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Abstract. The early peer-to-peer applications eschewed commercial ar-
rangements and instead established a grass-roots model in which the col-
lection of end-users provided their own distributed computational infras-
tructure. While this cooperative end-user approach works well in many
application settings, it does not provide a sufficiently stable platform for
certain peer-to-peer applications (e.g., DHTs as a building block for net-
work services). Assuming such a stable platform isn’t freely provided by a
benefactor (such as NSF), we must ask whether DHTs could be deployed
in a competitive commercial environment. The key issue is whether a
multiplicity of DHT services can coordinate to provide a single coherent
DHT service, much the way ISPs peer to provide a completely connected
Internet. In this paper, we describe various approaches for DHT peering
and discuss some of the related performance and incentive issues.

1 Introduction

The peer-to-peer revolution introduced the concept of B.Y.O.I. (Bring Your Own
Infrastructure), in that the end-hosts receiving service from peer-to-peer applica-
tions (e.g., end-hosts sharing files or participating in application-level multicast)
were members of an overlay and performed routing and lookup services for other
overlay members. The initial distributed hash table (DHT) proposals arose in
this context: the purpose of a DHT was to resolve a large, sparse, and flat names-
pace for members of the DHT.

However, the B.Y.O.I. model is not always appropriate for DHTs. For ex-
ample, researchers have proposed using DHTs, and other flat name resolution
mechanisms, to underpin core network services (see [1,2,3,4,5,6] for a few ex-
amples). To be credible, such services cannot depend on the capabilities and
caprice of desktop users behind cable modems; rather, these services must run
on a set of stable, managed nodes. In addition, as argued in [7,8], running a
DHT is a non-trivial task that requires significant expertise and active over-
sight. As a result, one school of DHT research, led by Open DHT [7,8] (the
public DHT service formerly known as OpenHash), is proposing a public DHT
service, i.e., a managed infrastructure supporting a general-purpose DHT. The
approach adopted in Open DHT entails two related changes: moving from sev-
eral application-specific DHTs to a general-purpose DHT service, and moving
from the B.Y.O.I. model to a managed infrastructure.
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While there might be cases when a benevolent entity (such as NSF) would
fund a managed DHT service, it would be preferable if one could arise in a
competitive commercial environment. For the Internet, a set of competing com-
mercial ISPs coordinate their activity to provide a uniform Internet “dialtone”,
and the key issue is how ISPs peer with each other. The question we address
here is: can a set of DHT service providers (DSPs) similarly coordinate through
peering arrangements to give users a unified, globally coherent DHT “dialtone”?

Our focus here is not on whether such an infrastructure will emerge—that
will depend on market forces which we cannot divine—but rather on whether
such an infrastructure could emerge. So, for the purposes of this paper, we as-
sume that market demand for DHT service exists (i.e., that people are willing
to pay for DHT service directly or for service from DHT-based applications such
as the ones cited above), and we investigate, on a technical and economic level,
how DSPs can coordinate to meet this demand. We call the peered collection
of DSP providers the P4 (Peering Peer-to-Peer Providers) infrastructure. In the
remainder of this paper, we discuss design possibilities for this P4 infrastructure
as well as the challenges that arise.

These challenges fall into two categories. The technical challenge is to de-
fine peering relationships that ensure correct operation of the overall DHT ser-
vice, allowing customers of one DSP to gain access to data stored by customers
of another DSP. The economic challenge is to ensure that DSPs have an in-
centive to peer (rather than function independently), and to faithfully follow
the peering rules. We present a simple design that meets both of these chal-
lenges. Thus, we posit that it is possible to offer a coherent DHT service in a
commercial and competitive environment. For critical network services, DHTs
need not endure the vicissitudes of B.Y.O.I. or government funding but can
instead be based on hardened and highly capitalized commercial infrastruc-
tures.

2 Design Spectrum

We expect that the P4 infrastructure supports the following high-level usage
scenario, depicted in Figure 1. Customers receive “DHT service” much as they
receive DNS service today: the DSP informs its customers of the IP address or
name of a host—which we call a DHT proxy—and this host handles customers’
requests of the P4 infrastructure. To customers, the DHT proxy is opaque; it
might contact another DHT proxy or be one hop away from the P4 infrastructure.
Customer requests are either “puts” of key-value pairs or “gets” of keys. After a
customer executes a put request on a key-value pair, (k, v), any other customer
of any DSP should receive v in response to a get request for k. In this paper, we
do not focus on what happens between customers and their DHT proxies.

