
of E-Learn ISBN 1-880094-9 (2003) 2435–2438

Case-Based Student Modeling in Multi-agent Learning Environment 81

9. Jeremic, Z., V, D.: Desing pattern its: Student model implementation. Proceedings
of the IEEE International Conference on Advanced Learning Technologies ISBN
0-7695-2181 (2004) 864–865

10. González, C., Burguillo, J., Llamas, M.: A comparison of case-based reasoning and
bayesian networks for student modeling in intelligent learning environments. 16th
European Conference on Machine Learning (ECML) and the 9th European Con-
ference on Principles and Practices of Knowledge Discovery in Databases (PKDD).
(2005) Espera de publicación.

11. Craw, S., Jarmulak, J., Rowe, R.: Learning and applying case-based adapatation
knowledge. Lecture Notes in Computer Science 2080 (2001) 131

12. Huajun, C., Zhaohui, W.: On case-based knowledge sharing in semantic web. Pro-
ceedikngs of the The 15th IEEE International Conference on Tools with Artificial
Intelligence ISSN 1082-3409 (2003) 200–207

13. VahLehn, K.: Student modelling. Foundations of Intelligent Tutoring Systems
Lawrence Erlabum Associates Publishers (1988) 55–78

14. Ragnemlam, E.L.: Student diagnosis in practice:bridging a gap user modelling and
user-adapted interaction. 5(2) (1995) 93–116

15. Self, J.: Grounded in reality: the infiltration of ai into practical educational systems.
IEEE Colloquium on Artificial Intelligence in Educational Software 313 (1988) 1–4

16. Yazdani, K.: Intelligent tutoring system: An overview. Artificial Intelligence and
Education 1 (1987) 183–201

17. Yang, A., Kinshuk, A, P.: A plug-able web-based intelligent tutoring system. Pro-
ceedings of the Xth European Conference on Information Systems ISBN 83-7326-
077-3 (2002) 1422–1429

18. R, B.R.: Diagnosing bugs in a simple procedural. Intelligent Tutoring System
Academic Press (1982) 116–125

19. Joussellin, A., Dubuisson, B.: A link between k-nearest neighbord rules and knowl-
edge based systems by sequence analysis. Pattern Recognitizion Letters 6 (1987)
287–295

20. González, C., Burguillo, J.C., Vidal, J.C., Llamas, M.: Sinco: Intelligent system
in disease prevention and control. an architectural approach. Lecture Notes in
Computer Science 3337 (2004) 129–140

21. Sánchez, A., Medina, M., Castellanos, N.: Ontological agents model based on mas-
commonkads methodology. Proceedings of the 14th International Conference on
Electronics Communications and Computers (2004) 19–23

22. Nicol, R., O’brien: Fipa-towards a standard for software agents. In
http://www.bt.com/publications/bttj/ 16 (2003)

Intelligent Virtual Environments for Training:
An Agent-Based Approach

Angélica de Antonio, Jaime Ramı́rez, Ricardo Imbert, and Gonzalo Méndez

Technical University of Madrid, Madrid, Spain
{jramirez, angelica, rimbert}@fi.upm.es, gonzalo@gordini.ls.fi.upm.es

http://decoroso.ls.fi.upm.es

Abstract. In this paper we propose an architecture for the development
of Intelligent Virtual Environments for Training, which is based on a col-
lection of cooperative software agents. The first level of the architecture
is an extension of the classical Intelligent Tutoring System architecture
that adds to the expert, student, tutoring and communication modules a
new module which is called World Module. Several software agents com-
pose each module. Moreover, the proposed architecture includes agents
able to simulate the behavior of human students and tutors, as well as
agents able to plan the procedures to be taught (given an initial state
and a desired final state) prior to the tutoring process.

1 Introduction

Training is a promising application area of three dimensional virtual environ-
ments. These environments allow the students to navigate through and interact
with a virtual representation of a real environment in which they have to learn
to carry out a certain task. They are especially useful in situations where the
real environment is not available for training, or it is very costly or risky. An
Intelligent Virtual Environment for Training (IVET) results from the combina-
tion of a Virtual Environment (VE) and an Intelligent Tutoring System (ITS).
IVETs are able to supervise the actions of the students and provide tutoring
feedback. Let’s consider as an example training the operators of a nuclear power
plant in the execution of maintenance interventions. In the real environment, the
trainees would be subject to radiation, which is of course unacceptable for their
health, and additionally it would be impossible to reproduce some maintenance
interventions without interfering with the normal operation of the plant. In VEs
for training, the supervision of the learning process can be performed by hu-
man tutors or it can be performed by intelligent software tutors, also known as
pedagogical agents (in this case we will refer to the system as an IVET). Those
pedagogical agents, in turn, can be embodied and inhabit the virtual environ-
ment together with the students or they can be just a piece of software that
interacts with the student via voice, text or a graphical user interface. Some
pedagogical agents have been developed to date, in some cases with quite ad-
vanced tutoring capabilities. One of the best known is STEVE, developed in
the Center for Advanced Research in Technology for Education (CARTE) of

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 82–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Intelligent Virtual Environments for Training: An Agent-Based Approach 83

the University of Southern California (USC) [1]. In the remaining of this pa-
per, we will describe the architecture of the system (sections 2 and 3) and the
agents that are endowed with human features (section 4). Then, we will explain
how the system works (section 5). Finally, some conclusions and future work are
shown (section 6).

2 An Extension to the Architecture of Intelligent
Tutoring Systems

The development of three dimensional Virtual Environments (VEs) has a quite
short history, dating from the beginning of the 90s. The youth of the field, to-
gether with the complexity and variety of the technologies involved, have led
to a situation in which neither the architectures nor the development processes
have been standardized yet. Therefore, almost every new system is developed
from scratch, in an ad-hoc way, with very particular solutions and monolithic
architectures, and in many cases forgetting the principles and techniques of the
Software Engineering discipline [2]. Some of the proposed architectures deal only
partially with the problem, since they are centered on a specific aspect like the
visualization of the VE [3] [4] or the interaction devices and hardware [5]. When
we get to IVETs, the situation is even worse. Our approach to the definition of
an architecture for IVETs is based on the agent paradigm. The rationale behind
this choice is our belief that the design of highly interactive IVETs populated
by intelligent and autonomous or semiautonomous entities, in addition to one or
more avatars controlled by users, requires higher level software abstractions. Ob-
jects and components (CORBA or COM-like components) are passive software
entities which are not able to exhibit the kind of proactivity and reactivity that
is required in highly interactive environments. Agents, moreover, are less depen-
dent on other components than objects. An agent that provides a given service
can be replaced by any other agent providing the same service, or they can even
coexist, without having to recompile or even to reinitiate the system. New agents
can be added dynamically providing new functionalities. Extensibility is one of
the most powerful features of agent-based systems. The way in which agents are
designed make them also easier to be reused than objects. Starting from the idea
that an IVET can be seen as a special kind of ITS, and the pedagogical agent
in an IVET can be seen as an embodiment of the tutoring module of an ITS,
our first approach towards defining an standard architecture for IVETs was to
define an agent for each of the four modules of the generic architecture of an ITS:
Student Model, Expert Model, Tutoring Model and Communication Model.

The ITS architecture, however, does not fit well with the requirements of
IVETs in several respects. IVETs are usually populated by more than one stu-
dent, and they are frequently used for team training. An ITS is intended to adapt
the teaching and learning process to the needs of every individual student, but
they are supposed to interact with the system one at a time. However, in a
multi-student IVET, the system would have to adapt both to the characteristics
of each individual student and to the characteristics of the team. Consequently,

84 A. de Antonio et al.

the student module should model the knowledge of each individual student but
also the collective knowledge of the team. The student is not really out of the
limits of the ITS, but immersed in it. The student interacts with the IVET by
manipulating an avatar within the IVET, possibly using very complex virtual
reality devices such as HMDs (head mounted displays), data gloves or motion
tracking systems. Furthermore, each student has a different view of the VE de-
pending on their location within it. The communication module in an ITS is
usually realized by means of a GUI or a natural language interface that allows
the student to communicate with the system. It would be quite intuitive to con-
sider that the 3D graphical model is the communication module of an IVET.
However, there is a fundamental difference among them. In an IVET some of
the learning goals may be directly related to the manipulation and interaction
with the 3D environment, while the communication module of a classical ITS
is just a means, not an end. For instance, a nuclear power plant operator in an
IVET may have to learn that in order to open a valve he has to walk to the
control panel, which is located in the control room, and press a certain button.
Therefore, the ITS needs to have explicit knowledge about the 3D VE, its state,
and the possibilities of interaction within it.

As a first step we decided to modify and extend the ITS architecture by
considering some additional modules. First of all, we split the communication
module into a set of different views for all the students with a particular com-
munication thread for each student, and a centralized communication module to
integrate the different communication threads. Then we added a World Module,
which contains geometrical and semantic information about the 3D graphical
representation of the VE and its inhabitants, as well as information about the
interaction possibilities. The tutoring module is unique to be able to make de-
cisions that affect all the students as well as specific tutoring decisions for a
certain student. The expert module will contain all the necessary data and in-
ference rules to maintain a simulation of the behavior of the system that is
represented through the VE (e.g. the behavior of a nuclear power plant). The
student module, finally, will contain an individual model for each student as well
as a model of the team.

3 An Agent-Based Architecture for IVETs

Taking the extended architecture described in the previous section as a starting
point, the next step was to decide which software agents would be necessary to
transform this component-oriented architecture into an agent-oriented architec-
ture. In an agent-oriented architecture, each agent is capable of performing a
certain set of tasks, and is capable of communicating with other agents to coop-
erate with them in the execution of those tasks. Figure 1 shows how the extended
ITS architecture is transformed, from a modular point of view, into an agent-
based architecture. Our agent-based architecture has five agents corresponding
to the five key modules of the extended ITS architecture: a Communication
Agent, a Student Modeling Agent, a World Agent, an Expert Agent, and a Tu-

Intelligent Virtual Environments for Training: An Agent-Based Approach 85

Fig. 1. Agent-based architecture for IVETs

toring Agent. Each of these principal agents may relate to, communicate with
and delegate some tasks to other subordinate agents, giving rise to multi-level
agent architecture.

The Communication Agent will delegate part of its responsibilities to a set
of Individual Communication Agents dedicated to each student. There is also a
Connection Manager Agent which is responsible for coordinating the connections
of the students to the distributed system.

The Student Modeling Agent is in charge of maintaining a model of each
student, including personal information, their actions in training sessions, and
a model of the students’ knowledge. The model of each student will take the
form of an agent, a Student Agent, which will reflect, as faithfully as possible,
all that is known or inferred about the student. A more detailed description of
the Student Agents will be presented in section 4.

The World Agent is related to the 3D Geometrical Information Agent; the
Objects and Inhabitants Information Agent; the Interaction Agent; and the Path
Planning Agent. The 3D Geometrical Information Agent has geometrical infor-
mation on the objects and the inhabitants of the world. This agent, for instance,
will be able to answer questions about the location of the objects. The Objects
and Inhabitants Information Agent has semantic knowledge about the objects
and the inhabitants of the world. This agent will be able to answer questions
about the utility of the objects or the objects being carried by a student. The

86 A. de Antonio et al.

Interaction Agent has knowledge about the possible actions that the students
can perform in the environment and the effects of these actions. For instance,
it will be able to answer questions like ”What will it happen if I push this but-
ton?”. The Path Planning Agent is capable of finding paths to move along the
environment avoiding collisions with other inhabitants and objects. For the pur-
pose of finding these paths, A* algorithm will be applied to a graph model of
the environment.

The expert agents contains the expert knowledge about the system that is
being simulated, as well as the expert knowledge necessary to solve the prob-
lems posed to the student and to reach the desired goals. Most of the activities
to be executed by the students, in the generic model of an IVET that is be-
ing considered, consist of finding an appropriate sequence of actions, or plan,
to go from an initial state of the simulated system and the environment to a
desired final state. These actions have to be executed by the team of students.
The Expert Agent will delegate to a Simulation Agent, that contains the knowl-
edge about the simulated system, and a Planning Agent, that is able to find the
best sequence of actions to solve different activities. The plan for an activity is
worked out by the Planning Agent with the collaboration of three other agents:
the Path-Planning Agent, the Interaction Agent and the Simulation Agent. The
Path-Planning Agent can determine whether there is a trajectory from a certain
point of the world to another one. The Interaction Agent provides information
about the actions that a student can directly execute in the environment. The
Simulation Agent provides information about some high-level actions that can
be executed over the simulated system (e.g., a nuclear power plant). One of these
high-level actions will typically require the execution of one or more student’ ac-
tions, therefore a hierarchical planning will be performed. In the nuclear power
plant domain, an example of a high-level action may be to raise the reactor’s tem-
perature. This high-level action would be decomposed into two student actions,
go to the control panel and press the button that closes the input water valve.

The Tutoring Agent is responsible for proposing activities to the students,
monitoring their actions in the virtual environment, checking if they are valid
or not with respect to the plan worked out by the Expert Agent, and making
tutoring decisions. The activities that can be proposed by the Tutoring Agent are
dependent on the particular environment that is being simulated in the IVET,
and they can be defined by means of an authoring tool. Some XML files will
define the activities in the IVET, the characters that should take part on them
and the role to be performed by each character. In section 4, a more detailed
description of the Tutoring Agent will be given.

4 Modeling Human Tutors and Students

One of the key assets of ITSs, against other ”non intelligent” computer based
instructional approaches, is their suitability to adapt themselves to any student’s
particular skills, knowledge and personal characteristics. This adaptability can
be only reached through a proper student modeling by every Student Agent.

Intelligent Virtual Environments for Training: An Agent-Based Approach 87

Fig. 2. Architecture for agents with behavior influenced by personality and emotions

Figuring out the student’s abilities and beliefs/knowledge is usually not a triv-
ial issue. To better individualize its training and appropriately understand the
student’s behavior, a representation of some of its personal features (personality
traits, mood, attitudes) should be defined and maintained. With this aim, the
Student Agent has been designed following a three-layered agent architecture
able to manage emotional-driven behaviors (this architecture is described in de-
tail in [6]). All three layers (viz, a reactive layer, a deliberative layer and a social
one, showed interwoven in figure 2), share a common knowledge structure called
personal model, which is part of the agent’s beliefs.

The personal model manages beliefs about Defining Characteristics (DCs)
of the student, all the traits that mark out its general behavior, including its
personality traits and physical characteristics. By inferring an approximate value
for each student DC, the Student Agent will be able to provide the rest of the
IVET agents with better predictions about the student’s behavior. That may be
crucial to adapt the training to the specific student.

In addition, the personal model maintains beliefs about the student’s Transient
States (TSs), characteristics whose values represent the current state of the stu-
dent. The most interesting TSs of the personal model, in order to understand the
student’s behavior, are emotions and physical states. Emotions are of paramount
importance for the Student Agent, because students’ behaviors are rarely only
guided by rational, logical decisions, but also by emotional motivations.

The designed architecture identifies the appropriate influential relationships
among these components of the personal model, along with similar relationships
among them and other agent components, such as attitudes and concerns. That
way, the values of the inferred variable elements (namely, TSs, attitudes and con-

88 A. de Antonio et al.

cerns) will always be coherent with the student’s personality traits and physical
characteristics. All these elements have been modeled using fuzzy logic, in order
to deal with uncertainty. The relationships identified among them have been rep-
resented through special fuzzy rules. The architectural components have been
designed so that every one of them is able to deal with those fuzzy values.

Apart from the personal model, the Student Agent manages all the beliefs
that the system has -or has inferred- about the student. Those beliefs include
the knowledge that the Student Modeling Agent has identified as learnt by the
human student. Moreover, the Student Agent copes with information useful to
reconstruct and analyze the student’s evolution throughout the training process,
information stored into the agent’s past history structure. So, from the data
about the student’s knowledge and its personal model, the Student Agent will
always be able to infer a plausible student behavior for each situation, based
on both logical and emotional reasoning. That is valuable information for some
other agents in the IVET, since it makes possible the adaptation of the training
strategy considering issues such as having an impulsive student, or a clumsy one
handling virtual reality devices, or one in a bad mood. Modeling each specific
student by means of the architecture of figure 2 is only one face of the coin. The
other one is modeling the trainer, i.e. the Tutoring Agent.

The adaptation of the tutoring strategy to every particular student may also
encompass how the virtual tutor will behave: a student may need a tutor with
a particular character (e.g., training children may require a funny, enthusiastic
tutor, while for training nuclear plant operators a more serious one will be more
convenient), or with a specific mood (e.g., if a student does not pay much atten-
tion to the procedure for long, a disgusted tutor may be effective). The reason is
that students, despite having a virtual representation in the IVET, are human,
and humans expect to identify human-like behaviors in the rest of the IVET
characters, including the tutor. Poor or upsetting tutor behaviors will lead to
a lack of believability, possibly reducing the student’s feeling of presence and
therefore the effectiveness of the training. As a consequence, the same architec-
ture for agents with behavior influenced by personality and emotions used in the
Student Agent has also been used for modeling the Tutoring Agent.

5 Walkthrough of the Agent-Based Architecture

In this section, a walkthrough of the behavior of the IVET during a learning ses-
sion will be presented. The activities to be taught must be previously specified
by using an authoring tool, and the IVET must be correctly configured for the
kind of activity at hand. During the training, when an activity is posed to the
student, the agents system, based on the planning capacity of the Expert Agent,
will compute the plan or sequence of actions associated with the activity, given
the initial state and the desired final state of the world. Moreover, during the
planning process, the Path Planning Agent will compute the ideal trajectories
that the students must follow to accomplish the plan. We situate ourselves in
the domain of the dams and reservoirs, and we suppose that the activity to be

Intelligent Virtual Environments for Training: An Agent-Based Approach 89

taught is related to avoiding the destruction of a dam when the amount of stored
water is too high. In order to avoid this catastrophe, an operator must open the
dam to allow a certain amount of water to go out the reservoir. For performing
that action, the operator will have to use a key that will activate the opening
mechanism after introducing a certain code in the control panel of the dam. In
order to learn this activity, the student must perform it in the virtual environ-
ment. Thus, at a certain moment, the student, using proper interaction devices,
tries to carry out the action use the key. When this happens, the Individual
Communication Agent associated with the student informs about this action to
the Central Communication Agent, and eventually the message is delivered to
the Tutoring Agent.

5.1 Action Verification and Execution

Now, the Tutoring Agent needs to find out whether the action can be executed
under the current conditions in the virtual world, that is, if the preconditions of
the action hold. For that, the Tutoring Agent resorts to the Interaction Agent
via the World Agent. The Interaction Agent determines that he needs to check
whether the student (his virtual representation in the virtual world) is carrying
the key, and whether he is close enough to the control panel of the dam to use
the key. In order to check these preconditions, the Interaction Agent will deposit
them in a blackboard, and it will ask the 3D Geometrical Information Agent and
the Objects and Inhabitants Information Agent to check the preconditions that
are related to each one. A blackboard is used so that the Interaction Agent does
not need to know which Agent can check each precondition. In this example, each
precondition corresponds to one and only one of the aforementioned Agents.

If all the preconditions of the action hold, the Interaction Agent must guaran-
tee the execution of the consequences of the action. For that, sometimes it needs
to delegate on other agents, such as the World Agent (in particular, some of its
subordinate agents) and the Simulation Agent, using again a blackboard com-
munication mechanism. One of the consequences, managed by the Interaction
Agent itself, will be launching the 3D animation in the virtual world that rep-
resents the student using the key. The command is sent via the Communication
Agents (for all the students, since all the students should observe the anima-
tion). Another consequence of the use the key action, this time managed by the
Simulation Agent, will be opening the dam, only if the student has introduced
the correct code previously; otherwise, using the key will not have any effect on
the dam. In order to distinguish between these two situations, the Simulation
Agent must know whether the student has introduced the correct code.

5.2 Tutoring Actions

When the Tutoring Agent receives the result of verifying the preconditions of
the action from the Interaction Agent, it asks the Student Agent to register
the action and the result of the verification, and it checks whether the executed
action is valid with respect to the plan associated with the activity. If this action

90 A. de Antonio et al.

is the next correct action according to the plan, the Tutoring Agent asks the
Student Agent to register that the student has carried out the correct action
at this moment. Otherwise, at this point, different tutoring strategies may be
applied. One of them may be to allow the student to go on in spite of having just
executed an incorrect action, whenever the state resulting from the execution
of the action can still be transformed into the desired final state of the activity.
This strategy poses a new problem, since the Tutoring Agent needs to know
whether the desired final state is reachable from the current state of the world.
For the purpose of finding this out, the Planning Agent must be endowed with
the capacity of re-planning. Another more strict tutoring strategy may decide
to explain the student the mistake, and to give the student another opportunity
to accomplish the activity.

5.3 Dealing with Movements

The movements of the student in the virtual world are considered as a spe-
cial kind of action that is managed in a different manner to the one explained
above. As the student moves through the environment, the Central Communica-
tion Agent informs the 3D Geometrical Information Agent of the new student’s
positions. At the same time, the Tutoring Agent asks the 3D Geometrical In-
formation Agent for these positions, in order to compare them with the ideal
trajectory provided by the Path Planning Agent for the current activity, and in
order to inform the Student Agent so that it can store the trajectory followed by
the student during the training session. As a result of the comparison between
the ideal trajectory and the student’s trajectory, the Tutoring Agent computes
a quality measure of the student’s trajectory, and this measure is stored by the
Student Agent.

6 Conclusions and Future Work

An agent-based architecture is proposed in this paper for the design of Intelli-
gent Virtual Environments for Training. The roots of this architecture are in the
generic architecture of an Intelligent Tutoring System, which has been firstly ex-
tended to be applicable to IVETs, and has been then transformed into an agent-
based architecture by the identification of the set of generic agents that would
be necessary to accomplish the tasks of each module. One of the advantages of
the proposed architecture is that it is possible to build a basic infrastructure
of agents that work as a runtime engine. In order to develop a new IVET, the
author’s task will consist of: selecting the desired agents among the available
ones (e.g. selecting the Tutoring Agent that implements the desired tutoring
strategy); configuring the parameters that govern the behavior of those agents
(e.g. the duration of the session, the number of mistakes that will be allowed be-
fore the Tutoring Agent tells the student the correct answer, etc.); providing the
data specific to the new IVET and subject matter (e.g. the geometrical model
of the VE, the curriculum, the actions that are possible in the new VE and their

Intelligent Virtual Environments for Training: An Agent-Based Approach 91

effects on the simulation, etc.); and in the worst case creating new agents and
registering them in the platform. The proposed architecture, and its realization
in a platform of generic and configurable agents, will facilitate the design and
implementation of new IVETs, maximizing the reuse of existing components and
the extensibility of the system to add new functionalities. One of the drawbacks
of the proposed architecture in its current state is that it can only be used with
collective activities where students do not need to perform actions at the same
time, that is, concurrent actions are not permitted. In order to allow this kind of
actions, the architecture must be extended so that it can deal with the planning,
verification and execution of concurrent actions (the verification and the execu-
tion of an action was explained by means of a simple example in section 5). In
this sense, cooperative actions, that is, actions that require the intervention of
more than one student at the same time, will deserve a special treatment. In a
first approach to the problem of planning without concurrent actions, STRIPS
and A* algorithms have been employed. However, currently, we are replacing
STRIPS with a temporal planner able to deal with concurrent actions. Two
temporal planners, SHOP21, a hierarchical task network planner, and LPG2, a
domain-independent planner, are being compared. In addition, in order to allow
for efficient re-planning, the chosen planner will be modified to take advantage
of an already known plan to reach the desired final state in the world.

References

1. Rickel, J., Johnson, W.: Task-Oriented Collaboration with Embodied Agents in
Virtual Worlds. In: Embodied Conversational Agents. Eds. Boston: MIT Press
(2000)

2. Munro, A., Surmon, D., Johnson, M., Pizzini, Q., Walker, J.: An open architec-
ture for simulation-centered tutors. In: Artificial Intelligence in Education. Open
Learning Environments: New Compu-tational Technologies to Support Learning,
Exploration and Collaboration. (Proceedings of AIED99: 9th Con-ference on Arti-
ficial Intelligence in Education), Le Mans, France (1999) 360–67

3. Alpdemir, M., Zobel, R.: A component-based animation framework for devs-based
simulation environments. In: Simulation: Past, Present and Future. 12th European
Simulation Multiconference. (1998)

4. Demyunck, K., Broeckhove, J., Arickx, F.: Real-time visualization of complex sim-
ulations using veplatform software. In: Simulation in Industry’99. 11th European
Simulation Symposium (ESS’99). (1999) 329–33

5. Darken, R., Tonessen, C., Passarella, J.: The bridge between developers and virtual
environments: a robust virtual environment system architecture. In: Proceedings of
the SPIE - The International Society for Optical Engineering. Volume 2409. (1995)
234–40

6. Herrero, P., Imbert, R.: Design of Believable Intelligent Virtual Agents. In: Devel-
oping Future Interactive Systems. Idea Group Publishing (2005) 177–211

1 http://www.cs.umd.edu/projects/shop/
2 http://zeus.ing.unibs.it/lpg/

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 92 – 101, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Patient Driven Mobile Platform to Enhance
Conventional Wheelchair, with Multiagent

System Supervisory Control

A.B. Martínez1, J.Escoda1, T.Benedico1, U.Cortés1, R. Annicchiarico2,
C.Barrué1, and C. Caltagirone2

1 Universitat Politècnica de Catalunya,
C/ Jordi Girona 1-3. 08034 Barcelona, Spain

{antonio.b.martinez, josep.escoda,toni.benedico}@upc.edu
{cbarrue, ia}@lsi.upc.edu

2 IRCCS Fondazione Santa Lucia,
Via Ardeatina 306. 00179 Roma, Italy

{r.annicchiarico, c.caltagiorone}@hsantalucia.it

Abstract. This paper presents a group of intelligent mobile platforms, which
can transport conventional wheelchair over them. Theses platform are
supervisory controlled by a multiagent system, that support senior citizens or
persons with disabilities situated in a given context (such as a Hospital) This
system makes a main contribution enhancing the autonomy and mobility of the
target population in the selected context and also serve as a stimuli in the
rehabilitation phase.

1 Introduction

In this paper, we present an assistive framework for disabled persons who are no
longer able to independently provide to his own self-care, and needs support for a ba-
sic activities of daily living (ADL). The principal aim of this work is the integration
of autonomous agent technology with a robotic platform and sensor technologies to
build specific e-Tools [7].

Automated guided vehicles lately are getting out of the industrial bounds and ex-
panding into other context interacting closer to humans. Some examples are: mail de-
livering in offices [5], guidance in museums [6] or dispensing pills in hospitals. In our
case the robotic platform uses the agent-based services to enhance the autonomy and
mobility of senior citizen or persons with disabilities situated in hospitals.

We present a platform for disabled people in the lowest level of a multi agent sys-
tem structure [7]. The idea of using mobile platform comes from the great number of
conventional wheelchair (CWCH) stock used for many purposes at hospitals, and the
aim of having an AI environment that supports an intelligent wheelchair. So, it makes
sense, that instead of changing the manual driving wheelchair for an automatic one, to
build a platform that can carry the wheelchair as an intermediate approach. In such
situations the patient will drive the platform according to her capabilities. More over a
reduced number of mobile platform will permits sharing it among many patients and
CWCHs and then optimize the resources.

 Patient Driven Mobile Platform to Enhance Conventional Wheelchair 93

A mixed manual/automatic control of the platform acts as stimuli to the patients
that have reduced physical and/or cognitive capabilities. The MAS must then super-
vise and control the platform according to the patient’s profile and manage the whole
set of platforms.

2 Previous Work

Figure 1 shows an inside view of a wheelchair prototype with spherical wheels that
was developed previously [1], [4].

This prototype has been the inspiration for the development of the mobile platform
that will be explained in this communication. The main advantage of using spherical
wheels is the increase of manoeuvrability. Also, it can be noticed that the small radius
of the wheel makes it possible to build a flat platform allowing the idea that CWCH
gets over the platform and can be transported A more detailed explanation about om-
nidirectional wheels can be found in [1].

Fig. 1. Wheelchair with omni-directional wheels that inspires the developing of the platform

2.1 The e-Tools Project

Our target population is characterized by the presence of some degree of functional
disability. The occurrence of one of more different pathologies (e.g., Cerebrovascular,
Parkinson, Alzheimer disease) results in different patterns of physical and/or mental
disability. These features are better defined by so called profiles of disability. Each
patient can be then classified according to a well defined profile characterized by dif-
ferent needs.

That means that mobile platform should be flexible to the needs of different pa-
tients; at the same time, the mobile platform has to be flexible to the needs of the
same patient in different times: patients go a pathway of changing (dys) functionality-
possibly improving - during their illness.

The typical environment considered is a hospital for the neuro-motor rehabilitation,
referring to a real institution represented by IRCCS S. Lucia Foundation, located in
Rome. Rehabilitation hospitals are in some way different from primary care hospitals;
in this case the goal is help the patients to recover enough self-dependency in order to
independently perform - at as a high level as possible - their basic ADL. During their
recovering, patients are trained to make progress in the necessary skills to make their
discharge to home possible.

94 A.B. Martínez et al.

In our approach to the problem the CWCH will be driven by the robotic platform,
supporting the mobility. The platform, supported by the MAS has to show complete
autonomy in tasks such as path planning and location in the environment, and at the
same time pay attention to the user's needs and requests. Although the robotic plat-
form will be functioning in a well-known environment, structural elements like corri-
dors, rooms, or halls may differ. The scenario depicted in this section is based on a
daily problem and applies solutions related to multiagent systems, machine learning
and other AI techniques, affective computing, wireless devices and robotics.

The system will combine the mobile platform hardware with a MAS that controls
the behaviour of the chair, monitors the patient’s status and interacts with him/her
through a flexible interface that provides more or less assistance in navigation, de-
pending on the patient's individual capabilities. Navigation should be autonomously
controlled by the MAS most of the times, to relieve the user from tedious low-level
decision-making tasks. To make this possible, the platform will be wirelessly con-
nected to the environment, where an agent-based coordination layer will provide extra
information to the robotic platform Multi-Agent System. To support the agent-based
coordination layer and to connect it with the robotic platform Multi-Agent System,
active landmarks will be placed. These active landmarks are small wireless machines
installed in some strategic places of an area to transmit local information to the mo-
bile entity. Similar initiatives and ideas can be found in the design of intelligent build-
ings for disabled and elderly people (see for example [8]) and in the last generation of
road traffic support systems. In order to filter all the information received from the
sensors and send only relevant information to a given platform, each room must be
monitored and controlled by a MAS. This agent-based controller can proactively
make decisions about room conditioning, or process sensor signals in order to extract
meaningful information (e.g. to track a given person in the room).

These elements can be structured in the architecture as it was introduced in [7]. It
consists of the following levels:

The lowest level contains all the physical devices that are connected to the envi-
ronment. This level includes the cameras and sensors attached to the walls, patient
monitoring systems, PDA's or other portable devices and intelligent mobile platform.

The second level comprises the hardware controllers that operate the physical de-
vices and send information to the next level. In the case of complex devices such as
mobile platform or cameras, this level should also perform tasks that might need im-
mediate actions to be taken: e.g., in the case of the camera, a behaviour to follow a
person that is being tracked; or in the case of the robotic platform, effective obstacle
detection and avoidance (reactive navigation) to ensure a high user´s safety [9].

The third level is composed of agent-based controllers that receive information
from the hardware controllers and combine it with the knowledge they have about the
state of the system, to infer what information they need to improve their knowledge,
where to obtain it, and how to obtain it. The MAS has been described with more de-
tails in [13]

These MAS can also reason about the relevance of the information they receive,
and distribute it to other agents or controllers that may need it. In order to integrate
the information from the different agents in the environment and to coordinate

 Patient Driven Mobile Platform to Enhance Conventional Wheelchair 95

activities and actors (patients, doctors, caregivers), the total population of agents
composes the agent-based coordination layer (see §4). As part of this coordination,
agents have to reason about the laws, norms and protocols that rule the environment
where they interact [10]. A wireless network provides connections among the previ-
ous layers. Since not only the patient's wheelchairs but also the environment and other
people's portable devices have agent-based controllers connected to the network, in-
teraction and coordination issues should be solved by the software agents.

3 The Mobile Platform

Figure 2 presents an augmented reality view of the platform carrying a CWCH. The
platform design takes into account its dimensions in such a way that CWCH could
surpass the 15mm border to climb onto the platform.

Fig. 2. Mobile platform views (units in mm) with laser positioning system

The platform system architecture is based on a distributed system, where all the
elements are linked through a CAN bus network. At the heart of system there is a con-
trol unit, based on industrial PC that connects itself through a wireless link with the
MAS. The user interface for interacting with the patient can be, for instance, a PDA,
link via USB with industrial PC.

The control unit sends control orders to three power motor control units to move
the platform, following the MAS decisions. The platform has two rechargeable stan-
dard batteries with little dimensions and autonomy in continuous work of 4 – 5h.

For navigation and obstacle avoidance a positioning sensor (camera, laser based
goniometer [2], [3], or range finder [6]) are necessary. Own platform is equipped with
a range finder laser (Leuze Rotoscan RS4) for detection obstacles and a laser-based
goniometer for positioning the platform, non for reactive navigation, see figure 4, but
its planned to replace it for a cheaper one in future versions, e.g. omni-directional
camera. The actual positioning algorithm is explained in [2].

Finally, the platform is equipped with a developed joystick, explained in the next
sections. This is the principal interface with the patients and is easily usable for them.

330

740

220

1200

96 A.B. Martínez et al.

Fig. 3. Platform system architecture

3.1 Kinematics

As we can see in figure 3, the way spherical wheels are mounted allows two kind of
movements: the steering rotation, that transfers movement to the platform, and the
free rotation, perpendicular to the previous one.

Fig. 4. Platform coordinate systems used to obtain wheel velocities

In order to obtain the kinematics equations [1] to control the platform, the free rota-
tion is worthless. We must focus on steering velocity, expressing it in terms of world-
coordinate velocities, as shown in equation (1).

 Patient Driven Mobile Platform to Enhance Conventional Wheelchair 97

3 3 cos sinM L TV R V V Sθ α α ψ= = − + − (1)

Once the equations for each steering velocity are developed, they can be joined in a
common expression, in the form of jacobian matrix as shown in equation (2).

[]
1

2

3

0 1
1

cos sin · ·

cos sin

L L

T T

L V V

S V J V
R

S

θ
θ α α
θ α α ψ ψ

− −
= − ≡

− −
 (2)

3.2 Maneuverability

One of the main benefits of the omnidirectional platform presented in this work is its
maneuverability. We may sum up all its moving capability in three basic maneuvers,
as shown in figure 3. The reason for this is that typical user interfaces are provided
with a joystick to control the wheelchair. However, the kinematics of our platform,
needs three velocity values, longitudinal velocity (LV), translation velocity (TV) and

rotation velocity (ψ). As the standard joystick is capable of commanding only two of

these values, not the three at the same time, we end up clustering maneouvers in three
different basic moves.

Fig. 5. Basic allowable manoeuvres

Figure 5.A shows the typical traveling maneuver, where VT is fixed to 0. The user
takes control over VL andψ . This can easily be done by mapping the y-axis of an

enhanced joystick into VL, and the x-axis intoψ . Sometimes, when lateral path cor-

rection must be done within little space, the maneuver presented in figure 5.B may be
used. In this case, VL is fixed to 0. The enhanced joystick x-axis is mapped into VT,
and the y-axis intoψ . At last, but not least, figure 5.C shows the simple turning-

maneouver, where VL and VT are both 0. This enhanced joystick must somehow allow
the user to choose the rotation direction. This maneuver shows to be very efficient in
small spaces as a bathroom.

98 A.B. Martínez et al.

3.3 Enhanced Joystick

The driving of the platform will be done either by the user, when he has enough cog-
nitive capabilities or by the MAS when it detects deviation from a scheduled pattern,
or the platform is heading towards forbidden areas or risky situations. It is clear that
there is a potential conflict that has to be solved by the MAS in such a way that it pre-
serves patient’s integrity but trying to accomplish her desires and also her ADL in as
much as possible.

Fig. 6. Schematic representation of enhanced joystick operational modes

From the point of view of designing a control interface with a joystick, some basic
guidelines have been presented in the last section. However, several issues need to be
solved yet: how may users select which kind of maneuver they want to perform? How
the turning direction should be specified? Some possible answers are presented in
Figure 5, which shows three possible control interfaces in order of growing complex-
ity that can be implemented depending on the physical and cognitive user profile.

In order to design the control interface, we must take into account the degree of
utilization of the three available maneuvers. In ordinary driving, actions shown in

 Patient Driven Mobile Platform to Enhance Conventional Wheelchair 99

figure 5.A and figure 5.B will be the most used ones. Thus, in order to begin one of
these maneuvers the user only needs to move the joystick out of its center along with
the main direction of the desired maneuver. Once inside the chosen one, the joystick
behaviour is as described above. When finished with the maneuver, user must leave
joystick in the relaxed central position.

The main difficulty in the control interface design is defining the way user may
perform a turning maneuver. This refinement arises in the definition of several user
interfaces that allow the user to choose turning maneuver in three different ways.

In the first one, shown as mode 1 in figure 6, the interface is provided with two but-
tons, each of them representing one rotating direction. As long as the user pushes one
of the buttons, the platform will turn in the corresponding direction.

In mode 2, there is only one button in the interface. It is used by the user to indicate
the willing of performing a turning maneuver. Once pushed and released, the x-axis of
the enhanced joystick is used to indicate direction of turning and magnitude of rota-
tion velocity.

Mode 3 is the most complex one, from the cognitive and physical user require-
ments point of view. The enhanced joystick is also used to enter into turning maneu-
ver. To do this, the joystick is moved out of its center along with a diagonal direction.
Once inside turning maneuver, joystick x-axis is used the same way as in mode 2.

4 Designing the e-Tools Agent Based Coordination Layer

In our plan to deploy e-Tools in a real, complex environment such as the IRCCS
Santa Lucia, the design and implementation of the agents in the agent-based coordi-
nation layer should be made taking into account not only the organizational struc-
tures and internal regulations of the IRCCS itself, but also any external requirement
defined by the context of IRCCS. In order to introduce all these factors in the de-
sign of the multi-agent architecture, we will use the HARMONIA approach, intro-
duced in [10]. The idea is to define the agent-based coordination layer as an elec-
tronic institution, where not only coordination between the patients, the medical
staff and the e-Tools is provided but also safety mechanisms are included to ensure
that the behaviour of the system as a whole and of each individual agent is both le-
gal and acceptable from the institutional perspective.

 Our MAS has the following basic agents. First, we have the Patient Agent (PA),
that could be integrated into the platform or connected to it using a PDA. This agent
should provide all the available and permitted services to the patient and it should
take care of his/hers personal security. Each PA provides a personalized way of
interaction with the patient and therefore patients could use it to ask for help or to
ask the platform to drive her/him to a given place into the permitted space or to ask
the system to show a possible path to the destination. Also, the PA takes under its
responsibility the audit of the patient’s biometric signals and it acts in consequence.

The Caregiver Agents (CA) will be situated in the PCs belonging to the medical
and healthcare personnel as well as in their individual PDA. The CA will be in
charge of managing all the patient’s help request messages and will notify them to
the healthcare staff, so they can be attended properly. Also, it will notify any anom-

100 A.B. Martínez et al.

aly in the patient’s biometric signals and it will generate a request for help,
if needed.

We also consider the necessity of having an agent that undertakes responsibility
for the network of sensors. Its basic target is to distribute the information from all
available sensors to all the agents that maybe interested. The list of actual sensors
for this space include: movement, landmarks, cameras, presence, etc. Finally, we
have a Main Agent (MA) that represents the hospital entity. Among its objectives
are to maintain the monitorisation of all patients, to manage their daily living activi-
ties and to provide them all with the mobility plans that may need to achieve them.

5 Conclusions and Future Work

At this point we can conclude that the goals have been covered, that is to implement
the basis of the multi-agent system that gives support to the e-tools project. Agents
PA, CA and MA have been successfully implemented and tested. Full integration be-
tween the MAS and the physical platform still to be completed and fully tested. In
[13] we presented already some experiments including a group of 13 neurological pa-
tients to show the benefits of the enhanced joystick as control interface.

The tools envisaged here are applicable to support a wide range of disability lev-
els and needs, and can be used by a wide range of users – from elders with moder-
ate physical impairment and mild cognitive limitations to people with severe im-
pairments (cognitive and/or physical) and disabilities, caregivers, etc. These MAS
are devised to support the execution of ADL and of healthcare maintenance tasks –
including standardized behavioural assessments useful in medical monitoring. In
addition, they connect patients to the outside world.

The role of the MAS is to support/act in the following actions: Go to relative a
position and orientation; Go forward while avoiding obstacles; Go down the hall-
way following wall(s); Navigate through a doorway; Navigate avoiding forbidden
and/or dangerous areas and. Make turns while avoiding obstacles.

Agent-based cognitive systems, as e-Tools, will enable aging adults to stay at a
well-know environment, as their home, longer and to take care of themselves.

Our future work is directed in two different directions. First, we aim to fully de-
ploy the system in a real environment as Sta Lucia. Second, we are interested in
pursuing feedback from potential users and working toward the next design of
the platform.

References

1. Agulló Batlle, J. Les rodes omnidireccionals, el darer pas evolutiu de la roda. In Memorias
de la Real Academia de Ciencias y Artes de Barcelona. Vol. LXI, Num. 7 (2004)

2. Agulló Batlle, J., Font, J.M., Escoda, J. : Dynamic positioning of a mobile robot using a
laser-based goniometer. In IEEE IFAC Symposium on Intelligent Autonomous Vehicles.
ISBN: 008 044237 4. Lisboa (2004)

 Patient Driven Mobile Platform to Enhance Conventional Wheelchair 101

3. Alenyà, G., Escoda, J., Martínez, A.B., Torras, C. : Using laser and vision to locate a robot
in an industrial environment: A practical experience. In ICRA05 submitted. Barcelona
(2005)

4. Agulló, Batlle, J., Font, J.M., Escoda, J. : Guiado de un robot móvil con cinemática de tri-
ciclo. In Anales de Ingeniería Mecánica. No. 15, Vol. 4, pp. 2981-2986 ISBN/ISSN: 1698-
5990. Leon (2004)

5. Prassler, E., Stroulia, E., Strobel, M. , Kämpke, T.: Mobile robots in office logistics. In
27th International Symposium on Industrial Robots, 153 – 159. Milan (1996)

6. Fox, D., Burgard, W., Thrun, S. : Markov localization for mobile robots in dynamic envi-
ronments. In Journal of Artificial Intelligence Research, 11: 391-427 (1999)

7. Cortés, U., Annicchiarico, R., Vázquez-Salceda, J., Urdiales, C., Cañamero, L., López, M.,
Sànchez-Marrè, M., Caltagirone, C.: Assistive technologies for the disabled and for the
new generation of senior citizens: the e-Tools architecture. In AI Communications, 16:
193–207 (2003)

8. ARIADNE, Access, Information and Navigation Support in the Labyrinth of Large Build-
ings, http://www.cyber.rdg.ac.uk/DSRG/ariadne/ariadne.htm

9. Urdiales, C., Poncela, A., Annicchiarico, R., Rizzi, F., Sandoval, F., Caltagirone, C.: A
topological map for scheduled navigation in a hospital environment. In e-Health:
Application of Computing Science in Medicine and Health Care, pages 228–243 (2003)

10. Vázquez-Salceda, J. The Role of Norms and Electronic Institutions in Multi-Agent
Systems: The HARMONIA Frameworks. Whitestein Series in Software In Agent
Technologies (2004)

11. Regolamento Organico dell’IRCCS Fondazione Santa Lucia. htttp://www.hsantalucia.it ,
(2004)

12. 12.V. Dignum, J.-J.Ch. Meyer, H. Wiegand, and F. Dignum, F.: An organisational-
oriented model for agent societies. In G. Lindemann, D. Moldt, M. Paolucci, and B. Yu,
editors, Proceedings of the International Workshop on Regulated Agent-Based Social Sys-
tems: Theories and Applications (RASTA ’02), Bologna, volume 318 of Mitteilung, pages
31–50, Hamburg (2002). Fachbereich Informatik, Universität Hamburg.

13. Barrué C.,Cortés U.,Martínez A.B.,Vázquez-Salceda J., Annicchiarico R., Caltagirone C.
An e-institution framework for the deployment of e-Tools to support persons with
disabilities. 3rd Workshop on Agents Applied in Health Care 19th International Joint Con-
ference on Artificial Intelligence – IJCAI 2005 pp1-10

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, pp. 102 – 111, 2005.
© Springer-Verlag Berlin Heidelberg 2005

SECMAP: A Secure Mobile Agent Platform

Suat Ugurlu and Nadia Erdogan

Istanbul Technical University, Computer Engineering Department,
Ayazaga, 34390, Istanbul, Turkey

suat@suatugurlu.com, erdogan@cs.itu.edu.tr

Abstract. This paper describes a mobile agent platform, Secure Mobile Agent
Platform (SECMAP), and its security infrastructure. Unlike other agent
systems, SECMAP proposes a new agent model, the shielded agent model, to
meet security requirements and provides functionalities which ensure the
implementation of the the shielded agent model. It provides secure agent
communication and migration facilities, and maintains security policy
information to examine agent actions and to prevent undesired/unauthorized
activity, while employing cryptographic techniques to meet security constraints.

1 Introduction

A mobile agent is a program that has the autonomy to travel around a network to
accomplish its tasks [1][2]. Mobility involves the movement of executable code and
associated execution state between different hosts on the network. A mobile agent is
executed in an environment called a mobile agent platform which is a distributed
abstraction layer that provides mechanisms for both communication and mobility
support.

Any piece of code which is run on a computer system can potentially threaten the
security, privacy, and integrity of the system and its users [3]. Security issues have
gained new importance with the extensive use of mobile code systems. Any mobile
code platform suffers from four basic categories of potential security threats[4]:

Leakage: unauthorized attempts to obtain information belonging to or intended for
someone else
Tampering: unauthorized changing (including deleting) of information
Resource stealing: unauthorized use of resources (e.g., memory, disk space)
Antagonism: interactions not resulting in a gain for the intruder but annoying for the
attacked party.

Meeting security requirements is fundamental to mobile agent systems and an
inability to provide a feasible agent security model seriously hinders a wider adoption
of mobile code based applications. An acceptible mobile agent based system requires
secure techniques for agent migration and communication, and also mechanisms for
higher level security management and maintenance.

This paper describes a new mobile agent platform, SECMAP, that especially
focuses on security issues present in agent systems. Unlike other agent systems,

 SECMAP: A Secure Mobile Agent Platform 103

SECMAP proposes a new agent model, the shielded agent model, for security
purposes. A shielded agent is a highly encapsulated software component that ensures
complete isolation against unauthorized access of any type. SECMAP provides secure
agent communication and migration facilities, and maintains security policy
information to examine agent actions and to prevent undesired/unauthorized activity.
Additionally, SECMAP continuously monitors and reports on the execution of an
agent from its creation to its completion.

2 Security Model of SECMAP

In a mobile agent system, agents cannot be reliably associated with end users without
taking certain precautions. The approach taken by SECMAP is to treat every agent as
a distinct principal and to provide protection mechanisms that isolate agents.
SECMAP differs from other mobile agents systems in the abstractions it provides to
address issues of agent isolation. SECMAP provides a light-weight implementation of
agents; they are implemented as threads instead of processes. Each agent is an
autonomous object with a unique name.

A Secure Mobile Agent Server (SMAS) resident on each node presents a secure
execution environment on which new agents may be created or to which agents may
be dispatched. SMAS provides functionalities that meet security requirements and
allow the implementation of the shielded agent model. A shielded agent is a highly
encapsulated software component that ensures complete isolation against
unauthorized access of any type. On a request to create a new agent, SMAS
instantiates a private object of its own, an instance of predefined object AgentShield,
and uses it as a wrapper around the newly created agent by declaring the agent to be a
private object of AgentShield object. This type of encapsulation ensures complete
isolation, preventing other agents to access the agent state directly. An agent is only
allowed to communicate with its environment over the SMAS engine through the
methods defined in a predefined interface object, AgentInterface, which is made the
private object of the agent during the creation process. The interface provides limited
yet sufficient functions for the agent to communicate with SMAS. All variables of
agents are declared as private and they have corresponding accessor methods.

SECMAP allows the concurrent execution of several agents on the same host and
each agent runs as a separate thread in the same memory area of the host. In this mode
of operation, the shielded agent model suffices to guarantee inter agent isolation and
protection. Figure 1 depicts the layered structure of a shielded agent. SECMAP
employs cryptographic techniques to meet security constraints. Each SMAS owns a
certificate which is used to identify its identity and to encrypt and decrypt data. A
requests from a SMAS is not processed before the validity of the SMAS identitiy is
verified. A SECMAP agent’s code and state information are kept encrypted during its
life time using Data Encryption Standard (DES) algorithm. They are decrypted only
when the agent is in running state on the host’s memory. Thus, an agent is identified
as a black box on a host, except while in memory. To protect agents during migration
over the network, agent code and state data are encrypted as well while in transfer and
can only be decrypted on the target host after retrieving the appropriate DES key from
the security manager.

104 S. Ugurlu and N. Erdogan

Fig.1. The shielded agent model

SECMAP employs a policy based authorization mechanism to permit or restrict
agents to carry out certain classes of actions. Agent communication, migration, disk
I/O, access to system resources are some of the events that require enforcement of
security policies. SECMAP allows for policies to be dynamically defined and be
enforced by intercepting agent service requests. It monitors, time stamps and logs all
agent activity in a file, in order to be later analyzed to determine the actions an agent
carried out on the host. In case an unexpected result is recognized, the route of the
agent can be traced and how the agent was executed on each host can be found. In
addition, in case of a threat, SMAS has the privilege hinder the activites of an agent.
This is accomplished by purging all agent-related variables known to the SMAS such
as Agent policy, Agent Identity, Agent message queues, etc. Under this condition, the
agent can no longer be effective as any attempt to communicate or to carry out actions
monitored by the security manager will lead to exceptions. However, if the agent
includes a piece of code such as “while (true) { }", it will continue its execution and
consume CPU time. SECMAP can not prevent this kind of an attack.

3 SECMAP Architecture

Figure 2 shows the SECMAP architecture. The main component of the architecture is
a Secure Mobile Agent Server (SMAS) which provides a platform in which agents
exist and interact with other agents. In order to execute agents, each computer node
must host a SMAS. SMAS is responsible of agent management tasks such as creation
or activation, agent communication, agent migration, and policy management, each
contributing to the implementation of the shielded agent model. Furthermore, having
full control over agent activities, SMAS can identify what an agent attempts to do and
if it has the rights. A second component of the architecture is an API which works as
the interface between an agent and its SMAS platform. An agent can request
communication or migration via this interface. The interface has limited functions and
is the only way for the agent to interact with its environment.

 SECMAP: A Secure Mobile Agent Platform 105

Fig. 2. SECMAP Architecture

3.1 SMAS Modes of Operation

A SMAS may operate in three modes according to the functionality it exhibits. It can
be configured to execute in any of the three modes on a host through a user interface.

Standard Mode (S-SMAS): S-SMAS provides standard agent services such as agent
creation, activation, inactivation, removal, communication, and migration. It also
includes a policy engine that checks agent activity and resource utilization according
to the rules that are present in a policy file, which has been received from a Security
Manager SMAS. In addition, S-SMAS maintains a list of all active agents resident on
the host and notifies the Master Browser SMAS anytime an agent changes state.
Keeping logs of all agent activities is another important task S-SMAS carries out. Log
content may be useful in the detection of attacks which are difficult to catch instantly.

Master Browser Mode (MB-SMAS): When agents are mobile, location mappings
change over time, therefore agent communication first requires a reference to the
recipient agent to be obtained. In addition to supporting all functionalities of S-
SMAS, MB-SMAS also maintains a name-location directory of all currently active
agents in the system. This list consists of information that identifes the host where an
agent runs and is kept up to date as information on the identities and status
(active/inactive) of agents from other SMAS is received.

Security Manager Mode (SM-SMAS): In addition to supporting all functionalities
of S-SMAS, SM-SMAS performs authentication of all SMAS engines, handles policy
management, and maintains security information such as DES keys and certificates.

Every SMAS engine has a module to create its self signed certificate. The private
key that the SMAS has created for itself is kept in its secure place and the public key
is sent to the SM-SMAS. The programmer managing the SM-SMAS can import this
public key into the key store of SM-SMAS so that SM-SMAS can trust the SMAS
engine. SMAS also should import the SM-SMAS public key into its key store as well
to recognize the SM-SMAS as a trusted communication party. No SMAS engine
whose public key is not imported into the SM-SMAS key store can communicate with

106 S. Ugurlu and N. Erdogan

the SM-SMAS since this is also the requirement of SSL which is used as the
communication protocol under RMI in SECMAP. Since agents of different SMAS
will need to communicate with each other, a SMAS engine can request the certificates
of all other SMAS engines from the SM-SMAS and import them into its key store in
order to be able to recognize them as trusted parties. Up to this point, all requirements
for encrypted communication are provided but still there is a strong need to
distinguish who is who. SM-SMAS also creates authentication keys for each of
SMAS in the system. After establishing a SSL session, any SMAS should be
authenticated by the SM-SMAS before it can start up as a trusted server. SM-SMAS
holds an IP address and key pair for each of SMAS engine that wants to be
authenticated. If the supplied key and the IP address of the requesting SMAS engine
are correct then it is authenticated. Once authenticated, SM-SMAS recognizes the
SMAS. Every authenticated SMAS engine gets a ticket with a specified life time from
the SM-SMAS, and uses this ticket whenever it attempts to start communication with
other SMAS engines. The target SMAS engine first refers to SM-SMAS to verify the
validity of the ticket before proceeding with the necessary actions to fulfill the
communication request. This mode of operation prevents any untrusted entity in the
network to masquerade as a valid SMAS.

The system is managed with a decentralized control; several MB-SMAS and SM-
SMAS may be active and cooperate for a smooth execution. They share their data and
keep it coherent. When initializing a S-SMAS on a node, the programmer specifies
the addresses of the MB-SMAS and the SM-SMAS it should register to. S-SMAS
sends its agent list to MB-SMAS and, in return, receives the identities of all other
agents active on the system. We call those S-SMAS that a MB-SMAS or a SM-SMAS
cooperates with as its partners. When a MB-SMAS gets a request to return an agent
identity, it cooperates with its partners to obtain the current agent identities. A similar
mode of processing is true for SM-SMAS. If a SM-SMAS can not authenticate the
request, directs it to its partners for possible authentication. Additionally, when a S-
SMAS communicates its MB and SM-SMAS, it obtains the addresses of their partners
and saves them, in order to use as a contact address in case its communication to its
MB-SMAS or SM-SMAS fails. This approach adds robustness against network or
node failures.

An important component of SM-SMAS is the policy creator. Policy creator can
create different sets of policies and install them on different SMAS engines.

Agent activities related to resource usage such as disk I/O or creation of network
connections directly by using socket objects are first checked by the SMAS engine
and blocked if not coherent with its security policy. SMAS engine achieves this by
creating a custom java security manager monitoring all resource accesses. SMAS also
enforces security policies to permit or restrict other agent activities such as messaging
and migration.

3.2 Security Policies

SECMAP guarantees that an agent performs only the activities that it is permitted by
verifying each action request by the agent against a set of policy rules. Security
policies are created by SM-SMAS and sent to other SMAS. Policy rules can be
defined for the following purposes:

 SECMAP: A Secure Mobile Agent Platform 107

− An agent can be restricted to communicate with only certain agents, with only
agents on a certain SMAS or can be totally restricted to send and receive
messages. Restrictions can be applied to sending or receiving separately.

− An agent may be restricted to migrate to only certain hosts or a host may be
restricted to not accepting any agent from certain other hosts.

− An agent may be restricted to not performing disk I/O on the host it is running on
or only specific agents may be allowed to carry out specific disk operations.

− An agent can be restricted to not creating or accepting socket based connections to
other applications on the network. A host’s socket factory may be totally
prohibited to be used by any agent.

− An agent’s access to system variables of the host may be restricted .

Imposing time-based restrictions for all types of rules is also possible.
Furthermore, there are other security settings that are configured on SM-SMAS,
however not in the form of a security policy. For example, an agent’s size can be
restricted to an upper limit in order to prevent an agent to use a host’s memory and
cause a memory leak.

The use of policies results in a more dynamic execution environment. Restrictions
on agent activities may be altered at any point in time during execution with an
appropriate modification of the agent policy, requiring no change in the agent code.
With this approach, a higher level of security and also of flexibility is attained.

4 SECMAP Agents

SECMAP requires agents to conform to a software architectural style, which is
identified by a basic agent template shown in Figure. 3. The agent programmer is
provided a flexible development environment with an interface for writing mobile
agent applications. He determines agent behavior according to the agent template
given and is expected to write code that reflects the agent’s behavior for each of the
public methods. For example, code for the OnCreate() method should specify initial
actions to be carried out, or code for the OnMessageArrive() method should define
agent reaction to message arrival. In accordance with this style, an agent may be in
one of different states throughout its existence and exhibits the following behavior:

public class Main extends Agent{
public void OnMessageArrive(){... }
public void OnCreate(){ ... }
public void OnActivate(){... }
public void OnInactivate(){... }
public void OnTransfer(){... }
public void OnEnd(){... }}

Fig. 3. Agent Template

State on_create: On an initial creation, a unique identity, an instance of class
AgentIdentity is defined for the agent. An agent is referenced through its identity,
which consists of three parts. The first part, a random string of 128 bytes length, is

108 S. Ugurlu and N. Erdogan

unique identification number and, once assigned, never changes throughout the life
time of the agent. The second part is the name which the agent has announced and
wishes to be recognized with. While the first two parts are static, the third part of the
identity has a dynamic nature: it carries location information, that is, the address of
the SMAS on which the agent is currently resident, and varies as the agent moves
among different nodes. This approach facilitates efficient message passing.

State on_activate: An agent becomes active and starts executing while in this state.
An agent should be active in order to be able to communicate with other agents. A
programmer may prefer not to specify any code for this state, if just activating the
agent meets his goals. He can then program the OnMessageArrive method of the
agent to send and receive messages.

State on_inactivate: When an agent enters this state, its execution is stopped and its
context (data, variables and code) is saved in the SMAS agent directory. The agent
can not send or receive messages while in this state.

State on_transfer: An agent may request to migrate to another host anytime while it is
active. SMAS inactivates the agent before the transfer begins, interacts with the
remote SMAS to transfer its code and state data, and if the transfer operation
completes successfully, deletes the agent from the local SMAS agent directory.
Meanwhile, the remote SMAS re-creates the agent in its last state and activates it so
that it starts execution.

State on_end: The agent is removed from the local SMAS on successful migration.
The agent template prevents agents from sharing information through static variables,
consequently eliminating the possibility of backdoor communication.

4.1 Agent Communication

SECMAP agents communicate via messages. SMAS supports asynchronous message
exchange primitives through methods of AgentInterface. Agent communication is
secured by transferring encrypted message content through SSL. Agents are provided
with a flexible communication environment where they can question the results of
message send requests, wait for responses for a specified period of time, and receive
messages or replies when it is convenient for them. Figure 4 shows the
communication framework and how a request to send a message proceeds. During
agent creation, SMAS, while instantiating a shield object for the agent, also creates
three queues: one for outgoing messages, one for incoming messages and one for
reply messages. The input and output queues are monitored by two threads which are
spawned on agent activation. The thread monitoring the input queue alerts the agent if
a message arrives, while the thread monitoring the output queue alerts the SMAS
engine to route messages to their destination.

Communication is asynchronous. When an agent issues a send message call
through the AgentInterface, the message is placed into the output queue by the agent
shield and the call returns. From then on, the agent may continue with its operations.
It may question the result of the send request, or, if it expects a response, it may
retrieve the reply message at any point suitable in its execution path. The thread
monitoring the output queue alerts the SMAS engine to route the message. After
the SMAS on the recipient host places the message into the input queue of the target

 SECMAP: A Secure Mobile Agent Platform 109

Fig. 4. Agent Communication Framework

agent, the input queue thread alerts the agent of the arrival of a new message.
Subsequent to being alerted, the agent can issue a call to receive the message at any
time. Reply messages are also routed as regular messages are. The only difference is
that the SMAS engine sending the reply sets the acknowledgement field at the end of
the message packet object so that the message can be placed in the reply queue of the
agent to which the call returns a result. The reply can be retrieved at any time.

Before an agent can send a message to another agent, it needs to learn the name of
the receiver agent. An agent learns the identity of the target agent via a call to the
SMAS, which cooperates with MB-SMAS to return the required information, an
object of type is AgentIdentity. Messages are created as instances of the Message
class and consist of two parts. The first part is the name of the message, while the
second consists of a parameters. Parameters can be of any type that can be serialized.

4.2 Agent Migration

SECMAP supports weak migration of agents between remote hosts on a call to the
Move method of AgentInterface. The agent issues a Move(address) call to migrate to
another host. The call returns a result object through which the agent can question the
result of the transfer request. The address field of the call specifies the remote SMAS,
IP address of the host remote SMAS is running on and the name of the remote SMAS
The SMAS engines involved in the migration process carry out the following steps:

− The agent is inactivated on local SMAS and an inactivation information message
is sent to MB-SMAS.
− Agent code and state information are saved in the local SMAS agent directory.
All class files belonging to the agent are zipped into a single file in order to reduce
agent transfer time. Agent state is written into another file. Once agent code and state
is written into the disk, they are encrypted and no one can decrypt them since only
SM-SMAS has the correct key. Local SMAS gets the key from the SM-SMAS.
− The agent code and state are transferred to the remote SMAS. The remote SMAS
re-creates the agent, loads its code, state and identity from the transferred files after
decrypting them and activates the agent. As agent code and state are held in an
encrypted and zipped file, a customized class loader rather than the system class

110 S. Ugurlu and N. Erdogan

loader is used. The loadClass() method of the newly developed AgentClassLoader
has been enhanced with new capabilities in order to complete this phase of migration.
Once the agent is activated, an acknowledgement message of activation information is
sent to MB-SMAS so that it can update the agent’s location information in order to be
able to redirect any new message destined to this agent to the correct SMAS.
− The agent is deleted from the source SMAS if the transfer is successful. If any of
the steps described above fails, SMAS cancels the transfer.

5 Related Work

Developers and researchers have taken a variety of approaches to security of mobile
agent environments. Hohl [5] proposes what he refers to as Blackbox security to
scramble an agent's code in such a way that no one is able to gain a complete
understanding of its function. Proof carrying code [6] requires the author of an agent
to formally prove that the agent conforms to a certain security policy. By digitally
signing an agent, its authenticity, origin, and integrity can be verified by the recipient.
The idea behind path histories [7] is to let a host know where a mobile agent has been
executed previously. State appraisal [8] attempts to ensure that an agent's state has not
been tampered with through a state appraisal function which becomes part of the
agent code. In general, there does not seem to be a single solution to the security
problems introduced and most of the solutions are inadequate in protecting agent and
host data, while others that provide adequate protection cause an unacceptable
overhead to the programmer. However, work is still going on, and new system are
being developed [9] [10].

6 Conclusions and Future Work

This paper describes a mobile agent platform, SECMAP, and its security
infrastructure. The system has been especially developed against security threats that
both agents and hosts may be exposed to. Security features are inserted into the
system core at design time. The system has an open and flexible architecture that can
further be enhanced in the future to meet additional requirements.

SECMAP allows for completely isolated lightweight agents through a new
shielded agent model which protects the agent from its environment, while, at the
same time, providing secure, flexible and efficient communication facilities.
SECMAP introduces trusted nodes into the infrastructure, to which mobile agents can
migrate when required, so that sensitive information can be prevented from being sent
to untrusted hosts. Sources of requests are authenticated before they are processed to
verify that they really come from their stated, trusted sources. This approach does not
appear to be fully explored elsewhere. The built in support to secure agent
communication and migration relieves the programmer of extra coding, providing a
transparent execution environment. SECMAP employs cryptographic techniques to
meet security constraints. An agent’s code and state information are kept encrypted
during its life time, being decrypted only when the agent is in running state on the
host memory. Thus, an agent is identified as a black box on a host, except while in

 SECMAP: A Secure Mobile Agent Platform 111

memory. Unlike several agent systems, SECMAP employs policy rules to protect not
only hosts but also agents. An agent’s capabilities such as, communication, migration,
I/O, socket communication can be totally or partially restricted. Policies can be
changed after agent deployment as well. SECMAP monitors and records all agent
activities. These traces can be used not only for debugging purposes but also for
security purposes. An intelligent analysis of these records may provide additional
security benefits and can help to detect certain kinds of attacks which are normally
very difficult to detect.

Currently, work is in progress on detection and resolution of policy conflicts and
enforcement of security policies. Our future work also includes the addition of
dynamic policy creation capability to the architecture with the help of log analysis.

References

1. S. Franklin and A. Graesser "Is it an Agent, or just a program? A taxonomy for Autonous
Agents" Proc. Third International Workshop on Agent Theories, Architecures,and
Languages, Springer -Verlag,1996.

2. Karnik, N.M., Tripathi, A.R., 1998. Design issues in mobile-agent programming systems.
IEEE Concurrency 6 (3), 52–61.

3. M. Hauswirth, C. Kerer, and R. Kurmanowytsch, “A flexible and extensible security
framework for Java code”, Technical Report TUV-1841-99-14, Technical Univ. of Vienna.

4. G. Coulouris, J. Dollimore, and T. Kindberg. Security. In Distributed systems - concepts
and design, International Computer Science Series, pages 477-516, 2nd edition. Addison-
Wesley, Reading, Mass. and London, 1994.

5. F. Hohl. “Protecting mobile agents with blackbox security” Proc. 1997 Wksp. Mobile
Agents and Security , Univ. of Maryland , Oct 1997

6. G. C. Necula and P. Lee. “Safe, untrusted agents using proofcarrying Code” In Giovanni
Vigna, editor, Mobile Agents and Security, Number 1419 in LNCS, pages 61-91. Springer-
Verlag, Berlin, 1998.

7. D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik, “Itinerant agents for
mobile computing”, In M. N. Huhns and M. P. Singh, editors, Readings in Agents, pages
267-282. Morgan Kaufmann, San Francisco, CA, 1997.

8. W. Farmer, J. Guttmann, and V. Swarup, “Security for mobile agents: Authentication and
state appraisal”, In E. Bertino, H. Kurth, G. Martella, and E. Montolivo, editors, Proc. of
ESORICS 96, Number 1146 in LNCS, pages 118-130. Springer-Verlag, Berlin, 1996

9. C. Bryce, J.Vitek, “The JavaSeal Mobile Agent Kernel”, Autonomous Agents and Multi-
Agent Systems, 4, 359-384,2001

10. V.Varadharan and D.Foster, ”A Security Architecture for Mobile Agent Based
Applications” World Wide Web:Internet and Web Information System, 6,93-122, 2003

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, pp. 112 – 121, 2005.
© Springer-Verlag Berlin Heidelberg 2005

What Is Context and How Can an Agent Learn to Find
and Use it When Making Decisions?

Oana Bucur, Philippe Beaune, and Olivier Boissier

Centre G2I/SMA, ENS des Mines de Saint-Etienne,
158 Cours Fauriel, Saint-Etienne Cedex 2, F-42023, France

{bucur, beaune, boissier}@emse.fr

Abstract. Developing context-aware applications needs facilities for
recognizing context, reasoning on it and adapting accordingly. In this paper, we
propose a context-based multi-agent architecture consisting of context aware
agents able to learn how to distinguish relevant from non relevant context and
to make appropriate decisions based on it. This multi-agent system interacts
with a context manager layer, based on an ontological representation of context,
which is able to answer context-related queries. The use of this architecture is
illustrated on a test MAS for agenda management, using the JADE-LEAP
platform on PCs and PDAs.

1 Introduction

The rise of pervasive computing has stressed the importance of context. As defined in
[5], this concept consists in “any information that can be used to characterize the
situation of an entity”. This definition does not indicate how to choose among all the
available context information the one that is relevant or how to deal with it to make
contextualized decisions. Existing works handle this problem in an explicit or implicit
manner. In this paper, our goal is to draw a common base for context-aware
reasoning. We propose a layered architecture made of a Context Manager (CM) layer,
on which a context-based multi-agent layer is defined. Since pervasive applications
are inherently open, they may be contain several “societies” of heterogeneous and
situated agents. Thus, agents must be able to sense and manage context but also to
communicate it. We propose an ontology-based representation for contextual
information. The defined agents can learn how to discern relevant from non-relevant
context and how to make appropriate decisions based on it.

In this paper, we demonstrate our proposal with a case study of an open and
interoperable context-aware agenda management, implemented using Multi-Agent
System (MAS). Our MAS is made of several meeting scheduler agents called
mySAM (my Smart Agenda Manager). A mySAM agent assists its user in fixing
meetings by negotiating them with other mySAM agents and by using context
knowledge to decide to accept or reject a meeting proposal made by another agent.
Knowledge about how to seslect relevant context and how to use it to deal with a
meeting proposal is acquired through individual and multi-agent learning (knowledge
sharing).

 What Is Context and How Can an Agent Learn to Find and Use it 113

Before describing the proposed architecture and the way agents are able to learn
context for decision-making (section 3), we will present the ontology-based context
representation (section 2). We then exemplify our work in the agenda management
application (section 4). Before concluding, we will situate our approach in related
work.

2 “Context” in MAS

In this section, we define “context” and describe how we represent it to design and
implement our context-based MAS.

2.1 What Is “Context” - Definition and Classification

From Dey’s definition, context may be further described as a set of attributes and a
finality. The finality, f, is the goal for which the context is used at a given moment
(e.g. to decide whether a proposal for an appointment should be accepted or not, to
see whether the current situation is similar to another one or not, to understand a
conversation, etc.). Let’s note F the set of finalities.

A context attribute (a) designates the information defining context, e.g.
“ActivityLocation”, “NamePerson”, “ActivityDuration”. We consider a context
attribute as a function, with one or more parameters, returning a value. For instance,
context attribute “NamePerson” is a function defined on the set of Persons, returning
a String value corresponding to the name of a person. We name Va the definition
domain of a, the set of possible values that a may take (example: Vtime =[0,24[). We
define valueOf as an application from A x Pa to P(Va), where A is the set of all
attributes, P(Va) is the power set of Va, and Pa is the set of parameters needed to
compute the value of a. Not all attributes are relevant for a finality. We define
isRelevant(a,f), a predicate stating that attribute a is relevant for the finality f. Let’s
call RAS(f) the Relevant Attribute Set for the finality f: RAS(f) = { a∈A |
isRelevant(a,f)=true }.

We call an instantiation of context attribute a∈A as a pair (a,v) where v is the set
of values v∈P(Va) of a at a given moment. For instance, (Day, {14}),
(roleOfPersonInGroup, {Team Manager}), (PersonIsMemberOf, {MAS Group,
Center_X, University_Y}) are instantiation of respective context attributes Day,
roleOfPersonInGroup, PersonIsMemberOf. Let’s note I the set of instantiated context
attributes as I = {(a,v) | a∈A ∧ valueOf(a)=v}. We call Instantiated Relevant
Attribute Set of a finality f - IRAS(f), the set of instantiated context attributes relevant
for a finality f: IRAS(f) = {(a,v) | a∈RAS(f) ∧ (a,v) ∈ I}.

Let’s notice that in related work ([13], [18], [19]), the notion of “context” is often
understood as being what we defined as the IRAS. To explain the difference between
RAS and IRAS let’s consider the following example. Given finality f = ”deciding
whether to accept or not a meeting”, RAS(f)={“RoleOfPersonInGroup”,
“ActivityScheduledInSlot”} is considered, i.e. role played by the person who made
the proposal and if the receiver has something already planned for the proposed time
slot. The resulting IRAS for a student may be IRASstudent(f)={(RoleOfPersonInGroup,
{teacher}), (ActivityScheduledInSlot, {Activity001})} and for a teacher

114 O. Bucur, P. Beaune, and O. Boissier

IRASteacher(f) = { (RoleOfPersonInGroup, {student}), (ActivityScheduledInSlot,
{Activity255)}. As we can see, the difference between IRAS of student and teacher
may lead to different rational decisions. Usually RAS used is almost the same for
different users when needed to make decisions for the same finality, but the decision
itself is IRAS-dependent. Taking into account the definitions that we proposed so far
we now describe the representation that we defined.

2.2 Representing Context Attributes

Our aim is to represent context in a general and suitable manner for all applications
that need to represent and reason about it. Several representations of context exist:
contextual graphs ([1]), XML (used to define ConteXtML [17]), or object oriented
models ([7]). All these representations have strengths and weaknesses. As stated in
[8], lack of generality is the most frequent weakness: usually, each representation is
suited for a specific type of application and expresses a particular vision on context.
There is also a lack of formal bases necessary to capture context in a consistent
manner and to support reasoning on its different properties. A tentative answer in [8]
was the entity-association-attribute model, is an extension of the “attribute-value”
representation, contextual information being structured around an entity. An entity
represents a physical or conceptual object. We based our proposal on this idea.

To take into account the need for generality, and also considering the fact that we
aim at having several MAS, each dealing with different contexts (that we will need to
correlate in some way), an ontology-based representation seems reasonable. This is
not a novel idea, Chen et al. ([3]) defined context ontologies using OWL. In their
model, each context attribute is represented as an OWL property (DataTypeProperty
or ObjectProperty, depending on the range of values). We extended this
representation due to the limitations it imposes when we need to represent more
complex context attributes (like role, activities already planned, etc.).

Table 1. The description of the class #ContextAttribute

Property Name Property Type Domain Range Multiple values

name Datatype #ContextAttribute String No
noEntities Datatype #ContextAttribute Integer No
entitiesList Object #ContextAttribute #Entity Yes
valueType Object #ContextAttribute #Entity No
multipleValue DataType #ContextAttribute Boolean No

What we did was to add to the ontology the class “#ContextAttribute” (see table 1.)
corresponding to our definition of a context attribute as defined in section 2.1. This
class is composed of the following properties: name, number and list of entities
(parameters) it connects to, type of its value. Instances of that class will be the context
attributes that are known and used in that system by the CM . In our domain ontology,
the class “#Entity” is the super class of all concepts, e.g. in MySAM, #Person,
#Group, #Room, #Activity, etc. are subclasses of #Entity. In Table 2. we give some
examples of context attributes that we defined for the MySAM application. For

 What Is Context and How Can an Agent Learn to Find and Use it 115

instance, the context attribute RoleOfPersonInGroup is described with the
following instance of class #ContextAttribute:

- Name = roleOfPersonInGroup
- NoEntities = 2 (we need to connect this attribute to a person and a group)
- valueType = #Role (value for this attribute is an instance of the class #Role)
- multipleValues = “false” (a person can only play one role in a group)
- entitiesList = { #Person; #Group} (connected entities are instances of class

#Person and of class #Group)

Table 2. Some examples of context attributes defined in MySAM ontology

Person – related
InterestsPerson :(Person)-> String
StatusPerson :(Person) -> String
Supervises : (Person) -> Person*
RoleOfPersonInGroup :(Person,Group)-> Role

Time-related
TimeZone : (Time) -> Integer
DayOfWeek : (Date) -> String
TimeOfDay : (Time) -> String

Location - related
PersonIsInRoom : (Person, Room) -> Boolean
PersonIsAtFloor : (Person, Floor) -> Boolean
PersonIsInBuilding:(Person,Building)->
Boolean

Activity – related
ActivityStartsAt:(Activity)->Time
ActivityEndsAt :(Activity)-> Time
AcivityGoal : (Activity) ->String
ActivityParticipants: (Activity) -> Person*

Agenda - related
BusyMorning : (Agenda) -> Boolean
BusyAfternoon : (Agenda) -> Boolean
BusyEvening : (Agenda) -> Boolean

Environment – related
DevicesAvailableInBuilding : (Building) ->
Device*
DevicesAvailableInRoom:(Room)->Device*
DevicesAvailableAtFloor : (Floor) -> Device*

3 Architecture for a Context-Based Learning MAS

The proposed layered architecture is composed of mySAM agents (Fig. 2), that assist
a user. Agents interact with each other and with a context management layer
composed of context managers (CM – Fig. 1). Being connected to the current state of
the environment, a CM provides agents with context. The CM and not the agents have
the responsibility to compute the values of context attributes in the environment.
Agents learn how to recognize relevant context and how to act accordingly. We start
by describing the CM and continue by the details of the dedicated learning part of the
agent’s architecture.

3.1 Context Manager (CM)

The main functionalities of CM are to let the agents know which is the context
attributes set (defined in the ontology) that it manages and to compute IRAS
corresponding to RAS given by the agents at some point of processing. When
entering a society, an agent asks the corresponding CM to provide it with the context
attributes that it manages. Acting as intermediary between agents and the
environment, CM is able to answer requests regarding its managed context attributes.
This way, if, for instance, CM answers “Date” and “ActivityLocation” to an agent
querying it about context attributes for managing rendez vous, even if the agent

116 O. Bucur, P. Beaune, and O. Boissier

knows that other context attributes exist – e.g., “roleOfPersonInGroup”– it knows that
it cannot ask CM for the value of this attribute since this latter is not able to
compute it.

Fig. 1. Context manager architecture

The Context Knowledge Base contains the ontology of the domain, defined as a
hierarchy with #Entity as root, and all instances of class #ContextAttribute that will
be managed by the CM. The instantiation module computes the IRAS(f) for a given
RAS(f). The dependencies module computes the values for derived attributes by
considering possible relations between context attributes concerning their relevance:
if one attribute is relevant for a situation and it has a certain value, then another
attribute could also be relevant for that situation.

3.2 Context-Based Learning Agent

Although a mySAM agent has some negotiation modules (in order to establish
meetings), we focus here on its management and reasoning on context modules. The
context-based agent architecture that is the core of a MySAM agent is general and it is
not restrained to the kind of application considered to illustrate our approach. It has
two main modules (see Fig. 2): selection of relevant attributes for a certain finality f
(RAS(f)) and decision based on instantiated attributes (IRAS(f)) provided by CM.

For example, for a finality relative to deciding whether accepting or not a “2
participants” meeting, the RAS built by the selection module could be
{“ActivityScheduledInSlot”, “roleOfPersonInGroup”}; or, for a finality relative to a
“several participants” type of meeting, the RAS could be {“ActivityParticipants”,
“ActivityDescription”, “PersonInterests”, etc}. The decision module knows how to
accept a meeting if we have nothing planned for that period of time and if the person
that demands this meeting is our chief, for instance.

Several approaches have been proposed [20], [26] recently concerning multi-agent
learning. Since the specific mono-agent learning method that is used for learning
modules attached to the decision-making based on IRAS is application dependent, we
will not detail it here. We just highlight the necessity to add a multi-agent learning
perspective and to point out what are the consequences.

 What Is Context and How Can an Agent Learn to Find and Use it 117

Fig. 2. Context-based agent architecture

Learning how to select RAS(f). Learning how to choose the relevant context
attributes is important in our targeted applications since the amount of available
context information is too large and the effort needed to compute the values for all
those attributes rise efficiency problems. From an individual learning perspective,
agents use the user’s feedback to learn how to choose among context attributes those
that are relevant for a given situation. In our application, mySAM memorizes the
attributes chosen by the user as being relevant for that situation before making a
decision. Next time the agent will have to deal with the same type of situation, it will
be able to propose to the user all known relevant attributes, so that the user adds or
deletes attributes or uses them such as they are.

Using the context ontology defined in section 2.2, agents are able to share a
common understanding of the manner of using context attributes and knowledge. To
improve the method used in individual learning of how to choose relevant context
attributes, we made agents able to share knowledge, focusing on attributes that other
agents in the system have already learnt as relevant in that situation. When an agent
does not know which attributes are relevant for the considered situation f, it can ask
other agents what are the attributes which they already know as being relevant in that
situation (their RAS(f)). In the same way, if an agent needs more feedback on
attributes in a specific situation, it can again try to improve its set of relevant
attributes, by asking for others’ opinion. The resulting RAS(f) is the union of the
ancient RAS with the new relevant attributes proposed by other agents. Next time the
agent will be in the situation f, it will propose the new obtained RAS to the user, so he
can choose to keep the new attributes, to add some more or to delete some of them
that seem not relevant for him. For example, when deciding about a meeting with a
friend, the agent’s RAS is {ActivityStartsAt, ActivityDuration}. The agent asks others
what their RAS is and, at the end of the sharing session, its RAS will become
{ActivityStartsAt, ActivityDuration, dayOfWeek, BusyEvening}. The user can then
choose to keep the attribute “dayOfWeek” as relevant and to remove “BusyEvening”
from the list of relevant attributes for this finality.

118 O. Bucur, P. Beaune, and O. Boissier

Learning how to make decisions based on IRAS. Learning how to use relevant
context may be realized by any machine learning method developed in AI, suited to
the type of application that we develop. In our case, a mySAM agent uses a
classification based on association (CBA) tool developed at School of Computing,
University of Singapore, in the Data Mining II suite ([4]). We will show in the
following section some results we obtained using this approach.

For multi-agent learning on how to use context knowledge, we modified the
knowledge sharing method so that the agents can choose between (i) sharing only the
solution to the problem, keeping for themselves the knowledge used to find that
solution, or (ii) sharing the problem-solving method itself, so that others can use it for
themselves. The choice depends on the application and more particularly on privacy
matters. The second solution is more efficient in that it gives an agent the method to
solve the problem, not just the answer to its problem. This way, next time the agent
needs to solve the same type of situation, it will directly apply the method, without
asking again for help from other agents. But if, as considered in mySAM, the agents
should not share all their criteria for accepting or rejecting a meeting, then sharing just
the solution (an “accept/reject” decision) should be preferable. We implemented the
latter solution in our agenda management case study. For more details on learning
methods, see [2].

4 Implementation and Results

In order to validate our proposal, we developed the system proposed as a case study in
section 1, a multi-agent system containing several mySAM agents and one CM .
Agents were deployed with the JADE/LEAP platform ([9]) to run on handheld
devices. Each mySAM agent is a JADE agent with a graphical interface that allows a
user to manage her agenda. This graphical interface has been simplified to deploy
mySAM agents on a HP iPAQ 5550 Pocket PC.

For learning how to use relevant context (for acceptance or refusal of meeting
proposals), mySAM agents use CBA (Classification Based on Association) algorithm.
CBA gives better results than C4.5 [4] and it generates rules comprehensive for both
agents and humans. The rules have been used with Jess ([11]) inference engine.

In order to provide examples for learning algorithm, the system has been used (for
meeting negotiations) by several members in our department for several weeks. Here
is an example of the rules we obtained using CBA on the examples generated by
using mySAM: IF ActivityDuration = 120 AND BusyMorning = true AND
BusyEvening = true THEN class = no (“class” specifies whether the agent should
accept or refuse the proposed meeting). When no rule matches the specific context,
mySAM is constrained to use a multi-agent knowledge-sharing session on how to use
this specific context (IRAS) to find the solution. It asks all known agents in the
system for their opinion on the situation, and counts each opinion as a vote for
“accept”, “reject” or “unknown”. The agent then proposes to its user the decision that
has the most votes. Agents consider an “unknown” result as a “reject” (by default, an
agent will reject all meeting proposals that neither it, nor other agents know how to
handle). We choose to use this “voting” procedure because not all agents will want to
share their decision-making techniques, but an “accept/reject/unknown” answer is
reasonable.

 What Is Context and How Can an Agent Learn to Find and Use it 119

The CM is also implemented as a JADE agent. It is a special agent in the system
that has access to the domain ontology that defines the context attributes that it will
manage. It answers to context-related queries from all agents that are in the system.
The ontology was created using Protégé 2000 ([16]) and CM accesses the ontology
using Jena ([10]), a Java library designed for ontology management.

Agents interactions in the system are as follows: mySAM agents can query the CM
using a REQUEST/INFORM protocol, negotiations between mySAMs being done
using a PROPOSE/ACCEPT/REJECT protocol.

When testing mySAM we were able to draw several conclusions. Using a selection
step to choose the RAS for a situation helps in having smaller and more significant
rules. Using all attributes to describe a situation is not only difficult to deal with, but
also unnecessary. We tested our hypothesis on a set of 100 examples. For 15 context
attributes used, we obtained an overall classification error of 29.11% and more than
40 rules. When we split the example set on several finalities (“meeting_with_family”,
“meeting_with_friends”, “work_meeting”), and for each situation we take into
account a limited number of context attributes (7 for a meeting with family, 11 for
others), the error becomes 7.59% and the number of obtained rules drops to an
average of 15.

Sharing with other agents just the decision (accept/reject) is preferable, because the
agent that received the answer will then add this situation to its examples list, from
where it will then learn the appropriate rule. Even if it will be slower than just sharing
the specific rule, the privacy problem is this way addressed, because the agent shares
just the answer to a specific situation, and not the reasoning that produced the answer.

5 Related Work

In this section we’ll present a brief state of the art in context definition, context-aware
MAS and context-aware architectures, in order to position our work relative to what
has been done in this domain. We don’t position our work relative to the learning
domain, because our goal was not to propose a learning algorithm, but to use some
already proposed methods for the specific goal of dealing with context [26].

Our definition of context is quite similar to definitions proposed by Persson [15],
Brezillon [1], Edmonds [6], or Thevenin and Coutaz ([22]) in the sense that it is based
on: (i) elements that structure context and (ii) its use, i.e. the finality when using it.
The definition we proposed takes into account those two dimensions of context; it
also explains how to manage them when designing context-based MAS.

In MAS, the notion of context is used to describe the factors that influence a
certain decision. In applications similar to our agenda management application, there
are several works that adapt to context: Calendar Apprentice [14], Personal Calendar
Agent [13], Distributed Meeting Scheduler [19], Electric elves [18], etc. Most of these
works don’t mention the idea of “context” but they all use the “circumstances” or
“environmental factors” that affect the decision to be made. In making Calendar
Agent ([12]), Lashkari et al. use the notion of context, but they assume that the
relevant context is known in advance, so that every context element that they have
access to is considered relevant for the decision to be made. These approaches are not
application-independent when handling context, because they do not provide neither a

120 O. Bucur, P. Beaune, and O. Boissier

general representation of context knowledge nor methods to choose relevant context
elements for a specific decision. This is the main difference and contribution of our
work in the sense that we propose a MAS architecture based on an ontological
representation of context and that can permit an individual and multi-agent learning of
how to choose and use context. MySAM is just a case study to validate our approach.

Mostly, context is used in an ad-hoc manner, without trying to propose an
approach suitable for other kind of applications. However, there is some research in
proposing a general architecture on context-aware applications, like CoBrA, proposed
by Chen et al.[3] or Socam, by Gu et al [21]. We based our architecture on CoBrA
and Socam, but we added the learning modules for choosing relevant context and
using it. The context broker and interpreter are similar to our CM, with the difference
that our concern was not how to retrieve information from sources, but mostly how to
represent it and how to reason on context knowledge based on this representation.

6 Conclusions

In this article, we have presented a definition of context, notion that is used in almost
all applications, without consistently and explicitly taking it into account. We have
proposed an ontology-based representation for context and a context-based
architecture for a learning MAS that uses this representation. We then validated our
approach by implementing a meeting scheduling MAS that uses this architecture and
manages and learns context based on the definitions and representation we proposed.

As future work, we will extend this framework for context-based MAS to be used
for any kind of application that considers context to adapt. The CM will be able to
deal with all context-related tasks (including the calculation of context attributes
values) and to share all this context-related knowledge. In order to make this possible,
our future work will focus on representing and managing how to calculate the values
for context attributes, and the importance of different attributes in different situation
(making a more refined difference between relevant and non relevant attributes).

In what concerns learning agents, the framework will provide agents with several
individual learning algorithm and all that is needed to communicate and share
contextual knowledge (how to choose, compute and use context to make decisions).

References

1. Brezillon, P. – “Context Dynamic and Explanation in Contextual Graphs”, In: Modeling
and Using Context (CONTEXT-03), LNAI 2680, Springer Verlag p. 94-106, 2003.

2. Bucur O, Boissier O, Beaune P – “Knowledge Sharing on How to Recognize and Use
Context to Make Decisions”, to appear in Proc. of Workshop “Context Modeling for
Decision Support”, Vth International and Interdisciplinary Conference “Context 05”.

3. Chen H., Finin T., Anupam J. – “An Ontology for Context-Aware Pervasive Computing
Environments”, The Knowledge Engineering Review, p. 197–207, 2003.

4. Data Mining II – CBA - http://www.comp.nus.edu.sg/ ~dm2/
5. Dey A., Abowd, G.– “Towards a better understanding of Context and Context-

Awareness”, GVU Technical Report GIT-GVU-00-18, GIT, 1999.

 What Is Context and How Can an Agent Learn to Find and Use it 121

6. Edmonds B. – “Learning and exploiting context in agents”, in proc. of AAMAS 2002,
Bologna, Italy, p. 1231-1238.

7. Gonzalez A., Ahlers R. – “Context based representation of intelligent behavior in training
simulations”, Transactions of the Society for Computer Simulation International, Vol. 15,
No. 4, p. 153-166, 1999.

8. Henricksen K., Indulska J., Rakotonirainy A – “Modeling Context Information in
Pervasive Computing Systems”, Proc. First International Conference on Pervasive
Computing 2002, p. 167-180.

9. JADE (Java Agent Development framework) : http://jade.cselt.it/
10. Jena Semantic Web Framework - http://jena. sourceforge.net/
11. Jess: http://herzberg.ca.sandia.gov/jess/index.shtml
12. Lashkari Y., Metral M., Maes P – “Collaborative Interface Agents”, Proc. of CIKM'94,

ACM Press.
13. Lin S., J.Y.Hsu – “Learning User’s Scheduling Criteria in a Personal Calendar Agent”,

Proc. of TAAI2000, Taipei.
14. Mitchell T., Caruana R., Freitag D., McDermott J., Zabowski D.– “Experience with a

learning personal assistant”, Communications of the ACM, 1994.
15. Persson P.– “Social Ubiquitous computing”, Position paper to the workshop on ‘Building

the Ubiquitous Computing User Experience’ at ACM/SIGCHI’01, Seattle.
16. Protégé 2000 - http://protege.stanford.edu/.
17. Ryan N.– “ConteXtML: Exchanging contextual information between a Mobile Client and

the FieldNote Server”, http://www.cs.kent.ac.uk/projects/mobicomp/fnc/ConteXtML.html.
18. Scerri, P., Pynadath D., Tambe M.– “Why the elf acted autonomously: Towards a theory

of adjustable autonomy “ , AAMAS 02, p. 857-964, 2002.
19. Sen S., E.H. Durfee – “On the design of an adaptive meeting scheduler”, in Proc. of the

Tenth IEEE Conference on AI Applications, p. 40-46, 1994.
20. Sian S. S. – “Adaptation Based on Cooperative Learning in Multi-Agent Systems”,

Descentralized AI, Yves Demazeau & J.P. Muller, p. 257-272, 1991.
21. Tao Gu, Xiao Hang W., Hung K.P., Da Quing Z – “An Ontology-based Context Model in

Intelligent Environments”, Proc. of Communication Networks and Distributed Systems
Modeling and Simulation Conference, 2004.

22. Thevenin D., J. Coutaz. – “Plasticity of User Interfaces: Framework and Research
Agenda”. In Proceedings of INTERACT'99, 1999, pp. 110-117.

23. Turney,P. – “The identification of Context-Sensitive Features: A Formal Definition of
context for Concept Learning”, 13th International Conference on Machine Learning
(ICML96), Workshop on Learning in Context-Sensitive Domains, p. 53-59.

24. Turner, R. – “Context-Mediated Behaviour for Intelligent Agents”, International Journal of
Human-Computer Studies, vol. 48 no.3, March 1998, p. 307-330.

25. Widmer G.– “Tracking context changes through meta-learning”, Machine Learning,
27(3):259-286, Kluwer Academic Publisher.

26. Weiss G., Dillenbourg P.– “What is “multi” in multi-agent learning?”, P. Dillenbourg (Ed)
Collaborative-learning: Cognitive, and computational approaches, p. 64-80, 1999.

A Formal Modelling Framework for Developing
Multi-agent Systems with Dynamic Structure

and Behaviour

Petros Kefalas1, Ioanna Stamatopoulou2, and Marian Gheorghe3

1 Department of Computer Science,
CITY College, Thessaloniki, Greece

kefalas@city.academic.gr
2 South-East European Research Centre, Thessaloniki, Greece

istamatopoulou@seerc.info
3 Department of Computer Science, University of Sheffield, UK

M.Gheorghe@dcs.shef.ac.uk

Abstract. Multi-agent systems exhibit highly dynamic behaviour
within dynamic environments. Modelling of individual agents within such
systems demands considering both evolving data structures and the con-
trol over their internal changing states. In addition, modelling of the
overall system implies modelling of the agents’ configuration, including
their ability to exchange messages as well as the ability to re-structure
their formation over time. This paper presents a formal modelling frame-
work based on Communicating X-machines, allowing the specification of
multi-agent software systems with a dynamic structure and behaviour.
A case study illustrates the proposed modelling approach.

1 Introduction

Multi-agent system complexity is due to substantial differences in attributes
between their individuals, high computational power required for the processes
within agents, non-trivial type or volume of data manipulated by these processes
and considerable amount of communication in order to achieve coordination and
collaboration. The use of a computational framework that is capable of modelling
both the dynamic aspect (change) and the static aspect (data and knowledge),
will facilitate modelling and simulation of such complex systems.

The majority of models created for biological or biology-inspired multi-agent
systems are based on an assumed, fixed system structure that is not realistic. Our
contribution is to show how most of the modelling requirements are captured
through the use of a distributed state-based formal method, namely Commu-
nicating X-machines. In particular, we propose an extension of Communicating
X-machine Systems, which includes the rules under and operations with which
a multi-agent system changes its configuration over time.

Our motivating example is given in Sect. 2 of this paper. In Sect. 3, we briefly
discuss the use of formal methods in agent-oriented software engineering and we

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 122–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Formal Modelling Framework for Developing Multi-agent Systems 123

informally present X-machines. Formal definitions are given in Sect. 4 and a
model for our motivating example in Sect. 5. Finally, we discuss various issues
arising from the use of X-machines in multi-agent system development as well
as existing tools.

2 Motivation

Our research is motivated by the implications of using formal methods in mod-
elling biological systems. As in any software system, formal specification and
modelling can lead towards a better understanding of the system under devel-
opment, verification of important properties and application of complete test
strategies. In biological processes bio-entities can be conceived as simple agents
that act autonomously in a dynamic and complex environment but also com-
municate in order to achieve a desired emergent behaviour. Such a behaviour is
apparent in swarms or colonies of social insects as well as in epithelial tissues
formed out of individual cells [1, 2].

For example, consider the following scenario: a number of identical agents A
are located in a plane and move freely (randomly) in space (Fig. 1.a). When two
identical agents A collide (Fig. 1.b), a new type of agent L is generated (Fig.
1.c). When any agent A comes close (within a threshold distance) to any agent
L, agent A follows the movement of L from then on, as a satellite, staying at
the threshold distance (Fig. 1.d). Agents L can have up to a certain number of
satellite agents—if this number is reached then a complete assembly is formed
(Fig. 1.e). A complete assembly has the ability to immobilise or destroy any
agent A, which enters the virtual cycle of the assembly (Fig. 1.f). This kind
of scenario resembles a number of situations, which appear in abundance in
chemistry, biology, swarms, robotics, artificial life systems, self-assembly etc.

Systems like the above consist of agents with common characteristics; they
sense their local environment through stimuli and have an internal state which is
determined by a set of values that characterise a particular instance of their life
time as well as what they know or believe about themselves, other agents and
the environment. They also possess a set of behaviours, triggered by stimuli and
their internal state. Finally, agents are able to communicate information with
other agents under specific circumstances. In the previous example, agents know
their position in space and sense free space or other agents of type A or L. When
an agent A becomes a satellite of an agent L, then the former behaves as a blind
follower by receiving the new direction of the latter through communication.
Communication is established between an agent L and all its satellites.

In addition, these multi-agent systems are highly dynamic in structure. The
configuration of the system (overall system state), is implied by the number of
agents that are present at any given time as well as the way these agents interact.
Evolution of the system may imply that some new agents come into play, others
cease to exist, some change roles, while the communication channels between
agents are re-configured over time.In the previous example, a new type of agent
L is born when two agents A collide and disappear from the system. The same

124 P. Kefalas, I. Stamatopoulou, and M. Gheorghe

Fig. 1. Six system instances showing the agents’ behaviour

happens when an agentA enters the virtual cycle of a complete assembly. Finally,
new communication channels are configured when agents becomes satellites.

3 Formal Methods for Multi-agent Systems

In an attempt to formally model each individual agent as well as the dynamic
behaviour of the overall system, we need a formal method that is capable of
rigorously describing all the essential attributes, i.e. change, behaviour, commu-
nication and dynamics. It is also important that the level of abstraction imposed
by a formal method is appropriate enough to lead towards the implementation
of a system. The most widely used formal methods are accompanied by toolk-
its, which make their adoption wider by researchers and industry. A plethora
of formal methods are available to use. Some of them have the means to effi-
ciently define the data structures of a system and the operations employed to
modify the values in these structures (Z, VDM). Some others describe well the
control over a system’s states (FSM, Petri Nets). Also, there are formal methods
that put emphasis on the concurrency and communication of processes (CCS,
CSP). Finally, new computation approaches as well as programming paradigms
inspired by biological processes in living cells, introduce concurrency as well as
neatly tackle the dynamic structure of multi-component systems (P Systems,
Brane Calculus, Gamma, Cham, MGS) [3, 4, 5].

In agent-oriented software engineering, there have been several attempts to
use formal methods, each one focusing on different aspects of agent systems
development, in order to: move to the implementation through refinement of
the specification and to be able to develop proof theories for the architecture
[6], capture the dynamics of an agent system [7], focus on the specification of

A Formal Modelling Framework for Developing Multi-agent Systems 125

the dynamics of the reasoning and acting behaviour of multi-agent systems [8],
etc. Other attempts were made in order to verify properties of agent models,
based on model checking, or to focus on program generation of reactive systems
through a formal transformation process [9, 10]. Wider approaches formally spec-
ify multi-agent systems and then directly execute the specification while verifying
important temporal properties [11]. Finally, less formal approaches, which ac-
commodate the distinctive requirements of agents, have been proposed [12]. An
interesting comparison of various formal methods for the verification of emergent
behaviours in swarm-based systems is reported in [13].

X-machines are a formal method that was firstly introduced by Eilenberg [14]
but was later considered suitable as a specification language [15]. A particular
class of X-machines, the stream X-machines, was found to be well-suited for
modelling of reactive systems. Since then valuable findings using the X-machines
as a formal notation for specification, modelling, communication, verification and
testing purposes have been reported [16, 17, 18].

The X-machine (XM) models possess characteristics that make them useful
for specifying software systems. XM models consist of a number of states, just as
a Finite State Machine (FSM) does. But in contrast to FSM, an XM model has
a memory, which accommodates mathematically defined data structures, pretty
much as Z does. The transitions between states are labelled by functions. The
functions are not applied only to inputs but also to memory values and produce
outputs and new memory values. The XM models consume a stream of inputs
and produce a stream of outputs, through a number of computation steps (a
computation step being the application of one function).

An XM with no initial state and memory is called an X-machine type. Types
can be used to create instances of XM that can all be part of a larger system.
XM instances are able to communicate between them. A number of approaches
have been proposed for asynchronous and synchronous communication [16]. In
principle, a function of a machine can produce an output, which can be directed
to an input stream of another machine.

4 Dynamic Communicating X-Machine Systems

Definition 1. The 8-tuple XM = (Σ ,Γ , Q,M,Φ, F, q0,m0) defines a stream
X-machine [18] where:

– Σ and Γ are the input and output alphabets respectively;
– Q is the finite set of states;
– M is the (possibly) infinite set called memory;
– Φ is a set of partial functions ϕ that map an input and a memory state to

an output and a possibly different memory state, ϕ : Σ ×M → Γ ×M ;
– F is the next state partial function, F : Q×Φ → Q, which given a state and

a function from the type Φ determines the next state. F is often described
as a state transition diagram;

– q0 and m0 are the initial state and initial memory respectively.

126 P. Kefalas, I. Stamatopoulou, and M. Gheorghe

For the modelling of systems where more than one agents need to co-exist, the
XM model needed to be extended by new features, such as hierarchical decompo-
sition and communication. A Communicating X-machine (CXM) model consists
of several XM that are able to exchange messages. This involves modelling the
participating agents and defining the rules of their communication.

Definition 2. A Dynamic Communicating X-machine System Z is defined as
Z = ((Ci)i=1,...,n, CR,R,GC) where:

– Ci is the i-th CXM component i.e. an XM whose functions ϕ ∈ Φ are able to
either receive input from other communicating components or send outputs
to be received as input by other components’ functions or both;

– CR is a relation defining the communication among the components, CR ⊆
C × C and C = {C1, . . . , Cn}. A tuple (Ci, Ck) ∈ CR denotes that the
CXM component Ci can output a message to a corresponding input stream
of CXM component Ck for any i, k ∈ {1, . . . , n}, i �= k;

– R is the set of rules that refer to the configuration of the system, i.e. they
define how the operators that will be affecting the structure of the commu-
nicating system are to be applied;

– GC is the set of definitions of all components that exist or may be added to
the system. These definitions act as genetic codes for the system, i.e. GC is
the set of XM types.

Definition 3. The state SZ of a Communicating X-machine System is defined
as SZ : P(S) where S is a set of 3-tuples S = {(qc, mc, ϕc)i | ∀Ci, 1 ≤ i ≤
n, qc ∈ Qi, mi ∈ Mi, ϕc ∈ Φi} (qc is the state in which Ci is in, mc is the
memory value of Ci and ϕc is the last function that has been applied in Ci) such
that each tuple represents the current computation state that an XM is in.

The rules that drive the evolution of the system structure are generally of the
form condition→ action whereby, if the condition allows, an appropriate action
which includes one or more reconfiguration operations is being performed. The
reconfiguration operators involved have been inspired by Population P Systems
[19], which are by definition capable of changing their structure while evolving.
In the descriptive definitions that follow XM is the set of all XM types, C is the
set of all CXM components and Z the set of all CXM Systems (the complete
definitions may be found in [20]):

Definition 4. The Attachment operator ATT : C ×C×Z → Z is responsible
for establishing communication between two existing CXM components. It takes
as arguments two CXM components Ci, Ck and the current CXM System Z (to
which they belong) and outputs the system Z ′ according to which Ci and Ck

are able to communicate.

Definition 5. The Detachment operator DET : C × Z → Z removes com-
munication channels between an existing CXM component and the set of other
existing components with which it currently communicates.

A Formal Modelling Framework for Developing Multi-agent Systems 127

Definition 6. The Generation operator GEN : XM × Z → Z creates and
introduces a new CXM component of type XM into the system.

Definition 7. The Destruction operator DES : C × Z → Z is used for the
removal of an existing CXM component from the system along with all the
channels that allow its communication with other components.

Because of the memory structure that is inherent to XM models, a temporal logic
such as the Computational Tree Logic (CTL) [21], is not by itself adequate for
the purposes of model checking. In order to overcome the lack of expressiveness
and to avoid the refinement of X-machines, XmCTL , an extension of CTL,
has been defined [17], that can handle the processing of the memory structure
for the model checking of an X-machine. This is accomplished with the use
of two extra memory quantifier operators, besides the temporal operators and
the path quantifiers, that quantify memory instances within a single state: mx,
meaning “there exists a memory value”, and Mx, meaning “for all memory
values”. Additionally, an appropriate algorithm has been devised [17] that can
model check systems expressed as X-machines with the properties to be checked
expressed in XmCTL .

5 Modelling Agents with X-Machines

The two types of agents, A and L, presented in the example of the introduction
can be modelled as X-machines, whose state transition diagrams FA and FL

are shown in Fig. 2. QA = {moving freely, collided, following L, dead}. The
memory of agent A holds its current position, the identifier of the agent L that
is being followed (or noL if none is followed) and the threshold distance, under
which a bond is made with an agent L so MA = (Z × Z) × (L ∪ {noL})× R,
where L is the set of all possible identifiers of agents of type L. The input set
ΣA = (L ∪ A ∪ {space})× (Z×Z), where A is the set of all possible identifiers
of agents of type A. The output set ΓA is a set of messages.

Accordingly, for the agent L, QL = {moving freely}, ΣL = (A ∪ {space})×
(Z × Z), and ΓL is a set of messages. The memory ML = (Z × Z)× P(A)×N ,
where the second memory position holds the set of satellite agents of type A and
the third position holds the number of agents A that are needed for a complete
assembly. Indicatively, some of the functions in the two Φ sets are:

move((space, (x, y)), ((cx, cy), noL, d)) =
(movingFreely, ((x, y), noL, d)), if neighbours((x, y), (cx, cy))

follow((myL, (x, y)), ((cx, cy),myL, d)) =
(followL, ((cx′, cy′),myL, d)),
where (cx′, cy′) = calculate coord(d, (x, y), (cx, cy))

meet A((agentA, (cx, cy)), ((cx, cy),myL, d)) =
(collidedWithA, ((cx, cy), noL, d))

move((space, (x, y)), ((cx, cy), setA,maxA)) =
(movingFreely, ((x, y), setA,maxA)), if neighbours((x, y), (cx, cy))

128 P. Kefalas, I. Stamatopoulou, and M. Gheorghe

Fig. 2. The two X-machine types used in the example

A joins((agentA, (x, y)), ((cx, cy), setA,maxA)) =
(agentAJoins, ((cx, cy), setA ∪ agentA,maxA)),
if |setA| < maxA ∧ agentA /∈ setA

The CXM model consists of all agent models that are instantiated with an
initial state and an initial memory. So, initially the system of Fig. 1.a is Z =
(C, ∅, R,GC) where C = {A1, A2, ..., A9}, R contains the rules of dynamically
configuring the system structure and GC contains the two XM types of agents
that exist in the system, i.e. A and L.

SZ, the overall current system state, may for example look like SZ =
{(moving freely, ((3, 15), noL, 4.5), ε)A1, ...}.

The rules in R for dynamic configuration describe the situations which, if
present in the system state SZ, change the configuration of the system. All rules
imply application of one or more reconfiguration operators ATT, DET, GEN,
and DES. For example, the rule that is applicable when two agents of type A
collide is the following:

((moving freely, ((X,Y), noL, d), ϕi)Ai ∈ SZ
∨(following L, ((X,Y), anL, d), ϕi)Ai ∈ SZ)

∧ ((moving freely, ((X,Y), noL, d), ϕj)Aj ∈ SZ
∨ (following L, ((X,Y), anL, d), ϕj)Aj ∈ SZ)

∧ Ai �= Aj

→ Z ′ = GEN(Lk,DES(Aj ,DES(Ai, Z))),where k = |C|+ 1

Also the rule that creates a satellite agent A of an agent of type L is:

(moving freely, ((X1, Y 1), noL, d), ϕi)Ai ∈ SZ
∧ (moving freely, ((X2, Y 2), setA,m), ϕk)Lk

∈ SZ
∧ d ≤ distance((X1, Y 1), (X2, Y 2))
→ Z ′ = ATT(Ai, Lk, Z)

Figure 3 shows a formation consisting of one agent instance of type L (L10)
and two agents instances of type A (A1 and A2). While moving, L10 sends
its new coordinates to A1 and A2 which use them as inputs to follow L10. The

A Formal Modelling Framework for Developing Multi-agent Systems 129

Fig. 3. Communication between an agent A with its two satellite agents. A solid circle
denotes the acceptance of input from another component whereas the solid diamond
the direction of output to another component

corresponding function of L10 is transformed so that the its output is transformed
into the format that is understandable by the follow function of the A agents.

Finally, XmCTL may be used to verify properties of the individual models.
In this example, we may need to verify that “under no circumstances will an
agent of type L have more than the maximum allowed number of satellites”. The
temporal logic formula that expresses this property is AGMx(|M(2)| ≤ M(3))
where A is the path quantifier “for all paths” and G is the temporal logic
operator “for all states” respectively, and the syntax M(n) refers to the n-th
element of the memory structure, in this case the set of satellite agents (M(2))
and the maximum allowed number of satellites (M(3)). Currently, further work
is being done towards the verification of CXM Systems’ properties that would
allow us to answer questions such as, for example, “does the system always reach
a state when all the agents of type A are extinct?”, i.e. it would allow us to model
check for certain properties featured by the entire collection that the components
constitute.

6 Discussion

X-machines can be thought to apply in similar cases where StateCharts and
other similar notations, such as SDL, do. In principle, XM are considered a
generalization of models written in similar formalisms since concepts devised and
findings proven for XM form a solid theoretical framework, which can be adapted
to other, more tool-oriented methods. XM have other significant advantages.

Firstly, XM provide a mathematical modelling formalism for a system. Con-
sequently, a model checking method for X-machines is devised that facilitates
the verification of safety properties of a model. The XmCTL language apart
from the usual CTL operators, includes operators that deal with memory val-
ues (properties) of the machines [17]. Though up to know, only individual XM
models may be verified, ongoing research is being conducted towards finding
ways for model checking CXM Systems. This would facilitate the verification of
properties that a collection of individuals exhibits as a whole.

In addition, XM offer a strategy to test the implementation against the
model, which is a generalization of W-method for FSM testing. The testing

130 P. Kefalas, I. Stamatopoulou, and M. Gheorghe

strategy generates all test cases for a given model and therefore it is guaranteed
to determine correctness if certain assumptions in the implementation hold [18].

A modelling language, called XMDL, is devised, which is a tagged language
with appropriate syntax and semantics in order to develop XM models and CXM
systems. The process of doing this is incremental, without loss of any description
developed at an earlier stage. That is, if the aim is to develop a communicating
system, the individual types of models are build first, they are validated and
tested, and then the instances of those types as well as their communication
interface are added on top later on. This is a disciplined approach that leads
towards a specific methodology of developing XM models, and resembles existing
bottom-up methodologies used to develop multi-agent systems [22].

Finally, a number of tools around XMDL have also been developed [23], with
most prominent the one that compiles XMDL to Prolog and animates the model
through a sequence of inputs. This was proven particularly useful to understand
the computation of models and informally validate whether the right model for
a particular system was developed.

7 Conclusions

We have presented an extension of communicating X-machines that is able to
facilitate formal modelling of multi-agent systems through the use of rules that
invoke operators that change the system structure and behaviour. We are cur-
rently working on implementing those features on top of existing tools and de-
velop alternative hybrid formal models, inspired by membrane computing. We
have also been experimenting with the compilation of a particular class of XM
to NetLogo [24], which will give a clearer picture of the animation in terms of a
two-dimensional movement and interaction of simple agents.

References

[1] Kefalas, P., Holcombe, M., Eleftherakis, G., Gheorge, M.: A formal method for
the development of agent-based systems. In Plekhanova, V., ed.: Intelligent Agent
Software Engineering. Idea Publishing Group Co. (2003) 68–98

[2] Holcombe, M.: Computational models of cells and tissues: Machines, agents and
fungal infection. Briefings in Bioinformatics 2 (2001) 271–278

[3] Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61 (2000) 108–143 Also circulated as a TUCS report since 1998.

[4] Banatre, J., Le Metayer, D.: The gamma model and its discipline of programming.
Science of Computer Programming 15 (1990) 55–77

[5] Berry, G., Boudol, G.: The chemical abstract machine. Journal of Theoretical
Computer Science 96 (1992) 217–248

[6] d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of
dMARS. In Singh, M.P., Rao, A., Wooldridge, M.J., eds.: Intelligent Agents IV.
Volume 1365 of Lecture Notes in AI. Springer-Verlag (1998) 155–176

[7] Rosenschein, S.R., Kaebling, L.P.: A situated view of representation and control.
Artificial Intelligence 73 (1995) 149–173

A Formal Modelling Framework for Developing Multi-agent Systems 131

[8] Brazier, F., Dunin-Keplicz, B., Jennings, N., Treur, J.: Formal specification of
multiagent systems: a real-world case. In: Proceedings of International Conference
on Multi-Agent Systems (ICMAS’95), MIT Press (1995) 25–32

[9] Benerecetti, M., Giunchiglia, F., Serafini, L.: A model-checking algorithm for
multi-agent systems. In Muller, J.P., Singh, M.P., Rao, A.S., eds.: Intelligent
Agents V. Lecture Notes in Artificial Intelligence. Springer-Verlag (1999) 163–176

[10] Attoui, A., Hasbani, A.: Reactive systems developing by formal specification
transformations. In: Proceedings of the 8th International Workshop on Database
and Expert Systems Applications (DEXA 97). (1997) 339 – 344

[11] Fisher, M., Wooldridge, M.: On the formal specification and verification of multi-
agent systems. Intern. Journal of Cooperating Information Systems 6 (1997) 37–65

[12] Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for agents. In: Proceed-
ings of the Agent-Oriented Information Systems Workshop at the 17th National
conference on Artificial Intelligence. (2000) 3–17

[13] Rouf, C., Vanderbilt, A., Truszkowski, W., Rash, J., Hinchey, M.: Verification of
NASA emergent systems. In: Proceedings of the 9th IEEE International Confer-
ence on Engineering Complex Computer Systems (ICECCS’04). (2004) 231–238

[14] Eilenberg, S.: Automata, Languages and Machines. Academic Press (1974)
[15] Holcombe, M.: X-machines as a basis for dynamic system configuration. Software

Engineering Journal 3 (1988) 69–76
[16] Kefalas, P., Eleftherakis, G., Kehris, E.: Communicating X-machines: A practi-

cal approach for formal and modular specification of large systems. Journal of
Information and Software Technology 45 (2003) 269–280

[17] Eleftherakis, G.: Formal Verification of X-machine Models: Towards Formal De-
velopment of Computer-based Systems. PhD thesis, Department of Computer
Science, University of Sheffield (2003)

[18] Holcombe, M., Ipate, F.: Correct Systems: Building a Business Process Solution.
Springer-Verlag, London (1998)

[19] Bernandini, F., Gheorghe, M.: Population P Systems. Journal of Universal Com-
puter Science 10 (2004) 509–539

[20] Kefalas, P., Eleftherakis, G., Holcombe, M., Stamatopoulou, I.: Formal modelling
of the dynamic behaviour of biology-inspired agent-based systems. In Gheorghe,
M., ed.: Molecular Computational Models: Unconventional Approaches. Idea Pub-
lishing Inc. (2005) 243–276

[21] Emerson, E.A., Clarke, E.M.: Characterising correctness properties of parallel
programs as fixpoints. In: Proceedings of the 7th International Colloquiurn on
Automata, Languages and Programming. Volume 85 of Lecture Notes in Computer
Science. Springer-Verlag, New York (1981) 169–181

[22] Collinot, A., Drogul, A., Benhamou, P.: Agent oriented design of a soccer robot
team. In: Proceedings of the 2nd Intern. Conf. on Multi-Agent Systems. (1996)
41–47

[23] Kefalas, P., Eleftherakis, G., Sotiriadou, A.: Developing tools for formal methods.
In: Proceedings of the 9th Panhellenic Conference in Informatics. (2003) 625–639

[24] Wilensky, U.: Netlogo. http://ccl.northwestern.edu/netlogo. Center for Connected
Learning and Computer-based Modeling. Northwestern University, Evanston, IL.
(1999)

Discovery of Crises via Agent-Based Simulation
of a Transportation System�

Edward Nawarecki, Jarosław Koźlak,
Grzegorz Dobrowolski, and Marek Kisiel-Dorohinicki

Institute of Computer Science,
AGH University of Science and Technology, Kraków, Poland

{nawar, kozlak, grzela, doroh}@agh.edu.pl

Abstract. The contribution deals with a class of intelligent decentralized sys-
tems that are marked by the possibility of arising critical situations. The work
starts from the elaboration of an overall methodology dedicated to the discovery
of crises and support of anti-crisis activities. Then the case of transportation en-
terprise support system is discussed in detail. A simulation study of anti-crisis
management in such a system concludes the work.

1 Introduction

As it has been repeatedly discussed and confirmed, a paradigm of multi-agent systems
is especially powerful when looking for the representation of existing, designed or fore-
seen systems of hybrid technical-human nature. Notions of autonomy and decentraliza-
tion, granularity and distribution, proactiveness and environment dependency are dis-
tinctive for such systems. Acceptance of the agent-based approach opens possibility for
solving many problems that until now has been tractable only with respect to tightly
coupled centralized systems. Some of these problems are risk and critical situations
(states) analysis [10,1].

The systems under consideration may both be designed from scratch as multi-agent
ones (operating in the virtual world, e.g. network information services, virtual enter-
prises), as well as function in the reality as a set of cooperating autonomous subsystems
of whatever origin (e.g. transportation systems, industrial complexes). Such systems
(virtual as well as real) are marked by the possibility of arising critical situations that
can be caused by both outer (e.g. undesirable interference or the forces of nature) and
inner (e.g. resource deficit, local damages) factors. Generally, a crisis is interpreted here
as a threat of loss (partial or complete) of the system functionality.

As it will be shown, crisis identification, evaluation of possible effects and applica-
tion of prevention (anti-crisis) actions occur to be much more difficult tasks in the case
of such (multi-agent) systems. The mentioned above features (mainly: autonomy of the
agent’s decisions, lack of global information and hardly predictable behaviour) stems
for quite different solutions.

� This work was partially sponsored by State Committee for Scientific Research (KBN) grant
no. 3 T11C 025 27.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 132–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Discovery of Crises via Agent-Based Simulation of a Transportation System 133

The paper tries to solve, at least partially, the three specified tasks. A function
schema and appropriate information structure are proposed that can serve as a basis
for analysing and managing critical situations. They specify how the system can be
monitored and a simulation model of its behaviour created in the face of a particular
crisis. The results of simulation studies are the scenarios of the crisis progress. The in-
vestigation of the scenarios may lead to finding a strategy of avoiding the crisis or, at
least, reducing its effects. The simulation model is also in the shape of a multi-agent
system [8].

General considerations are illustrated and verified with the case of a real transporta-
tion enterprise, which is represented by an agent-based model. A particular organization
of the enterprise including an originally proposed anti-crisis policy is modelled together
with its field of operation.

The paper is organized as follows. Section 2 describes the idea of monitoring and
foreseeing critical situations in multi-agent systems. Section 3 is devoted to the de-
scription of an agent-based model of a transportation enterprise together with specific
solutions of monitoring and management tasks. The considered critical situations arise
as traffic jams and impassable roads. At the end (section 4) the chosen results of simu-
lation studies illustrating the applied anti-crisis policy are presented.

2 Management of Critical Situations in MAS

A critical situation is recognized as a particular state or sequence of states that violate
or lead to the violation of global as well as local (the agents’) goals of the system. Thus
critical situations can be local (concerning a single agent) and global (involving not only
all but also a group of agents). Arising of a local crisis may entail a global one in the
future, but functional abilities of the system very often allow avoiding consequences at
the global level. On the contrary, the threat of a global crisis usually requires especially
invented mechanisms.

Two kinds of critical situations can be distinguished: direct and indirect. The direct
one means the threat of loosing operability of the system in consequence of unavailabil-
ity of the some agents’ actions. The primary cause of an indirect critical situation is the
lack of resources that, in turn, gives deficit of functionality. The detection of both kinds
can be realised by a monitoring sub-system based on individual evaluations pointed out
the loss of functionality, or observations of the distribution of some resources crucial to
the agent’s or system activity.

Let us discuss shortly the conditions for the case of local critical situations. In the
obvious way an agent monitors his state as well as evaluates it on his own. Significant
reduction of the set of possible strategies of further operation in a particular state can
be the indication of a crisis. Analysis with respect to global critical situations is a bit
harder. This is because of the problem of determining the multi-agent system state. The
state can be easily defined as composition of the agents’ states but its calculation is
usually operationally impossible because of the following features of MAS.

– There are no strong enough synchronization mechanisms to determine the simul-
taneity of agents’ states.

134 E. Nawarecki et al.

MAS

vMAS

Monitoring

Management

vMonitoring

Observation

Fig. 1. Management structure for the case of real system

– The system state is highly multi-dimensional so that the high cost of information
acquisition should be taken into account.

– Agents are autonomous. They usually intend to disclose only as much information
as it is necessary for the system operation.

Putting all descriptions of the agents’ states together, possibly in a single place, and
regarding them as simultaneous is the only way to construct the description of the whole
system state.

It seems obvious that it is hard or even pointless to search for any universal manner
of management of critical situations in MAS. However, the principal assumptions of
MAS operation allow for specification of an architecture, which seems to be general
enough to be used as a reference one for describing crises management activities [7].

The architecture is a four-layer one as presented in figure 1. The bottom layer
(MAS) constitutes the system under consideration. The directly higher layer (Moni-
toring) consists of agents that are assigned to gathering information about the subject
system by inquiring and observing done according to the agent paradigm [4]. An agent-
based model of the reality is situated as the next layer (vMAS): its agents try to re-
construct future states of the system using the monitoring data. Here scenario-based
studies of the model are carried out aiming at critical situations detection and search
for an anti-crisis policy. The main purpose of the upper monitoring layer is the evalua-
tion of situations (states) arising in the course of simulations carried out using vMAS.
The elaboration of a reach enough bunch of scenarios leads to finding the strategy of
avoiding crises in the real system or, at least, reducing their effects. The agents of the
upper layer may be equipped with the ability of decision making and, in turn, have an
effect on the real system – selected strategies may be applied in the reality as a direct
management or influence on mechanisms (e.g. organization) of the system. This may
create a loop of semi-automatic prevention of crises in the proposed architecture.

The approach may be formally described in terms of the organizational model of
a multi-agent system using some elements of M-Agent architecture [2]. Assuming that
the state of MAS is observed only in certain moments of time t0, t1, . . . ,tk−1,tk its dy-
namics in k-th step of operation may be illustrated by the following diagram:

Discovery of Crises via Agent-Based Simulation of a Transportation System 135

. . .
org(tk−2,tk−1)−−−−−−−→ mas(tk−1)

org(tk−1,tk)−−−−−−→ mas(tk)
org(tk ,tk+1)−−−−−−→ . . .⏐⏐�ϒ

⏐⏐�ϒ

. . . ω(tk−1) ω(tk) . . .⏐⏐� ⏐⏐�

. . .
vorg(tk−2,tk−1)−−−−−−−−→ vmas(tk−1)

vorg(tk−1,tk)−−−−−−−→ vmas(tk)
vorg(tk,tk+1)−−−−−−−→ . . .⏐⏐�ϒ̃

⏐⏐�ϒ̃

. . . ω̃(tk−1) ω̃(tk) . . .

(1)

where:

mas(tk), vmas(tk) – states of MAS and vMAS respectively, encompassing the states
of all agents ag ∈ Ag and the environment env:

mas ≡ 〈Ag,env〉 (2)

consecutively each agent is described in terms of actions act ∈ Act it is able to
perform depending on its state stat:

ag ≡ 〈Act,stat〉 (3)

org(tk−1,tk), vorg(tk−1,tk) – organisations emerged in MAS and vMAS respectively,
which manifests in actions performed by agents:

org(tk−1,tk)≡ {(ag,act, t) : ag ∈ Ag, act ∈ Act, t ∈ (tk−1, tk)} (4)

ϒ ,ϒ̃ – observation heuristics for MAS and vMAS respectively,
ω , ω̃ – representation of some global effects of the emerged organisations in MAS and

vMAS respectively, acquired via observation heuristics:

ϒ : mas→ ω (5)

For the sake of simplicity obvious variants of equations (2)-(5) for vMAS were skipped
in the above definitions.

3 Crises in Transportation Systems

Plenty of various transportation system models can be found in literature (e.g. [6,9]).
Their exact shape (also their complexity) depends on their general purpose or formal
approach applied. Here a rather simple model is proposed oriented mainly towards the
illustration of the information aspects of the proposed architecture. Solutions to the
objective transportation problem introduced here are of the second importance.

It is assumed that a transportation system is modelled as a multi-agent system, so
that agents represent vehicles moving around in a graph-like environment, where edges
represent roads and vertices represent intersections:

Γ = (V,Y) vi ∈V yi j ∈ Y (6)

136 E. Nawarecki et al.

It is also assumed that the information about the cost of using a road is available for the
agents in terms of weights of edges:

λ : Y → IR+ (7)

This measure may represent the length, or more generally the throughput of a road. It
describes the environment of MAS and thus it does not directly depend on (the states
of) agents (i.e. the actual traffic).

The traffic is generated due to orders realised for the agent customer defined accord-
ing to (3) as:

agc = 〈{ξ},Θ〉 (8)

where ξ denotes the action of negotiating and making contracts with selected vehicles,
and Θ is the set of orders to be distributed among them:

Θ = {(u,vi,v j,τ) : u ∈ IN, vi,v j ∈V, τ ∈ IR+× IR+} (9)

Each order is described by requested load u, route from source vertex vi to destination
vertex v j, and finally time window τ the order has to be realised within.

A vehicle agent may be similarly defined as:

agv
k = 〈{ξ ,χ},〈Θk,Θ ∗

k ,Γk〉〉 (10)

where ξ is the action of making contract that is performed together with the agent
customer, and χ encompasses all tasks that may be executed by a vehicle moving around
a graph and realising orders. The state of a vehicle agent is defined in terms of allocated
orders Θk, orders being realised Θ ∗

k , and planned route Γk.
The action of making contract ξ means that selected orders of the customer Θ ∗ are

allocated to a vehicle:

ξ : Θ →Θ \Θ ∗ and Θk →Θk∪Θ ∗ (11)

It is assumed that negotiations denoted by ξ are conducted by agents so as to maximize
their utility (subjective measure of profit) of realising order(s). For each vehicle agent
this may be defined as:

ck(Θk ∪Θ ∗,Γk) (12)

and for the customer agent it is:

∑
agv

k

c(Θk∪Θ ∗,Γk) (13)

which means that the utility in both cases depends on the set of all orders Θk ∪Θ ∗ to
be realised by vehicle agv

k that takes part in the negotiations and its planned route Γk

(e.g. how long it would take to realise the orders). Nevertheless it should be emphasised
that utility functions of a vehicle ck and of a customer c need not (in practice even must
not) give the same values for the same orders and vehicles (the goals of a vehicle and a
customer may differ).

Discovery of Crises via Agent-Based Simulation of a Transportation System 137

Action χ is executed when a vehicle agent crosses a vertex and may result in starting
some orders (loading) if the vertex is the source one for them, or finishing some orders
(unloading) if their destination is reached, and finally updating the planned route:

χ : Θk →Θk \Θ+ and Θ ∗
k →Θ ∗

k ∪Θ+ \Θ− and Γk → Γ ′k (14)

where Θ+ denotes the set of orders just started (loaded), Θ− denotes the set of just
finished (unloaded) orders, and Γ ′k is the new (updated) planned route.

To recapitulate, a transportation system modelled as a multi-agent system consists
of two kinds of agents and a graph-like environment, which according to (2) may be
formulated as:

mas = 〈{agc}∪{agv
k : k = 1,2, . . .},〈Γ ,λ 〉〉 (15)

The transportation system dynamics (the observed effect of the emerged organisa-
tion) is described by momentary values of vehicle flows in its edges:

0≤ xi j ≤ xmax
i j (16)

where xi j = xi j(tk) is the number of vehicles going through edge yi j ∈ Y in some time
tk and xmax

i j is the maximum flow allowed in the given edge. Also for each vertex (inter-
section) the balance equation for the flows coming in and out holds:

∑
yi j∈Y+

j

δi j = ∑
yi j∈Y+

j

x+
i j − ∑

y jk∈Y−j

x−jk (17)

where Y+
j = {yi j : v j ∈ V} and x+

i j is the number of vehicles coming into vertex v j,
similarly Y−j = {yi j : vi ∈V} and x−jk is the number of vehicles coming out of vertex v j.
This equation introduces a convention that allows to reflect a situation when it occurs
impossible for all incoming vehicles to leave the vertex—its left side represents a queue
of vehicles remaining in traffic jams (inversely, relieving the jams restores the balance).
In such a situation it is possible that x−i j �= x+

i j for some edge yi j ∈ Y .
Having the transportation system defined, concrete tasks can be assigned to the lay-

ers of the proposed architecture. As monitoring of the transportation system is now the
goal, appropriate deployment of monitoring spots can be related to the graph and para-
meters of the flows. Another decisive factor of the deployment comes from the higher
level purpose of the monitoring. If the purpose is to supervise the whole transportation
system in the sense of foreseeing its transportation capacities the spots can be located
in the chosen vertices of the graph straightforwardly. Then flows coming in and out of
such vertices are monitored according to the formula:

ω = {ω j = ∑
yi j∈Y+

j

xi j : v j ∈V} (18)

The goal of vMAS is to predict the future load of roads based on the observations of
local vehicle flows (fig. 2), so that the monitoring data may be used for the prediction
of future traffic by i-th vMAS agent:

Ω ∗
i (t) = {ω∗i j(tk) : tk > t} (19)

138 E. Nawarecki et al.

{agv
k}ξ χ

Γ

{λ(yi)}

xi

xi
∼

observation

management

agc

MAS

Fig. 2. Anti-crisis management in transportation MAS

And then the overall prediction may be obtained via cooperation of vMAS agents:

ω̃(t) = {ω∗j (tk) = ∏
ag i

ω∗i j(tk) : tk > t} (20)

and some anti-crisis policy may be defined e.g. in terms of traffic rerouting via changing
the weights of particular roads in mapping λ —see eq. (7).

4 Crises Management at Work

The aim of the experiments reported below was to show, how the consequences of the
crisis situations, that are, in that case, traffic jams and impassable roads, could be min-
imised, using the proposed management scheme. The orders were allocated according
to the dynamic PDPTW as described in [5].

The transportation network (the graph Γ) and its changes is presented in fig. 3. The
numbers next to the vertices are their identifiers and the numbers next to the edges
are their weights. During the experiments 80 vehicles were used. The generation of
transport requests was performed as presented in [3]. In central nodes (marked on the
graph as black points) the request frequency was 5 times higher than in normal nodes.

There were four network configurations being examined:

– basic configuration Ψ1 – the graph of 100 nodes and 272 arcs, composed of four
subgraphs 0-24,5-49, 50-74 and 75-99, which are connected by unique arcs;

– configuration Ψ2 – after removing an arc which connects nodes 64 and 85 (marked
as a dotted line);

– configurationΨ3 – after adding a new arc (marked as a dash line) connecting nodes
24 and 45 with weight equal to 2000;

– configuration Ψ4 – change in the weight of the new arc from 2000 to 5000.

Discovery of Crises via Agent-Based Simulation of a Transportation System 139

20 3 4 25 26 27 28 29

5 6 7 8 9

10 11 12 13 14

15 16 17

18 19

20 21 22 23 24

30 31 32 33 34

35 36 37 38 39

40 41 42 43 44

45 46 47 48
49

50 51 52 53 54

55 56 57 58 59

60 61 62 63 64

65 66
67

68
69

70 71 72
73 74

75 76 77 78 79

80

81 82 83 84

85 86
87 88 89

90
91 92

93
94

95
96

97 98
99

1000 1000 1000 1000

1500

1500

1500

1300

1000 1000

1000

1000

1000

1000

1000

1000

1000

1000

1500

2000 2000

1500

15001500

1500

1500

1300

1500

1000 1000 1000 1000

1500 1500

1500

1500

1000 1000

2000

1500

1500

1500

1500

1000 1000 1000

1500

2000

1500

1500

1500

1500

1500

1500

1000

1000

1000

1000

1000

2000

1000

1000

1000

2000

2000/5000

2000

1000

1000

1000

2000

1000

1000

1000

1000

1000 1000 1000 1000

1000 1500 1500 1000

2000

1500 1500

1500

1000

1000 1500

1300

1500

1000 1000

1500

2000

1500

1500

1000

10001500

1500

1000

1000

1000 1000 1000

2000

1500 1500

1500

1500 1500

1500

1300

1000 1000 1000 1000

1000

1000

1500

2000

1500

1500

1500

1000

1000

1500

2000

2000 2000

1000

2000

2000

1500

1500

1500

1

Fig. 3. Transport network and its modifications

The goal of such configuration choice was to show the system working without
perturbations (configuration Ψ1), the system after a crisis, which caused cutting of one
arc (configuration Ψ2), the results of attempting to limit the consequences of the crisis,
introducing two different by-pass arcs: one of good quality (configuration Ψ3) and the
second of bad quality, i.e. increasing the travel time (configuration Ψ4).

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

hour

av
er

ag
e

o
f

ar
ri

va
ls

Ψ1

Ψ2

Ψ3

Ψ4

Fig. 4. Vehicles arriving at node 14

Figures 4 and 5 present the numbers of arrivals to the selected nodes 14 and 24,
and the table 1 contains the average numbers of vehicles arriving in selected nodes for
each examined configuration. The numbers of arrivals at nodes 14 or 24 increase after
removing arc 64-85 (configuration Ψ2) in comparison to the basic configuration Ψ1).
This is because there is only one travel path between sub-graphs 50-74, 0-24 and 25-
49, 75-99, which must contain node 14. Adding a new connection between 24 and 45
brings an even distribution of traffic between arcs 24-45 and 14-35 (configuration Ψ3).
The number of vehicles arriving at node 24 increases, because previously they arrived
to node 14 through nodes 9 or 13. The modification of a new arc in configuration Ψ4

results in connection 14-35 being used more often by the vehicles.
The obtained results are highly intuitive and confirm the proper definition and real-

ization of the model. The traffic balance of configurationΨ2 stems from the fact that the

140 E. Nawarecki et al.

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

hours

av
er

ag
e

o
f

ar
ri

va
ls

Ψ1

Ψ2

Ψ3

Ψ4

Fig. 5. Vehicles arriving at node 24

Table 1. Average of vehicles arrivals at selected nodes counted in time

configuration —Ψ1— —Ψ2— —Ψ3— —Ψ4—
Node 14 5.06 8.65 6.29 7.29
Node 24 2.06 5.24 6.29 4.65
Node 35 5.12 8.41 5.94 6.88
Node 45 1.76 3.82 5.35 5.47
Node 22 4.12 6.59 6.94 5.88
Node 47 4.94 6.18 6.70 7.41
Node 77 5.29 6.47 7.29 6.82
Node 64 4.94 1.06 0.65 0.76
Node 85 5.12 0.65 0.88 0.94
Node 99 0.12 0.41 0.29 0.24

edges belong to the only path between the sub-networks—the transit. The reaction of
the traffic to adding the bypass and the following balancing of the alternative bypasses
via changing of the weights can be regarded as correct and effective.

5 Concluding Remarks

The article is concerned with the application of agent approach to the problem of man-
agement of critical situations. Design assumptions and the proposal of the overall ar-
chitecture of a (sub-)system dedicated to the discovery of crises and the support of
anti-crisis activities are described.

One of possible applications is the management support for a transportation enter-
prise that operates in highly dynamic and uncertain environment of a road network that
is a kind of the generator of critical situations. Considerations are carried out on the ba-
sis of the model of the network that plays here a role of a real system. Some parameters
of the model are, in turn, subjects of monitoring in the designed layered architecture,
other form a means for management. The particular organization of the enterprise in-
cluding an originally proposed anti-crisis policy is modelled also. A conclusion that can
be formulated at the point is that the implemented policy allows for the achievement of
balanced traffic in the network also in the face of critical situations.

Discovery of Crises via Agent-Based Simulation of a Transportation System 141

Simulation experiments partially presented in the paper confirm the main ideas of
the approach. Future work will concentrate on its application to the transportation enter-
prises of different organization in order to justify and deepen solutions and conclusions
elaborated so far.

References

1. J. Collins, M. Tsvetovas, R. Sundareswara, J. van Tonder, M. Gini, and B. Mobasher. Evalu-
ating risk: flexibility and feasibility in multi-agent contracting. In O. Etzioni, J.-P. Müller, and
J. M. Bradshaw, editors, Proceedings of the Third International Conference on Autonomous
Agents (Agents’99), pages 350–351. ACM Press, 1999.

2. G. Dobrowolski, M. Kisiel-Dorohinicki, and E. Nawarecki. Dual nature of mass multi-agent
systems. Systems Science, 27(3):77–96, 2002.

3. A. Gendreau, F. Guertin, J. Potvin, and R. Sguin. Neighborhood search heuristics for a
dynamic vehicle dispatching problem with pick-ups and deliveries. Technical report CRT-
98-1, University of Montreal, 1998.

4. M. Kisiel-Dorohinicki. Monitoring in multi-agent systems: Two perspectives. In B. Dunin-
Keplicz, A. Jankowski, A. Skowron, and M. Szczuka, editors, Monitoring, Security, and
Rescue Techniques in Multi-Agent Systems, Adv. in Soft Computing. Springer-Verlag, 2005.

5. J. Kozlak, J.-C. Creput, V. Hilaire, and A. Koukam. Muti-agent environment for dynamic
transport planning and scheduling. In M. Bubak, G. van Albada, P. Sloot, and J. Dongara,
editors, Computational Science – ICCS 2004, Part III, Lecture Notes in Computer Science
3038. Springer-Verlag, 2004.

6. H. K. Lee, H.-W. Lee, and D. Kim. Macroscopic traffic models from microscopic car-
following models. Physical Review E, 64(5):056126, Nov. 2001.

7. E. Nawarecki, M. Kisiel-Dorohinicki, and G. Dobrowolski. Architecture for discovery of
crises in MAS. Fundamenta Informaticae. Accepted for publication.

8. A. M. Uhrmacher and K. Gugler. Distributed, parallel simulation of multiple, deliberative
agents. In D. Bruce, L. Donatiello, and S. Turner, editors, Procedings of the 14th Workshop
on Parallel and Distributed Simulation (PADS00), pages 101–110. IEEE Press, 2000.

9. J. Wahle, L. Neubert, and M. Schreckenberg. Modeling and simulation of traffic flow. Com-
puter Physics Communications, 121/122:402–405, Nov. 1999.

10. S. Wu and V. Soo. Risk control in multi-agent coordination by negotiation with a trusted
third party. In D. Thomas, editor, Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99-Vol1), pages 500–505. Morgan Kaufmann Publishers, 1999.

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, pp. 142 – 152, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evaluating the Feasibility of Method Engineering for the
Creation of Agent-Oriented Methodologies

Brian Henderson-Sellers

Faculty of Information Technology,
University of Technology, Sydney,

PO Box 123, Broadway,
NSW 2007, Australia

brian@it.uts.edu.au

Abstract. In the context of agent-oriented methodologies, previous work has
created a number of specific method fragments for use with the OPF metamodel
and repository. These have been derived from an analysis of a large number of
stand-alone agent-oriented methodologies. In order to evaluate the feasibility of
this method engineering approach, a different AOSE methodology has been
selected so that a scientific experiment could be undertaken. The hypothesis
that the agent-enhanced OPF repository could be used without change to
engineer any other AOSE methodology was proved false since two tasks for the
creation of agents based on role modelling needed to be added to the repository.

1 Introduction

Method engineering requires the provision of a repository of method fragments from
which industry strength methodologies can be created. For this to be successful, the
repository contents need to be comprehensive in their support of a particular
paradigm. Over the last two years, studies have been undertaken of what method
fragments are needed to fully support agent-oriented software engineering (AOSE)
methodologies. These were added to a repository that was originally not agent-
oriented – the OPF repository based on an underpinning metamodel [1].

The fragments currently in the agent-enhanced OPF repository were gleaned from
a number of AOSE methods. It is thus reasonable to anticipate that the fragments in
the repository are sufficient for the support of these methods. As in a scientific
experiment where a theory or numerical model is created by using data from n
sources and then a set of data from an n+1th source is used for validation, here we
propose the null hypothesis that the OPF repository is now comprehensive with
respect to current AO methodological thinking and test this assumption by an
evaluation of the mappings to the methodology proposed in [2], a methodology not in
the original data set used to construct the repository enhancements.

2 A Method Engineering Framework – Based on OPF

Methodologies for industry may be a single, comprehensive and inter-related set of
work units, work products and actors to perform the embedded software development

Evaluating the Feasibility of Method Engineering for the Creation of AO Methodologies 143

process. Since it is generally recognized (e.g. [3]) that one size doesn’t fit all, many
researchers have sought for alternative approaches and frameworks. One of the most
promising is that of method engineering (ME) [4,5]. In this approach, a
“personalized” method is created for a specific organization, a specific division or a
specific project by bottom-up construction from a number of method fragments [6].
These fragments have been pre-constructed and placed in a repository from which
they can be selected by the organization’s method engineer. Method fragments may
describe a particular Task, such as AND/OR decomposition, or a particular Work
Product, such as an Agent structure diagram etc., each of which is defined in terms of
a clearly specified and standardized interface. The creation of these fragments may
follow one of several paths [7,8] and ideally should be based upon an underlying
conceptual model as embodied in a methodology metamodel [9].

While ME has been used in traditional and object-oriented (OO) methodologies for
some years, it is only recently that the approach has been applied to the
fragmentization of agent-oriented methodologies. In a precursor to the FAME
(Framework for Agent-oriented Method Engineering) project, we have utilized the
OPEN Process Framework (OPF) [1] – in particular, its underpinning metamodel and
initially OO-based repository (Figure 1) – as a proof of concept. For later work in
FAME (a funded three-year project: 2004-2006/7), we will use the OPF-based work
for guidance and inspiration as we identify not only appropriate metamodel for agent-
oriented modelling languages (see preliminary work in [10,11]) but also the process
standard of AS4651 [12] and, subsequently, its ISO incarnation. Here, we report on
the final test of the OPF-based research project.

OPF
Metamodel

Repository of
method fragments

OPF
Metamodel

Repository of
method fragments

OPF
Metamodel

Repository of
method fragments

OPF
Metamodel

Repository of
method fragments

Construction guidelinesConstruction guidelinesConstruction guidelinesConstruction guidelines

OPF
Metamodel

Repository of
method fragments

OPF
Metamodel

Repository of
method fragments

OPF
Metamodel

Repository of
method fragments

OPF
Metamodel

Repository of
method fragments

Construction guidelinesConstruction guidelinesConstruction guidelinesConstruction guidelinesConstruction guidelinesConstruction guidelinesConstruction guidelinesConstruction guidelines

Fig. 1. The OPEN Process Framework consists of a metamodel from which is generated a large
number of method fragments stored in repository. The OPF also includes a set of construction
guidelines (not discussed here).

In the OPF pilot, we have augmented the OPF repository of method fragments by
those derived from a large number of stand-alone agent-oriented methodologies,
namely MaSE, Prometheus, Gaia, Cassiopeia, Agent Factory, MAS-Common-KADS,
Tropos, PASSI and CAMLE. These span the various kinds of MAS identified in [14]
– those based on object technology, either role-based or non-role-based, and those
based on Knowledge Engineering (for details see summary in [13] – also Table 1).

Each of these fragments corresponds to one of the classes in the OPF metamodel.
There are five major, top-level classes: Work Unit, Work Product, Producer, Stage
and Language (Figure 2). There are also three important subtypes of Work
Unit. These are Activity, Task and Technique. It was found, when undertaking the

144 B. Henderson-Sellers

Table 1. Summary of OPF method fragments previously gleaned from a number of AO
methodologies. Listed are (a) new Tasks, (b) new Techniques and (c) new Work Products.
Source documents referred to are [15-24] (after [25]).

(a) New Tasks and (indented) associated subtasks Refs
Construct agent conversations
Construct the agent model
Define ontologies
Design agent internal structure
Define actuator module
Design perceptor module

[15]
[15-18]
[19]
[16,19,20]
[19]
[19]

Determine agent communication protocol [21]
Determine agent interaction protocol [21]
Determine control architecture [21]
Determine delegation strategy [21]
Determine reasoning strategies for agents [21]
Determine security policy for agents [21]
Determine system operation [21]
Gather performance knowledge [21]
Identify emergent behaviour [21]
Identify system behaviours [18]
Identify system organization
Define organizational rules
Define organizational structures
Determine agents’ organizational behaviours
Determine agents’ organizational roles
Identify sub-organizations

[21]
[17]
[17]
[18]
[18]
[17]

Model actors [22]
Model agent knowledge [20]
Model agent relationships [20]
Model agents’ roles
Model responsibilities
Model permissions

[21]
[17]
[17]

Model capabilities for actors [22]
Model dependencies for actors and goals [22]
Model goals
Model plans

[22]
[22]

Model the agent’s environment
Model environmental resources
Model events
Model percepts

Specify shared data objects

[21]
[17]
[16]
[16]
[16]

Undertake agent personalization [21]

Subtask to Create a System Architecture:
Determine MAS infrastructure facilities

[19,20]

Evaluating the Feasibility of Method Engineering for the Creation of AO Methodologies 145

(b) New Techniques Ref New Techniques Ref
Activity scheduling
Agent delegation strategies
Agent internal design
AND/OR decomposition
Belief revision of agents
Capabilities identification
& analysis
Commitment management
Contract nets
Contributions analysis
Control architecture
Deliberative reasoning:
Plans

[21]
[21]
[15,16]
[22]
[21]
[22]

[21]
[21]
[22]
[21]
[21]

Environmental evaluation
Environmental resources modelling
FIPA KIF compliant language
Learning strategies for agents
Market mechanisms
Means-end analysis
Organizational rules specification
Organizational structure
specification
Performance evaluation
Reactive reasoning: ECA rules
Task selection by agents
3-layer BDI model

[23]
[17]
[23]
[21]
[21]
[22]
[17]
[17]

[21]
[21]
[21]
[23]

(c) New Work Products Ref New Work Products Ref
Agent acquaintance diagram
Agent class card
Agent design model
Agent overview diagram
Agent structure diagram
CAMLE behaviour diagram
CAMLE scenario diagram
Caste collaboration diagram
Caste diagram
Coupling Graph
Domain knowledge ontology
Functionality descriptor
Goal hierarchy diagram
Inference diagram

[16,17]
[20]
[20]
[16]
[16]
[24]
[24]
[24]
[24]
[18]
[20]
[16]
[15]
[20]

Network design model
Platform design model
Protocol schema
PSM specification
Role diagram
Role schema
Service table
Task hierarchy diagram
Task knowledge specification
Task textual description
(Tropos) Actor Diagram
(Tropos) Capability Diagram
(Tropos) Goal Diagram
(Tropos) Plan Diagram

[20]
[20]
[16,17]
[20]
[15]
[17]
[17]
[20]
[20]
[20]
[22]
[22]
[22]
[22]

augmentation of OPF’s repository with AO-focussed fragments, only a small number
of Activities were needed and that most of the fragments were instances of the
metaclasses Task, Technique and WorkProduct.

Additions to the repository were undertaken incrementally so that for each
successive AO methodology analysis, fewer and fewer new fragments were
identified. In the penultimate analysis (that of PASSI [26]), only one new task was
identified – although as with all other methodologies a significant number of
(potentially overlapping) work products were proffered. Now, in this paper, as a
check for closure we test the hypothesis that the OPF repository is now replete and
capable of modelling and representing the process aspects any other AO methodology
(the suites of diagrams used are still too varied between AO methodologies – they
require separate, special treatment). To do this, we take the role-focussed
methodological work of Kendall and colleagues [1,27-30], identifying the appropriate
fragments contained in this approach and then evaluating whether the enhanced OPF
repository can adequately model these.

146 B. Henderson-Sellers

Work
Products

Producers

Work
Units

Stages

Languages

Essential
Process

Components

produce

are
documented

using

create
evaluate

iterate
maintain

perform

provide
macro organization

to the

Work
Products

Producers

Work
Units

Stages

Languages

Essential
Process

Components

produce

are
documented

using

create
evaluate

iterate
maintain

perform

provide
macro organization

to the

Fig. 2. The five major classes in the OPF metamodel

3 Evaluation Test – The Role-Based Methodology of Zhang et al.

A standard research methodology in science in the context of model building and
model validation is to create a (often numerical) model, exemplifying some
hypothesis, by incorporating a number of data sets. The model is then checked and
modified until it is in accord with these data sets. However, this only provides an
internal validity and consistency check. What then happens is that a “validation”
experiment is conducted in which an objective assessment is undertaken against a
new data set i.e. one that did NOT contribute to the model building and internal
validation.

This is precisely the methodology used here. We have created an agent-oriented
method engineering framework by using a large number of data sets. Here, each data
set corresponds to our analysis of a single AO methodology as indicated in the
references to Table 1. Having accomplished this creation stage, we now seek an
external validation by identifying an AOSE methodology that has not yet been used in
the creation of the agent-enhanced OPF repository. One such methodology is that of
Zhang et al. [2] (referred to henceforth as the ZKJ methodology). This is a role-based
methodology that falls clearly within the range of AO methodologies already analysed
(as discussed in Section 2)1.

The ZKJ methodology focusses on the identification of goals and roles. It
represents the process by a set of ten “activities”, each having an input, an output, a
control and a mechanism. Four of these activities are grouped as “object-oriented
analysis activities”, the rest being focussed on agent goals and roles.

1 Another possible choice, Adelfe [31], addresses adaptive MASs and is thus deemed out of

scope for the present study.

Evaluating the Feasibility of Method Engineering for the Creation of AO Methodologies 147

The four object-oriented activities are Identify Actors, Identify Use Cases, Identify
Objects and Determine Business Objects. These are said to be derived from [32].
There are six activities focussed on roles and goals. These are named, in this
approach, Identify Goals, Develop Goal Cases and Identify Beliefs, Identify Roles,
Assign Goals to Responsibilities, Assign and Compose Roles, and Identify Composite
Roles.

Use cases, once identified, are used as input to the activity of Identify Goals. A
goal in ZKJ is said to be a desired state that identifies what is to be done whereas an
activity is viewed as a process that says how things are to be done. Identification of
goals from use cases follows an iterative goal decomposition strategy as described in
[30]. A variation on the use case is used to describe the interactions of the agents in
the context of a specific goal – this is called a “goal case” and seen as central to agent
identification describing as they do the set of plans that an agent will finally execute
to achieve a particular goal. Here a single activity is used to develop these goal cases
and, at the same time, identify the agent’s beliefs, said to represent the knowledge that
an agent possesses. Although coupled, the granularity of such a linking of two
essentially different activities causes a potential clash with the atomic nature of the
OPF repository-held method fragments (see Section 4).

Role identification is an important activity in the ZKJ methodology. Roles are seen
as able to execute a set of activities in order to fulfil one or more responsibilities.
Roles have access to resources and are identified from patterns of interaction and
collaboration. The resultant set of roles is documented using a variant of the well-
known CRC card [33], here called the Role, Responsibility and Collaboration (RRC)
card. Roles are then linked to goals with the activity named Assign Goals to
Responsibilities. This uses a goal hierarchy diagram and results in a set of RGC
(Responsibility, Goal, Collaborator) cards – another CRC variant. The next activity,
Assign and Compose Roles takes the results of the previous two activities to create
specifications for agents in terms of their goals, goal cases, collaborators and beliefs.
This is expressed with a GCB card (Goals, Goal Cases, Collaborators and Beliefs)
used in the subsequent implementation stages. The last ZKJ activity, Identify
Composite Roles, is not separately described and would appear to have serious
overlaps with the activity of Assign and Compose Roles. With this lack of definitive
information in [32], we remove it from the “test data” suite for this evaluation.

4 Test Results

To evaluate whether the agent-enhanced OPF repository provides all the method
fragments needed for a method engineer to construct the ZKJ methodology, we need
to ensure that all the method fragments described in Section 3 exist in the enhanced
OPF repository (Table 1) and to provide a clear mapping from the OPF-based
fragments to the new methodology. As noted earlier, we focus on the process-
focussed method elements, primarily Activity, Task and Technique. In broad terms, a
ZKJ activity maps to a Task in the OPF. However, since, according to [2], a ZKJ
activity defines how things are to be done, there would appear to be a convolution of
both an OPF Task and its corresponding Technique(s) into the ZKJ activity.
Nevertheless, the descriptions and examples in [2] tend to focus on the task-like
aspects rather than the technique-like aspects (using the OPF style of terminology).

148 B. Henderson-Sellers

 This mapping is provided in Table 2. Here we see that the object-oriented activities
of the ZKJ methodology map directly to method fragments (tasks) in the OPE
repository. Of more interest here are the agent-focussed fragment mappings. Of the
five activities from [2] only two are well supported, one in a many to one case and
two are not. Thus the hypothesis is negated, indicating that a further iteration is
required in adding method fragments to the OPF repository. Although we have shown
previously [15-24] that there are sufficient fragments to recreate those particular
methodologies i.e. those used in enhancing the OPF repository, our current study has
highlighted areas of deficiency that must be remedied. We thus undertake further
analysis in order to recommend yet further enhancements to the OPF repository.

Table 2. Mapping from fragments existing in the enhanced OPF repository to fragments
described in the paper of Zhang et al. [2]

OPF repository fragment Zhang et al. fragment

Model actors Identify actors
Construct the object model with
Technique: Scenario development

Identify use cases

Identify CIRTs Identify objects
Develop business object model (BOM) Identify business objects
Model goals Identify goals
Model plans
Model agent knowledge
Technique: Scenario development

Develop goal cases and identify beliefs

Model agent roles Identify roles
 Assign goals to responsibilities
 Assign and compose roles

Notes: CIRT stands for Class, Instance, Object, Type and is the generic
“classifier” advocated in the OPF.

 In particular, we note that the ZKJ methodology’s strong emphasis on roles
identifies some AOSE-focussed tasks that none of the other methodologies either
undertake or stress. The existing support in the agent-enhanced repository in the area
of roles follows one standard viewpoint i.e. that agents are identified, followed by
identification plus allocation of appropriate roles. This is a very object-oriented
viewpoint where the entity (class, object or agent) is the main concept being modelled
and roles are typically seen as incidental. In agent-oriented approaches there is a
strong conviction by many AOSE methodologists that roles are really the
predominant concept that is to be modelled [35-37]. In this viewpoint, roles come first
and, having identified roles and perhaps associated goals and responsibilities (as
here), then roles are composed into agents. Without entering into a debate about the
pros and cons of such a viewpoint, it is certainly necessary to add new method
fragments that permit such a viewpoint to be supported. Using the standard OPF
interface description style, we thus propose the addition of the following two tasks:

Evaluating the Feasibility of Method Engineering for the Creation of AO Methodologies 149

TASK NAME: Assign goals to responsibilities
Typical supportive techniques: Agent internal design, responsibility

identification, role assignment, 3-layer BDI model
Explanation: Using a goal hierarchy diagram as input and beginning at the

leaves, each goal is assigned to a particular responsibility and collaborations
between roles identified. The output is a RGC (Responsibility, Goal,
Collaboration) card showing relationships between responsibilities, goals and the
role’s collaborators.

TASK NAME: Assign and compose roles
Typical supportive techniques: Agent internal design, composition structures,

responsibility identification, role assignment, 3-layer BDI model
Explanation: Using the RGC cards, responsibilities and roles can now be

composed together to identify agents, along with the agent’s goals and
collaborator. The steps to be undertaken involve

• Assigning roles for the design of the agent, composing them as needed
• Assigning roles to create agents, bearing in mind coupling and cohesion
• Possibly splitting and/or merging, based on the insight that the goals
form the basic expertise of the agents.

 In respect of the many-to-one mapping in Table 2, it is worth noting that a goal
case is a specific form of a use case attached to a goal describing a set of plans. There
is some support for this via the Task: Model plans as well as Technique: Scenario
development. The notion of a goal case, per se, is, however, novel.
 Finally, although we have stated that the work products are out of scope for this
study, it is interesting to note the extensive use made of some variant of the CRC card
in the ZKJ methodology. In the original OPF repository, Role Responsibility
Collaborator cards were used [34] and goals were added in the Agent Class Card
work product introduced in [23].

5 Future Extensions – Replacement of OPF by SMSDM

Since this study has highlighted deficiencies in the comprehensiveness of the method
fragments in the enhanced OPF repository, further evaluative studies are needed.
Another AOSE methodology, outside of the set so far used, will be identified and the
above experiment repeated – iteratively until closure is reached. However, as the
FAME project takes over from this prototype project using OPF, we intend to
undertake a major replacement of the OPF metamodel and repository contents by a
new, standard metamodel (SMSDM), as documented in [12]. Since this has a different
conceptual architecture than OPF, some revision of both the conceptual basis and the
generated fragments will ensue. One issue for future research is that of the appropriate
granularity. For instance, as seen here, using a single activity/task, here the Develop
Goal Cases and Identify Beliefs activity in ZKJ which needs three tasks to support it
in OPF, indicates some problems with consistent granularity levels. This will also be
investigated in an upcoming paper [in preparation].

150 B. Henderson-Sellers

Acknowledgements

I wish to acknowledge financial support from the University of Technology, Sydney
under their Research Excellence Grants Scheme and from the Australian Research
Council (grant number DP0451213). Thanks also to Cesar Gonzalez-Perez for his
useful comments on an earlier draft. This is Contribution number 05/08 of the Centre
for Object Technology Applications and Research.

References

1. Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework. AN
Introduction, Addison-Wesley, Harlow, Herts, UK

2. Zhang, T.I., Kendall, E. and Jiang, H., 2002, An agent-oriented software engineering
methodology with applications of information gather systems for LLC, Procs AOIS-2002,
Toronto, May 2002, 32-46

3. Cockburn, A., 2000, Selecting a project’s methodology, IEEE Software, 17(4), 64-71
4. Kumar, K. and Welke, R.J., 1992, Methodology engineering: a proposal for situation-

specific methodology construction, in Challenges and Strategies for Research in Systems
Development (eds. W.W. Cotterman and J.A. Senn), J. Wiley, Chichester, 257-269

5. Brinkkemper, S., 1996, Method engineering: engineering of information systems
development methods and tools, Inf. Software Technol., 38(4), 275-280.

6. Ralyté, J., Rolland, C. and Deneckère, R., 2004, Towards a meta-tool for change-centric
method engineering: a typology of generic operators, Procs. CAiSE 2004, LNCS 3084,
Springer, 202-218

7. Ralyté, J. and Rolland, C., 2001, An assembly process model for method engineering,
Advanced Information Systems Engineering), LNCS2068, Springer, 267-283.

8. Ralyté, J., 2004, Towards situational methods for information systems development:
engineering reusable method chunks, Procs. 13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and Education Vilnius Gediminas Technical
University, Vilnius, Lithuania, 271-282

9. Henderson-Sellers, B., 2003, Method engineering for OO system development, Comm.
ACM, 46(10), 73-78

10. Beydoun, G., Gonzalez-Perez, C., Low, G. and Henderson-Sellers, B., 2005, Synthesis of a
generic MAS metamodel, Procs. SELMAS2005 (eds. A. Garcia, R. Choren, C. Lucena, A.
Romanovsky, T. Holvoet and P. Giorgini), IEEE Digital Library, IEEE, Los Alamitos, CA,
USA, 27-31

11. Beydoun, G., Gonzalez-Perez, C., Low, G. and Henderson-Sellers, B., 2005, Towards
method engineering for multi-agent systems: a preliminary validation of a generic MAS
metamodel, Procs. AOSDM'2005 at SEKE'05, Taipei, 14-16 July 2005

12. Standards Australia, 2004, Australian Standard 4651-2004: Standard metamodel for
software development methodologies, 72pp

13. Henderson-Sellers, B., 2005, Creating a comprehensive agent-oriented methodology -
using method engineering and the OPEN metamodel, Chapter 13 in Agent-Oriented
Methodologies (eds. B. Henderson-Sellers and P. Giorgini), Idea Group, Hershey, PA,
USA

14. Tran, Q.-N.N., Low, G.C. and Williams, M.-A., 2005, A preliminary comparative feature
analysis of multi-agent systems development methodologies, Agent-Oriented Information
Systems II, LNAI 3508, Springer, 157-168

Evaluating the Feasibility of Method Engineering for the Creation of AO Methodologies 151

15. Tran, Q.-N.N., Henderson-Sellers, B. and Debenham, J. 2004, Incorporating the elements
of the MASE methodology into Agent OPEN, Procs. ICEIS2004 - Sixth International
Conference on Enterprise Information Systems, INSTICC Press, Volume 4, 380-388

16. Henderson-Sellers, B., Tran, Q.-N.N. and Debenham, J., 2004, Incorporating elements
from the Prometheus agent-oriented methodology in the OPEN Process Framework, Procs.
AOIS@CAiSE2004, Riga Technical University, Latvia, 370-385

17. Henderson-Sellers, B., Debenham, J. and Tran, Q.-N.N., 2004, Adding agent-oriented
concepts derived from GAIA to Agent OPEN, Procs. 16th International Conference,
CAiSE 2004, LNCS 3084, Springer, 98-111

18. Henderson-Sellers, B., Tran, Q.-N.N. and Debenham, J., 2004, Method engineering, the
OPEN Process Framework and Cassiopeia, The Symposium on Professional Practice in AI
(eds. E. Mercier-Laurent and J. Debenham), IFIP, 263-272

19. Henderson-Sellers, B., Tran, Q.-N.N., Debenham, J. and Gonzalez-Perez, C., 2005, Agent-
oriented information systems development using OPEN and the Agent Factory, Procs. ISD
2004, Vilnius, 9-11 September 2004, Kluwer, 149-160

20. Tran, Q.-N.N., Henderson-Sellers, B., Debenham, J. and Gonzalez-Perez, C., 2004, MAS-
CommonKADS and the OPEN method engineering approach, Procs. ICITA, Sydney, July
4-7 2005, IEEE Computer Society Press

21. Debenham, J. and Henderson-Sellers, B., 2003, Designing agent-based process systems -
extending the OPEN Process Framework, Chapter VIII in Intelligent Agent Software
Engineering (ed. V. Plekhanova), Idea Group Inc., Hershey, PA, USA, 160-190

22. Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2004, Enhancing Agent OPEN with
concepts used in the Tropos methodology, Engineering Societies in the Agents World IV.
4th International Workshop, ESAW' 2003, LNAI 3071, Springer, 328-345

23. Henderson-Sellers, B. and Debenham, J., 2003, Towards OPEN methodological support
for agent-oriented systems development, Procs. First International Conference on Agent-
Based Technologies and Systems, University of Calgary, Canada, 14-24

24. Gonzalez-Perez, C., Henderson-Sellers, B., Debenham, J., Low, G.C. and Tran, Q.-N.N.,
2004, Incorporating elements from CAMLE in the OPEN repository, Intelligent
Information Process II, Springer, 55-64

25. Henderson-Sellers, B., 2005, From object-oriented to agent-oriented software engineering
methodologies, Software Engineering for Multi-Agent Systems - Volume III Research
issues and practical applications, LNCS 3390, Springer, 1-18

26. Henderson-Sellers, B., Debenham, J., Tran, N., Cossentino, M. and Low, G., 2005,
Identification of reusable method fragments from the PASSI agent-oriented methodology,
Procs. AOIS@AAMAS2005, 26 July 2005, 89-96

27. Kendall, E.A., Malkoun, M. and Jiang, C., 1995, A methodology for developing agent
based systems for enterprise integration, EI’95. IFIP TC5 SIG Working Conf. on Modeling
and Methodologies for Enterprise Integration, Heron Island, Queensland, Australia

28. Kendall, E.A., Malkoun, M.T. and Jiang, C., 1997, Multiagent system design based on
object-oriented patterns, J. Obj.-Oriented Prog. (ROAD), 10(3), 41-47

29. Kendall, E.A., 1998, Agent roles and role models: new abstractions for multi-agent system
analysis and design, Int. Workshop on Intelligent Agents in Information and Process
Management, German Conference on AI, Bremen, Germany, September 1998

30. Kendall, E.A., Krishna, M., Pathak, C.V. and Suresh, C.B., 1998, Patterns of intelligent
and mobile agents, Agents ’98, May 1998.

