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Abstract. CiteSeer is a well-known online resource for the computer
science research community, allowing users to search and browse a large
archive of research papers. Unfortunately, its current centralized incar-
nation is costly to run. Although members of the community would pre-
sumably be willing to donate hardware and bandwidth at their own sites
to assist CiteSeer, the current architecture does not facilitate such dis-
tribution of resources. OverCite is a proposal for a new architecture for a
distributed and cooperative research library based on a distributed hash
table (DHT). The new architecture will harness resources at many sites,
and thereby be able to support new features such as document alerts
and scale to larger data sets.

1 Introduction

CiteSeer is a popular repository of scientific papers for the computer science
community [12], supporting traditional keyword searches as well as navigation
of the “web” of citations between papers. CiteSeer also ranks papers and authors
in various ways, and can identify similarity among papers. Through these and
other useful services, it has become a vital resource for the academic computer
science community.

Despite its community value, the future of CiteSeer is uncertain without a
sustainable model for community support. After an initial period of development
and deployment at NEC, CiteSeer went mostly unmaintained until a volunteer
research group at Pennsylvania State University recently took over the consid-
erable task of running and maintaining the system (see Table 1).

If CiteSeer were required to support many more queries, implement new
features, or significantly expand its document collection or its user base, the
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resources required would quickly outstrip what PSU, or any other single non-
commercial institution, could easily provide. A commercially-managed system,
such as Google Scholar, is one feasible solution; however, because of CiteSeer’s
value to the community, it is likely that many institutions would be willing to do-
nate the use of machines and bandwidth at their sites in return for more control
over its evolution. Thus, for CiteSeer to prosper and grow as a noncommercial
enterprise, it must be adapted to run on a distributed set of donated nodes [11].

OverCite is a design that allows such an aggregation of distributed resources,
using a DHT infrastructure. Our emphasis is not on the novelty of the design,
but on its benefits. The DHT’s role as a distributed storage layer, coupled with
its robust and scalable models for data management and peer communication,
allows the decentralization of the CiteSeer infrastructure and the inclusion of
additional CPU and storage resources. Besides serving as a distributed, robust
archive of data, the DHT simplifies the coordination of distributed activities,
such as crawling. Finally, the DHT acts as a rendezvous point for producers and
consumers of meta-data and documents.

By potentially aggregating many resources in this manner, CiteSeer could
offer many more documents and features, enabling it to play an even more central
role in the community. We are currently developing an OverCite prototype, and
hope to make it available as a service to the community in the future.

2 CiteSeer Background

CiteSeer’s major components interact as follows. A Web crawler visits a set of
Web pages that are likely to contain links to PDF and PostScript files of research
papers. If it sees a paper link it hasn’t already fetched, CiteSeer fetches the file,
parses it to extract text and citations, and checks whether the format looks like
that of an academic paper. Then it applies heuristics to check if the document
duplicates an existing document; if not, it adds meta-data about the document
to its tables, and adds the document’s words to an inverted index. The Web user
interface accepts search terms, looks them up in the inverted index, and displays
data about the resulting documents.

CiteSeer assigns a document ID (DID) to each document for which it has
a PDF or Postscript file, and a citation ID (CID) to every bibliography entry
within a document. CiteSeer also knows about the titles and authors of many
papers for which it has no file, but to which it has seen citations. For this reason
CiteSeer also assigns a “group ID” (GID) to each title/author pair for use in
contexts where a file is not required.

CiteSeer uses the following tables:

1. The document meta-data table, indexed by DID, which records each doc-
ument’s authors, title, year, abstract, GID, CIDs of document’s citations,
number of citations to the document, etc.

2. The citation meta-data, indexed by CID, which records each citation’s GID
and citing document DID.
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Table 1. Statistics for the PSU CiteSeer deployment

Property Measurement

Number of papers (# of DIDs) 715,000

New documents per week 750

HTML pages visited 113,000

Total document storage 767 GB

Avg. document size 735 KB

Total meta-data storage 44 GB

Total inverted index size 18 GB

Hits per day >1,000,000

Searches per day 250,000

Total traffic per day 34.4 GB

Document traffic per day 21 GB

Avg. number of active conns 68.4

Avg. load per CPU 66%

3. A table mapping each GID to the corresponding DID, if a DID exists.
4. A table mapping each GID to the list of CIDs that cite it.
5. An inverted index mapping each word to the DIDs of documents that contain

that word.
6. A table indexed by the checksum of each fetched document file, used to

decide if a file has already been processed.
7. A table indexed by the hash of every sentence CiteSeer has seen in a docu-

ment, used to gauge document similarity.
8. A URL status table to keep track of which pages need to be crawled.
9. A table mapping paper titles and authors to the corresponding GID, used

to find the target of citations observed in paper bibliographies.

