
A First Look at Peer-to-Peer Worms:
Threats and Defenses

Lidong Zhou1, Lintao Zhang1, Frank McSherry1, Nicole Immorlica2,�,
Manuel Costa3, and Steve Chien1

1 Microsoft Research Silicon Valley
{lidongz, lintaoz, mcsherry, schien}@microsoft.com

2 Laboratory for Computer Science, MIT
nickle@theory.lcs.mit.edu

3 Microsoft Research Cambridge and University of Cambridge
manuelc@microsoft.com

Abstract. Peer-to-peer (P2P) worms exploit common vulnerabilities in member
hosts of a P2P network and spread topologically in the P2P network, a potentially
more effective strategy than random scanning for locating victims. This paper de-
scribes the danger posed by P2P worms and initiates the study of possible mitiga-
tion mechanisms. In particular, the paper explores the feasibility of a self-defense
infrastructure inside a P2P network, outlines the challenges, evaluates how well
this defense mechanism contains P2P worms, and reveals correlations between
containment and the overlay topology of a P2P network. Our experiments sug-
gest a number of design directions to improve the resilience of P2P networks to
worm attacks.

1 Introduction

Peer-to-peer (P2P) overlay networks enjoy enormous and ever increasing popularity
both in real-life deployment (e.g., Gnutella and KaZaA) and in the research community
(e.g., Chord [18], CAN [13], Pastry [14], and Tapestry [24]). While security issues
for P2P networks have received attention, the main focus remains on ensuring correct
operations within a P2P network in the face of failures and malicious participants. Ex-
amples include maintaining the internal structure of a P2P network (e.g., [2]) and fair
sharing of resources (e.g., [5]). The threats that a large-scale P2P network deployment
poses to Internet security have largely been ignored.

In this paper, we argue that P2P networks provide an ideal venue for new types of
worms that prey on common vulnerabilities on the hosts in a P2P network. These worms
identify new victims simply by following P2P neighbor information on infected hosts.
They are different from the currently popular scanning worms, which probe addresses
randomly for new victims, in three important ways. First, they spread much faster, since
they do not waste time probing unused IP addresses. Second, they do not generate high
rates of failed connections. Finally, they can blend into the normal traffic patterns of
the P2P network. The lack of abnormal network behavior makes P2P worms a poten-
tially more deadly threat because most existing defense mechanisms against scanning

� Work done during internship at Microsoft Research Silicon Valley.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 24–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A First Look at Peer-to-Peer Worms: Threats and Defenses 25

worms are no longer effective. Because the number of subscribers to a P2P network
such as KaZaA is estimated to be in the millions, P2P worms have the potential to
compromise a significant fraction of the Internet population. We therefore study the
feasibility of constructing a self-defense infrastructure within a P2P network for con-
taining P2P worms. The infrastructure imposes new and challenging requirements for
worm-defense mechanisms, while the evaluation of the proposed infrastructure, both
analytically and through simulation, reveals interesting correlations between worm con-
tainment in a P2P network and the overlay topology of the network. Furthermore, our
experiments suggest a number of design directions to improve the resilience of P2P
networks to worm attacks.

The rest of the paper is organized as follows. Section 2 elaborates on the imminent
threat of P2P worms and makes a case for new defense mechanisms. Section 3 explores
possible countermeasures against P2P worms, outlines a self-defense infrastructure, and
presents a containment model. The evaluation of the self-defense infrastructure through
both theoretical analysis and simulations appears in Section 4. We conclude in Section 5.

2 Imminent Threat of P2P Worms

Popular P2P clients such as KaZaA already have a high penetration into the Internet
population. Any vulnerability in such a P2P client can put all those hosts at risk. The
likelihood of having an exploitable vulnerability in these pieces of software is alarm-
ingly high. A buffer overflow bug in the FastTrack network core, the underlying net-
work for KaZaA and several others, was discovered and disclosed recently [12]. To
make things worse, many P2P clients are bundled with spyware, further increasing the
chances of introducing intentional or unintentional backdoors into hosts in P2P net-
works. For example, Saroiu et al. [15] found vulnerabilities in two wide-spread spyware
programs due to lack of authentication in their auto-update processes.