31. Bernon, C., Gleizes, M.-P., Picard, G. And Glize, P., 2002, The ADELFE methodology for
an intranet system design, Procs. AOIS2002, Univ. Toronto, 27-28 May 2002, 1-15

152 B. Henderson-Sellers

32. Jacobson, I., Christerson, M., Jonsonn, P. and Overgaard, J., 1992, Object-Oriented
Software Engineering – A Use Case Driven Approach, Addison Wesley

33. Beck, K. and Cunningham, W., 1989, A laboratory for teaching object-oriented thinking,
Procs. 1989 OOPSLA Conference, ACM SIGPLAN Notices, 24(10), 1-6

34. Firesmith, D.G., Henderson-Sellers, B. and Graham, I., 1997, OPEN Modeling Language
(OML) Reference Manual, SIGS Books, New York, NY, USA, 271pp

35. Odell, J.J., Parunak, H.V.D. and Fleischer, M., 2003, The role of roles in designing
effective agent organizations, Software Engineering for Large-Scale Multi-Agent Systems.
Research Issues and Practical Applications, LNCS 2603, Springer, 27-38

36. Koning, J.-L. and Hernandez, I.R., 2004, Limitations in AUML’s roles specification,
Intelligent Information Processing II, Springer, 79-82

37. Odell, J., Nodine, M. and Levy, R., 2004, A metamodel for agents, roles, and groups,
Agent-Oriented Software Engineering V. 5th International Workshop. AOSE 2004, LNCS
3382, Springer, 78-92

Abstract. This paper focus on compatibility and substitutability of roles in
MAS. We propose a formal specification of role-based interactions components
together with their composition. We investigate compatibility of roles, and pro-
pose two compatibility relations, characterised to their degree of change by
property (safety and liveness) preservation. Our approach is enhanced with the
definition of behavioural subtyping relations, related to the principle of substi-
tutability. We show the existing link between compatibility and substitutability
concepts, and namely their combination, which seems to be necessary when we
deal with incremental design of role-based complex interactions. The suitability
of our approach is shown by its application to an interaction protocol example.

1 Introduction

Roles are basic buildings blocks for defining the organization of multi-agent systems,
together with the behavior of agents and the requirements on their interactions [5].
Modeling interactions by roles allows a separation of concerns by distinguishing the
agent-level and system-level concerns with regard to interaction. An important charac-
teristic of real-world agent systems is that an agent may have to change the role it
plays over time. If some flexibility constraints require some variety of these roles,
agents have to adapt their architecture and functionality as they adopt new roles.
These additional capabilities must be dynamically acquired because only a few roles
can be hard-coded into an agent. Besides, while designing the overall organization of
a system, it is valuable to reuse roles previously defined for similar applications, espe-
cially when the structure of interaction is complex. To this end, roles must be speci-
fied in an appropriate way, since the composition of independently developed roles
can lead to the emergence of unexpected interaction among the agents.

Component Based Development (CBD) [11] promises to facilitate the construction
of large-scale applications by supporting the composition of simple building blocks
into complex applications. In CBD, software systems are built by assembling compo-
nents already developed and prepared for integration. Therefore, the specification of
components is useful to both components users and components developers. The
specification provides a definition of the component’s interface and it must be precise
and complete for users; for developers, the specification of a component also provides

Formalizing Compatibility and Substitutability of
Rolebased Interactions Components in Multi-agent

Systems

Nabil Hameurlain

LIUPPA Laboratory, Avenue de l’Université, BP 1155, 64013 Pau, France
nabil.hameurlain@univ-pau.fr

http://www.univ-pau.fr/~hameur

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 153–162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

an abstract definition of its internal structure. The verification of such a well-
established specification is needed for a safe composition of systems from compo-
nents, enabling the effective development of reliable component-based software sys-
tems.

It appears that the facilities brought by the CBD approach fit well the issues raised
by the use of roles in MASs. Although the concept of role has been exploited in sev-
eral approaches [1, 2, 3, 4, 5, 13] in the development of agent-based applications, no
consensus has been reached about what is a role and how it should be specified and
implemented. In our previous work, we have presented RICO [6] (Role-based Interac-
tions COmponents) model for specifying complex interactions based on roles in open
MAS. It proposes a specific definition of role, which is not in contrast with the ap-
proaches mentioned above, but is quite simple and can be exploited in specifications
and implementations. In RICO, when an agent intends to take a role, it creates a new
component (i.e. an instance of the component type corresponding to this role) and this
role-component is linked to its base-agent. Then, the role is enacted by the role-
component and it interacts with the role-components of the other agents.

In this paper, we focus on Petri nets-based specification of role components to-
gether with their compatibility and substitutability. We show the existing link between
compatibility and substitutability concepts, and namely their combination, which
seems to be necessary when we deal with incremental design of complex interactions.

The structure of the paper is as follows. Section 2 presents the basic definitions of
labelled Petri nets together with Components-nets formalism and their main proper-
ties. Section 3 gives a formal semantics for role-based interactions components and
their composition. In section 4 we provide two compatibility relations and their char-
acterisation by property preservation. In this section, we also propose two subtyping
relations and study the preservation of roles components compatibility to their degree
of change by the principle of substitutability [7]. An example of interaction protocol is
studied to illustrate our approach. In section 5 we present conclusion and related ap-
proaches.

Backgrounds on Labelled Petri nets. A marked Petri net N = (P, T, W, MN) consists
of a finite set P of places, a finite set T of transitions where P ∩ T = ∅, a weighting
function W : P ×T ∪ T ×P → N, and MN : P ⎯→ N is an initial marking. The preset
of a node x ∈ P ∪ T is defined as x= {y ∈ P ∪ T, W(y, x) ≠ 0}, and the postset of x
∈ P ∪ T is defined as x = {y ∈ P ∪ T, W(x, y) ≠ 0}. We denote as LN = (P, T, W,
MN, l) the (marked, labelled) Petri net in which the events represent actions, which can
be observable. It consists of a marked Petri net N = (P, T, W, MN) with a labelling
function l : T ⎯→ A ∪ {λ}, where A is the set of services, that is the alphabet of
observable actions, and {λ} denotes the special unobservable action, which plays the
usual role of an internal action. A transition t ∈ T is enabled under a marking M,
noted M (t >, if W(p, t) ≤ M(p) for each place p. In this case t may occur, and its oc-
currence yields the follower marking M', where M'(p) = M(p) - W(p, t) + W(t, p),

2 Component-Nets Formalism (C-Nets)

154 N. Hameurlain

noted M(t > M'. A sequence of actions w ∈ A* ∪ {λ} is enabled under the marking M
and its occurrence yields a marking M', noted M(w >> M', iff either M = M' and w =
λ or there exists some sequence σ ∈ T* such that l(σ) = w and M(σ > M'. The first
condition accounts for the fact that λ is the label image of the empty sequence of tran-
sitions. A marking is stable if no unobservable action λ is enabled: M stable if not
(M(λ >>). For a marking M, Reach (N, M) = { M'; ∃ σ ∈ T*; M(σ > M'} is the set of
reachable markings of the net N from the marking M.

In this paper, among the very numerous semantics, which may be used to compare
behaviour of roles, only failure and bisimulation semantics will deal with (see [9] for a
comparative study of these relations). The failure semantics involve linear case deal-
ing with the safety property (e.g. deadlock-freeness), whereas bisimulation semantics
are the finest and involve the branching case dealing with the liveness property (e.g.
the success termination).

Definition 2.1 (Failures) Let N = (P, T, W, MN, l) be a labelled net. Then the failures
of the net N on T' is F(N, T') = {(σ, S); σ ∈ T*, S ⊆ T', and there exists some marking
M such that MN(σ > M, and ∀ t ∈ S, not (M(t >)}. The label image of the failures of
N is F(N) = l(F(N, T)) = {(l(σ), X); X ⊆ A, and ∀ a ∈ X, not (M(a>>), for all M sta-
ble such that MN(σ > M}.

Definition 2.2 (Bisimulation) Let N = (P, T, W, MN, l) and N' = (P', T', W', MN', l') be
two labelled nets. We say that N and N' are bisimilar, noted N BiSim N', iff there exists
a bisimulation relation RR ⊆ Reach (N, MN) x Reach (N', MN') such that :
1. (MN, MN') ∈ RR,
2. ∀ (M1, M'1) ∈ RR, ∀ a ∈ A ∪ {λ}, ∀ M2, M1(a>> M2 ∃ M'2, M'1(a>> M'2 and
(M2, M'2) ∈ RR,
3. and vice versa: ∀ a ∈ A ∪ {λ}, ∀ M'2, M'1(a>> M'2 ∃ M2, M1(a>> M2 and (M2,
M'2) ∈ RR.

Components nets (C-nets). Component-nets formalism [12] combines Petri nets with
the component-based approach. Semantically, a Component-net involves two special
places: the first one is the input place for instance creation of the component, and the
second one is the output place for instance completion of the component. A C-net (as
a server) makes some services available to the nets and is capable of rendering these
services. Each offered service is associated to one or several transitions, which may be
requested by C-nets, and the service is available when one of these transitions, called
accept-transitions, is enabled. On the other hand it can request (as a client) services
from other C-net transitions, called request-transitions, and needs these requests to be
fulfilled. For the simplicity, and in order to make our approach more general, we will
specify C-nets by labelled classical Petri nets instead of high level (e.g. Coloured)
Petri nets.

Definition 2.3 (C-net) Let CN = (P ∪ {I, O}, T, W, MN, lProv, lReq) be a labelled Petri
net. CN is a Component-net (C-net) if and only if:

Formalizing Compatibility and Substitutability of Rolebased Interactions Components 155

l. The labelling of transitions consists of: lProv : T ⎯→ Prov ∪ {λ}, where Prov ⊆ A
is the set of provided services, and lReq : T ⎯→ Req ∪ {λ}, where Req ⊆ A is the set
of required services.
2. Instance creation: the set of places contains a specific Input (source) place I, such
that I = ∅,
3. Instance completion: the set of places contains a specific Output place O, such that
O = ∅.
4. Visibility: for any t ∈ T such that t ∈ {I ∪ O}: l(t) ∈ A.

The first requirement allows to focusing either upon the server side of a C-net or
its client side. The last requirement states that all the transitions related to the Input
place I, and to the Output place O, are necessarily observable actions. They give input
(parameters) and output (results) of the performed net.

Notation. We denote by [I] and [O], which are considered as bags, the markings of
the Input and the Output place of CN, and by Reach (CN, [I]), the set of reachable
markings of the component-net CN obtained from its initial marking MN within one
token in its Input place I.

Definition 2.4 (completion + reliability = soundness) Let CN = (P ∪ {I, O}, T, W,
MN, l) be a Component-net (C-net). CN is said to be sound if and only if the following
conditions are satisfied:
1.Completion option: for any reachable marking M ∈ Reach(CN, [I]), [O] ∈
Reach(CN, M).
2.Reliability option: for any reachable marking M ∈ Reach(CN, [I]), M ≥ [O] implies
M = [O].

Completion option states that, if starting from the initial state, i.e. activation of the
C-net , it is always possible to reach the marking with one token in the output place O.
Reliability option states that the moment a token is put in the output place O corre-
sponds to the termination of a C-net without leaving dangling references.

Operations on C-nets. To define our compatibility and subtyping relations, we need
two basic operations on the C-nets: abstraction of services, and asynchronous compo-
sition, used for testing type substitutability together with compatibility.

- The abstraction operator λ labels as not observable and internal actions, some tran-
sitions of a Labelled C-net. It introduces new non-stable states, from which the refusal
sets are not taken into account for the failure semantics. Formally, given a C-net N =

(P, T, W, MN, l), for each H ⊆ A, λH(N) = N' = (P, T, W, MN, l') such that l'(t) = l(t) =
a, if t ∈ T and a ∈ A \ H, l'(t) = λ else.
- The parallel composition operator ⊕ : C-net × C-net ⎯→ C-net computes the set of
parallel compositions of traces, interleaving actions. The composition ⊕ is made by
communication places allowing interaction through observable services in asynchro-
nous way. Given a client C-net and a server C-net, it consists in connecting, through
the communication places, the request and accept transitions having the same service

156 N. Hameurlain

names: each accept-transition of the server is provided with an entry-place for receiv-
ing the requests/replies. Then, the client C-net is connected with the server C-net
through these communication places by an arc from each request-transition towards
the suitable entry-place and an arc from the suitable entry-place towards each accept-
transition.

Formal Specification of Role-based Interactions Components. In our RICO model
[6], a role component is considered as a component providing a set of interface ele-
ments (either attributes or operations, which are provided or required features neces-
sary to accomplish the role’s tasks), a behavior (interface elements semantics), and
properties (proved to be satisfied by the behavior). Role components allow a proper
means for modelling and specifying complex interactions. For instance considering
role-based interactions components as the active members of protocols facilitates the
modeling of complex interaction protocols, especially open and concurrent ones.
Thus, an agent can play one or more roles at the same time in different conversations
(protocols occurrences), and each participation is managed by a specific component.

Definition 3.1 (Role Component) A Role Component RC for a role ℜ is a four-tuple
RC = (Behav, Var, Serv, Prop), where,
• Behav is a C-net describing the life-cycle of RC.
• Var is a set of variables, a list of role components identities in the system that RC

knows and with which it may interact, together with attributes referenced by the
properties defined in Prop.

• Serv is an interface through which RC interacts with other role components, for
instance messaging interface. It is a pair (Req, Prov), where Req is a set of re-
quired services, and Prov is the set of provided services by RC, and more precisely
by Behav.

• Prop is a set of safety and liveness properties [8] that are defined on Serv and Var,
and have been verified on Behav. Safety properties are invariants that state: “noth-
ing bad happens”. In contrast, liveness properties state “something good happens”.
A property is included in Prop only when it is verified.

Definition 3.2 (Role Components composition) A Role (Component), RC = (Behav,
Var, Serv, Prop), can be composed from a set of primitive Role-Components, RCi =
(Behavi, Vari, Servi, Propi), i = 1, …, n, noted RC = RC1 ⊗… ⊗RCn, as follows:

• Behav = Behav1⊕ …⊕ Behavn.
• Var ⊆ ∪Vari, i = 1, …, n. A variable in ∪Vari is included in Var if and only if this

variable is a role components identity or referenced by the properties defined in
Prop.

• Serv = (Req, Prov) such that Req (or Prov, respectively) ⊆ ∪Reqi (or ∪Provi), i =
1, …, n. A service in ∪Reqi, (or ∪ Provi) i = 1, …, n is included in Req (or Prov)

if and only if this service may be used by RC, when RC interacts with other Role-
Components.

3 Specification of Role-Based Interactions as Components

Formalizing Compatibility and Substitutability of Rolebased Interactions Components 157

• Prop is a set of safety and liveness properties defined on Serv and Var, and have
been verified on Behav. When incremental verification is possible, the properties
in Prop may be verified by utilizing the properties in Prop1, …, Propn.

Role-Component fm_Vendor;
attributes

//list of bidder agents
bidders: list of agent*;

//the creator agent
vendor: agent*;
current-price: Currency;
services

// service provided
to_bid(); //receive a bid

//receive a payment
to_pay(p: Currency): Status;

// services required
//send the new price
to_announce(newp: Currency);
to_attribute();
to_give(f: fish);
Behavior

to_announce to_bid

to_attribute

to_pay

price

t4 t3

t5

t7

bid

to_announce

2*

t2

to_give

t6

to_announce

announce

t1

attribute

pay

give

Role-Component fm_Buyer;
attributes

//the creator agent
bidder: agent*;

//the vendor agent
vendor: agent*;
portfolio: Currency;
current-price: Currency;
services

// service required
to_bid();

to_pay(p: Currency): Status;

// services provided
to_announce(newp: Currency);
to_attribute();
to_give(f: fish);
Behavior

to_bid

to_attribute

to_give

portfolio

t4

t3

t6

bid

to_announce t2

to_pay

t5

to_announce

announce

t1

attribute

pay

receive

Fig 1. The Vendor (resp. Buyer) in the fish-market protocol as a role-component,
fm_Vendor (resp. fm_Buyer)

An Example: The Fish-market Auction Protocol. To illustrate our specification of
role-based interactions components, we will study an example of interaction protocols,
the fish-market auction protocol. In any conversation following the rules of this proto-
col, we have a single vendor, and a number of potential buyers, the bidders. The ven-
dor have a bucket of fish to sell for an initial price and announces
(to_announce()) this price. A buyer can make a bid (to_bid()) to signal its

.

158 N. Hameurlain

interest. If no (or more than one) buyer is interested, the vendor announces
(to_announce()) a new lower (or higher) price. When one and only one buyer is
interested, the vendor attributes (to_attribute()) fish to that bidder. Once the
bucket of fish is attributed, the vendor gives (to_give()) the fish and receives the
payment, while the buyer pays (to_pay()) the price and receives the fish. The
specifications of the Vendor and the Buyer as role components are given in figure 1.
For the simplicity, the behaviour parts (Behav) are specified by classical Petri nets
instead of high-level Petri nets (see [6] for complete specification by means of high-
level (Objects) Petri nets, and the verification of some safety and liveness properties
using Petri nets tools).

Compatibility of Roles. Compatibility deals with composition of roles and property
preservation. The first compatibility relation is named weak compatibility. It is a very
powerful way to guaranty the correctness of the role when reasoning about the dead-
lock-freeness. Sometimes this is not enough, and we want to claim that some liveness
properties are preserved by the role’s composition like the proper (or successful) ter-
mination, that is the soundness of the role’s behaviour. This is the aim of strong com-
patibility relation. These two proposed compatibility relations are symmetric.

Definition 4.1 (Weak and Strong compatibility) Let RC1 = (Behav1, Var1, Serv1,
Prop1) and RC2 = (Behav2, Var2, Serv2, Prop2) be two Role Components. Let RC =
RC1 ⊗ RC2 = (Behav, Var, Serv, Prop).
1. RC1 and RC2 are weakly compatible, noted RC1 WC RC2, iff Behav satisfy comple-
tion option.
2. RC1 and RC2 are strongly compatible, noted RC1 SC RC2, iff Behav is sound.

Example 1: As an example, let us take RC1 = fm_Vendor and RC2 = fm_Buyer shown
in figure 1. The behaviours of these two components are sound. Let RC = RC1 ⊗ RC2;
we can check that RC1 and RC2 are weakly and strongly compatible. Further, for in-
stance RC and RC2 are also related by the weak and the strong compatibility relation.

Property 4.1 (Hierarchy of compatibility relations) The compatibility relations

form a hierarchy: SC WC.

Substitutability of Roles. Our main interest is to define behavioural subtyping rela-
tions (reflexive and transitive) capturing the principle of substitutability [7], that is the
capacity to replace one role by another one without losing (agent) behaviours. The
first proposed subtyping relation, called weak subtyping, deals with refusals (failures)
services by the role component. Instead, the second one, called strong subtyping,
which is more restrictive than weak subtyping, is based on bisimulation semantics
dealing with the branching case. In our context, we use abstraction operation (operator
λ) to treat old and new services.

4

Formalizing Compatibility and Substitutability of Rolebased Interactions Components 159

Compatibility and Substitutability of Roles

Definition 4.2 (Weak and Strong subtyping) Let RC1 = (Behav1, Var1, Serv1,
Prop1), RC2 = (Behav2, Var2, Serv2, Prop2), and Servi = (Reqi, Provi), i=1,2, such that:
Prov1 ⊆ Prov2, Req2 ⊆ Req1, Var1 ⊆ Var2, and Prop1 ⊆ Prop2.
Let G =Prov2 \ Prov1 and H = Req1 \ Req2.
1.RC2 is weak subtype RC1, denoted RC2 ≤WS RC1, iff,

F(λG(Behav2)) = F(λH (Behav1)).
2.RC2 is strong subtype RC1, denoted RC2 ≤SS RC1, iff,

 λG(Behav2) BiSim λH (Behav1).

In both weak and strong subtyping relations, the (super-) role component RC1 can

be substituted by a (sub-) role component RC2 and the agent (component) will not be
able to notice the difference since : (a) the sub-role has a smaller set of required ser-
vices (Req2 ⊆ Req1) and a larger set of provided services (Prov1 ⊆ Prov2) than the
super-role, and (b) the attributes (variables) and the properties of the super-role are
preserved in the sub-role (Var1 ⊆ Var2 and Prop1⊆ Prop2), (c) the new provided ser-
vices added in the sub-role component RC2 as well as possible old required services of
RC1 are considered unobservable, through the abstraction operation, w.r.t. the failure
equivalence (resp. bisimulation) when we deal with weak (resp. strong) subtyping.

Example 2: As an example, let us take again RC1 = fm_Vendor, RC2 = fm_Buyer
shown in figure 1, and let RC = RC1 ⊗ RC2 be a Vendor’s Component implementa-
tion, that is Prov = Prov1 and Req = Req1. Let RC' = RC ⊗ RC2 be a Vendor/Buyer
Component, such that Prov' = Prov ∪ Prov2 = Prov1 ∪ Prov2 and Req' = Req = Req1,
where Prov' and Req' are respectively the provided and the required services of RC'.
So, we can check that RC' ≤SS RC.

Property 4.2 (Hierarchy of subtyping relations) Let ℜC = {RC1, …, RCn} be the
set of role components in the system. The subtyping relations ≤SS and ≤WS are reflex-

ive and transitive on ℜC, and form a hierarchy: ≤SS ≤WS.

As expected, the ≤H subtyping relations, where H∈ {WS, SS}, are compositional for

the composition operator ⊗; for instance, extending (resp. reducing) the provided
(resp. required) services of a role component also extends (resp. reduces) the provided
(resp. required) services of its composition with any role component.

Property 4.3 (Subtyping are compositional)
RC2 ≤H RC1 where H ∈ {WS, SS} ∀RC, RC ⊗ RC2 ≤H RC ⊗ RC1.

Compatibility and Substitutability of Roles. Substitutability guarantees the trans-
parency of changes of roles to agents. Namely, the compatibility between components
should not be affected by these changes. The following theorem study the preservation
of compatibility by substitutability, dealing with the two compatibility relations to-
gether with the two subtyping relations given in this paper.

160 N. Hameurlain

Theorem 4.1 (Compatibility preservation by substitutability)
1. RC2 ≤WS RC1 (∀Ag, Ag WC RC1 Ag WC RC2);
2. RC2 ≤SS RC1 (∀Ag, Ag SC RC1 Ag SC RC2).

5 Conclusion and Related Work

The aim of this paper is to integrate specification and verification methods into the
Component Based Development of roles together with their compatibility and substi-
tutability. The specification of roles is based on C-nets, a formalism combining Petri
nets with the component-based approach. Each role component has an interface and
an internal process, specified by a C-net, describing its life cycle together with it prop-
erties. Two notions of compatibility and substitutability (weak and strong) between
roles are investigated together with role’s property preservation by composition. We
furthermore studied the interconnection between compatibility and substitutability of
roles, and investigated the characterisation of compatibility by behavioural substitut-
ability, which seems necessary when we deal with incremental design of complex
interactions. Our behavioural subtyping relations take into account the non-
determinism, and the composition mechanism of roles, and determine automatically
the compatibility, which is preserved.

The next step for this work is to explore the notion of parametric contracts [10] in
the definition of role’s compatibility and substitutability. Our aim is to define flexible
compatibility and substitutability relations between roles, depending on their context
of use. So, parametric contracts link the provided and required interfaces of the same
role component, and when the required interfaces are not fully meet, the component
can still offer part of its provided interface.

Related Work. There are many approaches and methodologies for the specification
of roles (-based interactions) in multi-agents system. In recent years, roles formation,
configuration among roles, and static semantics of roles have been proposed [1, 2, 5].
[5] proposes a meta-model to define models of organizations, based on three concepts:
agent, group, and role. Our approach is in the same line, since interactions are based
on roles, and the agents that hold a role in the same conversation of a protocol consti-
tute a group. However, our approach gives a formal and precise definition of the inter-
action patterns – protocols and roles – and groups are defined on the basis of conver-
sations, i.e. occurrences of protocols. In [1], authors study the conditions under which
an agent can enact a role and what it means for an agent to enact a role. They define
possible relations between roles and agents, and discuss functional changes that an
agent must undergo when it enters an open agent system. This work completes our
approach, and one can use the proposed relations as constraints interaction require-
ments that the agents that take up the role must meet. In [2], they argue for the impor-
tance of enactment/deactement of roles by agents in multiagent programming, in par-
ticular when dealing with open systems. This work study the dynamics of roles in
terms of operations performed by agents; their formalization is conceptually based on
the notion of cognitive agents, and therefore, we claim that it can be easily exploited

Formalizing Compatibility and Substitutability of Rolebased Interactions Components 161

in our specification of role components. In [13], Gaia methodology adopts an abstract,
semiformal description to express the capabilities and expected behaviors of roles
involved in protocols. This work is close to ours, since it is based on the organiza-
tional abstractions for analysis and design of complex and open interactions, but one
possible limitation, is the formal specification, validation and namely the implementa-
tion of roles. This is due to the fact that, the life-cycle of roles in Gaia is only ex-
pressed by safety and liveness properties, and this methodology does not directly deals
with formal analysis and implementation issues. [3] develops a role concept for a
modeling approach based on the UML and graph transformation systems. They also
provide a run-time semantics for roles on concepts from the theory of graph transfor-
mation. This approach allows a convenient model for the concurrency, reactivity, and
the autonomy of agents. Nevertheless, engineering issues raised related to the use of
roles such as the validation and the verification of agent’s behavior.

References

162 N. Hameurlain

1. M. Dastani, V. Dignum, F. Dignum. “Role Assignment in Open Agent Societies”,

AAMAS’03, ACM 2003.
2. M. Dastani, M. B. van Riemsdijk, J.Huslstijn, F. Dignum, J-J. Meyer. ”Enacting and

Deacting Roles in Agent Programming”. Proceedings of AOSE’04, LNCS, 2004.
3. R. Depke, R.Heckel, J.M.Kuster. “Roles in Agent-Oriented Modeling”, International

Journal of Software engineering and Knowledge engineering, vol 11, No. 3 (2001)
281-302.

4. G. Cabri, L. Leonardi, F. Zambonelli. “BRAIN: a Framework for Flexible Role-based
Interactions in Multi-agent Systems”. Proceedings of CoopIS 2003, 2003.

5. J. Ferber, O. Gutknecht, “Aalaadin. A Meta-model for the Analysis and Design of
Organizations in Multiagent system”, ICMAS’98, 1998.

6. N. Hameurlain, C. Sibertin-Blanc. “Specification of Role-based Interactions Components
in MAS”. In Software Engineering for Multi-Agent Systems III: Research Issues and
Applications, LNAI/LNCS, pp 180-197, Vol. 3390, Springer-Verlag, 2005.

7. B. H. Liskov, J. M. Wing. “A Behavioral Notion of Subtyping”. In ACM Trans. on
Programming Languages and Systems, Vol 16, n° 6, Nov. 1994.

8. Z. Manna, A. Pnueli. “Temporal Verification of Reactive Systems-Safety”, LNCS,
Springer-Verlag, 1995.

9. L. Pomello, G. Rozenberg, C. Simone. “A Survey of Equivalence Notions for Net Based
System”. In Advances in Petri Nets. G. Rozenberg Ed., LNCS 609, Springer-Verlag 1992.

10. R.H. Reussner, J. Happe, A. Habel. “Modelling Parametric Component Contracts and the
State Space of Composite Components by Graph Grammars”, FASE/ETAPS 2005, LNCS
Vol. 3442, pp 80-95, Springer-Verlag, 2005.

11. C. Szyperski. “Component Software-Beyond Object-Oriented Programming”, Addison-
Wesley, 2002.

12. W.M.P. Van der Aalst, k.M. van Hee, R.A. van der Toorn. “Component-Based Software
Architectures: A framework Based on inheritance of Behaviour”. Beta Working Paper
Series 45, Eindhoven University of Technology, 2000.

13. F. Zambonelli, N. Jennings, M. Wooldridge. “Developing Multiagent Systems: The Gaia
Methodology”, ACM TSEM, Vol 12, N° 3, July 2003, pp317-370.

MAS Meta-models on Test:
UML vs. OPM in the SODA Case Study

Ambra Molesini1, Enrico Denti1, and Andrea Omicini2

1 DEIS, Alma Mater Studiorum, Università di Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy

amolesini@deis.unibo.it, enrico.denti@unibo.it
2 DEIS, Alma Mater Studiorum, Università di Bologna a Cesena,

Via Venezia 52, 47023 Cesena, Italy
andrea.omicini@unibo.it

Abstract. In the AOSE (Agent-Oriented Software Engineering) area,
several research efforts are underway to develop appropriate meta-models
for agent-oriented methodologies. Meta-models are meant to check and
verify the completeness and expressiveness of methodologies.

In this paper, we put to test the well-established standard Unified Mo-
delling Language (UML), and the emergent Object Process Methodology
(OPM), and compare their meta-modelling power. Both UML and OPM
are used to express the meta-model of SODA, an agent-oriented methodo-
logy which stresses interaction and social aspects of MASs (multi-agent
systems). Meta-modelling SODA allows us to evaluate the effectiveness of
the two approaches over both the structural and dynamics parts. Further-
more, this allow us to find out some desirable features that any effective
approach to meta-modelling MAS methodologies should exhibit.

1 Meta-models for MAS

The definition of a methodology is an interactive process, in which a core is
defined and then extended to include all the needed concepts. Meta-modelling
enables checking and verifying the completeness and expressiveness of a metho-
dology by understanding its deep semantics, as well as the relationships among
concepts in different languages or methods [1]. According to [2],

the process of designing a system (object or agent-oriented) consists of
instantiating the system meta-model that the designers have in their mind
in order to fulfil the specific problem requirements. In the agent world
this means that the meta-model is the critical element(...) because of the
variety of methodology meta-models.

In the context of MASs, a meta-model should be a structural representation of
the elements (agents, roles, behaviour, ontology, . . .) that constitute the actual
system, along with their composing relationships. Several meta-models of AOSE
methodologies can be found in the literature—for instance, GAIA [2], PASSI [2],
ADELFE [2], Tropos [3], MESSAGE [4], IGENIAS [5]. Although a number of

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 163–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

164 A. Molesini, E. Denti, and A. Omicini

these (PASSI, MESSAGE, ADELFE) adopt some kind of UML extensions to
express system models, while others (GAIA, TROPOS, IGENIAS) adopt some
ad-hoc symbology for the same purpose, the meta-models of all such methodo-
logies are still expressed in UML.

1.1 Why UML for Meta-models

The Unified Modeling Language (UML)[6] is the industry-standard language for
specifying, visualising, constructing, and documenting the artifacts of software
systems. Like other methods, UML is based on the decomposition principle, here
in the form of aspect decomposition. A system is then expressed as a multiplicity
of different models, each representing a specific system aspect: actually, UML
defines 12 types of diagrams, whose 4 represent the static application structure,
5 are devoted to capture the system’s dynamic behaviour, and 3 are related to
the organisation and management of application modules. Altogether, all these
models are expected to convey a complete system specification.

However, although the availability of so many models constitutes a richness
from the expressiveness viewpoint, each model introduces its own set of symbols
and concepts, thus leading to an unnatural complexity in terms of vocabulary,
model multiplicity and model integration [7]. This is a problem both for main-
taining consistency among the different system models and views, and for the
mental integration of such views, since integrating several models within one’s
mind an is a very difficult process. That is why the need to concurrently refer
to different models in order to understand a system and the way it operates and
changes over time is a critical issue, known as the multiplicity problem [8]. De-
spite this issue, however, the general adoption of UML as a world standard for
system modelling makes it the first natural choice for representing meta-models.

Adopting UML to express meta-models of methodologies endorses some spe-
cific issues, since representing a methodology is inherently different from repre-
senting a system at the object level. In particular, when meta-modelling metho-
dologies, UML leads to emphasise objects and object relations, leaving aside the
procedural aspects, which can be revealed only indirectly, by object operations
and message exchanges. Moreover, the five behavioural diagrams provided by
UML to capture the dynamic behaviour of a system at the object level become
of little use at the meta-level, as they were defined to express which and how in-
teraction occurs, rather than what interaction is and what role it plays—which is
what is needed when representing a methodology. So, UML-based meta-models
usually exploit only package diagrams, class diagrams, and associations.

1.2 Why OPM for Meta-models

In order to better address the issues of representing the dynamics at the meta-
level, and possibly reduce the risk of inconsistency related to the multiplicity
problem, it is natural to “look outside” the UML world, looking for some alter-
native approach. The Object Process Methodology (OPM henceforth) [9] is an
integrated approach to the study and development of systems in general, and

MAS Meta-models on Test: UML vs. OPM in the SODA Case Study 165

of software systems in particular. OPM is also a reflective methodology, i.e. a
methodology that can model itself without requiring any auxiliary means or ex-
ternal tools. OPM unifies the system’s life-cycle stages (specification, design and
implementation) within one single frame of reference, using a single diagram-
ming tool—Object-Process Diagrams (OPDs)—and a corresponding subset of
English, called Object-Process Language (OPL).

The basic assumption of OPM is that not only objects, but objects and proces-
ses constitute two equally-important classes of things, which together describe
the functioning, structure and behaviour of a system in a single framework (i.e.,
without multiplying diagrams) in virtually any domain. Indeed, OPM’s basic
principle is that structure and behaviour in a system are so intertwined that
effectively separating them is extremely harmful, if not impossible. Therefore,
unlike the object-oriented approach, behaviour in OPM is not necessarily encap-
sulated within a particular object class construct: using stand-alone processes,
one can model a behaviour that involves several object classes and is integrated
into the system structure. Processes can be connected to the involved object clas-
ses through procedural links, which are divided, according to their functionality,
into three groups: enabling links, transformation links, and control links.

Opposite to UML’s aspect-based decomposition, which intrinsically violates
the OPM’s goal of a single all-describing model, OPM adopts detail decom-
position: rather then decomposing a system according to its various aspects,
decomposition proceeds by exploring the system’s abstraction levels. This is
done via three refinement/abstraction mechanisms : unfolding/folding, which re-
fines/abstracts from the structural parts of a thing (mainly an object), in-
zooming/out-zooming, which exposes/hides the inner details of a thing (mainly
a process) within its enclosing frame, and state expressing/suppressing, which
exposes/hides the states of an object.

1.3 Why Meta-modelling SODA

Interaction is a major source of complexity in software systems. This is particu-
lar true in multi-agent systems, where interaction can take different forms: for
instance, social interaction is concerned with agents interacting with each other,
while environmental interaction regards the agents’ interaction with their envi-
ronment. Although most methodologies still focus on intra-agent issues, more
recently, methodologies like GAIA [10] and Hermes [11] have begun emphasising
the role of interaction, shifting their focus toward social interaction.

So, since our purpose here is to exploit an agent-oriented methodology as a
reference for stressing the pros and cons of different meta-modelling approaches,
a methodology addressing only intra-agent issues would not fit: we need a me-
thodology that widely deals with inter-agent issues, so that the social aspects
of multi-agent systems are in the front line. SODA [12] is a methodology which
explicitly focuses on suitably modelling the social aspects of a MAS. As such,
it assumes interaction to be the key aspect of its modelling process: a system
entity appears in a SODA model only in that it is involved in some interactions.
So, designing a multi-agent system in SODA amounts to defining agents in terms

166 A. Molesini, E. Denti, and A. Omicini

of their required observable behaviour, i.e., of the interactions in which agents
are involved, and of the agents’ roles in the MAS. In addition, taking interac-
tion into account implies to consider relevant coordination issues, addressed by
SODA in the design phase. Therefore, in the following we first define the SODA
meta-model in UML (Section 2.1) and in OPM (Section 2.2), then compara-
tively discuss the pros and cons of such meta-models and, by doing so, of the
two approaches in general (Section 3).

2 SODA Meta-models

SODA (Societies in Open and Distributed Agent spaces) [12] is an agent-oriented
methodology for the analysis and design of agent-based systems. SODA focuses
on inter-agent issues, like the engineering of societies and infrastructures for
multi-agent systems. Since this conceptually covers all the interaction within an
agent system, the design phase deeply relies on the notion of coordination model
[13]. In particular, coordination models and languages are taken as a source of
the abstractions and mechanisms required to engineer agent societies: social rules
are designed as coordination laws and embedded into coordination artifacts, and
the social infrastructure is built upon coordination system.

The analysis phase is characterised by three models: the role model, the
resource model and the interaction model. The design phase is based on three
strictly-related models, deriving from the models defined in the analysis phase; in
particular, the analysis’ role model maps on the design’s agent model and society
model, while the analysis’ resource model maps on the design’s environment
model. The analysis’ interaction model, in its turn, generates the interaction
protocols and coordination rules referenced by the design’s models (see [12] for
more details).

2.1 SODA Meta-model in UML

The UML meta-model of SODA (Figure 1) reflects the SODA distinction between
the analysis phase (top) and the design phase (bottom). In the analysis phase,
the boundaries between the resource model, the interaction model, and the role
model are well defined; in the design phase, instead, no such boundaries are
shown, because the entities of the analysis sub-models do not map one-to-one
onto analogous entities of the design model. It is worth noting that this UML
model clearly emphasise the centrality of interaction which is typical of the
SODA approach: in fact, if the interaction model were deleted, along with the
corresponding classes in the design phase, concepts such as roles and resources
would turn out to be separate and unrelated from one another.

Although this model captures the SODA concepts and associations as far as
UML’s (large yet somehow limited) graphical vocabulary makes it possible, the
result is not completely satisfactory, for several reasons. First, UML provides
basically a unique type of concept/symbol (the class) to represent entities which
are conceptually distinct in the meta-model. More precisely, while using the

MAS Meta-models on Test: UML vs. OPM in the SODA Case Study 167

Fig. 1. SODA Meta-model in UML

UML class notion to capture the SODA organisational structure—i.e., entities
such as roles, tasks, groups, society, agents, resources, infrastructure classes—
leads to a satisfactory representation of these aspects, the same cannot be said
for interaction, whose classes are qualitatively different from the others (both
in the analysis and in the design phase), as they try to model an intrinsically
dynamic dimension by means of an intrinsically static abstraction.

The model entities are connected to each other by different relations—
inheritance, composition, aggregation, and generic association. In particular, the
relations between Group and (respectively) Individual role / Social role empha-
sise that a Social role may either coincide with an already defined Individual
role (aggregation), or be defined ex-novo (composition). Moreover, the relations
between the structural entities and the “interaction entities” are critical from
the modelling viewpoint, since such entities are qualitatively different; this is
why they are expressed by a generic (tagged) association.

Another key aspect concerns the connections from the analysis phase to the
design phase. The label “map onto” is somehow vague, yet underlines the in-
trinsic difficulty in expressing the complex mapping from the analysis to the
design phase via a single association link. For instance, when mapping Role onto
Agent, the association itself is unable to express that Agent inherits task, per-
missions and interaction protocols from Role: so, a suitable label is the only (yet
unsatisfactory) way to express this fact.

2.2 SODA Meta-model in OPM

Figure 2 shows the SODA meta-model in OPM. Of course, many aspects discus-
sed above—the distinction between the two phases, the analysis sub-models, the

168 A. Molesini, E. Denti, and A. Omicini

Fig. 2. SODA Metamodel in OPM: OPD (top) and OPL (down)

centrality of interaction, the association “map onto”,—still hold: so, the overall
model structure is basically the same as in Figure 1.

However, the richer expressiveness of OPM’s graphical vocabulary with re-
spect to UML makes it possible to model the key aspect of interaction as an
OPM process, rather than as a class, thus expressing the dynamic aspects that
the (static) class notion alone could not capture. By doing so, the OPM meta-
model of SODA captures the transient nature of interaction in much a better way

MAS Meta-models on Test: UML vs. OPM in the SODA Case Study 169

than its UML counterpart. Furthermore, the richness of the OPM graphical vo-
cabulary offers a better alternative to replace UML generic (tagged) associations
with a new, semantically-clear symbology. For instance, the relation between Re-
source and Policy (and between Coordination Medium and Coordination Rule)
now adopts a specific symbol to express that Policy not only has a structural
relation with Resource, but is also an attribute of Resource.

On the other hand, since OPM introduces just one symbol (the solid black
triangle) to represent both composition and aggregation, distinguishing between
different relations (e.g Group/Individual Role, Group/Social Role) now requires
a careful reading of the participation constraint of the relation (where * means
“optional”, m means “many”, etc.). However, this aspect can be easily faced by
using OPM’s textual counterpart, OPL, that provides a human-readable des-
cription of the Object Process Diagram; the OPL of SODA meta-model is shown
in Figure 2 (bottom). Despite the richness of OPM’s vocabulary, some meta-
modelling relations are still difficult to express: this is particularly true for the
relations between structural entities and “X -Interacting” processes, that even
the (several) object/process link types provided by OPM are unable to capture
at a semantically-satisfactory level (more details in Section 3.2).

3 Discussion

In this Section, we discuss and compare the SODA meta-models in UML and
OPM, outlining the respective pros and cons. Generally speaking, both meta-
models fall short in modelling the SODA concept of interaction and the relations
between the structural parts and dynamic parts; in particular, this applies to
the relation of “participation”, as we outline below.

3.1 Pros and Cons of SODA Meta-model in UML

The structural parts of the SODA methodology are well modelled. Due to its
graphical vocabulary, UML is forced to model the SODA concept of interaction
via its class notion, thus giving a static view of interaction, as if it were always
present in the system—which is obviously misleading, since interaction has int-
rinsically a transient nature; indeed, capturing the transient aspects through a
class diagram can be difficult.

On the other hand, UML enables the concept of “participation” to inter-
action to be expressed better than in OPM, thanks to the a generic tagged
association: interestingly, this is possible just because interaction is represented
as a class. However, distinguishing the semantic peculiarities of such associati-
ons based just on the label is not easy. For instance, although we used the same
generic association for modelling the participation both in the analysis and in
the design phases, in the first case the semantics is that Role participates to
Interaction, while in the latter we mean that not only Agent plays an active
part in interaction, but its internal state is changed by interaction, too.

170 A. Molesini, E. Denti, and A. Omicini

3.2 Pros and Cons of SODA Meta-model in OPM

As mentioned above, the main advantage of OPM with respect to UML concerns
interaction modelling, which exploits OPM’s notion of process to represent the
dynamic aspects. During the construction of the meta-model, however, we per-
ceived the lack of a sort of “tagged instrument link” to connect objects and
processes: currently, OPM’s instrument link is only untagged. Such a link would
have been appreciable, for instance, to express that Role participates to the A-
Interacting process—not just that it is necessary, as expressed by the standard
instrument link. In fact, necessity is a static concept, while playing an active
part in interaction, as Role does, implies dynamics. A similar problem emer-
ged in the relation between the A-Social Interacting process and the Interaction
Rule object, where we could not express that Interaction Rule governs the social
interaction—again, a more specific concept than just “being necessary”.

Analogously, in the design phase, we used an Effect link to represent the
relations between the Agent object and the X -Interacting processes; this is se-
mantically correct because the internal state of Agent is modified by interaction,
but does not express the crucial fact that Agent takes an active part to interac-
tion, while the Effect link just expresses that its internal state is modified as a
consequence of interaction. As a last issue, in the relation between the D-Social
Interacting process and the Coordination Medium object, we could not express
that the Coordination Medium mediates the social interaction by enacting the
Coordination Rule—which, again, is more than just a mere “necessity”.

3.3 Summing Up

Both UML and OPM proved expressive enough to capture in their meta-model
the structural parts of the SODA methodology: so, for instance, the role model
and the resource model are expressed in a clear way, with a specific semantics.
At the same time, as partially mentioned above, both approaches present some
problems, the main being that they fall short when asked to appropriately mo-
del the concept of interaction. In particular, the relation of participation, even
though existing in both approaches, seems unable to capture the general con-
cept of “participating to interaction” in a satisfactory way. This seems to indicate
that while both UML and OPM methodologies are suitable to model the dyna-
mic behaviour of systems, this ability is not conserved if they are used to build
meta-models—actually, quite a different usage—although OPM expressiveness
under this viewpoint is a little better than UML’s.

So, we feel that neither OPM nor UML are fully adequate to capture the
real essence of MAS methodologies, where interaction, in all its nuances—from
a simple message exchange to mediated interaction via coordination media—is a
key issue. In fact, suitably meta-modelling MAS methodologies seems to call for
a specific approach, which is able to model both the structural and the dynamic
parts of a methodology, and to explicitly express the idea of participating to
interaction.

MAS Meta-models on Test: UML vs. OPM in the SODA Case Study 171

4 Conclusions

Several research efforts are being devoted to developing meta-models for MAS
methodologies, however standardisations of methodologies for develop meta-
models are not going still along way off. Although UML is often used for that
purpose, meta-modelling methodologies (and in particular agent-oriented me-
thodologies) presents several peculiarities. In this paper, we put to the test two
meta-modelling approaches—UML and OPM—in order to check their expres-
siveness and suitability to the meta-modelling of MAS methodologies. While
UML was an obvious reference for its widespread adoption, OPM was selected
because even though it is an emergent methodology, it is stable and exhibits se-
veral interesting features—in particular, the explicit notion of process, and the
capability of describing in a single framework all the crucial aspects of a system,
instead of spreading them onto separate diagrams. Among MAS methodologies,
we took SODA as our reference because it is explicitly focused on the MAS
social aspects, thus putting interaction in clear evidence: this made it possible
to evaluate the effectiveness of the UML and OPM approaches with respect to
the issue of suitably representing interaction and, more generally, the dynamic
aspects, other than the structural part.

The results of the mutual comparison between the two SODA meta-models
indicates that neither approach is actually able to capture all the desired aspects
in a satisfactory way. In particular, while the structural part is reasonably well
modelled in both cases, the dynamic part is captured only partially—probably
because both UML and OPM were introduced to model object-oriented systems,
rather than systems in general; so as a consequence, they are not particularly sui-
ted to meta-modelling AOSE methodologies, especially because of their limited
expressive power in capturing agent-oriented abstractions.

It should be noted that research on meta-models is also active in other field
of computer science. Some papers (e.g. [14] and [15]) present meta-models for
the construction of methodologies in general: meta-models are used there to
“instantiate” a new methodology with the desired characteristics. Instead, our
approach to meta-models moves from an existing methodology (SODA) and aims
at creating a meta-model that could well capture the methodology concepts and
their mutual relationship as well.

Therefore, future work will be mainly devoted to explore how to overcome
such modelling weaknesses, and to devise out some meta-modelling approach to
AOSE methodologies that couldfully capture the core interaction aspects.

References

1. van Hillegersberg, J., Kumar, K., Welke, R.J.: Using metamodeling to analyze
the fit of object-oriented methods to languages. In: 31st Hawaii International
Conference on System Sciences (HICSS 1998). Volume 5:Modeling Technologies
and Intelligent Systems., Kohala Coast, HI, USA, IEEE Computer Society (1998)
323–332

172 A. Molesini, E. Denti, and A. Omicini

2. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of
some multi-agent meta-models. In Odell, J., Giorgini, P., Müller, J.P., eds.: Agent-
Oriented Software Engineering V. Volume 3382 of LNCS., Springer (2004) 62–77
5th International Workshop, AOSE 2004, New York, NY, USA, July 19, 2004,
Revised Selected Papers.

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An agent-oriented software development methodology. Autonomous Agent and
Multi-Agent Systems (8) 3 (2004) 203–236

4. Gòmez-Sanz, J.J., Pavòn, J., Garijo, F.: Meta-models for building multi-agent
systems. In: 2002 ACM Symposium on Applied Computing (SAC 2002), New
York, NY, USA, ACM Press (2002) 37–41

5. IGENIAS: Home page. (http://grasia.fdi.ucm.es/ingenias/metamodel/)
6. UML: Home page. (http://www.uml.org/)
7. Dori, D., Reinhartz-Berger, I.: An OPM-based metamodel of system development

process. In Song, I.Y., Liddle, S.W., Ling, T.W., Scheuermann, P., eds.: ER.
Volume 2813 of LNCS., Springer (2003) 105–117

8. Peleg, M., Dori, D.: The model multiplicity problem: Experimenting with real-
time specification methods. IEEE Transactions on Software Engineering 26 (2000)
742–759

9. Dori, D.: Object-Process Methodology: A Holistic System Paradigm. Springer
(2002)

10. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Metho-
dology (TOSEM) 12 (2003) 317–370

11. Cheong, C., Winikoff, M.: Hermes: A methodology for goal-oriented agent interac-
tions. (2005) 4th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS05). Poster.

12. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented
Software Engineering. Volume 1957 of LNCS., Springer (2001) 185–193 1st Inter-
national Workshop (AOSE 2000), Limerick, Ireland, 10 June 2000. Revised Papers.

13. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The
coordination viewpoint. In Jennings, N.R., Lespérance, Y., eds.: Intelligent Agents
VI. Agent Theories, Architectures, and Languages. Volume 1757 of LNAI., Springer
(2000) 250–259 6th International Workshop (ATAL’99), Orlando, FL, USA, 15–17
July 1999. Proceedings.

14. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamo-
dels and the creation of a new generic standard. Information & Software Technology
47 (2005) 49–65

15. Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A metamodel for as-
sessable software development methodologies. Software Quality Journal 13 (2005)
195–214

Programming an Agent as Abstract State Machine�

Grzegorz Dobrowolski

Institute of Computer Science,
AGH University of Science and Technology, Kraków, Poland

grzela@agh.edu.pl

Abstract. A software architecture of autonomous agents based on the idea of
abstract state machine—ASM is proposed. The architecture establishes links be-
tween well-founded notions and recognized mechanisms of multi-agent systems
and procedures of their systematic design and implementation as computer-net-
work applications. A pilot version of the related software and its application ex-
ample are presented shortly.

1 Introduction

It is commonly agreed that notion agent occurs to be a useful component, which can
facilitate software development by virtue of its high level abstractions for autonomy
(decentralization) and interactions. Nevertheless, it is hardly to point at any particular
agent technique that stepped down towards engineering practice to become a supple-
ment of the implementator’s toolbox. Even often used term agent architecture rather
means description of algorithms that governs the agent’s behaviour then encompasses
references to software engineering.

The presented paper is located in a rather narrow stream of publications that can be
entitled Searching for an agent-based software engineering paradigm. Articles: [9] (the
well), [7] (idea of agent-oriented UML), [1,8] (inter-agent communication layer of the
so-called agent platforms), [5] (general approach to agent-based engineering) can serve
as significant examples.

The discussed architecture is meant as a bunch of means necessary for realization of
autonomous software agents (consequently—multi-agent systems) selected according
to a particular model of agency. It can be seen as a skeleton that supports implementa-
tion of agent-based software dedicated to various fields of applications. In the presence
of several agent platforms that facilitate programming of network aspects (communica-
tion and mobility) of multi-agent systems (e.g. [1]), the crucial problem is to find such a
general architecture that would be easy for description in terms of software engineering
and thus—for approval of programmers.

The architecture based on the idea of abstract state machine—ASM [2] is proposed
in the article. It generalizes finite state machine often used in software solutions. One of
the essential differences here is that state transitions are not caused by external signals
(input of an automaton) but are the effects of autonomously taken decisions that may
be only loose consequences of stimuli from the agent’s environment.

� This work was partially sponsored by State Committee for Scientific Research (KBN) grant
no. 7 T11C 033 21.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 173–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 G. Dobrowolski

ASM has been chosen as the base for a definition of the agent’s architecture for two
important purposes. ASM has good theoretical foundation. Both the automaton and its
state are defined in terms of abstract algebra. So it can be awaited that the formulated ar-
chitecture will be justified and easy for theoretical development. On the other hand, the
applied algebraic operations (static functions in general sense) are augmented with—
so called—dynamic functions that introduce into ASM elements traditionally imple-
mented in programming languages. This way ASM acquire expression power of the
languages and can be easily approved by practicing engineers. At the same time, such
augmented algebraic structure gains interpretation of (computer) memory and abstract
switching from a state to state—its contents changes.

The article consists of: a sketch of the reference model of agency (with premises of
an agent modeling), some introduction to ASM and, finally, description of the proposed
software architecture. Everything is exemplified with a pilot implementation on the
basis of JADE platform and a simple exercise.

2 The Reference Model of an Agent

A presented beneath model of an agent (see also [4]) is constructed according to the
black-box schema—a part of a domain is taken out and constitutes a system through
specification of all interactions observed. In this way the model effectively reflects the
agent’s ability to interact with his neighborhood and other agents (the features that are a
base for a multi-agent system creation) but also defines in general his internal (abstract)
architecture.

The approach leads to the adoption of the following assumptions crucial to the
model.

1. Excluding physical impact on an agent, the rest of agent–neighborhood interface is
fully controlled by the agent himself.

2. An agent operates in a discrete manner. His activity is a finite sequence of actions
(elementary) performed by him.

3. An agent decides on the sequence in the sense of both actions to do and time mo-
ments of their initiation.

4. The basic mechanism of an agent model is sequential initiation of actions, called
further mechanism of choice.

The assumptions seem to be enough general to encompass possible algorithms and
implementation techniques of artificial agents as well as to describe the presence of
human beings in multi-agent systems.

Definition 1. Agent Λ is a three-tuple of the form:

Λ = { A , S , F ⊂ S ×A× S } (1)

where: A finite set of actions (elementary) of agent Λ;
S finite set of internal states of agent Λ;
F three-element relation describing permitted succession of states and ac-

tions of agent Λ—in the given state the agent can perform an action (the
second element) that leads him to a new state (the third element).

Sustaining cause-effect conjunction requires relation F to have the following feature:

Programming an Agent as Abstract State Machine 175

(s, a, s1) ∈ F ∧ (s, a, s2) ∈ F ⇒ s1 = s2 (2)

Relation F reflects the possible combinations of states and actions. Each state im-
plies a subset of actions allowed. Assigning and performing a particular action is an
effect of the choice mechanism of an agent (an elementary action can be performed
several times).

Definition 2. Let mapping f of the form:

si+1 = fai(si) ≡ ∃ (si, ai, si+1) ∈ F : F ∈ Λ (3)

denote performing action ai ∈ A and changing the agent’s state. To emphasize the
cause-effect conjunction, appropriate states are indexed with natural numbers.

Definition 3. Manifold but finite application of mapping f , represented in the formula
beneath by operator⊗, is called activity of agent Λ:

(faj ⊗ faj+1 ⊗ · · · ⊗ fak
) ≡ f{aj ,aj+1,...,ak} : aj , aj+1, . . . , ak ∈ A ∈ Λ (4)

The agent’s activity can be denoted also as a sequence of chosen and performed ele-
mentary actions of him.

Constitution of a multi-agent system comes next with an interaction relation that links
given actions of two (or more) agents. Thus, it describes potential cooperation (interac-
tions) in the system. An interaction is realized when the appropriate actions are chosen
and performed by the agents. None of the actions can be performed independently (sep-
arately). Consequently, activity of a multi-agent system can be defined as a composition
of activities of its members.

Questions with respect to action realisation as well as many others issues of the
model can be left beyond the scope of the paper without loss of readability but are
available in [6,3].

3 Elements of ASM

Due to practical orientation of the paper, only indispensable for the proposed architec-
ture elements of ASM theory will be reported beneath in a rather general manner. A
reader is referred to [2] for details.

ASM can be defined as a finite set of formulas of the shape:

{ if condition i then updatesi } i=1,...,n (5)

where condition i is the predicate of a logic assumed for the particular ASM, and
updatesi is a set of assignments:

f(t1, . . . , tn) := t (6)

each of which is understood as a change of value (or definition) of function f for the
values of parameters equal to t1, . . . , tn to new value t (for the sake of readability
indexes which identify a concrete function and, next, ASM are neglected).

176 G. Dobrowolski

Functioning of ASM is done by cyclical performing of the following operations.
All {condition i}i=1,...,n are evaluated concurrently and these updatesi for which con-
ditions are true are marked. Next—also concurrently—the marked updates are realized
through appropriate calculations of functions and assignments. The end of the longest
assignment completes a cycle.

Assignment (6) is performed as a corresponding operator of imperative program-
ming languages. Firstly, the values of parameters (here: v1, . . . , vn) are calculated ac-
cording to their list, next—the value of the function (v = f(v1, . . . , vn)). To make the
value accessible in the next cycle, its identification—called location—is introduced via
the function name and list of its calculated parameters. Location l can be interpreted as
a piece of memory (with an address), which stores value v of the function. The whole
described operation is an update of the location to that value —(l, v).

Stepping from a cycle to cycle, we have just two kinds of locations: staying un-
touched or having been just modified.

If for a given ASM we put together all locations possible during its life time, they
create the memory of the automaton. Departing from some state (starting one) and
performing appropriate location updates in each cycle, the evolution of the automaton
state is obtained. For unambiguous determination of a next state it is necessary the
bunch of updates in each cycle to be not conflicting, i.e. the following formula to hold
for each pair in a cycle

(l, v) ∧ (l, v′) ⇒ v = v′ (7)

It means that although the functions can use whatever data describing the state, their
results must be located in distinct places of the memory.

Functions (updates and locations) as well as conditions can be classified accord-
ing to their features. So we have static functions—not affected during ASM run and
dynamic ones, which algorithm depends on the automaton state. In turn, dynamic func-
tions fall into four categories: controlled, in or monitored, out, and shared. Controlled
functions can be modified only by other updates of the same automaton while in func-
tions are modified only by the neighbourhood (reflect its influence) and, in consequence,
can occur at right-hand side of assignment (6) only. On the contrary, out functions (mod-
elling influence of an automaton) can stay only at left-hand side of (6) but are accessible
for the neighbourhood. Shared functions combine features of controlled and in ones.
Static and controlled functions are identified as internal ones while the rest are grouped
as external functions.

The assumption is that in functions (updates, locations) are determined in each state
as well as synchronization of shared functions realization is established.

It is obvious that the functions have different numbers and types of arguments—
signatures. Signatures of all the functions define the signature of ASM.

4 Software Architecture of an Agent

Although the methodology based on ASM serves with a possibility of working with
modules (here: sub-ASM) or procedures, we start our discussion with the agent’s mod-
ular structure, which is generated by the specificity of his applications and implementa-

Programming an Agent as Abstract State Machine 177

tion conditions. Next, these modules (especially one of them) will be described in terms
of ASM to introduce the proposed architecture.

From the point of view of establishing of a multi-agent system the most important
is a sphere which embraces modules of communication and interface. The former is
dedicated to interactions with other software agents, the latter—with a human agent.
These two modules can be present and utilized in extent depending on tasks allocated
to a particular type of agents in the system.

If an agent is mobile, the sphere is embraced by yet another module that realizes
mobility of his code and calculations. It can be arranged in this way because mobility
influences, in fact, the structure of information flows, not their contents.

All the above modules support multi-direction and multi-aspect interchange of in-
formation that, in turn, needs management also with respect to its semantics. A unifying
idea here is to use protocols (communication, interaction), which occur to be power-
ful enough to stimulate and realize even very complicated cooperation patterns among
agents. So is a need for a module of protocols management.

The rest of the semantic analysis is carried out in a central module of an agent—
kernel. Internal structure of the kernel strongly depends on the role of an agent in the
system as well as applied algorithms and data structures. As examples can serve here
these introduced by the negotiation management module or knowledge base. It is ob-
vious that the kernel is the most important and, usually, the most complicated agent’s
module. It is also the most specific for agent-based techniques.

Therefore, let us focus our attention on the kernel, remembering that the rest of
modules can be represented by ASM also. Moreover, some of them do not need any
deeper analysis, e.g. the protocols management module exploits the idea of a finite state
machine, the interface module may be built using one of the popular graphic libraries.
Similarly, the communication is ready to use, when one of the agent platforms is the
basis for implementation.

The point of departure towards the kernel architecture are conclusions of sections 2
and 3. They also dictate the way of describing the agent’s features and mechanisms in
terms of ASM.

Action ith of an agent is represented in ASM by expression updatesi in a formula
of shape (5), no matter the action is internal or external. Updates of an action are of
either controlled or in or out type depending on the direction of an information flow
with respect to a kernel. Respective examples of them are actions of: auto-perception,
perception, sending a message.

Expressions condition i of the all specified agent’s actions create in common the
mechanism of choice of appropriate actions. On the assumption that in a single step of
an automaton a single action can be chosen at most, the mechanism works sequentially
as it was postulated. If more than one condition is true than the cause-effect conjunction
is also preserved. It is due to the main assumption of ASM that a set of updates is not
contradictory in each step (see eq. (7)). Then all triggered actions can be regarded as a
single but compound action.

Now it is very easy to define the agent’s state as a union of his updates (locations),
i.e. the state of ASM that describes an agent.

178 G. Dobrowolski

Having the main elements of the agent’s architecture defined, we can illustrate the
idea with a diagram in figure 1. Some details are discussed further.

Fig. 1. Software agent architecture based on ASM

Controlled updates model internal actions of a kernel and thus an agent. In and out
updates of a kernel create its interface with outer modules. Some of them can be, in fact,
a main part of execution of some external actions of an agent. Let us consider receiving
a message as an example. The main part of it is an in update that modifies the kernel
state in the appropriate location. The location stores the message contents and some
additional information about communication like progress of an interaction protocol
used. Analysis of the contents that can, but has not to, follow (in any period of time)
is modelled as independent controlled updates with their own locations. Of course, the
analysis has access to the location of the actual receiving a message action.

In this way the proposed architecture realizes yet another postulate about the (lim-
ited) agent’s autonomy. In the above example the agent must receive a message (it is
originally forced by the neighbourhood) but its analysis and possible consequences are
decided by him (analysis is an autonomous action).

The necessary condition of receiving a message is its completion by the communi-
cation module. It can be done in such a way that the appropriate condition i is dependent
on some flag in the location of receiving action of the kernel.

Actions that are directed outside in their information aspect are realized analo-
gously. A kernel executes out updates, which location is available to a dedicated mod-
ule. In general, execution of some (external) actions involves a few modules that coop-
erate as it is shown above. Cooperation of modules can be designed in both synchronous
and asynchronous modes.

condition
i

updates
i

action
i

condition
1

updates
1

action
1

condition
n

updates
n

action
n

action choice
mechanism

state

action performing
control

Programming an Agent as Abstract State Machine 179

Thus applying ASM supports design of a modular architecture. It is easy to con-
sider hardware elements in the framework of the architecture also. Then some locations
can be realized as device registers that work for an agent as a part of the interface with
the real neighbourhood.

5 A Pilot Implementation and an Example

As a primary test of the presented idea, a pilot implementation in the bed of JADE
Platform [1] has been decided and done. The following facts can serve here as motiva-
tion: JADE is well-known and intensively used for several years and can be regarded
as a stabilized programming tool; JADE fully implements communication as well as
other mechanisms necessary to build a multi-agent system; the architecture of JADE is
open to assimilation of a particular software solution of an agent. Summarizing, JADE
provides an environment for a kind of rapid development in the subject and allows to
concentrate only on the main module of an agent—a kernel.

The implementation has been carried out in two steps:

1. Building JAVA interface IAMSAgentFormula in order to give representation of the
agent’s action (a pair of condition i, updatesi in terms of ASM).

2. Building JAVA classes AMSAgent (specialization of JADE class Agent) and AM-
SAgentBehaviour (specialization of JADE class Behaviour) in order to express the
agent’s functions.

Some details of the implementation are given in figure 2 that show the UML schema
of the classes (and interface). A reader is encouraged to inspect components of them,
assuming that the names are self-descriptive.

Following ASM, the agent’s function is the cyclical performing of the three phases:
concurrent evaluation of all condition i and choice of actions to do; examination if the
corresponding updates i are not contradicted; and at last concurrent realization of the
actions. Each phase must be completed before the next one is activated.

Although performing the first and third phases does not cause any specific diffi-
culties to the presented idea, the second phase triggers some doubts. In the case of
inconsistency in updates i ASM can not switch to the next state— the agent fails. The
reaction which is suggested in publications about ASM (e.g. [2]) is to unconditionally
stop the agent. The adopted solution is to throw an exception with requirement of ter-
mination of the agent. The underlying mechanism needs declarations which locations
are updated by the given action.

To investigate features of the proposed architecture in practice and check the shortly
described above pilot implementation some tests have been carried out. For the sake of
simplicity one of them a group of agents that constitute a model of Slot machine has
been chosen for presentation here. Once again a reader is referred to the UML diagram
now presenting classes and methods of the slot machine agents (see fig. 3). Two types
of them are programmed.

1. These that model drums of the machine. Each of them works independently but
concurrently producing a drawing.

180 G. Dobrowolski

ASMAgent

ConflictingASMFormulaException

<<constructor>>ConflictingASMFormulaException()
<<constructor>>ConflictingASMFormulaException()

ASMAgentBehaviour

~formulas : Hashtable
...

<<constructor>>+ASMAgentBehaviour()

+doSuspend()
+doActivate()
+action()

+kill()
...

ASMAgent

-locations : Hashtable
...

<<constructor>>+ASMAgent()

<<setter>>+setup()
+registerFormula()

+takeDown()
+kill()
...

IASMAgentFormula

+condition() : boolean
+action()

jade.core

Behaviour

+@STATE_BLOCKED : String{frozen}
+@STATE_RUNNING : String{frozen}

+@STATE_READY : String{frozen}

...

...

Agent

removeBehaviour()
addBehaviour()

receive()
send()

...

currentMessage : ACLMessage
...

Fig. 2. UML diagram of the JADE implementation of ASM architecture

2. A type that is represented by the single agent coordinating the agents of the for-
mer one. The agent built of just five ASM formulas activates the drums, receives
information about their positions when stop, and carries out the appropriate user
interface. The coordination is done on the FIPA-ACL communication basis.

Nevertheless the example is very simple, some important facts has been confirmed.
The proposed architecture can be followed by flexible and intuitive programming tools.
Concurrency can be easily achieved that is the main requirement for contemporary ap-
plications. The only doubt concerns the problem of a scale in the sense of number of
threads of agent-based applications built. But, one ought to remember that a designer
can restrict the concurrency as long as efficiency of his application is preserved.

6 Summary

Programming an agent based on the ASM idea is presented in the paper. The proposed
architecture establishes links between well founded notions and recognized mecha-
nisms of multi-agent systems and procedures of systematic design and implementation
of them as computer-network applications. Moreover, steady development and growing
scope of ASM application positively sketch out perspectives of the proposed architec-
ture. In particular, the architecture allows for:

– effective definition of the agent’s state, which is one of central notions in the theory
of agent and systems of them;

Programming an Agent as Abstract State Machine 181

ASMSlotMachine

ASMSlotMachine

-messageBox
-result
+state

<<constructor>>+ASMSlotMachine()
<<getter>>+isRunning() : boolean

+startMachine()

+doSuspend()
+doActivate()

...

SlotAgent

...

<<constructor>>+SlotAgent()

<<getter>>+getMax() : int
<<setter>>+setMax()

...

SlotAgentStarterFormula

...

+condition() : boolean
+action()

+condition() : boolean
+action()

MaliboxHandlingFormula

...
ResultHandlingFormula

...

+condition() : boolean
+action()

ASMAgent

ASMAgent

-locations : Hashtable
-unnamed1

<<constructor>>+ASMAgent()
+registerFormula()
+kill()
...

IASMAgentFormula

+condition() : boolean
+action()

Fig. 3. UML diagram of the slot machine agents

– flexible and intuitive programming of agents of whatever purpose;
– specification and verification of agent-based software done according to the pro-

posed architecture with the range of formal methods as well as practical procedures
(light) applied directly in a process of software production;

– independent implementation of the agent’s modules and actions, which opens pos-
sibility to design learning agents (acquiring abilities to perform new actions).

The above features has been in majority confirmed by the reported both pilot imple-
mentation and example.

Further work in the area will concentrate on deeper analysis of the approach based
on advanced examples and applications. It is also foreseen a direction aimed at improve-
ment of the related software e.g. by implementation of action conditions evaluation
according to fuzzy, or other, logics.

References

1. F. Bellifemine, A. Poggi, and G. Rimassa. JADE — A FIPA-compliant agent framework. In
Proc. of the 4th Int. Conf. on the Practical Applications of Agents and Multi-Agent Systems
(PAAM-99), pages 97–108, London, UK, 1999.

2. E. Börger and R. Stärk. Abstract State Machines. Springer-Verlag, 2003.

182 G. Dobrowolski

3. G. Dobrowolski. Network operating agents as a mean for decentralized decision support
systems. In Z. Binder, B. Hirsch, and L. Aguilera, editors, Management and Control of Pro-
duction and Logistics MCPL’97, volume 2, pages 393–398. IFAC/PERGAMON, 1998.

4. G. Dobrowolski. Technologie agentowe w zdecentralizowanych systemach informacyjno-
decyzyjnych, volume 107 of Rozprawy Monografie. Uczelniane Wydawnictwa Naukowo-
Dydaktyczne Akademii Gˇrniczo-Hutniczej im. S. Staszica, Krakˇw, 2002.

5. N. Jennings. On agent-based software engineering. Artificial Intelligence, (117):277–296,
2000.

6. E. Nawarecki, G. Dobrowolski, S. Ciszewski, and M. Kisiel-Dorohinicki. Ontology of coop-
erating agents by means of knowledge components. In V. Mařik, J. Müller, and M. Pěchouček,
editors, Multi-Agent Systems and Applications III, volume 2691 of Lect. Notes in Artif. Intel-
ligence, pages 180–190. Springer, 2003.

7. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. (opublikowane w
WWW), 2000.

8. S. Poslad, P. Buckle, and R. Hadingham. FIPA-OS: the FIPA agent Platform available as Open
Source. In J. Bradshaw and G. Arnold, editors, Proc. of the 5th Int. Conf. on the Practical
Application of Intelligent Agents and Multi-Agent Technology (PAAM 2000), pages 355–368,
Manchester, UK, 2000. The Practical Application Company Ltd.

9. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.

The PASSI and Agile PASSI MAS Meta-models
Compared with a Unifying Proposal

Massimo Cossentino2, Salvatore Gaglio1,2,
Luca Sabatucci1, and Valeria Seidita1

1 Dipartimento di Ingegneria Informatica (DINFO),
University of Palermo,

Viale delle Scienze, 90128 -Palermo- Italy
2 Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR),

Consiglio Nazionale delle Ricerche(CNR),
Viale delle Scienze, 90128 -Palermo- Italy

cossentino@pa.icar.cnr.it, gaglio@unipa.it, sabatucci@csai.unipa.it,
seidita@csai.unipa.it

Abstract. A great number of processes for multi-agent systems design
have been presented in last years to support the different approaches
to agent-oriented design; each process is specific for a particular class
of problems and it instantiates a specific MAS meta-model. These dif-
ferences produce inconsistences and overlaps: a MAS meta-model may
define a term not referred by another, or the same term can be used with
a different meaning.

We think that the lack of a standardization may cause a significant
delay to the diffusion of the agent paradigm outside research context.
Working for this unification goal, it is also necessary to define in un-
ambiguous way the terms of the agent model and their relationships
thus obtaining a unified MAS meta-model. In this work we propose the
PASSI MAS meta-model, the results of its adaptation to the needs of an
agile process (Agile PASSI), and a comparison with an existing unifying
proposal of MAS meta-model composed by considering three different
processes (ADELFE, Gaia and PASSI).

1 Introduction

In order to approach the design and development of a multi-agent system (MAS)
in a rigorous way, many approaches have been explored; all of these deal the de-
velopment phases addressing high level terms such as agent, goal, role, task and
collaboration. Hence, the design of a system may be seen as the instantiation
of these elements in order to fulfill some specific problem requirements. The de-
scription of the elements involved in the design phases, and their relationships,
can represent one of the fundamental steps in building a new one and specifically
in the definition of its MAS meta-model (MMM hence afterward). The various
agent-oriented design processes, presented in these years, are significantly dif-
ferent: goal-oriented, situation-oriented, requirement-oriented are examples of

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 183–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 M. Cossentino et al.

different philosophical possible approaches [1,2,3,4,5]. Each of these proposes a
different way to face modeling; this diversity is caused by observing the sys-
tem from different perspectives, considering different aspects of the problem and
specific theoretical background or a specific application context. Besides each
process forces the designer to assign an implicit meaning to each MMM compo-
nent and that is often not coherent with the choices of other authors.
Even if this variety of design processes may be viewed as a richness, the differ-
ences among their meta-model components could create some perplexities when
a designer moves from a design process to another, or when two designers try to
communicate about a shared solution (pattern for agents).
A first step toward interoperability among different agent oriented design pro-
cesses was the proposal of a unifying MAS meta-model [6] created starting from
three different approaches (Adelfe, Gaia, and PASSI).

The purpose of this work is to present a description of the MAS meta-model
of two design processes that use a quite different approach (PASSI[4,7] and
Agile PASSI[8,9]). In this analysis we put in evidence two aspects related to the
unifying MMM definition: i) we can highlight the differences among elements
definition from comparing specific MMMs with the unifying one; ii) we can also
show how to derive a specific MMM from the unifying one.
This paper is structured as follows: in section 2 we present the PASSI and Agile
PASSI design processes while their meta-models are described in section 3 where
we also underline the most relevant differences among them, finally in section
4 we present the unifying MMM resulting from the study in [6] and in 5 we
compare the three presented MAS meta-models.

2 The PASSI and Agile PASSI Design Process

PASSI (Process for Agent Societies Specification and Implementation)[4,7] is a
step-by-step requirement-to-code design process conceived for developing multi-
agent systems. It is characterized by some distinctive features: (i) it is require-
ment driven, (ii) it is iterative and incremental, (iii) it focus the attention to
ontological model of the domain in the design of agents.

PASSI is composed of five models addressing different design levels of ab-
straction. The System Requirements Model represents an anthropomorphic
model of the system requirements in terms of agency and purpose. It consists of a
functional description of the system: the designer identifies system requirements
using use case diagrams, and organizes them in responsibility groups (that will
assigned to agents). The next model, the Agent Society Model, fully exploits
the agent paradigm: now an agent is seen as an autonomous entity capable of
pursuing an objective through its autonomous decisions, actions and social re-
lationships. The activities involved in this model aim to depict agent internal
plans, knowledge and social abilities in order to model interactions and depen-
dencies among entities of the society. The Agent Implementation Model
defines the implementing details of the solution in terms of classes, attributes
and methods. In this phase the designer uses conventional class diagrams, to

The PASSI and Agile PASSI MAS Meta-models 185

describe the static structure of the involved agents, and activity or state chart
diagrams, to describe the behavior of individual agents. The Code Model is a
representation of the solution at the code level while the Deployment Model
describes the distribution (and their eventual migrations) of sub-systems across
available hardware processing units.

Agile PASSI [9,8] derives from PASSI through the reuse of some of its
fragments and it has been assembled complying a method engineering approach
[10,11,12]. It is a light process created, according to the agile manifesto [13], with
the aim to develop, in a short time, small-medium size systems. An agile process
is easy to understand and to use because it is principally code oriented; for these
reasons Agile PASSI comes to be well suited for those applications where coding
is more important than documentation. In order to be compliant with agile
modeling principles [13,14], Agile PASSI is an iterative process; it is composed
of five steps (a low number) and it strongly oriented to communication among
customers and developers during all the development phases (and in particular
during the planning one). The fragments (portions of the design process) we have
extracted from PASSI are: (i) Domain Requirements description (the description
of system functionalities through use case diagrams), (ii) Agent Identification
(the identification of logically related sets of functionalities that are put under
an agent’s responsibility), (iii) Domain Ontology description (the description
of the agent knowledge in term of concepts, predicates and actions), (iv) Code
Reuse (a technique for reuse portion of projects and code using design patterns)
and (v) Testing (single agent and society test). This selection was done taking in
consideration the PASSI philosophy: we have maintained use case diagrams as
the base for agents identification and we have not changed the fundamental role
of the ontology in the process. From the other side we respected the requirements
for an agile process: low importance for the completeness of documentation and
rapid code production.

The result of the composition of these fragments is a new process including
five steps: Requirements, a model of the system requirements that is composed
of two activities: Planning and Sub-Domain Requirements Description; Agent
Society, a view of the agents involved in the solution, their interactions and their
knowledge about the world. It is composed of two activities: Domain Ontology
Description and Agent Identification; Test Plan, the phase of test planning;
Code, a solution domain model at code level; Testing, the performing of the
previous planned tests.

3 The PASSI and Agile PASSI MAS Meta-Models

The description of the PASSI MAS meta-model (Figure 1) addresses three logical
areas: (i) the problem domain, (ii) the solution domain and (iii) the agency
domain; they are introduced in an order that reflects our choice of an agent
approach for solution refinement and modeling.

In the problem domain we include components describing the requirements
the system is going to accomplish: these are directly related to the requirements

186 M. Cossentino et al.

Fig. 1. The PASSI MAS meta-model

analysis phase of the PASSI process. Then we introduce the agency domain
components; they are used to define an agent solution for the problem. Finally,
in the PASSI MMM solution domain, agency-level components are mapped to
the adopted FIPA-compliant implementation platform elements (we suppose the
platform supports at least the concepts of agent and task); this represents the
code-level part of the solution and the last refinement step.

Going into the details of the model, we can see that (Figure 1), the Prob-
lem Domain deals with the user’s problem in terms of scenarios, requirements,
ontology and resources. Scenarios describe a sequence of interactions among ac-
tors and the system to be built; Requirements are represented with conventional
UML use case diagrams. The ontological description of the domain is composed
of concepts (categories of the domain), actions (performed in the domain and
effecting the status of concepts) and predicates (asserting something about a
portion of the domain, i.e. the status of concepts). Resources are the last el-
ement of the problem domain. They can be accessed/shared/manipulated by
agents. A resource could be a repository of data (like a relational database), an
image/video file or also a good to be sold/bought. The Agency Domain contains
the components of the agent-based solution. In PASSI an agent is responsible
for realizing some functionalities descending from one or more functional re-
quirements. It also has to respect some non functional requirement constraints
(like for instance performance prescriptions). It lives in an environment from
which it receives perceptions (the related knowledge is structured according to
the designed domain ontology). Sometimes an agent has also access to available
resources and it is capable of actions in order to pursue its own objectives or

The PASSI and Agile PASSI MAS Meta-models 187

Fig. 2. The Agile PASSI MAS Meta-Model

to offer services to the community. Each agent during its life plays some roles.
A role is a peculiarity of the social behavior of an agent. When playing a role,
an agent may provide a service to other agents. In PASSI, a task specifies the
computation that generates the effects of a specific agent behavioral feature.
It is used with the significance of atomic part for defining the overall agent’s
behavior. This means that an agent’s behavior can be composed by assembling
its tasks and the list of actions that are executed within each task cannot be
influenced by the behavior planning. Tasks are structural internal components
of an agent and they contribute to define the agent’s abilities; these cannot be
directly accessed by other agents (autonomy) unless the agent offers them as a
set of services. A communication is an interaction among two agents and it is
composed of one or more messages. The information exchanged during a commu-
nication is composed of concepts, predicates or actions defined in the ontology.
The flow of messages and the semantic of each message are ruled by an agent
interaction protocol (AIP). The last Agency Domain element (Service) describes
a set of coherent functionalities exported by the agent for the community.

The Implementation Domain describes the structure of the code solution in
the chosen FIPA-compliant implementation platform and it is essentially com-
posed of three elements: (i) the FIPA-Platform Agent that is the base class
catching the implementation of the Agent entity represented in the Agency do-
main; (ii) the FIPA-Platform Task that is the implementation of the agent’s
Task, (iii) the ServiceDescription component that is the implementation-level
description (for instance an OWL-S file) of each service specified in the Agent
Domain.

Like the previous one, the Agile PASSI MMM (Figure 2) is partitioned in
three logical areas: (i) problem domain, (ii) agency domain and (iii) solution do-
main. Agile PASSI was assembled starting from fragments extracted from PASSI,
so the collection of MAS components descends from these fragments following

188 M. Cossentino et al.

a particular design process [8] also considering the particular applications the
agile process was conceived to solve. An agile process principally addresses code
production, so in this case MAS meta-model components are mainly centered
on the agent element and its related implementation parts. Using Agile PASSI
a multi-agent system is conceived following five phases: planning, requirements
design, agent society design, coding and testing; during the first two phases the
elements present in problem domain area of MMM are instantiated; these ele-
ments are: i) functional and non functional requirements (used to describe the
user point of view on the problem solution), and ii) domain ontology (composed
of concepts, predicates and actions). As regards the Agency Domain, its cen-
tral component is obviously the agent that is conceived in the same way as it
is in conventional PASSI; it is composed of tasks representing significant (but
not divisible) parts of its behavior and its capability of pursuing an objective
realizing some functionalities, besides it uses communications to interact (com-
municating or requesting collaborations) with other agents, each communication
being composed of messages ruled by an agent interaction protocol (like it is in
PASSI). The solution domain is nearly the same of conventional PASSI since it
is composed of the Agent and Task implementation elements.

4 A Unifying MAS Meta Model

An initial proposal of unifying MAS meta-model has been presented by C.
Bernon et al. in [6] with the aim of contributing to the interoperability among
agent oriented design processes; in their work the authors started with a com-
parison of some existing process with a specific attention for the differences
among their MAS meta-models (MMM) components. The three studied design
processes (ADELFE, Gaia and PASSI) are quite generic, in fact none of them
refers to a specific agent architecture (like BDI or purely reactive agents).

The study was conducted using the classification of the terms (represent-
ing a MAS) accordingly to the following four categories: (1) Agent Structure:
agent, role, responsibility, task, goal, plan and service; (2) Agent Interactions:
(direct and undirect) communication, protocol, message; (3) Agent Society and
organizational structure: social structure and organization rule; (4) Agent Im-
plementation: FIPA-Platform agent and FIPA-Platform Task. The analysis con-
firmed that in the processes under exam, multiple definitions exist for the same
component/concept; some are quite similar (there are small differences in the
meaning), while some others are completely different. In order to maintain some
level of generality they defined an unifying MMM (in Figure 3) with the aim
to be used as a reference point for further comparisons and discussions about
different design processes and related components.

5 A Comparison of the Presented Meta-models

It is a common belief that a general process, suitable to solve any kind of prob-
lems, does not exist, so it is clear that a MAS meta-model as huge as the one

The PASSI and Agile PASSI MAS Meta-models 189

Fig. 3. The Unifying MAS meta-model (from [6])

described in section 4 cannot be used without some level of customization of its
structure. Specializing different elements from MMM meets the different design
philosophies on which each design process is based; now we will compare the
PASSI and Agile PASSI MMMs with the unifying one with the aim of pointing
out the differences among various concepts without forgetting that the unify-
ing meta-model elements derives from the unification of three existing design
processes already including PASSI.

Our comparison will deal with the four specific aspects of the MMM already
discussed in the previous section. In the following we will refer to Figure 4 to
show what elements and what relationships from the unifying meta-model we
can find in the PASSI one (black drawn elements), what elements and rela-
tionships are newly introduced (dark-filled elements) and how the concepts and
their definitions are specialized to create the MAS meta-model representing the
PASSI design process. Elements from the unifying MMM that are not used in
PASSI/Agile PASSI are gray-designed and as it can be seen they are a signifi-
cant part of the model itself. Besides we will underline that because of slightly
different interpretations of meta-model concepts (and philosophical choices that
are beyond of each approach) it is possible that meta-models sharing the same
elements can lead to significantly different design processes.

Agent Structure: in PASSI an agent is defined as a composition of roles; tasks,
specifying a specific computation generating some kind of behavior, are associ-

190 M. Cossentino et al.

Fig. 4. The PASSI elements in the Unifying MAS meta-model

ated to each role. From all of this descends that a design process based on PASSI
is performed through a sequence of steps leading from an early identification of
agents to the definition of their roles and the description of their communica-
tions, while for instance in Gaia[15], being different the definitions of agent and
role, we can see that the process is initially based on roles definition and only in
a second time on the agents identification.

Instead in Agile PASSI, an agent is composed only by tasks, the concept of
role is not necessary and so it is not present in Agile PASSI meta-model.

Agent Interaction: as regards the agent interaction capability in PASSI (and
Agile PASSI) we see it is based on communications; they refer to an agent
interaction protocol and the knowledge exchanged during the communication is
seen as an instance of the domain ontology; this points out how important it
is in PASSI to create a relationship between communications and the ontology
through an ontology element while it is not necessary to introduce the concept
of environment of Adelfe[16], where an agent can interact with another agent
directly through communications or indirectly through the environment.

Agent Society: social relationships in PASSI are modeled through the defini-
tion of services that can be provided or accessed by agents. The service providing
imply that agents would play social roles so to participate in scenarios interacting
with other through communications; an agent can handle some resources that
are relevant for the remaining part of society and accessing them can trigger

The PASSI and Agile PASSI MAS Meta-models 191

some kind of interactions. During the design flow in PASSI a static structural
representation of the agent society is made through a class diagram where classes
(agents) can be grouped in packages representing the social structures (groups,
communities,...); differently in Gaia, the agent society is considered more than
a collection of interacting agent but it is an entity with a well defined structure.
From this structure a designer can identify agent activities, assigning a role for
each social one; once all the roles that compose one agent are defined, their ac-
tivities and responsibilities are converted into a set of services. Agent society is
not modeled in Agile PASSI.

Agent Implementation: in PASSI and Agile PASSI a direct mapping exists
between the elements of the MAS meta-model and their implementation; each
agent is coded using the base agent class of the selected implementation platform
and it contains the tasks that are used by roles (that have not a direct code level
implementation). No similar mapping is provided by Gaia or Adelfe.

6 Conclusions

A large number of MAS design processes have been developed in the last years
and probably others will be created in future; each of these is characterized by
specific features characterizing the single approach. In all of these cases, differ-
ences among the various design processes (sometimes referred to as methodolo-
gies) reflect in correspondent differences among the MAS meta-models. In this
work we presented the MAS meta-models of the PASSI and Agile PASSI de-
sign processes and compared them with a unifying proposal of MAS meta-model
resulting from the study of three existing design process MMMs. Our aim was
both to evaluate whether from the proposed unifying MMM we could derive a
new design process (Agile PASSI) and to speculate about the fact that different
processes, although similar in some parts of the MAS meta-models, can have
very different approaches to the design of their systems (some examples dealt
with the order in which the different elements are instantiated during the de-
sign time). We can conclude that the unifying proposal despite of the level of
generality that it introduces still sufficiently supports the PASSI/Agile PASSI
MAS meta-models and besides, in section 5, we observed that the unique schema
representing a MMM is not sufficient to underline some specific design process;
conversely, several different solutions can be drawn to instantiate the same meta-
model; it still remains to explore the importance that the different definitions of
the MMM elements can have in constraining the overall process.

References

1. Capera, D., Georg, J.P., Gleizes, M.P., Glize, P.: The amas theory for complex
problem solving based on self-organizing cooperative agents. In: Proc. of the 1st
International Workshop on Theory And Practice of Open Computational Systems
(TAPOCS03@WETICE 2003), Linz (Austria) (2003)

2. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the tropos project. Inf. Syst. 27 (2002) 365–389

192 M. Cossentino et al.

3. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (2000) 285–315

4. Cossentino, M., Potts, C.: A case tool supported methodology for the design of
multi-agent systems, Las Vegas (NV), USA, The 2002 International Conference on
Software Engineering Research and Practice, SERP’02 (2002)

5. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering.
International Journal on Software Engineering and Knowledge Engineering (11)
231–258

6. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A study of some
multi-agent meta-models. Lecture Notes in Computer Science 3382 (Jan 2005) 62
– 77

7. Cossentino, M.: From requirements to code with the passi methodology. In
Henderson-Sellers, B., Giorgini, P., eds.: Agent-Oriented Methodologies, Idea
Group Inc. (2005 (in printing))

8. Cossentino, M., Seidita, V.: Composition of a new process to meet agile needs
using method engineering. In Ed., E., ed.: LNCS Series. (2004) 36–51

9. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: From passi to agile passi :
tailoring a design process to meet new needs. In: 2004 IEEE/WIC/ACM Interna-
tional Joint Conference on Intelligent Agent Technology (IAT-04), Beijing, China
(2004)

10. Brinkkemper, S.: Method engineering: engineering the information systems devel-
opment methods and tools. Information and Software Technology 37 (1995)

11. Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific
methodology construction. Challenges and Strategies for Research in Systems
Development (1992) 257–269

12. Saeki, M.: Software specification & design methods and method engineering. In-
ternational Journal of Software Engineering and Knowledge Engineering (1994)

13. Beck, K., al.M. Beedle, van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Mar-
ick, B., Martin, R., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: (Agile
manifesto) http://www.agilemanifesto.org.

14. Alliance, A.: (http://www.agilealliance.org)
15. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the

gaia methodology. ACM Transactions on Software Engineering and Methodology
12 (2003) 417–470

16. Bergenti, F., Gleizes, M.P., Zambonelli, F.: Methodologies and Software Engineer-
ing for Agent Systems. Kluwer (2004)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 193 – 202, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Synthesis Stage in the Software Agent
Development Process

Fernando Alonso1, Sonia Frutos1, Loïc Martínez1, and F. Javier Soriano1

1 Facultad de Informática, Universidad Politécnica de Madrid,
28660 Boadilla del Monte (Madrid), Spain

{falonso, sfrutos, loic, jsoriano}@fi.upm.es

Abstract. In most existing software agents methodologies, system analysis is
dependent on an agent-oriented, object-oriented or knowledge-based design
paradigm. This simplifies the complex transformation of the conceptual model
produced during analysis into the physical model output at design time. We,
like other authors, believe that the conceptual model has to be conceived as
independent of the design paradigm and that the physical model should be
driven by the solution, both models leading to very different conceptions of the
problem. In this paper we present the SONIA agents development methodology
that includes a transitional synthesis stage between analysis and architectural
design that mends the break between the construction of the two models.

1 Introduction

The software agent development process, and generally any software development
process, can be viewed as the application of three transformations [1] (Fig. 1):
requirements in the application domain are transformed into a conceptual model of
the problem (T1- Analysis). The conceptual model is transformed into a physical
model that represents the software product properties (T2-Design). And the physical
model is transformed into a computable model, the program (T3-Implementation).

Problem
Conceptual Model

Physical Model Solution

TT11

TT22 TT33

Fig. 1. The essential software process

The conceptual and physical models are two very different ways of looking at the
problem, and its implementation involves a drastic change in the use of processes,
methods and tools.

Additionally, there is no perfect method for either model [2]. The current trend is,
therefore, to integrate different methods, tools and techniques, using whichever is the
best in each individual situation. This raises the analysis dilemma: developers have to

194 F. Alonso et al.

choose the best suited techniques for each problem. To make this decision, developers
have to analyse the problem and choose a method of analysis before they are really
familiar with the problem. If the chosen technique uses design terminology, then the
problem-solving paradigm has been preconditioned, and this paradigm could turn out
not to be the best suited when the problem has been analysed in detail. In conclusion,
a good methodology should not force a given architecture upon developers from the
very beginning. It is the outcome of the system specifications analysis that should
point developers towards the best suited architecture for solving the problem [3].

By contrast with this idea, most agent methodologies propose design paradigm-
dependent analysis to elude these problems and bridge the gap between the
implementation of the two models (for example, Tropos [4], Gaia[5], Prometheus [6],
MAS-CommonKADS [7]).

In this paper, we briefly describe a methodological approach that defines an
architecture-independent generic analysis model, including, as the first design phase
stage, a synthesis stage (which is the paper’s core), that smoothes the step from the
conceptual to the formal model. In Section 2, we describe the structure of the
proposed SONIA methodology. Section 3 details the synthesis stage, and Section 4
states the conclusions on the advantage of this approach.

2 SONIA Methodology

Based on research and development efforts in the field of AOSE (Agent Oriented
Software Engineering), we think that an agent-oriented development methodology
should have the following features [8]: (i) it should not condition the use of the agent
paradigm right from analysis; (ii) it should naturally lead to the conclusion of whether
or not it is feasible to develop the system as a MAS; (iii) it should systematically
identify the components of a MAS, if the problem specifications call for an agent
society; (iv) it should naturally lead to this organizational model; (v) it should produce
reusable agents; and, (vi) it should be easy to apply and not require too much
knowledge of agent technology.

The SONIA (Set of mOdels for a Natural Identification of Agents) methodology
[8] basically embraces the previous approaches: the generation of a multi-agent
architecture to solve a problem (whose conceptualization is not conditioned by the
agent paradigm) and the systemization and automation of the activities of identifying
MAS components. Likewise, the methodology defines an agent society model that
flexibly and dynamically facilitates problem solving and can be used to integrate
indispensable legacy systems.
 The phases and stages of which the SONIA methodology is composed are listed
below, along with the models generated in each stage (Fig. 2):

− Conceptualization: The problem is analyzed using the Set Theory Based
Conceptual Model (SETCM) [9,10], an analysis method that was defined to
combine a formal foundation with a pragmatic approach. This analysis method is
design-independent.

The result is an Initial Structural Model, which describes the overall structure of
the domain (concepts, associations, attributes, classifications, etc.) and an Initial
Task Model, which describes the problems to be solved (tasks) and the task
decomposition and control of the resolution of the subtasks (task methods).

 The Synthesis Stage in the Software Agent Development Process 195

Extended
Analysis

Extended
Analysis

Architectural
Design

Architectural
Design

SynthesisSynthesisKnowledge
Model

Responsibility
Model

Behavior
Model

Object Model

Interaction
ModelAgent Model

ConceptualizationConceptualizationInitial
Structural Model

Initial
Task Model

Structural Model

Environment
Model

Task Model

ANALYSIS

DESIGN

Society
Design

Society
DesignSocial Com.

Policies Model
Social Agent

Model

Goal Model

Relationship
Model

Role Model

Fig. 2. Phases of the SONIA methodology

− Extended Analysis: Having conceptualized the problem, the models built are
refined and expanded to capture the system environment and external entities.

The Extended Analysis Stage produces the following models: an Environment
Model, which defines the external system entities and system interactions with
these entities; a Structural Model, which can extend the system knowledge with
knowledge that the external entities supply to the system; and a Task Model, which
can extend the tasks performed by the system with any tasks required to interact
with external entities.

− Synthesis: This stage provides the building blocks for the component-driven
bottom-up identification of agents that is performed during the design. In this
process, basic elements are identified first (bottom level) and are used to identify
and define agents (top level).

It produces the following models: a Knowledge Model, which identifies the
knowledge blocks inherent to the problem by grouping concepts and associations
from the Structural Model; a Behavior Model, produced by grouping tasks,
subtasks and methods from the Task Model; a Responsibility Model, output by
establishing the relationships between knowledge blocks and behaviors, and a Goal
Model, which represents the main objectives of the system. This stage bridges
domain-dependent analysis and (software) solution-dependent design and is
described in detail under point 3.

− Architectural Design: The purpose of the second stage of Multiagent Architecture
Design is to define the architectural elements by means of the following models: an
Agent Model, which identifies and defines, from the Knowledge, Behavior,
Responsibility and Goal Models, what elements should be designed as autonomous
agents; an Object Model, which identifies and defines, from the Knowledge and
Responsibility Models, what passive elements there are in the environment; and an

196 F. Alonso et al.

Interaction Model, which identifies and defines the relationships between the
agents and between agents and objects.

Not until the Agent Model is built is a decision made as to whether the
architecture can be implemented by means of agents or a different paradigm needs
to be used. This choice is chiefly based on whether or not agents can be identified.
For an entity to be able to considered as an autonomous agent, it should have a
behavior and the right knowledge blocks to perform the tasks of this behavior, have
at least one defined goal and one utility, and perceive and act in the environment.

If no agents can be identified, another design paradigm will have to be chosen.
One possibility would be an object-oriented design, reusing Object and Interaction
Models. Another possibility would be to design the system as a knowledge-based
system, reusing the Knowledge, Behavior and Responsibility Model.

− Society Design: The Multiagent Architecture Design can result in an agent society,
in which the system is designed as a set of agents embedded in a social structure.
Several models are generated in this stage: a Social Agent, a Role, a Relationship,
and a Social Commitment Policy [11].

3 Synthesis Stage

As mentioned earlier, we consider a design paradigm-independent analysis to be best.
In this case, the step from analysis models to architectural design models is usually a
traumatic process because they are too far apart. Thus, the transition to design has to
be undertaken with special care (Fig. 3).

Conceptualization
Models

Conceptualization
Models

Architectural
Design
Models

Architectural
Design
Models

Synthesis
Models

Synthesis
Models

from the analysis to the design

Analysis Design

Fig. 3. Transition from analysis models to design models

This approach is based on synthesizing information of the analysis models as
higher-level structures related to the reference paradigm, that is, restructuring the
analysis information to adapt it to the design tools. Synthesis is the first design phase,
whereby the viewpoint switches from the domain (analysis) to the solution (design).
Consequently, it should ease the identification and formalization of computable
structures that are coherent with agent orientation from the analysis models.

The Synthesis stage produces the models that are used later for the component-
driven identification of agents. For this purpose, it re-groups elements of the
Structural and Task Models to produce four other models: a Knowledge Model, a
Behavior Model, a Responsibility Model, and a Goal Model.

 The Synthesis Stage in the Software Agent Development Process 197

The process of outputting these models and their application to a real case study,
ALBOR (Barrier-Free Computer Access)1, is described in the following sections [10].
ALBOR was conceived as an Internet-based intelligent system designed to provide
guidance on the evaluation of disabled people’s computer access skills and on the
choice of the best suited assistive technologies.

3.1 Knowledge Model

The Knowledge Model can identify the knowledge blocks by grouping Structural
Model concepts and associations. The knowledge blocks will be used internally or
shared by the agents.
 These clusters are identified on the basis of the concepts and associations of which
they are composed, which meet the following conditions:

− They are strongly related to each other. The clusters are internally highly cohesive.
− They have little relationship to the other concepts and associations (low-coupled

grouping).
− They are used to perform the same tasks.

 The activities to be performed to output the first version of the Knowledge Model are:

1. Identify clusters of concepts and/or associations
2. Identify relations between knowledge blocks
3. Describe knowledge blocks

 A new technique modifying Kelly’s Trait Analysis [12] was used to identify
concepts and associations. This technique identifies clusters of concepts and
associations that have the first two properties of a knowledge block: high cohesion
and low coupling.
 To systematize the application of this technique, the conceptual diagram of the
Structural Model is first transformed into a directed graph, as follows:

− For each concept and association create a graph node.
− For each association, create an arc from each association source concept node to

the association node and an arc from the association node to the association target
concept node.

− For each classification, create an arc from each subconcepts node to the
superconcept node.

 Then a 2D table is built that stores the connectivity (number of arcs or connections)
between each pair of nodes in the graph. Finally, the Trait Analysis-based technique is
applied using the connectivity between two graph clusters as a measure of
comparison. The technique will involve iteratively applying the clustering algorithm
until no more concepts and/or associations can be clustered.

Fig. 4 shows the conversion of the ALBOR conceptual diagram output during
analysis into a directed graph and groupings of concepts/associations (knowledge
blocks). In this step, we obtain three knowledge blocks KB1, KB2 and KB3.

1 ALBOR is a project funded by the UPM (Technical University of Madrid) and IMSERSO

(Spanish Institute of Migrations and Social Services).

198 F. Alonso et al.

C1

A1 A7 A10

C2

A2

C3

A3

C4

A4

A5

A6

C8

A8

C5

C6 C7

A9

C9

C10

A11 A12

C11

C12

ASSOCIATIONSCONCEPTS

A12: HasConsequentC12: Aptitude
A11: HasAntecedentsC11: Fact
A10: HasAptitudesC10: Rule
A9: HasMediumC9: Medium
A8: HasLinksC8: Recommendation
A7: HasRecommendationsC7: WebPage
A6: HasMediumC6: WebApplication
A5: HasMediumC5: WebSite
A4: NextQuestionC4: Response
A3: HasResponsesC3: Question
A2: HasQuestionsC2: Section
A1: HasResponsesC1: User

KB 1

KB 2

KB 3

Fig. 4. Clusters of concepts/associations (knowledge blocks)

This technique makes no distinction between concepts and associations when
transforming the conceptual diagram into a graph. Therefore, we will have to apply
the rules listed in Table 1 to check whether or not the clusters are valid.

Table 1. Rules for dealing with invalid relations (r) between knowledge blocks (k) / concepts
(c) / associations (a), siendo s un concepto o una asociación perteneciente al origen de a

Components Rules for dealing with invalid relations
r (k, c) R1: IsAssociation(r) ∧ IsSource(c, r) → Add c to k
 R2: IsAssociation(r) ∧ IsTarget(c, r) → Do not add c to k

 {r will be dealt with at later stages}
 R3: IsClassification(r) ∧ IsSubconcept(c, r) → Add c to k

 {c belongs to knowledge block containing the classification's superconcept}
 R4: IsClassification(r) ∧ IsSuperconcept(c, r) → Do not add c to k

 {r will be dealt with at later stages}
r (k, a) R5: ¬HasAttributes(a) ∧ Source(a) = {s} ∧

 (Cardinality(s, a) = 0..1 ∨ Cardinality(s, a) = 1..1) ∧ s∈k → Add a to k
 R6: ¬HasAttributes(a) ∧ ∀s∈ Source(a) (Cardinality(s, a) = 0..* ∨ Cardinality(s,a) = 1..*) ∧

 ∀s∈Source(a) s∈k → Add a to k
 R7: HasAttributes(a) ∨ (∃ s∈Source(a) (Cardinality(s, a) = 0..* ∨ Cardinality(s, a) = 1..*)) ∨

 (∃k1,k2 ∃s1,s2∈Source(a) k1≠k2 ∧ s1∈k1 ∧ s2∈k2) → Do not add a to k
 {r will be dealt with at later stages}

The knowledge blocks identified in Fig. 4 are modified as a result of applying
these rules. Associations A5 and A6 are added to the knowledge block KB1 applying
rule R5. C12 is added to KB3 applying R3 and A9 is added to KB2 applying R5.

The resulting clusters of the first version of the model can only satisfy the
conditions of being highly cohesive and fairly unrelated to other clusters. The final
version of the model, which is output when the Responsibility Model is completed,
will meet all the conditions.

3.2 Behavior Model

The Behavior Model is the result of grouping tasks and methods of the Task Model.
The behaviors will be part of the agents.

 The Synthesis Stage in the Software Agent Development Process 199

 These clusters are characterized because the tasks and subtasks of the grouping:

− Depend on others through task methods.
− Use the same knowledge blocks for problem solving.

 The activities to be performed to output the first version of the Behavior Model are:

1. Identify clusters of tasks and/or subtasks
2. Identify time dependences between behaviors
3. Describe behaviors

 In this first version of the Behavior Model, one cluster is generated for each first-
level task in the task/method diagram of the Task Model, adding its subtasks to the
cluster. Fig. 5 shows the cluster of ALBOR tasks/methods (B1, B2, B3 and B4). The
time dependences between behaviors are then calculated from the preconditions and
postconditions of these clusters. A behavior B2 depends on a behavior B1, if there is a
knowledge block (and concepts and/or associations) in the postcondition of B1 that is
also in the precondition of B2.

TM 2 TM 3 TM 4

TM 3.1 TM 3.2 TM 4.1TM 2.1 TM 2.2

TM 1

TM 3.1.1 TM 3.1.2 TM 3.1.3 TM 3.1.4 TM 3.2.1 TM 4.1.1 TM 4.1.2

B 1 B 2 B 3 B 4

TM 3.1.3: ResponseTM 1: InitSession
TM 3.1.4: GetNextQuestionTM 2: IndentifyUser

TM 3.2: EvaluateAptitudeTM 2.1: TakePersonalData
TM 3.2.1: FireRuleTM 2.2: PrepareSession

TM 4: ShowReportTM 3: AnalyzeUser
TM 4.1: ShowRecom.TM 3.1: TakeSurvey
TM 4.1.1: ShowMediumTM 3.1.1: ShowQuestion

TM 4.1.2: ShowLinkTM 3.1.2: ShowMedium

TASK MODEL

Fig. 5. Clusters of tasks/methods (behaviors)

The resulting clusters for the first version of the model can only satisfy the
condition of interdependency through task methods. The final version, which is output
when the Responsibility Model is completed, will meet all the conditions.

3.3 Responsibility Model

The Responsibility Model is output by relating knowledge blocks to behaviors. This
model is essential for identifying agents and environment objects. A basic activity is
to refine the Knowledge and Behavior Models to meet all their conditions.
 The activities to be performed to output the Responsibility Model and the final
versions of the Knowledge and Behavior Models are:

1. Identify the use relations of concepts/associations/knowledge blocks in behaviors
2. Modify the Knowledge Model
3. Modify the Behavior Model
4. Identify responsibilities between knowledge blocks and behaviors
5. Describe responsibilities

 The Knowledge and Behavior Models are refined first by identifying the use
relations between concepts/associations/knowledge blocks in behaviors and
incorporating in a 2D table. A mark will be placed at the intersection between a
behavior with a concept/association/knowledge block if they are used to perform a

200 F. Alonso et al.

task/subtask belonged to that behavior (that is, if it appears in the precondition or
postcondition of the task/subtask) (see Table 2).

Table 2. Relations of use between concepts/associations/knowledge blocks and behaviors

 Behaviors
 B1 B2 B3 B4

C1 X X X X
A1 X
A7 X
C9 X X

Concepts /
Aassociations

A10 X
KB1 X
KB2 X

KnowledgeBlocks

KB3 X

To output the final Knowledge Model, all the concepts/associations will have to be
included in one knowledge block. The rules in Table 3 can be used to determine when
to add a concept/association to an existing knowledge block or when to cluster a
number of concepts/associations as a new knowledge block. These rules of inclusion
will be based on the use relations of concepts/associations in output tasks/subtasks.

Table 3. Rules of inclusion of concepts (c) / associations (a) of the unclustered Structural
Model (usm) in knowledge blocks based on relations X:Y (where X are tasks/subtasks and Y are
concepts/associations)

Inclusion Rules
(r = 1:1 ∨ r = 1:N) ∧ (c/a are not related to other elements of usm) ∨ (c/a are related to other elements of usm
∧ the constraints in Table 1 hold) → Cluster c/a in an existing knowledge block
(r = N:M) ∧ (c/a are not related to other elements of usm ∨ (c/a are related to other elements of usm ∧ the
constraints in Table 1 hold) → Cluster c/a∈r to form a new knowledge block

The following actions are taken taking into account the relations of use (Table 2)
and inclusion rules (Table 3). Concepts C1 and C9 have a N:M relation with more
than one behavior, which means that two knowledge blocks (KB4 that contains the
concept C1 and KB5 the concept C9) are created. On the other hand, concepts A1, A7
and A10 have a 1:N relations with behavior B3 and can be added to the knowledge to
which they are related (A1, A7 and A10 are included in KB4).

To output the final Behavior Model, the behaviors will have to meet the second of
the conditions set out in its definition. This condition demands that the same
knowledge block should be used to perform the tasks of a single behavior. The rules
in Table 4 can be used to evaluate whether more than one behavior should be
clustered as one or divided into more than one behavior on the basis of the use
relations of concepts/associations in the output tasks/subtasks.

Table 4. Rules of behavior clustering/division based on relations (r) X:Y (where X are
behaviors and Y is knowledge block)

Clustering/division rules
r = 1:N → divide behaviors into more than one behavior.
{Algorithm: each behavior will contain a subtask of the next level of decomposition of the main task of the
divided behavior. Analyze the relations between the new behaviors and the new knowledge block to check
that they are 1:1. If so, stop; otherwise, divide the behaviors again}
r = N:1 → cluster the behaviors into one

 The Synthesis Stage in the Software Agent Development Process 201

As a result of applying these rules, behavior B3 is divided into two behaviors in
ALBOR. On the other hand, there were no behavior clusters.

3.4 Goal Model

The Goal Model is composed of the system objectives. The aim of this model is to be
able to identify agent goals. The agent will execute behaviors to achieve its goals.
 The activities to be performed to output the Goal Model are:

1. Identify goals
2. Describe goals

 These goals are logical conditions imposed on the state of knowledge and are
identified from Behavior Model task postconditions. The goals are a subset of the
union of the postconditions of the behaviors that define the system goals. The
designer’s task is to decide which subset of postconditions defines the system goals.

In ALBOR, a single goal “new Users.recommendations” has been identified for the
EvaluateAptitude behavior (B4), whose meaning is to get new recommendations for a
user.

3.5 Transition to Architectural Design Phase

The agents and objects were identified during architectural design from the
Responsibility Model. The knowledge shared by several behaviors was chosen as
objects. Following this criterion, we identified the “Users” and “Media” objects
(white box in Fig. 6).

Object

Candidate Agent

KB 5

Media
KB 1

Questionnaires
KB 2

Recommendations

KB 3

RulesKB 4

Users
B 2

IdentifyUser

B 4

ShowReport
B 3.1

TakeSurvey

B 3.2

EvaluateAptitude

B 1

InitSession

Fig. 6. Identification of objects and candidate agents

A candidate agent will be output for each knowledge block that is the
responsibility of a sole behavior (relation 1:1). In the case of ALBOR, three candidate
agents were identified: ‘Survey-Taker’ agent (B3.1 and KB1), ‘Decision-Maker’ agent
(B3.2 and KB3) and ‘Advisor’ agent (B4 and KB2) (grey box in Fig. 6). The B1 and
B2 were not assigned, because they do not have any proper knowledge.

Not all candidate agents will be converted to agents. This will be confined to
agents that meet all the requirements for becoming an autonomous agent, i.e. agents
that have at least one defined goal and utility, and sense and act in the environment. In
ALBOR, the three candidate agents identified earlier meet these two conditions and
qualify as autonomous agents.

202 F. Alonso et al.

4 Conclusions

This paper aims to contribute to the methodological issue of agent-based development
by defining a new methodology, SONIA, that includes a synthesis stage to smooth the
transition between the design paradigm-independent analysis and paradigm-dependent
multiagent architectural design. For this purpose, we described the models underlying
this synthesis stage (knowledge, behavior, responsibiliy and goal model) and the
mechanisms for building them.

References

1. Blum, B. I. Beyond Programming, Oxford University Press, New York (1996)
2. Shapiro, S. Splitting the difference: the historical necessity of synthesis in software

engineering. IEEE Annals of the History of Computing, 19(1) (1997) 20-54
3. Alonso, F., de Antonio, A., González, A. L., Fuertes, J. L., Martínez, L.A.: Towards a

Unified Methodology for Software Engineering and Knowledge Engineering. Proc. of the
IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC’98), San
Diego, USA (1998) 4890-4895

4. Bresciani, P, Giorgini, P, Giunchiglia, F and Mylopoulos, J Tropos: An Agent Oriented
Software Development Methodology, Int. J. of Autonomous Agent and MultiAgent
System, 8(3) (2004) 203-236

5. Zambonelli, F, Jennings, N R, and Wooldridge, M Developing Multiagent Systems: The
Gaia Methodology, ACM Transactions on Software Engineering and Methodology, 12(3)
(2003) 317-370

6. Padgham, L and Winikoff, M Prometheus: A Methodology for Developing Intelligent
Agents, in: Giunchiglia, F, Odell, J, and Weiss, G (eds.): Agent-Oriented Software
Engineering III, LNCS 2585, Springer-Verlag, Heidelberg (2003) 174-185

7. Iglesias, C A, Garijo, M, González, J C, and Velasco, J R Analysis and Design of
Multiagent Systems using MAS-CommonKADS, in: Singh, M P, Rao A S, and
Wooldridge, M (eds.): Intelligent Agents IV: Agent Theories, Architectures, and
Languages (ATAL97), LNAI 1365, Springer-Verlag, Heidelberg (1999) 313-326

8. Alonso, F., Frutos, S., Martínez, L.A., Montes, C.: SONIA: A Methodology for Natural Agent
Development. In: Gleizes, M. P., Omicini, A., Zambonelli, F. (eds.): Engineering Societies in
the Agents World V, LNCS/LNAI 3451, Springer-Verlag, Heidelberg (2005) 245-260

9. Martínez, L.A.: Method for Independent Problem Analysis. PhD Thesis. Universidad
Politécnica de Madrid. Spain (2003)

10. Alonso, F., Frutos, S., Fuertes, J. L., Martínez, L. A., Montes, C.: ALBOR. An Internet-
Based Advisory KBS with a Multi-Agent Architecture. Int. Conference on Advances in
Infrastructure for Electronic Business, Science, And Education on the Internet (SSGRR
2001), L’Aquila, Italy (2001) 1-6

11. Alonso, F., Fernández, F., López, G., Rojas, F., Soriano, J.: Intelligent Virtual Agent
Societies on the Internet. In: de Antonio, A., Aylett, R., Ballin, D. (eds.): Intelligent Virtual
Agents, LNCS/LNAI 2190, Springer Verlag, Heidelberg, Berlin (2001) 100-111

12. Kelly, G. A.: The Psychology of Personal Constructs. Norton (1995)

Use Case and Actor Driven Requirements Engineering:
An Evaluation of Modifications to Prometheus

Mikhail Perepletchikov and Lin Padgham

RMIT University,
School of Computer Science and Information Technology

{mikhailp, linpa}@cs.rmit.edu.au

Abstract. This paper describes modifications to the System Specificaton Phase
of the Prometheus agent development methodology. The modifications include
introduction of actors, and provision of additional structure to the System Speci-
fication Phase of Prometheus. The introduction of actors and additional structure
leads to better understanding of the system and its environment, and allows the
intended users of the system to be directly involved in the system specification
process. Also, the proposed approach is use-case driven, thus conforming to the
approach prescribed by Rational Unified Process (RUP). The refined methodol-
ogy has been evaluated by volunteering RMIT students taking a class on ‘Agent-
Oriented Programming and Design’. Results indicate that the refined methodol-
ogy is more systematic, produces a more balanced set of design artifacts and is
perceived by users to be less complex.

1 Introduction

For building large, industrial multi-agent systems a solid well developed Agent Ori-
ented Software Engineering methodology is required, to guide developers through the
system development lifecycle. Prometheus [1] is one such methodology. Prometheus is
quite detailed, providing substantial guidance to the developer regarding various aspects
of system design, and how design artefacts should relate to each other. This detailed,
structured guidance is important for obtaining well designed systems, particularly when
using a new or unfamiliar paradigm. However the initial phase of System Specification
is less structured than other parts of the methodology. In particular, the identification of
initial scenarios, percepts and actions have not been associated with clear processes.

This work addresses that weakness by introducing actors, and providing greater
structure for the first phase of Prometheus. This includes refinements to make it use-case
driven, thus conforming to the guidelines specified by Rational Unified Process [2,3].
The approach developed was then empirically compared to the original Prometheus
System Specification Phase, using students in an agent programming and design course.
The evaluation indicated that the changes led to a more systematic process for the elici-
tation of the initial system goals, use-case scenarios, percepts and actions. These results
were statistically significant using standard statistical analasys.

In the following sections we introduce the Prometheus methodology, and the re-
finements and modifications we have made to the System Specification phase. Then we
describe the evaluation process and present an analysis of the results. In concluding we
briefly review related work in agent oriented requirements engineering.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 203–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

204 M. Perepletchikov and L. Padgham

2 Overview of the Prometheus Methodology

The Prometheus methodology contains three main design phases: (i) System Specifica-
tion, (ii) Architectural Design, (iii) Detailed Design. Each of these contains a number of
structured processes and results in specified design artifacts. We describe them briefly,
with particular attention to the System Specification phase.

System Specification System specification in Prometheus consists of a number of in-
terleaving, iterative steps, to define goals, functionalities, scenarios and environmental
interface in the form of actions and percepts. An early step is to define a set of ini-
tial high-level goals that specify the reasons for building the system. These goals can
then be refined by using the informal technique of asking ‘how can we achieve this
goal?’ [4]. The goal refinement process results in a number of sub-goals for every orig-
inal goal under consideration. Similar subgoals are then grouped together to provide
a framework for the specification of functionalities. Another step is the development
of scenarios that demonstrate how processes are composed within the system. There is
also a step to specify the set of actions and percepts that constitute the system interface
with the environment.

The scenarios used in Prometheus are more comprehensive than those used in OO
analysis, and the techniques for defining alternative cases are defined. The main part of a
scenario consists of a sequence of steps. Possible steps are achieving a Goal, performing
an Action, receiving a Percept, or executing a nested Scenario.

Most of the activities of the System Specification Phase of Prometheus are sup-
ported by the ‘Prometheus Design Tool’ (PDT), a freely available prototype software
design tool available at: www.cs.rmit.edu.au/agents/pdt

Architectural Design The Architectural Design phase uses artifacts produced in the
System Specification Phase to determine what agents will be included in the system
and the interaction between these agents. The interactions between agents are modelled
using interaction diagrams and interaction protocols. The interaction diagrams are de-
veloped by refining scenarios identified in the previous phase. Also, the overall system
structure is captured using a system overview diagram. In addition, the messages be-
tween agents and shared data repositories are determined.

Detailed Design The Detailed Design phase uses artifacts produced in the Architec-
tural Design Phase to define the internals of every agent in the system and to specify
how agents accomplish their overall tasks. Each agent is refined in terms of its capa-
bilities, internal events, plans, and data structures. Each capability has the capability
overview diagram that captures design of the plans within this capability and the events
that are associated with these plans. The dynamic behavior is described by process
specifications based on the interaction protocols identified in the previous phase.

3 Modified System Specification Phase

The revised system specification process consists of the following steps: (i) Identifi-
cation of actors and their interactions with the system; (ii) Developing scenarios il-
lustrating the system’s operation; (iii) Identification of the system goals and sub-goals;

Use Case and Actor Driven Requirements Engineering 205

(iv) Specifying the interface between the system and its environment in terms of ac-
tions, percepts and any external data; (v) Grouping goals and other items into the basic
functionalities of the system.

The first modification of the original Prometheus process is the addition of actors
for which the system has relevance. These actors are any persons or roles which will
interact with the system, as well as any other stakeholders whose goals should be con-
sidered. Actors may be other software systems, as well as humans. The concept of Ac-
tor is not new in the AO development methodologies, for example Tropos methodology
also uses actors in its Early and Late Requirements Phases [5].

Use cases are then developed for each actor that will interact with the system, in
much the same way as for object oriented analysis. The input from actor to agent system
is then identified as a percept, while the outputs from system to actors are defined as
actions. This process results in improved structure for identifying percepts and actions.
Each use case identified based on actors becomes an initial scenario.

The second modification is that scenarios are linked to goals in a similar way to
that of the Goal-Scenario coupling framework (GSCF) [6] which is based around the
notion of a Requirement Chunk (RC) (a pair of <Goal, Scenario>). Since a goal can be
described as a contextual property of a scenario, and scenarios show concrete steps for
achieving a goal, the correlation between goal-oriented and scenario-driven approaches
can bring a number of benefits as described in [6]. The linkage used in the revised
Prometheus is not as strict as the one used in GSCF1. We use a unidirectional coupling
where each scenario necessarily has a goal which is linked to it (where we also use the
same name), but the more specific goals may not require a scenario.

Each initially identified scenario is then developed, with a number of detailed steps,
where each step is a goal, scenario, action or percept. A step other is also allowed
within Prometheus. With the coupling identified above, any nested scenario identified,
automatically introduces a goal. Goals introduced as steps may warrant development of
a scenario, in which case the goal step is automatically modified to be a scenario step.

Initial goals are identified via the initial use-cases as described above, and also by
examining the initial system description. Further goals are then identified by a process
of abstraction and refinement [7]. For each goal, we ask the question how? and why?,
thus identifying new goals, and forming a goal hierarchy.

One further modification that is introduced is the notion of two kinds of goal re-
finement: AND-refinement and OR-refinement as described by van Lamsweerde [7]. If a
goal is AND-refined, we mean that subgoals (or answers to the question how?) are steps
in achieving the overall goal, and each step must be done. If it is OR-refined, then sub-
goals are alternative ways of achieving the goal, and doing any one of them is sufficient.
Agent systems typically have both these kinds of refinements. OR-refinements allow for
choice in the way of achieving goals, while AND-refinements allow for breaking down
into smaller pieces. This process supports calculations for scoping as described in [8].

Finally, after goals and scenarios are sufficiently developed, goals are grouped into
functionalities, where similar goals are grouped together. Actions and percepts are also
allocated to functionalities. Scenarios are then annotated with information about which
functionality each step belongs to.

1 In GSCF, every goal must be linked to a scenario, and vice-versa.

206 M. Perepletchikov and L. Padgham

4 Evaluation of Revised System Specification

In order to evaluate the revised Prometheus, it was compared to the original method-
ology in a study using volunteering RMIT students from a class in agent oriented pro-
gramming and design. Although students are a different group than professional soft-
ware engineers, we have observed in our work with industry, that as agent oriented
programming is a new paradigm, experienced engineers need a similar level of guid-
ance to that required by students. Also, the class contained some graduate students with
professional experience. Thus, although there are some limitations to the data, and fur-
ther analysis would be desirable, we consider there is good reason to believe it to be
valid.

The study had eighteen students, randomly assigned to two control and two exper-
imental groups. The control groups used the original Prometheus’ system specification
process for an assignment, while the experimental groups used the revised process. Both
groups also answered a questionnaire.

The experimental groups were provided with a detailed description of the activ-
ities used in the revised System Specification phase, similar in level of detail to the
description of the original System Specification phase provided to the class as a whole,
within the textbook [1]. The experimental groups also had a short face-to-face session
to answer any questions regarding the revised methodology. The original System Spec-
ification phase was presented at a two-hour lecture to the whole class.

The small assignment that the students were working on, was based on a hypotheti-
cal Meeting Scheduler system to assist academics in organising meetings. The students
were asked to develop a system specification for this system. This was worked on dur-
ing two, two-hour, group-based tutorial sessions and was then completed and submitted
individually. In addition to final submissions, we collected data at the end of the first
two hour tutorial, regarding numbers of goals, functionalities, scenarios, percepts and
actions that had been identified.

The questionnaire used to compare the revised with the original approach,was struc-
tured using mostly quantitative responses in order to facilitate statistical analysis of the
results. The questions were related to the perceived degree of difficulty in identifying
scenarios, goals, actions and percepts. The students were also asked to indicate an ap-
proximate number of hours spent on the assignment and to rate the overall complexity
of the approach used. Steps were taken to ensure that participation in the study in no
way affected student grades. Subsequent analysis of marks distribution confirmed that
there was no significant difference in marks between the two populations.

In order to explore differences between the two approaches, we counted the numbers
of each concept type that were identified and described. The relevant concepts at this
stage are: goals, scenarios, percepts, actions and functionalities. Actors are relevant only
for the revised approach and so were not counted. We then looked at two issues with
regard to this data. The first was any difference between the two groups in terms of
average instances of a concept being specified. The second was variation across each
population in terms of the number of instances of each concept that were identified.
This was an attempt to assess how systematic the process was.

Significance was assessed using the t-Test for the difference between the means of
two independent groups [9], and the F-Test for the difference in the variances of two

Use Case and Actor Driven Requirements Engineering 207

independent groups [9]. A p-value of 0.05 or smaller was considered to be statistically
significant, as is standard practice.

Answers to the questionnaire were also analysed for differences in mean values,
and for differences in variance between groups, using the same tests as for numbers of
concepts specified. Number of hours spent was also analysed similarly.

5 Results of Comparison

We present firstly our results in terms of numbers of concepts identified, both after the
initial two hours work, and in the final assignment. Then we present results based on
answers to the questionnaire, including analysis of differences in time taken to complete
the work.

5.1 Concept Identification

The following analysis discusses results regarding each of the artifacts in turn. Figure
1 shows the average number of system specification artifacts identified by the students
during the first tutorial. Figure 3 shows the same data for the final assignment. Figures
2 - 4 show variances in numbers of identified artifacts based on the initial and final
assignment data for both groups.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

N
u

m
b

er
 o

f
ar

ti
fa

ct
s

Legend:
G - Goals; F- Functionalities
S - Scenarios; P - Percepts; A - Actions

G S P AF

Experimental Groups

Control Groups

Fig. 1. Means for interim number of each con-
cept type identified

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

V
ar

ia
n

ce

Experimental Groups

Control Groups

G S P AF
Legend:
G - Goals; F- Functionalities
S - Scenarios; P - Percepts; A - Actions

Fig. 2. Variance in interim numbers of each con-
cept type identified

Goals. Both average number and variance of goals showed significant difference after
the initial tutorial (p = 0.00994 and p = 0.00247 respectively), with control students
identifying 80% more goals at this stage than experimental students, as shown in figure
1. The larger number of goals identified early on by the control group can be attributed
to the difference in the process, as experimental students iterated more over actors, use-
case scenarios, goals actions and percepts. The reduced variance for the experimental

208 M. Perepletchikov and L. Padgham

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0

N
u

m
b

er
 o

f
ar

ti
fa

ct
s

G S P AF

Experimental Groups

Control Groups

Legend:
G - Goals; F- Functionalities
S - Scenarios; P - Percepts; A - Actions

Fig. 3. Means for final number of each concept
type identified

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0
34.0

V
ar

ia
n

ce

Experimental Groups

Control Groups

G S P AF
Legend:
G - Goals; F- Functionalities
S - Scenarios; P - Percepts; A - Actions

Fig. 4. Variance in final numbers of each concept
type identified

group (figure 2) can be interpreted as evidence of a more systematic structured pro-
cess. There are no significant differences in means and variances in numbers of system
goals submitted for the final assessment by both groups (figures 3 and 4). Variance in
both groups is quite high, possibly indicating that the goal refinement process is quite
subjective in both the original and modified approach.

Scenarios. The means and variances of numbers of use-case scenarios identified by
both groups during the first tutorial cannot be compared using the t-Test or F-Test due
to the control students not identifying any scenarios, as shown in Figure 1. It is not
possible to run the tests due to division by zero. However, we observe that the num-
ber of identified scenarios of the experimental groups is five in each case. The revised
approach leads to earlier emphasis on the scenario identification and we suggest that it
also provides a systematic approach which results in greater consistency.

There is a significant difference between means of number of use-case scenarios
submitted for the final assessment by the students belonging to the experimental and
control groups (p = 0.00136). The mean number of scenarios submitted by experimental
students is significantly higher than that of the control students, as shown in figure 3.
We conclude that the use-case scenario identification process is more productive using
the revised methodology.

The variances in number of scenarios submitted for the final assessment are also
unable to be compared using the F-Test due to lack of any variance in the control group
and subsequent division by zero problems. This lack of variance in the control group can
be explained by the fact that the assignment required at least two scenarios to be sub-
mitted. The fact that all students in the control group submitted the minimum, whereas
those in the experimental groups identified more scenarios than required, provides some
evidence that the scenario identification process is easier in the revised approach.

Functionalities. There are no significant differences in the number of identified func-
tionalities during the first tutorial, and in the number of functionalities submitted for

Use Case and Actor Driven Requirements Engineering 209

the assessment by both groups. Also, the variations between both groups are not signif-
icantly different. This is unsurprising as the modified methodology does not introduce
any changes to the functionality-related processes.

Percepts and Actions. The experimental group identified significantly more percepts
and actions during the initial two hours as shown in figure 1 (p = 0.00007). This can be
explained, as previously, by the different initial focus in the two methodologies.

Initial variance cannot be compared due to lack of any variance in the experimental
group (figure 2). This shows high consistency between the experimental students when
identifying percepts/actions. Given the small number of percepts/actions identified by
the control students, the associated variance is relatively large (4.67), indicating less
structure for identification of percepts/actions in the original approach.

In the final assessment, the only significant difference was for the mean number of
percepts, with the experimental group being significantly higher (p = 0.02929). For the
final assessment, the mean number of actions, and the variances in both actions and
percepts, were not significantly different between the two groups at the level of p ≤
0.05, however they show the same tendency towards higher average numbers, and less
variance in the experimental group. This suggests the possibility of a more productive
process for identification of the system interface.

5.2 Questionnaire

The questionnaire covered three areas: difficulty of identifying/specifying instances of
the various concepts, complexity of the overall approach, and overall time taken for
doing the system specification. We look at each of these in turn.

Time Spent. As all students spent four hours on the assignment within tutorials, we
looked at additional time spent outside of class. The mean additional time spent by
experimental students is 3.4 hours, while the mean additional time for control students
is 4.8 hours. Although the mean time spent on the assignment by the experimental
students is lower than that of the control students, the difference is not statistically
significant at the level of p ≤ 0.05 using the t-Test.

Although mean time spent was not significantly different between the two popula-
tions, the variance in time did differ significantly, with the experimental group showing
significantly less variance (p = 0.00374). We suggest that this is evidence that the re-
vised approach is more systematic than the original.

Overall Complexity. There is a significant difference between both means and vari-
ances of overall complexity ratings in the two groups (p equals to 0.01795 and 0.00974
respectively). Control students indicated a higher mean complexity(3.75 vs 2.5) and a
higher variance in their ratings, as shown in figures 5 and 6.

We also note that all experimental students ranked overall complexity of the ap-
proach as either fairly low (2) or (3) which is the midpoint and possibly should be
interpreted as undecided. Control students were split between high complexity (5) and
fairly low (2), with a couple of midpoint scores. Half of the control students ranked
complexity as high.

210 M. Perepletchikov and L. Padgham

1

2

3

4

5

C
o

m
p

le
xi

ty
High

Low

Experimental
Groups

Control
Groups

O G A/PS
Legend:
O - Overall Complexity; S - Identifying Scenarios
G - Identifying Goals; A/P - Identifying Actions/Percepts

Fig. 5. Means of questionnaire responses regard-
ing complexity

0

0.5

1

1.5

2

V
ar

ia
n

ce

Experimental
Groups

Control
Groups

O G A/PS
Legend:
O - Overall Complexity; S - Identifying Scenarios
G - Identifying Goals; A/P - Identifying Actions/Percepts

Fig. 6. Variance of questionnaire responses re-
garding complexity

Difficulty of individual System Specification Activities. There is a significant dif-
ference between both means and variances of difficulty ratings in the two groups in
regards to goal identification activity (p equals to 0.02696 and 0.01835 respectively).
Also, there are significant differences between variances of difficulty ratings in regards
to scenario identification activity (p = 0.00974), and between means of difficulty ratings
with regard to percept/action identification (p = 0.04199), as shown in figures 5 and 6.

Experimental students specified a lower mean difficulty, and their answers had lower
variance for each activity under investigation. Although not every difference was sig-
nificant at the level of p ≤ 0.05, the trends towards lower difficulty ratings and lower
variance in scores is similar to the statistically significant result with respect to the rating
of an overall complexity.

We can also observe that all experimental students ranked difficulties of system
specification activities as either low (1), fairly low (2) or undecided (3). Ratings of the
difficulties of individual activities provided by the control students were, in contrast,
scattered between high and low. Forty percent of the control students rated difficulty
of the activities as either high (5) or fairly high (4), while another forty percent rated
difficulty as fairly low (2) or low (1).

Also, we asked the experimental students to specify whether the introduction of
actors helped them in developing the system specification. All ten experimental students
said that the introduction of actors benefited them when working on the assignment.

5.3 Results Summary

– Less variance in numbers of initial system specification artifacts identified by ex-
perimental students supports the hypothesis that the revised methodology is more
systematic. The difference in variances of the two groups is shown to be statistically
significant for numbers of identified goals, scenarios, and percepts/actions.

Use Case and Actor Driven Requirements Engineering 211

– Higher mean numbers of use-case scenarios and percepts/actions submitted for the
assessment by the experimental students supports the hypothesis that the revised
methodology provides a more productive, guided approach for identification of use-
case scenarios, and system interface components used in the System Specification
Phase. The difference was statistically significant for submitted scenarios and per-
cepts. The same trend can be observed for the number of submitted actions though
it is not statistically significant.

– Lower complexity/difficulty ratings and lower variance in ratings of the experi-
mental students supports the hypothesis that the revised methodology is easier to
apply and understand than the original one, and that it can be used in a systematic,
consistent manner. The difference in mean scores was statistically significant for
the ratings of Overall Complexity, Identification of goals, and Identification of per-
cepts/actions. The difference in variance was statistically significant for the ratings
of Overall Complexity, Identification of goals, and Identification of scenarios.

6 Related Work

The use-case scenario is an important entity used in requirements modelling outside of
the agent paradigm [10,3]. One of the main advantages of use-case scenarios is the abil-
ity to directly involve users of the system in the specification and analysis of the system.
Scenarios demonstrate how processes are composed within the system. As such, devel-
oping scenarios can be a very effective way to elicit goals and to help in the discovery
of various cases. Arguably, scenarios are easier to elaborate than goals [6], and since
scenarios describe concrete steps for reacting to some input from the environment, they
capture real-life requirements.

Although various RE approaches have argued a benefit in coupling goals and use
cases [6,11], they usually do not describe any concrete steps for enforcing such cou-
pling.

6.1 Comparison with Other AOSE Methodologies

There are a number of agent development methodologies in addition to Prometheus
that consider requirements modelling as an important part of the methodology. Two
of the most prominent of these are Tropos [5] and MaSE [12]. One of the differences
between these methodologies is in the application of use-case scenarios. Prometheus
and MaSE include scenarios as an important component of the system specification
activities, whereas Tropos does not use scenarios in its system specification. Tropos
instead contains an extension to the early and late requirements phases in the form of
a specification language for requirements modelling - Formal Tropos, which allows for
representation of the dynamic aspects of the model.

Although MaSE include use-case scenarios in its System Specification phase, the
scenarios in MaSE are informally described, and they do not have any structure. Con-
sequently, scenarios in MaSE cannot readily be traced to other phases of the system
development life cycle, nor linked to goals. In Prometheus scenarios are structured,
providing a good basis for automated support within a use-case driven approach similar
to that used by RUP, where use-case models drive all phases of a software development
life cycle [2,3].

212 M. Perepletchikov and L. Padgham

7 Conclusions

By introducing actors, and scenario-goal coupling into the Prometheus methodology
we have been able to develop a systematic process for the elicitation of the initial sys-
tem goals, use-case scenarios, and percepts/actions. Each revised activity of the system
Specification phase is shown to be more understandable to users. Also, the users of
the revised methodology have been able to produce a more complete set of use-case
scenarios, actions, and percepts, than the control groups.

By making the revised approach use-case driven we made it compatible with RUP,
consequently narrowing a gap between agent development methodologies and estab-
lished software development processes. The modified system specification phase of
Prometheus is use-case and actor driven because: i) identification of actors and asso-
ciated use-cases is the first step in the modified approach; ii) Prometheus’ use-cases
can be traced to the architectural and detailed design artifacts; iii) use-cases provide a
foundation for scoping and iterative incremental development using Prometheus [8].

This work also indicated that development of the goal hierarchy contains a lot of
variance. This is possibly an area where greater systematisation could be introduced.

References

1. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley And Sons Ltd, West Sussex, England (2004)

2. Kroll, P., Kruchten, P.: The Rational Unified Process Made Easy. Addison-Wesley, Reading,
USA (2003)

3. Kruchten, P.: The Rational Unified Process: An Introduction, Third Edition. Addison-
Wesley, Boston, USA (2004)

4. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineer-
ing. Software Engineering 26 (2000) 978–1005

5. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8 (2004) 203–236

6. Rolland, C., Souveyet, C., Achour, B.: Guiding goal modelling using scenarios. IEEE Trans-
actions on Software Engineering, Special Issue on Scenario Management 24 (1998) 1055–
1071

7. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Pro-
ceedings of the 5th IEEE International Symposium on Requirements Engineering, Toronto,
Canada (2001) 249–263

8. Perepletchikov, M., Padgham, L.: Systematic incremental development of agent systems, us-
ing Prometheus. In: Proceedings of the 1st International Workshop on Integration of Software
Engineering and Agent Technology (ISEAT05) Submitted, Melbourne, Australia (2005)

9. Levine, D., Ramsey, P., Smidt, R.: Applied Statistics for Engineers and Scientists. Prentice-
Hall, Inc., New Jersey, USA (2001)

10. Cockburn, A.: Structuring use cases with goals. Journal of Object-Oriented Programming 9
(1997) 35–40,56–62

11. Anton, A., Carter, R., Dagnino, A., Dempster, J., Siege, D.: Deriving goals from a use-case
based requirements specification. Requirements Engineering Journal 6 (2001) 63–73

12. DeLoach, S.: Analysis and design using MaSE and agentTool. In: Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001), Ohio,
USA (2001)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 213 – 222, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agent-Based Management of Non Urban Road
Meteorological Incidents*

Vicente R. Tomás and Luís A. García

AiA- Applying Intelligent Agents Research Group. University Jaume I,
12071 Castellon, Spain

{vtomas, garcial}@icc.uji.es

Abstract. Current protocols for defining and developing traffic strategies for
dealing with non urban road meteorological incidents are human-centric based.
These protocols are not easy to implement and, often, they do not work as well
as proposed. This is mainly due to the following reasons: 1) traffic flow infor-
mation is usually distributed in several equipments belonging to different traf-
fic management centres, so the traffic operators only have a reduced view of
the overall incident information; and 2) there are several traffic administrations
and offices with competences in traffic management, so operators from differ-
ent administrations and offices have to manually coordinated competences, re-
sources and information. A Multiagent System (MAS) able to help traffic op-
erators to determine the best traffic strategies and to help them in coordinating
tasks is proposed in this paper. The A-3 Spanish freeway, a real traffic domain,
is being used as the non urban domain where the proposed MAS is being
evaluated.

1 Introduction

The evolution of the technology has made possible the application of more sophisti-
cated systems and knowledge models to traffic control and management, the Intelli-
gent Transportation Systems (ITS). The main purpose of an ITS is to improve the
traffic flow behavior and road safety [3]. Inside ITS, one of the main research topics
are the so-called Advanced Traffic Management Systems (ATMS). The basic task of
an ATMS is to support road managers in road management tasks [14].

This task turns out to be especially difficult in non urban networks due to several
reasons: 1) non urban roads are characterized by huge coverage extensions of road
sections; 2) ATMS and, more important, traffic information are usually distributed
between several traffic management centers and traffic offices and administrations; 3)
data capture stations are scarce with long distances between them; and 4) data capture
stations have long data integration times (so, there are long time intervals without
available real traffic data). Moreover, if a traffic incident (vehicle accidents, meteoro-
logical problems, road civil works, public events, etc.) is detected, its management
usually involves not only several traffic management centers, but also several

* This research has been partly supported by the Spanish research projects CICYT DPI2002-

04357-c03-02 and Fundacio Caixa- Castello P1 1B2003-36.

214 V.R. Tomás and L.A. García

government offices and traffic polices. The human road manager must take decisions
to deal with them as soon as possible. These difficulties are clearly identifiable in
meteorological incidents (for instance snowfalls). In these incidents, the problem
resolution involved several organisms (road managers, civil works, red cross, etc).
Thus, the traffic strategies must be defined to: 1) guarantee traffic flows and road
safety and 2) facilitate the actuation of the emergency services. The application of
these traffic management strategies must be able to modify the traffic behavior in the
incidents zone, but these strategies should also avoid that the incident zone was
moved from its original zone to another, and probably worst, zone of the road net-
work.

The set of traffic management strategies to be developed when an incident is de-
tected is off-line collected in the so-called Traffic Management Plans (TMPs).The
implementation of these TMPs usually involves negotiations between several traffic
administrations. These negotiations are currently done by human road managers.

In this paper a MAS able to works with TMPs is presented. The MAS proposed
supports road managers in managing and controlling traffic in the presence of mete-
orological incidents. The paper is organized as follows. Next section describes the
actual procedures the road manager runs to deal with traffic incidents in non urban
roads, i.e. the TMPs. HTML and XML computerized approaches to TMPs are also
described. In section 3 we exposed the components of the non urban traffic ontology
used by the proposed MAS. Section 4 describes the Multiagent system: its software
architecture and the communication protocols defined and developed. Finally, the
implementation issues and the conclusions and future work are exposed.

2 Procedures to Work with Traffic Incidences

TMPs are specific procedures that define how to manage the detected traffic inci-
dents. These procedures are structured in three levels of information: scenarios, meas-
ures and actions [16].

Fig. 1. Dependencies between the real traffic flow and TMPs

 Agent-Based Management of Non Urban Road Meteorological Incidents 215

Figure 1 shows how TMPs are currently used to manage a traffic incident. If an in-
cident is detected, the monitoring system warns the traffic operator. The scenario is
determined from the incident information (location, severity degree, etc) and also
from the values of several traffic parameters related to the incident influence area
(flow rates, incident severity, weather forecast, etc). Every scenario has assigned a set
of available measures that can be activated: alternative routes calculation, additional
lanes, stockage of vehicles, restriction of the circulation to specific kinds of vehicles,
diffusion of incident information via Internet, use of Variable Message Signal panels
(VMS), etc. Every activated measure can be carrying out from the execution of one,
or more, specific actions.

The information contained in TMPs is arranged in a huge document. Thus, there is
a need of a computerized tool for helping road managers in browsing this document.
The first developed tool was a HTML prototype following a simple client-server
approach. The server stored the whole TMP document in linked HTML pages. The
execution of this tool was entirely guided by the road manager, the client actor. First,
the road manager chose the type of TMP from the scenario information. Then, the
available measures were shown. The road manager selected the measure more appro-
priate. Finally, the possible actions were showed and the road manager tried to im-
plement them by devoting resources, calling other traffic management centers, etc.

Even though the functionality of the TMP to implement had been improved and the
results were the ones expected, the computerization of TMPs in HTML format still
showed some problems. The most important one was related to the HTML intrinsic
features: the concept of document does not exist; that is, there is no distinction be-
tween presentation and content. Thus, in HTML there were not possible for the road
operator to modify or update a TMP.

Then, a new tool was developed: a XML prototype [16]. XML is a tag based lan-
guage useful to describe tree structures with a linear syntax [5]. XML makes a distinc-
tion between the document and the representation of such document on the screen [4].
XML also allows the creation of different types of plans and it facilitates the represen-
tation of the content of the document by using different devices.

This new approach improves the performance of TMPs. However, this approach
still shows several problems. The TMPs maintain a static line in the XML prototype.
Thus, this prototype does not include real time support to the road operator. The road
operator must determine the scenario using and validating the traffic information
provided by the available traffic equipment. Therefore, he must decide what, when
and how dynamic measures must be activated. So, the road traffic operator is demand-
ing for a more advanced prototype to deal with the scenario selection and the deter-
mination of dynamic measures. The new prototype developed is a multiagent system
in which several agents coordinate activities to almost automatically deal with the
execution of the TMPs. The agents of the prototype use the same underlying traffic
and TMP ontologies that are exposed in the following section.

3 Non Urban Traffic Road Domain

The transportation domain is composed by several objects such as roads, junctions,
vehicles, signals, etc. A generic and public agreement specification of these objects is

216 V.R. Tomás and L.A. García

needed to be able sharing and reusing traffic knowledge between the applications
executed in the transportation domain. This agreement should be based in the use of
traffic ontology. However, current transportation systems do not use such ontology.

3.1 Road Traffic Ontology

A first approach of this traffic ontology has been proposed in [17]. The traffic ontol-
ogy is composed by several sub domains (see fig. 2).

The road subdomain describes topological features of the roads. This subdomain is
composed of the following objects: Roads, Itineraries, Segments, and Links. Link
objects are also subdivided in: Origins, Destinations, Bifurcations, Unions, Weavings
and Merges.

The second subdomain defines the traffic behavior model. In this subdomain, it is
described the parameters related with the traffic behavior: Level of service (LOS),
Traffic Volume, Flow rate (intensity), Speed and Density and weather parameters:
Visibility, Road surface, Precipitations, Wind.

The third, and last, subdomain is charge of characterizing the equipment of the non
urban network. The basic equipments that had been identified in this subdomain are:
Data capture stations: Traffic data capture station and Meteorological station, CCTV
cameras, Emergency phones and Variable Signals.

Fig. 2. Road Traffic Ontology

3.2 Traffic Management Plan Ontology

The proposed ontology models the non urban road traffic knowledge. However, we
need to extend this ontology with the relevant conceptualization related to TMPs and
traffic incidences.

This extension includes the following concepts:

− Severity. This object defines the seriousness of an incident.
– Incident. It identifies an incident produced in the road network. The incident pro-

duces a modification of traffic behavior. The modification depends on the severity
degree. The incident is located in a segment or in a link.

 Agent-Based Management of Non Urban Road Meteorological Incidents 217

– Scenario. The scenario object defines the current traffic situation. The scenario is
determined by the traffic incident (location, duration, severity) and the current traf-
fic parameters (density, flow rate, LOS).

– Measure. The measures define the set of procedures to be applied. The measures
are classified in external and internal measures. The difference is related to the
possibility of complete the measure internally (i.e. with the TCC own resources) or
externally (other actor have to loan resources). A measure is composed by several
actions.

– Action. It identifies independent and individual activities related to a measure.
– Actor. The actor defines the organization responsible of execute an action. If the

action belongs to an internal measure, the actor is not necessary, but if it belongs to
an external measure the related actor have to be identified. The actor object identi-
fies not only the organism but also the way to communicate and to request the de-
velopment of the action.

 Figure 3 presents the TMP ontology and the relationships with the road traffic
ontology.

Fig. 3. TMP Ontology. The figure presents the TMP concepts and its relationship with the road
traffic ontology. On the right there is an instance of an external measure: An alternative
itinerary.

4 The Proposed MAS

Multiagent systems (MAS) are appropriate to manage the transportation environment
[8]. MAS systems are a natural approach to work with traffic management problems
[9]. This is due to the features of agents: autonomous, reactives, proactives and so-
cials [18] and its potential to work with high complexity problems in a distributed
environment. So, a MAS has been developed to improve the TMP software tool when
meteorological incidents occur. The MAS developed helps the road operator to de-
termine the scenario. It uses and it validates the traffic information provided by the
available traffic equipment.

218 V.R. Tomás and L.A. García

4.1 MAS Architecture

The MAS prototype developed is able to manage road traffic information and it also
manages TMP. The MAS is FIPA [6] compliant. The MAS is composed by several
kinds of agents: Meteo agents, Manager agent, XML Plan agent, Web agent, DF agent
and Interface agent. Figure 4 shows the software architecture of this MAS prototype.

4.1.1 Meteo Agent
There exist several weather parameters that affect the traffic behavior (snow, wind,
fog, etc) [13]. These weather parameters are constantly monitored through meteoro-
logical stations and its specific sensors. These Meteo stations are placed in specific
road points and have a coverage area. The Meteo agent supervises the parameter pro-
vided by the sensor. It uses the parameter information to detect weather problems.

Fig. 4. MAS architecture

4.1.2 Manager Agent
This agent contains the traffic behavior model. Moreover, it contains the available
resources to manage traffic incidences produced by weather problems. The manager
uses the information provided by the meteo agents and it proposes the current sce-
nario. This scenario has to be validated by the road operator. Once the operator vali-
dates the scenario, the manager agent makes a request to the XML plan agent: the
TMP to activate in the current situation. The manager uses its traffic behavior model
to estimate the better form to activate the measures. If the measures need external
resources, it uses the DF agent to find it.

 Agent-Based Management of Non Urban Road Meteorological Incidents 219

4.1.3 Interface Agent
The main purposes of the interface agent are: show graphically the entire MAS envi-
ronment (road network, traffic status, equipment, active TMP) and the interaction
between the road operator and the MAS system.

4.1.4 XML Plan Agent
This agent holds a database with all the TMP in XML format. This agent maintains
the TMP database (TMP creation, upgrades, etc). When this agent receives informa-
tion about a detected incident, it looks for the associated fired event in the database. If
a TMP for this incident exits, the agent returns to the manager agent the traffic meas-
ures to be applied.

4.1.5 Web Agent
This agent translates the incident information received from the manager agent in a
DATEX [10] format. DATEX is a standard format used to exchange traffic informa-
tion between traffic organizations. Once the information is in DATEX format, the
web agent sends it to the subscribed Traffic Control Centers.

4.1.6 DF Agent
The directory facilitator used is the DF JADE agent [12] specified by FIPA. The DF
provides a yellow pages service by means of which an agent can register, deregister
and search for other agents or services available in the MAS platform or in other plat-
forms.

4.2 Communication Protocols

The communication model defines the way agents can related and exchange informa-
tion. The communication model proposed follows the interaction protocols defined by
FIPA [7]. It uses the JADE libraries [2] and coded in FIPA-ACL (Agent communica-
tion language) [6].

The interaction protocols govern the way of exchange of information among agents
[18]. The interaction protocols are classified in three groups: Inner, Outer and Exter-
nal protocols. Inner protocols are used in communications inside the MAS prototype,
outer protocols are used in communications between the MAS and the road traffic
operator via the interface agent. The last group, external protocols, are used to com-
municate our MAS system with other external agents (agent belonging to other plat-
forms) in order to implement external measures coordinately.

The outer and inner protocols are described deeply in [17]. The inner protocols are:
ManagerReg, MeteoReg, AlarmReq, PlanMeasures and WebInfo and the outer proto-
cols are: ShowPlan, ShowSignals, ForceSignal and ValidateScenario.

Next, the external protocols are described:

– WeatherInfo: Request protocol. The manager sends to external agents a message to
obtain weather information.

– IncidentOccurs: Query protocol. The manager sends to the border TCCs a message
containing the information of the incident produced and it forecasted evolution.
(see figure 5)

220 V.R. Tomás and L.A. García

– ImplementMeasure: Contract Net protocol between the Manager agent and an
external agent. The external agent provides a service to implement traffic actions.
First, the manager agent sends a message. It contains the incident, the measure and
the actions to be developed by the external agent. The external agent evaluates the
message and it respond to the manager (with: a proposal to activate his action, a re-
jection message or a not-understood message). If manager accepts the proposal it
sends an accept-proposal message. Then, they start to implement the actions. If
there are not problems implementing the actions, the measure is activated. If some
problems appear, the manager can not implement the measure. Figure 5 depicts this
protocol.

– SuspendTempMeasure: Query protocol to suspend temporarily the development of
a measure. (E.g. if a new incident around the coverage area of the developing
measure is detected).

– FinishMeasure: Query protocol to notify the finalization of a measure. This occurs
when the problems are clean up. The manager sends to the related agent a message
to finish the activation of the measure.

Fig. 5. Example of Interaction Protocols. IncidentOccurs: The manager sends a message to
external agents subscribed in the DF. ImplementMeasure: the manager starts a Contract-Net
protocol to develop coordinated actions. These actions are related to a specific TMP measure.

5 Implementation and Evaluation

The system has been implemented using the JADE platform. JADE is a software
framework to develop agent applications in compliance with FIPA specifications for
interoperable intelligent multiagent systems [1].

 Agent-Based Management of Non Urban Road Meteorological Incidents 221

The ontologies described in section 3 have been defined by using the PROTÉGÉ-
2000 ontology tool [15]. This is due to the facilities that this tool provides for editing
ontologies and for developing knowledge acquisition tools from the edited ontologies.
The Javabean generator PROTÉGÉ plug-in has been used [11] to convert the edited
ontology to java classes. This plug-in generates automatically the java classes using
the JADE specification.

A real non urban road network has been modeled to evaluate the MAS prototype,
the Spanish A-3 freeway. The main characteristics of this freeway are:

– 2 traffic control centers.
– 11 different actors (traffic polices, external TCC, road work, etc).
– 3 main roads A-3, A-31, A-35 (420 km aprox.).
– 2 alternatives itineraries combining segments from roads: A-3,A-31 and A-35.
– 16 Segments.
– 20 Links.
– 13 Meteo stations.
– 22 VMS.
– A real TMP for weather problems in the A-3 freeway containing 4 scenarios and

24 measures.

 The system is currently being evaluated. The evaluation is based on weather infor-
mation collected from meteo stations in a XML file. Using this file, different weather
situations are been simulated. The results obtained are positives, the MAS can moni-
tor several concurrent weather problems along the road and help road manager to
determine the current scenario for each road segment and the measures to apply.

6 Conclusions and Future Work

The need of defining and developing ontologies for non urban traffic is exposed in
this paper. This is due to the specific characteristics of transportation environments
and specillay to non urban traffic domain. This traffic domain usually involves: 1)
huge road networks, 2) traffic monitoring with several distributed equipment along
the road network. 3) coordinated actuations between several traffic administrations.
We extend road traffic ontology with the TMP and incidents concepts. This new on-
tology has been used as MAS knowledge. The ontology is the component for the
coordination and communication of the agents.

The proposed MAS improves the TMPs execution. The system automatically
monitors weather problems that can appear in road networks. It makes easy the con-
text and the measures to be applied. It also allows to communicate the incidents de-
tected to other centers and traffic administrations. The proposed MAS is able to nego-
tiate actions to develop measures with other external agents that can share resources.
The MAS defines the set of actions and measures to be negotiated and implemented
not only by itself but also by external agents. This negotiation has been developed
using a contract-net protocol. The improvement of the negotiation protocol using
more complexes negotiation strategies (multi-issue, criteria and time depending) is
currently being developed.

222 V.R. Tomás and L.A. García

References

1. Bellifemine F. et alt.: JADE - A FIPA-compliant agent framework, Proceedings of
PAAM'99, London, April 1999, pp.97-108.

2. Caire G.: Application-Defined Content Languages and Ontologies. June 2002
3. Cascetta E.: Transportation Systems Engineering: Theory and Methods. Kluwer Academic

. ress, 2001 ISBN 0792367928
4. Extensible Markup Language (XML), http://www.w3.org/XML/. September 2001.
5. Fensel D.: Ontologies: A silver Bullet for knowledge Management and Electronic com-

merce. Second edition. Springer-Verlag. ISBN 3-540-00302-9
6. FIPA Communicative Act Library Specification.: Foundation for Intelligent Physical

Agents, December 3, 2002.
7. FIPA interaction protocol library. Technical report DC00025F. FIPA.http://www.fipa.org
8. García-Serrano et alt.: “FIPA-compliant MAS development for road traffic management

with a Knowledge-Based approach: the TRACK-R agents.” Challenges in Open Agent
Systems '03 Workshop. Melbourne. Australia. 2003

9. Hernández, J.Z. Ossowski, S. García-Serrano, A.: Journal:Transportation Research, Part C,
Pergamon Press, V 10 Issue5-6, pp:473-506, 2002

10. http://www.datex.org.
11. http://www.swi.psy.uva.nl/usr/aart/beangenerator
12. Java Agent Development framework (JADE). http://jade.cselt.it
13. Mahoney W.: An advanced weather & road condition decision support system. Proceed-

ings of 9th World congress on Itelligent Transport systems. Chicago (EE.UU) 2002.
14. McQueen.: Intelligent transportation systems architecture Artech House Books, 1999

ISBN 089006525
15. The Protégé Ontology Editor and Knowledge Ac. System http://protege.stanford.edu
16. Tomás, Vicente R. et al.: New technologies to work with traffic management plans. Traffic

Technology International-Annual review .2003
17. Tomas V. R. Garcia Fernandez L.A.: “A cooperative multiagent system for traffic man-

agement and control”. Fourth International Joint Conference on Autonomous Agents and
Multi Agent Systems AAMAS 2005. Industrial Track

18. Wooldridge M.: An Introduction to Multiagent Systems.. Published in February 2002 by
John Wiley & Sons (Chichester, England). ISBN 0 47149691X. 340pp

Arguing and Negotiating in the Presence of Social
Influences�

Nishan C. Karunatillake1, Nicholas R. Jennings1,
Iyad Rahwan2, and Timothy J. Norman3

1 School of Electronics and Computer Science,
University of Southampton, Southampton, UK

{nnc02r, nrj}@ecs.soton.ac.uk
2 Institute of Informatics, The British University in Dubai, P.O.Box 502216 Dubai, UAE

(Fellow) School of Informatics, University of Edinburgh, Edinburgh, UK
irahwan@acm.org

3 Department of Computing Science, University of Aberdeen, Aberdeen, UK
tnorman@csd.abdn.ac.uk

Abstract. When agents operate in a society with incomplete information and
with diverse and conflicting influences, they may, in certain instances, lack the
knowledge, the motivation and/or the capacity to enact all their commitments.
However, to function as a coherent society it is important for these agents to have
a means to resolve such conflicts and to come to a mutual understanding about
their actions. To this end, argumentation-based negotiation provides agents with
an effective means to resolve conflicts within a multi-agent society. However, to
engage in such argumentative encounters, agents require four fundamental capa-
bilities; a schema to reason in a social context, a mechanism to identify a suitable
set of arguments, a language and a protocol to exchange these arguments, and
a decision making functionality to generate such dialogues. This paper presents
formulations of all of these capabilities and proposes a coherent framework that
allows agents to argue, negotiate, and, thereby, resolve conflicts within a multi-
agent society.

Keywords: Argumentation-based Negotiation, Conflict Resolution.

1 Introduction

Autonomous agents usually operate as a multi-agent community performing actions
within a shared social context to achieve their individual and collective objectives. In
such a social context, their actions are influenced via two broad forms of motivations.
First, the internal influences reflect the intrinsic motivations that drive the individual
agent to achieve its own internal objectives. Second, as agents reside and operate within
a social community, the social context itself influences their actions. Here, we cate-
gorise these latter forms as social influences. Now, in many cases, both these forms of
influence may be present and they may give conflicting motivations to the individual

� The first author is a full time PhD student funded by EPSRC under the project Information
Exchange (GR/S03706/01). The authors also extend their gratitude to Pietro Panzarasa, Chris
Reed, and Xudong Luo for their thoughts, contributions, and discussions.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 223–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

224 N.C. Karunatillake et al.

agent. For instance, an agent may be internally motivated to perform a specific action,
whereas, at the same time, it may also be subject to an external social influence not to
perform it. Also an agent may face situations where different social influences moti-
vate it in a contradictory fashion (one to perform a specific action and the other not to).
Moreover, in many cases, agents have to carry out their actions in environments with
incomplete information. Thus, for instance, they may not be aware of the existence of
all the social influences that could or indeed should affect their actions and they may
also lack the knowledge of certain specific internal influences that drive other agents’
behaviours. Therefore, when agents operate in a society of incomplete information with
such diverse and conflicting influences, they may, in certain instances, lack the knowl-
edge, the motivation and/or the capacity to abide by all their social influences.

However, to function as a coherent society it is important for these agents to have
a means to resolve such conflicts and to come to a mutual understanding about their
actions. To this end, Argumentation-Based Negotiation (ABN) has been advocated as
a promising means of resolving conflicts within such agent societies [1,2]. In more de-
tail, ABN allows agents to exchange additional meta-information such as justifications,
critics, and other forms of persuasive locutions within their interactions. These, in turn,
allow agents to gain a wider understanding of the internal and social influences affect-
ing their counterparts, thereby making it easier to resolve certain conflicts that arise due
to incomplete knowledge. Furthermore, the negotiation element within ABN also pro-
vides a means for the agents to achieve mutually acceptable agreements to the conflicts
of interests that they may have in relation to their different influences.

Now, one of the central features required by an agent to engage in such arguments
within a society is the ability to generate valid arguments during the course of the dia-
logue. We believe this demands four fundamental capabilities: (i) a schema to reason in
social settings; (ii) a mechanism to identify a suitable set of arguments; (iii) a language
and a protocol to exchange these arguments; and (iv) a decision making functionality
to generate such dialogues. This paper builds upon our previous conceptual ground-
ing [3] and formulates a coherent framework that addresses all four of these issues.
More specifically, apart from formulating a coherent schema that captures social influ-
ence in multi-agent systems (see Section 2.1) and systematically using it, in turn, to
identify social arguments to resolve conflicts within an agent society (see Section 2.2),
this paper presents three additional contributions. First, we construct a language that is
capable of expressing such social arguments and, which allows agents to exchange them
within their argumentative dialogues (see Section 3.1). Second, we define a dialogue
game protocol identifying the different guidelines (such as locution rules, structural
rules and commitment rules) which will govern these dialogues and guide its partici-
pants toward resolving their conflicts. Finally, we define the different decision making
algorithms required by the agents to engage in such argumentative dialogues to resolve
conflicts about their social influences (see Section 3.2).

2 Model for Arguing with Social Influences

Here we outline our ABN model that provides agents with a means to argue, negotiate,
and, thereby, resolve their conflicts in relation to social influences. We introduce our

Arguing and Negotiating in the Presence of Social Influences 225

model in two stages; first detailing how social influences within a society can be cap-
tured into a schema, and second explaining the different ways that agents can use this
schema to systematically capture arguments to use within their ABN in a multi-agent
community.

2.1 Capturing Social Influence

The notion of social commitment acts as our basic building block for capturing social in-
fluences. First introduced by Castelfranchi [4], it is one of the fundamental approaches
for modelling social behaviour among agents in multi-agent systems. In essence, a so-
cial commitment (SCx→y

θ) is a commitment by one agent x (termed the debtor) to
another y (termed the creditor) to perform a stipulated action θ.1 Having defined such,
Castelfranchi further explains the consequences of a social commitment for both the
agents involved. In detail, a social commitment results in the debtor attaining an obli-
gation toward the creditor, to perform the stipulated action. The creditor, in turn, attains
certain rights. These include the right to demand or require the performance of the ac-
tion, the right to question the non-performance of the action, and, in certain instances,
the right to make good any losses suffered due to its non-performance. We refer to
these rights the creditor gains as the rights to exert influence. This notion of social com-
mitment resulting in an obligation and rights to exert influence, allows us a means to
capture social influences between two agents. Thus, when a certain agent is socially
committed to another to perform a specific action, it subjects itself to the social influ-
ences of the other to perform that action. The ensuing obligation, on one hand, allows
us to capture how an agent gets subjected to the social influence of another, whereas,
the rights to exert influence, on the other hand, model how an agent gains the ability
to exert such social influence upon another. Thereby, the notion of social commitment
gives an elegant mechanism to capture social influence resulting between two agents.

Given this basic building block for modelling social influence between specific pairs
of agents, we now proceed to explain how this notion is extended to capture social in-
fluences resulting due to factors such as roles and relationships within a wider multi-
agent society (i.e., those that rely on the structure of the society, rather than the specific
individuals who happen to be committed to one another). Specifically, since most rela-
tionships involve the related parties carrying out certain actions for each other, we can
view a relationship as an encapsulation of social commitments between the associated
roles. To illustrate this, consider the relationship between the roles supervisor and stu-
dent. For instance, assume the relationship socially influences the student to produce
and hand over his thesis to the supervisor in a timely manner. This influence we can
perceive as a social commitment that exists between the roles supervisor and student
(the student is socially committed to the supervisor to perform the stipulated action).
As a consequence of this social commitment, the student attains an obligation toward
the supervisor to carry out this related action. On the other hand, the supervisor gains
the right to exert influence on the student by either demanding that he does so or through
questioning his non-performance. In a similar manner, the supervisor may be influenced

1 In the desire to maintain simplicity within our schema, we avoid incorporating the witness
(see [4]) in our model (as Castelfranchi did in his subsequent expositions).

226 N.C. Karunatillake et al.

to review and comment on the thesis. This again is another social commitment associ-
ated with the relationship. In this instance, it subjects the supervisor to an obligation to
review the thesis while the student gains the right to demand its performance. In this
manner, social commitment again provides an effective means to capture the social in-
fluences emanating through roles and relationships of the society (independently of the
specific agents who take on the roles). Given this descriptive definition of our model, we
now formulate these notions to capture the social influences within multi-agent systems
as a schema (refer to Figure 1 and formulae (1) through (6)):

Definition 1. For nA, nR, nP , nΘ ∈ N+, let:
• A = {a1, . . . , anA} denote a finite set of agents,
• R = {r1, . . . , rnR} denote a finite set of roles,
• P = {p1, . . . , pnP } denote a finite set of relationships,
• Θ = {θ1, . . . , θnΘ} denote a finite set of actions,
• Act : A×R denote the fact that an agent is acting a role,
• RoleOf : R× P denote the fact that a role is related to a relationship, and
• In : A×R× P denote the fact that an agent acting a role is part of a relationship.

If an agent acts a certain role and that role is related to a specific relationship, then
that agent acting that role is said to be part of that relationship (as per Cavedon and
Sonenberg [5]):

Act(a, r) ∧ RoleOf(r, p) → In(a, r, p) (Rel. Rule)

Definition 2. Let SC denote a finite set of social commitments and SCx→y
θ ∈ SC. Thus,

as per Castelfranchi, SCx→y
θ will result in the debtor attaining an obligation toward the

creditor to perform a stipulated action and the creditor, in turn, attaining the right to
influence the performance of that action:

SCx→y
θ → [Ox→y

θ]fx ∧ [Ry→x
θ]y , (S-Com Rule)

where:
- [Ox→y

θ]fx represents the obligation that x attains that subjects it to an influence of a
degree f (refer to [3] for more details) toward y to perform θ and

- [Ry→x
θ]

y
represents the right that y attains which gives it the ability to demand,

question, and require x regarding the performance of θ.

Definition 3. Let:
• DebtorOf : (R ∪ A) × SC denote that a role (or an agent) is the debtor in a social

commitment,
• CreditorOf : (R∪A)× SC denote that a role (or an agent) is the creditor in a social

commitment,
• ActionOf :Θ × SC denote that an act is associated with a social commitment, and
• AssocWith :SC × P denote that a social commitment is associated with a rela-

tionship.

If the roles associated with the relationship are both the creditor and the debtor of a
particular social commitment, then we declare that social commitment is associated
with the relationship (as per Section 2.1).

