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Abstract. We propose here an analysis of a rich dataset which gives an
exhaustive and dynamic view of the exchanges processed in a running
eDonkey system. We focus on correlation in term of data exchanged
by peers having provided or queried at least one data in common. We
introduce a method to capture these correlations (namely the data clus-
tering), and study it in detail. We then use it to propose a very sim-
ple and efficient way to group data into clusters and show the im-
pact of this underlying structure on search in typical P2P systems. Fi-
nally, we use these results to evaluate the relevance and limitations of
a model proposed in a previous publication. We indicate some realis-
tic values for the parameters of this model, and discuss some possible
improvements.

1 Preliminaries

P2P networks such as KaZaA, eDonkey or Gnutella and more recently Bit-
Torrent [15] are nowadays the most bandwidth consuming applications on the
Internet, ahead of Web traffic [7,11]. Their analysis and optimisation there-
fore appears as a key issue for computer science research. However, the fully
distributed nature of most of these protocols makes it difficult to obtain rel-
evant information on their actual behavior, and little is known on it [2,8,9].
The fact that these behaviors have some crucial consequences on the perfor-
mance of the underlying protocol (both in terms of answer speed and in term
of used bandwidth) makes it a challenge of prime interest to collect and analyze
such data. The observed properties may then be used for the design of efficient
protocols.

1.1 Context

In the last few years, both active and passive measurements have been used to
gather information on peers behaviors in running P2P networks. These studies
gave evidence for a variety of properties which appear as fundamental charac-
teristics of such systems. Among them, let us notice the high ratio of free-riders
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[1,3], the heterogeneous distribution (often approximated by a power law) of the
number of queries by peer [7,12], and recently the presence of semantic clustering
in file sharing networks [3,13].

This last property captures the fact that the data exchanged by peers may
overlap significantly: if two peers are interested in a given data, then they prob-
ably are in some other data. By connecting directly such peers, it is possible
to take benefit from this semantic clustering to improve search algorithms and
scalability of the system.

In [3], the authors propose a protocol based on this idea, which reaches very
high performances. It however relies on a static classification which can hardly
be maintained up to date.

Another approach using the same underlying idea is to add a link in a P2P
overlay between peers exchanging files [13,14]. This has the advantage of being
very simple and permits significant improvement of the search process.

In [3,6] the authors use traces of a running eDonkey network, obtained by
crawling caches of a large number of peers. They study some statistical proper-
ties like replication patterns, various distributions, and clustering based on file
types and geography. They then use these data to simulate protocols and to
evaluate their performances in real-world cases. The use of actual P2P traces
where previous works used models (whose relevance is hard to evaluate) is an
important step. However, the large number of free-riders, as well as other mea-
surements problems, makes it difficult to evaluate the relevance of the data.
Moreover, such measurements miss the dynamic aspects of the exchanges and
the fact that fragment of files are made available by peers during the download
of the files.

1.2 Framework and Contribution

Our work lies in this context and proposes a new step in the direction opened
by previous works. We collected some traces using a modified eDonkey server
[10], which made it possible to grab accurate information on all the exchanges
processed by a large number of peers through this server during a significant
portion of time. The server handled up to 50 000 users simultaneously and we
collected 24 hour traces. The size of a typical trace at various times is given in
Figure 1. See [2,4,5], for details on the measurement procedure, on the protocol
and on the basic properties of our traces.

6h 12h 18h 24h
peers 26187 29667 43106 47245
data 187731 244721 323226 383163

links in Q 811042 1081915 1571859 1804330
links in D 12238038 20364268 31522713 38399705

Fig. 1. Time-evolution of the basic statistics for Q and D
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Fig. 2. A query graph (left) and the associated (weighted) data graph (right)

A natural way to encode the gathered data is to define a bipartite graph
Q = (P, D, E), called query graph, as follows (see Figure 2, left):

– P is the set of peers in the network, D is the set of data,
– E ⊆ P × D is a set of undirected edges, where {p, d} ∈ E if and only if the

peer p is active for the data d, which means that p was interested for the
data d or was a provider of d.

Notice that this graph evolves during time, and we will indeed consider it at
various dates.

In order to analyze our data, we will also consider the (weighted) data graph
D = (D, E, w) obtained from the query graph Q as follows (see Figure 2, right):

– D is the set of data,
– E ⊆ D × D is a set of undirected edges, where {d1, d2} ∈ E if and only if

there exists a peer active for both d1 and d2 in Q,
– w is a weight function over the nodes and the edges such that w(d) is the num-

ber of data having been exchanged by peers active for d in Q and w(d1, d2)
is the number of data exchanged by peers in both d1 and d2 in Q.