Proof-of-concept viruses, such as Gnuman, VBS.Gnutella, and Fizzer [20], which
propagate through Gnutella or KaZaA were released in the wild as early as 2000. The
impact of these viruses was limited largely because their propagation relied heavily on
certain user actions. In contrast, a P2P worm can infect vulnerable hosts automatically
by exploiting the same types of vulnerabilities that led to notorious scanning worms
such as CodeRed and Slammer. Whereas these random-scanning worms search for
new vulnerable hosts by probing “randomly” generated IP addresses, a P2P worm can
quickly identify new vulnerable hosts by following the list of neighbors in the overlay
topology.

As a form of topological worm [21], P2P worms do not exhibit easily detectable
anomalies in network traffic as scanning worms do. A scanning worm has no informa-
tion on the locations of vulnerable hosts and thus is error-prone in choosing targets;
it has to rely on both a reasonable density of vulnerable hosts in the entire IP address
space and on the ability to probe different hosts at a high rate. It is these characteristics
that lead to schemes for containing scanning worms (e.g., [23,26,7,22]) by detecting
and reacting to various network anomalies.

Although these proposed mechanisms show promise for fast detection and success-
ful containment of scanning worms, they have limited power against P2P worms. The

26 L. Zhou et al.

P2P topology provides an accurate way for worms to find more vulnerable hosts with-
out probing random ones; the vastly improved accuracy in identifying vulnerable hosts
also eliminates the need to communicate with a large number of different hosts at a
high rate. The attack traffic can thus easily blend into normal P2P traffic. Therefore,
new defense mechanisms are needed.

3 Mitigating Threats of P2P Worms

P2P worms would not exist if we could eliminate vulnerabilities on P2P hosts or cut off
a worm’s propagation between neighboring P2P hosts. But neither is achievable in prac-
tice. To eliminate vulnerabilities, P2P client programs should be written in a type-safe
language (e.g., Java or C#), so that it is free of buffer-overflow vulnerabilities. Unfor-
tunately, this is not the case for most existing client programs. Furthermore, common
vulnerabilities could exist on co-located software or even the underlying platform. In-
creased diversity in a P2P network reduces the likelihood of common vulnerabilities
and makes it harder for a P2P worm to propagate through P2P neighbors. Further mea-
sures can be taken to protect the neighbor list from access by worms. But it is usually
hard to distinguish valid accesses from invalid ones.

Given that P2P clients will unlikely be free of common exploitable vulnerabilities
in the foreseeable future, an interesting research question is the feasibility of incorpo-
rating a self-defense infrastructure into a P2P network for the network itself to detect
outbreaks of any unknown worm and contain its spread.

3.1 Automatic Detection of Worms

Automatic detection of P2P worms is a prerequisite to any worm containment infra-
structure—human responses are simply too slow. Because P2P worms target only
hosts in a P2P network, referred to as nodes, automatic detection mechanisms must
be deployed within the P2P network. We call nodes with automatic worm detection
capabilities guardian nodes.

Because P2P worms do not exhibit easily detectable anomalies in network behavior,
guardian nodes must instead detect worms by identifying the infection process inside
running applications. Such detectors can detect broad classes of vulnerabilities. One
promising approach, pioneered by several independent research projects [19,4,6,11], is
based on the observation that a majority of worms work by hijacking the control flow of
a vulnerable program to execute malicious code injected from the network or to force
a different execution of code that was already loaded by the program. By tracking how
information from untrusted sources propagates its influence in memory during code
execution, a worm can be detected when the control flow of the program is arbitrar-
ily controlled by information from untrusted sources. However, the proposed detection
mechanisms either require hardware modifications [19,6] or demand expensive binary
rewriting/interpretation with significant performance degradation [4,11]. It is therefore
reasonable to assume that such general guardian nodes constitute only a small fraction
of a P2P population. Since the detection mechanism contains the vulnerable code in a
sandboxed environment, we can assume the guardian nodes are invulnerable to worm
attacks.