We now discuss the goals and design possibilities for a P4 infrastructure that
supports the usage scenario above. Throughout, we are concerned with high-level
questions about how DSPs peer with each other rather than with the specifics
of network protocols to support this peering.
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Fig. 1. High-level P4 scenario. Organizations and home users are customers of a DSP;
their interface to the P4 infrastructure is a DHT proxy supplied by the DSP.

2.1 Goals

We now list a few of the more crucial design goals; these will help us choose from
several design options.

Proper incentives, not perfect security. We do not require that P4 ensures,
or even monitors, that DSPs execute their responsibilities properly. Instead, we
care only that DSPs have an incentive to do so. This incentive arises if a DSP’s
malfeasance (such as returning incorrect values) causes harm to its own customers
(perhaps in addition to harming customers of other DSPs). If so, then the economic
incentives caused by customers switching to or from various DSPs will encourage
DSPs to perform their tasks properly. We are not concerned that individual cus-
tomers may receive bad service from individual DSPs; this situation is analogous
to the way today’s users of IP are vulnerable to their ISPs.

Flat names. We believe that all keys in the P4 infrastructure should exist in
one flat namespace. In particular, one should not be able to look at a key and
deduce which DSP was serving the end-host that put the key. The reason for
DSP-independent keys is that if the key did identify the DSP responsible for a
given (k, v) pair, then the owner of the (k, v) pair would not be able to switch
its DSP without invalidating its existing keys.

Flexible tradeoffs between writing and reading speeds. While ideally
both writes (puts) and reads (gets) would be fast, in distributed systems one
usually sacrifices speed in one to achieve it in the other. Since some applications
are read-intensive and others write-intensive, we require that the design allow,
on a per-key basis, flexible tradeoffs between these two concerns.
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2.2 Designs

We now present four general design approaches and test them against our design
goals.1

All one DHT. The first design we consider is one in which each DSP con-
tributes hosts to a single, global DHT. The advantage of this scenario is that
existing DHT mechanisms work without modification. The disadvantage is that
it is a classic “tragedy of the commons”. Specifically, a particular DSP reaps all
the benefit of bringing in additional customers but only receives a small share
of the benefit of providing more resources (nodes) to the DHT. The outcome is
likely to be a poorly provisioned infrastructure.

Use administrative separation. To avoid the problem of poor incentives that
exists in the previous scenario, we can partition the namespace and have the first
few bits of the key, k, identify the DSP “responsible” for k, where “responsible”
is defined as “storing the authoritative copy of (k, v)”. This model is reminiscent
of the Skipnet DHT’s [9] use of the top bits of the key to identify the organization
in which the key originated. The advantages of this scenario are: (1) everyone
knows which DSP is responsible for which key, thereby giving DSPs an incentive
to be good P4 citizens and (2) DSPs would have to store only those (k, v) pairs
created by their customers; in response to customer requests for other keys,
the DSP could use the information in the key to determine which other DSP
to contact. The disadvantage of this approach is that it fails to meet the “flat
names” requirement.

The next two designs presume that each DSP maintains its own lookup service
and exposes that lookup service to the DSP’s customers. Each DSP can imple-
ment its own lookup mechanism (presumably, but not necessarily, a DHT), and
the internal operations of the various DSPs can vary widely. In order for DSPs to
correctly answer their customers’ get queries for all keys in the P4 infrastructure,
DSPs must exchange updates with each other. The difference between the next
two designs is whether these updates occur proactively.

Get-broadcasting, local puts. In this design, when a customer executes a
put request for a pair (k, v), the customer’s DSP stores (k, v) locally. When a
customer requests k, the DSP checks if it has stored k. If not, the DSP broadcasts
the query for k to the other DSPs to ask them about k. As an optimization, the
DSP can do this broadcast in parallel with its own lookup. In §3.4, we discuss a
further optimization, namely opportunistic caching of (k, v) pairs originating in
other DSPs.

Put-broadcasting, local gets. In this design, DSPs proactively exchange up-
dates with each other. After a customer puts a (k, v) pair, its DSP updates the
other DSPs with information about k. This update can take two forms: the DSP
can either tell the other DSPs about the (k, v) pair, or the DSP can tell the other
DSPs about k alone, with the understanding that the other DSPs will fetch v

1 While we can’t prove that these are the only design approaches, they do seem to
capture the spectrum of approaches taken for similar problems; see §4.
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on-demand (from the appropriate DSP) when their own customers execute get
requests for k.