Table 1 lists statistics for the current deployment of CiteSeer at PSU. Cite-
Seer uses two servers, each with two 2.8 GHz processors. Most of the CPU time
is used to satisfy user searches. The main costs of searching are lookups in the
inverted index, collecting and displaying meta-data about search results, and
converting document files to user-requested formats. The primary costs of in-
serting new documents into CiteSeer are extracting words from newly found
documents, and adding the words to the inverted index. It takes about ten sec-
onds of CPU time to process each new document.

3 OverCite Design

The primary goal of OverCite is to spread the system’s load over a few hundred
volunteer servers. OverCite partitions the inverted index among many partici-
pating nodes, so that each node only indexes a fraction of the documents. This
parallelizes the work of creating, updating, and searching the index. OverCite
executes the user interface on many nodes, thus spreading the work of serving
files and converting between file formats. OverCite stores the document files
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in a DHT, which spreads the burden of storing them. OverCite also stores its
meta-data in the DHT for convenience, to make all data available to all nodes,
and for reliability. The choice of a DHT as a shared storage medium ensures
robust, scalable storage along with the efficient lookup and management of doc-
uments and meta-data. OverCite partitions its index by document, rather than
keyword [13, 18, 21, 22], to avoid expensive joins on multi-keyword queries, and
limit the communication necessary on document insertions.

3.1 Architecture

OverCite nodes have four active components: a DHT process, an index server, a
web crawler, and a Web server that answers queries. Isolating the components
in this manner allows us to treat each independently; for example, the inverted
index is not tied any particular document storage solution. We describe each
component in turn.

DHT process. OverCite nodes participate in a DHT. The DHT provides robust
storage for documents and meta-data, and helps coordinate distributed activities
such as crawling. Since OverCite is intended to run on a few hundred stable
nodes, each DHT node can keep a full routing table and thus provide one hop
lookups [9, 15, 14]. Because we expect failed nodes to return to the system with
disks intact in most cases, and because all the data is soft state, the DHT can
be lazy about re-replicating data stored on failed nodes.

Index server. To avoid broadcasting each query to every node, OverCite par-
titions the inverted index by document into k index partitions. Each document
is indexed in just one partition. Each node maintains a copy of one index parti-
tion, so that if there are n nodes, there are n/k copies of each index partition.
OverCite sends a copy of each query to one server in each partition, so that only
k servers are involved in each query. Each of the k servers uses about 1/k’th of
the CPU time that would be required to search a single full-size inverted index.
Each server returns only the DIDs of the m highest-ranked documents (by some
specified criterion, such as citation count) in response to a query.

We can further reduce the query load by observing that many queries over
the CiteSeer data will involve only paper titles or authors. In fact, analysis of
an October 2004 trace of CiteSeer queries shows that 40% of answerable queries
match the title or author list of at least one document. Furthermore, a complete
index of just this meta-data for all CiteSeer papers is only 50 MB. Thus, an
effective optimization may be to replicate this full meta-data index on all nodes,
and keep it in memory, as a way to satisfy many queries quickly and locally.
Another option is to replicate an index containing common search terms on all
nodes. Moreover, if we would like to replicate the full text index on all nodes for
even faster queries (i.e., k = 1), we may be able to use differential updates to
keep all nodes up-to-date on a periodic basis, saving computation at each node
when updating the index.

In future work we plan to explore other possible optimizations for distributed
search (e.g., threshold aggregation algorithms [7]). If query scalability becomes
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Table 2. The data structures OverCite stores in the DHT

Name Key Value

Docs DID FID, GID, CIDs, etc.

Cites CID DID, GID

Groups GID DID + CID list

Files FID Document file

Shins hash(shingle) list of DIDs

Crawl list of page URLs

URLs hash(doc URL) date file last fetched

Titles hash(Ti+Au) GID

an issue, we plan to explore techniques from recent DHT search proposals [10,
8, 17, 19, 22, 1] or unstructured peer-to-peer search optimizations [23, 4].

Web crawler. The OverCite crawler design builds on several existing proposals
for distributed crawling (e.g., [5,16,3,20]). Nodes coordinate the crawling effort
via a list of to-be-crawled page URLs stored in the DHT. Each crawler process
periodically chooses a random entry from the list and fetches the corresponding
page. When the crawler finds a new document file, it extracts the document’s
text words and citations, and stores the document file, the extracted words, and
the document’s meta-data in the DHT. The node adds the document’s words to
its inverted index, and sends a message to each server in the same index partition
telling it to fetch the document’s words from the DHT and index them. A node
keeps a cache of the meta-data for documents it has indexed, particularly the
number of citations to the paper, in order to be able to rank search results locally.
While many enhancements to this basic design (such as locality-based crawling
and more intelligent URL partitioning) are both possible and desirable, we defer
a more complete discussion of the OverCite crawler design to future work.