Arguing and Negotiating in the Presence of Social Influences 227

An agent ai acting the role ri

Leads it to be part of the relationship p
With another agent aj acting the role rj

A social commitment SC
ri→rj

θ associated with p
– Leads to ai attaining an obligation O toward rj ,

Which subjects it to an influence of degree f
To perform the action θ

– And, in turn, leads to aj attaining the right R toward ri

To demand, question, and require the performance
of action θ

Fig. 1. Natural Language Representation of the Schema of Social Influence

Applying the Rel. Rule to a society where: ai, aj ∈ A ∧ ri, rj ∈ R ∧ p ∈ P s.t.
Act(ai, ri), Act(aj , rj), RoleOf(ri, p), RoleOf(rj , p) hold true, we obtain:

Act(ai, ri) ∧ RoleOf(ri, p)→ In(ai, ri, p) (1)
Act(aj , rj) ∧ RoleOf(rj , p) → In(aj , rj , p). (2)

Now, consider a social commitment SCri→rj

θ associated with the relationship p in this
society. Applying this to Definition 3 we obtain:

(DebtorOf(ri, SC) ∧ RoleOf(ri, p)) ∧ (CreditorOf(rj , SC) ∧ RoleOf(rj , p))
∧ActionOf(θ, SC)→ AssocWith(SCri→rj

θ , p). (3)

Applying the S-Comm rule to SCri→rj

θ we obtain:

SCri→rj

θ →
[
Ori→rj

θ

]f
ri
∧
[
Rrj→ri

θ

]
rj
. (4)

Combining (4), (1) and (3) we obtain:

In(ai, ri, p) ∧ AssocWith(SCri→rj

θ , p)→
[
Oai→rj

θ

]f
ai
. (5)

Combining (4), (2) and (3) we obtain:

In(aj , rj , p) ∧AssocWith(SCri→rj

θ , p)→
[
Raj→ri

θ

]
aj
. (6)

2.2 Capturing Social Arguments

Having captured the notion of social influence into a schema, here we present how
agents can use it to systematically identify arguments to negotiate within a society. We
term these arguments social arguments, not only to emphasise their ability to resolve
conflicts within a society, but also to highlight the fact that they use the social influence
present within the system as a core means in changing decisions and outcomes within
the society.2 Specifically, we have identified two major ways in which social influence
can be used to change decisions and outcomes and thereby resolve conflicts between
agents (see Figure 2).

2 Due to space restrictions here we present only a limited subset of social arguments. For a
comprehensive list of arguments, together with their formal representation, refer to [3].

228 N.C. Karunatillake et al.

Social
Influences

Social
Influences

DecisionsDecisions
Negotiate

Argue about Influences

(a) Socially Influencing Decisions

Social
Influences

Social
Influences

Decisions Decisions
Negotiate

Introduce as Parameters

(b) Negotiating Social Influence

Fig. 2. Interplay of Social Influence and Argumentation-Based Negotiation

Socially Influencing Decisions: One way to affect an agent’s decisions is by arguing
about the validity of that agent’s practical reasoning [6,7]. Similarly, in a social con-
text, an agent can affect another agent’s decisions by arguing about the validity of the
other’s social reasoning. In more detail, agents’ decisions to perform (or not to per-
form) actions are based on their internal and/or social influences. Thus, these influences
formulate the justification (or the reason) behind their decisions. Therefore, agents can
affect each other’s decisions indirectly by affecting the social influences that determine
their decisions (see Figure 2(a)). Specifically, in the case of actions motivated via social
influences through the roles and relationships of a structured society, this justification
to act (or not to act) flows from the social influence schema (see Section 2.1). Given
this, we can further classify the ways that agents can socially influence each other’s
decisions into two broad categories:

1. Undercut the opponent’s existing justification to perform (or not) an action by dis-
puting certain premises within the schema that motivates its opposing decision (i.e.,
dispute ai is acting role ri, dispute SC is a social commitment associated with the
relationship p, dispute θ is the action associated with the obligation O, etc.).

2. Rebut the opposing decision to act (or not) by,
i. Pointing out information about an alternative schema that justifies the decision

not to act (or act as the case may be) (i.e., point out ai is also acting role ri,
point out SC is also a social commitment associated with the relationship p,
point out θ is the action associated with the obligation O, etc.).

ii. Pointing out information about conflicts that could or should prevent the oppo-
nent from executing its opposing decision (i.e., point out conflicts between two
existing obligations, rights, and actions).

Negotiating Social Influence: Agents can also use social influences within their ne-
gotiations. More specifically, instead of using social argumentation as a tool to affect
decisions (as above), agents can use negotiation as a tool for “trading social influences”.
In other words, the social influences are incorporated as additional parameters of the ne-
gotiation object itself [8] (see Figure 2(b)). For instance, an agent can promise to (or
threaten not to) undertake one or many future obligations if the other performs (or does
not perform) a certain action. It can also promise not to (or threaten to) exercise certain
rights to influence one or many existing obligations if the other performs (or does not
perform) a certain action. In this manner, the agents can use their obligations, rights,
and even the relationship itself as parameters in their negotiations.

Arguing and Negotiating in the Presence of Social Influences 229

3 The Language, Protocol, and Decision Making Functionality

As mentioned in Section 1, our main objective is to formulate a society of agents that are
capable of resolving their conflicts through argumentation-based negotiations. To this
end, Section 2 formulated a model that allows the agents to identify such arguments
to resolve conflicts in a social context. However, identifying such arguments is merely
the first step. Agents also require a means to express such arguments, a mechanism to
govern their interactions and guide them to resolve their conflicts, and a functionality
to make decisions during the course of such dialogues. To this end, we now present the
language, the protocol, and the decision making algorithms of our ABN framework.

3.1 The Language

The language plays an important role in an ABN framework. It not only allows agents
to express the content and construct their arguments, but also provides a means to com-
municate and exchange them within an argumentative dialogue. Highlighting these two
distinct functionalities, we define the language in our framework at two levels; namely
the domain language and the communication language. The former allows the agents
to specify certain premises about their social context and also the conflicts that they
may face while executing actions within such a context. The latter, on the other hand,
provides agents with a means to express these arguments and, thereby, engage in their
discourse to resolve conflicts. Inspired by the works of Sierra et al. [9], this two tier
definition not only allows us an elegant way of structuring the language, but also pro-
vides a means to easily reuse the communication component within a different context
merely by replacing its domain counterpart.

In more detail, our domain language consists of ten elocutionary particles. Of these,
eight allow the agents to describe their social context and these flow naturally from our
social influence schema (i.e., Act, RoleOf, In, DebtorOf, CreditorOf, ActionOf, Influ-
enceOf, and AssocWith). Due to space restrictions we avoid repeating these definitions
here (see Section 2.1). Furthermore, we define two additional predicates that provide a
means to express the conflicts that the agents may face while executing their actions:

Definition 4: Let:
• do: A × Θ denote the fact that an agent is performing an action (expressed in the

abbreviated form do(θ) when the agent is unambiguous).
• Conflict: do(A×Θ)×do(A×Θ) denote the fact that performing the actions gives

rise to a conflict.

On the other hand, our communication language consists of seven elocutionary particles
(see Table 1). Mainly inspired form the works of Amgoud et al. [10], MacKenzie’s sys-
tem DC [11], and McBurney et al. [12], these form the building blocks of our dialogue
game protocol explained below (see Section 3.2). Furthermore, these collectively allow
the agents to use both of our identified methods of conflict resolution; namely socially
influencing decisions and negotiating social influences (see Section 2.2). Due to their
integrated nature with our protocol, we will detail their operational functionality and
the decision making algorithms associated with each of these locutions alongside the
protocol (see Section 3.2).

230 N.C. Karunatillake et al.

REJECT ASSERT

OPEN−DIALOGUE PROPOSE ACCEPT CLOSE−DIALOGUE

CHALLENGE

Fig. 3. Dialogue Interaction Diagram

Table 1. The Protocol

Locution Effects on CS & IS Next Valid Moves

OPEN-DIALOGUE
CS(ai) ← OPEN-DIALOGUE OPEN-DIALOGUE
CS(aj) ← OPEN-DIALOGUE PROPOSE(l,m)

PROPOSE(l,m)
CS(ai) ← PROPOSE(l,m)

ACCEPT(l, m)
REJECT(l, m)CS(aj) ← PROPOSE(l,m)

IS(aj) ← Need(ai, l) ∧ Capable(ai, m)

ACCEPT(l, m)
CS(ai) ← ACCEPT(l, m) ∧ l ∧ m

CLOSE-DIALOGUECS(aj) ← ACCEPT(l, m) ∧ l ∧ m
IS(ai) ← Capable(aj , l)

REJECT(l, m) CS(ai) ← REJECT(l, m)
CS(aj) ← REJECT(l, m)

CHALLENGE(l)
PROPOSE(l,m′)
CLOSE-DIALOGUE

CHALLENGE(l) CS(ai) ← CHALLENGE(l) ASSERT(l)
CS(aj) ← CHALLENGE(l) CHALLENGE(l)

ASSERT(l) CS(ai) ← ASSERT(l)
CS(aj) ← ASSERT(l)

PROPOSE(l,m′)
ACCEPT(l, m)
ASSERT(¬l)
CHALLENGE(l)
CLOSE-DIALOGUE

CLOSE-DIALOGUE
CS(ai) ← CLOSE-DIALOGUE

CLOSE-DIALOGUE
CS(aj) ← CLOSE-DIALOGUE

3.2 The Protocol and the Decision Making Functionality

Given the language component of our ABN framework, we will now proceed to de-
scribe both the protocol which governs its interaction and guides the agents to resolve
their conflicts, and the various decision making algorithms that would enable the in-
dividual agents to participate in such encounters.3 While the overall structure of our
protocol is inspired from the work on computational conflicts by Tessier et al. [13],
the works on pragma-dialectics proposed by van Eemeren and Grootendorst [14], and
that on dialogue games conducted by McBurney et al. [12], and Amgoud et al. [10]
contributed greatly in defining its operational guidelines.

3 Even though we acknowledge the importance of distinguishing the rules of encounter gov-
erned by the protocol from the individual decision mechanisms required by the participants to
engage in such dialogues (see [12]), due to space restrictions we choose to describe both these
elements in this section.

Arguing and Negotiating in the Presence of Social Influences 231

More specifically, our protocol consists of six main stages: (i) opening, (ii) conflict
recognition, (iii) conflict diagnosis, (iv) conflict management, (v) agreement, and (vi)
closing. The opening and closing stages provide the important synchronisation points
for the agents involved in the dialogue, the former indicating its commencement and
the latter its termination [12]. The four remaining stages not only adhere to the compu-
tational conflict work by Tessier et al., but also comply well with the pragma-dialectics
model for critical discussion proposed by van Eemeren and Grootendorst. In more de-
tail, in the conflict recognition stage, the initial interaction between the agents brings the
conflict to the surface. Subsequently, the diagnosis stage allows the agents to establish
the root cause of the conflict and also decide on how to address it (i.e., whether to avoid
the conflict or attempt to manage and resolve it through argumentation and negotia-
tion [1]). Next, the conflict management stage allows the agents to argue and negotiate,
thus, addressing the cause of this conflict. Finally, the agreement stage brings the argu-
ment to an end, either with the participants agreeing on a mutually acceptable solution
or agreeing to disagree due to the lack of such a solution. As mentioned above, these
four stages map seamlessly to the four stages in the pragma-dialectics model; namely
confrontation, rather infelicitously termed opening, argumentation, and concluding re-
spectively.

Given the overall stages of our protocol, we now describe its internal operation. Our
protocol follows the tradition of dialogue games [12] where a dialogue is perceived as
a game in which each participant make moves (termed dialogue moves) to win or tilt
the favour of the game toward itself. In such a context, the protocol defines the different
rules for the game such as locutions rules (indicating the moves that are permitted),
commitment rules (defining the commitments each participant incurs with each move),
and structural rules (that define the types of moves available following the previous
move).4 To this end, Figure 3 depicts the overall structure of our protocol and Table 1
details the different commitment rules and the valid locutions that may follow each
move. For ease of reference, here we address the proposing agent as ai and its respond-
ing counterpart as aj . The commitment rules are shown as effects on the participants’
commitment (CS) and information (IS) stores (see [10]) and l and m are propositions
constructed in the domain language defined above. The following describes their oper-
ation in more detail.

OPEN-DIALOGUE: This indicates the entry point of that agent to the dialogue. As
shown in Table 1 this would result in an entry in either agents’ commitment stores cor-
responding to the dialogical commitment [15] of having made the move (i.e., commit-
ment to the fact that ai has uttered OPEN-DIALOGUE). An agent receiving an OPEN-
DIALOGUE will retort back (if it hasn’t already initiated it) by uttering the same. This
would put both these agents in the opening stage and their negotiation over actions can
commence. For simplicity, we assume that the first agent opening the dialogue is the
one attempting to make its counterpart perform (or abstain from performing) an action.

4 Note, this is not intended to be an exhaustive list of rules, but rather the most important ones
in our context. For instance, if the aim of the dialogue governed by the protocol is persuasion,
the win-loss rules specifying what counts as a winning or losing position would become a vital
component.

232 N.C. Karunatillake et al.

Algorithm 1. Decision making algorithm for
PROPOSE.

Algorithm 2. Decision making algorithm for
ACCEPT and REJECT.

1: if (Capable(do(ai, θi)) ∧ B
ai
do(aj ,θj) >

C
ai
do(ai,θi)

) then

2: PROPOSE(do(aj, θj), do(ai, θi))
3: end if

1: if (Capable(do(aj, θj)) ∧ B
aj
do(ai,θi)

>

C
aj
do(aj ,θj)) then

2: ACCEPT(do(aj, θj), do(ai, θi))
3: else
4: REJECT(do(aj, θj), do(ai, θi))
5: end if

PROPOSE: Each such proposal is composed of two basic elements; the action θj that
ai requires aj to perform and the action θi that ai is willing to perform in return. Thus,
in general, a proposal will have the form PROPOSE(do(aj, θj), do(ai, θi)). Here, θi

could be single atomic action (e.g., I will perform (or will not perform) a certain action
in return or I will make a payment of a certain amount) or a composite action (e.g., I
will perform action (θ1 and θ2) or (θ1 or θ2)). Therefore, this generic form of proposal
allows the agents not only to make simple offers of payment over actions, but also to
make simple or composite rewards and/or threats over actions. In this manner, it allows
the agents to negotiate and also to use social influences as parameters within their ne-
gotiations to resolve conflicts (see Section 2.2). Given this, Algorithm 1 highlights the
decision making required to generate such a proposal. In more detail, we assume our
agents to be self-interested, thus, the proposals that they generate need to be viable on
their behalf (i.e., the cost for ai in performing the proposed action θi (i.e., Cai

do(ai,θi)
)

should not exceed the benefit it gains from aj performing the requested action θj (i.e.,
Bai

do(aj,θj)
). We also assume our agents do not intentionally attempt to deceive each

other with offers that they do not believe feasible on their behalf. Therefore, they will
only generate proposals that they believe to have the capability to honour.5 Once re-
ceived, as an effect of the proposal, aj will gain the information that ai requires θj and
that ai has the ability to perform θi (see Table 1).

ACCEPT and REJECT: Upon receiving a proposal, the agent aj may choose to either
accept or reject it. Now, in order to make this decision, it will need to evaluate the
proposal. Similar to above, this evaluation is also based on two factors: aj needs to have
the capability to perform the requested action and the benefit of the proposal should
outweigh the cost of performing the suggested action (see Algorithm 2). If both these
conditions are satisfied the agent will accept the proposal, otherwise it will reject it. If
accepted, both agents will incur commitments to perform their respective actions (see
Table 1).

5 First, under these assumptions of self-interest and non-deceit, we believe, viability and fea-
sibility are the two most important factors to consider. Second, even though we choose to
specify the algorithms at an abstract level that is independent of any domain, by defining how
the agents evaluate these costs and benefits we can easily set these to reflect a given domain.
Finally, even though the PROPOSE locution defined above has both the elements request and
reward explicitly present, either can be null. This allows the agents to express proposals that
are mere requests without an explicit reward (such as demands, pleads, and orders) and soli-
tary rewards (such as offers, gifts, and suggestions) that they deem to be viable during their
negotiation.

Arguing and Negotiating in the Presence of Social Influences 233

Algorithm 3. Decision algorithm for CHAL-
LENGE.

Algorithm 4. Decision algorithm for AS-
SERT.

– In case of REJECT(l)
1: if (REJECT(l) ∈ Δai ∧reason(REJECT(l)) /∈ Δai)

then
2: CHALLENGE(REJECT(l))
3: end if

– In case of ASSERT(l)
1: if (ASSERT(l) ∈ Δai ∧ reason(ASSERT(l)) /∈ Δai)

then
2: CHALLENGE(l)
3: end if

– In case of CHALLENGE(l)
1: if (CHALLENGE(l) ∈ Δai ∧RCHALLENGE(l) /∈ Δai)

then
2: CHALLENGE(CHALLENGE(l))
3: end if

– In case of ASSERT(¬l)
1: if (¬l /∈ Δai ∧ l ∈ Δai) then
2: ASSERT(l)
3: end if

– In case of CHALLENGE(l)
1: if (search-Justification(l, Δai) ⇒ H) then
2: ASSERT(H)
3: end if

CHALLENGE: Upon rejection of a proposal by its counterpart (aj), ai may choose to
either forward a modified proposal (i.e., if the reason is apparent such that there can
be only one possibility) or challenge aj’s decision in order to identify the underlying
reasons for rejection. Apart from this, an agent may use CHALLENGE in two other
situations (see Figure 3). First, an agent may challenge another’s right to challenge
(demand or question) its decision (see Section 2.1) if that right is not evident for the
agent. This allows an agent to only justify its decisions to others who have the right to
challenge its decision. To avoid infinite deepening of challenges, we do not allow such
challenges go beyond two levels (i.e., challenge another’s right to challenge its own
right to challenge). Second, an agent can challenge a certain assertion by its counterpart
if either that assertion or its contradiction is not within its knowledge (see Algorithm 3
where Δai denotes agent ai’s knowledge-base).

ASSERT: An agent can assert some fact in two possible situations. First, if the agent is
challenged for some justification on its decision it can assert that justification. Second,
if its counterpart has made an assertion (l), but the agent has justification to believe
its contradiction (¬l), then the agent can assert this to dispute its partner’s assertion.6

This will allow agents to undercut and rebut each others’ social reasoning, and, thereby,
resolve conflicts (see Section 2.2). Assert can either result in the counterpart generating
an alternative proposal (taking into account the reason given) or accepting the proposal
(convinced by the persuasion).

CLOSE-DIALOGUE: When either the counterpart has accepted a certain proposal or
the proposing agent has no other feasible and worthwhile proposals to forward, an agent
will utter CLOSE-DIALOGUE (echoed in return by its counterpart) to bring the dia-
logue to an end.

Having formulated the language, the protocol, and the decision making functions of
our ABN system, we now explain how these would interact to provide a means for the
agents to resolve their conflicts in a social context. To this end, Figure 4 depicts an illus-

6 Our current implementation uses a simple arbitration heuristic to resolve such disputes. How-
ever, this can be extended by replacing it with either a system based on the strength of justifi-
cation [10] or a learning heuristic based on commitment (see Section 4).

234 N.C. Karunatillake et al.

θ2
θ2

θ2
θ2 θ1

θ2 θ1

θ2

Conflict Recognition

Conflict Diagnosis

Conflict Management

Agreement

Closing

Opening

θ1

O2

L1 − Ben: Can you finish the journal paper?
L2 − Andy: No, I can’t.
L3 − Ben: Why not?
L4 − Andy: I have to finish the thesis, and I

L5 − Ben: But you are obliged to finish the paper.
L6 − Andy: Yes, but I am also obliged to write

L7 − Ben: In my expert opinion, I believe it is

L8 − Andy: I adhere to your expert opinion,

 can’t do two things together.

 the thesis and I believe it influences me more
 than the obligation to finish the journal paper.

 more important at this point to finish the paper
 than the thesis. You should change your opinion.

 therefore I will finish the paper.

1 1 2

1 2 2 1

2

1

1

2

1

Let: O denote the obligation to perform (finishing his thesis)

 and f its associated degree of influence.2

and f its associated degree of influence and
O denote the obligation to perform (write a journal paper)

M1 − Ben: OPEN−DIALOGUE
M2 − Andy: OPEN−DIALOGUE
M3 − Ben: PROPOSE(do())
M4 − Andy: REJECT(do())
M5 − Ben: CHALLENGE(¬do())
M6 − Andy: ASSERT(Conflict(do(), do()))

M8 − Andy: ASSERT(O & (f > f))
M9 − Ben: ASSERT(¬(f > f) & (f > f))
M10 − Andy: ACCEPT((f > f) & do() & ¬do())
M11 − Ben: CLOSE−DIALOGUE
M12 − Andy: CLOSE−DIALOGUE

M7 − Ben: ASSERT()

Fig. 4. Resolving Conflicts through Argumentation-based Negotiation

trative dialogue taking place between Andy, an agent acting the role of a PhD student,
and Ben, acting as his supervisor. The case is set within a context where Andy has two
distinct obligations, both toward Ben; to finish his thesis θ1 and to write a journal paper
θ2. However, due to time restrictions, we assume that Andy has decided to perform θ1 at
the expense of θ2. This choice is in conflict with Ben’s own motivations. In this context,
Figure 4 illustrates how he can socially influence (see Section 2.2) Andy’s decision by
undercutting his justification and, thereby, resolve the conflict. More specifically, Fig-
ure 4 highlights two specific aspects of our language and protocol. First, it shows how
the language component allows the agents to do a straightforward encoding of the nat-
ural language locutions into its respective utterances (see locutions L1 to L8 with its
corresponding utterances M3 to M10). Second, it also depicts how the dialogue pro-
gresses through the six distinct stages of conflict resolution identified above.

4 Conclusions and Future Work

The long term objective of our work is to formulate an agent society that can use ar-
gumentative dialogues to resolve their conflicts. To this end, this paper builds upon
our previous conceptual grounding on social arguments [3] and formulates a coher-
ent argumentation framework that allows agents to use ABN to resolve conflicts in a
multi-agent community. In more detail, we first define a schema that captures social
influences in an agent society and then illustrates the different ways that agents can use
it to systematically identifying a suitable set of arguments to resolve conflicts in such a
social context. Next, we formulate the language, which allows agents to construct and
express such arguments, and the protocol that would guide the course of the dialogue
toward resolving conflicts. Finally, we define the various decision making algorithms
that would enable the individual agents to participate in such argumentative encounters.
Apart from the models specified in this paper, in our current work we have implemented
these in a multi-agent task allocation domain (specified in [1]) in order to empirically
test the efficiency and effectiveness of these concepts. In future, we aim to expand upon
our current implementation by designing different argument selection strategies, thus,
allowing the agents to adopt different tactics in resolving conflicts in an agent society.

Arguing and Negotiating in the Presence of Social Influences 235

References

1. Karunatillake, N.C., Jennings, N.R.: Is it worth arguing? In: Argumentation in Multi-Agent
Systems (Proc. of ArgMAS 2004). LNAI 3366, NY, USA, Springer-Verlag (2004) 234–250

2. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. The Knowledge Engineering Review 18 (2003) 343–375

3. Karunatillake, N.C., Jennings, N.R., Rahwan, I., Norman, T.J.: Argument-based negotiation
in a social context. In: Proc. of the 2nd Int. Workshop on Argumentation in Multi-Agent
Systems (ArgMAS’05), Utrecht, The Netherlands (2005) to appear

4. Castelfranchi, C.: Commitments: From individual intentions to groups and organizations. In:
Proc. of the 1st Int. Conf. on Multi-agent Systems (ICMAS’95), San Francisco, CA (1995)
41–48

5. Cavedon, L., Sonenberg, L.: On social commitment, roles and preferred goals. In: Proc. of
the 3rd Int. Conf. on Multi-Agent Systems (ICMAS’98). (1998) 80–86

6. Atkinson, K., Bench-Capon, T., McBurney, P.: A dialogue game protocol for multi-agent
argument over proposals for action. In: Argumentation in Multi-Agent Systems (Proc. of
ArgMAS 2004). LNAI 3366, NY, USA, Springer-Verlag (2004) 149–161

7. Walton, D.N.: Argumentation Schemes for Presumptive Reasoning. Erlbaum, Mahwah, NJ
(1996)

8. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make trade-offs in auto-
mated negotiations. Artificial Intelligence 142 (2002) 205–237

9. Sierra, C., Jennings, N.R., Noriega, P., Parsons, S.: A framework for argumentation-based
negotiation. In: Proc. of 4th Int. Workshop on Agent Theories Architectures and Languages
(ATAL’97), Rhode Island , USA (1998) 167–182

10. Amgoud, L., Parson, S., Maudet, N.: Argument, dialogue and negotiation. In Horn, W., ed.:
Proc. of the 14th European Conference on Artificial Intelligence (ECAI’00), Berlin (2000)
338–342

11. MacKenzie, J.: Question-begging in non-cumulative systems. Journal of philosophical logic
8 (1979) 117–133

12. McBurney, P., van Eijk, R., Parsons, S., Amgoud, L.: A dialogue-game protocol for agent
purchase negotiations. Autonomous Agents and Multi-Agent Systems 7 (2003) 235–273

13. Tessier, C., Chaudron, L., Müller, H.J., eds.: Agents’ Conflicts: New Issues. In: Conflicting
Agents Conflict Management in Multi-Agent Systems. Kluwer Academic Publishers (2000)
1–30

14. Eemeren, F.H. van, Grootendorst, R.: Argumentation, Communication, and Fallacies.
Lawrence Erlbaum Associates, Inc, Hillsdale NJ (1992)

15. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. State Univ. of NY (1995)

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 236–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cooperative Behavior of Agents Based on
Potential Field

Takashi Katoh1, Kensaku Hoshi2, and Norio Shiratori3

1 Iwate Prefectural Univ., Japan
2 IBM Japan, Tokyo, Japan

3 Tohoku Univ., Sendai, Japan

agent A
agent B
agent Ctrash A

trash B

trash C

agent
trash

Cooperative Behavior of Agents Based on Potential Field 237

trash

agent A

agent B

agent
trash

agent
trash

agent A

agent B

trash A

trash B

−∇
→

V

agent
trash

238 T. Katoh, K. Hoshi, and N. Shiratori

Cooperative Behavior of Agents Based on Potential Field 239

240 T. Katoh, K. Hoshi, and N. Shiratori

θb

θa

b
→

a
→

−∇
→

Vj

agent
trash

Cooperative Behavior of Agents Based on Potential Field 241

242 T. Katoh, K. Hoshi, and N. Shiratori

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 C

ol
le

ct
ed

 T
ra

sh

Time (clock)

Our method
Nearest algorithm

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 C

ol
le

ct
ed

 T
ra

sh

Time (clock)

Our method
Nearest algorithm

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 C

ol
le

ct
ed

 T
ra

sh

Time (clock)

Our method
Nearest algorithm

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

T
im

e
to

 C
om

pl
et

e
T

as
k

(c
lo

ck
)

Number of Trash

Our method
Nearest algorithm

0

2

4

6

8

10

0 200 400 600 800 1000

N
um

be
r

of
 C

ol
le

ct
ed

 T
ra

sh

Time (clock)

Our method
Nearest algorithm

0

20

40

60

80

100

0 200 400 600 800 1000

N
um

be
r

of
 C

ol
le

ct
ed

 T
ra

sh

Time (clock)

Our method
Nearest algorithm

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 C

ol
le

ct
ed

 T
ra

sh

Time (clock)

Our method
Nearest algorithm

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000

T
im

e
to

 C
om

pl
et

e
T

as
k

(c
lo

ck
)

Number of Trash

Our method
Nearest algorithm

Cooperative Behavior of Agents Based on Potential Field 243

244 T. Katoh, K. Hoshi, and N. Shiratori

Cooperative Behavior of Agents Based on Potential Field 245

The “Dance or Work” Problem: Why Do not all
Honeybees Dance with Maximum Intensity

Ronald Thenius, Thomas Schmickl, and Karl Crailsheim

Department for Zoology, Karl-Franzens University,
Graz, Universitätsplatz 2, A-8010 Graz, Austria

theniusr@stud.uni-graz.at
schmickl@nextra.at, karl.crailsheim@uni-graz.at

1 Introduction

1.1 Biological Background

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 246–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The “Dance or Work” Problem 247

248 R Thenius, T Schmickl, and K Crailsheim

1.2 Motivation and Hypothesis

1.3 Technical Relevance

2 Material and Methods

2.1 The Simulation Platform

The “Dance or Work” Problem 249

2.2 The Experimental Set-Up

2.2.1 Colony Settings and the Outside Environment

1 A typical colony consists of 4000 to 40.000 individuals, for keeping the computational
efforts in an acceptable range we chose the values of 500 foragers / 400 receivers.
The ratio of foragers to receivers is comparable to the ratio found in real honeybee
colonies.

Environment2.2.2 Fluctuating

250

2.2.3 Dance-Response Curves

3 Results

3.1 Emerging Foraging Patterns

2 In nature a source with a sugar concentration of 2.5Mol/L is a very good source, a
source with 0.75Mol/L is a rather poor one.

R Thenius, T Schmickl, and K Crailsheim

The “Dance or Work” Problem 251

3.2 Energetic Efficiency of Heterogeneous Dance-Response Curves
and of Homogeneous Dance-Response Curves

Table 1. Net honey gain of colonies with heterogeneous dance-response curves and of
colonies with homogeneous dance-response curves after 8 hours under different envi-
ronmental situations

252

3.3 Differences Between the Two Sets of Dance-Response Curves

Fig. 5. Differences in net honey gain between colonies with a “heterogeneous set” of
danceresponse curves (white columns) and those with the “homogeneous set” (grey
columns) after 8 hours. Stars indicate significant differences between the two data sets
(P≤0.05); N1 = N2 = 14 per setting.

R Thenius, T Schmickl, and K Crailsheim

The “Dance or Work” Problem 253

3.4 Influence of the “In-Hive Delay” on Net Honey Gain

4 Discussion

254

Acknowledgements

R Thenius, T Schmickl, and K Crailsheim

The “Dance or Work” Problem 255

References

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 256 – 265, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards an Institutional Environment Using Norms for
Contract Performance

Henrique Lopes Cardoso and Eugénio Oliveira

LIACC – NIAD&R, Faculty of Engineering, University of Porto,
R. Dr. Roberto Frias, 4200-465 Porto, Portugal

hlc@ipb.pt, eco@fe.up.pt

Abstract. A strong research emphasis is being given towards regulating inter-
operable multi-agent environments through norms and institutions. We are con-
cerned with environments in which agents form together virtual organizations
leading to cooperation agreements that can be enforced. An electronic institu-
tion provides a coordination framework facilitating automatic contract estab-
lishment and providing an enforceable normative environment. We introduce
the notion of contextualized norms within our institutional framework, and de-
velop on a model of institutional reality, taking into account institutional roles
and agents’ statements, with the aim of providing a contract monitoring service.
Our proposal describes how to use norms to formalize cooperation agreements
and operational contracts, and how to monitor and detect contract violations.

1 Introduction

An increasingly important dichotomy in multi-agent systems (MAS) research is
autonomy and openness versus regulation. While agent theory puts an emphasis on
agents as autonomous self-interested entities interacting in open environments, the
application of MAS in real-world scenarios raises an important question: how to en-
sure an intended cooperative behavior in environments populated with self-interested
agents? A possible response to this problem is to regulate the environment, providing
incentives for cooperative behavior through normative constraints [2].

In our case, we are concerned with environments in which agents may agree on co-
operation efforts, involving specific interactions during a certain time frame. By this
way agents may compose a virtual organization (VO), which is regulated by specific
and appropriate norms. Here agents usually represent different business entities or
enterprises, which come together to address new market opportunities by combining
skills, resources, risks and finances no partner alone can fulfill [5].

In open environments, previous performance of potential partners (that is, their
reputations) may not be assessed. A VO may comprise agents that have never worked
together in the past. This makes it necessary to state, through a formal contract, what
an agreement is about, and to provide an environment for enforcing those contracts.

In our view, the Electronic Institution (EI) concept addresses these concerns [10],
as it consists of a coordination framework facilitating the establishment of contracts
and providing a level of trust by offering an enforceable normative environment. This
is accomplished through agent-based institutional services, including contract

 Towards an Institutional Environment Using Norms for Contract Performance 257

monitoring and enforcement. The EI encompasses a set of norms regulating the envi-
ronment. However, due to the fact that agents negotiate towards the achievement of
agreements formalized in contractual norms, this normative environment is an evolv-
ing one. Through appropriate services, the EI monitors and enforces (using sanctions
and reputation mechanisms) both institutional norms and those formalizing contracts.

Inside the EI, agents’ illocutions are the source towards the formation of institu-
tional reality (inspired in [17]). This reality is composed of both new organizational
structures (VOs) and actions performed concerning the compliance to norms. Also,
some agents perform specific institutional roles, being certified by the EI as legitimate
to produce certain institutional facts. External agents may also announce themselves
as performing certain roles. Instead of providing institutional services, these are gen-
eral roles (such as seller or customer) which may, when performed inside the EI, have
a set of attached norms. By assuming those roles, agents become committed to these
norms.

In this paper we elaborate on the use of norms within our EI framework (section 2)
and on the creation of institutional reality (section 3). Furthermore, we address the
specification of contracts (including those devoted to VO settings) using norms regu-
lating behavior (section 4), allowing for contract monitoring and enforcement. Finally
we get to some conclusions and identify some related work (section 5).

2 Contextualized Norms

Norms play an important role in open artificial agent systems, where they improve
coordination and cooperation. As in real-world societies, norms allow us to achieve
social order [2] by controlling the environment, making it more stable and
predictable.

Norms can be classified according to different criteria. Considering our EI frame-
work, we find it important to classify norms according to their scope [11]. Institu-
tional norms regulate the behavior of every agent inside the EI. By assuming general
roles, agents become committed (before the institution) to their associated norms.
Institutional norms also include general means of dealing with contract-independent
occurrences, such as policies for handling norm violations. They set up the normative
ground on which cooperation commitments may be established. Constitutional norms
are used to describe the constitution of agent-based virtual organizations, which
thereby commit to a certain cooperation agreement. The terms of such an agreement
are specified by means of norms regulating the created consortium, which usually
exists for a period of time. Finally, operational norms specify contracts by indicating
actions to be performed by contractual agents; they may be proposed and signed
within the context of a specific VO, or else may comprise a stand-alone deal.

This classification suggests that different types of norms are created at different
moments. Thus, institutional norms may be pre-existent, while constitutional norms
are created when agents reach cooperation agreements, and operational norms come
into existence when executable contracts are signed. However, this needs not be the
case. Norms with limited scopes may be predefined for a number of reasons.

An important concept in contract law theory is the use of “default rules”, which fa-
cilitate contract formation, allowing contracts to be underspecified by defining default
clauses. Therefore, constitutional or even operational norms may be institutionally

258 H. Lopes Cardoso and E. Oliveira

defined: together with institutional norms, they provide a normative background in
which agents can rely to build their contractual commitments.

Furthermore, just as real-world legislations are organized through hierarchies of
laws, it is natural to have predefined regulations devoted to particular contexts, such
as the VO setting. Agents can rely on these regulations as a ground basis to raise spe-
cific virtual organizations.

Finally, norms may be predefined when they regulate predicted coordination situa-
tions, as in the case of negotiation protocols. Agents agreeing to coordinate their ne-
gotiation efforts according to a certain protocol adhere to the norms implementing it.
Differently from “default rules”, however, these norms apply as they are to every
adhesion to the protocol; they do not make up mere fill-in prescriptions in the absence
of explicitly created norms.

According to this setting, it is possible, therefore, to predefine scoped norms that
are to be imposed when the activity they regulate is adhered to by agents. This meth-
odology may be applied to negotiation protocols, to standard cooperation commit-
ments between a group of agents, or to norms attached to roles. Although having a
limited scope, these norms can be seen as institutional in the sense that they are insti-
tutionally predefined.

Independently of the circumstances of their creation, norms define, in some con-
text, what ought to be done in certain circumstances:

[Context] Situation → Prescription

The Context indicates the scope of the norm. The Situation describes when the norm is
in place. The Prescription specifies what should be accomplished.

In all formulae throughout this paper, we use the Prolog notation conventions for
variables and relations.

3 Institutional Reality

Considering an EI as an environment where social relationships are created and en-
forced, it is necessary to establish how and when such relationships are in place, and
how and when they are fulfilled. If we design a closed EI environment with a well-
defined performative structure (as in [14]), agents’ actions and their effects are re-
stricted. If, however, we design an open environment where autonomous agents inter-
act, we must relate those interactions with the (emergence of) social structures defin-
ing commitments among agents. This represents a much more flexible approach to-
wards the development of a normative framework.

Following Searle’s theory on “the construction of social reality” [17], inside the EI
we consider brute facts and institutional facts. The latter are obtained from de former,
through rules defining “counts-as” relations (constitutive rules).

3.1 Brute and Institutional Facts

Agents’ illocutions are stored as brute facts in the form:

illocution(Agent, Content)

Relevant illocutions are assumed to use a well-defined institutional ontology.

 Towards an Institutional Environment Using Norms for Contract Performance 259

Institutional facts are inferred using constitutive rules. These are fed with agents’
illocutions (brute facts), and produce institutional reality. Just as norms have a context
in which they apply, we associate institutional facts with the context within which
they occur. This is important if we consider facts denoting agent behavior regarding
its obligations: these facts may occur within a context (e.g. a contract).

An important issue to consider in contracting scenarios is time: every fact must oc-
cur at a given instant. We use the following representation for institutional facts:

[Context] ifact(IFact, Timestamp)

Just as brute facts, institutional facts are defined in the institutional ontology.

3.2 The Institutional Reality Engine

Institutional reality depends on the recording of brute facts, which are then processed
by “systems of constitutive rules” [17]. Relevant facts include those related to com-
mitment creation (implying the establishment of contracts) and fulfillment. Therefore,
rules regulating how these facts come about are needed.

Institutional Roles. Illocutions’ effects may depend on the agents uttering them. We
identify a set of institutional roles enacted by agents providing specific services.
Some institutional facts may be created only if agents performing certain institutional
roles utter appropriate illocutions. Authoritative relations are established in this way
between roles and institutional reality: an agent performing a given role is said to be
empowered to achieve the effects expressed in its role-related constitutive rules.

Since we are concerned with the application of our model to business scenarios in-
volving transactions, we identify three main institutional roles providing a connection
to the real-world. A messenger role provides certified information exchange facilities;
a banking role enables acknowledging monetary value transfers; a delivery tracker
role certifies product delivery.

Constitutive Rules. Constitutive rules make a connection between what is said and
what is taken for granted. Many of these rules will be based on institutional roles and
their powers. According to our EI rationale, we identify two main focuses for
constitutive rules: (1) the certification of action execution (including contract
fulfillment), and (2) the establishment of commitments through contracts.

Certified action execution is important because of trustworthiness issues. Consider
a situation in which an agent ought to make a certain payment to another. Although
the agent may claim to have paid its debt, that does not make it the case. Still, if an
independent financial agent, providing a certified institutional service, states that a
currency transfer referring to a certain context (e.g. a purchase contract) has taken
place, it would be safe to consider that the payment occurred, which is described as
below:

illocution(B, currency_transfered(Ctx, Ag1, Amount, Ag2, Time)) ∧ ibank(B)
→ [Ctx] ifact(payment(Ag1, Amount, Ag2), Time)

260 H. Lopes Cardoso and E. Oliveira

We can also say that if both agents (the payer and the receiver) acknowledge the
payment, it would be safe to conclude the associated institutional fact:

illocution(Ag1, paid(Ctx, Amount, Ag2, _)) ∧ illocution(Ag2, collected(Ctx, Amount, Ag1, Time))
→ [Ctx] ifact(payment(Ag1, Amount, Ag2), Time)

Another exemplifying case where physical actions must be checked concerns the
delivery of products. We may trust on a delivery tracking service:

illocution(DT, delivered(Ctx, Ag1, Item, Quantity, Ag2, Time)) ∧ idelivery_tracker(DT)
→ [Ctx] ifact(delivery(Ag1, Item, Quantity, Ag2), Time)

The same methodology can be applied concerning the exchange of messages. If
message delivery recognition is a must, an institutional messenger service may be
provided. This way, interactions between agents through the exchange of messages
can be recorded, as long as such a service intermediates the process.

The messenger agent informs the EI that a given message was delivered. The fol-
lowing constitutive rule applies:

illocution(M, msg_delivered(Ctx, Ag1, Msg, Ag2, Time)) ∧ imessenger(M)
→ [Ctx] ifact(msg(Ag1, Msg, Ag2), Time)

In principle, any information exchange could be treated in a similar way. This
opens up the possibility to verify business-related activities such as order placement,
invoice issuing, or shipment notices. It also enables the verification of negotiation
protocols requiring the exchange of proposals.

As for contract establishment, we must define relations between institutional facts
(created from agents’ illocutions) and commitment formation. These constitutive rules
define how new institutionally enforceable norms can be created, describing contrac-
tual relationships between agents.

Contractual relationships may rise from an appropriate exchange of messages. For
instance, a contract may be recognized if an agent accepts the terms and conditions of
a standing proposal (that is, when agents reach an agreement):

ifact(acceptation(Ag1, Ag2), TA) ∧ ifact(proposal(Ag2, Ag1, Proposal, Timeout), TP) ∧
TP<TA<TP+Timeout

→ register_new_contract(Ag1, Ag2, Proposal, TA)

where register_new_contract would be an institutional procedure registering the contract
between the involved agents. Several researchers address the issue of commitment
creation from interaction protocols. A survey may be found in [12].

If, however, negotiation protocols must be enforced, or if negotiation must be
mediated (besides mere message forwarding), negotiation mediation services may
be provided by an institutional agent. This applies to negotiation protocols specifi-
cally devoted to formalizing VO cooperation agreements, as we have proposed
before [13].

 Towards an Institutional Environment Using Norms for Contract Performance 261

4 Specifying and Monitoring Contracts

Behavior norms prescribe the expected behavior of agents. We attribute the responsi-
bility of monitoring and enforcing norms to the EI, which by this means establishes a
trust-enabled normative environment.

A norm-aware environment can operate either preventively (making unwanted be-
havior impossible) or responsively (detecting violations and reacting accordingly)
[18]. Taking into account the autonomous nature of agents, we rely essential on the
latter practice. Norms specify states of affairs that must be brought about by an agent
before a certain deadline. Therefore, we consider obligations as the means to express
the prescription of behavior norms. Obligations have the following structure:

[Context] obligation(Bearer, InstitutionalFact, Deadline)

Instead of dictating the exact action an agent must perform, we prescribe the insti-
tutional fact that it must bring about. This fits with our model of institutional reality,
where we specify through constitutive rules how an institutional fact may be accrued.
It also enables an agent to delegate tasks conducting to the accomplishment of such
state of affairs, while still being responsible for the (un)fulfillment of the obligation.

Situations in which norms apply include the achievement of institutional facts, and
the fulfillment or violation of obligations. Norms prescribing behavior in case of vio-
lations are sanctioning norms: they are meant to discourage non-compliance. These
norms may be defined either as institutional or as contract-specific.

4.1 Fulfillment and Violation of Obligations

Contextualized institutional facts are used to verify the fulfillment of obligations. For
this, we define an obligation fulfillment rule:

 [Context] ifact(IFact, T) ∧ obligation(Bearer, IFact, Deadline) ∧ T<Deadline
 → fulfilled(Bearer, IFact, T)

This rule indicates that if an institutional fact prescribed by an obligation is
achieved before its deadline, then that obligation is fulfilled. Literals within the rule
are dependent on its context. However, this rule is institutional, as it applies to all
contractual relations; it thus has un-instantiated Context.

This rule is fundamental for enabling the chaining of obligations within a contrac-
tual relationship. It establishes a connection between the institutional facts that are
added and the pending obligations.

Sanctioning norms are activated using a violation detection rule, which fires when
deadlines have elapsed. Time events are generated as institutional facts referring to
the time when obligations are due.

 [Context] ifact(time, Deadline) ∧
 obligation(Bearer, IFact, Deadline) ∧ not(fulfilled(Bearer, IFact, _))
 → violated(Bearer, IFact, Deadline)

262 H. Lopes Cardoso and E. Oliveira

This violation detection rule states that in any context, if a deadline referring to an
obligation was reached, and such obligation was not fulfilled, then a violation oc-
curred. The resulting fact may be used to activate sanctioning norms and to update the
agent’s reputation.

This approach allows us to distinguish violation detection from sanction imposition
mechanisms. While the detection of violations is a general and institutionally defined
concept, the prescription of sanctions may be contract-specific.

4.2 Virtual Organization Cooperation Agreements

A cooperation agreement aggregates the VO’s constitutional information, including
the cooperation effort agents are committed to, and their general business process
flow. Considering situations where the intended cooperation consists of the exchange
of resources, the following templates are used to specify this information:

 [] ifact(cooperation_agreement(IdCA, Participants, Resources), CATime)

 [cooperation_agreement:IdCA]
 coop_effort(Participant, Resource, MinQuantity, MaxQuantity, Frequency, UnitPrice)

 [cooperation_agreement:IdCA] business_process(From, Resource, To)

Cooperation efforts indicate, for each participating agent, quantity ranges for the
supply of resources, within a given frequency, together with agreed prices. Business
process entries indicate the resources that are supposed to flow between participants.
Their effective transfer, however, is dependent on appropriate requests.

The central norm in respect to contractual promises indicates that each agent is
committed to its cooperation effort. This translates to an obligation prescription:

 [cooperation_agreement:IdCA]
 ifact(request(Requester, Resource, Quantity, Answerer), TR) ∧
 business_process(Answerer, Resource, Requester) ∧
 coop_effort(Answerer, Resource, MinQt, MaxQt, Freq, _) ∧
 calculate_performed_effort(Answerer, Resource, Freq, TR, PE) ∧ PE+Quantity<=MaxQt
 → obligation(Answerer, acknowledge(Answerer, Resource, Quantity, Requester), TR+10)

This norm is institutionally defined: it applies to all cooperation agreements cre-
ated inside the institution. Its context remains unbound until it is in use. Briefly, it
states that if a predicted request (considering the stated business process and coopera-
tion effort) is made in the context of a cooperation agreement, then the envisaged
agent is obliged to accept it. An institutional procedure (calculate_performed_effort) is
invoked for calculating the effort already performed by the agent. If it does not exceed
its promised efforts, the obligation comes into effect.

4.3 Operational Contracts

Operational contracts are established in the context of a cooperation agreement. Insti-
tutional facts register their creation:

 Towards an Institutional Environment Using Norms for Contract Performance 263

 [cooperation_agreement:IdCA]
 ifact(operational_contract(IdOC, Requester, Answerer, Resource, Quantity), OCTime)

Considering parties’ cooperation commitments, operational contracts come into ex-
istence through a constitutive rule of the form:

 [cooperation_agreement:IdCA]
 fulfilled(Answerer, acknowledge(Answerer, Resource, Quantity, Requester), TA)
 → register_new_operational_contract(IdCA, Requester, Answerer, Resource, Quantity, TA)

This rule applies to every cooperation agreement, and states that when an agent ful-
fils its obligation to acknowledge a given request, a new operational contract comes
into existence.

The cooperation agreement may also specify how operational contracts are man-
aged, that is, what obligation chains implement such activity. This facilitates their
creation, since their norms may be pre-specified. One possibility is to define norms
applicable to all operational contracts within a cooperation agreement. For instance, if
delivery and payment should occur:

 [cooperation_agreement:IdCA, operational_contract:IdOC]
 obligation(Answerer, delivery(_, Resource, Quantity, Requester), OCTime+10)

 [cooperation_agreement:IdCA, operational_contract:IdOC]
 fulfilled(Answerer, delivery(_,Resource, Quantity, Requester), TD) ∧
 coop_effort(Answerer, Resource, _, _, _, UnitPrice)
 → obligation(Requester, payment(_, UnitPrice*Quantity, Answerer), TD+30)

where IdOC remains unbound, as these norms apply to all operational contracts which
will be created in the future within agreement IdCA.

It would also be possible to define an institutional default policy, applicable to all
operational contracts of all cooperation agreements.

5 Conclusions and Related Work

The regulation of multi-agent systems in environments with no central design (and
thus with no cooperative assumption) is gaining much attention in the research com-
munity. Normative multi-agent systems address this issue by introducing incentives to
cooperation (or discouraging deviation). After initial research on norms as constraints
on behavior, it is now accepted that autonomous agents are able to deliberate whether
to comply with norms [3].

Searle’s work on speech acts [16] and institutional reality [17] has inspired several
researchers within the MAS field (e.g. [1], [4], and [7]). In our case, we used this
inspiration as a means to certify the occurrence of real-world actions, essential to
contract monitoring purposes. Brute facts consist of agents’ illocutions, which accord-
ing to empowering relations are used to produce institutional reality.

Within the framework of our proposed electronic institution [10] providing ser-
vices for the achievement of contractually specified agreements (including VO sce-
narios), we described the use of contextualized norms and the specification and

264 H. Lopes Cardoso and E. Oliveira

monitoring of contracts. Norms are typically related with the deontic notions of obli-
gation, permission and prohibition, and have been used to formalize contracts (e.g. [9]
and [15]). In our case, we essentially rely on directed obligations. In the case of VO
contracts, permissions are seen as rights for requesting a partner’s contribution. Pro-
hibitions may be applied as a consequence of violation detection. A formal underpin-
ning of a logic for contract representation is given in [6], including the notion of con-
ditional obligation with deadline (equivalent to our norm specification).

The concept of electronic institutions is gaining importance inside MAS research.
Previous approaches towards regulating agent behavior through EIs include [14].
However, this model formally defines an institution using a rigid structure that im-
plements a predefined protocol. By restricting the actions agents are allowed to per-
form, it does not cope well with a central property of agency: autonomy. In our ap-
proach, we avoid imposing hard constraints on behavior. By enforcing norms, we do
conduct and supervise the behavior of rational agents.

Top-down normative frameworks are appropriate in situations where norms can be
centrally designed, although regulating a distributed environment with autonomous
self-interested agents. However, it is not amenable to contract handling: agents make
agreements that are to be monitored by a trusted third-party (the EI), thus the norma-
tive structure is modified by the corresponding contracts. We aim at providing such
an evolving normative framework, taking into account the creation of institutional
reality.

Norms lend themselves to a rule-based implementation. We are implementing our
agent-based EI framework in JADE and using the JESS shell [8] for norm representa-
tion, monitoring and enforcement. JESS incorporates features enabling also the use of
default reasoning, and consists of a forward-chaining production system that fits the
firing of norms and rules based on events (institutional facts in our case). It also in-
cludes the possibility to define modules for organizing sets of rules, matching our
norm contexts.

References

1. Boella, G., & van der Torre, L. (2004). Regulative and Constitutive Norms in Normative
Multiagent Systems. In Proc. 9th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR’04), Whistler, Canada.

2. Castelfranchi C. (2000). Engineering Social Order. In A. Omicini, R. Tolksdorf, & F.
Zambonelli (eds.), Engineering Societies in the Agents World, Springer, pp.1-18.

3. Castelfranchi, C., Dignum, F., Jonker, C., & Treur, J. (2000). Deliberative Normative
Agents: Principles and Architectures. In N. Jennings & Y. Lesperance (eds.), Intelligent
Agents VI: Agent Theories, Architectures, and Languages, Springer, pp.364-378.

4. Colombetti, M., & Verdicchio, M. (2002). An analysis of agent speech acts as institutional
actions. In Castelfranchi & Johnson (eds.), Proc. 1st Int. Joint Conf. on Autonomous
Agents and Multiagent Systems, ACM Press, pp.1157-1164.

5. Dignum, V., & Dignum, F. (2002). Towards an Agent-based Infrastructure to Support Vir-
tual Organizations. In L.M. Camarinha-Matos (ed.), Collaborative Business Ecosystems
and Virtual Enterprises, Kluwer, pp.363-370.

 Towards an Institutional Environment Using Norms for Contract Performance 265

6. Dignum, V., Meyer, J.-J., Dignum, F., & Weigand, H. (2003). Formal Specification of In-
teraction in Agent Societies. In M. Hinchey, J. Rash, W. Truszkowski, C. Rouff & D.
Gordon-Spears (eds.) Formal Approaches to Agent-Based Systems, Springer, pp.37-52.

7. Fornara, N., Viganò, F., & Colombetti, M. (2005). Agent Communication and Institutional
Reality. In R. M. van Eijk, M.-P. Huget & F. Dignum (eds.), Agent Communication,
Springer, pp.1-17.

8. JESS, the Rule Engine for the Java Platform (http://herzberg.ca.sandia.gov/jess/).
9. Kollingbaum, M.J., & Norman, T.J. (2002). Supervised Interaction – Creating a Web of

Trust for Contracting Agents in Electronic Environments. In Castelfranchi & Johnson
(eds.), Proc. 1st Int. Joint Conf. on Autonomous Agents and Multiagent Systems, ACM
Press, pp.272-279.

10. Lopes Cardoso, H., Malucelli, A., Rocha, A.P., & Oliveira, E. (2005). Institutional Ser-
vices for Dynamic Virtual Organizations. In Proc. 6th IFIP Working Conference on Vir-
tual Enterprises (PRO-VE’05), Valencia, Spain, 26-28 September 2005.

11. Lopes Cardoso, H., & Oliveira, E. (2005). Virtual Enterprise Normative Framework within
Electronic Institutions. In M.-P. Gleizes, A. Omicini & F. Zambonelli (eds.), Engineering
Societies in the Agents World V, Springer, pp.14-32.

12. Maudet, N., & Chaib-draa, B. (2002). Commitment-based and dialogue-game based proto-
cols – new trends in agent communication languages, Knowledge Engineering 17(2),
pp.157-179.

13. Oliveira, E., & Rocha, A.P. (2000). Agents Advanced Features for Negotiation in Elec-
tronic Commerce and Virtual Organisations Formation Process. In F. Dignum & C. Sierra
(eds.), Agent Mediated Electronic Commerce: The European AgentLink Perspective,
Springer, pp. 78-97.

14. Rodríguez-Aguilar, J.A. (2001). On the design and construction of Agent-mediated Elec-
tronic Institutions, Ph.D. Thesis, Universitat Autònoma de Barcelona.

15. Sallé, M. (2002). Electronic Contract Framework for Contractual Agents. In R. Cohen &
B. Spencer (eds.), Advances in Artificial Intelligence: 15th Conference of the Canadian
Society for Computational Studies of Intelligence, Springer, pp.349-353.

16. Searle, J.R. (1969). Speech Acts: an Essay in the Philosophy of Language. Cambridge,
England: Cambridge University Press.

17. Searle, J.R. (1995). The Construction of Social Reality, Free Press: New York.
18. Vázquez-Salceda, J., Aldewereld, H., & Dignum, F. (2004). Implementing norms in multi-

agent systems. In G. Lindemann, J. Denzinger, I. J. Timm & R. Unland (eds.), Multiagent
System Technologies, Springer, pp.313-327.

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 266 – 275, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Virtual Games: A New Approach to Implementation of
Social Choice Rules

Dániel L. Kovács

Budapest University of Technology and Economics,
Faculty of Electrical Engineering and Informatics,

Department of Measurement and Information Systems, P.O.box 91,
H-1521 Budapest, Hungary
dkovacs@mit.bme.hu

http://www.mit.bme.hu/~dkovacs/index.html

Abstract. Intelligent systems play a crucial role in our everyday life. Yet there
is still no general concept for designing such systems (at an individual, social,
and inter-social level). Intelligent systems are designed on a case-by-case basis,
mostly in an ad-hoc fashion lacking any kind of general design strategy. None-
theless there are theories, which capture some profound aspects of the problem.
One of them is the theory of implementation of social choice rules, which is
concerned with the collective behavior in multi-agent systems. However the
roots of the theory lie in social sciences, so its approach is not suitable enough
for multi-agent system design. This article introduces a new game theoretic ap-
proach to implementation of social choice rules, which enables design of
provably optimal multi-agent system without any restriction in general.

1 Introduction

Multi-agent systems (MAS) are usually considered from the perspective of intelligent
agents [1]. This approach is intuitive, and holds many advantages, but has also its
drawbacks. A wide variety of agent-models, communication protocols, and diverse
formal methods exist, which may be effective in special design cases, but on the
whole they lack the coherency to form a general theoretical basis for intelligent multi-
agent system design. Even at the highest level of abstraction, the very definition of an
agent is discussed. Some point out, that it is necessary for an agent to be autonomous,
while others emphasize its ability to learn, etc.

From the many existing definitions this article will use one of the most widely rec-
ognized and general: an agent “can be anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through effectors.” [2].
This means, that if an agent’s actions depend on its senses, then it must have some
representation of the environment, i.e. some kind of a percept. A percept is usually not
equivalent to the environment, because the environment is usually not fully accessible
to the agent. Using percepts an agent is able to compute its next action. Moreover, all
the preceding percepts (the complete percept history) can have an effect on that choice.
Consequently we may speak of two levels of environmental representation: an outer
representation exterior to the agent, and an inner representation, inside the agent. It is
the latter, upon which the agent’s decision mechanism – choosing among possible

 Virtual Games: A New Approach to Implementation of Social Choice Rules 267

actions – may be placed. It is the task of the Designer to design this mechanism appro-
priately given the outer representation of the environment, and the agent’s architecture
(sensors, effectors, etc). This decision mechanism may depend on some special fea-
tures of the environment to allow the agent to act effectively, e.g. there may be other
agents, which make the environment dynamic. Such multi-agent situations require
individual agents to consider other agents’ activity for effective operation. Not only the
past, or the present activity should be considered, but also events, which may occur in
the future. Thus it is advantageous for an agent to plan its actions in advance, and to
consider other agents’ planning activity too.

Obviously the goodness (utility, payoff, etc.) of such agents depends not only on
the plan they execute, but also on the plans executed by the others. This kind of stra-
tegic interaction is commonly modeled by game theory [3], where agents are called
players, and their plans are called strategies [4]. Although game theory provides an
elaborate description framework, it does not specify how the decision mechanism
works. This makes game theory inappropriate for MAS design, where the agent soci-
ety should act according to a specified (possibly optimal) rule of behavior.

Theory of implementation of social choice rules [5] (a new branch in game theory)
proposes a solution to this problem. However, the roots of the theory lie in social
sciences, so its approach is not universally suitable for MAS design. It considers
agents to be given. Therefore it specifies the decision mechanism not inside, but out-
side of them. This causes some fundamental difficulties, which may be overcome, if
the mechanism is specified within the agents.

This article introduces a new game theoretic approach to implementation of social
choice rules: virtual games. Virtual games specify the mechanism within the agents
enabling provably optimal MAS design. The next sections will introduce fundamen-
tals of game theory, and implementation theory. Then they’ll proceed to the definition
of virtual games. After the most important definitions, some essential results are
proven, followed by a conclusion and an outline of future research.

2 A Common Approach: Implementation of Social Choice Rules

Theory of implementation of social choice rules is used to handle problems of design-
ing optimal social behavior. The population of agents is considered a society, which –
as a collective entity – acts according to a social choice rule (SCR), a mapping from
relevant underlying parameters to final outcomes. Thus, a SCR produces social alter-
natives (outcomes) depending on the private information of the agents in the society
(e.g. type, individual preferences). A single-valued SCR is called a social choice
function (SCF). The implementation problem is then formulated as: “under what cir-
cumstances can one design a mechanism so that the private information of agents is
truthfully elicited and the social optimum ends up being implemented?” [5]
 Fig. 1 shows the implementation problem in more detail: a Designer must construct
a mechanism that implements a given SCR by producing the same outcomes a1, a2, a3,
..., aN, supposing that the agents 1, 2, 3, ..., N choose their messages (e.g. actions,
strategies) m1, m2, m3, ..., mN according to a given game theoretical solution concept S
(e.g. dominant strategies, Nash equilibrium). If it is possible to design such a mecha-
nism for a given SCR, then the SCR is called S-implementable.

268 D.L. Kovács

Fig. 1. The implementation problem

The above approach holds many advantages, since mechanisms can model social
institutions, outer enforcement or even mutual agreement between agents. For in-
stance it is shown [5], that if S is dominant (i.e. if each agent chooses its dominant
strategy regardless of what the others choose), then only dictatorial SCFs are imple-
mentable (an SCR is dictatorial if it follows the preferences of one particular agent).

Despite its constructive results, the approach has also its weaknesses. In non-
economical situations, e.g. in informatics, the Designer of an intelligent system (soft-
ware agent, robot, etc.) has explicit control over the system’s decision mechanism
(e.g. program [6]), unlike to a game theoretical solution concept, where the assump-
tion about agents’ decision mechanism is implicit. Why should every agent in a MAS
act according to a given solution concept S? It is also a weakness, that agents are
forced to act “through” a central mechanism, which has global access to the environ-
ment. This assumption is generally unrealistic when designing MAS, because agents
mostly act in a decentralized way, and the Designer, or any mechanism – apart from
trivial cases – has only local access to the environment (e.g. Internet, deep sea, sur-
face of Mars). Moreover, it is also a drawback, that the approach guarantees imple-
mentation only when certain special conditions hold for the SCR (e.g. monotonicity,
ordinality, incentive compatibility). Generally only approximate implementation is
possible, i.e. generally an SCR is implementable only with some error. This type of
implementation is called virtual implementation [7].

3 A New Approach: Virtual Games

To solve the above mentioned problems a new concept of agent decision mechanism,
called virtual games, is proposed. To give a detailed description of the concept, let us
first introduce the fundamental notions of game theory: agents; pure and mixed
strategies; agent-types; payoff functions; static Bayesian games; social choice func-
tions; and finally, the notion of Bayesian Nash-equilibrium.

3.1 Game Theoretic Fundamentals

Let { }N = 1, 2, …, n denote a finite, non-empty set of agents, iS is the finite, non-

empty set of strategies available to agent i ()i = 1, 2,…, n . Now i is S∈ denotes an

 Virtual Games: A New Approach to Implementation of Social Choice Rules 269

arbitrary member of this set. A strategy associates an elementary action with every
possible contingency of an agent. Let () n

1 2 n i=1 is = s ,s ,…,s × S = S∈ denote an arbitrary

strategy combination. A strategy combination s S∈ prescribes a strategy i is S∈ to

every agent i. Agents choose their strategies simultaneously, without knowing each
other’s choice.

For the description of the uncertainty agents may face in MAS environments (defi-
cient sensors; dynamic, non-deterministic behavior of other agents, etc), let us intro-
duce types [8]. Types of an agent can be used to represent the type of private informa-
tion, resources, processing abilities, etc, it may possess. Thus the uncertainty of an
agent about other agents (e.g. because of the imperfection of its sensors) can be mod-
eled as the uncertainty about the types of other agents. Let iT denote the finite, non-

empty set of types of agent i, and i it T∈ an arbitrary type of agent i.

Now we can define the payoff of agents. The payoff of an agent describes its suc-
cess (optimality, efficiency, etc) in the environment. Let i iu :S T× → ℜ denote the pay-

off function of agent i, where () ()i 1 2 n i i iu s ,s ,…,s ; t u s; t= is the payoff to agent i if the

agents choose strategies ()1 2 ns = s ,s ,…,s S∈ , and the active type of agent i is i it T∈ . This

means, that the payoff of an agent i depends only on the strategy i is S∈ it selected, its

active type i it T∈ , and the strategies ()-i 1 2 i-1 i+1 n -is = s ,s ,…,s ,s , ,s S∈h chosen by other

agents.
The active type i it T∈ of the agent i is supposed to be chosen by Nature with a

probability ()i ip t , where ()i ip T∈ denotes a probability distribution over iT . Every

agent i knows only its own active type i it T∈ , but is uncertain about the active types

()-i 1 2 i-1 i+1 n -it = t , t ,…, t , t , , t T∈h of others. To model this uncertainty, let us introduce a

()p T∈ joint probability distribution over n
i=1 iT = × T . Now the probability that the

types of the agents are really ()1 2 nt = t , t ,…, t can be calculated as

() () () ()1 1 2 2 n np t = p t p t p t⋅ ⋅ ⋅h , assuming that 1 2 np , p ,…, p are independent. The probability

()i -i ip t | t is called agent i’s belief about other agents’ types, -it , given its knowledge of

its own type, it . Assuming, that 1 2 nS ,S ,…,S , 1 2 nT ,T ,…,T , 1 2 nu , u ,…, u , and 1 2 np , p ,…, p are

common knowledge among the agents (i.e. everybody knows, that everybody knows,
that…), the belief ()i -i ip t | t can be calculated by any of the agents using Bayes’ rule:

() ()
()

()
()

-i -i

-i i -i i
i -i i

i -i i

t T

p t , t p t , t
p t | t = =

p t p t , t

∈
∑

, where () ()-i ip t , t = p t , and ()i it t , t−= .
(1)

Types enabled us to transform any incomplete information game to a game with
imperfect information [8]. Incomplete information games are games, where some
players are uncertain about the structure of the game (e.g. strategy sets, or utility
functions of others), while imperfect information games are essentially the classic
games introduced by von Neumann [3]. Collecting all of this information together,
we have:

270 D.L. Kovács

Definition 1. The normal-form representation of an n-player (static Bayesian) game
specifies agents 1, 2, …, n, their strategy spaces 1 2 nS ,S ,…,S , their type spaces

1 2 nT ,T ,…,T , their payoff functions 1 2 nu , u ,…, u , and the probability distributions

1 2 np , p ,…, p . At the beginning of a play of the game Nature chooses agent types accord-

ing to the independent probability distributions, and reveals type i it T∈ only to agent i.

After that agents choose their strategies simultaneously and execute them in parallel.
Agent i gains a payoff depending on the chosen strategy-combination, and its active
type i it T∈ . Such a game is denoted by a 5-tuple: { } { } { } { }()i i i ii N i N i N i N

= N, S , T , u , p
∈ ∈ ∈ ∈

.

If agents are allowed to choose their strategies according to a probability distribution
()i i iq Q = S∈ , where ()

i i

i i
s S

q s = 1
∈
∑ , and ()i iq s 0≥ for every i is S∈ , then the strategies

i is S∈ are called pure strategies, while the probability distributions iq are called

mixed strategies. Now ()i iq s denotes the probability, that agent i plays a given pure

strategy is by playing the mixed strategy iq . Thus mixed strategies generalize pure

strategies. The set of mixed strategy combinations is constructed as n
i=1 iQ = × Q .

Utility functions also need to be generalized to support mixed strategies. Let

i iu : Q T× → ℜ denote agent i’s payoff function, where ()i iu q; t is the payoff to agent i if

agents choose mixed strategies ()1 2 nq = q ,q ,…,q Q∈ , and agent i’s type is i it T∈ . With a

slight abuse of notation, this utility can be written as the expectation above the pay-
offs of all pure strategy combinations:

() () () () ()
()1 2 n

i i 1 1 2 2 n n i i

s s ,s , ,s S

u q; t q s q s q s u s; t

= ∈

= ⋅ ⋅ ⋅ ⋅∑
h

h , where ()1 2 nq = q ,q ,…,q Q∈ .
(2)

 Before proceeding to the definition of the Nash equilibrium [9], let us first define
strategy profiles (){ }

i i
i i t T

f t
∈

 of agent i ()i = 1,2,…,n , and social choice functions. A

strategy profile is a mapping i i if : T Q→ , which associates a mixed strategy iq to every

type i it T∈ of an agent i. Let () n
1 2 n i 1 if f , f , , f F F== ∈ = ×h denote a strategy profile combi-

nation, i.e. a social choice function (SCF), and let () () () ()()1 1 2 2 n nf t f t , f t , , f t Q= ∈h

denote the mixed strategy combination provided by SCF f, given the agents’ types are
()1 2 nt = t , t ,…, t T∈ . Now the expected payoff of agent i in case of an SCF f is:

() () ()()i i i i i i ii
u f ;t p t |t u f t ,t ;ti

t Ti i

− −= ⋅
∈− −

∑ , where ()i it t , t−= . (3)

 In (3) the payoff function i iu : F T× → ℜ of agent i was redefined again (with a slight

abuse of notation) to support SCFs. Because of the uncertainty about other agents’
types, this is the payoff, that agent i with type i it T∈ tries to maximize, not ()()i iu f t ; t .

The belief ()i -i ip t | t in (3) should be calculated according to (1), and the expected

payoff ()()i iu f t ; t in case of a mixed strategy combination ()f t Q∈ should be calcu-

lated according to (2). Now we can define Bayesian Nash equilibrium:

 Virtual Games: A New Approach to Implementation of Social Choice Rules 271

Definition 2. In a static Bayesian game { } { } { } { }()i i i ii N i N i N i N
= N, S , T , u , p

∈ ∈ ∈ ∈
 a SCF

()* * * *
1 2 nf = f , f ,…,f F∈ is a Bayesian Nash equilibrium if for each agent i and for each

i it T∈ , ()*
i i if t Q∈ solves () () () () () ()()* * * * *

i i i 1 2 i 1 i 1 n i
q Qi i
max p t |t u f t ,f t , ,f t ,q ,f t , ,f t ;ti 1 2 i 1 i i 1 n

t Ti i

− − +∈
⋅ − +

∈− −

∑ h h .

3.2 Virtual Games

Section 3.1 introduced the fundamentals of game theory. Now we can proceed to
discuss the solution of the problem outlined in Section 2. A new approach for imple-
mentation of social choice rules is proposed, called virtual games. This concept en-
ables the construction of mechanisms, which provably implement any SCF exactly.
Roughly speaking a virtual game is a part of this mechanism. Fig. 2 illustrates this
concept:

Fig. 2. A new approach to the implementation problem

 The mechanism is distributed among the agents. Every agent has a decision mecha-
nism, which has three parts: a transformation, a virtual game, and a function for se-
lecting Nash-equilibrium. First the agent senses the outer representation of the envi-
ronment: the real game. From that percept it creates an inner representation of the real
game: the model of the real game. This is the input for the decision mechanism choos-
ing among strategy profiles. Finally, the agent acts according to that profile.

Thus, virtual games are artificial constructs built from the model of the real game.
They are not models of the real game, they are components of the decision mecha-
nism of agents, and as such, they may be arbitrarily “far” from the model of the real
game. Technically they differ from the model of the real game only in that they have
different pure strategy spaces, called pure virtual strategies, and payoff functions,
called virtual payoff functions. Formally this means, that every agent i has a finite,
non-empty set of pure virtual strategies i iV Q⊂ , a subset of the set of mixed strate-

gies. These are the feasible strategies for agent i. Now the virtual payoff function of
agent i is denoted by i iv : V T× → ℜ , where n

i 1 iV V== × . Virtual payoff represents an

agent’s private valuation of the feasible strategic outcomes. A virtual game is then a
normal-form static Bayesian game { } { } { } { }()*

i i i ii N i N i N i N
= N, V , T , v , p

∈ ∈ ∈ ∈
. In this game the

concepts of mixed strategies, mixed strategy combinations, their payoff, strategy
profiles, social choice functions, their payoff, and Bayesian Nash equilibrium are
defined similarly to the concepts introduced in Section 3.1.

272 D.L. Kovács

A mixed virtual strategy of agent i is denoted by ()i i ir R = V∈ , where ()i ir q de-

notes the probability, that agent i plays the pure virtual strategy i i iq V Q∈ ⊂ by playing

the mixed virtual strategy i ir R∈ . The set of mixed virtual strategy combinations is

denoted by n
i=1 iR = × R . The virtual payoff function for them is denoted by i iv : R T× → ℜ ,

and the virtual payoff is calculated similarly to (2). Let i i ig : T R→ denote a virtual

strategy profile of an agent i in a virtual game. An SCF g of the virtual game is called
a virtual social choice function (VSCF). The virtual payoff for a VSCF is calculated
similarly to (3). A mixed virtual strategy i ir R∈ in the virtual game is equivalent to a

mixed strategy i iq Q∈ in the model of the real game, and denoted i ir q≡ , if

() ()() () ()
()j
i i

j j
i i i i i i

q V

q s = r q q s

∈

⋅∑ holds for every i is S∈ . A mixed virtual strategy combination

r R∈ is equivalent to a mixed strategy combination q Q∈ , and denoted r q≡ , if i ir q≡

holds for every i = 1, 2,…, n . A VSCF g is equivalent to a SCF f, and denoted g f≡ , if

() ()g t f t≡ holds for every t T∈ .

Corollary 1. If given a mixed virtual strategy i ir R∈ and a mixed strategy i i iq V Q∈ ⊂

which is also pure virtual strategy, where ()i ir q = 1 holds, then i ir q≡ .

 Now it is possible to state the result, which is a key step in showing that with deci-
sion mechanisms based on virtual games any SCF is exactly implementable.

Theorem 1. If in a virtual game { } { } { } { }()*

i i i ii N i N i N i N
= N, V , T , v , p

∈ ∈ ∈ ∈
 constructed for a

static Bayesian game { } { } { } { }()i i i ii N i N i N i N
= N, S , T , u , p

∈ ∈ ∈ ∈
 for every i = 1, 2,…, n and i it T∈

exists a () () () ()()i ii i
t tt t

1 2 nq = q , q ,…, q V Q∈ ⊂ pure virtual strategy combination such that

()
()

(){ }
i

i

t

i i t

1, q = q
v q, t =

0, q V \ q∈

⎧⎪
⎨
⎪⎩

 holds, then the unique Bayesian Nash equilibrium of the virtual

game *Γ is the VSCF ()
1 2 n

* * * *
g = g , g ,…, g , where for every ()1 2 nt t , t , , t T= ∈h

() () () ()()* * * *
1 1 2 2 n ng t = g t , g t ,…, g t R∈ is a mixed virtual strategy combination, and

() ()()i
t*

i i ig t q = 1 holds for every i = 1, 2,…, n and i it T∈ , i.e. () () () () ()()1 2 n
t t t* t

1 2 ng t q q , q , , q Q≡ = ∈h

for every t T∈ .

 Theorem 1 constructively guarantees a unique Bayesian Nash equilibrium of a
virtual game *Γ with special binary virtual payoff functions (see Appendix). To use
this result, game theoretical solution concepts and implementation need to be defined.
Let S be a game theoretical solution concept. Given a game Γ we denote by

() F2Γ ∈S the set of strategy profiles (SCF’s) that are recommended by S in game Γ .

An SCF f in Γ is S -implementable if there exists a virtual game *Γ constructed from

Γ , such that ()*f ≡ S . Now the main result can be stated as:

 Virtual Games: A New Approach to Implementation of Social Choice Rules 273

Theorem 2. Any SCF of any static Bayesian game is Bayesian Nash-implementable.

In a game theoretical sense these results are independent of the accuracy of agents
modelling abilities. Theorem 2 states only that any SCF of any static Bayesian game
can be implemented (even by virtual games with binary payoffs) in case when agents
act according to the Bayesian Nash equilibrium of the virtual game constructed for the
given static Bayesian game (see Appendix). Nonetheless, when players are considered
agents, there is no guarantee, that they will use the same virtual game, because – by
definition – they construct virtual games upon their model of the real game (see Fig.
2), and this model may be different among the agents. Thus, the results in Theorem 2
apply only to situations, when agents have the same virtual game. I assume that it is
the task of the Designer to construct agents that way. Any relaxation of the assump-
tions is the task of future research.

4 Conclusions

The results in this article enable the design of decision mechanisms that implement
arbitrary SCFs. Consequently optimal (e.g. Pareto-optimal, bounded optimal [6])
SCFs are implementable exactly in a uniform way. These results overcome the weak-
nesses of the theory of implementation of social choice rules. Moreover, they make it
possible to design optimal MAS, e.g. to optimize agents’ communication protocols
(strategic interaction); resource usage (in connection with the utility of agents); or the
quality of various services of MAS (in connection with the optimality of the SCF). A
uniform framework is provided to design optimal social behaviour. Nonetheless it can
be used also to analyze MAS. Elaborate distinctions can be made in the incentives,
private valuation and preferences of agents if modelling their decision mechanism via
virtual games. However, only virtual games with binary payoffs were discussed. The
examination of virtual games with non-binary payoff functions is the task of future
research. This research will mainly concentrate on connecting the concept of virtual
games to existing low-level agent architectures (e.g. [10], [11]) and integrating it into
a unified theory of designing and analysing intelligent multi-agent systems.

References

1. Weiss, G.: Multiagent Systems. MIT Press (1999)
2. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (1995)
3. Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Princeton Uni-

versity Press (1947)
4. Bowling, M., Jensen, R., Veloso, M.: A Formalization of Equilibria for Multiagent plan-

ning. In: Proceedings of IJCAI'03 Workshop (2003) 1460-1462
5. Serrano, R.: The Theory of Implementation of Social Choice Rules. In: SIAM Review,

Vol. 46. (2004) 377-414
6. Russell, S., Subramanian, D.: Provably bounded-optimal agents. In: Journal of AI Re-

search, Vol. 2. (1995) 1-36
7. Abreu, D., Sen, A.: Virtual Implementation in Nash Equilibrium. In: Econometrica, Vol.

59. (1991) 997-1021

274 D.L. Kovács

8. Harsányi, J. C.: Games with incomplete information played by Bayesian players I-II-III.
In. Management Science, Vol. 14. (1967-1968) 159–182, 320–334, 486–502

9. Nash, J. F.: Non-cooperative games. In. Annals of Mathematics, Vol. 54. (1951) 286–295
10. Ferguson, I. A.: TouringMachines: An Architecture for Dynamic, Rational, Mobile

Agents. Ph.D. Thesis, Clare Hall, University of Cambridge, UK (1992)
11. Kovács, D. L.: Evolution of Intelligens Agents: a new approach to automatic plan design.

In. Proceedings of IFAC Workshop on Control Applications of Optimization, Elsevier
(2003)

Appendix

Proof of Theorem 1. Suppose that *g is not a Bayesian Nash equilibrium of *Γ .
Therefore there must be an agent j, a type j jt T∈ and a mixed virtual strategy j jr R∈

such that agent j has the incentive to change to it from the mixed virtual strategy

()*
j jg t prescribed by *g . From definition 2 it follows, that:

() () () () () ()()* * * * *
j j j 1 2 j 1 j j 1 n jp t |t v g t ,g t , ,g t ,r ,g t , ,g t ;tj 1 2 j 1 j 1 n

t Tj j

− − +⋅ >− +
∈− −

∑ h h h

() () () () () () ()()* * * * * *
j j j 1 2 j 1 j j 1 n jp t |t v g t ,g t , ,g t ,g t ,g t , ,g t ;tj 1 2 j 1 j j 1 n

t Tj j

− − +> ⋅ − +
∈− −

∑h h h

 Using formula (2) we have:

() ()() ()() ()() () ()() ()() ()
()

* * * * *
j j j 1 1 1 2 2 2 j 1 j 1 j 1 j j j 1 j 1 j 1 n n n j 1 2 n j

q q ,q , ,q V1 2 n

p t |t g t q g t q g t q r q g t q g t q v q ,q , ,q ;t

t Tj j

− − − − + + +
= ∈

⎡ ⎤
⎢ ⎥⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ >⎢ ⎥
⎢ ⎥∈ ⎣ ⎦− −

∑ ∑
h

h h h h

() ()() ()() ()() ()() ()() ()() ()
()

* * * * * *
j j j 1 1 1 2 2 2 j 1 j 1 j 1 j j j j 1 j 1 j 1 n n n j 1 2 n j

q q ,q , ,q V1 2 n

p t |t g t q g t q g t q g t q g t q g t q v q ,q , ,q ;t

t Tj j

− − − − + + +
= ∈

⎡ ⎤
⎢ ⎥> ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥∈ ⎣ ⎦− −

∑ ∑
h

h h h h

 Using the definition of jv we have:

() () () () () () () () () () () ()t t t t t tj j j j j j* * * * *
j j j 1 1 2 2 j 1 j 1 j j 1 j 1 n n n1 2 j 1 j j 1p t |t g t q g t q g t q r q g t q g t q

t Tj j

− − − + +− +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ >⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∈− −

∑ h h h

() () () () () () () () () () () () ()t t t t t tj j j j j j* * * * * *
j j j 1 1 2 2 j 1 j 1 j j j 1 j 1 n n n1 2 j 1 j j 1p t |t g t q g t q g t q g t q g t q g t q

t Tj j

− − − + +− +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞> ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∈− −

∑h h h

 This can also be written in the following form:
() () () () () () () () () () () ()t t t t tj j j j j j* * * * *

j j j 1 1 2 2 j 1 j 1 j 1 j 1 n n n1 2 j 1 j 1

t
p t |t g t q g t q g t q g t q g t qj j

t Tj j

r q − − − + +− +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ >⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∈− −

⎛ ⎞
⎜ ⎟ ⋅⎜ ⎟⎝ ⎠

∑ h h h

() () () () () () () () () () () () ()t t t t tj j j j j j* * * * *
j j j 1 1 2 2 j 1 j 1 j 1 j 1 n n n1 2 j 1 j 1

t* p t |t g t q g t q g t q g t q g t qj j j
t Tj j

g t q − − − + +− +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

> ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∈− −

⎛ ⎞
⎜ ⎟ ⋅⎜ ⎟⎝ ⎠

∑h h h

 This implies ()() () ()()j j
t t*

j j j j jr q g t q 1> = , which is a contradiction.

Now lets suppose that there exists also another Bayesian Nash equilibrium

()1 2 n

*' *' *' *'g = g ,g ,…,g , where *' *g g≠ . Therefore for every agent j, type j jt T∈ , and mixed

virtual strategy j jr R∈ the following must hold (see Definition 2):

 Virtual Games: A New Approach to Implementation of Social Choice Rules 275

() () () () () () ()()*' *' *' *' * ' *'
j j j 1 2 j 1 j j 1 n jp t |t v g t ,g t , ,g t ,g t ,g t , ,g t ;tj 1 2 j 1 j j 1 n

t Tj j

− − +⋅ ≥− +
∈− −

∑ h h h

() () () () () ()()* ' * ' * ' * ' * '
j j j 1 2 j 1 j j 1 n jp t |t v g t ,g t , ,g t ,r ,g t , ,g t ;tj 1 2 j 1 j 1 n

t Tj j

− − +≥ ⋅ − +
∈− −

∑h h h

 Similarly to the previous half of the proof, using (2) and the definition of jv we

have:

() () () () () () () () () () () () ()t t t t tj j j j j j* ' * ' * ' * ' * '
j j j 1 1 2 2 j 1 j 1 j 1 j 1 n n n1 2 j 1 j 1

t*' p t |t g t q g t q g t q g t q g t qj j j
t Tj j

g t q − − − + +− +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∈− −

⎛ ⎞
⎜ ⎟ ⋅⎜ ⎟⎝ ⎠

∑ h h h

() () () () () () () () () () () ()t t t t tj j j j j j*' * ' * ' * ' * '
j j j 1 1 2 2 j 1 j 1 j 1 j 1 n n n1 2 j 1 j 1

t
p t |t g t q g t q g t q g t q g t qj j

t Tj j

r q − − − + +− +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

≥ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∈− −

⎛ ⎞
⎜ ⎟ ⋅⎜ ⎟⎝ ⎠

∑h h h

 This implies () ()() ()()j j
t t* '

j j j j jg t q r q≥ for every agent j, type j jt T∈ , and j jr R∈ , even for

()*
j j jr g t= . In this case we have () ()() ()() () ()()j j j

t t t* ' *
j j j j j j j jg t q r q g t q 1≥ = = implying *' *g = g ,

which is a contradiction.

Proof of Theorem 2. Let { } { } { } { }()i i i ii N i N i N i N

= N, S , T , u , p
∈ ∈ ∈ ∈

 denote an arbitrary static

Bayesian game, f an arbitrary SCF, and Β the solution concept of Bayesian Nash
equilibrium. SCF f is Β -implementable, if there exists a virtual game

{ } { } { } { }()*
i i i ii N i N i N i N

= N, V , T , v , p
∈ ∈ ∈ ∈

 such that ()*f ≡ Β . Constructing the virtual game

*Γ so that (){ }i i i i iV f t | t T= ∈ , and ()
()

()

i

i

t

i i t

1, q = q
v q, t =

0, q V \ q

⎧
⎪⎪
⎨ ⎧ ⎫∈⎪ ⎨ ⎬
⎪ ⎩ ⎭⎩

, where

() ()()it
1 2 i-1 i i i+1 nq = q ,q ,…,q , f t ,q ,…,q V Q∈ ⊂ (and i i iq V Q− − −∈ ⊂ is arbitrary) we have

(from Theorem 1), that the only Bayesian Nash equilibrium of the virtual game *Γ is

the VSCF ()1 2 n

* * * *g = g ,g ,…,g , where for every ()1 2 nt t , t , , t T= ∈h

() () () ()()* * * *
1 1 2 2 n ng t = g t ,g t ,…,g t R∈ is a mixed virtual strategy combination, where

() ()()*
i i i ig t f t = 1 holds for every i = 1,2,…,n and i it T∈ , and thus

() () () () ()()*
1 1 2 2 n ng t f t f t , f t , , f t≡ = h for every t T∈ , i.e. *g f≡ .

How Our Beliefs Contribute to Interpret
Actions�

Guillaume Aucher��

University of Otago (NZ) - University Paul Sabatier (F)
aucher@cs.otago.ac.nz

Abstract. In update logic the interpretation of an action is often as-
sumed to be independent from the agents’ beliefs about the situation
(see [BMS04] or [Auc05]). In this paper we deal with this type of phe-
nomenon. We also deal with actions that change facts of the situation.
We use probability to model the notion of belief and our probabilistic
update mechanism satisfies the AGM postulates of belief revision.

Often in everyday life we interpret an action on the basis of our beliefs about the
situation. For example, assume that you see somebody drawing a ball from an
urn containing black balls and white balls. If you believe there is no particular
distribution in the urn then you will consider it equally probable that he draws a
white ball or a black ball; but if you believe there are more black than white balls
in the urn then you will consider it more probable than he draws a black ball than
a white ball: the interpretation of the same action is different in both cases. The
literature about update logic does not deal with this kind of phenomenon (see
[BMS04] or [Auc05]). Likewise, actions that change the truth of propositions
are also neglected in the literature about update logic although they are quite
common in everyday life and hence interesting to formalize.

This paper is a continuation of [Auc05] and solves the problems raised there.
However, instead of using plausibilities we use probabilities because in this con-
text it is technically easier to deal with probability, and because I believe the
modeling of the notion of belief is better rendered with a subjective probability.
A novelty is also our use of infinitesimals in order to express what would surprise
the agents and by how much.

In Sect.1 we motivate and define a structure slightly different from the hy-
perreals where the probabilities of worlds take value. In Sect.2 we present the
core of the system in three parts : static (where we model static situations), dy-
namic (where we model actions) and the update mechanism. Finally, in Sect.3
we compare it with the AGM postulates and other relevant literature.

� An extended version of this paper with proofs is available on my homepage.
�� I thank my PhD supervisors Hans van Ditmarsch and Andreas Herzig for useful

comments and discussions.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 276–285, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

How Our Beliefs Contribute to Interpret Actions 277

1 Mathematical Preliminaries

In the proposed system, the probabilities of worlds and formulas will take value in
a particular mathematical structure (V,�) (abusively denoted (V,≤)) different
from the real numbers, based on hyperreal numbers (∗R,≤) (see [Adams75]
which uses them as well to give a probabilistic semantics to conditional logic).

Roughly speaking, hyperreal numbers are an extension of the real numbers to
include certain classes of infinite and infinitesimal numbers. A hyperreal number,
typically denoted ε, is said to be infinitesimal iff |ε| < 1/n for all integers n; and
finite if |x| < n for some integer n (in that case St(x) is the unique real number
closest to x). For an account on the hyperreal numbers, see chapter 1 of [Keis86].

What we would like to do is to approximate our expressions. That is to say,
in case an hyperreal number a is infinitely smaller than b (that is to say, there is
an infinitesimal ε such that a = ε.b), then we would want b+ a = b; for example
‘1 + ε = 1’,‘ε + ε2 = ε’,. . . Unfortunately, the hyperreal numbers do not allow
us to do that, so we are obliged to introduce a new structure (V,�)1 defined in
the footnote 1.

2 Dynamic Proba-Doxastic Logic

2.1 The Static Part

Definition 1. A proba-doxastic model (pd-model) M = (W, {∼j ; j ∈ G}, {Pj ; j
∈ G}, V, w0) is a tuple where:

1. W is a finite set of possible worlds.
2. w0 is the possible world corresponding to the actual world.
3. ∼j is an equivalence relation defined on W for each agent j.
4. Pj is an operator for each agent j which assigns to each world w a number

in]0; 1] such that
∑
{Pj(v); v ∼j w} = 1 (*).

5. V is a valuation.
6. G is a set of agents.

Intuitive Interpretation. Items 1,2,5,6 are clear. It remains to give interpreta-
tions for items 3 and 4. The probabilistic operator Pj together with ∼j intuitively
model the epistemic state of mind of any agent j ∈ G. We set w ∼j v iff agent j
can not distinguish world w from world v. This relation does not model the no-
tion of knowledge and we do not deal with this notion in this paper (see general
conclusion).

Among the worlds that agent j can not distinguish, there are some that
j conceives as potential candidates for the world in which j dwells, and some
1

V is the quotient structure of the set of positive hyperreal numbers ∗
R

+ by the
equivalence relation ≈ defined by x ≈ y iff ((St(x

y
) = 1 and y �= 0) or x = y = 0).

We define a total order � on V by x � y iff there are x ∈ x, y ∈ y such that
x ≤ y. Elements of V containing an infinitesimal (resp. real) are abusively called
infinitesimals (resp. reals) and we abusively denote � by ≤.

278 G. Aucher

that j would be surprised to hear somebody claiming that they correspond to
the world in which j dwells (whatever it is). The first ones are called conceived
worlds and the second surprising worlds. The conceived worlds are assigned by
Pj a real value and the surprising worlds are assigned an infinitesimal value
(both different from 0). For example, some people would be surprised to hear
somebody claiming that some swans are black, although it is true. So for them
the actual world is a surprising world, indistinguishable from the only conceived
world where all swans are white.

Of course j might conceive some (conceived) worlds as better candidates
than others and this is expressed by the value of the probability of the world:
the larger the real probability value of the (conceived) world is, the more likely
it is for j. But that is the same for the surprising worlds: j might be more
surprised to hear some worlds than others. For example, if you play poker with
your brother (or a friend), you will never suspect that he cheats. However he
does so, and so carefully that you do not suspect anything. Then at the end
of the game if he announces to you that he has cheated, you will be surprised
(although it is something true in the actual world, which is then a surprising
world). But you will be even more surprised if he tells you that he has cheated
five times than if he has cheated only once. So the world where he has cheated
five times will be more surprising than the world where he has cheated once, and
these are both surprising worlds for you. Infinitesimals enable us to express this:
the larger the infinitesimal probability value of the (surprising) world is, the less
j would be surprised by this world. Anyway, that is why we need to introduce
these hyperreal numbers: to express these degrees of surprise that can not be
expressed by a single number like 0 (which then becomes useless for us).

Finally, the natural condition (*) ensures us that ([w]j ,P([w]j), Pj) (with
[w]j := {v; v ∼j w})) is a (nonstandard) probability space.

So, dwelling in one of the world of [w]j , j does not think consciously that her
respective surprising worlds in [w]j are possible (unlike conceived worlds), she
is just not aware of them. So they are useless to represent her beliefs which I
assume are essentially conscious. But still, these worlds are relevant for the (ob-
jective) modelisation. Indeed they provide some information about the epistemic
state of mind of j : namely what would surprise her. Intuitively, something that
you do not consider consciously as possible and that contradicts your beliefs is
often surprising for you when it is claimed by somebody else. These worlds will
moreover turn out to be very useful technically in case j has to revise her beliefs.

Definition 2. The syntax of the language LSt is defined by,
φ :=⊥| p | ¬φ | φ ∧ ψ | Pj(φ) ≥ x | Cjφ where x ∈ [0; 1[.
Its semantics is defined by,
M,w |= Pj(φ) ≥ x iff

∑
{Pj(v);w ∼j v and M, v |= φ} ≥ x

M,w |= Cjφ iff
∑
{Pj(v);w ∼j v and M, v |= φ} = 1.

M,w |= Pj(φ) ≥ x should be read “in world w and for j, φ has a probability
greater than x ”. M,w |= Cjφ should be read “in world w, j is convinced (sure)
of φ ”.

How Our Beliefs Contribute to Interpret Actions 279

Note that above, if x is real then only the conceived worlds have to be con-
sidered in the sum (see Sect.1). Similarly the semantics of Cj amounts to say
that φ is true only in all the conceived worlds of [w]j (see Sect.1). This is not
surprising since only the conceived worlds describe the beliefs of the agent as we
just said above. So it is quite possible to have a surprising actual world where
¬φ is true and still j being convinced of φ (i.e. Cjφ): see the swan example above
with φ:=“All swans are white”.

Moreover, we can also express in this language what would surprise the agent,
and by how much. Indeed, in case x is infinitesimal, M,w |= (Pj(φ) = x) should
be read “in world w, j would be surprised with intensity x to hear somebody
claiming that φ ”. (Note that the smaller x is, the higher the intensity of sur-
prise is.)

Remark 1. If we define the operator Bjφ by Pj(φ) > 1
2 , then the meaning of the

operators Bj and Cj are respectively exactly the same as the Lenzen’s notion of
(weak) belief and conviction (see [Len03]).Often these notions are confused and
we use in everyday life the same word “belief” to denote both of them.

Example 1. Consider two friends A and B in a fair, and an urn containing n =
2.k > 0 balls which are either white or black. A knows how many black balls
there are in the urn but B does not know it. Now say there are actually 0 black
ball in the urn. This situation is depicted in Fig.1, where pi stands for: “there are
i black balls in the urn ” and the double bordered world is the actual world. In
Fig.1 the probabilities of worlds are PA(x) = 1 and PB(x) = 1

n+1 for all worlds
x, so B believes there is no particular distribution in the urn.

Example 2. Consider the same example as before but now B is convinced (sure)
that there are more black balls than white balls (i.e. CB(pk+1 ∨ ... ∨ pn)). For
example her friend A might have lied to her by telling her so, and she fully
believed him. This situation is still depicted in Fig.1 but the probabilities of
worlds here are PA(x) = 1 for all worlds x, and PB(wi) = ε for all i ∈ {0, .., k},
PB(wi) = 1

k for all i ∈ {k + 1, .., n}. The worlds where there are less black balls
than white balls are all (equally) surprising.

w0 : p0
B ��� wk : pk

B wk+1 : pk+1
B ��� wn : pn

Fig. 1. ‘urn’ Examples 1 and 2 (without specifications of the probabilities of worlds
for each example: see text)

Throughout this paper we apply our system to the example of the introduc-
tion. So note that Examples 1 and 2 only differ in what the agent B believes.

2.2 The Dynamic Part

Definition 3. A generic action model is a structure Σ = (Σ,S, {∼j; j ∈ G},
{PΓ

j ;Γ is a maximal consistent subset of S and j ∈ G}, {Postσ;σ ∈ Σ}, σ0)
where

280 G. Aucher

1. Σ is a finite set of possible actions.
2. σ0 is the actual action.
3. ∼j is an equivalence relation defined on Σ for each agent j.
4. S is a set of formulas of LSt and their negations.
5. PΓ

j is an operator indexed by each agent j and each maximal consistent
subset Γ of S which assigns to each possible action a number in [0;1], such
that for each possible action σ and agent j0
if PΓ

j0
(σ) = 0 then PΓ

j (σ) = 0 for all j ∈ G (*).
6. Postσ is a function which takes as argument a propositional letter p and

gives two formulas of LSt Postσ(p) := (Post+σ (p), Post−σ (p)) such that |=
¬(Post+σ (p) ∧ Post−σ (p)) (**).

7. G is a set of agents.

Intuitive Interpretation. Items 1,2,3,7 are totally similar to definition 1. It
remains to give interpretation to items 4,5,6 of the definition.

Item 4. S corresponds to the set of formulas (and their negation) that are
relevant for the agents in a particular world in order to assign a probability to
an action occurring in this world. Consequently, the larger the size of S will be,
the more the interpretation by the agents of the actions will be dependant on
their beliefs (see Sect.2.3).

Item 5. PΓ
j is the probability for j, if she assumes she is in a particular world

where the set of formulas Γ is true, that the action σ is occurring.
Just as in the static case, relatively to a world w satisfying Γ and among

indistinguishable actions for the agent j, we have conceived actions (which are
assigned a real number) and surprising actions (which are assigned an infinitesi-
mal). The former are possible actions that the agent conceives as possible candi-
dates while one of the indistinguishable actions actually takes place. The latter
are possible actions that j would be surprised to hear somebody claiming that
they took place while one of the indistinguishable actions actually took place.
For example, if you play poker with your brother (or a friend) and at a certain
point he cheats while you do not suspect anything, then the actual action of
cheating will be a surprising action for you (of value ε) and will be indistin-
guishable for you from the conceived action where nothing particular happens
(of value 1).

Just as in the static case, the relative strength for j of the indistinguishable
actions (conceived and surprising), relatively to a world where Γ is true, is
expressed by the value of the operator PΓ

j .
Finally, note that we can have PΓ

j (σ) = 0. This means that the action σ
can not physically be performed in a world where Γ is true. This impossibility
is public and inherent to the possible action, that is why we have the condition
(*). That replaces the notion of precondition in [BMS04] and [Auc05].

From now on, we note P w
j (σ) := P Γ

j (σ) for the unique Γ such that
M, w |= Γ .

Item 6. The function Postσ deals with the problem of determining what facts
will be true in a world after the action σ takes place. Intuitively, Post+σ (p) (resp.

How Our Beliefs Contribute to Interpret Actions 281

σ
B

τ
S = {pi, ¬pi; i = 0..n}.

P
{pi}
B (σ) = i

n
, P

{pi}
B (τ) = 1 − i

n
for all i.

P
{pi}
A (σ) = 1 for all i �= 0, P

{p0}
A (σ) = 0.

P
{pi}
A (τ) = 1 for all i �= n, P

{pn}
A (τ) = 0.

P Γ
A (σ) = P Γ

A (τ) = P Γ
B (σ) = P Γ

B (τ) = 0 for all Γ �= {pi}.
Post+σ (pn) =⊥, Post−

σ (pn) = �.
Post+σ (pi) = pi+1, Post−

σ (pi) = ¬pi+1 for all i < n.
Post+τ (pn) =⊥, Post−

τ (pn) = �.
Post+τ (pi) = pi, Post−

τ (pi) = ¬pi for all i < n.

Fig. 2. A draws a (white) ball, observes it and puts it in his pocket

Post−σ (p)) represents the precondition in any world w for p to become true (resp.
false) in (w, σ) after the performance of σ. The role of condition (**) is to avoid
the case where the performance of an action σ in a world w could provoke at
the same time both p and ¬p to be true in the resulting world (w, σ).

Example 3. Now, let us resume the ‘urn’ example. Consider the action whereby
A draws a ball from the urn (which is actually white), looks at it and puts
it in his pocket, B sees A doing that but can not see the ball. This action is
depicted in Fig.2. The maximal consistent sets are represented by their ‘positive’
components, so {pi} refers to the set {pi,¬pk; k �= i}.

It looks quite complicated but the ideas behind are quite simple. Action σ
(resp. τ) stands for “A draws a black (resp. white) ball, observes it and puts it in
his pocket”. Clearly B can not distinguish σ from τ . However if B assumes she is
in a world where there are i black balls then for her the probability that A draws
a black (resp. white) ball is i

n (resp. 1− i
n): P {pi}

B (σ) = i
n and P {pi}

B (τ) = 1− i
n .

Moreover there can not be n black balls in the urn since A put one ball in his
pocket (Post+σ (pn) =⊥, Post−σ (pn) = � and Post+τ (pn) =⊥, Post−τ (pn) = �),
but if he draws one black ball then there is one black ball less (Post+σ (pi) = pi+1,
Post−σ (pi) = ¬pi+1 for all i < n), otherwise the number of black balls remains
the same (Post+τ (pi) = pi, Post−τ (pi) = ¬pi for all i < n).

2.3 The Update Mechanism

Definition 4. Given a pd-model M = (W, {∼j; j ∈ G}, {Pj ; j ∈ G}, V, w0) and
a generic action model Σ = (Σ,S, {∼j; j ∈ G}, {PΓ

j ;Γ is a m. c. subset of S and
j ∈ G}, {Postσ;σ ∈ Σ}, σ0), we define their update product to be the pd-model
M ⊗Σ = (W ⊗Σ, {∼′

j; j ∈ G}, {P ′
j ; j ∈ G}, V ′, w′

0), where:

1. W ⊗Σ = {(w, σ) ∈W ×Σ;Pw
j (σ) > 0}.

2. (w, σ) ∼′
j (v, τ) iff w ∼j v and σ ∼j τ .

3. We set

P
[w]j
j (σ) =

∑
{Pj(v).P v

j (σ);w ∼j v}∑
{Pj(v).P v

j (τ);w ∼j v, σ ∼j τ}
.

282 G. Aucher

Then

P ′
j(w, σ) =

Pj(w).P [w]j
j (σ)∑

{Pj(v);w ∼j v and P v
j (σ) > 0} .

4. V ′(p) = {(w, σ) ∈ W ⊗Σ;M,w |= Post+σ (p) ∨ (p ∧ ¬Post−σ (p))}.
5. w′

0 = (w0, σ0).

Intuitive Interpretation and Motivations.
Items 1,2,5 are completely similar to the ‘BMS’ system ([BMS04] or [Auc05])
except for item 1 where the precondition is replaced by Pw

j (σ) > 0 (see section
above). So, we only motivate items 3 and 4.

Item 3. We want to determine P ′
j(w, σ) = Pj(W ∩ A) where W stands for ‘we

were in world w before σ occurred’ and A for ‘action σ occurred’. More formally,
in the probability space [(w, σ)]j := {(v, τ); (v, τ) ∼j (w, σ)}, W stands for
{(w, τ); τ ∼j σ} and A for {(v, σ); v ∼j w} and we can check that W ∩ A =
{(w, σ)}.

Probability theory tells us that

Pj(W ∩A) = Pj(W |A).Pj(A).

We first determine Pj(W |A), that is to say the probability that j was in
world w given the extra assumption that action σ occurred in this world. We
reasonably claim

Pj(W |A) =
Pj(w)∑

{Pj(v);w ∼j v and P v
j (σ) > 0} .

That is to say, we conditionalize the probability of w for j (i.e. Pj(w)) to
the worlds where the action σ took place and that may correspond for j to the
actual world w (i.e. {v;w ∼j v and P v

j (σ) > 0}). That is how it would be done
in classical probability theory. The intuition behind it is that we now possess
the extra piece of information that σ occurred in w. So the worlds indistinguish-
able from w where the action σ did not occur do not play a role anymore for
the determination of the probability of w. We can then get rid of them and
conditionalize on the remaining relevant worlds.

It remains to determinate Pj(A) which we also denote P [w]j
j ; that is to say

the probability for j that σ occurred. Agent j does not know in which world of
[w]j := {v; v ∼j w} she dwells. So this action could occur for j in any world v
of [w]j , each time with probability P v

j (σ). So we would first be tempted to take

the average of them: Pj(A) = P
[w]j
j (σ) =

∑
{P v

j (σ);v∼jw}
n , where n is the number

of world in [w]j .
But we have more information than that. j does not know in which world of

[w]j she is, but she has a preference among them, which is expressed by Pj . So
we can refine our expression above and take the center of mass (or barycenter)
of the P v

j (σ)s balanced respectively by the weights Pj(v)s (whose sum equals 1),

How Our Beliefs Contribute to Interpret Actions 283

instead of taking roughly the average (which is actually also a center of mass
but with weights 1

n). We get Pj(A) = P
[w]j
j (σ) =

∑
{Pj(v).P v

j (σ); v ∼j w}.
Finally, we would naturally want

∑
{P [w]j

j (τ); τ ∼j σ} = 1 so that ([σ]j ,

P([σ]j), P
[w]j
j) (where [σ]j := {τ ; τ ∼j σ}) forms a (nonstandard) probabilistic

space. So we set

Pj(A) = P
[w]j
j (σ) =

∑
{Pj(v).P v

j (σ);w∼jv}∑
{Pj(v).P v

j (τ);w∼jv,σ∼jτ} .

We then get the expected result by multiplication. We can easily check that
its sum on [(w, σ)]j is equal to 1.

Item 4. Intuitively, this formula says that a fact p is true after the performance
of σ in w iff the condition for p to become true after σ was satisfied in w, or else
if p was already true in w but the condition to switch it to false was not satisfied
in w.

Remark 2. Note the difference between Pw
j (σ) and P [w]j

j (σ): the former is deter-
mined by what is true in w and the latter by what j believes in w (see Examples
4 and 5 below). Moreover, since what j believes is the same in every world of
[w]j , we indeed have P [w]j

j (σ) = P
[w′]j
j (σ) for all w′ ∈ [w]j .

From this product mechanism, we can easily define a dynamic language in
the line of [BMS04] or [Auc05] that we do not spell out here.

Example 4. Let us come back to our ‘urn’ Example 1. Assume now that A draws
a (white) ball from the urn, looks at it and puts it in his pocket, action depicted
in Fig.3. Then because B does not have any particular preference about the
distribution of the urn, she should believe equally that A draws a black ball and
a white ball (see introduction). That is indeed the case : P [wi]B

B (σ) = P
[wi]B
B (τ) =

1
2 . Note the difference between Pwi

B (σ)(= i
n) and P

[wi]j
B (σ)(= 1

2) (see remark 2).
If we perform the full update mechanism, then we get the pd-model of Fig.3

with probabilities PA(x) = 1 and PB(x) = 1
2n for all worlds x. In this model all

the worlds are equally probable for B and there can not be n black balls in the
urn (pn) since one has been withdrawn.

(w1, σ) : p0
B

B

(w2, σ) : p1
B ���

B

(wk, σ) : pk−1
B

B

(wk+1, σ) : pk+1
B ���

B

(wn, σ) : pn−1

B

(w0, τ) : p0
B (w1, τ) : p1

B��� (wk−1, τ) : pk−1
B (wk, τ) : pk

B ���� (wn−1, τ) : pn−1

Fig. 3. situation of Examples 1 and 2 after A draws a white ball, looks at it and puts
it in his pocket (without specification of the probabilities of worlds for each example:
see text).

284 G. Aucher

Example 5. Let us now come back to our ‘urn’ Example 2. Assume the same
action as above occurs (depicted in Fig.2). However, now B is convinced that
there are more black balls than white. Consequently, she should consider it more
likely that A draws a black ball than a white ball (see introduction). That is the
case indeed: P [wi]B

B (σ) = 3
4 + 1

4k > P
[wi]B
B (τ) = 1

4 −
1
4k .

If we perform the full update, then we still get the pd-model of Fig.3 but with
different probability values: PA(x) = 1 for all worlds x; PB(wi, σ) = ε.(3

4 + 1
4k)

for i = 1..k; PB(wi, σ) = 1
k .(

3
4 + 1

4k) for i = k + 1..n; PB(wi, τ) = ε
4 for

i = 0..k; PB(wi, τ) = 1
4k for i = k + 1..n − 1. Note the grading of the sur-

prising worlds. It states that B would be a bit more surprised to hear some-
body claiming that “there were as many or less black balls than white balls
and A drew a white ball” (worlds (wi, τ), i = 0..k), than to hear somebody
claiming that “there were as many or less black balls than white balls and A
drew a black ball” (worlds (wi, σ), i = 1..k). This is coherent since she believed
more that A drew a black ball than she believed that he drew a white ball (i.e.
P

[wi]B
B (σ) > P

[wi]B
B (τ)).

3 Comparisons

Comparison with the AGM postulates. We can prove that, under the as-
sumption that the AGM notion of ‘belief’ (see [GardRott95]) corresponds to
the Lenzen’s notion of conviction (see remark 1), the 8 AGM postulates are
fulfilled.

Comparison with Reiter’s situation calculus. It turns out (surprisingly)
that the way we deal with change of facts is completely similar to the way
Reiter solves the frame problem in the situation calculus (see [Reit01]), and the
assumptions he makes about actions are fulfilled in our framework.

Comparison with Kooi’s system. Kooi’s dynamic probabilistic system (see
[Kooi03]), based on the static approach by Fagin and Halpern in [FH94], does
not make any particular assumption about the relation between probability and
epistemic relation (explored in [FH94]); contrary to our approach. Moreover,
he deals only with public announcement, and in this particular case our update
mechanism is basically the same as his.

Comparison with van Benthem’s system. van Benthem’s system (see
[vBen03]) seems similar to ours, but he does not deal with actions changing
facts and does not show the influence of beliefs on the interpretation of ac-
tions. In that respect, he does not distinguish Pw

j (σ) from P
[w]j
j (σ) as we do

(see Remark 2), and his ambiguous Pw
j (σ) seems to be different from ours if

we refer to his example. His probabilistic update rule (without motivations) is
also different. Besides, his update product can not be iterated because he deals
with worlds rather than maximal consistent sets in the probabilities of actions.
Anyway, his comparison with the Bayesian setting and other insights are still
valid here.

How Our Beliefs Contribute to Interpret Actions 285

4 Conclusion

We have proposed a system which models belief with probability and whose
update performs genuine belief revision (unlike the existing approaches in the
literature). So it indirectly offers a new probabilistic approach to belief revision.

Moreover, in our modeling we have introduced surprising worlds necessary
to model incorrect beliefs. Their relative degrees of surprise for the agent is ex-
pressed by infinitesimals. This use of infinitesimal has also enabled us to express
what would surprise the agent and by how much. This is of importance since we
want to describe with most accuracy any epistemic state of mind of any agent,
including what would surprise her. In that respect the notion of knowledge can
also be added to this dynamic epistemic system, which then validates all the
Lenzen’s axioms for belief and knowledge (that I consider as most accurate and
expressive to describe epistemic states).

Finally, we have also incorporated actions that change facts of the situation
and showed from a formal point of view how our beliefs can affect our interpreta-
tion of actions. In a sense this last point complements and reverses the classical
view whereby only our interpretation of actions affects our beliefs and not the
other way around, as in belief revision theory.

References

[Auc05] G. Aucher. A combined System for Update Logic and Belief Revision. In M.
W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371 Pages 1-17, 2005.

[Adams75] E. W. Adams. The Logic of Conditionals. In Synthese Library Volume 86,
D. Reidel, Dordrecht, Netherlands, 1975.

[BMS04] A. Baltag, L.S. Moss,and S. Solecki. Logic for epistemic program. In Synthese
Volume 139(2) Pages: 165 - 224.

[FH94] R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability. In
Journal of the ACM (JACM) Volume 41(2) Pages: 340 - 367.

[GardRott95] P. Gardenfors and H. Rott, 1995, ’Belief Revision’, in D. M. Gabbay,
C. J. Hogger and J. A. Robinson, eds., Handbook of Logic in Artificial Intelligence
and Logic Programming 4, Oxford University Press, Oxford 1995.

[Keis86] H. J. Keisler. Elementary Calculus: An Approach Using Infinitesimal.
Prindle, Weber and Schmidt (eds), 1986. Online edition on the website
http://www.math.wisc.edu/ keisler/calc.html .

[Kooi03] B.P. Kooi (2003). Probabilistic Dynamic Epistemic Logic. In Journal of Logic,
Language and Information Volume 12(4) Pages: 381-408.

[Len03] W. Lenzen. Knowledge, Belief, and Subjective Probability: Outlines of a Uni-
fied System of Epistemic/Doxastic Logic. In: V. F. Hendricks and Al. (eds.), Knowl-
edge Contributors, Dordrecht (Kluwer) 2003, Pages: 17-31.

[Reit01] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Im-
plementing Dynamical Systems, MIT Press, 2001.

[vBen03] J. van Benthem. Conditional probability meets update logic. In Journal of
Logic, Language and Information Volume 12(4) Pages: 409 - 421.

The Effect of Flag Introduction on the Explosion
of Nogood Values in the Case of ABT Family

Techniques

Ionel Muscalagiu

The Politehnica University of Timisoara,
The Engineering Faculty of Hunedoara, Revolutiei, nr.5, Hunedoara, Romania

mionel@fih.utt.ro

Abstract. Starting from the algorithm of asynchronous backtracking, a
unifying framework for some of the asynchronous techniques has recently
been suggested. Within this unifying framework, several techniques have
been derived, known as the ABT family. The asynchronous backtrack-
ing technique is characterized by an explosion of nogood values for the
large dimensions problem. The storing of these values, needed within
the asynchronous backtracking technique needs a very large quantity of
space. Recently, a derivate technique called asynchronous backtracking
with flags allowed the reduction of nogood values explosion. In this ar-
ticle, a solution of flag technique application is suggested for the ABT
family. It implies the indexing of local values in the domain of each
flagged agent. This eliminates the nogood value storing and, therefore,
for great dimension problems, allows avoiding the nogood value explo-
sions. The allocated memory space is considerably reduced in the case
of flag technique. Solutions are being suggested for the derivation of the
common kernel in order to reach two known techniques: Asynchronous
Backtracking and Distributed Dynamic Backtracking.

1 Introduction

The constraint programming is a model of software technology used to describe
and solve large classes of problems as, for instance, combinatorial problems. The
idea of sharing various parts of the problem among agents that act independently
and that collaborate among themselves using messages, in the prospective of
gaining the solution, proved useful, as it lead to obtaining a new modeling type
called Distributed Constraint Satisfaction Problem (DCSP)[5].

According to the IT literature the backtracking algorithm distributed in an
asynchronous way, existing for the DCSP model, is considered the first complete
algorithm for the asynchronous search [5]. Starting from the algorithm of asyn-
chronous backtracking (ABT), it has recently been suggested in [1], [2] a unifying
framework, a starting kernel for some of the asynchronous techniques. From this
kernel, several techniques have been derived, known as the ABT family. These
techniques start from a common core which can lead to some of the known tech-
niques, including the algorithm of asynchronous backtracking, by eliminating
the obsolete information among agents.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 286–295, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Effect of Flag Introduction on the Explosion of Nogood Values 287

The appearance of the nogood values has as an effect the introduction of some
new constraints. Although the nogood list indicates the cause of the failure and
its incorporation as a new constraint, it will teach the agents not to repeat
the same mistake and it is expected that during the course of the algorithm
the nogood values be as few as possible, because they have as an effect the
increasing of the execution time. The number of recordings of nogood messages
determines the exponential complexity of the algorithm in the unfavorable case
in the first place. The stocking complexity refers to the memory quantity used
by an algorithm; contoured with a different measure unit. This measure unit is
very important to be used in the analyzing of some techniques, like the ABT,
like the learning techniques or the caching techniques. It is possible that those
costs linked to the quantity of memory used, make a certain technique unusable,
even if from the calculations’ point of view it is very efficient.

Recently, a derivate technique [3] called asynchronous backtracking algorithm
with flags, allows eliminating the explosion effect for the nogood values. In [3]
more types of nogood values received by an agent are identified in the case
of ABT technique. They show that only certain classes of nogoods should be
stored. Moreover, in [3], it is suggested to replace these classes of nogood values,
by labeling the values in the domain of variables.

This article suggests a solution of applying the flag technique in the case of
ABT family. Instead of storing the nogood values, they are labeled by two types
of flags. This solution is applied for the ABT kernel and the resulting variant will
be called ABTkernel with flags. Starting from this nucleus, two known techniques
are reached: ABT and DisDB (with flags).

The article also investigates the efficiency of this derivative technique re-
ported to the messages stream, the calculating necessary effort and the cycles
consumed for finding the solution, as compared to the basic techniques derived
from the ABT kernel.

2 The Framework

In order to do the analysis of the impact of the nogood values, this paragraph
presents some notions known from the IT literature related to the DCSP mod-
eling, ABT algorithm [5], ABT family [1],[2] and ABT with flags [3].

2.1 The Distribution Constraint Satisfaction Problem

Definition 1. The model based on constraints CSP-Constraint Satisfaction
Problem, existing for centralized architectures, consists in:

- n variables X1,...,Xn, whose values are taken from finite domains D1, D2,..., Dn.
- a set of constraints on their values.

The solution of a CSP implies to find an association of values to all the
variables so that all the constraints should be fulfilled.

288 I. Muscalagiu

Definition 2. A problem of satisfying the distributed constraints (DCSP) is a
CSP, in which the variables and constraints are distributed among autonomous
agents that communicate by transmitting, messages.

The Asynchronous Backtracking algorithm uses 3 types of messages:

– the OK message, which contains an assignment variable-value, is sent by an
agent to the constraint-evaluating-agent in order to see if the value is good.

– the nogood message which contains a list (called nogood) with the assign-
ments for which the looseness was found is being sent in case the constraint-
evaluating-agent found an unfulfilled constraint.

– the add-link message, sent to announce the necessity to create a new direct
link, caused by a nogood appearance.

Each agent keeps its own agent-view and nogood store. Considering a generic
agent self, the agent-view of self is the set of values that it believes to be assigned
to agents connected to self by incoming links. A nogood is a subset of agent view.
If a nogood exists, it means the agent can not find a value from the domain
consistent with the nogood. When agent Xi finds its agent-view including a
nogood, the values of the other agents must be changed. The nogood store keeps
nogoods as justifications of inconsistent values. When self makes an assignment,
it informs those agents connected to it by outgoing links. Self always accepts new
assignments, updating its agent-view accordingly. When self receives a nogood,
it is accepted if it is consistent with self’s agent view, otherwise it is discarded
as obsolete. An accepted nogood is added to self’s nogood store to justify the
deletion of the value it targets. When self cannot take any value consistent
with its agent-view, new nogoods are generated as inconsistent subsets of the
agent-view, and are sent to the closest agent involved, causing backtracking. The
process terminates when achieving quiescence, meaning that a solution has been
found, or when the empty nogood is generated, meaning that the problem is
unsolvable.

2.2 The ABT Family

Starting from the algorithm of asynchronous backtracking, in [1],[2] several de-
rived techniques were suggested, based on this one and known as the ABT fam-
ily. They differ in the way that they store nogoods, but they all use additional
communication links between unconnected agents to detect obsolete information.
These techniques are based on a common core (called ABT kernel) hence some of
the known techniques can be obtained, including the algorithm of asynchronous
backtracking, by eliminating the old information among the agents. In [1],[2] the
starting point is a simple procedure that includes the main characteristics of the
asynchronous search algorithms.

The ABTkernel algorithm requires, like ABT, that constraints are directed-
from the value-sending agent to the constraint-evaluating agent-forming a di-
rected acyclic graph. Agents are ordered statically in agreement with constraint
orientation. Agent i has higher priority than agent j if i appears before j in the

The Effect of Flag Introduction on the Explosion of Nogood Values 289

total ordering. Considering a generic agent self, Γ−(self) is the set of agents
constrained with self appearing above it in the ordering. Conversely, Γ+(self)
is the set of agents constrained with self appearing below it in the ordering.

The ABT kernel algorithm, is a new ABT-based algorithm that does not
require to add communication links between initially unconnected agents. The
ABT kernel algorithm is sound but may not terminate (the ABT kernel may
store obsolete information). In [1],[2] were suggested several solutions for the
elimination of the old information among agents. A first way to remove obsolete
information is to add new communication links to allow a nogood owner to
determine whether this nogood is obsolete or not. A second way to remove
obsolete information is to detect when a nogood could become obsolete.These
two alternative ways lead to the following four algorithms:

1. Adding links as preprocessing: This algorithm adds all the potentially useful
new links during a preprocessing phase. New links are permanent.

2. Adding links during search:ABT. This algorithm adds new links between
agents during search. A link is requested by self when it receives a Back
message containing unrelated agents above self in the ordering.

3. Adding temporary links.This algorithm adds new links between agents dur-
ing search. The diference is that new links are temporary. A new link remains
until a fixed number of messages have been exchanged through it.

4. No links:DisDB. No new links are added among the agents. To achieve com-
pleteness, this algorithm has to remove obsolete information in finite time.
To do so, when an agent backtracks forgets all nogoods that hypothetically
could become obsolete.

2.3 The Asynchronous Backtracking Algorithm with Flags
(ABTWF)

In [3] more types of nogood values received by an agent are identified in the case
of ABT technique. Moreover, in [3] four classes of nogood values that come up
with a nogood type message have been identified, namely:

(1) (xi, di): the value of di is the same as the current value.
(2) (xi, di): the value of di is different from the current value.
(3) (xj , dj),...,(xi, di): is consistent with the agent-view of Xi and (xi, dxi)
(4) (xj , dj),...,(xi, di): is not consistent with the agent-view of Xi and (xi, dxi).

In the ABT algorithm [5], agent Xi will change the current value under two
conditions: (1) when it receives an OK? message or (2) when it receives a nogood
message consistent with agent view of Xi. So, class 2 and class 4 nogoods are
out-of-date information to agentXi. When Xi receives a class 1 nogood, it means
that the current value of Xi does not satisfy at least one constraint between the
agent which sends the nogood message to Xi. However, when Xi receive a class
3 nogood, it means that the nogood in the nogood message is consistent with the
agent-view of Xi and (Xi, current value). The nogood in the message is useful
information to Xi in the current agent-view, so we must record it. The recording

290 I. Muscalagiu

of nogoods will avoid the same wrong combination from being produced again
when agent Xi selects a new current value. But the agent-view of Xi will change
when the values of related agents are changed. Thus, when the agent-view of Xi

changes, the nogood becomes out-of-date information. For the above mentioned
reason, the class 3 nogood should be recorded temporarily.

Starting from these observations, in [3] a derivate technique has been sug-
gested, called asynchronous backtracking with flags (ABTWF). This algorithm
is obtained starting from the basic ABT algorithm by replacing the storing of
nogood values by indexing the local values with flags. Two types of flags are
being used, corresponding to classes 1 and 3 of nogoods:

(1) The Permanent Flag (PF): when the received nogood is class 1, agent Xi
will set the flag of the current value of local variable to PF. This PF flag will
not be cleared in the running processes all the time.

(2) The Temporary Flag (TF): when the receiving nogood is class 3, agent
Xi will set the flag of the current value of the local variable to TF. When
agent Xi receives an OK? message or sends a nogood message, it means that
the agent with a higher priority than agent Xi will change its value or has
changed value already. In this situation, the TF will be cleared, so the value
labeled by the TF flag before it can be selected again.

3 The ABT Family with Flags

Analyzing the nogood message flux, we identified the same types of nogood
values, similar to those identified in [3]. Therefore, only the class 1 and 2 nogood
values have to be stored, the class 2 and 4 values being old. Moreover, the class
3 nogood values need to be stored only temporarily.

Starting from these observations we will replace the storage of the nogood
values by the flag indexation of the local values. We will use two types of flags,
corresponding to the two nogood classes:

1 The Permanent Flag (PF): when the receiving nogood is class 1
2 The Temporary Flag (TF): when the receiving nogood is class 3

Each agent will keep a list of flags associated to the values in its field, flags of the
type given previously. This list of flags will be used by each agent in selecting
a value from its field. The list of flags will be permanently consistent with the
context of each agent. The consistency conditions shall consist in checking the
myAgentView list with the current value meant to meet all the constraints,
respectively the flag associated to the correct value shall not be labeled with
any of the values PF or TF. It is to be noticed that an extra condition has been
added for the consistency of the values, namely that the flag corresponding to
the current value should not be labeled PF or TF.

In figure 1 is shown the algorithm ABT kernel with flags. The modifications
are labeled by character * and the annulled code portions start with // and are
labeled **. In figure 1 one can notice a few essential modifications in the initial
code of the ABT kernel. They are going to be analyzed hereinafter.

The Effect of Flag Introduction on the Explosion of Nogood Values 291

First, on receiving an ”info”-type message that informs the ”self” agent of
the change in another agent’s value, the local context of the ”self” agent is being
updated. This involves updating the myAgentView list and also updating the
flag list by deleting the temporary flags. One can notice that there is no more
need to update the nogood list, as it does not exist any more.

Secondly, on receiving a nogood message, this is accepted only if it is consis-
tent with Γ−(self) ∪ self . Then, the myAgentView list is being updated with
the values of the agents included in the nogood message but not in Γ−(self). It
is to be noticed that we no longer need to update the list of stored nogood values,
as their role has been taken over by the flags. Practically, the class of nogood
values is being identified in this moment (either class 1 or 3) the associated flags
being labeled accordingly.

Another modification that appears in the body of the BackTrack procedure,
a routine that is being called when no value consistent with the context of the
”self” agent is found. First, the new nogood is not of the ”Nogood resolution”
type, but it is constituted as an inconsistent subset of the agent’s context. On
this occasion the flags associated to the values in the domain of the current
variable are being updated and the temporary flags are being reset. Secondly,
the flag attached to the value of agent xj is being reset, so that this value can be
chosen again. The last modification needed relates to the ChooseValue function,
in which only the flag list has to be updated and not the list of nogood values
stored.

Some observations have to be made with respect to the updating of the flag
list. In [3] it is suggested to delete the temporary flags and to keep the permanent
ones. In [4] a slight improvement is suggested, consisting in restarting the search
process by also resetting the permanent flags, not only the temporary ones. This
idea is applied here, both temporary and permanent flags being reset.

In [1],[2] it is shown that the ABT kernel can lead to the appearance of old
information among the agents. This situation leads to an infinite cycle of the
algorithm for certain classes and instances of problems. Starting from the ABT
kernel, in [2], the old information among agents are being eliminated by various
methods. Starting at this procedure, we could reach the known algorithms or
versions close to this (such as ABT or DisDB).

Applying the same methods of information elimination, we can reach vari-
ous variants of techniques, variants that use flags instead of nogood storing. We
shall hereinafter analyze two notorious techniques that can be reached. The vari-
ants obtained shall be called Asynchronous Backtracking with flags(ABTWFL),
Distributed Dynamic Backtracking with flags (DisDBWFL).

A first way of removing obsolete information is to add new communication
links to allow a nogood owner to determine whether this nogood is obsolete or
not. Applying this method to the ABT kernel (the flag variant), we reach the
technique of asynchronous backtracking with flags(ABTWFL). This algorithm
adds new links between agents during search. A link is requested by self when it
receives a Back message containing unrelated agents above self in the ordering.
The necessary modifications in the ABT kernel with flags, meant to eliminate

292 I. Muscalagiu

procedure ABTkernel()
1 myValue ←empty; end←false; CheckAgentView();
3 while (not end) do
4 msg←getMsg();
5 switch(msg.type)
6 Info : ProcessInfo(msg);
7 Back : ResolveConflict(msg);
8 Stop : end ← true;
end
procedure CheckAgentView(msg)
1 if not consistent(myValue;myAgentView) then
2 myValue← ChooseValue();
3 if (myValue) then for each child∈ Γ+(self) do sendMsg:Info(child;myValue);
4 else Backtrack();
end
procedure ProcessInfo(msg)
1 add(newAssig; myAgentView); //remove Update(myAgentView; msg.Assig); **
2 Clear TF Flags on domain values;* CheckAgentView();
end
procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood;Γ −(self) ∪ {self}) then
2 for each assig ∈ lhs(msg.Nogood)\Γ −(self) do

add(newAssig;myAgentView); * //remove Update(myAgentView; assig); **
3 //remove add(msg:Nogood;myNogoodStore); **
4 when nogood only contains (xi, di) and is consistent with (xi, current-value) do *

label current-value Flag PF ; end do;
5 when nogood is consistent with agent-view and (xi, current-value) do *

label current-value Flag TF ; end do;
6 myValue ← empty; CheckAgentView();
7 else if msg.sender ∈ Γ+(self)∧ Coherent(msg.Nogood; self) then

SendMsg:Info(msg.sender; myValue);
end
procedure Backtrack()
1 newNogood← {V|V=inconsistent subset of myAgentView}*
2 if (newNogood = empty) then
3 end ← true; sendMsg:Stop(system);
4 else sendMsg:Back(newNogood, xj); /*where xj has the lowest priority in V */
5 Update(myAgentView; xj ← unknown);
6 Clear TF Flags on domain values; *
7 Label value-of xj Flag unknown; *
8 CheckAgentView();
end
function ChooseValue()
1 for each v∈D(self)not eliminated by myFlagList do *
2 if consistent(v; myAgentView) then return (v);
3 else label current-value Flag TF * /*v is inconsistent with xj ’s value */
4 // remove add(xj = valj) self �= v;myNogoodStore); **
5 return (empty);
end
procedure Update(myAgentView; newAssig)
1 add(newAssig;myAgentView);
2 for each v∈ D(self) do
3 if not consistent (v; myAgentView) then label v Flag TF; *
5 else label v Flag unknown
end

Fig. 1. The ABTkernel with flags algorithm for asynchronous backtracking search

The Effect of Flag Introduction on the Explosion of Nogood Values 293

the old information are the same as those given in [2], in order to reach the
asynchronous backtracking technique.

A second way to remove obsolete information is to detect when a nogood
could become obsolete. In that case, the hypothetically obsolete nogood and the
values of unrelated agents are forgotten. By applying this technique to the ABT
kernel (the flag variant), one can reach the technique of Distributed Dynamic
Backtracking with flags (DisDBWFL). Let’s remember that there is certain dif-
ference from the variant derived from [1],[2]: the new nogood is not of the ”no-
good resolution” type, but it is built as an inconsistent subset of the agent’s
context (the list of myAgentView).

4 Experimental Results

This paragraph will present our experimental results, obtained by implementing
and evaluating the asynchronous techniques that were introduced. In order to
make such estimation, these techniques have been implemented in NetLogo 2.0.2,
a distributed environment, using a special language named NetLogo [6], [7].

The asynchronous techniques were applied for a classical problem: the prob-
lem of colouring a graph in the distributed versions. For the problem of graph
colouring we took into consideration two types of problems (we kept in mind the
parameters n-number of knots, k=3 colours and m-the number of connections
between the agents). We evaluated two types of graphs: graphs with few connec-
tions (called sparse problems, having m=n x 2 connections) and graphs with a
special number of connections (called difficult problems and having m=n x 2.7
connections). For each version a number of 100 trials were carried out, retain-
ing the average of the measured values (for each class 10 graphs are generated
randomly, for each graph being generated 10 initial values).

The message stream was counted down, the number of constraint checks (the
local effort), the number of concurrent constraint checks and the number of cycles
necessary for obtaining each solution. We have also kept in mind the number of
stored nogood values (respectively the flag lists for the flag versions). The four
evaluated versions were called ABT, ABTWFL, DisDB and DisDBWFL. The
values obtained for the three graph classes (with 20, 25 and 30 knots) are stored
in the table 1 (the ABT versions) and table 2 (the DisDB versions).

The first measuring unit for the analyzed asynchronous techniques perfor-
mances was the cycle. Out of the value analysis it can be noticed that the two
versions have close values regarding the necessary cycle numbers, nevertheless
pointing out to the good results for the flag versions that needed a small number
of cycles. This shows a good behavior also in the case of difficult problems with
great dimensions.

As known, the verified constraints quantity evaluates the local effort given by
each agent, but the number of concurrent constraint checks allows the evaluation
of this effort without considering that the agents work concurrently (informally,

294 I. Muscalagiu

Table 1. The results for ABT versions (Distributed n-Graph-Coloring Problem)

n=20 n=25 n=30
m=nx2 m=nx2.7 m=nx2 m=nx2.7 m=nx2 m=nx2.7

ABT

Nogood 279.70 928.05 1213.23 1393.19 4152.59 5498.03
Ok 1012.81 3242.26 4205.35 5389.66 14648.67 23741.29

Nogood store 137.55 289.61 592.42 477.98 1719.31 1546.79
Cycles 211.52 490.74 634.17 736.62 2294.85 2427.14

Constraints 59372.05186777.62368304.06376304.061328756.541892342.32
c-ccks 12393.31 34358.36 48201.90 56843.21 270280.68 240830.17

ABTWFL

Nogood 242.51 621.54 694.04 972.76 2859.54 3004.56
Ok 908.85 2218.59 2684.29 3677.43 10091.74 13021.04

Nogood store 119.20 194.80 338.98 343.35 1207.56 882.73
Cycles 183.09 329.63 56.06 472.31 1585.63 1313.81

Constraints 24535.72 67371.98 91516.39 115722.67 426475.21 406482.49
c-ccks 7349.29 18365.84 32865.54 27624.41 119371.28 79695.95

Table 2. The results for DisDB versions (Distributed n-Graph-Coloring Problem)

n=20 n=25 n=30
m=nx2 m=nx2.7 m=nx2 m=nx2.7 m=nx2 m=nx2.7

DisDB

Nogood 288.12 824.89 697.92 1066.35 3397.69 5956.57
Ok 629.39 1927.99 1393.93 2728.78 6980.30 13620.43

Nogood store 168.88 330.75 402.67 474.35 1951.72 2442.77
Cycles 158.05 403.42 400.58 534.55 1814.48 1770.23

Constraints 38258.77 112446.82 122533.57 178043.25 719449.09 1196721.64
c-ccks 9364.67 25255.19 31541.98 33845.25 184218.86 1866897.88

DisDBWFL

Nogood 215.38 648.08 446.74 775.30 1976.57 6434.89
Ok 480.37 1502.50 839.75 1974.85 4601.43 14589.85

Nogood store 127.61 269.74 238.72 346.38 1046.07 2862.95
Cycles 115.50 284.23 233.32 327.37 1053.68 1912.38

Constraints 24723.56 73457.67 52843.36 103938.15 401034.94 1081615.49
c-ccks 6357.37 16447.37 13569.45 19069.65 107099.27 169949.27

the number of concurrent constraint checks approximates the longest sequence
of constraint checks not performed concurrently). Analyzing these values, there
is an obvious difference between the basic technique and the two flag versions,
those needing a local effort much reduced (at half).

In the case of the message stream the two versions need a close number
of messages for problems with small dimension and low density. But in the
case of problems with great dimension and density, the flag versions needed a
smaller message stream. It is obvious that the number of stored nogood values,
respectively the number of flags for the flag versions are close, but the quantity
of necessary memory is much smaller for the last versions.

By analyzing the table values it is to be remarked that the two flag versions,
need much smaller calculating costs.

The Effect of Flag Introduction on the Explosion of Nogood Values 295

5 Conclusions

The ABT family techniques are characterized by an explosion of the nogood
values, particularly for the bulky problems. Another characteristic, specific for
the asynchronous techniques in the ABT family is that the storage of the no-
good values is necessary, so that the agents don’t repeat the same mistake. This
requires a large amount of memory, particularly for the bulky problems. One
solution meant to eliminate the explosion of nogood values is to label the values
in the the field of each flag variable.

This article suggests a solution to replace the nogood value storage by labeling
the values in the field by two types of flags. This solution is applied for the ABT
kernel, thus obtaining a new variant that only requires the storage of the nogood
values. Starting from this kernel, one can reach two notorious techniques: the
ABT and the DisDB.

The ABT and DisDB flag technique is a derived one from the basic ABT
kernel technique with flags. It implies the indexing of local values in the domain
of each flagged agent. This eliminates the nogood value storing and, therefore,
for great dimension problems, allows avoiding the nogood values explosions. The
allocated memory space is considerably reduced in the case of flag technique.

The evaluations realized in the conditions of various problems, with initial
random values, for the problems with various densities, show that the flag tech-
niques need a memory space for flags much smaller comparative to the basic tech-
nique.This flag technique could be enhanced by restarting the searching process
when arriving an ok type message. The experiments show a greater efficiency of
this version, but without bringing spectacular results.

References

1. Bessiere, C., Maestre, A., Meseguer P.:The ABT family. In Proceedings of JFNP
(2002).

2. Bessiere, C., Brito, I., Maestre, A., Meseguer P.:Asynchronous Backtracking without
Adding Links: A New Member in the ABT Family. Journal of Artificial Intelligence
161 (2005) 7-24.

3. Gwen-Hua C., Wei-Li Lin, Chan-Lon Wang: Asynchronous Backtracking Algorithm
with no effect of nogood explosion. In Proceedings International Conference on
Computer, Communication and Control Technologies, Orlando, Florida (2003).

4. Muscalagiu I., Balan M.: The Effect Of Flag Introduction On The Explosion Of
Nogood Values When Using The Asynchronous Backtracking Technique, CSCS14,
Bucuresti, Romania (2005).

5. Yokoo, M., Durfee E.H., Ishida T., Kuwabara K.: The distributed constraint sat-
isfaction problem: formalization and algorithms. IEEE Transactions on Knowledge
and Data Engineering 10(5) (1998) 673-685.

6. Wilensky U.: NetLogo itself: NetLogo. http://ccl.northwestern.edu/netlogo/. Center
for Connected Learning and Computer-Based Modeling, Northwestern University.
Evanston, (1999).

7. MAS Netlogo Models. Available:
http://ccl.northwestern.edu/netlogo/models/community, (2005).

Toward a Formal Theory of Belief, Capability
and Promise Incorporating Temporal Aspect�

Xinyu Zhao, Shaofeng Fan, Runjie Zhang, Anbu Yue, and Zuoquan Lin

LMAM, Department of Information Science,
School of Mathematical Sciences,

Peking University, Beijing 100871, China
{xinyua, fsf, zrj, yueanbu, lz}@is.pku.edu.cn

Abstract. In this paper, a logical model for reasoning about rational
agent’s three attitudes Belief, Capability and Promise, incorporating the
temporal aspect, is proposed. Diverse axioms that can reflect different
properties of the agents are presented in a precise way by appropriate
conditions according to the accessibility relations of the models. The
inter-relations among the operators are also explored to characterize the
interactions and cooperations between the agents. An illustrative reason-
ing example in the trading agent competition for supply chain manage-
ment(TAC SCM) is presented to show the potential applications of the
model.

1 Introduction

From last two decade, there has been much interest in the use of logic for develop-
ing formal theories of rational agents, such as BDI logics[1], KARO framework[2]
and LORA logic[3]. When formalizing the properties of rational agents, the first
fundamental problem is to determine which combination of attitudes is appro-
priate for modeling their cognitive states and functional components.

For a type of complex systems, we discuss the necessity of the three atti-
tudes, i.e. belief, promise and capability. It’s necessary for agents to be provided
with an informative component, called belief, to keep the states of the systems
and the environments. In order to achieve their goal, there must be a functional
component, called capability, to carry out the plans and bring them to success.
Before cooperation, the participants must make an agreement in some way and a
model about promise must be built to establish cooperation relationship between
them. In multi-agent systems, the decision-making processes, based on the in-
dividual belief, are commonly impacted by whether the other agents would like
to make promises to accept the tasks and whether they can fulfill the tasks.
Thus, an agent is required to be able to reason about other agents’ promises
and capabilities to decide whether they can accept and accomplish tasks most
effectively.
� This paper was partially supported by NKBRPC (2004CB318000) and NSFC

(60373002, 60496322).

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 296–305, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Toward a Formal Theory of Belief, Capability and Promise 297

As pointed out in [4], there may not be a unique agent model suitable for
all applications, since different domains have different characteristics and differ-
ent requirements regarding rational behavior. Although such three notions, i.e.
belief, capability and promise, have been separably explored in the literature,
there has been very little work on combining them as a whole framework and
studying the relationship between them. This is the central issue of what we will
do in the following sections.

In this paper, a logical model for reasoning about the agent’s Belief, Capa-
bility and Promise(abbreviated as BCP) incorporating temporal aspect is pro-
posed. We use modal logic, which provides an intuitively acceptable, uniform
formalization of intensional notions, to model rational agents. Inspired by [5],
we use time lines instead of normal worlds, because they provide a simple way
of introducing time into the model. The standard Kripke-style semantics for B
and P is combined with minimal semantics[6] for C to interpret the well-formed
formulas. The intended meaning of Pij(t, φ) is that at time t, the agent j makes
a promise to the agent i that j would like to achieve φ, while Cij(t, φ) means
at time t, i considers that j has the capability to perform action φ1. A sound
and complete model is given as the basis for introducing more properties to the
three attitudes. Afterwards, diverse axioms that can reflect different properties
of agents, are presented in a precise way by appropriate conditions according
to the accessibility relations of the models. The inter-relations among operators
are explored to characterize multi-agent interactions in different domains. In ad-
dition, an illustrative case of (TAC SCM)[8] is presented to show the potential
applications of the model.

This paper is organized as follows. In section 2, we provide the syntax, se-
mantics and axioms of the basic temporal BCP model plus the properties of the
three attitudes and the inter-relation among the mixed operators are explored
with intuitive meanings. A reasoning example in TAC SCM is illustrated in sec-
tion 3. In section 4, related works are compared and distinguished in detail.
Section 5 concludes with a discussion and indicates the future work.

2 The Logical Model

2.1 The Logic BCP

We will combine Kripke-style semantics for agents’ belief and promise with min-
imal structures[6] style semantics for capability. Inspired by [5], we use time lines
instead of normal worlds, because they provide a simple way of introducing time
into the system. At every time point in the each time line, some propositions
are true as well as the rest are false. We denote by Agents the set of agents. We
have a set TC of time point constants, a set TV of time point variables (t, t1,
t2, ...), a set AC of agent constants, a set AV of agent variables (i, j, ...), and
a set Pred of predicate symbols. We denote by Variables the set of all variables
1 Be similar to [7], we will not distinguish between actions and facts, and the occur-

rence of an action will be represented by the corresponding fact holding.

298 X. Zhao et al.

(including TV and AV), by Constants the set of all constants (including TC
and AC), and by Terms the set of variables and constants. We also use the term
nil. Then the set of the well-formed formulas(wff) of the temporal BCP model
is defined as follows:

(1) if t1, t2 ∈ TC ∪ TV , then t1 < t2 is a wff.
(2) if x1, x2 ∈ Terms, then x1 = x2 is a wff.
(3) if P ∈ Pred is a k -ary predicate, x1, ..., xn are terms, and t ∈ TC∪TV , then

P (t, x1, ..., xn) is a wff (P (t, x1, ..., xn) is true at time t).
(4) if ϕ and ψ are wffs, then so are ϕ∧ψ and ¬ϕ. If ϕ is a wff and x ∈ V ariables,

then ∀xϕ is a wff. ∃,∨,⊃ are defined as usual.
(5) if ϕ and ψ are wffs, t ∈ TC ∪ TV , i, j ∈ AC ∪ AV , then the following

expressions are wffs:
(a) Bi(t, ϕ) (i believes ϕ at time t),
(b) Pij(t, ϕ) (at time t, j promises i that ϕ could be done),
(c) Cij(t, ϕ) (at time t, i considers that j is capable of performing ϕ).
(d) Agent(t, φ, i) (i is the agent of φ).

Formally, time is a pair 〈T,≺〉, where T is a set of time points and ≺ is
a total order on T (unbounded in both directions). A BCP model is a tuple
M = 〈Ξ,L,Agents, A,RB, RC , RP , Φ, v〉, where

– Ξ is a set of elements in the agent’s environment.
– L is a set of time lines.
– Agents is a set of agents.
– RB : L× T ×Agents→ 2L is the belief-accessibility relation.
– RC : L×T ×Agents×Agents→ 22L

is the capability-accessibility relation.
– RP : L× T ×Agents×Agents→ 2L is the promise-accessibility relation.
– Φ interprets predicates and v interprets constants.
– A : L×T×22L → Agents∪nil associates an agent or nil with each proposition

for any given time period.

The domain of quantification is Θ = Ξ∪T ∪Agents. Given this, Φ : Predk×
L×T → Θk. v is the extension of v to all V ariables. If for any extension v′ of v
M, l, v′ |= ψ, we say that M, l satisfy ψ (M, l |= ψ). Given a structure M , and a
wff ψ, we denote by ‖ψ‖ the set {l|l ∈ L,M, l, v |= ψ}. The satisfaction relation
is defined inductively as follows:

(1) If t1, t2 ∈ TC ∪ TV , then M, l, v |= t1 < t2 iff v(t1) ≺ v(t2).
(2) If x1, x2 ∈ Terms, then M, l, v |= x1 = x2 iff v(x1) = v(x2).
(3) If P ∈ Pred is a k -ary predicate, x1, ..., xk are terms, and t ∈ TC∪TV , then

M, l, v |= P (t, x1, ..., xk) iff 〈v(x1), ..., v(xk)〉 ∈ Φ(P, l, v(t)).
(4) If ϕ is a wff, ψ is a wff and x ∈ V ariables, then:

(a) M, l, v |= ¬ϕ iff M, l, v � ϕ;
(b) M, l, v |= ϕ ∧ ψ iff M, l, v |= ϕ and M, l, v |= ψ;
(c) M, l, v |= ∀xϕ iff for every v′ which agrees with v everywhere, except

possibly on x M, l, v′ |= ϕ.

Toward a Formal Theory of Belief, Capability and Promise 299

(5) If ϕ and ψ are wffs, t ∈ TC ∪ TC, i, j ∈ AC ∪AV , then:
(a) M, l, v |= Bi(t, ϕ) iff l′ ∈ L, if l′ ∈ RB(l, v(t), v(i)),M, l′, v |= ϕ;
(b) M, l, v |= Cij(t, ϕ) iff ‖ϕ‖ ∈ RC(l, v(t), v(i), v(j));
(c) M, l, v |= Pij(t, ϕ) iff l′ ∈ L, if l′ ∈ RP (l, v(t), v(i), v(j)),M, l′, v |= ϕ;
(d) M, l, v |= Agent(t, ϕ, i) iff A(l, v(t), ‖ϕ‖) = v(i).

A temporal BCP model M = 〈Ξ,L,Agents, A,RB, RC , RP , Φ, v〉 is said to
validate a formula ϕ if for every l ∈ L,M, l |= ϕ. A formula ϕ is valid if it is
validated by any BCP model.

Until now, the agents in our model are provided with rather limited reasoning
power because of lacking appropriate properties for their attitudes. As the fol-
lowing theorem states, all tautologies and inferences of first-order logic are valid
in temporal BCP model. The axiom (B1) formalizes that operator B satisfies
the K-axiom. The operator P is similar to B. It means that if the agent j makes
a promise of goal ϕ to the agent i, it also gives all logical consequence of ϕ. (R3)
is an instance of rule of necessitation which states that the valid wff is believed
and promised in advance. (R4) indicates that if an agent is considered to be
capable of performing a wff, then the consequence of the wff is all the same.

Theorem 1. The following axiomatic system is sound and complete for validity
in BCP models:

(A0) All tautologies of first-order logic.
(B1) Bi(t, ϕ) ∧Bi(t, ϕ ⊃ ψ) ⊃ Bi(t, ψ).
(P1) Pij(t, ϕ) ∧ Pij(t, ϕ ⊃ ψ) ⊃ Pij(t, ψ).
(R1) From ϕ and ϕ ⊃ ψ infer ψ.
(R2) From ϕ infer ∀xϕ.
(R3) From ϕ infer Bi(t, ϕ) and Pij(t, ϕ).
(R4) From ϕ ⊃ ψ infer Cij(t, ϕ) ⊃ Cij(t, ψ).

Due to space limitations here we omit the proof of the theorem, which can
be gained by the standard technique of canonical model construction in [6].

Even though the agents in BCP model are still simple now, this model can be
the basis for introducing diverse properties to the attitudes, characterizing multi-
agent interactions and cooperations in different domains, meanwhile preserving
the soundness and completeness results. Furthermore, different properties of the
attitudes can satisfy different axioms, which can be presented in a precise way
by appropriate conditions according to the accessibility relations of the models.

2.2 Properties of the Attitudes

In all the following axiom schemas, we will assume that the unbounded variables
are universally quantified as follows: ∀l, l′, l′′ ∈ L, a, b ∈ Agents, τ, τ ′ ∈ T . In
addition, we assume that i, j ∈ AC ∪ AV, t ∈ TC ∪ TV and that ϕ and ψ
represent any wff in the language.

Let’s start with the properties of belief. We would like to introduce three con-
straints on the belief-accessibility relation RB, which formalize that the operator
B satisfies the consistency, positive introspection and negative introspection ax-
ioms relating to the serial, transitive and Euclidean properties of the RB:

300 X. Zhao et al.

(CB2) For every l ∈ L, there is a l̂ ∈ L, such that l ∈ RB(l̂, τ, a).
(CB3) If l ∈ RB(l′, τ, a) and l′ ∈ RB(l′′, τ, a), then l ∈ RB(l′′, τ, a).
(CB4) If l ∈ RB(l′, τ, a) and l ∈ RB(l′′, τ, a), then l′ ∈ RB(l′′, τ, a).

The following axioms are sound with respect to the above conditions.

Proposition 2. A BCP model that satisfies conditions (CB2)-(CB4) validate
the following axioms:

(B2) ¬Bi(t, false).
(B3) Bi(t, ϕ) ⊃ Bi(t, Bi(t, ϕ)).
(B4) ¬Bi(t, ϕ) ⊃ Bi(t,¬Bi(t, ϕ)).

We will make similar restriction on the operator P . It is required that the
restriction on P should eliminate the possibility for an agent to make contradic-
tory promises. We introduce the following proposition about the promise, which
exhibits the D dimension(D axiom in modal logic) of the BCP model.

Proposition 3. A BCP model that satisfies the condition

(CP2) For every l ∈ L, there is a l̂ ∈ L, such that l ∈ RP (l̂, τ, a)

validate the axiom:

(P2) ¬Pij(t, false).

For capability, an agent is required to be capable of doing something at least,
as well as performing actions that are not contradictory. This can be achieved
by introducing two constraints on the capability-accessibility relation RC :

Proposition 4. A BCP model that satisfies conditions

(CC1) ∅ /∈ RC(l, τ, a).
(CC2) ∅ �= RC(l, τ, a).

validate the following axioms:

(C1) ¬Cij(t, false).
(C2) Cij(t, true).

There are several other properties of capability that are controversial, for
example when the agent i considers that the agent j is capable of performing
ϕ and is capable of performing ψ, whether it believes that j has the capability
of achieving the conjunction, vice versa, i.e., if i considers that j is capable of
achieving ϕ ∧ ψ, whether it believes that j has the capability of achieving them
separately. The later is more acceptable(see [14]). Here is an counterexample for
the former. Let’s consider an agent j that is designed for helping a handicapped
person i. It is possible for i to consider that j can at time t go either upstairs to
serve a cup of milk, or at time t downstairs to fetch an express parcel, depending
on the order of the person. But this does not mean that i believes that at time
t, j has the capability to accomplish the two tasks at the same time.

The latter property is captured by the following condition and proposition:

Toward a Formal Theory of Belief, Capability and Promise 301

Proposition 5. A BCP model that satisfies condition

(CC3) If U ∈ RC(l, τ, a, b), and U ⊆ V , then V ∈ RC(l, τ, a, b)

validate the axiom:

(C3) Cij(t, ϕ ∧ ψ) ⊃ Cij(t, ϕ) ∧ Cij(t, ψ).

From the above example, we can see that some formulas are valid whereas
their converses are not. This will be further discussed in the illustrative case
section. Axiom (C3) is also a special case of the inference rule (R4) which is
also valid in models that satisfy condition (CC3).

2.3 Inter-relations Among Attitudes

Until now, the relations RB, RC and RP are still independent. In such model,
an agent’s belief can not be updated with what other agents promise to it and
changes of other agents’ capabilities. This scenario can not reflect our original
motivations, therefore it is not what we want. In this section, we will focus on
the inter-relations among the mixed attitudes.

First, an agent is self-aware of its attitude towards other agents’ capabilities:

(M1) Cij(t, ϕ) ≡ Bi(t, Cij(t, ϕ)).

The restriction on the model as stated in the following proposition:

Proposition 6. A BCP model that satisfies the condition

(CM1) U ∈ RC(l, τ, a, b) iff {l′|U ∈ RC(l′, τ, a, b)} = RB(l, τ, a)

validates axiom (M1).

We assume that an agent’s attitude towards other agents’ capabilities does
not contradict its beliefs:

(M2) Cij(t, ϕ) ⊃ ¬Bi(t,¬ϕ).

The corresponding restriction on the RC and RB is as follows:

Proposition 7. A BCP model that satisfies the condition

(CM2) U ∈ RC(l, τ, a, b), then L\U ∩RB(l, τ, a) = ∅

validates axiom (M2).

According to (M2), if an agent starts believing that one of its attitude to-
wards other agents’ capabilities is not feasible, it will abandon the attitude:

Proposition 8. BCP models that validate (M2) also validate following axiom

(M2’) Cij(t, ϕ) ∧Bi(t+ 1,¬ϕ) ⊃ ¬Cij(t+ 1, ϕ).

302 X. Zhao et al.

In large scale multi-agent systems, the decision-making processes, based on
the individual belief, are impacted by whether the cooperating agents would
like to make promises to accept the tasks and whether they can fulfill the tasks.
During the processes of interactions and cooperations, an agent would update its
belief, and establish the relationships with those capable agents, whose promises
can build on. In such system, the individual agent might be required to be able to
reason about other agents’ promises and capabilities to decide whether they can
accept and accomplish new tasks most effectively. Thus we are more interested
in the model satisfying the following proposition:

Proposition 9. A BCP model that satisfies condition

(CM3) If U ∈ RC(l, τ, a, b), U ′ = U ∩ {l′′|l′′ ∈ RB(l′, τ, a), l′ ∈ RP (l, τ, a, b)},
then RB(l, τ, a) ⊆ U

validates the axiom:

(M3) Bi(t, Pij(t, ϕ)) ∧ Cij(t, ϕ) ⊃ Bi(t, ϕ)

We should emphasize here that the axiom (M3) ties the three attitudes of
agents up. An agent’s belief is affected by what other agents promise to it and
changes of other agents’ capabilities. More specially, if the agent j promises the
agent i to perform an action, meanwhile i considers that j has the capability to
carry out the action, then i will also believe the action could be done.

Sometimes an agent may have deficient information about its opponent,
therefore it is hard to judge whether its opponent actually has the capability
to carry out the specific action. However the agent can take advantage of the in-
formation from other correlative agents assisting in its decision-making. Consider
the following proposition:

Proposition 10. A BCP model that satisfies condition

(CM4) If U ∈ RC(l, τ, a, c), U ′ = U ∩ {l′′|l′′ ∈ RB(l′, τ, a), l′ ∈ RP (l, τ, b, c)},
then for every V ∈ RC(l, τ, a, b), such that V ⊆ U ′

validates the axiom:

(M4) Bi(t, Pjk(t, ϕ)) ∧ Cik(t, ϕ) ⊃ Cij(t, ϕ)

It indicates that if the agent i believes that the agent k has the capability
to carry out the task ϕ, and k promises the agent j to achieve ϕ, then i will
consider j has the capability to accomplish the task ϕ.

The system, composed of the BCP model and the axiom (B2-B4), (P2),
(C1-C3) and (M1-M4) can also be proved to be sound and complete with the
standard technique of canonical model construction in [6].

3 Illustrative Cases of TAC SCM

TAC SCM[8] provides a competition stage for researchers interested in both ar-
tificial intelligence agents and supply chain management. Agents in the chain

Toward a Formal Theory of Belief, Capability and Promise 303

should hold the belief about the information flowing across the supply chain.
When making sourcing strategy, the agent has better to affirm that the supplier
agent will be provided with sufficient supply capability and will keep its promise
to offer materials on time. Trades with the suppliers, as well as with the cus-
tomers, are negotiated through a request-for-quotes (RFQ) mechanism. If the
supplier can satisfy the order specified in the RFQ in its entirety, the supplier
will make promises to the agent meanwhile an offer is sent as a response. It may
be necessary for an agent to maintain a model of promise and capability for the
suppliers and their suppliers in order to keep the track of their production.

For the agent i, its supplier j and j’s supplier k, let ϕ and ψ denote re-
spectively the facts “obtaining sufficient materials” and “producing sufficient
components”. We may have the fact ϕ ⊃ ψ. Then from (R4), the agent i may
have the fact Cij(t, ϕ) ⊃ Cij(t, ψ). It is one of the possible instances that the
agent i will consider that k has the sufficient materials and k would supply j with
its materials. Therefore the agent i has the facts Cik(t, ϕ) and Bi(t, Pjk(t, ϕ)).
From (M4), Cij(t, ψ) is deduced. Building on the facts of Bi(t, Pij(t, ψ)) and
Cij(t, ψ), the agent i will believe ψ from (M3). Although the agent i has defi-
cient information about its supplier j, for example Bj(t, Pjk(t, ψ)) and Cjk(t, ψ)
which can be regarded as the business secrets of j, the agent i can also come to
the conclusion of Bi(t, ψ) when it plans production and delivery, as follows:

(1) Cij(t, ϕ) ⊃ Cij(t, ψ) ϕ ⊃ ψ and (R4)
(2) Bi(t, Pjk(t, ϕ)) ∧ Cik(t, ϕ) ⊃ Cij(t, ϕ) (M4)
(3) [Cij(t, ϕ) ⊃ Cij(t, ψ)] ∧ Cij(t, ϕ) ⊃ Cij(t, ψ) (1)(2) and (R1)
(4) Bi(t, Pij(t, ψ)) ∧ Cij(t, ψ) ⊃ Bi(t, ψ) (3) and (M3)

In the previous discussion, we have mentioned that some formulas are valid
whereas their converses are not. Let us dwell on this further with the following
example in TAC SCM. Let ϕ and ψ denote the facts “delivering the requested
quantity specified in RFQ” and “delivering on due date”, respectively. But the
delivered quantity depends upon the different strategies of the supplier(i.e. Like-
lihood of the agent). Thus it is possible for the agent i to consider that supplier j
has the capability to achieve either ϕ or ψ depending upon j’s strategy, but this
does not mean that i believes j can satisfy the order entirely on due date, i.e.
Cij(t, ϕ)∧Cij(t, ψ) ⊃ Cij(t, ϕ∧ψ) is not valid. On the contrary, if i is convinced
of both ϕ and ψ, it will believe that j has the capability to satisfy the order
either in quantity or on due date, i.e. Cij(t, ϕ∧ψ) ⊃ Cij(t, ϕ)∧Cij(t, ψ) is valid.

4 Related Works

Capability, on which we place strong emphasis, is one of the necessary conditions
for agents to interact and cooperate successfully. The very beginning of the re-
search on capability can be cast back to Ryle’s book[9], in which the author
argued the key difference between stupidity, that is, not knowing how, and igno-
rance, not knowing that. Singh[10] introduced an abstract concept Know How
to characterize the agent’s capability from the view of external system designers.

304 X. Zhao et al.

He suggested that it is not sufficient for an agent to be capable of performing
something, moreover the agent must have the knowledge required to form the
complete plans before acting. The KARO[2] framework is one of the best known
theories of rational agency which combined dynamic and epistemic logic into
one modal system perfectly. The authors of KARO consider composite abili-
ties to be built up from a set of atomic abilities using a variety of constructors.
Padgham[11] extended the well-known BDI architecture by adding Cap operator
in order to eliminate mismatch between theory and practice for actual systems.
A style of commitment was defined to enrich the existing formal models in [11],
which allowed a self-aware agent to modify its goals and intentions when its ca-
pabilities changed. Fisher [12] incorporated more flexible motivational attributes,
such as ability and confidence, then introduced ABC model. The main advan-
tage of the ABC modeling is that it provided a simple but flexible foundation
for a formal development method.

In [14], a logic was proposed to reason about perceptions and belief. The logic
contains three modalities: B stands for belief, P for actual perception, whereas C
for the sets of perceptions agent can perceive. Similar to ours, the modalities of
[14] use the standard semantics in modal logic and the neighborhood semantics.
[14] only deals with a single agent and not considering the temporal aspect.
Capability delivered in the BCP model is an abstract, high-level ability of agents,
and not limited to any kind of special abilities.

It is worthy to mention that the notion of capability is analogous to the
individual power-of an agent[15]. The individual power-of describes the powers
that an agent has without considering other agents, whereas the capability in
BCP model indicates the attitude of an agent towards other agents’ abilities.
In some sense, the term of social power [16] is more similar to the notion of
capability proposed here.

5 Conclusions

This paper aims to present a logical model for reasoning about belief, capability
and promise of rational agents incorporating temporal aspects. The basic tem-
poral BCP model plus properties of the three attitudes and the inter-relation
among the operators are explored with intuitive meanings. A reasoning example
is presented to show how the model is applied in an actual agent competition.

There are several possible directions for future investigations. For example,
the formalization presented here suffers from the logical omniscience problem.
Accordingly an agent believes and promises all logical consequences of its beliefs
and promises. In addition, a potential application of the model is to incorporate
with the contract net protocol (CNP). The self-interested agents may embellish
their bids and delude their manager to get more bids in order to maximize profits,
even if they cannot accomplish the tasks on time. In this case, it is necessary for
the manager to reason about the bidders’ capabilities to avoid an unexpected
delay of its task. In the future, we will keep improving the temporal BCP model
as well as apply it in more realistic domains.

Toward a Formal Theory of Belief, Capability and Promise 305

References

1. Rao, A.S., and Georgeff, M.P.: Modeling Rational Agents within a BDI Archi-
tecture. In: Proc. of the Second Conference on Knowledge Representation and
Reasoning (KR91), Morgan Kaufman, (1991) 473–484

2. Van Linder, B., van der Hoek, W., Meyer, J.-J. C.: Formalising Abilities and
Opportunities of Agents. Fundamenta Informaticae, 34 (1998) 53–101

3. Wooldridge, M.: Reasoning About Rational Agents. The MIT Press: Cambridge,
MA, 2000

4. Rao, A.S., and Georgeff, M.P.: Decision procedures for BDI logics. Journal of
Logic and Computation, 8(3) (1998) 293–342

5. Kraus, S., Sycara and K., Evenchik, A.: Reaching agreements through argumen-
tation a logical model and implementation Artificial Intelligence, 104 (1998) 1–69

6. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge, 1980

7. Shoham, Y.: Agent-oriented programming. Artificial Intelligence, 60(1) (1993)
51–92

8. The Supply Chain Management Game for the Trading Agent Competition (TAC
SCM) 2005. Available at http://www.sics.se.

9. Ryle, G.: The Concept of Mind. Barnes and Noble, New York, 1949.
10. Singh, M.P.: A Logic of Situated Know-how. In Proceedings of the Ninth National

Conference on Artificial Intelligence, (AAAI91), California, (1991) 343–348
11. Padgham, L., Lambrix, P.: Agent Capabilities: Extending BDI Theory. In Pro-

ceedings of Seventeenth National Conference on Artificial Intelligence, (AAAI00),
Austin, Texas, (2000) 68–73

12. Fisher, M. and Ghidini, C.: The ABC of Rational Agent Modelling. In Proceedings
of the First International Joint Conference on Autonomous Agents and MultiAgent
Systems, (AAMAS02), Bologna, Italy, (2002) 849-856

13. Churn-Jung L.: Belief, Information Acquisition, and Trust in Multi-Agent Systems-
a Modal Logic Formulation. Artificial Intelligence, 149(1) (2003) 31–60

14. Del Val, A., Maynard-Reid, P., Shoham, Y.: Qualitative Reasoning about Percep-
tion and Belief. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, (IJCAI97), Nagoya, Japan, (1997) 508–513

15. Castelfranchi, C.: A micro and macro definition of power. ProtoSociology C An
International Journal of Interdisciplinary Research, 18-19 (2002) 208-268

16. Carabelea, C., Boissier, O., Castelfranchi, C.: Using Social Power to Enable Agents
to Reason about Being Part of a Group. In Fifth International Workshop Engi-
neering Societies in the Agents World, (ESAW04), Toulouse, France, (2004)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 306 – 315, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Multi-agent Fuzzy-Reinforcement Learning Method
for Continuous Domains

Erkan Duman, Mehmet Kaya, and Erhan Akin

Firat University, Department of Computer Engineering, 23119, Elazig, Turkey
{erkanduman, kaya, eakin}@firat.edu.tr

Abstract. This paper proposes a fuzzy reinforcement learning based method for
improving the learning ability of multi-agents acting in continuous domains.
The previous studies in this area generally solved multi-agent learning problem
by using discrete domains. However, the most of real-world problems use the
continuous state spaces. Also, it is really a difficult task to handle the
continuous domains for multi-agent learning systems. In this paper, proposing a
novel approach, we will have two significant advantages according to the
conventional multi-agent learning algorithm. One of them is that the number of
state spaces of learning agents in multi-agent environment only depends on the
number of fuzzy sets which were used to represent the state of an agent.
Whereas, in the previous approaches, the visual area of agent or the size of
domain were taken into consideration for the state space. The other advantage is
that the employed environment has a continuous domain as in the real-world
problems. Experimental results obtained on a well-known pursuit domain show
the effectiveness of the proposed approach.

Keywords: Multi-agent Systems, Fuzzy Logic, Reinforcement Learning,
Continuous Domain.

1 Introduction

Multi-agent systems form a particular type of distributed artificial intelligence
systems. They are different from single agent systems in the sense that there is no
global control and globally consistent knowledge. So, limitations on the processing
power of a single agent are eliminated in a multi-agent environment. In other words,
since data and control are distributed, multi-agent systems include the inherent
advantage of distributed systems, such as scalability, fault-tolerance and parallelism,
among others [1].

The realization of cooperative behavior in multi-agent systems is an interesting
topic from the viewpoint of engineering and cognitive science. In particular,
reinforcement learning of cooperative behaviors has attracted recent attention because
of its adaptability to dynamic environments. For this purpose, reinforcement learning
has been applied to multi-agent systems such as pursuit games, soccer, the prisoners’
dilemma game, and coordination games.