A First Look at Peer-to-Peer Worms: Threats and Defenses 27

3.2 Alert Generation, Propagation, and Processing

With a small fraction of guardian nodes, it is crucial that, once a guardian node detects
a worm, it promptly generates a message about the ongoing attack and informs other
nodes in the P2P network. We refer to these messages as alerts. The purpose of alerts is
for a recipient to learn enough information about the attack in order to take appropriate
action to become immune to the attack.

Because alerts trigger actions by receiving nodes, an adversary could attack by dis-
seminating bogus alerts. If the receiver of an alert responded by shutting down the
vulnerable application, this would turn a worm attack into a denial-of-service attack.
To avoid this problem, guardians can generate self-certifying alerts, as described in [4].
Self-certifying alerts are machine-verifiable proofs of vulnerability; they contain a de-
scription of the events that lead to a vulnerable behavior—for instance a sequence of
network messages—and they can be independently and inexpensively verified by any
host. Use of self-certifying alerts also implies that any host can independently decide
to become a guardian, since guardians do not have to be trusted. This setting makes it
difficult to mount targeted attacks on the guardians. Alternatively, alerts can be submit-
ted to a trusted authority, who verifies the authenticity of the alert and signs the alert
using the private key corresponding to a well-known public key. Such an infrastructure
for distributing and verifying signed updates already exists in many pieces of software
for securing automatic software updates. The trusted authority could be implemented
using multiple servers [25] to withstand attacks to a fraction of the servers.

Upon verifying the authenticity of an alert, a host can take several actions to protect
itself. For instance, it can stop the vulnerable application or install a new local fire-
wall rule to block a worm “signature”1; this could be a simple byte pattern on network
messages or a more elaborate signature that accesses network messages and application
state. Ideally, a host should identify the vulnerability exploited by the detected attack
and patch it automatically. Such patches can be generated locally by the hosts receiving
an alert, avoiding the need to trust patches produced by the host that generated the alert.
We are currently working towards this goal.

We assume alerts are propagated in the same P2P network as P2P worms. After all,
any existing link used by alerts requires that the destination address be recorded on the
source; such information is also available to attackers when the source is compromised.
This assumption distinguishes our model from that in [4], which also explored the con-
cept of alerts for containment of Internet worms; there, a special P2P network is used
for fast and reliable alert dissemination.

3.3 A Basic Worm Containment Model

The previous discussions on a self-defense infrastructure yield the following basic
model for the containment study. Variations of the basic model are investigated in
Section 4.

1 While several schemes ([16,9,8]) have been proposed for automatic detection of worms and
automatic generation of worm signatures, the detection mechanisms rely heavily on the net-
work anomalies that scanning worms exhibit.

28 L. Zhou et al.

Consider a P2P network and a worm that exploits a vulnerability in the nodes of
the network. We consider node A a neighbor of node B if the address of A appears
in node B’s state as a P2P client. The topology of a P2P network can be modeled as
a directed graph in which each vertex in the graph corresponds to a node in the P2P
network and each edge is weighted by the latency of the corresponding link from a
node to its neighbor.

Each node in the P2P network has an independent probability p of being a guardian
node; otherwise, the node is vulnerable. A vulnerable node becomes infected when the
worm probes this node. A worm starts at a uniformly random node and in each step
probes all the neighbors of newly infected nodes. If a worm probes a guardian node,
the guardian node will detect the worm, generate an alert, and immediately propagate
the alert to its neighbors. A vulnerable node becomes immune upon receiving the alert
and propagates the alert further to its neighbors. An infected node ignores the alert; it
does not propagate it further. Immune nodes do not become infected even upon worm
probing. For simplicity, we assume that the worm and the alert incur the same latency
on each link, although different links may have different latencies. Furthermore, we
ignore the dynamic changes in the P2P network and assume a static topology.

4 Analysis and Evaluation

The basic worm containment model characterizes a battle between worm propagation
and alert propagation within the same P2P network. The following questions naturally
arise.

– With only a small number of guardian nodes, can the self-defense infrastructure
contain a P2P worm?

– With a P2P network serving as the battlefield, how can we design and deploy a P2P
network to offer an advantage over P2P worms? What strategies can a P2P worm
employ to gain advantage?