These last two peering designs address the shortcomings of the first two. As men-
tioned above, one of our goals is a flexible tradeoff between put and get speeds.
Accordingly, we think the last two designs, which comprise three options—get-
broadcasting, put-broadcasting of a key, and put-broadcasting of a key-value
pair—can coexist. Our assumption is that the user who executes the put request
on key k will make the decision about which propagation regime applies to the
pair (k, v). This decision is based on the customer’s expectations about put and
get frequency as well as the cost charged by DSPs.

The three different options involve splitting the resource consumption be-
tween puts and gets differently: get-broadcasting has the least bandwidth-
intensive put, but the most bandwidth-intensive get; put-broadcasting of a key-
value pair is the opposite (most bandwidth-intensive puts, least bandwidth-
intensive gets); and put-broadcasting of a key is intermediate. Presumably the
charges imposed by DSPs for the various actions, according to whatever pricing
scheme they employ, will reflect these differing burdens.

3 Challenges and Questions

Here, we cover the challenges that result from the last two scenarios of the
previous section. We emphasize that there are many DHT-related challenges that
pertain to our scenario but are addressed elsewhere. The challenges that result
from exposing a general-purpose DHT as a service are articulated and addressed
by the Open DHT authors [7,8]. Other challenges, discussed in [4,10], relate to
how, in the absence of cues built into flat names, organizations may offer: fate
sharing (the hosts of a disconnected organization should be able to gain access
to “local” key-value pairs); administrative scoping (key owners should be able
to limit a key-value pair to intramural use); and locality (organizations should
have fast access for key-value pairs that are frequently requested by its hosts).
These solutions are logically between the DHT proxy and the organization.

3.1 Coherence and Correctness

The P4 infrastructure must offer to customers a coherent and complete view of
the namespace while also letting customers choose their keys. These high-level
goals induce two requirements. First, as discussed above, key-value pairs put by
customers must be visible to customers of other DSPs. To meet this requirement,
DSPs propagate puts and gets (§2.2).

The second requirement is that two customers (of the same DSP or of two
different ones) must not be able to own the same key or overwrite each other’s
key-value pairs. To satisfy this requirement, we borrow Open DHT’s [7,8] three
kinds of put requests (to which correspond three types of get requests).

The first kind is immutable: k is a secure, collision-resistant hash of v. The
second is authenticated: putters supply a public key, and getters request not k
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but rather a (k, a) pair; a is a hash of the putter’s public key. For both kinds,
the same key (meaning k or a (k, a) pair, depending) should never be claimed
by two different owners (unless they are storing the same data, in the first case,
or they have access to the same private key, in the second case). These facts
are independent of whether the DHT infrastructure comprises one or multiple
entities. However, Open DHT’s approach assumes that the entire DHT infras-
tructure is trusted. In contrast, P4 customers need trust only their own DSPs
since the DSPs can check the necessary invariants before accepting updates for
immutable or authenticated key-value pairs.

The third type of put is unauthenticated; customers can pick the key and
value, but such requests are append-only (to prevent customers from overwriting
each other’s data). Thus, when a DSP receives a key-value pair from a peer
(e.g., on a put-broadcast) for a key it already has, the DSP appends the new
value to the existing values associated with the key. Observe that under get-
broadcasting, unauthenticated puts are only eventually coherent;2 For example,
if two customers of two different DSPs put (k, v1) and (k, v2), then a local get
originating in the first DSP will immediately return (k, v1), not (k, {v1, v2}).

3.2 Incentives

As noted earlier, we do not require that the peering arrangements provide perfect
security, preventing any malicious behavior on the part of DSPs. We merely
require that the incentive to please customers encourages DSPs to behave well.
In what follows, the term data refers to key-value pairs, local puts or gets are
those from a DSP’s own customers, and local data is data stored from a local
put. There are four actions that a DSP executes on behalf of customers:

– Respond to local gets (both by answering directly, or requesting the data
from other DSPs)

– Respond to external gets (forwarded from other DSPs) for local data
– Process local puts by both storing locally and optionally forwarding to other

DSPs
– Process external puts forwarded by other DSPs

In each case, doing the action correctly adds benefit to the local customers,
either by providing them with the correct data or by providing others with
the local customer’s data. If a DSP fails to execute these operations correctly,
then—independent of the payment model among DSPs or between DSPs and
customers—the customers will become unhappy (if they detect such behavior,
which we assume they eventually will if such cheating is widespread).3

2 Under get-broadcasting with TTL-based caching, the other two types of puts are
also only eventually coherent, as discussed in §3.4. However, even without caching,
the point applies to unauthenticated put requests.