The sizes of query graphs and data graphs obtained from a typical trace at
various times are given in Figure 1. We use these graphs, which have properties
representative of what we observed of this kind of graphs, throughout this paper.

In the following, we use these graphs and tools from the recent field of com-
plex network analysis to deepen the study of the dynamic traces. We focus in
particular on the data clustering, which captures how much the exchanges pro-
cessed by two sets of peers are similar. In other words, it is a measure of how
much peers active for at least one common data will exchange the same other
data. We then show that these properties have significant impact on the effi-
ciency of searches in the network, and therefore may be used in the design of
efficient P2P protocols. Finally, we will use this analysis to study the relevance
of a previously proposed model.

2 Data Clustering Analysis

Our aim now is to analyze similarities between data in terms of exchanges pro-
cessed by peers active for them. In particular, given two data u and v exchanged
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by a given peer p we are interested in the number of other common data ex-
changed by peers actives for u or v. This can be measured using the following
parameter over the edges in D:

c(u, v) =
w(u, v)

w(u) + w(v) − w(u, v)

Indeed, the two data u and v induce an edge {u, v} in D, the weight w(u, v)
is nothing but the number of common data exchanged by peers active for u
or v, and the expression w(u) + w(v) − w(u, v) gives the total number of data
exchanged by peers active for u or v. Finally, c(u, v) therefore measures how
much these exchanges overlap. Notice that its value is between 0 and 1.

The value of c(u, v) may however be strongly biased if one of the two nodes
has a high weight and the other a low one: the value would then be very low.
For example, if a data with an high popularity1 is connected to an unpopular
one, then the clustering will probably be low, even if the few data exchanged by
the lowest population are completely included in the large set of data exchanged
by the highest one.

In order to capture these cases, we will also consider the following statistical
parameter:

c̄(u, v) =
w(u, v)

min(w(u), w(v))

which is still in [0; 1] but is always larger than c(u, v) and does not have this
drawback. For instance, in the case described above the obtained value is 1.

We will call c(u, v) the clustering of {u, v} and c̄(u, v) its min-clustering. In
summary, the clustering captures the overlap between data exchanged by two sets
of peers with no consideration of the heterogeneity between the number of data
exchanged, whereas min-clustering takes into account and captures eparticularly
well the fact that a small set of exchanged data can actually be a subset of a
another much larger one.

Figure 3 and 4 show the time-evolution of the distributions2 of c(u, v) and
c̄(u, v), respectively. First notice that the general shape of these distributions is
very stable along time, which indicates that the observations we will derive are
not biased by the timescale or date considered.

Now let us observe (Figure 3) that around 60% of the edges always have a
clustering lower than 0.2. This may indicate that the overlap of exchanges is
not as high as expected. However, this may be a consequence of the fact that
both the peer activity and the data popularity are very heterogeneous: there are
very active peers while most of them are not, and there are very popular data
while most are not. This induces in D many links between data of very different
popularity and a low clustering.
1 The popularity of a data is the number of peers active for that data.
2 The distribution of a parameter x is, for each possible value of x, the ratio between

the number of instances of this value and the total number of instances. Here we
will directly plot the number of instances of each value, which makes it possible to
visualize traces of various sizes (i.e. at various dates) in a same plot.
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Fig. 3. Time evolution of the c(u, v) distribution
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Fig. 4. Time evolution of the c̄(u, v) distribution

This can be corrected using the distribution of min-clustering (Figure 4):
only 15% of the edges have a min-clustering lower than 0.2 while for nearly 60%
higher or equal to 0.5. This indicates that the overlap is indeed high; for instance,
30% of the overlaps between all exchanges actually are a complete inclusion.

Such results may indicate the presence of a hierarchy among exchanges: while
few popular data form the core of D, a large number of less popular ones have
their exchanges mostly included into the ones of the core. If this structure indeed
exists, it may be used to dynamicaly build a multicast tree from a P2P overlay.
We will discuss the presence of such a hierarchy and its implications later in
this contribution.
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3 Consequences on Searching

Following several previous works (e.g. [3,6,13,14]), one may wonder if the prop-
erties highlighted in previous section may be used to improve search in P2P
systems. To answer this question, we will process the following experiment. We
suppose that each peer has a knowledge of the peers active for the same data as
itself. Then, when a peer p sends a query for a data d, it first looks at the other
peers already active for a data p is active for. If one of them provides d, then
it sends it directly to p. In this case, the clustering has been used and the data
was found using only one hop search.