This section documents our initial efforts to answer these questions. In particular, we
evaluate containment of worms as measured by the percentage of vulnerable nodes that
are infected when the network reaches a stable state, where neither alerts nor the worm
can propagate further. Note that the containment problem is entirely different from the
seminal containment study by Moore et al. [10] because that study focused on random
probing worms in the Internet.

4.1 P2P Network Topology and Worm Containment

Theoretical analysis. The topology of a P2P network dictates propagation of a P2P
worm and its containment in our basic model. In the absence of guardian nodes, the
diameter of the graph, defined to be the longest among the shortest distances between
any pair of nodes in the graph, is the upper bound on the amount of time it takes for
a worm to compromise the entire P2P network. Here, we show a simple theoretical
analysis of worm containment in our basic model.

A First Look at Peer-to-Peer Worms: Threats and Defenses 29

Suppose a P2P network contains n nodes in a graph of maximum degree d, where
each node is a guardian node with independent probability p. Then for a uniformly
random starting infection point, the expected fraction of nodes that become infected is
bounded above by O(nlogd(1−p)).

To see this, let x be the starting point of the infection, and consider the shortest
path tree from x in the network topology. The key observation is that another node y
will become infected if and only if there is no guardian node on the shortest path from
x to y. Thus the expected number of infected nodes is

∑�
i=1 ni(1 − p)i, where ni is

the number of nodes at depth i in the shortest path tree from x. Since the topology has
maximum degree d, we have that ni < di; in fact, it is not hard to see that the worst
case occurs when the inequality is tight. A straightforward calculation then yields that
the expected fraction of infected nodes in this case is O(nlogd(1−p)).

Although the theoretical analysis offers only a loose upper bound for worm con-
tainment in our basic model, it does indicate that the number of nodes in the network,
the maximum degree of the graph, and the percentage of guardian nodes are likely the
factors influencing the containment result. We use simulations to validate the trends
predicated by the theoretical results.

Simulation setup. Our experiments were performed on P2P graphs generated using
a P2P simulator. Among others, the simulator implements the protocols described in
Gnutella 0.4, Gia [3], and Pastry. Nodes in those topologies are randomly placed in
a 5050-router Internet topology generated using Georgia Tech’s Transit-Stub Internet
Topology generator [1] with distance between a pair of nodes computed accordingly.

We further developed an epidemic simulator. This simulator takes as input the P2P
topology graph and the probability of a node being a guardian node. For each run, the
simulator randomly selects a node in the graph as the initial entry point for the worm and
picks a set of guardian nodes according to the specified probability. It then simulates the
process of worm propagation and alert propagation (after guardian nodes are triggered.)
Each of our experiments takes 500 runs, with different randomly chosen initial infection
points and different randomly chosen sets of guardian nodes. We report the mean (over
the 500 runs) of the infected fraction, measured as the percentage of infected nodes
over the entire vulnerable population. (Note that guardian nodes are excluded from the
vulnerable population.)

Simulation results. In this set of experiments, we look at Gnutella 0.4 graphs. A
Gnutella topology can be modeled as an undirected graph because the neighbor relation
is symmetric. (We assume that the weights on links are also symmetric.) When a node
joins, it selects a seed node already in the P2P network and performs a random walk to
find more nodes as potential neighbors. A node A might refuse to be the neighbor for
the joining node if the resulting number of allowed connections for A exceeds the max-
imum degree allowed. The generated graph is the result of running the P2P simulator
for n consecutive joins, where n is the specified number of nodes. No node failures or
node leavings are modeled.

