


Lecture Notes in Computer Science 3640
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Miguel Castro Robbert van Renesse (Eds.)

Peer-to-Peer
Systems IV

4th International Workshop, IPTPS 2005
Ithaca, NY, USA, February 24-25, 2005
Revised Selected Papers

13



Volume Editors

Miguel Castro
Microsoft Research
7 JJ Thomson Avenue, Cambridge CB3 0FB, UK
E-mail: mcastro@microsoft.com

Robbert van Renesse
Cornell University, Department of Computer Science
Ithaca, NY 14853, USA
E-mail: rvr@cs.cornell.edu

Library of Congress Control Number: 2005936069

CR Subject Classification (1998): C.2.4, C.2, H.3, H.4, D.4, F.2.2, E.1, D.2

ISSN 0302-9743
ISBN-10 3-540-29068-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29068-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11558989 06/3142 5 4 3 2 1 0



Preface

The 4th International Workshop on Peer-to-Peer Systems was held at Cornell on
February 24th and 25th 2005. The IPTPS workshop continued to bring together
researchers and practitioners from a variety of disciplines, including networking,
theory, databases, security, and scientific computing. They described experimen-
tal findings, discussed challenges, and presented novel techniques.

We received 123 submissions. Submissions were limited to 6 pages, one page
more than in previous years. The submissions were reviewed by a Program Com-
mittee consisting of 18 international experts from academia and industry. After a
bidding process, each committee member was assigned 20 papers to review, gen-
erating 3 reviews for each paper. Controversial papers were assigned additional
reviewers. The papers were then ranked based on originality, technical merit, and
topical relevance, as well as the likelihood that the ideas expressed would lead to
insightful technical discussions at the workshop. The program chairs suggested
a program which was extensively discussed and revised by the entire committee
to produce the final program.

We accepted 24 papers, which were organized into 8 sessions: Security and
Incentives, Search, Multicast, Overlay Algorithms, Empirical Studies, and Net-
work Locality, and two sessions on miscellaneous topics. Authors revised their
submissions for a preproceedings distributed at the workshop. After the work-
shop, the authors revised their papers once more for the proceedings before you.

In order to focus discussions, attendance was restricted to Program Com-
mittee and to Steering Committee members and to at most two authors per
paper. This resulted in 55 attendees from 9 countries at the workshop. Each
session included 3 talks (20 minutes presentation and 5 minutes for questions),
and a discussion panel (15 minutes). This format stimulated lively interaction
between the participants of the workshop, and resulted in interesting and in-
sightful discussions. The workshop was webcast, and followed by approximately
50 additional attendees from 10 countries.

The organization of the workshop involved many people. We thank the Pro-
gram Committee for their hard work and for selecting an excellent program. Bill
Hogan did an outstanding job with all of the local arrangements and maintaining
the web server. Wenjie Wang and Sugih Jamin provided the live webcast. Twelve
student scribes kept notes for the workshop report included in this proceedings.
The Steering Committee provided guidance behind the scenes. Microsoft pro-
vided generous support. But, most of all, we wish to thank all participants of
IPTPS 2005 for making this workshop a success.

July 2005 Miguel Castro and Robbert van Renesse



Organization

Workshop Co-chairs

Miguel Castro Microsoft Research
Robbert van Renesse Cornell University

IPTPS Steering Committee

Peter Druschel Rice University
Frans Kaashoek MIT
Antony Rowstron Microsoft Research
Scott Shenker UC Berkeley
Ion Stoica UC Berkeley

Program Committee

Karl Aberer EPFL
Mary Baker HP Labs
Hari Balakrishnan MIT
Bobby Bhattacharjee Maryland
Miguel Castro Microsoft Research
Peter Druschel Rice
Hector Garcia-Molina Stanford
Anne-Marie Kermarrec INRIA
Barbara Liskov MIT
Dahlia Malkhi HUJI, Microsoft Research
Timothy Roscoe Intel Research
Emin Gun Sirer Cornell
Alex Snoeren UC San Diego
Ion Stoica UC Berkeley
Robbert van Renesse Cornell
Maarten van Steen VU Amsterdam
Helen Wang Microsoft Research
Ben Zhao UC Santa Barbara

Administrative Assistant

Bill Hogan Cornell

Sponsoring Institution

Microsoft Corporation



Table of Contents

Workshop Report
Mahesh Balakrishnan, Maya Haridasan, Prakash Linga,
Hongzhou Liu, Venu Ramasubramanian, Sean Rhea, Manpreet Singh,
Vidhyashankar Venkatraman, Vivek Vishnumurthy, Kevin Walsh,
Bernard Wong, Ming Zhong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Security and Incentives

A Self-repairing Peer-to-Peer System Resilient to Dynamic Adversarial
Churn

Fabian Kuhn, Stefan Schmid, Roger Wattenhofer . . . . . . . . . . . . . . . . . . 13

A First Look at Peer-to-Peer Worms: Threats and Defenses
Lidong Zhou, Lintao Zhang, Frank McSherry, Nicole Immorlica,
Manuel Costa, Steve Chien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A Taxonomy of Rational Attacks
Seth James Nielson, Scott A. Crosby, Dan S. Wallach . . . . . . . . . . . . . . 36

Search

Brushwood: Distributed Trees in Peer-to-Peer Systems
Chi Zhang, Arvind Krishnamurthy, Randolph Y. Wang . . . . . . . . . . . . . 47

Arpeggio: Metadata Searching and Content Sharing with Chord
Austin T. Clements, Dan R.K. Ports, David R. Karger . . . . . . . . . . . . . 58

OverCite: A Cooperative Digital Research Library
Jeremy Stribling, Isaac G. Councill, Jinyang Li, M. Frans Kaashoek,
David R. Karger, Robert Morris, Scott Shenker . . . . . . . . . . . . . . . . . . . . 69

Miscellaneous

NetProfiler: Profiling Wide-Area Networks Using Peer Cooperation
Venkata N. Padmanabhan, Sriram Ramabhadran, Jitendra Padhye . . . 80

A Statistical Theory of Chord Under Churn
Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell,
Seif Haridi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



X Table of Contents

Peering Peer-to-Peer Providers
Hari Balakrishnan, Scott Shenker, Michael Walfish . . . . . . . . . . . . . . . . . 104

Multicast

The Impact of Heterogeneous Bandwidth Constraints on DHT-Based
Multicast Protocols

Ashwin R. Bharambe, Sanjay G. Rao, Venkata N. Padmanabhan,
Srinivasan Seshan, Hui Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chainsaw: Eliminating Trees from Overlay Multicast
Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sambamurthy,
Alexander E. Mohr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

FeedTree: Sharing Web Micronews with Peer-to-Peer Event Notification
Daniel Sandler, Alan Mislove, Ansley Post, Peter Druschel . . . . . . . . . 141

Overlay Algorithms

Hybrid Overlay Structure Based on Random Walks
Ruixiong Tian, Yongqiang Xiong, Qian Zhang, Bo Li, Ben Y. Zhao,
Xing Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Quickly Routing Searches Without Having to Move Content
Brian F. Cooper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Practical Locality-Awareness for Large Scale Information Sharing
Ittai Abraham, Ankur Badola, Danny Bickson, Dahlia Malkhi,
Sharad Maloo, Saar Ron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Empirical Studies

An Empirical Study of Free-Riding Behavior in the Maze P2P
File-Sharing System

Mao Yang, Zheng Zhang, Xiaoming Li, Yafei Dai . . . . . . . . . . . . . . . . . . 182

Clustering in P2P Exchanges and Consequences on Performances
Stevens Le Blond, Jean-Loup Guillaume, Matthieu Latapy . . . . . . . . . . . 193

The Bittorrent P2P File-Sharing System: Measurements and Analysis
Johan Pouwelse, Pawe�l Garbacki, Dick Epema, Henk Sips . . . . . . . . . . . 205



Table of Contents XI

Miscellaneous

Dynamic Load Balancing in Distributed Hash Tables
Marcin Bienkowski, Miroslaw Korzeniowski,
Friedhelm Meyer auf der Heide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

High Availability in DHTs: Erasure Coding vs. Replication
Rodrigo Rodrigues, Barbara Liskov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Conservation vs. Consensus in Peer-to-Peer Preservation Systems
Prashanth P. Bungale, Geoffrey Goodell, Mema Roussopoulos . . . . . . . . 240

Exploiting Network Locality

Locality Prediction for Oblivious Clients
Kevin P. Shanahan, Michael J. Freedman . . . . . . . . . . . . . . . . . . . . . . . . . 252

Impact of Neighbor Selection on Performance and Resilience of
Structured P2P Networks

Byung-Gon Chun, Ben Y. Zhao, John D. Kubiatowicz . . . . . . . . . . . . . . 264

Evaluating DHT-Based Service Placement for Stream-Based Overlays
Peter Pietzuch, Jeffrey Shneidman, Jonathan Ledlie, Matt Welsh,
Margo Seltzer, Mema Roussopoulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287



Workshop Report

Mahesh Balakrishnan1, Maya Haridasan1, Prakash Linga1, Hongzhou Liu1,
Venu Ramasubramanian1, Sean Rhea2, Manpreet Singh1,

Vidhyashankar Venkatraman1, Vivek Vishnumurthy1, Kevin Walsh1,
Bernard Wong1, and Ming Zhong3

1 Cornell University
2 University of California Berkeley

3 University of Rochester

Session 1: Security and Incentives

A Self-Repairing Peer-to-Peer System Resistant to Dynamic Adversarial Churn. Pre-
sented by Stefan Schmid.

Q: Is d (the dimensionality of the hypercube) constant? Does it scale? A: Yes, it
scales. d is logarithmic in the number of peers in the system.

Q: Presumably in some cases you need to copy data between the core and periphery
of nodes. Do you have any analysis? A: When a new peer joins the core, it needs to
copy data, but when a peer becomes a core peer, it never becomes peripheral again
unless there is a dimension change. I don’t have an analysis of how often this happens.

Q: What happens to locality properties in the system? A: Locality is not a prime
issue in our system. However, there is often a peer in the neighboring node that is
geographically close. So this could be one heuristic to take locality into account.

Q: All routes are going to pass through core nodes. Could that be a problem? A:
Yes, that is true. To address that, one optimization would be to distribute the cores’ load
into the peripheral peers.

A First Look at Peer-to-Peer Worms: Threats and Defenses. Presented by Lidong Zhou.
Q: Have you looked into imposing some structure on guardian placement? A: We

haven’t looked at it. Under our current model, having guardian nodes at strategic lo-
cations will improve the containment results. However, a worm might be able to infer
those locations and change its path of infection. It is not clear in the end whether strate-
gic placement helps.

Q: You consider that it takes zero time to generate an alert. How realistic is that
assumption? A: We have some data based on our more recent work on alert generation
mechanisms. It certainly varies with worms, but is under 1 second for some existing
worms we have looked at.

Q: It seems like you are picking regular peers to become guardian peers. How do
you know you can trust them? A: The alerts are verifiable and must be verified before
they are accepted. Otherwise, they can be used to launch attacks on the receiving nodes.
Fake alerts generated by malicious nodes will be dropped. This helps reduce the level
of trust on guardian nodes.

Q: Patches to remove vulnerabilities may require human intervention and consid-
erable time, even though detecting a signature for particular worms may be easier. Have

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 M. Balakrishnan et al.

you thought about the impact of this? A: Human intervention is not suited for contain-
ing p2p worms, which could spread very quickly. We are working on automating the
process of generating and applying patches.

Q: How effective can guardians be? We could have a hybrid propagation mode
where worms propagate also through links other than the peer-to-peer links. A: Hybrid
worms require a combination of defense mechanisms. We haven’t yet studied how those
hybrid worms propagate and how effective our mechanism would be for those attacks.

Q: What if the guardian nodes are connected? A: We actually have a graph that
shows what happens if we connect all the guardian nodes. It shows a visible but limited
effect.

Kill the Messenger: A Taxonomy of Rational Attacks. Presented by Seth Nielson.
Q: Sometimes systems relax strict behavioral requirements from the nodes in order

to handle exigencies. For example, tit-for-tat is relaxed when nodes join a p2p network
after a failure. How would you classify attacks that exploit this? A: We classified those
attacks under the excuses category but they certainly would also be policy attacks.

Q: Attacks are possible in systems, for example BitTorrent, where mechanisms (in-
centives) are good but the implementation is wrong. How do you classify these attacks?
A: There may be attacks due to implementation faults, for example, a manufactured ev-
idence attack can happen in BitTorrent. But, despite that, incentives in BitTorrent work
well.

Q: BitTorrent is successful because payoff is low. If payoff is high, can the behavior
change? A: Yes.

Q: Is tit-for-tat in BitTorrent beneficial? A: There would be more rational manip-
ulation without tit-for-tat.

Q: Is BitTorrent the first system to implement rational incentives? A: Other sys-
tems have tried to apply incentive techniques as well, for example, Kazaa, but they
were easily subverted. It is hard to build incentive mechanisms in a distributed manner.
BitTorrent does pretty well.

Panel Discussion
Q: (For Lidong) You did not mention existing worms in Gnutella. A: I would not

call them worms in the same sense, but rather viruses. They require users’ actions to
propagate and therefore their propagation is slow and can be relatively easily stopped.

Q: (For Seth) How does rational behavior work at the overlay routing layer? A: It
would depend on the user’s view of cost/benefit. We would need a cooperation model
to tackle it.

Q: (For Lidong) Can worm propagation be mitigated by having different systems
connected to each other as neighbors, for example, a Windows system with a Linux
system? A: Diversity at one hop may yield better containment results under our current
worm model. But, p2p worms can find two-hop neighbors and infect those directly. So
diversity just among neighbors does not solve the problem completely.

Q: (For Seth) Do attacks go away if we can reason about client protocols? For
example, we could get a certificate that all Gnutella nodes use the same Gnutella library.
A: It could make it worse. If all the nodes are running the same software, then they are
all vulnerable to the same attacks. However, it will eliminate rational attacks.



Workshop Report 3

Session 2: Search

Brushwood: Distributed Trees in Peer-to-Peer Systems. Presented by Chi Zhang.
Q: One of your slides shows a distributed KD-tree built with Brushwood which

allows nearest neighbor selection in an n-dimensional virtual coordinate space. Can you
use this nearest neighbor selection scheme in the tree construction to make it proximity-
aware, to allow for low latency/stretch routing? A: No, proximity neighbor selection
is handled by the underlying skip graph. The skip graph performs proximity neighbor
selection by selecting close neighbors for the large hops.

Q: What is the latency stretch of Brushwood? A: Similar to the stretch of Pastry.
Q: How does Brushwood perform node deletion? A: When a node leaves, its tree

fragments are merged with a neighbor node.

Arpeggio: Metadata Searching and Content Sharing with Chord. Presented by Dan
Ports.

Q: Do you know the average number of keywords in Gnutella queries? A: I don’t
have the exact number for you, but I can imagine it’s something similar to web queries,
where the average number is about 2.5.

Q: Instead of introducing Index Gateways to decide if metadata is already in the
network, can you just query for the metadata to decide if it already exists? A: The Index
Gateway has other advantages related to some things I didn’t present in this talk. For
example, since the availability of a file changes constantly, we expire the metadata on
a regular basis. The metadata needs to be refreshed periodically to prevent expiration.
The gateway knows when metadata will expire and is responsible for renewing it on all
the index nodes.

Q: Since you have the sub-rings, can you just assign a specific node, like the last
node, of the sub-ring to do that? A: That’s one possibility, but our design is intended to
keep the indexing system and the content distribution system independent.

Q: Suppose a node shares a lot of files. Does that mean it needs to join lots of
sub-rings? What’s the cost of that? A: The cost of joining a sub-ring is O(log N)
communications, while the storage cost is constant.

Q: By “constant,” do you mean per sub-ring? A: Per node in the sub-ring. Q:
Suppose you are a member of K sub-rings. Does that mean you have storage cost
proportional to K? A: Yes, but the cost is only a few bytes per sub-ring, as compared
to many megabytes for the actual file data. It’s negligible.

Q: I think Overnet is a deployed file sharing system that allows for keyword search
using heuristic methods. A: I believe Overnet uses an inverted index table with some
index side filtering. We are adding keyword sets that improve the distribution of load
across nodes in the network.

Q: The idea of keyword-set indexing is trading storage for lookup time, but the
storage overhead seems too high to me. Suppose there are 10 keywords per metadata
and a query contains 3 keywords on average. The overhead will be a ratio of 1000. Isn’t
this too high? A: We are looking at files with a small amount of metadata. The FreeDB
analysis shows that constructing the index requires an increase of only a factor of ten.
Q: Suppose you have only 10 keywords in a metadata block, why don’t you just
use a 10-dimension DHT? In this way, you can find the metadata simply by DHT



4 M. Balakrishnan et al.

lookup? A: We don’t believe this would work. It’s not clear how to perform a multi-
keyword search with this scheme.

Q: For FreeDB, how much storage space do you need? A: The total requires about
one and a half billion index entries, but each index entry is very small, since it only
needs to store the file metadata. For comparison, the total amount of audio data indexed
by FreeDB is hundreds of terabytes.

Q: How would you do sub-string search? A: We don’t provide support for sub-
string search.

Q: It seems to me you are underestimating the size of the query because a query for
Gnutella, unlike the web case, usually contains more than 3 keywords. A: Even if this is
true, it isn’t a problem if queries are larger. Suppose you have a query of size 6 and the
maximum keyword-subset has a size of 3. You can still select a random three-keyword
subset, and send the query to the index responsible. Because we’re using index-side
filtering, this still requires only transmitting relevant results.

Q: Have you thought about locality when choosing a node that’s storing a file? A:
The sub-ring lookups will give you a list of nodes that are sharing a file. You can choose
one that’s nearby. Q: By pinging each of them? A: Yes.

Overcite: A Cooperative Digital Research Library. Presented by Jeremy Stribling.
Q: Do you have the numbers for the search and storage costs of Google scholar?

Do you think services supported by Google will obviate the need for Citeseer? A: We
do not have any numbers on that but I don’t think it will obviate the need for Cite-
seer. Google’s services are free but there cannot be community control over them. For
example, you will not be able to support new features that the community wants.

Q: How are you replicating the documents? A: Using the DHT. Q: What is the
replication factor? A: Two. Q: How do you know that is enough? A: We feel this is
good enough since nodes donated by universities can be assumed to be relatively stable.
Even if it is not sufficient, we can alter the replication factor.

Q: You should be looking for volunteers. How can universities contribute resources
to this system? A: The system is not completed. Once it is, we will make a formal
announcement.

Q: You were talking about using one-hop DHTs. Instead, it makes a lot of sense
if we can use existing, deployed DHTs such as OpenDHT or eDonkey. Have you ever
thought of it? A: I don’t think OpenDHT can support 760GB of data. C: This seems a
perfect application for OpenDHT.

Q: There are certain things offered by centralized solutions that are very difficult to
apply in the distributed case, such as spam filtering, correcting bad entries, and other
administrative support. How do you plan to address them? A: First of all, Citeseer
doesn’t provide support for these features currently. But that is an interesting question
and we have to think about it.

Q: Have you thought about security implications of distributing this system over the
wide area. Potentially there are incentives for people to manipulate indices, the ranking
and so on. A: Good point. We haven’t thought about it yet.

Q: Aren’t there copyright issues if you are going to replicate these documents? A:
Legal issues may crop up. At present, Citeseer does not have any special agreements
with the authors and it works well without them.



Workshop Report 5

Q: Do you think a decentralized system is necessary at all? A: Let’s see after we
build it. I think it makes sense to try. C: I think Google scholar will need a lot of ma-
chines and bandwidth to make their system scalable. The p2p solution offers a simpler
and cheaper way to do this. There is a technical and social side to the management issue
and your system solves the technical side to these management issues.

Panel Discussion
Q: (For Jeremy) Ignoring non-computer science issues like copyrights, how would

you compare using DHTs against regular mirroring or CDNs like Akamai? Even if you
use DHTs, certain things have to be done in a centralized way as others have pointed
out. Even if you want to extend features, a centralized authority (a committee of some
form) may have to agree as to whether to do it or not. So issues against Citeseer may
turn against Overcite as well. But leaving that aside, I am trying to think of the advan-
tages that a pure distributed system would give when compared to the other alternatives.
A: We do not know the exact answer, since we have not deployed our system yet. C:
Leveraging Google-like solutions may require high bandwidth. Costs will definitely
decrease if p2p is used. C: But why can’t you mirror then? I can’t seem to find a con-
vincing answer as to why a p2p solution should be used. C: Never mind using p2p or
mirroring. Finding an alternative to Citeseer is important and this work is a significant
step in that direction.

Session 3: Miscellaneous 1

Peering Peer-to-Peer Providers. Presented by Michael Walfish.
Q: The benefit of DHTs is that you can run one per application—they could be

decoupled. A: I’m not advocating coupling.
Q: Do you really expect people to run DSPs, and if so, what would their motivation

be? A: That’s what happened when NSF-Net turned into a bunch of Internet service
providers, so there is some precedent.

NetProfiler: Profiling Wide-Area Networks using Peer Cooperation Presented by
Venkata Padmanabhan
Q: Blame assignment may cause pushback; Can you certify diagnoses? A: It’s hard
for one client to prove a problem. It’s easier to prove you can get to a website than
that you can’t. Our tool gives a better diagnosis for rational ISPs, which want to fix the
problems identified in order to retain users.

Q: If you want to deploy the system on a large scale, and you are interested in
diagnosing long-term failures, how do you handle churn in P2P systems? A: This is an
interesting issue that we haven’t yet looked into. But we already replicate data in P2P
systems; we could replicate failure information. Also failure information may not need
to be as fault-tolerant.

A Statistical Theory of Chord under Churn. Presented by Supriya Krishnamurthy.
Q: Is it easy to extend this analysis to consider latency distributions? A: Yes, I

think so.



6 M. Balakrishnan et al.

Panel Discussion
Q: (For Venkata) Can NetProfiler be used to detect DDoS attacks? A: We can use

it to detect new virus outbreaks, and the initial steps (causality) involved in a DDoS
attack.

Q: (For Michael) About the forest of DSPs model: does put/get scale like BGP,
which uses aggregation? A: We’re only talking about small multiplicative factors; peo-
ple using the service can absorb that cost.

Q: (For Michael) I’m not aware of any peering storage services at present. A: What
kind of peering services do you have in mind? C: The non-existence of peered storage
services indicates a problem for you. C: Inktomi web cache peering is a good example.

Q: (For Michael) Can you think of particular examples that might benefit from
DSPs? A: HIP. Keys identify hosts, values identify IP addresses. For music sharing,
the “bring your own infrastructure” model works fine.

Session 4: Multicast

The Impact of Heterogeneous Bandwidth Constraints on DHT-Based Multicast Proto-
cols. Presented by Sanjay Rao.

Q: I don’t quite see what you mean about the multi-tree approach not being useful.
A: If you have constant degree, the multi-tree approach is useful. But with varying
degrees, you want the higher degree nodes higher in the tree in order to minimize depth,
and multi-trees do not accomplish this.

Q: It seems that the issues you raise are not fundamental. I can think of some simple
fixes that might work. For example, it is possible to remove the in-degree skew in Pastry.
It would also help to make the degree proportional to the capacity of the node. You can
do this by changing the way proximity neighbor selection works to bias it towards nodes
with higher degree. A: Maybe you are right but I am pointing out these issues that have
not been solved yet.

Q: Does SplitStream address these issues? A: (Miguel) I think it does! (Sanjay) I
think it does not!

Chainsaw: Eliminating Trees from Overlay Multicast. Presented by Vinay Pai.
Q: What is the difference between BitTorrent and your multicast streams, really?

A: BitTorrent distributes files, not live content. Q: But they both stream. Is it just your
sliding window? A: Yes, it may be just the sliding window.

Q: You mention that your SplitStream implementation has problems with recovery.
Did you try the version from Rice, which has more functionality? A: No, we didn’t,
because we thought that using the Macedon version would be fairer, since the others
were implemented in Macedon. But Macedon’s implementation of SplitStream is not
complete.

Q: Did SplitStream use erasure coding to recover from errors in your experiments?
A: No. I don’t think that is implemented in Macedon.

Q: You mention for the DVD example that you use 8KB packets. How do you deal
with the 1500 byte packet limit? A: Our implementation is over TCP. Q: Do you have
a breakdown of costs and overheads. Say, the costs relative to the bandwidth of the



Workshop Report 7

stream, versus costs that are constant regardless of the size of the data, etc.? A: No, I
don’t have those numbers. We haven’t looked at it.

FeedTree: Sharing Web Micronews with Peer-to-Peer Event Notification. Presented by
Dan Sandler.

Q: It seems that this might already be solved. Can’t Akamai and others do this?
There is a lot of work on cooperative caching. A: This is very different because the
data set is very volatile. I am a big fan of Akamai and CDNs but it seems that multicast
is just a very natural fit for micronews.

Panel Discussion
Q: Why do multicast and not just file distribution with buffering? File distribution

gives you time shifting like TiVo and people love it. A: There are lectures and video
conferencing where you need low delay for real-time interaction.

Q: (For Vinay) Is the delay such that you can’t get it with file distribution with
buffering? With multicast, if you don’t get the bits in time, they just go away forever, but
with file distribution with buffering, you can still get all the bits. A: No, the bits don’t
have to go away permanently. As long as seeds still have the bits, they can be recovered.
Also, you might have the availability window in Chainsaw spanning GBytes to allow
time shifting. C: Trees might have better delay than Chainsaw. C: But Chainsaw might
be more resistant to failures.

Session 5: Overlay Algorithms

Hybrid Overlay Structure Based on Random Walk. Presented by Xiong Yongqiang.
Q: You compute coordinates for nodes in an n-dimensional space using GNP and

then map them to a one-dimensional space to enable DHT lookups. Two nodes that are
close in the n-dimensional space map to close location numbers in the one-dimensional
space but what about the converse property? A: It is possible that two nodes close
together in the one-dimensional space are actually far apart in the n-dimensional space.
So when a node joins, it gets the list of clusters that have location numbers that are close
to its own. Then the new node needs to measure the latencies between the different
clusters and decide which cluster to join.

Quickly routing searches without having to move content. Presented by Brian Cooper.
Q: With the two optimizations you proposed, every step of the route becomes

deterministic. With high network churn, many walks are likely to fail because the target
neighbor is down. A: If you worry about churn, you can combine these techniques
with random walks. At some steps, you choose the next hop by document count and at
others, you choose it randomly. An alternative is to perform two walks simultaneously:
one based on document counts and a pure random walk.

Q: Did you try random walks biased by node degree in the power law network? A:
Yes, we did try that. We looked at previous work that performs random walks biased
by node degree. This works with the assumption that the node knows the data stored by
its neighbors, which requires content movement. If we perform random walks biased



8 M. Balakrishnan et al.

by degree without content information, the result is roughly the same as a pure random
walk. That’s the reason we didn’t bias by degree but by document count.

Q: When you use a square root topology, what does the CDF of node degrees
look like compared to power law networks? A: The peers with the largest degrees have
significantly lower degree than in power law networks. The skew is significantly smaller
than in power law networks.

Practical Locality-Awareness for Large Scale Information Sharing. Presented by
Dahlia Malkhi.

Q: I am worried about coloring and vicinity balls. You assume that a node’s vicinity
ball has at least a node from each color but that’s not guaranteed. A: When we get
to probability 2−80, that’s good enough. If you are still concerned that with churn we
cannot find a node of the desired color, that’s not a problem. We just go to another
neighbor. Q: Can you take those extra local hops and still be within the routing stretch
of 2? A: Our experimental cumulative stretch graph shows stretch above 2 for about
5% of the nodes. That’s the difference between the system and the formal algorithm.

Q: Have you done a worst case analysis of node degree? A: Yes, it’s
√

n · log n.
Q: What happens when the number of nodes grows or shrinks? A: Obviously we

need to estimate
√

n, but it does not have to be accurate. This is pretty easy: as the
network grows all the red nodes will realize the network is growing and split into two
different shades of red. When the network shrinks that’s even easier: for example, the
red and blue nodes decide to have the same color.

Panel Discussion
Q: We regularly see new routing protocols being proposed. Have we reached a

point where instead of proposing new protocols, we should be evaluating how existing
protocols serve specific applications? A: You are right. I agree that we should tweak
the knobs inside each algorithm, instead of trying to engineer a new algorithm.

Q: It’s interesting to note that Brian and Dahlia’s papers have taken very differ-
ent approaches: Dahlia’s paper talks of 2-hop routes by keeping a lot of state, whereas
Brian’s paper throws away state but has routes with average hop-lengths of about 8000.
A: (Brian Cooper) Yes, there are tradeoffs involved but it is difficult to maintain invari-
ants when there is churn if the degree is large. C: (Dahlia Malkhi) But without large
enough degree, the network will be partitioned under churn.

Session 6: Empirical Studies

An Empirical Study of Free-Riding Behavior in the Maze P2P File Sharing System.
Presented by Zheng Zhang.

Q: Is free-riding a real problem? Do free-riders consume that many resources that
we need to figure out a way to make them stop? A: Yes, free-riding is a problem.
The system performance can be improved by getting a better utilization of free-rider’s
resources. C: A brand new user starts with more points than a user that consumes some
files. You could consider a version of the system where the user starts at the bottom of
the hierarchy, with no points to use, as a way to reduce whitewashing.



Workshop Report 9

Q: Should you set a bottom limit on the point system? A: We haven’t thought
about it. It’s a good suggestion. C: Once you get past a certain point, it doesn’t matter
how low your points get. There’s only an upper bound on bandwidth. Q: But it affects
your position in the queue, which is the log of points. A: Yes, that’s true.

Q: I’d like to ask about attacks where people cheat to get more points. For the fake
file attack or colluding attack, maybe some reputation mechanism can be adopted, for
example, Pagerank or EigenTrust. A: Absolutely. We have an algorithm to detect that.
There’s another related problem that happens in Maze. Sometimes a student transfers a
file from his office to his dorm, and ends up getting points for that transfer.

Q: Does altruism really exist in Maze? From the graphs, it seems like there are a
couple of users that upload a few terabytes? Do they offset the free-riders? A: Yes. Our
top 10 list motivates people to upload to gain recognition.

Q: What are the typical types of data you found on Maze? A: Interesting images,
Hollywood DVDs, software.

Clustering in P2P exchanges and consequences on performances. Not presented.

The BitTorrent P2P File Sharing System: Measurement and Analysis. Presented by
Johan Pouwelse and Pawel Garbacki.

Q: When the tracker crashes everything stops. Why doesn’t the RIAA DoS track-
ers? A: It’s not true that everything stops when the tracker fails. What happens is that
no new peers can join the system, but the joined peers can continue. The peer selection
mechanism is done locally. When the tracker fails, it’s not possible to detect the new-
comers, but a peer can continue downloading. One of the things we’re trying to do now
is to distribute the tracker’s functionality, for example, having the peers gossip the IP
addresses of peers in the system. Q: And who runs the trackers now? A: Web sites like
Supernova run big trackers.

Q: How do you measure the peer uptime? A: We just contact the peers and ask
them for some random pieces to check whether they are up or not. We do this once
every few minutes.

Q: Is there any data downloaded that is not copyrighted material? Have you col-
lected any statistics to check whether there is different behavior of users for copyrighted
and not copyrighted material? A: It depends on the tracker list. There are basically
three types of users. The first group consists of the Linux Open Source population,
which shows altruistic behavior and has high performance. The second group consists
of regular users, sharing illegal content, and which have no sharing ratio requirements.
And the last consists of a membership-based community, that enforces a strict sharing
ratio to further stimulate the performance of the network.

Q: How well does tit-for-tat work in BitTorrent? Do we need additional mecha-
nisms? A: Tit-for-tat outperforms the queuing mechanism in EDonkey or the aggres-
sive seed-jumping policy used by Pirate Bay.

Panel Discussion
C: You have been talking about altruism in file sharing systems. But it is not really

altruism, it is just contributing your idle CPU time and unused bandwidth capacity for
stealing copyrighted material.



10 M. Balakrishnan et al.

Q: (For Zheng Zhang) Is it easy to collude or manipulate your point system? A: We
can detect some cheaters but we may not ban them since that may lead to population
shrinkage.

Q: (For Zheng Zhang) Will high-end users be willing to give their resources? Is
there a penalty for users with slow links? A: There is a built-in natural selection mech-
anism.

Session 7: Miscellaneous 2

Dynamic Load Balancing in DHTs. Presented by Miroslaw Korzeniowski.
Q: You are trying to achieve uniform load balancing. What about heterogeneous

load balancing when nodes have different capacities? A: This is hard. We may be able
to do this within a constant factor, but I am not sure. C: One of our algorithms [Karger
and Ruhl, SPAA 2004] could do this. I think the O(log log N) moves guarantee would
still hold but we might need additional assumptions like constant skew in capacity.

Q: If nodes leave, do they need to do so politely to help rebalance? A: We don’t
react to joins and leaves. We run the algorithm continuously.

Q: How about using a virtual node approach to do heterogeneous load balancing?
A: I don’t like virtual nodes because you need to keep track of more state. C: Virtual
nodes also add more links that you have to maintain. C: Right, and they don’t work
well for fractional load balancing. To have one node with 10% more load than another,
we must have at least 11 virtual nodes in one node and 10 in the other.

Q: How do you prevent people from claiming arbitrary node identifiers to attack
the DHT? A: Preventing people from migrating is not sufficient for security. C: No, but
it’s still necessary. It is the first step. C: One solution is to allow each node to choose
from a small set of ids for its virtual nodes. log N ids to choose from does not give the
attacker too much power.

High Availability in DHTs: Erasure Coding vs. Replication. Presented by Rodrigo
Rodrigues.

Q: Can better coding techniques increase the usefulness of coding relative to repli-
cation? A: Currently, we use IDA with 14 fragments, 7 of which are needed to recon-
struct. I’m not sure if other techniques could help.

Q: Is there an advantage to erasure coding for updates? A: Writes are faster using
coding since less data must be copied into the DHT but this comes at some additional
CPU cost. C: But you can’t do sub-block updates as easily with erasure coding because
you must reconstruct, update, and then re-encode.

Conservation vs. Consensus in Peer-to-Peer Preservation Systems. Presented by
Prashanth Bungale.

Q: How is bit-rot defined? In particular, are bit insertion and deletion included in
your definition of bit-rot? A: Corruption, insertion, and deletion of bits are all included
in the definition of bit-rot.

Q: Do coordinated attacks make the consensus-based scheme more vulnerable? A:
Yes, we have an analysis of coordinated attacks is in the paper.



Workshop Report 11

Q: If a library’s reputation is damaged, it cannot join the system again because of
black-listing. A: It is not a problem because the black-listing can be removed using
out-of-band channels.

Q: Since objects in this system are immutable, why can’t you use digital signa-
tures to verify integrity? A: We do not use digital signatures because the public key
would have to be remembered for a long time. C: The arguments against using hashing
schemes and digital signatures for checking bit-rot are not convincing, and these issues
are not discussed in the paper. C: Using signatures will simply shift the preservation
problem to preserving the public key. C: But the problem of preserving the public key
also exists in remembering the name of the document being preserved.

Panel Discussion
Q: (For Prashanth Bungale) Is there a role for erasure codes in digital archival?

A: No. There isn’t much need for coding because replicas already exist in the digital
archival case. C: But coding might be useful because it alters the nature of bit-rot. C:
(Rodrigo Rodrigues) Indeed, coding would make bit-rot more noticeable, and it might
also make insertion attacks less likely.

Session 8: Exploiting Network Locality

Locality Prediction for Oblivious Clients. Presented by Kevin Shanahan.
Q: Why not use IP anycast? A: I am not familiar with IP anycast.
Q: I’m confused about the problem you saw with Vivaldi coordinates Do you have

an intuition about what’s going wrong? A: It is just due to the local errors in the
estimates. 20% can be attributed to misbehaving PlanetLab nodes.

Q: Have you thought about using something other than latency? A: Certainly, we
could use other metrics, such as server reliability.

Impact of Neighbor Selection on Performance and Resilience of Structured P2P Net-
works. Presented by Byung-Gon Chun.

Q: How does the CDF of latencies for the transit-stub model compare to the one on
PlanetLab? A: It’s almost a normal distribution. Q: Which is not what PlanetLab looks
like at all. A: Yes, maybe.

Q: You show that adding random links adds resilience. Did you look at taking a
random first hop after noticing a failure? A: I think in this case it may not help but in
other cases it might.

Evaluating DHT-Based Service Placement for Stream-Based Overlays. Presented by
Jeff Schneidman.

Q: How planar is the transit-stub graph? A: It’s planar. C: So this is an optimistic
case for network coordinates. You could use the King data set, which is non-planar. I
think you can also manipulate the transit-stub generator to make it non-planar. Planet-
Lab is very non-planar.

Q: Could you have more than one join operator? A: Yes.
Q: Did you do this on real DHTs or is it all simulated? A: What I’ve shown you is

all simulated.



12 M. Balakrishnan et al.

Panel Discussion
C: It would be great if we had an alternative to the transit-stub model. We have

good all-pairs latency sets but not a good topology model. C: You can use the Mercator
router-level topology. C: But it does not have latency annotations.

C: (Peter Druschel) Eugene Ng and I started a project a few months ago to replicate
the properties of the King data set. One thing we already know is that the statistical
properties of the King data set are very different from what we see in the transit-stub
model.

C: One reason I used the transit-stub model is because it has nice hierarchical prop-
erties that make it easier to compute routes. We can compute routes inside a domain,
then compute the routes between domains. I tried power-law networks, but it is too
much computation.

C: Our experience with Vivaldi on PlanetLab was terrible. We put lots of effort into
it, for example, reducing scheduling delays. We’re not entirely sure what’s the cause but
it may be just due to congestion and utilization.



A Self-repairing Peer-to-Peer System
Resilient to Dynamic Adversarial Churn�

Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer

Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland

Abstract. We present a dynamic distributed hash table where peers
may join and leave at any time. Our system tolerates a powerful ad-
versary which has complete visibility of the entire state of the system
and can continuously add and remove peers. Our system provides worst-
case fault-tolerance, maintaining desirable properties such as a low peer
degree and a low network diameter.

1 Introduction

Storing and handling data in an efficient way lie at the heart of any data-driven
computing system. Compared to a traditional client/server approach, decen-
tralized peer-to-peer (P2P) systems have the advantage to be more reliable,
available, and efficient. P2P systems are based on common desktop machines
(“peers”), distributed over a large-scale network such as the Internet. These
peers share data (as well as the management of the data) that is conventionally
stored on a central server. Usually, peers are under control of individual users
who turn their machines on or off at any time. Such peers join and leave the
P2P system at high rates (“churn”), a problem that is not existent in orthodox
distributed systems. In other words, a P2P system consists of unreliable compo-
nents only. Nevertheless, the P2P system should provide a reliable and efficient
service.

Most P2P systems in the literature are analyzed against an adversary who
can crash a functionally bounded number of random peers. After crashing a few
peers the system is given sufficient time to recover again. The scheme described
in this paper significantly differs from this in two major aspects. First, we assume
that joins and leaves occur in a worst-case manner. We think of an adversary
which can remove and add a bounded number of peers. The adversary cannot be
fooled by any kind of randomness. It can choose which peers to crash and how
peers join.1 Note that we use the term “adversary” to model worst-case behavior.
We do not consider Byzantine faults. Second, the adversary does not have to
wait until the system is recovered before it crashes the next batch of peers.
� Research (in part) supported by the Hasler Stiftung and the Swiss National Science

Foundation.
1 We assume that a joining peer knows a peer which already belongs to the system.

This is known as the bootstrap problem.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 13–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



14 F. Kuhn, S. Schmid, and R. Wattenhofer

Instead, the adversary can constantly crash peers while the system is trying to
stay alive. Indeed, our system is never fully repaired but always fully functional.
In particular, our system is resilient against an adversary which continuously
attacks the “weakest part” of the system. Such an adversary could for example
insert a crawler into the P2P system, learn the topology of the system, and then
repeatedly crash selected peers, in an attempt to partition the P2P network.
Our system counters such an adversary by continuously moving the remaining
or newly joining peers towards the sparse areas.

Clearly, we cannot allow our adversary to have unbounded capabilities. In
particular, in any constant time interval, the adversary can at most add and/or
remove O(log n) peers, n being the total number of peers currently in the sys-
tem. This model covers an adversary which repeatedly takes down machines by
a distributed denial of service attack, however only a logarithmic number of ma-
chines at each point in time. Our algorithm relies on messages being delivered
timely, in at most constant time between any pair of operational peers. In dis-
tributed computing such a system is called synchronous. Note that if nodes are
synchronized locally, our algorithm also runs in an asynchronous environment.
In this case, the propagation delay of the slowest message defines the notion of
time which is needed for the adversarial model.

The basic structure of our P2P system is a hypercube. Each peer is part of a
distinct hypercube node; each hypercube node consists of Θ(log n) peers. Peers
have connections to other peers of their hypercube node and to peers of the
neighboring hypercube nodes. In the case of joins or leaves, some of the peers
have to change to another hypercube node such that up to constant factors, all
hypercube nodes own the same number of peers at all times. If the total number
of peers grows or shrinks above or below a certain threshold, the dimension of
the hypercube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can be seen as a dy-
namic token distribution problem [1] on the hypercube. Each node of a graph
(hypercube) has a certain number of tokens, the goal is to distribute the to-
kens along the edges of the graph such that all nodes end up with the same
or almost the same number of tokens. While tokens are moved around, an ad-
versary constantly inserts and deletes tokens. Our P2P system builds on two
basic components: i) an algorithm which performs the described dynamic to-
ken distribution and ii) an information aggregation algorithm which is used to
estimate the number of peers in the system and to adapt the dimension accord-
ingly.

Based on the described structure, we get a fully scalable, efficient P2P sys-
tem which tolerates O(log n) worst-case joins and/or crashes per constant time
interval. As in other P2P systems, peers have O(log n) neighbors, and the usual
operations (e.g. search) take time O(log n). In our view a main contribution of
the paper, however, is to propose and study a model which allows for dynamic
adversarial churn. We believe that our basic algorithms (dynamic token distri-
bution and information aggregation) can be applied to other P2P topologies,



A Self-repairing P2P System Resilient to Dynamic Adversarial Churn 15

such as butterflies, skip graphs, chordal rings, etc. It can even be used for P2P
systems that go beyond distributed hash tables (DHT).

The paper is organized as follows. In Section 2 we discuss relevant related
work. Section 3 gives a short description of the model. A detailed discussion of
our P2P system is given in Sections 4 and 5. Section 6 concludes our work.

2 Related Work

A plethora of different overlay networks with various interesting technical proper-
ties have been proposed over the last years (e.g. [2][3][4][5][6][7][8][9][10][11][12]).
Due to the nature of P2P systems, fault-tolerance has been a prime issue from
the beginning. The systems usually tolerate a large number of random faults.
However after crashing a few peers the systems are given sufficient time to re-
cover again. From an experimental point of view, churn has been studied in [13],
where practical design tradeoffs in the implementation of existing P2P networks
are considered.

Resilience to worst-case failures has been studied by Fiat, Saia et al. in
[14][15]. They propose a system where, w.h.p., (1 − ε)-fractions of peers and
data survive the adversarial deletion of up to half of all nodes. In contrast to our
work the failure model is static. Moreover, if the total number of peers changes
by a constant factor, the whole structure has to be rebuilt from scratch.

Scalability and resilience to worst-case joins and leaves has been addressed
by Abraham et al. in [16]. The focus lies on maintaining a balanced network
rather than on fault-tolerance in the presence of concurrent faults. In contrast
to our paper, whenever a join or leave happens, the network has some time to
adapt.

The only paper which explicitly treats arbitrarily concurrent worst-case joins
and leaves is by Li et al. [17]. In contrast to our work, Li et al. consider a
completely asynchronous model where messages can be arbitrarily delayed. The
stronger communication model is compensated by a weaker failure model. It is
assumed that peers do not crash. Leaving peers execute an appropriate “exit”
protocol and do not leave before the system allows this; crashes are not allowed.

3 Model

We consider the synchronous message passing model. In each round, each peer
can send a message to all its neighbors. Additionally, we have an adversary
A(J, L, λ) which may perform J arbitrary joins and and L arbitrary leaves
(crashes) in each interval of λ rounds.

We assume that a joining peer π1 contacts an arbitrary peer π2 which already
belongs to the system; π2 then triggers the necessary actions for π1’s integration.
A peer may be contacted by several joining peers simultaneously. In contrast to
other systems where peers have to do some finalizing operations before leaving,
we consider the more general case where peers depart or crash without notice.



16 F. Kuhn, S. Schmid, and R. Wattenhofer

4 Algorithm

In this section, we describe the maintenance algorithm which maintains the
simulated hypercube in the presence of an adversary which constantly adds and
removes peers. The goal of the maintenance algorithm is twofold. It guarantees
that each node always contains at least one peer which stores the node’s data.
Further, it adapts the hypercube dimension to the total number of peers in the
system.

This is achieved by two basic components. First, we present a dynamic token
distribution algorithm for the hypercube. Second, we describe an information
aggregation scheme which allows the nodes to simultaneously change the dimen-
sion of the hypercube.

4.1 Dynamic Token Distribution

The problem of distributing peers uniformly throughout a hypercube is a special
instance of a token distribution problem, first introduced by Peleg and Upfal [1].
The problem has its origins in the area of load balancing, where the workload
is modelled by a number of tokens or jobs of unit size; the main objective is
to distribute the total load equally among the processors. Such load balancing
problems arise in a number of parallel and distributed applications including job
scheduling in operating systems, packet routing, large-scale differential equations
and parallel finite element methods. More applications can be found in [18].

Formally, the goal of a token distribution algorithm is to minimize the max-
imum difference of tokens at any two nodes, denoted by the discrepancy φ. This
problem has been studied intensively; however, most of the research is about the
static variant of the problem, where given an arbitrary initial token distribu-
tion, the goal is to redistribute these tokens uniformly. In the dynamic variant
on the other hand, the load is dynamic, that is, tokens may arrive and depart
during the execution of the token distribution algorithm. In our case, peers
may join and leave the simulated hypercube at arbitrary times, so the emphasis
lies on the dynamic token distribution problem on a d-dimensional hypercube
topology.

We use two variants of the token distribution problem: In the fractional
token distribution, tokens are arbitrarily divisible, whereas in the integer token
distribution tokens can only move as a whole. In our case, tokens represent peers
and are inherently integer. However, it turns out that the study of the fractional
model is useful for the analysis of the integer model.

We use a token distribution algorithm which is based on the dimension ex-
change method [19][20]. Basically, the algorithm cycles continuously over the
d dimensions of the hypercube. In step s, where i = s mod d, every node
u := β0...βi...βd−1 having a tokens balances its tokens with its adjacent node
in dimension i, v := β0...βi...βd−1, having b tokens, such that both nodes end
up with a+b

2 tokens in the fractional token distribution. On the other hand, if
the tokens are integer, one node is assigned �a+b

2 � tokens and the other one gets
�a+b

2 � tokens.



A Self-repairing P2P System Resilient to Dynamic Adversarial Churn 17

It has been pointed out in [19] that the described algorithm yields a perfect
discrepancy φ = 0 after d steps for the static fractional token distribution. In
[20], it has been shown that in the worst case, φ = d after d steps in the static
integer token distribution. We can show that if the decision to which node to
assign �a+b

2 � and to which node to assign �a+b
2 � tokens is made randomly, the

final discrepancy is constant in expectation. However, we do not make use of
this because it has no influence on our asymptotic results.

In the following, the dynamic integer token distribution problem is studied,
where a “token adversary” A(J, L, 1) adds at most J and removes at most L
tokens at the beginning of each step. In particular, we will show that if the
initial distribution is perfect, i.e., φ = 0, our algorithm maintains the invariant
φ ≤ 2J + 2L + d at every moment of time.

For the dynamic fractional token distribution, the tokens inserted and deleted
at different times can be treated independently and be superposed. Therefore,
the following lemma holds.

Lemma 1. For the dynamic fractional token distribution, the number of tokens
at a node depends only on the token insertions and deletions of the last d steps
and on the total number of tokens in the system.

Proof. Assume that a total amount of T tokens are distributed in two different
ways on the d-dimensional hypercube. According to [19], each node has exactly
T
2d tokens after d steps in the absence of an adversary. On the other hand, the
token insertions and removals of the adversary that happen in-between can be
treated as an independent superposition, as the corresponding operations are all
linear.

We can now bound the discrepancy of the integer token distribution algo-
rithm by comparing it with the fractional problem.

Lemma 2. Let v be a node of the hypercube. Let τv(t) and τv,f (t) denote the
number of tokens at v for the integer and fractional token distribution algorithms
at time t, respectively. We have ∀t : |τv(t) − τv,f (t)| ≤ d

2 .

Proof. For t = 0, we have τv(t) = τv,f (t). For symmetry reasons, it is sufficient
to show the upper bound τv(t) ≤ τv,f (t) + d

2 . We first prove by induction that
τv(t) ≤ τv,f (t) + t

2 at time t.
For the induction step, we consider two neighbors u and v which exchange

tokens. We have

τv(t + 1)≤
⌈

τv(t) + τu(t)
2

⌉

≤
⌈⌊

τv,f (t) + t
2

⌋
+

⌊
τu,f (t) + t

2

⌋
2

⌉

≤
⌊
τv,f (t) + t

2

⌋
+

⌊
τu,f (t) + t

2

⌋
2

+
1
2

≤τv,f (t + 1) +
t + 1

2
.



18 F. Kuhn, S. Schmid, and R. Wattenhofer

The second inequality follows from the induction hypothesis and the fact that
τv(t) and τu(t) are integers. Note that adding or removing tokens has no influence
on the difference between τv and τv,f because it modifies τv and τv,f in the same
way.

So far, we have seen that the number of integer tokens can deviate from the
number of fractional tokens by at most d

2 after the first d steps. In order to
show that this holds for all times t, we consider a fractional token distribution
problem τ̂v,f for which τ̂v,f (t − d) = τv(t − d). Using the above argument, we
have τv(t−d) ≤ τ̂v,f (t) and by Lemma 1, we get τ̂v,f (t) = τv,f (t). This concludes
the proof.

Lemma 3. In the presence of an adversary A(J, L, 1), it always holds that the
integer discrepancy φ ≤ 2J + 2L + d.

Proof. We show that the fractional discrepancy φf is bounded by 2J +2L. Since
Lemma 2 implies that for the integer discrepancy φi it holds that φi − φf ≤ d,
the claim follows. Let Jt ≤ J and Lt ≤ L be the insertions and deletions that
happen at the beginning of step t. First, we consider the case of joins only, i.e.,
Lt = 0. Assume that all Jt tokens are inserted at node v = β0...βi...βd−1 where
i := t mod d. In the upcoming paragraph, all indices are implicitly modulo d.
In step t, according to the token distribution algorithm, v keeps Jt/2 tokens
and sends Jt/2 to node u = β0...βi...βd−1. In step t + 1, Jt/4 are sent to nodes
β0...βiβi+1...βd−1 and β0...βiβi+1...βd−1, and so on. Thus, after step t + d − 1,
every node in the d-dimensional hypercube has the same share of Jt

2d tokens from
that insertion. We conclude that a node can have at most all insertions of this
step, half of the insertions of the last step, a quarter of all insertions two steps
ago and so on:

Jt +
Jt−1

2
+

Jt−2

4
+ ... +

Jt−(d−1)

2d−1︸ ︷︷ ︸
< 2J

+
Jt−d

2d
+

Jt−(d+1)

2d
+

Jt−(d+2)

2d
+ ...︸ ︷︷ ︸

shared by all nodes

Since Jt−i ≤ J for i = 0, 1, 2, . . ., we have φf ≤ 2J . For the case of only token
deletions, the same argument can be applied, yielding a discrepancy of at most
2L. Finally, if there are both insertions and deletions which do not cancel out
each other, we have φf ≤ 2J + 2L.