One approach to model multiagent learning is to augment the state of each agent
with the information about other existing agents [2-4]. However, as the number of

 A Multi-agent Fuzzy-Reinforcement Learning Method for Continuous Domains 307

agents in a multiagent environment increases, the state space of each agent grows
exponentially. Another solution is to generalize visited states to unvisited ones as in
supervised learning. In order to handle this problem, functional approximation and
generalization methods seem to be more feasible solutions. Unfortunately, optimal
convergence of functional approximation implementation of reinforcement learning
algorithms has not been proven yet [5, 6, 10]. As the alternative approaches, we
proposed some fuzzy-reinforcement learning based methods for multi-agent discrete
domains [7, 8].

However, how agents acquire and maintain knowledge is an important issue in
reinforcement learning. When the state space of the task is small and discrete as it is
the case with the above studies, the Q-values are usually stored in a lookup table. But,
this method is either impractical in case of large state-action spaces, or impossible
with continuous state spaces. The main drawback of look-up tables is their scaling
problem. In case of a task with a huge state space, it is difficult and unlikely to store
all states in a limited memory and to visit each state in reasonable time. In order to
handle the problems of large and continuous state spaces, in this paper, we present a
novel multi-agent fuzzy-reinforcement learning method. It uses a fuzzy inference
mechanism in continuous domain. The each learning agent in the environment acts
observing its nearest partner and prey. Also, with the proposed reward mechanism, a
cooperation behavior is exhibited.

The rest of the paper is organized as follows. Section 2 gives an introduction of
reinforcement learning and Q-learning algorithm. Section 3 describes the proposed
algorithm. Section 4 presents the experimental results of the algorithm. Section 5
includes the conclusions.

2 Reinforcement Learning

Reinforcement Learning (RL) is used to answer the questions of how an autonomous
agent perceives the environment and make the optimum decision to reach its own
goal. It is very interesting that such an agent does not need any previous information
about the search space [9].

In the RL algorithm, an agent interacts with the environment by using its sensors
and actuators as shown in Figure 1. The agent receives the information of the current
state s by its sensors then it applies the making decision algorithm and determines an
output action a . It gets a feedback information r from environment after acting a . If
the new state of the agent is a goal state, r will be positive, otherwise, it will have a
negative value.

The RL might be modeled as a Markov Decision Process and this model is the
most widely mathematical model of RL. This is formalized as follows:

• S is the finite set of the states.
• A is the finite set of the actions.
• R is the function determining the expected reward r):(rSxAR →

• T is the translation function between the current and the next states
()()SSxAT π→,

308 E. Duman, M. Kaya, and E. Akin

Environment

Control
System

Agent

a

Action

Reward

State

r s

Fig. 1. The model of the Reinforcement Learning

The notation of ()IsasT ,, indicates the probability of the transition from state s to
Is by acting a . As a result of Markov Decision Process, the function of ()T does

not consider the previous states. It is only concerned with the current state and the
available actions.

The Q-Learning is the most popular technique in RL applications, where the pairs
of (state,action) are saved in a look-up table. The following learning equation is used
to update the cells of the Q-table in the run time.

() () () ()++−=
∈

II

Aa
asQrasQasQ

I
,max..,.1, γαα (1)

The notations of the α and γ indicates the learning rate and the discount factor at

the interval of the [0,1] respectively. ()II asQ , indicates the action with the

maximum reward in the next state.

3 The Proposed Method

In this study, a new approach based on fuzzy inference system is proposed to improve
the ability of the multi-agent reinforcement learning in continuous domain. Q-learning
is used as learning algorithm in this method. It could be understood from the title of
this study that all the hunter agents move together in order to reach a common goal.
The number of the hunter agents determined arbitrary is four and their common goal
is to surround the single prey agent in continuous pursuit problem. The cooperation of
the hunter agents is provided by using same structure of Q-tables and the learning
algorithm. However, they are not able to observe the search space entirely. Each agent
can see objects at a certain distance, the radius of which is r and does not have any
information about the remaining of the search space as seen in Figure 2.

So far, many researchers have proposed various methods to improve the learning
ability in multi-agent systems in discrete domain. However most of them are not
appropriate for continuous domain because the state space of each learning agent
grows exponentially in terms of the number of partners in environment and visual

 A Multi-agent Fuzzy-Reinforcement Learning Method for Continuous Domains 309

H1 r

H2 r

H3r

H4

r

P

r

Fig. 2. A Multi-agent system in the continuous pursuit problem

depth of each agent. In our method, the size of Q-tables is independent from these
terms; it is only related to the number of linguistic labels of input variables in fuzzy
inference system used to decide the optimal action in current state. This underlying
idea causes reducing the requirements of time and memory in Q-learning algorithm.
Also, the search space of the agents that has been transformed from a simple grid to a
continuous environment is very important advantage for the proposed method to be
able to be used in real world problems.

As you can see in Figure 3, each agent has a fuzzy inference mechanism in order to
choose the optimal action in its current state. There are four fuzzy input variables
representing the distances and the angles of the nearest and the prey hunters and, one
output variable for an action produced by inference mechanism in this structure.

The other nearest
hunter

The Prey

FUZZY
INFERENCE
MECHANISM

Distance

Angle

Distance

Angle

Action

Reward

Fig. 3. The fuzzy inference mechanism of each agent

First, each agent must perceive the nearest hunter and the prey available in its
visual area in order to start choosing an action. If they are inside, it must measure the
distance and the angle of them by crisp values as shown in above figure, which are the
input variables of the fuzzy inference mechanism. Here, the first step is fuzziness of
the input values as linguistic variables. So, each agent is able to determine its own
state by these fuzzy sets. In such a case, the action to be done is determined by using
relative rows.

310 E. Duman, M. Kaya, and E. Akin

Table 1. The structure of Q-table in the proposed method

state/action action-1 action-2 ….. …. ….. action-m
state-1 Q11 Q12 …. …. …. Q1m

state-2 Q21 Q22 ….. ….. …. Q2m

: : : : : : :
: : : : : : :

state-n Qn1 Qn2 ….. ….. ….. Qnm

As the rows in the Q-table indicates the states which agent can perceive, the
columns shows the possible actions. The ijQ values in cells represent the amount of

the reward in the case agent chooses action j in state i . If the agent observes state i ,

it must calculate the probabilities of the actions which is able to be done in that state

according to ijQ values in relative cells by using Equation 1. This equation is known

as Boltzmann distribution in literature, where τ represents the temperature which
will be decreased in the following iterations so as to reduce the probabilities of small

ijQ values. After the probabilities are calculated, the agent uses the Roulette Wheel

being a popular selection method in Genetic Algorithms to choose the action ia as

seen in figure 4 ()mi ≤≤1 .

[]
()

()
∈

=
Aa

asQ

asQ

i

k

k

i

e

e
sa τ

τ
π

/,

/,

| (2)

a1

a3

a2

a4

a5

ππ

π
π

π

Fig. 4. Roulette Wheel method for choosing an action according to their probabilities

However, the following equation as the learning rule is different from the

conventional structure by adding two gains: μ and Iμ . They represent the degrees of

the memberships of the agent in state s and Is respectively.

() () () ()++−=
∈

.,max...,.1, II

Aa

I asQrasQasQ
I

γαμαμ (3)

Each of the agents has a visual area whose radius is ()51 ≤≤ iri . Through this

study, all the visual areas are defined as same and the agents cannot observe the
remaining of the search space because this is generally a disadvantage if we decide to
apply the proposed method to the real-world problems.

 A Multi-agent Fuzzy-Reinforcement Learning Method for Continuous Domains 311

The information received from the environment by agent is about the distances and
angles of the other nearest hunter agent and the prey present in its own visual area. If
there is no other hunter and the prey in that area, the agent moves at random exactly.

This paper proposes a generalization method based on fuzzy sets to decrease the
state spaces of the agents in the continuous domain. For this case, the membership
functions representing states of each agent are given in Figure 5.

The both of the distance axes shown in Figure 5 have three uniform membership
functions and the definitive intervals of them are bounded with []100,0 , because the
radius of the agent’s visual area is assumed to be 100. The angle linguistic variables
for the other nearest hunter agent and the prey have four triangular membership

functions at interval of []οο 360,0 .

After the fuzzification of hunternearest θ variable which represents the angle of the

other nearest hunter, the agent will has two linguistic labels from the set of (East[E],
North[N], West[W] and South[S]) with 1m and 2m that indicate the membership

degrees of fuzzy sets it belongs to. With hunternearest d representing the distance of the

other nearest hunter agent, it will receive two linguistic labels more from the set of

(Small[S}, Medium[M] and Large[L]) with 3m and 4m .

Similarly, preyθ and preyd representing the angle and the distance of the prey are

fuzzified as explained.
The steps of observing a current state can be explained better by using a numerical

example as follows: Consider that the agent j is the nearest hunter inside the visual

area of the agent i and the agent i will measure οθ 30=ij and 60=ijd . In this case,

[]21, mm and []43 , mm are computed by above fuzzy sets as shown in Figure 6.

In this example case, the agent j , as the other nearest hunter, is assumed to be

located at North [N] with weight of 33.01 =m and at East [E] with weight of

67.02 =m according to the agent i . Besides, it belongs to Large [L] and Medium

[M] membership functions with weight of 2.03 =m and 8.04 =m respectively.

So, the agent i will observe the following four states with 4321 ,,, μμμμ .

s1 = EM (The agent j ’s angle is East and its distance is Medium).

s2 = EL (The agent j ’s angle is East and its distance is Large).

s3 = NM (The agent j ’s angle is North and its distance is Medium).

s4 = NL (The agent j ’s angle is North and its distance is Large).

The agent i observes state s1 with weight of 421 .mm=μ . Similarly, the other three

membership degrees are computed:

s1 = EM (The agent j ’s angle is East and its distance is Medium) 421 .mm=μ

s2 = EL (The agent j ’s angle is East and its distance is Large) 322 .mm=μ

s3 = NM (The agent j ’s angle is North and its distance is Medium) 413 .mm=μ

s4 = NL (The agent j ’s angle is North and its distance is Large) 414 .mm=μ

312 E. Duman, M. Kaya, and E. Akin

0 90 180 270 360

μ (nearest hunter)

East North West South East Small Medium Large

0 50 100

90 180 270 360

North West South East Small Medium

0 50

angle distance

angle distance

East Large

1000

angle μ (nearest hunter)
distance

μ (prey)
angle μ (prey)

distance

Fig. 5. Membership functions representing the state of an agent

0 90 180 270 360

μ (nearest hunter)

East North West South East Small Medium Large

0 50 100

angle distance

angle μ (nearest hunter)
distance

30

m =0,331

m =0,67
2

m =0,80
4

60

m =0,203

Fig. 6. The fuzzification of the οθ 30=ij and the 60=ijd

 We can assume that the prey agent p is inside the visual area of the agent i at the

same time. Then, the number of the states observed by the agent i will be 4x4=16.
Each of them is represented as a row in the agent’s own Q-table. However, these rows
can have different membership degrees. The membership degrees of all the states are
computed by minimum function using relative pairs of weights as two arguments.

In Q-table, the number of states depends on the number of the membership
functions, rather than the visual area of the agent. The agent’s decision space
resolution decreases if the radius of the agent’s visual area increases while the number
of the membership functions is constant. However, the agent perceives a larger area.
On the other hand, the agent exhibits a finer resolution if the number of membership
functions increases while the radius of the agent’s visual area is constant.

In this study, the number of the states is computed as shown in equation 5. It could
be thought as the number of the rows in each of the agent’s Q-tables.

1.LL states ofnumber The 43214321 +++= xLLLxLxLxL (4)

In the above equation, the iL variable indicates the number of the linguistic labels

for fuzzy input variables ()41 ≤≤ i . The size of the Q-table depends on the number of

 A Multi-agent Fuzzy-Reinforcement Learning Method for Continuous Domains 313

the other agents or the radius of the agent’s visual area. 1L indicates the number of

the agent j ’s angle variable according to the agent i . Similarly, 2L for the agent j ’s

distance, 3L for the prey’s angle and 4L for the prey’s distance are used to determine

the size of the state space. Each of iL is added with 1 because the relative input

variable is able to exceed the bounds of defined interval.
As an example, if we assume 3L and 4 4231 ==== LLL as in Figure 5 and

Figure 6, then the number of states evaluates to 12x12+12+12+1, where 12×12 is the
number of states in case both the prey and the other hunter are observed in the visual
environment of the hunter under consideration, 12+12 is the number of states in case
only one agent, either the prey or a hunter, is observed and 1 is the number of states in
case no agent is perceived.. The agent i will chose an action ia from the set of

actions ()54321 ,,,, aaaaaA = after it observed the current state according to the Q-

values in corresponding cells. The action ia can be one of the (right, up, left, down

and none).

H1

H2

H3

H4

P

A
B

C D

Fig. 7. The performed pursuit problem with 4 hunters and single prey

The proposed method was applied to a continuous pursuit problem with four hunter
and single prey as shown in Figure 7. If hunter 1 observes the its own current state, it
will see the area of A meaning the other nearest hunter is 4 and the prey is inside the
visual area. Similarly, the area of B for hunter 2, C for hunter 3 and D for hunter 4
will be drawn imaginary. The hunter 2 and 3 will chose an action at random exactly
because any other agent is not inside their visual area but hunter 4 will move
according to hunter 1’s location.

Hunter 1 will get a reward r computed as shown in Equation 5 from the

environment on moving a new state Is . sr represents the special reward that is

proportional with only the distance between hunter 1 and prey. It is limited to 50
because the goal is to surround the prey by all hunters, not only by one. gr indicates

the general reward according to the distances of all hunters to the prey and it is
limited to 50 too. Thus, when all hunters surrounded the prey, the r will be 100.

gs rrr += (5)

314 E. Duman, M. Kaya, and E. Akin

4 Experimental Results

We used a pursuit game containing a single prey and four hunter agents in the
continuous domain to evaluate the performance of the proposed method. In the
experiment environment, we tested it in 10000 trials. Each trial begins with a single
prey and four hunter agents placed at random positions inside the search space, and
ends when either the prey is captured or at 2000 time steps.

When the all hunter agents surround the prey, they get the reward of 100 from
environment. Otherwise, each hunter agent gets a special reward according to its
distance to the prey and others. The size of domain is fixed as 5000x5000. Besides,
we determined the parameters of the Q-learning as the following.

• The learning rate, 2.08.0 →=α
• The discount factor, 9.0=γ

• The initial value of the Q-cells are 0.1

We determined that the learning rate α was 0.8 at the beginning of the experiment
but when the learning process had been well advanced it begun to decrease until 0.2.
Specially, having chosen the initial values of the cells in the Q-tables as 0.1
accelerated the learning processes of the agents.

We applied the practice in an environment that it was developed by using a visual
object-oriented programming language. The search space and the agents were
represented by a continuous toroidal grid object and geometrical shapes objects
respectively.

0

200

400

600

800

1000

1200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Trial(x100)

A
va

ra
ge

 T
im

e
S

te
ps

Fig. 8. The experimental result of the proposed method

 A Multi-agent Fuzzy-Reinforcement Learning Method for Continuous Domains 315

The average time steps per trial were calculated for 10000 trials after a small
number of tests as seen in figure 8. There was a rapid learning process between 1500
and 2000 trials then the learning curve started to converge, because the learning rate
reached the minimum value after 2000 trials.

5 Conclusion

We have proposed a novel multi-agent fuzzy-reinforcement learning method for
multi-agent system in continuous domain as the real world problems to improve the
performance of it. There were a few disadvantages for traditional RL algorithms to be
able to be used in real applications. For instance, the size of Q-tables and the time
requirement would grow up exponentially for the most conventional methods so we
adapted it by using fuzzy sets. Besides, in the our proposed method, we considered
that an agent was not be able to see the entire of the search space and the requirements
were not depend upon the visual depth and the number of the agents. There were two
significant criteria for the sensitiveness of the system that the number of the linguistic
labels used in fuzzy logic and the parameters of these labels in the our proposed
method.

References

1. P. Stone and M. Veloso, “Multiagent systems: A Survey from a Machine Learning
Perspective,” Autonomous Robots, Vol.8 No.3, 2000.

2. M.L. Littman, “Markov Games as a Framework for Multiagent Reinforcement Learning,”
Proceedings of the International Conference on Machine Learning, pp.157-163. San
Francisco, CA, 1994.

3. T.W. Sandholm and R. H. Crites, “Multiagent Reinforcement Learning in the Iterated
Prisoner’s Dilemma,” Biosystems, Vol.37, pp.147-166, 1995.

4. M. Tan, “Multi-agent Reinforcement Learning: Independent vs. Cooperative Agents,”
Proceedings of the International Conference on Machine Learning, pp.330-337, 1993.

5. R.S. Sutton, “Generalization in reinforcement learning: Successful Examples Using Sparse
Coarse Coding,” Advances in Neural Information Processing Systems, 1996.

6. R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction, Cambridge, MA:
MIT Press, 1998.

7. M. Kaya and R. Alhajj, “Modular Fuzzy-Reinforcement Learning Approach with Internal
Model Capabilities for Multiagent Systems”, IEEE Transactions on Systems, Man and
Cybernetics-Part B, vol. 34 (2), pp. 1210-1223, April 2004.

8. M. Kaya and R. Alhajj, “Reinforcement Learning in Multiagent Systems: A Modular
Fuzzy Approach with Internal Model Capabilities”, 14th IEEE International Conference on
Tools with Artificial Intelligence, November 2002, Washington DC.

9. L.P. Kaelbling, M.L. Littman and A.W. Moore, “Reinforcement learning: A survey,”
Artificial Intelligence Research, Vol.4, pp.237-285, 1996.

10. H. Berenji and D. Vengerov, “Advantage of Cooperation between Reinforcement Learning
Agents in Difficult Stochastic Problems,” Proceedings of IEEE International Conference
on Fuzzy Systems, 2000.

An Adaptive Approach for the Exploration-Exploitation
Dilemma for Learning Agents

Lilia Rejeb1, Zahia Guessoum1,2, and Rym M’Hallah3

1 CReSTIC, MODECO Team, Rue des Crayères, Reims Cedex2, France
2 Université de Paris-VI, LIP6, OASIS Team, 4 place Jussieu, 75252 cedex 5, France

3 Kuwait University, Dep. of Statistics and Operations Research, P.O. Box 5969, Safat 13060

Abstract. Learning agents have to deal with the exploration-exploitation
dilemma. The choice between exploration and exploitation is very difficult in
dynamic systems; in particular in large scale ones such as economic systems.
Recent research shows that there is neither an optimal nor a unique solution for
this problem. In this paper, we propose an adaptive approach based on meta-rules
to adapt the choice between exploration and exploitation. This new adaptive ap-
proach relies on the variations of the performance of the agents. To validate the
approach, we apply it to economic systems and compare it to two adaptive meth-
ods: one local and one global. Herein, we adapt these two methods, which were
originally proposed by Wilson, to economic systems. Moreover, we compare dif-
ferent exploration strategies and focus on their influence on the performance of
the agents.

1 Introduction

The exploration-exploitation dilemma, which is an important problem frequently en-
countered in reinforcement learning [17], is defined as follows. When an agent is faced
with a state of the environment, it either chooses to explore its environment and try new
actions in search for better ones to be adopted in the future [12], or exploit already tested
actions and adopt them. When opting to explore, the agent is considering its long term
performance whereas when opting to exploit tested actions, the agent is considering its
short term performance [15].

Formally, the agent has to resolve two subproblems. The first subproblem consists of
choosing an exploration method. The exploration can be either directed or undirected.
The second subproblem consists of identifying a method that switches the agent’s mode
between exploration and exploitation according to the state of the agent and the state of
its environment. The two subproblems are important since they influence the learning
speed, the performances and the actions of an agent. This influence is more critical
when the agent environment is dynamic, which is the case of economic systems.

In this paper, we study the aforementioned two subproblems in the context of an
economic system characterized by a set of firms in competition in a shared market.
We propose an adaptive approach to the exploration-exploitation problem in a dynamic
economic context where firms are modeled using the XCS-learning classifier system
for their decision process [9]. We show that a firm performance can be improved when

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 316–325, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Adaptive Approach for the Exploration-Exploitation Dilemma 317

it opts for directed exploration and uses a meta-rules based approach to choose between
exploration and exploitation.

This paper is organized as follows. Section 2 presents the firm model and an
overview of the learning classifier system XCS. Section 3 investigates exploration tech-
niques. Section 4 presents the proposed meta-rules approach and the adaptation of Wil-
son’s techniques to our context. Section 5 presents and analyzes the experimental re-
sults. Finally, Section 6 summarizes the contributions of this paper and provides future
extensions.

2 Adaptive Firms

We study the exploration-exploitation dilemma in the context of a dynamic economic
system where a set of firms are in indirect interaction in a shared market. We model the
firms as adaptive agents with the XCS-learning classifier system for their learning. In
Section 2.1, we present the model of a firm while in Section 2.2, we detail the charac-
teristics of the XCS classifier system, and explain how agents learn when using it.

2.1 The Firm Model

We model firms using a resource-based approach [10]. We regard a firm as a collection
of physical and human resources. We stipulate that the survival of a firm depends on
the way it allocates its resources. A firm is characterized by a set X of resources, a set
Yt = (Yt[1], Yt[2]) of performance indicators, where Yt[1] is profitability and Yt[2] is
market share at time t, a capitalK , a budgetB (which when allocated updates the status
of the firm resources), and a set S of strategies available for the firm. The performance
of a firm is measured using the statistical Lisrel Model. The allocation of the budget B
to the different resources X according to the firm priority defines the firm strategy.

A firm behavior is dynamic over time. Each time period, a firm

– observes its environment and updates its competition model;
– updates its internal parameters (eg., its capital K and budget B);
– opts for a strategy; and
– updates its performance.

A firm chooses the strategy that best suits its current context. The context of a firm
is determined by the firm’s internal parameters (K,B,X, and Yt), and its perception
of the environment, which is strongly competitive and non-stationary. At the end of a
time period, firms can either join or leave the market. A firm leaves the market either
when its performance decreases over a number of successive periods or when its capital
decreases and reaches an exit threshold. Its exit or extinction is the result of a bad
strategy used by the firm not disposing of all the information about its rivals.

Each firm, represented by an agent, bases its perception of its current context on
its environment. This perception is an aggregation of the performances and the capital
of the firms present in the environment. Based on this perception, the firm chooses the
most suited strategy. The dynamic nature of the environment makes it difficult for a
firm to anticipate all the possible outcomes of its strategy and/or to take into account

318 L. Rejeb, Z. Guessoum, and R. M’Hallah

the inadequate outcomes of its prior strategies. A firm gradually builds its rule base as
it acquires knowledge from its environment. Herein, the XCS classifier systems defined
by Wilson [16] constructs the model of the firm environment, updates the model as a
firm acquires experience and foresees the possible consequences of the decision before
it is undertaken.

2.2 XCS and Adaptive Firms

We use XCS [16] to model the decision process of adaptive firms. XCS constructs a com-
plete and accurate model of a firm environment. It develops a readable set of “condition-
action” rules or classifiers which explain the evolution of the environment [8].

A classifier is also characterized by three parameters: its prediction p, its prediction
error e and its fitness F which evaluates the quality of the prediction p. The condition
part of a classifier is a representation of the perception of the environment; that is of the
context of the firm. The set of possible actions or strategies is defined by the economist.
In our case, the set has twenty strategies oriented towards customers, suppliers and
production.

At each decision period, XCS undertakes a perception, prediction, action cycle. It
determines the set [M] of classifiers whose conditions match the context of the firm. If
[M] is empty, covering takes place; else the average prediction PSi of each action ai

proposed by the classifiers in [M] is calculated:

PSi =
∑

Fcljpclj∑
Fclj

, (1)

where Fclj and pclj are respectively the fitness and the prediction of classifier j when
undertaking action ai. The PSi serves as the decisional basis for the firm action se-
lection which is either done by exploration (random choice) or exploitation (choice of
the action having the largest PSi). Exploration encourages a firm to take risks whereas
exploitation incites a firm to avoid risks.

The firm adopts the chosen action or strategy and gets a reward rt at time t. This
reward is an aggregation of the firm performances variations:

rt = aggreg

(
Yt[1]− Yt−1[1]

Yt−1[1]
,
Yt[2]− Yt−1[2]

Yt−1[2]

)
(2)

where aggreg is the average aggregation operator. rt is used by the reinforcement learn-
ing component represented by the Q-Learning algotithm [14] to update the p, e and F
of the classifiers proposing the chosen action. These classifiers are blocked in a set [A]
which is updated by a Michigan genetic algorithm when possible.

3 Exploration Techniques

Exploration techniques are classified as undirected and directed [13]. Undirected tech-
niques are random. They are difficult to use in real-valued domains and in large state-
action spaces. They increase the learning time exponentially. Directed exploration tech-

An Adaptive Approach for the Exploration-Exploitation Dilemma 319

niques seek to improve the knowledge of the environment by adopting more informa-
tive actions. They include techniques such as recency-based exploration and frequency-
based exploration.

To compare the performance of firms under directed and undirected techniques, we
need to integrate directed exploration techniques in XCS. Indeed, the current version
of XCS randomly chooses between exploration and exploitation, and allows undirected
exploration only. In the following, we explain how we integrate, within XCS, the best
known directed exploration techniques: recency based approach and frequency based
approach.

The recency-based technique selects the least recently selected action independently
of its number of occurrences. It finds, for each action a, the matching classifiers j, j =
1, . . . , n and determine the recent activation-time

Rec(a) = min
j=1,n

{t−ActivationT ime(clj)} (3)

where ActivationT ime(clj) is the last activation date of classifier clj , and t is the
current time. It chooses then the action with the maximal Recency value.

The Frequency-based exploration selects the least frequently used action a. It tallies
for each action the frequency Freq(a) of the corresponding matching classifiers that
were previously used at least once and rewarded.

Freq(a) = min{
∑

j=1,n

(clj) : experience(clj) ≥ 1} (4)

where experience is the activation frequency of clj in a similar context of the firm.
Wiering [15] states that when the firm is interested in immediate reward, it has to

switch to exploitation and has to gradually increase its rate of switching to exploitation.
An exploitation-exploration tradeoff is therefore needed.

4 Exploration-Exploitation Tradeoff

Finding a balance between exploration and exploitation is not an easy task [5,6]. Most
existing methods, such as the “interval estimation” [6,7] and the “Gittings index” [5,1]
techniques, deal with small non-complex problems [13]. Methods that are applicable to
more complex contexts such as a multi-agent context are limited in number [11,4]. Peres
[11] underlined the necessity to link the changing rate of exploration and the changing
indicators of performance to the changing prediction, but proposed no solution. Carmel
[4] integrated an exploration technique to a learning-based model and applied to game
theory with a small number of agents.

Wilson [17] proposed ten techniques that were tested on small simple test problems
only. Their performance is sensitive to the constant gain factor fixed by the designer.
The behavior of these techniques in complex systems remains however an open issue.
In the following, we propose to test the behavior of two of these techniques in more
complex settings.

320 L. Rejeb, Z. Guessoum, and R. M’Hallah

4.1 Wilson Techniques

Wilson techniques focus on an “on-line ”choice between exploration and exploitation
in a dynamic environment. They are based on the rate of variation of the performance
(prediction) or the prediction errors. In this section, we adapt two adaptive Wilson tech-
niques : a local and a global one.

The adaptive local technique is applied at each activation of XCS. When all the
classifiers matching the current context are identified, the values of the moving average
Êi of the difference between the current and estimated error of action ai are computed
for all actions. The exploration probability p1 is then determined:

p1 = min
{
1, f
(
Êi

)
×Gf

}
, (5)

where Gf is a given gain factor, and

f
(
Êi

)
=

∑
i=1,na(Êi)
na

(6)

where na is the number of the identified actions in the set of matching classifiers [M].
The adaptive global technique estimates Ê the average prediction error during ex-

ploration periods and determines the rate of change g
(
Ê
)

which is the difference be-

tween the moving averages of Ê before and after n periods of exploration (where n is
usually set to 100). The rate of change is then used to determine the probability p1:

p1 = min
{
1, g
(
Ê
)
×Gf

}
. (7)

Thus, if the average prediction error changes, n other steps of exploration are executed
prior to switching to exploitation.

The performance of both of Wilson strategies -the local and the global- are sensitive
to Gf, n, and pexploration. We avoid this shortcoming by using an approach based on
meta-rules.

4.2 A Meta-Rules Based Approach

We use meta-rules to control the activation of exploration and exploitation. These meta-
rules adapt the choice between exploration and exploitation to the evolution of the firm
performance. They account for the new variations of the environment, once the firm has
learned. They are simple and make the behavior of the classifier system close to that
of a decision maker. Contrary to some techniques of Wilson, they allow the return of a
firm to exploration and do not use the gain factor.

After n periods of exploration and m periods of exploitation, the following meta-
rules are applied:

– IfMYt+n > MYt+n+m, the system must continue learning. Subsequently, m must
be decreased: m = m ∗ (1− Exploitation Rate).

– If MYt+n ≤ MYt+n+m, the system has achieved enough learning. Subsequently,
m must be increased: m = m ∗ (1 + Exploitation Rate).

An Adaptive Approach for the Exploration-Exploitation Dilemma 321

MYt+n and MYt+n+m correspond to the moving average of the aggregation of
Y[1] and Y[2] during the exploration and exploitation periods, respectively.
Exploitation Rate represents the variation rate of m. Once the system has acquired
enough learning, the value of m becomes very large. The value of n is maintained pos-
itive to allow the system to adapt to small changes of the environment.

5 Experimental Results

The objective of this experimentation is twofold. First, we investigate the impact of
exploration techniques on the performance of a firm. Second, we study the impact of
the meta-rules approach and compare it to other choice techniques of exploration and
exploitation.

The XCS parameters are fixed as follows: the population size is 6000 (allowing the
system to represent all the possible classifiers when the generalization is not used), the
generalization probability is 0.5; the learning rate is 0.001; the crossover rate is 0.8; the
mutation rate equals 0.02; the minimum error is 0.01; the genetic algorithm frequency
is 10 (allowing an update of the classifiers population), and the exploration probability
equals 0.5. Each simulation is replicated 20 times. The reported results correspond to
the average values of these 20 replications.

5.1 Exploration Techniques

The first series of experiments compares exploration techniques. The comparison is
based on the results of the simulation of three populations involving 300 firms each.
These populations use respectively recency, frequency, and random based exploration
techniques. The three populations use identical initial parameters and the same
exploration-exploitation method.

Figures 1 and 2 show the difference between the directed and undirected exploration
techniques. They show that directed exploration is interesting at the beginning of the

Fig. 1. Random vs. Recency-based exploration
techniques

Fig. 2. Random vs. Frequency-based explo-
ration techniques

322 L. Rejeb, Z. Guessoum, and R. M’Hallah

Table 1. Summary statistics for the capital of firms

Technique Run 1 2 3 4 5
Random Standard deviation 99.78 104.22 111.21 128.57 50.11

Average 869.63 854.64 880.57 875.57 862.43
Frequency Standard deviation 58.72 123.48 123.53 113.77 125.35

Average 882.66 874.73 861.91 870.71 883.02
Recency Standard deviation 123.87 118.44 131.30 122.32 55.35

Average 872.38 869.61 880.31 886.91 877.57

simulation period. It directs the exploration towards the use of new actions; which is
not always the case for random exploration. It enriches the classifier population at the
beginning better than random exploration, and results in a larger accumulation of the
environment knowledge. On average, directed exploration does not greatly improve the
performance of a firm. The average percent improvement is 3.4 %, reaching a maximum
of 9.1% and a minimum of -7%. Table 1 displays the mean and standard deviation of
the capital of firms from different simulation runs. The mean of the two techniques of
directed exploration is greater than that of the random exploration but this difference is
not statistically significant at the 99.95 % level. Therefore, directed-exploration alone
is not sufficient to improve the performance of a firm. A balance between exploration
and exploitation remains needed.

5.2 Exploration-Exploitation Techniques

The second series of experiments compares the techniques of choice between explo-
ration and exploitation. First, we compare the proposed meta-rules based approach to a
random switch approach. Second, we compare the proposed meta-rules based approach
to the adapted Wilson techniques.

Meta-rules vs. Random Switch Techniques. To compare the proposed meta-rules ap-
proach to a random switch approach, we run a simulation involving two types of pop-
ulations of firms. The first population uses a random choice between exploration and
exploitation whereas the second uses the meta-rules with an exploitation Rate = 20
%. To focus on the exploration-exploitation switch technique, we endow these popula-
tions with identical parameters and with the same exploration technique. We set n = 20
and m = 10.

Figure 3 shows that the use of meta-rules improves the performance of surviving
firms. The comparison of the average life span for firms adopting meta-rules (112 peri-
ods) to the average life span for random-XCS firms (107 periods) shows that meta-rules
improve the resistance of firms. The important degradation of the performance of firms
when meta-rules are applied coincides with the beginning of the exploitation period.
This degradation shows that firms should have pursued learning and that it was too
early for them to consider exploitation.

Despite their positive impact on the performance of firms, the meta-rules are sen-
sitive to the values of n and m. Large periods of exploration are advantageous at the
beginning when a firm has not learned enough. However, large n values could become

An Adaptive Approach for the Exploration-Exploitation Dilemma 323

Fig. 3. Comparison of the capital of random XCS firms and meta-rules firms

Fig. 4. Comparison of the meta-rules based ap-
proach to Wilson local technique

Fig. 5. Comparison of the meta-rules based
approach to Wilson global technique

hazardous when the firm has acquired enough learning. At the end of the simulation,
shorter periods of exploration are preferred.

Meta-rules vs. Wilson Techniques The following results are obtained by two sim-
ulations. The first includes a population of 300 firms adopting the meta-rules based
approach and a population of 300 firms using Wilson adaptive local technique. The
second includes the first population and a population of 300 firms using Wilson global
adaptive technique. The gain factor for Wilson techniques is set to 0.5. The three popu-
lations share the same parameters and strategies except for the exploration-exploitation
switch strategy. We compare Wilson local strategy to the meta-rules strategy on Figure
4 while we compare Wilson global strategy to the meta-rules strategy on Figure 5.

These graphics show that the use of meta-rules improves the performance of firms.
This improvement is more pronounced with respect to Wilson global adaptive tech-
nique. In fact, this strategy does not allow firms to return to exploration once they have
acquired enough knowledge and the environment has changed. The improvement is less

324 L. Rejeb, Z. Guessoum, and R. M’Hallah

Table 2. Summary statistics for the average capital of firms under different exploitation-
exploration strategies

Meta-rules GlobalWilson LocalWilson
Standard Deviation 44.65 47.97 85.07
Average 912.50 862.19 962.75

pronounced when comparing the meta rules to Wilson local technique as the latter re-
considers the choice for each period. The local Wilson strategy is clearly better at the
beginning of the simulation period as the meta-rules based approach engages only in
exploration for long periods, at the beginning of the simulation. However, in the long
run, meta-rules outperform Wilson local strategy. Basing decisions only on current in-
formation is not wise on the long run. The meta-rules based approach is promising and
could be improved by adapting the exploitation Rate to the age of the firm.

These conclusions are further confirmed when we compare the standard deviation
and mean capital, displayed in Table 2, of the three populations. A smaller standard
deviation of the capitals reflects a more stable behavior of an approach; thus, the meta-
rules strategy is more stable than either Wilson local or global strategies. Even though
its mean is the largest, Wilson local strategy is not necessarily the best strategy because
of its very high variation: it could cause a large drop of the capital due to successive
erroneous choices between exploration and exploitation and subsequently cause the
disappearance of the firm. However, on the long run, the average capital doesn’t greatly
improve as all firms are simultaneously learning.

6 Conclusion

In this paper, we studied the exploration-exploitation dilemma and learning in the con-
text of large scale economic systems. The experiments demonstrated that directed ex-
ploration is useful at the beginning for the construction of the classifiers population as
it decreases the learning time of firms. However, these techniques are insufficient to
improve the performance of a firm. We proposed an adaptive approach that determines
the choice between exploration and exploitation. This approach is based on meta-rules
that adapt the choice to the evolution of the performance and knowledge of the firm.
We compared the proposed approach to two adaptive techniques, originally proposed
by Wilson, and adapted herein to a dynamic environment. The obtained results show
that the approach is promising. However, the adaptation of the rate of change of the
meta-rules to the age of the firm is needed.

References

1. Azoulay-Schwartz, R., Kraus, S., Wilkenfeld, J.: Exploration vs. exploitation: choosing a
supplier in an environment of incomplete information. Elsevier Science (2003).

2. Baum, J.A.C., Rao, H.: Handbook of Organizational Change and Development: Evolutionary
Dynamics of Organizational Populations and Communities. Oxford University Press (1999).

An Adaptive Approach for the Exploration-Exploitation Dilemma 325

3. Butz, M. V., Wilson, S. W.: An algorithmic description of XCS. Journal of Soft Computing,
6 (2002) 144–153.

4. Carmel, D., Markovitch, S.: Exploration Strategies for Model-Based Learning in Multi-agent
Systems. Autonomous Agents and Multi-agent systems. Nicholas Jennings and Katia Sycara
and Michael Georgeff (eds.). 2(2) (1999) 141–172.

5. Gittings, J. C.: Multi-armed bandit allocation indices. NY: John Wiley and sons (1989).
6. Kaelbling, L. P., Moore, A. W.: Reinforcement learning: A survey. Journal of Artificial Intel-

ligence Research, 4, (1996) 237–285.
7. Meuleau, N., Bourgine, P.: Exploration of multi-state environments: Local measure and back-

propagation of uncertainty. Machine Learning. 35(2) (1999) 117–154.
8. Miramontes Hercog, L., Fogarty, T. C.: Social Simulation Using a Multi-agent Model Based

on Classifier Systems: The emergence of Vacillating Behavior in the “ El Farol” Bar Problem.
In P.L. Lanzi, W. Soltzman and S. Wilson eds.: IWLCS 2001,Volume 2321 of Lecture Notes
in Artificial Intelligence. (2002) 88-111.

9. Rejeb, L., Guessoum, Z.: Adaptive Firms. In Proc. AISTA’04 International Conference on
Advances in Intelligent Systems - Theory and Applications. In cooperation with the IEEE
Computer Society. Luxembourg November (2004).

10. Penrose, E. T.: The theory of the growth of the firm. Basil Blackwell, (1959).
11. Peres-Uribe, A., Hirsbrunner, B.: The risk of Exploration in multi-agent learning systems: a

case study. Proc. Agents-00 Joint workshop on learning agents, Barcelona, June 3–7, (2000)
33–37.

12. Sutton, R. S., Barto, A.G.: Reinforcement learning, an introduction. The MIT Press, (1998).
13. Thrun S. B.: The role of exploration in learning control. In D A. Sofge (eds.). Handbook

of Intelligent Control: Neural, Fuzzy and Adaptive Approaches. Florence, Kentucky: Van
Nostrand Reinhold (1992).

14. Watkins, C., Dayan, P.: Q-Learning. Machine Learning, 8 (1999) 279-292.
15. Wiering, M.: Explorations in Efficient Reinforcement Learning. Ph.D. thesis. February

(1999).
16. Wilson, S.W.: Classifiers Fitness Based on Accuracy. Evolutionary computation, 3(2) (1995)

149-175.
17. Wilson, S.W.: Explore/Exploit Strategies in Autonomy. In P. Maes, M. Mataric, J. Pollac,

J.-A. Meyer and S. Wilson eds. From Animals to Animats 4, Proc. of the 4th International
Conference of Adaptive Behavior, Cambridge (1996).

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 326 – 335, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Multi Agent Approach to Interest Profiling of Users

P.H.H. Rongen1, J. Schröder1, F.P.M. Dignum2, and J. Moorman2

1 IBM Nederland - Center for Advanced Studies
{erik, jasper}@nl.ibm.com

2 Institute of Information and Computing Sciences
Utrecht University

{dignum, jmoorman}@cs.uu.nl

Abstract. Intelligent applications deliver personalized experiences and services
to the user. This is done by creating and using a profile of the user: user profil-
ing. Several approaches and algorithms are developed for user profiling. This
paper describes a multi agent approach that allows multiple algorithms to be
combined dynamically to generate a knowledge and interest profile of a user.
IBM's ABLE environment was used for the implementation of the multi agent
system. To test the system, the user interest profile is build on browse behavior
and this profile is applied in a TV program recommender system. The results of
implemented system show that multi agent systems provide an excellent plat-
form for an extendible user profiling system that can use multiple classifiers.

1 Introduction

The amount of channels that provide us with information increases rapidly. These
channels get more and more available to us at any time and any place. In the last ten
years the clear distinction between places and activities has faded away. As a result
daily life is becoming more and more complex, despite the increasing capabilities of
intelligence in applications and services [SC04]. Intelligent applications provide per-
sonalized services and experiences, based on user profiles. A user profile is a collec-
tion of attributes that belong to an individual. This includes address books in mobile
phones, browser history information, and messages, emails and documents authored
by the user. This data can be processed to obtain additional user profile information.
Examples are the extraction of a user’s social network from address books, the deduc-
tion of user interests from the browser history and the extraction of expertise from
messages and documents written by the user.

User profiles can be created explicit or implicit by the subject or can be created by
others. When signing up to a web site like hotmail, a user has to fill out a form con-
taining amongst others name and address. This is defined as the explicit creation of a
user profile. Implicit creation of a user profile happens automatically during other ac-
tivities. Examples of implicit user profiling are Amazon that keeps an interest user
profile based on bought books and your computer keeping track of visited web pages.
Doctors create medical records for their patients which is a sample of explicit profile
creation by others.

 A Multi Agent Approach to Interest Profiling of Users 327

Explicit creation of a user profile by a user has a number of disadvantages amongst
which that users get annoyed at them and thus do not fill in correct and/or complete
information. In the other hand, implicitly build profiles can be very incomplete.

Besides the distinction of explicitly and implicitly build profiles we can also dis-
tinguish profiles on the basis of whether they are structured or unstructured. Many
implicitly build profiles are unstructured. I.e. they are not predefined in any way and
will either be defined ad hoc during the profiling process, or remain undefined while
the profile data is just stored in raw form. Unstructured profilers are often used by
systems that use the profile directly in local applications. A good example of such a
system is WebMate[CH97]. WebMate is a personal assistant that produces a personal-
ized news paper by observing multiple news sources and selecting the news articles
that match with the current user profile.

A good example of a structured profiler is the Quickstep system [MI04] that acts as
a recommender system for a group of researchers within a computer science labora-
tory. The Quickstep system monitors the browsing behavior of a specific researcher
by recording the visited web pages, classifying them onto an existing ontology of
topics.

A major drawback of unstructured user profiles is that it is difficult to reuse them
in different systems or to compare them. In addition structured profiles can more eas-
ily be visualized, reviewed and modified by a user.

The different user profiling systems use different approaches and techniques for
the internal representation of the user profile. Samples of these techniques are the vec-
tor space model, n-grams, semantic networks, associative networks, and classifiers in-
cluding neural networks, decision trees, inducted rules and Bayesian networks
[MO02]

In situations where multiple techniques and profilers compete with each other to be
the best and perform differently in different environments, the best solution is to com-
bine multiple techniques and profilers into one system. This is possible through the
use of a multi agent system, which also provides the possibility to distribute the appli-
cation over multiple systems.

In the remainder of this paper, a flexible multi agent system approach is presented
that is able to create and manage the profile of a user dynamically. The profiling sys-
tem is split up into several autonomous entities that all take care of a specific part of
the profile and combine their results in an overall user profile. The agents collaborate
in producing an appropriate profile and compete with each other in delivering the best
results.

This multi-agent system is tested with the personal television guide created by the
Telematica Institute [TE04]. The multi-agent system builds the user profile on browse
behavior and the profile is used by the television recommender to create viewing ad-
vises.

2 Multi Agent System Architecture

The profiling system presented here is able to generate a profile from the data that is
obtained by observing user behavior. This data can for instance be the number of web
pages the user has visited the past hour, the e-mail the user received today or the

328 P.H.H. Rongen et al.

transcripts from a number of chats. Both unstructured and structured approaches to
the classification of profiling data are considered. The general design of the presented
profiling system is based on a structured approach. It consists of a structured hierar-
chy of profiling agents, each of which is responsible for a sub topic of the total pro-
file. At the top level of this hierarchy, a single agent called the root, can be found. The
root agent observes the behavior of a certain user and sends this information through
to agents that are connected to it. When no agents are connected yet or the current set
of agents is unable to profile the current data, the root will try to connect to other
agents by requesting them from an agent pool. Whenever the root obtains data, it will
request new agents from the agent pool to profile this new data.

The newly connected agents themselves may request other agents to create more
specific profiling data. Figure 1 shows the profiling hierarchy after a number of new
agents has been connected to the previously connected ones.

Fig. 1. An iteratively extended profiling hierarchy

An important reason to use a hierarchical agent structure is that generally, a classi-
fier performs better within a limited domain. Classifying algorithms often locate and
use the most distinguishing set of elements from the data to be able to determine the
right class. In limited domains it is much easier to locate these distinguishing ele-
ments. A soccer agent for instance, can assume the incoming information is classified
as sports, since it is placed beneath the sports agents within the hierarchy. Such a soc-
cer agent therefore only has to find the distinguishing factors of soccer compared to
other sports and doesn’t have to worry about distinguishing the data from other topics
that don’t concern sports.

Another reason for using a hierarchical agent structure is performance. If all agents
are connected directly to the root, the system will become increasingly slow, when the
number of agents grows, since the root will have to pass the new information to all
other agents, and they all have to process it.

The current approach doesn’t enforce the agents to use a specific structure for
building the hierarchy. The hierarchy is initiated with a root and whatever will be
added to this hierarchy is up to the agents. In the current design approach, the agent
pool is responsible for defining the structure of the hierarchy. Whenever an agent of
the profiling hierarchy requests a new node agent from the agent pool, a specialized
agent called the pool keeper will determine which agents will be advised to the re-
quester and therewith the structure of the hierarchy

 A Multi Agent Approach to Interest Profiling of Users 329

2.1 The Profiling Agents

The profiling agents can decide autonomously whether the incoming information can
be profiled as belonging to their designated topic, or not. To increase the flexibility of
the classification, different algorithms can be applied to different domains and differ-
ent algorithms can be combined to produce a weighted average. This is achieved by
connecting a profiling agent to multiple classifiers. These classifiers are specialized in
classifying documents on a certain topic with a certain algorithm. A number of classi-
fiers are connected to the profiling agent. The profiling agent forwards the informa-
tion it retrieves from super-nodes to the classifiers and combines their results to de-
termine the outcome of the profiling process.

 Whenever the profiling process is successful, indicating that the incoming infor-
mation could be classified according to the designated topic of the profiling agent, the
agent will forward the data to its connected profiling agents or, if the current agents
are unable to process it, will contact the pool keeper to obtain new profiling agents for
the new data.

Figure 2 shows the resulting model for the multi agent profiling system. The model
indicates the different types of agents and their relationships. The profile root can be
connected to multiple pool keepers and a pool keeper can be connected to multiple
profiling roots, for instance a web profiling root and a mail profiling root. The profile
root is connected to at least one pool keeper, since the profile root needs to obtain new
agents from at least one agent pool. Besides the pool keeper each profile root is also
connected to the profile portal of the centralized profile. This connection is needed for
obtaining the appropriate profile keepers that assemble the profile data from the sev-
eral profile hierarchies.

Fig. 2. The multi agent profiling system model

Furthermore the profiling agents are connected to a set of classifiers, or at least
one, that perform the classification tasks on the specified topic in the specified do-
main, each using their own algorithm. The agent pool consists of the pool keeper and
a number of agents of any type.

330 P.H.H. Rongen et al.

The centralized profile is the portal to the outside world. It contains a profile portal,
an agent that is connected to all profile roots in a one-to-many relationship. A web
profile root may for instance track the internet behavior of a user while a mail profile
root observes the activity within a mail application.

This agent can be contacted by any outside agents or applications for obtaining an
up-to-date profile of a user.

2.2 Collaboration Model

The agent collaboration model in Figure 3 specifies how agents collaborate and com-
municate. Basically the data streams within the collaboration model can be separated
into three parts: a profiling part, a hierarchy management part and a profile extracting
part. In the profiling part the user is observed by the several profiling roots.

When a root is presented with new data for profiling, this data is forwarded to the
connected profiling agents. A profiling agent in turn collaborates with several classifi-
ers to produce a profiling result for the incoming data. It forwards the data to the con-
nected classifiers and combines the returned classifying results. When the profiling
agent concludes that the current data can’t be classified according to its assigned topic,
the data flow will stop at this point. However, if the agent decides the current informa-
tion can be classified according to the topic, the profiling agent will forward the infor-
mation to its connected children and the profiling process will iteratively be repeated
until the end of the hierarchy is reached or the profiling agents were not able to classify
the incoming information anymore. The profiling agents send feedback to their parent
nodes, indicating whether they were able to classify the incoming data. The sender of
the data can use this feedback information to keep track of the information flow and is
able to decide when agents should be added to or removed from the hierarchy.

Fig. 3. The agent collaboration model

The data streams that concern hierarchy management are used for extending the hi-
erarchy with new agents. Agents within the hierarchy can extend their set of

 A Multi Agent Approach to Interest Profiling of Users 331

connected agents by requesting a new agent from the agent pool. The pool keeper
takes the request into consideration, checks the pool for the availability of the appro-
priate agents and returns a set of selected agents.

The pool keeper receives agent requests only from the profile roots. This approach
makes the system more flexible since the roots of the profiling hierarchies are the
only agents that are responsible for maintaining a connection to the agent pools.
Whenever a pool is added or removed, only the profile roots have to be informed.

3 Classifiers

In the current system, a classifier receives a text document as input and will either
conclude that the document can be classified as belonging to the specified topic or
not. Neural networks have been used in a number of text classifying projects. In
[CA01] a neural network approach is used to classify financial news articles, [RU02]
describes a hierarchical text classification approach using neural networks and in
[SE03] the application of neural networks for classifying web pages is investigated.
We follow this approach in this project as well.

The network does not get fed the actual text, but rather the distinguishing features
of the text such as length, language, number of words and number of sentences that
could be useful for classifying.

The text classifier in our system uses trigrams, sets of three letters like AAA and
IBM, as input to the network. In [HO99], a project for determining the author of a
poem with neural networks, it was shown that trigrams in comparison with other n-
gram (n-letter words) distributions produced the optimal results in classifying text.
For the 26 characters in the alphabet, 26^3 = 17576 trigrams are possible, but in prac-
tice only about 9000 actually occur. Therefore, there is no direct need for pre-
selection of trigrams. Maybe a smaller amount of trigrams would do for the current
problem domain but, during the trainings process, the network itself should be able to
figure out which trigrams are the most important and will increase the weights of
these trigrams. In the neural text classifier, the input of the network is composed by
collecting all the occurring trigrams within the documents of the training set. This set
of trigrams is then trimmed down by the least and most occurring trigrams to exclude
trigrams from stop-words and trigrams that only occur in very few documents of the
training set. Every input of the network is then linked to one of the trigrams of the
remaining set. The output layer of the network consists of a single neuron that should
be activated when a document about the classifiers topic is fed to the network. Rein-
forced training is then applied and the network is tested with a test set to avoid over-
fitting of the training set.

3.1 The Neural Web Classifier

The web classifier is part of the hierarchy of agents that is able to monitor the web
behavior of a user by observing the pages the user has visited. A single classifier
within this agent network determines whether a certain html page can be classified to
the topic it has been trained to classify. The web classifier receives a web document
from a profiling agent that in its turn received the data directly from the root agent or

332 P.H.H. Rongen et al.

from a peer profiling agent. The web classifier should be able to classify an incoming
web document and adjust his current profile if needed. For this purpose the neural
web classifier is trained with positive and negative sample data about the assigned
topic of the agent. The positive sample data contains representative web documents
on the specific topic while the negative sample data contains any other web docu-
ments as long as they fall within the domain the classifier is placed. For example, if
an agent that is specialized in managing a profile about soccer within the field of ro-
botics, it should contain negative sample data about other robotics topics. An agent
that is not trained within the right domain might still be a good classifier but will have
a high misclassification than agents that are trained with the appropriate domain spe-
cific data. The ratio between the positive and negative samples is a reflection of real-
ity. Thus, if the current domain is very large and a topic covers only a small part of
this domain, this then a relatively small positive and a large negative data sample set
of web documents is provided to the agent.

3.2 Other Classifying Algorithms

As shown in fig 2, one profiling agent can use multiple classifiers, using different al-
gorithms. In the current implementation a simple title classifier is created that extracts
the title from a web page and classifies the page according to that title by mapping it
to a predefined set of key phrases. This approach is very simple but is a good example
of the classifiers that can be used for special sources of information.

3.3 Accuracy of the Classifiers

Currently two types of classifiers have been implemented to assist the profiling agents
in obtaining a profile on a specific topic. The results of these classifiers basically de-
termine the performance of the profiling process, since the other agents of the system
depend on the outcome of the classifiers.

The results of the simple title classifiers show the expected results. When topics
contain a number of specific and unique key phrases the classifier can produce rea-
sonable results. The title classifier however only has been added to the system to
show the ease of adding new classifiers and to show the collaboration with other clas-
sifiers. In a professional environment, the title classifier should therefore either be re-
placed by a more sophisticated one or be extended with some machine learning fea-
tures to be really useful to the system. The current profiling system leans heavily on
the results of the neural classifying agents. The neural classifiers show good results
across multiple domains. During the training process, the neural classifiers show up
80 to 100% accuracy on the test sets, indicating that the training process is able to
create good (and sometimes perfect) classifiers. It is hard to obtain exact precision
and recall rates however, since there is no such thing as a test database for web classi-
fying systems similar to the Reuters-21578 database that is often used to test text clas-
sifying algorithms. In general the results of the neural classifiers show a tendency to a
higher accuracy within limited domains.

Experiments were performed to discover the ideal network topology of the neural
classifiers. Multi layer networks structurally outperform the single layer network.

 A Multi Agent Approach to Interest Profiling of Users 333

Although the neural classifiers perform well on the test sets, the classifiers may
perform differently in practice if the training and test sets are a bad reflection of real-
ity. The actual performance of the classifiers thus depends heavily on collecting rep-
resentative data on the specified topics. In the current implementation this data selec-
tion process is done manually and can be very time consuming since the performance
of the neural classifier improves when more training data is made available. Experi-
ments show that at least 40 to 60 positive samples of web pages per topic are needed
to train a good classifier.

Besides the positive samples, a classifier needs a set of negative sample data that
represents the other topics within the domain a specific agent is classifying.

In the current implementation the neural network are trained automatically by pro-
viding sets of negative and positive sample data. In practice the negative sample data-
base is built by using the positive sample data of other topics and adding some sample
web pages of the remaining topics within the domain. In this approach still a lot of
data has to be assembled manually though.

4 The TV Program Recommender

To show the easy use of the currently implemented profiling system, the profiler is
connected to an actual recommender system, a TV program recommender that is cur-
rently being developed by the Dutch Telematica Institute [TE04] in association with
public broadcasting (omroep.nl). The TV program recommender takes a constructed
profile in the form of an XML document, as in figure 4 as input and is able to recom-
mend TV programs to the user based on this profile. The genre field is determined by
the profiling system, and is used to determine the user’s interest for TV programmes.

<profile>
 <pages> <page>
 <id>thePageId</id>
 <url>http://someurl.com
 </url>
 <title>Voetbal
 International
 </title>
 <genre>Sport</genre>
 <date>2004-2-23</date>
 <time>06:59:00</time>
 </page> </pages>
 </profile>

Fig. 4. Example XML input document of the TV Program recommender

If for instance the profile indicates that a user is interested in sport and news, TV
programs that cover these topics will be recommended to the user.

 More complex profiles make it possible to advise the user in a more specific and
sophisticated way. The TV recommender shows the straightforward use of a con-
structed profile by other applications. A special profile tracking agent is generated

334 P.H.H. Rongen et al.

that requests and receives the profile from the profile portal once in a while and
informs the recommendation application when modifications to the profile have oc-
curred. Furthermore, a specific taxonomy for the profiling system defines what cate-
gories can be handled by the recommender. The 17 categories the TV recommender
can handle are specified in the taxonomy as classes directly placed under the root and
classifiers have been trained especially for this purpose. Due to the flexible agent
structure the changes in the taxonomy and the new classifiers in the agent pool auto-
matically lead to the forming of a new kind of profile hierarchies.

5 Conclusions

The implemented profiling system is able to create a profile of a user that is based on
its internet browse behavior. The platform agents work well together in building the
hierarchy and consulting each other about incoming web documents.

A number of advantages result from the agent approach to the profiling system.
One of the most important advantages of the agent approach is the ease of adding new
profilers and classifiers to the system dynamically without having to change any code
within the other parts of the system. Currently two classifying algorithms are used.
New algorithms and agents can be attached easily by adding them to the agent pool.
This approach to the combination of multiple algorithms has shown to be easy and
flexible. By delegating the responsibilities to the appropriate agent the architecture
and implementations are simplified significantly.

 Furthermore, the general agent approach makes it easy to retract the profile from
the profiling system. Currently an XML version of the created profile is extracted for
the use in a TV recommender system but the profiling system can be connected to any
other application that is able to benefit from a structured profile of a user. As dis-
cussed above, we have connected our profiling system to a TV program recommender
system, without these systems having been designed to collaborate

Another emerging advantage of the multi agent approach to profiling is the ability
to distribute parts of the profiling systems when needed. This ensures scalability when
a large number of agents are added to the profiling hierarchies.

Besides the mentioned advantages, the agent approach inevitably also results in
some shortcomings, especially for development and maintenance. Since the agent sys-
tem is basically a system of independent running threads, debugging the agent com-
munity has shown to be a difficult and time consuming task.

Another effect of agent oriented programming is the inability to access and inter-
pret the state of the overall agent system in an easy way.

Agent oriented programming thus has shown to take some extra time in the devel-
opment phase but the approach also offers major advantages in extending the system
and connecting the agent system to new applications. Especially in the field of profil-
ing where many different classifiers can be implemented to assist in the profiling
process, the advantages of the agent approach have shown to be a suitable solution.

While the system provides promising results for user profiling, its major drawback
for using it as a cross-domain profiling approach is the lack of openness of the archi-
tecture. In a world where profiles provided by different owners are to be combined,
the use of open standards such as Web Services and Semantic Web Services is cru-

 A Multi Agent Approach to Interest Profiling of Users 335

cial. Other classifying algorithms are also being considered. Natural Text analysis
seems a promising technology to provide additional information about texts above
what trigrams may provide. Finally, the combination of other sources of information
such as email with web pages is also being considered to provide additional profiling
information. In the case of using email as a source, the issues related to privacy be-
come very important, especially in the case where a company enforces a classifying
solution upon its employees.

Acknowledgements

We wish to thank Peter Fennema for integration with the TV Recommender. This
work is part of the MultimediaN project (http://www.multimedian.nl). MultimediaN
is sponsored by the Dutch government under contract BSIK 03031.

References

[CA01] Calvo R.A. (2001) Classifying financial news with neural networks, 6th Australasian
Document Symposium

[CH97] Chen, L. and Sycara K. (1997) WebMate: A Personal Agent for Browsing and
Searching

[HO99] Hoorn, J.F. et al (1999) Neural Network Identification of Poets Using Letter Se-
quences, Literary and Linguistic Computing, 14(3), 311-338.

[IE04] IE Canvas, http://www.nothome.com/IECanvas/
[MI04] Middleton, S. E., Shadbolt, N. R. and De Roure, D. C. (2004) Ontological User Pro-

filing in Recommender Systems, ACM Transactions on Information Systems (TOIS), 22(1),
54-88

[MO02 Montaner M, Lopez B, and de la Rosa J. (2003) A taxonomy of recommender agents on
the internet. Artificial Intelligence Review, 19:285 - 330

[PA02] Padgham, L and Winiko, M. (2002) Prometheus: A methodology for developing in-
telligent agents, Third International Workshop on Agent-Oriented Software Engineering

[PR04] Protégé, Ontology Editor and Knowledge Acquisition System,
http://protege.stanford.edu/

[RU02] Ruiz, M.E. and Srinivasan, P (2002) Hierarchical Text Categorization Using Neural
Networks Information Retrieval, 5, 87–118

[SC04] Schuurmans J, Zijlstra E (2004). Towards a continuous personalization experience.
ACM International Conference on Dutch directions in HCI

[SE03] Selamat, A. et al (2003) Web page classification method using neural networks,
Transactions of The Institute of Electrical Engineers of Japan, 123(5), 1020-1026

[TE04] Telematica Instituut, http://www.telin.nl/

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 336 – 345, 2005.
© Springer-Verlag Berlin Heidelberg 2005

vBroker: Artificial Agents Helping to Stock Up on
Knowledge

Gábor Tatai, László Gulyás, László Laufer, and Márton Iványi

AITIA Inc, Infopark sétány 1. V. em,
H-1117, Budapest, Hungary,

{tatus, gulya, laufer, mivanyi}@aitia.ai

Abstract. Hungary, a former socialist country, has a thriving financial market
(Budapest Stock Exchange, BSE) 15 years after the systems change. Yet, the
general public’s knowledge about the BSE, or about stock markets in general, is
very limited and most small investors are only aware of a single investment op-
tion: the savings account. The vBroker project (funded by the Hungarian Finan-
cial Supervisory Authority) aimed at familiarizing the Hungarian public with
the workings of the stock market. It consisted of a combination of three ele-
ments: an e-learning portal with material on financial markets, an intelligent
training assistant agent (an intelligent chatter robot connected to a specialized
knowledge base) and a multi-agent based simulated stock market, packaged as
an online investment game. This paper describes the vBroker portal, gives an
overview of its main modules, and discusses its embodied communicational
agent and its artificial stock market in more detail.

1 Introduction

Hungary, a former socialist country, has a thriving financial market (Budapest Stock
Exchange, BSE) 15 years after the systems change. Yet, the general public’s knowl-
edge about the BSE, or about stock markets in general, is very limited and most small
investors are only aware of a single investment option: the savings account. To
change this, the Hungarian Financial Supervisory Authority (PSZÁF – the Hungarian
equivalent of the Securities and Exchange Commission) solicited proposals for educa-
tional materials. Our funded proposal, vBroker (virtual broker), consisted of a combi-
nation of three elements: an e-learning portal with material on financial markets, an
intelligent training assistant agent (an intelligent chatter robot connected to a special-
ized knowledge base) and a multi-agent based simulated stock market, packaged as an
online investment game. Our ambition was to make this online application as interac-
tive as possible in order to motivate the visitors to gain enough information and ex-
perience to try out themselves on the Budapest Stock Exchange in the future.

In this paper we introduce the vBroker project, give an overview of its architecture
and provide a summary of the lessons and experiences that we have gained from run-
ning the system for one year. We believe that we had a special opportunity, since we
were able to follow the students’ way from the very beginning of acquiring knowl-
edge in a certain area, till they mastered the subject. We were able to observe the trial
of the newly acquired knowledge in an almost realistic environment, without having
the heavy consequences of possible bad decisions.

 vBroker: Artificial Agents Helping to Stock Up on Knowledge 337

Fig. 1. The interface of vBroker. The user asked the tutoring agent what does transfer mean.
The agent replied and showed the bit in the curricula where this concept is being explained.

Registering on the site, the user meets the chatterbot first, his tutoring agent, and
virtual broker in one person. After choosing the convenient character, the chatbot
becomes the person, who accompanies the students throughout the whole time spent
on the site. He/she has a mediatory function between the online curriculum and the
student, and also between the complex interface of the artificial stock market and the
client. The chatbot provides the consistency in the site, someone, who is always there
to ask, if the user does not understand something. His/her continuous presence and
proactive behavior gives a constant motivation to go through the chapters of the
course and to try out the different functions of the stock exchange, to learn how BSE,
the real life counterpart functions.

There is no learning without evaluation and feedback; therefore we put an empha-
sis on implementing these functions of the chatbot in our system. The tutoring agent is
assisting the evaluation in the learning process, and also provides proper feedback on
the gains and losses of the user on the stock market.

The Internet has hosted a number of online stock market games in the past, super-
ficially similar to vBroker’s simulation game. [6-10] These simulations generally
belonged to one of the following two classes. They were either trailing games or
participatory markets. In the former ones the traded papers correspond to stocks in a
real stock-market and the price of a given good equals the real price (usually with a
certain delay). The advantage of this setup is that the stock market is rooted in a real
economic system, and thus, neither extensive modeling of the fundamentals, nor that
of the information flow is necessary. However, the real economic base also prevents
the online community of the artificial market to have any influence on the running

338 G. Tatai et al.

prices. In fact, this setup consists of two separate markets connected through a nar-
row, one-directional flow of information: the price-taking. The latter case of partici-
patory markets is basically an online trading game. Participants can freely determine
their bids and offers, and the running price of the traded goods is fully determined by
the simulated market. Therefore, this setup places a strong emphasis on the imple-
mented market micro-structure. However, it also poses several, rather hard chal-
lenges. In order to maintain the realism of the market and its prices, the institutions
must provide enough control and ‘momentum’ to prevent the participants to have
extreme influence. Unrealistic bubbles or crashes must be avoided (especially when
caused by only a few human users). Similarly, price setting by the coordinated action
of participants must also be made impossible. A related matter is that a realistic level
of market liquidity must also be guaranteed, even in periods when the participants
happen to be passive. Finally, the simulated market’s prices must somehow be
grounded in an ‘artificial economic system’ and the information generated by it must
be channeled to the users.

Given vBroker’s focus on education, our design emphasized realistic market insti-
tutions (i.e., real trading rules and market micro-structure), realistic market behavior,
and the availability of (fundamental) information about the traded stocks. These re-
quirements yielded a model that is closer to participatory markets than to trailing
games, but where control over the underlying fundamentals and information flow is
maintained. Our answers to the participatory setup’s challenges are mostly based on
the use of artificial agents. Therefore the vBroker simulated stock market is a hetero-
geneous multi-agent system, where human and artificial agents trade together.

In the second chapter we describe the usability of our tutoring agent in it’s relation
with the e-learning module and the virtual stock exchange. In the third chapter we
explain the architecture and the functioning of the artificial stock market; and in the
last chapters we provide some conclusions of our experiences with the system.

2 BotCom as a Tutoring Agent: From Theory to Practice

Before vBroker we developed an embodied communicational agent (ECA) capable of
carrying out dialogues in Hungarian language with the users on general conversa-
tional issues and on specific topics as well. We put an emphasis on detecting the us-
ers’ emotions and reacting on them verbally and by presenting an adequate animation.
We applied several psychological and communicational theoretical models in order to
provide the possibilities for expressing complex behaviors, as well as for leaving
possibilities for further improvement. The details of the agent’s characteristics are
discussed elsewhere. [11, 14]

The ECA system consists of 3 main parts. The backbone is a multi-layered dia-
logue management sub-system working on a knowledge base of dialogue fragments
enhanced with knowledge representation. There is an emotional modeling sub-system
in conjunction with an expression-emotion mapping database. We also use a set of
facial and upper-body animations integrated with the other two previously mentioned
modules.

 vBroker: Artificial Agents Helping to Stock Up on Knowledge 339

The most plausible application for an ECA, besides the normal website navigation
task that web-integrated ECAs generally provide, is that of a tutoring agent. The
vBroker project was a trial of our communicational agent both in roles.

2.1 Pedagogical Agents

According to recent approaches [12] tutoring agents should have at least four capa-
bilities in order to paralelly fulfill both their embodied communicational agent role
and their tutoring function [13].

The first skill is the ability to adapt. The agent has to be able to evaluate student’s
understanding of the subject during knowledge acquisition, and it has to move on if
the user acquired the certain segment of knowledge on an acceptable level. Similarly
to real classroom situations, the teacher has to determine timing, taking the initiative
to move on.

The second important function for a tutoring agent is giving motivation. It has to
ask questions, encourage the students during learning and give appropriate feedback.
When the student is asking the agent about the subject, it has to present relevant in-
formation and provide excellent examples. In order to carry out these tasks it has to
interpret the student’s responses.

Another important aspect of tutoring is engaging the student in the studying proc-
ess. This greatly depends on the personality of the teacher. It is not any different in
the case of pedagogical agents. A successful tutoring system must present an interest-
ing personality as a teacher, who in the meantime, has specific areas of expertise. The
proper use of humor is also a powerful tool from this perspective. We are dealing with
this topic in a separate section.

The forth aspect of a tutoring agent is its ability to evolve or learn. The paradigm
of Life Long Learning applies to virtual educators, too. There should be a possibility
to revise and update their knowledge as often as required

Of course there aren’t any real teachers fulfilling all these requirements perfectly.
If there were, there wouldn’t be a need for tutoring agents at all!

2.2 E-Learning with Tutoring Agents

We developed our vBroker curriculum in cooperation with the MBA program of the
Budapest University of Economics. We used all the materials of the Financial Mar-
kets course, created a detailed structure suitable for e-learning, assigned keywords and
topics for each section and subsection. We have also assembled a phrase book with
definitions, tests for each section, and summaries of the longer segments. Moreover
we have created cross linked sections for better navigation. The most important part,
however, was the integration of the knowledge base with the communicational agent.

If we want our agent to adapt to the learning process, it has to follow the user’s
learning procedure. By this we don’t simply mean the history of the browser session,
but also the other aspects of navigation, such as how much time was spent on each
section, or if the user looked up all the definitions on a page in the phrase book.
Whether the student skip some pages or stopped somewhere in the course, is also
relevant. All of these aspects give us important information about the user, and they
are also possibilities for a virtual agent to enhance the learning procedure with its
interaction.

340 G. Tatai et al.

Fig. 2. The schema of learning with the chatterbot in vBroker

When skipping to the next section, ahead of the estimated time required for prop-
erly reading it, the agent can ask if the topic was familiar for the student. When some
expressions weren’t looked up, we can draw the user’s attention to their importance
by asking their meaning, and when not getting the proper answer navigating the site
back to the skipped section.

For an ECA to fulfill its role of motivation, besides reflecting on the students’ ac-
tion, it must be able to get engaged in conversations on the subject. We created a wide
variety of dialogue segments about each subtopic, and about financial markets in
general, and fed it in the ECA’s knowledge base. This may sound simple, but in real-
ity, it takes combining domain expertise and everyday communication skills to define
these conversational sequences and the proper clues for their activation.

Giving proper feedback is another area where natural language is a significantly
better tool than any other means of communication: e.g., than test score or statistical
data, etc. Students need to be compared to others, but this comparison happening in a
conversation is less harmful. In addition, using relevant sentences encourages students
for further improvement more than simple numeric feedback.

In vBroker this ability of the agent is used not only in the e-learning module, but
also when providing feedback on the user’s accomplishments in the virtual stock
exchange. In addition to its tutoring tasks, the agent also helps navigating the virtual
exchange’s site. When doing so, the agent not only answers questions (e.g. about the
current value of a particular share), but also shows the table with the relevant values.

In order to carry out these tasks, the agent has to track the topic of discussion very
precisely. It has to know when to skip from the virtual stock exchange part to the
curriculum, e.g. when the user was asking about a definition of a certain term in the
course: “What is the BUX index?”, and when it has to stay in the same section, only
jumping to another part: “How much is the BUX index?”.

The chatterbot also gives feedback about the results of the tests, turning the test re-
sults into an interactive discussion about the incorrectly answered questions. In this
way, the VBroker system turns the traditional self-paced web-based training method
into a live, synchronous and interactive teaching technique without using expensive,
rarely used technologies such as satellite video conferencing etc. Of course, a real life
trainer can never be replaced by a virtual agent, but a web-based virtual tutoring sys-
tem offers a cost-efficient solution for e-learning training developers.

 vBroker: Artificial Agents Helping to Stock Up on Knowledge 341

3 The vBroker Artificial Stock Market Participatory Simulation

The vBroker artificial stock market simulation is an online virtual market where regis-
tered users trade virtual papers for virtual money over the Internet 24 hours a day, 7
days a week. The orders are matched according to rules similar to those of the Buda-
pest Stock Exchange (BSE), a NYSE-like modification of the continuous double
auction (CDA). The clearing of the orders is automatic, executed by the artificial
stock market system. The vBroker system charges a flat rate for submitting or cancel-
ing orders, plus a percentage for the trades made.

The liquidity of the market is ensured by specialists or market makers (one per
share). These are autonomous software agents that follow the internal processes of the
simulated market, and the news about those processes, and change their orders ac-
cording to them. The vBroker system hosts two other types of artificial agents. Con-
testant agents apply various artificial intelligence (AI) techniques to do their trade.
They face the exact same set of information and costs than human participants and
their goal is to collect as much wealth as possible. Simulator (noise) agents, on the
other hand, are responsible for maintaining a moderate level of trade when no human
user is active. Note that as the vBroker system operates 24x7, human participants
cannot be assumed to be uniformly present. Yet, they may potentially enter the virtual
floor anytime. Therefore, the dynamic system of temporarily active simulator (noise)
agents was introduced. Contestant agents cannot be used for this purpose, since this
would require a much higher trading frequency on their part than on that of the human
participants. This would contradict the requirement of fairness and thus the perform-
ance of the human participants and the contestant agents would not be comparable.
Another important difference between the contestant and the simulator (noise) agents
is that the goal of the latter is to provide a level of trade and not to accumulate wealth.
Since a trade always requires both a buyer and a seller, the population of simulator
agents collects an average of 0% profit. When determining the simulated trades’
prices, special care is taken to ensure that these virtual price movements do not affect
any valid orders made by specialists, contestant agents, or human participants.

Fig. 3. The components of the vBroker environment and its connections

342 G. Tatai et al.

The behavior of the artificial market is grounded in a raw simulation of the stocks’
economic performance. This simulation provides the fundamental value of the given
instrument by determining its general trend and volatility. The trend is fed to the spe-
cialist of the given paper, who tunes its orders accordingly. The vBroker system is
configured in such a way that with its default settings each stock is in balance without
any pronounced trends. Trends are introduced by a human operator, the story-teller,
by tuning the stocks’ ‘economic performance’ simulator. The story-teller follows a
storyboard, written before the start of the vBroker game. It is important to note, how-
ever, that trends and market prices can only be controlled to a certain limit using the
‘economic performance’ simulator. This is because the traders (the human partici-
pants and the contestant agents) have the capacity to influence trends. The degree to
which the storyteller may counter-balance the traders’ behavior is also a parameter of
the system (to be set for each paper). Naturally, the challenge here is to determine this
sensitivity in such a way that no single user has too much influence, but yet, the si-
multaneous actions of the traders could build enough pressure to turn a trend.

In addition to implementing the storyboard by tuning the stocks’ ‘economic per-
formance’ simulators, the story-teller also informs the traders about the imaginary
economic events underlying the trade changes. This is done via the imaginary news
agency vBroker-Press whose reports (in natural language) are published on the vBro-
ker site. The pre-written storyboard contains the news items, as well as the simulator
parameters to be tuned. The publication of news items does not necessary imply
changing the related paper’s parameters.

Figure 3. summarizes the main components of the vBroker system with their con-
nections, while Figure 4. shows example screens of the simulation’s user interface.

Fig. 4. Example screens of the simulation’s user interface

4 Experiences with the vBroker System

During its one year of operation we wanted to capture the tutoring agent’s influence
on user’s engagement while browsing the site. If the user was interested in the content
of the website, and spent at least 30 seconds there, he/she was willing to browse the

 vBroker: Artificial Agents Helping to Stock Up on Knowledge 343

average of 3 times more on vBroker (back row) then on the scientific portal (middle
row) and 7 times more then on the company website (front row).

0s-30s
30s-2mn

2mn-5mn
5mn-15mn

15mn-30mn
30mn-1h

1h+

Company website

Scientific portal

www.vbroker.hu 0

10

20

30

40

50

60

70

80

90

P
er

ce
nt

 o
f
T

ot
al

 N
o.

 V
is

it
s

d
ur

in
g

 a
 c

al
en

d
ar

 m
o

nt
h

11
.0

00
 /

6.
00

0
/ 2

.0
00

u

n
iq

ue
 v

is
ito

rs

Legth of Visit

Company website Scientific portal www.vbroker.hu

Fig. 5. Distribution of visit lengths among 3 different types of websites during a calendar
month. In this particular month our company’s website, an AI portal and the vBroker site had
approx. 2000, 6000, 11000 unique visitors respectively.

During this 12 month period it hosted 8 games for a total of 177 trading days. The
8 games were run according to different storyboards, changing the economic scenario
in a relatively wide range. The number of stocks also varied across games ranging
from 4 stocks only (in the first game) to a selection of 18 papers. On rare occasions,
the storyboard also contained the mid-game entrance of a new paper.

In the simulation game the motivation of the (human) traders was ensured by prizes
offered by our sponsors. (The prizes included computer equipment, money, etc.) Two
games were organized in cooperation with the Master of Business Administration pro-
gram of the Budapest University of Technology and Economics. In these games the
students of the program had the chance to practice their trading skills. The best perform-
ing class received an additional exam week from the program administration.

5 Conclusions

This paper introduced the vBroker project, an effort aimed at familiarizing the Hun-
garian public with the workings of the stock market. vBroker was a year-long service
that consisted of an e-learning portal with material on financial markets, enhanced by
the presence of an intelligent training assistant agent (an intelligent chatter robot con-
nected to a specialized knowledge base and with responses based on emotional mod-
eling of the user). In addition, the portal also hosted a virtual stock market based on
multi-agent based simulation.

344 G. Tatai et al.

In vBroker the chatter robot is used in two functions. It helps website navigation
and also serves as a tutoring agent. In its latter function, it can draw the user’s atten-
tion to understudied topics, it is able to get engaged in conversations on the subject,
and provides feedback about test results. In addition, the agent also serves as a virtual
broker assisting the user in its effort of accumulating virtual wealth on the virtual
stock market. This virtual broker can answer questions about the current trends and
prices on the market and also provides feedback about the performance of the user’s
portfolio.

In contrast to the high number of online stock market games hosted by the Internet
in the past, the vBroker participatory stock market applied real trading rules, realistic
market institutions and infrastructure. Moreover, the simulated market was rooted in
an ‘artificial economy’. This was achieved by a heterogeneous multi-agent system,
where human and artificial agents traded together. For example, artificial agents en-
sured market liquidity and realistic price movements, in addition to competing with
human participants for greater wealth. The current publication described the vBroker
portal as a whole, gave an overview of its main modules and discussed its embodied
communicational agent and its artificial stock market in more detail.

References

1. GULYÁS, L., ADAMCSEK, B.: Charting the Market: Fundamental and Chartist Strate-
gies in a Participatory Stock Market Experiment, In: International Conference Experiments
in Economic Sciences: New Approaches to Solving Real-world Problems, Okayama and
Kyoto, Japan,14-17 December 2004.

2. GULYÁS, L., ADAMCSEK, B., KISS, Á.: An Early Agent-Based Stock Market: Replica-
tion and Participation, Rendiconti Per Gli Studi Economici Quantitativi, Volume unico
(2004) 47-71.

3. GULYÁS, L., ADAMCSEK, B., KISS, Á.: Experimental Economics Meets Agent-Based
Finance: A Participatory Artificial Stock Market, Proceedins of the 34th Annual Confer-
ence of International Simulation and Gaming Association (ISAGA 2003), August 25-29
(2003)

4. LAUFER, L., TATAI, G.: Learn, Chat and Play – An ECA supported stock markets e-
learning curricula, In Proceedings of the IASTED International Conference on Web-Based
Education (WBE 2004), ACTA Press, Innsbruck, Austria 16-18 February 2004.

5. LAUFER, L., TATAI, G., CSORDÁS, A.: Use of Communicational Agents in Distance
Learning Environments, In Proceedings of the First Central European International Multi-
media and Virtual Reality Conference (CEIMVRC04), Veszprém University Press. Vesz-
prém, Hungary, 6-8 May 2004.

6. RABERTO, M., CINCOTTI, S., FOCARDI, S., MARCHESI, M.: Agent-based simulation
of a financial market, Physica A, 299 (1 October 2001) 320-328

7. TERNA, P.: Cognitive Agents Behaving in a Simple Stock Market Structure, Agent-Based
Methods in Economics and Finance: Simulations in Swarm, LUNA, F., PERRONE, A.
(eds.), Kluwer Academic Publishers (2001)

8. WEB: Foundation for Investor Education: The Stock Market Game, electronic resource,
http://www.smg2000.org/

9. WEB: Stock-Trak, Inc: The Florida Stock Market Simulation, electronic resource,
http://www.floridasms.com/

 vBroker: Artificial Agents Helping to Stock Up on Knowledge 345

10. WEB: TERNA, P., CAPPELLINI, A.: SumWeb: A Live Stock Market Simulation, elec-
tronic source: http://eco83.econ.unito.it/sumweb/

11. TATAI, G., CSORDÁS A., KISS Á., LAUFER L., SZALÓ A.: The chatbot who loved
me. Pelachaud, C., Marriott, A. and Ruttkai, Z. eds.: Proceedings of the AAMAS 2003
workshop on Embodied Conversational Characters as Individuals. pp. Melbourne, Austra-
lia, 2003.

12. JOHNSON, W.L., RICKEL, J.W.: Animated pedagogical agents: Face-to-face interaction
in interactive learning environments, International Journal of Artificial Intelligence in Edu-
cation 11 2000 47-78.

13. RICKEL, J.W., JOHNSON, W.L.: Integrating pedagogical capabilities in a virtual envi-
ronment agent, In Proceedings of the First International Conference on Autonomous
Agents (Agents'97), New York, USA 1997 30-38

14. TATAI, G., CSORDÁS A., SZALÓ A., LAUFER L.:.The chatbot feeling - Towards a us-
able emotional model for Internet ECAs: Proceedings of EPIA'03 - 11th Portuguese Con-
ference on AI. pp. 336-341, Springer Verlag, 2003

Cooperative Planning in the Supply Network –
A Multiagent Organization Model

Péter Egri and József Váncza

Computer and Automation Institute, Hungarian Academy of Sciences,
H-1518 Budapest P.O.B. 63, Hungary

{egri, vancza}@sztaki.hu

Abstract. The paper presents an approach for modelling the planning
processes in supply networks at various partners, on different horizons
and aggregation levels. After introducing an overall planning framework,
we apply the Gaia agent-oriented analysis and design methodology to
construct an organizational model for supply networks that operate in
markets of customized mass products. The paper presents the main ele-
ments of this model, the necessary extensions of Gaia, and discusses the
next steps towards developing and validating a portfolio of cooperation
mechanism.

1 Introduction

The question all manufacturers have to answer time and again can be put simply
as how to produce what is needed, neither more, nor less, neither earlier, nor
later, just in the required quality. Giving appropriate answer is hard because
market demand is uncertain and distributed, while production processes are
complex, involving geographically dispersed producers of raw materials, compo-
nents and end-products operating in a supply network. Furthermore, acceptable
order lead times are much shorter than production lead times. This is the case
when retailers require shipment within one day, or customers configuring their
cars will expect delivery within a couple of weeks, or even days.

Taking high service level as their main priority, manufacturers can hedge
against demand uncertainty only by maintaining capacity and/or material
buffers. This however, incurs extra equipment, labor and inventory costs, as well
as the risk of producing obsolete components and/or products. Partners within
the supply network must find their own trade-offs between service level and cost
that are acceptable both for their markets and other partners. Such a solution
can emerge only from the interaction of local and asynchronous decisions.

The problem is essentially a planning problem: manufacturers would like to
exercise control over some future events based on information what they know
at the moment for certain (about products, technologies, resource capabilities,
sales histories) and only anticipate (demand, resource and material availability).

The aim of our research is to develop planning methods that improve the
overall logistic and production performance of a supply network. We assume

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 346–356, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cooperative Planning in the Supply Network 347

that members of the network are independent entities, with their own resources,
performance objectives and internal decision mechanisms. Hence, there is an
inevitable need to coordinate logistics and production related decisions and to
facilitate and sustain cooperation among network members [13].

Since in a supply net there are various, in some cases very complex and often
interacting planning tasks, we have chosen the agent-based approach for mod-
elling them, analyzing their interactions, as well as for developing and validating
novel cooperation mechanisms. However, when building directly a multiagent
system we would get lost in the details. First one has to set up the organizational
model of the network. We applied Gaia methodology that supports modelling of
a complex organization in terms of abstract role and interaction models [15].
Later on, in the design phase, the roles will be realized by agents.

Below we present our application domain, give an overview of the main
planning functions, and specify the requirements towards our modelling ap-
proach. Next we show how the various planning functions and interactions can
be mapped to the abstract layer of Gaia, and describe the necessary extensions
of the framework. Finally, we conclude by outlining future research directions.

2 Problem Statement

2.1 Customized Mass Production

The scope of our study is customized mass production in a large-scale, real-life
production network, where the ultimate goal is to satisfy demand on a market
of mass products (like cosmetics, food, mobile phones, light bulbs, low-tech elec-
tronics, etc.), where the demand appears for a complex and ever changing variety
of products, both for small and large quantities, in hardly predictable temporal
patterns. Such a market is typically served by a consumer goods manufacturer
that works in a focal point of a supply network whose other nodes provide nec-
essary raw materials, components and packaging materials (see Fig. 1). Market
demand is transmitted to the manufacturer by distribution centers (DC). Some
of the suppliers (e.g., packaging material providers) serve several manufactures
acting on different markets. Guaranteeing extremely high service level and, at
the same time, keeping operation costs low requires the integration of the tradi-
tionally extreme principles of mass production and customization.

Customer orders specify the quantity, due date and shipment location of final
products. Production is carried out on production lines that are able to process
several products, but the changeover cost between them are considerable. At any
moment, a large number of product variants are produced by the manufacturer
(in our case, the size of the mix is in the order of thousand.). Due to the volatile
market conditions, production is based mostly on forecasts, thus inventories are
inevitable to provide service at the required level and to enable local resource op-
timization. After all, the partners in the network cannot store too much products
because the inventory holding costs are high, some components are perishable,
and some products have short life-cycles. In a focal supply network, a strong
buyer may not maintain inventory: it gives only forecasts and suppliers have

348 P. Egri and J. Váncza

M
1

S
1

S
2

S
3

S
4

S
n

M
2

DC
1

DC
2

Legend

manufacturer/supplier

inventory

distribution center

Fig. 1. Typical elements and connections of the supply network

to decide the production quantities and store the goods until the buyer needs
and calls-off them. This is the so-called consignment vendor managed inventory
(VMI) [5]. Lateral cooperation of suppliers—when they mutually help each other
in critical shortage situations—is also possible, though atypical.

Forecasts and plans must be shared with the suppliers in order to improve
performance, hence long-term relations and trust are prerequisites for manag-
ing the network. Fortunately, the networks can be considered stable: there are
tight relations between the nodes (e.g., key supplier and customer partnering,
dedicated warehouses, etc.), and there are few and rare newcomers.

2.2 The Planning Matrix

In a supply network, the traditional boundaries of firms are getting dissolved:
decisions on the use of resources should concern both internal and external ca-
pacities, the internal flow of materials should be synchronized with the incoming
and outgoing flows. There are long-standing recipes to handle such structural
complexity. Aggregation merges details in the representation of products and
orders, forecasts, production processes, resource capacities, and time [11]. Prob-
lems formulated with more details are limited by shorter planning horizons.
Solutions are generated in a hierarchical process where higher level solutions
provide constraints to lower level problems. At the same level, decomposition
separates planning problems into easier-to-solve subproblems.

The evolution of planning functions in production management, and recently,
in supply network management resulted in a planning hierarchy [2,8] that we
adopt to our modelling purpose. This so-called planning matrix shows long-term,
medium-term and short-term planning functions organized along the main flow
of materials (Fig. 2). The functions are common at each node of a supply network,
though, of course, manifest themselves in different forms and complexity.

We assume an existing running network, hence network planning is out of the
scope of this study. We have a special interest in master and demand planning—
that specify the required output of a factory on the medium-term; in production
and distribution planning—that determine what to do so as to produce the
required output on medium-term; in scheduling that determines on the short-

Cooperative Planning in the Supply Network 349

Network planning

supply production distribution sales

Master planning

Supply

planning

Production

planning

Scheduling

Distribution

planning

Transportation

planning

Customer

relationship

management

Capacity

planning

Demand

planning

Network planning

supply production distribution sales

Master planning

Supply

planning

Production

planning

Scheduling

Distribution

planning

Transportation

planning

Order

management

Capacity

planning

Demand

planning

Fig. 2. Planning functions in supply networks. Functions in our scope are dark.

term how to execute production plans; and, finally, in supply planning—that
is responsible for providing the necessary materials. Later on, we present how
the selected planning function and their interrelationships can be represented in
terms of roles (Sect. 3.1) and interactions (Sect. 3.2).

2.3 Requirements Towards the Organization Model

The main requirements towards modelling the organization of a supply network
together with the main planning functions that must be realized at the nodes,
along the entire hierarchy of the planning matrix, are as follows:

– Generic approach The model should be adaptable for each enterprise.
– Common information model Models at various levels of the planning

hierarchy must be built up from common product, resource, technology, order
etc. related data, stored in existing—so-called legacy—information systems.

– Aggregation High-level planning models should be built on lower level
ones by aggregation. It must be guaranteed, that high level plans can be
executed in reality; e.g., a production plan can be refined into an executable
schedule.

– Local planning and optimization Optimization of resource usage and
material management should be the responsibility of the individual nodes.
In any case, a solution must be found for a problem that is posed by temporal
and capacity constraints, even in case of multiple, conflicting objectives.

– Reuse of existing planners In a running network, at the various nodes
there may be functions supported by some planner systems. The organiza-
tional model should cover such tools by providing wrappers around them.

– Planning at various, rolling horizons The model should capture that
planning, at all levels, is performed on rolling horizon. As approaching actual
production, the length and time units of these horizons become shorter.

– Portfolio of mechanism The model should enable the design, implemen-
tation and verification of a portfolio of various coordination mechanisms,
ranging from cooperation to competition.

350 P. Egri and J. Váncza

2.4 Related Work

There exists a number of Enterprise Resource Planning (ERP) systems for inte-
grating data of all major business functions at the nodes, but these systems are
rather transactional: they provide technology for information storing, retrieval
and sharing, but do not really support making decisions [2,4]. The so-called Ad-
vanced Planning Systems (APS) are add-ons to ERPs: they extract some data,
generate and feed back solutions. However, APSs do not support each planning
function, systems at various levels of the hierarchy are hardly integrated, and
behave like black boxes [8].

An object oriented framework for supply chain modelling is presented in [1].
It consists of a modelling library with design patterns and a collection of so-
lution methods, but it does not facilitate organizational design. In contrast, a
generic framework for designing multiagent systems by using principles of or-
ganizational design is presented in [9]. There are also a number of simulation
studies: e.g., [3] developed a multiagent simulation based on the SCOR refer-
ence model for analyzing collaborative inventory management. More enterprise
modelling tools are reviewed in [12]. We also developed a multiagent system
that combined demand planning, production planning and scheduling decisions,
where the distributed decisions where coordinated and the overall performance
of the system was controlled by a market-based incentive mechanism [10].

3 Representation Approach: The Gaia Model

As a high-level methodology, we use Gaia [15], a specification framework for
analyzing and designing the organizational model of multiagent systems. Gaia
has two aspects of the modelled system: the abstract viewpoint helps one to
conceptualize and analyze the organization, while the concrete viewpoint is used
during the design phase to model entities which will have realization in the run-
time system. Now we are dealing only with the analytic part, since the design
must be preceded by an extensive research.

Analysis consists of two models: roles and interactions. Since an organization
is considered a collection of roles, the main challenge is to distinguish different
roles, describe them and define their interactions. A role can have a set of per-
missions—typically access rights to certain shared information resources—and
responsibilities: liveness properties which declare what the role must do and
safety properties which are invariants stating situations to be avoided. Liveness
properties, that resemble regular expressions, consist of activities, which are au-
tonomous computations, and protocols, which denote interactions between roles.

The main assumption of Gaia—that the structure of the system must be
static—is not a real drawback in our case, since both the inter- and inner-
organizational relations are sufficiently stable. However, the original framework
has to be extended in several ways. Firstly, with the capability to express periodic
activities. Besides the reactive functions (e.g., receiving a customer order), there
are periodic activities, such as daily scheduling. This also raises the question of
modelling the granularity of time. In our case, the discrete model is proper, but

Cooperative Planning in the Supply Network 351

the time units and horizons can differ according to different roles. We extended
the roles model also with optimization objectives to measure their performance.

3.1 Roles

We have distinguished the roles presented below. Most of them fit in the planning
matrix but we have introduced a few other non-planning roles, too.

OrderManager (OM) receives orders and uncertain forecasts from the
buyers. DemandPlanner (DP) determines the forecasted output of the fac-
tory on the long-term, and also the safety stock levels which are held to cope
with unforeseen demand. CapacityPlanner (CP) sets the capacity calendars
(e.g., number of shifts in the factory) in such a way that they should support bal-
anced production on long-term. Notice, that under capacity planning we do not
understand the strategic decisions about the number and type of new machines,
but the usage of extant production lines and workforce. MasterPlanner (MP)
determines the output of the factory by specifying what actual orders have to be
satisfied on medium-term, and tunes the capacity levels so as to match resources
with expected future load. ProductionPlanner (PP) determines what to pro-
duce on short-term: it makes the master plan actual and executable by inserting
additional orders, doing stock manipulations, and performing resource allocation
and optimization. SupplyPlanner (SP) ensures the necessary raw materials for
the manufacturer by creating medium-term material requirement plans, ordering
from suppliers and maintaining the raw material inventory. Scheduler (SCH)
makes the assignment of smaller production units—tasks—to production lines,
the sequencing of the tasks, and determines the setup of lines between differ-
ent products. Distribution planner (DiP) assigns finished goods in stock to
the buyers. TransportationPlanner (TP) organizes the delivery of products,
which is usually performed by a third party logistics (3PL) company. Manufac-
turer (M) is not a planner role—its responsibility is to execute the schedule.

While previously described roles occur in almost every node of a supply
network, we introduce a special Customer (C) role, which is attached to re-
tailers or DCs. Customers can generate demand in at least three ways: with (1)
medium-term, certain, often periodical orders, (2) medium-term forecasts and
instant call-off and (3) short-term, unique, urgent orders.

All of these roles have different responsibilities, permissions and measure-
ments. We have modelled them using the Gaia formalism. For instance, the
schema in Table 1 defines the SupplyPlanner role with a brief description,
enumerates its protocols and activities (which are underlined), and contains the
rights of the role to access the information resources. In this schema we have
omitted the comments of the shared resources, because we will detail them in
Sect. 3.3. The liveness property states that the role does two things in parallel:
it periodically generates the medium-term material requirement plan—an inter-
nal activity—which may be followed by ordering, giving material requirement
forecast to suppliers and calling-off raw products from supplier’s inventory. We
have extended Gaia’s liveness operators by xp, which can be interpreted as “x
occurs periodically” to distinguish such actions from stochastic events. Secondly,

352 P. Egri and J. Váncza

Table 1. Schema for the SupplyPlanner role

Role Schema: SupplyPlanner

Description:
Ensures raw materials by creating medium-term material requirement plan,
ordering and maintaining the raw product inventory.

Protocols and Activities:
Order, CustomerForecast, Call-off, Transport, Exception, CreateMaterialRequirementPlan

Permissions:
reads forecasts, plannedOrders, schedule, technologicalData
changes rawProductInventoryLevels

Responsibilities
Liveness:

SupplyPlanner = (CreateMaterialRequirementPlan . [Order] . [Call-off] .
[CustomerForecast])p ‖ (Transport | Exception)ω

Safety:
• execution of the schedule must not stop because of material shortage

Objectives:
• minimal raw product inventory level
• minimal obsolete raw product inventory

it accepts incoming transports, receives and sends exceptions, which may come
infinitely often—as xω means. Safety property in our case is a text instead of
a formula, which states, that raw product inventory levels cannot be too small,
even if the objective of SupplyPlanner is to minimize inventories.

3.2 Interactions

Most of the communication in the system is periodical and is done through shared
resources. For example ProductionPlanner creates plannedOrders and stores
them as a shared resource, then SupplyPlanner reads and processes it. For
this cooperation no further interaction is needed.

There are also some cases, when no such shared resource is available—
especially in interactions between nodes—and thus well-defined protocols are
required. Since most of the roles occur in every node, we have to distinguish the
roles at different nodes. During an interaction between two nodes, one node is
in requester (R), the other is in supplier (S) position, so we differentiate them
by denoting their node’s position (e.g., S.OrderManager means the Order-
Manager role of the supplier node). Simultaneously, a node can be in supplier
position in one interaction and in requester position in another. The most im-
portant types of interactions are the following:

– Order: The OrderManager receives an external order from one of his
buyers (Customer or SupplyPlanner). This interaction may include due
date and/or price negotiation, auctions, etc.

Cooperative Planning in the Supply Network 353

– CustomerForecast: Buyers can give forecasts instead of orders, then the
supplier’s DemandPlanner has the responsibility to determine the quan-
tity to produce and transport.

– Call-off: In case of consignment VMI, buyer (Customer or SupplyPlan-
ner) calls-off raw products from the supplier, exactly before their utilization.

– Exception: Due to the uncertainties, there is a need to handle deviations
from plans. Exceptions can occur between any roles of the same or con-
nected nodes, but there are some typical ones: (1) urgent order, when the
factory must skip the hierarchical planning process and insert the order into
the short-term plan, and (2) delayed delivery, when raw products will not
be available when expected, planners should be informed to revise affected
plans.

– Transport: This is mainly a physical interaction—transferring goods—but
also some communication is needed to coordinate the process.

In Table 2 the definition of the Order protocol is shown. It contains the
initiator and the responder roles, a brief description, as well as the input and
output data.

Table 2. The Order Protocol Definition

Protocol name: Order

Initiator: Partner: Input:
R.SupplyPlanner
or R.Customer

S.OrderManager order information

Description: Output:
Supplier receives an order from one of his
buyers. This may include due date and/or
price negotiation, auctions, etc.

acceptance or rejec-
tion

Table 3. Shared information resources of SupplyPlanner

Name Description Roles using

forecasts Order forecasts: information about uncertain demand
(product, buyer, quantity, priority, etc.). It can contain
various groupings (product lines, regions, etc.).

DP, CP, MP,
SP

technologicalData Detailed BOMs, routings, resource models, etc. CP, SCH, SP
rawProduct-
InventoryLevels

Actual levels of the component inventory. SCH, M, SP

plannedOrders Medium-term master production plan contains the
planned output of the factory.

MP, PP, SP

schedule Short-time detailed production schedule, which will be
executed on the shop floor.

SCH, M, SP

354 P. Egri and J. Váncza

3.3 Shared Information Resources

Although it is not part of Gaia, we have found it necessary to describe shared
resources—which are the main instruments of information changing—separately
from the role model. In our case, most of these resources are data held in ERP
systems. The following resource types can be distinguished according to the
type of information they store: demand, production resource, inventory and plan
related information.

Table 3 presents the resources related to SupplyPlanner. There are also
several non-shared resources—i.e., the SupplyPlanner stores historical infor-
mation about its past orders and their fulfillment for calculating service levels—
but we disregard them in this high-level model. They are hidden inside the
realization of roles and are not involved directly in interactions.

4 Towards Cooperative Planning

Since supply networks are unique and complex, furthermore local planning at the
nodes is done in many different ways, there is no “one-size-fits-all” solution. In-
stead, there is a need for a portfolio of coordination mechanisms, where relations
between the partners can be represented on a range of colors: from cold (compet-
itive auctions, single business relations), through warm (cooperative planning),
to hot (full integration). For reasons discussed above our interest is in coop-
erative planning. Hence, we assume that partners have definite incentive and
commitment to cooperate, to share both their risks and benefits.1

The main driver for cooperation is uncertainty, which has its roots in market
demand, manufacturing and supply. Uncertainty can be managed only, if:

– Powerful planner systems fill in the various planner roles locally [7]. Plans
which are really executable and cost efficient make the future—even market
demand—more predictable, and the actual production more profitable.

– Novel information channels are established between the partners to share the
results of local planning, from detailed production schedules up to demand
plans, on all the horizons and levels.

As for handling supply uncertainty, all partners need inventory buffers which
are not only costly, but incur also the risk of obsolete production. Cooperation
can be seen as a method of managing these buffers. A focal manufacturer can
pass the responsibility of handling inventories to its suppliers, or alternatively, it
can keep the raw product inventory, but the supplier sets its level (VMI) [5]. In
the traditional way the manufacturer manages the inventory and decides its level.
Finally, in some cases, just-in-time production with no inventories is adequate.

In the next steps the organizational model will be refined and transformed
into a multiagent model. The granularity of the design will depend on the posi-
tion of the nodes: planning functions of the focal manufacturer will be realized

1 Tendencies in other industries, like the U.S. automotive industry point also towards
strong, lasting relationships of autonomous companies. [6].

Cooperative Planning in the Supply Network 355

by several agents, while some of the roles at supplier nodes can be realized by
single agents. Some agents will hide legacy planner systems that we have to ac-
cept as granted. We intend to use parts of the multiagent system in simulation
experiments to explore weak links in the supply network, and also to provide
benchmarks for validating the novel cooperation and planning mechanisms.

5 Conclusions

The paper exposed the problem of cooperative planning in supply networks,
with special regard to the field of customized mass production. It was suggested,
that such a complex system should be modelled with a multiagent framework.
For this purpose, Gaia methodology was used in an extended form. An abstract
organizational model of the network was designed by separating and describing
roles, interactions and information resources. Gaia had sufficient representation
power and flexibility to model planning functions and interactions in a supply
network.

Acknowledgments

This work has been supported by the NKFP grant No. 2/010/2004 and the
OTKA grant No. T046509.

References

1. Biswas, S., Narahari, Y.: Object Oriented Modeling and Decision Support for
Supply Chains. Eur. J. Operational Research, 153, 704–726, (2004).

2. Fleischmann, B., Meyr, H.: Planning Hierarchy, Modeling and Advanced Planning
Systems. In: de Kok, Graves (eds): Handbooks in OR & MS, 11, Supply Chain
Management: Design, Coordination and Operation, Elsevier, 457–523, (2003).

3. Fu, Y., Piplani, R., de Souza, R., Wu, J.: Multi-agent Enabled Modeling and
Simulation Towards Collaborative Inventory Management in Supply Chains. Pro-
ceedings of the 32nd Conference on Winter Simulation, 1763–1771, (2000).

4. Holsapple, C.W., Sena, M.P.: ERP Plans and Decision-Support Benefits. Decision
Support Systems, 38, 575–590, (2005).

5. Lee, C.C., Chu, W.H.J.: Who Should Control Inventory in a Supply Chain? Eur.
J. Operational Research, 164, 158–172, (2005).

6. Liker, J.K., Choi, T.Y.: Building Deep Supplier Relationships. Harvard Business
Review, 82(12), 104–113, (2004).

7. Márkus A., Váncza J., Kis T., Kovács A.: Project Scheduling Approach to Pro-
duction Planning. CIRP Annals Manuf. Tech., 52(1), 359–362, (2003).

8. Stadtler, H.: Supply Chain Management and Advanced Planning – Basics,
Overview and Challeges. Eur. J. Operational Research, 163, 575–588, (2005).

9. van Art, Ch.J., Wielinga, B., Schreiber, G.: Organizational Building Blocks for
Design of Distributed Intelligent System. Int. J. Human-Computer Studies, 61,
567–599, (2004).

356 P. Egri and J. Váncza

10. Váncza, J., Márkus, A.: An Agent Model for Incentive-based Production Schedul-
ing. Computers in Industry, 43(2), 173–187, (2000).

11. Váncza, J., Kis, T., Kovács, A.: Aggregation - The Key to Integrating Production
Planning and Scheduling. CIRP Annals Manuf. Tech., 53(1), 377–380, (2004).

12. Vernadat, F. B.: Enterprise Modelling and Integration: Principles and Applica-
tions, Chapman & Hall, (1996).

13. Wiendahl, H.-P., Lutz, S.: Production in Networks. CIRP Annals Manuf. Tech.,
51(2), 1–14, (2002).

14. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, (2002).
15. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems:

The GAIA Methodology. ACM Trans. on Software Engineering and Methodology,
12(3), 317–370, (2003).

Diagnosis of Plans and Agents

Nico Roos1 and Cees Witteveen2

1 Department of Computer Science, Universiteit Maastricht,
P.O.Box 616, NL-6200 MD Maastricht

roos@cs.unimaas.nl
2 Faculty EEMCS, Delft University of Technology,

P.O.Box 5031, NL-2600 GA Delft
witt@ewi.tudelft.nl

Abstract. We discuss the application of Model-Based Diagnosis in (agent-
based) planning. Here, a plan together with its executing agent is considered as a
system to be diagnosed. It is assumed that the execution of a plan can be moni-
tored by making partial observations of the results of actions. These observations
are used to explain the observed deviations from the plan by qualifying some
action instances that occur in the plan as behaving abnormally. Unlike in stan-
dard model-based diagnosis, however, in plan diagnosis we cannot assume that
actions fail independently. We focus on two sources of dependencies between
failures: such failings may occur as the result of malfunctioning of the executing
agent or may be caused by dependencies between action instances occurring in
a plan. Therefore, we introduce causal rules that relate health states of the agent
and health states of actions to abnormalities of other action instances. These rules
enable us to determine the underlying causes of plan failing and to predict future
anomalies in the execution of actions.

1 Introduction

The well-known quote: ”No plan survives its first contact with the enemy” should re-
mind us that diagnosis constitutes an unavoidable part of the plan execution process.1

Here, plan diagnosis might refer to quite different aspects of a failing plan in execution.
Since there is a huge number of potential factors that might influence, or even prevent,
correct plan execution, it is not surprising that current approaches to plan diagnosis are
rather diverse.

The aim of this paper is to adapt and extend a classical Model-Based Diagnosis
(MBD) approach to the diagnosis of plans. First, we will first show how a plan con-
sisting of a partially ordered set of actions can be viewed as a system to be diagnosed
by proposing an object oriented description of an action’s behavior. Given this view, a
diagnosis can be established using partial observations of a plan in progress.

Second, we introduce the concept of a causal diagnosis. Traditional MBD focuses
on minimal diagnosis based on the intuitively acceptable assumption that components
qualified as abnormal are failing independently from each other. However, as soon as
dependencies exist between such components, the choice for minimal diagnoses cannot

1 The quote is attributed to the Prussian Field Marshall Von Moltke.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 357–366, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

358 N. Roos and C. Witteveen

be justified. As we will argue, the existence of dependencies between failing actions in
a plan is often the rule instead of an exception.

Finally, we will introduce causal rules and causal diagnoses to predict future failings
of actions.

Related Work. We briefly discuss some other approaches to plan diagnosis. Similar to
our use of MBD as a starting point to plan diagnosis, Birnbaum et al. [1] apply MBD to
planning agents relating health states of agents to outcomes of their planning activities,
but they do not take into account faults that can be attributed to actions occurring in a
plan as a separate source of errors.

de Jonge et al. [5] propose another approach that directly applies model-based diag-
nosis to plan execution. Their paper focuses on agents each having an individual plan,
and where conflicts between these plans may arise (e.g. if they require the same re-
source). Diagnosis is applied to determine those factors that are accountable for future
conflicts. The authors, however, do not take into account dependencies between health
modes of actions and do not consider agents that collaborate to execute a common plan.

Kalech and Kaminka [9,10] apply social diagnosis in order to find the cause of
an anomalous plan execution. They consider hierarchical plans consisting of so-called
behaviors. Such plans do not prescribe a (partial) execution order on a set of actions. In-
stead, based on its observations and beliefs, each agent chooses the appropriate behavior
to be executed. Each behavior in turn may consist of primitive actions to be executed,
or of a set of other behaviors to choose from. Social diagnosis then addresses the issue
of determining what went wrong in the joint execution of such a plan by identifying the
disagreeing agents and the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors).

Lesser et al. [2,8] also apply diagnosis to (multi-agent) plans. Their research concen-
trates on the use of a causal model that can help an agent to refine its initial diagnosis
of a failing component (called a task) of a plan. While their approach in its ultimate
intentions comes close to our approach, their approach to diagnosis concentrates on
specifying the exact causes of the failing of one single component (tasks) of a plan.
Diagnosis is based on observations of a single component without taking into account
the consequences of failures of such a component w.r.t. the remaining plan.

Paper Outline. This paper is organized as follows. Section 2 introduces the preliminar-
ies of plan-based diagnosis, while Section 3 formalizes plan-based diagnosis. Section 4
extends the formalization to determining the agent’s health state. Section 5 concludes
the paper.

2 Preliminaries

Model Based Diagnosis. Classical Model-Based Diagnosis (MBD) [3,4,12] uses a
model of a system to identify causes of discrepancies between the observed behavior of
the system and the behavior predicted by the model. The model that is applied consists
of a set Comp of components, a setMc of health modes for each component c ∈ Comp,
and a specification of a component’s behavior given a health mode. The result of MBD
is a suitable assignment of health modes to the components, called a diagnosis, such

Diagnosis of Plans and Agents 359

that the actually observed output is consistent with this health mode qualification or can
be explained by this qualification. Usually, in a diagnosis one requires the number of
components qualified as abnormal to be minimized.

States. We consider plan-based diagnosis as a simple extension of the model-based
diagnosis where the model is not a description of an underlying system but a plan of
an agent. Before we discuss plans, we discuss our object- or resource-based view on
the world, assuming that for the planning problem at hand, the world can be simply
described by a set Obj = {o1, o2, . . . , on} of objects, their respective value domains
Si and and their (current) values si ∈ Si.2 A state of the world σ then is an element of
S1 × S2 × . . .× Sn. It will not always be possible to give a complete state description.
Therefore, we introduce a partial state as an element π ∈ Si1 × Si2 × . . .×Sik

, where
1 ≤ k ≤ n and 1 ≤ i1 < . . . < ik ≤ n. We use O(π) to denote the set of objects
{oi1 , oi2 , . . . , oik

} ⊆ Obj specified in such a state π. The value sj of object oj ∈ O(π)
in π will be denoted by π(j). The value of an object oj ∈ Obj not occurring in a partial
state π is said to be unknown (or unpredictable) in π, denoted by⊥. Partial states can be
ordered with respect to their information content: π is said to be contained in π′, denoted
by π � π′, iff O(π) ⊆ O(π′) and π′(j) = π(j) for every oj ∈ O(π). We say that two
partial states π, π′ are equivalent modulo a set of objectsO, denoted by π =O π′, if for
every oj ∈ O, π(j) = π′(j). Finally, we define the partial state π restricted to a given
set O, denoted by π �O, as the state π′ � π such that O(π′) = O ∩O(π).

Goals. An (elementary) goal g of an agent specifies a set of states an agent wants to
bring about using a plan. Here, we specify each such a goal g as a constraint, that is a
relation over some product Si1 × . . .× Sik

of domains.
We say that a goal g is satisfied by a partial state π, denoted by π |= g, if the

relation g contains at least one tuple (vi1 , vi2 , . . . , vik
) such that (vi1 , vi2 , . . . vik

) � π.
We assume each agent to have a set G of such elementary goals g ∈ G. We use π |= G
to denote that all goals in G hold in π, i.e. for all g ∈ G, π |= g.

Actions and Action Schemes. An action scheme or plan operator α is represented as
a function that replaces the values of a subset Oα ⊆ Obj by other values, dependent
upon the values of another set O′

α ⊇ Oα of objects. Hence, every action scheme α can
be modeled as a (partial) function fα : Si1 × . . . × Sik

→ Sj1 × . . . × Sjl
, where

1 ≤ i1 < . . . < ik ≤ n and {j1, . . . , jl} ⊆ {i1, . . . , ik}. The objects whose value
domains occur in dom(fα), the input resources of α, will be denoted by domO(α) =
{oi1 , . . . , oik

} and, likewise ranO(α) = {oj1 , . . . , ojl
} denotes the output resources

of α. Note that ranO(α) ⊆ domO(α). This functional specification fα constitutes the
normal behavior of the action scheme, denoted by fnor

α .
The correct execution of an action may fail either because of an inherent malfunc-

tioning or because of a malfunctioning of an agent responsible for executing the action,
or because of unknown external circumstances. In all these cases we would like to
model the effects of executing such failed actions. To keep the discussion simple, in
the sequel we only consider two health modes, the normal behavior mode: nor, and the

2 In contrast to the conventional approach to state-based planning, cf. [7].

360 N. Roos and C. Witteveen

most general abnormal behavior mode: ab. The most general abnormal behavior of ac-
tion α is specified by the function fab

α , where fab
α (si1 , si2 , . . . , sik

) = (⊥,⊥, . . . ,⊥).3

Given a set A of action schemes, we will need to consider a set A ⊆ inst(A) of
instances of actions in A. Such instances will be denoted by small roman letters ai.
If type(ai) = α ∈ A, ai is said to be of type α. If the context permits we will use
“actions” and “instances of actions” interchangeably.

Plans. A plan is a tuple P = 〈A, A,<〉 where A ⊆ Inst(A) is a set of instances
of actions occurring in A and (A,<) is a partial order. The partial order relation <
specifies a precedence relation between these instances: a < a′ implies that the instance
a must finish before the instance a′ may start. We will denote the transitive reduction
of < by !, i.e.,! is the smallest subrelation of < such that the transitive closure!+

of! equals <.
We assume that if in a plan P two action instances a and a′ are independent, in prin-

ciple they may be executed concurrently. This means that the precedence relation < at
least should capture all resource dependencies that would prohibit concurrent execution
of actions. Therefore, we assume < to satisfy the following concurrency requirement:

If ranO(a) ∩ domO(a′) �= ∅ then a < a′ or a′ < a.4

That is, for concurrent instances, domains and ranges do not overlap.

Example 1. Figure 1 gives an illustration of a plan. Arrows relate the objects an action
uses as inputs and produces as its outputs to the action itself. In this plan, the depen-
dency relation is specified as a1 ! a3, a1 ! a4, a2 ! a4, a2 ! a5, a4 ! a7,
a5 ! a8 and a4 ! a6. Note that the last dependency has to be included because a6
changes the value of o2 needed by a4. The actions a4, a5 and a6 show that not every
object occurring in the domain of an action needs to be affected by the action.

3 Standard Plan Diagnosis

Let us assume, for the moment, that each action instance can be viewed as an indepen-
dent component of a plan. To each action instance a a health modema ∈ {nor, ab} can
be assigned and the result is called a qualified plan. In establishing which part of the
plan fails, we are only interested in those actions qualified as abnormal. Therefore, we
define a qualified version PQ of a plan P = 〈A, A,<〉 as a tuple PQ = 〈A, A,<,Q〉,
where Q ⊆ A is the subset of instances of actions qualified as abnormal (and therefore,
A−Q the subset of actions qualified as normal).

Since a qualification Q corresponds to assigning the health mode ab to every action
in Q and since fab

a (si1 , si2 , . . . , sik
) = (⊥,⊥, . . . ,⊥) for every action a ∈ Q with

type(a) = α, the results of anomalously executed actions are unpredictable.

Qualified Plan Execution. For simplicity, when a plan P is executed, we will assume
that every action takes a unit of time to execute. We are allowed to observe the execution

3 This definition implies that the behavior of abnormal actions is essentially unpredictable.
4 Note that since ranO(a) ⊆ domO(a), this requirement excludes overlapping ranges of con-

current actions, but domains of concurrent actions are allowed to overlap as long as the values
of the object in the overlapping domains are not affected by the actions.

Diagnosis of Plans and Agents 361

Fig. 1. Plan execution with abnormal actions

of a plan P at discrete times t = 0, 1, 2, . . . , k where k is the depth of the plan, i.e.,
the longest <-chain of actions occurring in P . Let depthP (a) be the depth of action a
in plan P = 〈A, A,<〉.5 We assume that the plan starts to be executed at time t = 0
and that concurrency is fully exploited, i.e., if depthP (a) = k, then execution of a
has been completed at time t = k + 1. Thus, all actions a with depthP (a) = 0 are
completed at time t = 1 and every action a with depthP (a) = k will be started at
time k and will be completed at time k + 1. Note that thanks to the above specified
concurrency requirement, concurrent execution of actions having the same depth leads
to a well-defined result.

Let Pt denote the set of actions a with depthP (a) = t, let P>t =
⋃

t′>t Pt′ , P<t =⋃
t′<t Pt′ and P[t,t′] =

⋃t′

k=t Pk. Execution of P on a given initial state σ0 will induce
a sequence of states σ0, σ1, . . . , σk, where σt+1 is generated from σt by applying the
set of actions Pt to σt. Generalizing to partial states and transitions from partial states,
we define the (predicted) effect of the execution of plan P on a given (partial) state π at
time t ≥ 0, denoted by (π, t).

We say that (π′, t + 1) is (directly) generated by execution of PQ from (π, t), ab-
breviated by (π, t) →Q;P (π′, t+ 1), iff the following conditions hold:

1. π′ � ranO(a) = fnor
a (π � domO(a)) for each a ∈ Pt − Q such that domO(a) ⊆

O(π), that is, the consequences of all actions a enabled in π can be predicted and
occur in π′.6

5 Here, depthP (a) = 0 if {a′ |a′ a} = ∅ and depthP (a) = 1 + max{depthP (a′) | a′
a}, else. If the context is clear, we often will omit the subscript P .

6 An action a is enabled in a state π if domO(a) ⊆ O(π).

362 N. Roos and C. Witteveen

2. O(π′) ∩ ranO(a) = ∅ for each a ∈ Q ∩ Pt, since the result of executing an
abnormal action cannot be predicted (even if such an action is enabled in π);

3. O(π′) ∩ ranO(a) = ∅ for each a ∈ Pt with domO(a) �⊆ O(π), that is, even if
an action a is enabled in (the complete state) σt, if a is not enabled in π � σt, the
result is not predictable and therefore does not occur in π′, since it is not possible
to predict the consequences of actions that depend on values not defined in π.

4. π′(i) = π(i) for each oi �∈ ranO(Pt), that is, the value of any object not occurring
in the range of an action in Pt should remain unchanged. Here, ranO(Pt) is a
shorthand for the union of the sets ranO(a) with a ∈ Pt.

For arbitrary values of t ≤ t′ we say that (π′, t′) is (directly or indirectly) generated
by execution of PQ from (π, t), denoted by (π, t) →∗

Q;P (π′, t′), iff the following
conditions hold:

1. if t = t′ then π′ = π;
2. if t′ ≥ t+ 1 then (π, t) →Q;P (π′′, t+ 1) and (π′′, t+ 1)→∗

Q;P (π′, t′).

Note that (π, t) →∗
∅;P (π′, t′) denotes the normal execution of a normal plan P∅.

Example 2. Figure 1 gives an illustration of an execution of a plan with abnormal ac-
tions. Suppose action a3 is abnormal and generates a result that is unpredictable (⊥).
Given the qualificationQ = {a3} and the partially observed state π0 at time point t = 0,
we predict the partial states πi as indicated in Figure 1, where (π0, t0) →∗

Q;P (πi, ti)
for i = 1, 2, 3. Note that since the value of o1 and of o5 cannot be predicted at time
t = 2, the result of action a6 and of action a8 cannot be predicted and π3 contains only
the value of o3.

Diagnosis. Suppose now that we have a (partial) observation obs(t) = (π, t) of the
state of the world at time t and an observation obs(t′) = (π′, t′) at time t′ > t ≥ 0
during the execution of the plan P . We would like to use these observations to infer
the health states of the actions occurring in P . Assuming a normal execution of P , we
can (partially) predict the state of the world at a time point t′ given the observation
obs(t): if all actions behave normally, we predict a partial state π′

∅ at time t′ such that
obs(t)→∗

P (π′
∅, t

′). Since we do not require observations to be made systematically,
O(π′) and O(π′

∅
) might only partially overlap. Therefore, if all actions are executed

normally, the values of the objects that occur in both the predicted state and the observed
state at time t′ should match, i.e, we should have

π′ =O(π′)∩O(π′
∅

) π
′
∅
.

If this is not the case, the execution of some action instances must have gone wrong and
we have to determine a qualification Q such that the predicted state derived using Q
agrees with π′. This is nothing else then a straight-forward extension of the diagnosis
concept in MBD to plan diagnosis (cf. [4]):

Definition 1. Let P = 〈A, A,<〉be a plan with observations obs(t) = (π, t) and
obs(t′) = (π′, t′), where t < t′ ≤ depth(P) and let obs(t)→∗

Q;P (π′
Q, t

′) be a deriva-
tion assuming a qualification Q.

ThenQ is said to be a plan diagnosis of 〈P, obs(t), obs(t′)〉 iff π′ =O(π′)∩O(π′
Q) π

′
Q.

Diagnosis of Plans and Agents 363

So in a plan diagnosis Q the observed partial state (π′) at time t′ and the predicted
state (π′

Q) assuming the qualification Q at time t′ agree upon the values of all objects
occurring in both states.

Example 3. Consider again Figure 1 and suppose that we did not know that action
a3 was abnormal and that we observed obs(0) = ((s1, s2, s3, s4), 0) and obs(3) =
(s′1, s

′
3, s

′
5), 3). Using the normal plan derivation relation starting with obs(0) we will

predict a state π′
∅

at time t = 3 where π′
∅

= (s′′1 , s
′′
2 , s

′′
3). If everything is ok, the values

of the objects predicted as well as observed at time t = 3 should correspond, i.e. we
should have s′j = s′′j for j = 1, 3. If, for example, only s′1 would differ from s′′1 , then
we could qualify a6 as abnormal, since then the predicted state at time t = 3 using
Q = {a6} would be π′

Q = (s′′3) and this partial state agrees with the predicted state on
the value of o3.

Note that for all objects in O(π′)∩O(π′
Q), the qualificationQ provides an explana-

tion for the observation π′ made at time point t′. Hence, for these objects the qualifica-
tion provides an abductive diagnosis [3] for the normal observations. For all observed
objects in O(π′)−O(π′

Q), no value can be predicted given the qualification Q. Hence,
by declaring them to be unpredictable, possible conflicts with respect to these objects
if a normal execution of all actions is assumed, are resolved. This corresponds with the
idea of a consistency-based diagnosis [12].

If Q is a plan diagnosis of 〈P, obs(t), obs(t′)〉, then every superset Q′ ⊇ Q is also
a plan diagnosis, since in that case we have π′

Q′ � π′
Q and therefore π′ =O(π′)∩O(π′

Q)

π′
Q implies π′ =O(π′)∩O(π′

Q′) π
′
Q′ . Clearly then, the smaller a diagnosis is, the more

values it will predict that are also actually observed in the resulting plan state. This,
like in MBD, is a reason for us to prefer minimum diagnoses among the set of minimal
diagnoses.

But there is a caveat: a minimum diagnosis only minimizes abnormalities to ex-
plain deviations; as important however for a diagnosis might be its information content,
i.e. the exactness it provides in predicting the values of the variables occurring in the
observed state π′. This means that besides minimizing the cardinality of abnormalities
another criterion could be maximizing |O(π′) ∩O(π′

Q)|.

Definition 2. Given plan observations 〈P, (π, t), (π′, t′)〉, a qualification Q is said to
be a minimum plan diagnosis if for every plan diagnosis Q′ it holds that |Q| ≤ |Q′|.

Q is said to be a maximum informative plan-diagnosis iff for all plan diagnosesQ∗,
it holds that |O(π′) ∩O(π′

Q)| ≥ |O(π′) ∩O(π′
Q∗)|.

Note that every maximum informative diagnosis is a minimal diagnosis. So both
minimum plan diagnoses and maximum informative plan diagnoses are the result of
different criteria for selecting minimal diagnoses, as the following example shows:

Example 4. To illustrate the difference between minimum plan diagnosis and maximum
informative diagnosis, consider again the plan execution depicted in Figure 1. Given
obs(0) and obs(3) and a deviation in the value of o2 at time t = 3, there are three
possible minimum diagnoses: D1 = {a1}, D2 = {a3} and D3 = {a6}. D2 and D3 are
also maximum-informative diagnoses.

364 N. Roos and C. Witteveen

4 Causes of Plan-Execution Failures

Unlike in classical MBD, minimum diagnosis and maximum-informative diagnosis
need not provide the best explanation for the differences between observed effects of a
plan execution and the predicted effects. The reason is that often in a plan, instances of
actions do not fail independently. For example, suppose that we have a plan for carrying
luggage from a depot to a number of waiting planes. Such a plan might contain several
instances of a drive action pertaining to the same carrier controlled by an agent. Suppose
that an instance ai of some drive action (type) α behaves abnormally because of mal-
functioning of the carrier. Then it is reasonable to assume that other instances aj of the
same drive action that occur in the plan after ai can be predicted to behave abnormally,
too. Another possibility is that a number of instances of actions is related to the malfunc-
tioning of an agent executing several actions in the plan. For example, in the luggage
example, the carrier is controlled by a driving agent. If this agent itself is not functioning
well, all driving actions as well as loading and unloading actions might be affected.

Such dependencies between action instances and between agent health states and
action instances imply that sometimes qualifying an instance of an action as being
abnormal implies that other instances of actions must be qualified a being abnormal,
too. Minimum and information-maximum diagnosis do not take these dependencies
between action failures into account. Therefore, we must take into consideration the
underlying causes of a plan-execution failure.

Causal Rules. We consider a plan together with its executing agent as the system
to be diagnosed. An agent will be represented by a set H of specific health states.
To identify causes of action failures, we use a set R of causal rules in combination
with plan diagnosis. The intuitive idea behind causal rules is that the rules enables us to
predict failures of future actions given the agent’s health state and a set of failed actions.
A causal rule is a rule that can appear in the following forms:

(h;α1, α2, . . . , αk) → αk+1, where k ≥ 0, h ∈ H is a health state of the plan
executing agent and, for i = 1, 2 . . . , k + 1, αi ∈ A are action types. This
type of rule relates the occurrence of an agent health state h and a set of action
abnormalities occurring at time t to the inference of a failed action at time t+1.
If k = 0 and h �= nor, this rule establishes a health state as a single cause for
action failure.

To define the effect of applyingR to a set of (unique) instances of actions occurring
in a plan, we first construct the set inst(R) of instance of actions with respect to given
plan P = 〈A, A,<〉as follows:

For every rule r of the form (h;α1, α2, . . . , αk) → αk+1 ∈ R, inst(R) con-
tains the instances (h; ai1 , ai2 , . . . , aik

) → aik+1 , whenever there exists a t ≥ 0
such that {ai1 , ai2 , . . . , aik

} ⊆ P≤t and aik+1 ∈ P>t.

Note that the failure of an action aik+1 only depends on ai1 , ai2 , . . . , aik
if the agent is

healthy: h = nor.
The intuitive idea behind a causal diagnosis is to be able to explain a given plan

diagnosis Q by a (usually smaller) set of qualifications (causes) Q′ together with some

Diagnosis of Plans and Agents 365

health state h of the agent established at time t using the set of causal rules R. Using
such a pair consisting of a health state and a qualification should enable us to generate,
using the rules in R, a set containing Q.

Definition 3. The set of a causal consequenceCR,h(Q) of a qualificationQ ⊂ A given
the health state h ∈ H and the causal rules R is defined as:

CR,h(Q) = CnA(inst(R) ∪Q ∪ {h}).
Here, the instances of causal rules are interpreted as Horn clauses, Q and {h} as sets
of atoms, and Cn denotes the logical consequence operator.

To simplify the notation, we will omit the subscripts R and h from the operator C.
Now we define a causal diagnosis as a qualification Q such that its set of conse-

quences C(Q) constitutes a diagnosis:

Definition 4. Let P = 〈A, A,<〉 be a plan, R a set of causal rules and let obs(t)
and obs(t′) be two observations with t < t′. Then a qualification Q ⊆ A is a causal
diagnosis of (P, obs(t), obs(t′)) if C(Q) ∩ P[t;t′] is a diagnosis of (P, obs(t), obs(t′)).

Among the causal diagnoses, we distinguish minimum and maximum informative
causal diagnoses. Moreover, we distinguish closed set causal diagnoses; i.e. causal di-
agnoses Q such that C(Q) = Q.

Causal Diagnoses and Prediction. Except for playing a role in establishing causal
explanations of observations, (causal) diagnoses also can play a significant role in the
prediction of future results (states) of the plan or even the attainability of the goals of
the plan. First of all, we should realize that a diagnosis can be used to enhance observed
state information as follows: Suppose that Q is a causal diagnosis of a plan P based on
the observations obs(t) and obs(t′) for some t < t′, let obs(t) →∗

C(Q);P (π′
Q, t

′) and
let obs(t′) = (π′, t′). Since C(Q) is a diagnosis, π′ and π′

Q agree upon the values of all
objects occurring in both states. Therefore we can combine the information contained
in both partial states by merging them into a new partial state π′

 = π′
Q " π′. Here, the

merge π1 " π2 of two partial states π1 and π2 is simply defined as the partial state π
where π(j) = πi(j) iff πi(j) is defined for i = 1, 2 and undefined else. π′

 can be seen
as the partial state that can be obtained by direct observation at time t and indirectly by
making use of previous observations and plan information.

In the same way, we can use this information and the causal consequencesC(Q) to
derive a prediction of the partial states derivable at times t′′ > t′:

Definition 5. Let Q is a causal diagnosis of a plan P based on the observations (π, t)
and (π′, t′) where t < t′. Furthermore, let obs(t)→∗

C(Q);P (π′
Q, t

′) and let obs(t′) =
(π′, t′). Then, for some time t′′ > t′, (π′′, t′′) is the partial state predicted using Q and
the observations if (π′

Q " π′, t′)→∗
C(Q);P (π′′, t′′).

In particular, if t′′ = depth(P), i.e., the plan has been executed completely, we can
predict the values of some objects that will result from executing P and we can check
which goals g ∈ G will still be achieved by the execution of the plan, based on our
current knowledge. That is, we can check for which goals g ∈ G it holds that τ |= g. So
causal diagnosis might also help in evaluating which goals will be affected by failing
actions.

366 N. Roos and C. Witteveen

5 Conclusion

We have presented a new object-oriented model to specify plans and to apply techniques
developed for model-based agent diagnosis. We distinguished two types of diagnosis:
minimum plan diagnosis and maximum informative diagnosis to identify (i) minimum
sets of anomalously executed actions and (ii) maximum informative (w.r.t. to predicting
the observations) sets of anomalously executed actions. Assuming that a plan is carried
out by a single agent, anomalously executed action can be correlated if the anomaly is
caused by some malfunctions in the agent. Therefore, (iii) causal diagnoses have been
introduced and we have extended the diagnostic theory enabling the prediction of future
failure of actions. We intend to extend our model along three lines. First, we wish to
extend the model such that the agent might evolve through several abnormal states. The
resulting model will be related to diagnosis in Discrete Event Systems [6,11]. Second,
we intend to investigate plan repair in the context of the agent’s current (abnormal)
state. Third, we would like to extend the diagnostic model with sequential observations
and iterative diagnoses.

References

1. L. Birnbaum, G. Collins, M. Freed, and B. Krulwich. Model-based diagnosis of planning
failures. In AAAI 90, pages 318–323, 1990.

2. N. Carver and V.R. Lesser. Domain monotonicity and the performance of local solutions
strategies for cdps-based distributed sensor interpretation and distributed diagnosis. Au-
tonomous Agents and Multi-Agent Systems, 6(1):35–76, 2003.

3. L. Console and P. Torasso. Hypothetical reasoning in causal models. International Journal
of Intelligence Systems, 5:83–124, 1990.

4. L. Console and P. Torasso. A spectrum of logical definitions of model-based diagnosis.
Computational Intelligence, 7:133–141, 1991.

5. F. de Jonge and N. Roos. Plan-execution health repair in a multi-agent system. In PlanSIG
2004, 2004.

6. R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized protocols for failure
diagnosis of discrete-event systems. Journal of Discrete Event Dynamical Systems: Theory
and Application, 10:33–86, 2000.

7. R. E. Fikes and N. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 5:189–208, 1971.

8. Bryan Horling, Brett Benyo, and Victor Lesser. Using Self-Diagnosis to Adapt Organiza-
tional Structures. In Proceedings of the 5th International Conference on Autonomous Agents,
pages 529–536. ACM Press, 2001.

9. M. Kalech and G. A. Kaminka. On the design of social diagnosis algorithms for multi-agent
teams. In IJCAI-03, pages 370–375, 2003.

10. M. Kalech and G. A. Kaminka. Diagnosing a team of agents: Scaling-up. In AAMAS 2004,
2004.

11. Y. Pencolé, M. Cordier, and L. Rozé. Incremental decentralized diagnosis approach for the
supervision of a telecommunication network. In DX01, 2001.

12. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.

Dialectical Theory for Multi-agent
Assumption-Based Planning

Damien Pellier and Humbert Fiorino

Laboratoire Leibniz, 46 avenue Félix Viallet F-38000 Grenboble, France
{Damien.Pellier, Humbert.Fiorino}.imag.fr

Abstract. The purpose of this paper is to introduce a dialectical theory for plan
synthesis based on a multi-agent approach. This approach is a promising way
to devise systems based on agent planners in which the production of a global
shared plan is obtained by conjecture/refutation cycles. Contrary to classical ap-
proaches, our contribution relies on agents’ dialectical reasoning: in order to take
into account the partial knowledge and the heterogeneous skills of the agents, we
propose to consider the planning problem as a defeasible reasoning where agents
exchange proposals and counter-proposals and are able to conjecture i.e., formu-
late plan steps based on hypothetical states of the world. The dialogue between
agents is a joint investigation process allowing agents to progressively prune ob-
jections, solve conjectures and elaborate solutions step by step.

1 Introduction

The problem of plan synthesis achieved by autonomous agents in order to solve com-
plex and collaborative tasks is still an open challenge. Increasingly new application
areas can benefit from this research domain: for instance, cooperative robotics [1] or
composition of semantic web services [2] when considering actions as services and
plans as composition schemes. From our point of view, multi-agent planning can be
likened to the process used in automatic theorem proving. In a sense, a plan can be
considered to be a particular proof based on specific rules, called actions. In this paper,
we draw our inspiration from the proof theory described by Lakatos. According to [3],
a correct proof does not exist in the absolute. At any time, an experimentation or a test
can refute a proof. If one single test leads to a refutation, the proof is reviewed and it
is considered as mere conjecture which must be repaired in order to reject this refuta-
tion and consequently to become less questionable. The new proof can be subsequently
tested and refuted anew. Therefore, the proof elaboration is an iterative non monotonous
process of conjectures - refutations - repairs.

The same is true of our approach. The plan synthesis problem is viewed as a di-
alectical and collaborative goal directed reasoning about actions. Each agent can refine,
refute or repair the ongoing team plan. If the repair of a previously refuted plan suc-
ceeds, it becomes more robust but it can still be refuted later. If the repair of the refuted
plan fails, agents leave this part of the reasoning and explore another possibility: finally
“bad” sub-plans are ruled out because there is no agent able to push the investigation
process further. As in an argumentation with opponents and proponents, the current plan

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 367–376, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

368 D. Pellier and H. Fiorino

is considered as an acceptable solution when the proposal/counter-proposal cycles end
and there is no more objection.

The originality of this approach relies on the agent’s capabilities to elaborate plans
under partial knowledge and/or to produce plans that partially contradict its knowledge.
In other words, in order to reach a goal, such an agent is able to provide a plan which
could be executed if certain conditions were met. Unlike “classical” planners, the plan-
ning process does not fail if some conditions are not asserted in the knowledge base,
but rather proposes an Assumption-Based Plan or conjecture. Obviously, this conjec-
ture must be reasonable: the goal cannot be considered “achieved” and the assumptions
must be as few as possible because they become new goals for the other agents. For
instance, suppose that a door is locked: if the agent seeks to get into the room behind
the door and the key is not in the lock, the planning procedure fails even though the
agent is able to fulfill 100% of its objectives behind the door. Another possibility is to
suppose for the moment that the key is available and then plan how to open the door
etc. whereas finding the key might become a new goal to be delegated. To that end, we
designed a planner that relaxes some restrictions regarding the applicability of planning
operators.

Our approach differs from former ones in two points. First of all, unlike approaches
that emphasize the problem of controlling and coordinating a posteriori local plans of
independent agents by using negotiation [4], argumentation [5], or synchronization [6]
etc., the dialectical theory for plan synthesis presented here focuses on generic mecha-
nisms allowing agents to jointly elaborate a global shared plan and carry out collective
actions. Secondly, by elaboration, we mean plan production and not instantiation of pre-
defined global plan skeletons [7,8]. This is achieved by composing agents’ skills i.e.,
the actions they can execute for the benefit of the group. Thus, the issues are: how can
agents produce plans as parts of the global proof with their partial and incomplete be-
liefs? what kind of refutations and repairs agents can propose to produce robust plans?
and how to define the conjecture - refutation protocol so as to converge to an acceptable
solution plan?

In this paper, we introduce a multi-agent assumption-based planning approach. In
section 2, we present the primary notions used in this approach. Then, in section 3,
we define the concept of proof board used by agents to collaboratively build a solution
plan and finally, in section 4, the dialectical mechanisms for the conjecture-refutation
process is presented.

2 Primary Notions

We start by defining the language used to describe agents’ beliefs. This language is
based on a first-order languageL in which there is a finite number of predicates symbols
and constants symbols but no function symbols. A state is a set of ground atoms of L.
Since L has no functions symbols, the set S of all possibles states s is guaranteed to be
finite. An atom p holds in s iff p ∈ s. If g is a set of literals (i.e., atoms and negated
atoms), we will say that s satisfied g (denoted s |= g).

Now, let us introduce, the definition of a planning operator used by agents. An
planning operator defines a transition operation from a state to another one.

Dialectical Theory for Multi-agent Assumption-Based Planning 369

Definition 1 (Planning Operator). A planning operator is a triple o = 〈name(o),
precond(o), effects(o)〉 whose elements are as follows:

– name(o), the name of the operator, n(x1, . . . , xk) where n is a symbol and x1, . . . ,
xk define operator’s parameters.

– precond(o) and effects(o), the preconditions and effects of o, respectively defining
the literals that must be held in the state where the operator is applied and the
literals that must be added (denoted effect(o)+) or removed (denoted effect(o)−),
to compute the transition operation.

Although we use the same operator representation as in classical planning, the oper-
ator semantic in our approach is different. In classical planning, an operator is applica-
ble to a state s if o is ground and s is a state such precond(o) ⊆ s. Our approach relaxes
this constraint: all operators are applicable to a state s. Hence, we must distinguish
facts that hold in s and facts that do not hold. The second are called assumptions. An
assumption defines a literal p ∈ precond(o) such p do not hold in s. We use assump(o)
to denote the set of assumptions needed to apply an operator o in a particular state s.
The state resulting of the application of o to si is the state:

si+1 = ((si ∪ assump(a)) − effects−(a)) ∪ effects+(a)

For instance, consider the initial belief state of an agent s0 = {at(cont,loc1)} and a
simple operator that can be performed by this agent to move a container from a location
to another one: name(o) = move(c,l1,l2); precond(o) = {connected(l1,l2), at(c,l1)} and
effect(o) = {¬at(c,l1), at(c,l2)}. In this example, the agent has no information about the
connection between the locations loc1 and loc2. In order to apply the move operator, the
agent must assume the assumption connected(loc1,loc2). The state resulting of the ap-
plication of the move operator is the state: s1 = {connected(loc1, loc2), at(cont,loc2)}.

Before going further and introducing our multi-agent planning model, we must clar-
ify one point. We say that an assumption is a precondition of an operator o that do not
hold in the state s where the operator is applied. Thus, there are two cases: i) if a pre-
condition p is not contained in s, the fact must be added to the agent’s belief and simply
considered as a hypothetical fact; ii) if a precondition does not hold because its negation
is contained in s, the agent must first remove the negation before adding the precondi-
tion. We call this kind of assumption a fact negation.

Assumptions are important opportunities for improving collaborative synergy be-
tween agents. They can be refined by the other agents in order to produce the supposed
facts (e.g., by connecting the two locations loc1 and loc2). They are viewed as subgoals
that must be fulfilled by other agents.

Definition 2 (Agent). An agent is a triple ag=〈name(ag),operators(ag),beliefs(ag)〉,
where:

– name(ag),the name of the agent;
– operators(ag), a set of operators, i.e., the skills of the agent;
– beliefs(ag), a set of literals, i.e., the initial beliefs of the agent.

In classical planning, a planning domain is defined by a set of operators. In our
approach, operators are included in agents’ description. Thus, we define a multi-agent
planning domain as a set of agents.

370 D. Pellier and H. Fiorino

Definition 3 (Multi-Agent Planning Domain). A multi-agent planning domain D is
defined as a set of agents.

Finally, we need to define the notion of multi-agent planning problem. A multi-
agent planning problem must define the goals that must be reached and the set of agents
that must solve it.

Definition 4 (Multi-Agent Planning Problem). A multi-agent planning problem is a
couple P = 〈AG, g〉, where:

– AG defines a set of agents’ names;
– g is a set of literals that must be reached by the agents defined in AG.

Consider a simple domain containing four agents: a farmer, a miller, a baker and a con-
veyor. The farmer sows wheat, which must be harvested. The miller grinds the farmer’s
wheat to produce flour. The baker makes bread with miller’s flour and finally the con-
veyor is in charge of moving the goods needed by the other agents. An instance of a
multi-agent planning problem can define with AG = {famer,miller, baker, convoyor}
and g = {has-goods(baker, bread, 2)}.

3 Conjectures Space Search

The plan synthesis relies on dialectical exchanges between agents as expected in a de-
bate. Agents interact collaboratively in the dialogue so as to construct a plan without
assumption, fulfilling the assigned goals. In order to build such a plan and organize the
dialog between agents, we need a structure, called proof board. This structure has two
main functions: it must be able to represent the space search as in classical planning
and it must be able to specify the dialectical rules used by agents to interact.

3.1 Conjectures and Plans

First, let us refine the notion of conjecture used in our approach. We have informally
introduced a conjecture as a plan that can be executed if certain conditions were met.
In classical planning, a plan is a set of ground operators organized into some structure,
e.g., a sequence. However, a sequence of operators is a particular plan that reflects the
intrinsic constraints of the operators. It seems to be to much restrictive for a multi-agent
approach of collaborative planning, e.g., it is no possible to define concurrent actions.
Therefore, to find out what is needed in a conjecture, consider an informal planning
step (shown figure 1) on the simple example previously introduced with the farmer, the
miller, the baker and the conveyor.

baker1 : “I can make 2 breads to solve the goal, but I need 2 flour containers
available in loc1.”

conveyor1 : “I can transport the flours containers at loc1, but I don’t know where I
must load the goods.”

miller1 : “I propose to sell you the flours containers. I needed to be payed 4 euros
for that and find someone to transport flour containers from loc2 to loc1.
Moreover, I need a wheat container available in loc2 to grind the flour.”

Dialectical Theory for Multi-agent Assumption-Based Planning 371

baker2 : “Thank you for your help, miller, but I have not enough money.”
miller2 : “Ok, give me only 2 euros.”
baker2 : “Good deal, I pay you.”
conveyor2: “Thus, I understand that I must load the flour in loc2.”
farmer1: “I propose to sell you a wheat container. I need to be payed 1 euros for

that and find someone to transport the container from loc3 to loc2.”
miller3 : . . .

Fig. 1. Example of conjecture: each boxes is an operator with preconditions above and effects be-
low. Solid arrows are ordering constraints, dashed arrows are causal links and binding constraints
are implicit or shown directly in the operator parameters. This representation is based on [9].

Operators. Initially, baker1 proposes to add the operator make-bread to reach the goal
g = { has(baker,bread,2)}. This operator make two assumptions: available(flour, loc1)
and has(baker,flour,2). These assumptions must be refined. Thus, conveyor1 and miller1
propose recursively to add others operators or sub-conjecture to reach these two new
goals.

Ordering Constraints. Consider the sub-conjecture added by conveyor1; it achieves its
purpose only if it is constrained to come before the make-bread operator. But should
this conjecture come before or after the miller conjecture? Both options are possible.
We use the least commitment principle of not adding constraints unless it is strictly
needed. If no constraint are specified the conjecture between conveyor1 and miller1,
these two conjectures will be able to run concurrently.

Causal links. Because there is no explicit notion of current state (distributed on the
agents), an ordering constraint does not say, for instance, that the flour stays available
at loc1 until make-bread operator is performed. Hence, we need to encode explicitly in
the conjecture the reason why the conveyor1 sub-conjecture was added: to satisfy the

372 D. Pellier and H. Fiorino

assumption available(flour, loc1). The relation between the baker’s conjecture and the
conveyor’s one with respect to available(flour, loc1), is called a causal link.

Binding Constraints. Operators are added in a conjecture with systematic variable re-
naming. For instance, we must ensure that the conveyor conjecture concerns the same
container flour and the same location loc1 as those in operator make-bread.

Definition 5 (Conjecture). A conjecture is a tuple χ = 〈A,≺,B, C〉, where:
– A = {a1, . . . , ak} is a set of partially instantiated operators.
– ≺ is a set of ordering constraints on A of the form (ai ≺ aj).
– B is a set of binding constraints on A of the form x = y, x �= y or x ∈ Dx, where
Dx is the domain of x.

– C is a set of causal links of the form (ai
p−→ aj), such that ai and aj are operators in

A, the constraint ai ≺ aj is in≺, assumption p is an effect of ai and a precondition
of aj and finally the binding constraints between ai and aj about p are in B.

The proof board is a conjecture space defining a directed graph whose vertices are
conjectures and whose edges correspond to the transition operation proposed by the
agent. An outgoing edge from a vertex χ is a transition operation that transforms χ
into a successor χ′. A transition operation can be: a refinement (i.e., adding opera-
tors to prove an assumption), a refutation (i.e., highlighting inconsistencies in the con-
jecture) and a repair of a previously highlighted inconsistency. Therefore, multi-agent
assumption-based planning is a search in the proof board from a initial conjecture to
a node recognized as a solution plan. Note that due to no explicit current state repre-
sentation, goals and initial state must be defined as particular conjectures. Since pre-
conditions are possibly assumptions, the propositions corresponding to the goals are
represented as preconditions of a dummy operator an. Similarly, the initial state is rep-
resented as the effects of a dummy action a0. The effects of a0 define the union of the
agents’ beliefs. We make the assumption that the agents’ beliefs are consistent.

3.2 Solution Plan

Let us now specify what is a solution plan to a planning problem P = 〈AG, g〉. A so-
lution plan is a conjecture that has particular properties. First, a conjecture is a solution
plan if the conjecture makes no assumption. But according to the conjecture definition,
it is not enough. A solution conjecture must define a consistent set of ordering con-
straints, binding constraints and causal links. These properties allow us to define three
kinds of refutations.

Proposition 1 (Solution Plan1). A conjecture χ = 〈A,≺,B, C〉 is a solution plan to a
planning problem P = 〈AG, g〉, if χ has no assumption and χ can not be refuted.

Definition 6 (Ordering Refutation). An action ak of a conjecture χ refutes an order-
ing constraint ai ≺ aj iff ak ≺ ai and aj ≺ ak.

Definition 7 (Binding Refutation). An action ak of a conjecture χ refutes an binding
constraint iff one of the following condition holds:

1 Can be proved inductively on the number of operators in A.

Dialectical Theory for Multi-agent Assumption-Based Planning 373

1. if there is an operator ak that contains a variable x such that x ∈ Dx and x is not
consistent with B.

2. if there is an operator ak that contains two variables x and y such that x = y is
not consistent with B.

3. if there is an operator ak that contains two variables x and y such that such that
x �= y is not consistent with B.

Definition 8 (Causal Refutation). An action ak of a conjecture χ refutes a causal link
ai

p−→ aj , iff:

– ak has an effect ¬q and ¬q is not consistent with p, i.e., p and q are unifiable.
– ordering constraints (ai ≺ ak) and (ak ≺ aj) are consistent with ≺.
– binding constraints resulting of the unification of p and q are consistent with B.

4 Dialectical Mechanisms

In order to tackle the dialectical mechanisms to collaboratively build a solution plan, let
us remember the definition of the proof board. The proof board defines a conjectures
space where edges represent transition operations: refine, refute or repair. A conjecture
is a solution plan if it does not contain assumption and if no agent is able to refute it.
This definition gives us two tips to specify the dialectical mechanism. Indeed, the first
condition can be reached by refining or repairing. On the contrary, the second condi-
tion needs a deliberation process to guarantee that no agent can refute the conjecture.
Therefore, we distinguish two layers: i) an informational layer that defines the rules
to exchange refinements, refutations and repairs about the current conjecture. Each new
conjecture suggested by an agent produces new goals to be achieved by the other agents;
ii) a contextualization layer in which agents can decide to stop interacting when they
believe a solution was found or not reachable. Moreover agents can decide to change
the dialogue context by forwarding or backtracking into the proof board if the current
conjecture has been refuted or none of the agents can refine its assumptions.

4.1 Informational Layer

The characterization of the solution plan brings elements needed for the specification
of the speech acts used in the informational layer. The main principle of the multi-agent
assumption based planning is to let the agents choose a transition operation to apply to
the proof board until χ contains no more assumptions and until χ cannot be refuted.
The basic steps of agent’s dialectical mechanisms are the following:

– Select a conjecture χ on which to apply a transition operation.
– Select a transition operation to apply to χ.
– Find ways to resolve the transition operation.
– Select a resolver for the transition operation.
– Assert the resolver, i.e., refine, refute or repair.

374 D. Pellier and H. Fiorino

For each transition operation that can be applied, we introduce a speech act: i) a speech
act refine is performed by an agent to express the refinement of a conjecture. A refine-
ment can be specified by adding a set of operators, a set of ordering constraints, a set
of binding constraints and finally a set of causal links (e.g., miller1 in example 1); ii) a
speech act refute is performed by an agent to express the refutation of a conjecture. A
refutation highlights that an action produces a set of ordering inconsistencies or a set of
binding inconsistencies or finally a set of causal inconsistencies. The computation of the
inconsistencies are based on the formal definition of the three kinds of refutation previ-
ously presented (e.g., baker2 in example 1); iii)a speech act repair is performed by an
agent to express that a conjecture can be repaired by adding and removing respectively
a set of operators, a set of ordering constraints, a set of binding constraints and finally
a set of causal links (e.g., miller2 in example 1). Note that all informational speech acts
can be performed only if they were not already proposed by other agents. This condition
guarantees that the proof board defines a loop free directed graph. In order to find ways
to resolve a transition operation agents use the following mechanisms:

Refinement. If a conjecture χ contains an operator aj that makes an assumption p (see

figure 2): i) If a causal link (ai
p−→ aj) can be established such that ai is already in the

conjecture, the refinement will contain the causal link (ai
p−→ aj), the ordering constraint

(ai ≺ aj) and the binding constraints to unify p with the effects of ai; ii) Otherwise,
agents must compute a sub conjecture χ′ to prove p. The refinement will contain all the
elements of χ′, a causal link (ai

p−→ aj) to specify which operator ai of χ′ reaches the
assumption p done by aj and a ordering constraint (ai ≺ aj). Note that we have already
shown in [10] how an agent can produce such conjecture.

Fig. 2. The left figure shows a refinement when an operator already reached an assumption and
right figure shows a refinement by adding a new conjecture

Repair 2. If there is a causal refutation on (ai
p−→ aj) by an action ak that has an

effect ¬q, and q is unifiable with p, then the resolvers are any of the following: i) add
an ordering constraint such that ak occurs before the causal link; ii) add an ordering
constraint such that ak occurs after the causal link; iii) add a binding constraint that
makes q and p non-unifiable.

Refutation. The causal refutation can be computed by testing all triples of actions of
a conjecture χ. The ordering refutation can be computed by testing that the ordering

2 Repairs of binding refutation and ordering refutation are not discussed here.

Dialectical Theory for Multi-agent Assumption-Based Planning 375

constraint represent a loop free graph. Finally, the binding refutation of type 1 and 2
(see definition 7) can be computed in linear time, whereas the type 3 raises a general
NP-complete Constraint Satisfaction Problem (CSP).

4.2 Contextualization Layer

The informational layer defines the basic mechanisms to build a solution plan. Is that
enough? Not quite. The dialectical mechanism must guarantee the soundness and the
completeness of the collaborative plan synthesis process. Now let us consider the proof
board as a search in an AND/OR tree. The assumptions and the refutations corre-
spond to AND branches because all of them must be resolved in order to find a so-
lution. For each assumption and refutation the possible resolvers (i.e., refinement and
repair) correspond to OR branches because only one of them is needed in order to
find a solution. In order to guarantee the completeness, agents must coordinate their
exploration. Therefore, we consider that agents can apply a transition operation only
on a specific conjecture in the proof board, called current conjecture. This conjecture
defines the dialog context. The speech acts define in the contextualization layer al-
low agents to change the dialog context. We introduce four contextualization speech
acts: i) a speech act prop.solve is performed by an agent when it believes that a solu-
tion plan χ is reached. When the speech act prop.solve is proposed each agent checks
if it can refute χ. If χ cannot be refuted each agent acknowledges the solve propo-
sition. Otherwise, they refute χ and the dialectical process is extended; ii) a speech
act prop.failure is performed by an agent when it believes that no solution plan ex-
ists. Like the previous speech act, when speech act prop.failure is performed, each
agent checks if there is a conjecture in the proof board on which they can apply a
transition operation. In this case, each agent acknowledges the failure proposition.
Otherwise, the dialectical process continues; iii) a speech act prop.backward is per-
formed by an agent when it believes that no resolver can be proposed to go further
in the current conjecture exploration; iv) a speech act prop.foreward is performed by
an agent when it believes that agent have no more resolvers to apply at the current
conjecture.

Note that all contextualization speech acts define a joint commitment between
agents. For instance, all agents must agree on the plan solution before stopping the
dialectical plan synthesis process. The computation of the next current conjecture when
the speech acts prop.backward and prop.foreward are proposed by agents is based on
A* heuristics. Recall that A* uses a heuristic estimate f(χ) of the overall solution cost
consisting of, in the one hand g(χ) = cost of the current conjecture χ and in the other
hand h(χ) = estimate of the additional cost of the best complete solution that extends
χ. We propose to think f(χ) as a measure of conjecture complexity, i.e., “good” con-
jecture are simple conjectures. What is significant to compute f(χ)? [11] indicates that
the most promising heuristic measure for conjecture selection is the number of actions
contained in the conjecture and the number of assumptions done. Therefore, we define
g(χ) as the number of action of χ, i.e., the complexity of the conjecture and h(χ), the
number of assumptions done, since each remaining assumption must be established by
some sub-conjecture. Note that this heuristic can be used locally by the agent to choose
the best resolver to submit to the other agents.

376 D. Pellier and H. Fiorino

5 Conclusion

The dialectical plan synthesis theory model presented in this paper relies on plan pro-
duction and revision by conjecture/refutation cycles: for a given goal, agents try collab-
oratively to produce a valid proof, i.e., a plan. In order to demonstrate the goal assigned
to the system, agents interact by using a conventional dialogue approach that can be
split in two layers: informational layer, which defines the conventions to refine, refute
or repair conjectures and contextualization layer, which defines the conventions to al-
low agents to change the dialogue state. The dialogue rules are described according
to the proof board. The proof board represents the public part of the communication
storing the different exchanges between agents. The advantage of the dialectical plan
synthesis is to merge in the collaborative plan generation, the composition and the coor-
dination steps. It also includes the notion of uncertainty in the agents’ reasoning and al-
lows the agents to make conjectures and to compose their heterogeneous competences.
Moreover, we apply conjecture/refutation to structure the multi-agent reasoning as a
collaborative investigation process. However, former works on synchronization, coor-
dination and conflict resolution are integrated through the notions of refutation/repairs.
From our point of view, this approach is suitable for applications in which agents share
a common goal and in which the splitting of the planning and the coordination steps
(when agents have independent goals, they locally generate plans and then solve their
conflicts) becomes difficult due to the agents strong interdependence.

References

1. Alami, R., Fleury, S., Herrb, M., Ingrand, F., Robert, F.: Multi robot cooperation in the
martha project. IEEE Robotics and Automation Magazine 5 (1997) 36–47

2. Wu, D., Parsia, B., Sirin E, Hendler, J., Nau, D.: Automating daml-s web services composi-
tion using shop2. In: Proceedings of International Semantic Web Conference. (2003)

3. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge
University Press, Cambridge, England (1976)

4. Zlotkin, G., Rosenschein, J.: Negotiation and conflict resolution in non-cooperative domains.
In: Proceedings of the American National Conference on Artificial Intelligence, Boston,
Massachusetts (1990) 100–105

5. Tambe, M., Jung, H.: The benefits of arguing in a team. Artificial Intelligence Magazine 20
(1999) 85–92

6. Clement, B., Barrett, A.: Continual coordination through shared activities. In: Proceedings of
the International Conference on Autonomous Agent and Muti-Agent Systems. (2003) 57–67

7. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial Intelligence
86 (1996) 269–357

8. D’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dmars architecture:
A specification of the distributed multi-agent reasoning system. Autonomous Agents and
Multi-Agent Systems 9 (2004) 5–53

9. Ghallab, M., Nau, D., Traverso, P.: Automated Planning Theory and Practice. Morgan
Kaufmann Publishers (2004)

10. Pellier, D., Fiorino, H.: Assumption-based planning. In: In Proceedings of the Interna-
tional Conference on Advances in Intelligence Systems Theory and Applications, Luxem-
burg (2004)

11. Gerevini, A., Schubert, L.: Accelerating partial-order planners: Some techniques for effective
search control and pruning. Journal of Artificial Intelligence Research 5 (1996) 95–137

Keeping Plan Execution Healthy�,��

Femke de Jonge, Nico Roos, and Jaap van den Herik

Universiteit Maastricht, IKAT,
P.O. Box 616, NL-6200, Maastricht

{f.dejonge, roos, herik}@cs.unimaas.nl

Abstract. Unexpected events during the execution of a plan may lead to con-
flicts: we then say that the plan execution is unhealthy. This paper presents a new
model that enables agents (1) to control plan-execution health and (2) to regain
health when necessary. The agents can utilize the model to predict consequences
of occurring disruptions and thus detect unhealthy situations. With the help of
the model’s predictions, agents can correct the execution of tasks within the plan
to regain health. The applicability of the presented model is demonstrated by in-
troducing two multi-agent protocols to keep the plan execution healthy. Finally,
we investigate the solving capabilities and the efficiency of our method in ex-
periments using randomly generated plans. Our conclusion is that a reasonable
proportion of unhealthy situations can be solved adequately by corrections in the
plan execution instead of performing a replanning procedure.

1 Introduction

Plan development and plan execution in complex, dynamic environments are difficult
tasks. This explains the tendency to apply intelligent computer programs to support
these tasks. Currently, the (initial) plan development in fields such as Air Traffic Control
(ATC) is to a large extent performed by planning software. For plan execution, however,
such software is not widely available, even though the execution of plans in complex
and dynamic environments requires continuous control and adaptation. Our research
focusses on employing a multi-agent system for plan-execution control and adaptation.
Multi-agent systems seem an obvious means to this end since the plans in environments
such as ATC are mainly distributed.

An adequate plan normally satisfies all constraints imposed by its environment and
by other plans. Hence, such a plan is conflict free. This is a property that should be kept
persistently during the execution of the plan. We denote a plan execution as healthy,
when during the execution of the plan no constraints are violated. A conflict-free plan
can have an unhealthy plan execution when unexpected changes in the environment
occur. The process of keeping a plan execution healthy can be viewed as a continuous
cycle of detecting unhealthy situations and regaining health. Plan-execution health can
be regained by either correcting the execution or changing the plan (i.e., replanning).

� A more elaborated version appeared in [1].
�� This research is supported by the Technology Foundation STW, applied science division of

NWO and the technology programme of the Ministry of Economic Affairs (the Netherlands).

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 377–387, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

378 F. de Jonge, N. Roos, and J. van den Herik

In our opinion, corrections within the execution of a plan have three advantages
when compared to replanning, viz. (1) they are often easier to accomplish, (2) they are
less influential for the environment and the rest of the plan, and (3) especially within
domains such as ATC, plan changes are more costly than changes in execution. For
instance, gate changes require a large amount of organization as the passengers need
to be informed, the engaged ground handling needs to be relocated, and so on. Not
surprisingly, within the ATC practice, the first attempt to regain health is always to try
and find solutions within the execution of the current plan. Therefore, we emphasize
that before applying replanning, agents should try to regain health by correcting the
execution of the plan without changing the plan itself.

In summary, the contribution of this paper is that it enables agents to keep the plan
execution healthy by applying small corrections within the plan execution. For this
purpose, we developed a model that agents can apply (1) to control the health of the
plan execution and (2) to find corrections to regain health when necessary.

The outline of the paper is as follows. Section 2 discusses the background of our
approach. In section 3, we present our model for plan-execution health control and
repair in a multi-agent system. Section 4 provides formal definitions of when a plan
execution is healthy, and how plan-execution health can by regained by applying small
corrections to the execution. In section 5, we present two protocols that implement
our model and in section 6, we applied these protocols in experiments to evaluate the
applicability of our model. Section 7 concludes the paper.

2 Background

Planning notions. As stated in the introduction, we address the execution of a plan after
it is created. Therefore, we assume that a plan is already developed. We view a plan as
a partially ordered set of steps. These steps are actions carried out at specific points in
the plan, while the actions are instantiations of general operations [2]. The execution of
the steps usually has a certain duration and may require resources that have to be shared
with other steps of the same plan or of other plans. We assume that a set of constraints
describes requirements with respect to shared resources. Within ATC, for instance, we
can think of safety constraints and of environmental constraints on noise pollution.
Since we consider a multi-agent context, we assume that the plan is distributed over the
agents. For example, in the ATC case, we can think of a multi-agent system containing
one agent for each aircraft (controlling its plan).

Plan descriptions generally see the steps as atomic parts that make up the plan. Here,
we view them as tasks that require several, often reactive, activities of the executing
agents. These activities cannot be planned because they depend on the status of the
environment (cf. when driving a car from A to B, not every overtaking manoeuvre can
be planned in advance). Therefore, the way the plan should be executed is not specified
exactly and we may state that the tasks have some boundaries or margins within which
the execution may vary. In particular in air traffic, it is common to specify margins for
the duration of tasks. For instance, it is the primary responsibility of a pilot or aircraft
agent, flying from one waypoint to the next one, to keep the aircraft in the assigned
flight path within an assigned time interval. The activities of adjusting speed, height,

Keeping Plan Execution Healthy 379

and directions are not specified in the plan, but are assumed to be applied within the
boundaries. However, the activities contribute to the attempt to follow the plan, i.e.,
to keep the plan execution within the specified margins such as the flight path and the
time interval. So, the unplannable activities within plan execution influence whether the
constraints are satisfied or violated. Even when a plan is executed within its margins,
it still may happen that constraint violations occur (e.g., due to overtaking manoeuvres
when driving a car from A to B).

Related research. The main contribution of this paper is the model for plan-execution
health control and repair. A fundamental property of such a model is, in our opinion, the
ability to represent the current and future states of the plan and its environment. Models
that are at the basis of such a property are Discrete Event Systems (DESs) and Markov
Decision Models (see, for an overview [3]). A DES models (1) the states that a task (or
object) can reach by nodes, and (2) the changes of states by events. Markov Decision
Models are a specific type of DES, in which changes of states are probabilistically
determined. Our model is partially inspired by these two models.

The TÆMS modelling framework used by [4] is also related to our model, since
their plan representation is rather similar. In TÆMS, a plan is represented by task de-
scriptions that express the uncertainty in plan execution. Raja et al. use TÆMS for plan
development. Instead of determining how agents can execute a plan cooperatively, our
research focusses on predicting the states that the tasks will reach, and how to influence
this to regain plan execution health.

Our goal to keep plan execution healthy somewhat overlaps the goal of so-called
continual planning (for an overview of distributed continual planning, see [5]). In con-
tinual planning, the processes of planning and execution are interleaved so as to deal
with uncertainties in a dynamic environment. desJardins et al. [5] state that the most
preferred planning technique for continual planning is hierarchical plan refinement. It
is our opinion that plan refinement cannot resolve all possible unhealthy situations,
since there is a level within each plan for which its (sub)activities are unplannable.

Running example. The following example will be used as a running example through-
out the text. Consider a small airport with only one runway used for both arrival and
departure. Assume that two aircraft agents, agent A and agent B, each have their own
(sub)plan, connected through a constraint. A’s plan is (1) to taxi from the gate to the
runway, and (2) to take off from the runway. B’s plan is (1) to arrive at the airport
(at the runway), and then (2) to taxi from the runway to its gate. The obvious con-
straint that connects the two plans is that the runway cannot be used by more than
one aircraft at the same time. Therefore, the agents have agreed on a mutual plan in
which B lands before A takes off. Although the plan satisfies the constraint, still, small
changes in the execution can cause a violation of constraints imposed on the plan ex-
ecution. For instance, assume that A is a bit early as the aircraft speeded up while
taxiing, and B is a bit delayed because of heavy head wind during its flight. Then, they
still may not use the (same part of the) runway at the same time, but the two aircraft
might pass one another at a close distance. However, a close distance could cause a
violation of the safety constraints on the distance that should be kept between the two
aircraft.