We generated a set of Gnutella 0.4 graphs with different settings for minimum/maxi-
mum node degrees and total number of nodes. The generated graphs have average degrees
that are close to the maximum degrees, indicating that nodes tend to have the same de-
gree. Figure 1 clearly indicates that the infected fraction increases when min/max degrees

30 L. Zhou et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5000 10000 15000 20000 25000 30000 35000 40000

In
fe

ct
ed

 F
ra

ct
io

n

Number of Nodes

Gnutella 0.4, p = 0.05

G0.4, d = 7/14
G0.4, d = 4/8
G0.4, d = 3/6
G0.4, d = 2/4

Fig. 1. Infected fraction as a function of number of nodes for Gnutella 0.4 graphs with different
min/max-degree settings

increase, but decreases when the number of nodes increases, confirming the trends in the
theoretical analysis. We want to point out that due to resource limitations, we can only
simulate relatively small P2P networks. For real P2P networks with millions of nodes
the infection fraction may be significantly lower than the simulation results suggest.

4.2 The Effects of Super Nodes

The notion of super nodes has been introduced to P2P networks for better scalability.
Super nodes are nodes with sufficient resources and high-quality links to accommo-
date a large number of neighbors. Gia [3] is a proposal to introduce super nodes into
Gnutella. In Gia, super nodes emerge as a result of dynamic topology adaptation based
on the different capacities of the nodes. Adopting the setting in [3], we set the percent-
ages of nodes at capacity levels 1, 10, 100, 1000, and 10000 at 20%, 45%, 30%, 4.9%,
and 0.1%, respectively. Figure 2 shows the infected fraction for a Gia graph, with an
average degree around 15 and min/max degrees of 3/128, compared to Gnutella 0.4
graphs with varying min/max degrees. We see a clear downtrend of the infected frac-
tion when the probability of guardian nodes increases and that Gia exhibits the worst
containment result.

Super nodes undoubtedly play a significant role in aiding the propagation of the
worm due to their high connectivity. It seems that the defense mechanism would be
more effective if the choice of guardian nodes were biased towards such high-degree
nodes. This is confirmed by the result shown in Figure 3, where, in the case of biased
choices of guardian nodes, the probability of a node being a guardian node is propor-
tional to its degree. Note that, even if a worm knows about this strategy and tries to
evade detection by biasing against high-degree nodes, the worm propagation will be at
a significant disadvantage compared to alert propagation, which is able to exploit the
powerful super nodes.

A First Look at Peer-to-Peer Worms: Threats and Defenses 31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

In
fe

ct
ed

 F
ra

ct
io

n

Guardian Probability

Gnutella 0.4 vs. GIA, n = 40k

GIA, d = 3/128
G0.4, d = 7/14
G0.4, d = 4/8
G0.4, d = 3/6
G0.4, d = 2/4

Fig. 2. Gnutella 0.4 vs. Gia, 40,000 nodes. Infected fraction as a function of probability of
guardian nodes

4.3 Hit List and Secret Network of Guardian Nodes

For bootstrapping, P2P networks such as Gnutella and KaZaA offer an initial list of
hosts in the network to serve as seed nodes for new nodes to join. An attacker can
also collect a large number of addresses through crawling. A P2P worm can use those
addresses as an initial hit list [17] instead of starting with a single node.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

In
fe

ct
ed

 F
ra

ct
io

n

Guardian Probability

GIA, Biased vs. Non-Biased, n = 40k

GIA: no bias
GIA: bias

Fig. 3. Biased choices of guardian nodes vs. non-biased choices. Gia with 40,000 nodes. Infected
fraction as a function of probability of guardian nodes.

32 L. Zhou et al.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

In
fe

ct
ed

 F
ra

ct
io

n

Number of Nodes in Hitlist

G0.4 vs. GIA, p=0.05, n = 40k, d = 7/14 : Hitlists

G0.4, no guardian network
G0.4, guardian network

GIA, no guardian network
GIA, guardian network

Fig. 4. Infected fraction, with and without a secret network of guardian nodes, as the function of
number of nodes in the hit list (log scale). Gia with bias and Gnutella 0.4 with min/max degrees
of 7/14, 40,000 nodes and 5% of guardian nodes.

In response, guardian nodes could be made aware of each other and form a secret
network to tunnel alerts through directly.2 For simplicity, we assume that this secret
network is fully connected with direct links between any two guardian nodes with an
average network delay.