4.2 Information Aggregation

When the total number of peers in the d-dimensional hypercube system ex-
ceeds a certain threshold, all nodes β0 . . . βd−1 have to split into two new nodes
β0 . . . βd−10 and β0 . . . βd−11, yielding a (d + 1)-dimensional hypercube. Analo-
gously, if the number of peers falls beyond a certain threshold, nodes β0 . . . βd−20
and β0 . . . βd−21 have to merge their peers into a single node β0 . . . βd−2, yield-
ing a (d − 1)-dimensional hypercube. Based on ideas also used in [21][22][23],
we present an algorithm which provides the same estimated number of peers in



A Self-repairing P2P System Resilient to Dynamic Adversarial Churn 19

the system to all nodes in every step allowing all nodes to split or merge syn-
chronously, that is, in the same step. The description is again made in terms of
tokens rather than peers.

Assume that in order to compute the total number of tokens in a d-
dimensional hypercube, each node v = β0...βd−1 maintains an array Γv[0...d],
where Γv[i] for i ∈ [0, d] stores the estimated number of tokens in the sub-
cube consisting of the nodes sharing v’s prefix β0...βd−1−i. Further, assume that
at the beginning of each step, an adversary inserts and removes an arbitrary
number of tokens at arbitrary nodes. Each node v = β0...βd−1−i...βd−1 then
calculates the new array Γ ′

v[0...d]. For this, v sends Γv[i] to its adjacent node
u = β0...βd−1−i...βd−1, for i ∈ [0, d− 1]. Then, Γ ′

v[0] is set to the new number of
tokens at v which is the only node with prefix β0...βd−1. For i ∈ [1, d], the new
estimated number of tokens in the prefix domain β0...βd−1−(i+1) is given by the
total number of tokens in the domain β0...βd−1−i plus the total number of tokens
in domain β0...βd−1−i provided by node u, that is, Γ ′

v[i + 1] := Γv[i] + Γu[i].

Lemma 4. Consider two arbitrary nodes v1 and v2 of the d-dimensional hyper-
cube. Our algorithm guarantees that Γv1 [d] = Γv2 [d] at all times t. Moreover, it
holds that this value is the correct total number of tokens in the system at time
t − d.

Proof. We prove by induction that at time t + k, all nodes sharing the prefix
β0...βd−1−k for k ∈ [0, d] store the same value Γv[k] which represents the correct
state of that sub-domain in step t.

k = 0: There is only one node having the prefix β0...βd−1, so the claim
trivially holds.

k → k+1: By the induction hypothesis, all nodes v with prefix β0...βd−1−(k+1)

βd−1−k share the same value Γv[k] which corresponds to the state of the system
k steps earlier, and the same holds for all nodes u with prefix β0...βd−1−(k+1)

βd−1−k. In step k + 1, all these nodes having the same prefix β0...βd−1−(k+1)

obviously store the same value Γ ′
v[k + 1] = Γ ′

u[k + 1] = Γv[k] + Γu[k].

5 Simulated Hypercube

Based on the components presented in the previous sections, both the topology
and the maintenance algorithm are now described in detail. In particular, we
show that, given an adversary A(d + 1, d + 1, 6) which inserts and removes at
most d+1 peers in any time interval of 6 rounds, 1) the out-degree of every peer
is bounded by Θ(log2 n) where n is the total number of peers in the system, 2)
the network diameter is bounded by Θ(log n), and 3) every node of the simulated
hypercube has always at least one peer which stores its data items, so no data
item will ever be lost.

5.1 Topology

We start with a description of the overlay topology. As already mentioned, the
peers are organized to simulate a d-dimensional hypercube, where the hyper-



20 F. Kuhn, S. Schmid, and R. Wattenhofer

cube’s nodes are represented by a group of peers. A data item with identifier id
is stored at the node whose identifier matches the first d bits of the hash-value
of id .

The peers of each node v are divided into a core Cv of at most 2d+3 peers and
a periphery Pv consisting of the remaining peers; all peers within the same node
are completely connected (intra-connections). Moreover, every peer is connected
to all core peers of the neighboring nodes (inter-connections). Figure 1 shows
an example for d = 2.

Fig. 1. A simulated 2-dimensional hypercube with four nodes, each consisting of a
core and a periphery. All peers within the same node are completely connected to
each other, and additionally, all peers of a node are connected to all core peers of the
neighboring nodes. Only the core peers store data items, while the peripheral peers
may move between the nodes to balance biased adversarial changes.

The data items belonging to node v are replicated on all core peers, while
the peripheral peers are used for the balancing between the nodes according to
the peer distribution algorithm and do not store any data items. The partition
into core and periphery has the advantage that the peers which move between
nodes do not have to replace the data of the old node by the data of the new
nodes in most cases.

5.2 6-Round (Maintenance) Algorithm

The 6-round (maintenance) algorithm maintains the simulated hypercube topol-
ogy described in the previous section given an adversary A(d + 1, d + 1, 6). In
particular, it ensures that 1) every node has at least one core peer all the times
and hence no data is lost; 2) each node always has between 3d+10 and 45d+86
peers; 3) only peripheral peers are moved between nodes, thus the unnecessary
copying of data is avoided.

In the following, we refer to a complete execution of all six rounds of the
maintenance algorithm as a phase. Basically, the 6-round algorithm balances the
peers across one dimension in every phase according to the token distribution
algorithm as described in Section 4.1; additionally, the total number of peers
in the system is computed with respect to an earlier state of the system by



A Self-repairing P2P System Resilient to Dynamic Adversarial Churn 21

the information aggregation algorithm of Section 4.2 to expand or shrink the
hypercube if the total number of peers exceeds or falls below a certain threshold.
In our system, we use the lower threshold LT := 8d+16 and the upper threshold
UT := 40d + 80 for the total number of peers per node on average.2

While peers may join and leave the system at arbitrary times, the 6-round
algorithm considers the (accumulated) changes only once per phase. That is, a
snapshot of the system is made in round 1; rounds 2 – 6 then ignore the changes
that might have happened in the meantime and depend solely on the snapshot
at the beginning of the phase.
Round 1: Each node v makes the snapshot of the currently active peers. For
this, each peer in v sends a packet with its own ID and the (potentially empty)
ID set of its joiners to all adjacent peers within v.
Round 2: Based on the snapshot, the core peers of a node v know the total
number of peers in the node and send this information to the neighboring core
with which they have to balance in this phase (cf. Section 4.1). The cores also
exchange the new estimated total number of peers in their domains with the
corresponding adjacent cores (cf. Section 4.2). Finally, each peer informs its
joiners about the snapshot.
Round 3: Given the snapshot, every peer within a node v can compute the new
periphery (snapshot minus old core). This round also prepares the transfer for
the peer distribution algorithm across dimension i: The smaller of the two nodes
determines the peripheral peers that have to move and sends these IDs to the
neighboring core.
Round 4: In this round, the peer distribution algorithm is continued: The core
which received the IDs of the new peers sends this information to the periphery.
Additionally, it informs the new peers about the neighboring cores, etc.

The dimension reduction is prepared if necessary: If the estimated total num-
ber of peers in the system is beyond the threshold, the core peers of a node which
will be reduced send their data items plus the identifiers of all their peripheral
peers (with respect to the situation after the transfer) to the core of their adja-
cent node in the largest dimension.
Round 5: This round finishes the peer distribution, establishes the new periph-
eries, and prepares the building of a new core. If the hypercube has to grow in
this phase, the nodes start to split, and vice versa if the hypercube is going to
shrink.

Given the number of transferred peers, all peers can now compute the new
peripheries. Moreover, they can compute the new core: It consists of the peers of
the old core which have still been alive in Round 1, plus the 2d+3−|C| smallest
IDs in the new periphery, where C is the set of the old core peers which have
still been alive in Round 1. The old core then informs all its neighboring nodes
(i.e., their old cores) about the new core.

2 Note that since we consider the threshold on average, and since these values are
provided with a delay of d phases in a d-dimensional hypercube (see Lemma 4), the
number of peers at an individual node may lie outside [LT ,UT ].



22 F. Kuhn, S. Schmid, and R. Wattenhofer

If the hypercube has to grow in this phase, the smallest 2d+3 peers in the new
periphery of the node that has to be split become the new core of the expanded
node, and half of the remaining peripheral peers build its periphery. Moreover,
the necessary data items are sent to the core of the expanded node, and the
neighboring (old) cores are informed about the IDs of the expanded core.

If the hypercube is about to shrink, all old cores in the lower half of the
hypercube (the surviving sub-cube) inform their periphery about the peers ar-
riving from the expanded node and the peers in the expanded node about the
new core and its periphery. The data items are copied to the peers as necessary.
Round 6: In this round, the new cores are finally built: The old core forwards
the information about the new neighboring cores to the peers joining the core.

Moreover, if the hypercube has been reduced, every peer can now compute the
new periphery. If the hypercube has grown, the old core forwards the expanded
cores of its neighbors to all peers in its expanded node.

6 Conclusion

We presented a first distributed hash table which provably tolerates dynamic
worst-case joins and leaves. Our techniques can also be used to create robust P2P
systems based on other topologies having different properties. For example in
[24], we present a system based on the pancake graph with peer degree O( log n

log log n )
and network diameter O( log n

log log n ), tolerating an adversary that may join and
crash Θ( log n

log log n ) many peers per communication round.
We believe that our approach opens several exciting P2P research challenges.

For example: How well perform classic P2P proposals when studied with a dy-
namic failure model or what is the adversary/efficiency tradeoff when studying
dynamic models?

References

1. Peleg, D., Upfal, E.: The Token Distribution Problem. SIAM J. on Computing
287(2) (1989) 229–243

2. Aberer, K.: P-Grid: A Self-Organizing Access Structure for P2P Information Sys-
tems. In Proc. 9th Int. Conference on Cooperative Information Systems (CoopIS)
(2001) 179–194

3. Abraham, I., Dobzinski, O., Malkhi, D.: LAND: Stretch (1 + ε) Locality-Aware
Networks for DHTs. Proc. 15th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA) (2004) 550–559

4. Aspnes, J., Shah, G.: Skip Graphs. In Proc. 14th Ann. ACM-SIAM Symp. on
Discrete Algorithms (SODA) (2003) 384–393

5. Awerbuch, B., Scheideler, Ch.: The Hyperring: A Low-Congestion Deterministic
Data Structure for Distributed Environments. In Proc. 15th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA) (2004)

6. Harvey, N., Jones, M., Saroiu, S., Theimer, M., Wolman, A.: SkipNet: A Scalable
Overlay Network with Practical Locality Properties. In Proc. 4th USENIX Symp.
on Internet Technologies and Systems (USITS) (2003)



A Self-repairing P2P System Resilient to Dynamic Adversarial Churn 23

7. Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, Kubiatowicz, J., R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, Ch., Zhao, B.: OceanStore: An Architecture
for Global-scale Persistent Storage. In Proc. of ACM ASPLOS (2000)

8. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A Scalable and Dynamic Emulation
of the Butterfly. In Proc. 21st Ann. Symp. on Principles of Distributed Computing
(PODC) (2002) 183–192

9. Plaxton, G., Rajaraman, R., Richa, A.: Accessing Nearby Copies of Replicated
Objects in a Distributed Environment. In Proc. 9th Ann. ACM Symp. on Parallel
Algorithms and Architectures (SPAA) (1997) 311–320

10. Francis, P., Handley, Karp, R., M., Ratnasamy, S., Shenker, S.: A Scalable Content
Addressable Network. In Proc. of ACM SIGCOMM 2001

11. Balakrishnan, H., Kaashoek, F., Karger, D., Morris, R., Stoica, I.: Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Applications. In Proc. ACM SIG-
COMM Conference (2001)

12. Joseph, A., Huang, L., Kubiatowicz, J., Stribling, J., Zhao, B.: Tapestry: A Re-
silient Global-scale Overlay for Service Deployment. IEEE Journal on Selected
Areas in Communications 22 (2004)

13. Geels, D., Kubiatovicz, J., Rhea, S., Roscoe, T.: Handling Churn in a DHT. In
Proc. USENIX Ann. Technical Conference (2004)

14. Fiat, A., Saia, J.: Censorship Resistant Peer-to-Peer Content Addressable Net-
works. In Proc. 13th Symp. on Discrete Algorithms (SODA) (2002)

15. Gribble, S., Fiat, A., Karlin, A., Saia, J., Saroiu, S.: Dynamically Fault-Tolerant
Content Addressable Networks. In Proc. 1st Int. Workshop on Peer-to-Peer Sys-
tems (IPTPS) (2002)

16. Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D., Pavlov, E.: A Generic
Scheme for Building Overlay Networks in Adversarial Scenarios. In Proc. 17th Int.
Symp. on Parallel and Distributed Processing (IPDPS) (2003)

17. Li, X., Misra, J., Plaxton, G.: Active and Concurrent Topology Maintenance. In
Proc. 18th Ann. Conference on Distributed Computing (DISC) (2004)

18. Hurson, Kavi, K., A., Shirazi, B.: Scheduling and Load Balancing in Parallel and
Distributed Systems. IEEE Computer Science Press (1995)

19. Cybenko, G: Dynamic Load Balancing for Distributed Memory Multiprocessors.
Journal on Parallel Distributed Computing 7 (1989) 279–301

20. Plaxton, G.: Load Balancing, Selection and Sorting on the Hypercube. In Proc. 1st
Ann. ACM Symp. on Parallel Algorithms and Architectures (SPAA) (1989) 64–73

21. Albrecht, K., Arnold, R., Gähwiler, M., Wattenhofer, R.: Aggregating Information
in Peer-to-Peer Systems for Improved Join and Leave. 4th IEEE Int. Conference
on Peer-to-Peer Computing (P2P) (2004)

22. Birman, P., van Renesse, R., Vogels, W.: Astrolabe: A Robust and Scalable Tech-
nology for Distributed System Monitoring, Management, and Data Mining. ACM
Transactions on Computing Systems 21(2) (2003) 164–206

23. Bozdog, A., van Renesse, R.: Willow: DHT, Aggregation, and Publish/Subscribe
in One Protocol. In Proc. 3rd Int. Workshop on Peer-To-Peer Systems (IPTPS)
(2004)

24. Kuhn, F., Schmid, S., Smit, J., Wattenhofer, R.: Constructing Robust Dynamic
Peer-to-Peer Systems. TIK Report 216, ETH Zurich, http://www.tik.ee.ethz.ch
(2005)



A First Look at Peer-to-Peer Worms:
Threats and Defenses

Lidong Zhou1, Lintao Zhang1, Frank McSherry1, Nicole Immorlica2,�,
Manuel Costa3, and Steve Chien1

1 Microsoft Research Silicon Valley
{lidongz, lintaoz, mcsherry, schien}@microsoft.com

2 Laboratory for Computer Science, MIT
nickle@theory.lcs.mit.edu

3 Microsoft Research Cambridge and University of Cambridge
manuelc@microsoft.com

Abstract. Peer-to-peer (P2P) worms exploit common vulnerabilities in member
hosts of a P2P network and spread topologically in the P2P network, a potentially
more effective strategy than random scanning for locating victims. This paper de-
scribes the danger posed by P2P worms and initiates the study of possible mitiga-
tion mechanisms. In particular, the paper explores the feasibility of a self-defense
infrastructure inside a P2P network, outlines the challenges, evaluates how well
this defense mechanism contains P2P worms, and reveals correlations between
containment and the overlay topology of a P2P network. Our experiments sug-
gest a number of design directions to improve the resilience of P2P networks to
worm attacks.

1 Introduction

Peer-to-peer (P2P) overlay networks enjoy enormous and ever increasing popularity
both in real-life deployment (e.g., Gnutella and KaZaA) and in the research community
(e.g., Chord [18], CAN [13], Pastry [14], and Tapestry [24]). While security issues
for P2P networks have received attention, the main focus remains on ensuring correct
operations within a P2P network in the face of failures and malicious participants. Ex-
amples include maintaining the internal structure of a P2P network (e.g., [2]) and fair
sharing of resources (e.g., [5]). The threats that a large-scale P2P network deployment
poses to Internet security have largely been ignored.

In this paper, we argue that P2P networks provide an ideal venue for new types of
worms that prey on common vulnerabilities on the hosts in a P2P network. These worms
identify new victims simply by following P2P neighbor information on infected hosts.
They are different from the currently popular scanning worms, which probe addresses
randomly for new victims, in three important ways. First, they spread much faster, since
they do not waste time probing unused IP addresses. Second, they do not generate high
rates of failed connections. Finally, they can blend into the normal traffic patterns of
the P2P network. The lack of abnormal network behavior makes P2P worms a poten-
tially more deadly threat because most existing defense mechanisms against scanning

� Work done during internship at Microsoft Research Silicon Valley.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 24–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A First Look at Peer-to-Peer Worms: Threats and Defenses 25

worms are no longer effective. Because the number of subscribers to a P2P network
such as KaZaA is estimated to be in the millions, P2P worms have the potential to
compromise a significant fraction of the Internet population. We therefore study the
feasibility of constructing a self-defense infrastructure within a P2P network for con-
taining P2P worms. The infrastructure imposes new and challenging requirements for
worm-defense mechanisms, while the evaluation of the proposed infrastructure, both
analytically and through simulation, reveals interesting correlations between worm con-
tainment in a P2P network and the overlay topology of the network. Furthermore, our
experiments suggest a number of design directions to improve the resilience of P2P
networks to worm attacks.

The rest of the paper is organized as follows. Section 2 elaborates on the imminent
threat of P2P worms and makes a case for new defense mechanisms. Section 3 explores
possible countermeasures against P2P worms, outlines a self-defense infrastructure, and
presents a containment model. The evaluation of the self-defense infrastructure through
both theoretical analysis and simulations appears in Section 4. We conclude in Section 5.

2 Imminent Threat of P2P Worms

Popular P2P clients such as KaZaA already have a high penetration into the Internet
population. Any vulnerability in such a P2P client can put all those hosts at risk. The
likelihood of having an exploitable vulnerability in these pieces of software is alarm-
ingly high. A buffer overflow bug in the FastTrack network core, the underlying net-
work for KaZaA and several others, was discovered and disclosed recently [12]. To
make things worse, many P2P clients are bundled with spyware, further increasing the
chances of introducing intentional or unintentional backdoors into hosts in P2P net-
works. For example, Saroiu et al. [15] found vulnerabilities in two wide-spread spyware
programs due to lack of authentication in their auto-update processes.

Proof-of-concept viruses, such as Gnuman, VBS.Gnutella, and Fizzer [20], which
propagate through Gnutella or KaZaA were released in the wild as early as 2000. The
impact of these viruses was limited largely because their propagation relied heavily on
certain user actions. In contrast, a P2P worm can infect vulnerable hosts automatically
by exploiting the same types of vulnerabilities that led to notorious scanning worms
such as CodeRed and Slammer. Whereas these random-scanning worms search for
new vulnerable hosts by probing “randomly” generated IP addresses, a P2P worm can
quickly identify new vulnerable hosts by following the list of neighbors in the overlay
topology.

As a form of topological worm [21], P2P worms do not exhibit easily detectable
anomalies in network traffic as scanning worms do. A scanning worm has no informa-
tion on the locations of vulnerable hosts and thus is error-prone in choosing targets;
it has to rely on both a reasonable density of vulnerable hosts in the entire IP address
space and on the ability to probe different hosts at a high rate. It is these characteristics
that lead to schemes for containing scanning worms (e.g., [23,26,7,22]) by detecting
and reacting to various network anomalies.

Although these proposed mechanisms show promise for fast detection and success-
ful containment of scanning worms, they have limited power against P2P worms. The



26 L. Zhou et al.

P2P topology provides an accurate way for worms to find more vulnerable hosts with-
out probing random ones; the vastly improved accuracy in identifying vulnerable hosts
also eliminates the need to communicate with a large number of different hosts at a
high rate. The attack traffic can thus easily blend into normal P2P traffic. Therefore,
new defense mechanisms are needed.

3 Mitigating Threats of P2P Worms

P2P worms would not exist if we could eliminate vulnerabilities on P2P hosts or cut off
a worm’s propagation between neighboring P2P hosts. But neither is achievable in prac-
tice. To eliminate vulnerabilities, P2P client programs should be written in a type-safe
language (e.g., Java or C#), so that it is free of buffer-overflow vulnerabilities. Unfor-
tunately, this is not the case for most existing client programs. Furthermore, common
vulnerabilities could exist on co-located software or even the underlying platform. In-
creased diversity in a P2P network reduces the likelihood of common vulnerabilities
and makes it harder for a P2P worm to propagate through P2P neighbors. Further mea-
sures can be taken to protect the neighbor list from access by worms. But it is usually
hard to distinguish valid accesses from invalid ones.

Given that P2P clients will unlikely be free of common exploitable vulnerabilities
in the foreseeable future, an interesting research question is the feasibility of incorpo-
rating a self-defense infrastructure into a P2P network for the network itself to detect
outbreaks of any unknown worm and contain its spread.

3.1 Automatic Detection of Worms

Automatic detection of P2P worms is a prerequisite to any worm containment infra-
structure—human responses are simply too slow. Because P2P worms target only
hosts in a P2P network, referred to as nodes, automatic detection mechanisms must
be deployed within the P2P network. We call nodes with automatic worm detection
capabilities guardian nodes.

Because P2P worms do not exhibit easily detectable anomalies in network behavior,
guardian nodes must instead detect worms by identifying the infection process inside
running applications. Such detectors can detect broad classes of vulnerabilities. One
promising approach, pioneered by several independent research projects [19,4,6,11], is
based on the observation that a majority of worms work by hijacking the control flow of
a vulnerable program to execute malicious code injected from the network or to force
a different execution of code that was already loaded by the program. By tracking how
information from untrusted sources propagates its influence in memory during code
execution, a worm can be detected when the control flow of the program is arbitrar-
ily controlled by information from untrusted sources. However, the proposed detection
mechanisms either require hardware modifications [19,6] or demand expensive binary
rewriting/interpretation with significant performance degradation [4,11]. It is therefore
reasonable to assume that such general guardian nodes constitute only a small fraction
of a P2P population. Since the detection mechanism contains the vulnerable code in a
sandboxed environment, we can assume the guardian nodes are invulnerable to worm
attacks.



A First Look at Peer-to-Peer Worms: Threats and Defenses 27

3.2 Alert Generation, Propagation, and Processing

With a small fraction of guardian nodes, it is crucial that, once a guardian node detects
a worm, it promptly generates a message about the ongoing attack and informs other
nodes in the P2P network. We refer to these messages as alerts. The purpose of alerts is
for a recipient to learn enough information about the attack in order to take appropriate
action to become immune to the attack.

Because alerts trigger actions by receiving nodes, an adversary could attack by dis-
seminating bogus alerts. If the receiver of an alert responded by shutting down the
vulnerable application, this would turn a worm attack into a denial-of-service attack.
To avoid this problem, guardians can generate self-certifying alerts, as described in [4].
Self-certifying alerts are machine-verifiable proofs of vulnerability; they contain a de-
scription of the events that lead to a vulnerable behavior—for instance a sequence of
network messages—and they can be independently and inexpensively verified by any
host. Use of self-certifying alerts also implies that any host can independently decide
to become a guardian, since guardians do not have to be trusted. This setting makes it
difficult to mount targeted attacks on the guardians. Alternatively, alerts can be submit-
ted to a trusted authority, who verifies the authenticity of the alert and signs the alert
using the private key corresponding to a well-known public key. Such an infrastructure
for distributing and verifying signed updates already exists in many pieces of software
for securing automatic software updates. The trusted authority could be implemented
using multiple servers [25] to withstand attacks to a fraction of the servers.

Upon verifying the authenticity of an alert, a host can take several actions to protect
itself. For instance, it can stop the vulnerable application or install a new local fire-
wall rule to block a worm “signature”1; this could be a simple byte pattern on network
messages or a more elaborate signature that accesses network messages and application
state. Ideally, a host should identify the vulnerability exploited by the detected attack
and patch it automatically. Such patches can be generated locally by the hosts receiving
an alert, avoiding the need to trust patches produced by the host that generated the alert.
We are currently working towards this goal.

We assume alerts are propagated in the same P2P network as P2P worms. After all,
any existing link used by alerts requires that the destination address be recorded on the
source; such information is also available to attackers when the source is compromised.
This assumption distinguishes our model from that in [4], which also explored the con-
cept of alerts for containment of Internet worms; there, a special P2P network is used
for fast and reliable alert dissemination.

3.3 A Basic Worm Containment Model

The previous discussions on a self-defense infrastructure yield the following basic
model for the containment study. Variations of the basic model are investigated in
Section 4.

1 While several schemes ([16,9,8]) have been proposed for automatic detection of worms and
automatic generation of worm signatures, the detection mechanisms rely heavily on the net-
work anomalies that scanning worms exhibit.



28 L. Zhou et al.

Consider a P2P network and a worm that exploits a vulnerability in the nodes of
the network. We consider node A a neighbor of node B if the address of A appears
in node B’s state as a P2P client. The topology of a P2P network can be modeled as
a directed graph in which each vertex in the graph corresponds to a node in the P2P
network and each edge is weighted by the latency of the corresponding link from a
node to its neighbor.

Each node in the P2P network has an independent probability p of being a guardian
node; otherwise, the node is vulnerable. A vulnerable node becomes infected when the
worm probes this node. A worm starts at a uniformly random node and in each step
probes all the neighbors of newly infected nodes. If a worm probes a guardian node,
the guardian node will detect the worm, generate an alert, and immediately propagate
the alert to its neighbors. A vulnerable node becomes immune upon receiving the alert
and propagates the alert further to its neighbors. An infected node ignores the alert; it
does not propagate it further. Immune nodes do not become infected even upon worm
probing. For simplicity, we assume that the worm and the alert incur the same latency
on each link, although different links may have different latencies. Furthermore, we
ignore the dynamic changes in the P2P network and assume a static topology.

4 Analysis and Evaluation

The basic worm containment model characterizes a battle between worm propagation
and alert propagation within the same P2P network. The following questions naturally
arise.

– With only a small number of guardian nodes, can the self-defense infrastructure
contain a P2P worm?

– With a P2P network serving as the battlefield, how can we design and deploy a P2P
network to offer an advantage over P2P worms? What strategies can a P2P worm
employ to gain advantage?

This section documents our initial efforts to answer these questions. In particular, we
evaluate containment of worms as measured by the percentage of vulnerable nodes that
are infected when the network reaches a stable state, where neither alerts nor the worm
can propagate further. Note that the containment problem is entirely different from the
seminal containment study by Moore et al. [10] because that study focused on random
probing worms in the Internet.

4.1 P2P Network Topology and Worm Containment

Theoretical analysis. The topology of a P2P network dictates propagation of a P2P
worm and its containment in our basic model. In the absence of guardian nodes, the
diameter of the graph, defined to be the longest among the shortest distances between
any pair of nodes in the graph, is the upper bound on the amount of time it takes for
a worm to compromise the entire P2P network. Here, we show a simple theoretical
analysis of worm containment in our basic model.



A First Look at Peer-to-Peer Worms: Threats and Defenses 29

Suppose a P2P network contains n nodes in a graph of maximum degree d, where
each node is a guardian node with independent probability p. Then for a uniformly
random starting infection point, the expected fraction of nodes that become infected is
bounded above by O(nlogd(1−p)).

To see this, let x be the starting point of the infection, and consider the shortest
path tree from x in the network topology. The key observation is that another node y
will become infected if and only if there is no guardian node on the shortest path from
x to y. Thus the expected number of infected nodes is

∑�
i=1 ni(1 − p)i, where ni is

the number of nodes at depth i in the shortest path tree from x. Since the topology has
maximum degree d, we have that ni < di; in fact, it is not hard to see that the worst
case occurs when the inequality is tight. A straightforward calculation then yields that
the expected fraction of infected nodes in this case is O(nlogd(1−p)).

Although the theoretical analysis offers only a loose upper bound for worm con-
tainment in our basic model, it does indicate that the number of nodes in the network,
the maximum degree of the graph, and the percentage of guardian nodes are likely the
factors influencing the containment result. We use simulations to validate the trends
predicated by the theoretical results.

Simulation setup. Our experiments were performed on P2P graphs generated using
a P2P simulator. Among others, the simulator implements the protocols described in
Gnutella 0.4, Gia [3], and Pastry. Nodes in those topologies are randomly placed in
a 5050-router Internet topology generated using Georgia Tech’s Transit-Stub Internet
Topology generator [1] with distance between a pair of nodes computed accordingly.

We further developed an epidemic simulator. This simulator takes as input the P2P
topology graph and the probability of a node being a guardian node. For each run, the
simulator randomly selects a node in the graph as the initial entry point for the worm and
picks a set of guardian nodes according to the specified probability. It then simulates the
process of worm propagation and alert propagation (after guardian nodes are triggered.)
Each of our experiments takes 500 runs, with different randomly chosen initial infection
points and different randomly chosen sets of guardian nodes. We report the mean (over
the 500 runs) of the infected fraction, measured as the percentage of infected nodes
over the entire vulnerable population. (Note that guardian nodes are excluded from the
vulnerable population.)

Simulation results. In this set of experiments, we look at Gnutella 0.4 graphs. A
Gnutella topology can be modeled as an undirected graph because the neighbor relation
is symmetric. (We assume that the weights on links are also symmetric.) When a node
joins, it selects a seed node already in the P2P network and performs a random walk to
find more nodes as potential neighbors. A node A might refuse to be the neighbor for
the joining node if the resulting number of allowed connections for A exceeds the max-
imum degree allowed. The generated graph is the result of running the P2P simulator
for n consecutive joins, where n is the specified number of nodes. No node failures or
node leavings are modeled.

We generated a set of Gnutella 0.4 graphs with different settings for minimum/maxi-
mum node degrees and total number of nodes. The generated graphs have average degrees
that are close to the maximum degrees, indicating that nodes tend to have the same de-
gree. Figure 1 clearly indicates that the infected fraction increases when min/max degrees



30 L. Zhou et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5000  10000  15000  20000  25000  30000  35000  40000

In
fe

ct
ed

 F
ra

ct
io

n

Number of Nodes

Gnutella 0.4, p = 0.05

G0.4, d = 7/14 
G0.4, d = 4/8 
G0.4, d = 3/6 
G0.4, d = 2/4 

Fig. 1. Infected fraction as a function of number of nodes for Gnutella 0.4 graphs with different
min/max-degree settings

increase, but decreases when the number of nodes increases, confirming the trends in the
theoretical analysis. We want to point out that due to resource limitations, we can only
simulate relatively small P2P networks. For real P2P networks with millions of nodes
the infection fraction may be significantly lower than the simulation results suggest.

4.2 The Effects of Super Nodes

The notion of super nodes has been introduced to P2P networks for better scalability.
Super nodes are nodes with sufficient resources and high-quality links to accommo-
date a large number of neighbors. Gia [3] is a proposal to introduce super nodes into
Gnutella. In Gia, super nodes emerge as a result of dynamic topology adaptation based
on the different capacities of the nodes. Adopting the setting in [3], we set the percent-
ages of nodes at capacity levels 1, 10, 100, 1000, and 10000 at 20%, 45%, 30%, 4.9%,
and 0.1%, respectively. Figure 2 shows the infected fraction for a Gia graph, with an
average degree around 15 and min/max degrees of 3/128, compared to Gnutella 0.4
graphs with varying min/max degrees. We see a clear downtrend of the infected frac-
tion when the probability of guardian nodes increases and that Gia exhibits the worst
containment result.

Super nodes undoubtedly play a significant role in aiding the propagation of the
worm due to their high connectivity. It seems that the defense mechanism would be
more effective if the choice of guardian nodes were biased towards such high-degree
nodes. This is confirmed by the result shown in Figure 3, where, in the case of biased
choices of guardian nodes, the probability of a node being a guardian node is propor-
tional to its degree. Note that, even if a worm knows about this strategy and tries to
evade detection by biasing against high-degree nodes, the worm propagation will be at
a significant disadvantage compared to alert propagation, which is able to exploit the
powerful super nodes.



A First Look at Peer-to-Peer Worms: Threats and Defenses 31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.02  0.04  0.06  0.08  0.1

In
fe

ct
ed

 F
ra

ct
io

n

Guardian Probability

Gnutella 0.4 vs. GIA, n = 40k

GIA, d = 3/128
G0.4, d = 7/14 
G0.4, d = 4/8 
G0.4, d = 3/6 
G0.4, d = 2/4 

Fig. 2. Gnutella 0.4 vs. Gia, 40,000 nodes. Infected fraction as a function of probability of
guardian nodes

4.3 Hit List and Secret Network of Guardian Nodes

For bootstrapping, P2P networks such as Gnutella and KaZaA offer an initial list of
hosts in the network to serve as seed nodes for new nodes to join. An attacker can
also collect a large number of addresses through crawling. A P2P worm can use those
addresses as an initial hit list [17] instead of starting with a single node.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.02  0.04  0.06  0.08  0.1

In
fe

ct
ed

 F
ra

ct
io

n

Guardian Probability

GIA, Biased vs. Non-Biased, n = 40k

GIA: no bias
GIA: bias

Fig. 3. Biased choices of guardian nodes vs. non-biased choices. Gia with 40,000 nodes. Infected
fraction as a function of probability of guardian nodes.



32 L. Zhou et al.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000  10000

In
fe

ct
ed

 F
ra

ct
io

n

Number of Nodes in Hitlist

G0.4 vs. GIA, p=0.05, n =  40k, d = 7/14 : Hitlists

G0.4, no guardian network
G0.4, guardian network

GIA, no guardian network
GIA,  guardian network

Fig. 4. Infected fraction, with and without a secret network of guardian nodes, as the function of
number of nodes in the hit list (log scale). Gia with bias and Gnutella 0.4 with min/max degrees
of 7/14, 40,000 nodes and 5% of guardian nodes.

In response, guardian nodes could be made aware of each other and form a secret
network to tunnel alerts through directly.2 For simplicity, we assume that this secret
network is fully connected with direct links between any two guardian nodes with an
average network delay.

Figure 4 shows how the infected fraction reacts to an increasing number of nodes
on the hit list, as well as the effects of having a secret network of guardian nodes. Using
a hit list seems to be an effective strategy for worms especially when the percentage of
the nodes in the hit list becomes significant. Connecting all guardian nodes has a limited
advantage in these cases. Define worm diameter to be the amount of time for a worm to
reach the entire population of the network in the absence of guardian nodes. The effect
of connecting the guardian nodes seems to diminish as the worm diameter decreases.

4.4 The Effects of Diversity

We have been assuming that the entire population (except for the guardian nodes) is
vulnerable. This might not be the case in practice. In particular, P2P clients might use
different implementations of the same protocol and run on different hardware/software
platforms. Vulnerabilities in one particular implementation or on one particular plat-
form may not affect the entire population due to diversity. The existence of the initially
immune nodes works to our advantage because these nodes block worm propagation
but pass alerts on to other nodes.

2 It might seem that we are violating our assumption that the worm and the alerts are propagating
in the same topology. This is not the case. In our model, links in the secret network cannot be
exploited by worms because guardian nodes are never compromised.



A First Look at Peer-to-Peer Worms: Threats and Defenses 33

Figure 5 shows the impact of having initially immune nodes in the network. We vary
the percentage of the nodes that are initially immune from 0% to 60%. These nodes are
chosen uniformly at random. Every node in the set of the non-immune nodes becomes
a guardian node with 0.05 probability. The infected fraction shows the percentage of
vulnerable nodes (i.e., excluding initially immune nodes and guardian nodes) that are
infected. The results show a significant reduction in infected fraction as the immune
proportion grows and suggest that diversity is an effective deterrence to P2P worms.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

In
fe

ct
ed

 F
ra

ct
io

n

Immune fraction

Gnutella 0.4 vs. GIA; p=0.05, n = 40k: Immune Nodes

G0.4
GIA

Fig. 5. Infected fraction as a function of percentage of immune nodes. Gia and Gnutella 0.4
(max/min degree of 7/14), with 40,000 nodes, 5% guardian nodes, and biased choice of guardian
nodes for Gia.

4.5 Design Implications for P2P Networks

In summary, our experiments suggest a number of design directions over which P2P
networks could evolve to increase their resilience to worm attacks. First, P2P proto-
cols should bias their choice of neighbors to maximize diversity. Second, mechanisms
should be included to make crawling the overlay more difficult or impossible. Other-
wise, an attacker can gain a substantial advantage by building a large initial hit list to
launch the worm. Finally, mechanisms should exist to deploy guardian nodes at flexi-
ble locations in the P2P network. As our preliminary results show, placement of these
nodes has an important effect on containment.

5 Concluding Remarks

P2P worms constitute a potentially deadly threat to Internet security, a threat that we
are not yet prepared for. This paper outlines a self-defense infrastructure to be built into
a P2P network for containing P2P worms. The proposed infrastructure not only poses



34 L. Zhou et al.

new challenges to worm-containment research, but also gives rise to an interesting phe-
nomenon of competing epidemics (worm vs. worm-triggered alerts) in a P2P network.

The paper represents our initial study on containment of P2P worms with debat-
able assumptions. We plan to explore further the feasibility of the self-defense infra-
structure, investigate more topologies and new strategies, and work towards a unifying
theory that identifies the defining characteristics of the network topology on worm con-
tainment. Such a theory would help predict worm containment for a given topology and
help develop strategies to improve defense against P2P worms, because applying those
strategies can always translate into some network topology transformation.

Acknowledgements

The authors would like to thank Martı́n Abadi, Úlfar Erlingsson, Chandu Thekkath, and
Ted Wobber, as well as the anonymous reviewers, for their helpful suggestions.

References

1. K. Calvert, M. Doar, and E. Zegura. Modeling Internet topology. IEEE Communications
Magazine, June 1997.

2. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and S. S. Wallach. Secure routing for
structured peer-to-peer overlay networks. In Proceedings of the 5th Symposium on Oper-
ating Systems Design and Implementation (OSDI ’02), pages 299–314, Boston, MA, USA,
December 2002. USENIX.

3. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making Gnutella-
like p2p systems scalable. In Proceedings of SIGCOMM’03, pages 407–418, Karlsruhe,
Germany, August 2003. ACM.

4. M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Can we contain Internet worms? In
Proceedings of the 3rd Workshop on Hot Topics in Networks (HotNets-III), November 2004.

5. L. P. Cox and B. D. Noble. Honor among thieves in peer-to-peer storage. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles, pages 120–132, Bolton Landing,
NY, USA, November 2003. ACM SIGOPS, ACM Press.

6. J. R. Crandall and F. T. Chong. Minos: Control data attack prevention orthogonal to memory
model. In Proceedings of the 37th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE/ACM, December 2004.

7. J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan detection using se-
quential hypothesis testing. In Proc. 25th Symposium on Security and Privacy. IEEE, May
2004.

8. H. Kim and B. Karp. Autograph: Toward automated, distributed worm signature detection.
In Proceedings of the 13th USENIX Security Symposium, August 2004.

9. C. Kreibich and J. Crowcroft. Honeycomb—creating intrusion detection signatures using
Honeypots. In Proc. of the 2nd Workshop on Hot Topics in Networks (HotNets-II), November
2003.

10. D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet quarantine: Requirements for
containing self-propagating code. In Proceedings of IEEE INFOCOM 2003. IEEE, March
2003.

11. J. Newsome and D. Song. Dynamic taint analysis: Automatic detection and generation of
software exploit attacks. In Proceedings of the 12th Annual Network and Distributed System
Security Symposium (NDSS 2005), Feb 2005. To Appear.



A First Look at Peer-to-Peer Worms: Threats and Defenses 35

12. random nut. The PACKET 0’ DEATH FastTrack network vulnerability. NET-
SYS.COM Full Disclosure Mailing List Archives, May 2003. http://www.netsys.com/full-
disclosure/2003/05/msg00351.html.

13. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of ACM SIGCOMM, pages 161–172, San Diego, CA,
USA, August 2001.

14. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proc. IFIP/ACM Middleware 2001, Heidelberg, Ger-
many, Nov. 2001.

15. S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement and analysis of spyware in a univer-
sity environment. In Proceedings of the 1st Symposium on Networked Systems Design and
Implementation (NSDI), San Francisco, CA, March 2004.

16. S. Singh, C. Estan, G. Varghese, and S. Savage. The EarlyBird system for real-time detection
of unknown worms. Technical Report CS2003-0761, UC San Diego, August 2003.

17. S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in your spare time. In
Proceedings of the 11th USENIX Security Symposium, August 2002.

18. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proc. ACM SIGCOMM, pages 149–
160, 2001.

19. G. E. Suh, J. Lee, and S. Devadas. Secure program execution via dynamic information flow
tracking. In Proceedings of ASPLOS XI, pages 85–96, Boston, MA, USA, October 2004.

20. http://securityresponse.symantec.com/.
21. N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of computer worms.

In The First ACM Workshop on Rapid Malcode (WORM), 2003.
22. N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms. In

Proceedings of the 13th USENIX Security Symposium, August 2004.
23. M. M. Williamson. Throttling viruses: Restricting propagation to defeat malicious mobile

code. In Proc. 18th Annual Computer Security Applications Conference, Las Vegas, NV,
Dec. 2002.

24. B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph, and J. D. Kubiatowicz. Tapestry:
A global-scale overlay for rapid service deployment. IEEE Journal on Selected Areas in
Communications (J-SAC), 22(1):41–53, January 2004.

25. L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed on-line certifica-
tion authority. ACM Transactions on Computer Systems, 20(4):329–368, November 2002.

26. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early warning for Internet worms.
In Proc. of the 10th ACM Conference on Computer and Communication Security, Oct. 2003.



A Taxonomy of Rational Attacks

Seth James Nielson, Scott A. Crosby, and Dan S. Wallach

Department of Computer Science, Rice University
{sethn, scrosby, dwallach}@cs.rice.edu

Abstract. For peer-to-peer services to be effective, participating nodes
must cooperate, but in most scenarios a node represents a self-interested
party and cooperation can neither be expected nor enforced. A reason-
able assumption is that a large fraction of p2p nodes are rational and
will attempt to maximize their consumption of system resources while
minimizing the use of their own. If such behavior violates system pol-
icy then it constitutes an attack. In this paper we identify and create a
taxonomy for rational attacks and then identify corresponding solutions
if they exist. The most effective solutions directly incentivize coopera-
tive behavior, but when this is not feasible the common alternative is to
incentivize evidence of cooperation instead.

1 Introduction

A significant challenge in peer-to-peer (p2p) computing is the problem of coop-
eration. Unlike client-server systems, a p2p network’s effectiveness in meeting
design goals is directly correlated to the cooperation of the member nodes. For
example, a p2p system might be designed for content distribution. To decrease
the upload bandwidth burden on the original content server, only a small num-
ber of nodes directly contact it. The content is then propagated from these nodes
to additional peers. This system can only scale if nodes are willing to pass on
content to downstream peers. Unfortunately, a self-interested node may realize
that it can save expensive upload bandwidth if it chooses not to share. If a large
number of nodes are self-interested and refuse to contribute, the system may
destabilize.

In most p2p systems, self-interested behavior at the expense of the system can
be classified as a rational manipulation failure [1] or, from a different perspec-
tive, a rational attack1. Successful p2p systems must be designed to be robust
against this class of failure. Ideally, a p2p system should be perfectly faithful to
the designer’s specification. In such a system, a self-interested, utility-maximizing
node “will follow the default strategy because... there is no other strategy that
yields a higher utility for this node” [2]. To achieve faithfulness, a system may
employ various measures such as problem partitioning, catch-and-punish, and in-
centives [1]. Even when these techniques cannot make a system perfectly faithful,
they may be enough to prevent destabilization.
1 Our definition for rational follows the narrow definition provided by Shneidman

et al [1]. For the purposes of our paper, rational participants are only interested in
exploiting the resources and benefits of the system.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 36–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Taxonomy of Rational Attacks 37

An example of a viable p2p technology designed to be robust against rational
manipulation failures is BitTorrent [3]. This technology first breaks large files into
chunks that are downloaded individually and reassembled by the receiver. The
receiving nodes contact one another and trade for chunks they do not yet possess.
Each node employs an incremental exchange algorithm that leads it to upload
chunks to cooperating nodes and not to share with selfish ones. These incentives
encourage cooperative behavior in participating nodes [3]. While BitTorrent is
not completely immune to rational manipulation, it is viable in practice [2].

In this paper, we identify, analyze, and create a taxonomy of rational attacks
in p2p systems. We then examine this taxonomy to identify corresponding so-
lutions. In the next two sections, we first provide a short background on the
economics principles applicable to p2p systems and then specify our system
model. The following two sections define our taxonomy of rational attacks and
discuss solutions. The final section presents our conclusions.

2 Economics Background

Much of our analysis of p2p cooperation is based on economic models of game
theory and mechanism design [4]. In this section, we briefly review some critical
terms and concepts as they relate to p2p systems.

An economic game is a model of interaction between players in which the ac-
tions of any player influence the outcome of all other players. The mechanism in
a game defines what legitimate actions the players can perform and the outcome
of their behavior. These outcomes are assigned a numeric value called utility.
Players that use an algorithm to determine behavior are said to follow a strategy

Players in the p2p world represent the nodes participating in the system.
There are two types of nodes that do not strategize.

1. Altruistic or obedient nodes cooperate with the system irrespective of any
other considerations.

2. Faulty nodes stop responding, drop messages, or act arbitrarily.

There are two types of nodes that do strategize.

1. Rational nodes strategize to achieve maximal utility and their actions are
based on their current knowledge and understanding of the p2p system.
Rational nodes will not attempt to disrupt routing, censor data, or otherwise
corrupt the system unless such behavior increases the node’s access to shared
resources. These nodes are also described as self-interested.

2. Irrational nodes also strategize, but their strategies are either incomplete
because they cannot understand the mechanism or they lie outside the eco-
nomic mechanisms of the system. Denial of service or censorship attacks are
examples of this second form of economically irrational behavior2.

2 Our goal is to design systems which are immune to manipulation by nodes seeking
increased shared resources. Our definition of rational only includes nodes whose
utility function is independent of utility payout to other nodes. Strategies, such
as censorship strategies, that obtain benefit by denying utility to other nodes are
considered irrational.



38 S.J. Nielson, S.A. Crosby, and D.S. Wallach

Mechanism design (MD) is the process of creating games where rational
behavior by players leads to outcomes desired by the designer. Of course, such
systems only affect the behavior of rational nodes. Mechanism design has no
impact on faulty or irrational nodes and we exclude them from further discussion,
though we recognize that any practical p2p system deployed “in the wild” must
be resistant to their behavior. Of course, most p2p systems are robust against
failure. The impact of irrational and malicious nodes is an open research problem
that is discussed in Castro et al [5].

Distributed algorithmic mechanism design (DAMD) is a subclass of MD that
is computationally tractable and operates without centralization. For this reason
DAMD is well suited to systems like p2p networks [4]. DAMD assumes each
node can independently reward the cooperation of other nodes or penalize their
misbehavior but that each node has only limited information on the global state
of the system.

3 Model

3.1 Incentives Capabilities

Incentives in p2p systems have some limitations. First, incentives are limited in
the guarantees they can provide. While the use of incentives strengthens the p2p
system against rational attacks, by themselves they do not guarantee that the
system is faithful. To be guaranteed faithful, a mechanism must be validated by
a formal proof, the construction of which is not trivial.

The second limitation is that they must be DAMD compatible. DAMD is
limited to creating mechanisms that are are computationally tractable across
distributed computing resources. Nodes are expected to reward cooperation and
penalize misbehavior, but doing so is difficult when trusted global knowledge is
unavailable.

With these two limitations in mind, we identify two types of incentives that
may be used to create a faithful p2p system. The first type is genuine incentives
and is characterized by directly incentivizing cooperation. A genuine incentive
ties current behavior and future payoff together in some inseparable way. Genuine
incentives are inherently robust against rational attacks and limit the strategies
available to adversaries.

One example of genuine incentives is incremental exchanges as used in Bit-
Torrent. Money could also be an effective genuine incentive but it would require
very efficient micropayment schemes, where potentially every network packet
transmission would require an associated payment. Unfortunately, the current
generation of such systems (e.g., Millicent [6]) were never intended for such fine-
grained commerce.

The second type of incentive is artificial incentives3 which incentivize evi-
dence of cooperation. Such incentives are weaker than their genuine counterparts
3 Roussopoulos et al. suggests that highly valuable shared resources have inherent

incentives while less valuable ones require an extrinsic or artificial incentives for
cooperation [7]. Our concept of genuine and artificial incentives is similar, but focuses
only on the mechanism and not the value of the resources or social network in which
the resources are exchanged.



A Taxonomy of Rational Attacks 39

because, to be rewarded, a node only has to appear to cooperate. Nevertheless,
artificial incentives are generally easier to create and deploy and may be neces-
sary under circumstances where genuine incentives are not feasible.

Artificial incentives are often designed around an auditing process on top of
which an enforcement mechanism is layered. In a decentralized system, auditing
cannot be globally managed. Each node is aware of the system’s policies, but is
independently responsible for determining whether peers are in compliance. This
can be done by requiring each node to publish assertions about its state which
are audited by other nodes. An auditing policy of this type is consistent with
DAMD; each node is capable of determining its behavior within the system. An
auditing system, however, is subject to the vulnerabilities that we describe in
Section 4.1.

3.2 Service Maturation

A p2p service provides some tangible benefit to participating nodes. New par-
ticipants may obtain their payout spread over time, or they can obtain maximal
benefit immediately in a lump sum. We have termed this service characteris-
tic as service maturation. A service is mature when a node has obtained all of
the benefit that the service can provide. Services that give out all possible ben-
efit immediately have instantaneous maturation while services that distribute
benefit over time have progressive maturation. Progressive maturation can be
further classified as bounded or unbounded based on whether or not the service
has a known, fixed termination of benefit pay-out. The relationship between the
different classes of maturation is illustrated in Figure 1.

A content distribution service might have instantaneous or progressive mat-
uration depending on policy. If a newly joined node can completely download
its desired content before redistributing that content to peers, the service has
instantaneous maturation. Conversely, BitTorrent has progressive maturation
because it only allows nodes to obtain the full content through repeated inter-
action with the system. Because BitTorrent’s pay-out of benefit ends when the
file download is complete, its progressive maturation is bounded.

An example of a service with unbounded progressive maturation is a remote
back-up service. In such a system, the benefit payout is distributed over time
without a fixed point of termination.

Fig. 1. Service maturation taxonomy



40 S.J. Nielson, S.A. Crosby, and D.S. Wallach

There is a correlation between instantaneous maturation to the Prisoner’s
Dilemma (PD) and progressive maturation to the Iterated Prisoner’s Dilemma
(IPD). In the single round PD, all of the utility that the game can pay out is dis-
bursed in a single interaction. In IPD, the total utility is paid out to participants
over some arbitrary number of interactions.

IPD also has an analog to the concept of bounded maturation. The game
can be played with the players either aware or ignorant of the number of rounds
that they will play. From the players’ perspective, the game is bounded only if
they know the number of rounds. An IPD game degenerates into a PD game if
the number of rounds are known.

Game theoretic analysis has proven that it is not rational to cooperate in
single round PD but that it is rational to cooperate in IPD [8]. Services with
instantaneous maturation are extremely susceptable to the attacks described in
Section 4.2.