380 F. de Jonge, N. Roos, and J. van den Herik

3 Model Description

The model assigns a health state to each task in a plan. This health state may change
during the execution of a task caused by unforeseen environmental influences or by
activities of the agent executing the task. The external influences of the environment
will be modelled as disruption events and the activities of agents, assuming that agents
do not deliberately disrupt the execution of tasks, as repair events.

The assignment of health states to tasks will enable us to evaluate the effects of
disruption events that have occurred during the execution of tasks. Our first (implicit)
assumption of the model is that disruption events are observable. This assumption will
not hold in general, especially in environments where not all possible disruption events
can be known. However, the model is also useable, with minor adaptations, if agents are
able to determine the actual health states of tasks, for instance through plan diagnosis
(see, e.g., [6]). A second assumption is that the plans of the individual agents are linear.
This assumption is mainly made for the clarity of the presentation of the model. More-
over, it is a common practice in ATC. The model is, however, also applicable if agents
have partially ordered plans.

Formally, we model a multi-agent plan as a quadruple consisting of four sets:
MAP = (A,PD , R,Cst). The sets are: (1) a set of agents A, (2) a set of plan de-
scriptions PD , containing one plan description for each agent: PD =

⋃|A|
i=1 PD i, (3) a

set of common rules R specifying the execution of the plan in general, and (4) a set of
constraints Cst between the agents’ plans. In the remainder of this section, these four
sets will successively be explained in more detail.

We assume that each agent in set A has its individual plan. All plans are gathered
within MAP . There are no other plans outside MAP that the agents should consider.

A plan description PD i = (Pi,Si, Ei, τi, σi) describes how the plan of agent i
will be executed. The base of the plan description is the sequence of tasks Pi =
〈ti,0, ti,1, ..., ti,n〉 which the agent wants to execute in this specific order. We use Pi

to denote the corresponding set of all tasks in sequence Pi. To describe the health of a
task, we have the sets Si and Ei containing for each task a set of states and a set of events
respectively. The functions τi and σi formalize, in combination with the common rules
R, the execution of tasks within a plan (we will specify this further on).

During the execution of an agent’s plan, a task ti,j is in a certain state. Each task has
its own set of possible states: Si,j ∈ Si. We distinguish three types of state: pending,
active, and finish. For each task ti,j holds: Si,j = Spending

i,j ∪ Sactive
i,j ∪ Sfinish

i,j . There
is only one pending state for each task, this is the state in which the task is awaiting
before it is being executed. Thus, Spending

i,j = {spending
i,j }. When the current task (task1)

finishes, the next task (task2) will become active by changing from the pending state
to an active state (which state that is, depends on the execution of the previous task).
Finally, when task2 is completed, task2 changes from an active state to a finish state
and consequently, the then subsequent task (task3) is triggered.

Each plan has one start task: ti,0, with Si,0 = {spending
i,0 , sfinish

i,0 }. The start task has
only one pending and one finish state. When the start conditions are fulfilled, this start
task will change from the pending to the finish state, which will cause the next task to
begin execution (viz. go from the pending state to an active state).

Keeping Plan Execution Healthy 381

State changes are caused by events. Each task ti,j has its own set of events: Ei,j ∈
Ei, with Ei,j = Efinish

i,j ∪ Edisrupt
i,j ∪ Erepair

i,j . Finish events are triggered when pre-
defined conditions are fulfilled and they change tasks from an active to a finish state.
Disruption events are externally caused and represent unexpected changes in the execu-
tion of a task that might effect the plan-execution health. Finally, the repair events are
executed by the agent to regain the plan-execution health when necessary. They repre-
sent the corrections in the plan execution. A task’s state is the result of the sequence
of events during the plan execution, and will be represented by predicate ts(ti,j , s, E),
where ti,j ∈ Pi is the task for which event sequence E = 〈e1, ..., ek〉 leads to state
s ∈ Si,j . We use the predicate ats(t, s) to denote that task t will achieve state s during
the actual plan execution, i.e., the past, current, and expected events lead to s.

� � �� ��

pending pending pendingfinish finish
normal

finish
normal

active
normal

active
normal

[condition][start condition] [condition] �

Start Take offTaxi from gate to runway

�
�

[condition]

state transitions caused by finishing the previous task

finish events caused by fulfilment of the condition.

Fig. 1. Normal plan execution of agent A

Figure 1 illustrates the normal execution of a plan of the departing agent A in our
running example. The plan consists of three tasks: P1 = 〈t1,Start, t1,Taxi, t1,Take off〉, and
sequence 〈efinish Start, efinish Taxi, efinish Take off〉. Note that, for reasons of clarity, the figure
does not present the whole model, but shows only the occurring states.

As stated above, we formalize the execution of tasks within an agent’s plan by the
partial functions τi and σi, and by the set of common rules R from MAP . The partial
function τi maps a task, its state, and an event to a new state: τi : Pi ×

⋃
j Si,j ×⋃

j Ei,j �
⋃

j Si,j . (with � denoting a partial mapping). τi is defined such that only
events in Ei,j can change the state of a task ti,j into a new state in Si,j . We assume that
there is exactly one finish event for each task. A task can, by the definition of τi, reach
different finish states depending on the previous state the task is in. The partial function
σi returns the new state in the next task based on the previous task and its finish state:
σi : Pi ×

⋃
j S

finish
i,j �

⋃
j Si,j .

The set of common rules R in MAP consists of three rules. The first rule in R
describes how a state transition of a task is caused by an event ek:

(ts(ti,j , s, 〈e1, ..., ek−1〉) ∧ τi(ti,j , s, ek) = s′)→ ts(ti,j , s′, 〈e1, ..., ek〉) (1)

The second rule in R describes the immediate activation of the next task when the
previous task is finished:

(ts(ti,j , pending, 〈e1, ..., ek−1〉) ∧ ts(ti,j−1, s, 〈e1, ..., ek〉) ∧ σi(ti,j−1, s) = s′)
→ ts(ti,j , s′, 〈e1, ..., ek〉) (2)

382 F. de Jonge, N. Roos, and J. van den Herik

The third rule in R defines which states will or will not be reached during the plan
execution. We use the predicateEvents({E1,, Em}) to denote that these sequences
of events will occur (a sequence Ei for each Pi).

∃e1, ..., ek(Events({〈e1, ..., ek, ..., en〉i, ...}) ∧ ts(ti,j , s, 〈e1, ..., ek〉)) ↔ ats(ti,j , s)
(3)

We denote RPD as the set of all instantiations of the rules in R for all plan descrip-
tions PD i.

The set Cst in MAP is the set of constraints, with each constraint composed of
predicates ats(,) and logic symbols {∨,∧,¬}. Moreover, constraints are only defined
on finish states, as they can be viewed as a summary of the execution of a task. An ex-
ample of a constraint is cst = ¬(ats(t, s)∧ ats(t′, s′))∨ ats(t′′, s′′), in which s, s′, s′′

are finish states. The constraints are ‘demands’ on the plan execution that should be
fulfilled. A constraint violation or conflict occurs when the expected execution is in-
consistent with a certain constraint. We will assume that when plans are executed nor-
mally (only finish events occur), all constraints will hold and the plan execution is in
good health. Consequently, the constraint violations are caused by disruption events,
and might be solved by repair events to regain the plan-execution health.

A

B

�

� �� �

pending

pending pending

finish

finish
normal

finish
normal

active
normal

active
normal

[condition]

[start condition]

[condition]

Start Take offTaxi from gate to runway

�
� �� �pending

pending pending

finish

finish
normal

finish
normal

active
normal

active
normal

[condition]

[start condition]

[condition]

Start

active finish
earlyearly

[condition]�
active finish

earlyearly

[condition]���

�

�

�
finishactive

[condition] �
finishactive

[condition]

delayeddelayeddelayed delayed

�	

Arrive Taxi from runway to gate

¬(ats(t1,Take off, finish early)

∧ats(t2,Arrive, finish delayed))

�
�

[condition]
disruption eventfinish event caused by fulfilment of the condition

state transition caused by finishing the previous task constraint between two states of two tasks.

heavy
headwind

speeded
up

Fig. 2. Disturbed plan executions of agents A and B

Figure 2 illustrates a disrupted execution of the plans of the departing agent A and
arriving agent B in our running example. Both plans consist of three tasks: P1 =
〈t1,Start, t1,Taxi, t1,Take off〉, and P2 = 〈t2,Start, t2,Arrive, t2,Taxi〉. The event sequences of
the plan execution are 〈efinish Start, eSpeeded up, efinish Taxi, efinish Take off〉1 and 〈efinish Start,
eHeavy head wind, efinish Arrive, efinish Taxi〉2. In this setting, the constraint ¬(ats(t1,Take off,
finish early) ∧ ats(t2,Arrive, finish delayed)) between the two plans is violated.

Keeping Plan Execution Healthy 383

In general, we assume that each agent has knowledge (i) of its individual plan de-
scription PD i, (ii) of the common rules R, (iii) of the constraints Csti ⊆ Cst that are
relevant for its plan. Moreover, we assume that each agent i is able to communicate to
the other agents to which subplans the constraints Csti apply.

4 Health and Health Repair

We assume that an agent notices when disruption events occur during the execution
of a plan (for instance through its sensors). Based on the detected disruption events,
an agent can construct the sequence of past events (up to and including the current or
latest events) in the so-called current event history CEH i (with CEH =

⋃
i CEH i).

We assume that in the future, from current task ti,j on, no disruption or repair events
will occur. Hence, for each task in the remaining plan, one finish event will occur. The
resulting sequence of events FE i = 〈ej , ej+1, ..., en〉, with eh ∈ Efinish, will be called
the future event sequence. The current event history can be combined with the future
events sequence into the future event history: FEH i = CEH i ◦FE i (with ◦ denoting a
concatenation of the two sequences, and FEH =

⋃
i FEH i). Based on the set of future

event histories, FEH , we can define plan-execution health as follows.

Definition 1. A plan execution is healthy iff Events(FEH) ∪ RPD % Cst.

When an unhealthy plan execution has been detected, the agents should correct the
execution of the plans such that no constraint violations will occur in the future and the
plan-execution health is restored. To achieve this, each agent can insert repair events in
the future event history in order to create new state paths in its plan execution.

A plan-execution health repair FER is a set of event sequences containing all future
event sequences with some repair events inserted, in such a way that by applying FER,
all constraints hold again.

Definition 2. A plan-execution health repair FER is a set of sequences FER = FE �
RE where RE is a minimal subset ofErepair s.t. Events(CEH ◦FER)∪RPD % Cst.

We use FER = FE �RE to denote that the events in RE are placed at specified places
within the sequences collected in FE . Note that for the same FE and RE different sets
FER = FE � RE are possible, depending on the placement of the repair events in the
sequences in FE . With a minimal RE we limit the subsets of RE to those which have
no subset that will construct a plan-execution health repair as well.

Note that computing a plan-execution health repair corresponds to applying ab-
duction. Without proof, we state that definition 2 is equivalent to a FER such that
Events(CEH ◦ FER) ∪ RPD ∪ Cst �% ⊥ holds. This corresponds to applying con-
sistency checks. Since both abduction and consistency-check problems are known to be
NP-equivalent, in general, plan-execution health repair is NP-equivalent as well.

In our example, A can apply an event eWait during the taxi task, which changes the
state of task t1,Taxi from ‘active early’ to ‘active normal’, and subsequently the state
of task t1,Taxi to ‘active normal’. This correction of plan execution resolves the con-
straint violation. Therefore, an example of a plan execution health repair is FER =
{〈efin Start,eSpeeded up,efin Taxi,eWait,efin Take off〉1,〈efin Start,eHead wind, efin Arrive, efin Taxi〉2}.

384 F. de Jonge, N. Roos, and J. van den Herik

5 Two Protocols

Health control During the execution of a plan, agents control its development to de-
tect unhealthy states (conflicts) as follows. Based on the detected disruption events and
the expected future events, the agents construct a future event history. Using the fu-
ture event history, agents are able to predict which states will be reached in the future.
If these expected states are part of a possible constraint violation, the agents commu-
nicate the new values to other agents that participate in this constraint. This way, the
agents individually have sufficient information to determine whether a constraint will
be violated and an unhealthy plan execution is reached. The corresponding protocol for
health control is presented below. When one or more conflicts are detected, i.e., when
the plan-execution health is disturbed, the protocol for finding repair events to restore
plan-execution health is activated.

Health control protocol of agent i
while executing plan

if disruption event occurs then
determine expected future states;
send message STATE CHANGE to related agents;

if message STATE CHANGE received then update view on other agent’s states;
check for conflicts;
if conflict detected then agent 0 start health repair protocol;

Health repair The protocol for health repair is based on a mapping from the prob-
lem of finding a plan-execution health repair to a constraint satisfaction problem. Sim-
plified, through assignment of an events path, agents choose a state for each task such
that all constraints hold. In this article, we sketch the protocol in broad outlines. For a
more detailed description of the underlying algorithm, we refer to [1].

Health repair protocol of agent 0
all agents start consistency subprotocol;
if consistency succeeded then agent 0 start path assignment subprotocol;
else health repair failed, no solution possible;

Consistency subprotocol of agent i
repeat until no domain changes occur anymore

apply domain reduction, check consistency;
if domains changed then send message DOMAIN CHANGE to related agents;
receive all DOMAIN CHANGE messages,
update internal representation;

Path assignment subprotocol of agent i
while not path assigned and not failed :

assign a new event path (including repair events);
if succeeded then

all agents: start consistency subprotocol;
if consistency succeeded then

path assigned;
if agent i+1 exists then agent i+1 start path assignment subprotocol;
else all agents apply repairs

else if i �= 0 then failed, agent i-1 start path assignment subprotocol;
else failed, no solution possible;

Keeping Plan Execution Healthy 385

The principal part of the protocol is the path assignment subprotocol, in which
agents one by one assign an event path they want to follow during their plan exe-
cution (to this end, the existing event path is extended by inserting repair events in
the future part of the path). An event path is chosen only if it does not violate con-
straints given the already chosen paths. When an agent is not able to assign a conflict-
free event path, the process backtracks to the previous agent, that should assign a new
event path.

The consistency subprotocol is applied in between path assignments to increase
efficiency. In this subprotocol, two steps are repeated. (1) Agents (with no path assign-
ment yet) propagate all possible event paths to verify which states are still reachable
given the current assignments. By removing the unreachable states, the agents achieve
domain reduction (and thus search space reduction). (2) Changed domains are com-
municated to agents related through constraints, which, based on this new knowledge,
apply domain reduction (step 1). The consistency subprotocol finishes when no do-
mains change anymore and subsequently a state of consistency with maximal domain
reduction is achieved. When during the consistency subprotocol a domain becomes
empty, no solution is possible given the current path assignments. Consequently, the
assignment subprotocol should backtrack, or when backtracking is not possible, the
protocol fails.

6 Experiments

As stated in the introduction, the goal of the experiments is to gain insight into which
unhealthy situations are suitable for our approach of correcting plan execution. More-
over, we would like to test the efficiency of the proposed protocols with respect to the
communication overhead. For these two purposes, the protocols presented in the previ-
ous section have been implemented and tested with randomly generated plans. During
the experiments, the complexity of the problem of finding repair events has been varied
by altering two constraint parameters: (i) the percentage of constraints on the variables
(or tasks), p1, and (ii) the percentage of value combinations that are allowed within a
constraint between the variables, p2. The performance of the protocols is measured by
the number of messages on state or domain changes.

In each experiment, a random plan is generated. Subsequently, an initial value as-
signment is made based on the expectations of a normal plan development. Then, a num-
ber of randomly generated disruption events are executed, which causes state changes.
Consequently, the agents detect constraint violations. When an unhealthy plan execu-
tion is detected, the agents start the repair protocol to regain plan-execution health.

Figure 3 illustrates typical results of our experiments. The figure shows for a series
of settings of constraint parameters (10 < p1 < 100 and 10 < p2 < 100), the average
percentage of problems solved and the average number of messages on domain changes
that were sent during the plan-execution health repair protocol. The other parameter
settings for these specific experiments are: # agents = 5; # tasks per agent = 5; # states
per task = 5; # tasks per constraint = 2; # possible repair events per state = 2; # executed
disruption events = 10; # runs per constraint-parameter setting = 1000.

The results show that problems with high constraint density are unsolvable with
health repair, as was to be expected since increasing the constraint density causes a

386 F. de Jonge, N. Roos, and J. van den Herik

Fig. 3. Results of experiment

decrease in the solution space. Given the settings of the experiments described, the
phase transition from solvable to unsolvable problems lies roughly around the boundary
p1+p2 = 100. The ridge in the bottom figure shows that problems situated at the phase
transition need the largest amount of messages.

7 Conclusion and Future Research

In this paper, we presented a model that enables agents to maintain plan-execution
health. With help of the predicting capabilities of the model, agents can control and
regain health by correcting the plan execution. The protocols for health control and
health repair together with their implementations demonstrate the applicability of the
model in a multi-agent system. From the experiments we may conclude that a substan-
tial proportion of unhealthy situations are solvable by small corrections in plan exe-
cution with a reasonable amount of communicative costs. In view of the observations
presented in section 6, we may conclude that health repair is best applicable in prob-
lems with constraint density considerably lower than the transition area. Our overall
conclusion is that a reasonable range of unhealthy situations can be solved adequately
by a well-thought correction in plan execution instead of performing a replanning pro-
cedure.

We wish to examine three topics in the near future. First, the efficiency of the proto-
cols can be increased to reduce communication overhead. Second, the balance between
health repair and replanning can be examined to gain a better insight into which un-
healthy situations should be solved by execution corrections, and which by replanning.
Third, we can extend the model to take into account the probabilities that a disruption
event will occur in the future. This will improve the controlling power of the agents, as
they can anticipate on bad health in a much earlier stage.

Keeping Plan Execution Healthy 387

References

1. de Jonge, F., Roos, N., van den Herik, H.: How to keep plan execution healthy. In: Proceedings
IJCAI05 workshop on Agents in Real-Time and Dynamic Environments. (2005)

2. Ghallab, M., Nau, D., Traverso, P.: Automated planning. Theory and practice. Morgan Kauf-
mann Publishers (2004)

3. Cassandras, C.G.: Discrete event systems: modeling and performance analysis. Aksen asso-
ciates series in electrical and computer engineering. Homewood: Irwin (1993)

4. Raja, A., Lesser, V., Wagner, T.: Towards robust agent control in open environments. In:
Proceedings of 5th International Conference of Autonomous Agents. (2000)

5. desJardins, M., Durfee, E., C.L. Ortiz, J., Wolverton, M.: A survey of research in distributed,
continual planning. AI Magazine 4 (2000) 13–22

6. Witteveen, C., Roos, N., de Weerdt, M., van der Krogt, R.: Diagnosis of single and multi-agent
plans. In: Proceedings of AAMAS 2005. (2005)

Stochastic Reactive Production Scheduling by
Multi-agent Based Asynchronous

Approximate Dynamic Programming

Balázs Csanád Csáji1 and László Monostori1,2

1 Computer and Automation Research Institute,
Hungarian Academy of Sciences

2 Faculty of Mechanical Engineering,
Budapest University of Technology and Economics

{csaji, monostor}@sztaki.hu

Abstract. The paper investigates a stochastic production scheduling
problem with unrelated parallel machines. A closed-loop scheduling tech-
nique is presented that on-line controls the production process. To
achieve this, the scheduling problem is reformulated as a special Markov
Decision Process. A near-optimal control policy of the resulted MDP is
calculated in a homogeneous multi-agent system. Each agent applies a
trial-based approximate dynamic programming method. Different coop-
eration techniques to distribute the value function computation among
the agents are described. Finally, some benchmark experimental results
are shown.

1 Introduction

Scheduling is the allocation of resources over time to perform a collection of tasks.
Near-optimal scheduling is a prerequisite for the efficient utilization of resources
and, hence, for the profitability of the enterprise. Therefore, scheduling is one
of the key problems in a manufacturing production control system. Moreover,
much that can be learned about scheduling can be applied to other kinds of
planning and decision making, therefore, it has general practical value.

The paper suggests an agent-based closed-loop solution to a stochastic schedul-
ing problem that can use information, such as actual processing times, as they be-
come available, and can control the production process on-line. For this reason, the
stochastic scheduling problem is reformulated as a Markov Decision Process. Ma-
chine learning techniques, such as asynchronous approximate dynamic program-
ming (namely approximate Q-learning with prioritized sweeping), are suggested
to compute a good policy in a homogeneous multi-agent system.

Using approximate dynamic programming (also called as reinforcement learn-
ing) for job-shop scheduling was first proposed in [12]. They used the TD(λ)
method with iterative repair to solve a static scheduling problem, namely the
NASA space shuttle payload processing problem. Since then, a number of papers
have been published that suggested using reinforcement learning for scheduling
problems. However, most of them investigated static and deterministic prob-
lems, only, and the suggested solutions were mostly centralized. A reinforcement

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 388–397, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Stochastic Reactive Production Scheduling 389

learning based centralized closed-loop production scheduling approach was first
briefly described in [10]. Recently, several machine learning improvements of
multi-agent based scheduling systems were proposed, for example [2] and [3].

2 Production Scheduling Problems

First, a static deterministic scheduling problem with unrelated parallel machines
is considered: an instance of the problem consists of a finite set of tasks T together
with a partial ordering C ⊆ T × T that represents the precedence constraints
between the tasks. A finite set of machinesM is also given with a partial function
that defines the durations (or processing times) of the tasks on the machines,
d : T ×M → N. The tasks are supposed to be non-preemptive (they may not
be interrupted) thus a schedule can be defined as an ordered pair 〈�, μ〉 where
� : T → N0 gives the starting (release) times of the tasks (N0 = N ∪ {0}), and
μ : T →M defines which machine will process which task. A schedule is called
feasible if and only if the following three properties are satisfied:

(s1) Each machine processes at most one operation at a time:
¬∃(m ∈M∧ u, v ∈ T) : μ(u) = μ(v) = m ∧ �(u) ≤ �(v) < �(u) + d(u,m)

(s2) Every machine can process the tasks which were assigned to it:
∀v ∈ T : 〈v, μ(v)〉 ∈ dom(d)

(s3) The precedence constraints of the tasks are kept:
∀ 〈u, v〉 ∈ C : �(u) + d(u, μ(u)) ≤ �(v)

Note that dom(d) ⊆ T ×M denotes the domain set of the function d. The
set of all feasible schedules is denoted by S, which is supposed to be non-empty
(thus, e.g., ∀v ∈ T : ∃m ∈ M : 〈v,m〉 ∈ dom(d)). The objective of scheduling
is to produce a schedule that minimizes a performance measure κ : S → R,
which usually depends on the task completion times, only. For example, if the
completion time of the task v ∈ T is denoted by C(v) = �(v) + d(v, μ(v)) then
a commonly used performance measure, which is often called total production
time or make-span, can be defined by Cmax = max{C(v) | v ∈ T }.

However, not any function is allowed as a performance measure. These mea-
sures are restricted to functions which have the property that a schedule can be
uniquely generated from the order in which the jobs are processed through the
machines, e.g., by semi-active timetabling. Regular measures, which are mono-
tonic in completion times, have this property. Note that all of the commonly
used performance measures (e.g., maximum completion time, mean flow time,
mean tardiness, etc.) are regular. As a consequence, S can be safely restricted
to these schedules and, therefore, S will be finite, thus the problem becomes a
combinatorial optimization problem characterized by the 5-tuple 〈T ,M, C, d, κ〉.

It is easy to see that the presented parallel machine scheduling problem is a
generalization of the standard job-shop scheduling problem which is known to
be strongly NP-hard [7], consequently, this problem is also strongly NP-hard.
Moreover, if the used performance measure is Cmax, there is no good polyno-
mial time approximation of the optimal scheduling algorithm [9]. Therefore, in
practice, we have to satisfy with sub-optimal (approximate) solutions.

390 B.C. Csáji and L. Monostori

The stochastic variant of the presented problem arises, when the durations
are given by independent finite random variables. Thus, d(v,m) denotes a ran-
dom variable with possible values dvm1, . . . , dvmk and with probability distribu-
tion pvm1, . . . , pvmk. Note that k = k(v,m), it can depend on v and m. If the
functions � and μ are given, we write dvi and pvi for abbreviation of dvμ(v)i and
pvμ(v)i. In this case, the performance of a schedule is also a random variable.

In stochastic scheduling there are some data (e.g. the actual durations) that
will only be available during the execution of the plan. According to the usage
of these information, we consider two basic types of scheduling techniques.

A static (open-loop, proactive or off-line) scheduler has to make all decisions
before the schedule actually being executed and it cannot take the actual evolu-
tion of the process into account. It has to build a schedule that can be executed
with high probability. For a dynamic (closed-loop, reactive or on-line) scheduler
it is allowed to make the decisions as the scheduling process actually evolves
and more information becomes available. In this paper we will focus on dynamic
techniques and will formulate the stochastic scheduling problem as a Markov
Decision Process. Note that a dynamic solution is not a simple 〈�, μ〉 pair, but
instead a scheduling policy (defined later) which controls the production.

3 Markov Decision Processes

Sequential decision making under uncertainty is often modeled using MDPs. This
section contains the basic definitions and some preliminaries. By a (finite state,
discrete time, stationary, fully observable) Markov Decision Process (MDP) we
mean a 8-tuple 〈S,T,A,A, p, g, α, β〉, where the components are:

(m1) S is a finite set of discrete states.
(m2) T ⊆ S is a set of terminal states.
(m3) A is a finite set of control actions.
(m4) A : S → P(A) is an availability function that renders each state a set of

control actions available in that state. Note that P denotes the power set.
(m5) p : S × A → Δ(S) is a transition function, where Δ(S) is the space of

probability distributions over S. We denote by pss′(a) the probability of
arriving to state s′ after executing control action a ∈ A(s) in a state s.

(m6) g : S× A× S → R is an immediate cost (or reward) function, g(s, a, s′) is
the cost of moving from state s to state s′ with control action a ∈ A(s).

(m7) α ∈ [0, 1] is a discount rate or also called discount factor. If α = 1 then the
MDP is called undiscounted otherwise it is discounted.

(m8) β ∈ Δ(S) is an initial probability distribution.

An interpretation of a MDP can be given if we consider an agent that acts
in a stochastic environment. The agent receives information about the state of
the environment s ∈ S. At each state s the agent can choose an action a ∈ A(s).
After the action is selected the environment moves to the next state according
to the probability distribution p(s, a) and the decision-maker collects its one-
step penalty (cost). The aim of the agent is to find an optimal control policy

Stochastic Reactive Production Scheduling 391

that minimizes the expected cumulative costs over an infinite horizon or until
it reaches an absorbing terminal state. The set of terminal states can be empty.
Theoretically, the terminal states can be treated as states with only one available
control action that loops back to them with probability 1 and cost 0.

A (stationary, randomized, Markov) control policy π : S → Δ(A) is a function
from states to probability distributions over actions. We denote by π(s, a) the
probability of executing control action a ∈ A(s) in the state s ∈ S.

The initial probability distribution β, the transition probabilities p together
with a control policy π completely determine the progress of the system in a
stochastic sense, namely, it defines a homogeneous Markov chain on S.

The cost-to-go or value function of a policy is Jπ : S → R, where Jπ(s) gives
the expected costs when the system is in state s and it follows π thereafter:

Jπ(s) = Eπ

[∞∑
t=0

αtg(st, at, st+1)
∣∣∣∣ s0 = s

]
, (1)

whenever this expectation is well-defined. Naturally, it is always well-defined if
α < 1. Here, we consider problems with expected total [un]discounted cost, only.

A policy π1 ≤ π2 if and only if ∀s ∈ S : Jπ1(s) ≤ Jπ2(s). A policy is called
(uniformly) optimal if it is better than or equal to all other control policies.

There always exits at least one optimal stationary deterministic control pol-
icy. Although, there may be many optimal policies, they all share the same
unique optimal cost-to-go function, denoted by J∗. This function must satisfy
the (Hamilton-Jacoby-) Bellman optimality equation [1] for all s ∈ S:

J∗(s) = min
a∈A(s)

∑
s′∈ S

pss′(a) [g(s, a, s′) + αJ∗(s′)] (2)

Note that from a given cost-to-go function it is straightforward to get a
control policy, for example, by selecting in each state in a deterministic and
greedy way an action that produces minimal costs with one-stage lookahead.
The problem of finding a good policy will be further investigated in Section 5.

4 Stochastic Reactive Scheduling as a MDP

In this section a dynamic stochastic scheduling problem is formulated as a
Markov Decision Process. The actual task durations will be only incrementally
available during production and the decisions will be made on-line.

A state s ∈ S is defined as a 6-tuple: s = 〈t, TS , TF , �, μ, ϕ〉, where t ∈ N0
is the actual time, TS ⊆ T is the set of tasks which have been started before
time t and TF ⊆ TS is the set of tasks that have been finished, already. The
functions � : TS → N0 and μ : TS → M, as previously, give the starting times
of the tasks and the task-machine assignments. The function ϕ : TF → N stores
the task completion times. We also define a starting state s0 = 〈0, ∅, ∅, ∅, ∅, ∅〉,
that corresponds to the situation at time 0 when none of the tasks have been
started. The initial probability distribution β renders 1 to the starting state s0.

392 B.C. Csáji and L. Monostori

We introduce a set of terminal states, as well. A state s = 〈t, TS , TF , �, μ, ϕ〉
is considered as a terminal state if and only if TF = T and it can be reached from
a state ŝ =

〈
t̂, T ′

S , T ′
F , �̂, μ̂, ϕ̂

〉
where T ′

F �= T . If the system reaches a terminal
state (all tasks are finished), then we treat the control process completed.

At every time t the system is informed which tasks have been finished, and
it can decide which unscheduled tasks it starts (and on which machines).

The control action space contains task-machine assignments avm ∈ A, where
v ∈ T and m ∈ M, and a special await control that corresponds to the action
when the system does not start a new task at the present time.

In a non-terminal state s = 〈t, TS , TF , �, μ, ϕ〉 the available actions are:

(a1) await ∈ A(s)⇔ TS \ TF �= ∅
(a2) ∀v ∈ T : ∀m ∈ M : avm ∈ A(s) ⇔ (v ∈ T \ TS ∧ ∀u ∈ TS \ TF :

m �= μ(u) ∧ 〈v,m〉 ∈ dom(d) ∧ ∀u ∈ T : (〈u, v〉 ∈ C)⇒ (u ∈ TF))

If an avm ∈ A(s) is executed in a state s = 〈t, TS , TF , �, μ, ϕ〉, the system
moves with probability 1 to a new state ŝ = 〈t, T ′

S , T ′
F , �̂, μ̂, ϕ̂〉, where T ′

F = TF ,
T ′

S = TS ∪ {v}, �̂
∣∣
TS

= �, μ̂
∣∣
TS

= μ, �̂(v) = t, μ̂(v) = m and ϕ = ϕ̂.
The effect of the await action is that it takes from s = 〈t, TS , TF , �, μ, ϕ〉 to

a state ŝ = 〈t+ 1, TS , T ′
F , �, μ, ϕ̂〉 where TF ⊆ T ′

F ⊆ TS and for all v ∈ TS \ TF :
the task v will be in T ′

F (v terminates) with probability as follows:

P(v ∈ T ′
F | s) = P(F (v) = t | F (v) ≥ t) =

∑k
i=1 pvi I(fi(v) = t)∑k
i=1 pvi I(fi(v) ≥ t)

, (3)

where F (v) is a random variable that gives the finish time of task v (according
to 〈�, μ〉), fi(v) = �(v) + dvi and I is an indicator function, viz. I(A) = 1 if A is
true, otherwise it is 0. Recall that pvi = pvmi and dvi = dvmi, where m = μ(v);
k can also depend on v and m; ϕ̂

∣∣
TF

= ϕ, ∀v ∈ TF \ T ′
F : ϕ(v) = t.

The cost function, for a given κ performance measure (which depends only
on the task completion times), is defined as follows. Let s = 〈t, TS , TF , �, μ, ϕ〉
and ŝ =

〈
t̂, T ′

S , T ′
F , �̂, μ̂, ϕ̂

〉
. Then ∀a ∈ A(s) : g(s, a, ŝ) = κ(ϕ)− κ(ϕ̂).

It is easy to see that the MDPs defined by this way have finite state spaces and
their transition graphs are acyclic. Therefore, these MDPs have a finite horizon
and, thus, the discount rate α can be safely set to 1, without risking that the
expectation in the cost-to-go function becomes not well-defined. Note that these
type of problems are often called Stochastic Shortest Path (SSP) problems. For
the effective computation of a control policy it is important to try reducing the
number of states. Domain specific knowledge can help to achieve this: if κ is
non-decreasing in the completion times (which is mostly the case in practice),
then an optimal policy can be found among those policies which only start new
tasks at times when another task has been finished or at the initial state s0.

5 Approximate Dynamic Programming

In the previous section we have formulated a dynamic production scheduling
task as an acyclic stochastic shortest path problem (a special MDP). Now, we

Stochastic Reactive Production Scheduling 393

face the challenge of finding a good control policy. We suggest a homogeneous
multi-agent system in which the optimal policy is calculated in a distributed
way. First, we describe the operation of a single adaptive agent that tries to
learn the optimal value function with Watkins’ Q-learning. Next, we examine
different cooperation techniques to distribute the value function computation.

In theory, the optimal value function of a finite MDP can be computed exactly
by dynamic programming methods, such as value iteration or the Gauss-Seidel
method. Alternatively, an exact optimal policy can be directly calculated by
policy iteration. However, due to the ”curse of dimensionality” (viz. in practical
situations both the needed memory and the required amount of computation is
extremely large) calculating an exact optimal solution by these methods is prac-
tically infeasible. We should use Approximate Dynamic Programming (ADP)
techniques to achieve a good approximation of an optimal control policy.

The paper suggests using the Q-learning algorithm to calculate a near optimal
policy. Like most ADP methods, the aim of Q-learning is also to learn the optimal
value function rather than directly learning an optimal control policy. The Q-
learning method learns state-action value functions, which are defined by:

Qπ(s, a)=Eπ

[∞∑
t=0

αtg(st, at, st+1)
∣∣∣∣ s0 = s, a0 = a

]
(4)

An agent can search in the space of feasible schedules by simulating the possible
occurrences of the production process with the model. The trials of the agent
can be described as state-action pair trajectories. After each episode the agent
makes updates asynchronously on the approximated values of the visited pairs.
Only a subset of all pairs are updated in each trial. Note that the agent does not
need a uniformly good approximation on all possible pairs, but instead on the
relevant ones which can appear with positive probability during the executing
of an optimal policy. Therefore, it can always start the simulation from s0.

The general version of the one-step Q-learning rule can be formulated as:

Qt+1(s, a) = Qt(s, a) + γt(s, a)
[
g(s, a, s′)−Qt(s, a) + α min

b∈A(s′)
Qt(s′, b)

]
, (5)

where s′ and g(s, a, s′) are generated from the pair (s, a) by simulation, that
is, according to the transition probabilities pss′(a); γt(s, a) are sequences that
define the learning rates of the system. Q-learning can also be seen as a Robbins-
Monro type stochastic approximation method. Note that it is advised to apply
prioritized sweeping during backups. Q-learning is called an off-policy method,
which means that the value function converges almost surely to the optimal state-
action value function independently of the policy being followed or the starting
Q values. It is known [1], that if the learning rates satisfy:

∑∞
t=1 γt(s, a) = ∞

and
∑∞

t=1 γ
2
t (s, a) < ∞ for all s and a, the Q-learning algorithm will converge

with probability one to the optimal value function in the case of lookup table
representation (namely, the value of each pair is stored independently).

However, in systems with large state spaces, it is not possible to store an
estimation for each state-action pair. The value function should be approximated

394 B.C. Csáji and L. Monostori

by a parametric function. We suggest a Support Vector Machine (SVM) based
regression for maintaining the Q function, as in [4], which then takes the form:

Q(s, a) ≈ Q̃(x,w, b) =
n∑

i=1

wiK(x, xi) + b, (6)

where x = φ(s, a) represents some peculiar features of s and a, xi denotes the
features of the training data, b is a bias, K is the kernel function and w ∈ Rn

is the parameter vector of the approximation. As a kernel we choose a Gaus-
sian type function K(x1, x2) = exp(−‖x1 − x2‖2 /σ2). Basically, an SVM is
an approximate implementation of the method of structural risk minimization.
Recently, several on-line, incremental methods have been suggested that made
SVMs applicable for reinforcement learning. For more details, see [8].

Now, we give some ideas about the possible features that can be used in the
stochastic scheduling case. Concerning the environment: expected relative ready
time of each machine with their standard deviations and the estimated relative
future load of the machines. Regarding the chosen action (task-machine assign-
ment): its expected relative finish time with its deviation and the cumulative
estimated relative finish time of the tasks, which succeeds the selected task.

In order to ensure the convergence of the Q-learning algorithm, one must
guarantee that each state-action pair is continue to update. An often used tech-
nique to balance between exploration and exploitation is the Boltzmann formula:

π(s, a) =
exp(τ/Q(s, a))∑

b∈A(s)
exp(τ/Q(s, b))

, (7)

where τ ≥ 0 is the Boltzmann (or Gibbs) temperature. Low temperatures cause
the actions to be (nearly) equiprobable, high ones cause a greater difference in
selection probability for actions that differ in their value estimations. Note that
here we applied the Boltzmann formula for minimization, viz. small values mean
high probability. Also note that it is advised to extend this approach by a variant
of simulated annealing, which means that τ should be increased over time.

6 Distributed Value Function Computation

In the previous section we have described the learning mechanism of a single
agent. In this section we examine cooperation techniques in homogeneous multi-
agent systems to distribute the computation of the optimal value function. Our
suggested architectures are heterarchical, in which the agents communicate as
peers and no master/slave relationships exist. The advantages of these systems
include: self-configuration, scalability, fault tolerance, massive parallelism, re-
duced complexity, increased flexibility, reduced cost and emergent behavior [11].

An agent-based (holonic) reference architecture for manufacturing systems
is PROSA [5]. The general idea underlying this approach is to consider both
the machines and the jobs (sets of tasks) as active entities. There are three

Stochastic Reactive Production Scheduling 395

types of standard agents in PROSA: order agents (internal logistics), product
agents (process plans), and resource agents (resource handling). In a further
improvement of this architecture the system is extended with mobile agents,
called ants. As we have shown in [2], it is advised to extend the ant-colony
based approach with ADP techniques. Another way for scheduling with PROSA
is to use some kind of market or negotiation mechanism. We have presented a
market-based scheduling approach with competitive adaptive agents in [3].

Now, we return to our original approach and present ways to distribute the
value function calculation. The suggested multi-agent architectures are homoge-
neous, therefore, all of the agents are identical. The agents work independently
by making their trials in the simulated environment, but they share information.

If a common (global) storage is available to the agents, then it is straight-
forward to parallelize the value function computation: each agent searches inde-
pendently by making trials, however, they all share (read and write) the same
value function. They update the value function estimations asynchronously.

A more complex situation arises when the memory is completely local to
the agents, which is realistic if they are physically separated (e.g. they run on
different computers). For that case, we suggest two cooperation techniques. A
way of dividing the computation of a good policy among several agents is when
there is only one ”global” value function, however, it is stored in a distributed
way. Each agent stores a part of the value function and it asks for estimations
which it requires but does not have from the other agents. The applicability of
this approach lies in the fact that the underlying MDP is acyclic and, thus, it
can be effectively partitioned among the agents, for example, by starting each
agent from a different starting state. Partitioning the search space can be very
useful for the other distributed ADP approaches, as well. The policy can be then
computed by using the aggregated value function estimations of the agents.

Another approach is, when the agents have their own completely local value
functions and, consequently, they could have widely different estimations on the
optimal state-action values. In that case, the agents should count that how many
times did they update the estimations of the different pairs. Finally, the values
of the global Q-function can be combined from the estimations of the agents:

Q(s, a) =
n∑

i=1

wi(s, a)Qi(s, a), wi(s, a) =
exp(hi(s, a)/η)∑n

j=1 exp(hj(s, a)/η)
, (8)

where n is the number of agents, Qi is the state-action value function of agent i,
hi(s, a) contains the number of how many times did agent i update its estimation
for the (s, a) pair and η > 0 is an adjustable parameter. Naturally, for large state
spaces, the counter functions can be parametrically approximated, as well.

The agents can also help each other by communicating estimation informa-
tion, episodes, policies, etc. A promising way of cooperation is, when the agents
periodically exchange a fixed number of their best episodes after an adjustable
amount of trials and, by this way, they help improving each others value func-
tions. After an agent receives an episode (a sequence of states), it updates its
value function estimation as if this state trajectory was produced by itself.

396 B.C. Csáji and L. Monostori

7 Experimental Results

We have tested our ADP based approach on Hurink’s benchmark dataset [6].
It contains flexible job-shop scheduling problems with 6-30 jobs (30-225 tasks)
and 5-15 machines. These problems are ”hard”, which means, for example, that
standard dispatching rules or heuristics perform poorly on them. This dataset
consists of four subsets, each subset contains about 60 problems. The subsets
(sdata, edata, rdata, vdata) differ on the ratio of machine interchangeability,
which are shown in the ”parallel” column in the table (left part of Figure 1).
The columns with label ”x es” show the global error after carrying out altogether
”x” episodes. The execution of 10000 simulated trials (after on the average the
system has achieved a solution with less than 5% global error) takes only a few
seconds on a computer of our day. In the tests we have used a decision-tree based
state-aggregation. The left part of Figure 1 shows the results of a single agent.

Fig. 1. Benchmarks; left: average global error on a dataset of ”hard” flexible job-shop
problems; right: average speedup (y axis) relative to the number of agents (x axis);
dark grey bars: global value function; light grey bars: local value functions

We have also investigated the speedup of the system relative to the number
of agents. The average number of iterations was studied, until the system could
reach a solution with less than 5% global error on Hurink’s dataset. We have
treated the average speed of a single agent as a unit. In the right part of Figure 1
two cases are shown: in the first case, all of the agents could access a global value
function. In that case, the speedup was almost linear. In the second case, each
agent had its own (local) value function and, after the search was finished, the
individual functions were combined. The experiments show, that the computa-
tion of the ADP based scheduling technique can be effectively distributed among
several agents, even if they do not have a commonly accessible value function.

8 Concluding Remarks

Efficient allocation of manufacturing resources over time is one of the key prob-
lems in a production control system. The paper has presented an approximate
dynamic programming based stochastic reactive scheduler that can control the
production process on-line, instead of generating an off-line rigid static plan. To

Stochastic Reactive Production Scheduling 397

achieve closed-loop control, the stochastic scheduling problem was formulated as
a special Markov Decision Process. To compute a (near) optimal control policy,
homogeneous multi-agent systems were suggested, in which cooperative agents
learn the optimal value function in a distributed way by using trial-based ADP
methods. After each trial, the agents asynchronously update the actual value
function estimation according to the Q-learning rule with prioritized sweeping.
For large state spaces a Support Vector Machine regression based value function
approximation was suggested. Finally, the paper has shown some benchmark
results on Hurink’s flexible job-shop dataset, which illustrate the effectiveness of
the ADP based approach, even in the case of deterministic problems.

Acknowledgements

This research was partially supported by the National Research and Develop-
ment Programme (NKFP), Hungary, Grant No. 2/010/2004 and by the Hungar-
ian Scientic Research Fund (OTKA), Grant Nos. T049481 and T043547.

References

1. Bertsekas, D. P., Tsitsiklis J. N.: Neuro-Dynamic Programming (1996)
2. Csáji, B. Cs., Kádár, B., Monostori, L.: Improving Multi-Agent Based Scheduling

by Neurodynamic Programming. Holonic and Mult-Agent Systems for Manufactur-
ing, Lecture Notes in Computer Science 2744, HoloMAS: Industrial Applications
of Holonic and Multi-Agent Systems (2003) 110–123

3. Csáji, B. Cs., Monostori, L., Kádár, B.: Learning and Cooperation in a Distributed
Market-Based Production Control System. Proceedings of the 5th International
Workshop on Emergent Synthesis (2004) 109–116

4. Dietterich, T. G., Xin Wang: Batch Value Function Approximation via Support
Vectors. Advances in Neural Information Processing Systems 14 (2001) 1491–1498

5. Hadeli, Valckenaers, P., Kollingbaum, M., Van Brussel, H.: Multi-Agent Coordina-
tion and Control Using Stigmergy. Computers in Industry 53 (2004) 75–96.

6. Hurink, E., Jurisch, B., Thole, M.: Tabu Search for the Job Shop Scheduling Prob-
lem with Multi-Purpose Machine. Operations Research Spektrum 15 (1994) 205–
215

7. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys, D. B.: Sequencing
and Scheduling: Algorithms and Complexity. Handbooks in Operations Research
and Management Science (1993)

8. Martin., M.: On-line Support Vector Machine Regression. Proceedings of the 13th
European Conference on Machine Learning (2002) 282–294

9. Williamson, D. P., Hall L. A., Hoogeveen, J. A., Hurkens, C. A. J., Lenstra, J. K.,
Sevastjanov, S. V., Shmoys, D. B.: Short Shop Schedules. Operations Research 45
(1997) 288–294

10. Schneider, J., Boyan, J., Moore, A.: Value Function Based Production Scheduling.
Proceedings of the 15th International Conference on Machine Learning (1998)

11. Ueda, K., Márkus, A., Monostori, L., Kals, H. J. J., Arai, T.: Emergent Synthesis
Methodologies for Manufacturing. Annals of the CIRP 50 (2001) 535–551

12. Zhang, W., Dietterich, T.: A Reinforcement Learning Approach to Job-Shop
Scheduling. IJCAI: Proceedings of the 14th International Joint Conference on Ar-
tificial Intelligence (1995) 1114–1120

Do Agents Make Model Checking Explode
(Computationally)?

Wojciech Jamroga and Jürgen Dix

Institute of Computer Science, Clausthal University of Technology, Germany
{wjamroga, dix}@in.tu-clausthal.de

Abstract. Atl is a logic for multi-agent systems that enjoys model
checking linear in the size of the models. Here, we point out that the
size of an atl model is usually exponential in the number of agents.
We establish the precise atl model checking complexity when the num-
ber of agents is considered a parameter : it turns out that the problem
is Σ2P-complete for concurrent game structures, and NP-complete for
alternating transition systems. We also show that atl model checking
over the broader class of nondeterministic alternating transition systems
is still NP-complete, which suggests that using the more general class of
models may be convenient in practice.

Keywords: multi-agent systems, model checking, temporal logic.

1 Introduction

Alternating-time Temporal Logic [1, 2] is one of the most interesting frameworks
that emerged recently for multi-agent systems. One of the most appreciated fea-
tures of atl is its model checking complexity—linear in the size of the model (more
precisely: the number of transitions in the model) and the formula. While the result
is certainly attractive, we point out that the amount of transitions in anatl model
is usually exponential in the number of agents. Following this observation, we show
thatatl model checking is intractable when the number of agents is considered a pa-
rameter of the problem. It turns out that the problem is Σ2P-complete for the atl
semantics based on concurrent game structures, and “only” NP-complete when
the previous semantics, based on alternating transition systems, is used. We also
show that atl model checking over the broader class of nondeterministic alternat-
ing transition systems is still NP-complete, which suggests that using the more
general class of models may be a good choice in practice.

2 Atl: A Logic of Strategic Ability

atl [1, 2] is a generalization of the branching-time logic ctl, and can be seen as a
logic for systems involving multiple agents, that allows one to reason about what
agents can achieve in game-like scenarios. atl introduces cooperation modalities
〈〈A〉〉, where A is a coalition of agents; formula 〈〈A〉〉ϕ expresses that A have

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 398–407, 2004.
c©Springer-Verlag Berlin Heidelberg 2004

Do Agents Make Model Checking Explode (Computationally)? 399

a collective strategy to enforce ϕ. atl formulae include temporal operators:
“ ” (“in the next state”), (“always from now on”) and U (“until”). An
additional operator (“sometime”) can be defined as ϕ ≡ �Uϕ. Like in ctl,
every occurrence of a temporal operator is preceded by exactly one cooperation
modality. A number of different semantics and model classes have been defined
for atl, most of them equivalent (cf. [6, 7]). In what follows, we begin with a
brief presentation of the two most prominent semantics, based on concurrent
game structures and alternating transition systems.

2.1 Strategic Abilities with Concurrent Game Structures

Models for atl, concurrent game structures (cgs) [2], can be defined as tuples
M = 〈Agt, Q,Π, π,Act, d, o〉, where Agt = {a1, ..., ak} is the set of all agents, Q
is the set of states,Π the set of atomic propositions, π : Q→ P(Π) a valuation of
propositions, and Act the set of (atomic) actions; function d : Agt×Q→ P(Act)
defines actions available to an agent in a state, and o is the (deterministic)
transition function that assigns outcome states q′ = o(q, α1, . . . , αk) to states
and tuples of actions.

A strategy of agent a is a conditional plan that specifies what a is going to do
in every possible situation (state).1 Thus, a strategy can be represented with a
function sa : Q→ Act, such that sa(q) ∈ da(q). A collective strategy for a group
of agents A = {a1, ..., ar} is simply a tuple of strategies SA = 〈sa1 , ..., sar 〉, one
per agent from A. A path in M is an infinite sequence of states that can be
effected by subsequent transitions, and refers to a possible course of action (or
a possible computation). Function out(q, SA) returns the set of all paths that
may result from agents A executing strategy SA from state q onward. Now, the
semantics of atl formulae can be given via the following clauses:

M, q |= p iff p ∈ π(q) (where p ∈ Π);
M, q |= ¬ϕ iff M, q �|= ϕ;
M, q |= ϕ ∨ ψ iff M, q |= ϕ or M, q |= ψ;
M, q |= 〈〈A〉〉 ϕ iff there is a collective strategy SA such that, for every path
λ ∈ out(SA, q), we have M,λ[1] |= ϕ;

M, q |= 〈〈A〉〉 ϕ iff there exists SA such that, for every λ ∈ out(SA, q), we
have M,λ[i] for every i ≥ 0;

M, q |= 〈〈A〉〉ϕUψ iff there exist SA and i ≥ 0 such that, for every λ ∈
out(SA, q), we have that M,λ[i] |= ψ, and M,λ[j] |= ϕ for every 0 ≤ j < i.

2.2 Semantics of Atl Based on Ats

The previous version of atl was defined over alternating transition systems [1].
An alternating transition system (ats) is a tuple M = 〈Agt, Q,Π, π, δ〉 where

1 This is a deviation from the original semantics of atl [1, 2], where strategies assign
agents’ choices to sequences of states, which suggests that agents can recall the whole
history of each game. It should be pointed out, however, that both types of strategies
yield equivalent semantics for atl [9].

400 W. Jamroga and J. Dix

δ : Q× Agt → P(P(Q)) is a function that maps a pair 〈state, agent〉 to a non-
empty family of choices of possible next states. The idea is that, at state q, agent
a chooses a set Qa ∈ δ(q, a) thus forcing the outcome state to be from Qa. The
resulting transition leads to a state which is in the intersection of all Qa for
a ∈ Agt. Since the system is required to be deterministic (given the state and
the agents’ decisions), Qa1 ∩ ... ∩Qak

must always be a singleton.
In an ats, the type of a strategy function is slightly different since choices are

sets of states now, and a strategy is represented as a mapping sa : Q→ P(Q),
such that sa(q) ∈ δ(q, a). The rest of the semantics looks exactly the same as
for concurrent game structures. It is worth pointing out that ats’s are usually
less natural and more difficult to come up with than cgs’s; they are also larger
in most cases (more precisely: for every ats there exists an isomorphic cgs, but
the reverse does not hold). This issue was discussed in more detail in [7].

3 Complexity of Atl Model Checking Revisited

One of the main results concerning atl states that its formulae can be model-
checked in deterministic polynomial time. More precisely, the complexity of atl
model checking is ptime-complete, and can be done in time O(ml), where m
is the number of transitions in the model and l is the length of the formula [1,
2]. While the result is certainly attractive, it should be kept in mind that it is
only relative to the size of models and formulae, and these can be very large for
most application domains. Indeed, it is well known that the number of states
in a model is usually exponential in the size of a higher-lever description of the
problem domain (Boolean variables, for example) for both ctl and atl models.
Moreover, for higher-lever system descriptions, the computation of 〈〈A〉〉 may
require pspace or even nexptime [3, 4]. We point out that the complexity of
O(ml) includes potential intractability even on the model level when a finer-
grained analysis is performed.

Remark 1. Let n be the number of states in an atl model M . It was already
observed in [2] that the number of transitions in M is not bounded by n2, be-
cause transitions are labelled with tuples of agents’ choices. Now, let k denote
the number of agents, and d the maximal number of available decisions per agent
per state. Obviously, m = O(ndk). In consequence, the atl model checking algo-
rithms from [1, 2] run in time O(ndkl), and hence their complexity is exponential
if the number of agents is a parameter of the problem.

In this section, we establish the complexity of model checking atl formulae
over concurrent game structures, with n, k, d, l as input parameters. We show
that the problem is Σ2P-complete, where Σ2P = NPNP is the class of problems
that can be solved by a nondeterministic Turing machine in polynomial time
with calls to an NP oracle. Note that the transition function o must be kept
externally to the Turing machine, or represented in a somehow “compressed”
way. Otherwise the function requires exponential amount of memory, and in
consequence the problem is not even in pspace.

Do Agents Make Model Checking Explode (Computationally)? 401

3.1 Atl Model Checking over Cgs Is Σ2P-Hard

We show this through a polynomial reduction of QSAT2 to the model checking
problem. In QSATi (satisfiability for quantified Boolean formulae with i alterna-
tions of quantifiers), we are given k propositional variables p1, ..., pk (partitioned
into i sets P1, ..., Pi) and a Boolean formula θ that includes no other variables.
QSATi asks if ∃P1∀P2∃P3 . . .ΔPi θ (where Δ = ∀ if i is even, and ∃ if i is odd).
QSATi is known to be ΣiP-complete [8].

To obtain the reduction, we construct a concurrent game structure M with
3 states: Q = {q0, q�, q⊥}, and k agents: Agt = {a1, ..., ak} that “decide” at q0
upon valuations of propositions p1, ..., pk ∈ P1 ∪ P2, respectively. Thus, agent
ai can “declare” proposition pi true (action �) or false (action ⊥); Every tuple
of actions from Agt corresponds to a valuation v1, ..., vk of the propositions,
and vice versa. Now, the transitions from q0 are defined in the following way:
o(q0, v1, ..., vk) = q� if v1, ..., vk |= θ and q⊥ otherwise. Transitions from q� and
q⊥ do not matter. Note that v1, ..., vk |= θ can be verified in time and space
linear in |θ|, so o has a polynomial representation with respect to the size of the
original problem. Finally, we define proposition sat to hold only in state q�. Note
that the agents “controlling” propositions from P1 can enforce the next state to
be q� if, and only if, they can declare such a valuation of “their” propositions
that θ is satisfied regardless of the opponents’ choices:

Lemma 1. Let A be the group of agents “responsible” for propositions P1, i.e.
ai ∈ A iff pi ∈ P1. Then, ∃P1∀P2 θ iff M, q0 |= 〈〈A〉〉 sat.

3.2 Atl Model Checking over Cgs Is Σ2P-Easy

In order to demonstrate Σ2P-easiness of the model checking problem, we show
an algorithm that computes the set of states in which formula ϕ holds, and lies
in NPNP. A careful analysis of the algorithms proposed in [1, 2] reveals that
the intractability is due to the pre-image operator Pre, which is called at most
n times for every subformula of ϕ. Indeed, as we saw in the previous section,
checking what a coalition can enforce in a single step (e.g., M, q |= 〈〈A〉〉 sat)
lies very close to the standard Σ2P-complete problem of QSAT2. We show that
checking a more sophisticated atl formula is no more complex than this. The
main idea of the algorithm is as follows. First, we guess nondeterministically all
the choices that will be needed for any call to function Pre (that is, for each
coalition A that occurs in ϕ, and for each state q ∈ Q). Then we employ the
standard model checking algorithm from [2] with one important modification:
every time function Pre(A,Q1) is called, it assumes the subsequent A’s choices
from the tuple and checks whether q ∈ Pre(A,Q1) by calling an NP oracle (is
there a response from the opposition in q that leads to a state outside Q1?) and
reversing its answer. The detailed algorithm is shown in Figure 1.

Lemma 2. Function mcheck defines a nondeterministic Turing machine that
runs in time O(nkl), making calls to an NP oracle. The size of the witness is
O(nkl). The oracle is a nondet. Turing machine that runs in time O(n+ k).

Proposition 1. Model checking atl formulae over cgs is Σ2P-complete.

402 W. Jamroga and J. Dix

function mcheck(M, ϕ);
Returns the set of states in M , in which formula ϕ holds.

� assign cooperation modalities in ϕ with subsequent numbers 1, ..., c;
// note that c ≤ l; by c(ϕ), we denote the number of cooperation modalities in ϕ

// we will denote the coalition from the ith cooperation modality in ϕ as ϕ[i]

� for every i = 1, ..., c, assign the agents in ϕ[i] with numbers 1, ..., kc;
// note that kc ≤ k and kc ≤ l

// we will denote the jth agent in A with A[j]

� guess an array choice such that, for every i = 1, ..., c, q ∈ Q, and j = 1, ..., kc, we
have that choice[i][q][j] ∈ dϕ[i][j](q);

// at this point, the optimal choices for all coalitions in ϕ are guessed

// note that the size of choice is O(nkl)

// by choice|i, we will denote the array choice with rows 1, ..., i − 1 removed

� return eval(M,ϕ, choice);

function eval(M,ϕ, choice);
Returns the states in which ϕ holds, given choices for all the coalitions from ϕ.

case ϕ ∈ Π : return {q | ϕ ∈ π(q)};
case ϕ = ¬ψ : return Q \ eval(M,ψ, choice);
case ϕ = ψ1 ∨ ψ2 : return eval(M, ψ1, choice) ∪ eval(M,ψ2, choice|c(ψ1)+1);
case ϕ = 〈〈A〉〉 ψ : return pre(A, eval(M, ψ, choice|2), M, choice[1]);
case ϕ = 〈〈A〉〉 ψ : Q1 := Q; Q2 := Q3 := eval(M, ψ, choice|2);

while Q1 �⊆ Q2 do Q1 := Q1 ∩ Q2; Q2 := pre(A,Q1, M, choice[1]) ∩ Q3 od;
return Q1;

case ϕ = 〈〈A〉〉ψ1 Uψ2 : Q1 := ∅; Q2 := eval(M,ψ1, choice|2);
Q3 := eval(M, ψ2, choice|c(ψ1)+2);
while Q3 �⊆ Q1 do Q1 := Q1 ∪ Q3; Q3 := pre(A,Q1, M, choice[1]) ∩ Q2 od;
return Q1;

end case

function pre(A,Q1, M, thischoice);
Returns the set of states, for which the A’s choices from thischoice enforce that
the next state is in Q1, regardless of what agents from Agt \ A do.

� Q2 := ∅;
� for each q ∈ Q: if oracle(A, Q1, M, thischoice, q) = yes then Q2 := Q2 ∪ {q} fi;
� return Q2;

function oracle(A,Q1, M, thischoice, q);
Returns yes if, and only if, the A’s choices from thischoice in q enforce that
the next state is in Q1, regardless of what agents from Agt \ A do.

� guess an array resp such that, for every a ∈ Agt \ A, we have resp[a] ∈ da(q);
// at this point, the most dangerous response from the opposition is guessed

// note that the size of resp is O(k)

� if o(q, thischoice[q], resp) ∈ Q1 then return yes else return no fi;

Fig. 1. Nondeterministic algorithm for model checking formulae of atl

Do Agents Make Model Checking Explode (Computationally)? 403

4 Model Checking with Alternating Transition Systems

The transition function in a cgs refers to choices that are abstract, while in alter-
nating transition systems the function already encodes some information about
possible outcomes of actions. In this section, we show that this implies some ad-
vantage in terms of model checking complexity: it still sits in the nondeterministic
polynomial hierarchy, but it is “only” NP-complete. First, we demonstrate that
the model checking is in NP in Section 4.1. Then, in Sections 4.2 and 4.3, we
define a variant of the Boolean satisfiability problem that we call “single false
clause SAT” (sfc-SAT), prove that it is NP-complete, and present a reduction
of sfc-SAT to the model checking problem.

Modelling systems via ats is usually troublesome in practice, mostly due to
the “singleton” requirement. In Section 4.4, we point out that, if we relax the
requirement and allow for nondeterministic ats’s, the model checking problem
remains NP-complete – that is, we obtain the same model checking complexity
for a strictly larger class of models.

4.1 Model Checking Atl over Ats Is NP-Easy

Unlike in concurrent game structures, choices in alternating transition systems
already contain some information about which states can possibly be achieved
through them. More precisely, α includes all the states that can be achieved
through α. Had it contained only such states, checking if it enforces ϕ would
have been easy (it would have been sufficient to check whether ϕ holds in all
q′ ∈ α). However, the latter condition is not true in general. [6] introduces the
notion of a tight ats: all states q′ to which no transition exists from q are removed
from agents’ choices at q (i.e. from the elements of δ(q, a) for all a ∈ Agt). Still,
this is not enough for our purposes, because α ∈ δ(q, a) may include states that
are reachable from q in general, but not by executing α. In the following, we
assume without loss of generality that A = {a1, ..., ar} for some r ≤ k.

Definition 1. Let αA = 〈α1, ..., αr〉 be a collective choice of A at q, i.e. αi ∈
δ(q, ai). State q′ is αA-reachable from q if there is a combination of responses
from the rest of agents: αr+1, ..., αk, αi ∈ δ(q, ai) such that q′ ∈ α1 ∩ ... ∩ αk.

Definition 2. ats M is strongly tight if, for each q ∈ Q, a ∈ Agt, we have that
for every q′ ∈ αa ∈ δ(q, a), q′ is αa-reachable from q.

Lemma 3. Let M be strongly tight, α1, ..., αr be choices of a1, ..., ar at q, and
q′ ∈ α1 ∩ ... ∩ αr. Then q′ is 〈α1, ..., αr〉-reachable from q.

Every ats can be made strongly tight via the procedure in Figure 2A. More-
over, atl formulae can be model-checked over strongly tight ats’s via the original
atl model checking algorithm from [1], with function Pre(A,Q1) implemented
as in Figure 2B. We observe that – if we assign numbers 1, ..., |δ(q, a)| to choices
from δ(q, a) for all q, a at the beginning, so that the choices are further identified
by abstract labels rather than their content – all the “guessing” operations are

404 W. Jamroga and J. Dix

function tighten(M); (A)
For every ai ∈ Agt, q ∈ Q, αi ∈ δ(q,ai),
and q′ ∈ αi:

� guess the “opposition” responses
α1, ..., αi−1, αi+1, ..., αk;

� if q′ /∈ α1 ∩ ... ∩ αk then remove q′

from αi;

function Pre(M,A, Q1); (B)

� pre := ∅;
� for every q ∈ Q:

− guess αa ∈ δ(q, a) for each a ∈ A;
− if

⋂
a∈A αa ⊆ Q1 then pre :=

pre ∪ {q};
� return pre;

Fig. 2. Algorithms for model checking atl over alternating transition systems

independent from each other. Thus, we can apply the same trick as in Section 3.2,
and guess all the necessary information beforehand. The size of the witness is
O(n2k2d+ nkl), hence we obtain an NP algorithm for the model checking. We
do not present the algorithm in more detail here due to lack of space.

4.2 Single False Clause SAT

Definition 3. [Single false clause SAT (sfc-SAT)]. We define the following
variant of the SAT problem.
Input: (1) n clauses: C1, ..., Cn, in k propositions: p1, ..., pk such that for each
valuation of p1, ..., pk, exactly one clause is false; (2) numbers m ≤ n, r ≤ k.
Problem: Is there a valuation of p1, ..., pr such that all clauses C1|r, ..., Cm|r
are satisfied? Clause C|r is obtained from clause C by deleting all literals that
refer to propositions pr+1, ..., pk (i.e., we keep only the literals up to r).

Obviously, sfc-SAT is in NP (it is sufficient to guess a valuation and check
whether it is a good one). In order to show that sfc-SAT is NP-hard, we show
that 3-SAT can be reduced to it. In 3-SAT, we are givenm clauses C1, ..., Cm over
r propositions p1, ..., pr such that each clause Ci contains at most three literals:
Ci = li,1 ∨ li,2 ∨ li,3 (li,j are pl or ¬pl, 1 ≤ i ≤ m). This special instance of the
satisfiability problem is also NP-complete [8]. Note that the m and the r are the
respective numbers occurring as inputs in Definition 3. To show that 3-SAT can
be reduced to sfc-SAT, we demonstrate that there are propositions pr+1, . . . , pk,
and clauses C′

1, ..., C
′
n, with m ≤ n, Ci ⊆ C′

i and C′
i|r = Ci for i ≤ m, such that

for each valuation of p1, . . . , pk, exactly one of C′
i is false.

What does the last condition mean for a set of clauses C′
1, ..., C

′
n? Basically,

it means that these clauses represent all 2k possibilities of choosing truth values
for p1, . . . , pk. So, the problem in the reduction is to extend the given clauses by
new variables and to add new clauses. This has to be done so that the length of
the new problem is still polynomial in the length of the given 3-SAT instance.

We assume without loss of generality that none of C′
1, ..., C

′
m contains a com-

plementary pair of literals (otherwise the clause would be satisfiable under all
valuations and could be safely discarded as it does not matter for the overall
satisfiability problem). In order to extend clauses C1, ..., Cm in an appropriate
way, we use auxiliary formulae αi and β, defined in the following way:

Do Agents Make Model Checking Explode (Computationally)? 405

αi: We construct formulae αi stating that a selected clause number is i ≤ m.
To be more precise, we introduce t :=)logm* new variables y1, . . . , yt and
define conjunctions αi (i = 1, . . . ,m) over these variables as follows (this
idea is due to Thomas Eiter [5]). We write each number 1, . . . ,m in binary
and represent each (of the t) digits by the new variables (a 1 is represented
by the variable itself, a 0 by the negation of the variable). The i’th digit is
then represented by yi if it is 1 and by ¬yi if it is 0. Thus, for each valuation
of the new variables, only one conjunction αi can be true, namely the one
representing the number coded in the binary representation.
Note that we can also represent numbers greater than m (up to the next
power of 2, namely 2t). These conjunctions do not correspond to the m orig-
inal clauses from the 3-SAT problem. In our reduction, we have to distinguish
between them. Therefore we introduce a formula β in the next step.

β: We construct a formula β stating that the selected clause number is less than
or equal to m. Thus, β satisfies the following equivalences: β ⇔

∨m
i=1 αi ⇔∧2�log m�

i=m+1 ¬αi. Note that the last formula is a set clauses (because all ¬αi are
clauses), and hence we need at most 2�log m� −m many clauses to represent
β (which is never more than m). We denote these clauses by Cβ

1 , . . . , C
β
m.

Each clause Cβ
j states, that the selected clause has not the number m+ j.

Extending the clauses: For each Ci = li,1 ∨ li,2 ∨ li,3 we construct the
remaining 7 clauses (all parities of the 3 variables) and add ¬αi. So, for each Ci

we get 8 clauses C′
i,0, . . . C

′
i,7, where C′

i,0 = Ci ∨ ¬αi and (C′
i,0 ∧ . . . ∧ C′

i,7) ⇔
¬αi. Note, again, that ¬αi is always a clause. We observe also that the m clauses
C1, ..., Cm, which we originally started with (as an instance of 3-SAT), are, by
construction, exactly C′

1,0|r, C′
2,0|r, . . . , C′

m,0|r.

Reduction: The (at most) s := m+ m× 8 clauses:

Cβ
1 , . . . , C

β
m, and C′

i,j (1 ≤ i ≤ m, 0 ≤ j ≤ 7),

over k = r+)logm* variables, represent an instance of sfc-SAT, such that if we
choose m ≤ n and r ≤ k, then we get the 3-SAT problem we started with.

Why are the clauses above an instance of sfc-SAT? The fact that we get
back the 3-SAT problem has already been shown. It is also obvious that the
constructed instance is polynomial in the size of the instance we started with.
So it remains to show that for each valuation of all the variables, exactly one
clause is false. Let a valuation be given. We must consider two cases:

1. Exactly one of the α1, . . . , αm is true, say αi0 . Then all clauses C′
i,j with

i �= i0 are true (because ¬αi is true and it occurs as a disjunct in all these
clauses). Of the 8 clauses C′

i0,j (0 ≤ j ≤ 7), exactly one is false, namely the
one contradicting the valuation of the three old variables occurring in the
original Ci. Clearly, β (i.e all clauses Cβ

j) is true as well.
2. None of the α1, . . . , αm is true. But then all clauses C′

i,j are true and only β
is false, i.e. exactly one of the clauses Cβ

j .

406 W. Jamroga and J. Dix

These are all the cases, because αi (resp. Cβ
j) are pairwise inconsistent by con-

struction: any two different conjunctions αi, αj (resp. Cβ
i , C

β
j) with i �= j contain

at least one pair of complementary literals. This gives us the following result:

Proposition 2. Sfc-SAT is NP-complete.

4.3 Reduction of sfc-SAT to Atl Model Checking over Ats

To obtain the reduction, we construct an ats M with states Q = {q0, C1, ..., Cn},
i.e. one state per clause plus an initial state. Next, we “simulate” propositions
p1, ..., pk with agents a1, ..., ak. Each agent “declares” his proposition true or
false in the initial state q0. Thus, agent ai has two available choices at q0: to
declare pi true or to declare pi false; a choice of ai is represented with the set of
clauses that are not made true by setting the value of pi in this particular way.
There is only one atomic proposition, therest, with π(therest) = {Cm+1, ..., Cn}.

Note that each combination of choices from a1, ..., ak at q0 corresponds to a
single valuation of p1, ..., pk, and vice versa. Moreover, a clause is not satisfied by
a valuation iff no proposition “makes” it true. Thus, the set of clauses, unsatisfied
by a valuation, is equal to the intersection of sets of clauses that are not “made”
true by each single proposition. By definition of sfc-SAT, such an intersection is
always a singleton, which proves that M is indeed an ats.

Lemma 4. There is a valuation of p1, ..., pr such that all clauses C1|r, ..., Cm|r
are satisfied iff M, q0 |= 〈〈a1, ..., ar〉〉 therest.

Note that the reduction can be done in time polynomial in n, k. Computing
the agents’ choice sets is the hardest point here, and it can be done in time
O(k2n). The resulting model includes n+ 1 states, k agents, and d = 2 choices
per agent per state – and the length of the resulting formula is l = r+2 ≤ k+2,
which concludes the reduction.

Proposition 3. Model checking atl formulae over ats is NP-complete.

4.4 Model Checking with Nondeterministic Transition Systems

Alternating transition systems were proposed as models for open computational
systems, and the way in which the transition function is constructed reflects this
intention. The problem with ats’s is that they are not modular, partly due to
the “singleton intersection” requirement: legality of a choice cannot be defined
in isolation from the rest of the choices model. Adding another process to the
system usually requires thorough re-construction of the model: in particular, new
states must be added, and agents’ choices extended so that every intersection
is again a singleton. We suggest that the requirement can be relaxed, yielding a
more general (and more flexible) class of models with the same atl model check-
ing complexity. To show this, we define non-deterministic alternating transition
systems (nats) in the same way as ats, except that no requirement on function
δ is imposed. Obviously, model checking atl formulae over nats is NP-hard,

Do Agents Make Model Checking Explode (Computationally)? 407

because ats are special cases of nats. Moreover, the model checking algorithm,
depicted in Section 4.1, can be applied to nats as well.

Proposition 4. Model checking atl formulae over nats is NP-complete.

This suggests that using the more general class of nats may be beneficial for
most purposes. Note, however, that defining atl semantics over nats may have
some disadvantages too. For example, ctl cannot be syntactically embedded
in atl over nats, because Eϕ is not equivalent to 〈〈Agt〉〉ϕ anymore. A more
detailed analysis of atl expressivity over nats is beyond the scope of this paper.

5 Conclusions

In this paper, we establish the precise atl model checking complexity when the
number of agents is considered a parameter of the problem. Most importantly,
we prove that the model checking is intractable for both major atl semantics.
The problem sits very close to QSAT2 in the case of concurrent game structures,
and indeed, it turns out to be Σ2P-complete. For the previous semantics, based
on alternating transition systems, the problem is “only” NP-complete, which
suggests that using ats may have some advantage over cgs. Finally, we show
that atl model checking over the broader class of nondeterministic ats is still
NP-complete, which suggests that using nats may be also convenient.

We would like to thank Thomas Eiter for his help in the NP-hardness proof
of the sfc-SAT problem.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Lecture Notes in Computer Science, 1536:23–60, 1998.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713, 2002.

3. L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. The control of synchronous systems.
In Proceedings of CONCUR 2000, pages 458–473, 2000.

4. L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. The control of synchronous systems,
part II. In Proceedings of CONCUR 2001, pages 566–580, 2001.

5. T. Eiter. Oral communication. March 2005.
6. V. Goranko. Coalition games and alternating temporal logics. In Proceedings of

TARK VIII, pages 259–272. Morgan Kaufmann, 2001.
7. V. Goranko and W. Jamroga. Comparing semantics of logics for multi-agent sys-

tems. Synthese, 139(2):241–280, 2004.
8. C.H. Papadimitriou. Computational Complexity. Addison Wesley : Reading, 1994.
9. P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in

Theoretical Computer Science, 85(2), 2004.

Multiagent Resource Allocation in the
Presence of Externalities

Paul E. Dunne

Dept. of Computer Science,
University of Liverpool, Liverpool L69 7ZF, UK

ped@csc.liv.ac.uk

Abstract. In studies of settings concerning the allocation of a finite resource col-
lection among a set of agents it is, usually, assumed that each agent associates a
value with each subset of resources via a utility function that is free from so-
called externalities, i.e. that these values are independent of the distribution of
the remaining resources among the other agents. While this assumption is valid
in many application domains, it is, however, by no means universally so. Thus,
one can identify a number of circumstances wherein an agent’s assessment of a
given subset is dependent not only on the elements of this set but also on the con-
text in which it is held, i.e. on the resources owned by other agents. In this paper
a general model for considering resource allocation settings with externalities is
presented and its properties reviewed with reference to a select number of issues
that have been widely-studied in externality–free settings.

Keywords: Multiagent Resource allocation; Computational Complexity.

1 Introduction

In studies of multiagent negotiation traditional models of activities such as resource al-
location implicitly assume that the settings are free from so-called externalities, i.e. that
the “value” placed by an agent on a given subset of the resources is unaffected by the
distribution of the remaining resources among the other agents. For example, although
not always explicitly stated, this is the view adopted in, among others, [4,5,9,11,13,14].
While suitable for many situations that arise in practice, it is, however, not appropriate
for every domain. Thus, one may identify a number of cases where the effective util-
ity of some collection of resources to an agent is dependent on how the remainder are
allocated. As examples consider the following.

Example 1. Card games such as Contract Bridge: a standard (52 card) deck is dealt
among four players (conventionally named N , S, E and W) grouped as two separate
partnerships of two players (N with S; E with W). The “utility” of the cards dealt to
a given player cannot be assigned a definitive value since its worth may depend on the
distribution of the remaining cards among the other players.

Example 2. The “value” of shares in a company: as viewed by different groups of share-
holders this may vary considerably, so that those seeking to obtain a majority controlling
interest find the cost of shares escalating the closer they come to realising their objec-
tive. If the attempts are unsuccessful the “share price” may collapse, e.g. if a group

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 408–417, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multiagent Resource Allocation in the Presence of Externalities 409

seeking control disposes of its shares having decided the cost of obtaining a majority
holding is excessive.

Despite the differing applications domains identified in these examples some common
features can be noted. In each case a given subset of the resources (cards, shares) has
some notional “intrinsic” value, e.g. in the Bridge example this might be assessed in
terms of how many “high cards” are held: this intrinsic valuation may, however, fail
to be a true reflection of a resource set’s actual worth relative to the holdings of other
agents. A further similarity concerns how an agent’s view of a given resource set evolves
with its knowledge of what other agents are allocated: the decisions taken concerning
resource usage when an agent has complete information about an allocation may be
different from those made when only its own holding is known.

That the utility of a collection of resources may be affected by factors other than the
resource set itself has, of course, long been recognised outside the particular arena of
multiagent systems issues. Thus the terminology “externality” originates from game-
theoretic models of exchange economies. There has, however, been little work carried
out regarding, for example, algorithmic and other implications arising from such be-
haviour in terms of multiagent systems settings.

For example, one issue of interest is the following: in the standard setting various
concepts have been mooted in order to capture the idea of how an allocation P of R
amongA “compares with” a different allocation Q, e.g. social welfare, Pareto optimal-
ity, etc. in [3,4,11]. To what extent do these measures continue to be “sensibly defined”
in settings with externalities? Are there alternative or additional comparative standards
for distinct allocations in this case? Thus, there are highly non-trivial aspects from,
for example, the perspective of properties of negotiation mechanisms both in semantic
– e.g. protocol formalisms as considered in [2,8,10], – and algorithmic terms, e.g. as
reviewed in [7,12].

The aim of this paper is to present a model of resource allocation with externalities
and to discuss its properties. The basic model is described in the next section. In Sec-
tion 3 it is argued that if allocations are to be negotiated using distributed autonomous
mechanisms, then some provision for all agents to discover complete information about
the current allocation is needed. In Section 4, we examine decision questions relating
to settings with externalities together with strategic considerations that might motivate
a coalition of agents to form. Conclusions and discussion occupy the final section.

2 Belief Contexts: Partial and Complete Information

Throughout the sequelA is a system of n agents 〈a1, . . . , an〉 andR a collection of m
indivisible and non-shareable resources, {r1, . . . , rm}. The set Pn,m of partial alloca-
tions ofR amongA, is

Pn,m = { 〈P1 ; P2 ; · · · ; Pn〉 : Pi ⊆ R and Pi ∩ Pj �= ∅ ⇒ i = j}

The set Fn,m of full allocations ofR amongA is

Fn,m =

{
〈F1 ; F2 ; · · · ; Fn〉 ∈ Pn,m :

n⋃
i=1

Fi = R
}

410 P.E. Dunne

In order to deal with the notion of utility functions with externalities, it is necessary to
distinguish full allocations F as they are in “reality” from what agents believe to be
true of them. To this end each agent, ai, maintains a structure B(i) ∈ Pn,m called its
belief context: if F ∈ Fn,m describes the full allocation currently in force, then the only

condition imposed on the belief context, B(i) = 〈B(i)
1 ; B(i)

2 · · · B(i)
n 〉 for ai is that

B
(i)
i = Fi, i.e. it is assumed that every agent knows its own allocation within F .

Informally, these model the following idea: ai knows its own resource holding
(B(i)

i = Fi) and, in the course of resources being moved around, ai may collect in-
formation concerning the holdings of other agents, e.g. if a1 transferred resource r1 to
a2, then a1 could subsequently updateB(i) to record {r1} ⊆ B

(i)
2 . The critical aspect is

that, other than the requirementB(i)
i = Fi, the set B(i)

j (when j �= i) could be unrelated

to the subset Fj actually held by aj under F : ai “believes” that B(i)
j ⊆ Fj , this may,

however, not be the case.
Combining these elements leads to the following basic model of resource allocation

settings with externalities.

Definition 1. A resource allocation setting with externalities is defined by 〈A,R,V ,U〉:
V describes the valuation functions vi : Pn,m → Q whereby agents associate values
with their belief contexts; U defines the utility functions ui : 2R → Q through which
ai associates a value with its assigned resource set.

For a full allocation F ∈ Fn,m an n-tuple B = 〈B(1), B(2), . . . , B(n)〉 of belief

contexts is F -consistent if for each 1 ≤ i ≤ n, B(i)
i = Fi; B is consistent if it is

F -consistent for at least one F ∈ Fn,m.

Although the component U does not feature significantly in our subsequent discussion,
we include this to model the concept of an agent’s “intrinsic valuation” of subsets ofR.

We note one important aspect of Defn. 1: the mechanism defined for evaluating full
allocations relies only on an agent’s knowledge of its own resource holding and its be-
liefs concerning what is held by other agents, i.e. agents may form a (subjective) view of
“how good” a full allocation is without possessing complete and/or correct information
about it. We thus distinguish valuation functions whose domain is Fn,m (which implic-
itly assume agents have complete knowledge) and those with domain Pn,m. While it is
certainly the case that the effect of externality could be modelled using the former, one
significant drawback to doing so concerns how such valuations are implemented at the
level of individual agents: in order accurately to evaluate the full allocation, F , an agent
would need to know each subset Fj , i.e. ai cannot determine vi(F) unless its “belief”
is that B(i) = F . In many situations, for example in settings involving a large number
of agents and within which there are frequent local reallocations of resources occurring,
the overhead needed to ensure that all agents have complete knowledge of the present
allocation will become prohibitive: in these cases the assumption of complete knowl-
edge seems unrealistic. In contrast, by allowing agents to determine the influence of
external factors by maintaining a (partial) record of what other agents are thought to
own, an agent may be able to assess its allocation in the light of information which is
locally gathered, e.g. by forming inferences based on observed transactions.

A reliance on partial information does, however, create one problem: an agent can
determine a valuation through its belief context but may find itself making decisions

Multiagent Resource Allocation in the Presence of Externalities 411

on the basis of incorrect and/or insufficient information, since its belief context does
not describe the full allocation in use. Such inaccuracy may arise even in the absence of
“malicious” action by other agents, e.g. an agent deliberately giving the wrong response
to a query about its ownership of some resource: if ai reassigns some subset, X , of its
original holding to aj , then although ai may be able to update its belief context to reflect
X ⊆ Fj , ai (unless explicitly informed) cannot know if aj subsequently disposes of
some subset Y of X to a different agent.

In total the contrasting approaches give rise to a dichotomy confronting how an
agent ought to view its allocation with how an agent believes it should be viewed. This
conflict can be interpreted as clash between global and local perspectives: the former
that of an “external” observer who is aware of the full allocation, F , of R that is in
place; the latter that of individual agents, who, although able to form hypotheses about
F may not be in a position easily to verify such. Some of the difficulties that these
dual viewpoints create in the areas of defining and negotiating “optimal” allocations,
are examined in the next section.

3 Concepts of Optimality

In presenting formulations of “optimal allocation”, a widely studied idea has been that
of “social welfare”. The assessment made of a full allocation, F , within the standard
externality-free model, defines the social welfare of F – denoted σ(F) – to be the value∑n

i=1 ui(Fi), (where ui : 2R → Q is the (externality-free) valuation function for ai)
so that an optimal allocation is one that maximises this value. This measure has been
examined in the multiagent systems arena with respect to computational complexity
issues, e.g. [4],[7, p. 43], and frameworks for identifying allocations with maximum
social welfare, e.g. [3,11].

In the setting of Defn. 1, one natural reformulation of σ(F) for F ∈ Fn,m, is as

σ(τ)(F) =def

n∑
i=1

vi(F)

Thus, vi is evaluated from the (global) perspective in which B(i) = F for each agent’s
belief context. It is certainly the case that σ(τ) defines the attained social welfare from
the viewpoint of an external, independent observer, thus one may describe σ(τ) as the
true social welfare. Equally, however, such an observer may be unaware of the exact
allocation and, in order to calculate the sum of the agents’ valuations must rely on each
agent reporting their local assessment. In such cases, the perceived social welfare of F
will be

σ(π)(F,B) =def

n∑
i=1

vi(B(i))

That is, the assessment is via the F -consistent system B formed by the belief contexts
of the agents.

412 P.E. Dunne

Now given that Pn,m is finite, it is certainly the case that there are full allocations,
{F opt, F bad} for which

F opt =def A full allocation that maximises σ(τ)

F bad =def A full allocation that minimises σ(τ)

It was earlier noted that requiring agents to have complete knowledge about the current
allocation may impose unrealistic overheads. The following result indicates one sig-
nificant problem if all negotiations about redistributing resources between agents take
place in an environment where decisions are made solely on the basis of what agents
believe about the current allocation.

Phrased less formally, Theorem 1 below asserts the existence of resource allocation
settings with externalities in which a genuine “best” allocation (F opt) is perceived as
a worst possible one (F bad); and (for the same setting) a genuine “worst possible”
allocation (F bad) is perceived to be optimal (F opt).

Theorem 1. There are resource allocation settings with externalities, 〈A,R,V ,U〉 in
which 〈F opt, F bad, Bbad, Bopt〉 can be defined so that Bbad is F opt–consistent, Bopt

is F bad–consistent and with

a. σ(π)(F opt, , Bbad) = σ(τ)(F bad)
b. σ(π)(F bad, Bopt) = σ(τ)(F opt)

Proof: (Outline) Assume that, for some k > 1, n = 2k and m = n. Let F be the full
allocation in which Fi = {ri} and G that in which Gi = {rn−i+1}.1 Define the belief
contexts, B(i), via

B
(i)
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅ if i is odd and j �∈ {i, i+ 1}
∅ if i is even and j �∈ {i− 1, i}
{ri} if j = i
R \ {ri} if i is odd and j = i+ 1
R \ {ri} if i is even and j = i− 1

and, similarly, the belief contexts D(i) as

D
(i)
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅ if i is odd and j �∈ {i, i+ 1}
∅ if i is even and j �∈ {i− 1, i}
{rn−i+1} if j = i
R \ {rn−i+1} if i is odd and j = i+ 1
R \ {rn−i+1} if i is even and j = i− 1

For P ∈ Pn,m, the valuation functions, vi, are given by

vi(P) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if P = B(i)

n if P = D(i)

n if P = F
1 if P = G

2 if P �∈ {F,G,B(i), D(i)}
1 Combined with the assumption that n is even, choosing G as the “reverse” ordering of F

ensures that for every ai, Gi �= Fi.

Multiagent Resource Allocation in the Presence of Externalities 413

To complete the proof it suffices to observe that 〈B(1), . . . , B(n)〉 is F–consistent and
〈D(1), . . . , D(n)〉 is G-consistent. In the former case – the full allocation being F and
ai holding the belief context B(i) –

σ(τ)(F) = n2

σ(π)(F, 〈B(1), . . . , B(n)〉) = n

while in the latter case – the full allocation being G and ai holding the belief context
D(i) –

σ(τ)(G) = n

σ(π)(G, 〈D(1), . . . , D(n)〉) = n2

It is straightforward to show that n ≤ σ(τ) ≤ n2 so that (a) follows using the full
allocation F with the F -consistent system B and (b) from G with the G-consistent
system D. �

The construction outlined above, employs systems of belief contexts, {B,D}, which
although FX–consistent (for X ∈ {opt, bad}) involve each agent taking an incorrect
view of the full allocation, e.g. for the pairing 〈F,B〉, when i is odd, ai wrongly believes
R \ {ri} ⊆ Fi+1. It is not difficult, however, to devise a belief context system B, say,
which is F opt-consistent, has the property that every agent’s beliefs are correct, i.e.
B

(i)
j ⊆ F opt

j , yet nevertheless is such that σ(π)(F opt, B) = σ(τ)(F bad). One such
choice for B is,

B
(i)
j =

⎧⎨⎩
∅ if j = i− 1 and i ≥ 2
∅ if j = n and i = 1
{rj} otherwise

The system B is F opt–consistent, but, as in the proof of Theorem 1, combined with
valuation functions vi that assign 1 to the context P if P = B(i), n if P = F opt, and 2
in all other cases, has σ(π)(F opt, B) = σ(τ)(F bad). In this construction the problem is

not that the beliefs of agents are incorrect, since B(i)
j ⊆ F opt

j , but that their knowledge
of the allocation if incomplete: the agent a1 is not aware of who owns the resource rn;
similarly, for i ≥ 2, ai does not know the owner of ri−1.

One further straightforward consequence is that the difference between σ(π)(F,B),
and σ(τ)(F) when B is F–consistent, can be arbitrarily large, even when F is a full
allocation that maximises σ(τ).

Corollary 1. Given 〈A,R〉, a full allocation F ∈ Fn,m, and K ∈ IN, there is a choice
of V and F–consistent systems of belief contexts B and D, for which

σ(τ)(F) − σ(π)(F,B)
σ(π)(F,D) − σ(τ)(F)

}
≥ K

Furthermore, these hold even when V must be chosen so that F maximises σ(τ) in the
setting 〈A,R,V ,U〉.

Proof: The proof is, in essence, simply a variation of the device used in proving Theo-
rem 1. Details are omitted. �

Although the extremes indicated by Theorem 1 are established through the use of, what
are arguably, “artificial” valuation functions, the possibilities represented – optimal al-

414 P.E. Dunne

locations being perceived as sub-optimal; or sub-optimal distributions seen as optimal
ones – clearly pose problems for mechanisms that attempt practically to address sys-
tems of utility functions with externalities. In summary, faced with such environments:

a. To enforce “complete knowledge” of allocations at the level of individual agents
imposes unrealistic maintenance overheads especially in large volatile settings.

b. Relaxing the “complete knowledge” condition to the extreme in which each agent
is responsible for locally maintaining its own view of the allocation may result in
situations where no “useful” allocation is obtained: agents lack any incentive to de-
viate from (wrongly perceived to be) optimal forms; and/or may attempt to change
already optimal allocations in the mistaken belief that the current distribution is
sub-optimal.

4 Profiles and Coalitions

In this section our concern is with the complexity of various decision properties arising
in settings with externalities. We first define the profile of a full allocation.

Definition 2. For a full allocationF ∈ Fn,m the profile of F within 〈A,R,V ,U〉 is the
n-tuple, π(F) ∈ Qn given by 〈v1(F), v2(F), . . . , vn(F)〉. For a given n-tuple q ∈ Qn,
we say that q = 〈q1, . . . , qn〉 is an attainable profile within 〈A,R,V ,U〉, if there exists
F ∈ Fn,m with which π(F) ≥ q where n-tuples p, q are ordered q via p ≥ q if and
only if pi ≥ qi for each 1 ≤ i ≤ n.

A natural decision question within this setting is the following.
Attainable Profile (AP)
Instance: 〈A,R,V ,U〉; q ∈ Qn.
Question: Is there a full allocation F ∈ Fn,m for which π(F) ≥ q?

In presenting instances of this problem there is, of course, the issue of how the
structures V and U are encoded, bearing in mind that the domains Pn,m and Fn,m

have size exponential in m: we adopt the so-called “straight-line program” model (SLP)
proposed in [4, Defns. 9–10].

Theorem 2. AP is NP–complete.

Proof: (Outline) Membership in NP is immediate from the non-deterministic algorithm
that guesses a full allocation F ∈ Fn,m and checks π(F) ≥ q. For NP–hardness we
prove a rather stronger result: AP is NP–hard even when instances are restricted to 2
agents, with the profile 〈q1, q2〉 = 〈1, 1〉 and for a fixed pair of valuation functions
〈v1, v2〉 whose definition, given a full allocation F = 〈F1, F2〉, is

v1(F) =
{

0 if u1(F2) > u1(F1)
1 if u1(F2) ≤ u1(F1)

v2(F) =
{

0 if u2(F1) > u2(F2)
1 if u2(F1) ≤ u2(F2)

We employ a reduction from 3-SAT, with instances Φ(Zt) limited to those for which the
number of propositional variables, t, is odd. We need only specifyR and the functions
〈u1, u2〉. Fix R = {z1, z2, . . . , zt}, i.e. the resource set consists of the propositional
variables defining Φ(Zt). For W ⊆ R, the instantiation pos(W) is given by zi = � if

Multiagent Resource Allocation in the Presence of Externalities 415

zi ∈ W , zi = ⊥ if zi �∈W ; similarly, the instantiation neg(W) is given by pos(R/W).
The utility functions, 〈u1, u2〉 are:

u1(S) =
{

2t if Φ(pos(S)) = �
|S| if Φ(pos(S)) �= � u2(S) =

{
2t if Φ(neg(S)) = �
|S| if Φ(neg(S)) �= �

For space reasons we omit the straightforward argument that 〈1, 1〉 is attainable in the
constructed setting if and only if Φ(Zt) is satisfiable. �

From Theorem 2 the decision problems considering whether there are full allocations
under which ai strictly improves vi (Subjective Improvement – SI); or under which
every agent strictly improves its valuation, (Objective Improvment – OI) are also seen
to be NP–complete. In addition we have the following consequence: for (externality–
free) resource allocation settings 〈A,R,U〉, a full allocation, F , is said to be envy–free
([6]) if for every pair 〈i, j〉 it holds that ui(Fi) ≥ ui(Fj); thus no agent views the
holding of another agent as having greater worth than its own resources. The decision
problem Envy-Freeness (EF) asks of a given 〈A,R,U〉 if there exists any envy–free full
allocation within it.

Corollary 2. EF is NP–complete.2

Proof: Given 〈A,R,U〉, define the valuation function, vi : Fn,m → Q as

vi(F) = 1 − |{ j : ui(Fj) > ui(Fi)}|

With this, 〈A,R,U〉 admits an envy–free allocation if and only if the profile
〈1, 1, . . . , 1〉 is attainable, so that with 〈u1, u2〉 constructed as in in Theorem 2 it fol-
lows that the the resulting setting admits an envy–free allocation if and only if its source
formula Φ(Zn) is satisfiable. �

There are properties of given settings 〈A,R,V ,U〉 that a set of agents may seek to
exploit, e.g. assuming a competitive environment of self-interested agents, one reason
why a coalition, X ⊂ A of agents may form within resource allocation settings with
externalities, is that by acquiring and distributing some subset S of R, the members of
X achieve an allocation they regard as optimal, irrespective of howR\S is distributed
amongA\X . Such resource subsets, S, may assume greater importance to the coalition
if not only can it achieve a locally optimal allocation with S but also ensure thatA \X
are unable to to realise a locally optimal distribution with only R \ S available. This
leads to the idea of a coalition being able to block another. Noting that, even if a coalition
is unable to realise an optimal outcome, its members might be content with one which
guarantees a certain return while ensuring that of other agents is smaller, motivates the
decision problem below.

Blocking Coalition (BC)
Instance: 〈A,R,V ,U〉; X , Y ⊆ A (with X ∩ Y = ∅); 〈qX , qY〉 ∈ Q2 (qX ≥ qY)
Question: Is there a subset SX ofR and a full allocation, P , of SX amongX for which:
if Q is any allocation in Fn,m with Qi = Pi for each ai ∈ X , then vi(Q) ≥ qX and for
every aj ∈ Y , vj(Q) < qY?

2 A similar result, within a different formalism for representing utility functions, has been inde-
pendently obtained in recent work of Bouveret and Lang [1].

416 P.E. Dunne

Theorem 3. BC is Σp
2–complete.

Proof: (Outline) For membership in Σp
2 it suffices to observe that

〈〈A,R,V ,U〉,X ,Y, 〈qX , qY〉〉

is accepted as an instance of BC if and only if: ∃ 〈Pi1 , . . . , Pik
〉 ∀ Q ∈ Fn,m, should it

be the case that ∧ij∈XPij = Qij then⎛⎝ ∧
ij∈X

vij (Q) ≥ qX ∧
∧

ik∈Y
vik

(Q) < qY

⎞⎠
The proof that BC is Σp

2–hard, uses a reduction from QSATΣ
2 instances of which com-

prise a CNF formula Φ(Xt, Yt) defined over 2 disjoint sets of propositional variables.
An instance of QSATΣ

2 is accepted if there is an instantion, αX of Xt under which for
all instantiations, βY of Yt we have Φ(αX , βY) = ⊥.

The basic idea of the construction is to form a four agent system – {a1, a2, b1, b2}
– in which the resource set is formed by the propositional variables Xt ∪ Yt. The val-
uation functions, 〈v1, v2, v3, v4〉 are designed so that the coalition formed by {a1, a2}
is able to block the coalition {b1, b2} if it can partition the Xt resources in such a way
that when a1 sets its alloted subset of Xt to � while a2 sets its variables to ⊥ then the
instantiation of Φ(Xt, Yt) evaluates to ⊥ no matter what setting of Yt is used. �

5 Conclusions and Further Work

The principal focus of this paper has been directed towards defining a framework for
resource allocation settings involving utility functions with externalities, it being main-
tained that there are many application domains to which such treatments are most ap-
propriate. The technical matter that has been the basis of the results discussed above,
has largely been concerned with highlighting reasons why issues such as negotiation
and coalitional strategy pose non-trivial questions. In particular, as a consequence of
Theorem 1 it is apparent that highly autonomous negotiation protocols schemes require
additional apparatus, over and above that suitable to externality–free settings, in order
to effect practical algorithmic solutions.

The nature of appropriate algorithmic methods, e.g. within the centralised approach
of combinatorial auctions, is one area with considerable potential for development. Al-
though we have not discussed such schemes in detail, it is observed that unless the
bidding protocols allow agents to express conditions under which offers are made, e.g.
that a price p is offered for S subject to a particular allocation being in force, the full al-
location generated may be found unsatisfactory by both agents and auctioneer alike. A
second area, of interest to autonomous environments, concerns the investigation of rea-
soning mechanisms by which agents can “reliably” make use of their belief contexts in
reaching decisions about offers, e.g. so that the extremes highlighted at the conclusion
of Section 3 are avoided. Both of these are the subject of work currently in progress.

Multiagent Resource Allocation in the Presence of Externalities 417

References

1. S. Bouveret and J. Lang. Efficiency and envy–freeness in fair division of indivisible goods:
logical representation and complexity. (to appear, Proc. 19th International Joint Conf. on A.I.
(IJCAI’05), Edinburgh, 2005)

2. F. Dignum (Editor). Advances in Agent Communication. Lecture Notes in A.I., 2922,
Springer, 2004

3. P. E. Dunne. Extremal behaviour in multiagent contract negotiation. Jnl. of Artificial Intelli-
gence Research, 23:41–78, 2005

4. P. E. Dunne, M. J. Wooldridge, and M. Laurence. The complexity of contract negotiation.
Artificial Intelligence, 164:23–46, 2005

5. U. Endriss and N. Maudet. On the Communication Complexity of Multilateral Trading. Proc.
3rd International Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS’04),
July 2004, ACM Press, pages 622–629

6. U. Endriss and N. Maudet. Welfare Engineering in Multiagent Systems. Proc. 4th Inter-
national Workshop on Engineering Societies in the Agents World (ESAW-2003) LNAI 3071,
Springer-Verlag, pages 93–106

7. S. Kraus. Strategic negotiation in multiagent environments. MIT Press, 2001.
8. P. McBurney and S. Parsons. Games that agents play: A formal framework for dialogues

between autonomous agents. J. Logic, Language and Information, 11:315–334, 2002
9. D. C. Parkes and L. H. Ungar. Iterative combinatorial auctions: theory and practice. In Proc.

17th National Conf. on Artificial Intelligence (AAAI-00), pages 74–81, 2000
10. C. Reed. Dialogue frames in agent communications. In: Y. Demazeau (ed.): Proc. 3rd

International Conference on Multi-agent systems (ICMAS-98). pp. 246–253. 1998
11. T. W. Sandholm. Contract types for satisficing task allocation: I theoretical results. In AAAI

Spring Symposium: Satisficing Models, 1998.
12. T. W. Sandholm. Distributed rational decision making. In Multiagent Systems (Editor: G.

Weiß) pages 201–258, MIT Press, 1999.
13. M. Tennenholz. Some tractable combinatorial auctions. In Proc. 17th National Conf. on

Artificial Intelligence (AAAI-00), 2000.
14. M. Yokoo, Y. Sakurai and S. Matsubara. The effect of false-name bids in combinatorial

auctions: new fraud in internet auctions. Games and Economic Behavior, 46(1):174–188,
2004

On Communication in Solving Distributed Constraint
Satisfaction Problems

Hyuckchul Jung1 and Milind Tambe2

1 Florida Institute for Human and Machine Cognition, USA
2 Department of Computer Science, University of Southern California, USA

Abstract. Distributed Constraint Satisfaction Problems (DCSP) is a general
framework for multi-agent coordination and conflict resolution. In most DCSP
algorithms, inter-agent communication is restricted to only exchanging values of
variables, since any additional information-exchange is assumed to lead to signif-
icant communication overheads and to a breach of privacy. This paper provides a
detailed experimental investigation of the impact of inter-agent exchange of addi-
tional legal values among agents, within a collaborative setting. We provide a new
run-time model that takes into account the overhead of the additional communi-
cation in various computing and networking environments. Our investigation of
more than 300 problem settings with the new run-time model (i) shows that DCSP
strategies with additional information-exchange can lead to big speedups in a sig-
nificant range of settings; and (ii) provides categorization of problem settings with
big speedups by the DCSP strategies based on extra communication, enabling us
to selectively apply the strategies to a given domain. This paper not only provides
a useful method for performance measurement to the DCSP community, but also
shows the utility of additional communication in DCSP.

1 Introduction

Distributed, collaborative agents play an important role in large-scale multiagent appli-
cations such as sensor networks [1]. Collaborative agents in such applications must co-
ordinate their plans, resolving conflicts, if any, among their action or resource choices.
Distributed Constraint Satisfaction Problems (DCSP) is a major technique in multia-
gent coordination and conflict resolution in collaborative settings [2]. DCSP provides
rich foundation for the representation of multiagent coordination and conflict resolu-
tion, and there exist highly efficient baseline algorithms [3,4,5,2].

In most DCSP algorithms, inter-agent communication is restricted to only exchang-
ing values of variables, since any additional information-exchange is assumed to lead to
significant communication overheads, a breach of privacy, and knowledge transforma-
tion cost [2]. We refer to this restriction of only communicating values of variables as
value-only communication. However, as large-scale systems based on such value-only
communication get developed, it is critical to re-examine this commitment to value-
only communication that has now become the foundation of DCSP. Indeed, it is feasible
that, by unnecessarily subscribing to such value-only communication, researchers may
be forced to compromise on correctness or quality of solutions; and/or forced to de-
velop unnecessarily complex algorithms. Could eliminating or diluting this restriction

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 418–429, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Communication in Solving Distributed Constraint Satisfaction Problems 419

of value-only communication lead to significant speedups, or would that lead to addi-
tional overheads? Such a re-examination of the communication commitment in DCSP
may imply potentially significant enhancements to the current DCSP algorithms.

We examine the impact of value-only communication in collaborative agent appli-
cations, where agents are homogeneous or at least do not face significant difficulties
in communicating their potential choices of values to each other. In such collaborative
agent applications, some of the key reasons for restricting to value-only communication
do not hold. In particular, there are three key reasons provided in the literature [2] for
value-only communication: (i)Maintaining privacy, (ii) Difficulty of knowledge trans-
formation in heterogeneous agent settings; (iii) Overheads of extra communication.

However, collaborative agents have no reason to maintain privacy from other agents,
and many domains with homogeneous agents do not have a problem in knowledge
transformation. The central remaining question is thus of communication overheads,
and loosening the restriction of value-only communication can indeed add to the com-
munication cost in DCSP. This tradeoff in the potential speedup due to extra commu-
nication vs the cost of communication is the central tradeoff that is at the heart of this
paper. Various aspects of different types of domains need to be considered in the anal-
ysis (e.g., communication or local computation cost).

In earlier work, we introduced DCSP techniques with additional information ex-
change [6]. However, since the investigation was limited to limited settings, the per-
formance of such DCSP techniques was not fully evaluated in a large set of realistic
domains. Furthermore, the overhead from extra communication was never analyzed.
In this paper, we present a comprehensive, detailed analysis over a large range of re-
alistic domain settings. For the analysis, we develop a new run-time model that takes
into account extra communication overhead in various computing and networking en-
vironments since the performance metric widely used in the DCSP literature, cycles
explained in Section 3, does not take into account the overhead of additional informa-
tion exchange (i.e., increased message size and number).

To evaluate the performance of DCSP techniques based on extra communication in
different domains, we systematically investigate more than 300 problem settings in a
large problem space with more than 200,000 experimental runs, using the new run-time
model. Our investigation (i) shows that DCSP strategies with additional information-
exchange can lead to big speedups in a significant range of settings; and (ii) provides
categorization of problem settings where big speedups are achieved by the DCSP strate-
gies to guide which DCSP strategy to apply given a domain.

2 Background

DCSP provides an abstract formal framework to model coordination and conflict reso-
lution in many multiagent applications such as distributed sensor networks [1]. DCSP is
a distributed version of CSP (Constraint Satisfaction Problems) [2]. CSP is commonly
defined by a set of n variables,X = {x1, ..., xn}, each element associated with value do-
mains D1, ..., Dn respectively, and a set of k constraints, Γ = {C1, ..., Ck}. A solution
in CSP is the value assignment for the variables which satisfies all the constraints in Γ .
In DCSP, variables and constraints are distributed among multiple agents. A constraint

420 H. Jung and M. Tambe

defined only on variables belonging to a single agent is called a local constraint. In
contrast, an external constraint involves variables of different agents. Solving a DCSP
requires that agents not only solve their local constraints, but also communicate with
other agents to satisfy external constraints.

A major characteristic of most DCSP algorithms is that they have focused on value-
only communication: agents communicate only their intended values for the objects on
which they need to agree [3,4,2]. That is, while the value selection is based on each
agent’s local knowledge and local situation, agents do not communicate such infor-
mation. However, a few different approaches (based on the communication of local
information between agents) were recently presented [6,7,5].

In this section, we describe two algorithms as representative examples. One is Asyn-
chronous Weak Commitment search algorithm [2], one of the most advanced DCSP
algorithms, in which agents communicate only selected values, and the other is Locally
Cooperative DCSP algorithm [6] in which agents communicate selected values plus
local information and the communicated information is used for value ordering.

2.1 Asynchronous Weak Commitment (AWC) Search Algorithm

In the AWC algorithm, agents asynchronously assign values to their variables and com-
municate the values to neighboring agents with shared binary constraints. Each vari-
able has a priority that changes dynamically during search. A variable is consistent if
its value does not violate any constraints with higher priority variables. A solution is a
value assignment in which every variable is consistent.

To simplify the description of the algorithm, suppose that each agent has exactly
one variable. When the value of an agent’s variable is not consistent with the values
of its neighboring agents’ variables with higher priorities, there can be two cases: (i) a
good case where there exists a consistent value in the variable’s domain; (ii) a nogood
case that lacks a consistent value. In the good case with one or more value choices
available, an agent selects a value that minimizes the number of conflicts with lower
priority agents. On the other hand, in the nogood case, an agent selects a new value that
minimizes the number of conflicts with all of its neighboring agents, and increases its
priority to max+1, where max is the highest priority of its neighboring agents.

2.2 Locally Cooperative DCSP (LCDCSP) Algorithm

In the LCDCSP algorithm [6], agents take into account the flexibility (choice of values)
given to other agents by their value choices in selecting new values. The LCDCSP
algorithm is based on the AWC but has a different mechanism in value ordering (which
is enabled by extra communication of local constraints). To elaborate this notion of
cooperative value selection, the followings was defined in [6]:

– Definition 1: For a value v ∈Di and a set of agents Nsub
i ⊆Ni, flexibility function

is defined as f⊕(v,Nsub
i) = ⊕(c(v,Aj)) where (i) Aj ∈ Nsub

i ; (ii) c(v,Aj) is the
number of values of Aj that are consistent with v; and (iii) ⊕, referred to as a
flexibility base, can be sum, min, max, product, etc.

On Communication in Solving Distributed Constraint Satisfaction Problems 421

Based on the flexibility, four different techniques are defined for value selection:

– Smin−conflict: Each agent Ai selects a value based on min-conflict heuristics (the
original value ordering method in the AWC algorithm);

– Shigh (Slow): Each agent Ai attempts to give maximum flexibility towards its
higher (lower) neighboring agents by selecting a value v that maximizes
f⊕(v,Nhigh

i) (f⊕(v,N low
i));

– Sall: Each agent Ai selects a value v that maximizes f⊕(v,Ni), i.e. max flexibility
to all neighbors.

These four different techniques can be applied to both the good and the nogood case
described in Section 2.1. (Refer to [6] for detailed information.) Therefore, there are six-
teen combinations for each flexibility base. While the LCDCSP apporach has relation to
a popular centralized CSP technique, the least constraining value heuristic [8], it is not
a simple mapping of the least constraining value heuristic onto the DCSP framework.
Agents can explicitly reason about which agents to consider most with respect to the
constrainedness given towards neighboring agents.

3 Performance Measurement

To evaluate approaches with different types of information exchange (as shown above),
we need a new run-time model (Section 3.2) that takes into account the overhead of
extra communication (required for the LCDCSP algorithm) since existing performance
metrics (described in Section 3.1) do not properly assess such communication overhead.

3.1 Existing Method

Since it has been practically difficult to access a real large-scale distributed system (with
hundreds of nodes), the standard methodology in the field [3,5,2] is to implement a syn-
chronized distributed system which is a model of distributed system where every agent
synchronously performs the following three steps (called a cycle): (i) Agents receives
all the messages sent to them in the previous cycle; (ii) Agents resolve conflicts, if
any, and determine which message to send; (iii) Agents send messages to neighboring
agents. Given such a synchronized distributed system, it is difficult to directly mea-
sure the run-time for real distributed conflict resolution. However, in the literature, as
a compromise, researchers have used hardware independent metrics such as cycles and
constraint checks defined below.

– Cycles: The number of cycles until a solution is found. Total time for conflict reso-
lution is expected to be proportional to cycles [2].

– Constraint checks: The total number of the maximum number of constraint checks
at each cycle until a solution is found. More specifically, at each cycle, a bottleneck
agent (which performs the most constraint checks) is identified, and the numbers
of constraint checks from bottleneck agents (which may vary at each cycle) are
summed up over all cycles. This is a main indicator for local computation time.

422 H. Jung and M. Tambe

In the DCSP research community, cycles is used as a major metric for performance
evaluation since the amount of local computation and communication that each agent
solves mostly remains same in most of previous DCSP approaches [3,5,2]: the differ-
ence is in the protocol for passing values and controlling backtracking. However, cycles
has the following shortcomings:

– Local computation overhead: For the hardware with limited computing power, the
time for local computation may not be ignored, and there can be a variation in local
computation depending on constraint checks.

– Message communication overhead: While cycles assumes that uniform time is
taken at each communication phase, the time for message communication often
depends on the size/number of messages.

3.2 Analytical Model for Run-Time

While the cycles (a major DCSP metric) described above can be used as approximate
measurements, it does not properly assess the performance of algorithms like LCDCSP
which do not properly assess the additional computation and communication overhead
from the local information exchange. Therefore, we need a new model to take into ac-
count such overheads as part of the run-time. In this section, we present an analytical
model for run-time measurements which takes into account various message process-
ing/communication overhead in different computing/networking environments.

The local computation processed by an agent at each cycle consists of processing
received messages, performing constraint checks, and determining which message to
send for its neighbors. The run-time taken by an agent for a cycle is the sum of the
local computation time and the communication time for the agent’s outgoing messages.
Our new run-time model is based on the data collected from the experimentation on a
synchronized distributed system. The following terms are defined for the model:

– nk
i : incoming message number for agent i at cycle k

– sk
i (j): size of jth incoming message for agent i at cycle k

– I(l): computation time to process one incoming message (whose size is l)
– cki : number of constraint checks by agent i at cycle k
– t: computation time to perform one constraint check
– ok

i : number of outgoing message for agent i at cycle k
– uk

i : size of an outgoing message for agent i at cycle k
– O(m): computation time to process an outgoing message (whose size is m)
– T (d): communication time to transmit an outgoing message (whose size is d)

In a synchronous distributed system, at each cycle, agents synchronously start their
local computation and communication. Thus, the run-time for a cycle is dominated by
an agent which requires maximum time for its local computation and communication.

– Run-time for a cycle k (R(k)) = maxi∈Ag(Lk
i + Ck

i) where Ag is a set of agents in
a given system, Lk

i is the local computation time of agent i at cycle k, and Ck
i is the

communication time of agent i at cycle k.

On Communication in Solving Distributed Constraint Satisfaction Problems 423

Here, Lk
i and Ck

i are computed by the following equations:

– Local computation time of agent i at cycle k (Lk
i) =

∑nk
i

j=1(I(sk
i (j))) (time to pro-

cess received messages) + cki × t (time to perform constraint checks) + ok
i ×O(uk

i)
(time to process outgoing messages)

– Communication time of agent i at cycle k (Ck
i) = ok

i ×T (uk
i) (time for transmitting

a message whose size is uk
i for ok

i times)

Finally, the total run-time is the sum of run-time (R(k)) for each cycle:

– Total run-time =
∑K

k=1(R(k)) where K is the number of total cycles.

While the above model aims to provide a metric which takes into account mes-
sage processing/communication overhead (based on message size/number), it is flexible
enough to subsume the existing method of performance measurement (Section 3.1):

– Constraint checks corresponds to the total run-time (defined above) where t = 1,
I(·) = O(·) = 0 and Ck

i = 0 (i.e., no communication/message-processing cost).
– Cycles corresponds to the total run-time under the assumption that t = 0 (the cost

for constraint checks is zero), I(·) = O(·) = 0 (message processing cost is zero),
and Ck

i = 1 (a constant communication time independent of message size/number).

As the first analytical model for the performance measurement in DCSP which takes
into account the overhead based on message size and number, the above model could
provide a useful method for performance measurement to the DCSP community. Fur-
thermore, as shown below, the model shows interesting results as the parameters for
message processing/communication overhead vary.

4 Performance Analysis

While we focus on the domain where agents’ interaction topology is regular1, there
can be variations (e.g., problem hardness) in different problem settings that arise within
the domain. In this section, we provide various problem settings controlled by several
parameters. Systematic changes in the parameters generate a wide variety of problem
settings, and enable us to evaluate the performance of the strategies and find their com-
munication vs. computation trade-offs in different situations. Here, parameter selection
is motivated by the experimental investigation in the CSP/DCSP literature [2].

First, we vary the density of regular graphs by changing the number of neighboring
agents: (i) Hexagonal topology: Each agent is surrounded by three agents (separated by
120 degrees); (ii) Grid topology: Each agent is surrounded by four neighboring agents
(separated by 90 degrees); (iii) Triangular topology: Each agent is surrounded by eight
neighboring agents (separated by 45 degrees). The purpose of trying three different
regular graphs is to investigate the impact on performance by the degree of connectivity
(number of interactions for each agent).

1 In real applications such as sensor networks [1], agents are often arranged in regular networks.

424 H. Jung and M. Tambe

Second, given a topology (among the three topologies above), we make variations
in constraint compatibility which has shown a great impact on the hardness of problems
[2]. We distinguish external constraints from local constraints in defining the constraint
tightness to analyze the effect from each constraint:

1. External constraint compatibility: Given an external constraint, for a value in an
agent’s domain, the percentage of compatibility with neighboring agents’ values is
defined. The percentage varies from 30% to 90% with intervals of 30%. Note that
0% case and 100% case are not tried since there is no solution for 9% case and
every value assignment is a solution for 100% case.

2. Local constraint compatibility: Given a local constraint, a portion of agents’ orig-
inal domains is not allowed. We make the following two variations in local con-
straint: (i) The percentage of locally constrained agents changes from 0% to 100%
(0%, 30%, 60%, 90%, 100%); and (ii) Given a local constraint, the portion of al-
lowed values varies from 25% to 75% (25%, 50%, 75%). Here, 0% and 100% are
not tried since 0% case gives agents empty domain and 100% case has no effect of
having a local constraint.

Third, we vary the number of domain values from 10 to 80 (10, 40, 80) to check how
different domain sizes have an impact on the performance and trade-offs of the strate-
gies. Given the above variations, the total number of settings is 351, and we evaluate the
performance of the two DCSP strategies (presented in Section 2) on each setting. Note
that the LCDCSP strategy can have different value selection techniques introduced in
Section 2.2. For a given problem setting, the performance of strategies is measured on
35 problem instances which are randomly generated by the problem setting (defined
with the above parameters).

For each setting, seventeen strategies (sixteen strategies defined in this paper plus
the original AWC strategy) are tried for each problem instances. Thus, the total num-
ber of experimental runs is 208,845 (= 351 × 35 × 17).2 Note that, for the sixteen
LCDCSP strategies, sum is used as a flexibility base (the original AWC strategy is
min-conflict strategy without extra communication of local information). We set the
number of agents as 512 since, in real applications such as sensor networks [1], the
number of agents in hundreds is considered to be large-scale.

4.1 Categorization of Problem Settings with Big Speedups by LCDCSP

In Figure 1, the horizontal axis plots problem hardness for each individual problem in-
stance (based on the cycles by the AWC strategy), and the vertical axis plots how many
speedup (i.e., how many fold reduction in cycles) is achieved by the best LCDCSP
strategies for each problem instance. 3 The results in Figure 1 indicates that LCDCSP
strategies show performance improvement for majority of problem instances across dif-
ferent problem hardness: while there is a variation in performance improvement, the
speedups do not come from only a few exceptional cases.

2 To conduct the experiments within a reasonable amount of time, the number of cycles was
limited to 1000 for each run (a run was terminated if this limit exceeded).

3 Selecting the best LCDCSP strategies were based on empirical results.

On Communication in Solving Distributed Constraint Satisfaction Problems 425

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900 1000

Problem instances based on original AWC cycle

H
ow

 m
an

y
fo

ld
 d

if
fe

re
nc

e
in

 c
yc

le
s

Fig. 1. Speedup by LCDCSP strategies for individual problem instances

Table 1. Speedups based on problem class

Local constraint External constraint Domain Ratio of locally Speedup at Each Topology
compatibility compatibility size constrained agents Hexagonal Grid Triangular

10 30% High
60% Moderate

30% others Low
25% 40 & 80 60% Low Moderate Low

others Low
60% 40 90% Low High Low

10 & 80 others Low
90% * * Low

50% & 75% * * * Low

Table 2. Maximum speedup in the problem settings where topology is grid, and external con-
straint compatibility is 60%

Local constraint compatibility Domain size Ratio of locally constrained agents Speedup

25% 10 0 ∼ 100% Low
25% 40 90% High

others Moderate
25% 80 0 ∼ 100% Moderate
50% 10, 40, 80 0 ∼ 100% Moderate
75% 10, 40, 80 0 ∼ 100% Moderate

Table 1 and 2 show how much speedu can be achieved by the best LCDCSP strate-
gies for a group of problem settings classified by the parameters introduced above. Note
that this categorization is not exhaustive, and focuses on problem settings (not on in-
dividual problem instances). In Table 1 and 2, high/moderate/low speedup respectively
indicates “more than five”/”between three and four”/”less than two”-fold speedup by
LCDCSP strategies over the AWC strategy. The following is the summarized result
shown in Table 1 and 2:

– When external constraint compatibility is low (30%),
• For each topology, high performance improvement is achieved when local con-

straint compatibility is low (25%) and domain size is small (10).
∗ A big speedup by LCDCSP strategies is shown unless agents are either to-

tally unconstrained in local constraints(0%) or totally constrained (100%).

426 H. Jung and M. Tambe

∗ For grid topology, a big speedup is shown when domain size is large
(80), and the ratio of locally constrained agents is moderate (60%) or high
(90%). However, little speedup when all agents are locally constrained.

• When local constraint compatibility increases or domain size gets larger, LCD-
CSP shows low speedup.

– When external constraint compatibility is moderate (60%) in grid topology,
• High performance improvement is achieved when local constraint compatibil-

ity is low (25%) and domain size is moderate (40).
∗ A big speedup by the best LCDCSP strategy is shown when the ratio of

locally constrained agents is high (90%). However, note that, when the
ratio is 100%, there is no big speedup since all the problems in the setting
are easy regardless of strategies to be applied.

– When external constraint compatibility is 90%, the speedup is relatively small since
the problem settings with 90% external constraint compatibility is easier than other
settings (taking less than 30 cycles in general) so that there is no big difference in
cycles between the AWC strategy and LCDCSP strategies.

4.2 Performance in Run-Time Analytical Model

In this section, we present how the performance results (e.g., speedup) changes with the
analytical run-time model in Section 3.2 compared with the results based on cycles. The
parameters specified in this section assume a realistic domain where message commu-
nication overhead dominates local computation cost and message processing overhead
is relatively smaller than communication overhead (but cannot be ignored). In defining
the parameters for such a domain, two different properties for message processing and
communication overhead are considered:

– Property 1: Message processing/communication overhead mainly depends on the
size of messages to process/communicate.

– Property 2: Message processing/communication overhead mainly depends on the
number of messages to process/communicate: Message is processed as a bundle or
message communication delay is dominated by message contention.

Message Size as a Main Factor for Message Processing & Communication Over-
head. For a domain where message size is a main factor for message processing and
communication overhead, parameters for the run-time model are set as follows:

– I(l) = l × t × α and O(m) = m × t × α: Message processing is assumed to
be slower than a constraint check by two order of magnitude. To simulate such a
difference, α is set as 100 or 1000.

– T (d) = d× t× β: To simulate the situation where communication overhead dom-
inates local computation cost, β is set as 1000 or 10000.

Table 3 shows the speedup by the best LCDCSP strategy for prototypical settings
given different α and β. In Table 3, the speedup based on the run-time model for differ-
ent α and β is less than the speedup based on cycles: i.e., the performance of LCDCSP
strategies with the run-time model appear to be worse than the cycle-based performance.

On Communication in Solving Distributed Constraint Satisfaction Problems 427

Table 3. Speedup change in run-time model

Speedup by LCDCSP strategies
Based on Based on run-time model

Case cycles α = 100 β = 1000 α = 100 β = 10000 α = 1000 β = 1000 α = 1000 β = 10000

1 11 7 7 7 7
2 10 9 9 8 9
3 37 21 21 20 21
4 14 4 7 5 7
5 11 7 8 7 8
6 44 33 33 31 33

The decrease in speedup with the run-time model is due to the fact that LCDCSP
strategies have larger message size to process/communicate and more constraint checks
(to compute flexibility towards neighbors) than the AWC strategy. The analysis with
other α and β values show similar results.

While we present limited data because of space limit, the analysis shows that, as
domain size or graph density (i.e., the number of neighbors) increases, the difference in
message size and constraint checks between the AWC strategy and LCDCSP strategies
also increases, leading to significant decrease in speedup for LCDCSP strategies.

Message Number as a Main Factor for Message Processing & Communication
Overhead. For a domain where message number is a main factor for message pro-
cessing and communication overhead (message processing & communication time is
independent of message size), parameters for the run-time model are set as follows:

– I(l) = t× α andO(m) = t× α; T (d) = t× β

Table 4. Speedup change in run-time model

Speedup by LCDCSP strategies
Based on Based on run-time model

Case cycles α = 100 β = 1000 α = 100 β = 10000 α = 1000 β = 1000 α = 1000 β = 10000

1 11 9 10 9 10
2 10 10 10 9 10
3 37 37 37 38 37
4 14 6 12 9 13
5 11 10 10 9 10
6 44 46 44 54 47

Here, the values of α and β are same as above. Table 4 shows the speedup by the
best LCDCSP strategy for the same prototypical settings (presented in Table 3). In Ta-
ble 4, the speedup based on the run-time model for different α and β is very similar
with the speedup based on cycles in general. The main reason is that the number of
messages to communicate is decided by the number of neighbors (i.e., graph density)
which is static. While there can be a large difference in constraint checks depending on
the graph density and the domain size, when the message processing or communication
overhead dominates (the difference in constraint checks becomes insignificant), the per-
formance of the AWC strategy and LCDCSP strategies depends on cycles because of
little difference in message size.

This analysis shows that, when the overhead of message processing and commu-
nication is mainly decided by message number (not size) and dominates local compu-
tation overhead (the difference in constraint checks is not significant), cycles can be a

428 H. Jung and M. Tambe

reasonable measurement to compare strategy performance. Note that, using this analyti-
cal model, we can simulate various computing and networking environments by chang-
ing (i) the values of α and β (different weights to message processing/communication
overheads) or (ii) the cost functions.

5 Related Work and Conclusion

While significant works have focused on variable or agent ordering in DCSP [9,3,2],
value ordering techniques which exploit additional information-exchange have not re-
ceived enough attention, and little investigation has been done for performance mea-
surement which takes into account extra communication overhead. While communi-
cating local information [7,5] and partial centralization [10] have been investigated in
DCSP, the communication overhead in different computing/networking environments
was not properly evaluated. Fernandez et al. investigated the effect of communication
delays on the performance of DCSP algorithms [11]. However, their investigation was
limited to the effects from random delays, not from extra value communication. A run-
time model by Davin and Modi [12] used a fixed communication latency rather than the
latency based on message size/number used in our run-time model (Section 3) which
can have a significant impact on performance in a certain network architecture.

In this paper, we investigated the impact of inter-agent exchange of additional infor-
mation. We provided a new run-time model for DCSP performance measurement that
takes into account the overhead of extra communication. Extensive systematic experi-
ments show that exploiting additional information-exchange can improve performance
in a significant range of problem settings. We also provided categorization of problem
settings with big speedups by the DCSP strategies to guide strategy selection.

References

1. Lesser, V., Ortiz, C., Tambe, M., eds.: Distributed Sensor Networks: a Multiagent Perspec-
tive. Kluwer Academic Publishers (2003)

2. Yokoo, M.: Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent
Systems. Springer (2000)

3. Hamadi, Y., Bessière, C., Quinqueton, J.: Backtracking in distributed constraint networks.
In: Proceedings of European Conference on Artificial Intelligence. (1998)

4. Modi, P., Jung, H., Tambe, M., Shen, W., Kulkarni, S.: A dynamic distributed constraint
satisfaction approach to resource allocation. In: Proceedings of International Conference on
Principles and Practice of Constraint Programming. (2001)

5. Silaghi, M., Sam-Haroud, D., Faltings, B.: Consistency maintenance for abt. In: Proceedings
of International Conference on Principles and Practice of Constraint Programming. (2001)

6. Jung, H., Tambe, M.: Performance models for large scale multiagent systems: Using pomdp
building blocks. In: Proceedings of International Joint Conference on Autonomous Agents
and Multi-Agent Systems. (2003)

7. Monfroy, E., Rety, J.H.: Chaotic iteration for distributed constraint propagation. In: ACM
Symposium on Applied Computing. (1999)

8. Haralick, R.M., Elliot, G.L.: Increasing tree search efficiency for constraint satisfaction prob-
lems. Artificial Intelligence 14 (1980) 263–313

On Communication in Solving Distributed Constraint Satisfaction Problems 429

9. Armstrong, A., Durfee, E.: Dynamic prioritization of complex agents in distributed con-
straint satisfaction problems. In: Proceedings of International Joint Conference on Artificial
Intelligence. (1997)

10. Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using cooper-
ative mediation. In: Proceedings of International Joint Conference on Autonomous Agents
and Multi-Agent Systems. (2004)

11. Fernandez, C., Bejar, R., Krishnamachari, B., Gomes, C., Selman, B.: Communication and
computation in distributed csp algorithms. In Lesser, V., Ortiz, C., Tambe, M., eds.: Dis-
tributed Sensor Networks. Kluwer Academic Publishers (2003)

12. Davin, J., Modi, P.: Impact of problem centralization in distributed constraint optimization
algorithms. In: Proceedings of International Joint Conference on Autonomous Agents and
Multi-Agent Systems. (2005)

Towards Reliable Large-Scale Multi-agent
Systems

Zahia Guessoum1,2 and Nora Faci2

1 LIP6, Université Paris 6, 8 rue du Capitaine Scott, F-75015 Paris
Zahia.Guessoum@lip6.fr

2 MODECO-CReSTIC - IUT de Reims, 51687 Reims Cedex 2, France
faci@leri.univ-reims.fr

Abstract. In this paper, we propose an approach for fault-tolerance
of multi-agent systems (MASs). The starting idea is the application of
replication strategies to agents, the most critical agents being replicated
to prevent failures. As criticality of agents may evolve during the course of
computation and problem solving, and as resources are bounded, we need
to dynamically and automatically adapt the number of replicas of agents,
in order to maximize their reliability and availability. We will describe
our approach and related mechanisms for evaluating the criticality of
a given agent and for deciding how to parameterize the strategy (e.g.,
number of replicas). We also will report on experiments conducted with
our prototype architecture (named DimaX).

1 Introduction

The possibility of partial failures is a fundamental characteristic of distributed
applications. The fault-tolerance research community has developed solutions
[4] [10] [3], mostly based on the concept of replication, applied for instance to
data bases. Replication of data and/or computation is thus an effective way to
achieve fault tolerance in distributed systems. A replicated software component
is defined as a software component that possesses a representation on two or
more hosts [4]. But, these techniques are almost always applied explicitly and
statically, at design time. In such approaches, this is the responsibility of the
designer of the application to identify explicitly which critical servers should be
made robust and also to decide which strategies (active or passive replication. . .)
and their configurations (how many replicas, their placement. . .).

New cooperative applications, e.g., air traffic control, cooperative work, and
e-commerce, are much more dynamic and large scale . It is thus very difficult,
or even impossible, to identify in advance the most critical software components
of the application. Furthermore, criticality can vary over run time, information
that should be used to best allocate the scarce replication resources. Such co-
operative applications are now increasingly designed as a set of autonomous
and interactive entities, named agents, which interact and coordinate (MAS).
In such applications, the roles and relative importance of the agents can greatly
vary during the course of computation, of interaction and of cooperation, the

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 430–439, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Reliable Large-Scale Multi-agent Systems 431

agents being able to change roles, strategies. Also, new agents may also join or
leave the application (open system). In addition, such applications may be large
scale. And the fact that the underlying distributed system is large scale makes
it unstable by nature, at least in currently deployed technologies. That increases
the needs for mechanism for adaptive fiabilisation of the application.

Our approach is in consequence to give the capacity to the MAS itself to dynam-
ically identify the most critical agents and to decide whichfiabilisation strategies to
apply to them. This is analog to “load balancing” but for fiabilisation. We want to
automatically and dynamically apply fiabilisation (mostly through replication
mechanisms) where (to which agents) and when they are most needed. To guide
the adaptive fiabilisation, we intend to use various levels of information, system
level, like communication load, and application/agent level, like roles or plans.

This paper is organized as follows: Section 2 introduces our monitoring-agent
architecture. Sections 3 et 4 introduce a dynamic and adaptive control mecha-
nism of replication. Section 5 presents the DimaX platform that we developed
to implement this solution and the realized experiments.

2 Monitoring Multi-agent Architecture

Monitoring consists in acquiring necessary information to dynamically and au-
tomatically apply replication to agent when it is almost needed. This informa-
tion may be based on standard measurements (communication load, processing
time...) or multi-agent characteristics such as the roles of agents or their inter-
dependences.

In most existing multi-agent architectures, the observation mechanism is cen-
tralized. The acquired information is typically used off-line to explain and to
improve the system’s behavior. Moreover, the considered application domains
typically only involve a small number of agents and a priori well-known orga-
nizational structures. These centralized observation architectures are not suited
for large-scale and complex systems where the observed information needs to be
analyzed in real-time to adapt the MAS to the evolution of its environment.

We thus proposed to distribute the observation mechanism to improve its
efficiency and robustness (see [6] for details). This distributed mechanisms re-
lies on a reactive-agent organization. These agents have two roles: they observe
the domain agents and control their replication, and they build global informa-
tion and minimize communication. These two roles are assigned to two kinds
of agents: domain agent monitors (named agent-monitors) and host monitors
(named host-monitors). An agent-monitor is associated to each domain agent
and a host-monitor is associated to each host (see Figure 1).

The monitoring agents (agent-monitors and host-monitors) are hierarchically
organized. Each agent-monitor communicates only with one host-monitor. Host-
monitors exchange their local information to build global information (global
number of messages, global exchanged quantity of information...).

After each interval of timeΔt, the host-monitor sends the collected events and
data to the corresponding agent-monitors. Each agent-monitor activates then

432 Z. Guessoum and N. Faci

O
bs

er
va

tio
n

L
ev

el
A

ge
nt

 L
ev

el

2
1

1

Agent_Monitor 1

Domain agent 3Domain agent 2

Domain agent 4

Event

Control

SendMessage

Domain agent 1

Host_Monitor

Agent_Monitor 3

Agent_Monitor 2 Agent_Monitor 3

Fig. 1. Multi-agent architecture

the adaptation algorithm. When the arcs of a node are significantly modified,
the concerned agent-monitor notifies its host-monitor. The latter informs the
other host-monitors to update global information. In turn, agent-monitors are
informed by their host-monitors when global information changes significantly.

3 Agent Criticality

We will now detail our approach for dynamically evaluating criticality of each
agent in order to perform dynamic replication where and when best needed.
In the proposed dynamic approach, the agent criticality relies on two kinds of
information:

– System-level information. It is based on standard measurements (communi-
cation load, processing time...). We are currently evaluating their significance
to measure the activity of an agent.

– Semantic-level information. Several aspects may be considered (importance
of agents, interdependence of agents, importance of messages...). We decided
to use the concept of interdependence graph, because it captures the impor-
tance of an agent in its organization.

In a MAS, each agent is defined as an autonomous entity. However, the agents
do not always have all the required competences or resources and thus depend
on other agents to provide them. Interdependence graphs [1] were introduced
to describe the interdependences of these agents. These graphs are defined by
the designer before the execution of the MAS. However, complex MASs are
characterized by emergent structures [9] which thus cannot be statically defined
by the designer.

In our architecture, a MAS is therefore represented by a graph which reflects
an emergent organizational structure. This structure can be interpreted to define
each agent criticality.

Towards Reliable Large-Scale Multi-agent Systems 433

3.1 Interdependence Graph

For each domain agent, we associate a node. The set of nodes (see Figure
2), named interdependence graph, is represented by a labelled oriented graph
(N,L,W). N is the set of nodes of the graph, L is the net of arcs and W the set
of labels.

N = {Ni}i=1,n, L = {Li,j}i=1,n,j=1,n, W = {Wi,j}i=1,n,j=1,n (1)

Li,j is the link between the nodes Ni and Nj and Wi,j is a real number which
labels Li,j . Wi,j reflects the importance of the interdependence between the
associated agents (Agenti and Agentj). These weights can be used, for example,
to detect which links become too heavy or if the system relies too much on few
agents.

N6

N1

N2
N3

N5

N8

N9

N7

N4

0.3
0.6

0.2

0.5

0.2
0.7

0.1 0.3

0.5

0.7

0.40.7

0.7

0.5

0.4
0.5

Fig. 2. Example of interdependence graph

A node is thus related to a set of other nodes that may includes all the nodes
of a system. This set is not static: it can be modified when a new domain agent
is added or an existing one disappears.

The proposed adaptation algorithms of the interdependence graph are de-
scribed in the next section.

3.2 Adaptation Algorithms

Several parameters may be used to define the interdependences between agents
such as communication load, executed tasks, roles of agents. An adaptation
algorithm gives an outline of the adaptation mechanism of the interdependence
graph. This adaptation relies on local information (communication load ...) and
on global information (aggregation of the local information). The adaptation
algorithm is thus used by each agent-monitor to manage the associated node.

Let us consider an interval of time Δt. The agent-monitors are activated each
Δt. At each step, an agent-monitor executes an adaptation algorithm. However,

434 Z. Guessoum and N. Faci

the domain agents act continuously according to their goals and the evolution
of their environment.

In this section, we propose two algorithms to compute the interdependence
between two agents. The first one considers only the number of messages ex-
changed by agents and the second one deals with speech acts (performatives).

Algorithm 1. relies on the global number of sent messages NbM(Δt) which is
calculated as follows by the host-monitors:

NbM(Δt) = op1(NbMi,i(Δt)) with i = 1, n j = 1, n and i �= j (2)

where

– n is the number of the domain agents,
– NbMi,j(Δt) is the number of messages sent by agenti to agentj during the

interval of time Δt,
– op1 is an aggregation operator.

Algorithm 1 Basic adaptation of the interdependences
1: for each j different of i do
2: Calculate:

ΔWi,j(t) = (NbMi,j(Δt) − NbM(Δt))/NbM(Δt) (3)

3: Update the weights by using the following rule:

Wi,j(t + Δt) = Wi,j(t) + ΔWi,j(t) (4)

4: end for

Algorithm 2. relies on the semantics proposed by FIPA and the influence of
the reception of a message on the receiver. Based on the work of Colombetti and
Verdicchio [2], we propose the following six classes of performatives:

– class 1 ={request, request-whenever, query-if, query-ref, subscribe}
– class 2 = {inform, inform-done, inform-ref}
– class 3 = {cfp, propose}
– class 4 = {reject-proposal, refuse, cancel}
– class 5 = {accept-proposal, agree}
– class 6 = {not-understood, failure}.

To represent the influence of a message on its receiver, we use a granulation of
the interval of possible variations [0, 1]: 0 corresponds to no influence and 1 corre-
sponds to the maximum influence. Various methods and techniques can be used
to represent this granulation. These methods fall mainly into two categories: crisp
and fuzzy. Fuzzy granulation mimics the human reasoning and manipulation of
information resulting from perception [11]. It provides a better representation
of the various classes of influences and a very good decision-making process.
So, we choose the fuzzy granulation. An influence is thus described by symbolic

Towards Reliable Large-Scale Multi-agent Systems 435

Table 1. Symbolic values of the six classes and their weights

Classes Symbolic Values Weights
classes 4, 6 Low 0.17

classes 2, 3, 5 medium 0.47
class 1 high 0.85

values such as low, medium, high which correspond respectively to the intervals:
[0, 0.35],]0.30, 0.65] and]0.60, 1]. The average value of each symbolic value is the
median of its interval. It is used to define the weight of a message. Table 1 gives
the symbolic values of the six classes. The weight of a message is defined by the
median of the interval corresponding to the fuzzy value of its performative.

Algorithm 2 Performative-based adaptation of the interdependences
1: Si,j : the set of messages sent by Agenti to Agentj.
2: ΔW (t): the average value of ΔWi,j(t) for i = 1, n, j = 1, n and i �= j.
3: for each j different from i do
4: Calculate the variation of Wi,j :

ΔWi,j(t) =
∑

m∈Si,j

weight(m) (5)

5: weight(m) relies on the performative of m It is provided by Table 1.
6: Update Wi,j by using the following rule:

Wi,j(t + Δt) = Wi,j(t) + (ΔWi,j(t) − ΔW (t))/ΔW (t) (6)

7: end for

The analysis of an agent criticality allows to define its importance and the
influence of its failure on the behavior and reliability of the MAS. We propose
to use the interdependences of each agent to define its criticality. The criticality
of Agenti is thus defined as an aggregation of Wj,i with j = 1, n. Each Wj,i

may increase or decrease depending on the considered parameters (number of
messages and their weight). The agent criticality and the number of its replicas
may thus increase or decrease.

4 Resource Management

The resource set is dynamic as new hosts could be added or removed (fail)
dynamically. To deal with the problem of management of resources and the
problem of agent replication, we propose to use ideas from economics [7]. We first
define some useful parameters: resource cost, budget, and negotiation behaviors
of the agent-monitors and the host-monitors to allocate resources. These agents
interact by using the contract net and request protocols.

Each host provides a number of resources (number of replicas that can be
used). This number is defined and can be changed by the designer or the host

436 Z. Guessoum and N. Faci

owner. Each resource has an initial cost which is defined by the designer. This
cost is then updated by the host-monitor. At time t, the resource cost of hosti
is defined as follows:

CMi(t) = CMi(t0) ∗ (1 − ppi(t)) (7)

where:

– ppi(t) is the failure probability of hosti, at timet. This probability is given
by the observation module of DarX.

– CMi(t0) is the initial cost of hosti,
– ppi(t0)=0.

Moreover, the criticality of each agent represents a quantitative value for
evaluating its relevance in a MAS. At time t, agent − monitorj computes its
budget Bj(t) which depends on the criticality Wj(t) of the associated domain
level Agentj:

Bj(t) = Wj(t) ∗ CM(t)/W (t) (8)

W (t) =
∑

i=1,n

Wi(t) andCM(t) =
∑

i=1,m

CMi(t) ∗Nbi (9)

where n is the number of agents, m is the number of hosts and Nbi the
number of resources of hosti.

The resources allocation mechanism is based on the contract net protocol.
After each Δt and when the variation of the budget is positive, an agent-monitor
sends a call for proposal to host-monitors. A host-monitor responds if it has an
available resource. In that case, it sends a proposal which includes the cost of its
resources to the initiator. The agent-monitor (initiator) uses then a strategy to
select the most suited resources. Agent-monitors use two criteria to evaluate the
proposals: communication time between the two hosts (the initiator host and the
participant one) and resource cost. The communication time is very important
because it can affect the performances of the whole system. For instance, an
important communication time between the leader agent and its replicas could
overload the network.

When the variation of the budget is negative, agent-monitor decreases the
number of replicats. It thus uses this budget variation and the already allocated
replicas costs to select the replicats and sends a request to the corresponding
host-monitors to cancel the allocation and kill the replicas.

5 Implementation and Experiments

This section gives an overview of the realized platform (named DimaX) which
implements our adaptive replication mechanism. It then describes the example
that we use for the experiments and give some results.

Towards Reliable Large-Scale Multi-agent Systems 437

5.1 Overview of DimaX

The DIMA multi-agent framework [5] and the fault-tolerant DarX framework [8]
have been integrated to build a fault-tolerant multi-agent platform (named Di-
maX). DimaX provides MASs with several services such as distribution, replica-
tion, and naming service [8]. In order to benefit from fault tolerance mechanisms,
the agent behavior is wrapped in a task of the DarX framework (see Figure 3).
Moreover, for a dynamic control of replication, the monitoring architecture has
been introduced. Figure 3 gives an overview of DimaX.

Fig. 3. Overview of DimaX

5.2 Experiments

Note: The experiments presented in this section were carried out on twenty
machines with Intel(R) Pentium(R) 4 CPU at 2 GHz and 526 Mb of RAM.
They are based on the example of a distributed multiagent system that helps
at scheduling meetings. Each user has a personal assistant agent which manages
its calendar.

This series of experiments evaluates the robustness of our fault-tolerant
MASs. For these experiments, we use a failure simulator. This simulator chooses
randomly an agent and stops its thread. If the killed agent is critical then the
MAS fails. We considered a MAS with 200 agents distributed on 10 machines.
Each experiment aims to schedule a set of fixed set if meeting. We run each
experiment 10 minutes and we introduce 100 faults. We repeated several times
the experiment with a variable number of extra resources Rm. Rm defines the
number of extra replicas that can be used by the whole MAS. These experiments
measure the rate of succeeded simulations SR which is defined as follows:

SR =
NSS

TNS
(10)

438 Z. Guessoum and N. Faci

where NSS is the number of simulations which did not fail and TNS is the
total number of simulations. A simulation fail when the fault simulator stops
a critical agent which is not replicated. The set of meetings cannot be thus
completely scheduled.

We considered three cases: 1) the replication is random, 2) the replication is
based on algorithm 1 and 3) the replication is based on algorithm 2.

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20

R
at

e
of

 S
uc

ce
ed

ed
 S

im
ul

at
io

ns

Number of Replicas
NbMSG PERF RAND

Fig. 4. Rate of succeeded simulations for each number of replicas

Figure 4 shows the success rate SR as a function of the number of extra
replicas. It shows that algorithm 2 gives the best results for the considered
application. Meanwhile the two algorithms require a number of extra resources
which is at least equal to the number of critical agents.

6 Conclusion

Large-scale MASs are often distributed and must run without any interrup-
tion. To make these systems reliable, we proposed a new approach to evaluate
dynamically the criticality of agents. This approach is based on the concepts
of interdependence, an agent criticality relies thus on it interdependences with
other agents. The agent criticality is then used to replicate agents in order to
maximize their reliability and availability based on available resources and their
costs.

We thus proposed a generic architecture to augment an already-built MAS
with a basic adaptation mechanism to dynamically and automatically update the
replication strategy. To make concrete this architecture, we have implemented
a fault-tolerant multi-agent platform (named DimaX). DimaX is the result of
an integration of the DIMA multi-agent platform [5] and the DarX replication
framework [8]. Any MAS can be thus made fault-tolerant with a small effort.

Towards Reliable Large-Scale Multi-agent Systems 439

References

1. C. Castelfranchi. Decentralized AI, chapter Dependence relations in multi-agent
systems. Elsevier, 1992.

2. Marco Colombetti and Mario Verdicchio. An analysis of agent speech acts as
institutional actions. In AAMAS, pages 1157–1164, 2002.

3. A. Fedoruk and R. Deters. Improving fault-tolerance by replicating agents. In
AAMAS2002, pages 373–744, Bologna, Italy, 2002.

4. R. Guerraoui, B. Garbinato, and K. Mazouni. Lessons from designing and imple-
menting GARF. In Object-Based Parallel and Distributed Computation, number
791 in LNCS, pages 238–256, 1995.

5. Z. Guessoum and J.-P. Briot. From active objects to autonomous agents. IEEE
Concurrency, 7(3):68–76, 1999.

6. Zahia Guessoum, Mikal Ziane, and Nora Faci. Monitoring and organizational-level
adaptation of multi-agent systems. In AAMAS, pages 514–521, 2004.

7. N. Jamali, P. Thati, and G. Agha. An actor-based architecture for customizing and
controlling agent ensembles. IEEE Intelligent Systems, Special Issue on Agents,
1999.

8. O. Marin, M. Bertier, and P. Sens. DARX - a framework for the fault-tolerant
support of agent software. In 14th International Symposium on Software Reliability
Engineering (ISSRE’2003), pages 406–417, Denver, Colorado, USA, 2003. IEEE.

9. J. S. Sichman and R. Conte. Multi-agent dependence by dependence graphs. In
AAMAS2002, pages 483–490, Bologna, Italy, 2002. ACM.

10. R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible group communication
system. Communications of the ACM, 39(4):76–83, 1996.

11. L. A. Zadeh. A new direction in ai: Toward a computational theory of perceptions.
AI Magazine, 22(1):73–84, 2001.

Emergent Timetabling Organization

Gauthier Picard, Carole Bernon, and Marie-Pierre Gleizes

IRIT, Université Paul Sabatier,
F-31062 Toulouse Cedex, France

{picard, bernon, gleizes}@irit.fr

Abstract. This paper presents the usage of cooperative self-organization
to design adaptive artificial systems. Cooperation can be viewed as a local
criterion for agents to self-organize and then to perform a more adequate
collective function. This paper shows an application of cooperative behav-
iors to a dynamic distributed timetabling problem, ETTO, in which the
constraint satisfaction is distributed among cooperative agents. This ap-
plication has been prototyped and shows positive results on adaptation,
robustness and efficiency of this kind of approach.

1 Introduction

Kohonen networks or ant algorithms are two examples of artificial transcription
of self-organizing mechanisms [1,2]. To be applied to less specific tasks, the mech-
anisms need to equip some parts –agents– of systems with cognitive capabilities
in order to decide when to reorganize to adapt to the environmental pressure
and to reach the global goal. As a response to this need of decision-making, the
AMAS (Adaptive Multi-Agent Systems) approach proposes cooperative attitude
as the local criterion which agents use to reorganize. Here, coooperation is not
limited to ressource or task sharing, but is a behavioral guideline. Cooperation
is viewed in a proscriptive way: agents have to locally change their way to inter-
act when they are in non cooperative situations (or NCS). In AMAS, an agent
is cooperative if it verifies the following meta-rules [3]: (cper) perceived signals
are understood without ambiguity and (cdec) received information is useful for
the agent’s reasoning and (cact) reasoning leads to useful actions toward other
agents. If an agent detects it is in a NCS (¬cper ∨¬cdec ∨¬cact), it has to act to
come back to a cooperative state. The functional adequacy theorem [4] ensures
that the function of the system is adequate – the system produces a function
which is cooperative for its environment – if every agent has such a cooperative
behavior.

This paper aims at showing that with only local rules based on cooperative
attitude and without global knowledge, a solution is provided by the system and
local changes lead to global reorganization and then to a more adapted global
function. In the next sections, this approach is illustrated by defining a cooper-
ative behavior for agents having to dynamically solve an academic timetabling
problem. Teachers and student groups have to find partners, time slots and rooms
to give or to assist at some courses. Each actor has some constraints concerning

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 440–449, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Emergent Timetabling Organization 441

his availabilities or required equipment. Moreover, a teacher can add or remove
constraints at any time during the solving process via an adapted interface. Such
an application clearly needs adaptation and robustness. The system must be able
to adapt to environmental disturbances (constraints modifications) and not to
compute new solutions at each constraint changing. The correct organization
has to emerge from actors interactions. This problem has been called ETTO, for
Emergent TimeTabling Organization. To solve this problem, two kinds of agents
were identified and are presented in section 2. These agents respect several co-
operation rules that are expounded in section 3. Experiments exhibit results on
adaptation and robustness of the AMAS approach in section 4.

2 ETTO Cooperative Agents

Two different classes of agents have been identified to tackle the ETTO problem:
Representative Agents (RA) and Booking Agents (BA). The exploration of the
solution space, a n-dimensional grid of cells, is delegated to Booking Agents.
Each cell ci of the grid is constrained (time slots, number of places,...). All the
constraints of a cell are regrouped in a set C(ci). Cooperation between agents
must lead to a correct organization by efficiently exploring the grid.

Representative Agents. RAs are the interface between human actors (teach-
ers or student groups) and the timetabling system. They own constraints (called
intrinsic constraints) about availability, equipment requirements (projectors), or
any other kind of personal constraint. To efficiently explore the possibilities of
partnership and room reservation, those agents delegate exploration to Booking
Agents. A RA (called proxy) creates as many BAs (called delegates) as it has
courses to give (for teachers) or to take (for student groups), and randomly po-
sitions them on the planning grid at the beginning of the solving. BAs from a
same RA are called brothers. The task of a RA is simple: to warn its delegate
BAs when its user adds or removes constraints and to inform all its delegate
BAs when one of its delegate BAs produces new constraints (called induced
constraints), to ensure coherence.

Booking Agents. BAs are the real self-organizing agents in ETTO. They have
to reserve time slots and rooms and to find partners (student groups for teachers
and vice versa) in accordance with constraints owned by their proxy. In a cooper-
ative situation, a BA, which is in a grid cell (i.e. a time slot in a room for a given
day) books it and partners with another BA. But this nominal situation is not
ensured at the beginning since BAs are randomly positioned. BAs then need to
reorganize, i.e. to change their partnership and reservations, to find an adequate
timetable. Such situations are NCS (see section1). Therefore, BAs must be able
to respond to NCS by respecting cooperation rules (see section 3).

Actions a BA can perform are simple: to partner (or unpartner) with another
BA, to book (or unbook) a cell (by marking it with a virtual post-it with its
address), to move to another cell and to send messages to other agents it knows.
BAs do not know the whole grid, so moving to another cell implies defining

442 G. Picard, C. Bernon, and M.-P. Gleizes

the visible cells from a given cell. A BA only knows its proxy and the BAs it
encounters at runtime. The life-cycle of a BA is a classical ”perceive-decide-act”
process as proposed in [3]:

1. During the perception phase, the BA checks its messages (coming from other
BAs or its proxy) and updates data about the cell (BAs in the cell, post-its,
properties of the cell) in which it is positioned,

2. During the decision phase, the BA must choose the next action to perform
to be as cooperative as possible, in accordance with the cooperation rules,

3. During the action phase, the BA performs the chosen action.

To perform its tasks, a BA bai has the following local properties, capabilities
and knowledge:

– its current position in the grid (cell(bai)), which is the only cell the BA bai

can view since it does not have a global knowledge of the whole grid,
– its current partner (partnership(bai, baj) with i �= j),
– its current reservation of the cell cj (reservation(bai, cj) and rCell(bai)),
– its proxy (proxy(bai)),
– its search time (time(bai)) for a reservation,
– the time slot of a cell (slot(cj)),
– a limited memory of known BAs to send messages to (knows(bai, baj) or
knows(bai)), which is empty at the beginning of the solving and will be
updated during the grid exploration,

– a set of intrinsic constraints (CIbai) which are attached to the BA when
created by its proxy RA,

– a set of constraints induced by its brothers (CBbai) which are attached to
and updated by its proxy RA when one of its brother reserves a cell to avoid
ubiquity situations (two BAs of the same RA book the same time slot, for
example),

– a set of constraints induced by its partner (CPbai) which are attached to
each partnership and updated when the partner changes its constraints to
take into account its preferences,

– a set of constraints induced by its reservation (CRbai) to avoid partnering
with a BA which is not available at certain time slots,

– the set of constraints from a first set which are non compatible with con-
straints of a second set (nonCompatible(Ci, Cj) ⊆ Ci) to process potential
partners or cells to reserve,

– a function to weight constraints (w(ci) > 0). The higher the weight is the
more difficult the constraint can be relaxed. A constraint ci cannot be relaxed
if w(ci) = +∞.

A macro, NC, is defined to simplify notations:

Definition 1. The set of non compatible constraints between two BAs is
NCbai,baj = nonCompatible(CIbai ∪CBbai ∪ CRbai , CIbaj ∪ CBbaj ∪ CRbaj).

To determine the non compatible constraints between two BAs, the con-
straints coming from partners (CP) are not taken into account. In the same

Emergent Timetabling Organization 443

manner, for determining if a cell is compatible with a BA’s constraints, con-
straints from the current reservation (CR) are not included:

Definition 2. The set of non compatible constraints between a BA and a cell is
NCbai,cj = nonCompatible(CIbai ∪ CBbai ∪ CPbai , Ccj).

Definition 3. compatible(x, y) ≡ (NCx,y = ∅).

Before starting the solving, there is no absolute way to decide what are the
most difficult sub-problems to solve. Moreover, the difficulty degree may evolve
because of the dynamic evolution of the problem description. Therefore, during
the solving, each agent must be able to evaluate the difficulty it has to find a
partner or a reservation. A BA bai can calculate the cost of a reservation of
a cell cj (rCost(bai, cj)) and the cost of a partnership with another BA baj

(pCost(bai, baj)) as following:

– rCost(bai, cj) = (
∑

c∈NCbai,cj
w(c))/time(bai),

– pCost(bai, baj) =
∑

c∈NCbai,baj
w(c).

Dividing by the time(bai) of search prioritizes the BA which is searching a
cell for a long time. In fact, informally, helping agents having difficulties to find
a position within the organization is cooperative.

Basic Behavior. BAs have two orthogonal goals: find a partner and find a
reservation. The main resolution algorithm is distributed among BAs and is
based on the cooperation between agents. Solving is the result of dynamic in-
teractions between distributed entities (BAs). As BAs have to reach two main
individual goals, the nominal behavior they follow can be expressed in terms of
the achievement of these goals, as shown in the algorithm 1. During the percep-
tion phase, the BA checks its mailbox, in which other BAs can put messages
about partnership requests or reservations. If these messages let it know that its
goals are reached (partnership and reservation), the BA moves to its reserved
cell only if this reservation is not too constrained. If the agent has relaxed some
constraints or if it lacks partner or reservation, it will explore the grid to find
a (better) solution and analyze encountered BAs and known cells, i.e. it veri-
fies whether encountered BAs or cells better fit its constraints. Exploring the
grid implies the capability for the agent to choose a next cell to explore. In the
experiments of section 4, this is randomly done.

Constraint Management and Related Works. Actions may lead to add
new induced constraints. For example, a BA which books a cell corresponding
to a given hour at a given day warns its brothers, via its proxy, that this time
slot is forbidden to avoid ubiquity situations. Conversely, if a BA unbooks a
cell, it must inform its brothers. Therefore, a BA must process two kinds of
constraints: intrinsic ones, which come from the actor its proxy RA represents,
and induced ones, that come from its brother BAs. Of course, some problems
may not have any solution without constraint relaxation. As a consequence, BAs

444 G. Picard, C. Bernon, and M.-P. Gleizes

Algorithm 1 – Basic behavior for a Booking Agent.
while alive do
processMessages()
if partner AND reservation then //reservation is optimal

if rCost(bai,rCell(bai)) == 0 then
moveTo(reservedCell)

else
processCurrentCell() //analyze cell to find either partner or reservation

endif
else

moveTo(nextCell); //choose another cell to explore
addBAsToMemory(); //memorize BAs on the cell
processEncounteredBAs(); //verify if they fit with constraints
if NOT (reservation OR partner) then //goals not reached

processCurrentCell() //analyze the current cell
endif

endif
done

must be able to affect priorities and weights to constraints as in fuzzy CSP or
weighted CSP [5]. But, contrary to classical dynamic CSP [6], memory of previ-
ous states is sprayed within all the BAs which could be distributed within several
servers. Finally, contrary to all these approaches, BAs only reason on a limited
number of known BAs to find a good solution as in distributed CSP [7]. Since
BAs are agents, they do not have any global knowledge. Therefore, constraint
satisfaction is shared by BAs, and the solution emerges from their local peer-
to-peer interactions. Nevertheless, our approach remains different from above-
mentioned ones, because the main objective is not to provide an algorithm that
is sound, complete, and terminates, but to define local and robust mechanisms,
able to implement a global solving. Similarly to applications of ant algorithms on
scheduling problems [8], BAs alter their environment (the grid) with markers to
indicate the cells they book and to constrain the other agents. The main differ-
ence with the usage of pheromone is the way the markers disappear. In the ant
approach, markers evaporate with time. In our algorithm, markers are removed
consequently to negotiation between BAs in booking conflict (see section 3.4).
Finally, this work is close to local search based CSP approaches such as [9], but
by using the agent paradigm to encapsulate constraints.

3 Cooperative Self-organization Rules

The solving algorithm is distributed among BAs and lies in cooperative self-
organization. Five different situations for reorganization are identified. The two
firsts do not respect the cdec meta-rule of AMAS. The three next ones do not
respect cact. In this example, there is no cper violation because all BA agents
are identical and can understand each other. The idea is to design these rules
as exceptions in classical object programming, at the agent level and not at
the instruction level. This concept really fits with the proscriptive approach
proposed by [3]. As for exceptions, designers have to specify the condition of the
exception throwing and the action to perform in the exception case. The following
cooperation rules are then presented as condition-action pairs. Conditions are

Emergent Timetabling Organization 445

not exclusive. Nevertheless, a policy must be defined if several NCS have to be
processed: from cdec to cact, for example.

3.1 Partnership Incompetence (¬cdec)

One of the goals a BA has to reach is to find a partner. If a BA bai encoun-
ters, in a cell, another BA baj it cannot partner with; bai is, using the AMAS
terminology, incompetent [3]. For example, a BA representing a teacher’s course
meets another BA representing another teacher’s course. As the only entity able
to detect this partnership incompetence is the agent itself, this latter is the
only one which changes the state of the organization by changing its position to
encounter other more relevant BAs. Moreover, to enable a more efficient explo-
ration of partnership possibilities, bai will memorize the location and the BAs
known by baj for exchanging them during further encounters. The pCost com-
parison allows bai to decide if the potential new partner baj is less constraining
than the current one.

Name: Partnership Incompetence (for agent bai)

Condition: ∃j(j �= i ∧ knows(bai, baj) ∧ (¬compatible(bai, baj) ∨ (pCost(bai, baj) ≥
pCost(bai, partnership(bai)))))

Action: memorize(bai,knows(baj));move

3.2 Reservation Incompetence (¬cdec)

In the same manner than partnership incompetence, BAs must be able to change
organization when their reservations are not relevant. This reservation incom-
petence NCS occurs when a BA bai occupies a cell which constraints do not fit
its own constraints. For example, a BA representing a teacher’s course is in a
cell representing a room with not enough seats for this course. Then bai must
move to explore the reservation possibility space. To improve the exploration of
the grid, a BA memorizes the cells in which this NCS occurs to share it during
negotiation or to avoid it when moving, like in tabu search.

Name: Reservation Incompetence (for agent bai)

Condition:
¬compatible(bai, cell(bai)) ∨ (rCost(bai, cell(bai)) ≥ rCost(bai, reservation(bai)))

Action: memorize(bai,cell(bai));move

3.3 Partnership Conflict (¬cact)

Situations during which a BA wants to partner with another partnered BA
may append. The agent must react to this partnership conflict by partnering
or by moving. In this case, the cooperation is directly embedded within the
resolution action: the partnership will be performed with the agent that has
more difficulties to find partners (by comparing the pCost). When it partners,

446 G. Picard, C. Bernon, and M.-P. Gleizes

a BA also unpartners with its previous partner and informs its previous partner
and its proxy.

Name: Partnership Conflict (for agent bai)

Condition:
∃j∃k(j �= i ∧ i �= k ∧ knows(bai, baj) ∧ compatible(bai, baj) ∧ partnership(baj) = bak)

Action:

if (pCost(bai,baj) < pCost(bai,partnership(bai)))
then partner(bai,baj)
else move

3.4 Reservation Conflict (¬cact)

As for partnership, reservation may lead to conflict: a BA wants to reserve an
already booked cell. When it books a cell, a BA also warns its previous partner
and its proxy to inform not to book in the same time slot and unbooks the
previous cell.

Name: Reservation Conflict (for Agent bai)

Condition:
∃j(j �= i ∧ (reservation(baj , cell(bai)) ∨ ∃k(reservation(baj , ck) ∧ slot(cell(bai)) =
slot(ck) ∧ proxy(bai) = proxy(baj))) ∧ compatible(bai, cell(bai))

Action:

if (rCost(bai,cell(bai)) < rCost(bai,reservation(bai)))
then book(bai,cell(bai))
else move

3.5 Reservation Uselessness (¬cact)

In the case a BA is in the same cell than one of its brothers, reservation is
useless. Therefore it can leave the cell without analyzing it, and its occupants,
to find another more relevant one. Processing encountered BAs corresponds to
verifying, in a limited memory list of BAs the agent has already encountered or
another agent has shared during a negotiation, whether the agents can find a
relevant partner with minimum partnership cost.

Name: Reservation Uselessness (for agent bai)

Condition: cell(bai) = cell(partnership(bai))

Action: processEncounteredBAs();move

4 Prototyping and Experiments

Experiments are based on a French benchmark for the timetabling problem1.
This requirements set is decomposed into four variants from simple problem
1 http://www-poleia.lip6.fr/~guessoum/asa/BenchEmploi.pdf

Emergent Timetabling Organization 447

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140

Number of BAs

To
ta

l s
ol

vi
ng

 ti
m

e
(s

ec
on

ds
 o

r c
yc

le
s)

cycles

real time

user time

system time

Fig. 1. Variation of solving time in terms of the number of BAs

0

2

4

6

8

10

12

14

16

18

20

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217 225 233 241 249 257 265

Cycles

Current number of partnerships

Current number of reservations

0

10

20

30

40

50

60

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217 225 233 241 249 257 265

Cycles

Cost of relaxed constraints

Total constraint cost

0

2

4

6

8

10

12

14

16

18

20

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217 225 233 241 249 257 265

Cycles

Current number of partnerships

Current number of reservations

0

10

20

30

40

50

60

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217 225 233 241 249 257 265

Cycles

Cost of relaxed constraints

Total constraint cost

Fig. 2. Global constraint (at top) and
partnership (at bottom) variations at run
time for a solution requiring constraint re-
laxing

0

5

10

15

20

25

30

35

290 294 298 302 306 310 314 318 322 326 330 334 338 342 346 350 354 358 362 366 370 374 378 382 386 390 394 398

Cycles

Cost of relaxed constraints

Total constraint cost

0

2

4

6

8

10

12

14

16

18

20

290 294 298 302 306 310 314 318 322 326 330 334 338 342 346 350 354 358 362 366 370 374 378 382 386 390 394 398

Cycles

Current number of partnerships

Current number of reservations

Fig. 3. Global constraint (at top) and
partnership (at bottom) variations with a
removing of 8 agents after the system sta-
bilization

solving without constraint relaxing to system openness by adding or removing
agents and constraints at run time. For each one of them, we proposed a solution
– not unique in many cases.

Influence of Cardinality. Figure 1 shows the evolution of solving time as a
consequence of the growing number of BAs in the system. For these experiments,
we keep the same exploration space size by increasing the number of cells in
the grid proportionally to the number of agents. Only availability constraints
are owned by teachers: one time slot per day is forbidden. Once the maximum
reached (average 8 BAs), the number of cycles (during which every agent acts
one time) decreases as the number of BAs increases. The time that varies the
less is the real time. Therefore, it is the most relevant indicator of the solving
time evolution. Beyond 32 BAs, it has a logarithmic curve. More BAs the system
has more efficient the solving is – if a solution exists.