Figure 4 shows how the infected fraction reacts to an increasing number of nodes
on the hit list, as well as the effects of having a secret network of guardian nodes. Using
a hit list seems to be an effective strategy for worms especially when the percentage of
the nodes in the hit list becomes significant. Connecting all guardian nodes has a limited
advantage in these cases. Define worm diameter to be the amount of time for a worm to
reach the entire population of the network in the absence of guardian nodes. The effect
of connecting the guardian nodes seems to diminish as the worm diameter decreases.

4.4 The Effects of Diversity

We have been assuming that the entire population (except for the guardian nodes) is
vulnerable. This might not be the case in practice. In particular, P2P clients might use
different implementations of the same protocol and run on different hardware/software
platforms. Vulnerabilities in one particular implementation or on one particular plat-
form may not affect the entire population due to diversity. The existence of the initially
immune nodes works to our advantage because these nodes block worm propagation
but pass alerts on to other nodes.

2 It might seem that we are violating our assumption that the worm and the alerts are propagating
in the same topology. This is not the case. In our model, links in the secret network cannot be
exploited by worms because guardian nodes are never compromised.

A First Look at Peer-to-Peer Worms: Threats and Defenses 33

Figure 5 shows the impact of having initially immune nodes in the network. We vary
the percentage of the nodes that are initially immune from 0% to 60%. These nodes are
chosen uniformly at random. Every node in the set of the non-immune nodes becomes
a guardian node with 0.05 probability. The infected fraction shows the percentage of
vulnerable nodes (i.e., excluding initially immune nodes and guardian nodes) that are
infected. The results show a significant reduction in infected fraction as the immune
proportion grows and suggest that diversity is an effective deterrence to P2P worms.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6

In
fe

ct
ed

 F
ra

ct
io

n

Immune fraction

Gnutella 0.4 vs. GIA; p=0.05, n = 40k: Immune Nodes

G0.4
GIA

Fig. 5. Infected fraction as a function of percentage of immune nodes. Gia and Gnutella 0.4
(max/min degree of 7/14), with 40,000 nodes, 5% guardian nodes, and biased choice of guardian
nodes for Gia.

4.5 Design Implications for P2P Networks

In summary, our experiments suggest a number of design directions over which P2P
networks could evolve to increase their resilience to worm attacks. First, P2P proto-
cols should bias their choice of neighbors to maximize diversity. Second, mechanisms
should be included to make crawling the overlay more difficult or impossible. Other-
wise, an attacker can gain a substantial advantage by building a large initial hit list to
launch the worm. Finally, mechanisms should exist to deploy guardian nodes at flexi-
ble locations in the P2P network. As our preliminary results show, placement of these
nodes has an important effect on containment.

5 Concluding Remarks

P2P worms constitute a potentially deadly threat to Internet security, a threat that we
are not yet prepared for. This paper outlines a self-defense infrastructure to be built into
a P2P network for containing P2P worms. The proposed infrastructure not only poses

34 L. Zhou et al.

new challenges to worm-containment research, but also gives rise to an interesting phe-
nomenon of competing epidemics (worm vs. worm-triggered alerts) in a P2P network.

The paper represents our initial study on containment of P2P worms with debat-
able assumptions. We plan to explore further the feasibility of the self-defense infra-
structure, investigate more topologies and new strategies, and work towards a unifying
theory that identifies the defining characteristics of the network topology on worm con-
tainment. Such a theory would help predict worm containment for a given topology and
help develop strategies to improve defense against P2P worms, because applying those
strategies can always translate into some network topology transformation.

Acknowledgements

The authors would like to thank Martı́n Abadi, Úlfar Erlingsson, Chandu Thekkath, and
Ted Wobber, as well as the anonymous reviewers, for their helpful suggestions.

References

1. K. Calvert, M. Doar, and E. Zegura. Modeling Internet topology. IEEE Communications
Magazine, June 1997.

2. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and S. S. Wallach. Secure routing for
structured peer-to-peer overlay networks. In Proceedings of the 5th Symposium on Oper-
ating Systems Design and Implementation (OSDI ’02), pages 299–314, Boston, MA, USA,
December 2002. USENIX.

3. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making Gnutella-
like p2p systems scalable. In Proceedings of SIGCOMM’03, pages 407–418, Karlsruhe,
Germany, August 2003. ACM.