3 A DSP can certainly deny a customer access to a strategic key-value pair; the po-
tential for such abuse appears in many customer/provider relationships (including
those discussed in §4).
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This discussion of general incentives does not address the question of whether,
and how, DSPs would choose to peer. Logically, peering is a pairwise decision in
that two DSPs choose to exchange puts and gets. If the two DSPs gain equally,
then there will likely be no settlements (the common economic term for payments
between peers). However, if one of the DSPs benefits substantially more, the DSP
benefitting less might demand payment in order to peer.4 Such settlements would
make peering more complicated because they would require detailed monitoring
(as explained at the end of this section).

One might think that when a large and small DSP peer, the benefits would
be unbalanced. To investigate this hypothesis, consider two DSPs, a and b, who
are deciding whether to peer. Assume: (1) that the cost of peering is negligible
compared to the other costs of running a DSP5 and (2) that the profit of a DSP
is proportional to the utility its customers derive from its service (the happier
the customers are, the more they are willing to pay). Then, the benefit that
accrues to a given DSP from peering is proportional to the sum of the benefits
that accrue to the DSP’s customers from: being able to read data from the other
DSP and having their data read by customers of the other DSP.

To calculate these benefits, we use the following definitions:

– bp: the average benefit a customer derives from having its data read by
another customer

– bg: the average benefit a customer derives from reading a piece of data
– na→b: number of gets issued by customers of DSP a for data produced by

customers of DSP b
– nb→a: number of gets issued by customers of DSP b for data produced by

customers of DSP a

The benefit derived by DSP a from peering is proportional to na→bbg +
nb→abp. Similarly, the benefit derived by DSP b is proportional to na→bbp +
nb→abg. The difference in benefits is proportional to

∆ = (bp − bg)(na→b − nb→a).

If the average benefit to a customer from reading data is the same as the average
benefit to a customer from having its data read (i.e., if bp = bg), then both DSPs
benefit the same (i.e., ∆ = 0), independent of their size. If bp does not equal
bg, then we must consider the quantity na→b − nb→a. We measure the size of
DSPs a and b by number of customers and denote these quantities Sa and
Sb. Now, assume that the number of gets issued by the customers of a DSP
4 There is a vast economics literature on this two-person bargaining problem, where

a joint venture benefits two parties unequally. The nature of the solutions doesn’t
concern us here, except that the literature is unanimous in expecting no payments
in the symmetric benefits case.

5 In practice, this assumption may hold only when the sizes of the two DSPs are
the same order of magnitude; a much smaller DSP would incur comparatively more
bandwidth cost from peering. However, as discussed in §3.3, we imagine the peering
will be done by large players.
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is proportional to the DSP’s size, with constant of proportionality λg (so the
number of gets issued by customers of DSP a is λgS

a). Now assume further that
the fraction of data items in the P4 infrastructure owned by a DSP’s customers
is also proportional to the DSP’s size, with proportionality constant λd (so the
fraction of total data items owned by b’s customers is λdSb). Now assume finally
that all gets are targeted randomly in the namespace, so the number of gets
destined for a DSP is proportional to the fraction of data items its customers
own. Then, na→b = λgS

aλdS
b, which is symmetric in a and b. Thus, if the

preceding assumptions hold, DSPs benefit equally, independent of their size.
Clearly these assumptions won’t hold in practice exactly. However, if they

are a reasonable approximation, DSPs might choose to peer without settlements.
If the assumptions aren’t even close, and settlements are thus required, then
monitoring is necessary (if DSP a locally serves gets for a key-value pair it
received on an update from DSP b, then b has no way to know how many
gets were thus served, and a has no incentive to be truthful.) The only easily
monitored scenario is get-broadcasting with limited caching.

3.3 Scaling

As with ISP peering, put-broadcasting and get-broadcasting do not scale to a
large, flat market structure. However, just as in ISP peering, we assume that a for-
est structure will arise, wherein: a small number of top-level providers peer with
each other; it is these top-level providers that do put- and get-broadcasting; and
these top-level providers have “children” that are themselves providers (and may
offer a different level of customer service). A child has two options. It can either
redirect customers’ put and get requests to a top-level DSP; alternatively, by send-
ing and receiving updates via its parent, it can maintain a local lookup service.