Constraint Relaxing and Dynamic Solving. Figure 2 shows the efficiency
of ETTO solving, for a variant with 36 BAs requiring constraint relaxing. Reser-

448 G. Picard, C. Bernon, and M.-P. Gleizes

vations are set later than partnerships. ETTO found a solution with a constraint
cost of 10 in 265 cycles. This cost represents the sum of all the constraints BAs
had to relax, i.e. the sum of the weights of relaxed constraints. Nevertheless, the
current prototype does not manage the cooperative slot sharing during negotia-
tion and therefore, when a BA moves, it randomly chooses the next cell. A third
series of experiments tests the benefit in terms of robustness and dynamics. In
these experiments, constraints become dynamic. Rooms or actors’ availabilities
may change at run time. Moreover, some agents can appear or disappear. By
taking into account the chosen modeling, adding constraints is not different from
adding agents that carry constraints. The figure 3 shows results on an experi-
ment with initially 36 BAs. At cycle 364 – at the stabilization of the system – 8
BAs were removed, increasing the cost of relaxing constraints since each agent
cannot find a relevant partner. 20 cycles later, 8 new agents with adequate con-
straints are plunged into the grid. The system only runs 7 cycles (from 384 to
391) to find an adequate organization with null constraint cost.

Discussion. Restarting from scratch each time a constraint is modified (added,
removed) would not be efficient and usually, the main objective is to have the
smallest impact possible on the current solution. In [10], this is done by introduc-
ing a new search algorithm that limits the number of additional perturbations.
In [11], explanations are used as well to handle dynamic problems, especially,
new operators are given to re-propagate once a constraint removed and its past
effects undone. In ETTO, as soon as a constraint is added or removed for an
agent, this latter questions its reservations and its possible partnership; if it
judges that they are inconsistent with its new state, it tries to find new ones by
roaming the grid and applying its usual behavior. If a new agent is added, it
immediately begins searching for a partnership and if it is removed, then all its
reservations and constraints are deleted from the system and its possible partner
warned. The main feature of ETTO is that modifications are then done without
stopping the search for a solution while this latter is in progress.

But, in ETTO, processing over-constrained problems is not fully efficient
because even if agents have found a solution, they continue to explore the grid
to find more relevant solutions. As agents usually have a limited view of the
environment, they cannot take into account the global constraint cost to stop
the exploration. To use ETTO, we consider an oracle exists who will halt the
solving process when the organization fits his requirements. The search for a cell
in the grid is not efficient either because it is randomly made by an agent. For
the time being, we just wanted to show that our approach by self-organization
is feasible and can produce positive results as it has been shown. Nevertheless,
a future step would be to enhance this search by adding a memory to agents
concerning, for instance, the cells they visited in the past.

5 Conclusion

We presented a cooperative self-organization approach to model a university
timetabling solver which function emerges from inter-agent interactions. This

Emergent Timetabling Organization 449

work consists in defining local reorganization rules and cooperative behaviors to
equip agents with, and then building an adaptive multi-agent system: ETTO. Ex-
periments show relevant results on adaptivity and robustness to environmental
dynamics and openness –by addind/removing agents or constraints to the run-
ning system. One perspective is to apply ETTO to a more realistic timetabling
problem or to a benchmark such as the one given by the Metaheuritics Network
(http://www.metaheuristics.org/), to compare our results with other ones.

References

1. Kohonen, T.: Self-Organising Maps. Springer-Verlag (2001)
2. Bonabeau, E., Theraulaz, G., Deneubourg, J.L., Aron, S., Camazine, S.: Self-

Organization in Social Insects. Trends in Ecology and Evolution 12 (1997) 188–193
3. Capera, D., Georgé, J., Gleizes, M.P., Glize, P.: The AMAS Theory for Complex

Problem Solving Based on Self-organizing Cooperative Agents. In: 1st International
TAPOCS Workshop at IEEE 12th WETICE, IEEE (2003) 383–388

4. Georgé, J.P., Edmonds, B., Glize, P.: Making Self-Organising Adaptive Multiagent
Systems Work. In: Methodologies and Software Engineering for Agent Systems,
Kluwer (2004) 321–340

5. Bistarelli, S., Fargier, H., Mantanari, U., Rossi, F., Schiex, T., Verfaillie, G.:
Semiring-based constraints CSPs and valued CSPs: frameworks, properties, and
comparison. Constraints: an International Journal 4 (1999) 199–240

6. Dechter, Meiri, Pearl: Temporal constraint networks. Artificial Intelligence 49
(1991) 61–95

7. Yokoo, M., Durfee, E., Ishida, Y., Kubawara, K.: The Distributed Constraint Satis-
faction Problem : Formalization and Algorithms. IEEE Transactions on Knowledge
and Data Engineering 10 (1998) 673–685

8. Socha, K., Knowles, J., Sampels, M.: A MAX-MIN Ant System for the Univer-
sity Timetabling Problem. In: Proceedings of 3rd International Workshop on Ant
Algorithms, ANTS’02. Volume 2463 of LNCS. (2002) 1 –13

9. Minton, S., Johnston, M., A., P., Laird, P.: Minimizing Conflicts: a Heuristic Repair
Method for Constraint Satisfaction and Scheduling Problems. 58 (1992) 160–205

10. Müller, T., Rudova, H.: Minimal Perturbation Problem in Course Timetabling. In:
Proc. of the 5th International Conference of the Practice and Theory of Automated
Timetabling (PATAT), Pittsburg, USA. (2004)

11. Cambazard, H., Demazeau, F., Jussien, N., David, P.: Interactively Solving School
Timetabling Problems using Extensions of Constraint Programming. In: Proc.
of the 5th International Conference of the Practice and Theory of Automated
Timetabling (PATAT), Pittsburg, USA. (2004)

Experiments in Emergent Programming Using
Self-organizing Multi-agent Systems

Jean-Pierre Georgé and Marie-Pierre Gleizes

IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France
{george, gleizes}@irit.fr

Abstract. We propose to investigate the concept of an Emergent Programming
Environment enabling the development of complex adaptive systems. For this we
use as a foundation the concept of emergence and a multi-agent system technol-
ogy based on cooperative self-organizing mechanisms. The general objective is
then to develop a complete programming language in which each instruction is
an autonomous agent trying to be in a cooperative state with the other agents of
the system, as well as with the environment of the system. The work presented
here aims at showing the feasibility of such a concept by specifying, and exper-
imenting with, a core of instruction-agents needed for a sub-set of mathematical
calculus.

1 Introduction

In the last few years, the use of computers has spectacularly grown and classical soft-
ware development methods run into numerous difficulties. The classical approach, by
decomposition into modules and total control, cannot guaranty the functionality of the
software given the complexity of interaction between the increasing and variable num-
ber of modules, and the shear size of possibilities. Adding to this, the now massive and
inevitable use of network resources and distribution only increases the difficulties of
design, stability and maintenance.

This state is of interest to an increasing number of industrials, including IBM who
wrote in a much relayed manifesto : "Even if we could somehow come up with enough
skilled people, the complexity is growing beyond human ability to manage it. [...]in-
creasing system efficiency generates problems with more variables than any human can
hope to solve. Without new approaches, things will only get worse" [9]. Their answer
to that is a scientific challenge they call autonomic computing, whose objective is to
design systems able to execute themselves, adjust their behaviour in face of various
circumstances, manage at best their resources and self-repair when needed.

These kind of applications are what we call neo-computation problems, namely: au-
tonomic computing, pervasive computing, ubiquitous computing [12], emergent com-
putation, ambient intelligence, amorphous computing... This set of problems have in
common the inability to define the global function to achieve, and by consequence to
specify at the design phase, a derived evaluation function for the learning process. Thus,
neo-computation systems are characterized by :

– a great number of interacting components (intelligent objects, agents, software);
– a variable number of these components during runtime (open system);

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 450–459, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Experiments in Emergent Programming Using Self-organizing Multi-agent Systems 451

– the impossibility to impose a global control;
– a dynamic and unpredictable environment;
– a functional adequacy1 to reach in respect to the environment.

1.1 Problem Solving by Emergence

Given the previous characteristics, the challenge is to find new approaches to conceive
these new systems by taking into account the increasing complexity and the fact that we
want reliable and robust systems. Looking at natural systems [3] -biological, physical,
sociological-,there is a common factor among theses systems : the emergent dimension
of the observed behaviour. Thus it is quite legitimate to study emergence so as to un-
derstand its functioning or at least to be able to adequately reproduce it for the design
of artificial systems. This would enable the development of more complex, robust and
adaptive systems, needed to tackle the difficulties inherent to neo-computation prob-
lems. In this way, interesting and useful emergent phenomena will be used in artificial
systems when needed. Contrariwise, they will still appear sooner or later the more com-
plex the systems are getting but will be unexpected and unwanted. To prevent this, one
orientation would be, in our opinion, that the scientific community studies and develops
new theories based upon emergence.

It is noteworthy that some research is already being done for quite some years now
to bring emergence into artificial systems, but it is still very localized. For example, the
Santa Fe Institute [2] has acquired an international renown for its works on complex-
ity, adaptive complex systems and thus emergence. These are also the preoccupations
of Exystence [1], the European excellence network on complex systems. More recent
(Mars 2000), this network wants to promote collaboration between researchers from
any field interested in it, from fundamental concepts to applications.

1.2 Going to the Lowest Level: The Instructions

If we suppose that we can manage to use the emergent phenomena to build artificial
systems, this will be by specifying the behaviour of the parts of the systems so that it
will enable their interactions to produce the expected global emergent behaviour of the
system. A relevant question would be to ask about what parts we are focusing on and
on which level. As with classical software engineering, any decomposition could be
interesting, depending on the nature of the system being build.

We propose here to focus on the lowest possible level for any artificial system :
the instruction level. We will explain our theoretical and experimental exploration of
the concept of Emergent Programming. This concept is explained in the next section
(section 2). Its use relies on emergence and self-organization (section 3) on one hand,
and on a multi-agent approach called AMAS (Adaptive Multi-Agent System) [7] on the

1 "Functional" refers to the "function" the system is producing, in a broad meaning, i.e. what
the system is doing, what an observer would qualify as the behaviour of a system. And "ade-
quate" simply means that the system is doing the "right" thing, judged by an observer or the
environment. So "functional adequacy" can be seen as "having the appropriate behaviour for
the task".

452 J.-P. Georgé and M.-P. Gleizes

other hand. A sub-problem (a mathematical example) has been thoroughly explored
and is presented in section 4 where we then show how the learned lessons can lead us
forward in our exploration of Emergent Programming and more generally of problem
solving using emergence.

2 Emergent Programming

In its most abstract view, Emergent Programming is the automatic assembling of in-
structions of a programming language using mechanisms which are not explicitly in-
formed of the program to be created. We may consider that for a programmer to produce
a program comes down to finding which instructions to assemble and in which precise
order. This is in fact the exploration of the search space representing the whole set of
possible programs until the right program is found. However, if this exploration is easy
when the programmer has a precise knowledge about the program he wants and how
to obtain it, it grows more and more difficult with the increase of complexity of the
program, or when the knowledge about the task to be executed by the program becomes
imprecise or incomplete. Then are we not able to conceive an artificial system exploring
efficiently the search space of the possible programs instead of having the programmer
do it ? Only very few works exists on this topic. One noteworthy try has been done by
Koza using Genetic Algorithms and a LISP language [10], but the main hindrance of
GA is the need for a specific evaluation function for each problem, which can be very
difficult to find. At the opposite, we aim at an as generic as possible approach.

To solve the problem of Emergent Programming concretely, we chose to rely on an
adaptive multi-agent system using self-organizing mechanisms based on cooperation
as it is described in the AMAS theory [7]. This theory can be considered as a guide to
endow the agents with the capacity to continuously self-organize so as to always tend
toward cooperative interactions between them and with the environment. It then claims
that a cooperative state for the whole system implies the functional adequacy of the
system, i.e. that it exhibits a behaviour which satisfies the constraints of the parts of the
system as well as from the environment (e.g. a user).

2.1 The Instruction-Agents and the Reorganization Process

In this context, we define an agent as an instruction of a programming language. De-
pending on the type of the instruction he is representing, the agent possesses specific
competences which he will use to interact with other instruction-agents. A complete
program is then represented by a given organization of the instruction-agents in which
each agent is linked with partners from which he receives data and partners to which he
sends data. The counterpart of the execution of a classical program is here simply the
activity of the multi-agent system during the exchange of data between the agents.

We can now appreciate all the power of the concept : a given organization codes
for a given program, and thus, changing the organization changes the final program.
It comes down to having the agents self-organize depending on the requirements from
the environment so as to continuously tend toward the adequate program (the adequate
global function). In principle, we obtain a system able to explore the search space of the

Experiments in Emergent Programming Using Self-organizing Multi-agent Systems 453

possible programs in place of the programmer. Everything depends on the efficiency of
the exploration to reach an organization producing the right function. An important part
of our work on Emergent Programming has been the exploration of the self-organization
mechanisms which enable the agents to progress toward the adequate function, depend-
ing on the constraints of the environment but without knowing the organization to reach
or how to do it (since this is unknown for the problems we are interested in).

2.2 A Neo-Programming Environment

The system will not be able to grow ex nihilo all by itself, all the more if we want
to obtain higher level programs. As the programmer with his classical programming
environment, the neo-programmer will affect the development of the system through a
neo-programming environment, at least at the beginning. It is a matter of supplying the
tools to shape the environment of the system so as to have this environment constrain
the system toward the adequate function. In a pure systems theory’s view, the neo-
programmer is simply part of the environment of the system.

But the neo-programming environment will certainly have to be more than a sim-
ple envelope for the developing system. We will probably need to integrate some tools
for the observation of the evolution of the system, means to influence this evolution,
the type and proportions of instruction-agents, to affect some aspects of the struc-
ture. Moreover, a complex program is generally viewed as a modular construct and
the neo-programmer may want to influence this modular structure, either by manipulat-
ing some sorts of "bricks", each being an emergent programming system, or by letting
these "bricks" self-organize in the same manner as their own components.

At the end, we will obtain a system able not only to "find" how to realize the ade-
quate function, but also to continuously adapt to the environment in which it is plunged,
to react to the strongly dynamic and unpredictable nature of real world environments,
and all this by presenting a high grade of robustness. Indeed, because of its nature, the
system would be able to change its internal structure any time and by consequence its
performed function, or even grow by adding instructions to respond to some partial
destruction or to gain some new competences.

The research we did on Emergent Programming was to explore the feasibility of the
concept. For this, we restrained the programming language to the instructions needed
for a subset of mathematical calculus, of which the mathematical example (section 4) is
a representative. We specified such a core of agents and put it through experimentation.
For this an environment has been implemented : EPE (Emergent Programming Envi-
ronment) [6]. These experimentations enabled us to explore different self-organization
mechanisms for the instruction-agents so as to find those who lead to the emergence of
the adequate function. Part of these mechanisms are described here.

3 Emergence and Self-organization

If we study specialized literature on emergence or self-organization, we can see that
these are tightly linked. Yet, at the same time, we can see a lot of works focusing
exclusively on the second without any mention, or only a brief, about the first. One

454 J.-P. Georgé and M.-P. Gleizes

explanation could be that the notion of emergence is quite abstract, even philosophical,
making it difficult to fully grasp and therefore delicate to manipulate. At the opposite,
self-organization is more concrete by its description in terms of mechanisms and thus,
more easily used. But by concentrating solely on the mechanisms, are we not taking the
risk to leave the frame of emergence? We give here a description of self-organization
integrating emergence.

Whereas emergence has been studied for a long time only as a philosophical con-
cept manipulable only as it, the self-organization field has from the very beginning tried
to explore its internal mechanisms. They tried to find the general functioning rules ex-
plaining the growth and evolution of the observed systemic structures, to find the shapes
the systems could take, and finally to produce methods to predict the future organiza-
tions appearing out of changes happening at the component level of the systems. And
these prospective results had to be applicable on any other system exhibiting the same
characteristics (search for generic mechanisms).

3.1 Using Emergence in Artificial Systems

There are abundant definitions and descriptions of characteristics of emergence and
self-organization in literature. To resume, we can sum it up as this :

Definition. Self-organization is the set of processes within a system, stemming from
mechanisms based on local rules which lead the system to produce structures or specific
behaviours which are not dictated by the outside of the system [5][8][11].

Our work in this domain during the last decade lead us to give a "technical" defi-
nition of emergence in the context of multi-agent systems, and therefore with a strong
computer science colouration. It is based on three points: what we want to be emergent,
at what condition it is emergent and how we can use it [4].

1. Subject. The goal of a computational system is to realize an adequate function,
judged by a relevant user. It is this function (which may evolve during time) that
has to emerge.

2. Condition. This function is emergent if the coding of the system does not depend
on the knowledge of this function. This coding has to contain the mechanisms fa-
cilitating the adaptation of the system during its coupling with the environment, so
as to tend toward an adequate function.

3. Method. To change the function the system only has to change the organization
of its components. The mechanisms which allow the changes are specified by self-
organization rules providing autonomous guidance to the components’ behaviour
without any explicit knowledge of the collective function nor how to reach it.

3.2 The Engine for Self-organization

According to the AMAS theory[7],the designer provides the agents with local criterion
to discern between cooperative and non-cooperative situations (NCS). The detection
and then elimination of NCS between agents constitute the engine of self-organization.
Depending on the real-time interactions the multi-agent system has with its environ-
ment, the organization between its agents emerges and constitutes an answer to the

Experiments in Emergent Programming Using Self-organizing Multi-agent Systems 455

aforementioned difficulties of neo-computation problems (indeed, there is no global
control of the system). In itself, the emergent organization is an observable organiza-
tion that has not been given first by the designer of the system. Each agent computes
a partial function, but the combination of all the partial functions produces the global
emergent function. Depending on the interactions between themselves and with the en-
vironment, the agents change their interactions i.e. their links. This is what we call
self-organization.

By principle, the emerging purpose of a system is not recognizable by the system
itself, its only criterion must be of strictly local nature (relative to the activity of the
parts which make it up). By respecting this, the AMAS theory aims at being a theory of
emergence.

4 Emergence of a Mathematical Function

We tried to find an emergent programming system as simple as possible (i.e. with the
smallest number of agents with the simplest functioning), but still needing reorganiza-
tions so as to produce the desired function. The advantages of such a case study are that
it is more practical for observation, that it leads to less development complexity and that
it presents a smaller search space.

4.1 Description

The specification of each agent depends on the task he has to accomplish, of his "in-
puts" and "outputs". The agents communicate by messages but to accomplish the actual
calculation, we can consider that the agents are expecting values as inputs to be able
to provide computed values as outputs. Schematically, we can consider exchanges be-
tween agents as an electronic cabling between outputs and inputs of agents.

The mathematical example we choose is constituted of 6 agents : 3 "constant"
agents, an "addition" agent, a "multiplication" agent and an "output" agent. A "con-
stant" agent is able to provide the value which has been fixed at his creation. The 3 the
system contains have been given sufficiently different values so as to prevent calcula-
tion ambiguity : AgentConstantA (value = 2), AgentContantB(value = 10) and Agent-
ConstantC (value = 100). Combined with AgentAddition and AgentMultiplication, the
values produced by the system are results from organizations like (A + B) ∗ C or any
other possible combination. AgentOut simply transmits the value he receives to the en-
vironment. But he is also in charge of retrieving the feedback from the environment and
forward it into the system.

The size of the complete search space is 65, that is 7776 theoretically possible or-
ganizations, counting all the incomplete ones (i.e. where not every agent has all his
partners). There are 120 complete organizations and among those, 24 are functional
(they can actually calculate a value) if we count all the possible permutations on the in-
puts which do not change the calculated value. In the end, we have 6 types of different
organization (cf. Figure 1) producing these 6 values : 120, 210, 220, 1002, 1020 and
1200. The aim is to start without any partnerships between agents and to request that
the system produces the highest value for example.

456 J.-P. Georgé and M.-P. Gleizes

��

A
B

C
��

2

10

100

20

120

��

A
C

B
�

2

100

10

200

210

��

B
C

A
��

10

100

2

1000

1002

�

B
C

A
��

10

100

2

110

220

��

A
C

B
��

2

100

10

102

1020

��

A
B

C
��

2

10

100

12

1200

OUT

OUT

OUT

OUT

OUT

OUT
2

3

1

5

6

4

Fig. 1. The 6 different possible types of functional organizations for the mathematical example

4.2 Reorganization Mechanisms

In accordance with the AMAS theory, the agent’s self-organizing capacity is induced by
their capacity to detect NCS (Non-Cooperative Situations), react so as to resorb them
and continuously act as cooperatively as possible. This last point implies in fact that the
agent also has to try to resorb NCS of other agents if he is aware of them: to ignore a
call for help from another agent is definitely not cooperative. We will illustrate this with
the description of two NCS and how they are resorbed.

Detection
NCSNeedIn : the agent is missing a partner on one of his inputs. Since to be coop-

erative in the system he has to be useful, and to be useful he has to be able to compute
his function, he has to find partners able to send values toward his input.

Most NCS lead the agent to communicate so as to find a suitable (new) partner.
These calls, because the agents have to take them into account, also take the shape of
NCS.

NCSNeedInMessage : the agent receives a message informing him that another
agent is in a NCSNeedIn situation.

Resorption
NCSNeedIn : this is one of the easiest NCS to resorb because the agent only has

to find any agent for his missing input. And the agents are potentially always able to
provide as many values on their outputs for as many partners as needed. The agent has
simply to be able to contact some agent providing values of the right type (there could
be agents handling values of different types in a system), i.e. corresponding to his own
type. So he generates a NCSNeedInMessage describing his situation (his needs) and
send it to his acquaintances (because they are the only agents he knows).

Experiments in Emergent Programming Using Self-organizing Multi-agent Systems 457

NCSNeedInMessage : the agent is informed of the needs of the sender of the NCS
and his cooperative attitude dictates him to act. First, he has to judge if he is relevant
for the needs of the sender, and if it is the case, he has to propose himself as a potential
partner. Second, even if he is not himself relevant, one of its acquaintances may be. He
will do what the AMAS theory calls a resorption by restricted propagation : he tries to
counter this NCS by propagating the initial message to some acquaintances he thinks
may be the most relevant.

For each NCS the agent is able to detect (there are 10 NCS in total for these agents),
a specific resorption mechanism has been defined. It is a precise description of the
decision making of the agent depending on his state and on what it perceives. For other
NCS, the mechanisms become quite complicated, and require a long description. For
an exhaustive presentation, please refer to [6].

These NCS and their symmetric for a missing partner on an output enable the system
to produce an organization where each agent has all his needed partners. To obtain the
functional adequacy for the system means that the final organization is able to produce
the expected result. The main question is how to introduce mechanisms in the resorption
of the NCS to enable the agents as a whole to reach this organization. For this, they
need some kind of "direction" (but on local criterion) to get progressively closer to
the solution, a local information to judge this proximity. The information used here is
simply a "smaller/bigger" feedback type that the environment sends to the system and
that will be dispatched between the agents by propagation and by taking other the goal
(smaller or bigger). The agent then tries to satisfy its new goal and staying at the same
time the most cooperative possible with the other agents. This will bring the system as
a whole to produce a smaller or bigger value.

Of course, the agents will get into conflict with other agents when trying to reach
these goals and the self-organizing mechanisms take that into account. Each agent
also manipulates a knowledge about the prejudice he inflicts or may inflict following
changes he induces in the organization. By minimizing these prejudices (which is a
form of cooperation), the whole organization progresses.

It is important to note that the information which is given as a feedback is not in any
way an explicit description about the goal and how to reach it. Indeed, this information
does not exist : given a handful of values and mathematical operators, there is no explicit
method to reach a specific value even for a human. They can only try and guess, and
this is also what the agents do. That is why we believe the solving we implemented to
be in the frame of emergence.

4.3 Results and Discussion

Results. First of all, the internal constraints of the system are solved very quickly :
in only a few reorganization moves (among the 7776 possible organizations), all the
agents find their partners and a functional organization is reached. Then, because the
system is asked to produce the highest value for example (configuration 6, Figure 1),
other NCS are produced and the system starts reorganizing toward its goal.

On a few hundred simulations, the functional adequacy is reached in a very satisfac-
tory number of organization changes. Since the search space if of 7776 possible orga-
nizations, a blind exploration would need an average of 3.888 checked organizations to

458 J.-P. Georgé and M.-P. Gleizes

reach a specific one. Since a functional organization possesses 4 identical instances for
a given value (by input permutations), we would need 972 tries to get the right value.
Experimentation shows that, whatever the initial organization (without any links or one
of the 6 functionals), the system needs to explore less than a hundred organizations
among the 7776 to reach one of the 4 producing the highest value. We consider that this
self-organization strategy allows a relevant exploration of the search space. A notewor-
thy result is also that whatever organization receives the feedback for a better value, the
next organization will indeed produce a better value (if it exists).

Emergent Programming : A Universal Tool. If we define all the agents needed to
represent a complete programming language (with agents representing variables, alloca-
tion, control structures, ...) and if this language is extensive enough, we obtain maximal
expressiveness : every program we can produce with current programming languages
can be coded as an organization of instruction-agents. In its absolute concept, Emergent
programming could then solve any problem, given that the problem can be solved by a
computer system. Of course, this seems quite unrealistic, at least for the moment.

Problem Solving Using Emergence. But if we possess some higher-level knowledges
about a problem, or if the problem can be structured at a higher level than the instruction
level, then it is more efficient and easier to conceive the system at a higher level. This is
the case for example when we can identify entities of bigger granularity which therefore
have richer competences and behaviours, maybe adapted specifically for the problem.

Consequently, we will certainly be able to apply the self-organizing mechanisms de-
veloped for Emergent Programming to other ways to tackle a problem. Indeed,
instruction-agents are very particular by the fact that they represent the most generic
type of entities and that there is a huge gap between their functions and the function
of a whole program. The exploration of the search space, for entities possessing more
information or more competences for a given problem can only be easier. In the worst
case, we can always try to use Emergent Programming as a way to specify the behaviour
of higher-level entities (recursive use of emergence).

Let us consider for instance the problem of ambient intelligence : in a room, a
huge number of electronic equipments controlled each by an autonomous microchip
have as a goal the satisfaction of the users moving around it from day to day. The
goal itself, user satisfaction, is really imprecise and incomplete, and the way to reach
it even more. We claim that this problem is an ideal candidate for a problem solving
by emergence approach: let us endow the entities with means to find by themselves the
global behaviour of the system so as to satisfy the users. The challenge is to define the
"right" self-organizing behaviours for the different equipments for them to be able to
modify the way they interact to take into account the constraints of every one of them
plus the external stimuli from the users (order, judgement, behaviour, ...). And we are
convinced that this can only be done if the self-organization mechanisms tightly fit the
frame of emergence.

5 Conclusion

We aimed at studying the feasibility of the concept of Emergent Programming by using
self-organizing instruction-agents. We presented in this paper the concept and how we

Experiments in Emergent Programming Using Self-organizing Multi-agent Systems 459

studied it. For this, we first described the frame of self-organization and emergence as
we think can be applied in artificial systems. Then we described a generic approach for
adaptive systems based upon a multi-agent system where the agents are endowed with
self-organizing mechanisms based upon cooperation and emergence.

A mathematical example has been used as a case study. Its implementation, and
experimentation with, lead to the definition of the self-organizing mechanisms of the
instruction-agents so as to enable them to make the system reach a given goal.

This study has been an interesting work to explore self-organization in MAS when
confronted to difficult problems that we are persuaded need an Emergent solution. We
claim that this approach would be really relevant for neo-computation problems such
as ambient intelligence, if not directly with instruction-agents, by using the same kind
of cooperative self-organization mechanisms.

References

1. Web site of exystence : the complex systems network of excellence.
http://www.complexityscience.org.

2. Web site of the santa fe institute. http://www.santafe.edu.
3. S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, and E. Theraulaz, G.and Bonabeau.

Self-organization in biological systems. Princeton University Press, 2002.
4. D. Capera, J. Georgé, M.-P. Gleizes, and P. Glize. Emergence of organisations, emergence of

functions. In AISB’03 symposium on Adaptive Agents and Multi-Agent Systems, April 2003.
5. J. Georgé, B. Edmonds, and P. Glize. Self-organizing adaptive multi-agent systems work,

chapter 16, pages 321–340. Kluwer Publishing, 2004.
6. J.-P. Georgé. Résolution de problèmes par émergence - Étude d’un Environnement de

Programmation Émergente. PhD thesis, Université Paul Sabatier, Toulouse, France, 2004.
http://www.irit.fr/SMAC/EPE.html.

7. M.-P. Gleizes, V. Camps, and P. Glize. A theory of emergent computation based on coopera-
tive self-oganization for adaptive artificial systems. In Fourth European Congress of Systems
Science, Valencia, Spain, 1999.

8. F. Heylighen. Encyclopedia of Life Support Systems, chapter The Science of Self-
organization and Adaptivity. EOLSS Publishers Co. Ltd, 2001.

9. P. Horn. Autonomic computing - ibm’s perspective on the state of information technology.
http://www.ibm.com/research/autonomic, 2001.

10. J. R. Koza. Evolution and co-evolution of computer programs to control independently-
acting agents. In From animals to animats : proceedings of the first international conference
on Simulation of Adaptative Behavior (SAB). MIT Press, 1991.

11. I. Prigogine and G. Nicolis. Self Organization in Non-Equilibrium Systems. J. Wiley and
Sons, New York, 1977.

12. M. Weiser and J. S. Brown. Designing calm technology. PowerGrid Journal, 1(1), 1996.

A Direct Reputation Model for VO Formation

Arturo Avila-Rosas1 and Michael Luck2

1 Instituto Mexicano del Petróleo,
Eje Central 152, México DF, CP 07730, México

aavilar@imp.mx
2 School of Electronics and Computer Science,

University of Southampton,
Southampton, SO17 1BJ, United Kingdom

mml@ecs.soton.ac.uk

Abstract. We show that reputation is a basic ingredient in the Virtual
Organisation (VO) formation process. Agents can use their experiences
gained in direct past interactions to model other’s reputation and decid-
ing on either join a VO or determining who is the most suitable set of
partners. Reputation values are computed using a reinforcement learning
algorithm, so agents can learn and adapt their reputation models of their
partners according to their recent behaviour. Our approach is especially
powerful if the agent participates in a VO in which the members can
change their behaviour to exploit their partners. The reputation model
presented in this paper deals with the questions of deception and fraud
that have been ignored in current models of VO formation.

1 Introduction

Recently, a large number of new collaborative, networked organisations have
emerged, having as motivation the explosive progress in computer networks and
communication systems, but also as a reaction to market pressures that demand
customised, high quality products and services at lower costs and, at the same
time, shorter production and marketing times. Promising greater flexibility, re-
source optimisation and responsiveness in competitive open environments, VOs
are an example of this trend that has pervaded not only business domains but
other areas such as e-science. The concept of a VO has been used to describe the
aggregation of autonomous and independent organisations connected through
a network and brought together to deliver a product or service in response to
a customer need [6]. In this paper we take a VO to be a temporary alliance
composed of a number of autonomous entities (representing different individu-
als, departments and organisations) each of which has bounded problem solving
capabilities and limited resources at their disposal, that come together to share
skills or core competences and resources in order to better respond to customer
needs or business opportunities, and whose cooperation is supported by computer
networks (adapted from [5]).

What distinguishes VOs from other forms of organisation is the full mutual
dependence of their members to achieve their goal and therefore the need for

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 460–469, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Direct Reputation Model for VO Formation 461

cooperation. However, open environments in which VOs are embedded involve
organisations and individuals that do not necessarily share the same objectives
and interests that they might not know in advance, and where they might not
trust each other, but should work together and help each other to achieve a
common goal. One of the key omissions in the computational representation of
VOs relates to the need to take into account more subjective facets like the
reputation of the individuals, which helps to cope with heterogeneity, autonomy
and diversity of interests among members. We observe that current solutions
underestimate the possibility of swindle in VOs. A common flaw is assuming that
the partners selected are fully competent and honest. Since partners represent
organisations or individuals who want to maximise their utilities by joining a VO,
they have a strong incentive to misrepresent the value of their contributions and
enjoy more benefits of cooperative associations [1]. Further, partners are selected
in relation to the abilities they claim to have, but it is possible that they do not
have such abilities. However, due to lack of information about past interactions,
it is difficult to detect and control these situations. This paper considers the
introduction of reputation into VOs, by providing a reputation model based on
the adaptive evaluation of direct experiences to identify trustworthy individuals
to join VO.

The remainder of this paper is organised as follows. The requirement for
reputation systems for VOs are discussed in Section 2. In Section 3 we present our
reputation model for VOs which is based on reinforcement learning techniques.
In Section 4, we describe the experiments undertaken to support the validity of
our model, the results of which (and their comparison with two other models)
are presented in Section 5. Section 6 reviews related work, and Section 7 present
our conclusions.

2 Requirements

The objective of this section is to delineate the requirements for building a
reputation system in order to serve as a decision-making variable in the selection
of partners, promote cooperation, produce trust and induce good behaviour in
the members of a VO.

1. Distributed reputation management. As they are distributed and dynamic,
VOs do not depend on the presence of any centrally trusted authority. More-
over, individuals must maintain personalised models of the trustworthiness of
others at a capability level so that they will be able to know which capability
caused cooperation to fail and why [3]. By contrast, centralised management
of reputation offers a biased perspective of reputation because it aggregates
feedback, making no distinction between the preferences of partners submit-
ting feedback that may not coincide with the interests of the VO.

2. Dynamism. VOs integrate multiple autonomous, diversely skilled partners
under intense time pressures to create complex products or services [4]. Due
to limitations in time and intense task pressures, VOs require that their

462 A. Avila-Rosas and M. Luck

members develop mutual trust fast. Partners should be able to quickly use
a reduced number of interactions to estimate the reputation of a partner
and; at the same time, take partner selection decisions without having a
significant impact, in terms of time consumption, on the formation of a VO.

3. Adaptability. VOs operate under high levels of demand uncertainty gener-
ated by unknown and rapid shifts in consumer preferences [4]. Demand un-
certainty creates changes in the structure of the VO, which is forced to adapt
itself by reallocating tasks or redefining them. In these circumstances, organ-
isations feeds into periodic evaluations of the VO which, in turn, leads part-
ners to make adjustments to their relationships and identify when changes in
the efficiency of partners is due to the adaptation process or due to abusive
behaviour [4]. This suggests that the updating process of reputation values
should be a learning process about another’s true abilities, that captures the
observed performance through the reputation of the partner.

4. Predictability. The behaviour of each partner in a VO usually offers clues
to the others about its capabilities and intentions, so it is possible to make
predictions about its future behaviour. The main objective of predictions is to
detect any misconduct of the partner early enough, so that the VO can take
necessary steps to protect itself from adverse effects of partner misbehaviour.
Reputation must provide information to predict the future performance of a
partner and eventually the risk involved of interacting with it.

3 Direct Reputation Model

In this section we introduce our model of reputation, which meets some of the
requirements discussed in the previous section. We start by defining mathemati-
cally the concepts of reputation and impressions. Next we describe the methods
used in our model for updating reputation.

3.1 Reputation

We define the reputation of an agent as a perception regarding its intention and
competences, which is held by other agents through the formation and dissem-
ination of subjective evaluations based on experiences and observations of past
actions. Here, these evaluations are called impressions. From the definition, the
observed behaviour of others is collected through: (i) direct experiences, with
interaction histories serving as a strong evidence for estimating someone reputa-
tion or (ii) via the testimony of others, known as recommenders. On the basis of
the source of reputation, two concepts of reputation may be derived, namely di-
rect reputation and social reputation. Although important, the concept of social
reputation lies beyond the scope of our research and is not defined; we only make
reference to it as another source of reputation different from direct reputation.

3.2 Direct Reputation

Direct reputation (DR) is defined as the weighted average evaluation that an
agent makes of another’s competence, and gives the extent to which the target

A Direct Reputation Model for VO Formation 463

is good or bad with respect to a given behaviour or action. Direct reputation is
context-dependent so that an agent is reputed according to the service provided.
For example, an agent may be well reputed as a printing service provider but
poorly reputed as a file storing service provider. VOs provide an environment
in which agents may offer the same service with different qualities for different
reasons such as demand uncertainty or as a result of dishonest behaviour. In
this sense, we adopt the ideas of Shapiro [8] expressed in his analysis of the
economic effects of reputation in such environments. Shapiro proved that the
most efficient way to estimate a seller’s reputation (i.e., the way that induces
the seller to produce at the highest quality level) is a time-discounted average of
the recent ratings evaluating its reputation. Hence, direct reputation is computed
as the average of impressions received within the most recent time window,

W = [t− ε, t] , (1)

where ε defines a time interval that limits the set of interactions and in which im-
pressions are used to compute a direct reputation value. Impressions are weighted
from 0 to 1 to indicate the notion of importance of an impression in relation
to others for calculating reputation. Taking only the most recent impressions is
equivalent to using an average calculation where weights are non-zero for impres-
sions received within the time window and 0 otherwise. The direct reputation
values vary in the range of [0,1] and are used only to represent comparative values
in this continuous space from bad reputation (values near 0) to good reputation
(values near 1). The direct reputation of i in the perspective of j in context k is
represented as:

DRk
ij ∈ [0, 1].

3.3 Impression

We define an impression as an evaluative opinion that is formed by any entity (in-
dividual, organisation, etc.) based on a discrete experience with another partner,
coupled with the partner’s performance. Computationally, an impression is the
value assigned to a service that indicates the proximity of the service provided
by an agent i to the expectations of agent j requesting the service. An impression
is related with a dimension that describes just one of the qualities of the service
as required by agent j. For example, a partner can get different impressions for
its efficiency or the quality of its services. The group of dimensions needed for
evaluating the whole performance of a service provider is denoted by the set of en-
abling qualities Q and it is context-dependent. For example, to evaluate an agent
in the context of a printing service, two dimensions may be taken into account:
printing quality and rapidity. Mathematically, the impression appear as follows,

impd
ij ∈ [0, 1],

Qij = {d ∈ k|k is a context}, (2)

where i is the service provider whose interaction with the service consumer j
left in it the strong impression imp in relation to dimension d, and Qij is the

464 A. Avila-Rosas and M. Luck

set of dimensions for evaluating a service provider in context k. The numbers
used for impressions are merely reference values for making comparisons, each
consumer establishes a personal threshold of acceptable values for the dimension
d evaluated. This personal threshold may be based on:

– the agreed values of a contract, when interactions are fixed by contractual
terms; or

– the values that constitute a standard for delivering a service, when standards
are available to indicate the permissible values of a particular dimension; or

– the values obtained empirically, when the consumer has previous experience
of consuming a particular service and can estimate optimal values for the
dimensions involved.

Once a personal threshold of acceptable values is established, it is compared
with the actual values of each dimension after providing a service.

3.4 Updating Direct Reputation

Each agent updates its reputation value of a service provider every time it re-
ceives impressions from either direct (immediate or observed interactions) or
indirect experiences. Our first proposal to update the reputation values (after
receiving t rated experiences or impressions) consists in the use of the following
reinforcement learning based action update rules:

DRt = DRt−1 + α · [impt −DRt−1]. (3)

Reputation, in Eq.(3), can be interpreted as the aggregation of the previous
value of reputation plus a factor that strengthens or weakens that value. This
factor indicates the proximity of the recent impression to the past reputation, and
shows of how well the previous reputation predicts the latest given impression.
Note that although we omit the indices k, i and j to make the expression more
readable, DRt makes reference to the reputation of an agent i in the opinion of
agent j for the context k. The update rule in Eq.(3) is a linear function which is
required in an open environment where the number of prior interactions may be
reduced, and reputation cannot be updated in the long term through a non-linear
function because an agent could cheat on many occasions before the reputation is
updated. Instead, reputation must be updated immediately after any interaction.
If α is near 1 then all the previous history will be forgotten, otherwise, if α is
near 0 then the previous history will be preserved.

The factor α is also known as a learning rate, and is an indicator of how long
past experiences will last in the memory of the system. For example, while low
values of α mean that early experiences will have more influence in the system
than recent ratings, high values of α indicate that early experiences will soon be
forgotten. For our purposes, we consider α as a function α(DRt−1, impt) with
the following properties that are based on the ideas of Carbo et al. [2]:

– The function α(DRt−1, impt) determines how fast the reputation value
changes after an experience and how this affects the memory of the system.

A Direct Reputation Model for VO Formation 465

This depends on the accuracy of the predictions suggested by the impres-
sions received; that is, how much similarity exists between the expectation
formed by the previous reputation values and the last rating. We consider
the initial value for the function α(DRt0, impt0)) to be 0.5. That is, as the
agent starts to learn, it will be careful with the first impressions until it
learns how to better estimate its predictions.

– Similarity will be estimated through a similarity function β(DRt−1, impt) ∈
(0, 1):

β(DRt−1, impt) = 1− e−10·ABS(E−imp), (4)

where E is the estimated rating based on the past reputation and rating:

E =
DRt−1 + impt−1

2
. (5)

– Finally, the function α(DRt−1, imp) is updated as follows:

α(DRt, imp) =
α(DRt−1, imp) + β(DRt−1, imp)

2
. (6)

4 Experiments

We performed two sets of experiments to evaluate DIRECT (our algorithm for
computing reputation based on direct interactions) and show its feasibility and
effectiveness. For comparison purpose, we use two existing models of reputation,
SPORAS [9] and REGRET [7]. These models were chosen because reputation
systems for VOs should consider the time when the interactions take place in
order to update their reputation values, and both SPORAS and REGRET meet
this requirement. In order to compare similar values of reputation, SPORAS
and REGRET were modified to produce reputation values normalised in the
range [0,1]. Additionally, in the case of REGRET, just the individual dimension
of reputation is considered because it is the only one associated with direct
interactions.

4.1 Accuracy

The objective of this experiment is to evaluate the accuracy of the reputation
model. The value of reputation must provide a measure of the true capabilities
of a service provider (SP) for providing a service. We generate 10 series of data
representing the quality perceived of a service (QP) during 60 interactions. This
data varies randomly in the interval [-z, +z] from a mean value q of the actual
quality (QoS). We want to model the fact that although SP delivers its services
with the same quality, that is q = 0.5, the consumer (CA) may perceive such a
quality in distinct ways. In our experiment, CA’s perceptions vary around the
actual quality q with a standard deviation σ = 0.03, and according to a normal
distribution.

466 A. Avila-Rosas and M. Luck

4.2 Abuse

The experiment here described is similar to that described in [9] where a SP
who joins a VO behaves reliably until it reaches a high reputation value and then
starts committing fraud. Thus, in this experiment we aim to show quantitatively
which model of reputation offers a mechanism for dealing with deceit. Deceit in
a VO is found when a partner deteriorates the quality of its services once it
has reached a certain level of reputation, in order to exploit others. We measure
the rapidity with which agents learn the new behaviour of their partners in
terms of the minimum number of interactions to adjust the reputation of a
partner towards true quality of a service. We generated two sets of 10 data
series representing the quality of a service during 120 interactions, both data
varying using a normal distribution in the interval [-z, +z] from a mean value q1
and q2 of quality. In the first set of data the agent provides the highest quality
during the first 25% of the interactions and, after that it decreases the quality in
6.25%, 12.5%, 18.75%, 25%, 31.25%, 37.5%, 43.75% and 50% for the rest of the
interactions. We want to model the fact that after delivering its services with the
same quality, q1 = 0.8, during the first 30 interactions, this may be perceived
by CA in distinct way. SP then reduces the quality of its services to milk the
reputation already built. As in the previous experiment, CA’s perceptions vary
around the actual qualities q1 and q2 with a standard deviation σ = 0.03, and
according to a normal distribution.

5 Results

5.1 Results of Reputation Evaluation Accuracy

In Figure 1 the reputation values computed with the three algorithms are shown.
As can be seen, our proposal obtains similar results as REGRET in a similar
number of interactions. DIRECT and REGRET establish the reputation value
faster than SPORAS. Although REGRET and our proposal DIRECT use dif-
ferent aggregation algorithms for computing reputation, both obtain accurate
results when a SP maintains the provision of its service without change. In our
simulations, we compute the number of interactions before the reputation curves
generated by each of the algorithms converge towards the actual QoS. The con-
vergence is considered when the calculated values of reputation are in the interval
[q − σ, q + σ].

5.2 Results of Abuse of Prior Performance

In Figure 2 we can see that REGRET requires in general more interactions to
adapt its reputation values to the change of behaviour of service providers. In
contrast, DIRECT and SPORAS show a more adaptive behaviour and require
fewer interactions. On the other hand, REGRET updates reputation values very
slowly, and opportunistic providers might take advantage of this by getting high
values of reputation to be considered as well reputed and then start to cheat.

A Direct Reputation Model for VO Formation 467

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51

Number of Impressions

R
ep

u
ta

ti
o

n

DIRECT REGRET SPORAS

Fig. 1. Building Reputation

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 11 21 31 41 51 61 71 81 91 101 111

Number of Impressions

R
ep

u
ta

ti
o

n

DIRECT REGRET SPORAS

Fig. 2. Reputation is decreased in 25.0%

In Figure 3 the minimum number of interactions is shown to adjust the decre-
ment in the reputation value of 6.25%, 12.5%, 18.75%, 25%, 31.25%, 37.5%,
43.75% and 50%. As can be seen SPORAS and DIRECT require less than 20
interactions to adjust their reputation values to the change in quality of the
service, regardless of the percentage in which the quality is reduced. In RE-
GRET, due to the accumulation of experiences, the effect of past experiences
on the computation of reputation provokes accelerated increment in number of
interactions required to adjust its reputation value.

0

20

40

60

80

100

0 6.25 12.5 18.75 25 31.25 37.5 43.75 50

% Reduction in QoS

N
u

m
b

er
 o

f
In

te
ra

ct
io

n
s

DIREC REGRET SPORAS

Fig. 3. Minimum number of interaction to adjust reputation values

The key difference between SPORAS and DIRECT is the ability to distin-
guish changes in behaviour based on the accuracy of the predictions. That is,
DIRECT adjusts its values of reputation faster than SPORAS when the expec-
tations created by the reputation values are closer to latest impressions. This
can be seen in the slope of both curves. While the rapidity to detect the change
in the quality of a service is alike for both curves, DIRECT presents values of
reputation closer to the true quality of service.

6 Related Work

Zacharia and Maes in [9] present SPORAS, which is a centralised reputation
system that establishes reputation for users in an on-line community, based
on the aggregation of rates given by users after each transaction. Reputation

468 A. Avila-Rosas and M. Luck

in SPORAS aims to predict future performance of the users. In order to make
accurate predictions using a small computational space, a recursive and adaptive
algorithm for updating reputation is used. Reputation is calculated continuously
using the previous value of reputation; and the previous value of reputation
is reinforced or weakened depending on the rates obtained. This aggregation
method then allows newer rates to count more than older ones. Because SPORAS
is a centralised reputation system, it is not viable for VOs where partners need
personalised reputation values calculated from assembled rates of those they
trust already rather than those they do not know. Although the assumption
made in SPORAS to make reputation values dependent on the reputation of the
entity who is providing a feedback is correct, it mixes two different dimensions
of reputation. While a user can be reputed as completely unable to cheat on
deals, nonetheless that same user may be a bad evaluator of other users. That
is, being an excellent service provider does not mean being an honest evaluator.

REGRET is a reputation system developed by Sabater and Sierra [7] that
adopts a sociological approach for computing reputation in societies of agents
trading well defined products inside an e-commerce environment. Although RE-
GRET provides a very simple method for aggregating rates (or impressions that
are the result of evaluating direct interactions) based on the weighted sum of the
impressions (more relevance is given to the recent ones), its major contribution
is the vision of reputation through of three dimensions. These dimensions are
called the individual dimension, social dimension and ontological dimension. RE-
GRET emphasises both individual and social components of social evaluations.
That is, whereas the individual dimension is the effect of past experience with
a given agent, the social dimension refers to reputation inherited by individuals
from the groups they belong to. However, as discussed earlier, VOs require to
a certain extent that the reputation of a partner is assessed in a reactive form
to detect possible opportunistic behaviour. However, REGRET’s main idea con-
sists of emphasising the freshness of information. Computations in REGRET
give a fixed high relevance to recent rates over older ones according to a time
dependent function, and, moreover the rates are aggregated in a way that can be
sensitive to noise since they are simply summed. Furthermore, VOs require that
reputation be assessed swiftly in order to detect misbehaviour. REGRET, on its
part, requires a minimum number of interactions to make correct evaluations of
reputation but it is likely that partners will not interact the minimum number
of times to provide a reliable reputation value. Finally, REGRET does not han-
dle the problem of lying (strategically) among agents. Rates are obtained in a
cooperative manner rather than in a competitive environment.

7 Conclusions and Future Work

We have provided a critical overview of the state of the art in the field of VOs
and reputation. We argue that subjective aspects of partners such as their com-
petences and trustworthiness should be taken into account in partner selection
decisions, since these aspects ultimately influence cooperation between partners.

A Direct Reputation Model for VO Formation 469

Moreover, we assert that reputation plays an important role in VOs when mem-
bers decide who to interact with and when to interact, by providing information
about the past behaviour of potential partners, their abilities and reliability. Ad-
ditionally, we discussed the requirements for building reputation systems that
pursue three basic objectives in the formation and operation of VOs: (1) they
provide useful information about potential partners for selecting the most appro-
priate, and eventually enable the formation of VOs; (2) they foster trust among
the partners of the VO by revealing each partner’s capabilities and predicting its
future behaviour; and (3) they offer a means for enhancing cooperation by de-
tecting and deterring deceptive behaviour through imposing collective sanctions
on defectors. Finally, we have provided experimental evidence to demonstrate
the validity of the model developed and the fulfilment of the requirements men-
tioned above, including a comparative analysis of the model proposed in this
thesis and two other models. In particular, two aspects were analysed regarding
the accuracy of the values calculated and the ability to detect abuses.

Although this paper has answered how reputation is relevant to recognise
cooperative partners through direct interactions, it opens up more research op-
portunities and questions that are unanswered. Moreover, there are other issues
that were not faced in this paper, due to the bounds imposed on the research,
and still need to be addressed.

References

1. S. Braynov and T. Sandholm. Trust revelation in multiagent interaction. In Proceed-
ings of CHI’02 Workshop on Philosophy and design of Socially Adept Technologies,
pages 57–60, Minneapolis, USA, 2002.

2. J. Carbo, J. Molina, and J. Davila. Trust management through fuzzy reputation.
International Journal of Cooperative Information Systems, 12(1):135–155, 2003.

3. N. Griffiths and M. Luck. Coalition formation through motivation and trust. In
Proceedings of the Second International Joint Conference on AAMAS, pages 17–24,
Melbourne, Australia, 2003.

4. C. Jones, W.S. Hesterly, and S.P. Borgatti. A General Theory of Network Gov-
ernance: Exchange Conditions and Social Mechanisms. Academy of Management
Review, 22:911–945, 1997.

5. T. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. Dang, T. Nguyen,
V. Deora, J. Shao, W. Gray, and N. Fiddian. Agent-based formation of virtual organ-
isations. International Journal of Knowledge Based Systems, 17(2–4):103–111, 2003.

6. E. Oliveira and A. Rocha. Agents advanced features for negotiation in electronic
commerce and virtual organisations formation processes. In Agent Mediated Elec-
tronic Commerce, the European AgentLink Perspective, volume 1991 of Lectures
Notes in Artificial Intelligence, pages 77–96, 2000.

7. J. Sabater and C. Sierra. Reputation and social network analysis in multi-agent
systems. In Proceedings of the First International Joint Conference on AAMAS,
pages 475–482, Bologna, Italy, 2002.

8. Carl Shapiro. Consumer information, product quality, and seller reputation. The
Bell Journal of Economics, 13:20–35, 1982.

9. G. Zacharia and P. Maes. Trust management through reputation mechanisms. Ap-
plied Artificial Intelligence, 14(8):881–907, 2000.

Adversarial Behavior in Multi-agent Systems

Martin Rehák, Michal Pěchouček, and Jan Tožička

Department of Cybernetics, Czech Technical University in Prague,
Technická 2, Prague 6, 166 27 Czech Republic

{rehakm1, pechouc, tozicka}@labe.felk.cvut.cz

Abstract. Adversariality of the agents with respect to the multi-agent
system can be a serious issue in the design of open multi-agent systems.
Until now, many incoherent definitions of such behavior were used, pre-
venting the consolidation of the knowledge about the domain. By basing
ourselves on the valid and accepted results from economics, law and con-
flict theory, we propose a consistent definition of adversariality in the
multi-agent systems and discuss the characteristics of the behavior that
falls into this definition.

1 Introduction

The current trend in the multi-agent systems field is to emphasize the openness
of systems, their ad-hoc integration capability and to capitalize on their syntactic
and semantic interoperability. In open environments, we can no longer assume
that the agents are cooperative. The agents in these system can have their own,
sometimes partially or completely antagonistic goals and they often compete for
the shared resources or opportunities.

In such environments, we must ensure that the system as a whole will au-
tonomously maintain its sustainability and efficiency, that self-interested agents
will be able to agree at least on some goals and that their cooperation will
leverage their capabilities. To do so, agent researchers frequently introduce the
concepts from microeconomics and game theory, most notably mechanism de-
sign [1]. Mechanism design is used to design interaction patterns in the system to
promote globally desirable behavior and reduce incentive for undesirable behav-
ior. However, despite the fact that it will provide the basis of the algorithms and
protocols of such systems, it still suffers from some serious limitations. Mech-
anism design techniques have achieved some spectacular results, but their ap-
plicability is in general restricted to static environments, where the fine-tuned
mechanisms perform well. However, the problems like bounded rationality of
the agents, their possible polyvalence, strategic behavior and willingness to keep
some of their knowledge private can not be completely addressed by the current
mechanisms [2].

Alternatively, similar results can be achieved achieved using norms [3], enforc-
ing flexible social commitments [4], adjustable policies [5] or trust and reputation
[16,6]. But in general, these approaches rely on the fact that the agents are able
to distinguish the undesirable behavior in all possible contexts. Therefore, as

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 470–479, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Adversarial Behavior in Multi-agent Systems 471

the system adapts to its environment, the norms, policies and trust mechanisms
must be adapted as well to avoid becoming an obstacle of system efficiency,
rather than to support it.

In this contribution, we will look at the problem from somewhat different
perspective – after the brief analysis of existing approaches in the multi-agent
field, we will use the conflict theory and some fundamental principles from the
economy and law (Section 2) to consistently define the adversarial behavior in the
multi agent system (Section 3) and provide a specific example that instantiates
the definition in Section 4.

Currently, adversariality in the multi-agent systems is a concept that has been
defined in many different contexts. Most of the current definitions are mutually
exclusive, but they provide a valuable guidance in our attempt to formalize the
definition using their overlaps.

In the field of multi-agent systems, adversarial planning was introduced
[7]to analyze the behavior of two opponents. However, even if the approach
remains interesting due to the analysis of planning in conflicting environment, it
is of limited importance for the definition of adversarial behavior. The definition
proposed by the authors, where they define adversariality by ”opposite goals”
doesn’t fit our needs, as the agents in the general system we consider (i) are not
always adversarial and at least some of their goals are common, (ii) communicate
by other means than pure actions, (iii) have asymmetric and partial knowledge
and (iv) are deliberative, therefore possibly adversarial within the limited scope
of time or issues.

In the mechanism-design field, [2] defines adversarial entities as the entities
who’s goals can not be described by a utility function and assumes these actors
to be irrational. This definition well captures the fact of bounded rationality of
agent perceptions - some agents can have goals that are impossible to capture
and understand during normal system operations and that are justified by large
scale (time or space) behavior of their owners.

2 Conflict Theory and Economics of Conflict

We shall use the conclusions from the field of the conflict theory to (i) determine
the defining properties of adversariality as they are currently understood.

In his contribution [8], James Fearon analyzes the war between two or more
perfectly rational states. For Fearon, the most important distinguishing property
of the war from the rationalist point of view is the war’s ex-post inefficiency
– he argues that the states can reach the same result by negotiation, eliminating
the cost of the adversarial actions: ”...ex-post inefficiency of war opens up an
ex-ante bargaining range...”([8], page 390). This is clearly visible from the simple
conflict specification proposed by author.

In the work of Posner and Sykes [9], approaching the problem of optimal
war from the legal perspective, the aggression (unilateral beginning of the war)
is defined as an action that is socially undesirable and imposing net social cost,
while the authors assume that the aggression is motivated by the expected profit

472 M. Rehák, M. Pěchouček, and J. Tožička

of the aggressor, either as a result of war or the threat. They argue that this
definition of aggression is consistent with the studies on the economics of crime
[10], where the gains of criminal are smaller than the social cost of act.

In his breakthrough article, Gary Becker [10] analyzes the economics of
crime, incentives of criminals, their economic motivation and dissuasive effect
of punishments and functional justice system. Besides the definition of criminal
activity stated above, the notion of indirect costs is also important. Costs of
crime are not only direct, but we must consider the cost of law enforcement
as inseparable from the direct crime costs. In a multi-agent system, the well
designed mechanisms and trust maintenance models come with a cost that may
harm the system efficiency through their computational requirements and other
associated requirements. This doesn’t mean a refusal of the principle of trust
maintenance and mechanism design, but it means that the mechanism must be
efficient and well adapted to the current environment.

3 Adversarial Behavior Definition

This section is devoted to the formal definition and characterization of adversar-
ial behavior in the multi-agent systems. We will depart from the conflict theory
premise stated above that conflict is an ex-post inefficient method of resolving
competitive issues that imposes a net cost on the society, and we will base our
formal definition on these notion. Similar classification was done in [11], but fo-
cused on interaction between different types of agents rather than on definition of
types of behavior and didn’t use the conflict theory. However, some preliminary
technical definitions are necessary.

In the following, we will use capitals to denote agents.
Utility is defined as ”a value which is associated with a state of the world,

and which represents the value that the agent places on that state of the world”
by [12].

To simply state our problems, we will define a simple abstract game model
featuring agent set Ag = {A,B,C, ...} with the agents playing a non-extensive
(single round) game with that is not strictly competitive – sum of all agents’
utilities is not constant. Each agent X has a set of available actions denoted
a∗X , with actions ai

X ∈ a∗X (whenever possible, we only write aX). From this set,
agent selects its action using its strategy. The final state, outcome of the game1

o(aA, aB, ...) is determined by strategies of the agents and determines both the
individual agents’ utilities uA(o), uB(o), uC(o), ... and the social choice function
u(o) = uA(o) + uB(o) +uC(o) + ..., considered to represent the social welfare[1].

In this simplistic game, we can define cooperative, competitive and adversar-
ial behavior in accordance with the principles from section 2. Simplified graphical
form of the definitions is presented in Fig. 1.

In the cooperative environment, all agents do share a single utility function.
1 The exact form of the outcome is irrelevant, if we are able to obtain the utility values.

To simplify the notation, we will also write u(aA, aB , ...) instead of technically more
correct u(o(aA, aB , ...)).

Adversarial Behavior in Multi-agent Systems 473

Fig. 1. Cooperative, Competitive and Adversarial actions. Pie represents the total
utility u and individual utilities uA, uB , We can see that purely cooperative action
increases social welfare, purely competitive action doesn’t modify the social welfare,
but only changes its distribution among agents, while the purely adversarial action
reduces the social welfare without any benefit for the agent. In practice, real actions
are rarely pure and are a combination of the above types.

Definition 1. We say that agent’s A action acoop
A is a cooperative action

provided that acoop
A = argmaxa∗

X
u(acoop

A , aB, ...).

In the competitive environment, agents select actions to maximize their own
private utility, but they restrict their choice to the actions that at least conserve
the social welfare.

Definition 2. We say that agent’s A action acomp
A is a competitive action

provided that acomp
A = arg maxa∗∗

X
uA(acomp

A , aB, ...), where the set a∗∗X contains
the actions ai

A ∈ a∗X that conserve or increase the social welfare u(ai
A, aB, ...).

In many contexts, the above terms self-interestedness and competitiveness
are considered to be synonymous. However, we consider the competitiveness to
be more strict - in [11], self interestedness is defined as not taking the utility
of the others into the consideration while maximizing their own utility, while
[13] requires the trust between competitors, allowing them to avoid globally
undesirable outcomes. In the systems with carefully programmed mechanisms,
the results are equivalent in both cases. However, in many real-world cases the
total utility may decrease, even if each agent optimizes locally (see [14] for a nice
analogy).

Definition 3. We say that agent’s A action asi
A is a self-interested action

provided that asi
A = argmaxa∗

X
uA(asi

A , aB, ...).

474 M. Rehák, M. Pěchouček, and J. Tožička

And finally, the adversarial action is defined as an action that significantly
decreases the social welfare while it causes loss or provides only small profit to
the actor of the action.

Definition 4. We say that agent’s A action aadv
A is an adversarial action if

∃ai
A ∈ a∗A : i �= adv such that u(aadv

A , aB, ...)! u(ai
A, aB, ...) and uA(aadv

A , aB, ...)
� uA(ai

A, aB, ...).

The definition 4 above states that the adversarial action aadv
A selected by A

from the set a∗A of hurts the social welfare without strong incentive. To make
the formalism simpler, we have assumed that there is only single action aadv

A

of agent A that hurts the social welfare. There are several interesting points to
consider in the general definition.

The first point is the non-emptiness of the set a∗A\{aa
Adv} - we don’t consider

the behavior with no alternative as adversarial.
Motivation and justification of the adversarial action is closely related to two

relational operators used in the definition: ! and �. The first inequality !
signifies that the agent shall not cause significant harm to the common welfare,
while the inequality �2 means that the agent remains self-interested and it will
not lose a significant part of its welfare to save the utility of other agents. The
concept is illustrated by Fig. 2. In this context, it is important not to take our
simplification of the game formalism literally and to consider only immediate
payoff as the utility – in most systems, agents expect to encounter their partners
again in the future and we suppose that the attitudes of their partners towards
them and expected future profits are included in the utility uX

3. Formally, we
may pose:

Definition 5. We say that action aj
A of agent A is rationally adversarial

if it is both self-interested and adversarial. In the action is not self-interested
and is adversarial, it is irrationally adversarial.

In this context, we may mention the relationship between adversariality and
Pareto-Optimality: 4

An outcome of an Adversarial action is not Pareto optimal. Rationally ad-
versarial action is not Pareto optimal in the situations where the agents may
negotiate and transfer the utility - in such situations, the agents may always
transfer enough utility to motivate the adversarial agent to behave coopera-
tively, therefore achieving socially acceptable outcome. When the utility is not
2 We actually mean that the agent has no, or very little motivation to make an ad-

versarial move. In Def. 5, we treat the special case when we fall into the ∼ case.
3 In this point, we are consistent with the utility definition given above. We have

omitted the explicit future gains member in the definitions to simplify the notation
by using this broader definition of utility.

4 Following [15], we denote as o∗ a set of all achievable outcomes and we define:
Outcome o is considered to be Pareto optimal if : (i) it is achievable (i.e. o ∈ o∗)
and (ii) not majored by any other outcome o′ ∈ o∗ \ {o}, where we define majoring
as: ∀X∈AguX(o′) ≥ uX(o) and ∃X∈AguX (o′) > uX(o).

Adversarial Behavior in Multi-agent Systems 475

Fig. 2. Classification of action with respect to global utility (social welfare) and indi-
vidual utility of acting agent

transferable (e.g. indivisibility as defined in [8]), the set o∗ is severely restricted
and even an action that causes the overall social loss may be considered non-
adversarial due to the lack of alternative. In the irrationally adversarial case,
Pareto optimality does not hold neither, as the utility is lost both by adversarial
agent and the society as a whole.

On the other hand, Pareto optimality as such doesn’t preserve social welfare
(due to the indivisibility), it only ensures that all agents behave rationally given
the knowledge about the action of the others.

Another point to address is the predictability of the outcome. The uncertainty
of o arises from the simultaneity of all players’ moves, while the uncertainty of
values uX(o) and u(o) exists due to the privacy of functions uX . This seems
to make the definition useless – but social knowledge and norms can provide
solutions. In most situations, the individuals are able to estimate the actions of
others (denoted aexp

X) and the effects of different outcomes on their utility.
Therefore, without considering norms, we pose:

Definition 6. We say that action aia
A of agent A is intentionally adversar-

ial if the action is adversarial and the agent A knows that ∃ai
A ∈ a∗A : i �= ia

such that u(aia
A , a

exp
B , ...) ! u(ai

A, a
exp
B , ...) and uA(aia

A , a
exp
B , ...) � uA(ai

A, a
exp
B ,

...). Otherwise, the action is unintentionally adversarial.

More specifically, the lack of norms or conventions is a possible cause of un-
intentional adversariality – the adversarial outcome may arise due to the limited
computational power or knowledge of agents, private knowledge or the environ-
mental noise. Important question of attribution must be solved by each agent –
we can not expect that all agents will agree on the cause of the common loss.

Existence of shared normative system reduces the uncertainty regarding the
expected actions of other agents (aexp

X). In our future work, we will use this sys-
tem in the adapted definition of adversarial action. On the other hand, definition

476 M. Rehák, M. Pěchouček, and J. Tožička

4 remains valid, as it provides feedback for update of the normative system in
changing environment.

So far, we have defined adversarial action, rational adversarial action and
intentional adversarial action. However, we still have to define adversarial agent.

Definition 7. We say that agent A is adversarial (or there exists adver-
sarial behavior performed by the agent A) if the agent A performed at least
one adversarial action in the past – adv(A) ⇔ ∃aadv

A : so that adv(aadv
A) ∧

P(Perform A aadv
A).

In the definition, we assume that the predicate adv classifying the actions
is defined according to the property 4, the P operator to be a temporal logic
operator representing validity of a formula in the past and the operator Perform
linking an agent and the action performed by the agent.

There are clear extensions of this definition of adversarial behavior that define
adversariality in a time window, or agent’s adversarial behavior with relation to
a specific agent community. In the definition 7 we assume by default the whole
of the community as a target of agent’s adversariality and the whole past as the
relevant time window.

We are interested in the impact of the adversarial action on the global social
welfare of the community Ag. We say that:

– decrease of social welfare implies existence of an adversarial behavior in the
community, while

– existence of an adversarial behavior in the community does not imply de-
crease of social welfare.

For the proof of these statements, let us consider only types of actions accord-
ing to the definitions 1, 2 and 4. No combination of cooperative and competitive
actions may cause an overall decrease of the social welfare, thus an existence of
at least one adversarial action is inevitable. In contrary, for a combination of
adversarial actions there may exist a compensating combination of cooperative
or competitive actions that can be carried out by any member of the community
in the finite time t so that in t the social welfare does not decrease.

The definition 7 does not classify performance of an action that has got a
direct inevitability (or possibly an option) of an adversarial action as its effect
as adversarial behavior.

4 Example: Adversariality in Coalition Formation

In this example, we will illustrate rather abstract definitions provided above with
the real example, the coalition formation, approaching the problem from the
utility side. We will start by introducing the necessary notation. In this section,
we consider the coalition to be short-lived and therefore the terms adversarial
action of agent A and adversarial agent A will be used interchangeably.

Adversarial Behavior in Multi-agent Systems 477

Using the concept of the marginal utility5, we may now define cooperative
and competitive behavior in our example.

We say that agent A is collaborative provided that: if an agent A makes
an attempt to join the coalition C then always muA �→C(C) > 0. We shall note
that even if all agents are collaborative, the optimum result is not guaranteed. A
typical case can be described as follows: muB �→C(C ∪B) > muA �→C(C ∪A) ≥ 0
and muB �→(C∪A)(B) < 0. If A joins the coalition first, it blocks the entry of B
and only local optimum is reached.

We say that agent A is competitive provided that: if an agent A makes an
attempt to join the coalitionC then alwaysmuA �→C(A) > 0 andmuA �→C(C) ≥ 0.
Similarly, we say that agent A is self-interested provided that: if an agent A
makes an attempt to join the coalition C then always muA �→C(A) > 0.

As we have already stated before, self-interested agent considers only its
own profit while it takes coalition entry decision. Competitive agent is both
self interested and collaborative, as it maximizes its own profit, but it at least
maintains the social welfare that is represented by the coalition utility. Therefore,
in both competitive and cooperative behavior, the social welfare is maintained.
This is not necessarily true in the self-interested or adversarial behavior.

In this example, we will use the marginal utility defined above to define
adversarial behavior. We say that an agent is adversarial provided:

– muA �→C(A) � 0
– muA �→C(C) ! 0
– agent A makes an attempt to join the coalition C

Informally, an agent is adversarial with respect to coalition C provided that
the increase of his direct marginal utility is significantly smaller than the harm
(decrease of the total payoff) caused to the coalition.

If the conditionmuA �→C(A) ≥ 0 holds, agent’s action is rationally adversarial,
otherwise it is irrationally adversarial, as defined in definition 5.

Main advantage of the above definition is that it provides a basis for the
detection of adversarial agents, by defining the metrics measuring the adversar-
iality.

Gathering and maintaining such experience is not trivial. However, we may
reuse the existing work on trust, where one of the components of the trust[16]
- intentional trust (willingness)- is a complement of intra-community adversari-
ality defined above. Therefore, if we establish a reasonable value for trust (that
may be actually lower, due to the capability trust), we may deduce an acceptable
estimation of agent’s adversariality.
5 Agent’s A marginal utility (mu) from joining the coalition C (an activity denoted

as A �→ C) is a derivation of the agent’s utility before and after it joins the coalition
(muA�→C(A) = uA∈C(A) − uA�∈C(A) , where uA∈C(A) is a utility the agent A
(in parentheses) receives as a member of the coalition C (situation is described by
subscript), while uA�∈C(A) denotes the utility agent A receives if it doesn’t join the
coalition C). The marginal utility of a coalition C in agent’s A joining the coalition is
defined as a derivation of the collective utility (such as social welfare) of the coalition
before and after the agent joins the coalition (muA�→C(C) = u(C ∪ A) − u(C)).

478 M. Rehák, M. Pěchouček, and J. Tožička

5 Conclusion

The definition of the adversarial behavior that we present provides a useful com-
plement of the current approaches to the open systems engineering. Even if the
system is based on carefully designed mechanisms and/or norms, the changing
system social structure and the environment or agent’s strategic behavior may
modify the system and make it inefficient or dysfunctional. To counter such
danger, the agents in the system shall continuously monitor the behavior of
the others and their own and detect potentially adversarial actions. As soon as
these actions are identified, protocols or normative systems can be altered to
counter the undesirable tendencies, or the adversarial agents can be completely
cut-away from the system. Such detection can be done on peer-to-peer basis, but
can be also entrusted to dedicated agents that would implement not the norm
enforcement, but norm creation and maintenance.

The problem of adversariality in the multi-agent systems is real. While the
irrationally adversarial agents may be easy to identify, it may be much more dif-
ficult to identify the rationally adversarial behavior, especially if all the agents
in the system are self-interested. In this context, the question of bounded ratio-
nality of agent’s reasoning is crucial. For example, some agents may be willing to
leave the local optimum to bring the system into the globally optimal (or simply
better) state. However, if the other agents in the system lack this insight, they
may consider this behavior as adversarial because they fail to see the long-term
benefits. To better illustrate the concept, we will cite several accepted causes for
the emergence of the conflict between the rational actors. It is easy to realize
that most of these causes can plausibly exist in the multi-agent system and shall
be considered while designing autonomous agents.

Private information of each agent is not available to the others, provid-
ing one of the causes of miscalculation about capabilities or attitudes of
the other party. Such miscalculation may cause an adversarial behavior, as the
agents will not be able to correctly estimate the utility function of the part-
ners. Agents are often willing to misrepresent the reality about themselves, in
order to obtain better payoff or negotiation position in the future. However, if
such behavior becomes widespread in the system (It can be often prevented by
careful mechanism design.), agents are unable to communicate efficiently. In the
more sophisticated extension of this behavior, agents can behave strategically
and harm the others to gain higher relative power in the long term. In some
situations, the system may even become purely competitive – agents or their
groups have nothing to gain from cooperation, for example when the payoff is
indivisible.

Acknowledgment

Effort sponsored by the Air Force Office of Scientific Research, Air Force Mate-
rial Command, USAF, under grant number FA8655-04-1-3044. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Government purpose

Adversarial Behavior in Multi-agent Systems 479

notwithstanding any copyright notation thereon6. We also gratefully acknowl-
edge the support of the presented research by ARL project N62558-03-0819.

References

1. Dash, R.K., Jennings, N.R., Parkes, D.C.: Computational-mechanism design: A
call to arms. IEEE Intelligent Systems 18 (2003) 40–47

2. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: Recent
results and future directions. In: Proceedings of the 6th International Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communications,
ACM Press, New York (2002) 1–13

3. Conte, R., Castelfranchi, C.: From conventions to prescriptions - towards an inte-
grated view of norms . Artif. Intell. Law 7 (1999) 323–340

4. Pasquier, P., Flores, R., Chaib-draa, B.: Modeling flexible social commitments and
their enforcement. (In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.: Proceedings
of Engineering Societies in the Agents World V, Toulouse, October 2004)

5. Suri, N., Carvalho, M.M., Bradshaw, J.M., Breedy, M.R., Cowin, T.B., Groth,
P.T., Saavedra, R., Uszok, A.: Enforcement of communications policies in software
agent systems through mobile code. In: POLICY. (2003) 247–250

6. Ramchurn, S., Huynh, D., Jennings, N.R.: Trust in multiagent systems. The
Knowledge Engineering Review 19 (2004)

7. Willmott, S., Bundy, A., Levine, J., , Richardson, J.: An adversarial planning
approach to go. In: Proceedings of the Firstrst International Conference on Com-
puters and Games, Springer-Verlag, LNCS 1558 (1998) 93–112

8. Fearon, J.D.: Rationalist explanations for war. International Organization 49
(1995) 379–414

9. Posner, E.A., Sykes, A.O.: Optimal war and jus ad bellum (2004)
10. Becker, G.S.: Crime and punishment: An economic approach. The Journal of

Political Economy 76 (1968) 169–217
11. Brainov, S.: The role and the impact of preferences on multiagent interaction. In:

ATAL ’99: 6th International Workshop on Intelligent Agents VI, Agent Theories,
Architectures, and Languages (ATAL),, Springer-Verlag (2000) 349–363

12. Parsons, S., Wooldridge, M.: Game theory and decision theory in multi-agent
systems. Autonomous Agents and Multi-Agent Systems 5 (2002) 243–254

13. Gambetta, D., ed.: Trust: Making and Breaking Cooperative Relations. Basil
Blackwell (1990)

14. Goldratt, E.M.: The Theory of Constraints. N.Y.: North River Press, Croton-on-
Hudson, N.Y. (1990)

15. Mares, M.: Fuzzy coalition structures. Fuzzy Sets Syst. 114 (2000) 23–33
16. Castelfranchi, C., Falcone, R.: Principles of trust for mas: Cognitive anatomy,

social importance, and quantification. In: Proceedings of the 3rd International
Conference on Multi Agent Systems, IEEE Computer Society (1998) 72

6 The views and conclusions contained herein are those of the author and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Air Force Office of Scientific Research or the U.S.
Government.

Bayesian Dynamic Trust Model

Dimitri Melaye and Yves Demazeau

Laboratoire Leibniz 46, avenue Felix Viallet, 38031 Grenoble Cedex, France

Abstract. In this paper we propose a Bayesian dynamic trust model
based on Castelfranchi and Falcone’s works, thanks to which we can
determine the agent’s trust in another agent. Trust is not only a static
mental state: it changes over time. Either some new observations are per-
ceived and modify the trust level, or no observation is perceived and so
trust is eroded. Our model takes into account these dynamic aspects by a
Bayesian Kalman filter. We present, experiment and discuss our formal-
ism compared with others models. The results obtained with our model
are relevant and account for the particular dynamic aspects of trust.

1 Introduction

The expansion of the distributed systems highlights new problematics: need for
acting in an open, dynamic, unpredictable environment, need for guaranteeing
security, and need for providing the best services for other services and users.
As all distributed systems where knowledge is distributed and handled locally,
the concept of trust is naturally primordial in these systems. Regarded as a
crucial phenomenon by social sciences ([1,2,3]), trust is a concept difficult to
define because of its abstract and heterogeneous character. Trust is initially
regarded as a central mechanism of coordination in situation of ignorance and
a mechanism of social integration. We consider trust as a belief concerning an
action to except from another, in connection with something in a precise field or
context. It is a hypothesis about a future behaviour and refers to a possibility
of the realization of other’s action. It is neither a doubt nor a certainty: the one
who knows all need not to trust, the one knows nothing cannot trust [4].

The aim of this article is to regard trust as a cognitive process and to take into
account some of its dynamic aspects. Following the work of [5], we distinguish
on the one hand the ”one-to-one” trust model that calculates a level of trust,
and on the other hand the decision-taking, i.e. the act of trust called reliance by
Castelfranchi. In this paper, we concentrate on the trust model and we adopt
the Castelfranchi and Falcone’s model [6]. The cognitive approach of this model
is adapted to the social dimension of trust.

Furthermore, trust is a dynamic phenomenon. Thus two main aspects of trust
dynamics must be supported: the erosion of trust due to the absence of new
observations and corresponding to an increasing uncertainty, and the particular
increase/decrease of trust. As far as we know, the erosion of trust has not really
been studied in the trust literature yet, and particular dynamics of trust has not
been integrated in a cognitive-based model of trust yet.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 480–489, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bayesian Dynamic Trust Model 481

First we present Castelfranchi and Falcone’s model that we choose to formal-
ize by a Bayesian approach. Secondly, we show how this approach can take into
account some dynamic aspects of the trust by using a Kalman filter. Finally we
experiment and discuss this approach in regard to other approaches.

2 Castelfranchi and Falcone’s Trust Model

We consider trust as a cognitive process in order to account for its complexity
whether it concerns the social aspects or internal working of an agent. So the cogni-
tive approach of Castelfranchi and Falcone’s model ([5,6]) is adapted to this view.

In Castelfranchi and Falcone’s view, trust is regarded as a mental state and
consists of beliefs: the degree of trust is a function of the subjective certainty
of the pertinent beliefs, and the subjective certainty of this beliefs is derived
from the credibility of their sources. In that way, trust is decomposed in internal
factors and external factors. The idea is that these factors have some different
influences on the final trust level and produce completely different intervention
strategies. In [6], internal factors and external factors are formalized in the same
way (with Fuzzy Cognitive Map). However, considering the importance of the
external factors in the interpretation of some internal components [7], we think
internal factors and external factors are so different that they should not be
processed in the same way. Thus, in this paper, we concentrate on the internal
factors (how we can calculate them) and we do not consider the external factors.
These latter should be associated with the notion of context, where a context
would be the fact of a domain and a situation, i.e. the circumstances and the
conditions in which the agents are immersed. Thus the environment could be
taken into account in a well-different conceptual way from the internal factors.

These factors are decomposed themselves in relevant basic beliefs. These
beliefs are assumed to be independent of each other. In particular, concerning
the internal factors, the ability and the willingness of the trustee are considered.
However, they are not exhaustive, other beliefs could be added like dependence
or integrity (i.e. ethical dimension connected to the notion of honesty).

Each belief depends on belief sources. [6] distinguishes four belief sources:
direct experience, categorization, reasoning, and reputation. They are assumed
to be independent of each other. According to the context, we have not to use
all belief sources, but only the ones we have at one’s disposal. What’s more,
another belief source that is not taken into account is the institution. It gener-
ates and facilitates the trust between anonymous entities [8]: living under the
same institution, members are imbued with these normative ideas. However, for
the moment, we are not interested in this belief source whose the implications
(norms, laws and guarantees) extend beyond the aim of this article.

3 Bayesian Formalization

By relying on Castelfranchi and Falcone’s cognitive model [5], we could think
a logical approach (i.e. a manipulation of knowledge) is the most relevant one.

482 D. Melaye and Y. Demazeau

However, a pure logical approach is in connection only with knowledge, pure rea-
soning and interests, and is not a choice any more where you ”risk your trust”.
Therefore we adopt a Bayesian approach. As we have written it in the intro-
duction, trust is a hypothesis about a future behaviour. Thus, we can take into
account the non-fulfilment of the information, and the uncertainty of knowledge.
What’s more it provides a flexible well-formalized framework on which reasoning
and learning process is possible.

Proposition 1. We formalize the notion of trust of a truster agent and a trustee
agent in a context ω by a Bayesian network structured in three layers as figure
1 illustrates it :

– The final trust is represented by the variable T
– The i-th basic belief is represented by the variable Bi, with 1 � i � Nc

– The j-th belief source of the i-th basic belief is represented by the variable
Sij, with 1 � i � Nc and 1 � j � Ns

– The belief sources Sij influence the i-th basic belief, and the basic beliefs
influence the final level trust. These influences are taken into account by the
conditional probabilities existing between the aleatory variables.

.

......

Trust level

Basic beliefs

Belief sourcesSij SiNs SNc1S11 SNcNs
S1Ns Si1

B1 Bi BNc

T

Fig. 1. Bayesian network modeling

Each trust component is associated with a probability of satisfaction. In other
words, the trust value P (X) of the concept carried by X can be calculated from
the distribution of the aleatory variables. Thus P (T) = 1 represents a blind trust
and P (T) = 0 represents a fully distrust. Our approach does not prevent from
supporting a more symbolic qualitative view of trust: the range [0, 1] can be
divided in several ranges corresponding to different trust levels as [6] shows it.

The trust level is calculated by Bayesian inference (by starting from the
belief source, and by inferring the probabilities from the belief sources until
the trust level). These influences are supported by the conditional probabilities
thanks to which a concept can have more influence than another concept on the
superior concept (e.g. to favour the direct experiences rather than reputation).
The beliefs and sources are assumed to be independent for a same level of the
hierarchy. Nevertheless, this assumption can be discussed. The independence
between the beliefs is not intuitive. For instance, low willingness could decrease

Bayesian Dynamic Trust Model 483

competence, or competence could encourage to perform a task in a complex way.
However, in a first approach, for simplicity we assume the beliefs are orthogonal.
The marginal independence of the sources can be justified if their nature are
different : for example, generalization are static, and personal experience does
not influence reputation in a large system significantly. Concerning the scalability
of the model, the conditional probability table is exponential in the number of
parent nodes. However, from a cognitive standpoint, this number is not large
(e.g. three beliefs and four sources for [6]).

So, now we may wonder how the belief sources can be determined actually
and how this model can take into account some dynamic aspects of trust.

4 Dynamic Trust System

Trust is not only a static mental state: it changes over time. Moreover, as pre-
sented in the previous section, the level of the belief sources should be calculable
at any moment to infer the trust level. For this purpose, in this section, we pro-
pose a formalism based on the previous Bayesian formalism of Castelfranchi and
Falcone’s model.

4.1 Trust Dynamics

The dynamic aspects of trust have been discussed in several papers. [9] proposes
trust dynamics by learning. However, this approach is based on game theory and
it is may not be adapted to a more social approach [10]. [11] assumes that trust
is based on some events perceived in the environment (the direct experiences).
It distinguishes several types of trust dynamics, according to whether positive
evolution is more or less fast than negative evolution. However, this approach
does not integrate other belief sources in a more general computation of trust.
In [7], the influence of the external factors on trust dynamics is tackled. Never-
theless, in our article, we assume that these contextual and situational aspects
are treated in a different way from the internal factors. Except for this aspect,
no dynamic aspect is treated in Castelfranchi and Falcone’s model ([5,6]).

In this article we concentrate on two aspects of the trust dynamics: the
erosion of trust in the absence of new observations and the increase/decrease of
trust.

As trust is viewed as a function of the subjective certainty of the pertinent
beliefs [5], it is submitted to the phenomenon of erosion evoked in [12]. Thus,
the trust level drifts towards a default value corresponding to an increase of the
uncertainty when no information brings up to date the beliefs. This aspect of
trust dynamics is crucial and pertinent in practice, as it supports the absence of
regular information.

Rather than considering the increase and decrease of trust as a multi-type
phenomenon [11], we group the different types by considering an only property:
the inertia of trust and distrust. The inertia of trust (resp. distrust) accounts for
the speed of trust (resp. distrust) to swing to distrust (resp. trust). For instance,

484 D. Melaye and Y. Demazeau

blindly positive dynamics corresponds to a high inertia of trust and a low inertia
of distrust.

In this paper, like [11], we are interested in an only belief source: the direct
experience. Indeed we assume that trust dynamics is mainly the outcome of the
evolution of this only belief source: the institution and categorization sources
are the most static belief source (it is more confidence than trust [1]), and the
reputation source evolves in a large system slowly (it can be considered as a
level-headed average of other’s trust). On the contrary, the direct experience
source is submitted to some significant variations. This assumption is based on
another assumption: the direct experience source is function of some observations
perceived by the truster. Let us stress the fact that these signs are not the
outcome of previous reliance (successes and failures), but more generally some
relevant clues. Moreover, for simplicity we consider trust dynamics for a fixed
context. Thus, the question of the influence of the external factors on the direct
experiences [7] can be neglected.

4.2 Formalization

We propose a formalism that supports trust dynamics concerning its direct ex-
perience aspects. In the Bayesian framework, we propose a stochastic estimation
by Kalman filter. It supports the dynamic evolution of a system, whether new
information are observed or not. So it is an appropriate mathematical tool for
our purpose. We distinguish two phases: the state model accounts for the in-
ertia and the erosion of trust based on the propagation of the present trust
state (prediction). Then, the system proposes a revision of the trust state from
new observations (correction). If no observation is perceived, trust computation
is supported only by the prediction step. In the remainder of this paper, for
simplicity we omit the name of the fixed context ω.

Formally, as the figure 2 shows, p(xk+1|xk) represents the state model. We
assume that trust dynamics is supported by a dependence between the present
state of the components and the previous one. So the Bayesian decomposition
of (1) gives a product of three terms:

Correction: re-estimation of the trust level

sensor model : integration of the signsstate model : erosion and inertia

Prediction: estimation of the future trust level

xk = (Tk, Bik, Sijk)1�i�Nc,1�j�NS

p(xk|Zk) = 1
Ck

p(zk|xk)p(xk|Zk−1)p(xk+1|Zk) =
R

dxkp(xk+1|xk)p(xk|Zk)

xk+1 = (Tk+1, Bik+1, Sijk+1)1�i�Nc,1�j�NS

p(Tk|Zk)p(Tk+1|Zk)

Clues perceived zk

Fig. 2. Kalman filter process for trust

Bayesian Dynamic Trust Model 485

– the term
∏

ij p(Sijk+1|Sijk) with 1 � i � Nc and 1 � j � NS takes into
account dynamics of the belief sources, as a state of a belief source is statis-
tically dependent on the previous one.

– The term
∏

ij p(Bik+1|BikSijk+1) with 1 � i � Nc and 1 � j � NS accounts
for dynamics of the basic beliefs and the influence of the belief sources on
the basic beliefs.

– the term p(Tk+1|TkB1k+1...BNck+1) integrates the basic beliefs in final trust,
and takes into account dynamics of final trust.

p(zk|xk) is the sensor model: it accounts for the integration of the signs
perceived. As the observations influence only the direct experience belief sources,
the Bayesian decomposition gives p(zk|xk) =

∏
im p(zm

ijk|Sijk), where the j-th
source corresponds to the direct experience belief sources, and zijmk is the m-th
observation that influences the direct experience source of the i-th belief.

5 Experimentation and Discussion

In this section, we illustrate our dynamic model with some outputs of experi-
mentation, and discuss its contribution in regard to other approaches.

5.1 Experimental Protocol and Results

We consider a Bayesian network that instantiates an agent’s trust model in a
target agent according to a fixed context. The agent observes the target agent
by two fixed signs. Trust dynamics corresponds to a common sense inertia: trust
is fragile, it takes efforts to build trust but only a few acts to completely destroy
it (the decrease is faster than the increase). To simplify computation, we decide
that each component of the model can be in two different states (satisfactory
or unsatisfactory), following Bernoulli distribution. As we are interested in the
direct experiences especially, we consider this only belief source and two beliefs
(competence and willingness). The influence between the beliefs is the same, and
the a priori distribution of the state vector is uniform.

We present four experiments (figures 3, 4, 5, and 6). In each figure, three
curves are displayed. The dotted curve is the percentage of positive signs per-
ceived by the agent at each time step. The thicker curve describes the trust level
calculated from our trust system. The thin curve is the mean of the positive
signs. It corresponds to a statistical approach that counts the positive observa-
tions naively.

In the first experiment, the trust system becomes the signs from the target
agent with a probability 0.90 that this sign is positive. Between time 20 and
time 50, no observation is perceived. The outputs are presented in figure 3. This
graph illustrates the trust erosion from time 20 through time 50 (the full curve
decreases gradually). Three slow increases are observable after a low trust level
(from time 0, from time 50 and from time 80).

In the second experiment, the positive signs come with a low probability,
except from time 30 through time 70. Thus, the curve of figure 4 illustrates the

486 D. Melaye and Y. Demazeau

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

tr
us

t l
ev

el

time

Fig. 3. Trust dynamics with a high probability of positive observations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

tr
us

t l
ev

el

time

Fig. 4. Trust dynamics with a high probability of positive observations

increase of trust, and the sharp decrease from time 70. Compared to the naive
statistical approach, our model is more efficient and versatile: it is more similar
to the target agent’s trustworthiness (in particularly from time 70, by using this
naive model, the trust level is too high compared with the effective observations).

The third experiment (figure 5) illustrates the inertia of trust. All perceived
observations are positive, except at time 40. This only negative observation
makes the trust level decrease sharply. It corresponds to a sudden doubt due
to a contradiction perceived in regard to the previous positive observations. Af-
ter that, trust increases slowly before getting back its previous value. Thus, our
model accounts for this negative sign, whereas it is transparent for the classic
statistical approach.

Finally, figure 6 shows the inertia of distrust. On the contrary of the previous
experiment, the perceived observations are negative, except an only one at time
40. As we have defined, the inertia of distrust is high, so that the “positive
accident” is transparent for the trust system. Although the observations are
the opposite of the previous experiment, we notice that the trust level is not
complementary of the previous trust level. This non-symmetry is only due to

Bayesian Dynamic Trust Model 487

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

tr
us

t l
ev

el

time

Fig. 5. Trust dynamics with a low probability of negative observations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

tr
us

t l
ev

el

time

Fig. 6. Trust dynamics with a low probability of negative observations

dynamics of trust. It illustrates the relevant idea that trust and distrust have
peculiar dynamic, and are not both terms of a same unidimensional concept.

As the results show it, our model is more relevant than a naive statistical
approach: first, like [13], trust is viewed as a cognitive multi-component notion.
Secondly, particular dynamics are taken into account: the “accidents” have a
real impact on the final trust level, and target agent’s versatility is taken into
account. The main difficulty is to determine the parameters of the model. In
this experimentation, they are defined by an “expert”. However, in the future,
they should be learned autonomously by the agent considering the outcome of
the reliance (e.g. with an expectation-maximization process).

5.2 Discussion

Our model is based on a stochastic approach: we assume that trust is not prov-
able, but it is only predictable. The behaviour’s trustee cannot be predicted
exactly, but we assume that it can be modeled by a probabilistic distribution for
a fixed context. Moreover, in our system, the outcome of an execution is stati-
cally dependent of previous executions. Thus, trust dynamics can be supported,
as we have shown it with the previous experiments.

488 D. Melaye and Y. Demazeau

We do not think as [13] implies, that a statistical approach is necessary less
relevant than a pure cognitive approach. First, our approach is subtler than the
one described in [13]: it does not count the failures and successes, but integrates
in the trust cognitive process some perceived signs. In addition, our system
supports trust dynamics and erosion (in [13], internal behaviour’s agents are fixed
and constant, so experiments are biased). Thus, although it is numerical, it can
account for complex trust characteristics as well as more cognitive approaches.

Our approach is based on the fact that an agent behaves in a regular way for
a same context. So, the drawback is that it requires one instance of the model
per context. If several contexts must be considered, it can become heavy and
expensive. In order to avoid this problem, we think that the influence of the
contexts on the trust model should be managed with a more symbolic cognitive
approach like [14].

In fact, we think that the symbolic approach and the statistical approach
should not be opposed: both of these views are necessary to account for the
complexity of the trust notion. Two layers should be considered: a low level
(statistical approach) as presented in this paper for the integration of observa-
tions and basic dynamics, and a high level (symbolic approach) for the influence
of the contexts and the manipulation of the cognitive components (trust, beliefs,
sources) calculated by the low layer.

6 Conclusions and Perspectives

We have presented a Bayesian trust model based on Castelfranchi and Falcone’s
works, and we have added to it trust dynamics by using Kalman filter. As far
as we know, the phenomenon of the erosion of trust has not really been studied
in the multi-agent literature yet, and dynamics of trust has not been integrated
in a cognitive-based model of trust yet. In our system, the inertia of trust and
distrust is fixed a priori. In the future, it could be learned with experiences
(successes and failures of reliance). What is more, in this paper, we have been
interested only in the direct experience: we will study dynamics of the other
belief sources in next papers. Finally, we have experimented our model. The
results of our experiments confirm the relevance of our approach. Nevertheless,
in a second shot, we must conduct an evaluation in a real-world context.

We think that a statistical approach and a symbolic approach are complemen-
tary. They form a low-level and high-level layer. The low-level layer integrates
the signs perceived by the agent, calculates the strength of the components of the
model (sources, beliefs, trust), and takes into account basic trust dynamics. The
high-level layer should support the aspects in connection with a more symbolic
approach:

– The influence of context: as the fact of a situation and a domain, the context
has an influence on the components of the trust model [7] and trust dynamics
(the more uncertain the environment is, the more abrupt the erosion is).

– The manipulation of the trust cognitive components.

Bayesian Dynamic Trust Model 489

– By relying, a truster becomes dependent on the trustee, and the trustee is in
duty situation to respect social norms. Trust, dependence, and social norms
are connected and take part in the dynamic phenomena of trust reinforce-
ment. It will be interesting to study them in a more high-level approach.

These symbolic cognitive aspects of trust will make up our future works, as well
as the connections between both layers.

References

1. Luhmann, N.: Familiarity, confidence, trust: Problems and alternatives. In Black-
well, ed.: Trust: Making and Breaking of Cooperative Relations. Diego Gambetta
(1988) 94–107

2. Deutsch, M.: Cooperation and trust: Some theoretical notes. In Jones, M.R., ed.:
Nebraska Symposium on Motivation, Nebrask University Press (1962)

3. Gambetta, D.: Trust. In Gambetta, D., ed.: Trust: Making and Breaking Cooper-
ative Relations. Department of Sociology, University of Oxford (2000) i–x

4. Simmel, G.: The Sociology of Georg Simmel. Glencoe: Free Press (1950)
5. Castelfranchi, C., Falcone, R.: Principles of trust for mas : cognitive anatomy,

social importance, and quantification. In: ICMAS’98, Paris (1998) 72–79
6. Castelfranchi, C., Falcone, R., Pezzulo, G.: Trust in information sources as a source

for trust: a fuzzy approach. In: AAMAS’03, ACM Press (2003) 89–96
7. Castelfranchi, C., Falcone, R.: Trust dynamics: How trust is influenced by direct

experiences and by trust itself. In: AAMAS’04. Volume 2., New-York, IIE (2004)
8. Offe, C. Democracy and Trust. In: How Can We Trust Our Fellow Citizens? ed.

M. E. Warren, Cambridge University Press (1999) 42–87
9. Birk, A.: Learning to trust. In: Trust in Cyber-societies, Integrating the Human

and Artificial Perspectives. Volume 2246., Springer-Verlag (2001) 133–144
10. Williamson, O.: Calculativeness, trust and economic organization. Journal of Law

& Economics 36 (1993) 453–486
11. Jonker, C.M., Treur, J.: Formal analysis of models for the dynamics of trust based

on experiences. In Garijo, F.J., Boman, M., eds.: MAAMAW’99. Volume 1647.,
Berlin, Springer-Verlag: Heidelberg, Germany (1999) 221–231

12. Fabiani, P.: Dynamics of beliefs and strategy of perception. In: ECAI’96. (1996)
8–12

13. Falcone, R., Pezzulo, G., Castelfranchi, C., Calvi, G.: Why a cognitive trustier
performs better: Simulating trust-based contract nets. In: AAMAS’04, IEEE Com-
puter Society (2004) 1394–1395

14. Liau, C.J.: Logical systems for reasoning about multi-agent belief, information
acquisition and trust. In: ECAI’04, Berlin, IOS Press (2000)

Behavior Evaluation with Actions’ Sampling in
Multi-agent System�

Krzysztof Cetnarowicz1, Renata Ci ↪eciwa2, and Gabriel Rojek3

1 Institute of Computer Science,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

cetnar@agh.edu.pl
2 Department of Computer Networks,

Nowy S ↪acz School of Business — National-Louis University,
ul. Zielona 27, 33-300 Nowy S ↪acz, Poland

rcieciwa@wsb-nlu.edu.pl
3 Department of Computer Science in Industry,

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

rojek@agh.edu.pl

Abstract. Behavior evaluation is an approach to the problem of the
detection of intruders that are undesirable in the computer system. Con-
sidering multi–agent architecture each agent should execute continuous
and autonomous behavior evaluation of other agents existing in the en-
vironment of the secured system. This means that an agent is evaluated
separately by all agents in the environment. The distributed character
of behavior evaluation in multi–agent system requires an algorithm of
management and collection of the results of autonomous behavior eval-
uations of agents. The algorithm of results’ collection should enable to
elect the worst agent or agents which have to be eliminated. The main
topic of this article is a modified approach to the behavior evaluation
process. This approach reduces the number of evaluations which have to
be done by agents. The main idea is to evaluate only sampled actions
(e.g. every second action) which are undertaken by agents in the secured
system.

1 Introduction

Behavior based detection of unfavorable activities in multi–agent systems is in-
spired by ethically–social processes that function in human societies. An indi-
vidual in a society seems trustworthy if its behavior can be observed by others
and considered (or in other words evaluated) by majority as good and secure.
The decision about trustworthy of an individual takes place in a society in the
decentralized and distributed way — all individuals in a society make their own
decisions which form one decision of this society. Inspired by ethically–social
� This work was partially supported by AGH founds — grant no 11.11.110.660.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 490–499, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Behavior Evaluation with Actions’ Sampling in Multi-agent System 491

mechanisms in computer security systems induce decentralization of security
mechanisms which should be based on the observation and evaluation of the
behavior of an agent functioning in a secured system.

Behavior based detection of unfavorable activities in multi–agent systems
could be also applied in intelligent information systems which assure security in
real–world systems e.g. air ports, shop centers etc. The problems of application
behavior evaluation algorithm in the real-world security systems and first results
were presented in [2].

2 Related Work

One of the ideas, considering the real difficulties at building security systems,is
the approach to using the mechanisms of the immunological system. The main
idea of this approach is to create autonomic detectors, that can detect everything,
that differs from ”self elements”. In the nature such a detector set is the set of
T–lymphocytes. Intruders’ detection in computer environment has to be done on
the basis of certain characteristic structures. In case of an immunological system
of a human organism, these structures are peptides and proteins.

Some works in the area of artificial immune mechanisms, in which the place
of peptides is assigned to short sequences of data in a computer system are pre-
sented in [7,8,10]. It is shown, that short sequences of executed codes could be
significant to distinguish normal and abnormal behaviour of the system. The
mechanisms presented in [7,8,10] enable to distinguish ”self” and ”nonself” re-
sources. The ”self” resources are some data, codes, that are desirable in a secured
computer system. ”Nonself” resources are some data, codes, that (in certain sim-
plification) were created e.g. outside computer system or with tools from out-
side computer system. The ”nonself” resources should be treated as undesirable,
harmful intruders.

Rapidly developing agent technology makes full flow of resources among open
computer systems possible . Autonomous agents can yet freely migrate in the net
without knowledge of an owner or an administrator. In open systems, resources
recognized by immunological system as the ”nonself”, can actually be desirable
as well as useful. Resources defined as the ”self” do not necessarily have to be
useful for the system and resources recognized as the ”nonself” do not have to
be harmful. The more adequate discrimination turns out to be the distinction
between the bad resources — harmful, and the good ones — useful, although the
origin of supply (”self”/”nonself”) does not play essential part in the system.

In our work we would like to obtain the method for distinguishing between
the good and the bad resources. One of our ideas is to apply immunological
mechanisms to the sequences of actions (which means behavior) instead of the
sequences of codes or data. An agent should be evaluated on the basis of his
behavior (actions that he undertakes) instead of his code. The security mech-
anisms in open multi–agent systems should be distributed in the same way as
some security mechanisms that act in human societies.

492 K. Cetnarowicz, R. Ci ↪eciwa, and G. Rojek

3 Distributed Behavior Evaluation

The decentralization of security mechanisms is realized in multi–agent systems
by means of equipping all agents with some additional goals, tasks and mecha-
nisms. Those goals, tasks and mechanisms are named division profile and should
be designed in order to assure security for agents and the multi–agent system
those agents are situated. So the agents will execute tasks that they have been
created for and simultaneously will execute tasks connected with security. The
name division profile is inspired by M–agent architecture which could be used to
describe an agent (M–agent architecture was introduced among others in [1,3]).

Actions undertaken by agents are the base for behavior evaluation. They
are perceived as objects, which create a sequence registered by all agents in the
environment. Registered objects–actions could be processed in order to qualify
whether it is a good or a bad acting agent in this particular system, in which
evaluation takes place. A bad agent also could be named an intruder.

3.1 Division Profile

The description of the division profile was presented in [4,5,6]. Because of the
limitation of the acceptable length of this paper, this section contains only some
information that is crucial to understand the main ideas presented in this article.
In this paper we would like to focus on the algorithms of collection and processing
of the results of the division profile of agents functioning in the environment,
what is presented in Sect. 4 and in Sect. 6.

Each agent in a multi–agent system has his own autonomous calculated di-
vision profile. In division profile the immunological mechanisms are applied to
estimate the behavior of an agent. The division profile of an agent has three
stages of functioning:

1. creation of collection of good (self) sequences of actions,
2. generation of detector set,
3. behavior evaluation.

An agent a, which division profile is at his behavior evaluation stage, has
division state ma represented as a vector:

ma = (m1
a,m

2
a, ...,m

j−1
a ,mj

a) (1)

where j is the number of neighboring agents (neighboring agents are agents which
are visible for an agent a) and mk

a is the coefficient assigned to neighboring agent
number k. The coefficient mk

a indicates whether the agent number k is evaluated
by an agent a as good (if the coefficient has a small value) or bad (if the coefficient
has a great value). The coefficient mk

a is a number of counted matches between:

– detectors of an agent a which evaluates behavior and possesses division
state ma,

– the sequence of actions undertaken by an agent number k.

Behavior Evaluation with Actions’ Sampling in Multi-agent System 493

The presented process of setting of division state ma is a realization of behavior
evaluation in multi–agent system.

Marking the length of a detector as l and the length of the sequence of actions
as h, the coefficient mk

a is a number from a range 〈0, h− l + 1〉. The maximum
of counted matches is equal to h− l+ 1, because every fragment of the sequence
of actions, which has a length equal to the length of a detector, can match only
one detector.

4 Algorithms of Distributed Evaluation Management,
Collecting and Processing

An algorithm of agent’s evaluations management is used to specify which agent
or agents should be evaluated by other entities in the secured multi–agent sys-
tem at given time period. In order to choose an agent, which should be removed
from the system, division states of all agents are collected and processed, what
is specified by the algorithm of evaluation’s collecting and processing. Also an
agent’s algorithm, which specifies how to co-operate with the environment’s man-
agement and collection algorithm, is attached to the group of the algorithms of
evaluation process.

4.1 Algorithm of an Agent

An agent a in case of receiving a request of evaluation of an agent number k
sends back only the coefficient ok

a in the range 0 ≤ ok
a ≤ 1. The coefficient ok

a is
given by function:

ok
a =

(
mk

a

h− l + 1

)4

(2)

where h− l+ 1 is the maximum of counted matches of agent a. An agent a does
not have to calculate the whole division state ma, but only the coefficient mk

a.
The power function of evaluation behavior increases a weight of high coeffi-

cient mk
a. As a result, an agent with high number of counted matches obtains

coefficient ok
a much higher than an agent with low number of counted matches.

The exponent of power function has been set empirically [9].

4.2 Algorithms of an Environment

An elimination table o∗ represented as a vector is used in the environment:

o∗ = (o1∗, o
2
∗, ..., o

j−1
∗ , oj

∗) (3)

where j is the number of neighboring agents and ok
∗ is the coefficient assigned to

the agent number k.
Each action undertaken by an agent may cause the change of the results of

behavior evaluations that are done by other agents in the system. This approach
lets us formulate the algorithm of evaluation management as follows:

494 K. Cetnarowicz, R. Ci ↪eciwa, and G. Rojek

If an agent k undertakes an action, a request of evaluation the agent k
is sent to all agents (except the agent k) by the environment.

After sending the request of evaluation of an agent number k the environment
uses the algorithm of evaluation’s collecting and processing, which consists of
following actions:

1. The coefficient ok
∗ in the elimination table is set to 0. In this way the infor-

mation about earlier evaluation’s results is dismissed.
2. Agents send back coefficients as it is described in Sect. 4.1.
3. Gained coefficients are summed and then this sum is divided by j − 1 (j is

the number of agents):

ok
∗ =

ok
1 + ok

2 + ...+ ok
k−1 + ok

k+1 + ...+ ok
j−1 + ok

j

j − 1
(4)

The coefficients in the elimination table o∗ are looked up permanently. If the
coefficient ok

∗ is greater than 1
2 agent k is eliminated.

5 Behavior Evaluation Experiment

In this experiment a multi–agent system with asynchronously acting agents was
implemented. In the simulated environment there are two types of resources: re-
sources of type A and resources of type B. This situation reflects these operations
in computer system which should be executed in couples e.g. opening / closing a
file. Resources are used by agents, but refilling all resources is only possible when
each type of resources reaches the established low level. The simulated system
has three types of agents:

– type g=0 – agents which take one unit of randomly selected (A–50%, B–50%)
resource in every full life cycle;

– type g=1 – agents which take one unit of randomly selected (A–75%, B–25%)
resource in every full life cycle; type g=1 agents can be treated as intruders,
because increased probability of undertaking only actions of one type can
cause blocking the system (what is presented in [4,5]);

– type g=2 – agents which take one unit of A resource in every full life cycle;
type g=2 agents are also called intruders.

Actions of agents of type g=1 are similar to actions of agents of type g=0 but
they are also undesirable in the secured system.

The case in which initially there are 64 agents of type g=0, 8 agents of type
g=1 and 8 agents of type g=2 is presented below. All agents in the system are
equipped with the division profile mechanisms with parameters h = 18 and l = 5.
The simulations are run to 2000 constant time periods Δt and 10 simulations
were performed. The diagram in Fig. 1 shows the average number of agents in
separate time periods.

During the first 18 time periods Δt all agents were acting synchronously.
In 18th time period all agents have generated their detectors and achieved the

Behavior Evaluation with Actions’ Sampling in Multi-agent System 495

250 500 750 1000 1250 1500 1750 2000
time

10

20

30

40

50

60

70
number of agents

type g=2 agents

type g=1 agents

type g=0 agents

Fig. 1. Number of agents in separate time periods

third stage of their division profiles — behavior evaluation. From 19th time
period agents were acting asynchronously — an agent could be activated in one
time period Δt, but had to be activated at least once during ten time periods Δt.

From 19th time period all agents used their detectors to evaluate agents
which undertook an action according to algorithms presented in Sect. 4. As a
result of evaluation processes all bad agents (agents of type g=2) were being
deleted successively from 19 constant time period Δt to 28 constant time period
Δt. At the end of presented simulation the agents of type g=1 were eliminated
in 96%, but agents of type g=0 were eliminated in 13% as well.

The elimination of good agents (type g=0) has been named the phenomenon
of self–destruction. The phenomenon of self–destruction could be caused by the
random choice of undertaken action. For example an agent of type g=0 deciding
about action randomly, can undertake such sequence of action: AAAAAAAAAB-
BAAABBBB. As a result, this agent will be evaluated as bad because his actions
are very similar to actions of bad agents.

The other problem is the rate of deleting type g=1 agents whose actions
are similar to actions undertaken by type g=0 agent. However, they are also
unfavorable for the system (probability of taking resource A–75%, B–25%). An
exemplary action sequence of type g=1 agent could be presented as follows:
AABBAAAAABABAAABAA, so probably this agent could be evaluated better
than the type g=0 agent from the example mentioned above.

6 Actions’ Sampling

In previous simulations an agent was evaluated each time he tried to undertake
an action (according to the algorithm of evaluation management presented in
Sect. 4.2). The difference between coefficients obtained during two (or even more)
following evaluation processes of an agent was very slight as it is presented in
Fig. 2. Therefore the new idea (which has been named actions’ sampling) in
the algorithm of evaluation management is proposed. Actions’ sampling means
that agents will not be evaluated after each of their actions. An example of

496 K. Cetnarowicz, R. Ci ↪eciwa, and G. Rojek

actions’ sampling can be: only every second action of an agent, this agent will
be evaluated. The algorithm of evaluation management with actions’ sampling
could be presented as follows:

An environment sends a request of evaluation the agent k to all agents
(except the agent k) when the agent k undertakes an action every s-th
time.

Parameter s is a positive integer. s = 1 means that behavior evaluation is without
actions’ sampling, because after each action of an agent this agent is evaluated.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.05

0.1

0.15

0.2

0.25

o*
k

The consecutive number of evaluation process

Fig. 2. Evaluation results for an exemplary agent k

7 Behavior Evaluation with Actions’ Sampling
Experiments

A multi–agent system with asynchronously acting agents of type g=0, type g=1
and type g=2 was implemented, as it was specified in Sect. 5. All agents in
the system are equipped with the same division profile parameters — h = 18
and l = 5. The multi–agent system analogous to the experiment in Sect. 5
in which initially there were 64 type g=0 agents, 8 agents of type g=1 and 8
agents of type g=2 was researched, but additionally the actions’ sampling with
parameter s with value from 1 to 18 was applied. The simulations were run to
2000 constant time periods Δt. Presented results are in all cases the average of
10 runs of simulation.

The case for s = 1 is presented in Fig. 1, s = 1 means that there is behavior
evaluation without actions’ sampling, because after each action of an agent, this

Behavior Evaluation with Actions’ Sampling in Multi-agent System 497

250 500 750 1000 1250 1500 1750 2000
time

10

20

30

40

50

60

70
number of agents

type g=2 agents

type g=1 agents

type g=0 agents

Fig. 3. Number of agents in separate time periods in the case of actions’ sampling with
parameter s = 2

agent is evaluated. The results for s = 2 are presented in Fig. 3, s = 2 means
that only after every second action of an agent, this agent is evaluated.

Till the 18th time period Δt all agents were acting synchronously. As it was
described in Sect. 5, in 18th time period all agents have generated their detectors
and achieved the third stage of their division profiles — behavior evaluation
(agent can use their detectors in order to evaluate an agent). From 19th time
period an agent was evaluated after his first action and after his every s-th
action according to algorithms with actions’ sampling. As a result of evaluation
processes all bad agents (agents of type g=2) were being deleted successively
from 19 constant time period Δt to 28 constant time period Δt.

The phenomenon of self–destruction and the rate of deleting an agent of
type g=1 seem to be similar for two presented cases (s = 1, 2). More precise
deductions can be gathered from Fig. 4. Figure 4 presents number of type g=0
agents and type g=1 agents for different values of parameter s = 1, 2, 3, ..., 18
remained after 2000 constant time periods Δt (at the end of simulations). In all
those cases agents of type g=2 were deleted as quickly as it was possible (from
19 constant time period Δt to 28 constant time period Δt).

Considering the phenomenon of self–destruction, actions’ sampling can re-
duce the rate of destruction of good agents. Improvement of self–destruction
rate can be noticed for s = 2 and bigger. However, the best results are obtained
for s = 5, s = 6, s = 9 or bigger. This improvement can be induced by the fact,
that agents are not evaluated very often. Less frequent evaluation can reduce the
number of destructed agents whose actions can be sometimes similar to actions
of bad agents.

Considering the problem of deleting agents of type g=1 whose actions are
similar to type g=0 agents’ actions unfavorable for the system, actions’ sam-
pling can increase the number of remained agents of type g=1 in the system.
This occurrence is unfavorable in research computer system. However, actions’
sampling increases number of type g=1 agents remained in environment in gen-
eral, actions’ sampling with parameter s with value no bigger than 6 increases
this unfavorable occurrence with very small rate.

498 K. Cetnarowicz, R. Ci ↪eciwa, and G. Rojek

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
s

20%

40%

60%

80%

100%

per cent of agents
remained in the system

type g=1 agents
type g=0 agents

Fig. 4. Final number of agents after 2000 constant time periods Δt in the cases of
actions’ sampling with parameter s = 1, 2, 3, ..., 18

There is another advantage of usage of actions’ sampling with parameter
s with bigger values — it reduces the computational complexity of behavior
evaluation process. In some applications low computational complexity of applied
solutions (and/or small self–destruction rate) could be more important than the
most exact removal of intruders that undertake an action slightly similar to
desirable agents.

8 Conclusion

The main mechanisms of distributed behavior evaluation in multi–agent systems
were presented in this article. Results of experiments indicate that the difference
between coefficients obtained during two (or even more) following evaluation
processes of an agent was very small. This observation permits us to formulate
a proposition of actions’ sampling. Actions’ sampling with parameter s means
that an agent will be evaluated only after his every s-th action. Solutions with
actions’ sampling will have reduced the level of computational complexity.

A multi–agent system with agents which are responsible for behavior eval-
uation with actions’ sampling was simulated. Considering the phenomenon of
self–destruction and the problem of deleting agents of type g=1, it could be
stated that in general actions’ sampling with parameter s = 2, 3, 4, 5, 6 is desir-
able in evaluations algorithm. Actions’ sampling with parameter s > 6 reduces
the rate of self–destruction of good agents strongly, but reduces also the rate of

Behavior Evaluation with Actions’ Sampling in Multi-agent System 499

removing agents of type g=1 which are undesirable in the researched system.
However, there could be applications of behavior evaluation algorithms in which
the value of parameter s bigger than 6 will be profitable, instead of problems
with recognition agents that should be evaluated as bad, but whose actions are
similar to good agents.

References

1. Cetnarowicz K.,: M–agent architecture based method of development of multiagent
systems, in Proc. of the 8th Joint EPS-APS International Conference on Physics
Computing, ACC Cyfronet, Kraków (1996)

2. Cetnarowicz K., Nawarecki E., Rojek G.: Behavior Based Detection of Unfavorable
Events Using the Multiagent System, in Monitoring, Security, and Rescue Tech-
niques in Multiagent Systems, Advances in Soft Computing, Springer-Verlag Berlin
Heidelberg (2005) 579–588

3. Cetnarowicz K., Nawarecki E., Żabińska M.: M–agent Architecture and its Applica-
tion to the Agent Oriented Technology, in Proc. of the DAIMAS’97, St. Petersburg
(1997)

4. Cetnarowicz K., Rojek G.: Unfavourable Beahvior Detection with the Immuno-
logical Approach, in Proc. of the XXVth International Autumn Colloquium ASIS
2003, MARQ, Ostrava (2003) 41–46.

5. Cetnarowicz K., Cieciwa R., Rojek G.: Behavior Based Detection of Unfavorable
Activities in Multi–Agent Systems, in MCPL, Conference on Management and
Control of Production and Logistics, Santiago - Chile (2004) 325–330.

6. Cetnarowicz K., Rojek G.: Behavior Based Detection of Unfavorable Resources, in
Lecture Notes in Computer Science, Volume 3038, Springer-Verlag Berlin Heidel-
berg (2004) 607–614.

7. Forrest S., Hofmeyer S.A., Somayaji A.: Computer Immunology, in Communica-
tions of the ACM Vol. 40, No. 10, (1997) 88–96 .

8. Forrest S., Allen L., Perelson A.S., Cherukuri R.: Self-Nonself Discrimination in
a Computer, in Proc. of the 1994 IEEE Symposium on Research in Security and
Privacy, Los Alamitos, IEEE Computer Society Press, Oakland, CA (1994) 202–212

9. Rojek G., Ci ↪eciwa R., Cetnarowicz K., Algorithm of Behavior Evaluation in Multi-
agent System, in Lecture Notes in Computer Science, Volume 3516, Springer-Verlag
Berlin Heidelberg (2005), 711–718.

10. Wierzchoń, S.: Artificial Immune Systems [in polish], Akademicka Oficyna
Wydawnicza EXIT, Warszawa (2001)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 500 – 510, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agent-Based Control of a Municipal Water System

Lucilla Giannetti1,2, Francisco P. Maturana2, and Frederick M. Discenzo2

1 Department of Electronic and Information Engineering,
University of Perugia, Perugia, Italy

2 Rockwell Automation, Mayfield Heights, OH, USA
{lgiannetti, fpmaturana, fmdiscenzo}@ra.rockwell.com

Abstract. In this project, we discuss the implementation of an intelligent agent-
system for controlling a municipal water system. This work presents an agent-
based approach to establishing the expected water requirements, operating
constraints, and evaluation criteria and the use of collaborating agents to
prescribe an optimal control scheme. A distributed control strategy is
implemented and evaluated in a simulation of a municipal water system.

1 Introduction

A Municipal Water System (MWS) can be defined as a combination of utility
components and services that are involved in providing drinking-quality water to the
local population. The system includes:

• Water: Service or product with a defined flow and quality requirement.
• Tanks: A cylindrical vessel with storage capacity.
• Pumps: Links that impart energy to a fluid thereby raising its hydraulic head.
• Pipes: Links that transport water from one point in the network to another.
• Valves: Links that limit the pressure or flow at a specific point in the network.
• Reservoirs: Large water deposit which can be natural or artificial.
• Controllers: Hardware and software components.
• Sensors: Instrumentation that extracts data from the physical system (sensors).
• Consumers: System end points or boundaries with service requirements.

Due to increased levels of urbanization and consumer demand, most water
distribution systems have become increasingly complex and energy prices have
continued to escalate. There is a growing need efficiently schedule pump operation to
minimize energy consumption and other operating costs while insuring the reliable
delivery of high quality water to meet dynamic consumer demands. The security and
safety of urban water distribution system is now an extremely critical problem that
must be considered in the design and operation of water systems. The control and
monitoring system must allow for the implementation of different surveillance
techniques to detect the presence of hazardous elements in the water to prevent their
transmission to the public. These control systems must have complete and immediate
knowledge and initiate an appropriate coordinated response to safely and efficiently
maintain operations of the water system. We explore these dimensions by introducing
agent-based control as the core monitoring and control element. The following

 Agent-Based Control of a Municipal Water System 501

sections describe the implementation of autonomous agents to meet local demand for
fresh water in a reliable, efficient and safe manner.

Optimizing the operation of a pump system in a municipal water-distribution
system can reduce energy costs and also realize other economic and operational
benefits. Theoretical and empirical studies of pump scheduling in various water
supply systems suggest that 10% of the annual energy cost and related costs may be
saved if by optimizing pump operation [1]. The additional benefits include more
reliable delivery of water, improved water quality, and greater protection for
consumer safety. However, optimal control requires a precise prediction of the short-
term water demand and complete state information such as pump capacities and
efficiencies. This information permits establishing minimum cost pumping schedules
in advance to meet future demand. One objective of this work is to develop an
intelligent agent system for monitoring and controlling a municipal water-supply
system that ensures optimal control to reduce energy costs, while maintaining water
quality and demand [2].

Our focus is on the operation of the pumping stations and the collaboration
between the pumps and the water storage tanks. As a first step, we present the
reasoning behind the creation of the agent-based rules using a simple system.
Although we use a simple system, we will follow well-defined steps to scale up the
solution into a multi agent system. In one way, our intention is to frame the procedure
for creating agents for the water distribution system. The study of a MWS can be
divided into three concepts that define the system requirements and its associated
constraints: (1) Water quality, (2) Energy costs, and (3) Demand.

Water quality is affected by the time a parcel of water is retained in a storage tank.
New water entering a tank from a reservoir is assumed to have age zero. The
cumulative age of the water is a factor that helps define the quality of the water.

The aging of water in a tank is primarily a function of water demand, system
operating strategy, and the system design or topology. As water demand increases, the
amount of time a given water element is resident in the distribution system decreases.
Demand is in turn related to land use patterns, commercial/industrial activity, weather
(i.e., temperature and lawn watering), and water use habits by the community (i.e.,
conservation and reuse practices). The use of reclaimed water on-site or through
separate distribution systems will tend to lead toward reduced demand and
consequently greater water age when all other factors are held constant [3].

Energy costs are an important aspect affecting the operation of a MWS. An energy-
efficient system should minimize cost of supplying water. This includes establishing a
control strategy that keeps the water level within physical and operational constraints,
minimizing the time pumps operate when energy costs are high and reducing peak
energy demands and while maintaining sufficient water in storage tanks to meet the
time varying demand.

Demand is another critical aspect affecting the control of a MWS. The
instantaneous consumption of water in an urban system also depends on the
environment, commercial and community factors. Moreover, a particular day of the
week or an observed holiday will considerably influence water consumption.

It is necessary to know the current and future demand in order to define how much
water is needed in the tanks and at what time. This information then provides the

502 L. Giannetti et al.

basis to prescribe a time-based control strategy that meets the predicted demand while
achieving cost and quality objectives.

There are many different methods to predict the demand [4]. A simple method is to
predict demand using historical data for the specific time period of interest. Based on
the predicted demand it is possible to determine if water currently in the tank is
adequate for the next time period or if water needs to be added or possibly refreshed.
Historical demand information is needed for different times of the day, different days
of the week, and for different seasons. It is useful to establish estimates of predicted
demand for multiple scheduling periods beyond the current planning period. This
information is used to establish more global optimum solutions and control strategies
that are more stable and reliable particularly when demand is near peak capacity or
upsets may impact the ability of the system to meet the expected demand.

2 General Architecture of Agents

We use a distributed control architecture based on automation controllers with an
extended firmware that supports intelligent agents [7]. With these extensions,
component-level intelligence is possible by associating a logical processing program
with a physical device such as a pump or a valve. The physical devices can then be
operated as intelligent nodes with negotiation capabilities. The intelligence of the
system is distributed among multiple controllers by placing standalone or multiple
agents inside the controllers. The relationship among the agents is loosely coupled but
their association is cohesive and adaptable [6] and [8]. The agent architecture is
organized according to the following characteristics:

1. Autonomy: Each agent makes its own decisions and is responsible for carrying
out its decisions (i.e. performing control) to successful completion;
2. Cooperation: Agents combine their capabilities and simple rules of interaction
into clusters to negotiate, adapt and respond to events and goals;
3. Communication: Agents share a common language;
4. Fault tolerance: Agents possess the capability to detect equipment failure and to
isolate failures from propagating; and
5. Pro-action: Agents periodically or asynchronously propose strategies to enhance
the system performance, improve reliability, or to prevent the system from entering
harmful or otherwise undesirable states.

Intelligent agents possess characteristics that make them well suited to control a
municipal water system. A suite of collaborating autonomous agents can reduce
operating cost and provide increased control flexibility by concurrently looking at
constraints, changing system economics and uncertain future demand and develop a
response using negotiation scenarios. For example, a water storage tank can request
water from a supplier pumping station. The pumping station can then consult with the
utility company about the cheapest electricity period to schedule for inexpensive
pumping. These types of agents can be programmed to evaluate control strategies
based on water quality requirements that are affected by high system complexity and
unpredictability. The most appropriate use of agents in a municipal water system will

 Agent-Based Control of a Municipal Water System 503

be to establish an association with the plant physical devices with agent-based
autonomous software elements that comprise a multi-agent system.

Agents are autonomous, problem-solving entities capable of effective operation in
dynamic and open environments. Agents can follow two types of collaboration:
centralized and decentralized.

The centralized approach has only one agent with knowledge about the complete
system. This agent makes decisions and sends these decisions to the interested parts
of the system. This kind of control may be more efficient from the agent’s point of
view, since only the central agent has to have substantial computing capacity.
However, it is less desirable from a reliability and security point of view. For
example, if the central agent breaks, the whole system stops.

Instead, decentralized control has more agents with the same capability, and each
agent controls only one small part of the system. Agents communicate with each other
using agent language [5] and exchange information about the system status.
Furthermore, distributed agents may self-organize into clusters to insure efficient
communications and coordinated operation. Central failures are avoided and
parallelism is increased. However, there is a trade off between parallelism and
optimality of the solutions.

This paper presents algorithms to control a MSW based only on the demand, with a
distributed agent system. The aim of the control system is to guarantee enough water
in the tank to satisfy consumers, avoiding empty or full tank. The framework
presented is readily extended to accommodate reliability and economic
considerations.

3 System Analysis

To simplify the study, we established a reduced scale model of a municipal water
system. The model is comprised of: a single water reservoir, a single tank, a pump
station with only one electrical pump, and pipes and valves. The model was simulated
using Simulink, where we placed the simulation of the plant, the control and agent
programs. After we conclude the baseline architecture we will expand the system into
a complex one, with more than one tank and more than one pump. In that case, the
complexity will arise for the simulation model but we will just replicate the agent
behavior. We believe that this is a very important and practical observation. For
example, by adding the model of a junction among the pump station and the tanks, the
agent has to schedule the activity of more than one pump and it has to regulate the
opening and closing of the valves of each tank. In such a case, it will make more
sense to create multiple agents to handle the new scenarios and components. In
particular with a more complex system the agent must be divided into multiple agents
to be consistent with the distributed control approach. An idea can be to have an agent
at the pumping station and an agent for each tank. In this way, the agents speak with
each other to schedule the transportation of water and let the control system operate
the low level devices such as valves.

The pumping station takes water from the reservoir and moves it into the tank
through a main trunk line (distribution pipe). In between the tank and the pump
station, there is an electrically operated valve. The tank is assumed of cylindrical

504 L. Giannetti et al.

shape. For each of these components, there are intelligent behaviors to control and
monitor in the simulation. These intelligent behaviors are defined as controller and
agent behaviors, as shown in Figure 1.

Fig. 1. Simple water system simulation with controller and agent

Both the control and agents were implemented as S-functions in Simulink. The
algorithms will be converted into formal languages to build agents and control charts
for implementation in a hardware automation controller. The approach used is that
the simulation will act as test bed to validate the behavior of the algorithms. In
addition, the same algorithms may be directly employed for operating the real
equipment. In fact the simulation model of the plant may also be employed in the
control of the actual MWS to analyze what-if scenarios and to assist in isolating faults
or analyzing unusual disturbances. A training system is also an option.

The agents collaboratively evaluate the condition or state of the system, make
decisions about the operation of the system, establish execution plans, and initiate the
prescribed change in operation. In this simulation study, an agent establishes the
operating schedule of the pump such as when to turn it on or off. The agent generates
the schedule. The control function reads the schedule to control the pump. The
schedule’s structure is shown in Table 1.

Table 1. Schedule generated by agent

Tstart_1 Tend_1 Pump activity Predicted_levelstart_1 Predicted_levelend_1

… … … … …

Tstart_n Tend_n Pump activity Predicted_levelstart_n Predicted_levelend_n

Where,
• Tstart_i is the beginning of the ith interval;
• Tend_i is the end of the ith interval;

 Agent-Based Control of a Municipal Water System 505

• Pump activity is the binary variable that indicates if pump is on (1) or off (0);
• Predicted_levelstart_i is the predicted level at the beginning of the ith interval; and
• Predicted_levelendt_i is the predicted level at the end of the ith interval.

Time is expressed in seconds and because of the continuity of the schedule,
Tend_i=Tstart_(i+1). The same applies for the predicted level, a value that denotes the
expected water level in the tank in feet. The pump activity is expressed as a binary
value indicating the state of the pump.

The control module reads this file and stores the data in memory. It commands the
simulation to carry out the actions affecting the different simulation subsystems.
Later, the same control signals will be emitted by a control program from a hardware-
based controller(s) to affect the real equipment. The control signals correspond to
Inputs and Outputs (I/O) of the control system which are associated with the devices.

3.1 Agent Function

The agent is being created to generate schedules using the demand. The problem is
that the future demand is not known accurately because it is a dynamic, probabilistic
factor (independent variable). An altered version of the historical demand is used to
estimate the actual demand inside the simulation and to establish a difference between
the actual and historical demands and for calculating the expected demand schedule.
The historical demand trend is shown in Figure 2.

Fig. 2. Historical demand

With this information, we calculate the predicted level after fixed intervals (e.g., 30
minutes and 60 minutes, as shown in Equation 1).

')'('

'60'30'60

'30'30

_Pr

_Pr

_Pr

nDeltaTnn

now

DemandLevelLeveledicted

DemandLevelLeveledicted

DemandLevelLeveledicted

−=

−=
−=

−

Equation 1. Equations to calculate the predicted level

506 L. Giannetti et al.

The minimum level of water in the tank is chosen be to one foot. The trigger level
was another important value that was also arbitrarily chosen. This variable indicates
the level at which the pump needs to be on. However, if due to a fault or inaccurate
forecast, the level reaches the minimum level, an alarm signal is generated into the
agent by the control module. Knowing the predicted level, a set of rules can be
generated to control the level in the tank, as shown in Equation 2.

10)__(Pr

10)__(Pr

00)__(Pr

'

'

'

=>−
==−
=>−

PumpOnTriggerLevelLeveledicted

PumpOnTriggerLevelLeveledicted

PumpOnTriggerLevelLeveledicted

n

n

n

Equation 2. Rules for the pump

• Rule 1: PumpOn = 0. This rule indicates that the tank contains enough water and
that there is no need for additional pumping;
• Rule 2: PumpOn = 1 (a). This rule says that the level of water is low and that
pumping is needed to recover the safety buffer; and
• Rule 3: PumpOn = 1 (b). This rule tells that the demand was more than the
previous prediction and that water is needed now.

The needed water was calculated to reach the level trigger value plus an error:

HowMuchWaterToPump = level_trigger * (1 + Percentage) - prediceted_level

Knowing the suction head (head at the pump station location) and the discharge
head (head at the water in the tank location), it is possible to calculate the
“Delta_Head”, as follows:

HeadSuctionHeadeDischHeadDelta __arg_ −=
With this information, it is possible to calculate the flow out to the pump, knowing

the pump curves (Figure 3). From Figure 3, it is clear that more water in the tank
means a higher discharge head and less flow out to the pump. Knowing the pump
curves (from OEM), it is possible to calculate the pumping time, i.e. tON.

Fig. 3. Head versus flow

 Agent-Based Control of a Municipal Water System 507

The actual flow leaving the pump is calculated as the average between the flow at
the beginning of the pumping interval and the flow at the end of the interval based on
the variable discharge head, which is affected by the level in the tank. With these
assumptions, we can formulate the next set of rules:

• Rule 1: Let Level1 be the level of water at the beginning of the pumping interval.
The agent decides the value of “HowMuchWaterToPump” (the amount of water that
will be needed in 30 minutes). And so after 30 minutes Delta_Head is changed
because the level in the tank will be Level2= Level1+HowMuchWaterToPump;

• Rule 2: Let 1Q be flow out of the pump associated with Level1 and 2Q flow

associated with Level2. The average flow Q used to calculate tON is obtained as the

average between the boundary flows:
2

21 QQ
Q

+= . tON is calculated as follows:

QAreaTankerToPumpHowMuchWattON /*= ;

• Rule 3: In this way, we calculate the average time that the pump has to be on and
so it is possible to fill out the schedule table for the next period. Hence, the predicted
level in the tank can be approximated as follows:

erToPumpHowMuchWatLeveledictedLeveledicted ii += −1_Pr_Pr ; and

• Rule 4: At the end of the scheduled period, a new plan for the pump is created
using the predicted level. Practically, the schedule can be done more often. The
control actuates the commands decided by the agent, but it always monitors the
condition of the system to prevent harmful conditions from happening (e.g., excessive
or lack of pumping into the tank).

3.2 Control Function

The task of the control module is to activate the pump based on the schedule done by
the agent. So the first job of the control module is to check the pumping intervals. The
control module sets the pump start and end times in the control table by indicating the
corresponding times. Because the schedule is created using a prediction, there is a
need to monitor the system to periodically correct the predicted demand, if required.

The second task of the control module is to change the pump activity before an
anomalous state occurs. It generates alarms to notify the agent that something is
deviating from a desired trend. Given this condition, the agent re-schedules the
activity to compensate for the dynamic changes. An alarm signal is generated under
the following states:

• State 1: When the predicted level value is different than the actual level and
greater than an acceptance threshold;
• State 2: When the level in the tank is near less than a fixed percentage of the
maximum level admissible;
• State 3: When the predicted level value is very different from the actual level and
the actual level is very close to the level trigger; and
• State 4: When the actual level is very close to the minimum level.

We have observed that usually the last state doesn’t occur because preceding states
change the pump activity before the level can reach the minimum level.

508 L. Giannetti et al.

4 Simulation Results

In this section, preliminary simulation results are reported. The duration of each
simulation trail is 43200 seconds (12 hours).

The predicted level is calculated looking at the historical demand after 30 minutes
from the actual simulation time. So, the agent calculates a new schedule every four
hours using 30 minutes intervals. The agent also creates a new schedule if an alarm
occurs. This interval of time is chosen to guarantee an accurate prediction. In fact, the
time interval does not have to be too long to avoid missing sudden changes in the
demand. But it does not have to be too short either to know the demand in advance.
Figure 4 illustrates the demand curves, actual (green) and historical (blue).

The curves in Figure 4 represent a typical morning demand. During the first hours
of the morning, the demand is not very high, but about 3 a.m. until 8 a.m. the demand
increases, people are getting up. Then about 11 a.m., the demand increases again.

Figure 5 represents the simulation results for the actual demand with correction
actions. The real level in the tank is the green line. The predicted level is the blue line.
The trigger level is the red line and the minimum level is the cyan color line.

In particular, we can see that at time 14400 sec (4 hours), the predicted level
changes instantly because the first schedule is finished and the agent has scheduled
the next four hours of water consumption. The agent adjusts the predicted value with
the real value, as shown in Figure 6.

Another case corresponds to the schedule at time 36645 sec (about 10 hours), as
shown in Figure 7. This change is due to the difference between the two levels. The
difference in the levels was more than the 30% of the maximum level (10 ft) allowed
in the tank, and so the control module sent an alarm signal to the agent to re-schedule
the pumping.

From Figure 5, it can be established that there is no need to pump water because
the levels are higher than the trigger level. But the pump, instead, is turned on
anyway. The agent decides that to have enough water in the future, when the demand
is high, the pump has to be on very soon. This behavior is proactive, purely
autonomous and emergent. It was triggered by the agent itself with no explicit rules,
just looking at the future trying to have always the water requested.

 Fig. 4. Historical and actual demands Fig. 5. Levels

 Agent-Based Control of a Municipal Water System 509

 Fig. 6. Particular at time 14400 sec Fig. 7. Particular at time 36645 sec

Fig. 8. a) First hypothesis b) Correction and second hypothesis

In Figure 8, there is an example of the correction of pump activity. For the last four
hours of simulation, the agent made another hypothesis for the schedule and it was
like shown in Figure 8(a). But as seen at time 36645 sec in Figure 7, the levels were
too different from each other, and so after the correction of the predicted level, the
agent generated a new hypothesis for the schedule to pump less, as shown in Figure
8(b). The agent assumed that because of a prediction error, there is enough water in
the tank, and so the pump must be turned off earlier.

5 Conclusion

In this paper, a method to schedule pump activity in a municipal water system was
presented. Preliminary results were obtained using simulation, a single agent, and a
control program written as S-functions. The algorithms proposed looked at only the
control of the water level in the tank. Water in the tank was kept at a level enough to
satisfy the demand, but also it was always away from saturating the tank. The
algorithms proposed were able to change the schedule when unforeseen situations
happened in the actual demand.

The system proposed is the bases for a larger system. The behavior of the agent
will need to be split to isolate the pump behavior from the tank behavior, so to create
pump agents and tank agents. These agents will serve as the template behaviors for

510 L. Giannetti et al.

building any size municipal water system using real equipment. The results presented
here may be readily expanded to accommodate a variable rate structure for energy
costs, machinery prognostics, objectives for optimizing life cycle cost or optimizing
asset utilization, or to establish an operating mode that is less brittle or more secure
from externally induced disruption.

References

1. G.Mackle, D.A.Savic, G.A.Walters “Application of genetic algorithms to pump scheduling
for water supply”. Genetic Algorithms in Engineering Systems: Innovations and Applications
12-14 September 1995, Conference Publication No. 414, © IEEE, 1995.

2. “Effects of water age on distribution system water quality”. By AWWA with assistance
from Economic and Engineering Services, Inc.

3. An, C.Chan et al. “Applying knowledge discovery to predict water-supply consumption”.
Knowledge discovery IEEE, 1997.

4. G.McCormick, R.S.Powell “Optimal pump scheduling in water supply systems with
maximum demand charges”. Journal of water resources planning and management ©
ASCE. September/October 2003

5. FIPA: The Foundation for Intelligent Physical Agents, Geneva, Switzerland, 1997.
6. Ma ík, V., P chou ek, M., Št pánková, O.: Social Knowledge in Multi-Agent Systems. In

Multi-Agent Systems and Applications, LNAI 2086, Springer, Berlin (2001) 211-245
7. Maturana F.P., Staron R., Hall K.: “Methodologies and Tools for Agents in Distributed

Control”. In IEEE Intelligent Systems Magazine, pp. 42-49, January/February 2005.
8. Shen W., Norrie D., and Barthès J.P.: “Multi-Agent Systems for Concurrent Intelligent

Design and Manufacturing”. Taylor & Francis, London, 2001.

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 511 – 520, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agent-Based Framework for Simulation and Support of
Dynamic Engineering Design Processes in PSI

Vladimir Gorodetsky2, Vadim Ermolayev3, Wolf-Ekkehard Matzke1,
Eyck Jentzsch1, Oleg Karsaev2, Natalya Keberle3, and Vladimir Samoylov2

1 Cadence Design Systems, GmbH, Mozart str., 2, 85622, Feldkirchen, Germany
{wolf, jentzsch}@cadence.com

2 SPIIRAS, 39, 14-th Liniya, St. Petersburg, 199178, Russia
{gor, ok, samovl}@mail.iias.spb.su

3 Zaporozhye National Univ., 66, Zhukovskogo st., 69063, Zaporozhye, Ukraine
{eva, kenga}@zsu.zp.ua

Abstract. The paper reports on the first results of the Productivity Simulation
Initiative (PSI) project of Cadence Design Systems GmbH. The project
addresses the problem of fine-grained modeling and simulation of dynamic
engineering design processes in order to attempt to assess and to enhance their
productivity. The application domain of PSI is Semiconductor and Electronic
Systems design. PSI uses multi-agent approach and models design processes as
collaborative orchestrated activities of designers’ teams. Rational collaboration
and team formation is arranged through enhanced Contract Net negotiations.
The paper outlines the modeling approach, reports on the methodology, and the
rapid prototyping tool used for PSI Simulation Prototype implementation.

1 Introduction

“Design – a signature of human intelligence – was always a great challenge for
artificial intelligence (AI) research” (cf. [22]). Observations of how humans act in
design inspired several fundamental ideas in AI, e.g., automated problem solving and
reasoning [20]. In return, AI community has attacked the problems of design domain
by attempting to engineer systems and infrastructures that are capable of supporting
humans in accomplishing intelligent tasks.

Engineering design processes are far from being fully automated yet in a
satisfactory way, though some attempts have been undertaken. These attempts have
used agents to create intelligent software systems to support design processes
performed by designer teams and comprising contributions from various disciplines
([1], [3], [4], [5], [18], [19]). These attempts revealed the fact that automating a
design process is the task, which due to its complexity is similar to that of AI
challenges like natural language processing, human-like decision making, etc. In both
cases available theories, frameworks, methodologies, and technologies are still too
immature to approach a solution (the state of the art is discussed in [8]). However,
some of the vital problems in design process analysis, optimization and management
may be solved at least partially automatically.

One of these problems is the modeling, the assessment and the prediction of the
productivity of the teams performing design in order to be capable to optimize and

512 V. Gorodetsky et al.

manage a time-cost trade-off “on the fly” preserving the high quality of the expected
final design product.

The task of building a software system able to reliably assess, predict and optimize
the productivity in a Dynamic Engineering Design Process (DEDP) is at least
threefold. The first aspect is that the system needs the adequate representation model
of the world – i.e., the environment comprising the processes and the collaborative
teams of autonomous actors who play these processes. The second aspect is that the
system needs the adequate model of a DEDP. And the third aspect is that the system
needs well defined and reliable productivity metrics and their assessment and
prediction mechanisms. It is also important to notice that the mentioned
representation models, metrics and mechanisms should be well grained and balanced
to constitute adequate, feasible, and reliable framework.

The goal of the first phase of the PSI project is to develop and to validate an
agent-based simulation framework designated for future use in DEDP planning, as
well as in assessment and prediction of the design process productivity. It forms the
prerequisites for the design process optimization and on-line management. Particular
subtasks of this phase are: to develop the formal framework for modeling the world
and the processes, to implement the demonstrator of this framework in the form of
multi-agent simulator prototype (further on referred to as DEDP-MAS), and to use it
for experimenting with several application scenarios for assessing the feasibility and
the further development of the approach.

The paper is structured accordingly. Section 2 presents our problem statement and
the rationale for the focus of our activities. Section 3 sketches the approach, modeling
and implementation methodology used. Section 4 describes the two of our application
scenarios and the experimental settings. Section 5 reports on the simulation
experiments of different types. The reminder of the paper discusses the related work,
provides conclusions and our plans for future work.

2 Problems Addressed and Benefits Gained

PSI project bases itself on the understanding that engineering design processes in the
vast majority of cases and industrial branches are weakly defined and heavily
influenced by human and uncertainty factors. Therefore, these processes should be
performed in quite a flexible manner to ensure meeting the objectives and to
demonstrate at least near-optimal productivity and quality of results. Gaining such
flexibility seriously depends on the capability to assess the feasibility of the initial
plan, to react to the changes in the process in timely and flexible manner through re-
planning, to evaluate the plan in terms of the predicted productivity and the result
quality. Hence, one of the tasks of PSI was to implement a software tool capable to
play DEDP simulation games for both:

– Evaluating the initial plan for an engineering design project using predictive
simulation, and

– Partially automating the process of dynamic planning of collaborative activities of
a designer team through the simulation of their negotiations

 Agent-Based Framework for Simulation and Support of Dynamic Engineering Design 513

Another goal of the reported PSI phase was to create the initial DEDP Simulation
Testbed by recording the logs of the DEDPs of the application scenarios (Section 4).
This testbed contains the logs of the DEDPs application scenarios and the mental
models of the agents playing the roles of design team members in experiments
(Section 5).

The initial set of experiments performed on the created prototype clearly showed
the approach feasibility to model engineering design processes. E.g., experimenting
with the PSI application scenarios showed that DEDP-MAS simulator may be
efficiently used for the planning and the adjustment of the project design plans
according to the unexpected changes in designers' capabilities. DEDP-MAS
framework prototype is now used in PSI project as the basis for further development
of a more accurate model of design processes. We finally aim to obtain a software
tool which will help in enhancing the productivity of DEDPs.

3 Approach, Methodology, and Agent Platform

DEDP participants are conceptually structured and form a kind of organization
comprising individual human Actors1 and groups of Actors at different hierarchical
levels. Activities of an organization and its members are regulated by Policies.
Actors form dynamic Teams on Project and/or Task basis. The organization and its
members own certain knowledge. Substantial part of this knowledge is the
Capabilities of the Actors to perform certain activities. Sub-sets of these
Capabilities together with respective Authority specifications form human Roles in
a design process. The environment of the above organization is formed by the
structured specification of DEDPs under performance which actually imposes partial
ordering and other relations on activities being composed in the design process.

DEDP-MAS prototype has been designed and implemented in Multi Agent
System Development Kit (MASDK) [14]. According to the Gaia methodology [23]
forming the methodological basis of the MASDK platform the system’s organization
is described at analysis stage in terms of Roles, Protocols, and Agent classes. Fig.1
illustrates the organization of the current version of DEDP-MAS prototype as it looks
in the window of the Meta-model editor provided by MASDK. It comprises three
problem-oriented (Task_manager, Executor and Tool_Provider) and one auxiliary
(Time_Simulator) roles. A human actor can play Task_manager and Executor roles,
so they are assigned to one agent class – Designer. The main activities executed by
the Task_manager role are 1) revealing design artifacts, 2) specifying activities to be
executed and the order of their execution as Pert chart, 3) assigning activities and 4)
monitoring their execution. The main activities carried out by the Executor role are 1)
scheduling assigned activities and 2) simulating their execution. Software tools are
considered here as resources used for some activities execution and the task of the
resource scheduling is solved by the Tool_Provider role. The tasks executed by the
auxiliary Time_simulator role are 1) providing human actor with the interface for
input description, and 2) synchronizing agents’ operation.

1 The mentioned entities of DEDP Ontology are bold.

514 V. Gorodetsky et al.

Interaction model includes eight protocols. Initiator of each protocol is indicated
by triangle. The Initialization protocol specifies interaction of the Simulator and
Designer agent classes at the DEDP start up. In particular, when this protocol has
been initialized the human actor assisted by the Simulator agent selects the task to
execute, inputs the initial data, determines the settings of simulation parameters, etc.
Then, according to the Initialization protocol, the above data are communicated to the
agents of the Designer class. The simulation itself is then being performed in day-by-
day mode under the control of the Simulator agent class. Three protocols,
Interruption, Negotiation and Simulation may be performed in each work day. They
are initialized by the Simulator agent one after another.

The Interruption protocol is started up if the human actor assisted by the Simulator
agent class intends to view and analyze the workload and schedule of each designer
via respective user interfaces and to modify the workload of designers for the
remaining part of DEDP simulated. If the workload of a designer is modified the re-
scheduling of the remaining activities is automatically executed.

During the Negotiation protocol execution, the Task manager role initiates the
Outsourcing (nested) protocol (Fig. 2) based on the Contract Net Protocol (CNP) [13]
to perform the assignment of the activities to the designers., If an agent performing
the Executor role during the CNP–based negotiation intends to use a software tool it
initiates negotiation with a ST_provider agent using the Tool_usage_scheduling
(nested) protocol.

Fig. 1. Meta model of DEDP MAS prototype

 Agent-Based Framework for Simulation and Support of Dynamic Engineering Design 515

After completion of the assignment
and scheduling procedures (when all the
above mentioned protocols are finished)
the Simulator class agent initiates the
Simulation protocol while simulating
operation of the agents of the Designer
class performing the Executor roles
according to the schedule for the current
day. If certain agents of the Designer
class use software tools in simulation
progress they initiate the
Tool_usage_start (nested) protocol.
After the work day activity simulation is
completed the Simulation agent class
reports the simulation results to the
agents performing Task_manager and
Tool_provider roles using
Work_day_report (nested) protocol.
Conceptual description of the above
protocols is made using the Protocol editor of the MASDK platform in the standard
style like depicted in Fig. 2 for Outsourcing.

At the design stage [23] a formal specification of (i) agent classes and (ii) their
services (in terms of state machines) is developed. Specification of each agent class is
reduced (i) to identifying its services associated with respective protocols in which
agents of the class take part, and (ii) to specifying identified services. E.g. in the
current version of DEDP-MAS the specification of Designer agent class comprises
eighteen services, such as Assignment management, Outsourcing, Activity scheduling,
Proposal computing, Activity simulation, etc. Detailed description of graphic editors
used in MASDK for specifying agent classes and services (in terms of state machines)
can be found in [14].

4 Application Scenarios and Experimental Settings

PSI simulator is used in two application modes: descriptive and predictive. In
descriptive mode the simulation is used to assess the performance of the DEDPs
which have been accomplished in the past.

The predictive mode supports project managers in planning of starting and re-
planning of running design projects in case of emergent problems e.g. late changes to
the design objective, sudden unavailability of the team members, the changes in the
workload of the designers according to the influence of the other projects, etc.

Based on these usage modes PSI testbed comprises the following two parts. The
first part (the initial testbed) contains the detailed records of 1 – 2 ongoing design
projects and event log to extract the knowledge of the acting humans. DEDP model
and the adequacy of the implemented interaction mechanisms are evaluated based on
these “logs of DEDP execution”. As the result the corrective factors are extracted to
improve the quality of the simulation. The performance of the process can be
accessed based on this improved simulation of a design process.

Fig. 2. Graphical specification of the Out-
sourcing protocol in MASDK

516 V. Gorodetsky et al.

The second part of the testbed is under creation and covers the prediction
capability. A set of 3 to 5 design artifacts will be used to create detailed project plans
by experienced project managers (2-3 per artifact). As the part of this planning
process all decisions and their reasons will be recorded in order to further extract the
know-how of the project manager.

Initial set of experiments has been performed on the two simplified scenarios: the
process of the design of a digital multimedia encoder [15] and the process of the
design of an analog controlled amplifier [24]. These processes have been described
according to the data collected by lead designers of Cadence Design Systems GmbH
in their previous design projects. Execution logs have been created for the respective
DEDPs through filling in the DEDP questionnaires [16]. These logs formed the initial
testbed for DEDP-MAS prototype.

The scenarios were simplified to keep the complexity at a low to medium level.
For example, the digital scenario is characterized by:

– 5 designers
– Design artifact comprising 4 functional blocks
– The process from RTL design up to tape-out in GDSII format resulted in 36

activities.

5 Experiments for Framework Prototype Checking

Experiments with the DEDP-MAS prototype are performed in frame of the real world
project of low complexity and amount of work under some simplifications. It was
assumed that the execution log does not exist at the beginning of the process, but is
gradually developed in line with the DEDP flow. The objective of the experiments
was to develop the so called prediction-correction methodology. The methodology
should predict the development of the process up to the next checkpoint through the
simulation based on the initial task and existing agents’ mental models. General view
of the experiments scenario is outlined in Fig. 3.

DEDP-MAS prototype configuration (the set of software agents with the
accordingly prepared mental models) corresponds to the project design team. It is
assumed in the experiments that only one agent of the Designer class performing the
Task manager role in DEDP-MAS prototype assists the human Project leader and the
rest of the agents of this class simulate the activities of the other design team
members.

In the experiment along with the development of the DEDP the human expert
repeatedly carries out the following activities:

– Gradually develops the execution log via specific event-based log editor, and
– Analyses the predictions of the further development of the process via interaction

with the Task manager assistant agent.

Log editor allows to record all kinds of events that may occur in simulation:
activity assignments, activity accomplishments etc. For example, activity assignment
record includes: 1) assignment time, 2) list of designers possessing required
capabilities and believed to be potential executors of the activity under assignment, 3)
the log of negotiation with these designers, 4) the information about the winner of the

 Agent-Based Framework for Simulation and Support of Dynamic Engineering Design 517

accomplished CNP. The data
associated with the events
and which may be useful for
computing different design
process metrics is also
recorded to the log.

Simulation aiming at
prediction of the future
DEDP development is
initiated after the playback of
the log corresponding to the
accomplished part of the
process at the given point in
time. During simulation the
human Project leader may
trim the available capacities
of the designers and revise the assignments of the activities arranged by the assistant,
Designer agent playing Task_manager role. Accordingly, the Project leader can
evaluate the predicted path of DEDP in What-if mode. Simulation results are exported
in Microsoft Project format. This facility allows the Project leader to compare the
Gantt charts of DEDP paths executed in real life to that predicted by simulation. In
DEDP-MAS prototype these checkpoints are allowed ones per simulated project day.
Export to the Microsoft Project and the above comparison are done on daily basis.
Therefore the Project leader can monitor and dynamically influence DEDP
development in the mentioned checkpoints.

Thus, the experiments with the developed and implemented DEDP-MAS
prototype support the solution of the following practically important problems:

1) Estimation of the adequacy of the world model representation in the DEDP-MAS
prototype.

2) Estimation of adequacy of DEDP model used in the DEDP-MAS prototype. The
adequacy is assessed through the comparison of actual processes with the ones
simulated by the DEDP-MAS prototype in the predictive mode.

6 Discussion and Related Work

The constellation of projects pioneered R&D in agent-based engineering design
support and automation began to appear about a decade ago, e.g. ([1], [3], [4]). These
findings initially motivated PSI project. Some projects of the “second wave” ([5],
[18]) helped to specify the focus of PSI in automating the near-optimal arrangement
of DEDPs in terms of their productivity. Besides that PSI aims to provide the
industrial strength solution in the mentioned niche.

DEDP modeling framework and simulator prototype implementation is based on
research in: dynamic planning process modeling, methodologies and frameworks for
the design and implementation of multi-agent systems.

DEDP modeling framework in the part of organizational and actor-related
knowledge representation bases itself on the frameworks ([6], [7], [12], [21]). PSI

Current

DEDP-MAS prototype

Fig. 3. General scenario of experiment supported by
DEDP-MAS

TM D D D D

Event-based
log editor

Log of Simulation

Representation
of the project plan

in MS Project

Export to
MS Project

STP Sim

518 V. Gorodetsky et al.

contribution in this part is the incorporation of roles, actors with its specific
subclasses, teams of actors, negotiation context in one coherent ontology and its
binding to the engineering design domain by, e.g., introducing the sub-ontologies of
Design Artifacts and Software Tools [9]. The main emphasis of PSI DEDP ontology
is the model of a dynamic team of designers which is formed through contracting
negotiations and performs dynamically orchestrated processes. In a part of process
modeling, PSI borrows the ideas and the approach from ([2], [6], [11]). In DEDP
ontology engineering design processes are modeled as tasks composed of subtasks
and atomic activities. Similarly to [17] subtasks and activities may have weak and
strong dependencies. However the knowledge on these dependencies is local in PSI
and differs from actor to actor as specified in their partial local plans. Similarly to
[11] activities have pre-conditions, post-conditions and post-effects. However PSI
ontology constrains the semantics of pre-/post- conditions and effects by making them
sub-classes of an event concept. Material inputs and outputs semantically and
structurally belong to PSI Design Artifacts ontology. Some inspirations for the
development of agent reasoning mechanisms in PSI were provided by RAPPID set
based reasoning framework [18] and RACING negotiation framework [6]. PSI
extends these initial percepts to the family of negotiation mechanisms: task allocation,
design re-use, choice of a software tool to perform a design activity [10].

DEDP-MAS simulation prototype was designed and implemented using MASDK
software tool [14]. This software tool implemented recently developed well grounded
Gaia methodology [23] known as one of the most promising modern MAS design
methodologies. MASDK software tool provides user-friendly GUI for analysis and
design of multi-agent applications, exploits software reusability approach, supports
the integrity of the development at different stages and uses basic standardization
proposals resulting from joint efforts of FIPA and OMG, Agent UML Project. It
supports the whole life cycle of a multi-agent application system including its
modification if necessary.

7 Conclusions and Future Work

As reported in the paper the first outcomes of PSI are (i) the formal framework for
modeling DEDPs, (ii) implemented simulation prototype of DEDP simulator software
tool, (iii) initial PSI testbed comprising DEDP execution logs built for two mentioned
application scenarios, (iv) results of the initial experiments which prove the feasibility
of concept implementation.

The contribution of the modeling framework is the provision of the DEDP model
in the form of the set of DEDP-full ontologies. These ontologies were simplified to
DEDP-light version and used in the design of the meta-model of DEDP-MAS, in the
implementation of PSI DEDP execution log questionnaire and editor as well as in the
implementation of local knowledge models of DEDP-MAS agents. Another input of
the modeling framework is the set of coordination and negotiation mechanisms. It
provides CNP-based negotiation mechanisms for task or activity allocation, design
artifact re-use and the choice of the proper software tool. Planned future work in this
direction will develop the extensions for DEDP productivity assessment, process and
result quality assessment and refine negotiation strategies and dynamic re-planning
mechanisms.

 Agent-Based Framework for Simulation and Support of Dynamic Engineering Design 519

The experiments with the DEDP-MAS prototype support solution of several
practically important DEDP tasks e.g. the estimation of the adequacy of the world
model and DEDP model itself represented in the DEDP-MAS prototype. It also
provides a computational framework for development and evaluation of the reliable
metrics concerning the design process productivity and to discover sensitive
parameters of the design process influencing the mentioned metrics that is important
for future design processes optimization. An important property of the DEDP-MAS
prototype from the industrial viewpoint is the integration with Microsoft Project
providing dynamic visualization of DEDP progress and the results of the Project
leader intervention through it.

The development of the initial testbed allowed to adjust the requirements to the
prototype as well as to prepare initial evaluation experiments. The initial set of
experiments performed on the created prototype clearly showed the feasibility of this
approach to model engineering design processes. For example, experiments with PSI
application scenarios showed that DEDP-MAS simulator may be efficiently used for
the planning and the adjustment of the design project plans according to the
unexpected changes in design team members’ capabilities. Planned experimental
work will be to build the extension of the testbed by recording the execution log of
currently running design project at Cadence Design Systems, GmbH and to develop
the methodology for the evaluation of the initial design project plan through the usage
of predictive simulation mode.

References

1. Balasubramanian, S., Norrie, D. H.: A multi-agent intelligent design system integrating
manufacturing and shop-floor control. In: Proc. First International Conference on Multi-
Agent Systems., San Francisco (1995) 3-9

2. Buhler, P., Vidal, J.M.: Enacting BPEL4WS specified workflows with multiagent systems.
In Proc. of the Workshop on Web Services and Agent-Based Engineering, (2004)

3. Cutkosky, M.R., EngelMore, R. S., Fikes, R. E., Genereseth, M. R., Gruber, T. R., Mark,
W. S., Tenenbaum, J. M. and Weber, J. C.: PACT: An Experiment in Integrating
Concurrent Engineering Systems. IEEE Computer 26(1) (1993) 28-38

4. Darr, T. P., Birmingham, W. P.: An Attribute-Space Representation and Algorithm for
Concurrent Engineering. CSE-TR-221-94, University of Michigan, Department of
Electrical Engineering and Computer Science, Ann Arbor, Michigan 48109-2122 (1994)

5. Danesh, M. R., Jin, Y.: An Agent-Based Decision Network for Concurrent Engineering
Design. CERA 9(1) (2001) 37-47

6. Ermolayev, V., Keberle, N., Kononenko, O., Plaksin, S. and Terziyan, V.: Towards a
framework for agent-enabled semantic web service composition. Int. J. of Web Services
Research, 1(3) (2004) 63-87

7. Ermolayev, V., Keberle, N., Tolok, V.: OIL Ontologies for Collaborative Task
Performance in Coalitions of Self-Interested Actors. In: H. Arisawa, Y. Kambayashi, V.
Kumar, H.C. Mayr, I. Hunt (Eds.): Conceptual Modeling for New Information Systems
Technologies ER 2001 Workshops, Yokohama Japan, November 27-30, 2001. LNCS vol.
2465 (2001) 390-402

8. Ermolayev, V.: The State of the Art in Agent-Based Modeling and Simulation of Design
Processes. TR-PSI-2-2004. Cadence Design Systems, GmbH (2004)

520 V. Gorodetsky et al.

9. Ermolayev, V., Keberle, N.: DEDP-MAS Ontologies Specification v.1.0. TR-PSI-05-2004,
VCAD EMEA Cadence Design Systems GmbH (2004)

10. Ermolayev, V. et al: Agent-Based Dynamic Engineering Design Process Modeling
Framework. Technical Report. Cadence Design Systems, GmbH (2004)

11. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications 1(2) (2002) 113-137

12. Fox, M.C., Gruninger, M.: Enterprise Modelling. AI Magazine 19(3) (1998) 109–121
13. Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Protocol

Specification. Ref. No XC00029E (2001)
14. Gorodetski, V., Karsaev, O., Samoilov, V., Konushy, V., Mankov, E., Malyshev, A.: Multi

Agent System Development Kit: MAS software tool implementing GAIA Methodology.
In: Z. Shi and Q. He (eds.) Int. Conf. on Intelligent Information Processing (IIP2004),
Beijing, Springer (2004) 69-78

15. Jentzsch, E., Matzke, W.-E.: Case Study of a Digital Design Process. VCAD EMEA
Cadence Design Systems GmbH (2004)

16. Keberle, N., Weber, S.: Questionnaire to create formal record of an Analog Design Process
& A Walk-through Example. Cadence Design Systems GmbH, VCAD CIC2 (2004)

17. Nagendra Prasad, M. V., Lesser, V. R.: Learning situation-specific coordination in
cooperative multi-agent systems. Autonomous Agents and Multi-Agent Systems. 2(2)
(1999) 173-207

18. Parunak, H.V.D., Sauter, J. A., Fleischer, M. and Ward, A. C.: The RAPPID Project:
Symbiosis between Industrial Requirements and MAS Research. Autonomous Agents and
Multi-Agent Systems 2 (1999) 111-140

19. Shen, W. and Barthes J.-P.: An Experimental Multi-Agent Environment for Engineering
Design, Int. J. of Cooperative Information Systems, 5(2-3) (1996) 131-151

20. Simon, H.: The Sciences of the Artificial. MIT Press, Cambridge, (1969)
21. Uschold, M. et al: The Enterprise Ontology. Knowledge Engineering Review, 13(1) (1998)
22. Vancza, J.: Artificial Intelligence Support in Design: A Survey. Keynote paper at the 1999

International CIRP Design Seminar, Kluwer (1999)
23. Wooldridge, M., Jennings, N. R. and Kinny, D.: The Gaia Methodology for Agent-

Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems,
3(3) (2000) 285-312

24. Weber, S.: Case Study of an Analog Design Process. VCAD CIC2 Cadence Design
Systems GmbH (2004)

Situated Agents and the Web:
Supporting Site Adaptivity

Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari

Department of Informatics, Systems and Communication,
University of Milano-Bicocca,

Via Bicocca degli Arcimboldi 8 20126 Milan - Italy
tel +39 02 64487835, fax + 39 02 64487839

{bandini, manzoni, vizzari}@disco.unimib.it

Abstract. A web site presents an intrinsic graph–like spatial structure
defined by pages connected by hyperlinks. This structure may represent
an environment on which reactive situated agents related to visitors of
the web site are positioned and move in order to track their navigation.
To consider this structure and to keep track of these movements allows
the monitoring of the site and visitors, and supports the enhancement
of the site itself through forms of adaptivity, by means of a specific in-
terface agent. This paper presents an agent based model supporting the
collection of information related to user’s behaviour in a web site, and an
application supporting the proposal of hyperlinks based on the history
of user’s movement in the web site environment.

1 Introduction

A web site presents an intrinsic graph–like spatial structure defined by pages
connected by hyperlinks. However, this structure is generally not considered by
web servers, which essentially act as a sort of extended and specific File Trans-
fer Protocol servers, receiving requests for specific contents and supplying the
related data. Several web–based applications instead exploit the structure of the
sites itself to support users in their navigation, generating awareness of their
position. For instance, many e–commerce sites emphasize the hierarchical struc-
ture linking pages related to categories (and possibly subcategories), included
products and their specific views, and remind users’ relative position (i.e. links to
higher level nodes in the tree structure). Some specific web–based applications,
mainly bulletin boards and forums (see, e.g., phpBB1), are also able to inform
users about the presence of other visitors of the web site or even, more precisely,
of the specific area of the site that they are currently viewing. Web site structure
and users’ context represent thus pieces of information that can be exploited to
supply visitors a more effective presentation of site contents.

Different visitors, however, may have very different goals and needs, especially
with reference to large web sites made up of several categories and subcategories.

1 http://www.phpbb.com/

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 521–530, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

522 S. Bandini, S. Manzoni, and G. Vizzari

This consideration is the main motivation for the research in the area of adaptive
web sites [1]. The various forms of adaptation may provide a customization of
site’s presentation for an individual user or even an optimization of the site for all
users. There are various approaches supporting these adaptation activities, but
they are generally based on the analysis of log files which store low–level requests
to the web server: this kind of file is generally made up of entries including
the address of the machine that originated the request, the indication of the
time and the resource associated to the request. In order to obtain meaningful
information on users’ activities these raw data must be processed (see, e.g., [2]),
for instance in order to collapse requests related to various elements of a single
web page (e.g. composing frames and images) into a single entry. Moreover this
kind of information must be further processed to detect groups of requests that
indicate the path (web pages connected by hyperlinks) that a user followed in
the navigation.

This paper proposes to exploit the graph-like structure of a web site as an
environment on which simple reactive agents representing visitors of the web site
are positioned and move according to their navigation. This approach allows the
gathering of a more structured information on user’s activities, simplifying sub-
sequent phases of analysis and adaptation of site contents. Furthermore, part of
the adaptivity could be carried out without the need of an off-line analysis, but
could be the result of a more dynamic monitoring of users’ activities. In particu-
lar, the paths that are followed by users are often related to recurrent patterns of
navigation which may indicate that the user could benefit from the proposal of
additional links providing shortcuts to the terminal web pages. Index pages may
thus be enhanced by the inclusion of links representing shortcuts to the typical
destinations of the user in the navigation of the web site. Users without a rele-
vant history may instead exploit the paths that are most commonly followed by
site visitors. Moreover such an information could also be communicated to the
webmaster suggesting possible modifications to the static predefined structure
of the site. This approach provides thus both a support for site optimization,
but also for the customization to specific visitor’s needs and preferences. This
task is carried out by a specific interface agent provided with specific strategies
guiding the choices on possible adaptation.