The time-evolution of this hit ratio is plotted in Figure 5. Despite it is quite
low in the first few minutes (due to the server bootstrap), the ratio quickly
converges to a value close to 50%.
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Fig. 5. Time evolution of the hit % using the one hop protocol

To deepen our understanding of what happens, let us consider Figure 6, in
which we plotted the percentage of all the peers, the percentage of all the queries,
and the replication of each data 3 corresponding to the percentage of hits using
a one hop search.

The first thing to notice is that nearly 25% of the peers do not find any
data using the proposed approach. This is quite surprising, since we observed
in Figure 5 that 50% of all the queries are routed with success using the same
approach. This can be understood by observing that this ’null hit’ population
generated only 7% of the queries and so only slighly influenced the high hit
rate previously observed. Additionally, the queried data appear to be very rare
at the time they were asked. This low volume of queries together with the low
replication explain the null hit rate; these peers are not active for enough data
nor enough replicated ones to find them using the one hop search.
3 The replication of a data is the percentage of all the peers active for a given data.
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Fig. 6. Correlation between the % of peers, the associated % of queries they generated,
the % of replication of the queried data and the % of hits they obtained after 24h using
the one hop protocol

On the other hand, more than 10% of the peers have a perfect success rate.
One could think that such a result would imply a prohibitive amount of queries;
Figure 6 indicates that it is not the case: the percentage of queries is close to the
number of peers who processed them. Notice however that data found this way
appear to be highly replicated (the population being active for these data at the
time they were asked represents 15% of the peers active for other queried data)
which explains the high success rate. Finally, notice that the average peer’s
success rate increases from 40% to nearly 60% if the ’null hit’ population is
removed from the calculus.

4 Modeling Peer and Data Clusters

In [14] the authors propose a model to represent the semantic structure of P2P
file sharing networks and use it to improve searching. They assume the existence
of semantic types labelled by n ∈ {1, . . . , N} with N denoting the number of
such types. They assume that each data and each peer in the system has exactly
one type. A data of type n is called a n-data, and a peer of type n is called a
n-peer. They denote respectively by dn and un the number of n-data and the
number of n-peer (u for user).

They denote by pn(m) the probability that a query sent by a n-user is for a
m-data.

Clearly, a classification of peers and users captures clustering if, for all n and
m, either pn(m) is close to 0 (n-peers almost never seek m-data) or it is quite
large (n-peers often seek m-data). If it is either 0 or 1 then the clustering is
perfect: n-peers only seek m-data for that value of m such that pn(m) = 1.

This formalism is useful in helping to consider the hierarchical organisation
induced by clustering, for the purpose of simulations for instance. We will see
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here that the statistical properties observed in previous section may be used to
compute clusters of data, which make it possible to validate the model describe
above. Moreover, we will give some information on parameters which may be
used with the model to make its use realistic.

4.1 Cluster Computation

Notice that computation of relevant clusters in general is a challenging task,
computationaly extensive and untractable in practice on large graphs such as
the one we consider. We can however propose a simple procedure based on the
statistical properties of D observed in previous section: for two given integers
1 < ⊥ < � < |D|,

– sort edges by increasing values of their clustering
– for each edge taken in this order:

• if its removal does not induce a connected component with less than ⊥
vertices then remove it

• if the size of the largest connected component if lower than � then
terminate

We define the data clusters as the connected components finally obtained. The
integers ⊥ and � are respectively the minimal and the maximal sizes of these
clusters.

The idea behind this cluster definition is that edges between data of different
clusters should have a low clustering, indicating that the clusters put together
data with similar sets of exchanges.

In our case, we observed that � = 1000 and ⊥ = 10 give good results,
and that changing their values does not change significantly the results. We will
illustrate this in the following by using � = 1000 and ⊥ ∈ {10, 30, 60, 90}. Notice
that these values ensure both that the clusters will not be too small (they contain
at least ⊥ data) and not too large (their size is bounded by �).