Web-based front-end. A subset of OverCite nodes run a Web user interface,
using round-robin DNS to spread the client load. The front-end accepts query
words from the user, sends them to inverted index servers, collects the results
and ranks them, fetches meta-data from the DHT for the top-ranked results,
and displays them to the user. The front-end also retrieves document files from
the DHT, optionally converts them to a user-specified format, and sends them
to the user.

3.2 Tables

Table 2 lists the data tables that OverCite stores in the DHT. The tables are
not explicitly distinct entities in the DHT. Instead, OverCite uses the DHT as a
single large key/value table; the system interprets values retrieved from the DHT
based on the context in which the key was found. These tables are patterned
after those of CiteSeer, but adapted to storage in the DHT. These are the main
differences:
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– The Files table holds a copy of each document PDF or PostScript file, keyed
by the FID, a hash of the file contents.

– Rather than use sentence-level duplicate detection, which results in very
large tables of sentences, OverCite instead uses shingles [2], a well-known
and effective technique for duplicate detection. The Shins table is keyed by
the hashes of shingles found in documents, and each value is a list of DIDs
having that shingle.

– The Crawl key/value pair contains the list of URLs of pages known to contain
document file URLs, in a single DHT block with a well-known key.

– The URLs table indicates when each document file URL was last fetched. This
allows crawlers to periodically re-fetch a document file to check whether it
has changed.

In addition to the tables stored in the DHT, each node stores its partition
of the inverted index locally. The index is sufficiently annotated so that it can
satisfy queries over both documents and citations, just as in the current CiteSeer.

4 Calculations

OverCite requires more communication resources than CiteSeer in order to man-
age the distribution of work, but as a result each server has less work to do. This
section calculates the resources consumed by OverCite, comparing them to the
costs of CiteSeer.

4.1 Maintenance Resources

Crawling and fetching new documents will take approximately three times more
bandwidth than CiteSeer uses in total, spread out over all the servers. For each
link to a Postscript or PDF file a node finds, it performs a lookup in URLs
to see whether it should download the file. After the download, the crawler
process checks whether this is a duplicate document. This requires (1) looking
up the FID of the file in Files; (2) searching for an existing document with
the same title and authors using Titles; and (3) verifying that, at a shingle
level, the document sufficiently differs from others. These lookups are constant
per document and inexpensive relative to downloading the document. Steps (2)
and (3) occur after the process parses the document, converts it into text, and
extracts the meta-data.

If the document is not a duplicate, the crawler process inserts the document
into Files as Postscript or PDF, which costs as much as downloading the file,
times the overhead f due to storage redundancy in the DHT [6]. The node also
inserts the text version of the document into Files and updates Docs, Cites,
Groups, and Titles to reflect this document and its meta-data.

Next, the node must add this document to its local inverted index partition
(which is stored a total of n/k nodes). However, each additional node in the same
index partition need only fetch the text version of the file from Files, which is
on average a tenth the size of the original file. Each of these n/k nodes then
indexes the document, incurring some cost in CPU time.
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Fig. 1. The timeline of a query in OverCite, and the steps involved. Each vertical bar
represents a node with a different index partition.

The additional system bandwidth required by OverCite to crawl and insert
a new document is dominated by the costs of inserting the document into the
DHT, and for the other nodes to retrieve the text for that document. If we
assume that the average original file size is x, and the size of the text files is
on average x/10, then the approximate bandwidth overhead per document is
fx + (n/k)(x/10) bytes.

We estimate the amount of storage needed by each node as follows. The DHT
divides document and table storage among all n nodes in the system: this requires
(d + e)f/n GB, where d and e are the amount of storage used for documents
and meta-data tables, respectively. Furthermore, each node stores one partition
of the inverted index, or i/k GB if i is the total index size.

These bandwidth and storage requirements depend, of course, on the system
parameters chosen for OverCite. Some reasonable design choices might be: n =
100 (roughly what PlanetLab has obtained through donations), k = 20 (so that
only a few nodes need to index the full text of each new document), and f = 2
(the value DHash uses [6]). With these parameter choices, and the measurements
from CiteSeer in Table 1, we find that the OverCite would require 1.84 MB of
additional bandwidth per document (above the .735 MB CiteSeer currently uses)
and 25 GB of storage per node.

These calculations ignore the cost of DHT routing table and data mainte-
nance traffic. In practice, we expect these costs to be dwarfed by the traffic used
to serve documents as we assume nodes are relatively stable.

4.2 Query Resources

Because OverCite partitions the inverted index by document, each query needs to
be broadcast in parallel to k−1 nodes, one for each of the other index partitions.1

1 We assume here that no queries match in the meta-data index; hence, these are
worst-case calculations.
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Each node caches the meta-data for the documents in its index partition in order
to rank search results; this cache need not be up to date. When all k nodes return
their top m matches, along with the context of the matches and the value of
rank metric, the originating node looks up the meta-data for the top b matches.
Figure 1 depicts this process.