While the metaphor of a web site as an environment on which users move
in search for information is not new (see, e.g., [3]), this proposal also allows
the exploitation of this information to support a context-aware form of inter-
action among users. In fact, by adopting of a supporting technology that goes
beyond the request/response form (e.g. a Java applet), users may be informed
of the presence of other site visitors’ presence and may interact with them in a
sort of hybrid between a common web site and an instant messenger (see, e.g.,
ICQ2Go!2).

The following section describes the general framework of this approach, the
mapping between the web site structure and agents’ environment, while Sec-
tion 3 describes the kind of gathered information on agents’ movement in their

2 http://go.icq.com/

Situated Agents and the Web: Supporting Site Adaptivity 523

environment. Section 4 describes an application providing the exploitation of this
kind of information for the adaptation of web pages, both for customization and
optimization; concluding remarks and future developments will end the paper.

2 Site Structure and Agents’ Positions

A web site is made up of a set of HTML pages (generally including multimedia
contents) connected by means of hyperlinks. It is possible to obtain a graph-
like structure mapping pages to nodes and hyperlinks to edges interconnecting
these nodes. This kind of spatial structure could be exploited as an environment
on which agents related to site visitors are placed and move according to the
related users’ activities. This structure can be either static or dynamic, varying
according to specific rules and information stored in a database (i.e. database
driven web sites). However, this kind of structure (both for static and dynamic
web sites) can be easily obtained by means of a crawler (see, e.g., Sphinx [4] and
the related WebSphinx project3).

Given this spatial structure, a multi-agent model allowing an explicit repre-
sentation of this aspect of agents’ environment is needed to represent and exploit
this kind of information. Environments for Multi Agent Systems [5] and situ-
ated agents represent promising topics in the context of MAS research, aimed
at providing first class abstractions for agents environment (which can be more
than just a message transport system), towards a clearer definition of concepts
such as locality and perception. There are not many models for situated agents,
which provide an explicit representation of agent’s environment. Some of them
are mainly focused on providing mechanisms for coordinating situated agent’s
actions [6], other provide the interaction among agents through a modification of
the shared environment (see, e.g., [7,8]). An interesting approach that we adopted
for this work is represented by the Multilayered Multi Agent Situated Systems
(MMASS) [9] model. MMASS allows the explicit representation of agents’ envi-
ronment through a set of interconnected layers whose structure is an undirected
graph of nodes (also referred to as sites in the model terminology; from now on
we will use the term node to avoid confusion with web sites). The model was
adopted given the similarity among the defined spatial structure of the environ-
ment and the structure underlying a web site. Moreover the model defines a set
of allowed actions for agents’ behavioural specification (including a primitive for
agents’ movement); for this specific application, however, the constraint which
limits the number of agents positioned in a node was relaxed. In fact there is no
limit to the number of users that are viewing the same web page.

Moreover a platform for the specification and execution of simulations based
on the MMASS model [10] was exploited to implement the part of the system
devoted to the management of agents in their environments. The definition of
spatial structure of the environment was supplied by the previously introduced
crawler, while agents’ movement is guided by external inputs generated by the
requests issued by the related web site visitor. The general architecture of the
3 http://www-2.cs.cmu.edu/ rcm/websphinx/

524 S. Bandini, S. Manzoni, and G. Vizzari

Fig. 1. A diagram showing how user actions influence the related agent through the
capture of requests by the Tracker module

system is shown in Figure 1: the Agent server module is implemented through
the MMASS platform, while the Web server is represented by SnipSnap4, a
Java-based weblog and wiki software. The highlighted Tracker module is a im-
plemented through a Java Servlet, which is invoked by every page of the site but
does not produce a visible effect on the related web page. It is responsible for the
management of user authentication and requests, but it is also responsible for
the creation of agents related to visitors and for the triggering of their movement
in the environment related to the web site. The management of the mechanisms
supporting this responsibility is not as simple as its intuitive description might
indicate. In fact, the same user could be using different browser pages or tabs
to simultaneously view distinct pages of the site. In other words, a user might
be simultaneously following different trajectories in his/her web site navigation.
In order to manage these situations, a user can be related to different agents,
and his/her requests must be associated to the correct agent (possibly a new
one). Finally, agents related to finished (or interrupted) user navigation should
be eliminated by the system, storing the relevant part of their state in a persis-
tent way, until the related user requires again a page of the site. In particular,
remote users’ requests may be divided into two main classes, according to their
effects on the Tracker and Agent server:

• creating a new agent : whenever a new user requires a web page, the Tracker
will invoke the Agent Server requiring the creation of an agent whose starting
position is the node related to the required page; the same effect is generated
by a request coming from an already registered user which was not present in
the system, but in this case information related to previous user agents must be
retrieved in order to determine the new agent’s state; finally, when an already
registered and active user requires a page that is not adjacent to its current one,
a new agent related to the new browsing activity must also be created;
• generating the movement of an agent : when the viewer of a page follows one
of the provided links, the related web browser will generate a request for a page
4 http://snipsnap.org

Situated Agents and the Web: Supporting Site Adaptivity 525

A

1 2

3
4

Trace 1

Trace 2

(a) (b)

1

Trace 2

2

A1

A2

Trace 1

A1

Fig. 2. A diagram describing two traces that are derived by a sequence of user requests

that is adjacent to one of the related agents which must be moved to the node
related to the required page; whenever there are two or more agents in positions
that are adjacent to the required page, in order to solve the ambiguity and choose
the agent to be moved, the Tracker will invoke the Session object in which it
stores the current URL related to the viewed page.

The following section will describe how the raw information that can be
gathered thanks to the above described framework can be processed in order to
obtain higher level indications on users’ behaviours.

3 Gathered Information: Users’ Traces

This system allows the gathering and exploitation of two kinds of information:
first of all situated agents related to web site visitors have a perception of their
local context, both in terms of relative position, adjacent nodes and presence of
other visitors; second, agents may gather information related to the paths defined
by the browsing activities or the related user in the site itself. There are inherent
issues in determining in a precise way the actual users’ activities on the web site,
due to the underlying request/response model: the only available indications
on these activities can be obtained by requests captured by the Tracker. In
particular, we have an indication of the page that was required by a user and
the time-stamp of the request. Starting from this raw information we can try
to detect emerging links, which are hyperlinks that are not provided by the
structure of the site but can be derived by the behaviour of specific visitors. To
this purpose, the concept of trace was introduced as a higher level information
describing the behaviour of a user. A trace synthesizes a path followed by a
user, from the web page representing his/her entry point, to a different point
of the environment (i.e. another web page) which may represent an interesting
destination. Every agent related to a visiting user is associated to a temporary
trace, and it may generate several actual traces (also called closed traces) in the
course of its movement in the environment.

Formally a trace is a three-tuple 〈AId, Start,Dest〉, where AId represents
the identifier of the agent to which the trace is related, while Start and Dest

526 S. Bandini, S. Manzoni, and G. Vizzari

indicate the starting and destination node related to the browsing sequence
which generated the trace. A new trace is generated when a user enters the site,
triggering the creation of a related agent. The starting trace has a null value
for the destination node. Subsequent requests by the user generated following
hyperlinks will bring the related agent to an adjacent node, and the the Dest
field of the corresponding trace will be modified in order to reflect user’s current
position. Non trivial traces provide Start and Dest nodes that are not directly
connected by means of a hyperlink.

There are two relevant exceptions to the basic rule for trace update, that are
related respectively to the duplication of a trace and to its closing. According
to the previously introduced informal definition, a trace should be coherent in
time and space. In fact, whenever the same user requires simultaneously two
or more different pages he/she is probably following distinct search trajectories,
possibly even related to different goals. In this case, as previously introduced,
the Tracker will detect this situation and create additional agents that refer to
the same user. Figure 2 shows two sample situations providing respectively trace
duplication and closing: in (a) the user has chosen to open a hyperlink in a new
browser page (request 1) and then has followed another link in the first browser
page (request 2). According to the previously described Tracker behaviour, two
agents are now associated to the user, and they are associated to different traces
sharing the Start field.

In (b), instead, the user has followed links 1 and 2 from the starting page, then
he/she made a step back (3) and eventually moved to the last known position
(request 4). The step back causes the closure of the temporary trace associated
to the agent (Trace 1 in the Figure), and the creation of a new temporary one
with the same Start field (Trace 2). In this case the step back may have different
interpretations: it could refer to a negative evaluation of the page contents but
it could also indicate the fact that the user has found what he/she was searching
for. An information that could be exploited to determine if the Dest field of
the trace was interesting for the user is the time interval between request 2 and
3: for instance, given Δtd a threshold indicating the minimum time required
to reasonably inspect the content of a specific web page, if timestamp(3) −
timestamp(2) < Δtd then Trace 1 could be ignored. However, the mere interval
between the two requests is not a safe indicator of the fact that the page was
actually viewed and considered interesting.

In fact, the time spent on a web page is also important in order to determine
when a temporary trace must be closed. In fact, whenever a user does not issue
requests for a certain time we could consider that his/her browsing activity has
stopped, possibly because he/she is reading the page related to the Dest field
of the trace associated to the related agent. In other words, every agent has a
timer, set to the previously introduced threshold Δtd, which is set when the
agent is created and it is reset whenever it moves. The action associated to this
timer specifies that its temporary trace becomes closed, and a new timer is set:
the action associated to this second timer caused the disappearance of the agent
from the system, and the storage of the related state.

Situated Agents and the Web: Supporting Site Adaptivity 527

The information generated by user agents, and in particular traces, can be
used to influence the new pages that will be generated by the Web server, and
more precisely by the SnipSnap based Content Management system. In fact
the latter uses information stored in a database to compose the required web
pages; agents store information related to closed traces into this database, and
a specific dynamic user interface element exploits this information to propose
links that are not included in the basic structure of the site that are considered
interesting, according to the previous user’s behaviour. The following section will
more thoroughly discuss the application of this framework for web site adaptivity.

4 Web Site Adaptation

4.1 Proposed Approach

The adopted instrument for the dynamic generation of web pages based on the
content of a database organizes the structure of pages in blocks. The imple-
mented system provides a static header block, including relevant areas of the
web site, a left column providing dynamic additional information, such as the
current user position in the structure of the web site and relevant links, and a
main central area in which the specific current content is shown in details. The
area which is interested in the first experimentation of this approach to con-
tent adaptivity is included in the left column. It is aimed at showing a visitor
emerging links, that are hyperlinks not included in the predefined structure of
the site but are considered interesting according to the history of the related
user. These emerging links have some kind of relationship with the previously
introduced traces, which represent behaviours and movements of a user in a web
site. The strategy which is adopted to select the most relevant traces to be pre-
sented to a given user in a given situation represents the behavior of an interface
agent whose responsibility is the management of this adaptive sub-block of the
user interface related to the web site. Figure 3 presents a screenshot of a sample
adapted web page: the visitor is recognized and his/her movement are monitored
by the Tracker. The lower part of the left column presents three links related to
stored traces related to the same user.

A first element of this strategy is adopted when new users (or non authenti-
cated ones) enter the site. In this case the user has no previous history (or it is
not possible to correlate the user with his/her history), and the adopted strategy
considers all stored traces, not considering the user which generated them. An
additional information that is stored with traces is the number of times that
the related trace was effectively selected and shown to a user and the number
of times that the related link was effectively exploited by a user. This kind of
information permits to obtain an indication of the success rate of the hyperlinks
that were chosen by the interface agent, and can be exploited by this agent to
select the traces to be shown in the adaptive block. Furthermore this success rate
can be used by the web master to consider which traces should be considered as
emerging links to be included in the predefined site structure. Summarizing, the
interface agent, in order to select which traces must be proposed as emerging

528 S. Bandini, S. Manzoni, and G. Vizzari

Fig. 3. A screenshot of a web page adapted according to gathered traces and interface
agent selection strategy

links, considers two kinds of information: the occurrence of trace generation and
the success rate of the traces that were proposed. When the interface agent has
an indication of the user which issued the request, it may focus the selection
activity to those traces that compose the history of user’s activities in the web
site, in a web customization framework. In fact traces include an indication of
the agent which generated them, and in turn agents are related to registered
users. As for the anonymous or new user case, also this strategy must consider
both the occurrence of traces and their success rate. Moreover, in order to focus
on a specific user’s history but do not waste the chance to exploit other users’
experiences, just two of the three available slots for emergent links are devoted
to traces that were generated by that user and one is selected according to the
strategy adopted for anonymous or new users.

These strategies for the exploitation of the gathered and stored traces, based
on users’ behaviours and movement in the web site environment, represent a very
simple way of exploiting this kind of information without requiring an off-line
analysis of the logs generated by the web server. The design, implementation and
test of more complex strategies, for instanced based on details of the outcomes
of emerging link proposals (e.g. which user effectively followed the suggested
adaptive hyperlink) are object of future works.

4.2 Related Works

There are several approaches and relevant experiences in the area web site adap-
tation. The Avanti project [11] provides an automated customization of web site
contents, basing on user modelling techniques and analysis of their behaviours.
It also provided a specific attention to specific needs of elderly and partially
disabled users. Footprints [3] instead provides a site optimization through the

Situated Agents and the Web: Supporting Site Adaptivity 529

metaphor of site visitors leaving traces in their navigation. These signals ac-
cumulate in the environment, generating awareness information on the most
frequently visited areas of the web site. No user profile is needed, as visitors
are essentially provided this information which could represent an indicator of
the most interesting pages to visit. The metaphor of the structure of the web
site as an environment on which visitors move in their search for information
is very similar to the one on which the proposed framework is based, but we
also propose the exploitation of the gathered information on users’ paths for
user specific customization. Other approaches provide instead the generation of
index pages [2], that are pages containing links to other pages covering a specific
topic. These pages, resulting from an analysis of access logs aimed at finding
clusters grouping together pages related to a topic, are proposed to web masters
in a computer-assisted site optimization scheme.

A different approach provides the real-time generation of shortcut links [12],
through a predictive model of web usage based on statistical techniques and the
concept of expected saving of a shortcut, which considers both the probability
that the generated link will be effectively used and the amount of effort saved
(i.e. intermediate links to follow). In particular this framework is very similar to
the one proposed here with reference to the aims of the overall system, but it
incorporates a complex algorithm for off-line analysis of logs, while the proposed
approach provides a light and dynamic generation of most probable useful links
and the storage of these proposals and high level information on site usage for
a possible further off-line analysis.

In the agent area, a relevant approach provides the adoption of information
agents supporting users in their navigation [13], considering both his/her specific
behaviour and the actions of other visitors and adopting multiple strategies for
making recommendations (e.g. similarity, proximity, access frequency to specific
documents).

5 Conclusions and Future Developments

This paper introduced a general framework providing the adoption of a web
site as an environment on which agents related to visitors move and possibly
interact. This approach allows to gather a more structured form of information
on users’ behaviours and activities in the web site. The concept of emerging links
and traces have been introduced in order to support an application exploiting
information on users’ browsing history for sake of web pages adaptation. The
introduced framework and the application to web site adaptation have been
designed and implemented5, exploiting a platform supporting systems based on
the MMASS model. A campaign of tests aimed at evaluating the effectiveness
of the adaptation approach, and also for sake of tuning the involved parameters
(e.g. timings, number of presented possible emerging links) is under way, in
the context of a collaboration with the Italian company Cosmovision Srl. This

5 The adaptive web site is currently online at http://www.lintar.disco.unimib.it

530 S. Bandini, S. Manzoni, and G. Vizzari

evaluation will provide both forms for user interviews and the exploitation of
the gathered information of the success rate of proposed adaptive hyperlinks.

The results of this evaluation might also lead to consider the modelling,
design and implementation of more complex trace selection strategies, and thus a
more complex behaviour for the interface agent. Moreover, the future application
which will really exploit the full potential of the agent based architecture will
provide the design and implementation of a context–aware form of interaction
among visitors of the web site through the interaction mechanisms defined by
the MMASS model (i.e. multicast diffusion of messages across the structure of
the site and direct interaction among specific visitors of the same page).

References

1. Perkowitz, M., Etzioni, O.: Adaptive Web Sites: an AI Challenge. In: IJCAI (1).
(1997) 16–23

2. Perkowitz, M., Etzioni, O.: Adaptive Web Sites. Communications of the ACM 43
(2000) 152–158

3. Wexelblat, A., Maes, P.: Footprints: History-Rich Tools for Information Foraging.
In: Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM Press (1999) 270–277

4. Miller, R.C., Bharat, K.: Sphinx: a Framework for Creating Personal, Site-specific
Web Crawlers. Computer Networks and ISDN Systems 30 (1998) 119–130

5. Weyns, D., Michel, F., Parunak, H.V.D., eds.: The First International Workshop on
Environments for Multiagent Systems (E4MAS). Volume 3374 of LNAI, Springer
(2004)

6. Weyns, D., Holvoet, T.: Model for Simultaneous Actions in Situated Multi-Agent
Systems. In: First International German Conference on Multi-Agent System Tech-
nologies, MATES. Volume 2831 of LNCS, Springer (2003) 105–119

7. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: Towards a Unifying Approach
to the Engineering of Swarm Intelligent Systems. In: Engineering Societies in the
Agents World III (ESAW2002). Volume 2577 of LNAI, Springer (2002) 68–81

8. Hadeli, K., Valckenaers, P., Zamfirescu, C., Brussel, H.V., Germain, B.S., Hoelvoet,
T., Steegmans, E.: Self-organising in Multi-Agent Coordination and Control Using
Stigmergy. In: Engineering Self-Organising Systems: Nature-Inspired Approaches
to Software Engineering. Volume 2977 of LNCS, Springer (2004) 105–123

9. Bandini, S., Manzoni, S., Simone, C.: Dealing with Space in Multi–Agent Systems:
a Model for Situated MAS. In: First International Joint Conference on Autonomous
Agents and Multi-Agent Systems, ACM Press (2002) 1183–1190

10. Bandini, S., Manzoni, S., Vizzari, G.: Towards a Specification and Execution Envi-
ronment for Simulations Based on MMASS: Managing at–a–distance Interaction.
17th European Meeting on Cybernetics and Systems Research (2004) 636–641

11. Fink, J., Kobsa, A., Nill, A.: User-oriented Adaptivity and Adaptability in the
Avanti Project. Technical report, Microsoft Usability Group (1996)

12. Anderson, C.R., Domingos, P., Weld, D.S.: Adaptive Web Navigation for Wireless
Devices. In: IJCAI. (2001) 879–884

13. Pazzani, M.J., Billsus, D.: Adaptive Web Site Agents. Autonomous Agents and
Multi-Agent Systems 5 (2002) 205–218

An Operational Model for Mutual Awareness

Flavien Balbo1,2, Julien Saunier1, Suzanne Pinson1, and Mahdi Zargayouna1,2

1 LAMSADE, Université Paris-Dauphine,
Place du Maréchal de Lattre de Tassigny, Paris Cedex 16

2 INRETS/GRETIA, 2, Avenue du Général Malleret-Joinville, F-94114 Arcueil
{balbo, pinson, saunier, zargayou}@lamsade.dauphine.fr

Abstract. Typical interaction models as addressed messages present
several pitfalls. To overcome these limits, new interactional models close
to the concept of mutual awareness have been proposed. These models
enable the agents to share their interactions and to reason about them.
However, the use of mutual awareness by these models is restrictive and
presents several limits. To overcome them, we propose a generic and
operational model for mutual awareness.

1 Introduction

Because of the sole use of dyadic interaction in cognitive MAS, a large part
of potential interactions remain unexploited. Nevertheless, several recent works
propose to use some kind of mutual awareness, such as overhearing, to deal with
interaction. This is, for an agent, to be able to intercept messages which were not
initially addressed to it. This paradigm enables agents to share their interaction
and so to exploit them. In section 2, we describe what is called mutual awareness.
In section 3, we propose EASI (Environment as Active Support of Interaction),
a generic and operational model for mutual awareness.

2 Mutual Awareness

Interaction sharing is fundamental, as a big part of the solicitations in real-life
situations come from other means than direct transmissions [3]. This fact has led
simulation designers to simulate this means of communication [7]. In the context
of teams of autonomous agents the coherence of the team increases significantly
with the use of a protocol based on overhearing [5]. Overhearing has also been
used in several works to monitor MASs, as in STEAM [4]. These three systems
highlight the usefulness of the concept of overhearing, but their implementation
using massive broadcast or subscription limits their usableness.

In order to limit the communication cost, channelled multicast [2] proposes
a focused broadcast, by means of dedicated channels of communication where
agents subscribe and/or emit. Nevertheless, two limits can be underlined: (1)
the complexity of the system increases proportionally to the number of channels;
(2) the sender still has to assume the emission of the messages to every agent.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 531–534, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

532 F. Balbo et al.

However, we observe that proposing a solution for overhearing has also led to an
improvement for the sender: it can choose to emit a message through a channel,
which is the visible expression of the interests of the agents, instead of using
addresses or capability (via middle-agents). This unified ability to emit and
perceive via the accessible intentions of the agents is the major distinction we
make between mutual awareness and overhearing – the latter only permitting
the interception.

To facilitate its use in the multi-agent community, the mutual awareness
paradigm must have a formal model. Tummolini [8] defines the concept of Be-
havioral Implicit Communication (BIC), within the framework of cooperative
systems for task realization, as the set of every interaction that can be observed
in an implicit way, i.e. information conveyed by actions or communications of
the other agents. However, the properties that are required to fulfill BICs, like
the ability for the agents to anticipate the effects of their own actions on the
other agents, make this framework hardly useable. It needs very cooperative
agents, that is why it is hard to model and implement in an heterogeneous and
open system. Platon’s model of overhearing [6] is the most generic to our knowl-
edge, as it considers overhearing independently of the domain of the application.
Nevertheless, their proposition has not already been implemented.

3 The EASI Model

As formal models can not be implemented directly, except in restricted domains,
and as real applications are functionally limited by the use of inadequate tech-
nologies, there is a need for a more operational model. Our new communication
model has to exhibit the following features: (1) The messages may be received
by unpredicted agents. Therefore, it is not indiscreet listening, because private
communications can be executed via other means of communication, more se-
cure according to the needs. (2) The reception of the messages is not based on
an explicit agreement of the sender. (3) The messages must not be broadcasted
because it means that every agent has to process every messages, even the use-
less ones, and because it has a high cost in terms of pass band. (4) There is
no subscription process, because it has a high message cost, and it limits the
interactional autonomy of an agent. So, if it is not the agents which assure the
message broadcast, we propose to use the environment as an active and intel-
ligent entity which can send the right information to the right agent at the
right time.

Mutual awareness is based on the sharing of interactions. To be efficient,
this principle implies that agents share a common communication media. In the
reactive agent community, the environment is already used as a common media of
interaction. In the cognitive agent community, we have proposed the EASI model
[1]. It enables cognitive agents to use the environment to exchange messages and,
more precisely, it enables an agent to send messages to an other agent that is
located by the environment and it enables agents to perceive every exchanged
message. In our work, we consider that environment contains descriptions of

An Operational Model for Mutual Awareness 533

a2

Pv5

Pv1

Pv2

f1

Environment

Pv4

a3

Message
Alteration
View

Pv1

Pv3
a1

m1

Fig. 1. Interaction for mutual awareness. The agents A1 and A2 exchange messages,
and the second is intercepted by the agent A3. Each entity, agents and messages, has
visible properties Pvi. The message is broadcast via the set of filters fi.

messages and agents. The interactional problem is to make possible for agents
to use these descriptions to locate messages according to the environment state,
that implies the matching between those properties and the needs of the agents.

We therefore propose to represent every component of the environment (e.g.
the external properties of the environment itself as well as the agents and mes-
sages) as entities. Every entity has its visible properties, accessible via the en-
vironment, and the ability to put filters in the environment. These filters are
logical expressions on properties, and determines, when a message is added to
the environment, whether the agent is interested in it, in which case it will re-
ceive it, or not. In our EASI model, we have added this notation to formalize
the knowledge about the description of interaction components (messages and
agents). Because it enables to represent the agents, it makes possible for agents
to create their interactional context as a set of filters. Each agent description
is updated by the agent itself, modifying dynamically the value of its visible
properties.

In Fig. 1, we represent graphically our model. The arrows that we called al-
teration show the agent capability to add, modify or remove its filters, and thus
the way the environment will dynamically handle future messages. The arrows
we called view show the capability of the agents to get the properties of the other
entities, and so to refine their knowledge of the world by means of the environ-
ment. The new distribution of the messaging task via the environment permits
us to extend the classical interactions to a property-based communication.

This model has been integrated in three different contexts. In a diagnosis
transportation system, mutual awareness permits to reduce communication costs
and improve faults detection thanks to the interception of every interesting mes-
sage by the agents. In an agent server for a traveler information system, mutual
awareness permits to add flexibility and personalization to the service, the atten-
tion of the agents headed toward its itinerary. Finally, in a classical multiagent
platform, we have improved the interactions capabilities of the agent to the
mutual awareness full extent, thus permitting its use in various domains.

534 F. Balbo et al.

4 Conclusions and Future Directions

We have shortly presented the Environment as Active Support of Interaction
model, a new Interaction Model that has some useful characteristics, like the
property-based communication and which helps to deal with the increasing com-
plexity of interactional needs in MAS.

The distribution of the interaction between the agents and the environment
leads to a new system design, which allows to decrease communication costs.
The matching of the properties of the agents with those of the messages permits
each agent to perceive all and only the interactions relevant to it.

In the near future some topics should be explored, one of them is the extension
of our model to integrate the discovery and management of available interactions
in the environment. Additional objectives are considered, such as to add multiple
communication environments or to add heterogeneous agents.

References

1. Balbo, F., Pinson, S.: Toward a Multi-Agent Modelling Approach for Urban Public
Transportation Systems. Omicini A., Petta P. et Tolksdorf R. (eds), Engineering
Societies in the Agent World II, LNAI 2203, Springer Verlag (2001) 160–174

2. Busetta, P., Don, A., Nori, M.: Channeled Multicast for group communications.
Proceedings of the first international joint conference on Autonomous Agents and
MultiAgent Systems AAMAS (2002) 1280–1287

3. Dugdale, J., Pavard, J., Soubie, B.: A Pragmatic Development of a Computer Sim-
ulation of an emergency Call Center. Designing Cooperative System, Frontiers in
Artificial Intelligence and Applications, Rose Dieng et al, IOS Press’ (2000)

4. Kaminka, G., Pynadath, C., Tambe, M.: Monitoring teams by overhearing: A mutli-
agent plan-recognition approach. Journal of Artificial Intelligence Research vol. 17
(2002) 83–135

5. Legras, F. Tessier, C.: Lotto: Group formation by overhearing in large teams. Pro-
ceedings of AAMAS, Melbourne Australia, Springer Verlag (2003) 425–432

6. Platon, E., Sabouret, N. Honiden,S.: T-compound: An Agent-Specific Design Pat-
tern and its environment. Proceeding of the 3rd international workshop on Agent
Oriented Methodologies at OOPSLA (2004) 63–74

7. Traum, D., Rickel, J.: Embodied agents for multi-party dialogue in immersive virtual
worlds. Proceedings of the first international joint conference on Autonomous agents
and multiagent systems, part 2 (2002) 766–773

8. Tummolini, L., Castelfranchi, C., Ricci, A., Viroli, M. Omicini, A.: ”Exhibitionists”
and ”voyeurs” do it better: A shared environment approach for flexible coordination
with tacit messages. Proceedings of Workshop on Environments for Multi-Agent
Systems (E4MAS) LNAI 3374 Springer Verlag (2004) 215–231

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 535 – 538, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Chomsky: A Content Language Translation Agent

António Lopes and Luís Botelho

“We, the Body and the Mind” Research Group, ADETTI - ISCTE,
Avenida das Forças Armadas, Edifício ISCTE,

1600-082 Lisboa, Portugal
{antonio.lopes, luis.botelho}@we-b-mind.org

Abstract. This paper describes Chomsky, a content language translation agent.
This agent provides a service, which first translates the content expression from
its original language into an abstract logic language (ALL). Then, the resulting
ALL expression is translated to the desired target language. ALL has been de-
signed as a superset of most known content languages to avoid loosing expres-
siveness during translation. For more than three supported languages, using an
intermediate language approach involves fewer translators than a pair wise ap-
proach. Currently, Chomsky supports FIPA-SL, KIF, and Prolog Content Lan-
guage. In one mode of operation, Chomsky returns the result of the translation
request to the client agent. In the other mode, Chomsky receives a message
from the intended sender whose content is expressed in language L1, it trans-
lates the content to the content language used by the intended receiver (L2), and
it sends the message with the L2 content to the intended receiver.

1 Introduction

In open agent societies of heterogeneous agents it is likely to have agents using dif-
ferent languages to express the contents of their messages. Even if agents comply
with current standardization specs [1], it is not mandatory to use a particular content
language.

We have implemented Chomsky, an agent that translates content expressions from
their original language into other desired content languages, enabling interoperability
between heterogeneous agents. Currently, Chomsky does not require agent-level
autonomy or intelligence. However, Chomsky was built as an agent (it communicates
in FIPA-ACL) to facilitate its use by other agents and to facilitate its future sophisti-
cation to handle problems requiring more autonomy and intelligence.

This is a short version of the paper “Chomsky: a Content Language Translation
Agent” which can be found in http://www.we-b-mind.org/publications/alopes-
chomsky-ceemas05-final.pdf. More detailed explanations, examples, an overview of
the literature and complete references are given in the larger version of the paper.

Section 2 presents the content language translation process and it describes Chom-
sky, the content language translation agent. In section 3, we conclude and present
guidelines for future work.

536 A. Lopes and L. Botelho

2 Content Language Translation

This section describes the proposed content language translation process, it describes
Chomsky, the agent providing the translation service, and it presents an example of an
interaction with Chomsky. Chomsky is a working agent publicly available. For more
information on the content language translation service as well as information on the
agent can be found at http://clts.we-b-mind.org/

2.1 Translation Process and Supported Languages

The approach used in the development of the translation service was to create an
internal content language to which all the object languages could be translated, and
from which all the target languages could be generated. In our approach, any sup-
ported language can be object or target language.

In order to be possible to translate between any of the supported languages, it was
decided that the internal content language should be a superset of the supported con-
tent languages. Notice that it is only necessary to have the adequate expressiveness.
Inference mechanisms are not necessary since the internal content language is used
only as an internal representation format. Certainly, this approach does not solve
problems that are impossible to solve. The translation of expressions of a more ex-
pressive language into expressions of a less expressive language is not always possi-
ble. An alternative approach would be to create translators for each pair of ob-
ject/target content languages. However, our approach requires only 2 × N translators,
in which N is the number of supported languages. The mentioned alternative requires
N! translators. Therefore, our approach is better when the number of supported lan-
guages is greater than 3.

Currently, the supported content languages are FIPA-SL [1], KIF [2] and PCL [3]
(Prolog Content Language), each of which can be either an object or a target lan-
guage. The internal content language is called ALL (Abstract Logic Language) [4].
FIPA-SL has been defined and used by FIPA to express the semantics of FIPA ACL.
FIPA SL is a general-purpose representation formalism suitable for a number of dif-
ferent domains. SL is a quantified multi-modal logic with several referential (iota,
any, all) and action (feasible, done) operators. Also, SL contains modal operators for
beliefs, uncertain beliefs, persistent goals, and intentions.

The KIF parser used in the service is based on an extension of the KIF draft pro-
posed to the American National Standards. However, not all of its features were cov-
ered by our current parser.

The PCL parser is based on the PCL draft definition proposed by the “We, the
Body and the Mind” Research Group of ADETTI.

ALL is an abstract content language defined as a superset of the content languages
FIPA-SL, KIF, and PCL. This way we ensure that it is possible to translate any con-
tent expression from any of these languages to ALL. Since FIPA-SL includes all the
features of the two other languages, ALL closely mirrors SL. The addition of new
languages may raise the need to further extend the expressive power of ALL. How-
ever, this would not interfere with the currently developed translators, since the added
constructs would not be involved in the current translation process. ALL complete
specification, including its abstract grammar, its class model, and a concrete
S-Expression syntax is described in the longer paper.

 Chomsky: A Content Language Translation Agent 537

2.2 Chomsky, the Agent

The initial idea was the development of a content language translation library that
each agent in the network could integrate in its own program as a new component or
package. However, not all the agents in an open agent society are built using the same
implementation technology, therefore the library would have to be built for all im-
plementation technologies used to create agents. Hence, the creation of a content
language translation service deployed by an agent became the best solution.

Chomsky uses the translation process explained in section 2.1 and its interaction is
governed by the FIPA request protocol, which is initiated by the reception of a
FIPA-Request message. Chomsky can use any of the supported content languages.
Chomsky provides two language translation services, corresponding to two operation
modes: translator mode, and interpreter mode. In the translator mode, Chomsky trans-
lates received content expressions and sends them back to its client agents. In the
interpreter mode, Chomsky acts as a gateway between two clients, translating the
contents of messages from one of its clients and sending the resulting message to the
other client.

The action that performs the translation, in the translation mode, is “translate”. Its
arguments are the object content language, the target content language, and the con-
tent expression to be translated. An example of this interaction is described in section
2.3. The action that performs the translation and forwards the result, in the interpreter
mode, is “forward_with_translated_content”. Its arguments are the object content
language, the target content language, the message to be translated and sent and the
intended receiver of the message.

Chomsky was implemented in JAVA, using the JADE agent platform, and some
agent tools previously created by our research group. The parsers used in the transla-
tion process were implemented using JAVA Cup and JAVA Lex.

2.3 Example of Use

In this section we present the conversation in which the client agent (Dummy) re-
quests Chomsky to translate a specific message from FIPA-SL to KIF (see Fig.1).
According to the FIPA-Request interaction protocol [1], Chomsky sends a FIPA-
agree message indicating that it agrees to perform the translation or a FIPA-refuse
message indicating the reason for refusing to perform the translation.

(REQUEST
 :sender (agent-identifier :name dummy@somewhere)
 :receiver (set (agent-identifier
 :name chomsky@elsewhere))
 :content "((action (agent-identifier
 :name chomsky@elsewhere)
 (translate FIPA-SL KIF
 \"((all ?x (instance ?x Car)))\")))"
 :language FIPA-SL)

Fig. 1. Message requesting Chomsky to translate a message’s content from FIPA-SL to KIF

 In the case that Chomsky agrees to perform the translation, it sends a FIPA-Inform
message containing the result of the translation to the Dummy agent.

538 A. Lopes and L. Botelho

3 Conclusions and Future Work

We presented Chomsky, a content language translation agent, performing a simple
syntactic translation between any of the content languages FIPA-SL, KIF and PCL.

The next steps for future work will be to overcome some limitations of current
parsers, to add support for additional content languages (e.g., FIPA-RDF), and to
consider a more intensive use of semantics in the translation process, by considering
the use of language ontologies.

Acknowledgments

The research described in this paper was partly supported by the EU project Agent-
cities.RTD, reference IST-2000-28385. The opinions expressed in this paper are those
of the authors and are not necessarily those of the Agentcities.RTD partners. We
thank Nelson Antunes and Mohmed Ebrahim for having implemented part of the
agent.

References

1. Foundation for Intelligent Physical Agents, 2002, “FIPA Specifications Grouped by Cate-
gory”, (http://www.fipa.org/repository /bysubject.html).

2. National Committee for Information Technology Standards, 1998, “Knowledge Interchange
Format: Draft proposed American National Standards”. Technical Report
NCITS.T2/98-004, (http://logic.stanford.edu/kif/dpans.html).

3. “We, the Body and the Mind” Research Group of ADETTI, 2003, “Prolog Content Lan-
guage Specification”, (http://www.we-b-mind.org/clts/files/pcl.doc).

4. “We, the Body and the Mind” Research Group of ADETTI, 2003, “Abstract Logic Lan-
guage Specification”, (http://www.we-b-mind.org/clts/files/all.doc).

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 539 – 542, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Roles and Hierarchy in Multi-agent Organizations

Emmanuel Adam and René Mandiau

LAMIH UMR CNRS 8530, University of Valenciennes,
Le Mont Houy, France, 59313 Valenciennes Cedex 9

{emmanuel.adam, rene.mandiau}@univ-valenciennes.fr

Abstract. Holonic Multi-Agent organisations are particular pyramidal
organisations where agents of a layer (having the same coordinator) are able to
communicate and to negotiate directly between them. Holonic agents are
generally structured by services (for examples: to search information, to interact
with the user). Some holonic agents, distributed in the system, can have same
roles without being in a same layer. However, it is essential to interact with
agents according to theirs roles: most of multi-agent methods and platforms are
based on the roles management. In order to beneficiate of the two advantages
which are the control allowed by the holonic architecture and the roles
management, we propose a particular holonic architecture based on the
workings mechanisms of human organisations. We have implemented this
architecture by offering a role management capacity to a hierarchical multi-
agent platform.

1 Introduction

Our researches aim at integrating multiagent organization into human organization,
which are more and more based on data exchanges, in order to help actor these system
to manage data, to communicate and cooperate between them. Admittedly, tools for
aid in co-operative work have already been suggested, some with success, but they do
not tackle the overall organization.
 So, in order to take into account the human organization and the human factors,
such as the human cooperation or even the human-machine co-operation, we have
previously developed a method (AMOMCASYS, meaning the Adaptable Modelling
Method for Complex Administrative Systems) that has helped us to design and to set-
up some information multi-agent systems (IMAS). We have designed the different
IMAS following a holonic architecture, and the resulting architecture is quite similar
to architectures generally used to build the IMAS. Of course our architecture is not
limited to IMAS design and is able to be used in other context (we have started some
application in the area of house automation, intelligent vehicles).
 In order to design an IMAS, we use both notion of role and hierarchy, and we
propose the use of role managers, acting like Human Resources Agent in the human
organisation (we call them HRA for Holonic Resource Agents). We have developed
some functionalities on a platform dedicated to hierarchical multi-agent systems, that
allows us to design and deploy our MAS by implementing the roles only and by
describing the positions of the agents in a XML file.
 This paper describes firstly the underlying concept of our works, which is the
holonic concept; and then some details about the build of our platform.

540 E. Adam and R. Mandiau

2 Holonic Multi-agent Platform

We use holonic principles: in order to understand the workings mechanisms of the
human organizations, in which we plan to set up information multi-agent systems; and
to design the multi-agents organizations.

Agents of holonic system are organized following levels of responsibility. So, a
holonic multi-agent system has a hierarchical structure where each agent is
responsible of a holonic multi-agent sub-system.

We have used the social rules defined in the holonic concept in order to simplify
and to accelerate the design of a multi-agent society (in the [1] sense), indeed, they
provide a framework to build a fixed multi-agent society (which does not imply
rigidity).

Applications of holonic MAS lead us to take into account the roles more explicitly.
So our approach uses both the notion of role and notion of hierarchy in a same multi-
agent system. Indeed, generally, like in the propositions of [2][3], the roles define
links between agents; the interactions between agents depend of the roles. In our
proposition, the interactions are defined by our MAS architecture. A holonic agent
communicates with its coordinator, its neighbours (having the same coordinator) and
its assistants, according to theirs roles or not.

We defined each agent by its name, its location, its acquaintances, its knowledge/or
beliefs (sets of data relative to the environment, the acquaintances and the agent itself)
and its role/s. Each role is defined by some knowledge (sets of resources that are
necessary to play the role), and some behaviours (or skills). Finally each behaviour is
composed of a set of methods that describe the interactions with the knowledge and
with the other agents.

For example, we can define a seller role composed of an inventory management
behaviour and a financial behaviour. The inventory management behaviour contains,
for instance, the procedures 'inventory control', 'products order'. The financial
behaviour contains procedures as the 'account management', 'price management'.

The buyer role could be composed of a call for proposals behaviour, which
contains the procedures 'send proposals', 'wait responses', 'choose best proposal', ...

Each agent of the MAS is not limited to one role. So, we can find in the MAS,
several seller agents, buyer agents and seller-buyer agents. Likewise, the behaviours
are not used only in one role but can be used in other roles.

We have defined notion of essential behaviour and secondary behaviour for a role.
Indeed, agents have to be able to modify the behaviours associated to their roles (by
receiving a new version of these ones from the user or others agents for example, or
by deleting one to free resources). However, an agent that deletes an essential
behaviour of a role must be removed from the list of agents that play this role in the
MAS. In our example, a secondary behaviour could be a complex display of the stock
for the inventory agent, behaviour that could be updated or remove in run time.

Our architecture can be summarized by the following notation:

MAS = {role*, agent*}
agent = {name, location, coordinator:agent, assistant:agent*, knowledge*, role*}
role = {name, knowledge, essentialBehaviour:behaviour*, secondaryBehaviour:behaviour*}
behaviour = {name, attribute*, procedure*}
knowledge = {agentKnowledge|environmentalKnowledge|socialKnowledge}

 Roles and Hierarchy in Multi-agent Organizations 541

To manage agents and roles of the system, we propose the use of a roles manager:
the agent, which plays this role (called HRA for Holonic Resources Agent), owns the
roles list, the tasks list linked to the roles, and the names of the agents (and their roles)
that compose the multi-agent organization. In our architecture, we give this role to an
agent located at the top of the system. Relatively to the FIPA multiagent platform
architecture, this agent can be considered as an extended Directory Facilitator agent.

Each agent that appears in the multi-agent organization informs the RMA on its
name, its location and on the roles that it wishes to play. If the RMA knows the roles,
it sends it the behaviours linked to the requested roles and record the agent and its
characteristics in its knowledge.

Each agent can modify its own behaviours (if they are not essential behaviours),
and thus can have personal behaviours although it has same roles than other agents of
the MAS. However, when a role is modified in a same way in a sufficient number of
agents (number defined by a threshold relative to the number of agents playing the
role in the whole organization), the role description is updated in the knowledge of the
roles manager. Each agent, which asks for a role, receives the last version of this one.

We defined also the “holonic role” that describes the tasks relative to the
management of the holonic acquaintances and the communication with them. Each
agent of our organization owns this holonic role. It allows them to send messages to
their acquaintances (the coordinator, the neighbours, the assistants) and the set of
holonic agents whose they are the direct or indirect coordinators. The messages can
be addressed to acquaintances having particular roles.

As the HRA is essential in our system, we have developed replication mechanisms
for it, and we use in fact a hierarchy of sub-HRA, that are each dedicated to the roles
management of an agents layer. These sub-HRA are not replicated but recreated by
the main HRA if needed. These developments are currently under tests.

We do not have yet proposed particular communication protocols, all the
“classical” protocols can be used, but we plan to propose adaptations of existing
protocols to respect the holonic concepts.

The first prototype of this platform has been developed using the MAGIQUE [4]
multi-agent platform and we have built an application that allows us to deploy into a
network a holonic multi-agent system from its description (by a XML file).

3 Holonic Multi-agent Platform Implementation

We generally use the MAGIQUE [4] platform to build our prototypes. This platform
provides libraries dedicated to hierarchical multi-agent systems development: a
MAGIQUE agent is an empty shell having only communication capacities (with its
supervisor and its team (agents under it)); an agent skill is a Java class, composed of
functions or sub-processes; messages exchanged between agents consist in calls to
functions or to sub-processes that are located in the skills1.

1 If a request cannot be satisfied, because the agent does not know how to answer (the function

asked is not present in its skills), it is stored by the platform until the agent learns to answer
to it.

542 E. Adam and R. Mandiau

 In order to generate holonic multi-agent systems, we have defined two skills:

- HolonicOrganizationSkill, associated to the highest multi-agent organization
supervisor. It owns the roles list, the skills list linked to the roles, and the names
and the roles of the agents that compose the multi-agent organization.

- HolonSkill, linked to each agent. It defines the attribution of the neighbours and
assistants, and the role oriented communication processes. A holonic agent is able
to send a message to its neighbours or assistants having a particular role.

We have built an application that allows us to deploy into a network a holonic multi-
agent system from an XML file that describes it. This XML file describes the roles,
the agents, theirs hierarchic relations and the methods of the skills, associated to the
roles linked to the agents, which are to be launched at the start of the multi-agent
organization.

MAGIQUE platform allows us to easily create hierarchical multi-agent systems,
but it is not yet FIPA compliant. We are currently developing our holonic platform as
an extension to JADE [5], in order to have a FIPA compliant multi-agent platform.
We hope that this will facilitate exchanges with MAS built on others FIPA compliant
platform.

4 Conclusion

Our works use the holonic concept to understand and analyse human organizations
and design multi-agent system particularly adapted to the studied human
organizations. From this work, we propose a multi-agent organization using both
notion of role and notion of hierarchy. The tools that we use to automatically deploy
such an organization allow us to focus and to develop only on the role played by the
agents and avoid us to have to develop the global organization. This platform allowed
us to develop several IMAS, but need to be improved. So, currently we “consolidate”
our platform by replication mechanisms and regeneration of essential agents.

References

1. Mandiau, R., Le Strugeon E. & Agimont G. Study of the influence of organizational
structure on the efficiency of a multi-agent system. Networking and Information Systems
Journal, 2(2) (1999) 153-179.

2. Mathieu, P., Routier, J-C., Secq, Y. RIO: Roles, Interactions and Organizations. CEEMAS
2003: Multi-Agent Systems and Applications III, Lecture Notes in Artificial Intelligence
2691. (2003)

3. Kendall, E. A. Role modeling for agent system analysis, design, and implementation. In
First International Symposium on Agent Systems and Applications (ASA’99), Third
International Symposium on Mobile Agents (MA’99), (1999).

4. Mathieu, P., Routier, J-C., Secq, Y. Dynamic skills learning: a support to agent evolution.
Proceedings of AISB'01, York. ISBN 1 902956 17 0. (2001) 25-32.

5. Bellifemine F., Caire G., Poggi A., Rimassa G., “JADE - A White Paper”, Sept.
2003,http://jade.tilab.com/papers/WhitePaperJADEEXP.pdf

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 543 – 546, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Semantic and Virtual Agents Model in Adaptive
Middleware Architecture for Smart Vehicle Space

Qing Wu and Zhaohui Wu

 College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, China 310027
{wwwsin, wzh}@zju.edu.cn

Abstract. With the increasing prevalence of ubiquitous computing, various re-
sources are constrained and run-time context is diverse, which poses many chal-
lenges in computer technologies. It specially requires software middleware ar-
chitecture more adaptive to the changes in computing environments. This paper
presents a semantic and virtual agents model for flexible structure-level and
run-time adaptation. In addition, semantic interface protocol is put forward to
implement multi-agent adaptation. We have applied this model to adaptive
middleware and developed mobile music program. A large number of experi-
ments are made to test the performance and reliability of our adaptive mecha-
nism. The result shows our model and method are available and reliable for
agent-level adaptation based on semantic information.

1 Introduction

In ubiquitous computing environments, multi-agent architectures and methodologies
have been introduced for adaptive communication and cooperation [1,2]. The physical
world and information space are integrated seamlessly and naturally. However, this
environments demand plenty of computation resources for functional requests and
performance requirements. In addition, changes of the heterogeneous context includ-
ing people, smart devices, and environments are ubiquitous and pervasive. Therefore,
it results in many problems in software middleware design and development
technologies.

To deal with this complex dynamic environment, several solutions based on agent-
level adaptation have been proposed [3,4,5,6]. Nevertheless, we focus on the agent
model that enables flexible structure-level and run-time adaptation based on semantic
information to meet the different computing environments and variant run-time con-
text. This paper presents the SVA (Semantic and Virtual Agent) model and SIP (Se-
mantic Interface Protocol) in adaptive middleware design and implementation in
smart vehicle space for ubiquitous computing.

2 Semantic and Virtual Agents

With multi-agent technologies, we have developed ScudWare [7] platform, which is
an adaptive middleware aiming at context-aware and adaptive aspects, applying to

544 Q. Wu and Z. Wu

mobile music program in smart vehicle space [8]. Furthermore, we have proposed
SVA model and SIP including sva discovery, join, lease, and self-updating protocols
for agent-level adaptation. One sva is a group of services, defined as an autonomous
entity based on meta objects [8] and distributed components. SIP prescribes the prin-
ciples of svas’ communication. Next, we give following formal definitions.

Definition 1. SVA=(CP, TASK, MO, KB, TB, SQ RQ). CP is a set of svas’ capabili-
ties, defined as CP={cp1, cp2, cp3,…, cpn}. cpi is one minimal unit of sva’s capability.
Specially stated, each sva has abilities to change its cpi according to the different
context.),(CONTEXTCPOPCP =Δ is the change of one sva’s capability.

},,,{ finddeletemodifyappendOP = is a set of svas’ operations. CONTEXT is a set of

run-time environment information. MO is a set of meta objects. Each sva consists of
some meta objects, defined as MOmoSVAsva i ∈∃→∈∀ . KB is a knowledge base
of SVA, defined as KB={kb1, kb2, kb3, … , kbn}. Each kb is a set of rules, defined as

niirulekb ,..,1)(== , and niii spilifetimekeyminterfacemrule ,..,1),,),(,(== , where mi

is a set of recently cooperating missions. Importantly, rules are dynamic and adaptive,
self-updating when some relevant events come. TB is a trust policy base, defined as

niii svaTMsvaTB ,..,1))(,(== , which includes trust security rules for cooperation of

svas. TM(x) is a trust evaluation function, defined as TM(x)=(trustvalue, priority,
prestige, history). RQ and SQ are two sets of message processing query, defined as

MsgSQMsgRQ == , and Msg={req, accept, refuse,…, msg}, which are respon-

sible for receiving and sending messages separately.

Definition 2. In run-time, one application maps to a set of missions. We define a
mission set M={m1, m2, m3, … , mn}. To fulfill mi, different svas cooperates, defined
as Pyxyjxiji ccpsvacpsvaRSVAsvasvaMm <<⋅<<⋅∈∃→∈∀ ,1Q,ji,1),.,.(, . P is the max

num of svas’ capabilities and Q is the max num of svas. The prediction R(a, b, c) is a
cooperation relationship between a and b in terms of rule c.

Definition 3. sva discovery protocol is for one sva to find another sva without one
fixed sva naming service. There are two discovery models: (a) peer-to-peer and (b)
multicast model. If sav1 demands capability c1 and knows that sva2 has c1, sva1 will
use (a) model, sending request message to sva2 for direct communication. On the
other hand, if sva1 does not know who has c1, sva1 will take (b) model. First, sva1 send
multicast request message m to other svas. Then if svan has c1 and receives m, savn
will send reply message to sva1 after sva1 is authentic to savn. Lastly, they begin to
cooperate trustfully.

Definition 4. sva join protocol is for one sva to take part in one sva community. For
example, there is one sva community sc1, consisting of sva4, sva6, sva8, where they
cooperate directly, and trusty. If sva2 comes and wants to attend sc1, it will firstly get
authentications from all members of sc1, then it can act as one element of sc1. sva join
protocol also includes the rule of sva departs from one sva community.

Definition 5. sva lease protocol defines the rules of time and space principles in svas’
cooperation. For example, if sva1 requires sva2’s capability cn and is authenticated to
sva2, sva1 and sva2 will negotiate about the usage restrictions of cn. Let time=10 and

 Semantic and Virtual Agents Model in Adaptive Middleware Architecture 545

space=Domain A, which means sva1 can use cn for 10 seconds and just in Domain A.
If sva1 want to continue using cn after time expires, sva1 will relet cn with sva2.

Definition 6. sva self-update protocol defines the rules of svas KB and CP updating.
For instance, if sva1 requires capability cn to get one system parameter, sva1 finds sva2
has cn based on its KB. Then sva1 sends request message to sva2. If sva2 still has cn
currently, they will cooperate. However, if sva2 has not cn now, sva2 will search other
svas according to its KB and update this KB at the same time. This process will not
stop until one sva has cn or no one has. Specially, in one sva’s lifecycle, it can acquire
new knowledge from others. In addition, svas can obtain new capabilities and update
its capability repository.

3 Experiments and Evaluations

To evaluate our method, we have made some preliminary experiments using the se-
mantic and virtual agents model to develop the Mobile Music program. We have
disposed many svas, which are distributed in smart vehicle space and interact with
request-and-reply process. Because the context of this application is diverse, SIP set is
used for better adaptation and efficiency. Our experiments are tested on ScudWare
middleware platform. We used some PDAs (iPAQ) connected to the PC via the wire-
less LAN using 802.11b protocol to evaluate our model.

Fig. 1. One Screen Shot of Mobile Music Program

We placed many svas to PDAs and PCs randomly. The functions of these svas con-
sist of (1) acquiring the music source, (2) transmitting the music, and (3) playing the
music. As figure 1 shows: at first, sva1 on the left PDA is playing the music with ste-
reo tune and the current frame is No 398. If the run-time context changes (e.g. net-
work bandwidth is not enough), the system then stops sva1. Next, its brother sva2 on
the next PDA (right one) is discovered and sva2 will start and play from No. 398
frame with mono tune. Therefore, the system can continue executing successfully
without more delays and provide comparative satisfaction for users in terms of SIP.

546 Q. Wu and Z. Wu

4 Conclusions and Future Work

Multi-agent based adaptive method is playing a more important role in ubiquitous
computing. This paper firstly analyzes the problems caused by dynamic characters of
ubiquitous computing. Then we present a semantic and virtual agents model, consid-
ering both design-time aspects and run-time issues. Furthermore, semantic interface
protocol set is proposed to implement sva’s adaptive mechanism. Next, we have made
a large number of simulations to test SVA model. The experiment results show our
method has efficiency and flexibility.

Our future work is to improve the adaptive agent model including the related algo-
rithms. In addition, we will take other adaptive agent methods to realize more flexibil-
ity and reliability for ScudWare middleware design.

Acknowledgments

This research was supported by 863 National High Technology Program under Grant
No. 2003AA1Z2080, 2003AA1Z2140 and 2002AA1Z2308.

References

1. J. Ferber, O. Gutknecht, Alaadin: a meta-model for the analysis and design of organizations
in multi-agent systems. ICMAS’98 (1998), 128-135

2. M. Wooldridge, N. Jennings, D. Kinny, The methodology Gaia for agent-oriented analysis
and design. AI, Volume 10, No 2, (1999), 1-27

3. K. M. Carley, Adaptive organizations and emergent forms. Organization Science, V2, No 3,
(1998)

4. J. Odell. Agents and complex systems. Journal of Object Technology, Volume 1, No 2,
(2002),35-45

5. Zahia Guessoum, Mikal Ziane, Nora Faci, Monitoring and Organizational-level Adaptation
of Multi-Agent Systems. AAMAS’04, (2004), 514-520

6. Victor R. Lesser. Reflections on the Nature of Multi-Agent Coordination and Its Implica-
tions for an Agent Architecture. Autonomous Agents and Multi-Agent Systems’98 (1998),
89-111

7. Zhaohui Wu, Qing Wu, Jie Sun, Zhigang Gao, Bin Wu, Mingde Zhao, ScudWare: A Con-
text-aware and Lightweight Middleware for Smart Vehicle Space. ICESS’04, (2004)

8. Qing Wu, Zhaohui Wu, Bin Wu, Zhou Jiang, Semantic and Adaptive Middleware for Data
management in Smart Vehicle Space. WAIM’04, (2004) 107-116

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 547 – 550, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards an Authority Sharing
Based on the Viewpoint Action Model

Abdenour Bouzouane

Université du Québec à Chicoutimi, Dép. Informatique et Mathématique,
555, blvd. Université, Chicoutimi (Québec), G7H2B1, Canada

abdenour_bouzouane@uqac.ca

Abstract. Within the human in the loop context, the realization of a task will
not only be the accomplishment of human operator or the autonomous agent
acting on his behalf, but rather of both entities, and in which they will have the
same possibilities to propose, suspend, and refuse each other. However, this co-
habitation is both rich and complex; owing to the fact that the human and the
agent are bound to not only agree on the various levels of realization of the task,
but also to manage the autonomy -who controls who-. The issue then is to work
out a model of an agent authority sharing, for the purpose of safely transferring
decision-making control to the human user and vice versa?

1 Introduction

The emergence of applications of the so-called new generation such as smarthomes,
uninhabited aerial vehicles, etc, has gradually moved the autonomy's border of an
agent, but the human remains in the loop. Within this forward-looking context, the
realization of a task will not only be the work of the human or the agent, but also of
the set within which they will have the same possibilities to propose, suspend, and
refuse each other [4], [7]. However, this hybrid cohabitation feature is both rich and
complex, owing to the fact that the human and the agent are bound not only to agree
on the various levels of realization of the task, but also to manage the paradoxical
problem of agent autonomy [5]. On the one hand, the agent autonomy is useful but
risky because of misunderstanding, disagreements, and conflicts. On the other hand,
the control of the decision-making by the human operator is also risky because he is
not infallible. The problem is that the human can be submerged by the massive arrival
of information inherent to the complex systems. Therefore, if one desires to maintain
this autonomy property, its adjustment may provide a solution to this dilemma.

Scerri et al [11] view the adjustment of autonomy as determining whether and
when transfer of decision-making control should occur, given an uncertain response
of the human. Their approach is based on the markovian theory of the decision proc-
esses which they use to transform this problem into a choice of transfer-control strat-
egy whose expected utility is the highest. This analytical approach is reductionistic in
the sense that the world does not evolve in a finished number of states and apart from
economic applications, the utility measurement can be subjective and difficult to

548 A. Bouzouane

estimate. Conversely, the cognitive approach of Castelfranchi and Falcone [6], [8]
considers the adjustment of autonomy according to the adjustment of the delegation
which is a mental act that defines the autonomy level space. This solution which uses
the trust measurement for delegation will be difficult to make operational because of
the complexity of the trust analytical formulas. Moreover, there is no justification for
the way the degrees of trust associated with the various beliefs are revised.

Our contribution is to rather consider the adjustment of autonomy as a non ana-
lytical process of sharing authority that can be reduced to bidirectional transfer-
control of decision-making, by the interchangeability of the actions in a common task
[3]. In this context, the user and his agent commutate from operating mode of control
to the observer mode according to the convergence of their intentions. An agent in an
observation mode is in a passive state, prohibited from making any decisions, but
continues to construct viewpoints that synthesize the task process required for future
activation. A viewpoint is a recognition function of actions observed in an environ-
ment where the result is an ontology of actions respecting a structure of lattice. For a
given state of the world, if a viewpoint admits a nonempty lower bound, then the
actions are interchangeable. Therefore, there is a possibility of relinquishing control to
the entity in observation mode. We propose a formal approach of the actions classifi-
cation permitting a safety transfer of control. Our approach follows the lines of the
Description Logic (DL) [1] that, in our view, fits better to this problem of sharing
authority.

2 A Viewpoint Action Model

An action a over a set of world states { }, , ,...,w s eW = is a binary relation

a W W⊆ × such that ,w e a∈ if and only if { }()a w e | w, e W W= ∈ × where w

and e are respectively the current and next states. The actions operate on the asser-
tions formulas which are particular cases of first order logical formulas [2]. If the
conceptual expressions and the assertions of the DL are used to describe facts about a
state of the world, they can be satisfiable or unsatisfiable according to this state.
Therefore, the states of the world can correspond to semantic structures. Let

(), (.) wI
w Dom w= a semantic structure such that ()Dom w is the domain of inter-

pretation, i.e., the non-empty set of objects called individuals that exist in the world

when the world is in that state w at given time. The function (.) ,wI referred to as

interpretation function associated with ,w assigns to each concept symbol, ,C a sub-

set of the domain (),Dom w i.e., ()wI
C Dom w⊆ , and to each role a subset of the

domain () (),Dom w Dom w× such that the semantic equations of DL hold [1]. Let C

and D designate concept names and r a name of a role in the sense of the DL. The
subsumption relation among objects concept is given by C subsumes D , which is

equivalent to w wI I
D C⊆ in state w . The assertion of the form ()C i stipulates that

the individual i is an instance of concept ,C and the assertion (,)r i j indicate that

 Towards an Authority Sharing Based on the Viewpoint Action Model 549

the couple of individuals (,)i j is in the extension of r . In order to associate an inter-

pretation to the assertions, the function (.) wI is extended to individuals such that, e.g.,

()C i is satisfied by ,w and we note ()w C i£ if and only if wI
i C∈ . The action

()a w is structured in a traditional formulation where each precondition ()pre a is a

conjunction of assertion formulas concerning the conceptual objects as well as the
roles which bind these objects. The effects of actions can be expressed by the adding

conditions of assertions described by the assertion formulas (),pos a+ which means

the addition to the interpretation of concept or role involved in an action ()a w and

the deletion from the interpretation of concept or role denoted by -pos (a) . A point of

view on action observed a in a state of the world w at time t, is expressed by the
function (,).v a wρ The result of this function consists in proposing a set of possible

actions wA in this state w according to their precondition constraints, such that the

set actions { }a
w wA aΠ = ∪ forms a lattice ordered by the subsumption relation of

these actions. Formally, (,)v a wρ defines a lattice structure ,a
w aΠ such that the

following constraints are satisfied:

− ,a
wb∀ ∈ Π b is subsumed by a if and only if

, : () ())

(() ()) (() ())

w e b w pre b w pre a

e pos b e pos a e pos b e pos a+ + − −

∀ ∈ ∨

∨

 £ £

 £ £ £ £

− , a
wb c∀ ∈ Π , admits an upper bound a

wa ∈ Π which is the action observed. ()a w

forms the root of the lattice of the set of the possible actions in state w at time t be-
cause the agent in observation mode considers that this action has the highest ex-
pected quality according to the viewpoint of the entity in control.

− , a
wb c∀ ∈ Π admits a lower bound a

wb c Π∈ ó . This bound is represented by the

symbol Û that express a collection of actions (meta-action) subsumed by all
member-actions of the lattice. This collection can be executed in any order
guaranteeing the same state of the world obtained by ()a w such that

() (()) (()).b c w b c w c b w= ∪ó Two actions (,) a a
w wb c ∈ Π × Π are interchangeable if

and only if ()b c w ≠ ó « . The state « is an empty state, i.e., a state of contradic-

tion.

− ,a
wb∀ ∈ Π if ()a b w = ó « where ()a w is an observed action which is performed

by the agent (or human) in control, then the agent observer must reduce its sharing
of authority. In the case where ()a b w ≠ ó «, the agent observer can extend its

autonomy by requesting authority sharing owing to the fact that the intentions of
the entity in control coincide with the observed action ()a w .

550 A. Bouzouane

3 Conclusion

Our objective is to formally redefine the main issues surrounding the problem of ad-
justment of autonomy by relying on a formal approach of the action. It should be
emphasized that this initial work is not meant to bring exhaustive answers to the ques-
tions raised by the multiple problems related to the human in the loop. However, it
constitutes a first step towards a non analytical approach to the adjustment of auton-
omy. Our aim is to develop an action language based on the viewpoint paradigm, for
the sharing of authority between two entities involved in a common task. Further-
more, this action language will give us an opportunity to introduce the dynamics into
the description logic [9]. The actual case used as a validation is a smart home
project aimed at providing cognitive assistance to people suffering from cognitive
deficiencies [10].

References

1. Baader F., Calvanese D., McGuiness D., Nardi D. et Patel-Schneider P.: The Description
Logic Handbook : Theories, implementation, and applications. Cambridge University
Press, United Kingdom (2003)

2. Borgida A.: On the relative expressiveness of description logics and predicate logics. Arti-
ficial Intelligence Journal, Vol. 82. Elsevier, NewYork (1996) 353-367

3. Bouzouane A., Bouchard B., Giroux S.: Crédibilité de l’initiative usager-agent à base de la
logique teminologique, In: Proc. JFSMA’04, Hermès (eds) (2004) 293-306

4. Bouzouane A., Demazeau Y., Drogoul A., Hélie P., Taillibert P. et Tessier C. : Table
ronde: Des agents et des hommes, quels défis pour les nouveaux usagers, In: Proc.
JFSMA’04, Hermès (eds) (2004) 323-329

5. Castelfranchi C., Falcone R.: Trust and Control: A Dialectic Link. Applied Artificial Intel-
ligence Journal. Vol. 14. Taylor & Francis (eds) (2000) 799–823

6. Castelfranchi C., Falcone R.: From Automaticity to Autonomy: The Frontier of Artificial
Agents. In: Hexmoor, H., Castelfranchi,C., Falcone, R., (eds): Agent Autonomy. Springer-
Verlag (2003)

7. Dautenhahn K.: Socially Intelligent Agents: The Human in the loop. IEEE Trans. on Sys-
tems. Vol. 31:5 (2001) 345-348

8. Falcone R., Castelfranchi C.: The Human in the Loop of a Delegated Agent: The Theory of
Adjustable Social Autonomy. IEEE Trans. on Systems. Vol. 33:5 (2001) 406-418

9. Gil Y.: Description Logics and Planning. To appear in AI Magazine. (2005) 1-22
10. Pigot H., Mayers A., Giroux S.: The intelligent habitat and everyday life activity

support. In: 5th Conf. on Simulations in Biomedicine, Slovenia (2003) 507-516
11. Scerri P., Pynadath D.V, Tambe, M.: Towards Adjustable Autonomy for Real

World. Journal of Artificial Intelligence Research. Vol. 17. Morgan Kauffman
(eds) (2002) 171-228

Application of Multi-agent Systems and Social
Network Theory to Petrol Pricing on UK

Motorways

Alison J. Heppenstall, Olga E. McFarland, and Andrew J. Evans

School of Geography, University of Leeds, Leeds, UK, LS2 9JT
www.geog.leeds.ac.uk

Abstract. The work within this paper outlines ongoing research into
the use of multi-agent systems and social network theory to examine
the transmission of information within a dynamic geographical system.
The system examined is the UK retail petrol market. Details of the
model are provided and simple simulations run to test the robustness
and behaviour of the model. The results of these basic simulations are
presented alongside a discussion of the wider relevance of this work and
future developments.

1 Introduction

Complex systems are characterised by containing many distributed subsystems,
subsystem components, interactions and organisational relationships. These re-
lationships are constantly changing in reaction to new information introduced
or created within the system. This information can be transmitted around the
system by networks established between subsystems or components. There are a
variety of different networks [5], but this research will focus on the transmission
of new information through social networks.

Determining what patterns emerge as a consequence of the introduction and
emergence of new information within a network is an important area that af-
fects many different applications. For example, in a rapidly changing economic
environment such as retail markets, competitive advantage in an area becomes
redundant with the advent of a new technology or social change.

The work within this paper is part of an ongoing project investigating the feasi-
bility of using multi-agent systems (MAS) for modelling complex systems. Here the
effects of transmitting pricing information through a complex system, in this case
the UK motorway petrol station network are examined. This network is unusual in
that it is explicitly geographical but contains a strong social network (petrol sta-
tions maintain a close check on their competitors price). A simple MAS model was
created to simulate this network and initial idealised experiments are presented.

2 The Retail Petrol Market

Previous approaches to modelling the retail petrol market have comprised of
empirical regression techniques that vary in complexity and focus on the rela-

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 551–554, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

552 A.J. Heppenstall, O.E. McFarland, and A.J. Evans

tionship between the petrol price and one or more variables [4]. These techniques
are unable to model the numerous spatial and temporal influences evident within
the retail petrol market [2].

The work of Heppenstall et al. [2] used agent-based systems to examine the
transmission of information between petrol stations within a geographical region.
However, due to the complexity of the system, this work did not study explicit
geographical networks.

A simplified version of this market can be found by way of the UK motorway
network. This consists of long stretches of linear roads with a small number of
petrol stations located on them. This geographical network provides a convenient
platform for the study of information diffusion and interactions between petrol
retailers. Examining the behaviour of petrol stations within the retail petrol
market is an area that is not heavily researched. Of the few studies, both Ning
and Haining [3] and Heppenstall et al. [1] found that within the local competitive
environment of a station, social networks were readily apparent. However, the
nature of these networks are not easily determined. The work here represents a
starting point to modelling such networks.

3 Model Overview

The model was a customised version of a small world application (created using
Java) developed by the Multi-Agent Systems Simulation (MASS) group at the
School of Geography, University of Leeds (the original model and source code
can be found at http://www.geog.leeds.ac.uk/groups/mass/ resources/software/
smallworldagents/). The model was extended to incorporate application specific
behaviour such as the ability to set prices and to calculate distance to neighbours
(see §3.1 for further details). Conceptually, the model consists of two major
components; the motorway network and the petrol agents that act upon it.

The network was designed to represent a real system of petrol stations con-
nected via a transportation network. It is represented in graph space as in reality,
i.e. petrol stations are sited at strategically located positions along a stretch of
motorway. Representation in graph space enabled a convenient simplification
of reality.

Individual petrol stations were created as agents and supplied with their
location, their own price and the price of their neighbourhoods. Each petrol agent
can be characterised as being heterogeneous, possessing both a fixed location and
a petrol price; communicative and cooperative with pricing information shared
between the agents for competition, and reactive making decisions and changing
their prices based on information supplied to them. This construction follows
the petrol agent developed by Heppenstall et al. [1].

3.1 Behaviour and Rules

The price of petrol that a station sells is decided via a set of rules. These rules can
be assigned to an individual station, a group of stations or all the stations. The

Application of Multi-agent Systems and Social Network Theory 553

basis of these rules are derived from factors that the Competition Commission
(1990) state as important in price variability between petrol stations, for example
distance from, and price of a competitor. The effects of external factors, for
example, crude oil prices and fuel tax were not incorporated within this research.

The parameters used to form the basis of the rules and an example rule by
an agent are:

- Minimum and maximum price: the maximum and minimum price the
stations can set. (This was only activated during development of the model.
Once the model was stable, these parameters became redundant.)

- Undercutting amount: the amount by which one station can be cheaper
than another.

- Overpricing amount: the amount by which one station can be more ex-
pensive than another.

- Distance: the distance between neighbouring stations. The impact of the
price on a neighbours station was set by means of an exponential scale, i.e.
the further away the neighbour, the small the impact of any price change.

Example. Am I more expensive by Xp than my neighbours? If yes, drop my
price by Xp.

4 Initial Experimentation: Fixed Price Drop

By standardising the geography and network through idealised data, the be-
haviour and sensitivity of the model can be easily understood. This is an essential
step before application to the more complex real system.

Diffusion experiments provide a useful opportunity to examine the reaction
of the system and in particular, give an understanding of how information is
transmitted between stations. One of the simplest ways to test diffusion within
the system is to drop the price of one station and examining if and how the
cheaper price is transmitted through the network. A simple network with 9
stations located at 2km intervals was created. Each station was initialised with
the same price, 68 pence (p) with the exception of station 5, the centre station
which was set at 65p. The undercutting and overpricing parameters were both
set to 1p and applied to all the stations.

Figure 1(a) shows the neighbours of station 5 quickly reacting to the lower
price by dropping their prices in a symmetrical pattern. The transmission of the
lower price can be clearly seen through the remainder of the network and by day
5, all the stations have been affected. Interestingly, station 5 increases its price
by 1p on the first day as the other stations decrease their price. This is due to
the underpricing and overpricing rules not allowing the stations to more than
1p cheaper or more expensive than their neighbours. This simulation shows that
these rules are working sensibly.

To examine the effect of a price drop at a different position within the net-
work, station 1 was initiated at 65p (all the other stations were set to 68p).
Figure 1(b) shows the effects of the lower price being transmitted through the

554 A.J. Heppenstall, O.E. McFarland, and A.J. Evans

(a) Station 5
(b) Station 1

Fig. 1. Impact on the network of dropping the price by 3p at (a) station 5 and (b)
station 1

network over the course of the simulation. The diffusion takes 8 days to reach
all the stations, at this stage they each have a price of 66p.

5 Conclusions

The work within this paper has presented an agent-based system for modelling
social and geographical networks. Although simplistic at this stage, this work
represents the basis of two important strands of research. Firstly, the develop-
ment of effective tools to model complex geographical systems and secondly, the
further use of such tools to identify interesting patterns and behaviour within
such systems. The model has been proved to work sensibly within the initial
experiments performed. The next stage is to test the model using real world
scenarios.

References

[1] A.J. Heppenstall, A.J. Evans, and M.H. Birkin. A hybrid multi-agent/spatial in-
teraction model system for petrol price setting. Transactions in GIS, 9(1):35–51,
2005.

[2] A.J. Heppenstall, A.J. Evans, and M.H. Birkin. Application of hybrid multi-agent
systems to a dynamic, locally interacting geographical system. JASSS, In review,
2005.

[3] X. Ning and R. Haining. Spatial pricing in interdependent markets: a case study
of petrol retailing in Sheffield. Environment and Planning A, 35:2131 – 2159, 2003.

[4] B. Reilly and R. Witt. Petrol price asymmetries revisted. Energy Economics, 20:
297 – 308, 1998.

[5] R. Stocker, D. Green, and D. Newth. Consensus and cohesion in simulated social
networks. JASSS, 4(4), 2001.

Combining Rule-Based and Plug-in Components in
Agents for Flexible Dynamic Negotiations

Costin Bădică1, Maria Ganzha2, Marcin Paprzycki3, and Amalia Pı̂rvănescu1

1 University of Craiova, Software Engineering Department
Bvd.Decebal 107, Craiova, 200440, Romania
badica costin@software.ucv.ro

2 Gizycko Private Higher Educational Institute, Department of Informatics
Gizycko, Poland
ganzha@pwsz.net

3 Oklahoma State University, Computer Science Department
Tulsa, OK, 74106, USA and

Computer Science, SWPS, 03-815 Warsaw, Poland
marcin@cs.okstate.edu

Abstract. For software agents to become part of e-commerce they have to be
flexible—to engage in negotiations of forms which are not known in advance,
and mobile—to migrate to remote locations. This note aims at combining flexibil-
ity with mobility by joining rule-based mechanism representation with modular
mobile agents. Furthermore, we focus on a more complete e-commerce scenario
and address questions like: what happens before negotiations start and after they
are finished, where from the purchase is actually made etc. Description of agent
interactions in such a complete e-commerce scenario is presented.

1 Introduction

Recent advances in auction theory have produced a general methodology of describing
price negotiations [9]. To engage in negotiations, forms of which are unknown in ad-
vance, agents have to be appropriately flexible [3]. Furthermore, it is argued that they
have to be mobile to be used in realistic applications [2]. However, mobile agents have
to be lightweight to be able to swiftly move across the network. Unfortunately, flexible
agents cannot be lightweight as they have to “carry” their intelligence with them [8].

In this note we describe architecture of a multi-agent e-commerce system that aims
at combining flexibility and mobility. Our proposal builds on: (i) conceptual architecture
of a multi-agent e-commerce system summarized in [3]; (ii) flexible framework that al-
lows agents to participate in arbitrary negotiations described in [1], and (iii) lightweight
modular agents that migrate to remote markets and engage in negotiations [3] (see also
references quoted there). Furthermore, we extend the proposed approach beyond the
“act” of negotiation. In [7] negotiations were extended to include matchmaking. In our
work we consider: matchmaking, negotiating and purchasing. Interestingly, processes
between completion of price negotiations and actual purchase, while involving a num-
ber of possibilities, are practically forgotten in literature.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 555–558, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Rule-Based and Plug-in Components for Automated Negotiation

We start by summarizing the framework for automated negotiation introduced in [1]
and the architecture of mobile agents capable of dynamic negotiations elaborated in
[3]. Authors of [1] analyzed the existing approaches to agent negotiations (primarily
the FIPA protocols) and argued that they do not provide enough structure for the devel-
opment of portable agent-based e-commerce systems. They also sketched a framework
for implementing agent negotiations involving a number of infrastructure providing
sub-agents: Gatekeeper, Proposal Validator, Protocol Enforcer, Information Updater,
Negotiation Terminator and Agreement Maker. Central point of this framework con-
sisted of a generic negotiation protocol and a taxonomy of JESS rules ([5]) used for
enforcing specific negotiation mechanisms.

In our earlier work we have implemented (using JADE [4]) agents capable of ne-
gotiation adaptation via dynamically loadable modules ([3]). These agents consisted of
three main components: (i) communication module—responsible for agent-agent com-
munication, ii) protocol module—responsible for enforcing protocols governing negoti-
ations, and (iii) strategy module—responsible for producing protocol-compliant actions
necessary to achieve agent goals. Advantages of this architecture were threefold: (i) sep-
aration between functionality of each module, (ii) separation of a “private” strategy and
a protocol that is “public” to the market, (iii) support for lightweight mobility.

Let us now see how it is possible to combine these two approaches. (1) Work pre-
sented in [1] assumes implicitly that Buyer agents are intelligent and furthermore carry
with them a “generic negotiation protocol” thus making them very heavy, while our
approach can help avoid this problem. (2) The Gatekeeper sub-agent does not play any
role in actual price negotiations and thus can be placed “in the system” as a full-fledged
agent. (3) Analysis presented in [1] involves only Buyer agents entering a given host and
becoming involved in price negotiations; actions of the system preceding and following
negotiations are not considered; we have thus included them in our system.

3 Agents in an E-Commerce Environment

Let us now present details as to how the two approaches can be actually combined to
balance flexibility and mobility. Fundamentally, our environment acts as a distributed
marketplace that hosts e-stores and allows e-clients to visit them to purchase products.
Buyers negotiate with sellers and choose where to make a purchase [3].

Figure 1 presents the complete UML activity diagram of the proposed system (il-
lustrated from both Client and Shop “perspectives”). Note that box named Negotiation
Process includes inside all processes conceptualized and illustrated by UML diagrams
in [1]. Let us sketch functioning of the system depicted in figure 1 (further details can
be found in [3] and [1]).

Client agent receives orders from customer, and attempts to make a purchase. In
the system there exists a central repository (yellow pages), where all e-stores advertise
information about products [7]. Therefore, Client queries the yellow pages agent, and
then dispatches Buyer agents to each Shop selling the requested product. Hereafter,
the Client agent enters a composite state, attempting to make purchase(s), as results of

556 C. Bădică et al.

Fig. 1. UML activity diagram of the system operation

Buyer notifications. Whenever a Buyer agent reports a successful negotiation, the Client
agent goes through a multi-criteria decision procedure (MCDM Process) that has three
possible outcomes: (i) to complete the purchase, (ii) to cancel the purchase (awaiting
better opportunity), or (iii) to declare the purchase impossible and notify the customer.
The Client agent will terminate when all orders have been either honored or abandoned.

The Shop agent creates a Gatekeeper, a Warehouse and Seller agents (one Seller/one
product)and then enters a complex state where it supervises negotiations. First, the Shop
agent is waiting for finish of any negotiation. If it was successful, a given Seller in-
forms the Shop which asks the Warehouse to reserve the product (for a specific amount
of time). Then, if the winning Buyer confirms purchase, Shop asks the Warehouse to
check reservation. If the reservation expired, then Shop hands rejection to the Buyer.
Otherwise Shop informs Buyer about acceptance of transaction. This starts the final
stage—named Sale completion which includes such actions as payment or delivery. If
the Client rejects purchase (and informs the Shop about it through the Buyer), then Shop
asks the Warehouse to cancel the reservation.

Combining Rule-Based and Plug-in Components in Agents 557

The Gatekeeper monitors incoming Buyers and controls their admission to negoti-
ations. When a minimum number of Buyers have arrived or a timeout is triggered, the
Gatekeeper passes identifiers of registered Buyers to the Seller thus initiating negoti-
ations. When negotiations are finished, the list of participating Buyers is emptied and
the admission/monitor process is restarted (assuming that the Seller is still alive). Sys-
tem allows loosing Buyers to stay at the host and re-enter negotiations after updating
protocol templates.

The Warehouse obtains from the Shop information about products and their quanti-
ties and saves them into a database. Then it waits for notifications or for timer events.
The Shop notifies the Warehouse about: (1) registration of a new products for sale, (2)
product reservations, (3) purchase confirmations and terminations. Time event triggers
checking of existing reservations. All expired reservations are canceled, reserved prod-
ucts added to the pool of products for sale and the Shop is informed about a new amount
of available goods. Note that the information about canceled reservation is provided to
the Shop only when a purchase is requested by the Buyer and the Shop is checking if
a transaction can be completed. Finally, if quantity of some product becomes 0 then
Warehouse informs Shop accordingly and Shop terminates the corresponding Seller in-
forming also the yellow pages agent that the product is not available anymore.

4 Concluding Remarks

In this paper we presented a multi-agent system that combines rule-based and mobile
agent technologies for implementing flexible automated negotiations. Proposed system
is being re-implemented using JADE and JESS (its earlier version, while fully func-
tional, did not involve the general framework introduced in [1]). We are also working
on agent strategies and decisions. We will report on our progress in subsequent papers.

References

1. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework for Automated Negotiation.
In: Proceedings of SELMAS’2004, LNCS 3390, Springer Verlag (2005) 213–235.

2. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. In: IEEE Transactions on
Software Engineering, vol.24, no.5, IEEE Computer Science Press (1998) 342–361.

3. Maria Ganzha, Marcin Paprzycki, Amalia Pı̂rvănescu, Costin Bădică, Ajith Abraham, JADE-
based Multi-agent E-commerce Environment: Initial Implementation, In: Analele Univer-
sităţii din Timişoara, Seria Matematică-Informatică (2005) (to appear)

4. JADE: Java Agent Development Framework. See http://jade.cselt.it.
5. JESS: Java Expert System Shell. See http://herzberg.ca.sandia.gov/jess/.
6. Tamma, V., Wooldridge, M., Dickinson, I: An Ontology Based Approach to Automated Ne-

gotiation. In: Proceedings AMEC’02: Agent Mediated Electronic Commerce, LNAI 2531,
Springer-Verlag (2002) 219–237.

7. Trastour, D., Bartolini, C., Preist, C.: Semantic Web Support for the Business-to-Business E-
Commerce Lifecycle. In: Proceedings of the WWW’02: International World Wide Web Con-
ference, Hawaii, USA, ACM Press, New York, USA (2002) 89–98.

8. Wooldridge, M.: An Introduction to MultiAgent Systems, John Wiley & Sons, (2002).
9. Wurman, P, Wellman, M., Walsh W.: A Parameterization of the Auction Design Space. In:

Games and Economic Behavior, 35, Vol. 1/2 (2001), 271–303.

558 C. Bădică et al.

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 559 – 563, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Group Interests of Agents Functioning in Changing
Environments

Sarunas Raudys and Alvydas Pumputis

 Mykolas Romeris University, Ateities 20, Vilnius-2057, Lithuania
raudys@ktl.mii.lt

Abstract. We consider agent populations with breeding split into groups with a
naïve common goal to survive in changing environments. In order to grasp
principal tendencies in cooperation, the agents are modeled as very simple
systems, the single layer perceptron (SLP) based classifiers. They ought to learn
how to train themselves rapidly, adapt to unexpected pattern recognition task
changes, to comply the fitness function and survive. Failure to comply
survivability condition will result in the agent being replaced by a newborn that
inherits some upbringing information from one of successful agents in the
group. We found that inherited fraction of incorrect training directives (a noise)
which controls the agent’s ability to adapt to changes is following
environmental alterations. Restricted cooperation between agent groups is
beneficial to overcome outsized changes.

1 Introduction

A great number of useful task-specific intelligent programs have been created using
real world scenario [1, 2]. Important research directions are also development of
formal and ad-hoc ways of knowledge representation allowing developers to simply
“plug in” fully functional components into multi agent systems (MAS) design, to
build rich, reliable and robust models [3]. Open environment in which agents can
easily enter and interact with each other increases a speed and reduces a cost of
developing MAS.

In the knowledge-based approach used to create first intelligent machines,
scientists directly programmed the machines to perform the given tasks. In the
learning-based approach, the machines were trained by task-specific learning
programs utilizing human-edited sensory data. The complexities of decision making
rules of the intellectual agents, however, often are beyond human programming,
especially if environments are changing permanently. For that reason, traditional
ways have been proved to be extremely difficult to develop robots running in a typical
human environment. So presently in the "genetic search," many of intelligent
machines are evolving through generations by the principle of survival of the fittest,
mostly in a computer-simulated virtual world. In autonomous development paradigm,
machines like humans should be designed to go through a long period of self-directed
mental development, from "infancy" to "adulthood” [4]. “Learning styles” become
very important elements which have to be learned by the machines themselves.

560 S. Raudys and A. Pumputis

 Analysis of systems of complex intelligent agents capable to solve real-world
problems takes huge computational resources. In such cases, many important aspects
of the environment changeability remain to be uninvestigated. A necessity arises to
perform exploration of some general learning principles while studying groups of
simplified models of intelligent agents which require a smaller amount of
computations. In our analysis we use non-linear SLP classifier as a simplified model
of adaptive intelligent agent and take for granted: 1) A world is changing
permanently. Designers do not know in which conditions the agents will work.
2) Agents have to learn how to teach themselves [4]. 3) During training, the weights
(connection strengths) of the perceptron are increasing and we obtain a saturation of
fitness (cost) function. Due to saturation gradient descent learning process slows
down [5, 6]. 4) Re-adaptation to solve the changed pattern recognition (PR) task can
be enlightened by a noise injection to training signals and the targets [6].

In paper [6] two different PR tasks model was suggested to analyze aging
problems of the intellectual agents, individuals, groups of individuals or social
groups. Aging was defined as inability to adapt rapidly to changed situation and
survive. In [7] sequences of different PR tasks were considered each time starting
training from previous weight vector. To help populations of almost identical agents
to withstand lengthy series of strong environmental changes, populations with
offspring and inheritance of regularization parameters have to be created. In this
paradigm, different agents possess diverse values of the noise level. It was found that
the optimal interval for the noise level follows variations of environmental changes.

A novelty of our analysis is re-adaptation capabilities of agent populations where
they are organized into groups. Agents interact among themselves inside the groups
and between them. The noise injection intensities characterize the ‘‘learning style”.

2 Modeling of the Agent Survival in the Grouped Populations

The standard nonlinear SLP classifier with sigmoid activation function,
output=1/(1+exp(-sum), targets: t1=0 (first class) and t2=1 (second class) and gradient
descent training rule are selected to model adaptive intelligent agents. In training a
sum of squares cost function is minimized. If the weights are small, the gradient used
to update perceptron weights is large. When the weights are large, the gradient
becomes small. During training, the magnitudes of the weighs are increasing and
affect properties of the cost function [5, 6]. With an increase in the magnitude of the
weights, the gradient is decreasing towards zero. It means that in situations when the
perceptrons learned to solve their tasks properly, the weights are already large. Due
to the large weights, the perceptrons are unable to re-learn new PR tasks quickly.
 To elucidate factors affecting agent re-adaptation performance, we analyze
sequences of different PR tasks that mimic environmental changes (EC). We consider
two category classification problem of two dimensional (2D) Gaussian vectors with
correlated features. We suppose that the agent has a limited time to adapt to changing
situation and fulfill condition: Pgeneralization < Pgoal. If the agent fails to fulfill this
condition, it perishes, removes from the population and is replaced by an offspring.
 In this paper we assume that agents are modeling organizations accomplishing
tasks and doing cognitive activities like learning. Each agent possesses different

 Group Interests of Agents Functioning in Changing Environments 561

fraction of incorrect training directives, parameter αi that characterizes a noise
injection intensity. The noise level, αi, affects weights growth, the agent’s re-training
speed and its ability to survive the environmental changes [6, 7]. At the start of each
experiment, for all m agents (we used m=400) that composed the population, we
assigned different values of parameter αi. A distribution of αi values was obtained in
preceding experiments (it was approximately Gaussian in interval [0.15 0.35]).
 Random generated data sets (50 vectors from each class) were used to train each
intelligent agent. Different values of αi lead to the death of certain agents who fail to
learn fast enough to satisfy survival condition after the tmax training epochs (tmax =
180). If the agent perishes, it is replaced with a new offspring that possesses its
parent’s noise intensity, αi (i=1, 2, …, m). Only best survived agents are given the
right to produce offspring. Learning process of the offspring starts from zero initial
weights. To have possibility to adapt to strengths of the PR tasks changes a small
random variable ~N(0, 0.022) was added to αi each time through the mutation
process. In addition, small zero mean uniformly distributed noise was added to
survival threshold, Pgoal. Inheritance and noise injections result that during a sequence
of environmental changes, parameters αi follow variations of the changes’ strength.

The m agents in the population were split into L equal sized groups. To reveal
principal factors affecting the population survival, we considered simple cooperation
model. The parameters of the model were tailored to situations where environmental
changes are rare and especially large. The most successful agents in the group
somewhat help less successful agents to survive. The agents’ associations to the
groups were fixed. We introduced restricted benevolent cooperation between the
groups: if a quantity of agents that satisfy the survivability condition in one of the
groups becomes less than two, a successful randomly chosen agent from other groups
was allowed transfer its “genetic code”, as, to the offspring.

 In simulation experiments strengths, S, of the pattern recognition tasks alterations
varied in a time. Changes were strongest between 70th and 130th alterations. Resulting
distribution of the noise injection intensities followed S changes. In Fig. 1 we have
survivability dynamics graphs obtained for two population models (two groups and
200 ones). We see that different mechanisms determine the number of agents that
survived the strongest environmental changes: in two group situation, almost all
agents died during the strongest PR task alterations. The populations without the split
passed away after first ten strongest changes. The populations, split into 200 groups,
however, become even more robust. It is the result of benevolent cooperation.

3 Discussion

Our study confirms that corrupted training signals and wrenched survivability
conditions assist in faster adaptation of the agents to the PR tasks changes. It seems
that in process of species and societies development, Nature’s evolution selected only
these populations of individuals which were split into groups and had controlled
cooperation between them. Possibly these results will give stimulus and new ideas for
creating trainable MAS with a noise injection and will encourage contemplations
about usefulness of diversity of political systems, religions and economic alliances.

562 S. Raudys and A. Pumputis

A novelty of our analysis is the noise injection to training signals used in agent
populations with breeding, mutually cooperating in different ways. Striking conclusion
derived from above analysis is that such simple element as single layer perceptron
equipped with dynamic change of the pattern recognition tasks and the noise
injections could explain several important aspects of MAS and society behavior.

Within the domain of social simulations, our study proposes a starting point and
ideas how to create constructive methods for studying productive and destructive
social phenomena affecting societies in transition from one political system to another
one, sudden improvements of technologies, unexpected changes in human life
conditions, enriching of some countries and depressing other ones. Our way of
analysis can show and measure effects of environmental changes and organizing
individuals into the groups as in contrast to mere verbal descriptions typically used in
social sciences.

0 50 100 150

100

200

300

400

500

0 50 100 150

200

250

300

350

400

450

500

Fig. 1. A number of offspring and agents survived during sequences of the 190 PR tasks

References

[1] Sichman, J., Bousquet, F. and Davidsson, P., (eds). Multi-agent-based simulation II.
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2581, 2003.

[2] Prietula M., Carley K. and Gasser L. (eds). Simulating Organizations: Computational
Models of Institutions and Groups. The MIT Press, Cambridge, MA, 1998.

Number of offspring

Total number of
the agents survived

Two groups
of equal size

200 groups
of equal size

 Task changes

 Group Interests of Agents Functioning in Changing Environments 563

[3] Boman M., Bubenko J., Johannesson P. and Wangler B. Conceptual Modeling. Prentice-
Hall, Inc., Upper Saddle River, NJ, 1997.

[4] Weng J., McClelland J., A., Sporns O., Stockman I., Sur M., and Thelen E. Autonomous
mental development by robots and animals. Science, Vol. 291, N.5504, Issue 26: 599-600.

[5] Raudys S. Statistical and Neural Classifiers: An integrated approach to design. Springer-
Verlag, NY, 2001.

[6] Raudys S. An adaptation model for simulation of aging process. Int. J. of Modern Physics,
C. 13(8): 1075-1086, 2002.

[7] Raudys S. Survival of intelligent agents in changing environments. Lecture Notes in
Artificial Intelligence, Springer-Verlag, 3070: 109-117, 2004.

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 564 – 567, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Policies for Common Awareness in Organized Settings*

Ioannis Partsakoulakis and George Vouros

Department of Information and Communication Systems Engineering
83200 Karlovassi, Samos, Greece

{jpar, georgev}@aegean.gr

Abstract. Groups of collaborative agents need to create group beliefs
(acceptances) in order to act as a single entity. The notion of mutual or
collective belief, which has been used extensively to cope with group belief, is
not appropriate in organized settings where group members exploit shared
policies to accept that certain states hold, even if some members of the group do
not believe them. This paper distinguishes between beliefs and acceptances,
introduces policies for acceptances, and investigates communication
requirements towards forming acceptances.

1 Introduction

The objective of this research is to build multi-agent systems that form the digital
analogues of human organizations and help humans to fulfil their responsibilities
individually or in collaboration with other colleagues in well-organized settings [8, 6].
Investigating the capabilities of agents to fulfill collaborative responsibilities in
organized settings, this paper focuses on the formation of acceptances. Acceptance is
an important concept that is being studied in the context of philosophy [7, 10];
however, until now it has not been given much attention in the context of multi-agent
systems.

Participating in a group, agents must reconcile their individual beliefs and reach
group beliefs (acceptances) independently of their perceptual and cognitive abilities,
permissions to access information sources, knowledge that they posses, preferences
etc. Theoretical models of collaborative decision making [1, 2, 4, 9] adopt the notion
of collective or mutual belief to cope with group belief. However, in settings where
information is inherently distributed and access restrictions to information sources
apply, the group belief cannot be based on the individual beliefs of all group
members.

The above introduce the problem of representing and exploiting policies for
building and maintaining group beliefs. For instance, in certain settings, group
members must be able to exploit policies that state that the group shall accept
something only if the majority of the group members believe it, although there may be
group members with a different opinion. More than policies, the above example
reveals the necessity for agents to clearly distinguish between their individual beliefs
and their acceptances as group members.

* This research is supported by the Pythagoras grand no. 1349 under the Operational Program

for Education and Initial Training.

 Policies for Common Awareness in Organized Settings 565

This paper distinguishes between acceptances and beliefs, and proposes state
recognition recipes for the specification of group policies towards forming
acceptances. Based on this distinction, we assume that group members form beliefs
using primitive state recognition actions (r-actions) and acceptances using state
recognition recipes (r-recipes).

Dealing with acceptances in organized settings, this paper deals with groups of
agents that follow a pre-specified organizational model specified in terms of roles, as
Fig. 1 shows. A role serves as a prototype that specifies the behavior of an individual
or of a set of individuals that form a group. In this paper, we assume that each role
comprises responsibilities and recipes, and that roles are interrelated via the transitive
relation “contains”. A position is a formally specified role-assignment [3]. Each role
can be associated with one or more positions. We assume that agents under a
composite role must act as a single entity by forming acceptances and by managing
shared plans [2].

Fig. 1. Part of the organization that represents a company

A policy about a state s is a tree-like structure in which nodes are states and each
arc is labelled with an element of the form ρind where ρ is a role and ind an indicator
that can take the value all, most, or one, indicating all the players of ρ, most of them,
or at least one of them is required for the formation of an acceptance for the state s. A
policy for the acceptance of a state is not represented explicitly, but it is constructed
gradually by combining r-recipes towards the recognition of states.

For example, the policy in Fig. 2 has been constructed by the two recipes in the
corresponding rectangles and specifies that a company shall accept that there is a
pending order of a customer c about product p (i.e. pending-order(p,c)) when it is
known that (a) all sellers believe the fact that the order is pending and (b) customer p
wants product c. Sharing the above policy, each agent in a company is aware of the
information needed towards accepting a state and proactively communicates this
information.

Given a policy for a state s, a potential (or required) contribution of an agent to the
state s is a path from s to a leaf node in the policy, if the edge leading to this node

Roles layer
(model)

Groups layer

company

seller

engineer

customer

customer
department

Seller

Customer1

Customer2

C- dept

E- Dept

The Company

Mike

Positions layer
(structure)

The
Company

Engineer1

Enginner2

engineering
department

E- dept

contains

Notation

role
individual

position

assignment

correspondance

566 I. Partsakoulakis and G. Vouros

corresponds to an atomic role played by the agent. Each agent computes all its
personal contributions by identifying its potential contributions and by unifying the
leaf states with its beliefs. In other words, personal contributions are instantiated
potential contributions identified by individuals.

Fig. 2. A policy and group contributions C1 and C2 that match potential (required) contributions

Personal contributions are communicated between agents that play the same atomic
role (e.g. between sellers). Personal contributions that are identified by a sufficient
number of agents (according to policy indicators) are called group contributions
because they can affect the acceptances of a group. Group contributions are
communicated between the agents that share the same policy (e.g. between sellers and
customers). This makes possible for the agents to check whether for each of the
potential (required) contributions of a policy there is a corresponding group
contribution (as Figure 3(b) shows). When this condition holds, then the state s is
considered to be a state that must be accepted by all group members that share the
policy. Therefore, the state s is communicated to all group members (including those
not sharing the recipe) as an acceptance.

2 Communication Requirements

To study communication requirements for the formation of acceptances, let us assume
that a group has n agents each playing one of m primitive roles and that each role has
k players, therefore .mkn ⋅= Given a group policy with a required contribution for
each primitive role we can distinguish between two extreme cases: (a) the policy
requires the contribution of all the agents that play the corresponding primitive roles
and (b) the policy requires the contribution of one of the agents that play the
corresponding primitive roles.

In the first case, each agent must send its personal contribution to each of the k–1
agents that play the same role. This requires n(k–1) messages. Then, each group
contribution identified by each agent must be sent to the rest n–1 of the agents. In the
worst case this requires n(n–1) messages. The same number of messages is required
for the formation of the acceptance. So, there is a total of n(k–1)+2n(n–1) messages
which results to 3n(n–1) messages, given that k = n. In the best case, only one agent
for each primitive role will communicate the group contribution to the other agents
(requiring m(n–1) messages) and one agent will communicate the acceptance to the
others (requiring n–1 messages). So, in the best case the formation of an acceptance

company:
pending-order(P,C)

customerone

pending(P,C) want-product(P,C)

sellerall

pending(P,C)

customer-
departmentone

C2 C1

(b) company:
pending-order(P,C)

customerone

pending(P,C) want-product(P,C)

sellerall

pending(P,C)

customer-
departmentone

(a)

 Policies for Common Awareness in Organized Settings 567

requires (k+m)n–m–1 messages. Since the product k ⋅ m = n is constant, the quantity
k+m is minimized when k = m = n1/2; therefore, the minimum total number of
messages is of magnitude of n3/2.

In the second case, agents do not need to communicate their personal contributions
since each personal contribution is a group contribution. In this case, the worst case
scenario requires 2n(n–1) messages while the best case scenario requires 2(n–1)
messages for the formation of an acceptance.

To achieve the best-case in both of the above cases, agents may need to delay
sending the recognition of group contributions. In this case, we can achieve lower
communication overhead, although we cannot guarantee that we will always achieve
the number of messages encountered in the best-cases.

Counting the number of messages required we have assumed a totally distributed
setting: There is not a specific agent (e.g. a special seller or the manager of the selling
department) that gathers all personal/group contributions, decides and communicates
the formed acceptances. Given such a setting, then the required messages in the first
case (where the contributions of all agents are needed), for the worst and the best
scenario, drops to 2(n–1). In the second case (where only one agent is needed), the
worst scenario (that results for m = n) requires 2(n–1) messages, while the best
scenario (that results for m = 1) requires n–1 messages.

Currently, we have implemented a prototype system in which agents can reason
about and pursue their responsibilities and we are also experimenting with different
algorithms for creating acceptances and for pursuing responsibilities [5, 6].

References

[1] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25, 487 – 512, 1991.
[2] B. J. Grosz and S. Kraus. Collaborative Plans for Complex Group Action. Artificial

Intelligence, 86(2), 269 – 367, 1996.
[3] James J. Odell, H. Van Dyke Parunak, and Mitchell Fleischer. The Role of Roles in

Designing Effective Agent Organizations. In Software Engineering for Large-Scale Multi-
Agent Systems, A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, J. Castro (eds.), LNCS
2603, 2003.

[4] P. Panzarassa, N. R. Jennings, and T. J. Normal. Formalizing Collaborative Decision-
making and Practical Reasoning in Multi-agent Systems. Journal of Logic and
Computation, 11(6), 1 – 63, 2001.

[5] I. Partsakoulakis and G. Vouros. Building Common Awareness in Agent Organizations.
In Proc. of AMKM workshop (AAMAS conference), 2005.

[6] I. Partsakoulakis, V. Kourakos-Mavromichalis, and G. Vouros. Social Deliberating
Agents for Human-Centered Knowledge Management. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, The Hague, 2004.

[7] R. Tuomela. Group Knowledge Analyzed. Episteme 1(2), 2004.
[8] G. Vouros, I. Partsakoulakis and V. Kourakos-Mavromichalis. Realizing Human-Centred

Systems via Socially Deliberating Agents. In Proc. of the HCI International 2003, vol. 4,
pp. 1223 – 1227.

[9] M. Wooldridge and N. R. Jennings. Cooperative problem solving. Journal of Logic and
Computation, 9, 563 – 592, 1999.

[10] K. Brad Wray. Collective Belief and Acceptance. Synthese 129, pp. 319 – 333, 2001.

Learning in a Multi-agent Approach to a Fish
Bank Game

Bart�lomiej Śnieżyński and Jaros�law Koźlak

AGH University of Science and Technology,
Institute of Computer Science, Kraków, Poland

{sniezyn, kozlak}@agh.edu.pl

Abstract. In this paper application of symbolic, supervised learning in
a multi-agent system is presented. As an environment Fish Bank game is
used. Agents represent players that manage fishing companies. Rule induc-
tion algorithm is applied to generate ship allocation rules. In this article
system architecture and learning process are described and preliminary ex-
perimental results are presented. Results show that learning agent perfor-
mance increases significantly when new experience is taken into account.

1 Introduction

There are many cases, when it is impossible to predict all the circumstances that
an agent faces. It can be caused by environment complexity, or difficulties with
formulating appropriate strategy. As a consequence, it is very difficult to create
an agent with fixed behavior in such cases.

Application of learning algorithms allows to overcome such problems. One
can implement an agent that is not perfect, but it improves its performance.
This is why machine learning term appears in a context of agent systems for sev-
eral years. So far agent systems with learning capabilities were applied in many
domains: to train agents playing in RoboCup Challenge [1], adapt user inter-
faces [2], take part in agent-based computational economics simulations (virtual
markets) [3], analyze distributed data [4].

In this paper results of application of symbolic, supervised learning in multi-
agent system are presented. As an environment Fish Bank game is used [5]. It
is a simulation where agents run fishing companies that must decide how much,
and where to fish.

2 System Description

Although Fish Banks game is designed for teaching people effective coopera-
tion in using natural resources [6], it suits to using in multi-agent systems very
well [5,7]. In this research the game is a dynamic environment providing all neces-
sary resources, action execution procedures, and time flow (game rounds). Each
round consists of the following steps: ships and money update, ship auctions,
trading session, ship orders, ship allocation, fishing, and fish number update.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 568–571, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Learning in a Multi-agent Approach to a Fish Bank Game 569

Agents represent players that manage fishing companies. Each company aims
at collecting maximum assets expressed by the amount of money deposited at a
bank account and the number of ships. Company earn money by fishing at fish
banks. Environment provides two fishing areas: coastal and a deep-sea. Agents
can also keep their ships at the port. Cost of fishing at the deep-sea is the highest.
Cost of staying at port is the lowest but such ship does not catch fish.

Initially it is assumed that the number of fish in both banks is close to the
maximal capacity. During the game the number of fish in every bank changes
because of birth and exploration. Usually exploration overcomes birth and after
several rounds the number can decrease to zero. It is a standard case of ”the
tragedy of commons” [8]. It is more reasonable to keep ships at the harbor then,
therefore companies should change theirs strategy.

Two types of agents are implemented: learning agent and random agent. The
former uses experience to allocate ships, the latter allocates ships by random.
Both types of agents observe the following aspects of the environment: new ships
that they receive from a shipyard, money earned in the last round, ships alloca-
tions of all agents, fishing results for deep sea and inshore area. Both types of
agents can execute the following two types of actions: order ships, allocate ships.

Order ships action is currently very simple. Ships allocation is more complex.
It is based on the method used in [5]. Allocation strategy is represented by a triple
(h, d, c), whereh is the number of ships left in a harbor, d and c are numbers of ships
sent to a deep sea, and a coastal area respectively. The random agent allocates
ships using one of strategies chosenby random.Learning agent does the same in the
first game, but in the following games it chooses strategy with the highest rating.
Strategy rating is generated using rules that allow to classify allocation as good or
bad taking into account allocation (h, d, c) and environment parameters (fish catch
at the deep sea and at the coastal area in the previous round).

Every strategy gets a rate equal the number of rules with consequence good
that match the strategy and current environment parameters minus the number
of rules with consequence bad that match the strategy and current environment
parameters. The rules are learned using agent experience (see section 3). If there
are more then one strategy with the same rating, one occurring earlier in the
list is chosen.

3 Learning

To support learning AQ21 program is used [9]. It is a machine learning software
that allows to generate attributional calculus rules [10] for given examples. The
main advantage of this program is that generated knowledge is easy to interpret
for human what makes experimental results easier to check and can be useful in
Fish Bank application to teach people.

The AQ21 program generates a classifier that is used to rate ship allocation
strategies. Input attributes for the classifier are allocation and environment pa-
rameters. Target attribute is a rating of the allocation in a given environment
state. It has two values: good and bad.

570 B. Śnieżyński and J. Koźlak

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Game nr

B
al

an
ce

 a
t

th
e

en
d

 o
f

g
am

e
[K

$]

LA

RA1

RA2

RA3

Fig. 1. Comparison of performance of learning agent (LA) and other agents using
random strategy of ship allocation (RA1, RA2, RA3); values for LA are presented
with the standard deviation

Training events are generated from agents observations. Every round the
learning agent stores ship allocations of all agents, and fish catch in the previous
round. The strategy of an agent with the highest income is classified as good,
and the strategy of an agent with the lowest income is classified as bad. If in
some round all agents get the same income, none strategy is classified, and as a
consequence none of them is used in learning.

At the end of each game the learning agent uses events, which were generated
during all games played so far, to learn anewclassifier that is used in the next game.

4 Experimental Results

To test how learning changes agent performance, the following experiment was
performed. Ten simulations were executed. Each simulation consisted of the se-
quence of 8 games. Four agents took part in every game. Three of them used ran-
dom allocation strategy, one learned it from experience. Performance of agents
measured as a balance at the end of every game is presented in Fig. 1. Average
balance of the learning agent grows with the agent’s experience, while perfor-
mance of random agents generally doesn’t change.

Experimental results show that the learning agent performance increases
rapidly at the beginning of the learning process, when generated rules are used
instead of a random choice. Next it increases slowly, because new examples do
not contain any significant knowledge. The performance stabilizes at the end of
the process, and the decreasing standard deviation suggests that performance
does not depend on the specific case as much as at the beginning.

Experiments with two learning agents and some combinations of learning
parameters were also performed, but because of the lack of space results are not
described here.

Learning in a Multi-agent Approach to a Fish Bank Game 571

5 Conclusion and Further Research

Results of research confirm that classical rule induction is useful in learning agent
strategy in multi-agent systems. Fish Banks environment is complex enough to
test supervised learning, if direct performance feedback is available (e.g. income
at the end of the round), and, if there is no such information, and feedback
is available at the end of game (reinforcement learning can be used in such
situation).

Currently, we are working on cooperation learning. Future works will concern
applying other learning algorithms, learning models of other agents, comparing
with agents using more sophisticated strategies (see [5]), testing complex knowl-
edge representation techniques such as logic of plausible reasoning, applying
multistrategy inference and learning, and using reinforcement learning to gener-
ate ship order strategies.

Acknowledgments. The authors thank Arun Majumdar for providing prolog com-
piler Prologix used in implementation, and for help with using it.

References

1. Kitano, H., et al.: The RoboCup synthetic agent challenge 97. In: International
Joint Conference on Artificial Intelligence (IJCAI97), Nagoya, Japan (1997) 24–29

2. Lashkari, Y., Metral, M., Maes, P.: Collaborative interface agents. In: AAAI.
(1994) 444–449

3. Tesfatsion, L.: Agent-based computational economics: Growing economies from
the bottom up. Artificial Life 8 (1) (2001) 55–82

4. Stolfo, S.J., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, D.W., Chan, P.K.: Jam:
Java agents for meta-learning over distributed databases. In: KDD. (1997) 74–81

5. Kozlak, J., Demazeau, Y., Bousquet, F.: Multi-agent system to model the fishbanks
game process. In: The First International Workshop of Central and Eastern Europe
on Multi-Agent Systems (CEEMAS’99), St. Petersburg (1999)

6. Meadows, D., Iddman, T., Shannon, D.: Fish Banks, LTD: Game Administra-
tor’s Manual. Laboratory of Interactive Learning, University of New Hampshire,
Durham, USA (1993)

7. Sniezynski, B.: Rule induction in a fish bank multiagent system. Technical Re-
port 1, AGH University of Science and Technology, Institute of Computer Science
(2005)

8. Hardin, G.: The tragedy of commons. Science 162 (1968) 1243–1248
9. Wojtusiak, J.: AQ21 User’s Guide. Reports of the Machine Learning and Inference

Laboratory, MLI 04-3. George Mason University, Fairfax, VA (2004)
10. Michalski, R.S.: Attributional Calculus: A Logic and Representation Language for

Natural Induction. Reports of the Machine Learning and Inference Laboratory,
MLI 04-2. George Mason University (2004)

Modelling of Agents’ Behavior with Semi-collaborative
Meta-agents

Jan Tožička, Filip Železný, and Michal Pěchouček

Czech Technical University,
Gerstner Laboratory, Prague, Czech Republic

{tozicka, zelezny, pechouc}@labe.felk.cvut.cz
http://gerstner.felk.cvut.cz

Abstract. An autonomous agent may largely benefit from its ability to recon-
struct another agent’s reasoning principles from records of past events and gen-
eral knowledge about the world. In our approach, the meta-agent maintains a
first-order logic theory, called the community model, yielding predictions about
other agents’ decisions. In this contribution we introduce a query-based collective
reasoning process where the semi-collaborative meta-agents use active learning
technique to improve their models. We provide empirical results that demonstrate
the viability of the concept and show the benefits of collective meta-reasoning.

1 Introduction

We are working with a community of autonomous reasoning agents endowed by num-
ber of capabilities which allow them to form coalitions to solve complex tasks (e.g.
logistics). Behavior of our agents is given by a permanent reasoning algorithm and a
set of private knowledge describing e.g. agent’s preferences concerning the tasks, co-
operation with other agents, etc. Agent’s private knowledge is permanent. Dynamics of
agent’s behavior is given by changing resources and their availability, by ever chang-
ing environment in which the agents operate, and by different behavior of the other
members of the multi-agent community.

What can also change or evolve during the lifespan of an agent is agent’s awareness
about the private knowledge of other members of the community. An agent has no
direct access to the private knowledge of any other agent, it only can try to estimate or
reconstruct its content in order to e.g. influence complexity, quality and effectiveness of
collaboration, as well as the response time of the system.

Meta-reasoning is a key concept in this article. Unlike in classical computer science
literature [1], where the meta-reasoning process is strictly understood as a reasoning
process about yet another reasoning process, we will refer to meta-reasoning as agent’s
capability to reason also about other agent’s knowledge, preferences, etc. In this contri-
bution we compare deductive vs. inductive approach to meta-reasoning and introduce
collective meta-reasoning of semi-collaborative meta-agents.

In Section 2, we will firstly introduce used meta-reasoning architecture and then
present possible approaches to collective meta-reasoning. Section 3 presents a logistic
scenario and experiments evaluating presented methods. We summarize our contribu-
tion in Section 4.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 572–575, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modelling of Agents’ Behavior with Semi-collaborative Meta-agents 573

2 Meta-reasoning Architecture

In this section, we will briefly introduce meta-agents and collective meta-reasoning.
More detailed description of architecture, knowledge, formal language and used logic
can be found in [2]. The principal role of the meta-reasoning agent is to support meta-
reasoning process through maintaining and exploiting a model of the agent community.
Our meta-reasoning agent monitors the community and is completely independent from
the functionality of the community of the ’ordinary’ agents. In principle, the community
model can be maintained in two ways: (i) deductive reasoning maintains the model to
contain only knowledge that logically follow from the observations. It is implemented
by resolution-principle-based automated prover; and (ii) inductive reasoning maintains
an approximative model which also contains knowledge generalizing the monitored
knowledge; this formula can prove to be in conflict with some future events. Inductive
meta-reasoning has been implemented using inductive logic programming (ILP).

The meta-agent can use different AI methods in order to update assumed model to
consider new incoming events, we will call this process model revision operation, and
to query assumed model during model inspection operation, which has three possible
outcomes for given query: yes , no, and unsure.

2.1 Collective Meta-reasoning

Our experimental configuration characterized by a set of agents observed by a set of
deductive/inductive meta-agents naturally lends itself as a ground on which some in-
teresting, recently emerged machine-learning approaches can be empirically evaluated.
Specifically, we have taken inspiration from (i) the study [3] on distributed learning
of first-order logic theories; (ii) the active learning framework, where the learner is
allowed to actively pose queries to an oracle; and (iii) the paradigm of closed-loop
learning [4], where the learner can initiate experiments determining the required an-
swer to a query. Adapting these techniques in the agent environment, has the promise
of achieving a favorable trade-off between the average quality of the models developed
by the meta-agents, and the invested computational effort.

Indeed, pursuing the outlined efficiency motivation, the paper [3] demonstrates that
the search for a first-order logic theory. Collaboration can take place in the query time: a
query is answered by several agents and the collective answer may be obtained by vot-
ing – we call this approach deductive collaboration. However, we try to establish in-
teraction in the inductive process itself. In active learning, the learner is able to actively
pose queries to an oracle, whose answers guide the model formation. Our adaptation of
this principle into an inductive collaboration scheme assumes that an inductive meta-
agent, besides the ability to generalize provided learning examples, may query another
meta-agent, whose answer follows from its current model (possibly only partially built).
Query is created randomly even if several heuristic approaches have been identified.

In the collective meta-reasoning development we will also apply the ideas of closed-
loop learning [4], where the learner actually triggers experiments determining the re-
quired answer to a query. In our scenario, a meta-agent, monitoring an agent A, col-
laborates with another agent B, from whom it asks to offer a coalition to A. The B’s
proposal along with the proposal outcome then form an new observations.

574 J. Tožička, F. Železný, and M. Pěchouček

3 Experiments

We have experimented with our meta-reasoning ideas in the A-cross multi-agent sce-
nario that has been integrated in the A-globe multi-agent platform [5]. For us, the
most important part of A-cross logistic scenario are transport-agents who organize
the transport of commodities. They form coalitions in order to convey the cargo. Coali-
tion formation of transport-agents is determined by (i) availability of resources and (ii)
sets of collaboration restrictions. We have extended this scenario by observer-agents
and meta-agents that implement our meta-reasoning architecture. The observer-agents
watch the transport-agents in their neighborhoods, transform observations into formal
language and send them to the meta-agents. The meta-agents build their models about
the community and try to reconstruct collaboration restrictions of transport-agents.

The meta-reasoning in our scenario works with events and queries. Events are cre-
ated based on messages sent during CNP communication protocol. Queries can be used
by user to get some knowledge from created community model. Queries asked among
the meta-agents (as described in the section 2.1), has similar form as events. The meta-
agents are semi-collaborative as they can agree to cooperate with other meta-agents
(depending on their private restrictions) and even if one decides to cooperate he will
answer only limited number of other agents queries.

Our goal is to evaluate the quality of a meta-reasoning process in different con-
figurations of the interactions between meta-agents. A configuration is described by a
rooted directed graph, where vertices correspond to meta-agents and edges lead from
a query-posing agent to the answering agent (an oracle). Each possible configuration
is characterized by two parameters, called distributedness and collaborativeness. The
distributedness of a configuration graph is defined as the average distance among all
pairs of vertices in the graph. The collaborativeness is defined as the maximum number
of agents querying the same oracle (i.e.. the maximum branching factor).

The quality of a meta-reasoning process is viewed as a trade-off between the total
computational effort used in model developing and the average model quality achieved.
We will proceed by fixing a total budget and measuring the average model quality. Here,
the quality of a created model is its predictive accuracy, i.e.. the ration of correctly
classified test observations containing observations that are not used for learning.

To postulate expense-consciousness among the meta-agents, we establish a form of
information market in the community, with the following rules of trade: (i) a meta-agent
has to pay for every yes or no answered query; (ii) adhering to a common understand-
ing of information value, the price for a answered query should be low if so is the
model quality used to answer the query; and (iii) the meta-reasoning process initiates
by assigning a constant budget to each agent. Each agent adds to its budget any price
it charges to another agent, and subtracts any price it is charged by another agent. The
meta-reasoning process terminates when all agents’ budgets have been consumed.

Results. Figure 1 shows the average model quality values in respect to the distribut-
edness values for 35 randomly generated configurations. It is interesting to note that
the trend-line fitting the average quality of the models grows with the value of dis-
tributedness. Similarly, Figure 2 shows that the average model quality grows with the
collaborativeness, as could be expected, however the growth is remarkably slow.

Modelling of Agents’ Behavior with Semi-collaborative Meta-agents 575

� ���� ��� ���� � ���� ��� ���� �

�

��

��

	�

�

���

������������

�
�
�
�
��
�
�
�
��
�
�

� � � � � � � � �

�

��

��

��

��

���

	
���
����������

!
�
�"
�
�
�
��
�
�

Fig. 1. X-Axis shows the distributedness of
meta-agents and Y-Axis shows the average
quality of the models

Fig. 2. X-Axis shows the collaborativeness
among meta-agents and Y-Axis shows the av-
erage quality of their models

Both experiments suggest that distributed configurations, where only few meta-
agents have direct or close access to the observations, allow a high average quality of
the models created by the meta-agents, and, in the frame of a simple resource-conscious
framework, they seem even superior to the centralized configurations.

4 Conclusions

In this paper, we focus on cooperation within a group of semi-collaborative meta-
agents. Implemented technique in A-cross scenario is evaluated in respect to the dis-
tributedness and the collaborativeness of meta-agents. The goal of meta-reasoning
was to predict, based on the previous observations or using active learning technique,
whether an agent will agree to join a coalition. Collective meta-reasoning proved to
be useful when the meta-agents have to solve the trade-off between the average model
quality and the total invested effort. We have shown, that under suitable settings, more
distributed configuration can bring better model qualities than centralized case.

Acknowledgement. The presented research has been in parts supported by Office for
Naval Research, project no.: N00014-03-1-0292 and European Office for Aerospace
Research and Development, project no. F61775-99-WE099.

References

1. Maes, P.: Computational reflection. Tech. report 87-2, University of Brussels, AI Lab (1987)
2. Tožička, J., Bárta, J., Pěchouček, M.: Meta-reasoning for agents’ private knowledge detection.

In Klusch, M., Ossowski, S., Omicini, A., Laamanen, H., eds.: Cooperative Information Agent
VII – Lecture Notes in Computer Science, LNAI 2782, Springer-Verlag, Heidelberg (2003)

3. Železný, F., Srinivasan, A., Page, D.: A monte carlo study of randomised restarted search in
ilp. In: Inductive Logic Programming, 14th Int. Conf., Berlin, Springer (2004) 341–358

4. King, R., Whelan, K., Jones, F., Reiser, P.: Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature 427 (2004) 247–252

5. Šišlák, D., Rollo, M., Pěchouček, M.: A-globe: Agent platform with inaccessibility and mo-
bility support. In Klusch, M., ed.: CIA VIII. Number 3191 in LNAI, Springer-Verlag (2004)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 576 – 578, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Pareto-Q Learning Algorithm for Cooperative Agents in
General-Sum Games

Meiping Song, Guochang Gu, and Guoyin Zhang

College of Computer Science and Technology, Harbin Engineering University, China, 15001
songmeiping@hrbeu.edu.cn

Abstract. Rationality and convergence are two important criterions for
multi-agent learning. A novel method called Pareto-Q learning is prompted for
cooperative general-sum games, with the Pareto Optimum allowing rationality
and social conventions benefiting the convergence. Experiments with the grid
game suggest the efficiency of Pareto-Q. Compared with the single-agent
Q-learning and Nash agent Q-learning, Pareto-Q learning performs best.

1 Introduction

With the development of multi-agent system, there have been many works focused on
the learning of multi-agent. Most of them are under stochastic game framework[1], such
as Minimax-Q for zero-sum games, and Nash-Q, FFQ and CEQ for general-sum
games[2]. But only the Minimax-Q was proved to satisfy the convergence and ration-
ality[3]. So that, a new method called Pareto-Q is prompted with the concept of Pareto
optimum[4], which is more rational than Nash equilibrium[2] with regard to the coop-
erative system. At the same time, social conventions are also introduced to promise the
convergence of learning. The performance is tested on the grid game.

2 Pareto-Q Algorithm

2.1 Formulation

Pareto-Q learning can be described as the followings.

)]([),...,,()1(),...,,(11
1 sParetoQraasQaasQ i

t

i

tt

ni

tt

ni

t
′++−=+ γαα (1)

)()()()(1 sQsssParetoQ i

t

ni

t ⋅⋅⋅⋅= ππ (2)

where tα is the learning rate decaying with t.)()(1 ss nππ ⋅⋅⋅ is the Pareto Optimum of

the stage game)(),...,(1 sQsQ n

tt .

2.2 Creating Lexicographic Convention

Occasionally, there are several Pareto optimums in a cooperative general-sum game,
and agents may prefer to different ones. The issue is how to select the exact one for all

 Pareto-Q Learning Algorithm for Cooperative Agents in General-Sum Games 577

agents, so as to guarantee the convergence. This problem can be solved by communi-
cating or by imposing social conventions[5]. The former is not suitable for the learning
process. Because too much communication will slow down the speed of decision, and
the negotiated results could differ in time even for the same state, which will affect the
convergence. The conventions are constraints on the possible action choices of the
agents, and they form the common knowledge for all agents.
 Jelle gave a lexicographic convention for simple cooperative multi-player games[5].
Here several general ones shown in figure1 are discussed to revise the conventions.

 Game 1

Up

Down

Left Right

10, 9 0, 3

3, 0 -1, 2

(1)

 Game 2

Up

Down

Left Right

5, 5 0, 6

6, 0 2, 2

(2)

 Game 3

Up

Down

Left Right

10, 9 0, 3

3, 0 2, 2

(3)

Fig. 1. Three types of general-sum game

 In each stage game, player 1 has two action choices: Up and Down. Player 2’s action
choices are Left and Right.
 The first game has only one Nash equilibrium, with values (10,9), which is a global
optimal point. The selection of both players will not be divergent.
 The second game also has a unique Nash equilibrium, in this case a saddle point,
valued at (2,2). But there still is a Pareto dominating solution, valued at (5,5), which
will be better for the both players. In this case, we would impose the ordering ‘Pareto
optimum Saddle Nash’.
 The third game has two Nash equilibria: a global optimum which is also a Pareto
optimum, (10,9), and a saddle, (2,2). In this case, we would impose the ordering
‘Global Nash Saddle Nash’.
 Therefore, a series of conventions can be established as the following:

• The set of agents is ordered.
• The set of actions of each agent is ordered.
• The set of different types of solutions is ordered ‘Global Nash Pareto opti-

mum Saddle Nash’
• These orderings are common knowledge among agents.

 With these new conventions, the agents will achieve the same joint action without
losing the optimal one. The choice for an optimal joint action proceeds as follows. The
first agent in the agent ordering chooses an optimal action (that corresponds to a Pareto
optimum) that appears first in its action ordering. The next agent then chooses its first
optimal action in its action ordering given the first agent’s choice. This procedure
continues until all agents have chosen their actions.

3 Experiment Results and Conclusions

We test our Pareto Q-learning algorithm by applying it to the grid game which is also
used in Nash-Q[2]. We implement three types of learning agents: single-agent

578 M. Song, G. Gu, and G. Zhang

Q-learning, First Nash and First Pareto. One experiment uses 40,000 steps. The ex-
perimental results are shown in Table 1. For each case, we ran 100 trials and calculated
the fraction that reaches an equilibrium joint path, that is, Nash path.

Table 1. Learning Performance

Learning Strategy Results of Learning
Agent1 Agent2 Percent that reach a optimal Path
Single Single 23%
First Nash Single 45%
First Pareto Single 54%
First Nash First Nash 100%
First Pareto First Pareto 100%

 As we can see from the table, when both agent employ single-agent Q-learning, they
reach a Nash equilibrium only 23% of the time. This is because the single-agent learner
never models the other agent’s strategic attitudes. When one agent is a First Nash agent
and the other is a single-agent learner, the chance of reaching a Nash equilibrium in-
creased to 45%. It approximates the result provided by Junling Hu[2] and is better than
the first case. When one agent is a Pareto agent and the other one is a single-agent
learner, the chance is increased to 54%, which is even better than Nash agent. Finally,
when both agents are First Nash and First Pareto, they end up with a Nash equilibrium
solution 100% of the time. But the problem of how to unify the selection of Nash agents
is not discussed by Junling Hu.
 The Pareto Q-learning algorithm introduces social conventions in cooperative
multi-agent system to unify the choices of all agents, and replaces the Nash equilibrium
with Pareto optimum to avoid losing the optimal solution. Compared with FFQ and
CEQ, Pareto-Q makes agent more rational both for individual and group benefit. And it
is more applicable than Nash-Q, because it doesn’t need the strict conditions[2] any
more. The experimental results also prove the efficiency of Pareto-Q.

References

1. Bowling M. and Veloso M.: Existence of Multiagent Equilibria with Limited Agents. Journal
of Artificial Intelligence Research (2004(22)) 353-384

2. Junling Hu and Michael P. Wellman: Nash Q-Learning for General-sum Stochastic Games.
Journal of Machine Learning Research (2003(4)) 1039-1069

3. Michael L. Littman and C. Szepesvari: A Generalized Reinforcement Learning Model:
Convergence and Applications. Proceedings of the 13th International Conference on Ma-
chine Learning, Bari, Italy (1996) 310-318

4. K. Deb: Multi-Objective Evolutionary Algorithms: Introducing Bias among Pareto-Optimal
Solutions. KanGAL report 99002, Indian Institute of Technology, Kanpur, India (1999)

5. Jelle R. Kok, Matthijs T. j. Spaan and Nikos Vlassis: An Approach to Noncommunicative
Multiagent Coordination in Continuous Domains. Proceedings of the Twelfth Belgian-Dutch
Conference on Machine Learning, Utrecht, Netherlands (2002) 46–52

Selection in Scale-Free Small World

Zsolt Palotai1, Csilla Farkas2, and András Lőrincz1,�

1 Eötvös Loránd University, Department of Information Systems,
Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary

andras.lorincz@elte.hu
2 University of South Carolina, Department of Computer Sciences and Engineering,

Columbia, SC 29208, USA

Abstract. In this paper we compare our selection based learning algo-
rithm with the reinforcement learning algorithm in Web crawlers. The
task of the crawlers is to find new information on the Web. We performed
simulations based on data collected from the Web. The collected portion
of the Web is typical and exhibits scale-free small world (SFSW) struc-
ture. We have found that on this SFSW, the weblog update algorithm
performs better than the reinforcement learning algorithm. It finds the
new information faster than the reinforcement learning algorithm and
has better new information/all submitted documents ratio.

1 Introduction

The largest source of information today is the World Wide Web. The ever-
increasing growth of the Web presents a considerable challenge in finding novel
information on the Web. In addition, properties of the Web, like scale-free small
world (SFSW) structure [1,2] may create additional challenges. For example the
direct consequence of the scale-free small world property is that there are numer-
ous URLs or sets of interlinked URLs, which have a large number of incoming
links. Intelligent web crawlers can be easily trapped at the neighborhood of such
junctions as it has been shown previously [3,4].

In this paper we present a selection based algorithm and compare it to the
well-known reinforcement learning algorithm in terms of their efficiency and be-
havior. The selection algorithm, called weblog update, modifies the starting URL
lists of our crawlers based on the found relevant documents. The reinforcement
learning algorithm modifies the URL orderings of the crawlers based on the re-
ceived reinforcements for submitted documents. We have found that the weblog
update selection algorithm performs better in this environment than the rein-
forcement learning algorithm, eventhough the reinforcement learning algorithm
has been shown to be efficient in finding relevant information [4,5].

The paper is organized as follows. We overview the forager architecture in
Section 2. After that in Section 3 we present our experiment on the Web and
the conducted simulations with the results. Section 4 concludes our paper.

� Corresponding author.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 579–582, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

580 Z. Palotai, C. Farkas, and A. Lőrincz

2 Forager Architecture

There are two different kinds of agents: the foragers and the reinforcing agent
(RA). The fleet of foragers crawl the web and send the URLs of the selected doc-
uments to the reinforcing agent. The RA determines which forager should work
for the RA and how long a forager should work. The RA sends reinforcements
to the foragers based on the received URLs.

Foragers may use two different kinds of algorithms to find relevant docu-
ments. The first algorithm, called weblog update algorithm selects the possibly
good starting URLs and restarts periodically the forager from one of the possibly
good starting URLs. The second algorithm is the reinforcement learning based
URL ordering algorithm which selects the next document to be visited by the
forager between two restarts. The documents found by a forager are represented
as a 50 dimensional state vector. This algorithm updates the 50 dimensional
weight vectors of the foragers in order to collect more rewards in the long run
for sending relevant documents to the RA. The document to be visited next by
the forager is the one with the highest value, where the value of a document is
the scalar product of its state vector and the forager’s weight vector. According
to the weblog update algorithm the starting URL value of an URL is the sum
of rewards collected during steps after visiting that URL and before the next
restart. URLs with low starting URL values fall out from the weblog, while URLs
of documents with high starting URL values go to the front of the weblog.

The algorithms and the architecture are detailed in [6].

3 Experiments

We conducted an 18 day long experiment on the Web to gather realistic data.
We used the gathered data in simulations to compare the weblog update and
reinforcement learning algorithms.

In the web experiment a fixed number of foragers were competing with each
other to collect news at the CNN web site. The foragers were running in equal
time intervals in a predefined order on one PC. We deployed 8 foragers using
the weblog update and the reinforcement learning based URL ordering update
algorithms. We also deployed 8 other foragers using the weblog update algorithm
but without reinforcement learning. We used this heterogenous fleet of foragers
to eliminate any biases on the gathered data. We investigated the link structure
of the gathered Web pages. We have found that the links have a power-law
distribution. That is the link structure has the scale-free property. We have also
found that the links of gathered pages form small world structure.

We conducted simulations with two different kinds of foragers. The first case
is when foragers used only the weblog update algorithm without URL ordering
update (WL foragers). The second case is when foragers used only the reinforce-
ment learning based URL ordering update algorithm without the weblog update
algorithm (RL foragers). The simulation for each type of foragers were repeated
3 times with different initial weight vectors for each forager.

Selection in Scale-Free Small World 581

type RL std RL WL std WL

downloaded 540636 9840 669673 9580

sent 9747 98 6345 385

relevant 2419 45 3107 60

found URLs 31092 1050 33116 3370

download eff 0.0045 0.0001 0.0046 0.0001

sent eff 0.25 0.003 0.49 0.031

exploration 0.058 0.001 0.050 0.006

freshness 0.70 0.006 0.74 0.011

age (hours) 1.79 0.04 1.56 0.08

(a) Simulation results

0

0.005

0.01

0.015

0.02

1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

Days

(b) Efficiency

Fig. 1. Simulation results and Efficiency. (a): 2nd (3rd) and 4th (5th) columns
show averages (standard deviations) of individual experiments. (b): Horizontal axis:
time in days. Vertical axis: download efficiency, that is the number of found relevant
documents divided by number of downloaded documents in 3 hour time intervals.
Upper subfigure shows RL foragers’ efficiencies, lower subfigure shows WL foragers’
efficiencies. For all of the 3 simulation experiments there is a separate line.

Table 1(a) in Fig. 1 shows the measured parameter values averaged over the
3 runs of each type of foragers. From Table 1(a) we can conclude the followings.
The efficiencies of RL and WL foragers from the point of view of the news
site are about the same (download efficiency). From the point of view of the
RA the efficiency of WL foragers is higher than RL foragers (sent efficiency).
This shows that WL foragers divide the search area better among each other
than RL foragers. Sent efficiency would be 1 if none of two foragers have sent
the same document to the RA. RL foragers explore more than WL foragers: RL
found more URLs per downloaded page than WL foragers did (exploration). WL
foragers find faster the new relevant documents in the already found clusters.
That is freshness is higher and age is lower than in the case of RL foragers.

Fig. 1(b) shows other aspects of the different behaviors of RL and WL for-
agers. Download efficiency of RL foragers has more, higher, and sharper peaks
than the download efficiency of WL foragers has. That is WL foragers are more
balanced in finding new relevant documents than RL foragers. The reason is
that while the WL foragers remain in the found good clusters, the RL foragers
continuously explore the new promising territories. The sharp peaks in the effi-
ciency show that RL foragers find and recognize new good territories and then
quickly collect the current relevant documents from there.

4 Conclusions

We presented and compared our selection algorithm to the well-known reinforce-
ment learning algorithm. Our comparison was based on finding new relevant
documents on the Web, that is in a dynamic scale-free small world environment.
We have found that the weblog update selection algorithm performs better in
this environment than the reinforcement learning algorithm, eventhough the re-

582 Z. Palotai, C. Farkas, and A. Lőrincz

inforcement learning algorithm has been shown to be efficient in finding relevant
information [4,5]. We explain our results based on the different behaviors of
the algorithms. That is the weblog update algorithm finds the good relevant
document sources and remains at these regions until better places are found
by chance. Individuals using this selection algorithm are able to quickly collect
the new relevant documents from the already known places because they mon-
itor these places continuously. The reinforcement learning algorithm explores
new territories for relevant documents and if it finds a good place then it col-
lects the existing relevant documents from there by quickly adapting to the new
neighborhood. Although RL is more flexible and has a fast tuning mechanims,
nevertheless RL finds new relevant documents slower on the average than the
more conservative weblog update algorithm. We conjecture that this conclusion
may be restricted to highly clustered worlds, e.g., to scale-free small worlds.

Acknowledgement

This material is based upon work supported by the European Office of Aerospace
Research and Development, Air Force Office of Scientific Research, Air Force
Research Laboratory, under Contract No. FA8655-03-1-3036. This work is also
supported by the National Science Foundation under grants No. INT-0304904
and No. IIS-0237782. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the European Office of Aerospace Research and Development, Air
Force Office of Scientific Research, Air Force Research Laboratory.

References

1. Barabási, A., Albert, R., Jeong, H.: Scale-free characteristics of random networks:
The topology of the world wide web. Physica A 281 (2000) 69–77

2. Kleinberg, J., Lawrence, S.: The structure of the web. Science 294 (2001) 1849–1850
3. Kókai, I., Lőrincz, A.: Fast adapting value estimation based hybrid architecture for

searching the world-wide web. Applied Soft Computing 2 (2002) 11–23
4. Lőrincz, A., Kókai, I., Meretei, A.: Intelligent high-performance crawlers used to

reveal topic-specific structure of the WWW. Int. J. Founds. Comp. Sci. 13 (2002)
477–495

5. Rennie, J., Nigam, K., McCallum, A.: Using reinforcement learning to spider the
web efficiently. In: Proc. 16th Int. Conf. on Machine Learning (ICML), Morgan
Kaufmann, San Francisco (1999) 335–343

6. Palotai, Z., Farkas, C., Lőrincz, A.: Selection in scale free small world.
http://www.arxiv.org/pdf/cs.LG/0504063 (2005)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 583 – 586, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Multi-agent System Architecture for the Adaptation of
User Interfaces

Víctor López-Jaquero, Francisco Montero, José P. Molina, Pascual González,
and Antonio Fernández-Caballero

Laboratory on User Interaction & Software Engineering (LoUISE),
University of Castilla-La Mancha, 02071 Albacete, Spain

{victor, fmontero, jpmolina, pgonzalez, caballer}@info-ab.uclm.es

Abstract. Nowadays the design of user interfaces has become a discipline of
great importance in Software Engineering, mainly due to the increasing impact
that a high quality user interface has in the success of a software product.
However, the growing diversity in interaction devices and techniques has raised
a big expectation for the design of both methods and architectures able to cope
with context of use heterogeneity issues in an intelligent way. Multi-agent
systems jump into scene as an alternative to design the adaptation capabilities
required to cope with this problem in a natural manner.1

1 Introduction

Nowadays the design of user interfaces has become a discipline of great importance in
Software Engineering, mainly due to the increasing impact that a high quality user
interface has in the success of a software product. To face the challenge of designing
once and running in many different contexts of use (for instance, in different devices:
PC, PDA, …), model-driven architecture (MDA) appears as a solution, where the
application is derived from a series of models describing both the dynamic and static
aspects of an application. For the last decade, MDA has been a really active thread in
UIs design research community, in the form of Model-Based User Interface
Development Environments (MB-UIDE) [9]. In the design of a general technique that
supports adaptivity [1] in a flexible manner, where knowledge can be reused and
integrated with a UI design method that provides the required formalism to build UIs
in a systematic way [7][6], a software architecture able to cope with all these
requirements is needed. However, this software architecture needs to be able to make
decisions about which adaptations should be applied, when they should be applied,
etc. System decisions about adaptation should be grounded in the UI model developed
at design time, along with the information about the context of use that the system
gets from the environment. In this paper the use of the multi-agent paradigm in the
design of a software architecture to support adaptative behaviour in UIs is proposed.
A set of agents collaborate in a multi-agent system (MAS) to achieve the final goal of
adaptation, by receiving through their sensors the changes in the environment (context
of use) where they are involved.

1 This work is partly supported the Spanish PBC-03-003 and CICYT TIN2004-08000-C03-01

grants.

584 V. López-Jaquero et al.

2 The Adaptation Process

Within adaptivity there is a wide range of possibilities where several actors (usually
the system and the user) can take the initiative in the different stages carried out in
order to perform the adaptation. Thus, this adaptation is not preformed automatically,
but semiautomatically. The stages needed to perform adaptation according to [3] are:
(1) initiative: one of the actors involved in the interaction suggests its intention to
perform an adaptation. The main actors are usually the user and the system, (2)
proposal: if a need for adaptation is detected, it is necessary to make proposals of
adaptations that could be applied successfully in the current context of use for that
need for adaptation detected, (3) decision: as we may have different proposals from
the previous stage we need to decide which adaptation proposals best fit the need for
adaptation detected, and even if it is worth applying any of them, and (4) execution:
finally, the adaptation chosen will be executed.

3 A Multi-agent Architecture for Adaptive User Interfaces

The multi-agent system perceives the changes in the context of use by means of
sensors. Then, a set of adaptations will be chosen among the feasible adaptations
taking into account the expected benefit evaluation that each feasible adaptation
would produce to the user if it would be applied. Finally, the selected adaptations will
be applied following a transformational approach.

At Initiative stage the adaptation process is fired. This can be achieved mainly in
two different ways: (1) the user explicitly expresses his intention to perform an
adaptation, (2) the system or a third-party agent detects that an adaptation might be
helpful or needed. In this second case, this stage can be subdivided into two smaller
sub-stages. On the one hand, the system needs to guess the current goal the user is
pursuing, and on the other hand it should guess which needs the user has with respect
to the detected current goal. In the multi-agent system proposed for the adaptation of
the UI this stage is performed by means of AgentContextPlatform,
AgentContextEnvironment, AgentContextUser, and the user itself. The three agents
receive any change in the context of use perceived by the sensors and take advantage
of the data collected during design and the data perceived to figure out whether the
adaptation process should be fired or not.

Within agent design paradigm, just as in human reasoning model, the possible
actions that an agent can use to face a situation (a change in the context of use in our
case) are the plans. Thus, AgentAdaptationProcess agent has a plan for each possible
adaptation that can be applied. Adaptations are represented as adaptivity rules at
design time, which are translated later into agent’s plans, following an approach based
on Prometheus [8] method plan specification. The meta-model for an adaptivity rule
is specified in terms of the context-of-use events that trigger the adaptivity rule, the
sensors that produce those events, the data the rule accesses (read/write), the
transformations of the UI needed in order to apply the rule, and the context
precondition. The context precondition specifies the required conditions that the
current context of use must meet in order for the adaptivity rule to be applicable. The
transformation specifies the “real” adaptation of the UI. These transformations modify

 A Multi-agent System Architecture for the Adaptation of User Interfaces 585

a graph representation of the usiXML [10] specification of the running UI. To modify
the representation of the graph an attributed graph grammar engine is used.

Decision stage is performed by AgentAdaptationProcess. This agent will use the
selected selection policy to choose the adaptations that should be applied. Notice that
the user can also decide which adaptations to apply among the adaptations that match
the current changes in context. We have two different policies available for the
selection of the adaptations that best fit a context of use change. The first one is the
simpler one. When this first adaptation selection policy is chosen, the first rule that
could be applied to the current situation is selected. The selection order is the same as
the order in which the rules were fired. Therefore, following this first policy no meta-
planning method is required. However, it will yield unpredictable results in many
cases, making adaptation a useless feature. The second policy is a little more
sophisticated. It selects the rules taking into account usability criteria evaluation.

Execution stage is also performed by AgentAdaptationProcess agent. In this stage,
there are three main sub-steps: (1) Get an up-to-date copy of the UI expressed in
terms of usiXML language, (2) Apply the adaptations. The adaptations are applied
performing the transformations specified for each chosen plan. And, (3) restore the UI
out of the newly generated one. The adapted UI will be shown to the user, restoring
interaction to the state it was before adaptation took place. An agent called
AgentStimuliGenerator has been added to the architecture to make debugging and
evaluation easier. This agent simulates the arrival of data from the sensors, following
a pattern of events specified by the designer.

4 Implementing the Adaptive Architecture

In this section we will show an overview of the technologies used in the
implementation of the architecture. For the MAS implementation we have used JACK
Intelligent AgentsTM [2]. To maximize platform independence we have wrapped the
multi-agent java based system within an HTTP server interface. The HTTP server
interface allows any platform capable of networking using TCP/IP protocol to access
the adaptation engine. This HTTP server has been implemented as a servlet (server
side applet) that runs on top of a TOMCAT server.

usiXML UI description language is able to describe a UI in a manner independent
from the platform where it will run on. Therefore, a renderer is needed so the user can
visualize the UI. For this purpose, a renderer for the concrete UI level of usiXML has
been written for XUL language. This renderer translates a usiXML CUI specification
into a XUL language specification that can be visualized by the user. XUL is an
XML-based UI language that can be visualized in any Internet browser based on
Mozilla engine (http://www.mozilla.org). At this moment, we have implemented the
embedded sensors needed to capture the data from the interaction using JavaScript.
JavaScript allows the implementation of the dynamic behaviour of the UI. The engine
to execute the transformations associated to the adaptations uses the API from AGG
[5] tool to perform the transformations. The engine transforms a usiXML
specification expressed as an attributed graph into a new usiXML specification
transformed according to the adaptation rules selected. In [5] a detailed description of
the transformation process can be found.

586 V. López-Jaquero et al.

5 Final Remarks

There have been many works related to the adaptation of UIs, especially in the field
of intelligent tutoring systems. However, most of that research has led to solutions
where the adaptations were hardcoded within the system, making it very difficult to
modify the way adaptations are made, or to reuse the solution from one application to
another. In this paper a MAS is proposed that is able to cope with the adaptation
process in a flexible way, and where the same language is used for the specification of
both the UI and the adaptation rules. Furthermore, the system detects the context of
use by means of a set of sensors that modify the context model included inside the
agents’ beliefs, making the MAS react to accommodate the UI to the different
situations produced by the changes in the context of use detected by sensors.

References

1. Benyon D., Murray D.. Developing adaptive systems to fit individual aptitudes. IUI 1993,
pp. 115-121, Orlando, Florida, United States, ACM Press, 1993.

2. Busetta, P., Ronnquist, R., Hodgson, A. and Lucas, A. Jack intelligent agents -
components for intelligent agents in java. AgentLink News Letter, January 1999. White
paper.

3. Dieterich, H., Malinowski, U., Khme, T. and Schneider-Hufschmidt, M. “State of the Art
in Adaptive User Interfaces”. In: Schneider-Hufschmidt, M., Khme, T. and Malinowski,
U., eds.: Adaptive User Interfaces: Principle and Practice. Amsterdam, Holland, 1993.

4. Fernández-Caballero, A., López-Jaquero, V., Montero, F., González, P. Adaptive
Interaction Multi-agent Systems in E-learning/E-teaching on the Web. International
Conference on Web Engineering, ICWE 2003. Springer Verlag, pp. 144-154. 2003.

5. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V. USIXML:
a Language Supporting Multi-Path Development of User Interfaces. Proc. of 9th IFIP
Working Conference on Engineering for HCI jointly with 11th Int. Workshop on Design,
Specification, and Verification of Interactive Systems (Hamburg, July 11-13, 2004).
LNCS, Vol. 3425, Springer-Verlag, Berlin, 2005, pp. 207-228.

6. López-Jaquero, V., Montero, F., Molina, J.P., Fernández-Caballero, A., González, P.
Model-Based Design of Adaptive User Interfaces through Connectors Design,
Specification and Verification of Interactive Systems 2003, DSV-IS 2003. Springer
Verlag, 2003.

7. López-Jaquero, V., Montero, F., Molina, J.P., González, P., Fernández-Caballero, A. A
Seamless Development Process of Adaptive User Interfaces Explicitly Based on Usability
Properties. Proc. of 9th IFIP Working Conference on Engineering for HCI jointly with
11th Int. Workshop on Design, Specification, and Verification of Interactive Systems
(Hamburg, July 11-13, 2004). LNCS, Vol. 3425, Springer-Verlag, Berlin, 2005.

8. Padgham, L., Winikoff, M. Prometheus: a methodology for developing intelligent agents.
AAMAS 2002: 37-38

9. Paternò, F. Model-Based Design and Evaluation of Interactive Applications. Springer
Verlag, 2000.

10. usiXML specification. Available at http://www.usixml.org
11. Wooldridge, M., Jennings, N.R. Agent Theories, Architectures, and Languages: A Survey,

ECAI-Workshop on Agent Theories, Architectures and Languages. Wooldridge, M.J. and
Jennings, N.R. (eds.), 1994.

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 587 – 590, 2005.
© Springer-Verlag Berlin Heidelberg 2005

ACE Agents – Mass Personalized Software Assistance

Jarogniew Rykowski

The Poznan University of Economics, Dept. of Information Technology,
Mansfelda 4, 60-854 Poznan, Poland
rykowski@kti.ae.poznan.pl

Abstract. In this paper we propose a new idea of developing personalized soft-
ware assistants. We based our approach on the technology of software agents,
and the Agent Computing Environment ACE. Rather than using a single, com-
plicated, resident personal assistant of a fixed architecture and functionality, we
use a distributed set of specialized, user-defined agents, working in parallel in
an autonomous manner to fulfill given requests. The ACE agents may be
imperatively programmed by their owners to achieve certain goals. The agents
may be also orchestrated and self-adjusted to the environment, communication
means, local hardware/software limitations, geographical location, etc.

1 Introduction

Nowadays we may observe a continuously growing trend in using computers and
modern telecommunication technologies in many domains of our everyday life and
work. This trend is especially visible in the scope of mobile technologies and com-
puter-based personal assistance, usually combined with the software agents technol-
ogy. A software agent is characterized by many features well-suited for personal as-
sistance: autonomy, mobility, flexibility and self-adjustment to changes in the envi-
ronment, etc. The main problem is that today’s software agents cannot be fully per-
sonalized and thus effectively used in a mass environment. Typical “personal” agents,
with a basic architecture common for all the users, and with similar functionality and
behavior, are not flexible enough for mass environment with many users character-
ized by different requirements and expectations. As today’s agents are specialized in
certain tasks and services (e.g., shopping agents, schedulers), these agents are not well
suited for modern application areas, with a need to differentiate an architecture and
behavior of each individual agent, and a need to adjust agent structure to the require-
ments of the agent’s owner, geographical zone, communication means, etc.

In this paper we present a new approach to mass, personalized, agent-based assis-
tance. Instead of proposing a complicated, however fixed architecture of a new yet-
another personal assistant, we propose a framework capable of creating, orchestrating,
and executing small, personalized software agents. The remainder of the paper is
organized as follows. In Section 2, current approaches to agent-based personal assis-
tance are briefly presented, mainly monitors/informers and FIPA agents. In Section 3,
ACE agents are presented, together with some basic features of the agent environment
used. Section 4 concludes the paper.

588 J. Rykowski

2 Current Approaches to Agent-Based Personal Assistance

There are three basic trends in today’s agent-based personal assistance: information
brokers and avatars, autonomous monitors, and complex “automatic secretaries”.
Information brokers are mainly implemented as resident agents of a fixed architecture
and functionality. The main goal of such an agent is to provide an efficient access to
certain information, in a certain manner. Broker-agents use WWW/WAP access
channels, avatars with chatterbot support (e.g., Verbot and Microsoft Agent applica-
tions), and SMS/MMS messaging (e.g., SMS-B system). The broker-agents are usu-
ally equipped with a possibility of monitoring changes of selected information and
notifying the users. Generic agent-monitors (e.g., SmartBookmarks, BargainFinder)
are now being replaced by specialized agents used mainly for price comparison (Biz-
rate, Amazon, etc.), and change notification of given WWW pages (Mind-It by Pu-
matech), news servers (NewsPage), stocks and bank accounts, software releases, etc.

There are several reasons that all these systems do not cover the domain of our
proposal. First, the “agents” are not software agents according to the classical defini-
tion. Second, a typical “agent” is not user-defined, usually it is fixed to perform some
well-defined, repetitive tasks, and to contact a single service. Third, generic chatterbot
avatars impose several restrictions while using external information sources.

FIPA agent is an example of a more complicated personal assistant. The main idea
of this proposal is to provide a software assistance similar to a “human secretary”,
helping in everyday, tedious tasks. Each FIPA agent is build according to FIPA-PA
reference model. The FIPA proposal lacks at least: (1) efficient and fast adaptation to
changes in the environment, (2) distribution and mobility, including migration to
mobile devices, and (3) unrestricted personalization of behaviour (agent code). The
predefined (fixed) architecture and functionality of a FIPA personal agent seriously
limits system flexibility and openness to new (not only communication) standards.

3 Agent Technology for Mass Personal Assistance

To solve the problem of mass personalized assistance, we propose to use imperative,
distributed software agents and the Agent Computing Environment ACE. In our ap-
proach, we define software agents in classical way [5], as autonomous entities exe-
cuted at a given place, able to communicate with the environment and other agents or
humans. The ACE framework is based on a set of distributed Agent Servers, each of
them capable of storing and executing software agents. The agents may be moved
among Agent Servers. There are “light” Agent Servers with limited functionality to be
executed in a “thin” hardware/software environment (e.g., mobile phones), and
“thick”, massively used Agent Servers located in stationary network hosts. The
“light” servers are mainly used for executing individual agents of an owner of a mo-
bile device, while the “thick” ones are used by many users in parallel, usually to ac-
cess certain services, external software systems, and public communication channels.

There are two basic classes of ACE agents: public System Agents, and Private
Agents. Public System Agents SAs are created by trusted users (usually system de-
signers), to be used in a mass manner by many users, providing information in a stan-
dardized form and with optimum effort. As overall efficiency is of primary concern,

 ACE Agents – Mass Personalized Software Assistance 589

SAs are programmed in Java. A way of usage of a given SA cannot be changed by an
ordinary user, however, it may be parameterized during the invocation.

The Private Agents PAs are created and controlled by their human owners. Unless
directly ordered by its owner, the agent cannot be accessed by any other agent. For
private agents, the main problem is to achieve a reasonable trade-off between overall
system security and a need for remote (i.e., server-side) execution of user-defined,
thus „untrusted” (from the local administrator point of view) code. Several restrictions
and limitations must be applied to user-defined code, protecting the system from (in-
tentional or accidental) damages. Thus, a specialized language is proposed to program
agent behavior, based on XML and equipped with several non-standard mechanisms
like run-time monitoring of CPU time and memory allocation. The language is of
imperative type, thus allowing much wider personalization of the agent code in com-
parison with the classical declarative approach. XML-programmed private agents
may invoke huge library of on-site, residential, Java-based system agents: communi-
cators, services, brokers to external software systems, tools and utilities, etc. Usually,
a small private agent, being a “light” mobile entity, is able to use (i.e., execute) sev-
eral system agents, to achieve different goals. From the user point of view, the system
is effective and powerful, and even small private agents are “intelligent” enough to
fulfill complex requirements. From the system point of view, private agents executed
at server-side do not pose a threat to local environment and other agents.

The interface for all the agents is reduced to a single-method with (hash)table of
unique pairs of “name/text value” type as the input parameter. Similar to the input
parameters, the output parameter (result) is also standardized as a single text value of
unlimited type and length. This looks quite lean, however, as any result may be en-
coded as a flat text, such standardized interface improves a flexibility of the system.
From a user point of view, private agents may use as complicated parameters as it is
needed at the moment. Some agents/invocations may use flat text parameters, as for
example an SMS message, while some of them are able to interpret such complex
parameters, as XML documents (e.g., for intra-communication among agents). More-
over, different standards may be implemented for particular agents, supporting effi-
cient knowledge representation and interchange (for example KQML, SOAP, etc.).
Note that a way of interpretation of an input parameter depends on the agent owner,
and different agents may use parameters of different purpose and complexity.

The standardization of both input parameters and the result does not limit internal
agent logic. Despite parameters used and the returned result, an agent owner is able to
define agent behavior according to any algorithm. Moreover, and agent may react in
specific manner (i.e., according to different sub-algorithms) to specific sets of pa-
rameters, taking into account an internally stored history of previous invocations.

A typical Agent Server is equipped with several specialized system agents, so
called input/output gateways, able to communicate with an external world (including
other Agent Servers, local and remote software, and humans) via communication
channels of different type and purpose. In general, two basic types of human-agent
communication gateways are available: textual and Web-based. A textual gateway is
able to exchange flat (unformatted) text messages, usually among humans and agents.
Physically, textual gateways may use such means as an e-mail SMTP/POP3 connec-
tion, SMS (Short Message System)/MMS connection with a telecommunication net-
work, a voice gateway, etc. Once sent by a textual message, an ACE agent may act as

590 J. Rykowski

a chatterbot, analyzing the message via keyword extraction and analysis [4]. The
chatterbot interface is especially useful for non-advanced users, and for users tempo-
rary handicapped due to limited hardware possibilities and communication costs.

Web-based gateways are used to access an agent via a WWW/WAP page, and from
specialized ACE applications. For semi-automatic formatting of both contents and
presentation of the data to be sent, XSL-T technology was adopted with XSL trans-
formations defined in a personal manner and stored in private agent variables [3]. To
improve data formatting and presentation, automatic detection of end-user device may
be applied, allowing auto-adjustment to the availabilities and technical possibilities of
both communication means and end-user devices.

Gateways to external data sources are mainly used for automatic monitoring of in-
formation changes. As a change is reported by an external data source, a gateway
invokes a selected agent. The agent may next pass the notification about “interesting”
changes to user(s), via certain tele-communication gateways. What is “interesting” for
the user is programmed by him/her in the code of the private agents [1, 2]. Thus, a set
of user’s agents is an “intelligent”, personalized filter of changes of monitored data.

The number and types of the gateways used (including some specific parameters,
e.g., a phone number for an SMS center) is local-administrator dependent. Note that
the gateways are implemented as system agents, thus one may easily extend a given
Agent Server by some non-standard communication means.

4 Conclusions

ACE personal agents fulfill all the requirements for efficient software assistance.
Each ACE agent may be individually programmed to achieve certain, user-specific
goals. Agent’s behavior may be settled to fulfill specific requirements of its owner. At
the same time, the information propagated by the agent may be automatically adjusted
to the environment the agent is executed in, current time, place, communication link,
etc. ACE agents may be distributed across the network, including users’ mobile de-
vices. Several agents of the same user may be effectively orchestrated.

The ACE framework has been already tested as two industry applications: an “in-
telligent” assistant for clients of a bank, and notifying support for owners of mobile
phones – generic information system using e-mail/SMS/MMS messaging.

References

1. Rykowski J., Agent Technology for Secure Personalized Web Services, 24th International
Scientific School ISAT 2003, Szklarska Poreba, Poland, 2003, pp. 185-193

2. Rykowski J., Cellary W., Virtual Web Services - Application of Software Agents to Person-
alization of Web Services, 6th Int. Conf. ICEC 2004, Delft, Holland, 2004, pp. 409-418

3. Rykowski, J., Juszkiewicz, A., Personalization of Information Delivery by the Use of
Agents, IADIS Int. Conf. WWW/Internet 2003, Algarve, Portugal, 2003, pp. 1056-1059

4. Rykowski, J., Using software agents to personalize natural-language access to Internet ser-
vices in a chatterbot manner, 2nd Int. Conf. L&T’05, Poznan, Poland, 2005, pp. 269-273

5. Wooldridge, M., Jennings, N.R., Intelligent agents: theory and practice, Knowledge Engi-
neering Review 10-1995-2, pp. 115-152

Assisting Robotic Personal Agent and
Cooperating Alternative Input Devices for

Severely Disabled Children

Gy. Hév́ızi, B. Gerőfi, B. Szendrő, and A. Lőrincz

Department of Information Systems, Eötvös Loránd University, Budapest, Hungary
http://nipg.inf.elte.hu

Abstract. A multi-component cooperating system have been designed
for severely disabled children having various disabilities. Different input
tools have been developed to exploit possible ‘outputs’, e.g., head motion
or leg motion. Specific software tools serve to convert such ‘outputs’ in
different computer aided tasks. Extendable software enables configurable
networking. Robotic personal agent helps the communication.

1 Introduction

Recent technology provides a variety of hardware devices and software tools for
people having only very limited control over their muscles, being restricted in
speech or in other ways to communicate and to interact with their environment.
They need sophisticated solutions. They cannot use typical devices so technology
must adapt to them. These subjects need care and the most appropriate devices
need to be utilized. In typical cases, adaptive devices are necessary, including
adaptive filtering of signals and the recognition of behavioral patterns.

There are several commercial devices that were designed for severely handi-
capped people. For a survey on current state-of-the-art interfaces see [1]. Tools,
however, are typically expensive. Thus, our goal is twofold: (i) use novel tools,
such as wireless sensors and robots, and (ii) develop simple software that can be
used by caretakers to select optimal feasible components.

We review our efforts on developing tools and personal agents for severely
handicapped non-speaking but speech understanding children.

2 Cooperating Tools and Devices

We are to integrate different alternative input devices, hardware tools, software
applications and personal robotic agents into a common framework. These means
should cooperate both each other and with the user. We will briefly review some
existing building blocks of this framework: ‘input devices’, that are responsible
for capturing one or more of the ‘outputs’ of the user, ‘applications’, i.e., software
components designed to facilitate the user’s interaction with the framework,
‘software communication tools’ that connect the applications with the input

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 591–594, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

592 Gy. Hév́ızi et al.

tools, and ‘learning algorithms’ that are designed to adapt the computer by
detecting performance, mood, and non-typical states or behaviors of the user.

Input devices: Head Mouse is a head movement detector that translates head
motions to cursor motions. It works with a webcam. Voice Mouse was developed
for subjects who are able to control the pitch and volume of their voice. The
user initializes the interaction by giving a reference voice and moves the cursor
by altering its properties. Varying the pitch or the volume change the x or the
y coordinates, respectively. Tilt Mouse is for children who are able to control
certain parts of their body, e.g., one or more limbs. The rapid evolution of
the RF-MEMS devices makes possible to measure and communicate, e.g., the
acceleration in real-time and in a wireless manner. Tightening these devices to
the subject we get alternative input devices. Present day RF-MEMS tools are
inexpensive and some of them are already built into cloths like shoes and shirts,
e.g., to measure the number of steps, heart rate, etc. [2]. Utterance recognition
can be used by subjects being able to say recognizable utterances that can be
translated to operations on the computer. Eye Tracking: For severely disabled
people sometimes eye motion is one of the last possibilities. Despite the existence
of reliable specific solutions there is still a need for a cheap and simple ones even
at the price of reduced accuracy. Our system is equipped with a webcam and we
have promising results in giving commands by ‘eye gestures’.

Applications: Although alternative devices can give an input to the computer,
disabled people usually need more support from the application side. A typical
example is Dasher , the writing tool, which has been developed at Cambridge
University1. Dasher is driven by pointing gestures, typing is achieved by choosing
the appropriate letter. Dasher has a predictive language model. Probable pieces
of text are made larger and can be selected [3]. We have provided Hungarian
text for Dasher. iConnTab is our application designed for patients who cannot
control the cursor accurately enough to keep it on the target icon and click on
it. The idea is to execute leaky integration for each items on the screen. The
value increases if the cursor is above an item and decreases towards zero if it is
not. Irregular motion patterns can be integrated by this simple method: if the
subject can ensure that the cursor spends the most time over the target item
then proper selection can be made. Aibo: Sony has developed a robotic dog.
It is ideal for disabled children to communicate with others. With our tools,
the dog behaves as a personal agent, it can be controlled to move around in
the flat. It has a camera and can send the image through WiFi. It also has
a microphone and a speaker, so it can record, produce and transmit sound.
Dashboard is a tiny application with user defined buttons to control running
applications. Dashboard can be activated without clicking: The cursor should
be moved to it. Dashboard contains iConnTab-like buttons so no click function
is necessary. TTS: One of the most important function of technical assistance
for non-speaking but speech understanding subjects who can produce texts is
the text-to-speech tool. A standardized speech API interface under Windows

1 http://www.inference.phy.cam.ac.uk/is/

Assisting Robotic Personal Agent 593

XP is applied. Synthetic voice can be transmitted to the speakers of the user’s
computer, the partner’s computer, or to the personal agent.

Communication: Practical configurations will be complex. Basic elements
should be connected through platform independent extensible mechanisms. Stan-
dardized messages are necessary for modular construction. To each child, the
optimal components need to be ”plugged in”. Communication between software
components running on different machines is enabled by our TCP/IP based
communication framework. Messages are transported through TCP/IP sockets.
Interfaces that adapt by analyzing the user as well as adaptive communication
layers are under development.

User Analysis: The users’ interaction with the computer can be efficiently
assisted if we can analyze the interaction and optimize performance, e.g., the
typing speed. We have performed a series of Dasher experiments with healthy
volunteers, who used different input devices. Traditional mouse was used for com-
parison. The trace of the cursor was analyzed [4]) by means of Hidden Markov
Models ([5], [6]). We found that emergent behavioral patterns are similar for all
input devices, can be interpreted and enable computer assistance.

3 Cooperating Tools and Personal Agent

A particular arrangement is detailed here. This arrangement is being imple-
mented at the Alternative and Augmentative Communication (AAC) Center,
Budapest. A framework of specific applications - including a personal message
delivering and video transmitting personal agent - is outlined in Fig. 1. The child
has a notebook mounted on his/her wheelchair. A webcam monitors his/her face.
The notebook receives the camera stream. HeadMouse analyzes head motion and
translates it to cursor movements. The motion of the cursor can be analyzed to
assist and improve performance. The child can edit messages by using iConnTab

Fig. 1. Schematics of alternative input devices and personal agent

594 Gy. Hév́ızi et al.

or Dasher. Each message is converted to an acoustic stream via the Speech API
and the utterances are produced by local, or remote notebook speakers, or, by
Aibo, according to the user’s intentions.

Present state of the implementation: Children at AAC Center are practis-
ing the use of Head Mouse. It was found, to our surprise, that many children
could learn to use them, even that they seemed not to use their head before.
Although it was typical that the first trials were disappointing for us, those de-
lighted the children, because they could not control anything before. Suitable
pointing precision was achieved in many cases. AAC is now equipped with lap-
tops, webcams. RF-MEMS ultrasound distance measuring devices, acceleration
meters, and the intelligent house will start to operate in the fall when the children
return from their summer vacation. Collection of data will start afterwards.

3.1 Conclusion and Outlook

With the development of robotic technology and decrease of prices, personal
robotic agents find their place in assisting disabled people. Our framework has
been designed to enable flexible and standardized communication between com-
ponents that can be configured for each individual differently. Technology should
increase the choice of wireless sensors quickly. Components of the system shall
become less and less expensive alike to trends we have witnessed over the years.
We expect that intelligent motion analysis and motion prediction can assist
severely handicapped people. This seems the main bottleneck now, because the
quality of the sensors is satisfactory. Robotic personal agent should be part of the
scheme. Communication is crucial for the cognitive development of the children
at the AAC Center. It is expected that similar tools may be learned and used
by elderly people. From this point of view, our project is a prototype project.