3.3 System Model

For convenience, we define a constrained environment suitable to explore rational
attacks. The p2p model characterized in this section has many features that are
common to most p2p networks. In Section 5 we break some of these assumptions
as possible solutions to rational attacks.

Our model is described by the following assumptions and limitations.

1. Assumption: Secure node ID’s. Douceur [9] observes that if identity
within the p2p system is not centrally controlled, any participant can simul-
taneously assume a plethora of electronic personae. With many identities
at its disposal, a participant can subvert the entire network by subverting
the routing primitive. We assume that the node ID’s in our model are made
secure in one of three ways:
(a) Trust. Node ID creation and distribution is done through a centralized

and mutually trusted agent.
(b) Expense. Node ID creation has some arbitrary cost attached. A partic-

ipant can replace its node ID infrequently and with some difficulty.
(c) Relevance. Node ID creation is unrestricted because having multiple

ID’s cannot aid the rational attacker.
2. Assumption: There is no “trusted” software. A p2p system cannot

guarantee that their members are using conforming software. Trusted com-
puting technologies allow a node to attest that it is running a conforming
application [10,11]. Enforcing a trusted software policy is not only techni-
cally challenging, but developing and deploying such a policy is undesirable
to many groups for ethical or practical reasons [12].

3. Assumption: Nodes are computationally limited. We assume that any
given node may have the same resources as the typical desktop PC. Nodes
may subvert their machine to behave in arbitrary ways. However nodes
are assumed to be incapable of breaking cryptographic primitives or tak-
ing global control of the underlying network.

Due to the potential size of p2p systems and because nodes are in mutually
untrusting domains, we apply the following limitations to our model.



A Taxonomy of Rational Attacks 41

1. Limitation: Each node maintains minimal state. A node can only
have firsthand observations about a small fraction of the nodes in the system.
Similarly a node can only maintain state about a small number of the nodes
in the system.

2. Limitation: No second-hand information. Nodes can only trust what
they directly observe because there is no inherent reason to trust an assertion
by any node about a third party. An accusation can only be trusted if the
evidence is independently believable regardless of trust in the accuser. Such
proofs usually require the cooperation of the accused to create.

4 Taxonomy of Rational Attacks

The motive for the attacks we consider are unfairly increased access to p2p
shared resources. We identify two general classes of attack:

1. Unrecorded Misuse of Resources
2. Unpunished Misuse of Resources

Attacks can be made by a single node, or by several nodes colluding together for
an advantage.

4.1 Unrecorded Misuse of Resources

If an attacker can obtain resources without producing a record of the misuse,
the attacker is safe from any sanctions. Attacks of this kind exploit “holes” in
auditing policies (policy attacks), or actively disrupt the auditing mechanism
(auditing attack).

Policy Attacks. A rational node may exploit an auditing policy. We identify
two examples.

1. Excuses. Any legitimate “excuse” for being unable to perform a service
may be exploited. Such excuses may be needed to deal with edge conditions
including crash recovery, network interruption, packet loss, etc. Consider a
remote backup system like Samsara that requires every node to contribute
as much space as it consumes [13]. If the system policy is overly generous to
recovering nodes that recently crashed by not requiring them to prove they
are maintaining their quota, a malicious node may exploit this by repeatedly
claiming to have crashed.

2. Picking on the newbie. Some systems require that new nodes “pay their
dues” by requiring them to give resources to the system for some period of
time before they can consume any shared resources [14,15]. If this policy is
not carefully designed, a veteran node could move from one newbie node
to another, leeching resources without being required to give any resources
back.



42 S.J. Nielson, S.A. Crosby, and D.S. Wallach

Auditing Attacks. Auditing attacks are designed to prevent the auditing sys-
tem from identifying misbehavior. These attacks only apply to designs based
around auditing using artificial incentives. Here are a number of examples of
this type of attack:

1. Fudged books. Auditing relies on the accounting records being tamper-
resistant and difficult to forge.

2. Manufactured evidence. In this scenario, an attacker who is in a state of
non-compliance manages to produce “proof” of compliance deceptively.

3. Accounting interruption (kill the auditor). A node being audited can
attempt to interfere with the auditing node. This might be accomplished by
a denial-of-service attack, a worm, a virus, etc.

4. Group deception, local honesty. This attack is a type of manufactured
evidence attack through collusion. Ngan, et al describes an accounting system
where nodes publishing their debits and credits publicly in logs which are
later audited by nodes’ peers [16]. Debts on one node must match credits on
another node, making it more difficult for a node to cook its books. However,
it is possible for single node in debt to become locally honest for an audit by
pushing its debt to a co-conspirator. As a group, the conspiring nodes’ books
are not balanced and they are in debt jointly. All colluding nodes reciprocate
in sharing (or hiding) the debt.

4.2 Unpunished Misuse of Resources

An identified misbehaving node may attempt to avoid or mitigate punishment.
Two such attacks are:

1. Elusion. The attacker leaves the system permanently before they can be
sanctioned by the p2p system. This attack generally exploits short-
maturation and high-value resources. In such a scenario, the attacker ob-
tains the resources and leaves (e.g., join a content distribution service long
enough to obtain an object and then disappear forever).

2. Reincarnation. Reincarnation is repeated elusion. The attacker avoids pun-
ishment for misbehavior by assuming a new node ID thus releasing them from
any penalties associated with its old reputation. We note that this attack is
a limited form of the Sybil attack [9] where multiple ID’s are acquired and
discarded over time rather than all at once.

This class of attacks operates almost entirely against p2p services with instan-
taneous maturation.

5 Solutions

As stated previously, an ideal p2p system is perfectly faithful, but creating such a
mechanism and proving its validity is difficult. In some cases a perfectly faithful
design may be impossible, but a p2p system need not be perfectly faithful to
be viable. In this section, we describe defenses against rational attacks by self-
interested nodes in descending order of theoretical effectiveness.



A Taxonomy of Rational Attacks 43

5.1 Eliminate Rationality as a Concern

Under certain circumstances, forcing all nodes to be obedient may be practical
and desirable. We identify three options for coercing obedience.

1. Out-of-band trust. Obedience is enforced external to the p2p system. Such
a scenario might be viable for a group of friends, or centrally administered
machines within corporations, academic institutions, and government agen-
cies.

2. Partial centralization. It may be possible to introduce some aspect of
centralization that induces nodes to be obedient. For instance a central au-
thority can be used to require secure node ID creation. BitTorrent uses a
central authority to act as a rendezvous point where nodes can determine
the addresses of their peers.

3. Trusted software. If a user is prevented from modifying their software,
they must behave obediently. Many software applications are closed-source
and difficult to modify. This may also be done with “trusted computing”
technologies [17,11].

5.2 Design Genuine Incentives

Genuine incentives are always preferred to artificial incentives. Because they
are often difficult to implement in a DAMD context, it may be tempting for a
designer to overlook them. Not only do genuine incentives eliminate many of
the attacks described in Section 4.1, but they are also simpler than artificial
incentives because they require no additional enforcement mechanisms.

For example, consider a back-up system with a storage policy similar to
Samsara where each node must provide as much disk-space as it consumes in
backups. One artificial incentives approach proposed by Fuqua, et al is to require
that all nodes publish what data they are storing locally and to prove that they
actually have that data in their possession on audit [16]. The auditing mechanism
may be vulnerable to one or more of the auditing attacks described in Section 4.1.

A genuine incentive for the remote back-up service is to require that all of a
node’s data that is stored on the network be tangled with the data it is supposed
to be storing [14]. Nodes can then occasionally broadcast portions of the tangled
data they are storing and ask for its owner to claim it or risk its deletion. Now
the self-interested node must actually keep the data it claims to be storing or
it cannot recognize claim-requests for its own data. However, to be useful, there
must be a policy that allows a node to reclaim its data after a crash even if it
has lost all local-storage. This policy may expose the mechanism to the excuses
attack described in Section 4.1. Despite this weakness, however, this mechanism
is more robust and significantly simpler than the auditing alternative.

5.3 Improving Artificial Incentives Design

Artificial incentives are a less desirable solution to rational attacks, but they
may be the easiest to design into a service and are sometimes the only viable
solution. Artificial incentives will generally entail having a well-defined auditing
policy. A number of design decisions influence the effetiveness of these incentives.



44 S.J. Nielson, S.A. Crosby, and D.S. Wallach

Eliminating instantaneous maturation. A service which instantaneously
matures is difficult to secure against rational attacks. Once a rational node has
obtained the maximum benefit for a service, it has no incentive to continue
participation. Thus, services that instantly mature are inherently vulnerable to
elusion and reincarnation attacks. Also, because a node obtains its desired utility
quickly, there is not much time for an auditing scheme to stop an attacker. Several
techniques may help convert instantaneous to progressive maturation:

1. Centralized ID Creation. If node ID’s are centrally created and dis-
tributed, a node will be forced to maintain its identity in all of its future
interactions with the p2p system. In this case if a node steals from the system
and leaves, it will face punishment when it returns.

2. Security Deposit. A node must contribute resources during a probationary
period before it can benefit from the system’s shared resources. Tangler is
an example of system using this technique [14,15].

Limited number of peers. Changing a node’s ID incurs a cost. If an auditing
system can detect and kick out a misbehaving node sufficiently fast, then the
cost of changing identity outweighs the benefit. In most p2p systems, a node
can only access the network through a limited number of neighbors. Once an
attacker has freeloaded on its neighbors, they will refuse to interact with it and
it will be effectively removed from the system. This solution has been used for
multicast and storage accounting [18,19,20].

Reputation. With perfect global knowledge of every peer’s behavior, a node
would be incentivized to cooperate because any time it cheated, that information
would be immediately available to all of its peers. Unfortunately, perfect global
knowledge is only possible through an oracle which is not available in a DAMD
context such as p2p networks.

Distributed systems may try to recreate the notion of a global, trusted oracle
using gossip protocols, rating schemes, or some other from of peer endorsements.
Mojo Nation had a global reputation system and EigenTrust describes how such
systems might be built [21].

Protecting an auditing infrastructure. Because artificial incentives require
building and protecting an auditing infrastructure, these mechanisms have ad-
ditional complexity that may be prone to design and implementation errors. We
suggests three practices for building effective auditing mechanisms:

1. Force the truth to be told. Nodes can usually only believe what they
observe for themselves. Secure history techniques [22], however, may be use-
ful to generate authenticated records of misbehavior that are trustable by
remote hosts.

2. Double-entry bookkeeping. A double-entry bookkeeping system as de-
scribed earlier in Section 4.1.

3. Create a global clock. When multiple nodes are being audited, they may
be able to pass debts around from one node to the next, such that any
particular node, while it is being audited, appears to have its books balanced.
If several nodes can be simultaneously audited at provably the same time,



A Taxonomy of Rational Attacks 45

this may defeat such attacks. Again, secure history techniques may provide
an approximate solution to this problem.

6 Conclusions

In this paper we explored a number of rational attacks. While we used a narrow
definition of “rational”, we feel that this usage is justified by the unique nature
of such attacks. From our analysis, we believe that designs that incorporate
genuine incentives will generally be simpler and more robust that those with
artificial incentives. Artificial incentives often require an auditing mechanism
that is complicated and difficult to construct.

Unfortunately, given the difficulty of designing and implementing genuine
incentives in a DAMD context such as p2p networks, artificial incentives will
often be essential to incentivize cooperation for some parts of the system. When
this is the case, avoiding instantaneous maturation eliminates unpunished misuse
of resources attacks. A carefully designed policy and a robust auditing scheme
are essential to mitigating unrecorded misuse of resources.

References

1. Shneidman, J., Parkes, D.C.: Specification faithfulness in networks with ratio-
nal nodes. In: Proc. 23rd ACM Symp. on Principles of Distributed Computing
(PODC’04), St. John’s, Canada (2004)

2. Shneidman, J., Parkes, D.C., Massoulie, L.: Faithfulness in internet algorithms.
In: Proc. SIGCOMM Workshop on Practice and Theory of Incentives and Game
Theory in Networked Systems (PINS’04), Portland, OR, USA (2004)

3. Cohen, B.: Incentives build robustness in BitTorrent. In: 1st Internation Workshop
on Economics of P2P Systems. (2003)

4. Shneidman, J., Parkes, D.: Rationality and self-interest in peer to peer networks.
In: IPTPS ’03, Berkeley, CA, USA (2003)

5. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing
for structured peer-to-peer overlay networks. In: Proceedings of Operating System
Design and Implementation, Boston, MA (2002)

6. Glassman, S., Manasse, M., Abadi, M., Gauthier, P., Sobalvarro, P.: The millicent
protocol for inexpensive electronic commerce. World Wide Web Journal, Fourth
International World Wide Web Conference Proceedings 1 (1996) 603–618

7. Roussopoulos, M., Baker, M., Rosenthal, D.S.H.: 2 p2p or not 2 p2p? In: IPTPS
’04. (2004)

8. Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211 (1981)
1390–1396

9. Douceur, J.R.: The Sybil attack. In: Proceedings for the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS ’02), Cambridge, Massachusetts (2002)

10. Microsoft Corporation: Microsoft “Palladium”: A business overview
(2002) http://www.microsoft.com/presspass/features/2002/jul02/0724

palladiumwp.asp.
11. TCPA: Building a foundation of trust in the PC. Technical report, Trusted Com-

puting Platform Alliance (2000)
12. Anderson, R.: ‘Trusted Computing’ frequently asked questions (2003)

http://www.cl.cam.ac.uk/∼rja14/tcpa-faq.html.



46 S.J. Nielson, S.A. Crosby, and D.S. Wallach

13. Cox, L.P., Noble, B.D.: Samsara: Honor among thieves in peer-to-peer storage.
In: SOSP ’03: Proc. of the Nineteenth ACM Symposium on Operating Systems
Principles, ACM Press (2003) 120–132

14. Waldman, M., Mazieres, D.: Tangler: a censorship-resistant publishing system
based on document entanglements. In: Proc. of the 8th ACM Conference on Com-
puter and Communications Security, ACM Press (2001) 126–135

15. Friedman, E.J., Resnick, P.: The social cost of cheap pseudonyms. Journal of
Economics & Management Strategy 10 (2001) 173–199

16. Fuqua, A.C., Ngan, T.W.J., Wallach, D.S.: Economic behavior of peer-to-peer
storage networks. In: Workshop on Economics of Peer-to-Peer Systems, Berkeley,
CA (2003)

17. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap ar-
chitecture. In: Proc. of the 1997 IEEE Symposium on Security and Privacy, San
Diego, CA, USA, IEEE Computer Society (1997) 65

18. Ngan, T.W.J., Wallach, D.S., Druschel, P.: Incentives-compatible peer-to-peer mul-
ticast. In: 2nd Workshop on the Economics of Peer-to-Peer Systems, Cambridge,
MA (2004)

19. Ngan, T.W.J., Nandi, A., Singh, A., Wallach, D.S., Druschel, P.: On designing
incentives-compatible peer-to-peer systems. In: 2nd Bertinoro Workshop on Future
Directions in Distributed Computing (FuDiCo II: S.O.S.), Bertinoro, Italy (2004)

20. Ngan, T.W.J., Wallach, D.S., Druschel, P.: Enforcing fair sharing of peer-to-peer re-
sources. In: 2nd International Workshop on Peer-to-Peer Systems (IPTPS), LNCS
2735, Berkeley, CA (2003) 149–159

21. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: Proc. of the Twelfth International
Conference on World Wide Web. (2003) 640–651

22. Maniatis, P., Baker, M.: Secure history preservation through timeline entangle-
ment. In: Proc. of the 11th USENIX Security Symposium, USENIX Association
(2002) 297–312



Brushwood: Distributed Trees in Peer-to-Peer Systems

Chi Zhang1, Arvind Krishnamurthy2,�, and Randolph Y. Wang1,��

1 Princeton University
2 Yale University

Abstract. There is an increasing demand for locality-preserving distribution of
complex data structures in peer-to-peer systems. Current systems either do not
preserve object locality or suffer from imbalances in data distribution, routing
state, and/or query processing costs. In this position paper, we take a systematic
approach that enables the deployment of searchable tree structures in p2p en-
vironments. We achieve distributed tree traversal with efficient routing distance
and routing state. We show how to implement several p2p applications using dis-
tributed tree structures.

1 Introduction

In recent years, a group of Distributed Hash Table-based (DHT-based) peer-to-peer in-
frastructures, exemplified by Chord, Pastry, Tapestry, CAN, etc. [16,15,20,13], have re-
ceived extensive attention. Such systems provide many attractive properties, including
scalability, fault tolerance and network proximity. A number of applications have been
built using DHTs, like distributed file systems and application level multicast. How-
ever, the original DHT schemes only provide searching in hashed key space, which is
not sufficient to support applications with complex data structure and semantics [12,8].
To support such applications, some specific schemes have been proposed to enhance
DHTs. For example, Space Filling Curves [1], Prefix Hash Tree [14], etc., are used
to support range queries, but these approaches are specific to their target problems.
For many applications, it is not clear how to distribute existing data structures with-
out destroying the intrinsic locality critical to performance. In this paper, we propose
a general paradigm for distributing and searching tree data structures in peer-to-peer
environments while preserving data locality.

1.1 Locality-Sensitive Applications

We target data-intensive applications that can benefit from locality-preserving distri-
butions in one of two manners. On one hand, many of our target applications require
support for queries that are more complex than exact lookups in a flat name space. For
such applications, the data is typically organized in hierarchical search trees that en-
able them to perform similarity queries and updates. On the other hand, for some of
our target applications, locality-preserving data organization is a critical performance
issue. These applications often exhibit strong correlation among data accesses. For ex-
ample, file system users frequently access a small set of files and directories. The logical

� Krishnamurthy is supported by NSF grants CCR-9985304, ANI-0207399 and CCR-0209122.
�� Wang is supported by NSF grants CCR-9984790 and CCR-0313089.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 47–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



48 C. Zhang, A. Krishnamurthy, and R.Y. Wang

structure of a tree hierarchy is a good representation of the access locality in such appli-
cations. Centralized systems often benefit from access locality when the data structure
is laid out appropriately on secondary storage. In a distributed peer-to-peer system, the
high communication costs, which can be thought of as being analogous to the storage
access latency and throughput limits of centralized systems, make locality-preserving
distributions essential. These issues lead to the following question: can we implement
these hierarchical tree data structures in peer-to-peer computing platforms while pre-
serving the inherrent locality?

1.2 Challenges to Peer-to-Peer Systems

Besides common requirements like scalable peer state and efficient routing, a peer-to-
peer searchable tree faces several other problems:

• Tree lookups: In some trees, the search key is given as a tree path. In more gen-
eral cases, the path or ID of the destination node(s) is not known a priori, but dis-
covered through top-down tree lookup for a data key. With high network commu-
nication costs, efficient lookup demands high locality in the mapping of nearby
tree nodes and minimal routing steps when the nodes are apart. Some systems use
DHTs to distribute individual tree nodes, possibly by hashing each node to a unique
key. To search such trees, a DHT lookup is needed for every tree edge starting
from the root, resulting in lookup costs that could be as high as O(log2(n)) [4] or
O(log log(n) · log(n)) [14] for structures with balanced depth. This process can be
even more inefficient if the tree has long branches. Besides, the root tends to become
a bottleneck and a single point of failure.

• Skewed data and load balancing: DHTs depend on hashing to ensure uniform
distribution of data among participating processors. However, hashing destroys data
locality and is therefore not suitable in our application settings. Using unhashed data
keys suffers from skewed data distribution. Some systems, such as [17], use sam-
pling techniques to achieve asymptotic load balance. However, in case of dynamic
load changes, reactive load balancing schemes are more desirable [11,6].

• Tree maintenance: Most practical tree structures are dynamic, as they are subject
to online insertion, deletion and structural changes. While the maintenance is easy
in centralized settings, it can affect many nodes in a distributed tree. For example,
a distributed B-tree [10] replicates internal nodes to improve search efficiency. This
optimization however requires the system to perform tree updates in a consistent
manner, thereby requiring complex protocols for maintaining tree consistency.

In this paper, we propose a distributed tree scheme called Brushwood. We solve the
problems of how to partition a tree while preserving locality and load balance and how
to search the partitioned tree efficiently in peer-to-peer systems.

2 Design of Brushwood

Our solution is based on a linearization of the tree. The upper half of Figure 1 (a)
illustrates a file system tree. The directories are drawn as circles. Edges labeled with



Brushwood: Distributed Trees in Peer-to-Peer Systems 49

B
/bin/X11

C
/home

F
/usr

G
/usr/src

D

/home/b

E
/home/c

H
/usr/X11/

A

/

bin

vi X11 a b bin src X11

www

home usr

c

d

ls

(a)

B E HDC

bin

/

home

c X11

usr

a bX11

(b)

GC HF

/

bin

usr

src

home X11

(c)

Fig. 1. Partitioning and Distribution of a File Tree

names represent directory entries. We linearize the tree nodes by pre-order traversal
and then partition them into eight segments as shown by the dotted vertical bars. This
partitioning method preserves locality since the low level subtrees are not split. The
partitions are assigned to eight processors A - H , shown as the rectangles below the tree.
We use the word “processor” to denote peer-to-peer nodes, in order to avoid confusion
with tree nodes. Each processor is identified by its left boundary, which is the left-most
tree node in the partition. The path name inside a processor box shows the left boundary
of that partition.

To ensure system scalability, we limit the knowledge of individual processors about
the tree and other peers. Each processor only knows log N peers and their partition
boundaries in an N -processor system. A tree lookup can be done within log N steps
regardless of the shape of the tree. We extend Skip Graphs/Nets [3,9] to achieve such
an efficient lookup.

Conceptually, a processor in a Skip Graph maintains log N levels of peer pointers,
pointing to exponentially farther peers in the linear ordering of N processors. The ar-
rows under processor boxes in Figure 1 depict the three levels of peer pointers between



50 C. Zhang, A. Krishnamurthy, and R.Y. Wang

the processors. Processors construct their local partial view of the tree from the bound-
aries of their peers. Figure 1 (b), (c) show the partial view of C and H , respectively.

Now we show how to perform object location in a distributed tree by illustrating
the lookup of file /bin/X11/X from processor H . H uses its partial view to find the the
peer that is farthest in the same direction as the target (given the pre-order linearization
of tree nodes) without passing over the target. In this example, H determines that the
target is to the left of peer C, which has a boundary of /home, and it forwards the request
to C. C in turn uses its partial tree view, and determines that the peer that is closest to
the target is peer B with a left boundary of /bin/X11. So it forwards the request to B.
Tree lookup is therefore performed starting from any processor by “jumping” among
the processors with each hop reducing the distance to the target, instead of traversing a
tree path from the root to the target. The number of hops is therefore logarithmic in the
number of processors, regardless of tree depth.

Generally, an application tree provides two pieces of information to enable the dis-
tributed lookup toward a target key:

• A label ledge on each tree edge. There is a total order among the labels on edges
out of a node, for example, the dictionary order for the entry names.

• A comparison function fnode in each tree node. This function compares a target
key to the label of an edge of this node, telling whether it matches this edge, or falls
to the left/right of it.

A node identifies its partition by a sequence of 〈fnode, ledge〉 values from the root to
its left boundary node. We define this sequence as the Tree ID. This ID is sent to peers so
that a partial tree view can be constructed. The nature of the target key, fnode, and ledge

values are specific to the application. For example, in a file system tree, target keys are
directory paths, each ledge is a string, and fnode is simply string comparison. In more
general trees, the target might not be specified explicitly by a tree path. For example, in
a high dimensional index tree (see Section 3.1), each tree node corresponds to a region
of space, the target key is simply a point coordinate or a range, and fnode encapsulates
information regarding a split plane that can be used to decide which branch to follow.

For certain operations, such as a range query in high dimensional space
(Section 3.1), the target objects are located by a generalization of the above process.
The querying node may find that the target range is relevant to more than one branch,
and it would therefore forward the request to multiple peers simultaneously, resulting
in a “multicast” query.

Maintaining the partitioned tree in the above scheme is quite simple. Insertion and
deletion of a branch only affects the processor whose boundaries enclose the target
branch. For instance, insertion of /home/b1 affects only processor D.

Several optimizations are possible in Brushwood distributed tree. We provides data
redundancy by allowing neighboring processors to maintain overlapping partitions. Be-
sides added availability, it also improves locality, because the partitions now cover
larger subtrees. The P-Table mechanism from Skip Nets provides proximity-aware rout-
ing similar to Pastry. It can be further enhanced by proximity-aware load balancing
(Section 2.2).



Brushwood: Distributed Trees in Peer-to-Peer Systems 51

2.1 Choice of Routing Substrate

Our tree routing depends on a linear ordering of partitions. In this sense, any linear
space DHT routing facility can be used. We choose Skip Graphs for two reasons. First
of all, Skip Graphs do not impose constraints on the nature and structure of keys. It can
work with complex keys, like the variable-length Tree IDs, as long as there is a total
ordering. Second, even if one can encode tree nodes into key values, such unhashed
and often skewed keys can cause routing imbalance in some DHTs, as they use key
values to decide peering relation. Skip Graphs do not suffer from this problem because
its peering is decided by purely random membership vectors, even though the keys are
unhashed.

 1

 10

 100

 1000

 10000

 0  5  10  15  20  25  30  35

M
ax

 N
od

e 
D

eg
re

e

Number of Nodes(x1000)

Chord-in
Chord-out

Skip Graphs
 1

 10

 100

 1000

 0  5  10  15  20  25  30  35

M
ax

/M
ea

n 
R

ou
tin

g 
Lo

ad

Number of Nodes(x1000)

Chord
Skip Graphs

(a) Max Node Degree (b) Max/Mean Routing Load

Fig. 2. Imbalance under Skewed Key Distribution

We simulated Chord and Skip Graphs with a skewed key distribution to show the
imbalance in routing. Figure 2 (a) depicts the maximal processor degrees of Chord and
Skip Graphs with 1K∼32K processors. The processor keys are derived from a normal
distribution with standard deviation 0.125 in the range [0, 1]. With such unhashed keys,
Chord processors falling into the sparsely populated regions will manage larger portions
of the keyspace, and are therefore likely to have a large number of in-bound peers. Fur-
thermore, the imbalance in peer distribution also leads to imbalance in routing costs. We
route 1000 messages between random pairs of nodes. Figure 2 (b) shows the imbalance
as the ratio of maximal routing load to mean load.

2.2 Load Balancing

Balancing the assignment of tree nodes to processors is an important issue, because the
distribution of items in the tree could be skewed and might also change with time. We
propose a dynamic load balancing scheme that augments previous work [11,6,2].

Each processor maintains load information about the nodes in its partial tree. The
load in an internal node is the aggregated load on all processors managing portions
of this node. The root node therefore is associated with the global average load. Each
processor periodically gets load information from its peers and does its aggregation
from the bottom up the partial tree. Load information therefore propagates through the



52 C. Zhang, A. Krishnamurthy, and R.Y. Wang

entire system via a combination of local aggregation steps and peer-to-peer exchanges.
This process can be proved to converge after O(log N) steps.

There are two types of load balance operations, both taking advantage of the load
information in the partial tree. When a processor joins, it navigates the tree to find a
processor with high load, and partitions its data set. If a processor sustains significantly
higher load than global average, it may navigate the tree to find an underloaded proces-
sor. This processor is forced to quit its current position and rejoin to take over half of
the load from the overloaded processor. We favor a physically nearby processor in the
above navigation, so that the data items may retain network proximity after the partition.

3 Applications

3.1 Multi-dimensional Indexing

The first application we build with Brushwood is a high dimensional index supporting
complex queries. The data set being indexed are points in a D-dimensional Cartesian
space. The typical queries are not exact point matches, but are searches for points falling
in a certain range, or close to a given point. Such data sets are frequently found in
multimedia databases, geographic information systems, data mining, decision support,
pattern recognition, and even text document retrieval.

ED

CBA

F

(a)

D

A B

C

E F

(b)

0

0

0

0

0

1

1

1

1

1

Fig. 3. Partitioning of Search Space

Partitioning K-D Tree. SkipIndex [19], our peer-to-peer high dimensional index, dis-
tributes a K-D tree [5] with Brushwood. K-D tree is a widely used index tree for high
dimensional data. It hierarchically partitions the search space and data set into smaller
and smaller regions. Each internal node specifies a partition dimension and a split po-
sition, and splits its region into two children. The data points are stored in leaf nodes.
Figure 3 (a) illustrates partitioning of a 2-D search space to six processors, (b) shows
the corresponding K-D tree and the skip graph routing tables.



Brushwood: Distributed Trees in Peer-to-Peer Systems 53

Insertion and query operations in SkipIndex navigate the distributed tree to reach
appropriate leaf nodes. The target is specified by a high-dimension point (insertion) or
range (range query). To enable Brushwood tree lookup, SkipIndex defines the following
elements:

• ledge is 0 or 1, denoting left or right child.

• fnode compares the target point or range to the splitting plane of the node. For a
point, it only returns one matching child branch. For a range, it may return both
branches.

As we described before, the tree ID of a processor is given by the tree path from the
root to the left boundary node of its partition. For each internal node along the path, it
includes a tuple of 〈dimsplit , possplit , 0/1 〉, specifying the dimension and position of
the split plane and the branch taken. A processor builds its routing state as a partial K-D
tree containing the tree IDs of peers and itself.

When a processor joins, it locates a heavily loaded node (Section 2.2) and partitions
its search space. A key benefit provided by Brushwood is the flexible choice of the split
plane. We partition the most distinguishing dimension, so that the points in the two
partitions are less similar, and the partitions are less likely to be involved together in a
query. We split along the median of the items to balance the load.

Insertion and lookup of a point is straight-forward. At each hop, the processor nav-
igates its partial tree by comparing the point to the split planes in tree nodes from root
down, and it forwards the request to a peer that is maintaining a region that is closest to
the target point.

Complex Queries. Range query in SkipIndex exploits another type of tree lookup.
Now the target is a range in high dimensional space. While navigating the partial view,
at each tree node, the target range is tested for intersection with the regions corre-
sponding to its children. Each intersecting branch is further traversed until the traversal
reaches the leaves of the partial tree. If the leaf is a remote region, a request is routed
to the peer to search within the region. Otherwise, a local search is performed to find
matching points.

Nearest neighbor search returns k points having the smallest Euclidean distances
to a query point. While range query performs a parallel lookup of the K-D tree, our
nearest neighbor search algorithm performs a sequence of lookups, gradually refin-
ing the results. At each lookup step, a search request is routed to a processor man-
aging a search region close to the query point. Such regions are searched in the or-
der of expanding distances from the query point. We can perform an exact search
where we exhaust all processors that may contain a closer point. We also provide
an approximate search that significantly reduces the search cost with controllable accu-
racy.

We evaluated SkipIndex with a 20-dimension image feature vector data set. This
data set is highly skewed. We compare with pSearch [17] which uses unhashed CAN
to index high dimensional vectors. Compared to CAN, SkipIndex allows more flexible
partition of search space. Brushwood routing is also more stable in face of skewed data
distribution. In Figure 4 (a), Brushwood routing in SkipIndex shows routing distances
unaffected by data dimension, while CAN and pSearch suffer when data dimension is



54 C. Zhang, A. Krishnamurthy, and R.Y. Wang

 0

 5

 10

 15

 20

 25

 30

 35

 0  2  4  6  8  10  12  14  16  18  20

N
um

be
r 

of
 H

op
s

Dimensionality

CAN
pSeach

SkipIndex

 1

 10

 100

 1000

 0  2  4  6  8  10  12  14  16  18  20

M
ax

 N
um

be
r 

of
 P

ee
rs

 p
er

 P
ro

ce
ss

or

Number of Processors (x1000)

CAN
pSearch

SkipIndex

(a) Routing Distance (b) Peer Imbalance

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0  2  4  6  8  10  12  14  16  18  20

M
ax

 N
um

be
r 

of
 P

oi
nt

s 
pe

r 
P

ro
ce

ss
or

Number of Processors (x1000)

CAN
pSearch

SkipIndex
Average Load

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  0.2  0.4  0.6  0.8  1

A
cc

um
ul

at
ed

 Q
ue

ry
 C

os
t

Percentile of Processors

CAN
pSearch

SkipIndex
SkipIndex 99% Approx.

(c) Load Imbalance (d) Query Load CDF

Fig. 4. Routing and load balance comparisons

low. Figure 4 (b) compares the maximal number of peers. Brushwood/SkipIndex rout-
ing exhibits more stable routing state, which confirms the analysis in Section 2.1. Under
skewed data distribution, SkipIndex enjoys better load balance as shown in Figure 4 (c).
Figure 5 compares the nearest neighbor search cost measured by the number of proces-
sors visited per query, averaged across 1000 queries. SkipIndex achieves lower exact
search cost than pSearch thanks to the flexibility in space partitioning. Approximation
further reduces the cost significantly. Note that this query span does not fully reflect
the cost of search, because the load on the processors may be unequal. CAN achieves
low query span as most of the data objects are maintained by a small number of high
load processors. To better understand the search cost, Figure 4 (d) depicts the CDF of
query load measured by the number of object distance calculations during the search.
SkipIndex exhibits lower total cost and more balanced load distribution.

3.2 Distributed File Service

Now we go back to the example in Section 2 to review the potential for implementing a
partitioned file service using Brushwood. It is well known that disk locality is critical to
file system performance. In a distributed file service, locality of a file and its directory
also impacts performance, since the lookup of objects costs network communication.
By keeping related objects on the same processor, one can reduce the lookup overhead.



Brushwood: Distributed Trees in Peer-to-Peer Systems 55

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16  18  20

N
um

be
r 

of
 P

ro
ce

ss
or

s 
V

is
ite

d 
pe

r 
Q

ue
ry

Number of Processors (x1000)

CAN
pSearch

SkipIndex
SkipIndex 99% Approx.

Fig. 5. Nearest Neighbor Search Cost

Availability is another reason to consider distribution locality. Accessing a large set
of processors for a given task is more vulnerable to failures than accessing a few, if the
redundancy level is the same.

We analyze an NFS trace from Harvard University [7] to confirm the above observa-
tions. The trace was collected on EECS department server running research workload.
We use a week-long period of October 22 to 28, 2001. There are a total of 29 million
requests involving 540K file handles. We reconstructed the file system tree from the
trace. The tree is split into 1000 partitions using the load balancing process described
in Section 2.2.

To measure the access locality, we identify the user “sessions” in the trace activi-
ties. A session is defined as a series of operations sent by the same user with intervals
less than 5 minutes. The maximal length of a session is limited to 1 hour. There are
a total of 6470 sessions in the period, with an average duration of 701.8 seconds. The
user activity shows strong locality within a session. Table 1 gives the number of unique
blocks/files/directories/partitions accessed during an average session. Tree partition ap-
pears to be the best granularity to exploit locality.

To evaluate availability, we replay the trace with Poisson failures. We set the mean-
time-to-failure as 10 hours, and the mean-time-to-repair as 5 minutes to simulate a dy-
namic peer-to-peer environment. The file system is distributed to 1000 processors with
four different schemes: hashing by block ID, hashing by file ID, hashing by directory
ID, and tree partitioning. We randomly place two copies of each block/file/directory/
partition on the processors. Only if both replicas fail, a request fails. The second row
of Table 1 shows the number of sessions experiencing request failures under different
distribution schemes. When data locality improves, a client depends on less number
of servers to perform the same task. Therefore, better locality reduces the chance of
encountering server failures.



56 C. Zhang, A. Krishnamurthy, and R.Y. Wang

Table 1. Trace Analysis Results

Distribution scheme Block File Directory Partition
Number of unique objects accessed per session 1594.14 117.28 21.26 6.01

Number of sessions seeing request failures 236 153 53 21

4 Related Work

As far as we know, our work is the first general scheme to efficiently distribute, main-
tain, and traverse search trees in peer-to-peer systems. Previous efforts on distributed
search trees, like replicated B-tree [10], focus on parallelizing the operations and do not
exploit the symmetric node capability of peer-to-peer systems. DHTs like CAN, Chord,
Pastry and Tapestry achieve scalability and resilience by building self-organizing over-
lays to locate resources in peer-to-peer systems. But since these systems use hashing
to achieve load-balance, they are not suitable for maintaining complex data structures.
Several schemes [17,6] use unhashed DHTs for complex queries in flat key space, but
it is not clear how to build a general search tree.

Our dynamic load balancing scheme is inspired by previous work [11,6]. However,
instead of using random sampling, our scheme uses peer-wise gossiping to aggregate
load information in the distributed tree, which directs reactive load adjustment opera-
tions. Similar aggregation schemes are used in previous systems like [18].

Multi-dimensional queries in peer-to-peer systems have been addressed in a few
other systems. We had discussed pSearch earlier. Mercury [6] provides range query
by indexing the data set along each individual attributes. It uses random sampling to
ensure efficient routing (O(log2 N) hops) under skewed data distribution. However,
the per-attribute index makes Mercury inappropriate for nearest neighbor query which
involves all dimensions.

5 Conclusions

In this paper, we propose a general scheme to efficiently distribute and navigate tree
data structures in peer-to-peer systems. The approach is shown to be effective in several
locality-sensitive applications. We believe that more applications will benefit from this
system for maintaining complex data structures in peer-to-peer environments.

References

1. A. Andrzejak and Z. Xu. Scalable, efficient range queries for grid information services. In
Second IEEE International Conference on Peer-to-Peer Computing, 2002.

2. J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load balancking and locality in range-queriable
data structures. In Proc. of PODC, 2004.

3. J. Aspnes and G. Shah. Skip Graphs. In Proceedings of Symposium on Discrete Algorithms,
2003.

4. B. Awerbuch and C. Scheideler. Peer-to-peer systems for Prefix Search. In PODC, 2003.



Brushwood: Distributed Trees in Peer-to-Peer Systems 57

5. J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18(9), 1975.

6. A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable multi-attribute
range queries. In SIGCOMM, 2004.

7. D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS tracing email and research
workloads. In USENIX Conference on File and Storage Technologies, 2003.

8. M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica. Complex queries in
dht-based peer-to-peer networks. In Proceedings of IPTPS02, 2002.

9. N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A Scalable
Overlay Network with Practical Locality Properties. In USITS, 2003.

10. T. Johnson and P. Krishna. Lazy updates for distributed search structures. In Proceedings of
ACM SIGMOD, 1993.

11. D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-to-peer sys-
tems. In IPTPS, 2004.

12. P. Keleher, B. Bhattacharjee, and B. Silaghi. Are virtualized overlay networks too much of a
good thing. In Proc. of IPTPS, 2002.

13. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content address-
able network. In Proceedings of ACM SIGCOMM, 2001.

14. S. Ratnasamy, J. Hellerstein, and S. Shenker. Range Queries over DHTs. Technical Report
IRB-TR-03-009, Intel Research, 2003.

15. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In ICDCS, 2002.

16. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. In SIGCOMM, 2001.

17. C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-organizing
semantic overlay networks. In Proceedings of SIGCOMM, 2003.

18. R. van Renesse and K. P. Birman. Scalable management and data mining using astrolabe. In
IPTPS, 2002.

19. C. Zhang, A. Krishnamurthy, and R. Y. Wang. Skipindex: Towards a scalable peer-to-peer
index service for high dimensional data. Technical Report TR-703-04, Princeton Univ. CS,
2004, http://www.cs.princeton.edu/∼chizhang/skipindex.pdf.

20. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications, 2004.



Arpeggio: Metadata Searching and
Content Sharing with Chord

Austin T. Clements, Dan R.K. Ports, and David R. Karger�

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge MA 02139
{aclements, drkp, karger}@mit.edu

Abstract. Arpeggio is a peer-to-peer file-sharing network based on the
Chord lookup primitive. Queries for data whose metadata matches a
certain criterion are performed efficiently by using a distributed keyword-
set index, augmented with index-side filtering. We introduce index gate-
ways, a technique for minimizing index maintenance overhead. Because
file data is large, Arpeggio employs subrings to track live source peers
without the cost of inserting the data itself into the network. Finally, we
introduce postfetching, a technique that uses information in the index to
improve the availability of rare files. The result is a system that provides
efficient query operations with the scalability and reliability advantages
of full decentralization, and a content distribution system tuned to the
requirements and capabilities of a peer-to-peer network.

1 Overview and Related Work

Peer-to-peer file sharing systems, which let users locate and obtain files shared
by other users, have many advantages: they operate more efficiently than the
traditional client-server model by utilizing peers’ upload bandwidth, and can
be implemented without a central server. However, many current file sharing
systems trade-off scalability for correctness, resulting in systems that scale well
but sacrifice completeness of search results or vice-versa.

Distributed hash tables have become a standard for constructing peer-to-peer
systems because they overcome the difficulties of quickly and correctly locating
peers. However, the lookup by name DHT operation is not immediately sufficient
to perform complex search by content queries of the data stored in the network.
It is not clear how to perform searches without sacrificing scalability or query
completeness. Indeed, the obvious approaches to distributed full-text document
search scale poorly [9].

In this paper, however, we consider systems, such as file sharing, that search
only over a relatively small amount of metadata associated with each file, but
that have to support highly dynamic and unstable network topology, content,

� This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National Science Foundation
under Cooperative Agreement No. ANI0225660.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 58–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Arpeggio: Metadata Searching and Content Sharing with Chord 59

and sources. The relative sparsity of per-document information in such systems
allows for techniques that do not apply in general document search. We present
the design for Arpeggio, which uses the Lookup primitive of Chord [14] to sup-
port metadata search and file distribution. This design retains many advantages
of a central index, such as completeness and speed of queries, while providing the
scalability and other benefits of full decentralization. Arpeggio resolves queries
with a constant number of Chord lookups. The system can consistently locate
even rare files scattered throughout the network, thereby achieving near-perfect
recall.

In addition to the search process, we consider the process of distributing
content to those who want it, using subrings [8] to optimize distribution. Instead
of using a DHT-like approach of storing content data directly in the network on
peers that may not have originated the data, we use indirect storage in which the
original data remains on the originating nodes, and small pointers to this data
are managed in a DHT-like fashion. As in traditional file-sharing networks, files
may only be intermittently available. We propose an architecture for resolving
this problem by recording in the DHT requests for temporarily unavailable files,
then actively increasing their future availability.

Like most file-sharing systems, Arpeggio includes two subsystems concerned
with searching and with transferring content. Section 2 examines the problem of
building and querying distributed keyword-set indexes. Section 3 examines how
the indexes are maintained once they have been built. Section 4 turns to how
the topology can be leveraged to improve the transfer and availability of files.
Finally, Sect. 5 reviews the novel features of this design.

2 Searching

A content-sharing system must be able to translate a search query from a user
into a list of files that fit the description and a method for obtaining them. Each
file shared on the network has an associated set of metadata: the file name, its
format, etc. For some types of data, such as text documents, metadata can be
extracted manually or algorithmically. Some types of files have metadata built-
in; for example, ID3 tags on MP3 music files.

Analysis based on required communications costs suggests that peer-to-peer
keyword indexing of the Web is infeasible because of the size of the data set [9].
However, peer-to-peer indexing for metadata remains feasible, because the size
of metadata is expected to be only a few keywords, much smaller than the full
text of an average Web page.

2.1 Background

Structured overlay networks based on distributed hash tables show promise for
simultaneously achieving the recall advantages of a centralized index and the
scalability and resiliency attributes of decentralization. Distributed hash loca-
tion services such as Chord [14] provide an efficient Lookup primitive that



60 A.T. Clements, D.R.K. Ports, and D.R. Karger

maps a key to the node responsible for its value. Chord uses at most O(log n)
messages per lookup in an n-machine network, and minimal overhead for rout-
ing table maintenance. Building on this primitive, DHash [3] and other dis-
tributed hash tables provide a standard Get-Block/Put-Block hash table
abstraction. However, this interface alone is insufficient for efficient keyword-
based search.

2.2 Distributed Indexing

A reasonable starting point is a distributed inverted index. In this scheme, the
DHT maps each keyword to a list of all files whose metadata contains that key-
word. To execute a query, a node performs a Get-Block operation for each of
the query keywords and intersects the resulting lists. The principal disadvantage
is that the keyword index lists can become prohibitively long, particularly for
very popular keywords, so retrieving the entire list may generate tremendous
network traffic.

Performance of a keyword-based distributed inverted index can be improved
by performing index-side filtering instead of joining at the querying node. Be-
cause our application postulates that metadata is small, the entire contents of
each item’s metadata can be kept in the index as a metadata block, along with
information on how to obtain the file contents. To perform a query involving a
keyword, we send the full query to the corresponding index node, and it performs
the filtering and returns only relevant results. This dramatically reduces network
traffic at query time, since only one index needs to be contacted and only results
relevant to the full query are transmitted. This is similar to the search algo-
rithm used by the Overnet network [12], which uses the Kademlia DHT [10]; it
is also used by systems such as eSearch [15]. Note that index-side filtering breaks
the standard DHT Get-Block abstraction by adding network-side processing,
demonstrating the utility of direct use of the underlying Lookup primitive.

2.3 Keyword-Set Indexing

While filtering reduces network usage, query load may be unfairly distributed,
overloading nodes responsible for popular keywords. To overcome this problem,
we propose to build inverted indexes not only on keywords but also on keyword
sets. As before, each unique file has a corresponding metadata block that holds
all of its metadata. Now, however, an identical copy of this metadata block is
stored in an index corresponding to each subset of at most K metadata terms.
The maximum set size K is a parameter of the network. This is the Keyword-Set
Search system (KSS) introduced by Gnawali [6].

Essentially, this scheme allows us to precompute the full-index answer to
all queries of up to K keywords. For queries of more than K keywords, the
index for a randomly chosen K-keyword subset of the query can be filtered.
This approach has the effect of querying smaller and more distributed indexes
whenever possible, thus alleviating unfair query load caused by queries of more
than one keyword.



Arpeggio: Metadata Searching and Content Sharing with Chord 61

Since the majority of searches contain multiple keywords [13], large indexes
are no longer critical to result quality as most queries will be handled by smaller,
more specific indexes. To reduce storage requirements, maximum index size can
be limited, preferentially retaining entries that exist in fewest other indexes, i.e.
those with fewest total keywords.

In Arpeggio, we combine KSS indexing with index-side filtering, as described
above: indexes are built for keyword sets and results are filtered on the index
nodes. We make a distinction between keyword metadata, which is easily enu-
merable and excludes stopwords, and therefore can be used to partition indexes
with KSS, and filterable metadata, which can further constrain a search. Index-
side filtering allows for more complex searches than KSS alone. A user may only
be interested in files of size greater than 1 MB, files in tar.gz format, or MP3
files with a bitrate greater than 128 Kbps, for example. It is not practical to
encode this information in keyword indexes, but the index obtained via a KSS
query can easily be filtered by these criteria. The combination of KSS indexing
and index-side filtering increases both query efficiency and precision.

2.4 Feasibility

Techniques such as KSS improve the distribution of indexing load, reducing the
number of very large indexes — but they do so by creating more index entries.
In order to show that this solution is feasible, we argue that the increase in total
indexing cost is reasonable.

Using keyword set indexes rather than keyword indexes increases the number
of index entries for a file with m metadata keywords from m to I(m), where

I(m) =
K∑

i=1

(
m

i

)
=

{
2m − 1 if m ≤ K

O(mK) if m > K

For files with many metadata keywords, I(m) is polynomial in m. Furthermore, if
m is small compared to K (as for files with few keywords), then I(m) is no worse
than exponential in m. The graph in Fig. 1 shows that I(m) grows polynomially
with respect to m, and its degree is determined by K. As discussed below, for
many applications the desired value of K will be small (around 3 or 4), and so
I(m) will be a polynomial of low degree in m.

Example Application. To gain further insight into indexing costs, we analyzed
the number of index entries that would be required to build an index of song
metadata, using information from the FreeDB [4] database. This application1 is
well-suited for Arpeggio’s indexing because it consists of many files which have
large (audio) content and only a few metadata keywords such as the song title
1 Readers familiar with the FreeDB service will be aware that its primary application

is to translate disc IDs to track names, not to perform metadata searches for songs.
We do not propose Arpeggio as a replacement for FreeDB; we are merely using its
database as an example corpus of the type of information that could be indexed by
Arpeggio.



62 A.T. Clements, D.R.K. Ports, and D.R. Karger

1

2

4

8

16

32

64

128

256

512

1 2 3 4 5 6 7 8 9

I
(m

)

m

K = ∞
K = 4
K = 3
K = 2
K = 1

Fig. 1. Growth of I(m) for various K

Table 1. Index size (FreeDB)

Number of songs 21,195,244
Total index entries (K = 1) 134,403,379
Index entries per song (K = 1) 6.274406

Total index entries (K = 3) 1,494,688,373
Index entries per song (K = 3) 66.078093

or artist. The database contains over 1.5 million discs, with a total of over 21
million songs. Each song has an average of 6.27 metadata keywords.

Table 1 compares the number of index entries required to create a KSS index
over the metadata of discs in FreeDB for K = 1 and K = 3. The K = 1 case
corresponds to a single index entry for each keyword in each song: a simple
distributed inverted index. Increasing K to 3 allows KSS to be used effectively,
better distributing the load throughout the network, but only increases the total
indexing cost by an order of magnitude.

Choosing K. The effectiveness and feasibility of Arpeggio’s indexing system
depend heavily on the chosen value of the maximum subset size parameter K. If
K is too small, then the KSS technique will not be as effective: there will not be
enough multiple-keyword indices to handle most queries, making long indexes
necessary for result quality. If K is too large, then the number of index entries
required grows exponentially, as in Fig. 2. Most of these index entries will be in
many-keyword indices that will be used only rarely, if at all.

The optimum value for the parameter K depends on the application2, since
both the number of metadata keywords for each object and the number of search
terms per query vary. The average number of search terms for web searches

2 We are currently investigating the effectiveness of methods for splitting indexes into
more specific indexes only when necessary (essentially, adapting K per index).



Arpeggio: Metadata Searching and Content Sharing with Chord 63

1

10

100

1000

10000

100000

2 4 6 8 10 12 14

In
d
ex

si
ze

in
cr

ea
se

v
s

K
=

1

K

Fig. 2. Index size increase for varying K (FreeDB)

is approximately 2.53 [13], so assuming queries follow a similar distribution, a
choice of K = 3 or K = 4 would allow most searches to be handled by specific
indexes. Using the FreeDB data, this choice of K requires only an order of
magnitude increase in total index size.

3 Index Maintenance

Peers are constantly joining and leaving the network. Thus, the search index must
respond dynamically to the shifting availability of the data it is indexing and the
nodes on which the index resides. Furthermore, certain changes in the network,
such as nodes leaving without notification, may go unnoticed, and polling for
these changing conditions is too costly, so the index must be maintained by
passive means.

3.1 Metadata Expiration

Instead of polling for departures, or expecting nodes to notify us of them, we
expire metadata on a regular basis so that long-absent files will not be returned
by a search. Nevertheless, blocks may contain out-of-date references to files that
are no longer accessible. Thus, a requesting peer must be able to gracefully handle
failure to contact source peers. To counteract expiration, we refresh metadata
that is still valid, thereby periodically resetting its expiration counter. We argue
in Sect. 4.3 that there is value in long expiration times for metadata, as it not
only allows for low refresh rates, but for tracking of attempts to access missing
files in order to artificially replicate them to improve availability.

3.2 Index Gateways

If each node directly maintains its own files’ metadata in the distributed index,
the metadata block for each file will be inserted repeatedly. Consider a file F that



64 A.T. Clements, D.R.K. Ports, and D.R. Karger

has m metadata keywords and is shared by s nodes. Then each of the s nodes
will attempt to insert the file’s metadata block into the I(m) indexes in which
it belongs. The total cost for inserting the file is therefore Θ (sI(m)) messages.
Since metadata blocks simply contain the keywords of a file, not information
about which peers are sharing the file, each node will be inserting the same
metadata block repeatedly. This is both expensive and redundant. Moreover,
the cost is further increased by each node repeatedly renewing its insertions to
prevent their expiration.