4.2 Cluster Properties

Figure 7 shows that the size distribution of clusters, i.e. the distribution of dn, is
well fitted by a power law (for all considered ⊥). Notice however that the average
clusters sizes are highly influenced by ⊥, for instance, for ⊥ ∈ {10, 30, 60, 90},
the average clusters sizes are 30, 60, 100 and 150 respectively. There is indeed
a natural correlation between ⊥ and the average size of clusters since, despite
some contain up to 1 000 data, most clusters are small, with size close to ⊥. This
indicates that, when using the model proposed in [14], one may suppose a power
law distribution for dn.

Let us now associate to each data cluster all the peers active for a data in the
cluster. The number of peers associated this way is the popularity of the cluster.
One may expect that these popularities will vary much, and that large clusters
will be very popular, possibly concerning almost all the peers in the system.
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Fig. 7. Distribution of the number of data per cluster for ⊥ ∈ {10, 30, 60, 90}
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Fig. 8. Distribution of the number of peers per cluster for ⊥ ∈ {10, 30, 60, 90}

Figure 8 shows that this is not the case: very few clusters have a low popular-
ity, and none has a huge popularity, the maximum being lower than 4, 000 peers
(to be compared to the total number of peers in the system, around 50, 000).

These statistics show that the clusters we defined, despite their simplicity, do
capture non-trivial information concerning the peers. This might indicate that
data clusters also define peer clusters, as assumed in [14].

In order to check this, we plot in Figure 9 the correlations between the
number of data peers are active for, and the average number of clusters this
population queried in. This plot displays almost linear correlations until peers
reach a degree 100 in D, but the correlation seems to be inverted after this limit:
the most active peers queried data in very few clusters.
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Fig. 9. Correlation between the number of data queried and the average number of
queried cluster for ⊥ ∈ {10, 30, 60, 90}
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Several important observations can be done here. First, most of the peers
do not ask for data in a constant number of clusters but rather in a number of
clusters which depends on the number of queries they processed. In other words,
peers do not ask for data in only one well identified cluster, in contradiction with
what is assumed in [14].

This could make us conclude that, either the model should be improved
to take this diversity into account, or a more subtle definition of clusters is
necessary. Indeed, there are many ways in which data can be put into clusters,
and the very simple one we proposed capture some features, but not all, of
data/peers relations.
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Notice that the previous plots do not capture the fact that a peer generally
asks for many data in the same cluster (they only show that they ask for data
in many clusters). This is exactly what pn(m), the ratio of m-data asked for by
n-peers, represents.

For each peer, we therefore have taken different values of pn(m) and see how
many clusters have to be queried by this peer to reach each of these values. We
obtained this way the distributions of pn(m) plotted in Figure 10.

It appears that approximately 60% of the peers can find 25% of the data
they look for in only one cluster. This percentage of peers goes over 95% when
we consider up to 3 clusters. Using the same procedure, we can see that asking
only 5 clusters permits to 80% of the peers to find 50% of the data they look
for. Likewise, considering still 5 clusters permits to more than 50% of the peers
to find 75% of the data they look for.

Finally, this analysis shows that our simple cluster definition is enough to argue
that the model proposed in [14] is relevant concerning the data and may be used
with power law distributions of the size of clusters. It however shows that, despite
non-trivial correlations are captured, either the cluster definition or the model fails
in capturing a strict equivalence between a peer and a cluster. It rather indicates
that most of the peers ask their data from a small set clusters, and not only one.

5 Conclusion

In this contribution, we proposed simple statistical parameters to capture the
correlations between the set of peers active for a given data. We used these
parameters first to confirm the previously noticed fact that semantic clustering
can be used to improve search algorithms. Second, we used them to define a
very simple and efficient way to compute data clusters. We have shown that
these clusters succeed in capturing similarities between data.

We used these clusters to discuss the validity of a model of data clustering
proposed in [14]. We obtained information on realistic parameters which should
be used with this model. We also shown that the clusters we define can not be
used directly with this simple model, which indicates that either a more subtle
cluster definition should be considered, or that the model should be extended.
We pointed out some direction for this.

Notice that we focused here on data, but the same kind of approach may be
fruitful with peers. A combination of the clusters we defined on data and clusters
defined in a similar way on peers would probably bring significant improvement.
More subtle cluster computations would also probably help, but we must keep
in mind the huge size of the trace, which forbids intricate methods.

Finally, let us insist on the fact that the analysis of large real-world traces
like the one we presented here is only at its beginning, and that much remains
to understand from it. The lack of relevant statistical parameters (concerning
for example the dynamics of the trace), and of efficient algorithms to deal with
such traces are among the main bottleneck to this, but studies like the one we
presented here show that simple methods can already bring much information.
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