References

1. P. Ehlert, “Intelligent user interfaces: introduction and survey,” 2003. [Online].
Available: citeseer.nj.nec.com/ehlert03intelligent.html

2. G. Yang, O. Wells, and B. Lo, Eds., 2nd Int. Workshop on Wearable and Implantable
Body Sensor Networks. London, UK: Imperial College, April 2005.

3. D. J. Ward, “Adaptive computer interfaces,” Ph.D. dissertation, Churchill College,
Cambridge, 2001.

4. Gy. Hév́ızi, M. Biczó, B. Póczos, Z. Szabó, B. Takács, and A. Lőrincz, “Hidden
Markov model finds behavioral patterns of users working with a headmouse driven
writing tool,” in IJCNN 2004. Piscataway, NJ 08855-1331: IEEE Operations Cen-
ter, July 2004, paper No. 1268. IJCNN2004 CD-ROM Conference Proceedings, IEEE
Catalog Number: 04CH37541C.

5. L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov models,” IEEE
ASSP Magazine, pp. 4–15, January 1986.

6. M. Welling, “Hidden Markov Models,” http://www.cs.toronto.edu/ welling /class-
notes/classnotes.html.

Building Agent-Based Systems in a
Discrete-Event Simulation Environment

Botond Kádár1, András Pfeiffer1,2, and László Monostori1,2

1 Computer and Automation Institute, Hungarian Academy of Sciences,
H-1111 Budapest Kende u. 13–17, Hungary

2 Department of Production Informatics, Management and Control,
Budapest University of Technology and Economics,

H-1111 Budapest Müegyetem rkp. 3-9
{kadar, pfeiffer, monostor}@sztaki.hu

Abstract. The paper outlines a discrete-event simulation environment
for modeling agent-based manufacturing systems. Exploiting the advan-
tages of a general discrete-event simulation package, in the developed
system agent-based features are directly included in the simulation en-
vironment providing the possibility to build agent-based models inside
the simulation. The paper describes the agent-based functionalities of the
system by presenting the communication mechanisms and predefined col-
laboration protocols. The modeling system implements the heterarchical
control concept that is based on the contract net protocol.

1 Introduction

Research in multi-agent systems (MAS) considers the behavior of a collection of
autonomous nodes aiming at solving a given problem. A MAS is defined as a
loosely coupled network of problem solvers that work together to solve problems
that are beyond their individual capabilities. The nodes of the system are called
agents which are self-directed software objects with their own value system and
capability to communicate with other agents. Advantages of multi-agent systems
include: self-configuration, scalability, fault tolerance, emergent behavior, and
massive parallelism [1]. Multi-agent systems are used for heterarchical control,
where the complete decision process is performed without any form of hierarchy.
A number of researchers attempted to apply agent technology - among other
fields - in different segments of production systems. Examples exist for enterprise
integration, supply chain management, manufacturing planning, scheduling and
control, materials handling and holonic manufacturing [2].

In most of the cases, e.g. agent-based manufacturing control or material han-
dling and manufacturing logistics the new approaches were tested in agent-based
simulation environments where the simulation and the agent-based part of the
system were separated. The simulation substituted the real manufacturing sys-
tem and the heart of the agent-based mechanism was developed in a separate
system [3], [4]. Today several different agent building frameworks, middleware
are available providing basic functionalities for building distributed applications.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 595–599, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

596 B. Kádár, A. Pfeiffer, and L. Monostori

However, none of these frameworks gives functionalities of objects suitable for
modeling manufacturing systems. The paper outlines a discrete-event simulation
environment which enables the modeling of agent-based manufacturing systems.
Exploiting the advantages of a general discrete-event simulation package, in the
developed system agent-based features are directly included in the simulation
environment providing the possibility to build agent-based models inside the
simulation.

2 The Agent-Based Manufacturing Simulation System

The proposed model is based on a general object-oriented simulation system
consisting of material, personnel and information sub-systems. This environment
provides an object library that contains a number of basic objects. Combining
and customizing these basic elements user-defined objects can be created that
enable the construction of application-specific libraries.

The agent-based manufacturing model applies a fully heterarchical architec-
ture including two type of agents. Based on the physical decomposition approach
resources are the basic active units of the system that can perform different tasks.
They are represented by Resource agents. An Order agent (the other basic unit
of the system), on the other hand, includes functions such as order management
and task dispatching. The parts passing through the system are active informa-
tion elements holding all the relevant information about themselves they assist
the agents in their actions.

2.1 Communication Between Agents

The whole communication process between agents is modeled inside the simu-
lation and the agents exchange only string based messages. For this purpose a
specific communication protocol was developed. The protocol specifies the form
of a message and the possible exchangeable amount of information. The template
of a messages is as follows:

msg ID|delivery time|ack|sender|type|name|param1|param2|
param3|param4|param5|param6|receiver

– msg ID: unique identification of the message,
– delivery time: the point time when the message was sent,
– ack: flag indicating whether the sender needs acknowledgement of the recep-

tion,
– sender: the name of the sender agent,
– type: the type of the message, e.g. TASK ANNOUNCEMENT, BID, etc.
– name: optional and type specific information for the identification of different

messages belonging to the same type,
– paramn: optional and type specific information, transporting the basic

knowledge between agents,
– receiver: the name of the receiver agent.

Building Agent-Based Systems in a Discrete-Event Simulation Environment 597

The action flow in the discrete event simulation corresponds to discrete ac-
tions in the model that are mainly bounded with real physical parts. This means
that the simulation controller continuously updates a list of points in time when
part creation, part movements, starting of a process on a part, part deletion,
method calls, etc. are occurred. A minor drawback of such a system is that
changes in information blocks are not treated as discrete events. The message
exchange between two agents is a typical information change that does not enter
events automatically in the event list of the simulation controller. We overcame
this drawback by applying ”active” message boxes that are responsible for the
management of the sending and the receiving processes. In this construction each
message box sends and receives messages in predefined intervals. The intervals
for incoming and outgoing messages are treated separately and can be adjusted
by for each individual agent independently.

3 Resource Allocation by Using the Contract Net
Protocol

The resource allocation process in the system is based on the well-known contract
net protocol. Briefly, the order agent announces the tasks to be performed, the
resource agents compete for the announced tasks by bidding and the order agent
selects the resource to perform the task (Fig. 1).

Fig. 1. Task announcement, bidding, awarding and dispatching cycle

Each task announcement message includes a bid evaluation interval (teval)
after which the bids are not accepted (Fig. 1). During the determination of this
interval the order agent has to take the communication replay delay of each agent
into account. To have a smooth flow of task execution it is essential to adjust
the communication parameters of the agents by setting the reading and sending
intervals to be considerably smaller then the average task processing time.

598 B. Kádár, A. Pfeiffer, and L. Monostori

Having received task announcements the resource agents construct and sub-
mit bids according to their local state variables. The resource checks the re-
quirements of the operation and creates a bid only if it is capable to perform
the operation. Each resource has an inner parameter indicating the bidding per-
formance. This is a state variable of the resource through which the bidding
behavior of the agent can be manipulated. The bid will include this earliest
starting time, the processing time of the operation and the calculated cost.

The objective in the bid evaluation procedure can be the minimization of
production costs, minimization of job tardiness, minimization of makespan or
weighted combination of the above or similar factors. The weights of the ob-
jective functions can be dynamically adjusted on the basis of the system state
and external conditions. Different weights and different rules will result in dif-
ferent control strategies and system performances. These can be regarded as
parameters of the manufacturing system and they can be inspected from out-
side providing an exercising environment. All the bids submitted in the bid-
ding period are evaluated and sorted according to the objectives. The task is
offered for the resource that sent the most advantageous bid, while the oth-
ers are informed about the rejection. The negotiation is completed when the
awarded resource accepts and acknowledges the receiving of the announced
task.

3.1 The Adaptive Behavior of Agents

In this concept, a purely local adaptation scheme was developed and included in
the system. Considering the resource objectives, the resource agents can adjust
their cost factors according to their local state variables and previous observa-
tions. Each agent incorporates a rule base with which it can locally decide on
the cost factor to be applied for an announced task. The preconditions of these
rules are the utilization of the resource and the ratio between the won and lost
bids. The data about the bidding history are stored locally for each agent in
the table of machine abilities and history. Simulation runs were performed to
find and adjust the right thresholds in the rules for different manufacturing sys-
tems and loads. A detailed description of the developed adaptive algorithm and
simulation results are presented in [5].

4 Conclusion

The paper presents a pioneer work to integrate agent-based mechanisms in a gen-
eral discrete-event simulation environment by building templates that provide
the well-known agent features directly in the simulation environment. The main
aim of the work was to build a general and flexible modeling environment that
enables the easy creation and evaluation of different agent-based manufacturing
systems. Further work was initiated in order to integrate other collaboration
templates in the system.

Building Agent-Based Systems in a Discrete-Event Simulation Environment 599

Acknowledgement

The research was supported, partially, by the projects ”Real-time, cooperative
enterprises” in the frame of the National Research and Development Programme
by the Ministry of Education, Hungary (Grant Nos. 2/010/2004). A part of the
work was covered by the National Research Fund, Hungary, Grant Nos. T043547,
T046509 and T049486. Botond Kádár greatly acknowledges the support of Bolyai
János Scholarship of the Hungarian Academy of Sciences significantly easing the
contribution.

References

1. Baker, A. D.: A Survey of Factory Control Algorithms That Can Be Implemented
in a Multi-Agent Heterarchy: Dispatching, Scheduling, and Pull. Journal of Manu-
facturing Systems, 17/4, (1998) 297–320

2. Shen, W., Norrie, D.H.: Agent Based Systems for Intelligent Manufacturing: A state-
of-the-art survey Knowledge and Information Systems, an International Journal,
1/2, (1999), 129–156

3. Brennan, R. W., William, O.: A simulation test-bed to evaluatemulti-agent control
of manufacturing systems. Proceedings of the 2000 Winter Simulation Conference,
(2000) 1747–1756

4. Pěchouček, M., Vokř́ınek, J., Bečvář: ExPlanTech: Multiagent Support for Manu-
facturing Decision Making. IEEE Intelligent Systems 20/1, (2005) 67–74

5. Kádár, B.; Monostori, L.; Csáji, B.: Adaptive approaches to increase the performance
of production control systems, Proc. of the 36th CIRP Int. Seminar on Manufac-
turing Systems, June 3–5, 2003, Saarbrcken, Germany, pp. 305-312 and
CIRP Journal of Manufacturing Systems, 34/1, (2005) (in print).

Complexity of Task Coordination for Non Cooperative
Planning Agents

Adriaan ter Mors, Jeroen Valk, and Cees Witteveen

Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

{a.w.termors, j.m.valk, c.witteveen}@ewi.tudelft.nl

Abstract. We discuss task planning problems where a number of agents have to
work on a joint planning problem that consists of a set of interdependent, hier-
archically ordered tasks. Each agent is assigned a subset of tasks to perform for
which it has to construct a plan. The agents are non-cooperative in that they insist
on planning autonomously and do not want to revise their individual plans when
a joint plan has to be assembled. The aim of this paper is twofold: first of all to
present a general formal framework to study some computational aspects of this
non-cooperative coordination problem, and secondly to establish some complex-
ity results and to identify some of the factors that contribute to the complexity of
this problem.

1 Introduction

Coordination in multi-agent planning systems is a process ensuring that the plans of the
participating agents do not conflict and the individual as well as the common goals of the
agents can be achieved. In the multi-agent planning literature, one can distinguish three
main approaches to coordination. In the first approach (c.f. [1,4]) coordination between
the agents is established after the completion of the individual planning processes. It
is assumed that agents independently work on their own part of the planning problem
and achieve a solution for it. In an after-planning coordination phase, possible conflicts
between independently generated individual plans are resolved and positive interactions
between them are exploited by exchanging and revising parts of the individual plans.
The second approach pushes the coordination process into the planning processes (c.f.
[2,3]) by treating coordination and planning as intertwined processes where the agents
continuously exchange planning information to arrive at a joint solution. In the third or
pre-planning approach coordination takes place before the agents start to make plans.
Examples of the latter approach are the use of social laws (cf. [6]), conventions (cf. [5])
and protocols as the Contract Net protocol [7].

We are focusing upon coordination between agents that are self-interested, do not
want to be interfered during their individual planning process and do not want to revise
their plans when a joint plan has to be composed. Examples are multi-modal plan-
ning tasks where several independent and competitive transportation companies have to
coordinate in transporting goods or persons, manufacturing tasks and patient-centered
health-care systems.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 600–603, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Complexity of Task Coordination for Non Cooperative Planning Agents 601

It can be easily seen that these autonomous planning and revision-free combina-
tion requirements exclude the first two coordination approaches from consideration.
Therefore, we need to coordinate the agents before the planning phase. While existing
pre-planning coordination research focuses on implicit coordination, i.e. constraints are
imposed independently of the particular goals or tasks the agent has to solve, we are
looking for an explicit coordination approach: based on the specific set of tasks to be
achieved, the assignment policies and the (inter-agent) dependencies, we have to spec-
ify which constraints have to be imposed on the tasks. These constraints will enable the
agents to make plans for their part of the complex task independently from each other
and should guarantee that, once the plans have been constructed, these plans can al-
ways be combined in a revision-free manner into a joint plan solving the complex task.
Our coordination problem then comes down to find a minimum set of such additional
constraints.

2 A Framework for Coordination

To analyze this coordination problem, we use a task-based framework, where a set of
non-cooperative agents A = {A1, A2, . . . , An}, each having different capacities, have
to solve a complex task T . Such a complex task T consists of a set T = {t1, t2, . . . tk}
of (elementary) tasks ti together with two relations ρ and ≺ whose transitive closures
specify a partial order on T . The relation ≺ specifies a precedence1 relation between
tasks in T , t ≺ t′ expressing that t′ cannot start until t has been completed, i.e., in
every plan t has to be planned to occur before t′. The refinement relation ρ consists of

t
1

t
11

t
23

t
111

t
2

t
21

t
22

t
222

t
231

t
221

t
12

t
1121

t
112

t
1122

t
232

elements of

elements of

Fig. 1. A complex task with refinement (ρ) and precedence (≺) relations between tasks. T0 =
{t1, t2} is the set of initial tasks. Other tasks are refinements of these tasks.

two disjoint subsets: ρ∨, defining an OR-relation between the subtasks of a task, and
ρ∧, defining an AND-relation. Intuitively, if ρ(t) ⊆ ρ∧, an agent that has to achieve t

1 Note that such a precedence relation can be induced by various other dependency relations like
resource dependencies, organizational regulations, etc.

602 A. ter Mors, J. Valk, and C. Witteveen

might choose to complete t in its own way without taking notice to its set of subtasks,
or might choose to complete every subtask t′ ∈ ρ(t); analogously, if ρ(t) ⊆ ρ∨, t
can be completed by performing t (choosing the agent’s own method to solve it) or by
completing one of the subtasks t′ ∈ ρ(t). Finally, we require that for any pair of tasks
t, t′, ρ(t) ∩ ρ(t′) = ∅, i.e. refinements are unique.

A typical free task instance then is a tuple (T, ρ,≺, A, c(A), c(T)). Here, c(A)
represents the agent capabilities and c(T) the task capabilities required. Using these
capabilities and the refinement relation we can define exactly what constitutes a suit-
able assignment of tasks to agents. Applying such an assignment to a free task instance
(T, ρ,≺, A, c(A), c(T)) results in a fixed task instance ([Ti]ni=1,≺, A, c(A), c(T)),
where each Ti represents the non-overlapping subset of tasks assigned to agent Ai.
Since now the refinement relation and the capabilities are no longer needed2 and agents
are characterized by the partition blocks of a ρ-independent set T ′ ⊆ T , we often ab-
breviate a fixed task instance by the tuple ([Ti]ni=1,≺).

In such a fixed task instance ([Ti]ni=1,≺) the set of precedence constraints≺ is split
up into two disjoint subsets: (i) the set ≺intra=

⋃n
i=1 ≺i of intra-agent constraints,

where≺i is the set of (inherited) precedence constraints between the tasks occurring in
Ti and (ii) the set of inter-agent constraints, i.e., the set of constraints that hold between
tasks assigned to different agents.

Each agent Ai then has to solve a subtask (Ti,≺i) generated by the tasks Ti al-
located to it. We assume that in order to complete Ti each agent has to construct a
plan (or schedule) for it. Whatever plan/schedule representation the agents (internally)
employ, we assume that the plan Ai develops for Ti can be represented as a structure
Pi = (Ti, πi) extending3 the dependency structure (Ti,≺i), i.e., π+

i is a partial order
containing (respecting)≺+

i .
Using this framework, the coordination problem can be easily stated: how to guar-

antee that whatever individual extensions πi are chosen, the resulting plans (Ti, πi)
can be simply combined into a joint plan. It is not hard to see that such a joint plan
respecting each of the individual plans, only exists if the relation≺ ∪

⋃n
i ≺i is acyclic.

Elsewhere, (see [8]) we have shown that coordination only can be guaranteed if it
is allowed to add suitable dependency constraints Δi to each of the individual planning
problems (Ti,≺i). The coordination problem then consists in finding minimum sets of
such constraints.

3 Complexity Results

We investigated the computational complexity of some aspects of this coordination
problem and we showed that in general, even the easiest problems are intractable.

1. checking coordination: Given a fixed task instance, to detect whether or not addi-
tional dependency constraints need to be added in order to guarantee coordination,
in general is a co-NP complete problem, even if each agent has to make a plan for

2 Since it is assumed that each agent is able to complete the tasks assigned to it and no tasks
assigned are ρ-related.

3 Since a plan Pi at least has to satisfy all intra-agent constraints ≺i.

Complexity of Task Coordination for Non Cooperative Planning Agents 603

achieving at most 4 tasks. Only if an agent has at most 3 tasks to plan, this problem
can be solved efficiently.
For a free task instance the problem whether there exists a suitable assignment of
tasks to agents such that no additional constraints need to be added, the coordination
checking problem is Σp

2 -complete.
2. finding a minimal set of constraints: Determining a minimal set of constraints has

been proven to be even harder: the problem to decide whether k constraints suffice
for a fixed task instance is a Σp

2 -complete problem, even if agents have to plan
for a small (8) number of tasks. Remarkably, it makes no essential difference in
computational complexity whether the agents are already assigned to tasks or not.
Only if we want to find out whether for all possible suitable assignements of tasks
to agents adding k constraints suffices, the complexity increases: this problem is a
Πp

3 -complete problem.

4 Conclusions

Note that ensuring coordination before planning even starts has many advantages:
agents can plan independently of other agents, and there is no need for advanced multi-
agent planning tools because an agent has only its own planning problem to solve. The
drawback of pre-planning coordination is that it is either computationally very expen-
sive. Approaches to practical application of pre-planning coordination therefore have to
focus upon the construction of suitable approximation algorithms.

References

1. J.S. Cox and E. H. Durfee. Discovering and exploiting synergy between hierarchical planning
agents. In Second International Joint Conference On Autonomous Agents and Multiagent
Systems (AAMAS ’03), 2003.

2. E. Ephrati and J. S. Rosenschein. Multi-agent planning as the process of merging distributed
sub-plans. In Proceedings of the Twelfth International Workshop on Distributed Artificial
Intelligence (DAI-93), pages 115–129, 1993.

3. V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podor-
ozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang. Evolution of
the GPGP/TAEMS Domain-Independent Coordination Framework. Autonomous Agents and
Multi-Agent Systems, 9(1):87–143, July 2004.

4. F. Von Martial. Coordinating Plans of Autonomous Agents, volume 610 of Lecture Notes on
Artificial Intelligence. Springer Verlag, Berlin, 1992.

5. Y. Shoham and M. Tennenholtz. Emergent conventions in multi-agent systems: Initial exper-
imental results and observations (preliminary report). In Proceedings KR92, pages 225–231,
1992.

6. Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-line design.
Artificial Intelligence, 73(1–2):231–252, 1995.

7. R. G. Smith. The contract net protocol: High-level communication and control in a distributed
problem solver. IEEE Transactions on Computers, C-29(12):1104–1113, 1980.

8. A. W. ter Mors, J. Valk, and C. Witteveen. Complexity of coordinating autonomous planning
agents. Technical Report PDS-2004-002, Delft University of Technology, 2004.

Resource Coordination on MAS Multi-plans
Context�

Weihua Yi1, C.H. Zhang2, Z. Liu3, and Xueguang Chen1

1 Institute of Systems Eng., Huazhong University of Science and Technology, China
2 Dept. of Electrical & Computer Eng., Kumamoto University, Japan

3 Graduate School of Engineering, Nagasaki Institute of Applied Science, Japan

Abstract. Resource allocation is an important type of decision mak-
ing activities. In distributed resource allocation, the privacies need to
be considered, which is not easy for mathematical programming. Until
now, the MAS method has been studied as it appeared to be a practical
method for obtaining a collaborative solution to group decision-making.
This paper proposes MAS multi-plans coordination to study distributed
resource allocation, which considers both privacy and global goal. The
numerical results obtained indicate the method is practical.

1 Introduction

Resource allocation is a crucial type of decision making activities. As Hazel-
rigg [4] pointed out, decision-making is resource assignment which will not be
changed once made. Traditional method like mathematical programming needs
super coordinator to compute centrally with global information, and neglects the
privacy. However, in real world, privacy and dynamics are undeniable charac-
teristics of distributed resource allocation problems. This emphasizes the strong
need for making some breakthrough. This paper proposes a new method of multi-
plans coordination to overcome above problems, which considers both privacy
and global goal. It presents multi plans context and interdependencies amongst
individuals with resource constraint. Then agent reasoning model is given to
assure individual interests improvement and a multi agent negotiation protocol
is presented to abate the differences among individuals.

2 Individual Reasoning Model

The decision variables here are plans. Some notations are given by Table 1.
Agent is to maximize its own interest indicated by preference. In this paper,

the preference is denoted by utility function fα, which is defined as a real number
value of how agent α intends to perform a plan in certain environment. According
to fα, α prefers performing a plan π to another π′:

π ,α π′ ⇔ exec(π, s) ∧ fα(π, s) ≥ fα(π′, s) (1)
� This research is funded by the NSFC(No. 60274065),http://www.nsfc.org.cn/

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 604–607, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Resource Coordination on MAS Multi-plans Context 605

Table 1. Notations of plans and agents

S Set of environment status.
Σ Set of activities.
T Set of time period.
Π Set of plans. π = (Σ × T)∗, π ∈ Π .4

Empty plan πε denotes a plan of no activity.
A Finite set of agents, which denotes participant individuals.

change(π, s) Function denotes the influence of plan π on environment s.
change : Π × S → S.

exec(π, s) Predicate indicates whether change(π, s) is defined.
Apparently exec(πε, s) holds for everywhere, for in any cases,
anyone could do nothing.

capable(α,π) Predicate indicates whether agent α is capable to enact plan π.
goal(α, s) Predicate indicates whether environment status is the goal of α.

Sgoal
α Set of environment status which agent α is intended to achieve.

fα(π, s) Utility function denotes preference of agent α.

fα(π, s) is related with the cost and benefit to perform π in s. In this paper
we assume the benefit is constant, so we only need to consider the cost. Let
costα : Π × S → -, where - is the set of all real numbers, denote the cost to
enact a plan, and distα : S × Sgoal

α → - represent the distance between certain
status and the goal status, then the utility may be the plan cost and the distance
between s′ = change(π, s) and Sgoal

α :

fα(π, s) = −costα(π, s)− distα(change(π, s), sgoal
α) (2)

where distα(change(π, s), sgoal
α) is the estimation of the potential cost to achieve

the goal.

3 Resource Constrained Multi-plans Context

In real world, the environment is not controlled by any single agent. This section
assumes a close world, and then discusses the interaction among multi agents.

The set M of multi-plans comprises all multi-sets over the individual plans
Π [6]. Multi-plans is a combination of multi simultaneous plans:

μ = π1 ◦ π2 ◦ · · ·πn, πi ∈ Π, i = 1, 2, · · · , n (3)

where operator ◦ expresses that its operands are executed together. Different
with joint plans [2], multi-plans do not share goals.

The notions of previous section are extended to multi-plans as Table 2.
A group of agent γ ∈ Γ is capable of executing a multi-plan μ, if there is an

assignment such that every agent is to execute exactly one individual plan and
this agent is capable of doing so, i.e. there is a bijective mapping Ψ from μ (a
multi-set of individual plans) to γ (a set of agents), such that

capable(γ, μ) ≡ ∀π ∈ μ, α = Ψ(π), capable(α, π) (4)

606 W. Yi et al.

Table 2. Notations of multi-plans

M Set of multi-plans.
Γ Power set of A, which denotes multi participants.

change(μ, s) Function denotes the influence of multi-plans μ on environment s.
change : M × S → S.

exec(μ, s) Predicate indicates whether change(μ, s) is defined.
capable(γ,μ) Predicate indicates whether a group of agents γ is capable of enact-

ing multi-plans μ.

In MAS, because of interdependencies between activities of each others,
agents have to consider activities of acquaintances when planning their own
behaviors. The dependency of an agent α performing a plan π on other agents
γ(α /∈ γ) performing multi-plans μ is one of the five as follows [6]:

DEP = {enables, facilitates, indifferents, hinders, disables} (5)

Then the MAS multi-plans context may be expressed as:

MASMP = 〈S,A,M,DEP, goal, exec, change, capable, fα〉 (6)

In this paper, we concentrate on the dependencies mapped from resource
constraint in resource limited contexts. Let depα(depα ∈ DEP) be the set of all
dependencies related with agent α, si be the environment status in the period
τi, ρ(π, τi) be the resource requirement of the activity [σi, τi] in plan π, ρα(τi) be
the private resources of α in the period τi, and ρα(τi) be the resources available
but out of α in the period τi.

From the local view of an agent, α can perform the plan π if and only if

∀i ≥ 0, ρα(τi) + ρα(τi) ≥ ρ(π, τi) ∧ capable(α, π) (7)

and from the global view, γ can perform the multi-plans μ if and only if

∀i ≥ 0,
∑
α∈γ

ρα(τi) + ργ(τi) ≥
∑
π∈μ

ρ(π, τi) ∧ capable(γ, μ) (8)

Apparently, the resource information of agent will change while it performs
a plan. Agent has to gather the information related with the resource required
by its plan and reason based on the gathered information. Agents are presumed
able to perceive only their local information, thus communicating and exchanging
information may be necessary.

For example, there are only two agents α, β ∈ γ, which will perform πα ∈
Πα, πβ ∈ Πβ respectively, and ργ(τi) is the information of environment resources
out of them. ∀i ≥ 0, ρα(τi)+ργ(τi) ≥ ρ(πα, τi), but ∃i, ρα(τi)+ρβ(τi)+ργ(τi) <
ρ(πα, τi)+ ρ(πβ , τi). This is denoted by disable(α, πα, β, πβ) from the view of α,
which means β executing πβ disables α executing πβ .

Resource Coordination on MAS Multi-plans Context 607

4 Resource Coordination in Multi-plans

Resource coordination is intelligent allocation of resources amongst different in-
dividuals and their goals [3]. Usually, the requirement of coordination comes
from the distribution and interdependencies of resources, entities and informa-
tion [5]. In resource coordination, individual plan is to be evaluated and refined,
and it may be needed to acquire available resources from external environment.

In the MAS environment, agents will interact with each others. They affect
each others negatively or positively, i.e. they may conflict or cooperate.

Firstly, if an agent gets no information of outside options, the agent will
prefer the plan it is able to execute only with its private resources in current
environment status. Risk dominance makes agent avoiding conflict.

Secondly, if agents cooperate on utilization of common resources, they would
get more benefit. Even in MAS of self-interested agents, where local interests are
aberrant from global goal, the difference may be abated through MAS negotia-
tion [7] of social choice problems [1].

Lastly, with more information exchange, the private resources may be utilized
to promote all the individual utilities and efficiency of the whole system, for it
increases ρα(τi) for all α ∈ A who participate in the exchange.

5 Conclusion

Group decision-making is related with individual choices and the interdepen-
dencies among them, especially the interdependencies of resources. This paper
proposes a new method combining MAS and Multi-plans. Under the assump-
tions of individual rationality, private information and collaboration, we give the
solution based on negotiation of social choice.

References

1. Christopher P. Chambers. Multi-utilitarianism in two-agent quasilinear social
choice. Technical report, California Institute of Technology, Division of the Hu-
manities and Social Sciences, 2003. Working Papers 1177.

2. Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment.
Artificial Intelligence, 42(2-3):213–261, 1990.

3. Gifty Edwin and Michael T. Cox. Resource coordination in single agent and multi-
agent systems. In ICTAI, pages 18–24, 2001.

4. G.A. Hazelrigg. System Engineering: An Approach to Information-Based Design.
Prentice Hall, New Jersey, 1996.

5. Victor R. Lesser. Reflections on the nature of multi-agent coordination and its im-
plications for an agent architecture. Autonomous Agents and Multi-Agent Systems,
1(1):89–111, 1998.

6. Sascha Ossowski. Co-ordination in artificial agent societies: social structures and its
impli-cations for autonomous problem solving agents. LNAI 1535, 1999.

7. Naoki Yoshihara Yongsheng Xu. A new insight into three bargaining solutions in
con-vex problems. Technical report, Institute of Economic Research, Hitotsubashi
University, 2004. Discussion Paper Series a453.

Using Negotiation Techniques as
Time-Restricted Scheduling Policies on

Intelligent Agents

Patricia Maldonado1,2, Carlos Carrascosa1, and Vicente Botti1

1 Universidad Politécnica de Valencia, Camino de Vera s/n, Valencia España
{pmaldonad, carrasco, vbotti}@dsic.upv.es

2 Universidad de Magallanes, Av. Bulnes 01855, Punta Arenas Chile

Abstract. Tasks scheduling policies for real-time systems are generally
not very flexible due to the time restrictions they have to fulfill. Nowa-
days, research lines to apply artificial intelligence techniques to real-time
systems are becoming more relevant, because they can be used to soften
tasks scheduling. In this work, we present a proposal in this line. That
is, to apply negotiation techniques to optimize real-time systems deci-
sions by increasing and improving the available information to schedule
the tasks of an intelligent agent working in a real-time environment. To
implement our proposal, we have used an agent working in a hard real-
time environment such as ART IS (A Real-Time Intelligence System).
Finally, we show some results obtained of including such methods in an
ART IS agent.

1 Introduction

Real-Time Systems are trying to integrate artificial intelligence techniques into
their scheduling methods as a way to soften their reasonings about a determined
situation [1]. This kind of systems can be found in the literature as Real-Time
Artificial Intelligent System, and their purpose is to develop intelligence in real-
time. An example of this kind of systems is the ART IS architecture [2,3].

In this paper we propose to include artificial techniques in the tasks schedul-
ing of flexible real-time systems. Specifically, we use negotiation techniques to
schedule a set of non-critical real-time tasks in the ART IS architecture. We also
present how these techniques have been implemented and the obtained results
both in simulation and real execution tests.

2 ART IS Agent Architecture

ART IS agent (AA) is an extension of the Blackboard model adapted to work
in Flexible Hard Real-Time environments [2]. An AA consists of a set of in-
agents [3], all of them cooperate to solve the agent problem. To do this, each
in-agent is translated into a low-level task can have three parts [2]: initial part,
it must always be executed and obtains a first low-quality reflex answer to the

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 608–611, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using Negotiation Techniques as Time-Restricted Scheduling Policies 609

problem of the AA; optional part, these optional components increase the quality
of the answer calculated in the initial part; and final part, this part executes
the answer which was generated in the previous parts of the in-agent. And,
a control module which is responsible of the execution of the AA’s in-agents.
The Deliberative Server (DS) [3] is the specific module in charge of the agent’s
optional parts scheduling. The Second-Level Scheduling (SLS) of the (DS) is in
charge of distributing the available slack time among the optional components
of the in-agent. This improves the global quality of the agent’s answer.

Previous to the work here presented, the scheduling policies used by the SLS
(EDF, HSF, BIF)[4] are very strict. To be precise, this paper proposes to divide
the responsibility of scheduling between all the entities directly involved in this
process by improving the available information for these negotiations. So we
propose to use negotiation methods as optional tasks scheduling policies.

As it has been explained above, the purpose of in-agents optional parts is to
improve the ART IS agent problem answers. This work pretends that the in-
agents will become active part of their selection for execution taking into account
their believes and desires (compatibles with the ones of the ART IS agent they
belong to).

3 ART IS Agent Negotiations

Following the ”Real-Time Artificial Intelligence Systems” idea, we are going to
include the negotiation methods inAA architecture to increase its AI techniques.
The purpose of this extension is to improve the usage of available processor time
to execute optional parts [5]. These negotiation methods going to implement
into the DS of AA architecture.

However, this process of awarding will have to be fast and advantageous for
both parts. Considering all the exposed so far, the best option to this domain is
to use auctions as negotiation techniques. Since the aim of auctions is to award
the product to who gives the best offer based on the pre-determined conditions.
Moreover, in this case, the time restrictions must be considered according to the
AA characteristics.

We analyzed three kinds of auctions [5]: the English Auction (EA), the First
Sealed-bid Auction (FSA) and the Dutch Auction (DA).

The auctions begin when the SLS sends a “Call For Proposal” (CFP) to
the active in-agents in the system. When the active in-agents1 receive this CFP,
they evaluate it and decide if they participate or not in the auctions2. These
in-agents’ evaluations will be according to their believes. And, if the in-agents
decide to participate in the auctions, they will send a final offer considering
their limitations to generate the answer to AA’s problem. In Dutch Auction,
1 An active in-agent is such that its corresponding low-level task has executed com-

pletely its initial part, but its final part has not been executed. According to this, it
can execute its optional parts to improve the answer to its problem.

2 Also, if they don’t understand the CFP of SLS, then they will have to wait till the
next SLS’ CFP .

610 P. Maldonado C. Carrascosa, and V. Botti

the SLS makes an offer to the participating in-agents for available slack. The
participant in-agents evaluate the offer sent by the SLS. If there are no in-agents
interested in offering the required quality by the SLS, it decreases the quality
(until minimum quality established by SLS). All auctions methods will repeat
their process while there is negotiation time left.

In our previous work [5], we have shown these specifications and obtained
some results. We will compare these results with real test results. For this tests,
we implemented the same scenarios used in simulation tests directly in AA
architecture.

Each test execution lasts until their tasks hyper-period3. For both kind of tests
realized (simulated and real tests), we generate battery tests with the following
common specifications: three, six, nine or twelve in-agents per AA; tasks time
restrictions obtained using probability functions proposed in [8]; and we have
used two different situations regarding the in-agents time-features values: the
one with deadlines4 equal to periods5 and the one which deadlines are minor
than periods.

In order to compare the results obtained in the simulation tests with the
results obtained in the real tests, we will use the final quality that was obtained
in the answer to the problem of the AA which is called Real Relative Quality
(RRQ that is detailed in [4])6

4 Conclusions and Future Works

As we can see at figure 1(a), when deadlines are equal to periods, the obtained
RRQ for our auctions are equal to or better than the other ART IS’s policies.
This behaviour is repeated when the deadlines are minor than periods (see figure
1(b)). However, in both cases, the DA’s RRQ obtained in all tests are better than
other policies’ RRQ.

On the other hand, figures 1(a) and (b), we can see that the obtained results
in both cases are very similar. Nevertheless, when deadlines are equal to periods
the percentage of executed in-agent’s levels is major than when deadlines are
minor than periods. On the other hand, when deadlines are equal to periods the
percentage of executed in-agents’s levels is 5% over than in the other case. Again,
the DA method obtains better results than the other methods and policies of
the SLS, with EA method in second place along with HSF policy.

Obtained experimental results prove not only the viability of the application
of our methods, but that these results are similar or better the ones with current
AA’s policies.

3 “The tasks will be released together again at the least common multiple of the periods
of the tasks.”[7]

4 It indicates the maximum limit execution time so that the task gives an answer
5 It is the frequency of the task’s activation during the execution of the system.
6 It is represented as the quotient between the Obtained Real Quality (ORQ) that is

obtained by the in-agents of the AA and the Ideal Quality (IQ) that is offered by
the same, RRQ = ORQ

IQ
.

Using Negotiation Techniques as Time-Restricted Scheduling Policies 611

Percentage of executed in-agent's levels

0,49

0,54

0,59

0,64

0,69

0,74

0,79

0,84

0,89

BIF DA EA EDF FSA HSF

Heuristics

%
L

ev
el

s

Real Relative Quality (RRQ)

0,66

0,68

0,7

0,72

0,74

0,76

0,78

0,8

0,82

BIF DA EA EDF FSA HSF

Heuristic

%
R

R
Q

Deadlines equal to periods

Deadlines are minor than periods

Simulation Tests

Real Tests

(a) (b)

Fig. 1. Results of tests

Finally, based on the obtained results, the future tasks will be:

– To use the obtained simulation results to identify the most suitable situations
(environment and internal state) for each scheduling policies, so that the AA
can be programmed to adapt to this situation changing its current policy to
the most suitable one [3].

– To orientate the auctions toward more deliberative methods that involve the
planning of all the available slack in the whole application.

– To generalize these methods so that they can be applied to resource man-
agement in distributed systems.

References

1. Musliner, D.J., Hendler, J., Agrawala, A., Durfee, E., Strosnider, J., Paul, C.: The
challenges of real-time ai. IEEE Computer 28 (1995)

2. Terrasa, A., Garćıa-Fornes, A., Botti, V.: Flexible real-time linux. Real-Time Sys-
tems Journal (2002) 149–170

3. Carrascosa, C., Fabregat, J., Terrasa, A., Botti, V.: Real-time agents: Reaction vs.
deliberation. In: Second European Workshop on Multi-Agent Systems, EUMAS04,
Barcelona – Espaa (2004)

4. Hernández, L., Botti, V., Garćıa-Fornes, A., Gonzalez, M.: A quality-based heuristic
for real-time scheduling. Artificial Intelligence Research and Development.Frontiers
in Artificial Intelligence Research and Development. 100 (2003) 462–473

5. Maldonado, P., Carrascosa, C., Botti, V.: Negotiation in real-time multi-agent sys-
tems. In: IADIS International Conference – Applied Computing 2005. Volume II.,
Algarve, Portugal (2005) 247–254 isbn: 972-99353-6-X.

6. FIPASpec: Fipa specifications. Foundation for Intelligence Phisycal Agents, 2000.
http://www.fipa.org/specifications/index.html (FIPA)

7. Bernat, G., Burns, A., Llamośı, A.: Weakly hard real-time systems. IEEE Transac-
tion on Computers 50 (2001) 308–321

8. Campos, A.M., Garćıa, D.: A real-time expert system architecture based on a novel
dynamic task scheduling technique. In: IEEE Int. Conference on Industrial Elec-
tronics, Control and Instrumentation, IECON02. (2002) 1893–1898

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 612 – 615, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Performance Comparison of Multi-agent Systems

Tomasz Babczy ski, Zofia Kruczkiewicz, and Jan Magott

Abstract. Performance comparison of two information retrieval multiagent sys-
tems is carried over by simulation. The first system contains stationary agents
only, while the second one contains one mobile agent. Performance models of
these multiagent systems are expressed by performance statecharts. The per-
formance statecharts are such a modification of UML statecharts that contain
probability distributions for activity duration times and for transmission times,
and probability distributions in order to solve non-determinism.

1 Introduction

In literature, performance evaluation of the following multi-agent systems (MASs):
ZEUS [2], JADE [2], Skeleton Agent [2], Aglets IBM [3], Concordia [3], Voyager [3]
is presented. When new MAS with performance requirements is designed then, ac-
cording to software performance engineering [5], performance requirements have to
be considered at each phase of life cycle. Performance analysis before implementation
can be based on: performance models of agents and inter-agent communication.

Many MAS design methods are based on UML or its modifications [4]. Perform-
ance models are usually dynamics driven models. In the UML, the dynamics of com-
ponents and inter-components communication can be expressed by statecharts. Per-
formance statecharts have been presented in [1], and applied to performance analysis
of multiagent industrial system.
 In the paper, performance comparison of two multiagent systems using perform-
ance statechart simulator is carried over. In the first system, all agents are static, while
the second system contains one mobile agent. The aggregated metric that takes into
account the following metrics: probability and mean time of receiving of the good
response, mean number of bytes transmitted through the communication network per
second is used in comparison.

The paper is organized as follows. In Section 2, the compared MASs are presented.
Then performance parameters and metrics of them are given. In Section 4, both sys-
tems are compared by simulation experiments. Finally, there are conclusions.

2 Compared Multi-agent Systems

The MAS with Static Agents
Manager agent sends the same queries Q of the size |Q| (in bytes) to n Searcher
Agents that are in n sites SBi (Data bases), see Fig. 1. The Searcher Agents confirm
the possibility of performing the searching task by sending the messages confirm C of
the size |C| to the Manager Agent. The Searcher Agent searches an information in the
Data base, and sends a response R of the size |R| to the Manager agent. The Manager

 Performance Comparison of Multi-agent Systems 613

agent is an intelligent agent, which is based on a decision tree. For each decision tree
node, the response R is accepted with acceptance probability acc_p. The Manager
agent, after receiving the responses from the Searching agents, can send next queries
to all these agents or can stop the searching process provided a response has been
accepted. Hence, during one searching process, the Manager agent can send a se-
quence of queries to the Searching Agents and receive a sequence of sets of responses.
This sequence of queries is associated with a path in the decision tree. At each node of
the tree the Manager agent waits for responses until the termination time _tm is
elapsed. The time elapsing event is treated as negative response.

The MAS with one mobile agent
The Manager Agent (Fig. 2) sends the code CA of the Mobile Agent of the size

|CA| to site SB1. The Mobile Agent migrates through maximally n sites SBi. The Mo-
bile Agent is based on similar decision tree and acceptance process as the Manager
agent of the first system. At each site SBi, the Mobile Agent sends the sequence of
queries, according to a path in its decision tree, to the Data base of this site and waits
for the response. Next, the Mobile Agent migrates to the next site. When the required
response R is found then the Mobile Agent completes the searching process, having
the size |CA|+|R|, and returns to the site SA.

SB1

Searcher
Agent_1

SB2
Searcher
Agent_2

SBn
Searcher
Agent_n

SA

Manager
Agent

Q

Q

Q

C, R

C, R

C, R
....

 SB1
(Mobile Agent)

SB2
(Mobile Agent)

SBm
(Mobile Agent)

CA

CA

CA+R
....

SA

Manager
Agent

Fig. 1. System with static agents Fig. 2. System with mobile agent

3 Performance Parameters and Metrics

The following performance parameters are used in simulation experiments.

In the MAS with static agents, the size of the messages |Q|=|C|=512 bytes.
In both systems, the size of the response is |R|=512+RE(range(1,128))·256

bytes, where 512 bytes is the size of constant part of the response, RE(X) is a reali-
sation of random variable X being the number of records, range(1,128) is uniform
random variable over the interval [1,127] of natural numbers, 256 bytes is the size
of record.

Time of preparation of this response is a realisation of the uniform random vari-
able over the interval (60μs,90μs).

In both systems, maximal length of path in the decision tree is equal to 4.

614 T. Babczy ski, Z. Kruczkiewicz, and J. Magott

In the system with mobile agent, the size of the Mobile agent is |CA|=2048 for
small one while |CA|=8192 for the large one.

The message transmission time is assumed to be linearly dependent of the size of
the message. The (empirical) equation is taken as the result of measurements of the
system having the following features: communication between two PC nodes with
agent JADE 3.2 platform, there are 3 switches between the nodes. In simulation ex-
periments, for given message size S, it is supposed that the message transmission time
is expressed by such a random variable Z that: Z=min+V, where: min is the minimal
transmission time of the message of the size S, V is exponential random variable with
the mean E(V).

The following performance metrics are considered.

• bs_p_s– mean number of bytes transmitted through communication network
per second (mean network load),

• p_g=sg/st – probability of receiving of the good response, where sg is the
number of good responses received by the Manager Agent and st is the num-
ber of the searching processes initiated by the agent,

• mtg - the mean time of receiving of the good response. The metric is calcu-
lated as a mean value of all response times for cases when the Manager
Agent received the first good response.

We would like to have the maximal value of the p_g, and minimal values of the
mtg and the b_p_s. Therefore, the following aggregated quality metric is defined:

Q=
b_p_smtg

p_g

⋅

4 Simulation Results

In simulation experiments, Manager Agent, Searcher Agents, Databases, Mobile
Agent have been expressed by performance statecharts [1].

In the system with Mobile Agent, each response R from Database is accepted by
the Mobile Agent with acceptance probability acc_p equal to 0.05, 0.1 or 0.2. In the
system with static agents, each response from the Searcher Agent is accepted by the
Manager Agent with the same acceptance probabilities. The comparison of MAS with
small Mobile Agent (|CA|=2048 bytes) and MAS with static agents is shown at Fig. 3.
The comparison of MAS with large Mobile Agent (|CA|=8192 bytes) and MAS with
static agents is shown at Fig. 4. Each experiment was carried out for 1 to 15 Data-
bases (and Searcher Agents in static model) – given at the X axe. All charts are also
parameterised with the acceptance probability.

On the Fig. 3, the value of the aggregated quality metric Q is significantly greater
for the system with the small Mobile Agent than for the MAS with static agents. The
values of the calculated metric were very small for chosen units thus they have been
multiplied by 109 before charting on Fig. 3 and 4. The Fig. 4 contains the metric Q for
systems with the large Mobile Agent and static agents, respectively. Now, with respect
to the metric Q, the system with static agents is better.

 Performance Comparison of Multi-agent Systems 615

0

20

40

1 3 5 7 9 11 13 15

Q

0,05 0,1 0,2
0,05 0,1 0,2

0
5

10
15

1 3 5 7 9 11 13 15

Q

0,05 0,1 0,2
0,05 0,1 0,2

Fig. 3. The quality metrics Q for system with
small mobile agent (continuous lines) vs.
system with static agents (dashed lines)

Fig. 4. The quality metrics Q for system with
large mobile agent (continuous lines) vs.
system with static agents (dashed lines)

5 Conclusions

Performance comparison of the multiagent system which contains stationary agents
with the multiagent system that contains one mobile agent has been carried over by
simulation. The comparison has been executed with respect to the aggregated metric
which takes into account the following metrics: probability and mean time of receiv-
ing of the good response, mean number of bytes transmitted through the communica-
tion network per second. The systems have been compared for two variants of Mobile
Agent, i.e., small and large. We can draw the conclusion that the system with Mobile
Agent is better than that with static agents, when the Mobile Agent is small. When the
Mobile Agent becomes large, it is better to organize the system with static agents.

References

1. T.Babczy ski, Z.Kruczkiewicz, J.Magott, Performance analysis of multiagent industrial
system, in: Proc. 8th Int. Workshop Cooperative Information Agents - CIA, Erfurth, 2004,
Lecture Notes in Computer Science / Lecture Notes in Artificial Intelligence, Springer-
Verlag, Vol. 3191, 242-256

2. D.Camacho, R.Aler, C.Castro, J. M. Molina, Performance evaluation of ZEUS, JADE, and
SkeletonAgent frameworks, in: Proc.IEEE Syst., Man, and Cybernetics Conference, 2002

3. M.Dikaiakos, M.Kyriakou, G.Samaras, Performance evaluation of mobile-agent middle-
ware: A hierachical approach, In Proceedings of the 5th IEEE International Conference on
Mobile Agents, J.P. Picco (ed.), Lecture Notes in Computer Science series, vol. 2240, pages
244-259, Springer, December 2001

4. James J.Odell, H.Van Dyke Parunak, Benhard Bauer, Representing Agent Interaction Pro-
tocols in UML, Agent-Oriented Soft. Engineering, Springer-Verlag, Berlin, pp.121-
140,2001

5. C.U.Smith, Performance Engineering of Software Systems, Addison - Wesley, 1990.

A Complexity Based Feature to Support
Emergence in MAS

Joris Deguet and Yves Demazeau

Laboratoire Leibniz, 46 avenue Félix Viallet Grenoble, France
{Joris.Deguet, Yves.Demazeau}@imag.fr

Abstract. Emergence is a widespread notion in complex systems, artificial life
and multi-agent systems. In this paper, we try to clarify a specific emergence
feature suggested by John Holland [1] : the “much from little” paradigm . Con-
sidering complexity measures, we exhibit some key issues for a precise definition
of this feature. Seen from the VOWELS multi-agent perspective [2], our proposal
might provide an indirect quantification of dynamic collective activity.

1 Introduction

Emergence is a widespread notion in complex systems, artificial life and multi-agent
systems. It is often associated with the notion of complexity and suffers from the same
profusion of definitions. In this paper, we try to clarify a specific “emergence feature”
we can summarize as the “much from little” paradigm suggested by John Holland.

By explicitly considering complexity measures, we exhibit some key issues for a
precise definition of this feature depending on both the complexity chosen and the dis-
tinction used to assert “much” and “little”. This study tries to go deeper than the state
of the art in the complexity issues provoked by some emergence definition.

Along the way from intuition to definition, we try to point out the choices we make,
hoping this will allow fruitful discussion about alternate views on emergence.

First, we interpret the “much from little” idea as a gap of complexity. We show
results of complexity on associated computational tasks. We compare our proposal to
the one of Ronald and al. [3] showing a similar inspiration and a third one by Darley [4]
using similar means.

2 An Emergence Feature

2.1 From Holland’s Insight to a Complexity Gap

“The hallmark of emergence is this sense of much coming from little” [1]
Our first choice is to consider ourselves as designers who would like “little” to be

the system S and “much” to be the phenomenon φ produced by S. We precise our
framework by assuming that S is a system that outputs a tape of blank separated words
over Σ, an alphabet of symbols. Then φ is a property of this tape.

Our second choice is to link the idea of “much” and “little” to the quantitative
notion of complexity. “little” is a simple system and “much” is a complex phenomenon.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 616–619, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Complexity Based Feature to Support Emergence in MAS 617

If we note C an abstract complexity measure, it corresponds to a positive value of our
emergence feature, eFeat:

eFeat = C(φ) − C(S) ≥ 0

3 Complexity Measures

As we cannot apply the same complexity measurement on a machine S and a phe-
nomenon φ, we associate a computational task to each of them. We define a phe-
nomenon φ by a subset Lφ of the possible configurations so the associated compu-
tational task is deciding whether or not a configuration w ∈ (Σ ∪ ")∗ belongs to the
Lφ language. We associate the task “producing φ” to the system as it was our initial
requirement.

Complexity measures such as algorithmic information and time complexity are usu-
ally defined within a model of machines, namely Turing machines. However, the defi-
nition over all Turing machines that achieve a given task might not be restrictive if the
reader believes in the Church-Turing thesis that any machine of another kind might be
efficiently and accurately simulated by a Turing machine.

Algorithmic information. Leibniz wrote that “God has chosen that which is the most
simple in hypotheses and the most rich in phenomena”(translated from [5]). This fits in
the “much from little” direction as well as the intuition of algorithmic complexity. Al-
gorithmic information [6] of a finite string s (over the alphabet (Σ ∪")) for a universal
Turing machine U is defined as HU (s), with :

HU (s) = min{l(x)|U(x) = s}

Usually x is a pair < p, i > of two strings over (Σ ∪ "), program(p) and input(i). l(x)
is the length of the string x.

We define the complexity of the production task S as HU (S), with :

HU (S) = min{l(x)|U(x) ∈ Lφ}

and the complexity of the detection task φ as HU (φ), with :

HU (φ) = min{l(p)|∀i ∈ (Σ ∪ ")∗, U(< p, i >) =
{

1 if i ∈ Lφ

0 else
}

For convenience, we define the javamachine that is an interpreter of the JavaTM lan-
guage, made Turing universal by the access to an infinite memory. Defined that way, we
can exhibit a bound c thanks to a reduction between the two tasks :

∃c ∈ N, such that ∀φ,Hjava(φ) −Hjava(S) ≥ −c

Proof. Let e be a java method that associate to an integer n its representation in basis
Card(Σ ∪ ") using (Σ ∪ ") as digits (Euclid’s algorithm).

Let p be a java method such that ∀s ∈ (Σ ∪ ")∗, java(< p, i >) =
{

1 if i ∈ Lφ

0 else
.

We define p′, a java method (without input) as:

618 J. Deguet and Y. Demazeau

public String p’()
{int k = 0;
while (java(<p,java(<e,k>)>) == 0) {k = k + 1;}
return java(<e,k>);}

This method will return the first string of Lφ. This holds for any p and in particular for
the shortest one pmin of lengthHjava(φ). This reduction provides a specific solution for
the production task with length Hjava(φ) + c where c is the length of additional code.
Then Hjava(S) ≤ Hjava(φ) + c (as a minimum) and−c ≤ Hjava(φ)−Hjava(S). �

We now require the “production of φ” to be the enumeration of all of its elements :

H ′
U (S) = min{l(p)|U(< p, i >) = Lφ(i)}

where Lφ(i) is the ith element of Lφ sorted by represented integers. This time, instead
of halting on the first k that gives a word of Lφ, we stop on the ith:

public String p’(int i)
{int k = 0; int j = 0;
while (j < i)

{k = k + 1;
if (java(<p,java(<e,k>)>) == 1) {j = j + 1;} }

return java(<e,k>);}

Thus this alternate production task is reduced to the detection one. Here, we have been
demanding enough to allow the reciprocal reduction : given a production method p, we
have the following method for the detection task.

public String p’(String i)
{int k = 1;

while (l(java(<p,k>) <= l(i)){
if (java(<p,k>) == i) {return 1;}
k = k + 1;}

return 0;}

Whatever is φ we have two integer constants p and q such that −p ≤ Hjava(φ) −
H ′

java(S) ≤ q.
The two production tasks we define are extreme and allow different reductions. The

main interest of these complexity results is to reveal a need to precise the meaning of
producing a phenomenon for a multi-agent system.

Time Complexity. Reductions in time complexity must meet time constraints that are
likely to depend on Lφ. Then, additionally to refinements on the meaning of produc-
tion, further classification of phenomena might be necessary to assert reductions and
complexity features, which are beyond the present work.

4 Situation

Ronald’s emergence test [3] applies on systems where (1) a designer describes local
interactions in a language L1, (2) the global behavior is described using a language L2

A Complexity Based Feature to Support Emergence in MAS 619

and (3) the link between L1 and L2 is non-obvious which makes the observer surprised.
In our approach, the same distinction is made between the system and its behaviour,
however we tried to give a further formalization of surprise as a complexity gap. Fur-
thermore, the dependance on how we define our two tasks might extend to how L1 and
L2 are defined.

Darley [4] asserts that “a true emergent phenomenon is one for which the opti-
mal means of prediction is simulation”. The other possibility is “a creative analysis”
and a “deeper understanding” that allows this prediction with less computation. The
phenomenon is emergent when u(n) ≥ s(n) where u(n) and s(n) are the amounts
of computation of understanding or simulation (n is the size of the system). He com-
pares two ways to accomplish the same task : deriving the macro-phenomenon from
the micro-dynamics. This is disturbing from a computational complexity point of view
as we might expect one computational task to have a single complexity. We think our
distinction between a production task and a detection task is easier to import in tradi-
tional complexity theories. Out of the simulation domain, it seems more meaningful to
distinguish what is designed and what is observed than two refinements of a prediction
task.

Finally, VOWELS [2] is the perspective of Agents situated in their Environment con-
stituting a system that produces a phenomenon through Interaction and Organisation.
This suggests the pseudo equation eFeat = C(φ) − C(A,E) = C(I,O) and a link
between our proposal and collective complexity.

5 Conclusion

We have tried to make a system and a phenomenon comparable through associated com-
putational tasks. Therefore, the possibility of “much from little”, possible reductions
and complexity results depend on how we model production and detection as computa-
tions. Finally, within our VOWELS interpretation, it provides an alternate inspiration to
direct collectivity measures.

References

1. Holland, J.: Emergence: From Chaos to Order. Perseus Books (1997)
2. Demazeau, Y.: Steps towards multi-agent oriented programming. In: 1st International Work-

shop on Multi Agent Systems. (1997)
3. Ronald, E., Sipper, M., Capcarrère, M.: Design, observation, surprise! a test of emergence.

In: Artificial Life 5. (1999) 225–239
4. Darley, V.: Emergent phenomena and complexity. In Brooks, R., Maes, P., eds.: Artificial Life

4. (1994) 411–416
5. Leibniz, G.: Discours de métaphysique. Vrin (1686)
6. Chaitin, G.: A theory of program size formally identical to information theory. Journal of the

ACM (1975)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 620 – 623, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adaptive Document Analysis with Planning

Csaba Dezsényi, Tadeusz P. Dobrowiecki, and Tamás Mészáros

Budapest University of Technology and Economics,
Department of Measurement and Information Systems, Budapest, Hungary
{dezsenyi, dobrowiecki, meszaros}@mit.bme.hu

Abstract. Autonomous web information systems frequently have to answer
queries by extracting information written in non-constrained natural language.
This task is modeled as a planning problem. Elementary document processing
modules are organized into query dependent information-processing graphs that
are the tools of scheduling and controlling the execution and provide semantic
fusion of heterogeneous information chunks.

1 Introduction

Planning proved fruitful in various information-gathering tasks on the Web. Auto-
matic Web service composition works e.g. with wrapped services as operators and
preconditions and effects built from relational data provided by the wrappers [1]. In
this paper authors propose a different route on which planning could help in autono-
mous information extraction.

In a number of applications, queries are directed toward information hidden in lar-
ger natural language (NL) chunks in the surface Web sources or even in the deep Web
(e.g. abstracts, news, papers). Such tasks pop up when one checks the background on
trade partners or bank clients, attempts to classify and mine political and economical
news or medical texts, or follows the company press image, scientific topics, etc. [2].
Albeit both information extraction problems are similar in the abstract setting, they
are essentially different in details and call for different solutions:

(1) We allow for queries, for which the real answers lay not in the structured Web
sources, but in sentences, paragraphs, documents, even whole electronic document
collections referred by such sources.

(2) The search is practical at most at the keyword level, as service wrappers refer
only to the documents containing the requested information somewhere within. A
meaningful wrapper induction is generally not possible.

(3) The NL processing can range from simple recognizing regular expressions, to
knowledge intensive procedures seeking "deep" information, hidden behind the facts.

Consequently, when the search is done and the hits collected, the task only begins.
Our approach is based upon the library of elementary document processing modules
(Document Analyzers – DAs) organized adaptively from query to query into an in-
formation-processing graph. Documents are treated uniformly as inputs and outputs to

 Adaptive Document Analysis with Planning 621

the processing modules. To this end “document views”, essentially NL documents
equipped with incrementally augmentable XML structure have been developed [3].
DAs annotate views according to their specific processing task (e.g. tokenization,
stemming, sentence parsing) and also produce views as results. A complex framework
system of handling these document views and processing has been developed [3]. The
planning problem that our solution has to solve differs greatly from the automatic
Web service composition due to:

(4) Document Analyzers vary greatly in abstraction (e.g. picking up regular ex-
pressions vs. checking the consistency of the client image in the whole news collec-
tion). Yet it is usually impossible to decompose a more abstract DA into a hierarchical
sub-plan composed from DAs of smaller granularity.

(5) The majority of the plan operators (DAs) is application dependent and will be
supplied by the end user, even as a part of system maintenance. Working with the
Hungarian language means additional hardship. The sentence structure is variable, a
formal grammar is missing, and parsing schemes are only partially developed.

(6) Multiple DAs can provide similar results, using different ideas, language and
application knowledge. The identification of proper nouns e.g. can be achieved as a
byproduct of the morphological analysis, or by a semantically oriented analysis.

These issues justify the idea of introduction into the plan more processing compo-
nents of the same kind (worst-case planning), then giving up the execution of some of
them during plan execution phase. Conversly, if more such components are executed,
fusion of their effects may be required to yield a single precondition to go on with the
plan. The focus further in the paper is on the planning problem.

2 Planning with Fusion Control

For planning the document processing standard STRIPS-based partially ordered plan-
ning was adopted. DAs that produce specific types of document views by analyzing
and processing existing ones, are operators. Preconditions are made up from condi-
tions on the required input views, while effects describe the resulting views. The ini-
tial state is a document with an initial XML structure, and the goal state is achieved
when all of the views required for the information extraction are available.

The adaptation of the planner seems plausible; handling conflicts is however diffi-
cult, and namely when more than one DA is producing the required document view.
Standard planner would handle this as a nondeterministic selection, since the effects
coincide. Such DAs can yet produce views with significantly different quality of the
content. Formal description of subtle differences may be impossible or impractical,
thus it cannot be handled solely in the planning time. In our approach special opera-
tors are introduced to the planner, to control better the execution of the plan (Fig. 1a).

When conflict occurs, the planner first limits the number of conflicting DAs by
evaluating available metadata (preselection). Decision about the remaining set can
only be made during execution. The proposed solution is similar to the conditional
planning [4].

622 C. Dezsényi, T.P. Dobrowiecki, and T. Mészáros

Fig. 1. (a) Main elements of the algorithm. (b) Strategy definition for the conflicting modules

 The planner inserts all conflicting DAs into the plan, marking them with condi-
tional branch flags, and linking their outputs to a fusion module. If the flag of a DA is
true, it will be executed, when its preconditions are fulfilled. Flags are controlled by
arbiters, instantiated by the planner for each conflicting set. An arbiter controls the
conflicting modules by re-setting the corresponding flags. After some branches are
executed and the results evaluated, arbiters can modify flags to rerun the modules in
different configuration if necessary. Fusion modules merge the incoming views into a
single view. Merging is based on the comparison of those XML elements that refer-
ence the same source information. Particular control strategy built-in into an arbiter
and fusion module is associated with the particular set of the DAs (defined as a kind
of macro operator, Fig 1b.). Typical choice can be the priority-based selection of the
branches, or executing all branches together, merging the results (see below).

2.1 Example Scenario – Relevant Fact Extraction

Description of DAs and views for the example and the final plan can be seen in the
Fig. 2. Fusion modules are rounded squares, and branch conditions are indicated be-
low the DAs. There are three conflicting DA sets, each one connected to its fusion
module (FA, FN, FF). Each conditional branch is marked with proper flags (e.g. A(w)
and A(ce) at the conflict of W and CE due to the common effect A). If a conditional
branch has a preceding DA, the flag has to be propagated backward. See e.g. the CO
module, which receives F(fp) flag from FP and will be executed if the AF arbiter de-
cides to set the F(fp) flag on. If a module forks out into more branches (see e.g. ST, or
PO), it receives the disjunction of the corresponding branch flags. A module should
run if at least one of the branches is selected. If however it receives flags of all of the
following branches, the flags are redundant and can be deleted (indicated with crosses
in the Fig 2.).

Arbiter mechanisms are different in all three cases. The A branches typically
should run with a priority mechanism: if an HTML page has an associated wrapper
definition, then W should run, otherwise CE tries to extract the textual content with a
heuristic algorithm. Thus, arbiter AA first tries to execute W by setting A(w) true and
A(ce) false. If W doesn’t yield result, A(ce) will be set true, which enables the execu-
tion of CE. Arbiter AN will execute each branch together, and FN will merge the re-
sults, because that way the final document view will contain the most of the recog-
nized named-entities. Arbiter AF can also execute each branch in parallel.

 Adaptive Document Analysis with Planning 623

Fig. 2. Description of the DAs and views for the example and the planned document processing
schema for a particular task, defined by S and G operators

3 Conclusions and Further Work

The proposed approach shows two advantages. It fits into the standard planners. Its
complex conditional branches can be handled effectively, due to the proper spreading
of the flags, indicating the required execution paths. The method precisely separates
the algorithmic steps of the decision-making and the result fusion. Currently the pro-
totype version is being implemented, with a number of document processing modules,
oriented toward short electronic news in Hungarian, although the architecture and the
operation of the framework are language and context independent.

References

1. Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information Gathering During Planning
for Web Service Composition. Lect. Notes in Comp. Sc., Vol. 3298, pp. 335–349, (2004)

2. Xu, F., Krieger, H.: Integrating Shallow and Deep NLP for Information Extraction. In Pro-
ceedings of RANLP 2003, Borovets, Bulgaria, September, (2003)

3. Dezsényi, Cs., Mészáros, T. Dobrowiecki, T.: Parser Framework for Information Extrac-
tion. Proc. of the EUROFUSE Workshop on Data and Knowledge Engineering, pp. 177-
184, Sept 22-25, Warsaw, Poland (2004)

4. Russell, S., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice Hall Inc.
(1997)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 624 – 627, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Self-configuring Agent-Based
Document Indexing System

L. Peng, R. Collier, A. Mur, D. Lillis, F. Toolan, and J. Dunnion

Department of Computer Science,
University College Dublin (UCD), Belfield, Dublin 4, Ireland

{peng.liu, rem.collier, mur.angel, david.lillis, fergus.toolan,
john.dunnion}@ucd.ie

Abstract. This paper describes an extensible and scalable approach to indexing
documents that is utilized within the Highly Organised Team of Agents for
Information Retrieval (HOTAIR) architecture.

1 Introduction

This paper describes the HOTAIR Search Engine architecture, an extensible and
scalable architecture for the discovery, retrieval and indexing of documents from
multiple heterogonous information sources. Within the HOTAIR architecture,
extensibility is engendered through the design of an architecture that provides support
for: (1) the plugging in of multiple retrieval strategies such as the Vector Space Model
[5] and the Extended Boolean Model [6]; (2) the ability to rapidly and seamlessly
integrate diverse sources of information. This requires the use of an open
infrastructure that is able to dynamically adapt its configuration.

2 The HOTAIR Indexing System

The HOTAIR Document Indexing System has been implemented using Agent
Factory [2], a cohesive framework that delivers structured support for the
development and deployment of multi-agent systems, which are comprised of agents
that are autonomous, situated, social, intentional, rational, and mobile [1].

A diagrammatical overview of the agents that make up the system architecture is
presented in figure 1. The actual number of agents that exist at any time varies
depending upon the demand on and the resources available to the system. In addition,
these agents are deployed over a number of different agent platforms that reside on
different physical machines.

The creation of agents is a service that is provided by the Platform Manager (PM)
system agent. Each agent platform contains a PM, which is responsible for handling
requests to create more agents. Upon receipt of a request, a PM negotiates with its
counterparts to decide which on machine(s) the requested agent(s) should be created.
If there are insufficient resources to create all of the requested agent(s), then the PM
agents can either refuse or partially fulfil the request.

 A Self-configuring Agent-Based Document Indexing System 625

Fig. 1. The HOTAIR Document Indexing System

3 Experiments: Impact of Document Agents on Indexing Speed

The hypothesis for our experiment is that a specific number of Document Agents
(DA) is anticipated for optimal indexing speed. The approach taken in the evaluation
of this hypothesis was to configure the HOTAIR architecture to index four document
collections with different features. (Figure 2)

To perform the experiment, a simplified version of the HOTAIR architecture was
constructed, which consisted of: one Data Gatherer (DG), which is charged with the
task of analyzing information sources; one Indexer, responsible for indexing
documents and one Broker, which is responsible for monitoring the status of the DGs.
The Broker can ask the local AMS (Agent Management Service) agent to create DAs.
When significant disparities exist, the Broker re-assigns some existing DAs to
different DGs. A fixed number of DAs encapsulate the workflow of the system, that
is, they know how to get a document indexed.

Dataset No. of documents Average no. of terms per Doc Coefficient of Variation

Cranfield 1400 95.18 50%
LISA 6003 46.58 45%
Med 1033 83.72 56%
Time 423 326.61 92%

Fig. 2. Table of the four collections used in the experiment

 The figure 3 shows how the number of agents affects the indexing speed. Every
graph plots the mean indexing speed for each document collection.

626 L. Peng et al.

HOTAI R I ndexi ng Speed - LI SA

0
50

100
150
200
250
300
350

0 10 20 30 40 50 60

Number of Agent

Av
er

ag
e

Ti
m

e(
m

ill
is

ec
on

d)

Cranfield, Lisa, and Med performance increases up to a point, and then slowly
decreases after that point. Their optimal speed is approximately 170 milliseconds per
document.

Cranfield Result Set LISA Result Set

 (a) (b)
MED Result Set TIME Result Set

(c) (d)

Fig. 3. Graphs illustrating the experimental result for the four collections

These results shows that increasing the number of DAs has the effect of
improving performance up to a limit that corresponds to the speed at which the
Indexer agent is able to index documents. Once this limit is reached, adding more
DAs has the effect of degrading the indexing speed. The performance of the
architecture is worse as it processes the first bundles of documents.

In contrast, the results generated for the TIME collection do not follow this pattern;
the mean indexing speed of each document bundle fluctuates wildly, and there is no
obvious correspondence between the number of DAs and the indexing speed. On
closer inspection, it was felt that this incoherence resulted from a combination of the
high level of variation in the number of terms in the documents of the collection (the
coefficient of variation for this collection is 92% versus 45-55% for the other
collections) and the relatively small number of documents, which makes this variation
more marked.

In summary, the results for the Cranfield, Lisa, and Med collections support our
hypothesis, namely that the number of DAs does have an impact on indexing speed.
As indicated earlier, the optimal speed of the architecture is bounded by the speed at
which the Indexer agent can index documents. This speed is proportional to the size
of the document that it is indexing.

 A Self-configuring Agent-Based Document Indexing System 627

4 Conclusions and Future Work

This paper presents an agent-based document indexing system for the HOTAIR
architecture. This architecture is able to dynamically reconfigure itself to reflect
changes in demand through either the creation of additional DAs or through the
cloning of Indexer or Translators agents.

It is our intention that, ultimately, this reconfiguration will be driven by built-in
metrics for evaluating performance. However, in an effort to validate the architecture,
we present the results of a set of experiments that seek to evaluate whether the
number of Document Agents has an impact on the speed at which documents are
indexed. These experiments have shown a general pattern of behaviour that supports
this hypothesis.

It would seem sensible to assume that, once the optimal number of DAs has been
reached for a given indexer, and then performance can only be improved by adding
another indexer. Ultimately, we envisage that it will be possible to implement some
form of mathematical model that can be used to estimate the number of DAs and
Indexers required based on the available resources. The built-in metrics would then
be used to make small adjustments to the community of agents based on the actual
performance of the system.

References

1. Collier, R., Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications, PhD Thesis, Dept. Computer Science, University College Dublin, 2001.

2. Collier, R., O’Hare, G. M. P. Lowen, T. D., and Rooney, C. F. B., Beyond Prototyping in
the Factory of Agents, In Proc. 3rd Int. Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS), Prague, Czech Republic, 2003.

3. Doorenbos, R. B., Etsioni, and Weld, D.S.: A Scalable Comparison-Shopping Agent for the
WWW, in W.L. Johnson and B. Hayes –Roth (eds). Proc, Proceedings of the First
International Conference on Autonomous Agents pp. 39-48, Marina del Rey, CA, USA.
ACM Press, 1997

4. FIPA, The FIPA 2000 Specifications, FIPA Website URL: http://www.fipa.org
5. Salton, G. and Lesk, M.E.: Computer evaluation of indexing and text processing. Journal of

the ACM, 15(1):8-36, January 1968
6. Salton, G., Fox, E. A., and Wu, H.. Extended Boolean information retrieval.

Communications of the ACM, 26(11):1022-1036, 1983

Managing Trust for Secure Active Networks

Jian-Jun Qi and Zeng-Zhi Li

Institute of Computer Architecture and Network,
Xi’an Jiaotong University, Xi’an, 710049, PR China

qjjwv@nwu.edu.cn

Abstract. This paper proposes a security architecture that employs
trust notion to address security issues in active networks. The subjectiv-
ity of trust is discussed, and the innovative idea is that how to compute
trust should be decided subjectively by an entity. Then, a general frame-
work for a trust system is described. Finally, a flexible trust management
model, which employs the features of active networks, is presented. In
this model, different entities can use different methods to compute trust,
and an entity can change its computing method of trust over time.

1 Introduction

Active networks [1,2] represent a powerful new networking paradigm in which
intermediate nodes become programmable. While they provide a much more
flexible network infrastructure with increased capabilities than traditional net-
works, they also raise considerable security issues [2,3]. To achieve security in
active networks, the trustworthiness of entities must be vouched for.

Current security schemes for active networks are based on “hard security”
mechanisms [4] such as encryption, digital signatures, authentication protocols,
etc. They are not sufficient. And we believe that “soft security” mechanisms
such as trust systems are good complement. Some computational models of trust
[5,6,7,8] have been developed, but none of them is applied to active networks, to
the best of our knowledge. In this paper, we propose an active network security
architecture in which computational trust models can be incorporated.

2 Trust and Its Subjectivity

Trust is a complex concept. It is subjective and computable [5,6,7,8]. When
the trustor (the trusting entity) wants to interact with the trustee (the trusted
entity), the trustor must judge subjectively according to attributes such as com-
petence, honesty, security and dependability of the trustee. The trustor can not
really know these attributes directly and thoroughly, but it can gather some in-
formation and evidence about the attributes. The two main sources of those are
[5,6,7]: the trustor’s direct experiences from interactions with the trustee, and
recommendations provided by other entities (they are called recommenders) who
have interacted with the trustee before (here, in order to avoid rumors and loops,

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 628–631, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Managing Trust for Secure Active Networks 629

recommendations must be based on first hand experiences only, and not on other
recommendations). The trustor can derive a rating about the trustee from the
direct experiences, and can also compute a reputation score of the trustee based
on the received ratings from recommenders. Finally, the trustor’s subjective trust
judgement can be made according to personal experiences and recommendations
as well as its own mental factors such as personality, emotion, etc.

Current computational trust models [5,6,7,8] assume implicitly that all of
entities in a system use same method to compute trust (i.e., same computational
trust model). This can not fully reflect the subjectivity of trust. We argue that
how to compute trust, i.e. using which computational model of trust, should
be decided subjectively by an entity. That is to say, different entities may use
different methods to compute trust, while an entity may change its computing
method over time.

3 General Framework for Computing Trust

From above discussion, three basic functions are needed to compute trust. One
is to derive rating from personal experiences; one is to derive reputation based
on recommendations; and one is to derive trust from a combination of rating and
reputation as well as mental factors. These three functions constitute a compu-
tational trust model. It is illustrated in Figure 1. Additionally, some utilities are
needed to maintain experiences, recommendations and so on in a trust model.

Computational trust model

Evaluate

interaction

Compute

rating
Make

decision
Exchange

rating

Compute

reputation

Compute

trust

Manage context

Experience

Rating

Rating

Rating

Reputation

Mental factors

Fig. 1. General framework for a trust system

There are some auxiliary facilities to support a trust model. They are “Eval-
uate interaction”, “Exchange rating” and “Manage context” in Figure 1. “Eval-
uate interaction” estimates a score of satisfaction for each interaction. It may
simply judge whether the interaction is success or failure, or calculate a con-
tinuous value with a complex operation like the one in [6]. “Exchange rating”
is in charge of exchanging recommendations between entities. It should be im-
plemented as a protocol. “Manage context” administers the information about
contexts, and it also provides a method to measure the distance between two

630 J.-J. Qi and Z.-Z. Li

contexts [6]. These facilities are very relevant to a specific application, so they
should be implemented in the application.

We are trying to define standard API for computational trust models in order
that each entity is able to use the method it needs to compute trust. In order to
exchange recommendation among trust models, the syntax and the semantic of
recommendation should be standardized.

4 Managing Trust in Active Networks

In our system, we do not use a specific computational trust model. Employing
the features of active networks, we provide a flexible mechanism so that entities
can use the computational trust models they need. Trust models are located
at some code servers as a library of functions. The trust model for a node is
specified by the administration, and downloaded from a code server. The trust
model for an AA is specified by the user, and is used by all the active packets of
the AA. When a packet arrives at a node, it checks if the required trust model is
presented. If not, the trust model is downloaded from a code server. We define
a group of common interfaces to trust models. With these interfaces, an entity
can obtain the required trust values from its trust model, and it can also pass
its experiences and recommendations from other entities to the trust model.

We consider two types of recommending. On the one hand, a node can get
ratings about another from other nodes, this is performed through a simple
protocol. On the other hand, an active packet can get ratings about other nodes
from the node on which it executes, this is performed through a function call
provided by the node. There are two contexts in our system, one is ”IN” and the
other is ”OUT”. In ”IN” context, a node uses the trustworthiness of an active
packet’s source and previous hop to make decisions about the packet’s executing
when the packet arrives at the node. Executing the packet is the node’s one
interaction with the source and the previous hop. In ”OUT” context, the packet
itself or the node uses the trustworthiness of the node’s neighbors to choose a
next hop when the packet needs to be forwarded. Forwarding the packet is the
node’s or the AA’s one interaction with the next hop.

5 Conclusion and Future Work

In this paper, we have applied the idea of computational trust models into secu-
rity solutions for active networks. A novel trust management model based on the
active networking technology has been outlined, that promises that each entity
can use its own computing method of trust. This means that how to compute
trust is subjective for an entity. While, at this stage, the proposed model is be-
ing developed, and we are not able to quantify potential performance gains. In
the future we will evaluate the performance of our system. We will also work at
applying our model into other environments (such as MANETs).

Managing Trust for Secure Active Networks 631

Acknowledgements

The authors gratefully acknowledge the suggestions of the reviewers and the hard
work of the CEEMAS 2005 Program Committee. The authors also gratefully
acknowledge the support of the National Natural Science Foundation of China
(No.60173059).

References

1. Calvert, K.L.: Architectural Framework for Active Networks, version 1.0. Univer-
sity of Kentucky (1999)

2. Psounis, K.: Active Networks: Applications, Security, Safety, and Architectures.
IEEE Communications Surveys. 2(1) (1999)

3. Murphy, S.: Security Architecture for Active Nets. A.N. Security Working Group,
Network Associates Laboratories (2001)

4. Rasmusson, L., Janssen, S.: Simulated Social Control for Secure Internet Com-
merce. In: Meadows, C. (ed.): Proceedings of the 1996 workshop on New security
paradigms. ACM Press, New York (1996) 18-25

5. Jøsang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for
Online Service Provision. Decision Support Systems. (2005) to appear

6. Liu, J.S., Issarny, V.: Enhanced Reputation Mechanism for Mobile Ad Hoc Net-
works. In: Jensen, C.D., Poslad, S., Dimitrakos, T. (eds.): Proceedings of the 2nd
International Conference on Trust Management. Lecture Notes in Computer Sci-
ence, Vol. 2995. Springer-Verlag, Berlin Heidelberg (2004) 48-62

7. Mui, L., Mohtashemi, M., Halberstadt, A.: A Computational Model of Trust and
Reputation for E-businesses. In: King, D., Dennis, A.R. (eds.): Proceedings of the
35th Annual Hawaii International Conference on System Sciences - Volume 7. IEEE
Computer Society, Washington, DC (2002) 188

8. Marsh, S.P.: Formalising Trust as a Computational Concept. PhD thesis, Depart-
ment of Computing Sciece and Mathematics, University of Sterling (1994)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 632 – 635, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Case Study of Agent-Based Virtual Enterprise
Modelling

Mihaela Oprea

University Petroleum-Gas of Ploiesti, Department of Informatics,
Bd. Bucuresti Nr. 39, Ploiesti 100680, Romania

Abstract. The paper presents VIRT_CONSTRUCT, an agent-based virtual
enterprise, dedicated to private houses construction, focusing on the specific
ontology, and on the added value of learning capability inclusion.

1 Introduction

A virtual enterprise (VE) can be described as a network of cooperating enterprises
that have common goals for a limited period of time. As a VE is composed by
distributed, heterogeneous and autonomous entities, it can be modeled in a natural
way as a multi-agent system (MAS). Several research projects have used intelligent
agents in VE modelling (e.g. see [1], [2], [3], [4], [5]). The long-term goal of our
research project is to develop an efficient real-world VE based on intelligent agents in
the application domain of private houses construction. In this paper it is described the
agent-based VE VIRT_CONSTRUCT, focusing on the architecture, on the specific
ontology, and on the learning capability inclusion.

2 VIRT_CONSTRUCT: An Agent-Based VE

The virtual enterprise VIRT_CONSTRUCT has been modelled as a MAS. The client
agent will delegate the VE Manager agent to create the VE. After selecting the partner
enterprises a contract negotiation will be made. In order to motivate the agents to
follow the strategy that the negotiation protocol designer wants to be followed we
have used a leveled commitment contract similar with that given in [6]. During the
settle of the VE, the rules of VE functioning, as well as norms specific to private
houses construction has to be defined. For example, some norms are related to the
construction legality: an official approval for the house construction, as well as a legal
document proving that the client is the owner of the land where the house will be
built. After the contract is signed the VE operation starts. Each worker of an
enterprise is a human agent that has associated a software agent which simulates his
work in the VE virtual environment, while he is doing his work in the real world. The
VE operation will end when the VE goal is achieved (the finish of house
construction), or when the client itself decide to stop it.

 A Case Study of Agent-Based Virtual Enterprise Modelling 633

2.1 The Architecture of VIRT_CONSTRUCT

The twelve main activities identified when building a house (see Figure 1), are
performed by four partner enterprises: E1 (House Design 1), E2 (Housing 2÷8), E3
(Installations 9÷12), and E4 (Suppliers). The architecture of VIRT_CONSTRUCT (see
Figure 1) is composed by a supervisor agent, SVA, which is the VE Initiator/VE
Manager, and the partner enterprises. A monitoring service is used during the VE
operation to supervise processes and provide to partners information about the state of
partial processes. E1 has only one agent, HDA (House Designer Agent). Each of the
other three enterprises has a monitoring agent, that could be the manager agent (MA).

SVA

MA
 E4

MA MA

Client
Agent Client

HDA E1

E3

1 – house design
 2 – foundation work
 3 – bricklaying and roof skeleton work
 4 – ceiling and floor work
 5 – mortar work (plaster)
 6 – roof work
 7 – carpentry work
 8 – painting
 9 – serverage
10 – plumbing and sanitation work
11 – heating installation work
12 – electricity installation work E2

Fig. 1. The architecture of VIRT_CONSTRUCT

2.2 The Ontology of VIRT_CONSTRUCT

In order to accomplish their goals, agents have to communicate between them, and
thus, they need to share the same ontology. We have taken from the Enterprise
Ontology described in [7] the basic concepts (e.g. VIRTUAL ENTERPRISE,
RESOURCE, ACTIVITY), and we have extended it with the specialised concepts
from the housing domain (e.g. WORKER, MATERIAL, HOUSE DESIGNER,
PAINTING PUMP), and with the instantiated concepts (those effectively used during
the VIRT_CONSTRUCT creation/operation as for example, HOUSE DESIGNER X)
deriving the ontology housing. Figure 2 shows a small part of the housing ontology.

used_by
assigned_to uses_a

ACTIVITY RESOURCE

HOUSE PAINTING WORKER MATERIAL TOOL

HOUSE PAINTER PAINT PAINTING PUMP

Fig. 2. Selection from the housing ontology - the house painting activity

2.3 The Learning Capability

In order to increase the performance of VIRT_CONSTRUCT, we have included a
learning capability at the partner enterprise level, similar with the organizational

634 M. Oprea

learning model proposed in [8]. The purpose of the agent learning mechanism is to
process the tasks within the shorter time. The knowledge of the other member’s
expected time to process a type of task is represented as tti(aj, tk), i.e. task time. This
value is evaluated by the manager (agent ai) on the expected time of a worker (agent
aj) to process a specific task (task tk) and is updated by relation (1).

tt a t tt a t Ti j i j kk(,) (.) (,)= − +10 α α (1)

T is the time in which the worker perform a given task, α is the learning rate,
α∈[0,1]. The worker ability level, wal, is computed by relation (2).

()wal a
tt a t n

j
i j k

()
exp (,) /

= 1
 (2)

n is the exploration rate. If a new task tk arrives at an agent ai, the probability to
choose agent aj is given by relation (3).

P a
wal a

wal aj
j

a Agents

()
()

()
=

∈

 (3)

P(aj) is used by MA as a reinforcement parameter for the work of agent aj when
MA re-evaluates the ability of aj.

2.4 Preliminary Experimental Results

We have implemented a preliminary version of VIRT_CONSTRUCT in JADE, and
we have run it on several scenarios. In this paper we briefly present two types of
experiments, related to the analysis of learning inclusion benefit, and VE scalability.

One of the experiments made analyses the evolution of the average processing time
for a given task when learning / no learning is applied after the replacement of a
worker. For example, consider the task of foundation construction, task2, which is
divided in three subtasks: excavation and digging (S1), preparation of construction
materials (S2), reinforce with concrete (S3). In the right part of Figure 3 it is given the
past performance of the seven workers that might be involved in the three subtasks.

[min] 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 [min]

40

35

5

10

15

20

25

30

1

2

Agent S1 S2 S3

A1 20” 20” 15”
A2 30” 15” 10”
A3 25” 30” 15”
A4 30” 25” 20”
A5 35” 20” 15”
A6 30” 30” 20”
A7 25” 25” 20”

Fig. 3. The task2 processing performance in the partner enterprise E2

We have made some simulations for the execution of the three subtasks in a time
period of 3000 minutes. After the first three days (1800 minutes) a worker
replacement was necessary, A3 being replaced with A4. Figure 3 shows the average
of task2 processing performance when learning is done (1), or not done (2) after the
worker replacement. The performance of task2 processing becomes worse after the
worker replacement, and it will recover more quickly in case (1) than in case (2).

 A Case Study of Agent-Based Virtual Enterprise Modelling 635

As stated in [9], scalability (i.e. the MAS performance when the number of agents
increases) can be measured by several metrics as for example, the memory usage, the
total number of messages transferred between agents or the response time between
conversations. In the case of VIRT_CONSTRUCT we have analysed scalability at the
stage of VE creation, and we have measured the duration of the contract negotiation
as a function of the total number of selected partner enterprises. Figure 4 shows this
relationship in two cases, when learning is used (1), and not used (2) in the partners
selection process. As expected, when the number of selected partner enterprises is
increased the learning mechanism maintain a better scalability of the system.

 #of selected partner agents50 40 30 20 10

72000

Contract Negotiat ion
T ime [s]

57600

43200

28800

14400

1

2

Fig. 4. Relationship of contract negotiation time and #of selected partner agents

3 Conclusion

The agent-based VE from the housing domain, that was briefly presented, uses a
specific ontology, extended from the Enterprise Ontology, and a reinforcement
learning mechanism for the selection of the best team at the partner enterprise level.

References

[1] Fischer, K., Müller, J.P., Heimig, I., Scheer, A.: Intelligent Agents in Virtual Enterprises,
Proceedings of the 1st Int. Conf. and Exhibition on the Practical Applications of Intelligent
Agents and Multi-Agent Technology, UK, (1996) 205-223.

[2] Petersen, S.A., and Matskin, M.: Agent Interaction Protocols for the Selection of Partners
for Virtual Enterprises, Multi-Agent Systems and Applications III, V. Marík et al. (Eds):
CEEMAS 2003, LNAI 2691, Springer, (2003) 605-615.

[3] Camarinho-Matos, L.M., and Afsarmanesh, H.: Virtual Enterprise Modeling and Support
Infrastructures: Applying Multi-agent Systems Approaches, Multi-Agent Systems and
Applications, M. Luck et al. (Eds): ACAI 2001, LNAI 2086, Springer, (2001) 335-364.

[4] Oliveira, E., Rocha, A. P. : Agents advanced features for Negotiation in Electronic
Commerce and Virtual Organisations Formation Process, in Agent Mediated Electronic
Commerce, F. Dignum and C. Sierra (Eds), LNAI 1991, Springer, (2001) 78-97.

[5] Oprea, M.: Applications of Multi-Agent Systems, Information Technology, R. Reis (Ed),
Kluwer Academic Publishers, (2004) 239-270.

[6] Sandholm, T., Sikka, S., Norden, S.: Algorithms for Optimizing Leveled Commitment
Contracts, Proceedings of IJCAI’99, vol. 1, (1999) 535-540.

[7] Uschold, M., King, M., Moralee, S., Zorgios, Y.: The Enterprise Ontology, The
Knowledge Engineering Review, 13(1), (1998) 31-89.

[8] Terabe, M., Washio, T., Katai, O, Sawaragi, T.: A Study of Organizational Learning in
Multiagent Systems, Proceedings of ECAI 1996 workshop W26, (1996) 110-119.

[9] Rana, O.F., Stout, K.: What is Scalability in Multi-Agent Systems?, Proceedings of the 4th
Int. Conf. on Autonomous Agents AA2000, ACM Press, (2000) 56-63.

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 636 – 639, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agent-Based Support for Open Communities

Lorenzo Lazzari, Marco Mari, Alessandro Negri, and Agostino Poggi

Dipartimento di Ingegneria dell’Informazione,
Università degli Studi di Parma,

Parco Area delle Scienze 181/A, 43100 Parma, Italy
{lazzari, mari, negri, poggi}@ce.unipr.it

http://aot.ce.unipr.it/

Abstract. RAVE (Remote Assistance Virtual Environment) is a Web and
multi-agent based system to support remote users during common projects or
activities. A Personal Agent, associated with a specific user, helps her/him to
solve problems proposing information and answers extracted from some infor-
mation repositories. It’s also able to forward answers received from other on-
line users, recommended by their Personal Agents as experts in that specific
topic. A profile is built and maintained for each user. A RAVE system is not a
closed system, but it’s based on a dynamic network of RAVE platforms manag-
ing groups of geographically localized users and documents. RAVE users and
documents profile management subsystems provide a mechanism that dynami-
cally adapts the relevance of each profile, according to the availability of ex-
perts and documents.

1 Introduction

Finding relevant information is a longstanding problem in computing. Conventional
approaches such as databases, information retrieval systems and Web search engines
partially address this problem. Nevertheless, the most valuable information is not
widely available and cannot even be indexed or catalogued. Much of this information
may only be accessed by asking the right people. The challenge of finding relevant
information then reduces to finding the “expert” whom we may ask a specific ques-
tion. However, people may easily get tired of receiving trivial questions or many
times the same question, therefore, who needs help for solving a certain problem
should look for documents related to it and then eventually look for a possible expert
on that topic.

In this paper we present a multi-agent system, called RAVE (Remote Assistance
Virtual Environment), that integrates information and expert searching facilities for
communities of users working in similar topics. In the following sections we describe
the multi-agent architecture and we talk about RAP (Remote Assistant for Program-
mers), an implementation of the RAVE system for communities of Java programmers.

2 System Architecture

RAVE associates a Personal Agent with each user which helps her/him to solve prob-
lems: the assistance is provided proposing information and answers extracted from

 Agent-Based Support for Open Communities 637

some information repositories and forwarding answers received by “experts” on the
topic, selected on the basis of their profile. The system is based on seven different
kinds of agents: Personal Agents, User Profile Managers, Answer Managers, Docu-
ment Managers, E-mail Managers, Starter Agents and Directory Facilitators.

Personal Agents (PA) allow the interaction between the users and the different
parts of the system and, in particular, between the users themselves. Moreover, a PA
is responsible of building the user profile and maintaining it when its user is on-line.
User-agent interaction can be performed in two different ways: through a Web-based
interface when the user is active in the system, through e-mails when it is off-line.
Usually there is a PA for each on-line user, but, when needed, PAs are created to
interact with off-line users via e-mails.

User Profile Managers are responsible of maintaining and updating the profile of
the system users. Answer Managers maintain the answers provided by users during
the life of the system and they find the appropriate answers to the new queries of the
users. Besides providing an answer, these agents update the score of the answer and
forward the vote to the User Profile Manager for updating the user profile. Document
Managers find the appropriate documents to answer the queries submitted by system
users. E-mail Managers are responsible of the communication between the system
and the off-line users. Starter Agents are responsible for activating a PA when either
a user logs on or another agent requests it. Directory Facilitators are responsible to
inform an agent about the address of the other agents active in the system (yellow
pages service).

2.1 Profile Management and Open Communities

The management of user and document profiles is performed in two different phases:
an initialization phase and an updating phase. In order to simplify and reduce the
possibility of inaccuracy due to people’s opinions of themselves and to incomplete
information, we decided to build the initial profile of the users and documents in an
automated way. Profiles are represented by vectors of weighted terms whose values
are related to the frequency of the term itself in the user’s documents. Document and
user profiles are computed by using “term frequency inverse document frequency”
(TF-IDF) [6] algorithm. Each user profile is built by user’s PA through the analysis of
the documents she/he produced or collected. This is only the initial user’s profile, it
will be updated when the user produces or collects new documents or when the user
interacts with the system answering some queries.

An important requirement that has guided the design of RAVE has been the sup-
port for open and distributed users communities. RAVE structure is open, since new
users can register and access the system, and a registered user can acquire new skills
or produce new documents and therefore update his profile. The community beneath
RAVE is distributed: the whole system can consist of a dynamic group of local com-
munities. Each community can operate isolated, but can also decide to join a group of
communities, sharing experts and documents repositories.

The open and distributed nature of the system entails some significant problems in
the evaluation of information: the evaluation of both experts and documents is
strongly dependent on the actual composition of the community group. For example,
if a user is rated as the maximum expert to answer a query, he is rated considering

638 L. Lazzari et al.

only the users registered in the system at that moment. As a matter of fact, TF-IDF
algorithm can be easily used in a centralized system where all the profiles and the data
are managed, while our context is more complex. For these reasons, each profile
component of RAVE is associated with two elements: an absolute element and a TF-
IDF weighted element. The absolute one depends only on the user (or document)
profile, instead the TF-IDF element is related to both the user profile and the whole
community profiles. Moreover, while the absolute element is stored in a database, the
weighted one is maintained in memory and it is recalculated when necessary.

3 RAP

RAP (Remote Assistant for Programmers) is an implementation of the RAVE system
specialized to support communities of students and programmers during shared or
personal projects based on the use of the Java programming language. User profiles
are built on the basis of the software the users wrote.

A quite complete description of the system behaviour can be given showing the
scenario where a user asks information to her/his PA about a particular problem. (1)
First of all the user selects the types of answers she/he prefers to receive (e.g., docu-
ments, javadocs, answer repositories, on-line experts’ answers). (2) The user submits
the query through graphical interface. The query is composed of two parts: the first
one identifies its context and contains keywords provided by a system glossary (we
are using the “SUN Glossary of Java Related Terms”), the second part represent the
textual content of the query. (3) The PA associated to the user performs different
actions and interacts with the different agents of the system to collect the various
types of answers; when the PA receives an answer, it immediately forwards it to the
user. (4) The user, after the reception of all the answers or when she/he has already
found a satisfying answer, has to rate the list of the answers. It’s important to note that
the rating cannot be known by the user that sent the answer and users that didn’t send
answers automatically receive a negative rating. Moreover, when an answer retrieved
from the answer repository is rated, this value is also used to update the profile of the
user that previously proposed that answer.

RAP has been developed using JADE (Java Agent DEvelopment framework) [3], a
software framework that aids the realization of agent-based applications in compli-
ance with the FIPA specifications [5]. JADE is an open source project and it can be
downloaded from the JADE Web site [4]. Given the distributed nature of JADE-based
agent systems, a RAP system can be distributed on a set of agent platforms connected
usually via Internet and situated in different parts of the world.

In the next future, RAP will be tested in practical courses on JADE shared among
students of some American Latin and European Universities inside the European
Commission funded project “@lis Technology Net” [1]. Moreover, the system will be
used by students and researchers involved in the ANEMONE project [2].

4 Conclusions

In this paper, we present a system called RAVE (Remote Assistance Virtual Envi-
ronment) with the aim of supporting communities of users working or interested in

 Agent-Based Support for Open Communities 639

common or similar topics. A first implementation of RAVE has been realized: RAP
(Remote Assistant for Programmers) is a system to support communities of students
and programmers during shared and personal projects based on the use of the Java
programming language.

RAVE and RAP have similarities with WBT [7], I-MINDS [8] and, in particular,
with the Expert Finder system [9]. All these systems provide agents that recommend
possible “helpers”, but none of them provides the integration of different sources of
information (experts, answers archive and code documentation) and none of them
integrates, in the user profile, information about user’s day-to-day work products with
information obtained from the answers the user provided to the other users of the
system. Another original contribution of RAVE is the design of a recommendation
system composed by an open and distributed group of communities; each community
is independent and can dynamically join or leave a group.

In addition to complete the experimentation of the RAP system, future research ac-
tivities will be related to the realization of a RAVE implementation allowing the con-
current management of different types of communities (i.e., centered on different
topics).

References

1. @LIS Technet Home Page. Available from http://www.alis-technet.org.
2. ANEMONE Home Page. Available from http://aot.ce.unipr.it:8080/anemone.
3. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a FIPA-

compliant agent framework.. Software Practice and Experience, 31, (2001) 103-128.
4. JADE Home Page. Available from http://jade.tilab.com.
5. FIPA Home Page. Available from http://www.fipa.org.
6. Salton, G.: Automatic Text Processing. (1989), Addison-Wesley.
7. Ishikawa, T., Matsuda, H., Takase, H.: Agent Supported Collaborative Learning Using

Community Web Software. In Proc. International Conference on Computers in Education,
Auckland, New Zealand, (2002) 42-43.

8. Liu, X., Zhang, X. Soh, L., Al-Jaroodi, J., Jiang, H.: I-MINDS: An Application of Multi-
agent System Intelligence to On-line Education. In Proc. IEEE International Conference on
Systems, Man & Cybernetics, Washington, D.C., (2003) 4864-4871.

9. Vivacqua, A. and Lieberman, H.: Agents to Assist in Finding Help. in Proc. ACM Confer-
ence on Human Factors in Computing Systems, San Francisco, CA, (2000) 65-72.

Architecture-Centric Development of an
AGV Transportation System

Danny Weyns, Kurt Schelfthout, and Tom Holvoet

DistriNet, Department of Computer Science K.U.Leuven,
Celestijnenlaan 200 A, B-3001 Leuven, Belgium

{danny.weyns, kurt.schelfthout, tom.holvoet}@cs.kuleuven.be

Abstract. Architectural design plays a key role in software engineering. The
software architecture is the backbone of the designed solution, it has the func-
tional requirements of the system and satisfies the quality requirements. In our
research, we put forward situated multiagent systems (situated MAS) as an ap-
proach to build distributed applications with demanding quality requirements
such as flexibility and openness. In this paper we illustrate how we apply sit-
uated MAS to an Automatic Guided Vehicle (AGV) transportation system. We
discuss the high-level structure of the software architecture and explain how the
architecture aims to meet important quality requirements.

1 Introduction

Software architecture is generally acknowledged as a crucial part of the design of a
software system [1]. The software architecture has the functional requirements of the
system and aims to satisfy the quality requirements. A common practice to document
a software architecture is by using a set of related views [2]. A view is a representation
of a set of system elements and the relationships associated with them. A module view
enumerates principal implementation units and relationships among these units such as
“is-part-of” or “uses”. A process view focuses on dynamic aspects of the system such as
synchronization between process elements. Other views can be part of the documenta-
tion of an architecture such as a deployment view that describes the allocation of system
elements to available processors.

In the last three years, we have studied the engineering of distributed applications
with demanding quality requirements such as flexibility and openness. Example do-
mains we focus on are network management and decentralized control of logistic ma-
chines in a warehouse. In our research, we put forward situated MASs as an approach
to build such distributed applications. A situated MAS consists of a distributed envi-
ronment populated with a set of agents that cooperate to solve a complex problem in a
decentralized way. Intelligence in a situated MAS originates from the interactions be-
tween the agents, rather than from their individual capabilities. Situated agents exploit
the environment to coordinate their behavior, e.g. via digital pheromones or gradient
fields [3]. We have developed a reference architecture for situated MASs that offers a
blueprint for developing the intended applications. This reference generalizes and ex-
tracts common functions and structures from various experimental applications we have
studied. For a detailed discussion of the reference architecture we refer to [4,5,6].

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 640–644, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Architecture-Centric Development of an AGV Transportation System 641

In this paper, we illustrate the architectural design of an AGV transportation system
that is based on the reference architecture for situated MASs. The AGV transportation
system is investigated in a R&D project in close cooperation with Egemin, a manufac-
turer of automated warehouse systems (http://www.egemin.com/). An AGV transporta-
tion system uses unmanned vehicles (AGVs) to handle transports, i.e. to move goods
through a warehouse. Transports are generated by a client system, typically a busi-
ness management program. An AGV uses a battery as energy source. AGVs can move
through a warehouse guided by a laser navigation system, or by magnets or cables that
are fixed in the floor. The low-level control of the AGVs such as staying on track on a
segment, turning, picking a load or dropping it, determining the current position, etc.,
is handled by the AGV control software called E’nsor R© (Egemin Navigation System
On Robot).

Besides traditional qualities such as performance and robustness, the market for
AGV transportation systems requests for more flexibility. AGVs should be able to ex-
ploit opportunities, e.g., when an AGV is assigned a transport and moves toward the
load, it should be possible for this AGV to switch tasks on its way if a more inter-
esting transport pops up. AGVs should also be able to anticipate possible difficulties,
e.g., when the battery level of an AGV decreases, the AGV should anticipate this and
prefer a zone near a charge station. Customers also expect that the system is able to
deal with AGVs leaving the system, or new AGVs entering the system. One example is
maintenance. Currently, maintenance of AGVs is based on fixed worst-case rules. This
leaves room for improvement by allowing AGVs to decide themselves when to leave
the system for service.

In the next section we discuss the main high-level views of the software architecture
and we illustrate how the quality requirements are realized. Finally, Sect. 3 concludes
the paper.

2 Architectural Design of an AGV Transportation System

Contrary to the traditional approach applied by Egemin, where vehicles are controlled
by one central server, in this project, we explore the feasibility of applying the paradigm
of situated MASs to decentralize the control of the AGVs. In [7], Ong compares decen-
tralized with centralized control. According to Ong, decentralized control: (1) is more
economical w.r.t. required processing power, and (2) is more reliable. Limitations of
decentralization are: (1) performance of the system may be affected by the commu-
nication links between nodes, (2) there is a trade-off between its performance and the
reactivity of the system to disturbances, and (3) myopic decision making may occur due
to the lack of global information.

Besides the advantages of decentralization listed by Ong, we believe that in princi-
ple, a MAS-based AGV transportation system also becomes more flexible. Since each
AGV acts locally, it can better exploit opportunities and adapt its behavior under chang-
ing circumstances. On the other hand, bandwidth must be considered carefully to en-
sure that the communication network does not become a bottleneck. The challenge in
the project is to support the current functionality, while aiming to improve flexibility
and openness.

642 D. Weyns, K. Schelfthout, and T. Holvoet

Fig. 1. Deployment view of the AGV transportation system

Deployment View of the System. The decentralized architecture consists of two sub-
systems, transport bases and AGV control systems. Transport bases receive transport
requests from the client system, and are responsible to assign the transports to AGVs.
The AGV control software is responsible to ensure that the AGV completes the assigned
transport. Fig. 1 depicts the deployment view of the software architecture. Transport
bases are deployed on stationary hosts. The AGV control systems are deployed on the
mobile AGV machines. The communication infrastructure provides a wired network
that connects the client system with the transport bases and a wireless network that
enables communication between AGVs and transport bases.

Module Decomposition View of the Subsystems. Fig. 2 depicts the module decomposi-
tion view of the AGV control system and the transport base. For each requested trans-
port, the transport base manager creates a new transport agent at the transport base.
A transport agent is responsible for assigning its transport to an AGV agent. the client
system. AGV agents, that are located in the AGVs, are responsible for executing the
assigned transports.

Since the physical environment of the AGVs restricts how agents can use their envi-
ronment, we introduced a virtual environment for agents to live in. This virtual environ-
ment offers a medium that agents can use to exchange information and coordinate their
behavior. For example, to avoid collisions, AGV agents coordinate with other agents
through the virtual environment. AGV agents mark the path they are going to drive
in their environment using hulls. The hull of an AGV is the physical area the AGV
occupies. A series of hulls then describes the physical area an AGV occupies along a
certain path. If the area is not marked by other hulls, the AGV can move along and
actually drive over the reserved path. If the AGV’s hull intersects with others, only the
AGV with the highest priority is allowed to move on. Afterwards, the AGV removes
the markings in the virtual environment.

Since the only physical infrastructure available to the AGVs is a wireless network
to communicate, the virtual environment is necessarily distributed over the AGVs. In

Architecture-Centric Development of an AGV Transportation System 643

Fig. 2. Module view of the AGV control system on the left and the transport base on the right

effect, each AGV and each transport base maintains a local virtual environment, which
is a local manifestation of the virtual environment. Synchronization of the state of the
local virtual environment with neighboring machines is supported by the ObjectPlaces
middleware [8].

Besides a medium for coordination, the virtual environment also serves as a suitable
abstraction that shields the AGV agents form low-level issues, such as the physical
control of the AGV. Therefore, we fully reused the E’nsor software.

Quality requirements. We have applied several architectural approaches to realize flex-
ibility in the system. One example is transport assignment that is based on a flexible
version of the Contract Net protocol. This protocol postpones final transport assignment
until the load is picked. While the AGV is driving towards the load, the AGV agent and
the transport agent are able to switch transport and AGV respectively. Openness in the
system is basically realized by the virtual environment supported by the ObjectPlaces
middleware. When an AGV leaves the system, or a new AGV enters, the ObjectPlaces
middleware on neighboring machines will notice this and the local virtual environments
will be updated accordingly.

3 Conclusion

In this paper, we illustrated how we have applied situated MASs as an approach to
design an automated AGV transportation system. We discussed three high-level archi-
tectural views and illustrated how the architecture supports flexibility and openness.
From the initial project phase we learned that the the reference architecture for situated
MAS that underlies the software architecture of the AGV transportation system turned
out to be an excellent guide for architectural design. On the other hand, the complex-
ity of the application forced us to further decompose several modules of the reference
architecture.

644 D. Weyns, K. Schelfthout, and T. Holvoet

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
(2003)

2. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures. Addison-Wesley (2003)

3. Weyns, D., Parunak, V., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent sys-
tems, state-of-the-art and research challenges. Lecture Notes in Computer Science, Vol. 3374
(2005)

4. Weyns, D., Holvoet, T.: Formal model for situated multi-agent systems. Fundamenta Infor-
maticae, Vol. 63(1-2) (2004)

5. Weyns, D., Steegmans, E., Holvoet, T.: Protocol based communication for situated multiagent
systems. 3th Joint Conference on Autonomous Agents and Multi-Agent Systems, New York
(2004)

6. Weyns, D., Steegmans, E., Holvoet, T.: Towards active perception in situated multi-agent
systems. Journal on Applied Artificial Intelligence, 18(8-9) (2004)

7. Ong, L.: An investigation of an agent-based scheduling in decentralised manufacturing con-
trol. Ph.D Disseration, University of Cambridge (2003)

8. Schelfthout, K., Holvoet, T., Berbers, Y.: Views: Customizable abstractions for context-
aware applications in MANETs. Software Engineering for Large-Scale Multi-Agent Systems,
St. Louis (2005)

Goodness and Lacks of MAS Methodologies for
Manufacturing Domains

S. Valero, E. Argente, A. Giret, V. Julian, and V. Botti

Information Systems and Computation Dept., Polytechnic University of Valencia,
C/ Camino de Vera s/n, 46022 Valencia, Spain

{svalero, eargente, agiret, vinglada, vbotti}@dsic.upv.es

Abstract. Multi-agent system technology has achieved enough develop-
ment level to be applied in complex problem domains, such as manufac-
turing systems. This work contributes to demonstrate this applicability,
evaluating its goodness and lacks. Thus we have employed a production
task scheduling problem in a ceramic tile factory as a real case study. This
complex problem requires robust and flexible software applications1.

1 Introduction

The manufacturing industry is an interesting domain for applying multi-agent
technology, because on the one hand the high development level achieved by
this technology allows to tackle with complex problems fields; and on the other
hand these systems require software applications that need to be inherently dis-
tributed, robust and capable of adapting to the environment. The aim of our
work is to apply multi-agent system (MAS) technology to model a real schedul-
ing problem in a Ceramic Tile factory using INGENIAS methodology [1], which
is based in MESSAGE [2] and integrates its meta-models in the Rational Uni-
fied Process (RUP) for developing software systems. INGENIAS incorporates
specific features that allow us to consider this methodology as the most appro-
priate option comparing with the other MAS methodology approaches. These
features are: (i) it covers the greatest number of aspects regarding the analysis
activity (for example, INGENIAS environment model allows us to specify the
environment in which the agent is located); (ii) it employs UML-based syntax
throughout the entire development process so INGENIAS is easier to be under-
stood and managed, primarily due to the popularity and widespread use of UML;
(iii) it offers some complete examples in different application areas (and this is
not available in many methodologies); and (iv) it employs a visual development
toolkit during the whole process (Ingenias Development Kit, IDK). This toolkit
includes modules for automatic code generation.

Current problems of the ceramic tile sector and, more specifically, of the
production scheduling process are widely explained in [3]. Moreover, benefits
1 This work has been partially funded by Polytechnic University of Valencia under

grant PII-UPV 5574. Financial support from Spanish government under grant FPU
AP2001-1516 and TIC2003-07369-C02-01 is also gratefully acknowledge.

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 645–648, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

646 S. Valero et al.

obtained when using a MAS approach to achieve integrated optimization of the
dynamic production scheduling process are also related in [3].

In the following section the MAS approach is briefly described, presenting
the agent-oriented models used in the development process of the scheduling
problem of production tasks in a ceramic tile factory. Finally, conclusions are
detailed.

2 Multi-agent Modelling Approach

In the scheduling problem of a ceramic tile factory we can identify four main
scenarios, modelled as UML use cases: (i)Schedule Creation use-case, in which a
feasible schedule to be carried out in the following weeks is created (this schedule
is made based on the manufacture lots defined in the Master Plan2); (ii)Schedule
Modification use-case, in which previous schedules that have arisen problems
during their execution are modified, being reconfigured in order to adjust them to
factory changes; (iii)Schedule Execution Monitoring use-case, where the current
weekly schedule in execution is supervised, informing about the arisen problems;
and (iv)Master Plan Alteration Detection use-case, in which problems that might
alter the Master Plan are detected.

Once several use-cases have been noticed, INGENIAS methodology proposes
to detail five different models: (i) organization, (ii) agent, (iii) interaction, (iv)
environment and (v) tasks and goals models. Graphical representations of those
models using the IDK tool are related in [3].

Regarding the organizational model, the scheduling process involves different
activities: schedule creation and modification, execution monitoring and detec-
tion of possible alterations at the current Master Plan. Several roles are needed
to carry out those tasks: (i) the Manager, that maintains the integrity of the
system and regulates the cooperation among the different roles of the system;
(ii) the Schedule Creation Controller, that oversees the information about a new
schedule order; (iii) the Schedule Modification Controller, which maintains infor-
mation about changes needed for adjusting the schedule because of failures in
the manufacturing process; (iv) the Scheduler, who has the ability to schedule
tasks and resources; (v) the Production Plant Manager, that maintains and pro-
vides information about all restrictions and features of each machine and plant
element; (vi) the Lot Planner, that manages all information about task sequence
needed to manufacture a given lot; (vii) the Schedule Execution Monitor, which
supervises actual execution of a schedule in a specific plan; and (viii) the Master
Plan Monitor, which controls possible changes in the Master Plan and informs
the Manager role that an alteration has occurred and it must be propagated to
the Master Plan Generator process.

In spite of the great number of modelling artifacts and notions provided by
MAS methodologies in general, and by INGENIAS in particular, we have found
some lacks applying MAS methodologies to the modelling of the manufacturing
problem we are illustrating. Some of them are: (i) Due to the lack of domain
2 Production plan for medium term orders.

Goodness and Lacks of MAS Methodologies for Manufacturing Domains 647

specific guidelines, we used PROSA [4] guidelines in order to figure out the
cooperating roles of the Production Programming. (ii) There is a lack of modelling
artifacts to represent autonomous entities with recursive structures. This is a
very important issue in manufacturing systems, since the only way to manage the
complexity of these system is by considering higher level and complex entities as
aggregation of lower level and simpler entities. Therefore, (iii) in order to manage
the complexity of the development process itself there is a need to have a process
guided by abstraction levels. In this way, at every design step, the designer can
focus at the problem at hand, without worrying about other details.

Regarding the agent model, we have assigned a specific agent to each role
identified in the system. Therefore, Scheduler agent is in charge of schedul-
ing tasks and resources; Production Plant Manager agent provides information
about actual plant configuration; Lot Planner agent provides the task sequence
needed for a specific lot; Schedule Creation Controller agent creates new sched-
ule orders, initializing the schedule and then building a final proposal; Schedule
Execution Monitor agent supervises schedule execution; Schedule Modification
Controller agent modifies schedules; Master Plan Monitor agent controls pos-
sible changes in Master Plan; and finally Manager agent controls cooperation
between all other agents and tries to manage the production programming.

In our problem, the main goal of the system is Manage production pro-
gramming. This goal is pursued by the Manager agent and can be decomposed
through an implication diagram into five subgoals: Generate lot schedule, Gener-
ate tasks, Modify lot schedule, Inform master plan alteration and Inform schedule
problem. Regarding the first subgoal, it must be generated and satisfied in the
Create Schedule workflow. The process must start with the identification of the
new lots to be scheduled, creating the Generate Lot Schedule goal. Then, it is
necessary to initialize the new schedule which initiates the control of the sched-
ule creation. Next, the process must obtain the task sequence which allows to
obtain the sequence related to a specific lot. This sequence is generated by the
LotPlanner agent. Previously to obtain the allocation task proposal, the process
needs to get the current plant state. Finally, the Generate Lot Schedule goal will
be satisfied when it is obtained the Final Proposed Schedule.

The MAS in charge of the scheduling process of the ceramic tile factory
needs to interact and use external and/or internal applications, and resources
in order to fulfill its goals. These entities are called environment elements. We
have identified the following environment elements: (i) the ExecutedScheduleDB
stores executed schedules created by the organization; (ii) the ProductModelDB
stores the product definition specification in terms of production tasks; (iii) the
ProductModelDB provides the task sequence needed to produce a given product;
(iv) the ProductDesignDB stores the product definition specification in terms
of materials and design patterns; (v) the SuppliesDB manages the warehouse
of raw materials; (vi) the MasterPlanDB allows the Manager agent to figure
out when the ProductionProgramming Group has to initiate a new schedule
creation process; and (vii) the PlantStateDB maintains the plant status update
and is used by the PlantManager to figure out whether a schedule modification

648 S. Valero et al.

is needed. Trying to specify the correct interaction with the environment, we
have detected some cases where it is needed to express temporarily restricted
and periodic behaviors related with perception and actuation processes (i.e. to
maintain the production plant status updated). So, the methodology should
allow expressing effective and timely routine-based behaviors.

3 Conclusions

This paper presents a methodological development, based on MAS technology,
of an application for the production programming problem in a ceramic tile in-
dustry, using the IDK toolkit of the INGENIAS methodology, which has been
successfully employed in other domains. From this modelling experience we have
detected some manufacturing system modelling requirements or lacks which need
to be taken into account by MAS methodologies to be able to tackle real indus-
trial problems in a better and easier way. Some of these requirements are: (i)
manufacturing control systems require autonomous entities to be organized in
hierarchy and heterarchy structures [5]; (ii) manufacturing control units require
a routine-based behavior that is both effective and timely [6]; (iii) a methodology
for manufacturing systems should lead straight-forward from the control task on
a factory resource or factory function to autonomous entities [6,5]; (iv) it should
also define a development process guided by abstraction levels, and should also
provide modelling artifacts, tools and guidelines to manage this process; (v) it
should also describe a mixed top-down and bottom-up development process in
order to produce flexible and reconfigurable organization structures; and (vi) it
should also provide modelling guidelines to help the system designer to integrate
the entire range of manufacturing activities (from order booking through design,
production, and marketing) to model the agile manufacturing enterprise [5].

Currently, we are working on a MAS methodology and a toolkit based on
these requirements and defined from the INGENIAS meta-models.

References

1. Pavon, J., Gomez, J.: Agent Oriented Software Engineering with INGENIAS. Multi-
Agent Systems and Applications II, LNAI 2691 (2003) 394-403

2. EURESCOM.: MESSAGE: Methodology for engineering systems of software
agents(Final), Technical Report P907-TI1, EURESCOM (2001)

3. Giret, A., Argente, E., Valero, S., Gomez, P., Julian, V.: Applying Multi-Agent
Systems Modelling to the Scheduling Problem in a Ceramic Tile Factory. Proc. of
International Mass Customization Meeting, (2005), 151-162.

4. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference
Architecture for Holonic Manufacturing Systems: PROSA, Computers In Industry,
37 (1998) 255-274

5. HMS, P.R.: HMS Requirements, http://hms.ifw.uni-hannover.de (1994)
6. Bussmann, S.:An Agent-Oriented Architecture for Holonic Manufacturing Control,

Proc. of 1st Int. Workshop on Intelligent Manufacturing Systems, EPFL, (1998)
1-12

Multiagents Applied To Humanitarian Demining

Pedro Santana1, José Barata2, and Lúıs Flores1

1 IntRoSys S.A., Quinta da Torre, Campus FCT-UNL, 2829-516 - Portugal
2 New University of Lisbon, Quinta da Torre,

Campus FCT-UNL, 2829-516 - Portugal

Abstract. The complexity associated to Humanitarian Demining be-
comes very high due to its broad set of activities, which beyond the
already complex of landmine removal, includes other socio-economic sup-
porting activities. Hence, more complex computer based supporting sys-
tems are required. The main goal of this article is to describe potential
applications of multi-agent systems to the Humanitarian Demining do-
main, covering areas such as: knowledge-based systems, collaborative
networks, agent-based modelling and multi-agent robotic systems. This
is the result of the work being carried out by the Portuguese company
IntRoSys, whose main research objective is the development of tools and
methods to support humanitarian demining.

1 Introduction

The complexity associated to Humanitarian Demining becomes very high due
to its broad set of activities, which beyond the already complex of landmine
removal, includes other socio-economic supporting activities. Hence, more com-
plex computer based supporting systems are required, not only for the landmine
removal itself, but for the socio-economic supporting activities. In addition to
this these two different areas must be developed completely integrated, which
just increases the complexity. Due to the involved complexity and the integration
aspects that are required multiagents were considered as a suitable paradigm for
supporting Humanitarian Demining.

The main goal of this article is to describe potential applications of multi-
agent systems to the Humanitarian Demining domain.

Section 2 introduces the Humanitarian Demining domain. Then, section 3
proposes a set of potential applications of multi-agents systems to Humanitarian
Demining. Finally the conclusions are described in section 4.

2 Humanitarian Demining Concepts

The estimated number for grounded anti-personal landmines all over the world
is about 110 millions. Some consequences of using landmines are: unusable land
(e.g. few landmines may hinder access to productive land), direct health con-
sequences (e.g. amputation), indirect health consequences (e.g. victims’ families

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 649–652, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

650 P. Santana, J. Barata, and L. Flores

are entirely affected), and development consequences (e.g. communication paths
closed). These reasons make urgent the development of new techniques that
speed up and enhance the demining process.

Humanitarian Demining is composed of two phases: the survey phase and
the detection/clearance phase. Surveys are intended to rationalise the demi-
ning process, by analysing available resources, priorities, socio-economic impact,
land end-use, etc. During the Impact Survey information to analyse priorities,
social-economical impact, possible contaminated areas, etc. is gathered. Then,
a Technical Survey is carried out to define the clearance requirements, the ar-
eas to be actually cleared, etc. Afterwards, the detection and clearance tasks
are performed by following the requirements previously defined. Finally, a Post-
Clearance Survey is performed to guarantee that the clearance requirements
were met.

3 Multiagents Applied to Humanitarian Demining

As previously stated, Humanitarian Demining covers areas from detection and
clearance to the socio-economic impacts of such operations. Thus, the problem
can be analysed in two different branches, the support that Multi-Agents can
provide to minefield operations and to the process itself.

3.1 Operations Support

It is well known the need for low-cost demining, so it can be afforded by local
communities. Therefore, robotic systems must comply with such a requirement.
Previous attempts to solve the problem of robotic demining as lead to high-cost
solutions. Such attempts have tackled the problem with single robot systems,
which carry all landmine detection sensors. Approaching the problem in a dis-
tributed perspective, where robots are simple and dispensable, allows to comply
with the low-cost requirement. Hence, multi-agent systems, in particular multi-
robot systems, are a suited approach to the problem. Nevertheless, must not be
forgotten that each robot is itself an agent with all the challenges behind this.

We see with special interest Multi Unmanned Aerial Vehicles (UAV) that
can be applied to assess the ground (e.g. using infra-red cameras) or just taking
pictures faster and safer than ground vehicles. See for instance the ARC [4]
project that makes use of airborne and satellite imaging to identify minefields.

Resource configuration and allocation Multi-Agent based configuration ar-
chitectures, such as the CoBASA architecture [2], can be well applied to prepare
robotic teams for the minefield.

It is important to integrate locals in the demining process, which are usually
people with no formal education. Therefore, human-machine interfaces are both
interesting and important to get closer high-tech and end-users. The user should
interact with the system as it was actually in the minefield with its own methods.
We envision a correct human-machine interface as the one capable of translating
operational robotic semantics into operational end-user semantics, i.e. a correct
ontological commitment.

Multiagents Applied To Humanitarian Demining 651

3.2 Process Support

Information has been identified as a crucial aspect in Humanitarian Demining.
Humanitarian Demining is mainly about decision making, which relies heavily
on data, information and knowledge. In this sense, Knowledge Based Systems
are extremely relevant to this domain, mainly to support the decision in the
impact study and mission configuration.

The diversity of cultures and education level among the involved agents (e.g.
locals, military, and governments) results in the need of intensive work on the area
of Knowledge Engineering/Representation. To the problem of uncertain informa-
tion is added the contradictions that may arise when merging different perspec-
tives of the same problem. Hence, ontological commitments, belief revision and
non-monotonic reasoning are certainly research opportunities for this domain.

A global minefield atlas that aggregates digital topographic maps, satellite
image data, demining related information and equipment suitability is presented
in [7]. A Decision Support System (DSS) based on Geographical Information
Systems (GIS) information and multi criteria analysis is proposed in [9]. The
DSS integrates multi-layer information covering strategic level (e.g. economic
value of the areas) down to operational level (e.g. demining company selection).

Besides decision making intensive, Humanitarian Demining operations are
highly distributed. Therefore, information sharing and collaborative tools are
very important. Collaborative work tools may go from distributed devices that
allow access to shared information sources (e.g. [6]) to autonomous mechanisms
capable of managing the whole process.

Humanitarian Demining could be modelled as a business composed of several
parties. Following such a model, Collaborative Networks [3] as well as coalition
formation [10,1] and Multiagent Systems in general, may be interesting tools for
the analysis and congregation of skills that are required to achieve the goal.

Modelling the Humanitarian Demining process would allow to reason more
effectively about it. In this sense, every entity could be modelled as an agent and
the process as an Multi-Agent System. These models are extremely important,
since decision making can rely upon scientific assessments reducing lobbying
opportunities (i.e. objectiveness). Some tasks where agent-modelling and sim-
ulation could be applied are: to analyse relationships between innovations and
performance gains, to optimise the selection and configuration of the elements
for a demining campaign, to perform risk assessment by integrating models of
the involved aspects, such as environment and local human activities.

An approach for the economic modelling of cost-effective demining technolo-
gies is presented in ([11], pp. 19-26) and [5] presents a set of operational needs
based on a demining model.

4 Conclusions

A brief overview on the Humanitarian Demining domain was presented. It has
been shown that the Humanitarian Demining domain is much broader than just
demining itself, which opens new horizons for the application of technology on it.

652 P. Santana, J. Barata, and L. Flores

It has been proposed a set of scenarios where multi-agent system can be
well applied, which includes: knowledge-based systems, collaborative networks,
agent-based modelling and multiagent robotic systems.

The Humanitarian Demining domain is a network of many heterogeneous
entities (e.g. robots, decision makers, operators) with highly intricate connec-
tions. Thus, the Multi-Agents paradigm is well suited to model this distributed,
heterogeneous, and complex structure. First preliminary results support this.

References

1. Allsopp, D. N., Beautement, P., Kirton, M., Bradshaw, J. M., Suri, N., Knoblock,
C. A., Tate, A. and Thompson, C. W.: Coalition Agents Experiment: Multiagent
Cooperation in International Coalitions. IEEE Intelligent Systems, 173 (2002) 26–
35

2. Barata, J.: Coalition Based Approach for Shop Floor Agility - A Multiagent Ap-
proach. PhD thesis, Universidade Nova de Lisboa, Faculdade de Cincias e Tecnolo-
gia, Monte Caparica (2004)

3. Camarinha-Matos, L. M., Afsarmanesh, H. and Ollus, M.: Virtual Organizations -
Systems and Practices. Springer, New York (2005)

4. Eisl, M. and Khalili, M.: ARC – Airborne Minefield Area Reduction. In Proceedings
of the International Conference Requirements and Technologies for the Detection,
Removal and Neutralization of Landmines and UXO (2003)

5. GICHD/UNDP: Humanitarian Demining Equipment: Study of Global Operational
Needs, Geneve (2002)

6. Horz, A. and Kunze, T.: MoMoSat – Collaborative Demining Information Man-
agement. In Proceedings of the Int. Conf. Requirements and Technologies for the
Detection, Removal and Neutralization of Landmines and UXO (2003) 82–87

7. Littmann, F., Roux, S. and Sieber, A.: The global minefield atlas concept. In
Proceedings of the Int. Conf. Requirements and Technologies for the Detection,
Removal and Neutralization of Landmines and UXO (2003) 71–77

8. Long, M., Gage, A., Murphy, R. and Valavanis, K.: Application of the Distributed
Field Robot Architecture to a Simulated Demining Task. In Proceedings of the
IEEE International Conference on Robotics and Automation (2005)

9. Mladineo, N. and Knezic, S.: DSS for humanitarian Humanitarian Demining – case
study Croatia. In Proceedings of the Int. Conf. Requirements and Technologies for
the Detection, Removal and Neutralization of Landmines and UXO (2003) 93–98

10. Pechoucek, M., Marik, V. and Barata, J.: A Knowledge-based Approach to Coali-
tion Formation. IEEE Intelligent Systems, 17 (2002) 17–25

11. Sahli, H., Bottoms, M. and Cornelis, J., eds: In Proceedings of the International
Conference on Requirements and Technologies for the Detection, Removal and
Neutralization of Landmines and UXO (2003)

Simulating Automatic High Bay Warehouses
Using Agents

Cornelia Triebig1, Tanja Credner1, Franziska Klügl1, Peter Fischer2,
Titus Leskien2, Andreas Deppisch2, and Stefan Landvogt2

1 University of Würzburg, Department of Artificial Intelligence
2 SSI-Schäfer-Noell GmbH, Giebelstadt

Abstract. In this contribution we want to present a collaboration
project between the Department for Artificial Intelligence at the Uni-
versity of Würzburg and SSI Schäfer Noell GmbH (Giebelstadt) using
multi-agent systems for simulating high bay warehouses.

1 Motivation

In scientific and industrial applications simulation forms an important and well
established method. Comprehension as well as the quality of design and control of
complex systems is improved and increased. Particularly the reduction of time
and thus cost gained in industrial applications is a significant aspect for the
growing application of simulation methods. In the field of material flow systems,
including high bay warehouses, established simulation technology, like queuing
systems or object-oriented simulation is successfully used. Here simulation is
applied mostly to generate performance measures or to test layout design.

Nevertheless, additional scenarios exist for the use of simulation supporting
high bay warehouse construction:

– testing control software using a virtual version of the high bay warehouse
before the real system is implemented and in use.

– generating reproducible error situations
– supporting design decisions in the beginning of the project
– simulation of the warehouse and control system for user training
– supporting requirement acquisition in discussion with the customer

Beyond appealing graphics specific requirements are posed on the simulation
software used for these application scenarios: The presentation of the warehouses
should be on a high level of detail. Changes in the warehouse configuration should
be easily and fast to perform. Because of high project pressure, it should be
possible to construct the model for simulation fast. Modeling should not require
simulation experts. It should be manageable by warehouse experts themselves.
These requirements are hardly fulfilled by standard simulation systems.

In the scope of our project we were able to show that the agent paradigm
allows highly flexible modeling on a sufficiently possible level of preciseness.
This level is accomplishable without costly training in modeling and simulation

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 653–656, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

654 C. Triebig et al.

techniques. In this collaboration project we use SeSAm (Shell for Simulated
Agent Systems, www.simsesam.de) that allows high-level visual programming of
multi-agent simulations.

2 SeSAm - A Simulation Environment

SeSAm is an open-source project developed by the Department for Artificial
Intelligence (University of Würzburg). It offers an generic environment for mod-
eling and analyzing with agent-based simulation. With SeSAm, a tool for easing
the construction of complex models is provided.

SeSAm provides different categories of objects which can be implemented in
simulations. These categories contain agent classes, resources and the so-called
world. Resources cannot act themselves. They are objects without any behavior.
The world represents the environment and is in fact an specialized agent. Each
of these objects can handle a number of own variables. Variables are used to
store the knowledge of the agent and to interact with other agents. An activity
graph defines the behavior of an agent. The syntax therefor is abutted to UML.
The actions which should be performed by an agent are defined by combining
atomic activities that are offered by SeSAm. Actions are grouped into activities
connected with directed edges that represent a condition. The agent will continue
with the next activity as soon as the connected condition is evaluated as true
during a simulation run.

For creating a real simulation run, a situation for the model needs to be
built. Instances of the agent classes are placed on the map. The starting values
of their variables can be edited. Thereafter the real simulation is ready to be
started. The definition ordinary simulations as described above is implemented
via the manipulation of graphical elements. If special requirements arise, e.g. the
need for communication with external systems, SeSAm can easily be extended
by Java-Plugins.

3 Simulation of High Bay Warehouses Using Agents

A high bay warehouse basically consists of transport routes for transport units,
and high bay storage and retrieval. In particular, there are different modules
like variable conveyor elements, scales and scanners, storage elements, but also
human operators. Each of these elements may be treated as an agent, that is as an
intelligent building block with local sensors and effectors. Beyond communication
within the virtual high bay warehouse, i.e. with other agents, there has to be
also communication with the warehouse control software.

Thus, reasonable arguments exist for using an agent-based approach for the
simulation of high bay warehouses:

– facile mapping of the warehouse components on agents (modularity)
– easy modeling of specific projects because of layout independent agents
– generic agents reusable in all models of this domain

Simulating Automatic High Bay Warehouses Using Agents 655

– detailed simulation with the integration of involved human beings, which
can compensate errors or malfunctions with their natural intelligence

The construction of eight actual high bay warehouse projects were supported by
agent-based simulation for testing the control software until now. The general
procedure is that we start with the development of a multi-agent simulation
of the high bay warehouse in SeSAm. The warehouse is concurrently build up.
Thus, details of the realworld warehouse can be adapted almost synchronously.

At the beginning of the collaboration project an agent set with a fixed and
also small number of agents were implemented. Therfore different kinds of mod-
ules as mentioned above were mapped to agents with a specific behavior. How-
ever, despite the reuseability of these agents, specific warehouse systems require
an adpation of the agent set. Therefore the agents are constructed as generic
as possible. The generic-ness of the agents supports the communication between
control software and agents. This communication is datagram-based, much like
some proprietary ACL-messages. The control software to test sends commands
in reaction to notifications or alarms the agent. This is implemented using the
plugin concept of SeSAm.

Agents may be grouped to higher-level components with some fixed orga-
nizational structure that again may be integrated into the overall virtual high
bay warehouse in the same way as atomic agents. We developed aggregates
partially with complex synchronization protocols, like storage-and-retrieval ma-
chines within their working environment, carousels for transport and delivery,
bidirectional conveyor lines and vertical conveyors as well as shuttle vehicles.

4 Practical Example: A Simulated High Bay Warehouse

In this section we want to present a succesfully implemented project. Before
the real system was implemented this high bay warehouse was simulated with
SeSAm. Figure 1 shows the complete high bay warehouse with its storage and
retrieval. For better understanding we added a legend showing the used agents.
Additionally we divided the illustration into three sections: (1) the storage and
retrieval area, (2) the part picking area and (3) the high rack storage area.

Section 1 shows Storage and Retrieval Points, conveyor line elements, Shuttle
Vehicles and Displays. Conveyor lines consist of two different conveyor elements:
Simple and Generic Conveyors. Simple Conveyors manage only one direction,
Generic ones manage several directions in which TUs can be routed. Each of
these agents is able to take only one TU at the same time. On Storage Points
Transport Units (TUs) enter the warehouse system. On Retrieval Points TUs
leave the system. In this project there is a Storage/Retrieval Point which offers
the functionality of a Storage as well as of a Retrieval Point. However, this
combined functionality causes difficulties: the connected conveyor line transports
bidirectionally. If one and the same conveyor line is used by both, entering and
leaving TUs, deadlocks can occur. To avoid this situation we implemented locked
areas. If a TU enters an area of bidirectional conveyor lines the area is locked
for other TUs. As soon as the TU has left the area, the area is unlocked and

656 C. Triebig et al.

Fig. 1. Screenshot of a high bay warehouse simulated with SeSAm

can be used by the next TU. Locked areas are realized with the plugin function
of SeSAm. In the right part of section 1 displays can be found which display
informations when TUs leave the system. Also in section 1 there are three shuttle
vehicles which connect or serve different conveyor lines.

Section 2 shows the part picking area where TUs are handled manually by
human part pickers. In the High Rack Storage (section 3 of figure 1) you can
additionally see the Storage Retrieval Machines serving the actual storage. The
representation of the storage is facilitated because there is no need in this project
to show in which way and on which place TUs are stored. If TUs enter the storage
they will be destroyed. In case of a retrieval request of stored TUs Storage Points
reproduce them.

5 Conclusion

Even with the first virtual warehouse we used, several errors in the control
software could be found and fixed before the real-world warehouse was available.
With every virtual warehouse the effort for its modeling was decreasing due to
the improved set of agents. Thus, even considering the relatively high effort for
modeling and designing the basic agent set in the beginning of the collaboration
projects, several ten thousands of Euros were saved.

Strategies for Distributed Underwater Survey

Milan Rollo1, Petr Novák2, and Pavel Jisl2

1 Center of Applied Cybernetics, Czech Technical University in Prague
2 Gerstner Laboratory, Czech Technical University in Prague,

Technická 2, Prague 6, 166 27 Czech Republic
{rollo, novakpe, jisl}@labe.felk.cvut.cz

Abstract. Underwater survey by a team of autonomous robots brings
couple of problems caused mainly by the communication restrictions due
to the nature of environment. Communication range and bandwidth are
very limited and individual robots can become temporarily inaccessible.
To allow robots’ efficient operation in such environment architecture of
control part of autonomous robot and new algorithms for decentralized
coordination within a group of such robots were developed. Besides these
this paper describes experiments addressing different area search and
video stream transmission path planning strategies.

1 Introduction

We decided to simulate the underwater survey problem [1] using a multi-agent
system as it represents a natural choice to model distributed systems consisting
of autonomous, self-interested entities like the teams of autonomous robots.

In such a type of scenario no dedicated central planning entity can be used:
(i) because of the limited communication accessibility, robots can easy get out of
the central entity’s communication range and (ii) in case of malfunction of this
entity robots without their own planning capabilities will fail to coordinate their
activities. Unlike the other works where authors investigate mainly the team
action planning activities e.g. [2,3], in this project we focused on communica-
tion and knowledge synchronization in environment with partial communication
inaccessibility and transmission path establishment algorithms.

2 Scenario Implementation

In our scenario goal of the group of autonomous robots (unmanned underwater
vehicles - UUVs) is to search a given coast area, detect and remove all mines
located there. To allow an object analysis video transmission path must be es-
tablished between the base (operated by human crew) and robot who found the
suspicions object. Due to the specific scenario features (environment simulation,
communication inaccessibility) we decided to use A-globe multi-agent platform
[4,5] as a simulation environment.

Two types of communication accessibility are simulated – high bandwidth
(very restrained, necessary for video transmissions) and signaling (higher than

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 657–660, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

658 M. Rollo, P. Novák, and P. Jisl

video but remains limited, used for coordination messages and position informa-
tion). Each robot consists of following components:

– Robot Pod simulator, computes robot moves and updates its position with
environment simulation server.

– Mine Detector simulator, provides the decision-making components with
information about suspicions objects found.

– Video data acquisition and transmission element. This subsystem creates
the video feed of suspicions object to the remote operator.

– Robot Coordinator implements search algorithm, transmission coalition
establishment and negotiation.

3 Distributing the Coordination Process

The process of agents’ coordination can be done centrally by a dedicated central
coordination agent. This agent may however become a bottleneck in situations
when several robots request new tasks at the same time or are out of the entity’s
communication range.

Coordination process can also be distributed among agents in several levels:
(i) there is no central coordination agent, each robot can become a coordinator
for a single feed planning process, (ii) coordination process is in parts distributed
among the agents, but the participating robots are preselected, and (iii) coordi-
nation process is distributed completely among the agents. There is no central
plan, robots negotiate in peer-to-peer manner.

The level-1 and level-2 distribution is desired for the increased efficiency,
flexibility and survivability of the coordination process. The level-3 distribution
of coordination makes sense only in the situations when it is impossible to bring
all the planning information to the coordinator.

3.1 Transmission Collaborators Search Strategies

To transmit the video stream of suspicions object to human operator, relaying
via several collaborators is usually required. If sufficient number of collaborators
is not available, robot can search for other robots to help him to build the feed:

Central Planning Algorithm: Using this algorithm robots do not form the
video feed immediately after the object is found, but store the object’s posi-
tion in memory and continue in search. Video stream of all objects is trans-
mitted on their way back to base, after the whole area is searched.

Relayed Collaborator Search Algorithm: Robot who finds suspicions ob-
ject becomes a coordinator of the transmission planning and asks other
robots within its communication range for their actual status and position.
Robots relay this information to their neighbors, etc. If sufficient number of
collaborators is found, coordinator uses this information to plan the feed.

Elastic Collaborator Search Algorithm: In some cases robots can not find
enough collaborators even when using the relayed communication. This al-
gorithm allows robot to leave the suspicions object and look for the missing
collaborators.

Strategies for Distributed Underwater Survey 659

3.2 Transmission Path Planning Algorithms

We have developed three different algorithms to build the ad-hoc data trans-
mission feed. The most straightforward are the approaches relying on a single
agent mastering the planning process. Upon finding the suspicions object, it re-
quests other visible robots to move to specific positions so that a high-bandwidth
transmission link between the object and the base is established.

When we optimize the communication quality, minimal possible number of
robots is used. On the other hand, when we try to minimize the impact on relay
robots’ own plans, relays are spread in the area between the transmission origin
and target, in the proximity of their original areas. In the third approach, the
control over the feed planning is not centralized, but rather passed along the
communication link relays when the connection is constructed.

Direct Line Transmission Path Planner (DLTP): It achieves the level-1
coordination process distribution. Robot who finds the suspicions object has
to select the best subset from all available robots. Positions of participants
are placed on the join of base and object position in periodic distances.
Length of this distance is equal to the video transmission range.

Minimal Time-To-Transmit Planner (M3TP): Using this planner more
than the minimal required number of robots can participate in video trans-
mission. Optimization criterion is to minimize the time the intermediate
robots spend on transmission. Optimal placement of robots can form a gen-
eral curve not only a line. It is computationally infeasible to search a whole
state space, new algorithm based on modified Dijkstra’s graph search algo-
rithm was thus developed.

Decentralized Planner (DP): Robot that found a suspicions object only ver-
ifies accessibility of minimal required number of robots. If such a number is
available, subset of all mutually accessible robots is selected to build a trans-
mission path. All these robots are then informed about their order in the
transmission path. Each of them then starts to move to the position where
both the previous and next robot in the feed are accessible for video trans-
mission and informs them about its new positions during the movement.

4 Experiments

A set of experiments was carried out, mainly to study the features of transmission
collaborators search strategies. We were using two different environment setups,
where the mines were placed: (i) in pattern and (ii) randomly with uniform
distribution. As shown in fig. 1 use of the central planning algorithm ensures that
all video streams will be transmitted online. For short transmission times this
algorithm performs best also for the overall area search duration. Relayed search
algorithm can be with advantages used in environments where each new detected
object can bring additional tasks. This algorithm can be also interrupted at
any moment and at least part of the area can be marked as searched. Use of
elastic search algorithm increases the number of online transmissions compared
to relayed search algorithm, but for the price of longer transmission times.

660 M. Rollo, P. Novák, and P. Jisl

Fig. 1. Central planning algorithm - de-
pendency of the number of online trans-
missions on length of transmission time

Fig. 2. Relayed communication - influ-
ence of communication range on the num-
ber of online transmissions

5 Conclusion and Future Work

Within this project we have developed a specific simulation environment using
the A-globe multi-agent platform. Main reason to develop such environment
was to enable a software simulation of real-life hardware robots where scalabil-
ity experiments and efficient development and verification of embedded decision
making algorithms can be carried out. The experiments conducted in the simu-
lation environment with various environment settings (movement speed, number
of mines, length of the transmission time) have proved that each collaborator
search strategy is suitable for different area of tasks (hydrographic or geophysical
surveys, minesweeping, etc.). Based on the actual task and environment features,
operator can decide which algorithm will be used.

Acknowledgement

The presented research has been in parts supported by Office for Naval Re-
search, project no.: N00014-03-1-0292 and by the Grants no.: 1M6840770004
and MSM6840770013 of the Ministry of Education, Youth and Sports of the
Czech Republic.

References

1. Benthos Inc.: Transport of Underwater Images, Virtual Acquisition Showcase 2004.
http://www.dawnbreaker.com/virtual2004/briefings/Benthos.pdf (2004)

2. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research
7 (1997) 83–124

3. Kaminka, G.A., Bowling, M.: Towards robust teams with many agents. Technical
report, Carnegie Mellon University, Pittsburgh, PA 15213 (2001)

4. Šǐslák, D., Rollo, M., Pěchouček, M.: A-globe: Agent platform with inaccessibility
and mobility support. In Klusch, M., Ossowski, S., Kashyap, V., Unland, R., eds.:
Cooperative Information Agents VIII, Springer-Verlag, Heidelberg (2004)

5. A-globe: A-globe Agent Platform. http://agents.felk.cvut.cz/aglobe (2005)

M. P chou ek, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 661 – 664, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Role of Ontologies in a Multi-agent Based Data
Integration System

Rahee Ghurbhurn1, Philippe Beaune1, and Hugues Solignac2

1 Génie Industriel et Informatique, Ecole des Mines de St Etienne,
158 cours Fauriel 42000 St Etienne, France
{ghurbhurn, beaune}@emse.Fr

2 STMicroelectronics, zi Peynier Rousset 13790 Rousset
Hugues.solignac@st.com

Abstract. In this paper, we present a flexible architecture allowing applications
to access heterogeneous distributed manufacturing data. The objective is to
eliminate data duplication and therefore the need for their synchronization and
complex update. We propose a multiagent architecture based on ontologies for
integrating the different data sources and for retrieving desired data. Web
services are also used for agent-application communication. This is still an on-
going work.

1 Introduction

Let’s consider an information system composed of ERPs, data-warehouses, data bases
and applications exploiting data found in these repositories for statistical analysis,
production planning etc. Due to changes in the technological or business environment,
several changes taking the form of modifications in the data sources’ physical or
logical structure, replacement of a data source or replacement of an application may
arise. These changes will impact the whole information system as the elements
composing the system are tightly coupled, through the use of ERPs or hard coded
queries.

Moreover, data may be organised into two layers. Second layer data sources being
data sources that may collect, aggregate, transform data sub-sets from several first
layer (master) data sources. The update of second layer data sources may be triggered
manually, by the system administrator, or automatically at a regular interval of time.
The applications, forming the information system, may sometimes either be linked to
first layer or second layer data sources or both. The problem with second layer data
sources is that they need some synchronization with the first layer data sources. This
synchronization is rendered more complex by the fact that the repositories may have a
different storage (relational schema, table names) and data structure (primary key,
data type, data size), making it difficult to establish a mapping.

The dual objective of this paper is to firstly show how MAS and ontologies can
help to achieve greater flexibility in the information system’s architecture. That is
reduce the impact, on the information system’s architecture, of addition, removal or
modification of applications or data sources. In other words loosen the links between
the applications and the data sources while providing a single, knowledge base, point

662 R. Ghurbhurn, P. Beaune, and H. Solignac

of entry for information retrieval from multiple heterogeneous data sources. Secondly
how the use of a MAS and ontologies can help to achieve flexible semantic
applications integration. The idea is to device web services representing business
functions of applications we want to integrate, and use an ontology to convert the
output of one application into an input format that can be understood by another.

We propose, in this paper, a Multi-agent system (MAS) [2] [3] [4] [7] that allows
the application to directly retrieve data from the first layer data sources. Thus no
update is needed and users can retrieve all the desired attributes. The knowledge
contained in the data sources and the relationship existing between them is defined in
an ontology [1][5]. The latter is used by an application to formulate user queries in
terms of concepts. These queries are sent, by the application via messages, to the
MAS, which finds its corresponding location(s) and retrieves the required data.

This paper is organized as follows. In section 2 we will briefly present a sub-set of
an information system’s architecture that will be used for our research. Section 3
describes the proposed architecture based on a data integration ontology [8] and
MAS. In section 4 we will give a conclusion and some future works.

2 Information System’s Context

Let us consider a maintenance-planning problem in an integrated circuit
manufacturing company. To illustrate our problem, let us suppose that we have three
data sources (Maintenance, Human Resource and Equipment) and an application.

The Human Resource data source (HRDS) stores personal and trainings data. The
latter is frequently updated, due to a rapidly evolving environment. The
manufacturing staff is regularly trained on new processes, new equipments and
products to ensure a certain level of competence. These trainings are valid for a time
period. Beyond this period, the concerned manufacturing staff members are no longer
authorized to work on the machines.

The manufacturing data source (MDS) is fed with data coming from the different
equipments, be it production, testing or control equipments. The stored data is
aggregated before being dispatched to more specific applications for monitoring and
production planning tasks.

The equipment data source (EDS) stores information about past maintenance
actions but also documentations about the maintenance actions corresponding to each
equipment.

The application is responsible for providing a list of machines to be serviced with
the corresponding maintenance actions to be performed. It also provides a list of
technicians authorized to perform these actions. To provide such an information, the
application has to access the three data sources.

The critical point here is that the manufacturing and human resource data are
manually fed into the EDS. Thus there is no access to the original MDS and HRDS.
This poses the problem of data synchronization and data update between EDS and the
other data sources. This synchronization is rendered more complex by the fact that the
data stored in the EDS may have a different storage (relational schema, table names.)
and data structure (primary key, data type, data size), making it difficult to establish a
mapping.

 The Role of Ontologies in a Multi-agent Based Data Integration System 663

We propose to use an ontology to model the knowledge contained in the data
sources and relationships between them. This ontology is used by a MAS to retrieve
the appropriate data before communicating it to the requesting application. Our
proposal is explained in the following section.

3 Knowledge Retrieval and MAS

Our proposition consists in building an ontology, expressed in OWL, modelling the
targeted users’ domains’ knowledge. For each property of the model, we define the
location of the corresponding data in the data sources. This association, done
manually by the user or the administrator, consists in associating the different data
source attributes, retrieved by the resource agents, to the ontology’s properties. This
approach is less tedious than that followed by the Museum of Finland [6] as it
requires less human intervention. Indeed, in our case, human intervention is limited
ontology building and a simple concept/attribute association whereas in the case of
the Museum of Finland the administrator has to build the ontology, the XML rules
corresponding to the concepts’ structure in the data sources, instantiate the rules with
XQuery and choose the appropriate concept in case of multiple result.

 To link the applications to the MAS web service connectors are defined for all the
applications therefore providing a standard means to plug a new application to the
MAS for data retrieval. During the initialisation, the application sends a SOAP
message to a query database and retrieves the available predefined queries. These
queries are proposed to users who compose and validate their queries. The latter is
embodied into a SOAP message and is sent to the MAS for data retrieval.

Fig. 1. The Proposed Architecture

For example in our context, one predefined query may be “Is employee having
ID145 authorized to perform task number 158 on equipment xv156gt?" The task
agent receives and decodes a SOAP message, locates the ontology agent, by means of
the middle agent, and sends the query. The query is automatically converted, by the
ontology agent, into appropriate SQL queries by means of the conversion matrix. The
SQL queries are then dispatched to the appropriate resource agents who retrieve and
send the data back to the task agent. The task agent sends the results, in a structured

Application

WS Connector Task Agent

Middle Agent Ontology Agent Ressource Agent

Monitoring Agent
Ressource Agent

Ressource AgentAdmin Agent

H. Resource

Maintenance

Equipment

System Administration Query Answering

QueryDB

664 R. Ghurbhurn, P. Beaune, and H. Solignac

form, back to the web service via a SOAP message. A monitoring agent that
computes performance indicators monitors all the agents.

A special agent allowing the systems administrator to build and maintain the
ontology does the administration of the system. When ever a change in the data
sources’ data structures (removal/addition of an attribute or table) is made, a message
is sent by the concerned resource agent to the ontology agent, via the admin agent, to
evaluate the impact on the ontology. In case of simple changes (addition or removal
of attributes), we may allow the ontology agent to update the ontology and in more
complex cases the agent sends an alert message to the ontology administrator.
Another task of the administration agents is to allow the testing of new queries before
proposing them to the users via the query database (QueryDB). This function may
prove to be useful when adding new data sources.

4 Conclusion

In this paper we presented a data retrieval architecture based on multi agents and
ontologies. This architecture proposes an alternative to data duplication therefore
avoiding the need of data synchronization and the necessary integrity controls. We are
currently implementing our ontology-data source linking method. After this
implementation phase performance tests will be performed and a comparison with the
first method made.

References

[1] T.R.Gruber. “Towards Principles for the Design of Ontologies Used for Knowledge
Sharing”, International Workshop on Formal Ontology, N. Guarino & R. Poli, (Eds.),
Padova, Italy, 1993

[2] P.M.Hatch 2001. Multiagent System Infrastructures for Information Integration on the
Web.

[3] NR Jennings, K. Sycara, M. Wooldrige, “A Roadmap of Agent Research and
development”.International Journal of Autonomous Agents and Multi-agents
Systems1(1),1998, 7-38.

[4] N.R.Jennings, M. Wooldrige. “Intelligent Agent: Theory and Practice”.The Knowledge
Engineering Review. 10(2), 1995, pp.115-152.

[5] N.F. Noy, D. L. McGuinness. “Ontology Development 101 : A guide to creating your first
ontology.” Stanford University, Stanford, CA, USA, 2001.

[6] V. Raatikka and E. Hyvonen. “Ontology-based semantic metadata validation.” HIIT
Publications number 2002-03, Helsinki Institute for InformationTechnology (HIIT),
Helsinki, Finland, 2002.

[7] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng, "Distributed Intelligent
Agents," IEEE Expert, 1996.

[8] H.Wache “Ontology-Based Integration of Information - A Survey of Existing
Approaches”.IJCAI-01 Ontologies and Information Sharing Workshop.” 2001.

Author Index

Adam, Emmanuel 539
Akin, Erhan 306
Aknine, Samir 11
Alonso, Fernando 21, 193
Annicchiarico, R. 92
Antonio, Angélica de 82
Argente, Estefania 645
Aucher, Guillaume 276
Avila-Rosas, Arturo 460

Babczyński, Tomasz 612
Bădică, Costin 555
Balbo, Flavien 531
Bandini, Stefania 521
Barata, José 649
Barrué, C. 92
Beaune, Philippe 112, 661
Benedico, T. 92
Berger, Alexandra 31
Bernon, Carole 440
Boissier, Olivier 112
Botelho, Lúıs 535
Botti, Vicente 608, 645
Bouzouane, Abdenour 547
Bucur, Oana 112
Burguillo, Juan C. 72

Calisti, Monique 1
Caltagirone, C. 92
Cardoso, Henrique Lopes 256
Carrascosa, Carlos 608
Cetnarowicz, Krzysztof 490
Chen, Xueguang 604
Ci ↪eciwa, Renata 490
Collier, Rem 624
Cortés, U. 92
Cossentino, Massimo 183
Crailsheim, Karl 246
Credner, Tanja 653
Csáji, Balázs Csanád 388

Deguet, Joris 616
Demazeau, Yves 480, 616
Denti, Enrico 163
Deppisch, Andreas 653

Dezsényi, Csaba 620
Dignum, F.P.M. 326
Discenzo, Frederick M. 500
Dix, Jürgen 398
Dobrowiecki, Tadeusz P. 620
Dobrowolski, Grzegorz 132, 173
Duman, Erkan 306
Dunne, Paul E. 408
Dunnion, John 624

Egri, Péter 346
El Fallah Seghrouchni, Amal 41
Erdogan, Nadia 102
Ermolayev, Vadim 511
Escoda, J. 92
Evans, Andrew J. 551

Faci, Nora 430
Fan, Shaofeng 296
Farkas, Csilla 579
Fernández-Caballero, Antonio 583
Fiorino, Humbert 367
Fischer, Peter 653
Flores, Lúıs 649
Frutos, Sonia 21, 193

Gaglio, Salvatore 183
Ganzha, Maria 555
Gao, Ji 62
Garćıa, Lúıs A. 213
Georgé, Jean-Pierre 450
Gerőfi, B. 591
Gheorghe, Marian 122
Ghurbhurn, Rahee 661
Giannetti, Lucilla 500
Giret, Adriana 645
Gleizes, Marie-Pierre 440, 450
González, Carolina 72
González, Pascual 583
Gorodetsky, Vladimir 511
Greenwood, Dominic 1
Gu, Guochang 576
Guessoum, Zahia 316, 430
Gulyás, László 336

666 Author Index

Hév́ızi, Gy. 591
Hameurlain, Nabil 153
Henderson-Sellers, Brian 142
Heppenstall, Alison J. 551
Herik, Jaap van den 377
Holvoet, Tom 640
Hoshi, Kensaku 236

Imbert, Ricardo 82
Iványi, Márton 336

Jamroga, Wojciech 398
Jennings, Nicholas R. 223
Jentzsch, Eyck 511
Jisl, Pavel 657
Jonge, Femke de 377
Julian, Vicente 645
Jung, Bernhard 51
Jung, Hyuckchul 418

Kádár, Botond 595
Karsaev, Oleg 511
Karunatillake, Nishan C. 223
Katoh, Takashi 236
Kaya, Mehmet 306
Keberle, Natalya 511
Kefalas, Petros 122
Kisiel-Dorohinicki, Marek 132
Klügl, Franziska 653
Koźlak, Jaros�law 132, 568
Kovács, Dániel L. 266
Kruczkiewicz, Zofia 612

Landvogt, Stefan 653
Laufer, László 336
Lazzari, Lorenzo 636
Lefever, Tom 640
Leskien, Titus 653
Li, Zeng-Zhi 628
Liao, Beishui 62
Lillis, David 624
Lin, Zuoquan 296
Liu, Z. 604
Llamas, Martin 72
Lopes, António 535
López, Genoveva 21
López-Jaquero, Vı́ctor 583
Lőrincz, András 579, 591
Luck, Michael 460

Magott, Jan 612
Maldonado, Patricia 608
Mandiau, René 539
Manzoni, Sara 521
Mari, Marco 636
Mart́ınez, A.B. 92
Mart́ınez, Löıc 193
Maturana, Francisco P. 500
Matzke, Wolf-Ekkehard 511
McFarland, Olga E. 551
Melaye, Dimitri 480
Méndez, Gonzalo 82
Mészáros, Tamás 620
M’Hallah, Rym 316
Molesini, Ambra 163
Molina, José P. 583
Monostori, László 388, 595
Montero, Francisco 583
Moorman, J. 326
Mors, Adriaan ter 600
Mur, Angel 624
Muscalagiu, Ionel 286

Nawarecki, Edward 132
Negri, Alessandro 636
Norman, Timothy J. 223
Novák, Petr 657

Oliveira, Eugénio 256
Omicini, Andrea 163
Oprea, Mihaela 632

Padgham, Lin 203
Palotai, Zsolt 579
Paprzycki, Marcin 555
Partsakoulakis, Ioannis 564
Pěchouček, Michal 470, 572
Pellier, Damien 367
Peng, Liu 624
Perepletchikov, Mikhail 203
Pesty, Sylvie 31
Petta, Paolo 51
Pfeiffer, András 595
Picard, Gauthier 440
Pinson, Suzanne 531
P̂ırvănescu, Amalia 555
Poggi, Agostino 636
Pumputis, Alvydas 559

Author Index 667

Qi, Jian-Jun 628
Quenum, José Ghislain 11

Rahwan, Iyad 223
Ramı́rez, Jaime 82
Raudys, Sarunas 559
Rehák, Martin 470
Rejeb, Lilia 316
Rimassa, Giovanni 1
Rojek, Gabriel 490
Rollo, Milan 657
Rongen, P.H.H. 326
Roos, Nico 357, 377
Rykowski, Jarogniew 587

Sabatucci, Luca 183
Samoylov, Vladimir 511
Santana, Pedro 649
Saunier, Julien 531
Schelfthout, Kurt 640
Schmickl, Thomas 246
Schröder, J. 326
Seidita, Valeria 183
Shiratori, Norio 236
Śnieżyński, Bart�lomiej 568
Solignac, Hugues 661
Song, Meiping 576
Soriano, F. Javier 21, 193
Stamatopoulou, Ioanna 122
Suna, Alexandru 41
Szendrő, B. 591

Tambe, Milind 418
Tatai, Gábor 336
Thenius, Ronald 246
Tožička, Jan 470, 572
Tomás, Vicente R. 213
Toolan, Fergus 624
Triebig, Cornelia 653

Ugurlu, Suat 102

Valero, Soledad 645
Valk, Jeroen 600
Váncza, József 346
Vizzari, Giuseppe 521
Vouros, George 564

Weyns, Danny 640
Wielemans, Jan 640
Witteveen, Cees 357, 600
Wu, Qing 543
Wu, Zhaohui 543

Yi, Weihua 604
Yue, Anbu 296

Zargayouna, Mahdi 531
Železný, Filip 572
Zhang, C.H. 604
Zhang, Guoyin 576
Zhang, Runjie 296
Zhao, Xinyu 296

	Frontmatter
	Invited Paper
	Palpable Computing and the Role of Agent Technology

	Research Papers
	Agent Communication, Interaction Protocols and Mechanisms
	A Dynamic Joint Protocols Selection Method to Perform Collaborative Tasks
	A Formal Framework for Interaction Protocol Engineering
	Towards a Conversational Language for Artificial Agents in Mixed Community
	Adaptive Mobile Multi-agent Systems

	Agent Models and Architectures
	Agent Encapsulation in a Cognitive Vision MAS
	A Model of Multi-agent System Based on Policies and Contracts
	Case-Based Student Modeling in Multi-agent Learning Environment
	Intelligent Virtual Environments for Training: An Agent-Based Approach
	Patient Driven Mobile Platform to Enhance Conventional Wheelchair, with Multiagent System Supervisory Control
	SECMAP: A Secure Mobile Agent Platform
	What Is Context and How Can an Agent Learn to Find and Use it When Making Decisions?

	Agent Oriented Software Engineering, Modelling and Methodologies
	A Formal Modelling Framework for Developing Multi-agent Systems with Dynamic Structure and Behaviour
	Discovery of Crises via Agent-Based Simulation of a Transportation System
	Evaluating the Feasibility of Method Engineering for the Creation of Agent-Oriented Methodologies
	Formalizing Compatibility and Substitutability of Rolebased Interactions Components in Multi-agent Systems
	MAS Meta-models on Test: UML vs. OPM in the SODA Case Study
	Programming an Agent as Abstract State Machine
	The PASSI and Agile PASSI MAS Meta-models Compared with a Unifying Proposal
	The Synthesis Stage in the Software Agent Development Process
	Use Case and Actor Driven Requirements Engineering: An Evaluation of Modifications to Prometheus

	Coordination, Teamwork, Social Knowledge and Social Reasoning
	Agent-Based Management of Non Urban Road Meteorological Incidents
	Arguing and Negotiating in the Presence of Social Influences
	Cooperative Behavior of Agents Based on Potential Field
	The ``Dance or Work'' Problem: Why Do not all Honeybees Dance with Maximum Intensity
	Towards an Institutional Environment Using Norms for Contract Performance
	Virtual Games: A New Approach to Implementation of Social Choice Rules

	Formal Methods and Logic in MAS
	How Our Beliefs Contribute to Interpret Actions
	The Effect of Flag Introduction on the Explosion of Nogood Values in the Case of ABT Family Techniques
	Toward a Formal Theory of Belief, Capability and Promise Incorporating Temporal Aspect

	Learning and Evolution of MAS
	A Multi-agent Fuzzy-Reinforcement Learning Method for Continuous Domains
	An Adaptive Approach for the Exploration-Exploitation Dilemma for Learning Agents

	Personal Agents and Agent-Based User Interfaces
	A Multi Agent Approach to Interest Profiling of Users
	vBroker: Artificial Agents Helping to Stock Up on Knowledge

	Planning and Scheduling in MAS
	Cooperative Planning in the Supply Network -- A Multiagent Organization Model
	Diagnosis of Plans and Agents
	Dialectical Theory for Multi-agent Assumption-Based Planning
	Keeping Plan Execution Healthy
	Stochastic Reactive Production Scheduling by Multi-agent Based Asynchronous Approximate Dynamic Programming

	Scalability, Robustness and Performance Issues
	Do Agents Make Model Checking Explode (Computationally)?
	Multiagent Resource Allocation in the Presence of Externalities
	On Communication in Solving Distributed Constraint Satisfaction Problems
	Towards Reliable Large-Scale Multi-agent Systems

	Self-organising Systems in Emergent Organisations
	Emergent Timetabling Organization
	Experiments in Emergent Programming Using Self-organizing Multi-agent Systems

	Trust, Reputation, Reliability, Security and Intrusion Detection
	A Direct Reputation Model for VO Formation
	Adversarial Behavior in Multi-agent Systems
	Bayesian Dynamic Trust Model
	Behavior Evaluation with Actions' Sampling in Multi-agent System

	Application Papers
	Agent-Based Control of a Municipal Water System
	Agent-Based Framework for Simulation and Support of Dynamic Engineering Design Processes in PSI
	Situated Agents and the Web: Supporting Site Adaptivity

	Short Research Papers
	Agent Communication, Interaction Protocols and Mechanisms
	An Operational Model for Mutual Awareness
	Chomsky: A Content Language Translation Agent

	Agent Models and Architectures
	Roles and Hierarchy in Multi-agent Organizations
	Semantic and Virtual Agents Model in Adaptive Middleware Architecture for Smart Vehicle Space
	Towards an Authority Sharing Based on the Viewpoint Action Model

	Coordination, Teamwork, Social Knowledge and Social Reasoning
	Application of Multi-agent Systems and Social Network Theory to Petrol Pricing on UK Motorways
	Combining Rule-Based and Plug-in Components in Agents for Flexible Dynamic Negotiations
	Group Interests of Agents Functioning in Changing Environments
	Policies for Common Awareness in Organized Settings

	Learning and Evolution of MAS
	Learning in a Multi-agent Approach to a Fish Bank Game
	Modelling of Agents' Behavior with Semi-collaborative Meta-agents
	Pareto-Q Learning Algorithm for Cooperative Agents in General-Sum Games
	Selection in Scale-Free Small World

	Personal Agents and Agent-Based User Interfaces
	A Multi-agent System Architecture for the Adaptation of User Interfaces
	ACE Agents -- Mass Personalized Software Assistance
	Assisting Robotic Personal Agent and Cooperating Alternative Input Devices for Severely Disabled Children

	Planning and Scheduling in MAS
	Building Agent-Based Systems in a Discrete-Event Simulation Environment
	Complexity of Task Coordination for Non Cooperative Planning Agents
	Resource Coordination on MAS Multi-plans Context
	Using Negotiation Techniques as Time-Restricted Scheduling Policies on Intelligent Agents

	Scalability, Robustness and Performance Issues
	Performance Comparison of Multi-agent Systems

	Self-organising Systems in Emergent Organisations
	A Complexity Based Feature to Support Emergence in MAS
	Adaptive Document Analysis with Planning
	A Self-configuring Agent-Based Document Indexing System

	Trust, Reputation, Reliability, Security and Intrusion Detection
	Managing Trust for Secure Active Networks

	Short Application Papers
	A Case Study of Agent-Based Virtual Enterprise Modelling
	Agent-Based Support for Open Communities
	Architecture-Centric Development of an AGV Transportation System
	Goodness and Lacks of MAS Methodologies for Manufacturing Domains
	Multiagents Applied to Humanitarian Demining
	Simulating Automatic High Bay Warehouses Using Agents
	Strategies for Distributed Underwater Survey
	The Role of Ontologies in a Multi-agent Based Data Integration~System

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