To minimize this redundancy, we introduce an index gateway node that ag-
gregates index insertion. Index gateways are not required for correct index oper-
ation, but they increase the efficiency of index insertion. With gateways, rather
than directly inserting a file’s metadata blocks into the index, each peer sends
a single copy of the block to the gateway responsible for the block (found via a
Lookup of the block’s hash). The gateway then inserts the metadata block into
all of the appropriate indexes, but only if necessary. If the block already exists
in the network and is not scheduled to expire soon, then there is no need to
re-insert it into the network. A gateway only needs to refresh metadata blocks
when the blocks in the network are due to expire soon, but the copy of the block
held by the gateway has been more recently refreshed.

Gateways dramatically decrease the total cost for multiple nodes to insert
the same file into the index. Using gateways, each source node sends only one
metadata block to the gateway, which is no more costly than inserting into a
centralized index. The index gateway only contacts the I(m) index nodes once,
thereby reducing the total cost from Θ (sI(m)) to Θ (s + I(m)).

3.3 Index Replication

In order to maintain the index despite node failure, index replication is also
necessary. Because metadata blocks are small and reading from indexes must
be low-latency, replication is used instead of erasure coding [3]. Furthermore,
because replicated indexes are independent, any node in the index group can
handle any request pertaining to the index (such as a query or insertion) without
interacting with any other nodes. Arpeggio requires only weak consistency of
indexes, so index insertions can be propagated periodically and in large batches
as part of index replication. Expiration can be performed independently.

4 Content Distribution

The indexing system we describe above simply provides the ability to search for
files that match certain criteria. It is independent of the file transfer mechanism.
Thus, it is possible to use an existing content distribution network in conjunction
with Arpeggio. A simple implementation might simply store a HTTP URL for
the file in the metadata blocks, or a pointer into a content distribution network
such as Coral [5]. A DHT can be used for direct storage of file contents, as in
distributed storage systems like CFS [2]. For a file sharing network, direct storage



Arpeggio: Metadata Searching and Content Sharing with Chord 65

S1 S2

MF MF

MF

I1: a

MF

I2: b

MF

I3: a b

G

S1 S2

MF MF

MF

I1: a

MF

I2: b

MF

I3: a b

Fig. 3. Two source nodes S1,2, inserting file metadata block MF to three index nodes
I1,2,3, with (right) and without (left) a gateway node G

is impractical because the amount of churn [7] and the content size create high
maintenance costs.

Instead, Arpeggio uses indirect storage: it maintains pointers to each peer
that contains a certain file. Using these pointers, a peer can identify other peers
that are sharing content it wishes to obtain. Because these pointers are small,
they can easily be maintained by the network, even under high churn, while the
large file content remains on its originating nodes. This indirection retains the
distributed lookup abilities of direct storage, while still accommodating a highly
dynamic network topology, but may sacrifice content availability.

4.1 Segmentation

For purposes of content distribution, we segment all files into a sequence of
chunks. Rather than tracking which peers are sharing a certain file, Arpeggio
tracks which chunks comprise each file, and which peers are currently sharing
each chunk. This is implemented by storing in the DHT a file block for each file,
which contains a list of chunk IDs, which can be used to locate the sources of
that chunk, as in Table 2. File and chunk IDs are derived from the hash of their
contents to ensure that file integrity can be verified.

The rationale for this design is twofold. First, peers that do not have an entire
file are able to share the chunks they do have: a peer that is downloading part
of a file can at the same time upload other parts to different peers. This makes
efficient use of otherwise unused upload bandwidth. For example, Gnutella does
not use chunking, requiring peers to complete downloads before sharing them.
Second, multiple files may contain the same chunk. A peer can obtain part of a
file from peers that do not have an exactly identical file, but merely a similar
file.



66 A.T. Clements, D.R.K. Ports, and D.R. Karger

Table 2. Layers of lookup indirection

Translation Method

keywords → file IDs keyword-set index search
file ID → chunk IDs standard DHT lookup
chunk ID → sources content-sharing subring

Though it seems unlikely that multiple files would share the same chunks,
file sharing networks frequently contain multiple versions of the same file with
largely similar content. For example, multiple versions of the same document may
coexist on the network with most content shared between them. Similarly, users
often have MP3 files with the same audio content but different ID3 metadata
tags. Dividing the file into chunks allows the bulk of the data to be downloaded
from any peer that shares it, rather than only the ones with the same version.

However, it is not sufficient to use a segmentation scheme that draws the
boundaries between chunks at regular intervals. In the case of MP3 files, since
ID3 tags are stored in a variable-length region of the file, a change in metadata
may affect all of the chunks because the remainder of the file will now be “out
of frame” with the original. Likewise, a more recent version of a document may
contain insertions or deletions, which would cause the remainder of the document
to be out of frame and negate some of the advantages of fixed-length chunking.

To solve this problem, we choose variable length chunks based on content,
using a chunking algorithm derived from the LBFS file system [11]. Due to the
way chunk boundaries are chosen, even if content is added or removed in the
middle of the file, the remainder of the chunks will not change. While most recent
networks, such as FastTrack, BitTorrent, and eDonkey, divide files into chunks,
promoting the sharing of partial data between peers, Arpeggio’s segmentation
algorithm additionally promotes sharing of data between files.

4.2 Content-Sharing Subrings

To download a chunk, a peer must discover one or more sources for this chunk.
A simple solution for this problem is to maintain a list of peers that have the
chunk available, which can be stored in the DHT or handled by a designated
“tracker” node as in BitTorrent [1]. However, the node responsible for tracking
the peers sharing a popular chunk represents a single point of failure that may
become overloaded.

We instead use subrings to identify sources for each chunk, distributing the
query load throughout the network. The Diminished Chord protocol [8] allows
any subset of the nodes to form a named “subring” and allows Lookup oper-
ations that find nodes in that subring in O (log n) time, with constant storage
overhead per node in the subring. We create a subring for each chunk, where the
subring is identified by the chunk ID and consists of the nodes that are sharing
that chunk. To obtain a chunk, a node performs a Lookup for a random Chord
ID in the subring to discover the address of one of the sources. It then contacts



Arpeggio: Metadata Searching and Content Sharing with Chord 67

that node and requests the chunk. If the contacted node is unavailable or over-
loaded, the requesting node may perform another Lookup to find a different
source. When a node has finished downloading a chunk, it becomes a source
and can join the subring. Content-sharing subrings offer a general mechanism
for managing data that may be prohibitive to manage with regular DHTs.

4.3 Postfetching

To increase the availability of files, Arpeggio caches file chunks on nodes that
would not otherwise be sharing the chunks. Cached chunks are indexed the
same way as regular chunks, so they do not share the disadvantages of direct
DHT storage with regards to having to maintain the chunks despite topology
changes. Furthermore, this insertion symmetry makes caching transparent to the
search system. Unlike in direct storage systems, caching is non-essential to the
functioning of the network, and therefore each peer can place a reasonable upper
bound on its cache storage size.

Postfetching provides a mechanism by which caching can increase the supply
of rare files in response to demand. Request blocks are introduced to the network
to capture requests for unavailable files. Due to the long expiration time of meta-
data blocks, peers can find files whose sources are temporarily unavailable. The
peer can then insert a request block into the network for a particular unavailable
file. When a source of that file rejoins the network it will find the request block
and actively increase the supply of the requested file by sending the contents
of the file chunks to the caches of randomly-selected nodes with available cache
space. These in turn register as sources for those chunks, increasing their avail-
ability. Thus, the future supply of rare files is actively balanced out to meet their
demand.

5 Conclusion

We have presented the key features of the Arpeggio content sharing system.
Arpeggio differs from previous peer-to-peer file sharing systems in that it im-
plements both a metadata indexing system and a content distribution system
using a distributed lookup algorithm. We extend the standard DHT interface
to support not only lookup by key but complex search queries. Keyword-set in-
dexing and extensive network-side processing in the form of index-side filtering,
index gateways, and expiration are used to address the scalability problems in-
herent in distributed document indexing. We introduce a content-distribution
system based on indirect storage via subrings that uses chunking to leverage file
similarity, and thereby optimize availability and transfer speed. Availability is
further enhanced with postfetching, which uses cache space on other peers to
replicate rare but demanded files. Together, these components result in a design
that couples reliable searching with efficient content distribution to form a fully
decentralized content sharing system.



68 A.T. Clements, D.R.K. Ports, and D.R. Karger

References

1. BitTorrent protocol specification. http://bittorrent.com/protocol.html .
2. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area coop-

erative storage with CFS. In Proc. SOSP ’01, Oct. 2001.
3. F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris. Designing

a DHT for low latency and high throughput. In Proc. NSDI ’04, Mar. 2004.
4. FreeDB. http://www.freedb.org.
5. M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content publi-

cation with Coral. In Proc. NSDI ’04, Mar. 2004.
6. O. Gnawali. A keyword set search system for peer-to-peer networks. Master’s

thesis, Massachusetts Institute of Technology, June 2002.
7. K. P. Gummadi, R. J. Dunn, S. Sariou, S. D. Gribble, H. M. Levy, and J. Zahorjan.

Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In
Proc. SOSP ’03, Oct. 2003.

8. D. R. Karger and M. Ruhl. Diminished Chord: A protocol for heterogeneous
subgroup formation in peer-to-peer networks. In Proc. IPTPS ’04, Feb. 2004.

9. J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. Karger, and R. Morris. On
the feasibility of peer-to-peer web indexing and search. In Proc. IPTPS ’03, Feb.
2003.

10. P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information system
based on the XOR metric. In Proc. IPTPS ’02, Mar. 2002.

11. A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network file
system. In Proc. SOSP ’01, Oct. 2001.

12. Overnet. http://www.overnet.com/.
13. P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In Proc.

Middleware ’03, June 2003.
14. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,

and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

15. C. Tang and S. Dworkadas. Hybrid local-global indexing for efficient peer-to-peer
information retrieval. In Proc. NSDI ’04, Mar. 2004.



OverCite: A Cooperative Digital
Research Library�

Jeremy Stribling1, Isaac G. Councill2, Jinyang Li1, M. Frans Kaashoek1,
David R. Karger1, Robert Morris1, and Scott Shenker3

1 MIT Computer Science and Artificial Intelligence Laboratory
{strib, jinyang, kaashoek, karger, rtm}@csail.mit.edu

2 PSU School of Information Sciences and Technology
igc2@psu.edu

3 UC Berkeley and ICSI
shenker@icsi.berkeley.edu

Abstract. CiteSeer is a well-known online resource for the computer
science research community, allowing users to search and browse a large
archive of research papers. Unfortunately, its current centralized incar-
nation is costly to run. Although members of the community would pre-
sumably be willing to donate hardware and bandwidth at their own sites
to assist CiteSeer, the current architecture does not facilitate such dis-
tribution of resources. OverCite is a proposal for a new architecture for a
distributed and cooperative research library based on a distributed hash
table (DHT). The new architecture will harness resources at many sites,
and thereby be able to support new features such as document alerts
and scale to larger data sets.

1 Introduction

CiteSeer is a popular repository of scientific papers for the computer science
community [12], supporting traditional keyword searches as well as navigation
of the “web” of citations between papers. CiteSeer also ranks papers and authors
in various ways, and can identify similarity among papers. Through these and
other useful services, it has become a vital resource for the academic computer
science community.

Despite its community value, the future of CiteSeer is uncertain without a
sustainable model for community support. After an initial period of development
and deployment at NEC, CiteSeer went mostly unmaintained until a volunteer
research group at Pennsylvania State University recently took over the consid-
erable task of running and maintaining the system (see Table 1).

If CiteSeer were required to support many more queries, implement new
features, or significantly expand its document collection or its user base, the
� This research was conducted as part of the IRIS project

(http://project-iris.net/), supported by the National Science Foundation
under Cooperative Agreement No. ANI-0225660. Isaac G. Councill receives support
from NSF SGER Grant IIS-0330783 and Microsoft Research.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 69–79, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



70 J. Stribling et al.

resources required would quickly outstrip what PSU, or any other single non-
commercial institution, could easily provide. A commercially-managed system,
such as Google Scholar, is one feasible solution; however, because of CiteSeer’s
value to the community, it is likely that many institutions would be willing to do-
nate the use of machines and bandwidth at their sites in return for more control
over its evolution. Thus, for CiteSeer to prosper and grow as a noncommercial
enterprise, it must be adapted to run on a distributed set of donated nodes [11].

OverCite is a design that allows such an aggregation of distributed resources,
using a DHT infrastructure. Our emphasis is not on the novelty of the design,
but on its benefits. The DHT’s role as a distributed storage layer, coupled with
its robust and scalable models for data management and peer communication,
allows the decentralization of the CiteSeer infrastructure and the inclusion of
additional CPU and storage resources. Besides serving as a distributed, robust
archive of data, the DHT simplifies the coordination of distributed activities,
such as crawling. Finally, the DHT acts as a rendezvous point for producers and
consumers of meta-data and documents.

By potentially aggregating many resources in this manner, CiteSeer could
offer many more documents and features, enabling it to play an even more central
role in the community. We are currently developing an OverCite prototype, and
hope to make it available as a service to the community in the future.

2 CiteSeer Background

CiteSeer’s major components interact as follows. A Web crawler visits a set of
Web pages that are likely to contain links to PDF and PostScript files of research
papers. If it sees a paper link it hasn’t already fetched, CiteSeer fetches the file,
parses it to extract text and citations, and checks whether the format looks like
that of an academic paper. Then it applies heuristics to check if the document
duplicates an existing document; if not, it adds meta-data about the document
to its tables, and adds the document’s words to an inverted index. The Web user
interface accepts search terms, looks them up in the inverted index, and displays
data about the resulting documents.

CiteSeer assigns a document ID (DID) to each document for which it has
a PDF or Postscript file, and a citation ID (CID) to every bibliography entry
within a document. CiteSeer also knows about the titles and authors of many
papers for which it has no file, but to which it has seen citations. For this reason
CiteSeer also assigns a “group ID” (GID) to each title/author pair for use in
contexts where a file is not required.

CiteSeer uses the following tables:

1. The document meta-data table, indexed by DID, which records each doc-
ument’s authors, title, year, abstract, GID, CIDs of document’s citations,
number of citations to the document, etc.

2. The citation meta-data, indexed by CID, which records each citation’s GID
and citing document DID.



OverCite: A Cooperative Digital Research Library 71

Table 1. Statistics for the PSU CiteSeer deployment

Property Measurement

Number of papers (# of DIDs) 715,000

New documents per week 750

HTML pages visited 113,000

Total document storage 767 GB

Avg. document size 735 KB

Total meta-data storage 44 GB

Total inverted index size 18 GB

Hits per day >1,000,000

Searches per day 250,000

Total traffic per day 34.4 GB

Document traffic per day 21 GB

Avg. number of active conns 68.4

Avg. load per CPU 66%

3. A table mapping each GID to the corresponding DID, if a DID exists.
4. A table mapping each GID to the list of CIDs that cite it.
5. An inverted index mapping each word to the DIDs of documents that contain

that word.
6. A table indexed by the checksum of each fetched document file, used to

decide if a file has already been processed.
7. A table indexed by the hash of every sentence CiteSeer has seen in a docu-

ment, used to gauge document similarity.
8. A URL status table to keep track of which pages need to be crawled.
9. A table mapping paper titles and authors to the corresponding GID, used

to find the target of citations observed in paper bibliographies.

Table 1 lists statistics for the current deployment of CiteSeer at PSU. Cite-
Seer uses two servers, each with two 2.8 GHz processors. Most of the CPU time
is used to satisfy user searches. The main costs of searching are lookups in the
inverted index, collecting and displaying meta-data about search results, and
converting document files to user-requested formats. The primary costs of in-
serting new documents into CiteSeer are extracting words from newly found
documents, and adding the words to the inverted index. It takes about ten sec-
onds of CPU time to process each new document.

3 OverCite Design

The primary goal of OverCite is to spread the system’s load over a few hundred
volunteer servers. OverCite partitions the inverted index among many partici-
pating nodes, so that each node only indexes a fraction of the documents. This
parallelizes the work of creating, updating, and searching the index. OverCite
executes the user interface on many nodes, thus spreading the work of serving
files and converting between file formats. OverCite stores the document files



72 J. Stribling et al.

in a DHT, which spreads the burden of storing them. OverCite also stores its
meta-data in the DHT for convenience, to make all data available to all nodes,
and for reliability. The choice of a DHT as a shared storage medium ensures
robust, scalable storage along with the efficient lookup and management of doc-
uments and meta-data. OverCite partitions its index by document, rather than
keyword [13, 18, 21, 22], to avoid expensive joins on multi-keyword queries, and
limit the communication necessary on document insertions.

3.1 Architecture

OverCite nodes have four active components: a DHT process, an index server, a
web crawler, and a Web server that answers queries. Isolating the components
in this manner allows us to treat each independently; for example, the inverted
index is not tied any particular document storage solution. We describe each
component in turn.

DHT process. OverCite nodes participate in a DHT. The DHT provides robust
storage for documents and meta-data, and helps coordinate distributed activities
such as crawling. Since OverCite is intended to run on a few hundred stable
nodes, each DHT node can keep a full routing table and thus provide one hop
lookups [9, 15, 14]. Because we expect failed nodes to return to the system with
disks intact in most cases, and because all the data is soft state, the DHT can
be lazy about re-replicating data stored on failed nodes.

Index server. To avoid broadcasting each query to every node, OverCite par-
titions the inverted index by document into k index partitions. Each document
is indexed in just one partition. Each node maintains a copy of one index parti-
tion, so that if there are n nodes, there are n/k copies of each index partition.
OverCite sends a copy of each query to one server in each partition, so that only
k servers are involved in each query. Each of the k servers uses about 1/k’th of
the CPU time that would be required to search a single full-size inverted index.
Each server returns only the DIDs of the m highest-ranked documents (by some
specified criterion, such as citation count) in response to a query.

We can further reduce the query load by observing that many queries over
the CiteSeer data will involve only paper titles or authors. In fact, analysis of
an October 2004 trace of CiteSeer queries shows that 40% of answerable queries
match the title or author list of at least one document. Furthermore, a complete
index of just this meta-data for all CiteSeer papers is only 50 MB. Thus, an
effective optimization may be to replicate this full meta-data index on all nodes,
and keep it in memory, as a way to satisfy many queries quickly and locally.
Another option is to replicate an index containing common search terms on all
nodes. Moreover, if we would like to replicate the full text index on all nodes for
even faster queries (i.e., k = 1), we may be able to use differential updates to
keep all nodes up-to-date on a periodic basis, saving computation at each node
when updating the index.

In future work we plan to explore other possible optimizations for distributed
search (e.g., threshold aggregation algorithms [7]). If query scalability becomes



OverCite: A Cooperative Digital Research Library 73

Table 2. The data structures OverCite stores in the DHT

Name Key Value

Docs DID FID, GID, CIDs, etc.

Cites CID DID, GID

Groups GID DID + CID list

Files FID Document file

Shins hash(shingle) list of DIDs

Crawl list of page URLs

URLs hash(doc URL) date file last fetched

Titles hash(Ti+Au) GID

an issue, we plan to explore techniques from recent DHT search proposals [10,
8, 17, 19,22, 1] or unstructured peer-to-peer search optimizations [23,4].

Web crawler. The OverCite crawler design builds on several existing proposals
for distributed crawling (e.g., [5,16,3,20]). Nodes coordinate the crawling effort
via a list of to-be-crawled page URLs stored in the DHT. Each crawler process
periodically chooses a random entry from the list and fetches the corresponding
page. When the crawler finds a new document file, it extracts the document’s
text words and citations, and stores the document file, the extracted words, and
the document’s meta-data in the DHT. The node adds the document’s words to
its inverted index, and sends a message to each server in the same index partition
telling it to fetch the document’s words from the DHT and index them. A node
keeps a cache of the meta-data for documents it has indexed, particularly the
number of citations to the paper, in order to be able to rank search results locally.
While many enhancements to this basic design (such as locality-based crawling
and more intelligent URL partitioning) are both possible and desirable, we defer
a more complete discussion of the OverCite crawler design to future work.

Web-based front-end. A subset of OverCite nodes run a Web user interface,
using round-robin DNS to spread the client load. The front-end accepts query
words from the user, sends them to inverted index servers, collects the results
and ranks them, fetches meta-data from the DHT for the top-ranked results,
and displays them to the user. The front-end also retrieves document files from
the DHT, optionally converts them to a user-specified format, and sends them
to the user.

3.2 Tables

Table 2 lists the data tables that OverCite stores in the DHT. The tables are
not explicitly distinct entities in the DHT. Instead, OverCite uses the DHT as a
single large key/value table; the system interprets values retrieved from the DHT
based on the context in which the key was found. These tables are patterned
after those of CiteSeer, but adapted to storage in the DHT. These are the main
differences:



74 J. Stribling et al.

– The Files table holds a copy of each document PDF or PostScript file, keyed
by the FID, a hash of the file contents.

– Rather than use sentence-level duplicate detection, which results in very
large tables of sentences, OverCite instead uses shingles [2], a well-known
and effective technique for duplicate detection. The Shins table is keyed by
the hashes of shingles found in documents, and each value is a list of DIDs
having that shingle.

– The Crawl key/value pair contains the list of URLs of pages known to contain
document file URLs, in a single DHT block with a well-known key.

– The URLs table indicates when each document file URL was last fetched. This
allows crawlers to periodically re-fetch a document file to check whether it
has changed.

In addition to the tables stored in the DHT, each node stores its partition
of the inverted index locally. The index is sufficiently annotated so that it can
satisfy queries over both documents and citations, just as in the current CiteSeer.

4 Calculations

OverCite requires more communication resources than CiteSeer in order to man-
age the distribution of work, but as a result each server has less work to do. This
section calculates the resources consumed by OverCite, comparing them to the
costs of CiteSeer.

4.1 Maintenance Resources

Crawling and fetching new documents will take approximately three times more
bandwidth than CiteSeer uses in total, spread out over all the servers. For each
link to a Postscript or PDF file a node finds, it performs a lookup in URLs
to see whether it should download the file. After the download, the crawler
process checks whether this is a duplicate document. This requires (1) looking
up the FID of the file in Files; (2) searching for an existing document with
the same title and authors using Titles; and (3) verifying that, at a shingle
level, the document sufficiently differs from others. These lookups are constant
per document and inexpensive relative to downloading the document. Steps (2)
and (3) occur after the process parses the document, converts it into text, and
extracts the meta-data.

If the document is not a duplicate, the crawler process inserts the document
into Files as Postscript or PDF, which costs as much as downloading the file,
times the overhead f due to storage redundancy in the DHT [6]. The node also
inserts the text version of the document into Files and updates Docs, Cites,
Groups, and Titles to reflect this document and its meta-data.

Next, the node must add this document to its local inverted index partition
(which is stored a total of n/k nodes). However, each additional node in the same
index partition need only fetch the text version of the file from Files, which is
on average a tenth the size of the original file. Each of these n/k nodes then
indexes the document, incurring some cost in CPU time.



OverCite: A Cooperative Digital Research Library 75

Fig. 1. The timeline of a query in OverCite, and the steps involved. Each vertical bar
represents a node with a different index partition.

The additional system bandwidth required by OverCite to crawl and insert
a new document is dominated by the costs of inserting the document into the
DHT, and for the other nodes to retrieve the text for that document. If we
assume that the average original file size is x, and the size of the text files is
on average x/10, then the approximate bandwidth overhead per document is
fx + (n/k)(x/10) bytes.

We estimate the amount of storage needed by each node as follows. The DHT
divides document and table storage among all n nodes in the system: this requires
(d + e)f/n GB, where d and e are the amount of storage used for documents
and meta-data tables, respectively. Furthermore, each node stores one partition
of the inverted index, or i/k GB if i is the total index size.

These bandwidth and storage requirements depend, of course, on the system
parameters chosen for OverCite. Some reasonable design choices might be: n =
100 (roughly what PlanetLab has obtained through donations), k = 20 (so that
only a few nodes need to index the full text of each new document), and f = 2
(the value DHash uses [6]). With these parameter choices, and the measurements
from CiteSeer in Table 1, we find that the OverCite would require 1.84 MB of
additional bandwidth per document (above the .735 MB CiteSeer currently uses)
and 25 GB of storage per node.

These calculations ignore the cost of DHT routing table and data mainte-
nance traffic. In practice, we expect these costs to be dwarfed by the traffic used
to serve documents as we assume nodes are relatively stable.

4.2 Query Resources

Because OverCite partitions the inverted index by document, each query needs to
be broadcast in parallel to k−1 nodes, one for each of the other index partitions.1

1 We assume here that no queries match in the meta-data index; hence, these are
worst-case calculations.



76 J. Stribling et al.

Each node caches the meta-data for the documents in its index partition in order
to rank search results; this cache need not be up to date. When all k nodes return
their top m matches, along with the context of the matches and the value of
rank metric, the originating node looks up the meta-data for the top b matches.
Figure 1 depicts this process.

The packets containing the queries will be relatively small; however, each
response will contain the identifiers of each matching document, the context
of each match, and the value of the rank metric. If there are n participating
nodes, each DID is 20 bytes, and the context and rank metric value together are
50 bytes, each query consumes about 70mk bytes of traffic. Assuming 250,000
searches per day, k = 20, and returning m = 10 results per query per node, our
query design adds 3.5 GB of traffic per day to the network (or 35 MB per node).
This is a reasonably small fraction of the traffic currently served by CiteSeer
(34.4 GB). This does not include the meta-data lookup traffic for the top b
matches, which is much smaller (a reasonable value for b is 10 or 20).

Serving a document contributes the most additional cost in OverCite, since
the Web-based front-end must retrieve the document fragments from the DHT
before returning it to the user. This will approximately double the amount of
traffic from paper downloads, which is currently 21 GB (though this load is now
spread among all nodes). However, one can imagine an optimization involving
redirecting the user to cached pre-constructed copies of the document on specific
DHT nodes, saving this addition bandwidth cost.

OverCite spreads the CPU load of performing each query across multiple
nodes, because the cost of an inverted index lookup is linear in the number of
documents in the index.

4.3 User Delay

User-perceived delay could be a problem in OverCite, as constructing each Web
page requires multiple DHT lookups. However, most lookups are parallelizable,
and because we assume a one-hop DHT, the total latency should be low. For
example, consider the page generated by a user keyword query. The node initially
receiving the query forwards the query, in parallel, to k−1 nodes. After receiving
responses from all nodes, the node looks up the meta-data for the top matches in
parallel. Therefore, we expect that the node can generate the page in response
to a search in about twice the average round trip time of the network, plus
computation time.

Generating a page about a given document (which includes that document’s
citations and what documents cite it) will take additional delay for looking up
extra meta-data; we expect each of those pages to take an average of three or
four round trip times.

5 Features and Potential Impact

Given the additional resources available with OverCite’s design, a wider range
of features will be possible; in the long run the impact of new capabilities on



OverCite: A Cooperative Digital Research Library 77

the way researchers communicate may be the main benefit of a more scalable
CiteSeer. This section sketches out a few potential features.

Document Alerts: As the field of computer science grows, it is becoming
harder for researchers to keep track of new work relevant to their interests.
OverCite could help by providing an alert service to e-mail a researcher when-
ever a paper entered the database that might be of interest. Users could register
queries that OverCite would run daily (e.g., alert me for new papers on “dis-
tributed hash table” authored by “Druschel”). This service clearly benefits from
the OverCite DHT infrastructure as the additional query load due to alerts
becomes distributed over many nodes. A recent proposal [11] describes a DHT-
based alert system for CiteSeer.

Document Recommendations: OverCite could provide a recommendation
feature similar to those found in popular Web sites like Amazon. This would
require OverCite to track individual users’ activities. OverCite could then rec-
ommend documents based on either previous downloads, previous queries, or
downloads by others with similar interests.

Plagiarism Checking: Plagiarism has only been an occasional problem in ma-
jor conferences, but with increasing volumes of papers and pressure to publish,
this problem will likely become more serious. OverCite could make its database
of shingles available to those who wish to check whether one paper’s text signif-
icantly overlaps any other papers’.

More documents: Most authors do not explicitly submit their newly written
papers to CiteSeer. Instead, they rely on CiteSeer to crawl conference Web pages
to find new content. CiteSeer could be far more valuable to the community if
it could support a larger corpus and, in particular, if it included more preprints
and other recently written material. While faster and more frequent crawling
might help in this regard, the situation could only be substantially improved if
authors took a more active role in adding their material.

As an extreme case, one could imagine that funding agencies and conferences
require all publications under a grant and submissions to a conference be entered
into OverCite, making them immediately available to the community.2 Going one
step further, one could imagine that program committees annotate submissions
in OverCite with comments about the contributions of the paper. Users could
then decide based on the comments of the PC which papers to read (using the
document-alert feature). This approach would have the additional benefit that
users have access to papers that today are rejected from a conference due to
limited program time slots.

Potential impact: Radical changes, such as the one above, to the process of
dissemination of scientific results are likely to happen only in incremental steps,
but are not out of the question. Theoretical physics, for example, uses a preprint
collection as its main document repository; insertion into the repository counts
as the “publication date” for resolving credit disputes and, more importantly,
2 This would require rethinking anonymous submissions or providing support for

anonymous submissions in OverCite.



78 J. Stribling et al.

researchers routinely scan the list of new submissions to find relevant papers.
This manual mode works less well for computer science, due in part to the diverse
set of sub-disciplines and large number of papers. OverCite, however, could be
the enabler of such changes for computer science, because of its scalable capacity
and ability to serve many queries.

Acknowledgments

The comments of Jayanthkumar Kannan, Beverly Yang, Sam Madden, Anthony
Joseph, the MIT PDOS research group, and the anonymous reviewers greatly
improved this work. We also thank C. Lee Giles for his continued support at
PSU.

References

1. Bawa, M., Manku, G. S., and Raghavan, P. SETS: Search enhanced by topic
segmentation. In Proceedings of the 2003 SIGIR (July 2003).

2. Broder, A. Z. On the resemblance and containment of documents. In Proceedings
of the Compression and Complexity of Sequences (June 1997).

3. Burkard, T. Herodotus: A peer-to-peer web archival system. Master’s thesis,
Massachusetts Institute of Technology, May 2002.

4. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and Shenker, S.
Making Gnutella-like P2P systems scalable. In Proc. of SIGCOMM (August 2003).

5. Cho, J., and Garcia-Molina, H. Parallel crawlers. In Proceedings of the 2002
WWW Conference (May 2002).

6. Dabek, F., Kaashoek, M. F., Li, J., Morris, R., Robertson, J., and Sit, E.
Designing a DHT for low latency and high throughput. In Proceedings of the 1st
NSDI (March 2004).

7. Fagin, R., Lotem, A., and Naor, M. Optimal aggregation algorithms for mid-
dleware. Journal of Computer and System Sciences 66 (2003), 614–656.

8. Gnawali, O. D. A keyword set search system for peer-to-peer networks. Master’s
thesis, Massachusetts Institute of Technology, June 2002.

9. Gupta, A., Liskov, B., and Rodrigues, R. Efficient routing for peer-to-peer
overlays. In Proceedings of the 1st NSDI (Mar. 2004).

10. Huebsch, R., Hellerstein, J. M., Lanham, N., Loo, B. T., Shenker, S., and
Stoica, I. Querying the Internet with PIER. In Proceedings of the 19th VLDB
(Sept. 2003).

11. Kannan, J., Yang, B., Shenker, S., Sharma, P., Banerjee, S., Basu, S., and
Lee, S. J. SmartSeer: Continuous queries over CiteSeer. Tech. Rep. UCB//CSD-
05-1371, UC Berkeley, Computer Science Division, Jan. 2005.

12. Lawrence, S., Giles, C. L., and Bollacker, K. Digital libraries
and autonomous citation indexing. IEEE Computer 32, 6 (1999), 67–71.
http://www.citeseer.org.

13. Li, J., Loo, B. T., Hellerstein, J. M., Kaashoek, M. F., Karger, D., and
Morris, R. On the feasibility of peer-to-peer web indexing and search. In Pro-
ceedings of the 2nd IPTPS (Feb. 2003).

14. Li, J., Stribling, J., Kaashoek, M. F., and Morris, R. Bandwidth-efficient
management of DHT routing tables. In Proceedings of the 2nd NSDI (May 2005).



OverCite: A Cooperative Digital Research Library 79

15. Litwin, W., Neimat, M.-A., and Schneider, D. A. LH* — a scalable, dis-
tributed data structure. ACM Transactions on Database Systems 21, 4 (1996),
480–525.

16. Loo, B. T., Cooper, O., and Krishnamurthy, S. Distributed web crawling over
DHTs. Tech. Rep. UCB//CSD-04-1332, UC Berkeley, Computer Science Division,
Feb. 2004.

17. Loo, B. T., Huebsch, R., Stoica, I., and Hellerstein, J. M. The case for a
hybrid P2P search infrastructure. In Proceedings of the 3rd IPTPS (Feb. 2004).

18. Reynolds, P., and Vahdat, A. Efficient peer-to-peer keyword searching. In
Proceedings of the 4th International Middleware Conference (June 2003).

19. Shi, S., Yang, G., Wang, D., Yu, J., Qu, S., and Chen, M. Making peer-to-
peer keyword searching feasible using multi-level partitioning. In Proceedings of
the 3rd IPTPS (Feb. 2004).

20. Singh, A., Srivatsa, M., Liu, L., and Miller, T. Apoidea: A decentralized
peer-to-peer architecture for crawling the world wide web. In Proceedings of the
SIGIR 2003 Workshop on Distributed Information Retrieval (Aug. 2003).

21. Suel, T., Mathur, C., Wu, J.-W., Zhang, J., Delis, A., Kharrazi, M., Long,
X., and Shanmugasundaram, K. ODISSEA: A peer-to-peer architecture for
scalable web search and information retrieval. In Proceedings of the International
Workshop on the Web and Databases (June 2003).

22. Tang, C., and Dwarkadas, S. Hybrid global-local indexing for efficient peer-to-
peer information retrieval. In Proceedings of the 1st NSDI (Mar. 2004).

23. Yang, B., and Garcia-Molina, H. Improving search in peer-to-peer networks.
In Proceedings of the 22nd ICDCS (July 2002).



NetProfiler: Profiling Wide-Area Networks
Using Peer Cooperation

Venkata N. Padmanabhan1, Sriram Ramabhadran2,�, and Jitendra Padhye3

1 Microsoft Research
padmanab@microsoft.com

2 University of California at San Diego
sriram@cs.ucsd.edu
3 Microsoft Research
padhye@microsoft.com

Abstract. Our work is motivated by two observations about the state
of networks today. Operators have little visibility into the end users’
network experience while end users have little information or recourse
when they encounter problems. We propose a system called NetPro-
filer, in which end hosts share network performance information with
other hosts over a peer-to-peer network. The aggregated information
from multiple hosts allows NetProfiler to profile the wide-area network,
i.e., monitor end-to-end performance, and detect and diagnose problems
from the perspective of end hosts. We define a set of attribute hierarchies
associated with end hosts and their network connectivity. Information on
the network performance and failures experienced by end hosts is then
aggregated along these hierarchies, to identify patterns (e.g., shared at-
tributes) that might be indicative of the source of the problem. In some
cases, such sharing of information can also enable end hosts to resolve
problems by themselves. The results from a 4-week-long Internet exper-
iment indicate the promise of this approach.

1 Introduction

Our work is motivated by two observations about the state of networks today.
First, operators have little direct visibility into the end users’ network experience.
Monitoring of network routers and links, while important, does not translate into
direct knowledge of the end-to-end health of the network. This is because any
single operator usually controls only a few of the components along an end-to-
end path. On the other hand, although end users have direct visibility into their
own network performance, they have little other information or recourse when
they encounter problems. They do not know the cause of the problem or whether
it is affecting other users as well.

To address these problems, we propose a system called NetProfiler, in which
end hosts monitor the network performance and then share the information
with other end hosts over a peer-to-peer network. End hosts, or “clients”, are
� The author was an intern at Microsoft Research during part of this work.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 80–92, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



NetProfiler: Profiling Wide-Area Networks Using Peer Cooperation 81

in the ideal position to do monitoring since they are typically the initiators of
end-to-end transactions and have full visibility into the success or failure of the
transactions. By examining the correlations, or the lack thereof, across obser-
vations made by different clients, NetProfiler can detect network anomalies and
localize their likely cause. Besides anomaly detection and diagnosis, this system
allows users (and also ISPs) to learn about the network performance experienced
by other hosts. The following scenarios illustrate the use of NetProfiler:

– A user who is unable to access a web site can find out whether the problem
is specific to his/her host or ISP, or whether it is a server problem. In the
latter case, the user’s client may be able to automatically discover working
replicas of the site.

– A user can benchmark his/her long-term network performance against that
of other users in the same city. This information can be used to drive decisions
such as upgrading to a higher level of service (e.g., to 768 Kbps DSL from
128 Kbps service) or switching ISPs.

– A consumer ISP such as MSN can monitor the performance seen by its
customers in various locations and identify, for instance, that the customers
in a certain city are consistently underperforming those elsewhere. This can
call for upgrading the service or switching to a different provider of modem
banks, backhaul bandwidth, etc. in that city.

We view NetProfiler as an interesting and novel P2P application that lever-
ages peers for network monitoring and diagnosis. Peer participation is critical
in NetProfiler, since in the absence of such participation, it would be difficult
to learn the end-host perspective from multiple vantage points. This is in con-
trast to traditional P2P applications such as content distribution, where it is
possible to reduce or eliminate dependence on peers by employing a centralized
infrastructure. Each end-host is valuable in NetProfiler because of the perspec-
tive it provides on the health of the network, and not because of the (minimal)
resources such as bandwidth and CPU that it contributes. Clearly, the useful-
ness and effectiveness of NetProfiler grows with the size of the deployment. In
practice, NetProfiler can either be deployed in a coordinated manner by a net-
work operator such as a consumer ISP or the IT department of an enterprise,
or can grow organically as an increasing number of users install this new P2P
“application”.

To put NetProfiler in perspective, the state-of-the-art in end-host-based net-
work diagnosis is an individual user using tools such as ping and traceroute to
investigate problems. However, this approach suffers from several drawbacks.

A key limitation of these tools is that they only capture information from
the viewpoint of a single end host or network entity. Also, these tools only focus
on entities such as routers and links that are on the IP-level path, whereas the
actual cause of a problem might be higher-level entities such as proxies and
servers. In contrast, NetProfiler considers the entire end-to-end transaction, and
combines information from multiple vantage points, which enables better fault
diagnosis.



82 V.N. Padmanabhan, S. Ramabhadran, and J. Padhye

Many of the existing tools also operate on a short time scale, usually on an
as-needed basis. NetProfiler monitors, aggregates, and summarizes network per-
formance data on a continuous basis. This allows NetProfiler to detect anomalies
in performance based on historical comparisons.

Another important issue is that many of the tools rely on active probing.
In contrast, NetProfiler relies on passive observation of existing traffic. Reliance
on active probing is problematic due to several reasons. First, the overhead of
active probing can be high, especially if hundreds of millions of Internet hosts
start using active probing on a routine basis. Second, active probing cannot
always disambiguate the cause of failure. For example, an incomplete traceroute
could be due to a router or server failure, or simply because of the suppression
of ICMP messages by a router or a firewall. Third, the detailed information
obtained by client-based active probing (e.g., traceroute) may not pertain to the
dominant direction of data transfer (typically server→client).

Thus we believe that it is important and interesting to consider strategies
for monitoring and diagnosing network performance that do not rely on active
probing, and take a broad view of the network by considering the entire end-
to-end path rather than just the IP-level path and combining the view from
multiple vantage points.

In the remainder of the paper, we discuss the architecture of NetProfiler, some
detailsof its constituent components, open issues andchallenges,and relatedwork.

2 NetProfiler Architecture and Algorithms

We now discuss the architecture of NetProfiler and the algorithms used for the
acquisition, aggregation, and analysis of network performance data.

2.1 Data Acquisition

Data acquisition is performed by sensors, which are software modules residing
on end hosts such as users’ desktop machines. Although these sensors could
perform active measurements, our focus here is primarily on passive observation
of existing traffic. The end host would typically have multiple sensors, say one for
each protocol or application. Sensors could be defined for the common Internet
protocols such as TCP, HTTP, DNS, and RTP/RTCP as well protocols that
are likely to be of interest in specific settings such as enterprise networks (e.g.,
the RPC protocol used by Microsoft Exchange servers and clients). The goal of
the sensors is both to characterize the end-to-end communication in terms of
success/failure and performance, and also to infer the conditions on the network
path.

We have implemented two simple sensors — TcpScope and WebScope — to
analyze TCP and HTTP, respectively. The widespread use of these protocols
makes these sensors very useful. We now describe them briefly.

TcpScope: TcpScope is a passive sensor that listens on TCP transfers to and
from the end host, and attempts to determine the cause of any performance



NetProfiler: Profiling Wide-Area Networks Using Peer Cooperation 83

problems. Our current implementation operates at user level in conjunction with
the NetMon or WinDump filter driver on Windows XP. Since the user’s machine
is typically at the receiving end of TCP connections, it is challenging to estimate
metrics such as the connection’s RTT, congestion window size, etc. We outline
a set of heuristics that are inspired by T-RAT [1] but are simpler since we have
access to the client host.

An initial RTT sample is obtained from the SYN-SYNACK exchange. Fur-
ther RTT samples are obtained by identifying flights of data separated by idle
periods during the slow-start phase. The RTT estimate can be used to obtain
an estimate of sender’s congestion window (cwnd). A rough estimate of the bot-
tleneck bandwidth is obtained by observing the spacing between the pairs of
back-to-back packets emitted during slow start. 1 Using estimates of the RTT,
cwnd and bottleneck bandwidth, we can determine the likely cause of rate lim-
itation: whether the application itself is not producing enough data or whether
an external factor such as a bandwidth bottleneck or packet loss is responsible.

Our initial experiments indicate that the TcpScope heuristics perform well. In
ongoing work, we are conducting more extensive experiments in wide-area settings.

WebScope: In certain settings such as enterprise networks, the clients’ web
connections might traverse a caching proxy. So TcpScope would only be able to
observe the dynamics of the network path between the proxy and the client. To
provide some visibility into the conditions on the network path beyond the proxy,
we have implemented the WebScope sensor. For an end-to-end web transaction,
WebScope is able to estimate the contributions of the proxy, the server, and the
server–proxy and proxy–client network paths to the overall latency. The main
idea is to use a combination of cache-busting and byte-range HTTP requests, to
decompose the end-to-end latency.

WebScope produces less detailed information than TcpScope but still offers a
rough indication of the performance of the individual components on the client-
proxy-server path. WebScope focuses on the first-level proxy between the client
and the origin server. It ignores additional intermediate proxies, if any. This is
just as well since such proxies are typically not visible to the client and so the
client does not have the option of picking between multiple alternatives. Finally,
we note that WebScope can operate in a “pseudo passive” mode by manipulating
the cache control and byte-range headers on existing HTTP requests.

2.2 Normalization

The data produced by the sensors at each node needs to be “normalized” before
it can be meaningfully shared with other nodes. For instance, the throughput
observed by a dialup client might be consistently lower that that observed by
a LAN client at the same location and yet this does not represent an anomaly.
On the other hand, the failure to download a page is information that can be
shared regardless of the client’s access link speed.
1 We can determine whether two packets were likely sent back-to-back by the sender

by examining their IP IDs.



84 V.N. Padmanabhan, S. Ramabhadran, and J. Padhye

We propose dividing clients into a few different bandwidth classes based
on their access link (downlink) speed — dialup, low-end broadband (say under
250 Kbps), high-end broadband (say under 1.5 Mbps), and LAN (10 Mbps and
above). Clients could determine their bandwidth class either based on the es-
timates provided by TcpScope or based on out-of-band information (e.g., user
knowledge).

The bandwidth class of a node is included in its set of attributes for the pur-
poses of aggregating certain kinds of information using the procedure discussed
in Section 2.3. Information of this kind includes the TCP throughput and pos-
sibly also the RTT and the packet loss rate. For TCP throughput, we use the
information inferred by TcpScope to filter out measurements that were limited by
factors such as the receiver-advertised window or the connection length. Regard-
ing the latter, the throughput corresponding to the largest window (i.e., flight)
that experienced no loss is likely to be more meaningful than the throughput of
the entire connection.

Certain information such as RTT is strongly influenced by a client’s location.
So it is meaningful to share this information only with clients at the same location
(e.g., same city).

Certain other information can be aggregated across all clients regardless of
their location or access link speed. Examples include the success or failure of
page download and an indiction of server or proxy load obtained from TcpScope
or WebScope.

Finally, certain sites may have multiple replicas, with clients in different parts
of the network communicating with different replicas. As such it make sense to
report detailed performance information on a per replica basis and also report
less detailed information (e.g., just an indication of download success or failure)
on a per-site basis. The latter information would enable clients connected to a
poorly performing replica to discover that the site is accessible via other replicas.

2.3 Data Aggregation

We now discuss how the performance information gathered at the individual
end hosts is shared and aggregated across nodes. Our approach is based on a
decentralized peer-to-peer architecture, which spreads the burden of aggregating
information across all nodes.

The process of data aggregation and analysis is performed based on a set
of client attributes. For both fault isolation and comparative analysis, it is de-
sirable to compare the performance of clients that share certain attributes, as
well as those that differ in certain attributes. Attributes may be hierarchical, in
which case they define a logical hierarchy along which performance data can be
aggregated. Examples of hierarchical attributes are

– Geographical location: Aggregation based on location is useful for users and
network operators to detect performance trends specific to a particular loca-
tion (e.g. “How are users in the Seattle area performing?”). Location yields
a natural aggregation hierarchy, e.g., neighborhood→city→region→country.



NetProfiler: Profiling Wide-Area Networks Using Peer Cooperation 85

– Topological location: Aggregation based on topological location is useful for
users to make informed choices regarding their service provider (e.g., “Is
my local ISP the reason for the poor performance I am seeing?”). It is also
useful for network providers to identify performance bottlenecks in their
networks. Topological location can also be aggregated along a hierarchy,
e.g., subnet→PoP→ISP.

Alternatively, attributes can be non-hierarchical, in which case they are used
to filter performance data to better analyze trends specific to that particular
attribute. Examples of non-hierarchical attributes include:

– Destination site: Filtering based on destination site is useful to provide in-
formation on whether other users are able to access a particular website, and
if so, what performance they are seeing (e.g. “Are other users also having
problems accessing www.cnn.com?”). Although not hierarchical, in the case
of replicated sites, destination site can be further refined based on the actual
replica being accessed.

– Bandwidth class: Filtering based on bandwidth class is useful for users to
compare their performance with other users within the same class (e.g. “How
are all dialup users faring?”) , as well as in other classes (“What performance
can I expect if I switch to DSL?”).

Aggregation based on attributes such as location is done in a hierarchical
manner, with the aggregation tree mirroring the logical hierarchy defined by
the attribute space. This is based on the observation that nodes are typically
interested in detailed information only from “nearby” peers. They are satisfied
with more aggregated information about distant peers. For instance, while a node
might be interested in specific information, such as the download performance
from a popular web site, pertaining to peers in its neighborhood, it has little
use for such detailed information from nodes across the country. Regarding the
latter, it is likely to be interested only in an aggregated view of the performance
experienced by clients in the remote city or region.

Non-hierarchical attributes such as bandwidth class and destination site are
used as filters that qualify performance data as it aggregated up the logical
hierarchy described above. For example, each node in the hierarchy may orga-
nize the performance reports it receives based on bandwidth class, destination
site and perhaps the cross-product. This enables the system to provide more
fine-grained performance trends (e.g., “What is the performance seen by dialup
clients in Seattle when accessing www.cnn.com?”). Conceptually, this is similar
to maintaining different aggregation trees for each combination of attributes; in
practice, it is desirable to realize this in a single hierarchy as it limits the number
of times an end-host has to report the same performance record. Since the num-
ber of bandwidth classes is small, it is feasible to maintain separate hierarchies
for each class. However, with destination sites, this is done only for a manageable
number of popular sites. For less popular sites, it may be infeasible to maintain
per-site trees, so only a single aggregated view of the site is maintained, at the
cost of losing the ability to further refine based on other attributes.



86 V.N. Padmanabhan, S. Ramabhadran, and J. Padhye

Finally, mechanisms are required to map the above logical aggregation hier-
archies to a physical hierarchy of nodes. To this end, we leverage DHT-based
aggregation techniques such as SDIMS [2], which exploits the natural hierarchy
yielded by the connectivity structure of the DHT nodes. Aggregation happens in
a straightforward manner: nodes maintain information on the performance ex-
perienced by clients in their subtree. Periodically, they report aggregated views
of this information to their parent. Such a design results in good locality prop-
erties, ensures efficiency of the aggregation hierarchy, and minimizes extraneous
dependencies (e.g., the aggregator node for a client site lies within the same
site).

2.4 Analysis and Diagnosis

We now discuss the kinds of analyses and diagnoses that NetProfiler enables.

Distributed Blame Attribution: Clients that are experiencing poor perfor-
mance can diagnose the problem using a procedure that we term as distributed
blame attribution. Conceptually, the idea is for a client to ascribe the poor per-
formance that it is experiencing to the entities involved in the end-to-end trans-
action. The entities could include the server, proxy, DNS2, and the network
path, where the resolution of the path would depend on the information avail-
able (e.g., the full AS-level path or simply the ISP/PoP that the client connects
to). The simplest policy is for a client to ascribe the blame equally to all of the
entities. But a client could assign blame unequally if it suspects certain entities
more, say based on information gleaned from local sensors such as TcpScope and
WebScope.

Such blame information is then aggregated across clients. The aggregate
blame assigned to an entity is normalized to reflect the fraction of transactions
involving the entity that encountered a problem. The entities with the largest
blame score are inferred to be the likely trouble spots.

The hierarchical aggregation scheme discussed in Section 2.3 naturally sup-
ports this distributed blame attribution scheme. Clients use the performance
they experienced to update the performance records of entities at each level of
the hierarchy. Finding the suspect entity is then a question of walking up the
attribute hierarchy to identify the highest-level entity whose aggregated perfor-
mance information indicates a problem (based on suitably-picked thresholds).
The preference for picking an entity at a higher level reflects the assumption
that a single shared cause for the observed performance problems has a greater
likelihood than multiple separate causes. For instance, if clients connected to
most of the PoPs of Verizon are experiencing problems, then the chances are
that there is a general problem with Verizon’s network rather than a specific
problem at each individual PoP.

2 The DNS latency may not be directly visible to a client if the request is made via a
proxy.



NetProfiler: Profiling Wide-Area Networks Using Peer Cooperation 87

Comparative Analysis: A client might benefit from knowledge of its net-
work performance relative to that of other clients, especially those in the same
vicinity (e.g., same city). Such knowledge can drive decisions such as whether
to upgrade to a higher level of service or switch ISPs. For instance, a user who
consistently sees worse performance than others on the same ISP network and in
the same neighborhood can demand an investigation by the ISP; in the absence
of comparative information, the user wouldn’t even know to complain. A user
who is considering upgrading from low-end to high-end DSL service could com-
pare notes with existing high-end DSL users in the same locale to see how much
improvement an upgrade would actually result in, rather than simply going by
the speed advertised by the ISP.