3.4 Latency

We discuss end-to-end latency experienced by customers for put and get requests.
For put requests, the DHT proxy supplied by the customer’s DSP checks that
any required invariants hold (see §3.1 and [8]) and immediately returns an error
or success code to the customer. If the key is a put-broadcast key, the DSP will
propagate the put request to its peers in the background. Put requests do not
suffer from high latency.

For get requests, we separately consider the three propagation regimes: get-
broadcast, put-broadcast of the key, and put-broadcast of the key-value pair. For
get-broadcast keys, DSPs perform opportunistic, TTL-based caching (with the
TTL set by the putter). Thus, the first time a DSP receives a get request for such
a key, the lookup may have high latency since the DSP has to contact the other
DSPs. Subsequent lookups will be local to the DSP but then this key-value pair
may be stale. (To avoid this staleness, the putter can use one of the two put-
broadcast types, which presumably require more payment.) For put-broadcast
keys, if the key k is broadcast without the value, v, then, as described in §2.2,
all of the DSPs will store both k and a pointer to the DSP that actually has v.
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The latency situation here is similar to the latency in the get-broadcast regime
(in both cases, a get causes a DSP to contact, and wait for, at least one other
DSP). Finally, if both the key and value are put-broadcast, all of the DSPs will
have copies of (k, v), so latency will not suffer.

Application software acting on behalf of putters can implement an adaptive
algorithm that, for each key, decides which propagation regime is optimal, given
the costs charged and benefits received.

4 Related Work

The observation that for-profit DSPs could peer to form a federated DHT in-
frastructure exposing a global namespace was briefly mentioned in [4,2], but no
such mechanism was described. This paper fills that void. We now discuss exist-
ing federations (arising in different contexts) that present a coherent view of a
namespace or of an infrastructure.

Today’s competing ISPs federate by exchanging routes with each other to
create a global IP dialtone for their customers. The economic incentives in this
federation are similar to what we imagine for the P4 infrastructure, though the
technical challenges differ. ISPs can aggregate (while DSPs cannot) the infor-
mation they exchange with each other, but ISPs must also apply (while DSPs
need not) complex policies about what information to expose to peers. Also, no
equivalent of get-broadcasting exists with ISPs; route changes are distributed
proactively.

The namespace of the Domain Name System (DNS) is hierarchical, and the
“providers” of the resolution service are coded directly into the names. These
“providers” need not exchange updates, since, on a get request (i.e., a DNS
lookup), the end-host knows how to find the responsible provider.

The literature on content internetworking [11,12] describes scenarios in which
content distribution networks (CDNs) peer to exchange cached copies of Web
objects. Those scenarios and P4 face similar technical challenges in terms of how
entities relate to each other (e.g., when and how to exchange updates) but, within
an entity, the solutions differ. CDNs do widespread caching of Web objects that
have DNS names, and the hosts comprising a CDN may offer application-specific
functions such as serving media files. In contrast, DSPs are optimized for lookup
and insertion of small values that have flat names.

While the above federations rest on commercial relationships, other federa-
tions rely on a combination of altruism and shared purpose (i.e., the participants
are directly interested in each other’s data). These non-commercial federations
include cooperative Web caches (see citations in [13], esp. [14]), Usenet, and
peer-to-peer file sharing networks.

5 Summary

The peer-to-peer revolution, with its B.Y.O.I approach, was a radical departure
from the more conventional ways of funding infrastructure. However, commen-
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tators on the subject sometimes failed to separate the technical innovations
introduced by these peer-to-peer designs—achieving flat name resolution in an
unprecedentedly scalable and reliable way—from their economic novelty. In this
paper we asked whether one can harness the technical properties of these peer-
to-peer designs, specifically DHTs, in a more conventional economic setting.

Our analysis suggests that one can. As we describe, there are peering ar-
rangements that result in a uniform DHT dialtone (for customers) with proper
incentives (for DSPs). However, these peering arrangements are a necessary but
not sufficient condition for commercially provided DHT service. The market for
such DHT service depends on the success of prototypes such as Open DHT [7,8],
which in turn will depend on the prevalence and popularity of applications based
on a DHT service.
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