The packets containing the queries will be relatively small; however, each
response will contain the identifiers of each matching document, the context
of each match, and the value of the rank metric. If there are n participating
nodes, each DID is 20 bytes, and the context and rank metric value together are
50 bytes, each query consumes about 70mk bytes of traffic. Assuming 250,000
searches per day, k = 20, and returning m = 10 results per query per node, our
query design adds 3.5 GB of traffic per day to the network (or 35 MB per node).
This is a reasonably small fraction of the traffic currently served by CiteSeer
(34.4 GB). This does not include the meta-data lookup traffic for the top b
matches, which is much smaller (a reasonable value for b is 10 or 20).

Serving a document contributes the most additional cost in OverCite, since
the Web-based front-end must retrieve the document fragments from the DHT
before returning it to the user. This will approximately double the amount of
traffic from paper downloads, which is currently 21 GB (though this load is now
spread among all nodes). However, one can imagine an optimization involving
redirecting the user to cached pre-constructed copies of the document on specific
DHT nodes, saving this addition bandwidth cost.

OverCite spreads the CPU load of performing each query across multiple
nodes, because the cost of an inverted index lookup is linear in the number of
documents in the index.

4.3 User Delay

User-perceived delay could be a problem in OverCite, as constructing each Web
page requires multiple DHT lookups. However, most lookups are parallelizable,
and because we assume a one-hop DHT, the total latency should be low. For
example, consider the page generated by a user keyword query. The node initially
receiving the query forwards the query, in parallel, to k−1 nodes. After receiving
responses from all nodes, the node looks up the meta-data for the top matches in
parallel. Therefore, we expect that the node can generate the page in response
to a search in about twice the average round trip time of the network, plus
computation time.

Generating a page about a given document (which includes that document’s
citations and what documents cite it) will take additional delay for looking up
extra meta-data; we expect each of those pages to take an average of three or
four round trip times.

5 Features and Potential Impact

Given the additional resources available with OverCite’s design, a wider range
of features will be possible; in the long run the impact of new capabilities on
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the way researchers communicate may be the main benefit of a more scalable
CiteSeer. This section sketches out a few potential features.

Document Alerts: As the field of computer science grows, it is becoming
harder for researchers to keep track of new work relevant to their interests.
OverCite could help by providing an alert service to e-mail a researcher when-
ever a paper entered the database that might be of interest. Users could register
queries that OverCite would run daily (e.g., alert me for new papers on “dis-
tributed hash table” authored by “Druschel”). This service clearly benefits from
the OverCite DHT infrastructure as the additional query load due to alerts
becomes distributed over many nodes. A recent proposal [11] describes a DHT-
based alert system for CiteSeer.

Document Recommendations: OverCite could provide a recommendation
feature similar to those found in popular Web sites like Amazon. This would
require OverCite to track individual users’ activities. OverCite could then rec-
ommend documents based on either previous downloads, previous queries, or
downloads by others with similar interests.

Plagiarism Checking: Plagiarism has only been an occasional problem in ma-
jor conferences, but with increasing volumes of papers and pressure to publish,
this problem will likely become more serious. OverCite could make its database
of shingles available to those who wish to check whether one paper’s text signif-
icantly overlaps any other papers’.

More documents: Most authors do not explicitly submit their newly written
papers to CiteSeer. Instead, they rely on CiteSeer to crawl conference Web pages
to find new content. CiteSeer could be far more valuable to the community if
it could support a larger corpus and, in particular, if it included more preprints
and other recently written material. While faster and more frequent crawling
might help in this regard, the situation could only be substantially improved if
authors took a more active role in adding their material.

As an extreme case, one could imagine that funding agencies and conferences
require all publications under a grant and submissions to a conference be entered
into OverCite, making them immediately available to the community.2 Going one
step further, one could imagine that program committees annotate submissions
in OverCite with comments about the contributions of the paper. Users could
then decide based on the comments of the PC which papers to read (using the
document-alert feature). This approach would have the additional benefit that
users have access to papers that today are rejected from a conference due to
limited program time slots.

Potential impact: Radical changes, such as the one above, to the process of
dissemination of scientific results are likely to happen only in incremental steps,
but are not out of the question. Theoretical physics, for example, uses a preprint
collection as its main document repository; insertion into the repository counts
as the “publication date” for resolving credit disputes and, more importantly,
2 This would require rethinking anonymous submissions or providing support for

anonymous submissions in OverCite.
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researchers routinely scan the list of new submissions to find relevant papers.
This manual mode works less well for computer science, due in part to the diverse
set of sub-disciplines and large number of papers. OverCite, however, could be
the enabler of such changes for computer science, because of its scalable capacity
and ability to serve many queries.
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