Likewise, a consumer ISP that buys infrastructural services such as modem
banks and backhaul bandwidth from third-party providers can monitor the per-
formance experienced by its customers in different location. If it finds, for in-
stance, that its customers in Seattle are consistently underperforming customers
elsewhere, it would have reason to suspect the local infrastructure provider(s) in
Seattle.

Network Engineering Analysis: A network operator could use detailed in-
formation gleaned from clients to make an informed decision on how to re-
engineer or upgrade the network. For instance, consider the IT department of
a large global enterprise that is tasked with provisioning network connectivity
for dozens of corporate sites spread across the globe. There is a plethora of
choices in terms of connectivity options (ranging from expensive leased lines to
the cheaper VPN over the public Internet alternative), service providers, band-
width, etc. The goal is typically to balance the twin goals of low cost and good
performance. While existing tools and methodologies (based say on monitoring
link utilization) are useful, the ultimate test is how well the network serves end-
users in their day-to-day activities. NetProfiler provides an end-user perspective
on network performance, thereby complementing existing monitoring tools and
enabling more informed network engineering decisions. For instance, significant
packet loss rate coupled with the knowledge that the egress link utilization is
low might point to a problem with chosen service provider and might suggest
switching to a leased line alternative. Poor end-to-end performance despite a low
packet loss rate could be due to a large RTT, which could again be determined
from NetProfiler observations. Remedial measures might include setting up a
local proxy cache or server replica.

Network Health Reporting: The information gathered by NetProfiler can
be used to generate reports on the health of wide-area networks such as the In-
ternet or large enterprise networks. While auch reports are available today from
organizations such as Keynote [3], the advantage of the NetProfiler approach
is lower cost, greater coverage, and the ability to operate virtually unchanged
in restricted environments such as corporate networks as well as the public
Internet.



88 V.N. Padmanabhan, S. Ramabhadran, and J. Padhye

3 Experimental Results

We present some preliminary experimental observations to provide a flavor of
the kinds of problems that the NetProfiler system could address. Our experi-
mental setup consists of a set of a heterogeneous set of clients that repeatedly
download content from a diverse set of 70 web sites during a 4-week period
(Oct 1-29, 2004). The client set includes 147 PlanetLab nodes, dialup hosts
connected to 26 PoPs on the MSN network, and 5 hosts on Microsoft’s world-
wide corporate network. Our goal was to emulate, within the constraints of
the resources at our disposal, a set of clients running NetProfiler and shar-
ing information to diagnose problems. Here are a few interesting observations:

– We observed several failure episodes during which accesses to a web site
failed at most or all of the clients. Examples include failure episodes involv-
ing www.technion.ac.il and www.hku.hk. The widespread impact across
clients in diverse locations suggests a server-side cause for these problems.
It would be hard to make such a determination based just on the view from
a single client.

– There are significant differences in the failure rate observed by clients that
are seemingly “equivalent”. Among the MSN dialup nodes, those connected
to PoPs with ICG as the upstream provider experienced a much lower failure
rate (0.2-0.3%) than those connected to PoPs with other upstream providers
such as Qwest and UUNET (1.6-1.9%). This information can help MSN iden-
tify underperforming providers and take the necessary action to rectify the
problem. Similarly, clients in CMU have a much higher failure rate (1.65%)
than those in Berkeley (0.19%). This information can enable users at CMU
pursue the matter with their local network administrators.

– Sometimes a group of clients shares a certain network problem that is not af-
fecting other clients. The attribute(s) shared by the group might suggest the
cause of the problem. For example, all 5 hosts on the Microsoft corporate net-
work experience a high failure rate (8%) in accessesing www.royal.gov.uk,
whereas the failure rate for other clients is negligible. Since the Microsoft
clients are located in different countries and connect via different web prox-
ies with distinct WAN connectivity, the problem is likely due to a common
proxy configuration across the sites.

– In other instances, the problem is unique to a specific client-server pair.
For example, the Microsoft corporate network node in China is never able
to access www.nmt.edu whereas other nodes, including the ones at the other
Microsoft sites, do not experience a problem. This suggests that the problem
is specific to the path between the China node and www.nmt.edu (e.g., site
blocking by the local provider). If we had access to information from multiple
clients in China, we might be in a position to further disambiguate the
possible causes.



NetProfiler: Profiling Wide-Area Networks Using Peer Cooperation 89

4 Discussion

4.1 Deployment Models

We envision two deployment models for NetProfiler: coordinated and organic. In
the coordinated model, NetProfiler is deployed by an organization such as the
IT department of a large enterprise, to complement existing tools for network
monitoring and diagnosis. The fact that all client hosts are in a single adminis-
trative domain simplifies the issues of deployment and security. In the organic
model, on the other hand, NetProfiler is installed by end users themselves (e.g.,
on their home machines) in much the same way as they install other peer-to-
peer applications. They might do so to obtain greater visibility into the cause
of network connectivity and performance problems that they encounter. This
is a more challenging deployment model, since issues of privacy and security
as well as bootstrapping the system become more significant. We discuss these
challenges next.

4.2 Bootstrapping

To be effective, NetProfiler requires a sufficient number of clients that overlap
and differ in attributes to participate, so that meaningful comparisons can be
made and conclusions drawn. The coordinated model makes this bootstrapping
easy, since the IT department can very quickly deploy NetProfiler on a large
number of clients in various locations throughout the enterprise, essentially by
fiat.

Bootstrapping is much more challenging in the organic deployment model,
where users install NetProfiler by choice. There is a chicken-and-egg problem
between having a sufficient number of users to make the system useful and
making the system useful enough to attract more users. To help bootstrap the
system, we propose relaxing the insistence on passive monitoring by allowing a
limited amount of active probing (e.g., web downloads that the client would not
have performed in normal course). Clients could perform active downloads either
autonomously (e.g., like Keynote clients) or in response to requests from peers.
Of course, the latter option should be used with caution to avoid becoming a
vehicle for attacks or offending users, say by downloading from “undesirable”
sites. In any case, once the deployment has reached a certain size, active probing
could be turned off.

4.3 Security

The issues of privacy and data integrity pose significant challenges to the deploy-
ment and functioning of NetProfiler. These issues are arguably of less concern
in a controlled environment such as an enterprise.

Users may not want to divulge their identity, or even their IP address, when
reporting performance. To help protect their privacy, we could give clients the
option of identifying themselves at a coarse granularity that they are comfortable



90 V.N. Padmanabhan, S. Ramabhadran, and J. Padhye

with (e.g., at the ISP level), but that still enables interesting analyses. Further-
more, anonymous communication techniques (e.g., [4]), that hide whether the
sending node actually originated a message or is merely forwarding it, could
be used to prevent exposure through direct communication. However, if perfor-
mance reports were stripped of all client-identifying information, we would only
be able to perform very limited analyses and inference (e.g., we might only be
able to infer website-wide problems that affect most or all clients).

There is also the related issue of data integrity — an attacker could spoof
performance reports and/or corrupt the aggregation procedure. In general, guar-
anteeing data integrity would require sacrificing privacy (e.g., [5]). However, in
view of the likely usage of NetProfiler as an advisory tool, we believe that it
would probably be acceptable to have a reasonable assurance of data integrity,
even if not iron-clad guarantees. For instance, the problem of spoofing can be
alleviated by insisting on a two-way handshake before accepting a performance
report. The threat of data corruption can be mitigated by aggregating perfor-
mance reports along multiple hierarchies and employing some form of majority
voting when there is disagreement.

5 Related Work

In this section, we briefly survey existing tools and techniques for network mon-
itoring and diagnosis, and contrast them with NetProfiler.

Several tools have been developed for performing connectivity diagnosis from
an end host (e.g., ping, traceroute, pathchar [6], tulip [7]). While these tools are
clearly useful, they have some limitations, including dependence on active prob-
ing of routers (which may be expensive and also infeasible in many cases), and a
focus on just the IP-level path and the view from a single host. In contrast, Net-
Profiler correlates on passive observations of existing end-to-end communication
from multiple vantage points to diagnose problems.

Network tomography techniques [8] leverage information from multiple IP-
level paths to infer network health. However, tomography techniques are based
on the analysis of fine-grained packet-level correlations, and therefore have typ-
ically involved active probing. Also, the focus is on a server-based, “tree” view
of the network whereas NetProfiler focuses on a client-based “mesh” view.

PlanetSeer [9] is a system to locate Internet faults by selectively invoking
traceroutes from multiple vantage points. It is a server-based system (unlike
NetProfiler), so the direction of traceroutes matches the dominant direction of
data flow. PlanetSeer differs from NetProfiler in terms of its dependence on
active probing and focus on just the IP-level path.

Tools such as NetFlow [10] and Route Explorer [11] enable network admin-
istrators to monitor network elements such as routers. However, these tools do
not directly provide information on the end-to-end health of the network.

SPAND [12] is a tool for sharing performance information among end hosts
belonging to a single subnet or site. The performance reports are stored in a
central database and are used by end hosts for performance prediction and mirror



NetProfiler: Profiling Wide-Area Networks Using Peer Cooperation 91

selection. NetProfiler differs from SPAND in several ways, including its focus on
fault diagnosis rather than performance prediction and use of a P2P approach
that encompasses nodes beyond the local subnet or site.

Several systems have been developed for distributed monitoring, aggregation,
and querying on the Internet. Examples include Ganglia [13], Slicestat [14], Iris-
Net [15], PIER [16], Sophia [17], SDIMS [2], and Astrolabe [18]. NetProfiler
could in principle leverage these systems for data aggregation, albeit with re-
laxed consistency and timeliness requirements. The primary focus of our work is
on leveraging end-host observations to diagnose network problems rather than
on developing a new data aggregation system.

The Knowledge Plane proposal [19] shares NetProfiler’s goal of enabling users
to diagnose network problems. But it is more ambitious in that the knowledge
plane is envisaged as encompassing not only the end users’ network experience
but also network configuration and policy information. In contrast, NetProfiler
is designed to be deployable on today’s Internet with only the cooperation of (a
subset of) end hosts.

Systems such as NETI@home [20] and Keynote [21] also gather end-host-
based network performance data. Although it is unclear in what ways this data
is further analyzed, NetProfiler’s analyses described in Section 2.4 could easily
be applied to such data.

Finally, like NetProfiler, STRIDER [22] and PeerPressure [23] also lever-
age information from peers to do cross-machine troubleshooting of configuration
problems, by comparing the configuration settings of a sick machine with that
of a healthy machine. NetProfiler is different in that it explicitly deals with in-
formation on specific problems (e.g., DNS lookup failures for a particular server)
rather than “blackbox” configuration information. Also, given the focus on wide-
area network troubleshooting, NetProfiler requires the participation of a larger
number of peers in a diverse set of network locations.

6 Conclusion

We have presented NetProfiler, a P2P system to enable monitoring and diagnosis
of network problems. Unlike in many previous P2P applications, the participa-
tion of peers is fundamental to the operation of NetProfiler. The results from
an initial 4-week experiment indicate the promise of the proposed approach. We
believe that the capabilities provided by NetProfiler can benefit both end users
and network operators, such as consumer ISPs and enterprise IT departments.
In ongoing work, we are also exploring using end-host observations to detect
large-scale surreptitious communication as might precede a DDoS attack.

Acknowledgements

We thank our colleagues at the Microsoft Research locations worldwide, MSN,
and PlanetLab for giving us access to a distributed set of hosts for our experi-
ments. We also thank Sharad Agarwal for his comments on an earlier draft.



92 V.N. Padmanabhan, S. Ramabhadran, and J. Padhye

References

1. Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the Characteristics and Origins
of Internet Flow Rates. In: SIGCOMM. (2002)

2. Yalagandula, P., Dahlin, M.: A scalable distributed information management sys-
tem. In: SIGCOMM. (2004)

3. : Keynote Internet Health Report. (http://www.internethealthreport.com/)
4. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for Web transactions. ACM Trans-

actions on Information and System Security 1 (1998) 66–92
5. Przydatek, B., Song, D., Perrig, A.: Sia: Secure information aggregation in sensor

networks (2003)
6. Downey, A.B.: Using pathchar to Estimate Link Characteristics. In: SIGCOMM.

(1999)
7. Mahajan, R., Spring, N., Wetherall, D., Anderson, T.: User-level Internet Path

Diagnosis. In: SOSP. (2003)
8. Caceres, R., Duffield, N., Horowitz, J., Towsley, D.: Multicast-based inference of

network-internal loss characteristics. IEEE Transactions on Information Theory
(1999)

9. Zhang, M., Zhang, C., Pai, V., Peterson, L., Wang, R.: PlanetSeer: Internet Path
Failure Monitoring and Characterization in Wide-Area Services. In: OSDI. (2004)

10. Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., True, F.: De-
riving traffic demands for operational ip networks: Methodology and experience.
In: SIGCOMM. (2001)

11. http://www.packetdesign.com/.
12. Seshan, S., Stemm, M., Katz, R.H.: Spand: Shared passive network performance

discovery. In: USITS. (1997)
13. Ganglia. http://ganglia.sourceforge.net/.
14. Slicestat. http://berkeley.intel-research.net/bnc/slicestat/.
15. Gibbons, P.B., Karp, B., Ke, Y., Nath, S., Seshan, S.: Irisnet: An architecture for

a world-wide sensor web. IEEE Pervasive Computing (2003)
16. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.:

Querying the internet with pier. In: VLDB. (2003)
17. Wawrzoniak, M., Peterson, L., Roscoe, T.: Sophia: An information plane for net-

worked systems. In: HotNets. (2003)
18. van Renesse, R., Birman, K., Vogels, W.: Astrolabe: A robust and scalable tech-

nology for distributed system monitoring, management and data mining. ACM
Transactions on Computer Systems (2003)

19. Clark, D., Partridge, C., Ramming, J., Wroclawski, J.: A Knowledge Plane for the
Internet. SIGCOMM (2003)

20. Simpson, C.R., Riley, G.F.: NETI@home: A Distributed Approach to Collecting
End-to-End Network Performance Measurements. PAM (2004)

21. Keynote Systems. http://www.keynote.com.
22. Wang, Y., Verbowski, C., Dunagan, J., Chen, Y., Chun, Y., Wang, H., Zhang,

Z.: STRIDER: A Black-box, State-based Approach to Change and Configuration
Management and Support. In: Usenix LISA. (2003)

23. Wang, H., Platt, J., Chen, Y., Zhang, R., Wang, Y.: Automatic Misconfiguration
Troubleshooting with PeerPressure. In: OSDI. (2004)



A Statistical Theory of Chord Under Churn�

Supriya Krishnamurthy1, Sameh El-Ansary1, Erik Aurell2, and Seif Haridi3

1 Swedish Institute of Computer Science, Kista, Sweden
{supriya, sameh}@sics.se

2 Department of Physics, KTH-Royal Institute of Technology, Sweden
erik.aurell@physics.kth.se

3 IMIT-Royal Institute of Technology, Kista, Sweden
seif@imit.kth.se

Abstract. Most earlier studies of DHTs under churn have either de-
pended on simulations as the primary investigation tool, or on establish-
ing bounds for DHTs to function. In this paper, we present a complete
analytical study of churn using a master-equation-based approach, used
traditionally in non-equilibrium statistical mechanics to describe steady-
state or transient phenomena. Simulations are used to verify all theo-
retical predictions. We demonstrate the application of our methodology
to the Chord system. For any rate of churn and stabilization rates, and
any system size, we accurately predict the fraction of failed or incorrect
successor and finger pointers and show how we can use these quantities
to predict the performance and consistency of lookups under churn. We
also discuss briefly how churn may actually be of different ’types’ and
the implications this will have for the functioning of DHTs in general.

1 Introduction

Theoretical studies of asymptotic performance bounds of DHTs under churn have
been conducted in works like [1,2]. However, within these bounds, performance
can vary substantially as a function of different design decisions and configu-
ration parameters. Hence simulation-based studies such as [3,4,5] often provide
more realistic insights into the performance of DHTs. Relying on an understand-
ing based on simulations alone is however not satisfactory either, since in this
case, the DHT is treated as a black box and is only empirically evaluated, under
certain operation conditions. In this paper we present an alternative theoretical
approach to analyzing and understanding DHTs, which aims for an accurate pre-
diction of performance, rather than on placing asymptotic performance bounds.
Simulations are then used to verify all theoretical predictions.

Our approach is based on constructing and working with master equations,
a widely used tool wherever the mathematical theory of stochastic processes is
applied to real-world phenomena [6]. We demonstrate the applicability of this
approach to one specific DHT: Chord [7]. For Chord, it is natural to define the

� This work is funded by the Swedish VINNOVA AMRAM and PPC projects, the
European IST-FET PEPITO and 6th FP EVERGROW projects.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 93–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



94 S. Krishnamurthy et al.

state of the system as the state of all its nodes, where the state of an alive node
is specified by the states of all its pointers. These pointers (either fingers or suc-
cessors) are then in one of three states: alive and correct, alive and incorrect or
failed. A master equation for this system is simply an equation for the time evo-
lution of the probability that the system is in a particular state. Writing such an
equation involves keeping track of all the gain/loss terms which add/detract from
this probability, given the details of the dynamics. This approach is applicable
to any P2P system (or indeed any system with a discrete set of states).

Our main result is that, for every outgoing pointer of a Chord node, we
systematically compute the probability that it is in any one of the three possible
states, by computing all the gain and loss terms that arise from the details of
the Chord protocol under churn. This probability is different for each of the
successor and finger pointers. We then use this information to predict both
lookup consistency (number of failed lookups) as well as lookup performance
(latency) as a function of the parameters involved. All our results are verified by
simulations.

The main novelty of our analysis is that it is carried out entirely from first
principles i.e. all quantities are predicted solely as a function of the parameters of
the problem: the churn rate, the stabilization rate and the number of nodes in the
system. It thus differs from earlier related theoretical studies where quantities
similar to those we predict, were either assumed to be given [8], or measured
numerically [9].

Closest in spirit to our work is the informal derivation in the original Chord
paper [7] of the average number of timeouts encountered by a lookup. This quan-
tity was approximated there by the product of the average number of fingers used
in a lookup times the probability that a given finger points to a departed node.
Our methodology not only allows us to derive the latter quantity rigorously but
also demonstrates how this probability depends on which finger (or successor) is
involved. Further we are able to derive an exact relation relating this probability
to lookup performance and consistency accurately at any value of the system
parameters.

2 Assumptions and Definitions

Basic Notation. In what follows, we assume that the reader is familiar with
Chord. However we introduce the notation used below. We use K to mean the
size of the Chord key space and N the number of nodes. Let M = log2 K be the
number of fingers of a node and S the length of the immediate successor list,
usually set to a value = O(log(N)). We refer to nodes by their keys, so a node
n implies a node with key n ∈ 0 · · ·K − 1. We use p to refer to the predecessor,
s for referring to the successor list as a whole, and si for the ith successor. Data
structures of different nodes are distinguished by prefixing them with a node key
e.g. n′.s1, etc. Let fini.start denote the start of the ith finger (Where for a node
n, ∀i ∈ 1..M, n.fini.start = n + 2i−1) and fini.node denote the actual node
pointed to by that finger.



A Statistical Theory of Chord Under Churn 95

Steady State Assumption. λj is the rate of joins per node, λf the rate of
failures per node and λs the rate of stabilizations per node. We carry out our
analysis for the general case when the rate of doing successor stabilizations αλs,
is not necessarily the same as the rate at which finger stabilizations (1 − α)λs

are performed. In all that follows, we impose the steady state condition λj = λf .
Further it is useful to define r ≡ λs

λf
which is the relevant ratio on which all the

quantities we are interested in will depend, e.g, r = 50 means that a join/fail
event takes place every half an hour for a stabilization which takes place once
every 36 seconds.

Parameters. The parameters of the problem are hence: K, N , α and r. All
relevant measurable quantities should be entirely expressible in terms of these
parameters.

Chord Simulation. We use our own discrete event simulation environment
implemented in Java which can be retrieved from [10]. We assume the familiarity
of the reader with Chord, however an exact analysis necessitates the provision of
a few details. Successor stabilizations performed by a node n on n.s1 accomplish
two main goals: i) Retrieving the predecessor and successor list of of n.s1 and
reconciling with n’s state. ii) Informing n.s1 that n is alive/newly joined. A
finger stabilization picks one finger at random and looks up its start. Lookups
do not use the optimization of checking the successor list before using the fingers.
However, the successor list is used as a last resort if fingers could not provide
progress. Lookups are assumed not to change the state of a node. For joins,
a new node u finds its successor v through some initial random contact and
performs successor stabilization on that successor. All fingers of u that have v
as an acceptable finger node are set to v. The rest of the fingers are computed
as best estimates from v′s routing table. All failures are ungraceful. We make
the simplifying assumption that communication delays due to a limited number
of hops is much smaller than the average time interval between joins, failures
or stabilization events. However, we do not expect that the results will change
much even if this were not satisfied.

Averaging. Since we are collecting statistics like the probability of a particular
finger pointer to be wrong, we need to repeat each experiment 100 times before
obtaining well-averaged results. The total simulation sequential real time for
obtaining the results of this paper was about 1800 hours that was parallelized
on a cluster of 14 nodes where we had N = 1000, K = 220, S = 6, 200 ≤ r ≤ 2000
and 0.25 ≤ α ≤ 0.75.

3 The Analysis
3.1 Distribution of Inter-node Distances
During churn, the inter-node distance (the difference between the keys of two
consecutive nodes) is a fluctuating variable. An important quantity used through-
out the analysis is the pdf of inter-node distances. We define this quantity below
and state a theorem giving its functional form. We then mention three properties



96 S. Krishnamurthy et al.

of this distribution which are needed in the ensuing analysis. Due to space limi-
tations, we omit the proof of this theorem and the properties here and provide
them in [10].

Definition 1. Let Int(x) be the number of intervals of length x, i.e. the number
of pairs of consecutive nodes which are separated by a distance of x keys on the
ring.

Theorem 1. For a process in which nodes join or leave with equal rates (and
the number of nodes in the network is almost constant) independently of each
other and uniformly on the ring, The probability (P (x) ≡ Int(x)

N ) of finding an
interval of length x is:

P (x) = ρx−1(1 − ρ) where ρ = K−N
K and 1 − ρ = N

K

The derivation of the distribution P (x) is independent of any details of the
Chord implementation and depends solely on the join and leave process. It is
hence applicable to any DHT that deploys a ring.

Property 1. For any two keys u and v, where v = u+x, let bi be the probability
that the first node encountered inbetween these two keys is at u + i (where
0 ≤ i < x − 1). Then bi ≡ ρi(1 − ρ). The probability that there is definitely
atleast one node between u and v is: a(x) ≡ 1 − ρx. Hence the conditional
probability that the first node is at a distance i given that there is atleast one
node in the interval is bc(i, x) ≡ b(i)/a(x).

Property 2. The probability that a node and atleast one of its immediate pre-
decessors share the same kth finger is p1(k) ≡ ρ

1+ρ(1 − ρ2k−2). This is ∼ 1/2 for
K >> 1 and N << K.Clearly p1 = 0 for k = 1. It is straightforward (though
tedious) to derive similar expressions for p2(k) the probability that a node and
atleast two of its immediate predecessors share the same kth finger, p3(k) and
so on.

Property 3. We can similarly assess the probability that the join protocol (see
previous section) results in further replication of the kth pointer. That is, the
probability that a newly joined node will choose the kth entry of its successor’s
finger table as its own kth entry is pjoin(k) ∼ ρ(1 − ρ2k−2−2) + (1 − ρ)(1 −
ρ2k−2−2)− (1− ρ)ρ(2k−2 − 2)ρ2k−2−3. The function pjoin(k) = 0 for small k and
1 for large k.

3.2 Successor Pointers

In order to get a master-equation description which keeps all the details of the
system and is still tractable, we make the ansatz that the state of the system is
the product of the states of its nodes, which in turn is the product of the states
of all its pointers. As we will see this ansatz works very well. Now we need only
consider how many kinds of pointers there are in the system and the states these
can be in. Consider first the successor pointers.



A Statistical Theory of Chord Under Churn 97

Fig. 1. Changes in W1, the number of wrong (failed or outdated) s1 pointers, due to
joins, failures and stabilizations

Table 1. Gain and loss terms for W1(r, α): the number of wrong first successors as a
function of r and α

Change in W1(r, α) Rate of Change
W1(t + Δt) = W1(t) + 1 c1 = (λjΔt)(1 − w1)
W1(t + Δt) = W1(t) + 1 c2 = λf (1 − w1)

2Δt
W1(t + Δt) = W1(t) − 1 c3 = λfw2

1Δt
W1(t + Δt) = W1(t) − 1 c4 = αλsw1Δt
W1(t + Δt) = W1(t) 1 − (c1 + c2 + c3 + c4)

Let wk(r, α), dk(r, α) denote the fraction of nodes having a wrong kth succes-
sor pointer or a failed one respectively and Wk(r, α), Dk(r, α) be the respective
numbers . A failed pointer is one which points to a departed node and a wrong
pointer points either to an incorrect node (alive but not correct) or a dead one.
As we will see, both these quantities play a role in predicting lookup consistency
and lookup length.

By the protocol for stabilizing successors in Chord, a node periodically con-
tacts its first successor, possibly correcting it and reconciling with its successor
list. Therefore, the number of wrong kth successor pointers are not indepen-
dent quantities but depend on the number of wrong first successor pointers. We
consider only s1 here.

We write an equation for W1(r, α) by accounting for all the events that can
change it in a micro event of time Δt. An illustration of the different cases
in which changes in W1 take place due to joins, failures and stabilizations is
provided in figure 1. In some cases W1 increases/decreases while in others it
stays unchanged. For each increase/decrease, table 1 provides the corresponding
probability.



98 S. Krishnamurthy et al.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 200  400  600  800  1000  1200  1400  1600  1800  2000

w
1
(r

,α
),

 d
1
(r

,α
)

Rate of Stabilisation /Rate of failure (r=λs/λf)

w1(r,0.25) Simulation
w1(r,0.5) Simulation

w1(r,0.75) Simulation
w1(r,0.25) Theory
w1(r,0.5) Theory

w1(r,0.75) Theory
d1(r,0.75) Simulation

d1(r, 0.75) Theory

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 200  400  600  800  1000  1200  1400  1600  1800  2000

I(
r,

α)

Rate of Stabilisation of Successors/Rate of failure (αr=αλs/λf)

I(r,0.25) Simulation
I(r,0.5) Simulation

I(r,0.75) Simulation
I(r,0.25) theory
I(r,0.5) theory

I(r,0.75) theory

(b)

Fig. 2. Theory and Simulation for w1(r, α), d1(r, α), I(r, α)

By our implementation of the join protocol, a new node ny, joining between
two nodes nx and nz, has its s1 pointer always correct after the join. However the
state of nx.s1 before the join makes a difference. If nx.s1 was correct (pointing
to nz) before the join, then after the join it will be wrong and therefore W1

increases by 1. If nx.s1 was wrong before the join, then it will remain wrong
after the join and W1 is unaffected. Thus, we need to account for the former
case only. The probability that nx.s1 is correct is 1 − w1 and from that follows
the term c1.

For failures, we have 4 cases. To illustrate them we use nodes nx, ny, nz and
assume that ny is going to fail. First, if both nx.s1 and ny.s1 were correct, then
the failure of ny will make nx.s1 wrong and hence W1 increases by 1. Second,
if nx.s1 and ny.s1 were both wrong, then the failure of ny will decrease W1 by
one, since one wrong pointer disappears. Third, if nx.s1 was wrong and ny.s1 was
correct, then W1 is unaffected. Fourth, if nx.s1 was correct and ny.s1 was wrong,
then the wrong pointer of ny disappeared and nx.s1 became wrong, therefore W1

is unaffected. For the first case to happen, we need to pick two nodes with correct
pointers, the probability of this is (1− w1)2. For the second case to happen, we
need to pick two nodes with wrong pointers, the probability of this is w2

1 . From
these probabilities follow the terms c2 and c3.

Finally, a successor stabilization does not affect W1, unless the stabilizing
node had a wrong pointer. The probability of picking such a node is w1. From
this follows the term c4.

Hence the equation for W1(r, α) is:

dW1

dt
= λj(1 − w1) + λf (1 − w1)2 − λfw2

1 − αλsw1

Solving for w1 in the steady state and putting λj = λf , we get:

w1(r, α) =
2

3 + rα
≈ 2

rα
(1)



A Statistical Theory of Chord Under Churn 99

Fig. 3. Changes in Fk, the number of failed fink pointers, due to joins, failures and
stabilizations

This expression matches well with the simulation results as shown in figure 2.
d1(r, α) is then ≈ 1

2w1(r, α) since when λj = λf , about half the number of wrong
pointers are incorrect and about half point to dead nodes. Thus d1(r, α) ≈ 1

rα
which also matches well the simulations as shown in figure 2. We can also use
the above reasoning to iteratively get wk(r, α) for any k.

Lookup Consistency. By the lookup protocol, a lookup is inconsistent if the
immediate predecessor of the sought key has an wrong s1 pointer. However, we
need only consider the case when the s1 pointer is pointing to an alive (but
incorrect) node since our implementation of the protocol always requires the
lookup to return an alive node as an answer to the query. The probability that a
lookup is inconsistent I(r, α) is hence w1(r, α)−d1(r, α). This prediction matches
the simulation results very well, as shown in figure 2.

3.3 Failure of Fingers

We now turn to estimating the fraction of finger pointers which point to failed
nodes. As we will see this is an important quantity for predicting lookups. Unlike
members of the successor list, alive fingers even if outdated, always bring a query
closer to the destination and do not affect consistency. Therefore we consider
fingers in only two states, alive or dead (failed).

Let fk(r, α) denote the fraction of nodes having their kth finger pointing to a
failed node and Fk(r, α) denote the respective number. For notational simplicity,
we write these as simply Fk and fk. We can predict this function for any k by
again estimating the gain and loss terms for this quantity, caused by a join,
failure or stabilization event, and keeping only the most relevant terms. These
are listed in table 2.



100 S. Krishnamurthy et al.

Table 2. Some of the relevant gain and loss terms for Fk, the number of nodes whose
kth fingers are pointing to a failed node for k > 1

Fk(t + Δt) Rate of Change
= Fk(t) + 1 c1 = (λjΔt)pjoin(k)fk

= Fk(t) − 1 c2 = (1 − α) 1
Mfk(λsΔt)

= Fk(t) + 1 c3 = (1 − fk)2[1 − p1(k)](λfΔt)
= Fk(t) + 2 c4 = (1 − fk)2(p1(k) − p2(k))(λfΔt)
= Fk(t) + 3 c5 = (1 − fk)2(p2(k) − p3(k))(λfΔt)
= Fk(t) 1 − (c1 + c2 + c3 + c4 + c5)

A join event can play a role here by increasing the number of Fk pointers
if the successor of the joinee had a failed kth pointer (occurs with probability
fk) and the joinee replicated this from the successor (occurs with probability
pjoin(k) from property 3).

A stabilization evicts a failed pointer if there was one to begin with. The sta-
bilization rate is divided by M, since a node stabilizes any one finger randomly,
every time it decides to stabilize a finger at rate (1 − α)λs.

Given a node n with an alive kth finger (occurs with probability 1 − fk),
when the node pointed to by that finger fails, the number of failed kth fingers
(Fk) increases. The amount of this increase depends on the number of immediate
predecessors of n that were pointing to the failed node with their kth finger. That
number of predecessors could be 0, 1, 2,.. etc. Using property 2 the respective
probabilities of those cases are: 1 − p1(k), p1(k) − p2(k), p2(k) − p3(k),... etc.

Solving for fk in the steady state, we get:

fk =

[
2P̃rep(k) + 2 − pjoin(k) + r(1−α)

M
]

2(1 + P̃rep(k))

−

√[
2P̃rep(k) + 2 − pjoin(k) + r(1−α)

M
]2

− 4(1 + P̃rep(k))2

2(1 + P̃rep(k))

(2)

where P̃rep(k) = Σpi(k). In principle its enough to keep even three terms in
the sum. The above expressions match very well with the simulation results
(figure 4).

3.4 Cost of Finger Stabilizations and Lookups

In this section, we demonstrate how the information about the failed fingers and
successors can be used to predict the cost of stabilizations, lookups or in general
the cost for reaching any key in the id space. By cost we mean the number of hops
needed to reach the destination including the number of timeouts encountered
en-route. For this analysis, we consider timeouts and hops to add equally to
the cost. We can easily generalize this analysis to investigate the case when a
timeout costs some factor n times the cost of a hop.



A Statistical Theory of Chord Under Churn 101

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100  200  300  400  500  600  700  800  900  1000

f k
(r

,α
)

Rate of Stabilisation of Fingers/Rate of failure ((1-α)r=(1-α)λs/λf)

f7(r,0.5) Simulation
f7(r,0.5) Theory

f9(r,0.5) Simulation
f9(r,0.5) Theory

f11(r,0.5) Simulation
f11(r,0.5) Theory

f14(r,0.5) Simulation
f14(r,0.5) Theory

(a)

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0  100  200  300  400  500  600  700  800  900  1000

L
o
o
k

u
p
 l

at
en

cy
 (

h
o
p
s+

ti
m

eo
u
ts

) 
L

(r
,α

)

Rate of Stabilisation of Fingers/Rate of failure ((1-α)r=(1-α)λs/λf)

L(r,0.5) Simulation
L(r,0.5) Theory

(b)

Fig. 4. Theory and Simulation for fk(r, α), and L(r, α)

Define Ct(r, α) (also denoted Ct) to be the expected cost for a given node to
reach some target key which is t keys away from it (which means reaching the
first successor of this key). For example, C1 would then be the cost of looking up
the adjacent key (1 key away). Since the adjacent key is always stored at the first
alive successor, therefore if the first successor is alive (occurs with probability
1 − d1), the cost will be 1 hop. If the first successor is dead but the second is
alive (occurs with probability d1(1 − d2)), the cost will be 1 hop + 1 timeout
= 2 and the expected cost is 2 × d1(1 − d2) and so forth. Therefore, we have
C1 = 1 − d1 + 2 × d1(1 − d2) + 3 × d1d2(1 − d3) + · · · ≈ 1 + d1 = 1 + 1/(αr).

For finding the expected cost of reaching a general distance t we need to
follow closely the Chord protocol, which would lookup t by first finding the
closest preceding finger. For notational simplicity, let us define ξ to be the start
of the finger (say the kth) that most closely precedes t. Thus t = ξ+m, i.e. there
are m keys between the sought target t and the start of the most closely preceding
finger. With that, we can write a recursion relation for Cξ+m as follows:

Cξ+m = Cξ [1 − a(m)]

+ (1 − fk)

[
a(m) +

m−1∑
i=0

biCm−i

]

+ fka(m)
[
1 +

k−1∑
i=1

hk(i)

ξ/2i−1∑
l=0

bc(l, ξ/2i)(1 + (i − 1) + Cξi−l+m) + O(hk(k))
]

(3)

where ξi ≡ ∑
m=1,i ξ/2m and hk(i) is the probability that a node is forced to

use its k− ith finger owing to the death of its kth finger. The probabilities a, b, bc
have already been introduced in section 3.



102 S. Krishnamurthy et al.

The lookup equation though rather complicated at first sight merely accounts
for all the possibilities that a Chord lookup will encounter, and deals with them
exactly as the protocol dictates. The first term accounts for the eventuality
that there is no node intervening between ξ and ξ + m (occurs with probability
1 − a(m)). In this case, the cost of looking for ξ + m is the same as the cost for
looking for ξ. The second term accounts for the situation when a node does inter-
vene inbetween (with probability a(m)), and this node is alive (with probability
1 − fk). Then the query is passed on to this node (with 1 added to register the
increase in the number of hops) and then the cost depends on the distance be-
tween this node and t. The third term accounts for the case when the intervening
node is dead (with probability fk). Then the cost increases by 1 (for a timeout)
and the query needs to be passed back to the closest preceding finger. We hence
compute the probability hk(i) that it is passed back to the k − ith finger either
because the intervening fingers are dead or share the same finger table entry as
the kth finger. The cost of the lookup now depends on the remaining distance to
the sought key. The expression for hk(i) is easy to compute using theorem 3.1
and the expression for the fk’s [10].

The cost for general lookups is hence

L(r, α) =
ΣK−1

i=1 Ci(r, α)
K

The lookup equation is solved recursively, given the coefficients and C1. We
plot the result in Fig 4. The theoretical result matches the simulation very well.

4 Discussion and Conclusion

We now discuss a broader issue, connected with churn, which arises naturally in
the context of our analysis. As we mentioned earlier, all our analysis is performed
in the steady state where the rate of joins is the same as the rate of departures.
However this rate itself can be chosen in different ways. While we expect the
mean behaviour to be the same in all these cases, the fluctuations are very
different with consequent implications for the functioning of DHTs. The case
where fluctuations play the least role are when the join rate is “per-network”
(The number of joinees does not depend on the current number of nodes in
the network) and the failure rate is “per-node” (the number of failures does
depend on the current number of occupied nodes). In this case, the steady state
condition is λj/N = λf guaranteeing that N can not deviate too much from
the steady state value. In the two other cases where the join and failure rate
are both per-network or (as in the case considered in this paper) both per-node,
there is no such “repair” mechanism, and a large fluctuation can (and will) drive
the number of nodes to extinction, causing the DHT to die. In the former case,
the time-to-die scales with the number of nodes as ∼ N3 while in the latter case
it scales as ∼ N2 [10]. Which of these ’types’ of churn is the most relevant?
We imagine that this depends on the application and it is hence probably of
importance to study all of them in detail.



A Statistical Theory of Chord Under Churn 103

To summarize, in this paper, we have presented a detailed theoretical analysis
of a DHT-based P2P system, Chord, using a Master-equation formalism. This
analysis differs from existing theoretical work done on DHTs in that it aims not
at establishing bounds, but on precise determination of the relevant quantities
in this dynamically evolving system. From the match of our theory and the
simulations, it can be seen that we can predict with an accuracy of greater than
1% in most cases.

Apart from the usefulness of this approach for its own sake, we can also
gain some new insights into the system from it. For example, we see that the
fraction of dead finger pointers fk is an increasing function of the length of
the finger. Infact for large enough K, all the long fingers will be dead most of
the time, making routing very inefficient. This implies that we need to consider
a different stabilization scheme for the fingers (such as, perhaps, stabilizing the
longer fingers more often than the smaller ones), in order that the DHT continues
to function at high churn rates. We also expect that we can use this analysis to
understand and analyze other DHTs.

References

1. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: ACM Conf. on Principles of Distributed Computing (PODC),
Monterey, CA (2002)

2. Aspnes, J., Diamadi, Z., Shah, G.: Fault-tolerant routing in peer-to-peer systems.
In: Proceedings of the twenty-first annual symposium on Principles of distributed
computing, ACM Press (2002) 223–232

3. Li, J., Stribling, J., Gil, T.M., Morris, R., Kaashoek, F.: Comparing the perfor-
mance of distributed hash tables under churn. In: The 3rd International Workshop
on Peer-to-Peer Systems (IPTPS’02), San Diego, CA (2004)

4. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In: Pro-
ceedings of the 2004 USENIX Annual Technical Conference(USENIX ’04), Boston,
Massachusetts, USA (2004)

5. Castro, M., Costa, M., Rowstron, A.: Performance and dependability of structured
peer-to-peer overlays. In: Proceedings of the 2004 International Conference on
Dependable Systems and Networks (DSN’04), IEEE Computer Society (2004)

6. N.G. van Kampen: Stochastic Processes in Physics and Chemistry. North-Holland
Publishing Company (1981) ISBN-0-444-86200-5.

7. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Dabek, F.,
Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet ap-
plications. IEEE Transactions on Networking 11 (2003)

8. Wang, S., Xuan, D., Zhao, W.: On resilience of structured peer-to-peer systems. In:
GLOBECOM 2003 - IEEE Global Telecommunications Conference. (2003) 3851–
3856

9. Aberer, K., Datta, A., Hauswirth, M.: Efficient, self-contained handling of identity
in peer-to-peer systems. IEEE Transactions on Knowledge and Data Engineering
16 (2004) 858–869

10. El-Ansary, S., Krishnamurthy, S., Aurell, E., Haridi, S.: An analytical
study of consistency and performance of DHTs under churn (draft). Tech-
nical Report TR-2004-12, Swedish Institute of Computer Science (2004)
http://www.sics.se/ sameh/pubs/TR2004 12.



Peering Peer-to-Peer Providers

Hari Balakrishnan1, Scott Shenker2, and Michael Walfish1

1 MIT
2 UC Berkeley and ICSI
pppp@nms.csail.mit.edu

Abstract. The early peer-to-peer applications eschewed commercial ar-
rangements and instead established a grass-roots model in which the col-
lection of end-users provided their own distributed computational infras-
tructure. While this cooperative end-user approach works well in many
application settings, it does not provide a sufficiently stable platform for
certain peer-to-peer applications (e.g., DHTs as a building block for net-
work services). Assuming such a stable platform isn’t freely provided by a
benefactor (such as NSF), we must ask whether DHTs could be deployed
in a competitive commercial environment. The key issue is whether a
multiplicity of DHT services can coordinate to provide a single coherent
DHT service, much the way ISPs peer to provide a completely connected
Internet. In this paper, we describe various approaches for DHT peering
and discuss some of the related performance and incentive issues.

1 Introduction

The peer-to-peer revolution introduced the concept of B.Y.O.I. (Bring Your Own
Infrastructure), in that the end-hosts receiving service from peer-to-peer applica-
tions (e.g., end-hosts sharing files or participating in application-level multicast)
were members of an overlay and performed routing and lookup services for other
overlay members. The initial distributed hash table (DHT) proposals arose in
this context: the purpose of a DHT was to resolve a large, sparse, and flat names-
pace for members of the DHT.

However, the B.Y.O.I. model is not always appropriate for DHTs. For ex-
ample, researchers have proposed using DHTs, and other flat name resolution
mechanisms, to underpin core network services (see [1,2,3,4,5,6] for a few ex-
amples). To be credible, such services cannot depend on the capabilities and
caprice of desktop users behind cable modems; rather, these services must run
on a set of stable, managed nodes. In addition, as argued in [7,8], running a
DHT is a non-trivial task that requires significant expertise and active over-
sight. As a result, one school of DHT research, led by Open DHT [7,8] (the
public DHT service formerly known as OpenHash), is proposing a public DHT
service, i.e., a managed infrastructure supporting a general-purpose DHT. The
approach adopted in Open DHT entails two related changes: moving from sev-
eral application-specific DHTs to a general-purpose DHT service, and moving
from the B.Y.O.I. model to a managed infrastructure.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 104–114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Peering Peer-to-Peer Providers 105

While there might be cases when a benevolent entity (such as NSF) would
fund a managed DHT service, it would be preferable if one could arise in a
competitive commercial environment. For the Internet, a set of competing com-
mercial ISPs coordinate their activity to provide a uniform Internet “dialtone”,
and the key issue is how ISPs peer with each other. The question we address
here is: can a set of DHT service providers (DSPs) similarly coordinate through
peering arrangements to give users a unified, globally coherent DHT “dialtone”?

Our focus here is not on whether such an infrastructure will emerge—that
will depend on market forces which we cannot divine—but rather on whether
such an infrastructure could emerge. So, for the purposes of this paper, we as-
sume that market demand for DHT service exists (i.e., that people are willing
to pay for DHT service directly or for service from DHT-based applications such
as the ones cited above), and we investigate, on a technical and economic level,
how DSPs can coordinate to meet this demand. We call the peered collection
of DSP providers the P4 (Peering Peer-to-Peer Providers) infrastructure. In the
remainder of this paper, we discuss design possibilities for this P4 infrastructure
as well as the challenges that arise.

These challenges fall into two categories. The technical challenge is to de-
fine peering relationships that ensure correct operation of the overall DHT ser-
vice, allowing customers of one DSP to gain access to data stored by customers
of another DSP. The economic challenge is to ensure that DSPs have an in-
centive to peer (rather than function independently), and to faithfully follow
the peering rules. We present a simple design that meets both of these chal-
lenges. Thus, we posit that it is possible to offer a coherent DHT service in a
commercial and competitive environment. For critical network services, DHTs
need not endure the vicissitudes of B.Y.O.I. or government funding but can
instead be based on hardened and highly capitalized commercial infrastruc-
tures.

2 Design Spectrum

We expect that the P4 infrastructure supports the following high-level usage
scenario, depicted in Figure 1. Customers receive “DHT service” much as they
receive DNS service today: the DSP informs its customers of the IP address or
name of a host—which we call a DHT proxy—and this host handles customers’
requests of the P4 infrastructure. To customers, the DHT proxy is opaque; it
might contact another DHT proxy or be one hop away from the P4 infrastructure.
Customer requests are either “puts” of key-value pairs or “gets” of keys. After a
customer executes a put request on a key-value pair, (k, v), any other customer
of any DSP should receive v in response to a get request for k. In this paper, we
do not focus on what happens between customers and their DHT proxies.

We now discuss the goals and design possibilities for a P4 infrastructure that
supports the usage scenario above. Throughout, we are concerned with high-level
questions about how DSPs peer with each other rather than with the specifics
of network protocols to support this peering.



106 H. Balakrishnan, S. Shenker, and M. Walfish

Organization

Home User

DSP

DSP

DSP

Organization

put(k,v)
v = get(k)

P4 Infrastructure

DHT
Proxy

DHT
Proxy

Fig. 1. High-level P4 scenario. Organizations and home users are customers of a DSP;
their interface to the P4 infrastructure is a DHT proxy supplied by the DSP.

2.1 Goals

We now list a few of the more crucial design goals; these will help us choose from
several design options.

Proper incentives, not perfect security. We do not require that P4 ensures,
or even monitors, that DSPs execute their responsibilities properly. Instead, we
care only that DSPs have an incentive to do so. This incentive arises if a DSP’s
malfeasance (such as returning incorrect values) causes harm to its own customers
(perhaps in addition to harming customers of other DSPs). If so, then the economic
incentives caused by customers switching to or from various DSPs will encourage
DSPs to perform their tasks properly. We are not concerned that individual cus-
tomers may receive bad service from individual DSPs; this situation is analogous
to the way today’s users of IP are vulnerable to their ISPs.

Flat names. We believe that all keys in the P4 infrastructure should exist in
one flat namespace. In particular, one should not be able to look at a key and
deduce which DSP was serving the end-host that put the key. The reason for
DSP-independent keys is that if the key did identify the DSP responsible for a
given (k, v) pair, then the owner of the (k, v) pair would not be able to switch
its DSP without invalidating its existing keys.

Flexible tradeoffs between writing and reading speeds. While ideally
both writes (puts) and reads (gets) would be fast, in distributed systems one
usually sacrifices speed in one to achieve it in the other. Since some applications
are read-intensive and others write-intensive, we require that the design allow,
on a per-key basis, flexible tradeoffs between these two concerns.



Peering Peer-to-Peer Providers 107

2.2 Designs

We now present four general design approaches and test them against our design
goals.1

All one DHT. The first design we consider is one in which each DSP con-
tributes hosts to a single, global DHT. The advantage of this scenario is that
existing DHT mechanisms work without modification. The disadvantage is that
it is a classic “tragedy of the commons”. Specifically, a particular DSP reaps all
the benefit of bringing in additional customers but only receives a small share
of the benefit of providing more resources (nodes) to the DHT. The outcome is
likely to be a poorly provisioned infrastructure.

Use administrative separation. To avoid the problem of poor incentives that
exists in the previous scenario, we can partition the namespace and have the first
few bits of the key, k, identify the DSP “responsible” for k, where “responsible”
is defined as “storing the authoritative copy of (k, v)”. This model is reminiscent
of the Skipnet DHT’s [9] use of the top bits of the key to identify the organization
in which the key originated. The advantages of this scenario are: (1) everyone
knows which DSP is responsible for which key, thereby giving DSPs an incentive
to be good P4 citizens and (2) DSPs would have to store only those (k, v) pairs
created by their customers; in response to customer requests for other keys,
the DSP could use the information in the key to determine which other DSP
to contact. The disadvantage of this approach is that it fails to meet the “flat
names” requirement.

The next two designs presume that each DSP maintains its own lookup service
and exposes that lookup service to the DSP’s customers. Each DSP can imple-
ment its own lookup mechanism (presumably, but not necessarily, a DHT), and
the internal operations of the various DSPs can vary widely. In order for DSPs to
correctly answer their customers’ get queries for all keys in the P4 infrastructure,
DSPs must exchange updates with each other. The difference between the next
two designs is whether these updates occur proactively.

Get-broadcasting, local puts. In this design, when a customer executes a
put request for a pair (k, v), the customer’s DSP stores (k, v) locally. When a
customer requests k, the DSP checks if it has stored k. If not, the DSP broadcasts
the query for k to the other DSPs to ask them about k. As an optimization, the
DSP can do this broadcast in parallel with its own lookup. In §3.4, we discuss a
further optimization, namely opportunistic caching of (k, v) pairs originating in
other DSPs.

Put-broadcasting, local gets. In this design, DSPs proactively exchange up-
dates with each other. After a customer puts a (k, v) pair, its DSP updates the
other DSPs with information about k. This update can take two forms: the DSP
can either tell the other DSPs about the (k, v) pair, or the DSP can tell the other
DSPs about k alone, with the understanding that the other DSPs will fetch v

1 While we can’t prove that these are the only design approaches, they do seem to
capture the spectrum of approaches taken for similar problems; see §4.



108 H. Balakrishnan, S. Shenker, and M. Walfish

on-demand (from the appropriate DSP) when their own customers execute get
requests for k.

These last two peering designs address the shortcomings of the first two. As men-
tioned above, one of our goals is a flexible tradeoff between put and get speeds.
Accordingly, we think the last two designs, which comprise three options—get-
broadcasting, put-broadcasting of a key, and put-broadcasting of a key-value
pair—can coexist. Our assumption is that the user who executes the put request
on key k will make the decision about which propagation regime applies to the
pair (k, v). This decision is based on the customer’s expectations about put and
get frequency as well as the cost charged by DSPs.

The three different options involve splitting the resource consumption be-
tween puts and gets differently: get-broadcasting has the least bandwidth-
intensive put, but the most bandwidth-intensive get; put-broadcasting of a key-
value pair is the opposite (most bandwidth-intensive puts, least bandwidth-
intensive gets); and put-broadcasting of a key is intermediate. Presumably the
charges imposed by DSPs for the various actions, according to whatever pricing
scheme they employ, will reflect these differing burdens.

3 Challenges and Questions

Here, we cover the challenges that result from the last two scenarios of the
previous section. We emphasize that there are many DHT-related challenges that
pertain to our scenario but are addressed elsewhere. The challenges that result
from exposing a general-purpose DHT as a service are articulated and addressed
by the Open DHT authors [7,8]. Other challenges, discussed in [4,10], relate to
how, in the absence of cues built into flat names, organizations may offer: fate
sharing (the hosts of a disconnected organization should be able to gain access
to “local” key-value pairs); administrative scoping (key owners should be able
to limit a key-value pair to intramural use); and locality (organizations should
have fast access for key-value pairs that are frequently requested by its hosts).
These solutions are logically between the DHT proxy and the organization.

3.1 Coherence and Correctness

The P4 infrastructure must offer to customers a coherent and complete view of
the namespace while also letting customers choose their keys. These high-level
goals induce two requirements. First, as discussed above, key-value pairs put by
customers must be visible to customers of other DSPs. To meet this requirement,
DSPs propagate puts and gets (§2.2).

The second requirement is that two customers (of the same DSP or of two
different ones) must not be able to own the same key or overwrite each other’s
key-value pairs. To satisfy this requirement, we borrow Open DHT’s [7,8] three
kinds of put requests (to which correspond three types of get requests).