4. M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Can we contain Internet worms? In
Proceedings of the 3rd Workshop on Hot Topics in Networks (HotNets-III), November 2004.

5. L. P. Cox and B. D. Noble. Honor among thieves in peer-to-peer storage. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles, pages 120–132, Bolton Landing,
NY, USA, November 2003. ACM SIGOPS, ACM Press.

6. J. R. Crandall and F. T. Chong. Minos: Control data attack prevention orthogonal to memory
model. In Proceedings of the 37th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE/ACM, December 2004.

7. J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan detection using se-
quential hypothesis testing. In Proc. 25th Symposium on Security and Privacy. IEEE, May
2004.

8. H. Kim and B. Karp. Autograph: Toward automated, distributed worm signature detection.
In Proceedings of the 13th USENIX Security Symposium, August 2004.

9. C. Kreibich and J. Crowcroft. Honeycomb—creating intrusion detection signatures using
Honeypots. In Proc. of the 2nd Workshop on Hot Topics in Networks (HotNets-II), November
2003.

10. D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet quarantine: Requirements for
containing self-propagating code. In Proceedings of IEEE INFOCOM 2003. IEEE, March
2003.

11. J. Newsome and D. Song. Dynamic taint analysis: Automatic detection and generation of
software exploit attacks. In Proceedings of the 12th Annual Network and Distributed System
Security Symposium (NDSS 2005), Feb 2005. To Appear.

A First Look at Peer-to-Peer Worms: Threats and Defenses 35

12. random nut. The PACKET 0’ DEATH FastTrack network vulnerability. NET-
SYS.COM Full Disclosure Mailing List Archives, May 2003. http://www.netsys.com/full-
disclosure/2003/05/msg00351.html.

13. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of ACM SIGCOMM, pages 161–172, San Diego, CA,
USA, August 2001.

14. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proc. IFIP/ACM Middleware 2001, Heidelberg, Ger-
many, Nov. 2001.

15. S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement and analysis of spyware in a univer-
sity environment. In Proceedings of the 1st Symposium on Networked Systems Design and
Implementation (NSDI), San Francisco, CA, March 2004.

16. S. Singh, C. Estan, G. Varghese, and S. Savage. The EarlyBird system for real-time detection
of unknown worms. Technical Report CS2003-0761, UC San Diego, August 2003.

17. S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in your spare time. In
Proceedings of the 11th USENIX Security Symposium, August 2002.

18. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proc. ACM SIGCOMM, pages 149–
160, 2001.

19. G. E. Suh, J. Lee, and S. Devadas. Secure program execution via dynamic information flow
tracking. In Proceedings of ASPLOS XI, pages 85–96, Boston, MA, USA, October 2004.

20. http://securityresponse.symantec.com/.
21. N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of computer worms.

In The First ACM Workshop on Rapid Malcode (WORM), 2003.
22. N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms. In

Proceedings of the 13th USENIX Security Symposium, August 2004.
23. M. M. Williamson. Throttling viruses: Restricting propagation to defeat malicious mobile

code. In Proc. 18th Annual Computer Security Applications Conference, Las Vegas, NV,
Dec. 2002.

24. B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph, and J. D. Kubiatowicz. Tapestry:
A global-scale overlay for rapid service deployment. IEEE Journal on Selected Areas in
Communications (J-SAC), 22(1):41–53, January 2004.

25. L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed on-line certifica-
tion authority. ACM Transactions on Computer Systems, 20(4):329–368, November 2002.

26. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early warning for Internet worms.
In Proc. of the 10th ACM Conference on Computer and Communication Security, Oct. 2003.

	Introduction
	Imminent Threat of P2P Worms
	Mitigating Threats of P2P Worms
	Automatic Detection of Worms
	Alert Generation, Propagation, and Processing
	A Basic Worm Containment Model

	Analysis and Evaluation
	P2P Network Topology and Worm Containment
	The Effects of Super Nodes
	Hit List and Secret Network of Guardian Nodes
	The Effects of Diversity
	Design Implications for P2P Networks

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