The first kind is immutable: k is a secure, collision-resistant hash of v. The
second is authenticated: putters supply a public key, and getters request not k



Peering Peer-to-Peer Providers 109

but rather a (k, a) pair; a is a hash of the putter’s public key. For both kinds,
the same key (meaning k or a (k, a) pair, depending) should never be claimed
by two different owners (unless they are storing the same data, in the first case,
or they have access to the same private key, in the second case). These facts
are independent of whether the DHT infrastructure comprises one or multiple
entities. However, Open DHT’s approach assumes that the entire DHT infras-
tructure is trusted. In contrast, P4 customers need trust only their own DSPs
since the DSPs can check the necessary invariants before accepting updates for
immutable or authenticated key-value pairs.

The third type of put is unauthenticated; customers can pick the key and
value, but such requests are append-only (to prevent customers from overwriting
each other’s data). Thus, when a DSP receives a key-value pair from a peer
(e.g., on a put-broadcast) for a key it already has, the DSP appends the new
value to the existing values associated with the key. Observe that under get-
broadcasting, unauthenticated puts are only eventually coherent;2 For example,
if two customers of two different DSPs put (k, v1) and (k, v2), then a local get
originating in the first DSP will immediately return (k, v1), not (k, {v1, v2}).

3.2 Incentives

As noted earlier, we do not require that the peering arrangements provide perfect
security, preventing any malicious behavior on the part of DSPs. We merely
require that the incentive to please customers encourages DSPs to behave well.
In what follows, the term data refers to key-value pairs, local puts or gets are
those from a DSP’s own customers, and local data is data stored from a local
put. There are four actions that a DSP executes on behalf of customers:

– Respond to local gets (both by answering directly, or requesting the data
from other DSPs)

– Respond to external gets (forwarded from other DSPs) for local data
– Process local puts by both storing locally and optionally forwarding to other

DSPs
– Process external puts forwarded by other DSPs

In each case, doing the action correctly adds benefit to the local customers,
either by providing them with the correct data or by providing others with
the local customer’s data. If a DSP fails to execute these operations correctly,
then—independent of the payment model among DSPs or between DSPs and
customers—the customers will become unhappy (if they detect such behavior,
which we assume they eventually will if such cheating is widespread).3

2 Under get-broadcasting with TTL-based caching, the other two types of puts are
also only eventually coherent, as discussed in §3.4. However, even without caching,
the point applies to unauthenticated put requests.

3 A DSP can certainly deny a customer access to a strategic key-value pair; the po-
tential for such abuse appears in many customer/provider relationships (including
those discussed in §4).



110 H. Balakrishnan, S. Shenker, and M. Walfish

This discussion of general incentives does not address the question of whether,
and how, DSPs would choose to peer. Logically, peering is a pairwise decision in
that two DSPs choose to exchange puts and gets. If the two DSPs gain equally,
then there will likely be no settlements (the common economic term for payments
between peers). However, if one of the DSPs benefits substantially more, the DSP
benefitting less might demand payment in order to peer.4 Such settlements would
make peering more complicated because they would require detailed monitoring
(as explained at the end of this section).

One might think that when a large and small DSP peer, the benefits would
be unbalanced. To investigate this hypothesis, consider two DSPs, a and b, who
are deciding whether to peer. Assume: (1) that the cost of peering is negligible
compared to the other costs of running a DSP5 and (2) that the profit of a DSP
is proportional to the utility its customers derive from its service (the happier
the customers are, the more they are willing to pay). Then, the benefit that
accrues to a given DSP from peering is proportional to the sum of the benefits
that accrue to the DSP’s customers from: being able to read data from the other
DSP and having their data read by customers of the other DSP.

To calculate these benefits, we use the following definitions:

– bp: the average benefit a customer derives from having its data read by
another customer

– bg: the average benefit a customer derives from reading a piece of data
– na→b: number of gets issued by customers of DSP a for data produced by

customers of DSP b
– nb→a: number of gets issued by customers of DSP b for data produced by

customers of DSP a

The benefit derived by DSP a from peering is proportional to na→bbg +
nb→abp. Similarly, the benefit derived by DSP b is proportional to na→bbp +
nb→abg. The difference in benefits is proportional to

Δ = (bp − bg)(na→b − nb→a).

If the average benefit to a customer from reading data is the same as the average
benefit to a customer from having its data read (i.e., if bp = bg), then both DSPs
benefit the same (i.e., Δ = 0), independent of their size. If bp does not equal
bg, then we must consider the quantity na→b − nb→a. We measure the size of
DSPs a and b by number of customers and denote these quantities Sa and
Sb. Now, assume that the number of gets issued by the customers of a DSP
4 There is a vast economics literature on this two-person bargaining problem, where

a joint venture benefits two parties unequally. The nature of the solutions doesn’t
concern us here, except that the literature is unanimous in expecting no payments
in the symmetric benefits case.

5 In practice, this assumption may hold only when the sizes of the two DSPs are
the same order of magnitude; a much smaller DSP would incur comparatively more
bandwidth cost from peering. However, as discussed in §3.3, we imagine the peering
will be done by large players.



Peering Peer-to-Peer Providers 111

is proportional to the DSP’s size, with constant of proportionality λg (so the
number of gets issued by customers of DSP a is λgS

a). Now assume further that
the fraction of data items in the P4 infrastructure owned by a DSP’s customers
is also proportional to the DSP’s size, with proportionality constant λd (so the
fraction of total data items owned by b’s customers is λdSb). Now assume finally
that all gets are targeted randomly in the namespace, so the number of gets
destined for a DSP is proportional to the fraction of data items its customers
own. Then, na→b = λgS

aλdS
b, which is symmetric in a and b. Thus, if the

preceding assumptions hold, DSPs benefit equally, independent of their size.
Clearly these assumptions won’t hold in practice exactly. However, if they

are a reasonable approximation, DSPs might choose to peer without settlements.
If the assumptions aren’t even close, and settlements are thus required, then
monitoring is necessary (if DSP a locally serves gets for a key-value pair it
received on an update from DSP b, then b has no way to know how many
gets were thus served, and a has no incentive to be truthful.) The only easily
monitored scenario is get-broadcasting with limited caching.

3.3 Scaling

As with ISP peering, put-broadcasting and get-broadcasting do not scale to a
large, flat market structure. However, just as in ISP peering, we assume that a for-
est structure will arise, wherein: a small number of top-level providers peer with
each other; it is these top-level providers that do put- and get-broadcasting; and
these top-level providers have “children” that are themselves providers (and may
offer a different level of customer service). A child has two options. It can either
redirect customers’ put and get requests to a top-level DSP; alternatively, by send-
ing and receiving updates via its parent, it can maintain a local lookup service.

3.4 Latency

We discuss end-to-end latency experienced by customers for put and get requests.
For put requests, the DHT proxy supplied by the customer’s DSP checks that
any required invariants hold (see §3.1 and [8]) and immediately returns an error
or success code to the customer. If the key is a put-broadcast key, the DSP will
propagate the put request to its peers in the background. Put requests do not
suffer from high latency.

For get requests, we separately consider the three propagation regimes: get-
broadcast, put-broadcast of the key, and put-broadcast of the key-value pair. For
get-broadcast keys, DSPs perform opportunistic, TTL-based caching (with the
TTL set by the putter). Thus, the first time a DSP receives a get request for such
a key, the lookup may have high latency since the DSP has to contact the other
DSPs. Subsequent lookups will be local to the DSP but then this key-value pair
may be stale. (To avoid this staleness, the putter can use one of the two put-
broadcast types, which presumably require more payment.) For put-broadcast
keys, if the key k is broadcast without the value, v, then, as described in §2.2,
all of the DSPs will store both k and a pointer to the DSP that actually has v.



112 H. Balakrishnan, S. Shenker, and M. Walfish

The latency situation here is similar to the latency in the get-broadcast regime
(in both cases, a get causes a DSP to contact, and wait for, at least one other
DSP). Finally, if both the key and value are put-broadcast, all of the DSPs will
have copies of (k, v), so latency will not suffer.

Application software acting on behalf of putters can implement an adaptive
algorithm that, for each key, decides which propagation regime is optimal, given
the costs charged and benefits received.

4 Related Work

The observation that for-profit DSPs could peer to form a federated DHT in-
frastructure exposing a global namespace was briefly mentioned in [4,2], but no
such mechanism was described. This paper fills that void. We now discuss exist-
ing federations (arising in different contexts) that present a coherent view of a
namespace or of an infrastructure.

Today’s competing ISPs federate by exchanging routes with each other to
create a global IP dialtone for their customers. The economic incentives in this
federation are similar to what we imagine for the P4 infrastructure, though the
technical challenges differ. ISPs can aggregate (while DSPs cannot) the infor-
mation they exchange with each other, but ISPs must also apply (while DSPs
need not) complex policies about what information to expose to peers. Also, no
equivalent of get-broadcasting exists with ISPs; route changes are distributed
proactively.

The namespace of the Domain Name System (DNS) is hierarchical, and the
“providers” of the resolution service are coded directly into the names. These
“providers” need not exchange updates, since, on a get request (i.e., a DNS
lookup), the end-host knows how to find the responsible provider.

The literature on content internetworking [11,12] describes scenarios in which
content distribution networks (CDNs) peer to exchange cached copies of Web
objects. Those scenarios and P4 face similar technical challenges in terms of how
entities relate to each other (e.g., when and how to exchange updates) but, within
an entity, the solutions differ. CDNs do widespread caching of Web objects that
have DNS names, and the hosts comprising a CDN may offer application-specific
functions such as serving media files. In contrast, DSPs are optimized for lookup
and insertion of small values that have flat names.

While the above federations rest on commercial relationships, other federa-
tions rely on a combination of altruism and shared purpose (i.e., the participants
are directly interested in each other’s data). These non-commercial federations
include cooperative Web caches (see citations in [13], esp. [14]), Usenet, and
peer-to-peer file sharing networks.

5 Summary

The peer-to-peer revolution, with its B.Y.O.I approach, was a radical departure
from the more conventional ways of funding infrastructure. However, commen-



Peering Peer-to-Peer Providers 113

tators on the subject sometimes failed to separate the technical innovations
introduced by these peer-to-peer designs—achieving flat name resolution in an
unprecedentedly scalable and reliable way—from their economic novelty. In this
paper we asked whether one can harness the technical properties of these peer-
to-peer designs, specifically DHTs, in a more conventional economic setting.

Our analysis suggests that one can. As we describe, there are peering ar-
rangements that result in a uniform DHT dialtone (for customers) with proper
incentives (for DSPs). However, these peering arrangements are a necessary but
not sufficient condition for commercially provided DHT service. The market for
such DHT service depends on the success of prototypes such as Open DHT [7,8],
which in turn will depend on the prevalence and popularity of applications based
on a DHT service.

Acknowledgments

We thank Sean Rhea for useful comments. This research was supported by the
National Science Foundation under Cooperative Agreement No. ANI-0225660,
British Telecom, and an NDSEG Graduate Fellowship.

References

1. Moskowitz, R., Nikander, P.: Host identity protocol architecture (2003) draft-
moskowitz-hip-arch-05, IETF draft (Work in Progress).

2. Balakrishnan, H., Lakshminarayanan, K., Ratnasamy, S., Shenker, S., Stoica, I.,
Walfish, M.: A layered naming architecture for the Internet. In: ACM SIGCOMM.
(2004)

3. van Renesse, R., Zhou, L.: P6P: A peer-to-peer approach to Internet infrastructure.
In: 3rd Intl. Workshop on Peer-to-Peer Systems (IPTPS). (2004)

4. Walfish, M., Balakrishnan, H., Shenker, S.: Untangling the Web from DNS. In:
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
(2004)

5. Ramasubramanian, V., Sirer, E.G.: The design and implementation of a next
generation name service for the Internet. In: ACM SIGCOMM. (2004)

6. van Steen, M., Ballintijn, G.: Achieving scalability in hierarchical location services.
In: 26th International Computer Software and Applications Conference. (2002)

7. Karp, B., Ratnasamy, S., Rhea, S., Shenker, S.: Spurring adoption of DHTs with
OpenHash, a public DHT service. In: 3rd Intl. Workshop on Peer-to-Peer Systems
(IPTPS). (2004)

8. OpenDHT: (2005) http://opendht.org.
9. Harvey, N.J., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: SkipNet: A

scalable overlay network with practical locality properties. In: USENIX Symposium
on Internet Technologies and Systems (USITS). (2003)

10. Mislove, A., Druschel, P.: Providing administrative control and autonomy in peer-
to-peer overlays. In: 3rd Intl. Workshop on Peer-to-Peer Systems (IPTPS). (2004)

11. Day, M., Cain, B., Tomlinson, G., Rzewski, P.: A model for content internetworking
(CDI) (2003) RFC 3466.



114 H. Balakrishnan, S. Shenker, and M. Walfish

12. Rzewski, P., Day, M., Gilletti, D.: Content internetworking (CDI) scenarios (2003)
RFC 3570.

13. Wolman, A., Voelker, G.M., Sharma, N., Cardwell, N., Karlin, A., Levy, H.M.:
On the scale and performance of cooperative Web proxy caching. In: 17th ACM
SOSP. (1999)

14. Chankhunthod, A., Danzig, P.B., Neerdaels, C., Schwartz, M.F., Worrell, K.J.: A
hierarchical Internet object cache. In: USENIX Technical Conference. (1996)



The Impact of Heterogeneous Bandwidth
Constraints on DHT-Based Multicast Protocols

Ashwin R. Bharambe1, Sanjay G. Rao2, Venkata N. Padmanabhan3,
Srinivasan Seshan1, and Hui Zhang1

1 Carnegie Mellon University, Pittsburgh PA 15213, USA
(ashu+, srini+, hzhang+)@cs.cmu.edu

2 Purdue University, West Lafayette IN 47907, USA
sanjay@ecn.purdue.edu

3 Microsoft Research, Redmond WA 98052, USA
padmanab@microsoft.com

Abstract. In this paper, we consider support for bandwidth-demanding
applications such as video broadcasting using DHTs. Our investigations
focus on the impact of heterogeneity in the outgoing bandwidth capa-
bilities of nodes on Scribe, a representative and relatively mature DHT-
based multicast protocol. We expose important issues that arise due to
the mismatch between the ID space that underlies the DHT and the
outgoing bandwidth constraints on nodes.

1 Introduction

While DHTs were originally developed with applications like peer-to-peer file
sharing in mind, there has been considerable interest in recent years in applying
DHTs to overlay multicast applications [1,2,3,4,5]. In DHT-based approaches,
the focus is on maintaining a structure based on a virtual id space, and enabling
scalable and efficient unicast routing based on the node identifiers - the uni-
cast routes are then used to create multicast distribution trees. This approach
is in contrast to performance-centric approaches such as [6,7,8,9], where the
primary consideration while adding links to the overlay topology is application
performance.

Two principal reasons have been advocated for a DHT-based approach. First,
DHTs provides a generic primitive that can benefit a wide range of applications,
among them overlay multicast. Second, the same DHT-based overlay can be
used to simultaneously support and maintain a large number of overlay applica-
tions and multicast trees. This could help achieve lower overheads as compared
to constructing and maintaining several separate overlays. While DHT-based
approaches have these potential advantages, a key unknown is application per-
formance. Achieving good performance with DHTs is an active and ongoing area
of research.

In this paper, we explore issues in enabling high-bandwidth broadcasting
applications using DHTs. Our exploration is guided by design lessons we have
learned from our experience deploying an overlay-based broadcasting system [10].

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 115–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



116 A.R. Bharambe et al.

In particular, we focus our investigation by considering the implications of a key
issue - heterogeneous outgoing bandwidth constraints of nodes in the overlay.
Such heterogeneity arises due to the presence of hosts behind various access
technologies like cable modem, DSL and Ethernet, as summarized in Figure 1.

We present an initial evaluation of Scribe [3], a representative and relatively
mature DHT-based protocol for overlay multicast. Our experiments show that
imposing bandwidth constraints on Scribe can result in the creation of distri-
bution trees with high depth, as well as a significant number of non-DHT links,
i.e. links that are present in the overlay tree but are not part of the underlying
DHT. Trees with high depth are undesirable as larger the number of ancestors
for a node, higher the frequency of interrupts due to the failure or departure of
ancestors, and ultimately poorer the application performance. Non-DHT links
are undesirable because they restrict the benefits of the route convergence and
loop-free properties of DHT routing, and incur maintenance costs in addition to
that of the DHT infrastructure. We find that a key cause for the issues observed
is the mismatch between the ID space that underlies the DHT structure and
node bandwidth constraints. We discuss potential ways to solve the problem.
and conclude that the issues are not straight-forward to address.

Event Low speed Medium Speed High Speed Avg. degree
(100 kbps; deg=0) (1.5 Mbps; deg=2) (10 Mbps; deg=10)

Sigcomm [10] 22% 2% 76% 7.64
Slashdot [10] 74% 4% 22% 2.28
Gnutella [11] 65% 27% 8% 1.34

Fig. 1. Constitution of hosts from various sources. “deg” refers to our model of how
many children nodes in each category can support. Sigcomm and Slashdot refer to
two different broadcasts with an operationally deployed broadcasting system based on
overlay multicast. Gnutella refers to a measurement study of peer characteristics of the
Gnutella system.

2 Evaluation Framework

Our evaluation is motivated by video broadcasting applications. Such applica-
tions involve data delivery from a single source to a set of receivers. Further,
they are non-interactive, and do not place a tight constraint on the end-to-end
latency. We assume a constant bit rate (CBR) source stream, and assume only
nodes interested in the content at any point in time are members of the distri-
bution tree and contribute bandwidth to the system.

The outgoing bandwidth limit of each host determines its degree or fanout
in the overlay multicast tree, i.e. the maximum number of children that it can
forward the stream to. We categorize hosts as being behind: (a) constrained links
such as cable and DSL (few hundred Kbps); (b) intermediate speed links such as
T1 lines (1.5 Mbps); and (c) high-speed links (10 Mbps or better). Given typical



The Impact of Heterogeneous Bandwidth Constraints 117

streaming video rates of the order of several hundred kilobits per second [10], we
quantize the degrees of the low, medium, and high speed hosts to 0, 2, and 10.
The degree 0 nodes are termed non-contributors. For higher speed connections,
the degree is likely to be bounded by some policy (in view of the shared nature
of the links) rather than the actual outgoing bandwidth. Figure 1 summarizes
the constitution of hosts seen from measurement studies [11] and real Internet
broadcast events [10].

The Average Degree of the system is defined as the total degree of all nodes
(including the source) divided by the number of receivers (all nodes but the
source). In this paper, we focus on regimes with an average degree greater than
1 which indicates that it is feasible to construct a tree.

3 Background

While there have been several DHT-based proposals for multicast in recent
years [12,4,5,3], we choose to focus on Scribe. Scribe is one of the more ma-
ture proposals among DHT-based approaches with well-defined mechanisms to
honor per-node degree constraints. A more recent follow-up work SplitStream [1]
builds on top of Scribe and considers data delivery along multiple trees, rather
than a single tree to improve the resiliency of data delivery. While we draw
on some of the extensions proposed in Splitstream, we only consider single tree
data delivery in this paper. We discuss some of the implications of multiple-tree
solutions in Section 8.

Scribe is built on top of the Pastry DHT protocol [13], and is targeted at
settings which involve support of a large number of multicast groups. Each group
may involve only a subset of the nodes in the Pastry system, but members in
Pastry not part of a particular multicast group may be recruited to be forwarders
in any Scribe tree. In this paper however, our evaluation assumes all participating
members in Pastry are also part of the Scribe tree.

Each node in Pastry is assigned a unique 128-bit nodeIdwhich can be thought
of as a sequence of digits in base 2b (b is a Pastry parameter.) A Pastry node in
a network of N nodes maintains a routing table containing about log2b N rows
and 2b columns. The entries in the rth row of the routing table refer to nodes
whose nodeIds share the first r digits with the local node’s nodeId. The routing
mechanism is a generalization of hypercube routing: each subsequent hop of the
route to the destination shares longer prefixes with the destination nodeId.

Scribe utilizes Pastry’s routing mechanism to construct multicast trees in
the following manner: each multicast group corresponds to a special ID called
topicId. A multicast tree associated with the group is formed by the union
of the Pastry routes from each group member to the topicId. Messages are
multicast from the root to the members using reverse path forwarding [14].

A key issue with Scribe is that the number of children of a node A in the
Scribe tree can be as high as the in-degree of the node in the underlying Pastry
infrastructure – that is, the number of nodes in Pastry which use A as the next
hop when routing towards the topicId. In general, this may be greater than is



118 A.R. Bharambe et al.

H

Z Z

H

ZM

H

ZM

(a)

H

Z M

H HM

H Z
Z M

(b)

Fig. 2. Issues with heterogeneous degree constraints. H ,M , and Z represent nodes
of high, medium and zero (non-contributor) degrees respectively; (a) Entire subtrees
(bottom) could be rejected when the subtree connected to the source (top) is saturated
with non-contributors. (b) Depth xcan be poor with heterogeneous degree constraints.

permitted by the node’s bandwidth constraints. In order to tackle this overload-
ing of nodes, the authors of Scribe/SplitStream have proposed two mechanisms:

– Pushdown: Whenever an overloaded node A receives a request from a po-
tential child X , it can drop an existing child C, if X is found to be more
“desirable” as a child than C. The orphaned node (either C or X) can con-
tact one of the children of A as a potential parent, and this process goes on
recursively. Choosing the criteria to determine which child of A (if any) that
X should displace is an important issue. We discuss further in Section 5.

– Anycast: If all nodes in the systemhavenon-zerodegree constraints,pushdown
is guaranteed to terminate since leaf nodes will always have capacity. However,
in the presence of non-contributor (degree 0) nodes, pushdown could end at a
leaf that does not have capacity. This is tackled by an anycast procedure which
provides an efficient way to locate a node with free capacity [1].

4 Issues with Heterogeneous Constraints

Our evaluation of Scribe focuses on the following concerns that arise with het-
erogeneous degree constraints:

– Rejections: The tree constructed by a protocol could attain sub-optimal
configurations, as for example shown in Figure 2(a). Here, the system as a
whole has sufficient bandwidth resources to enable connectivity to all nodes.
However, the subtree rooted at the source is saturated with non-contributors,
and the bandwidth resources of nodes in the disconnected subtrees remains
unutilized. Nodes in the disconnected subtrees are eventually rejected, or
forced to exit the multicast session.



The Impact of Heterogeneous Bandwidth Constraints 119

– High Depth: An optimal configuration in terms of depth is one where the
nodes that contribute the most (i.e. highest degree) form the highest levels,
with lower degree nodes at lower levels. In the absence of mechanisms that
explicitly favor construction of such trees, a protocol could produce trees of
high depth such as shown in Figure 2(b). We believe that the depth metric is
important as it significantly influences application performance. In general,
in an overlay multicast application, the performance seen by a node depends
on two factors: (i) the frequency of interruptions due to the failure of an
ancestor, or due to congestion on an upstream link; and (ii) the time it takes
a protocol to recover from the interruptions. The frequency of interruptions
a node experiences in turn depends on the number of ancestors the node
has, or the depth of the node.

– Non-DHT Links:While the two concerns above apply to performance-centric
protocols as well, DHT-based designs need to deal with additional concerns
with regard to preserving the structure of the DHT. In particular, while the
pushdown and anycast operations described in Section 3 help Scribe cope with
heterogeneous node bandwidth constraints, they may result in the creation of
parent-child relationships which correspond to links that are not part of the
underlying Pastry overlay. We term such links as non-DHT links. We believe
these non-DHT links are undesirable because: (i) the route convergence and
loop-free properties of DHT routing no longer apply if non-DHT links exist in
significant numbers; and (ii) such links require explicit per-tree maintenance
which reduces the benefits of DHTs in terms of amortizing overlay mainte-
nance costs over multiple multicast groups (and other applications).

5 Techniques Evaluated
We present two variants of the pushdown algorithm that we evaluated in Scribe.
The first policy, Preempt-ID-Pushdown is based on the policy implemented
in [1], and is not optimized to minimize depth in heterogeneous environments.
The second policy, Preempt-Degree-Pushdown, is a new policy that we introduced
in Scribe to improve depth in heterogeneous environments.

– Preempt-ID-Pushdown: When a saturated node A receives a request from a
potential child X , X preempts a child C of A if X shares a longer prefix with
the topicID than C. Further, the orphaned node (X or C) contacts a child
of A and continues the pushdown if the orphaned node shares a prefix match
with the child. However, if no child of A shares a prefix with the orphaned
node, we continue with the pushdown operation by picking a random child
of A.1 An anycast operation is employed if a leaf node is reached without a
parent being found.

1 This is a slight departure from [1], where an anycast operation is employed if no child
of A shares a prefix with the orphaned node. We have observed better performance
in depth in homogeneous environments with our optimization. The intuition is that
pushdown tends to do better at filling up nodes higher in the tree, while anycast
tends to choose parents at more random locations in the tree.



120 A.R. Bharambe et al.

– Preempt-Degree-Pushdown: Here, node degree is the primary criterion in the
pushdown. When a saturated node A receives a request from a potential
child X , X preempts the child (say C) of A which has the lowest degree,
provided X itself has a higher degree than C. The orphaned node (X or C)
picks a random child of A that has a degree equal to or greater than itself
and continues the pushdown. An anycast operation is employed if a leaf node
is reached without a parent being found.

While Preempt-Degree-Pushdown can improve the depth of trees produced
by Scribe compared to Preempt-ID-Pushdown, it can lead to the creation of a
larger number of non-DHT links given that the id is no longer a key criterion
in pushdown. Further, Preempt-Degree-Pushdown itself cannot create perfectly
balanced trees - for example, if node A has a lower degree than node X , there
is no mechanism in place for X to displace A. Doing so would require further
deviation from the DHT-structure, and the creation of additional non-DHT links.
In fact, we believe it is not easy to construct trees with both low depth, as well
as a low fraction of non-DHT links. We discuss this further in Section 7.

6 Evaluation Details

We use the original Scribe and Splitstream implementation [15] for our experi-
ments. In the Scribe implementation, Scribe-level links were maintained separately
from the underlying Pastry links. Thus, if Pastry changed its routing table (due
to its own optimizations), the Scribe level link would appear to be a non-Pastry
(i.e. non-DHT) link afterwards. In order to avoid such over-counting, we associate
a DHT or non-DHT flag with a Scribe link only when it is first established. 2

Our experiments use a Poisson arrival pattern and a Pareto-distributed stay
time for clients. These choices have been motivated by group dynamics charact
eristics observed in overlay multicast deployments [10] and Mbone measure-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

H = 16H = 10H = 4

F
ra

ct
io

n 
of

 n
on

-D
H

T
 li

nk
s

Degree Constraint

b = 2
b = 4

Fig. 3. Fraction of non-DHT links (mean over the session) in homogeneous environ-
ments for various values of node degree and b, the base of the node IDs in Pastry

2 It is possible that Pastry route table changes can transform a initial non-DHT Scribe
link into a DHT link. However, the probability of this happening is very small.



The Impact of Heterogeneous Bandwidth Constraints 121

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  20  40  60  80  100  120  140  160  180

Fa
n-

in
s

Number of O* nodes

Time: 300 sec
Time: 500 sec
Time: 700 sec
Time: 900 sec

Time: 1000 sec

Fig. 4. Distribution of fan-in/in-degree of 0∗ nodes in Pastry. The Y-Axis is the in-
degree of Pastry routing tables. The X-Axis is the number of 0∗ nodes that have an
in-degree less than a particular value. Each curve presents the distribution at different
times during the simulation. There exists a sharp skew – indicating a small number of
nodes with high in-degree – which persists throughout the simulation.

ments [16]. Our experiments last for a duration of 1000 seconds, and assume
a mean arrival rate of 10 joins per second. Further, our experiments assume
nodes have a mean stay time of 300 seconds, a minimum stay time of 90 sec-
onds, and a parameter of α = 1 in the Pareto distribution. This corresponds to
a steady state group size of about 3000 members. Finally, given that our focus
is on bandwidth-sensitive and non-interactive applications, we simply consider
a uniform-delay network model throughout this paper.

7 Empirical Results

We present the results of experiments with Scribe with both homogeneous and
heterogeneous degree constraints.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1  1.5  2  2.5  3  3.5  4  4.5  5

M
ed

ia
n 

de
pt

h

Average Degree

Preempt-ID-Pushdown
Preempt-Degree-Pushdown

Correlated-Preempt-ID

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

Fr
ac

tio
n 

of
 n

on
-D

H
T 

lin
ks

Average Degree

Preempt-ID-Pushdown
Preempt-Degree-Pushdown

Correlated-Preempt-ID

(a) (b)

Fig. 5. (a) Depth Vs. Average Degree in heterogeneous settings. We compute mean
depth of a node during the session, and compute median across the nodes. The fraction
of non-contributors is fixed at 50%. (b) Fraction of non-DHT links Vs. Average Degree
in heterogeneous settings. The fraction of non-contributors is fixed at 50%.



122 A.R. Bharambe et al.

Homogeneous Environments

We assume that all nodes have a degree H . Figure 3 plots the fraction of non-
DHT links within the Scribe tree as a function of H . There are 3 sets of bars,
each set corresponding to a different value of H . Each set consists of bars of 2
shades, corresponding to different values of b, the base of the node IDs in Pastry.
Each bar represents the mean of three runs. We find the fraction of non-DHT
links is high and over 40% for all configurations we evaluate.

We discuss two factors that contribute to the creation of non-DHT links in
Figure 3. Consider a topicID of 00...00. Let 0∗ represent the nodes whose IDs
match the topicID in the first digit (that is, the first digit is 0 and the rest of the
digits are arbitrary). A join or reconnect request from any node in Scribe should
be routed in the first hop to a 0∗ node, since we would like to match at least the
first digit of the topicID. So, if there were no pushdown operations, given the
reverse-path nature of tree construction in Scribe, all parents in a Scribe tree
would be 0∗ nodes.

A first factor leading to the creation of non-DHT links is that the total
bandwidth resources at the 0∗ nodes may not be sufficient to support all nodes
in the tree. Let b be the base of the node IDs in Pastry, and AD be the average
degree of the nodes in the system. Then, the 0∗ nodes represent a fraction 1

2b of
the total nodes of the system, and we expect them to only be able to support
a fraction AD

2b of the nodes in the system. Thus, we expect to see 1 − AD
2b links

that have non-0∗ nodes as parents. Such links are likely to be non-DHT links.
This is because: (i) these links must have been created by pushdown operations
as described above; and (ii) there are no explicit mechanisms in place to prefer
choosing DHT links during a pushdown.

From this discussion, we expect the number of non-DHT links to be equal to
1 − H

2b in a homogeneous environment, where all nodes have a degree H (as the
average degree AD = H). While this partially explains Figure 3, the fraction of
non-DHT links is significantly higher than our estimate. In particular, if H ≥ 2b,
then we would not expect to see any non-DHT links. However, even when H = 16
and b = 2 so that H � 2b, non-DHT links constitute over 40% of the links in the
tree. We believe this is due to a second factor that contributed to the creation
of non-DHT links, as we discuss in the next paragraph.

Figure 4 plots the CDF of the fan-ins of the 0∗s in the system at various
times during the simulation. The fan-in of a node is the number of other nodes
in the system that have this node as a neighbor in Pastry. We see that there is a
significant skew in the fan-ins of the 0∗s. Due to the skew, Scribe join requests hit
the 0∗s non-uniformly, causing a much larger number of pushdowns, and hence
non-DHT links. This also results in poor utilization of the available bandwidth
resources at many of the 0∗ nodes.

We have investigated potential factors that may have led to the skew. For
instance, we considered whether it resulted from the uniform delay model used in
our simulations. Preliminary experiments indicate that the skew exists even with
topologies with non-uniform delays generated using the GeorgiaTech simulator
reported in [3]. We believe that the skew arises due to Pastry’s join and repair



The Impact of Heterogeneous Bandwidth Constraints 123

mechanisms in which a new node picks up routing table entries from other nodes
in the system. While this reduces join (and repair) times and overheads, it makes
nodes that joined earlier far more likely to be picked as neighbors as compared
to other nodes. We defer to future work an examination of how fundamental the
skew is to the design of Pastry, and whether it can be eliminated using simple
heuristics.

Heterogeneous Environments

Our experiments with heterogeneous environments were conducted with 50%
of the nodes being non-contributors (degree 0), and for various average de-
gree values. Changing the average degree value results in a different fraction of
nodes of medium (degree 2) and higher (degree 10) degree. Figure 5(a) compares
the depth of the Scribe multicast tree created with Preempt-ID-Pushdown and
Preempt-Degree-Pushdown in heterogeneous environments. The depth is com-
puted as follows: we compute the mean depth of a node by sampling its depth at
different time instances, and then compute the medians across the nodes. The
optimal median depth for any of the plotted configurations (not shown in the
graph) is about 4. The top 2 curves correspond to Preempt-ID-Pushdown and
Preempt-Degree-Pushdown. Preempt-ID-Pushdown performs significantly worse
than optimal. This is expected given that there are no mechanisms in place that
optimize depth in heterogeneous environments. Preempt-Degree-Pushdown per-
forms better than Preempt-ID-Pushdown but is still far from optimal, consistent
with discussions in Section 5.

Figure 5(b) shows the fraction of non-DHT links from our simulations for
Preempt-Degree-Pushdown, and Preempt-ID-Pushdown. The fraction of non-
DHT links is over 80% for a range of average degrees. We believe both fac-
tors that we discussed with homogeneous environments – insufficient resources
at 0∗ nodes, and the skew in the in-degree of Pastry – have contributed to the
creation of non-DHT links. Further, as discussed, even if the skew could be com-
pletely eliminated, we would still expect to see 1 − AD

2b non-DHT links due to
insufficient resources at 0∗ nodes, where AD is the average degree of the nodes
in the system.

A third important factor that could cause non-DHT links in heterogeneous
environments is that it may be desirable to use non-0∗ nodes as parents to min-
imize the depth of trees. For example, in an environment with nodes of degree
H , L, and 0 (H > L), the optimal depth tree requires having all nodes of degree
H at the highest levels in the tree, and thus as interior nodes. However, only
a fraction 1

2b of nodes of degree H are likely to be 0∗ nodes. Thus, optimizing
for tree depth in Scribe could potentially result in a larger fraction of non-DHT
links due to the need to use non-0∗ nodes of degree H as interior nodes. Con-
sequently, we would expect Preempt-Degree-Pushdown to have a higher fraction
of non-DHT links as compared to Preempt-ID-Pushdown. However, both poli-
cies perform similarly. We believe this is because the other two factors causing
non-DHT links dominate in our experiments.



124 A.R. Bharambe et al.

Summary

Our experiments with Scribe indicates trees produced have a high depth, and a
large fraction of non-DHT links. There are three factors that cause the creation
of non-DHT links with Scribe. First, the bandwidth resources of nodes that share
a prefix with the topicId may not be sufficient to sustain all nodes in the sys-
tem. Second, minimizing depth of trees in Scribe requires utilizing higher degree
nodes, even though they may not share a prefix with the topicId. The third
factor is a skew in the in-degree of Pastry. We believe the skew is a result of
specific heuristics employed in Pastry, and can potentially be minimized. How-
ever, we believe the first two factors are fundamental to the mismatch of node
bandwidth constraints and node ids with DHT-based designs. Further, simple
analysis shows that the first factor alone could lead to the creation of 1 − AD

2b

non-DHT links, where AD is the average degree of the system, and b is the base
of the node IDs in Pastry.

8 Feasibility of Potential Solutions

We sketch potential solutions and consider their ability to address the issues
raised in the previous section:

– ID-Degree Correlation: A natural question is whether changing the random
id assignment of DHTs, and instead employing an assignment where node
ids are correlated to node bandwidth constraints can address the issue. To
evaluate the potential of such techniques, we consider Correlated-Preempt-ID
heuristic, where nodes with higher degrees are assigned nodeIds which share
longer prefixes with the topicId. Figure 5(a) shows that this policy indeed
is able to achieve depths close to the optimal depth of 4, while Figure 5(b)
shows it can significantly lower the fraction of non-DHT links. However, while
such a solution could work in scenarios where the DHT is primarily used for a
specific multicast group, disturbing the uniform distribution of DHT nodeIds
can be undesirable, and can adversely affect routing properties of DHTs [17].
Further, DHTs are particularly useful in scenarios where there is a shared
infrastructure for a wide variety of applications including multicast sessions.
In such scenarios, it is difficult to achieve a correlation between node id and
node degree assignments across all trees.

– Multiple Trees: Another question is whether the issues involved can be tack-
led using the multi-tree data delivery framework used to improve the re-
siliency of data delivery and for bandwidth management [1,8]. In this frame-
work, 2b trees are constructed, with the topicIds of every tree beginning
with a different digit. Each node is an interior node in the one tree where it
shares a prefix with the topicId, and is a leaf node in the rest. We note that
a direct application of the multi-tree approach cannot solve the problem -
if nodes belong to multiple degree classes to begin with, then, each of the
trees will continue to have nodes of multiple degree classes, and the issues
presented in this paper continue to be a concern.



The Impact of Heterogeneous Bandwidth Constraints 125

– Multiple Trees with Virtual Servers: One potential direction for solving the
issues with DHTs is to combine the multi-tree data delivery framework with
the concept of virtual servers proposed in [18]. The idea here is that a node
can acquire a number of ids proportional to its degree, and then use the
multi-tree data delivery framework above. A concern with this approach is
that we are not completely concentrating the resources of a higher degree
node in one tree, rather, we are distributing it across several trees, thereby
giving up on the policy of interior disjointness. The performance implications
would need to be carefully evaluated.

9 Summary and Discussion

In this paper, we have considered the impact of heterogeneity in the outgoing
bandwidth constraints of nodes on overlay multicast using Scribe. Our results
indicate that trees produced by Scribe tend to have a large depth, as well as a
significant fraction of non-DHT links. The key reason for this is the mismatch
between the id space that underlies the DHT structure and node bandwidth
constraints. We have not found obvious or satisfactory solutions to address the
problem, leading us to believe the issues involved are not trivial.

Our work has been motivated by lessons we learned from deploying an
overlay-based broadcasting system [10]. Beyond the particular issue of band-
width heterogeneity considered in this paper, our experience also highlights the
importance of considering factors such as heterogeneity in node stabilities, as
well as connectivity restrictions due to entities such as NATs and firewalls. While
these concerns pertain to both performance-centric and DHT-based designs, we
believe they are more challenging to address in the DHT context given the
structure imposed by DHTs. Although there has been significant progress in im-
proving the performance of DHTs, with regard to delay-based metrics such as
Relative Delay Penalty (RDP) [6], we believe that it would be important to ad-
dress the challenges posed by heterogeneity before a compelling case can be made
for using DHTs to support bandwidth-demanding broadcasting applications.

Acknowledgments

We thank Anthony Rowstron and Miguel Castro for access to, and for clarifica-
tions regarding the Scribe code.

References

1. Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: Split-
Stream: High-bandwidth Content Distribution in Cooperative Environments. In:
Proceedings of SOSP. (2003)

2. Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet Indirection
Infrastructure. IEEE/ACM Transactions on Networking (2004)



126 A.R. Bharambe et al.

3. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: Scribe: A Large-Scale and
Decentralized Application-Level Multicast Infrastructure. In: IEEE Journal on
Selected Areas in Communications Vol. 20 No. 8. (2002)

4. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-level Multicast
using Content-Addressable Networks. In: Proceedings of NGC. (2001)

5. Zhuang, S., Zhao, B., Kubiatowicz, J., Joseph, A.: Bayeux: An Architecture for
Scalable and Fault-tolerant Wide-area Data Dissemination. In: Proceedings of
NOSSDAV. (2001)

6. Chu, Y., Rao, S., Zhang, H.: A Case for End System Multicast. In: Proceedings
of ACM Sigmetrics. (2000)

7. Jannotti, J., Gifford, D., Johnson, K.L., Kaashoek, M.F., Jr., J.W.O.: Overcast:
Reliable Multicasting with an Overlay Network. In: Proceedings of the Fourth
Symposium on Operating System Design and Implementation (OSDI). (2000)

8. Padmanabhan, V., Wang, H., Chou, P.: Resilient Peer-to-peer Streaming. In:
Proceedings of IEEE ICNP. (2003)

9. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable Application Layer Mul-
ticast. In: Proceedings of ACM SIGCOMM. (2002)

10. Chu et al.: Early Deployment Experience with an Overlay Based Internet Broad-
casting System. In: USENIX Annual Technical Conference. (2004)

11. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer
file sharing systems. In: Proceedings of Multimedia Computing and Networking
(MMCN). (2002)

12. Liebeherr, J., Nahas, M.: Application-layer Multicast with Delaunay Triangula-
tions. In: IEEE Globecom. (2001)

13. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware). (2001)

14. Deering, S.: Multicast Routing in Internetworks and Extended LANs. In: Proceed-
ings of the ACM SIGCOMM. (1988)

15. Rowstron, A., Castro, M., et al.: SimPastry (Scribe) Implementation, v3.0a (2003)
16. Almeroth, K.C., Ammar, M.H.: Characterization of mbone session dynamics: De-

veloping and applying a measurement tool. Technical Report GIT-CC-95-22, Geor-
gia Institute of Technology (1995)

17. Bharambe, A., Agrawal, M., Seshan, S.: Mercury: Supporting Scalable Multi-
Attribute Range Queries. In: Proceedings of ACM SIGCOMM. (2004)

18. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load Balancing
in Structured P2P Systems. In: Proceedings of the Second International Workshop
on Peer-to-Peer Systems (IPTPS). (2003)



Chainsaw: Eliminating Trees from
Overlay Multicast

Vinay Pai, Kapil Kumar, Karthik Tamilmani,
Vinay Sambamurthy, and Alexander E. Mohr

Department of Computer Science, Stony Brook University
{vinay, kkumar, tamilman, vsmurthy, amohr}@cs.stonybrook.edu

Abstract. In this paper, we present Chainsaw, a p2p overlay multi-
cast system that completely eliminates trees. Peers are notified of new
packets by their neighbors and must explicitly request a packet from a
neighbor in order to receive it. This way, duplicate data can be eliminated
and a peer can ensure it receives all packets. We show with simulations
that Chainsaw has a short startup time, good resilience to catastrophic
failure and essentially no packet loss. We support this argument with
real-world experiments on Planetlab and compare Chainsaw to Bullet
and Splitstream using MACEDON.

1 Introduction

A common approach taken by peer-to-peer (p2p) multicast networks is to build
a routing tree rooted at the sender. The advantage of a tree-based topology
is that once the tree is built, routing decisions are simple and predictable—a
node receives data from its parent and forwards it to its children. This tends to
minimize both delay and jitter (variation in delay).

However, there are disadvantages to a tree-based approach. Since nodes de-
pend on their parent to deliver data to them, any data loss near the root node
affects every node below it. Moreover, whenever a node other than a leaf node
leaves the system, the tree must be quickly repaired to prevent disruption. An-
other disadvantage of a tree is that interior nodes are responsible for fanning out
data to all of their children, while the leaf nodes do not upload at all.

Another common feature of p2p multicast systems is that they are push-based,
i.e. they forward data based on some routing algorithm without explicit requests
from the recipient. A purely push-based system can’t recover from lost transmis-
sions easily.Moreover, if there aremultiple senders to a givennode, there is a chance
that the node will receive duplicate data, resulting in wasted bandwidth.

In a pull-based system, data is sent to nodes only in response to a request
for that packet. As a result, a node can easily recover from packet loss by re-
requesting lost packets. Moreover, there is no need for global routing algorithms,
as nodes only need to be aware of what packets their neighbors have.

We designed Chainsaw, a pull-based system that does not rely on a rigid
network structure. In our experiments we used a randomly constructed graph

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 127–140, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



128 V. Pai et al.

with a fixed minimum node degree. Data is divided into finite packets and dis-
seminated using a simple request-response protocol. In our simulations we were
able to stream 100kB/sec of data to 10,000 nodes. Our system also withstood the
simultaneous failure of half the nodes in the system with 99.6% of the remaining
nodes suffering no packet loss at all. Moreover, we observed that new nodes join-
ing the system could start playback within a third of a second without suffering
any packet loss. To validate our simulation results, we implemented our protocol
in Macedon [1] and ran experiments on PlanetLab [2], and obtained compara-
ble results. We also compared the performance of our system to Bullet [3] and
SplitStream [4].

In Section 2 we outline work related to ours. In Section 3 we describe the our
system architecture. In Section 4 we present our experimental results. In Section
5 we outline some future work and finally, we conclude.

2 Background

Chu et al. [5] argue that IP is not the correct layer to implement multicast.
They proposed Narada, a self-organizing application-layer overlay network. Since
then many overlay networks [5,6,3,4,7,8] have been proposed, providing different
characteristics. We give a brief overview of SplitStream, Bullet and Gossip-style
protocols. We also give an overview of BitTorrent, because it is similar in spirit to
our system even though it is not a multicast system, but a file-transfer protocol.

2.1 SplitStream

SplitStream [4] is a tree-based streaming system that is built on top of the
Scribe [6] overlay network, which in turn is built on top of the Pastry [9] struc-
tured routing protocol. In SplitStream, the data is divided into several disjoint
sections called stripes, and one tree is built per stripe. In order to receive the
complete stream, a node must join every tree. To ensure that a node does not
have to upload more data than it receives, the trees are built such that every
node is an interior node in precisely one tree.

In addition to improving fairness, ensuring that a node is a leaf node in all
but one of the trees improves robustness. A node is only responsible for data
forwarding on one of the stripes, so if a node suddenly leaves the system, at most
one stripe is affected. However, SplitStream does not have any mechanism for
recovering from packet loss, and any loss near the root of a tree will affect every
node downstream from it.

2.2 Bullet

Bullet [3] is another high-bandwidth data dissemination method. It aims to
provide nodes with a steady flow of data at a high rate. A Bullet network consists
of a tree with a mesh overlaid on top of it.

The data stream is divided into blocks which are further divided into pack-
ets. Nodes transmit a disjoint subset of the packets to each of their children.



Chainsaw: Eliminating Trees from Overlay Multicast 129

An algorithm called RanSub [10] distributes random, orthogonal subsets of nodes
every epoch to each node participating in the overlay. Nodes receive a subset of
the data from their parents and recover the remaining by locating a set of disjoint
peers using these random subsets.

2.3 Gossip-Based Broadcast

Gossip protocols provide a scalable option for large scale information dissemina-
tion. Pcast [11] is a two phase protocol in which the exchange of periodic digests
takes place independent of the data dissemination. Lpbcast [12] extends pcast
in that it requires nodes to have only partial membership information.

2.4 BitTorrent

The BitTorrent [13] file sharing protocol creates an unstructured overlay mesh to
distribute a file. Files are divided into discrete pieces. Peers that have a complete
copy of the file are called seeds. Interested peers join this overlay to download
pieces of the file. It is pull-based in that peers must request a piece in order to
download it. Peers may obtain pieces either directly from the seed or exchange
pieces with other peers.

3 System Description

We built a request-response based high-bandwidth data dissemination protocol
drawing upon gossip-based protocols and BitTorrent. The source node, called a
seed, generates a series of new packets with monotonically increasing sequence
numbers. If desired, one could easily have multiple seeds scattered throughout
the network. In this paper we assume that there is only one seed in the sys-
tem. We could also support many-to-many multicast applications by replacing
the sequence number with a (stream-id, sequence #) tuple. However, for the ap-
plications we describe in this paper, a single sender and an integer sequence
number suffice.

Every peer connects to a set of nodes that we call its neighbors. Peers only
maintain state about their neighbors. The main piece of information they main-
tain is a list of packets that each neighbor has. When a peer receives a packet
it sends a NOTIFY message to its neighbors. The seed obviously does not
download packets, but it sends out NOTIFY messages whenever it generates
new packets.

Every peer maintains a window of interest, which is the range of sequence
numbers that the peer is interested in acquiring at the current time. It also
maintains and informs its neighbors about a window of availability, which is the
range of packets that it is willing to upload to its neighbors. The window of
availability will typically be larger than the window of interest.

For every neighbor, a peer creates a list of desired packets, i.e. a list of packets
that the peer wants, and is in the neighbor’s window of availability. It will then
apply some strategy to pick one or more packets from the list and request them



130 V. Pai et al.

via a REQUEST message. Currently, we simply pick packets at random, but more
intelligent strategies may yield enhanced improvements (see Section 5.2).

A peer keeps track of what packets it has requested from every neighbor
and ensures that it does not request the same packet from multiple neigh-
bors. It also limits the number of outstanding requests with a given neigh-
bor, to ensure that requests are spread out over all neighbors. Nodes keep
track of requests from their neighbors and send the corresponding packets as
bandwidth allows.

The algorithms that nodes use to manipulate their windows and to decide
when to pass data up to the application layer are determined by the specific
requirements of the end application. For example, if the application does not
require strict ordering, data may be passed up as soon as it is received. On the
other hand, if order must be preserved, data would be passed up as soon as a
contiguous block is available.

For the experiments outlined in this paper, we built our graph by having every
node repeatedly connect to a randomly picked node, from the set of known hosts,
until it was connected to a specified minimum number of neighbors. Our system
does not rely on any specific topology, however we could use other membership
protocols like in BitTorrent [13] or Gnutella [14]

For the remainder of this paper, we assume that the application is similar to
live streaming. The seed generates new packets at a constant rate that we refer
to as the stream rate. Nodes maintain a window of interest of a constant size
and slide it forward at a rate equal to the stream rate. If a packet has not been
received by the time it “falls off” the trailing edge of the window, the node will
consider that packet lost and will no longer try to acquire it.

During our initial investigations, we observed that some packets were never
requested from the seed until several seconds after they were generated. As
a result, those packets wouldn’t propagate to all the nodes in time, resulting
in packet loss. This is an artifact of picking pieces to request at random and
independently from each neighbor, resulting in some pieces not being requested
when that neighbor is the seed.

We fixed this problem with an algorithm called Request Overriding. The seed
maintains a list of packets that have never been uploaded before. If the list is
not empty and the seed receives a request for a packet that is not on the list,
the seed ignores the sequence number requested, sends the oldest packet on the
list instead, and deletes that packet from the list. This algorithm ensures that at
least one copy of every packet is uploaded quickly, and the seed will not spend
its upload bandwidth on uploading packets that could be obtained from other
peers unless it has spare bandwidth available.

In most cases, it is better to have the seed push out new packets quickly,
but there are situations when Request Overriding is undesirable. For example,
a packet may be very old and in danger of being lost. Therefore, REQUEST
packets could have a bit that tells the seed to disable Request Overriding. We
have not yet implemented this bit in our simulator or prototype.



Chainsaw: Eliminating Trees from Overlay Multicast 131

4 Experimental Results

We built a discrete-time simulator to evaluate our system and run experiments
on large networks. Using it, we were able to simulate 10,000 node networks.
We also built a prototype implementation and compared it to Bullet [3] and
SplitStream [4].

4.1 No Loss Under Normal Operation

In order to show that our system supports high-bandwidth streaming to a large
number of nodes, we simulated a 10,000 node network and attempted to stream
100 kB/sec over it. The seed had an upload capacity of 200 kB/sec, while all
other nodes had upload and download capacities of 120 kB/sec and maintained
5 second buffers. The end-to-end round-trip latency between all pairs of nodes
was 50 ms.

Figure 1 shows the upload bandwidth of the seed and the average upload
and download speeds of the non-seed nodes as a function of time. It took less
than three seconds for nodes to reach the target download rate of 100 kB/sec.
Once attained, their bandwidth remained steady at that rate through the end of
the experiment. On average, the non-seed nodes uploaded at close to 100 kB/sec
(well short of their 120 kB/sec capacity), while the seed saturated its upload
capacity of 200 kB/sec.

Figure 2 shows another view of the the same experiment. The solid line rep-
resents the highest sequence number of contiguous data downloaded by a node,

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0  10  20  30  40  50  60  70  80  90  100  110  120

B
an

dw
id

th
 (

kB
/s

ec
)

Time (seconds)

Seed Upload Rate
Avg. Download Rate

Avg. Non-seed Upload Rate

Fig. 1. The seed’s upload rate and the average upload and download rate for all

other nodes



132 V. Pai et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0  10  20  30  40  50  60  70  80  90  100  110  120

S
eq

ue
nc

e 
nu

m
be

r

Time (seconds)

Seed
A typical node

Trailing edge of buffer

Fig. 2. A plot of the highest sequence number of contiguous data downloaded by a

typical node as a function of time. The diagonal line on top (dashed) represents the

new pieces generated by the seed, while the bottom line (dotted) represents the trailing

edge of the node’s buffer.

 7300

 7400

 7500

 7600

 7700

 7800

 7900

 8000

 8100

 8200

 75  76  77  78  79  80  81  82  83  84  85

S
eq

ue
nc

e 
nu

m
be

r

Time (seconds)

Seed
A typical node

Earliest possible playback
Trailing edge of buffer

Fig. 3. A zoomed in view of the highlighted portion of Figure 2. The line grazing the

stepped solid line represents the minimum buffering delay that avoids packet loss.



Chainsaw: Eliminating Trees from Overlay Multicast 133

as a function of time. The time by which this line lags behind the dashed line
representing the seed is the buffering delay for that node. The dotted diagonal
line below the progress line represents the trailing edge of the node’s buffer. If
the progress line were to touch the line representing the trailing edge, that would
imply an empty buffer and possible packet loss.

To make it easier to read, we zoom in on a portion of the graph in Figure 3.
We also add a third diagonal line that just grazes the node’s progress line. The
time by which this line lags behind the seed line is the minimum buffering delay
required to avoid all packet loss. For this node (which is, in fact, the worst of all
nodes) the delay is 1.94 seconds. The remaining nodes had delays between 1.49
and 1.85 seconds.

4.2 Quick Startup Time

When a new node joins the system, it can shorten its playback time by taking
advantage of the fact that its neighbors already have several seconds worth
of contiguous data in their buffers. Rather than requesting the newest packets
generated by the seed, the node can start requesting packets that are several
seconds old. It can quickly fill up its buffer with contiguous data by requesting
packets sequentially rather than at random.

One of the nodes in the experiment described in Section 4.1 joined the sys-
tem 50 seconds later than rest. Since other nodes lagged behind the seed by less
than 2 seconds, this node started by requesting packets that were 3 seconds old.
Figure 4 shows the behavior of this node contrasted with the behavior of an old

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 40  45  50  55  60  65  70  75  80

S
eq

ue
nc

e 
nu

m
be

r

Time (seconds)

Seed
A typical node

A new node
Trailing edge of buffer

Fig. 4. The bold line shows the behavior of a new node joining at 50 sec contrasted

with a node that has been in the system since the start of the experiment



134 V. Pai et al.

 4700

 4800

 4900

 5000

 5100

 5200

 5300

 49  50  51  52  53  54

S
eq

ue
nc

e 
nu

m
be

r

Time (seconds)

Seed
A typical node

A new node
Earliest possible playback

Trailing edge of buffer

Fig. 5. A zoomed in view highlighting the behavior during the first few seconds of the

node joining. The dotted line grazing the bold line shows that the node could have

started playback within 330 ms without suffering packet loss.

node. Since the node’s download capacity is 20kB/sec higher than the stream rate,
it is able to download faster than the stream rate and fill its buffer. In less than 15
seconds, its buffer had filled up to the same level as the older nodes. From this point
on, the behavior of the new node was indistinguishable from the remaining nodes.

From the zoomed in view in Figure 5, we observe that the earliest possible
playback line for the new node is 3.33 seconds behind the seed, or 330ms behind
the point where the node joined. This means the node could have started play-
back within a third of a second of joining and not have suffered any
packet loss.

4.3 Resilience to Catastrophic Failure

We believe that Chainsaw is resilient to node failure because all a node has to
do to recover from the failure of its neighbor is to redirect packet requests from
that neighbor to a different one. We simulated a catastrophic event by killing off
half the non-seed nodes simultaneously.

On average, nodes would be left with half the neighbors they had before
the event, but it is likely that some unlucky nodes end up with much fewer.
Therefore, we started with a minimum node degree of 40 instead of 30 to min-
imize the chance of a node ending up with too few neighbors. We used a 10
second buffer instead of a 5 second buffer to prevent momentary disruptions in
bandwidth from causing packet loss.



Chainsaw: Eliminating Trees from Overlay Multicast 135

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 0  10  20  30  40  50  60  70  80  90  100  110  120

T
ra

ns
fe

r 
ra

te
 (

kB
/s

ec
)

Time (seconds)

Seed Upload Rate
Non-failing Node Download Rate

Failing Node Download Rate

Fig. 6. Observed bandwidth trends when 50% of the nodes are simultaneously failed

at 50 seconds

 4000
 4200
 4400
 4600
 4800
 5000
 5200
 5400
 5600
 5800
 6000
 6200
 6400
 6600
 6800
 7000

 40  42  44  46  48  50  52  54  56  58  60  62  64  66  68  70

S
eq

ue
nc

e 
N

um
be

r

Time (seconds)

Typical Node
Seed

Fig. 7. Progress of a non-failing node when 50% of the nodes in the network simulta-

neously fail at 50 seconds. All effects of the catastrophic event are eliminated within

5 seconds.



136 V. Pai et al.

Figure 6 shows the average download rate achieved by the non-failed nodes.
Contrary to what one might expect, the average bandwidth briefly increased
following the node failures! The progress line in Figure 7 helps explain this
counter-intuitive behavior. Initially, nodes lagged 1.6 seconds behind the seed.
Following the node failures, the lag briefly increased to 5.2 seconds, but then
dropped to 0.8 seconds, because with fewer neighbors making demands on their
bandwidth, nodes were able to upload and download pieces more quickly than
before. The brief spurt in download rate was caused by buffers filling to a higher
level than before.

The brief increase in lag was not because of reduced bandwidth, but due
to “holes” in the received packets. Some of the failed nodes had received new
packets from the seed and not yet uploaded them to any other node. However,
since the seed only uploaded duplicate copies of those packets after at least
one copy of newer packets had been uploaded, there was a delay in filling in
those holes.

Of the 4999 non-seed nodes that did not fail, 4981 nodes (99.6%) suffered no
packet loss at all. The remaining 18 nodes had packet loss rates ranging from
0.1% to 17.5% with a mean of 3.74%. These nodes were left with between 9 and
13 neighbors—significantly below the average 20 neighbors. In practice, every
node would keep a list of known peers in addition to a neighbor list. When a
neighbor disappears, the node picks a neighbor randomly from the known peers
list and repeats this process until it has a sufficient number of neighbors. We
expect such a mechanism to be robust, even with high rates of churn.

4.4 PlanetLab: Bullet and SplitStream

In order to compare Chainsaw against Bullet [3] and SplitStream [4], we used
the Macedon [1] prototyping tool, developed by the authors of Bullet. Macedon
allows one to specify the high-level behavior of a system, while letting it take
care of the implementation details. The Macedon distribution already includes
implementations of Bullet and SplitStream, so we implemented our protocol in
their framework to allow a fair comparison between these systems.

We conducted our experiments on the PlanetLab [2] test-bed, using 174 nodes
with good connectivity and a large memory capacity. For each of the three proto-
cols, we deployed the application, allowed time for it to build the network and then
streamed 600 kbits/sec (75 kB/sec) over it for 360 sec. Half way into the streaming,
at the 180 second mark, we killed off half the nodes to simulate catastrophic failure.

Figure 8 shows the average download rate achieved by the non-failing nodes
before and after the event. Initially both Chainsaw and Bullet achieved the tar-
get bandwidth of 75 kB/sec. However, after the nodes failed, Bullet’s bandwidth
dropped by 30% to 53 kB/sec and it took 14 seconds to recover, while Chain-
saw continued to deliver data at 75 kB/sec with no interruption. SplitStream
delivered 65 kB/sec initially, but the bandwidth dropped to 13 kB/sec after the
failure event.

In SplitStream, every node is an interior node in one of the trees, so its
possible for a node with insufficient upload bandwidth to become a bottleneck.



Chainsaw: Eliminating Trees from Overlay Multicast 137

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 120  130  140  150  160  170  180  190  200  210  220  230  240

B
an

dw
id

th
 (

kB
/s

ec
)

Time(seconds)

Chainsaw Useful Data
Bullet Useful Data

Splitstream Useful Data
Bullet Duplicate Data

Chainsaw Duplicate Data

Fig. 8. Useful and duplicate data rates for Chainsaw, Bullet and SplitStream as a

function of time from our PlanetLab experiment. 50% of the nodes in the system were

killed at the 180 second mark.

When a large number of nodes fail, every tree is is likely to lose a number of
interior nodes, resulting in a severe reduction in bandwidth. Macedon is still
a work in progress and its authors have not fully implemented SplitStream’s
recovery mechanisms. Once implemented, we expect SplitStream’s bandwidth to
return to its original level in a few seconds, once the trees are repaired. Therefore,
we ignore SplitStream’s packet loss and focus on comparing Chainsaw to Bullet
for now.

The packet loss rates for both Chainsaw and Bullet were unaffected by the
catastrophic failure. With Chainsaw 73 of the 76 non-failing nodes had no packet
loss at all. One of the nodes had an a consistent loss rate of nearly 60% through-
out the experiment, whereas two others had brief bursts of packet loss over
intervals spanning a few seconds. With Bullet, every node consistently suffered
some packet loss rates. The overall packet loss for various nodes varied from
0.88% to 3.64% with a mean of 1.30%.

With Chainsaw, nodes did receive a small number of duplicate packets due to
spurious timeouts. However, the duplicate data rate rarely exceeded 1%. With
Bullet, on the other hand, nodes consistently received 5-10% duplicate data,
resulting in wasted bandwidth.

We think that the improved behavior that Chainsaw exhibits is primarily
due to its design assumption that in the common case most of a peer’s neighbors
will eventually receive most packets. When combined with the direct exchange
of ”have” information, Chainsaw is able to locate and request packets that it
does not yet have within a few RTTs, whereas Bullet’s propagation of such



138 V. Pai et al.

information is divided into epochs spanning multiple seconds and is dependent
on few assumptions to the RanSub tree remaining relatively intact. As a result
Chainsaw has near-zero packet loss, minimal duplicates and low delay.

5 Future Work

In our experiments we have used symmetric links so that aggregate upload band-
width was sufficient for every node to receive the broadcast at the streaming rate.
If large numbers of nodes have upload capacities less than the streaming rate,
as might be the case with ADSL or cable modem users, users might experi-
ence packet loss. Further work is needed to allocate bandwidth when insufficient
capacity exists. Also we have not demonstrated experimentally that Chainsaw
performs well under high rates of churn, although we expect that with its pure
mesh architecture, churn will not be a significant problem.

5.1 Incentives

So far, we have assumed that nodes are cooperative, in that they willingly sat-
isfy their neighbor’s requests. However, studies [15,14] have shown that large
fractions of nodes in peer-to-peer networks can be leeches, i.e. they try to bene-
fit from the system without contributing. Chainsaw is very similar in design to
our unstructured file-transfer system SWIFT [16]. Therefore, we believe that we
can adapt SWIFT’s pairwise currency system to ensure that nodes that do not
contribute are the ones penalized when the total demand for bandwidth exceeds
the total supply.

5.2 Packet Picking Strategy

Currently, nodes use a purely random strategy to decide what packets to request
from their neighbors. We find that this strategy works well in general, but there
are pathological cases where problems occur. For example, a node will give the
same importance to a packet that is in danger of being delayed beyond the
deadline as one that has just entered its window of interest. As a result it may
pick the new packet instead of the old one, resulting in packet loss.

We may be able to eliminate these pathological cases and improve system
performance by picking packets to request more intelligently. Possibilities include
taking into account the rarity of a packet in the system, the age of the packet,
and its importance to the application. Some applications may assign greater
importance to some parts of the stream than others. For example, lost metadata
packets may be far more difficult to recover from than lost data packets.

6 Conclusion

We built a pull-based peer-to-peer streaming network on top of an unstructured
topology. Through simulations, we demonstrated that our system was capable



Chainsaw: Eliminating Trees from Overlay Multicast 139

of disseminating data at a high rate to a large number of peers with no packet
loss and extremely low duplicate data rates. We also showed that a new node
could start downloading and begin play back within a fraction of a second after
joining the network, making it highly suitable to applications like on-demand
media streaming. Finally, we showed that our system is robust to catastrophic
failure. A vast majority of the nodes were able to download data with no packet
loss even when half the nodes in the system failed simultaneously.

So far we have only investigated behavior in a cooperative environment. How-
ever, Chainsaw is very similar in its design to the SWIFT [16] incentive-based
file-trading network. Therefore, we believe that we will be able to adapt SWIFT’s
economic incentive model to streaming, allowing our system to work well in non-
cooperative environments.

Acknowledgements

We would like to thank Dejan Kostić and Charles Killian for helping us out with
MACEDON.

References

1. Rodriguez, A., Killian, C., Bhat, S., Kostić, D., Vahadat, A.: Macedon: Methodol-
ogy for Automtically Creating, Evaluating, and Designing Overlay Networks. In:
NSDI. (2004)

2. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: Planetlab: an overlay testbed for broad-coverage services. SIGCOMM
Computer Communication Review (2003)

3. Kostić, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: high bandwidth data
dissemination using an overlay mesh. In: SOSP. (2003)

4. Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: Split-
stream: High-Bandwidth Multicast in Cooperative Environments. In: SOSP. (2003)

5. Chu, Y., Rao, S.G., Zhang, H.: A case for end system multicast. In: Measurement
and Modeling of Computer Systems. (2000)

6. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE JSAC (2002)

7. Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, M.F., O’Toole, Jr., J.: Over-
cast: Reliable multicasting with an overlay network. In: OSDI. (2000)

8. Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Application-level multicast
using content-addressable networks. In: Workshop on Networked Group Commu-
nication. (2001)

9. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms. (2001)

10. Kostić, D., Rodriguez, A., Albrecht, J., Bhirud, A., Vahdat, A.: Using random
subsets to build scalable network services. In: USENIX USITS. (2003)

11. Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
multicast. ACM Trans. Comput. Syst. (1999)



140 V. Pai et al.

12. Eugster, P., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec, A.:
Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. (2003)

13. Cohen, B.: BitTorrent (2001) http://www.bitconjurer.org/BitTorrent/.
14. Adar, E., Huberman, B.A.: Free Riding on Gnutella. First Monday 5 (2000)
15. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer

file sharing systems. Proceedings of Multimedia Computing and Networking (2002)
16. Tamilmani, K., Pai, V., Mohr, A.E.: SWIFT: A system with incentives for trading.

In: Second Workshop on the Economics of Peer-to-Peer Systems. (2004)



FeedTree: Sharing Web Micronews with
Peer-to-Peer Event Notification

Daniel Sandler, Alan Mislove, Ansley Post, and Peter Druschel

Department of Computer Science,
Rice University, Houston (TX)

{dsandler, amislove, abpost, druschel}@cs.rice.edu

Abstract. Syndication of micronews, frequently-updated content on the
Web, is currently accomplished with RSS feeds and client applications
that poll those feeds. However, providers of RSS content have recently
become concerned about the escalating bandwidth demand of RSS read-
ers. Current efforts to address this problem by optimizing the polling
behavior of clients sacrifice timeliness without fundamentally improving
the scalability of the system. In this paper, we argue for a micronews
distribution system called FeedTree, which uses a peer-to-peer overlay
network to distribute RSS feed data to subscribers promptly and effi-
ciently. Peers in the network share the bandwidth costs, which reduces
the load on the provider, and updated content is delivered to clients as
soon as it is available.

1 Introduction

In the early days of the Web, static HTML pages predominated; a handful of
news-oriented Web sites of broad appeal updated their content once or twice a
day. Users were by and large able to get all the news they needed by surfing to
each site individually and pressing Reload. However, the Web today has expe-
rienced an explosion of micronews: highly focused chunks of content, appearing
frequently and irregularly, scattered across scores of sites. The difference between
a news site of 1994 and a weblog of 2004 is its flow: the sheer volume of timely
information available from a modern Web site means that an interested user
must return not just daily, but a dozen times daily, to get all the latest updates.

This surge of content has spurred the adoption of RSS, which marshals mi-
cronews into a common, machine-readable format that can be processed by RSS
client programs according to users’ interests and preferences. Instead of down-
loading entire web pages, clients download an RSS “feed” containing a list of
recently posted articles. However, RSS specifies a polling-based retrieval archi-
tecture, and the scalability of that mechanism is now being tested. There is
growing concern in the RSS community over these scalability issues and their
impact on bandwidth usage, and providers of popular RSS feeds have begun
to abbreviate or eliminate their feeds to reduce the bandwidth stress of polling
clients.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 141–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



142 D. Sandler et al.

The current RSS distribution architecture, in which all clients periodically
poll a central server, has bandwidth requirements that scale linearly with the
number of subscribers. We believe that this architecture has little hope of sus-
taining the phenomenal growth of RSS [1], and that a distributed approach is
needed. The properties of peer-to-peer (p2p) overlays are a natural fit for this
problem domain: p2p multicast systems scale logarithmically and should sup-
port millions of participating nodes. Therefore, we argue that RSS feeds can
be distributed in a way that shares costs among all participants. By using p2p
event notification to distribute micronews, we can dramatically reduce the load
placed on publishers, while at the same time delivering even more timely service
to clients than is currently possible. We sketch this system, called FeedTree, and
go on to show how it can be deployed incrementally.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on RSS and the RSS bandwidth problem. Section 3 discusses related
work to improve RSS, and section 4 presents the design of FeedTree. Section 5
describes our prototype FeedTree implementation. Section 6 concludes.

2 Background

2.1 RSS

RSS1 refers to a family of related XML document formats for encapsulating and
summarizing timely Web content. Such documents (and those written in the
Atom syndication format [4], a recent entry in the specification fray) are called
feeds. A Web site makes its updates available to RSS client software (variously
termed “readers” and “aggregators”) by offering a feed to HTTP clients along-
side its conventional HTML content. Because RSS feeds are designed for ma-
chines instead of people, client applications can organize, reformat, and present
the latest content of a Web site—or many sites at once—for quick perusal by
the user. The URL pointing to this feed is advertised on the main Web site.

By asking her RSS reader to subscribe to the URL of an RSS feed, a user
instructs the application to begin fetching that URL at regular intervals. When
it is retrieved, its XML payload is interpreted as a list of RSS items by the
application. Items may be composed of just a headline, an article summary, or
a complete story in HTML; each entry must have a unique ID, and is frequently
accompanied by a permanent URL (“permalink”) to a Web version of that entry.
To the user, each item typically appears in a chronologically-sorted list; in this
way, RSS client applications have become, for many users, a new kind of email
program, every bit as indispensable as the original. An RSS aggregator is like
an inbox for the entire Internet.
1 There is some disagreement [2] over the exact expansion of this acronym. When

Netscape first specified version 0.9 of RSS [3], it did so under the name “RDF Site
Summary;” the acronym has since been taken to stand for “Rich Site Summary”
or “Really Simple Syndication.” The subtleties of the many debates over format
versions, nomenclature, and ideology are omitted here.



FeedTree: Sharing Web Micronews with Peer-to-Peer Event Notification 143

2.2 RSS Bandwidth

Just as major news outlets have begun to discover RSS and to expose their
audiences to this burgeoning technology [1,5,6], the RSS technical community is
abuzz with weaknesses exposed by its runaway adoption. Chief among these is
the so-called “RSS bandwidth problem.” Essentially, Web servers which make
RSS feeds available tend to observe substantially greater traffic loads as a result,
out of proportion to any observable interactive visitor trend. Consequently, some
sites have implemented self-defense mechanisms (e.g. smaller RSS feed sizes, or
enforced limits on access) in an attempt to address the problem [7]. This situation
is most likely the effect of many behaviors working in concert:

Polling. For each feed to which a user is subscribed, an RSS application must
issue repeated HTTP requests for that feed according to some set schedule.
Sites which offer RSS feeds must satisfy one request for every user, many
times a day, even if there is no new content.

Superfluity. The RSS data format is essentially static; all entries are returned
every time the feed is polled. By convention, feeds are limited to some N most
recent entries, but those N entries are emitted for every request, regardless
of which of them may be “new” to a client. While this bandwidth problem
could be helped by introducing a diff-based polling scheme, all such requests
would have to be processed by the RSS provider, which adds more processing
load.

Stickiness. Once a user subscribes to an RSS feed, she is likely to retain that
subscription for a very long time, so this polling traffic can be counted on
for the foreseeable future. If a previously-obscure Web site becomes popular
for a day, perhaps by being linked to from popular Web sites, its browsing
traffic will spike and then drop off over time. However, if that site offers an
RSS feed, users may decide to subscribe; in this case, the drop in direct Web
browsing is replaced by a steady, unending load of RSS client fetches. Such
a Web site might be popular for a day, but it may have to satisfy a crowd
forever [8,9].

Twenty-four-hour traffic. RSS client applications are commonly running on
desktop computers at all hours, even when a user is not present; the diurnal
pattern of interactive Web browsing does not apply. While the global nature
of Web users may generate “rolling” 24-hour traffic, global use of RSS readers
generates persistent 24-hour traffic from all over the Earth.

It is easy to see how a website may suffer for publishing RSS feeds. The most
popular feed on Bloglines2 is Slashdot.org, which has about 17,700 subscribers
2 Bloglines (http://bloglines.com), a popular Web-based RSS reading application,

offers subscription figures for the feeds it aggregates. We will use these figures (as
of late October 2004) as a very crude approximation of reasonable RSS readership.
Though Bloglines certainly polls RSS feeds only once for its thousands of subscribers,
anecdotal evidence suggests that traditional desktop RSS client usage outweighs
Web-based client usage, so we can regard these figures as a lower bound on overall
RSS polling load.



144 D. Sandler et al.

as of this writing. If each of those subscribers were using personal aggregation
software (desktop clients), Slashdot’s headlines-only RSS feed (about 2 kilobytes
for a day’s worth of entries, and typically polled half-hourly) would be transferred
850,000 times a day, for a total of 1.7 GB of data daily. The New York Times
recently introduced a suite of RSS feeds for its headlines; the front page alone
claims 7,800 subscribers, but the sum of subscribers to all its feeds comes to
24,000. Feeds from the Times tend to be around 3 KB, or 3.5 GB of data per
day with 30-minute polling. For websites wishing to provide their RSS readers
with deeper content, the problem is worse still. Boing Boing, a popular weblog,
chooses to publish complete HTML stories in RSS and Atom; 11,500 subscribers
might receive 40 KB for each RSS request. To provide this service, Boing Boing
must be able to accommodate 22 GB/day of RSS traffic alone. If the BBC News
Web site is truly “updated every minute of every day,”3 its RSS subscribers
(18,000 to its various feeds on Bloglines) are unable to take advantage of it: the
bandwidth demands of those subscribers polling every minute would be virtually
insatiable.

3 Related Work

3.1 Improving the Polling Process

Several proposals have been submitted to ease the pain of RSS on webmasters.
Many of these are described in detail in the RSS Feed State HOWTO [10];
examples include avoiding transmission of the feed content if it hasn’t changed
since the client’s last request, gzip compression of feed data, and clever ways to
shape the timetable by which clients may poll the RSS feed.

Unfortunately, because the schedule of micronews is essentially unpredic-
table, it is fundamentally impossible for clients to know when polling is necessary.
Werner Vogels puts it succinctly: Uncontrolled Polling of RSS Resources Does
Not Scale [11].

3.2 Outsourcing Aggregation

Several online RSS service providers (essentially, Web-based RSS readers) have
proposed alternative solutions [12,13]. In these “outsourced aggregation” sce-
narios, a centralized service provides a remote procedure interface which end-
user applications may be built upon (or refactored to use). Such an application
would store all its state—the set of subscribed feeds, the set of “old” and “new”
entries—on the central server. It would then poll only this server to receive all
updated data. The central RSS aggregation service would take responsibility for
polling the authoritative RSS feeds in the wider Internet.

This addresses the bandwidth problem, in a way: A web site owner will
certainly service fewer RSS requests as end users start polling the central service

3 As advertised on http://news.bbc.co.uk.



FeedTree: Sharing Web Micronews with Peer-to-Peer Event Notification 145

instead. The operators of these central services will definitely have bandwidth
issues of their own: they will now be at the center of all RSS traffic.

There is a far more insidious danger inherent in this approach, however: a
central point of control, failure, and censorship has now been established for
all participating users. A central RSS aggregation service may: (i) experience
unavailability or outright failure, rendering users unable to use their RSS readers,
(ii) elect to discontinue or change the terms of its service at any time, or (iii)
silently modify, omit, or augment RSS data without the user’s knowledge or
consent.

Modification of RSS data by the central aggregator may come in the form
of optimized or normalized RSS formatting (a useful feature, since syndication
formats found in the wild are frequently incompatible [14]), but might take more
dangerous forms as well: it may modify or corrupt the entries in a feed, or it
may add advertising or other supplemental yet non-indigenous content to those
feeds.

In summary, a third party may not be a reliable or trustworthy entity, and
so it cannot be guaranteed to proxy micronews for client applications. While
signed content would allow clients to detect tampering, those clients would have
no recourse other than to abandon the central service and retrieve the feed
directly from its source. For these reasons, centralized RSS aggregation is most
likely not a viable long-term solution.

4 FeedTree

4.1 Group Communication with Overlay Networks

The obvious alternative to polling for data is to distribute that data, as it be-
comes available, to lists of subscribers. This approach may be adequate for small
subscription lists (for example, e-mail lists), but it will not scale to accommo-
date the growing subscription demands of Web site syndication. Furthermore,
while such an approach may reduce the overall bandwidth usage of RSS (by
reducing unnecessary fetches), it does nothing to alleviate the per-update stress
on network links close to the source.

To address these problems, we look to peer-to-peer overlay networks, which
offer a compelling platform for self-organizing subscription systems. Several
overlay-based group communication systems, including Scribe [15], offer dis-
tributed management of group membership and efficient routing of subscription
events to interested parties in the overlay.

We propose FeedTree, an approach to RSS distribution based on peer-to-peer
subscription technologies. In FeedTree, timely Web content is distributed to in-
terested parties via Scribe, a subscription-based event notification architecture.
Although we chose to base this design on Scribe, there is no reason it could not
be deployed on any group communication system that provides similar perfor-
mance characteristics. In such a system, content may be distributed as soon as
it becomes available; interested parties receive these information bursts imme-
diately, without polling the source or stressing network links close to the source.



146 D. Sandler et al.

The use of diverse distribution paths also provides opportunities to recover from
any detected corruption or loss of data.

4.2 Scribe

Scribe [15] is a scalable group communication system built on top of a peer-to-
peer overlay such as Pastry. Each Scribe group has a 160 bit groupId which serves
as the address of the group. The nodes subscribed to each group form a multicast
tree, consisting of the union of Pastry routes from all group members to the
node with nodeId numerically closest to the groupId. Membership management
is decentralized and requires less than log n messages on average, where n is the
number of nodes in the overlay.

Scribe has been shown to provide cooperative multicast that is efficient and
low overhead [15]. The delay stretch is approximately double that of IP multi-
cast and comparable to other end system multicast systems such as ESM [16]
and Overcast [17]. Link stress is also low and less than twice that of IP muliti-
cast. When there are a large number of groups in the system, as is expected in
FeedTree, the load is naturally balanced among the participating nodes. Scribe
uses a periodic heartbeat mechanism to detect broken edges in the tree; this
mechanism is lightweight and is only invoked when there are no messages being
published to a group. It has been shown to scale well to both large groups and
to a large number of groups. These properties make it a good fit for building
large scale event notification systems like FeedTree.

4.3 Architecture

When FeedTree publishing software wishes to deliver an update to subscribers,
the following steps are taken (in addition to refreshing a conventional RSS feed
URL):

– A complete RSS document is created to contain one or more pieces
of timely micronews. Each item is assigned a timestamp and a sequence
number, to aid clients in the detection of omitted or delayed events.

– The RSS data is then signed with the publisher’s private key. This is
essential to establishing the authenticity of each published item.

– The signed RSS document is multicast in the overlay to those peers who
have subscribed to a Scribe group whose topic is (a hash of) the feed’s glob-
ally unique ID, trivially defined to be the canonical URL of the advertised
RSS feed.

– Peers receiving the message verify its signature, parse the RSS data, and
add it to the local RSS application state as if it were a conventional, polled
RSS feed. The user can be notified immediately of the new entries.

FeedTree-aware client applications should be able to examine conventional
RSS feed data to discover if updates to that feed will be published through
FeedTree. To do this, FeedTree metadata can be added to the RSS document



FeedTree: Sharing Web Micronews with Peer-to-Peer Event Notification 147

structure to signal that it is available for subscription in the overlay. In this
way, a FeedTree application bootstraps the subscription process with a one-
time HTTP request of the conventional feed. All future updates are distributed
through incremental RSS items published in FeedTree.

Each RSS feed to be published through FeedTree should advertise a time-
to-live value, the maximum interval between FeedTree events. (Many RSS feeds
already include such a value, to indicate the minimum allowed polling period
for clients.) If the publisher observes that no new FeedTree events were gener-
ated during this interval, the publisher must generate a heartbeat event. These
heartbeats allow subscribers to know conclusively that no published items were
lost during the time-to-live period.

It is desirable for all publishers to cryptographically sign their published
RSS data, so that clients may be able to trust the Scribe events they receive.4

The conventional RSS feed should also include the URL and fingerprint of the
publisher’s certificate, so that clients may retrieve (and cache) the credentials
necessary to validate the integrity of signed RSS data.

4.4 Adoption and Deployment

The proliferation of conventional RSS has depended largely on the availability
of quality tools to generate RSS data; FeedTree will be no different. Developers
have several opportunities to provide support for this system. We break down
the deployment scenarios into those that support FeedTree fully, and those that
serve as “adapters” to ease transition for legacy RSS systems.

Full FeedTree support

Publishers. Web content management systems (such as weblog publishing
packages or traditional workflow-based CMS software) join the overlay by
becoming long-lived FeedTree nodes. When new content is posted, the pub-
lishing software automatically creates a new FeedTree message and publishes
it to the multicast tree.

Readers. RSS-reading applications join the FeedTree peer-to-peer network as
well. By doing so, they become part of the global FeedTree service, dis-
tributing the network and processing loads of RSS event forwarding. The
user interface for an RSS client should remain unchanged; the user sub-
scribes to RSS feeds as she would do ordinarily, and the software takes care
of detecting and bootstrapping a FeedTree subscription if it is available. New
RSS items are made available to users as soon as the FeedTree events are
received by the application.

4 Even though the general benefits of signed content are independent of the FeedTree
architecture, we believe our design offers both an excellent opportunity and a com-
pelling need to introduce signed RSS.



148 D. Sandler et al.

Incremental FeedTree support

Publishers. Legacy publishing software that currently emits valid RSS can
be adapted to FeedTree with a “republishing” engine running on (or near)
the Web server. This tool would poll the legacy RSS feed on an aggressive
schedule, sifting out new content and distributing it via FeedTree. Such a
republishing tool might even be operated by a third party, in case the owner
is slow to deploy FeedTree. This is already a common emergent behavior
of the RSS community; several Web sites currently “scrape” the HTML of
popular sites and redistribute that content in RSS format. It is up to a user
to decide whether or not to trust this third-party proxy feed.

Readers. Until RSS applications support FeedTree natively, users can still
contribute to the RSS bandwidth solution by running a local FeedTree
proxy. The proxy would listen receive RSS data through FeedTree instead of
through conventional means. Existing end-user RSS tools could poll a local
FeedTree proxy as often as desired without unnecessary bandwidth usage.
Users would then see new FeedTree items sooner than they would under a
more conservative polling policy.

4.5 Discussion

Benefits for Participants. The system we propose offers substantial benefits
for both producers and consumers of RSS data. The chief incentive for content
providers is the lower cost associated with publishing micronews: large Web sites
with many readers may offer large volumes of timely content to FeedTree clients
without fear of saturating their network links, and a smaller Web site need not
fear sudden popularity when publishing a FeedTree feed. FeedTree also offers
publishers an opportunity to provide differentiated RSS services, perhaps by
publishing simple (low-bandwidth) headlines in a conventional RSS feed, while
delivering full HTML stories in FeedTree.

End users will receive even better news service with FeedTree than is currently
possible. While users currently punish Web sites with increasingly aggressive
polling schedules in order to get fresh news, no such schedule will match the
timeliness of FeedTree, in which users will see new items within seconds—not
minutes or hours. If publishers begin to offer richer micronews through FeedTree,
we believe users will be even more likely to use the system. Finally, since RSS
readers are generally long-running processes, building FeedTree into the RSS
clients will likely result in a stable overlay network for the dissemination of
micronews.

Recovery of lost data. Because Scribe offers a best-effort service, failures
and node departures within the multicast tree may result in FeedTree clients
missing events. In this case, the client will detect a gap in the sequence numbers
or an overdue heartbeat. A client may query its parent to recover the missing
items; in order to satisfy such a request, each member of the system will keep
a small fixed buffer with the last n items in the feed. As a fallback, missing



FeedTree: Sharing Web Micronews with Peer-to-Peer Event Notification 149

items may be recovered by retrieving the conventional RSS feed by HTTP as in
the bootstrapping phase. FeedTree clients may also be offline for periods, during
which time they will miss update events. Clients coming online should “catch
up” by examining the HTTP-based RSS feed for previously-unseen items during
bootstrapping.

A malicious node acting as an interior node in a Scribe tree can suppress
events. This attack can be addressed by distributing the responsibility of the
Scribe root among several nodes and by routing around non-root interior nodes
that fail to forward events. A detailed design of the mechanisms necessary to
make FeedTree resilient to these attacks is the subject of ongoing work.

Overhead. The bandwidth demands made on any individual participant in
each multicast tree are quite innocuous. For example, an RSS feed generating
4 KB/hour of updates will cause an interior tree node with 16 children to for-
ward less than 20 bytes per second of outbound traffic. Due to the extremely
low forwarding overhead, we believe that the motivation for freeloading is very
small. In the future, we expect richer content feeds, and consequently, the po-
tential incentive for freeloading may increase. Incentives-compatible mechanisms
to ensure fair sharing of bandwidth [18] can be applied if most users subscribe
to several feeds, which is a common model of RSS usage. We intend to explore
integrating these techniques with FeedTree in future work.

5 Development Status

In order to validate our design for FeedTree, we have developed a software proto-
type which follows the design outlined in Section 4. The ftproxy daemon serves
as an intermediary for conventional RSS client software; an HTTP request for
a given RSS feed is satisfied by ftproxy, which constructs a new ad-hoc RSS
document from recent FeedTree messages received for that feed.

When subscribing to a new RSS feed, the proxy first checks to see if that feed
is already being published through FeedTree. If the feed is not being published,
ftproxy will “volunteer” to republish the RSS feed: it begins polling the RSS
feed as if it were a conventional RSS reader. New items are published through
FeedTree; if a polling interval yields no new items, the proxy publishes a “no
news” heartbeat event. This event informs other listening ftproxy instances
that the feed is already being polled by another volunteer.

In the current implementation, this mechanism is generalized to allow mul-
tiple instances of ftproxy to poll a single RSS feed cooperatively, providing
updates to FeedTree with higher frequency than conventional RSS polling. To
“overload” a feed by a factor of N , ftproxy will choose to volunteer if it ob-
serves fewer than N FeedTree events for that feed during its polling interval. On
average, an RSS feed with a minimum polling period of T will have an effective
FeedTree refresh period of T

N . The polling schedule for volunteers is jittered to
help avoid synchronicity.



150 D. Sandler et al.

At the time of this writing, we are running a small FreeTree deployment
internally at Rice. We plan to soon expand the distribution to the PlanetLab
testbed for further experimentation and validation.

6 Conclusions and Future Work

The current RSS polling mechanism has been said to scale well because “its cost
is almost directly proportional to the number of subscribers” [19]. In fact, linear
cost is typically an indicator of poor scaling properties, especially when that cost
is focused on one member of a distributed system. It is likely that the further
growth of RSS adoption will be badly stunted without substantial change to the
way micronews is distributed.

The proposed FeedTree subscription system for RSS takes advantage of the
properties of peer-to-peer event notification to address the bandwidth problem
suffered by Web content providers, while at the same time bringing micronews
to end users even more promptly than is currently possible. Self-organizing sub-
scription systems like Scribe offer scalability that cannot be matched by any
system designed around resource polling.

Building upon the FeedTree distribution system, we foresee a potential for
entirely new services based on RSS which cannot be accomplished today. By us-
ing single-writer logs [20] in combination with a distributed storage mechanism
such as a DHT [21,22,23], we can record permanently every RSS item published,
allowing a distributed archival store of micronews across the Internet. Clients of
such a system would easily be able to find out what they “missed” if they had
been offline for so long that old RSS items are no longer available in any conven-
tional, static RSS feed. Another area for future work is anonymous RSS feeds
involving an anonymizing peer-to-peer routing system, such as AP3 [24]. Finally,
we can envision the use of cooperative multicast (such as SplitStream [25]) to
distribute large files—such as software, audio, and video—as part of FeedTree
feeds.

References

1. Gomes, L.: How the next big thing in technology morphed into a really big thing.
The Wall Street Journal (2004)

2. Wikipedia: RSS protocol. (http://en.wikipedia.org/wiki/RSS (protocol))
3. Netscape Communications Corp.: My Netscape Network. (1999) http://www.

purplepages.ie/RSS/netscape/rss0.90.html.
4. IETF Atompub Working Group: (Atom Syndication Format) http://www.

atomenabled.org/developers/syndication/.
5. Green, H.: All the news you choose – on one page. BusinessWeek (2004)

http://www.businessweek.com/magazine/content/04 43/b3905055 mz011.htm.
6. Kopytoff, V.: One-stop way to read news, blogs online: RSS allows users to get free,

automatic feeds. The San Francisco Chronicle (2004) http://www.sfgate.com/

cgi-bin/article.cgi?file=/chronicle / archive / 2004 / %10/25/BUG1U9ES301.

DTL.



FeedTree: Sharing Web Micronews with Peer-to-Peer Event Notification 151

7. Hicks, M.: RSS comes with bandwidth price tag. eWeek (2004) http://www.eweek.
com/article2/0,1759,1648625,00.asp.

8. Wallace, N.: RSS is sticky traffic. http://www.synop.com/Weblogs/Nathan/

PermaLink.aspx?guid=db37ec96-9271-4e4a-ad8d-6547f27fc1cb(2004)
9. Scoble, R.: A theory on why RSS traffic is growing out of control. http://radio.

weblogs.com/0001011/2004/09/08.html#a8200 (2004)
10. Morin, R.C.: HowTo RSS Feed State. http://www.kbcafe.com/rss/

rssfeedstate.html (2004)
11. Vogels, W.: Once more: Polling does not scale. http://weblogs.cs.cornell.edu/

AllThingsDistributed/archives/000511.html(2004)
12. Bloglines.com: Bloglines Web Services. (http://www.bloglines.com/services/)
13. NewsGator.com: NewsGator Online Service. (http://www.newsgator.com/ngs/)
14. Pilgrim, M.: The myth of RSS compatibility. http://diveintomark.org/

archives/2004/02/04/incompatible-rss (2004)
15. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale

and decentralized application-level multicast infrastructure. IEEE JSAC 20 (2002)
16. Chu, Y., Rao, S., Zhang, H.: A case for end system multicast. In: ACM Sigmetrics.

(2000) 1–12
17. Jannotti, J., Gifford, D., Johnson, K., Kaashoek, M., O’Toole, J.: Overcast: Reli-

able multicasting with an overlay network. In: OSDI 2000, San Diego, CA (2000)
18. Ngan, T.W.J., Nandi, A., Singh, A., Wallach, D.S., Druschel, P.: On designing

incentives-compatible peer-to-peer systems. In: Proc. FuDiCo’04, Bertinoro, Italy
(2004)

19. Bell, M.: RSS for Mac OS X Roundtable. http://www.drunkenblog.com/

drunkenblog-archives/000337.html (2004)
20. Muthitacharoen, A., Morris, R., Gil, T., Chen, B.: Ivy: A read/write peer-to-peer

file system. In: Proc. OSDI’02, Boston, MA (2002)
21. Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-

scale, persistent peer-to-peer storage utility. In: Proc. ACM SOSP’01, Banff,
Canada (2001)

22. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
OceanStore: An architecture for global-scale persistent store. In: Proc. ASP-
LOS’2000, Cambridge, MA (2000)

23. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooper-
ative storage with CFS. In: Proc. ACM SOSP’01, Banff, Canada (2001)

24. Mislove, A., Oberoi, G., Post, A., Reis, C., Druschel, P., Wallach, D.S.: AP3:
Cooperative, decentralized anonymous communication. In: Proc. SIGOPS-EW,
Leuven, Belgium (2004)

25. Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: Split-
stream: High-bandwidth multicast in cooperative environments. In: Proc. SOSP’03.
(2003)



Hybrid Overlay Structure Based on Random
Walks

Ruixiong Tian1,�, Yongqiang Xiong2, Qian Zhang2, Bo Li3,
Ben Y. Zhao4, and Xing Li1

1 Department of Electronic Engineering, Tsinghua University
2 Microsoft Research Asia, Beijing China

3 Department of Computer Science, Hong Kong University of Science and Technology
4 Department of Computer Science, U.C. Santa Barbara

Abstract. Application-level multicast on structured overlays often suf-
fer several drawbacks: 1) The regularity of the architecture makes it
difficult to adapt to topology changes; 2) the uniformity of the proto-
col generally does not consider node heterogeneity. It would be ideal to
combine the scalability of these overlays with the flexibility of an un-
structured topology. In this paper, we propose a locality-aware hybrid
overlay that combines the scalability and interface of a structured net-
work with the connection flexibility of an unstructured network. Nodes
self-organize into structured clusters based on network locality, while con-
nections between clusters are created adaptively through random walks.
Simulations show that this structure is efficient in terms of both delay
and bandwidth. The network also supports the scalable fast rendezvous
interface provided by structured overlays, resulting in fast membership
operations.

1 Introduction

Overlay networks are popular as infrastructures for network applications such as
streaming multimedia [4], video conferencing and P2P gaming [10]. For these ap-
plications, fast membership operations and efficient data delivery are becoming
basic usability requirements.

Recent developments of structured [16,13,20] and unstructured [18,9] over-
lay networks point to a new diagram for overlay research to address these ma-
jor challenges, i.e., scalability, efficiency and flexibility. Several application-layer
multicast systems [14,21] build on these structured overlays by using reverse
path forwarding to construct multicast trees.

Structured overlays address the scalability requirements, but their homo-
geneous design can result in inefficient group communication on heterogeneous
networks, by either overloading or under-utilizing resources. This impact is espe-
cially visible on bandwidth-demanding multicast services. In contrast, multicast

� This work is performed while Ruixiong Tian is a visiting student at Microsoft Re-
search Asia.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 152–162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Hybrid Overlay Structure Based on Random Walks 153

nodes on unstructured overlays can choose the number and destinations of their
connections, adapting them to network heterogeneity for improved network per-
formance. However, unstructured overlays often require flooding or gossiping to
route multicast messages [9], limiting scalability and efficiency.

To combine advantages from both approaches, we propose an application
infrastructure called H ybrid Overlay Networks (HONet). HONet integrates the
regularity of structured overlays with the flexibility of unstructured overlays in
a hierarchical structure. For network locality, nodes form clusters, each provid-
ing a root node that together form a core network. Local clusters and the core
network are separate structured networks. In addition, random connections be-
tween members across clusters serve as shortcuts to reduce network delay and
bandwidth consumption.

We make these random connections using a random walk algorithm. The
number of random connections is chosen according to each node’s local service
capacity. The neighbors connected to by these links are chosen probabilistically
according to the distribution of node service capacities through random walk.
This allows these connections to adapt to network heterogeneity.

HONet is an abstract framework and can work with structured overlays such
as Chord [16], Pastry [13], Tapestry [20] or De Bruijn networks [11]. In this paper,
we use De Bruijn networks as an example, and describe a protocol to construct
degree-constrained HONet (called HDBNet). We evaluate the performance of
HDBNet through simulation and show that HDBNet is flexible and efficient.
The relative delay penalty and cost in HDBNet are roughly 1/5 and 1/2 relative
to a flat De Bruijn network.

The rest of paper is organized as follows. We describe the problem context and
related work in Section 2. Next, we propose the HONet framework in Section 3.
Then in Section 4, we present the random walk scheme to construct random
connections between clusters. We present simulation results in Section 5, and
conclude in Section 6.

2 Related Work

Several approaches have been taken to address routing inefficiency and network
heterogeneity in overlay networks. Techniques to exploit topology information
to improve routing efficiency in flat structured overlays can be classified into
three categories [3]: geographic layout as in Topologically-Aware CAN, proximity
routing as in Chord and proximity neighbor selection as in Tapestry and Pastry.
However, these optimizations are often limited by the homogeneous design of
structured overlays.

Another approach builds auxiliary networks on top of structured overlays,
such as Brocade [19] and Expressway [17]. Although these schemes are efficient
for message propagation, they are not suitable for bandwidth-demanding mul-
ticast services because some nodes with high-degree will be overloaded. HONet
routing is similar to Brocade routing with partitioned namespaces plus the addi-
tion of randomized inter-cluster links. Canon [7], on the other hand, solves these



154 R. Tian et al.

C1

C2

C3

C4
C5

R1

R2

R3

R4R5

Regular Connection in Core

Regular Connection in Cluster
Random Connection
 between Clusters

Hierarchical  Routing

Fast Routing

Fig. 1. A HONet composed of clusters (C1,C2,. . . ). Root nodes (R1,R2,. . . ) from each
cluster form the core network. Messages can route using the hierarchical structure of
HONet, or through random connections between members in different clusters (fast
routing).

problems by extending the flat structured overlays to a hierarchy. Canon inherits
the homogeneous load and functionality offered by a flat design while providing
the advantages of a hierarchy. However it can not adapt to nodes’ heterogenous
service capacities, a problem solved in our scheme by removing the homogeneous
flat design.

Hierarchical structure is used in unstructured overlays to address efficiency
and scalability issues in systems such as mOverlay [18] and Hierarchical Gos-
sip [9]. Although they achieve good scalability, they often rely on flooding or
gossip to multicast messages, resulting in less than ideal efficiency. Random
walks are used in [8] to achieve good expansion of unstructured overlays.

3 The HONet Framework

In this section, we describe the general HONet framework, including its structure,
construction, and routing mechanisms. Note that HONet is optimized for efficient
and fast membership operations, useful for quickly and efficiently joining or
switching between multicast groups.

3.1 Overall Structure

As shown in Fig. 1, HONet is organized as a two-level hierarchy. The lower level
consists of many clusters, each containing a cluster root node. The cluster roots



Hybrid Overlay Structure Based on Random Walks 155

form the upper level, the core network. The core network and each cluster are
constructed as structured overlays with independent ID spaces. Each node is
identified by a cluster ID (CID), which is the local cluster root’s ID in the core
network, and a member ID (MID), which is the node’s ID in the local cluster
namespace.

Node degree in HONet (i.e. the number of neighbors a node knows) includes
two components: the regular connections in structured overlays and random
connections between clusters. Each node’s degree should be constrained by its
service capacity and network conditions. If cluster nodes have the capacity to
maintain neighbors outside of the regular overlay connections, they can create
random connections with members in other clusters. We describe the construc-
tion of these random connections in section 4.

We make some general assumptions in our design: (1) The inter-cluster net-
work latencies are larger than intra-cluster latencies, and available bandwidth
between clusters is much lower than inside clusters. (2) Nodes’ processing ca-
pacity and network conditions span a large range. Both assumptions are drawn
from the reality of current Internet [15].

In addition to inheriting the scalable routing of structured overlays and the
flexibility of unstructured networks, the clustered structure of HONet provides
fault-isolation: faults in a cluster will only affect local cluster nodes, with limited
impact on other clusters. Each cluster can choose the most stable member to
serve as cluster root, resulting in improved global and local stability.

3.2 Node Clustering

HONet is constructed through node clustering. When a node joins the network, it
locates a nearby cluster to join. Node clustering provides another way to address
topology-awareness in overlays.

Before a node joins, it identifies its coordinates in the network, possibly by
using network coordinate systems such as GNP [12] and Vivaldi [5]. In HONet,
we implement a simple coordinate system using a set of distances from each
node to a group of well-known landmark nodes. The coordinates of cluster roots
are stored in a distributed hash table (DHT) on the core network. A new node
searches the DHT for cluster roots close by in the coordinate system.

Since most DHTs in structured overlays use a one-dimensional namespace
for keys, while coordinates are multidimensional, we need to provide a mapping
from the multidimensional coordinate space to the one-dimensional DHT space.
The mapping should be: (1) a one-to-one mapping, (2) locality preserving, which
means if two points are close in multidimensional space, corresponding mapped
numbers are also close. Space filling curves (SFC), such as z-order or Hilbert
curves [2,17], have this property. In HONet, we use Hilbert curves to map the
coordinates into numbers called locality number (L-number).

With a SFC-based mapping, to find nodes close to a new node coordinate
l, the DHT searches the range: X = {x : |x − l| < T }. This searches for roots
with L-numbers within T distance of l, where T is a cluster radius parameter.
To find nearby roots, a new node sends out lookup message using l as key. The



156 R. Tian et al.

message routes to nodes responsible for l in the DHT, who search the range X ,
forwarding the message to close roots in namespace, who then reply to the new
node. If the new node cannot locate nearby cluster roots, or if the distance to the
closest cluster root is larger than cluster radius T , then this node joins the core
network as a new cluster root and announces its L-number and its coordinates
in the core network. Otherwise, the node joins the cluster led by the closest
cluster root.

Since each node in a DHT maintains a continuous zone of ID space, locality
information about close L-numbers (because of SFC’s distance-preserving map-
ping) will be kept in a small set of adjacent nodes. Locating nearby clusters
should be fast. Since clusters are significantly smaller than the overall network,
joining a local cluster is significantly quicker than joining a flat structured over-
lay. Finally, a new node can add additional inter-cluster connections according
to Section 4.

3.3 Message Routing

If a message is destined for a local cluster node, normal structured overlay routing
is used. Otherwise, we can use two approaches, hierarchical routing and fast
routing, both illustrated in Fig. 1. In either case, DHT routing is utilized in the
core network and inside local clusters.

Hierarchical Routing. In hierarchical routing, messages are delivered from
one cluster to another through the core network. In HONet, the MID for cluster
root is fixed and a destination is identified by a (CID, MID) pair. Thus if the
destination CID identifies the message as inter-cluster, the message routes to
the local root first, then routes through the core network to the destination
cluster’s root node, and finally to the destination. This is similar to routing in
Brocade [19].

Hierarchical routing is important for network construction and maintenance,
and is a backup when fast routing fails. Since latencies in the core network
are much larger than that inside clusters, we use fast routing across random
connections to reduce the path delay and bandwidth consumption in the core
network.

Fast Routing. Fast routing utilizes the random connections between clusters
as inter-cluster routing shortcuts. To implement fast routing, each cluster nodes
publishes information about its inter-cluster links in the local cluster DHT. For
example, if a node maintains a random connection with neighbor cluster CID
C, it stores this information in the local cluster DHT using C as the key. The
node storing this information knows all the random connections to destination
cluster C, and serves as a reflector to C.

If a source node doesn’t know the random connection to the destination
cluster, it simply sends the message to the local reflector through overlay routing.
The reflector will decide what to do next. If it knows of nodes with random
connections to the destination cluster, it forwards the message to one of them,
and across the random link to the destination cluster. If the reflector knows of



Hybrid Overlay Structure Based on Random Walks 157

no such random connection, the message routes to the local root and defaults to
hierarchical routing. When the message enters another cluster using hierarchical
routing, it can check again to see if fast routing is available. Local reflector can
tell the source node about the node with the random connection, so that later
messages can avoid inefficient triangle routing. Finally, reflectors can also use its
knowledge of shortcut links to balance traffic across them.

The difference between hierarchical routing and fast routing is the number
of inter-cluster routing hops. Since these latencies are much larger than intra-
cluster links, fast routing can significantly reduce end-to-end routing latency and
bandwidth consumption between clusters.

4 Random Walks

To construct random connections easily and adaptively, we use a random walk
algorithm.

A node’s capacity in HONet is measured by a generic fitness metric (denoted
by f), which characterizes service capacity and local network conditions. Ac-
cording to the definition of transition probability pi,j in formula (1), the scale
of f is not important when determining the quantity of pi,j. Thus the fitness
metric only needs to be consistent across nodes.

To consider node heterogeneity, a node’s fitness metric determines the num-
ber of random connections it maintains. Our scheme samples the nodes in HONet
according to the node fitness distribution. Since random walks can sample nodes
according to some distribution, we propose the following algorithm to construct
random connections. Assuming node i with fitness fi has ki neighbors, the algo-
rithm is:

1) Node i determines the number of random connections it will create ac-
cording to fi.

2) Node i initiates a random walk message with Time-to-Live (ttl) set to s
for each random connection. s is the number of skipped steps for the mixing of
random walk.

3) If node i has a random walk message with ttl > 0, it performs the next
step of random walk: select a neighbor j randomly and send the random walk
message to node j with probability:

pi,j =
1
ki

min{1,
fjki

fikj
} (1)

Otherwise the message will stay at node i in next step. ttl = ttl − 1.
4) If node i receives a random walk message with ttl > 0, goto step 3. Oth-

erwise, it is sampled by the random walk for corresponding random connection.
According to [6], we can see that above algorithm is just a typical Metropolis

scheme of Markov Chain Monte Carlo (MCMC) sampling. Since the detailed
balance equation

fipi,j = min{fi

ki
,
fj

kj
} = fjpj,i (2)



158 R. Tian et al.

satisfies, if s is large enough, the obtained nodes are samples according to the dis-
tribution of fitness. Moreover, since ki is proportional to fi in HONet, pi,j ≈ 1/ki,
the above random walk is similar to the regular random walk in the network.
For regular random walk, the mixing time is O(log(N)/(1 − λ)), where λ is the
second largest eigenvalue of the transition matrix of the regular random walk [8].
Usually λ is much less than 1 and the mixing time is small for general random
network if the minimum node degree in the network is large enough. Therefore
the s for above random walk is small and each random connection can be created
rapidly.

5 Performance Evaluation

We use a De Bruijn graph as the structured overlay network to construct HONet,
and call it a Hybrid De Bruijn Network (HDBNet). The performance of HDBNet
is evaluated through extensive simulations in this section.

5.1 Simulation Setup

We use GT-ITM to generate transit-stub network topologies for our simulation.
We generate 5 topologies each with about 9600 nodes and 57000 edges. We
assign different distances to the edges in the topologies (with values from [1]):
The distance of intra-stub edges is 1; the distance of the edges between transit
node and stub node is a random integer in [5, 15]; and the distance between
transit nodes is a random integer in [50, 150]. Nodes in HDBNet are attached to
different routers and the size of HDBNet varies from 1000 to 6000. The radix
of De Bruijn graph is 2. Five runs are performed on each network topology and
the average value reported.

We consider the following metrics:

– Relative Delay Penalty (RDP): the ratio of end-to-end HDBNet routing delay
between a pair of nodes over that of a direct IP path. RDP represents the
relative cost of routing on the overlay.

– Link cost: the average latency across all connections. The link cost is a
convenient, though simplified metric to measure network structure and data
delivery performance in different overlays.

– Hop count: the average number of overlay hops in an end-to-end path.

5.2 Evaluation Results of HDBNet

We now compare the performance of HDBNet to a flat De Bruijn overlays. The
radix of flat De Bruijn networks is set to 4 to have similar node degrees as
HDBNet. Since the cluster radius and random connections are the main fac-
tors affecting the performance of HDBNet, we first evaluate the performance
with different cluster radii (R = 20, 30, 40) when each cluster node has at most
4random connections (RC = 4). Then we compare the performance of HDBNet



Hybrid Overlay Structure Based on Random Walks 159

Fig. 2. The average relative delay penalty (RDP) between any pair of nodes in flat De
Bruijn and HDBNet when RC=4

Fig. 3. The link cost in flat De Bruijn and HDBNet when RC=4

by varying the number of random connections (RC = 1, 2, 3, 4) for R = 30.
These are representative of results run using other radius values. Fast routing is
used whenever possible.

Figure 2 shows the comparison of average RDP between any pair of nodes in
HDBNet and flat De Bruijn. We can see that the RDP in HDBNet is much
smaller than that in flat De Bruijn which does not take the network local-
ity into consideration. For R = 30 and R = 40, the RDP is very small (≈
2), roughly 1/5 of the De Bruijn RDP. When the network size is fixed, RDP
decreases as cluster radius grows. This is because larger cluster radii imply
less clusters, and more clusters are likely to be connected directly via random
links.

Figure 3 shows the comparison of link cost in HDBNet and flat De Bruijn.
We can see that HDBNet has only half cost compared with flat De Bruijn,
which indicates that the HDBNet is much more efficient in terms of end-to-
end latency. In fact, most connections in HDBNet are intra-cluster connections,
which are much shorter in term of latency than inter-cluster connections. While
flat De Bruijn does not take network proximity into account, and many neighbor
connections are inter-cluster links.

The comparison of average hop count between any pair of nodes in HDBNet
and flat De Bruijn is shown in Fig. 4. Hop count in HDBNet is 2 times or



160 R. Tian et al.

Fig. 4. The hop count in flat De Bruijn and HDBNet when RC=4

Fig. 5. The average relative delay penalty (RDP) in HDBNet when the number of
random connections (RC) varies and R=30

more than in the De Bruijn network. While the inter-cluster hops are reduced
in HDBNet, intra-cluster hops increase. Despite this result, the path length still
scales as O(log N).

Figure 5, 6, 7 show the comparison of average RDP, link cost and hop count
respectively when R = 30, and we vary the maximum number of random connec-
tions per node (RC = 1, 2, 3, 4). The number of random connections affects per-
formance dramatically. Just a few random connections can improve routing per-
formance dramatically. When more random connections are allowed, messages
are more likely to be delivered through random connections. Thus inter-cluster
routing will be reduced, resulting in lower RDP. Moreover, fewer inter-cluster
hops means less hops in intermediate clusters, resulting in shorter overlay path
length. Since the intra-cluster connections are shorter than inter-cluster connec-
tions, the link cost increases with allowed random connections.

Our results show that hierarchical structured overlays can perform better
than flat structures. These improvements should be applicable to HONets based
on other structured overlays. Our proposed mechanisms, node clustering and
random connections, offer an orthogonal way to address topology-awareness
compared to locality-aware structured overlays such as Tapestry or Pastry. A
performance comparison against traditional locality-aware structured overlays
is part of our goals for ongoing work.



Hybrid Overlay Structure Based on Random Walks 161

Fig. 6. The link cost in HDBNet when the number of random connections (RC) varies
and R=30

Fig. 7. The hop count in HDBNet when the number of random connections (RC) varies
and R=30

6 Conclusions

In this paper, we propose HONet, a locality-aware overlay framework for flex-
ible application-layer multicast that combines the scalability and interface of
structured networks and the flexibility of unstructured network. We use random
walks to create random connections between clusters of nodes. HONet preserves
the key features such as scalability, efficiency, routability and flexibility as in
the structured or unstructured overlay networks, and is a desirable platform for
flexible group communication.

References

1. The pinger project.

2. Asano, T., et al. Space-filling curves and their use in the design of geometric
data structures. Theoretical Computer Science 181, 1 (1997), 3–15.

3. Castro, M., P.Druschel, Hu, Y., and Rowstron, A. Exploiting network
proximity in distributed hash tables. In International Workshop on Peer-to-Peer
Systems (2002).



162 R. Tian et al.

4. Chu, Y., Rao, S., Seshan, S., and Zhang, H. Enabling conferencing applica-
tions on the internet using an overlay multicast architecture. In ACM SIGCOMM
(August 2001).

5. Dabek, F., Cox, R., Kaashoek, F., and Morris, R. Vivaldi: a decentralized
network coordinate system. In ACM SIGCOMM (2004).

6. Fill, A. Reversible markov chains and random walks on graphs.
7. Ganesan, P., Gummadi, K., and Garcia-Molina, H. Canon in g major: De-

signing dhts with hierarchical structure. In ICDCS (March 2004).
8. Gkantsidis, C., Mihail, M., and Saberi, A. Random walks in peer-to-peer

networks. In IEEE INFOCOM (March 2004).
9. Kermarrec, A.-M., Massoulie, L., and Ganesh, A. J. Probabilistic reliable

dissemination in large-scale systems. IEEE Transactions on Parallel and Dis-
tributed systems 14, 3 (2003), 248–258.

10. Knutsson, B., Lu, H., Xu, W., and Hopkins, B. Peer-to-peer support for
massively multiplayer games. In IEEE INFOCOM (March 2004).

11. Loguinov, D., Kumar, A., Rai, V., and Ganesh, S. Graph-theoretic analysis
of structured peer-to-peer systems: Routing distances and fault resilience. In ACM
SIGCOMM (August 2003).

12. Ng, T. S. E., and Zhang, H. Towards global network positioning. In ACM
SIGCOMM IMW (2001).

13. Rowstron, A., and Druschel, P. Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. In ACM Middleware (Nov. 2001).

14. Rowstron, A., Kermarrec, A.-M., Castro, M., and Druschel, P. Scribe:
The design of a large-scale event notification infrastructure. In NGC (UCL, Lon-
don, Nov. 2001).

15. Sen, S., and Wang, J. Analyzing peer-to-peer traffic across large networks.
IEEE/ACM Trans. on Networking 12, 2 (2004), 219–232.

16. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan,
H. Chord: A scalable peer-to-peer lookup service for internet applications. In ACM
SIGCOMM (August 2001).

17. Xu, Z., Mathalingam, M., and Karlsson, M. Turning heterogeneity into an
advantage in overlay routing. In IEEE INFOCOM (June 2003).

18. Zhang, X., et al. A construction of locality-aware overlay network: moverlay
and its performance. IEEE JSAC (Jan. 2004).

19. Zhao, B. Y., et al. Brocade: Landmark routing on overlay networks. In IPTPS
(2002).

20. Zhao, B. Y., et al. Tapestry: A resilient global-scale overlay for service deploy-
ment. IEEE JSAC 22, 1 (Jan. 2004), 41–53.

21. Zhuang, S. Q., et al. Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination. In NOSSDAV (2001).



Quickly Routing Searches Without Having
to Move Content

Brian F. Cooper

Center for Experimental Research in Computer Systems,
College of Computing, Georgia Institute of Technology

cooperb@cc.gatech.edu

Abstract. A great deal of work has been done to improve peer-to-peer
routing by strategically moving or replicating content. However, there
are many applications for which a peer-to-peer architecture might be
appropriate, but in which content movement is not feasible. We argue
that even in such applications, progress can be made in developing tech-
niques that ensure efficient searches. We present several such techniques.
First, we show that organizing the network into a square-root topology,
where peer degrees are proportional to the square root of the popularity
of their content, provides much better performance than power-law net-
works. Second, we present routing optimizations based on the amount of
content stored at peers, and tracking the “best” peers, that can further
improve performance. These and other techniques can make searches ef-
ficient, even when content movement or replication is not feasible.

1 Introduction

A large number of optimizations have been proposed to improve the perfor-
mance and effectiveness of peer-to-peer searches. Many of these proposals in-
volve moving or replicating content to achieve high performance. For example,
Cohen and Shenker [4] propose replicating files in order to make them easier to
find. Super-peer networks [21,14] replicate content metadata from leaf peers to
super-peers, where the actual search processing is done. Even distributed hash
tables [19,17,18] move data, as content (or pointers to content) are taken from
their original peer and moved to a location in the network based on a hash of
the object identifier. Other examples of proposals to move or replicate content
for efficiency include [20,3,8,7,11,2].

In order for this content movement approach to be effective, it must be
feasible to move objects around. For example, in the traditional application of
multimedia filesharing, it makes sense to move or replicate content: the files and
metadata rarely change and are small enough to replicate. However, in many
cases content movement may not be feasible. First, the data may be very large,
or the index over the data may be very large, and bandwidth and storage require-
ments for moving content or indexes may be prohibitive. For example, consider
a network of digital libraries, each containing multiple gigabytes or terabytes of
data. Full text searches can be accomplished efficiently using inverted indexes,

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 163–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



164 B.F. Cooper

but such indexes may be as large as the content itself. In this case, replicating
either the content or the indexes will certainly tax network links, and may cause
problems if storage is limited at peers. Second, if there are many changes in the
system, it will be difficult to keep remote indexes and copies up to date. Fre-
quent content changes, or frequent peer membership changes, will require many
updates, again taxing bandwidth resources. Third, many content providers are
unwilling to export data or index information for intellectual property reasons.
For example, an electronic publisher may be willing to process searches and re-
turn results, as long as it can record which searches are being processed over its
content or attach copyright notices to the content. Such a publisher will oppose
replication, and will probably be resistant to exporting indexing information so
that other peers end up processing searches of its content. Not every application
has these issues, and in many cases content movement makes sense. However,
there are many potential applications where such techniques are not feasible.

Can we still use peer-to-peer search techniques to perform information dis-
covery in these applications? We argue that the peer-to-peer approach can still
be used and made efficient. In particular, if we do not proactively move content,
but instead leave it at its source, we can avoid the cost of shipping replicas or
updates altogether. Unfortunately, existing basic peer-to-peer protocols that do
not require content movement, such as Gnutella’s original flooding approach, are
not scalable or efficient. What is needed is a new set of techniques to optimize
peer-to-peer searches without content movement.

As evidence for our argument, we present three techniques that can be used
to optimize peer-to-peer searches even when content is not moved. Consider a
simple protocol of random walk searches over an unstructured network [1,11].
Without content movement, the performance of simple random walks can de-
grade significantly. Our first optimization is to reorganize the overlay network so
that random walks can operate efficiently. We propose the square-root topology,
where each peer’s degree is proportional to the square root of the popularity of
its content. Our analysis shows that this topology is optimal for simple random
walk searches, and simulations show that other search techniques also perform
best on the square-root topology1. We also provide an adaptive algorithm for
forming the square-root topology without using content movement or global in-
formation.

We then present two more optimizations to simple random walks in square-
root networks. Biased document count and search memory work to quickly route
searches to peers that have the most content, and thus have the highest probabil-
ity of storing matching content. These optimizations complement the square-root
topology to further improve performance. Simulation results show more than a
factor of two performance improvement for our techniques over simple random
walk searches in power law networks.

Our optimizations are only a starting point, but they illustrate that high
performance can be achieved in networks where replicating or moving con-

1 In fact, the square-root topology is often best even when content movement is used;
see [6].



Quickly Routing Searches Without Having to Move Content 165

tent is infeasible. There are a few other techniques that also operate without
content movement, such as “expanding ring” [11,20] or “directed breadth first
search” [20]. However, more work needs to be done. For instance, our results
show that the commonly assumed power-law network is not even the best net-
work for walk-based searches, since the square-root topology is optimal. There
are potentially a whole host of new techniques that can be developed to search
efficiently without using content movement.

In this paper, we first define and analyze the square-root topology (Section 2).
Next, we discuss the biased document count and search memory optimizations
(Section 3). We present simulation results that show the performance benefit of
our techniques (Section 4). We survey related work (Section 5), and then discuss
our conclusions (Section 6).

2 The Square-Root Topology

In “unstructured networks,” such as that in Gnutella, the topology of the network
is built up over time as peers choose neighbors essentially randomly. Without
any outside interference, such networks tend toward a power-law distribution,
where the number of neighbors of the ith most connected peer is proportional
to 1/iα. Here, α is a constant that determines the skew of the distribution. For
such networks, random walk searches have shown to be effective [1,11]. A simple
random walk search starts at one peer in the network, and is processed over
that peer’s content. That peer then forwards the search to a random neighbor,
who processes and forwards the query again. In this way, the search “walks”
randomly around the network, until it terminates, either because enough results
have been found or because a time-to-live (TTL) has been reached [11].

Consider a peer-to-peer network with N peers. Each peer k in the network
has degree dk (that is, dk is the number of neighbors that k has). The total
degree in the network is D, where D =

∑N
k=1 dk.

We define the square-root topology as a topology where the degree of each
peer is proportional to the square root of the popularity of the peer’s content.
Formally, if we define gk as the proportion of searches submitted to the system
that are satisfied by content at peer k, then the square-root topology has dk ∝√

gk for all k.
We now show that a square-root topology is optimal for random walk searches.

Imagine a user submits a search s that is satisfied by content at a particular peer
k. Of course, until the search is processed by the network, we do not know which
peer k is. How many hops will the search message take before it arrives at k, satis-
fying the search?We can model the search process as a Markov chain. Each state in
the Markov chain represents a peer, and the transitions between states represent a
search being forwarded from a peer to one of its neighbors. For simple random walk
searches, the probability of transitioning from peer i to peer j is 1/di if i and j are
neighbors, and 0 otherwise. Under this formulation, Markov chain theory tells us
that the expected number of hops for an arbitrary search to reach its goal peer is
inversely proportional to the goal peer’s degree:



166 B.F. Cooper

Lemma 1. If the network is connected (that is, there is a path between every
pair of peers) and non-bipartite, then the expected number of hops for search s
to reach peer k is D/dk.

This result is shown in [13].
To simplify our analysis, we assume a peer forwards a search message to a

randomly chosen neighbor, even if that search message has just come from that
neighbor or has already visited that neighbor. Lv et al [11] notes that avoiding
previously visited peers can improve the efficiency of walks. Simulation results
show that the square-root topology is still best; experiments are discussed in
Section 4.

If a given search requires D/dk hops to reach peer k, how many hops can
we expect an arbitrary search to take before it finds results? For simplicity, we
assume that a search will be satisfied by a single unique peer; this assumption is
relaxed in simulation studies in Section 4. We define gk to be the probability that
peer k is the goal peer; gk ≥ 0 and

∑N
k=1 gk = 1. The gk will vary from peer to

peer. The proportion of searches seeking peer k is gk, and the expected number
of hops that will be taken by peers seeking peer k is D/dk (from Lemma 1), so
the expected number of hops per search over all searches (called H) is:

H =
N∑

k=1

gk · D

dk
(1)

How can we minimize the expected number of hops taken by a search mes-
sage? It turns out that H is minimized when the degree of a peer is proportional
to the square root of the popularity of the peer’s content. This is the square-root
topology.

Theorem 1. H is minimized when

dk =
D
√

gk∑N
i=1

√
gi

(2)

Proof sketch. We use the method of Lagrange multipliers to minimize equation
(1). Our constraint is that

∑N
k=1 dk = D. Taking the gradient of our constraint,

and also of equation (1), and setting them equal to each other gives us a series
of N equations of the form −D · gk · d−2

k · ûk = λûk where λ is the Lagrange
multiplier and ûk is a unit vector. Solving for dk, and substituting back into the
constraint equation (to eliminate λ), gives us the statement of the theorem. The
full proof is in [6]. �

Theorem 1 shows that the square-root topology is the optimal topology over
a large number of random walk searches. Our analysis shows that D, the total
degree in the network, does not impact performance: substituting equation (2)
into equation (1) eliminates D. Thus, any value of D that ensures the network
is connected is sufficient. Also, the actual topology does not matter, as long as



Quickly Routing Searches Without Having to Move Content 167

peers have the proper degrees. The result in Lemma 1 is independent of which
peers are connected to which other peers.

To construct the square-root topology, each peer k must estimate the pop-
ularity of its content (gk) by dividing Qk

match, the number of queries processed
so far that matched the peer’s content, by Qk

total, the total number of queries
processed by the peer. Since D is unconstrained, we choose D = dmax ·

∑N
i=1

√
gi,

and substituting this equation into equation (2) gives the ideal degree of a peer

as dk = dmax ·
√

Qk
match/Qk

total. The dmax value is a constant we choose and
fix as part of the peer-to-peer protocol. Each peer continually tracks its queries
and calculates its ideal dk, and then adds or drops connections to achieve its
ideal degree (rounding dk as necessary). In order to keep the network connected,
we also choose a constant dmin, which is the minimum number of connections a
peer can have.

3 Optimizations to Random Walks

The square-root topology is optimal for simple random walk searches. But are sim-
ple random walk searches the best search strategy for the square-root topology?
Previous work [11,4,1] has shown that content movement can improve simple ran-
dom walks significantly. However, we can still optimize random walks for cases
where content movement is not feasible. In this section, we describe two optimiza-
tions that work together to improve search efficiency for random walks in square-
rootnetworks.Both optimizations introduce determinism into the routing process,
so to avoid routing loops between the same sets of nodes, statekeeping must be
used [11]. With statekeeping, nodes remember where they have forwarded searches
and avoid forwarding them to the same neighbors over and over again.

3.1 Biased Document Count

With the biased document count technique, peers forward searches to the neigh-
bors that have the most documents. Then, searches are quickly processed over
a large amount of content, increasing the probability of finding matches. This
technique is similar to biasing random walks toward high degree peers [1], which
quickly routes searches to peers that know many other peers (and consequently
know about a large amount of content). When it is too expensive for peers to
track their neighbors’ content, we can do the next best thing: forward queries to
peers that have the most content themselves.

3.2 Search Memory

Search memory tracks the “best” peers the search has seen so far, and forwards
the search directly to those best peers. Consider for example the network frag-
ment shown in Figure 1. Imagine that a search is at peer p1. This peer has two
neighbors, p2 (with 1,000 documents) and p3 (with 500 documents). Using the
biased document count technique, peer p1 would forward the query to p2. Peer



168 B.F. Cooper

p5
(20 documents)

p4
(10 documents)

p1
(5 documents)

p3
(500 documents)

p2
(1000 documents)

...

...

...

...

...

Fig. 1. Search memory example

p2 has neighbors p4 (with 10 documents), p5 (with 20 documents) and p1 (with 5
documents). Under the biased document count strategy alone, the search would
next be forwarded to p5. However, if the search message tracks that it has seen,
but was not forwarded to, peer p3 with 500 documents, peer p2 can determine
that p3 is a better choice than any of its neighbors. Peer p2 would then send the
message to p3 using UDP or a temporary TCP connection.

Searches are likely to encounter many possible peers along their path, and
remembering document counts for all of them will significantly increase the size
of the search message. For example, consider a system where peers are identified
by their 32 bit IP address and 16 bit port number, and a 16 bit document
count is “remembered” for each peer. In our simulations of search memory in a
20,000 peer network, the average search message had to remember 7,460 peers
and counts, adding 58 KB on average to the search message size. Since peer-to-
peer searches otherwise require a few hundred bytes at most, adding 58 KB per
message will prohibitively increase the bandwidth used by search messages.

We can approximate search memory at much lower cost by remembering
only the best n peers. For example, if a search message remembers 10 peers, this
adds only 80 bytes to the message. Our experimental results (reported in the next
section) show that even this limited search memory can result in performance
improvement.

With the search memory optimization, search messages are not strictly routed
according to the overlay topology. However, the overlay is still important as a
mechanism for discovering peers; a search message learns about new peers be-
cause they are the neighbors of the current peer. Thus, the square-root topology
is still a good network organization, because it ensures the probability that a
search message learns about a new peer is in proportion to the popularity of the
content at the peer.

4 Experimental Results

In this section we present simulation results to confirm our analysis for scenarios
where queries may match content at multiple peers. We use simulation because
we wish to examine the performance of large networks (i.e., tens of thousands



Quickly Routing Searches Without Having to Move Content 169

of peers) and it is difficult to deploy that many live peers for research purposes
on the Internet.

Our primary metric is to count the total number of messages sent under each
search method. We used a message-level peer-to-peer simulator that we have
developed to model networks with 20,000 peers storing a total of 631,320 docu-
ments. A total of 100,000 searches were submitted to random peers in the system,
and each query sought to find 10 results. Because the square-root topology is
based on the popularity of documents stored at different peers, it is important to
accurately model document and peer popularity; we use a content model based
on traces of real documents, peers and queries [5].

First, we conducted an experiment to examine the performance of random
walk searches in the square root topology. We generated two square-root topolo-
gies: one constructed a priori with global knowledge, and another constructed
adaptively using only local information at peers (with dmax = 160, dmin = 3
and dk = 4 when a peer first joins the network). We compared these topologies
to low-skew (α = 0.58) and high-skew (α = 0.74) power-law networks, both
generated using the PLOD algorithm [15].

Figure 2 shows the number of messages per search, calculated as a running
average every 1,000 queries. As the figure shows, the adaptive square-root topol-
ogy quickly converges to the ideal a priori square root topology (after about
8,000 queries). The square-root topology is significantly better than the power-
law topologies, requiring 26 percent fewer messages than the low-skew network,
and 45 percent fewer messages than the high-skew network.

Other results (not shown) indicate that the square-root topology is in fact
better than a power-law topology for several other types of peer-to-peer routing
techniques, and when statekeeping [11] is used. In fact, the square-root topol-

0 2 4 6 8 10

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

A
ve

ra
ge

 n
um

be
r 

m
es

sa
ge

s 
se

nt
 p

er
 s

ea
rc

h

Queries submitted

Square−root−construct (adaptive)
Square−root (a priori)
Power−law low−skew
Power−law high−skew

Fig. 2. The square-root topology versus power-law topologies



170 B.F. Cooper

Table 1. Results for optimizations

Routing Topology Msgs per search

Random walk Power-law (high skew) 16340

Random walk Power-law (low skew) 12110

Random walk Square-root 8850

Doc count Square-root 7780

Doc count + memory Square-root 7030

ogy is often best even when content movement is allowed. Detailed results are
reported in [6].

Next, we conducted an experiment to measure the effect of the biased doc-
ument count and search memory optimizations for searches in the square-root
topology. Table 1 shows the results averaged over 100,000 queries. As the ta-
ble shows, using the biased document count and limited memory optimizations
provided good performance, with 21 percent fewer messages than random walks
in the square-root topology. Even though we used limited memory, we achieved
high performance; for comparison, unlimited search memory only reduced the
message cost by a further 3 percent in our experiments. The combination of
all three of our techniques (square-root topology, biased document count and
limited memory) results in 42 percent fewer messages than random walks in
the low skew power-law topology, and 57 percent fewer messages than random
walks in the high-skew power-law topology. Clearly, it is possible to achieve high
performance even without content movement.

Other optimizations may be possible to further improve performance, and
examining such optimizations is worthy of further study.

5 Related Work

Avarietyof techniques for efficientpeer-to-peer searcheshavebeenproposed.Many
investigators have proposed ways to move or replicate content, or replicate indexes
over content, in order to improve performance [11,4,20,8,3,2,7,19,17,18,21,14,4].
For applications where content movement is too expensive or resisted by peers,
other techniques must be developed. There have been several proposed techniques
that do not use content movement, such as expanding ring [11] or directed breadth
first search [20]. We argue that these techniques are just a starting point, and that
there is unexplored potential for further significant performance enhancements.

Some investigators have looked at building efficient topologies for peer-to-
peer searches. For example, Pandurangan et al [16] discuss building low diam-
eter networks for efficient flooding. However, random walk searches have been
shown to be more scalable than flooding [11]. Lv et al [12] presented a dynamic
algorithm for load balancing when random walks are used. It may be possible to
combine these techniques with our square-root topology in order to take both
popularity and peer capacity into account.



Quickly Routing Searches Without Having to Move Content 171

Several investigators have examined peer-to-peer systems analytically, in-
cluding models for peer behavior [9], download traffic [10], and so on. To our
knowledge, there have been no published analytical results on the optimal topol-
ogy for random walk searches.

6 Conclusions

We have argued that new techniques must be developed to deal with networks
where it is infeasible to move or replicate content. Although many of the most
effective techniques developed so far utilize content movement, we believe that
progress can be made on efficient searching while leaving content at its original
peer. We have presented three techniques as support for our assertion, and as
a starting point for further investigation. First, we have shown that for simple
random walk searches, the optimal topology is a square-root topology, not a
power-law network. This topology can be constructed using purely local infor-
mation at peers. Second, biasing searches towards peers with a large amount
of content further improves performance. Third, adding search memory allows
messages to be quickly routed to the best peers. These techniques show the vi-
ability of further research into routing in unstructured networks, even when we
cannot move or replicate content.

References

1. L. Adamic, R. Lukose, A. Puniyani, and B. Huberman. Search in power-law net-
works. Phys. Rev. E, 64:46135–46143, 2001.

2. M. Bawa, R. J. Bayardo Jr., S. Rajagopalan, and E. Shekita. Make it fresh, make
it quick — searching a network of personal webservers. In Proc. WWW, 2003.

3. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
Gnutella-like P2P systems scalable. In Proc. SIGCOMM, 2003.

4. E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer net-
works. In Proc. SIGCOMM, 2002.

5. B. F. Cooper. A content model for evaluating peer-to-peer searching techniques.
In Proc. ACM/IFIP/USENIX Middleware Conference, 2004.

6. B. F. Cooper. An optimal overlay topology for routing peer-to-peer
searches. Technical report, available at http://www.cc.gatech.edu/̃ cooperb/-
pubs/squareroot.pdf, April 2005.

7. B.F. Cooper and H. Garcia-Molina. Studying search networks with SIL. In Proc.
IPTPS, 2003.

8. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In
Proc. ICDCS, 2002.

9. Z. Ge, D.R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley. Modeling peer-peer
file sharing systems. In Proc. INFOCOM, 2003.

10. K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy, and J. Zahorjan.
Measurement, modeling and analysis of a peer-to-peer file-sharing workload. In
Proc. SOSP, 2003.

11. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in un-
structured peer-to-peer networks. In Proc. Int’l Conf. on Supercomputing (ICS),
2002.



172 B.F. Cooper

12. Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity make Gnutella scalable?
In Proc. IPTPS, 2002.

13. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, New York, NY, 1995.

14. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and
A. Loser. Super-peer-based routing and clustering strategies for RDF-based peer-
to-peer networks. In Proc. WWW, 2003.

15. C. Palmer and J. Steffan. Generating network topologies that obey power laws. In
Proc. GLOBECOM, 2000.

16. G. Pandurangan, P. Raghavan, and E. Upfal. Building low-diameter P2P networks.
In Proc. IEEE FOCS, 2001.

17. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. SIGCOMM, Aug. 2001.

18. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In Proc. IFIP/ACM International
Conference on Distributed Systems Platforms, 2001.

19. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proc. SIGCOMM,
Aug. 2001.

20. B. Yang and H. Garcia-Molina. Efficient search in peer-to-peer networks. In Proc.
ICDCS, 2002.

21. B. Yang and H. Garcia-Molina. Designing a super-peer network. In Proc. ICDE,
2003.



Practical Locality-Awareness for Large Scale
Information Sharing�

Ittai Abraham1, Ankur Badola2, Danny Bickson1, Dahlia Malkhi3,
Sharad Maloo2, and Saar Ron1

1 The Hebrew University of Jerusalem, Jerusalem, Israel
{ittaia, daniel51, ender}@cs.huji.ac.il

2 IIT Bombay, India
{badola, maloo}@cse.iitb.ac.in

3 Microsoft Research Silicon Valley and The Hebrew University of Jerusalem, Israel
dalia@microsoft.com

Abstract. Tulip is an overlay for routing, searching and publish-lookup
information sharing. It offers a unique combination of the advantages
of both structured and unstructured overlays, that does not co-exist in
any previous solution. Tulip features locality awareness (stretch 2) and
fault tolerance (nodes can route around failures). It supports under the
same roof exact keyed-lookup, nearest copy location, and global informa-
tion search. Tulip has been deployed and its locality and fault tolerance
properties verified over a real wide-area network.

1 Introduction

Driven by the need to bridge the gap between practically deployable P2P sys-
tems, which should be easy and robust, and academic designs which have nice
scalability properties, we present the Tulip overlay. The Tulip information shar-
ing overlay obtains a combination of features not previously met simultaneously
in any system. In a nutshell, these can be characterized as follows:
Locality-awareness: The algorithms for searching and retrieving information
are designed to provably contain every load as locally as possible. Formally, this is
expressed using the standard network-theoretical measure stretch, which bounds
the ratio between routes taken in the algorithm and optimal routes. Formally,
the Tulip overlay guarantees stretch-2 routing.
Flexibility and Simplicity: All protocols have firm, formal basis, but inten-
tionally accommodate fuzzy deployment which applies optimizations that devi-
ate from the theory, in order to cope with high churn and scalability.
Diverse tools: Tulip addresses under the same roof exact-match keyed lookup,
nearest object location, and global data search.
Experimentation: In addition to formal proofs of locality and fault tolerance
we analyze Tulip’s performance with real measurements on a real planetary-scale
� Work supported in part by EC Evergrow.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 173–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



174 I. Abraham et al.

deployment.Tulip is deployedand testedoverPlanetLab. Its localityawarenessand
fault tolerance properties are evaluated in aWAN setting. Furthermore, experience
gained from practical deployment is fed back in Tulip to the formal design.

Tulip adopts the successful space-to-communication tradeoff introduced by
Kelips [4], which allows nodes to maintain links to many, but not to all other
nodes, and achieve highly efficient information dissemination paths. In Tulip,
each node maintains roughly 2

√
n log n links, where n is the number of nodes.

Routes take 2 hops. Search or event data can be disseminated to O(
√

n) nodes,
and retrieved from O(

√
n) nodes.

We believe this tradeoff is the right one for P2P overlays. In terms of space,
even a large system of several millions of nodes requires storing only several
thousands node addresses, which is not a significant burden. That said, this
does not lead us to attempt at maintaining global information as in [3]. Indeed,
we maintain sufficient slack to tolerate a large degree of stale and/or missing
information. As a result of this design choice, Tulip exhibits extremely good fault
tolerance (see Section 4). Furthermore, this slack also enables static resilience,
which means that even as the system undergoes repair it can continue routing
data efficiently. Some previous DHTs like Kademlia [5] and Babmboo [6] appear
to cope well with churn with a lower node degree and more rigid structure.
However, we believe that having O(

√
n) links with a semi-structured two hop

network may give a very high level of resiliency.
Tulip enhances the Kelips approach in a number of important ways, de-

tailed henceforth. The first feature in Tulip is locality awareness. Building
self maintaining overlay networks for information sharing in a manner that ex-
hibits locality-awareness is crucial for the viability of large internets.

Tulip guarantees that the costs of finding and retrieving information are
proportional to the actual distances of the interacting parties. Building on the
formal foundations laid by Abraham et al. in [1], Tulip provides provable stretch
2 round-trip routing between all sources and destinations 1. Tulip extends the
formal algorithm in [1] with methods that accommodate changes in the network.
These include background communication mechanisms that bring links up to
date with provably sub-linear costs.

The second feature of Tulip is its flexibility and simplicity. Structured
p2p overlays often appear difficult to deploy in practical, Internet-size networks.
In particular, they are sensitive to changes and require substantial repair under
churn. They lack flexibility in that they require very accurate links in order
to operate correctly. And faced with high dynamism, they may break quite
easily.

By maintaining O(
√

n log n) links at each node and a simple two hop design,
Tulip has sufficient redundancy to maintain a good level of service even when
some links are broken, missing or misplaced. A multi-hop algorithm similar to
Kelips [4] allows routing around failed or missing links with O(1) communication

1 The standard definition of stretch, as in [1], looks at source-destination routing but
in a DHT it is natural to examine round-trip routing since the source requires a
reply from the target.



Practical Locality-Awareness for Large Scale Information Sharing 175

costs. Furthermore, the repair procedures can be done in the background, while
heuristics keep Tulip’s service quality even while it is under repair.

The third feature of our system is its support of diverse tools for information
sharing. This goal stems from our vision of a convergence of technologies empow-
ering network leaf-nodes. These technologies include overlay networks supporting
Grid and p2p file sharing, web caching, and large scale content delivery services.
Though these are different services, the overlays that support them are converg-
ing toward a common set of protocols. The Tulip routing overlay can be utilized
as an overlay for keyed lookup, for finding nearest copies of, replicated objects,
for event notification and for global searching.

We have built a real deployment of the Tulip overlay and have conducted
experimentation on wide area networks (WANs). All of our protocols are de-
ployed and tested extensively over the PlanetLab WAN test-bed. In particular,
Tulip’s locality behavior, its stretch factor, distance measurements and fault tol-
erance are all ascertained over a real-life, planetary-wide network. To the best of
our knowledge, our stretch performance data are the first to be measured over a
real WAN, not via synthetic simulation. We also assess Tulip’s behavior under
intentional and unintentional churn.

2 Formal Foundations

The Tulip system builds on the locality-aware compact routing algorithm of
Abraham et al. in [1]. It uses O(

√
n log n) space per node, where n is the num-

ber of nodes in the system. It provides a 2-hop routing strategy whose cost over
optimal routing (the stretch) is at most 2. Continuous background gossip mech-
anism with a reasonable overhead is used to maintain and update the system
and guarantee quick convergence after changes in the system.

Let d(s, t) denote the communication cost between nodes s and t. It is natu-
ral to assume that d() forms a metric space. However, to be precise, our lookup
stretch result requires only that d() is symmetric, or that it upholds the triangle
inequality. In addition, the analysis of message complexity of the join algorithm
and the protocol for finding nearest copies of data assume growth bounded den-
sities, defined as follows. A growth-bound limits the number of nodes in a ball
of radius 2r by a constant multiple of the number of nodes within radius r.

Vicinity balls. For every node u ∈ V , let the vicinity of u be the set of
√

n log n
closest nodes to u according to d(), breaking ties by lexicographical order of
node names.

Coloring. Our construction uses a partition of nodes into
√

n color-sets, with
the following two properties:

(i) Every color-set has at most 2
√

n nodes.
(ii) Every node has in its vicinity at least one node from every other color-set.

Each node belongs to one of the color groups determined by using a consistent
hashing function to map node’s identifier (IP address and port number) to one
of the

√
n values. This mapping is done by taking the first log

√
n bits of the



176 I. Abraham et al.

hash value. We denote by c(u) node u’s color. The use of cryptographic hash
function such as SHA-1 ensures that the expected number of nodes in each group
is around

√
n, and is under

√
n log n with high probability.

Routing information. Each node u maintains information classified under:
•Vicinity list: From each of the other color groups in the system, node u main-
tains information about the closest log n nodes of a particular color.
• Color list: A list containing information about all nodes belonging to the same
color as u, i.e, to the color-set c(u).

Each entry also carries an additional field of network distance. Each of the
lists is sorted based on the relative distance value from the node.

Keyed Lookup. The lookup tool supports exact-match keyed lookup and routing
for objects or nodes whose names are known precisely. It guarantees locating
any target with lookup stretch of at most 2, and with up to 2 lookup hops.

An object is stored on the node whose identifier is the longest prefix of the
object’s hash value. Objects are also mapped to colors by taking the first log

√
n

bits of their hash. Given a source node s that is looking for an object o with
color c(o) that is stored in node t:
• First hop: Node s routes to the node w in s’s vicinity list that has the same
color as the object c(w) = c(o), and whose identifier is closest to the object’s
hash. If this node contains the object then the lookup has stretch 1.
• Second hop: Otherwise, using w’s color list, s routes to node t (this is possible
since c(o) = c(w) = c(t)). In this case we have d(s, w) ≤ d(s, t) and from
symmetry the cost of the path s � w � s � t � s is at most twice the cost of
the path s � t � s (see Figure 1).

Note that, the above scheme is iterative, and achieves stretch 2 without re-
quiring triangle inequality. A recursive version would give stretch 2 but require
triangle inequality, without requiring symmetry.

Finding nearest copy. This mechanism allows objects to be stored on any node
the designer wants. Moreover, several copies of the same object may exist on
different nodes. Assuming latencies form a metric space, we guarantee to retrieve
the copy closest to the initiator of the searching node, with lookup stretch of at
most 4, and with up to 2 hops.

Let node x store a replica of object o. A pointer of the form 〈o → x〉 is stored
in the following nodes:
• Vicinity pointers: All nodes u such that x is in u’s vicinity list store a pointer
〈o → x〉. Under the growth bound assumption, only O(

√
n) nodes will store such

a pointer.
• Color pointers: All nodes u such that c(u) = c(o) store a pointer 〈o → u(o)〉
where u(o) is the name of the node closest to u that stores a replica of o.

Lookup uses the pointers to shortcut directly to a replica. If the source does
not have a direct pointer to the desired object it routes to the node w in its
vicinity such that c(w) = c(o). In such a case, node w will have a pointer to the
closest replica from w.



Practical Locality-Awareness for Large Scale Information Sharing 177

�

�

��

�

Fig. 1. Example of a 2 hop, stretch 2 round-trip path from source s to destination t
and back

�

�

��

�

�

Fig. 2. Example of 2 hop, stretch 4, nearest copy search from s to v and back

• Analysis. Given source s searching for object o, let u be the closest node to s
storing a replica of o, let w be the node in the vicinity of s such that c(w) = c(o)
let v be the closest node to w storing a replica of o. Then d(w, v) ≤ d(w, u) and by
triangle inequality d(s, v) ≤ d(s, w) + d(w, v) ≤ 3d(s, u), summing up and using
symmetry d(s, w)+d(w, s)+d(s, v)+d(v, s) ≤ d(s, u)+d(s, u)+3d(s, u)+3d(s, u),
hence the ratio between the cost of lookup and the cost of directly accessing the
closest replica (stretch) is at most 4 (see Figure 2).

Global information search. This tool builds a locality aware quorum system.
Information can be published to a global shared memory and later users can
perform arbitrary search queries on all the published information. The search
mechanism is locality aware, it requires communication only with nodes in the
vicinity of the query.

Publishing an object o is done by storing information about o on all the
nodes whose color is the closest to o’s hash value. Each node may either store



178 I. Abraham et al.

the full o content, or summary data used for searching o, along with a pointer to
the actual stored location. This creates roughly

√
n replicas of the information.

Global searching is done in a locality aware manner. An initiator sends a
query only to the nodes that are in its vicinity list. The computation of a query
is maintained locally since each search involves only the

√
n closest nodes. This

is the first read/write quorum system whose read operations are locality aware.

3 Maintaining Locality Under Churn

Considerable effort is invested in Tulip’s deployment in order to deal with the
dynamics of scalable and wide spread networks. This includes protocols for node
joining and deletion, and a background refresh mechanism that maintains local-
ity under churn. Surprisingly, under reasonable assumptions, all of these mecha-
nisms have sub-linear complexity. Our deployment also entails multi-hop query
routing to cope with churn simultaneously with ongoing repair. The evaluation
of this heuristical protocol is done experimentally.

Joining: A joining node requires one existing contact node in the system. The
mechanism for obtaining a contact node can be a web site or a distributed
directory such as DNS. Our approach for handling joins is for the joiner to first
acquire a somewhat rough initial vicinity. Then, through normal background
refresh mechanism (detailed below), the joiner gathers more accurate information
about its vicinity and its color list.

More specifically, a joiner u first queries its contact point for the list of nodes in
its vicinity. From this list, u selects a random node x. It then finds a node w fromx’s
color list that is closest tou.Under reasonablegrowthboundeddensityassumptions
w’s vicinity has a sizable overlapwith the u’s vicinity. Node u adopts w’s vicinity as
its own initial vicinity, and informs its vicinity about its own arrival.

The communication complexity of the approximate closest-node finding and
the establishment of an initial vicinity is O(1) and O(

√
n log n) computational

complexity.

Deletion: A departing or a failed node gradually automatically disappears from
the routing tables of all other nodes, once they fail to communicate with it.
Naturally, the departure of a node also means the loss of the data it holds.
Clearly, any robust information system must replicate the critical information it
stores. We leave out of the discussion in this short paper such issues.

Refresh mechanisms: Existing view and contact information is refreshed peri-
odically within and across color groups. During each cycle, a node re-evaluates
the distance of some nodes in its two lists (vicinity and color), and refreshes
entries in them. Formally, these mechanisms maintain the following property:
An individual node that misses information or has incorrect information (e.g.,
this is the case of a new joiner) learns information that significantly improves
its vicinity and color list with O(1) communication overhead and O(

√
n log n)

computation overhead.



Practical Locality-Awareness for Large Scale Information Sharing 179

All our methods have sub linear communication complexity of O(1) and
O(

√
n log n) computational complexity. The three methods used in each cycle

for refresh are as follows:

• Vicinity list merging: Node u chooses a random node x in its vicinity list and
requests for x’s vicinity list, while sending its own vicinity list to that random
node (a combined push and pull flat model gossip). Both nodes merge the two
vicinities, while keeping the list sorted according to distance and maintaining
(if possible) at least one member from each existing color in the list. Intuitively,
due to the expected overlap between the vicinities of close nodes, this step pro-
vides for quick propagation of knowledge about changes within the vicinity. This
mechanism is quick and efficient in practice. However, formally it cannot guar-
antee by itself that nodes obtain all relevant vicinity information.
• Same color merging: Node u contacts a random node x from its color list and
and requests for x’s color list, while sending its own color list to that random
node. Again, both nodes merge the two color lists.
• Failed nodes detection: When a failed node is detected (a node that had failed
to respond to an outgoing communication), that node is immediately removed
from all active nodes’ lists. That node is then inserted into a failed nodes list,
which also holds information about the failure detection time (a node’s ”death
certificate”). This list is being propagated in two methods:

1. Passive fault tolerance mechanism: a node which is refreshing its color or
vicinity list also sends its failed nodes list with its request and receives the
other node’s failed nodes list with the response. Both nodes then merge both
lists, and remove all new found failed nodes from all their active nodes lists.

2. Active fault tolerance mechanism: a node that sends a routing info request
to a node x also pushes its failed nodes list as a part of the request. Before
processing the request, the receiving node merges its own failed nodes list
with the received list, and removes the new found failed nodes from all active
nodes lists. This somewhat prevents x from sending a next hop route data
which includes a newly detected failed node.

A node is removed from the failed nodes list only after a period of time which
is greater then the estimated gossip propagation time in the network.

Multi-Hop Query Routing: The scale and wide spreading of the systems we en-
vision implies that the information held at nodes’ routing lists at any snapshot
in time may contain inaccessible nodes, failed links, and inaccurate distances.
Although eventually the refresh mechanisms repair such errors, the system must
continue routing data meanwhile. To this end, we adopt similar, heuristic strate-
gies as in Kelips [4] to accommodate changes, while enhancing them with locality
consideration, and in addition, evaluating them with real wide-area experimen-
tation (in the next section).

Given a source node s that is looking for an object that is stored in node t,
the two heuristics employed are as follows:



180 I. Abraham et al.

• If s cannot contact any node with color c(t) from its vicinity list, then it contacts
a random node x in the vicinity list and forwards the query for x to handle.
• If during a lookup, an interim node w with the target’s color c(t) = c(w) does
not have t in its color list, then w responds with sending the details of a node v
from its vicinity list, drawn randomly with preference to closer nodes.

4 Experimental Results

The Tulip client is implemented in C++ and the overlay is fully operational.
Tulip is deployed in 220 nodes over the PlanetLab wide-area testbed [2] as of
October 2004.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Fig. 3. Cumulative density of lookup stretch

0 50 100 150 200 250 300 350 400 450 500 550 600
0

1

2

3

4

5

6

Time (sec)

S
tr

et
ch

 fa
ct

or

Fig. 4. Average stretch over time while randomly killing half the nodes at time 150

Figure 3 depicts the actual routing stretch experienced in our deployed sys-
tem. The graph plots the cumulative density function of the stretch factor of
one thousand experiments. In each experiment, one pair of nodes is picked at



Practical Locality-Awareness for Large Scale Information Sharing 181

random and the routing stretch factor between them is measured. The measured
stretch factor is the ratio between lookup duration and the direct access dura-
tion: The lookup duration is the time a lookup takes to establish connections,
reach the destination node storing the object via the Tulip overlay, and return
to the source. The direct access duration is the time it takes to form a direct
(source to destination) TCP connection and to get a reply back to the source.

The graph shows that about 60 percent of the routes has stretch 1, and
therefore experience nearly optimal delay. Over 90 percent of the routes incur
stretch lower than 2, and stretch 3 is achieved in nearly 98 percent of the routes.
These results are comparable, and to some extent better, than the simulation
stretch results provided for Pastry [7] and Bamboo [6].

The graph also demonstrates that due to dynamic nature of the network and
due to fuzziness, stretch 4 is exceeded in about one percent of the cases. The
graph is cut at stretch 4, and thus excludes a very small number of extremely
costly routes; these do occur, unfortunately, in the real world deployment, due
to failures and drastic changes in the network conditions.

Figure 4 depicts fault tolerance tests results on the PlanetLab testbed. We
have used 200 Tulip nodes on different computers. Lookup requests were induced
into the system at a rate of 2 per second. The graph depicts average stretch of
every 4 lookup requests (reflecting two seconds each). At time 150 we randomly
killed half the nodes in the system. The results show that after time 300 the
systems has almost completely regained its locality properties.

References

1. I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-
independent routing with minimum stretch. The Sixteenth ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 04).

2. Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed for broad-coverage
services. SIGCOMM Comput. Commun. Rev., 33(3):3–12, 2003.

3. A. Gupta, B. Liskov, and R. Rodrigues. One hop lookups for peer-to-peer overlays.
In Ninth Workshop on Hot Topics in Operating Systems (HotOS-IX), pages 7–12,
Lihue, Hawaii, May 2003.

4. I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Kelips: Building an
efficient and stable P2P DHT through increased memory and background overhead.
In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), 2003.

5. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. In Proceedings of IPTPS02, March 2002.

6. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a dht. Tech-
nical Report Technical Report UCB//CSD-03-1299, The University of California,
Berkeley, December 2003.

7. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages 329–350, 2001.



M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 182 – 192, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Empirical Study of Free-Riding Behavior in the Maze 
P2P File-Sharing System  

Mao Yang 1,*, Zheng Zhang2, Xiaoming Li1, and Yafei Dai1 

1 School of Electronics Engineering and Computer Science, 
Beijing University, 100871 Beijing, China 
{ym, lxm, dyf}@net.pku.edu.cn 
2 Microsoft Research Asia, Beijing, China 

{zzhang}@microsoft.com 

Abstract. Maze1 is a P2P file-sharing system with an active and large user base. 
It is developed, deployed and operated by an academic research team. As such, 
it offers ample opportunities to conduct experiments to under-stand user behav-
ior. Embedded in Maze is a set of incentive policies designed to encourage 
sharing and contribution.  This paper presents an in-depth analysis of the effec-
tiveness of the incentive policies and how users react to them. We found that in 
general the policies have been effective. But they also encourage the more self-
ish users to cheat by whitewashing their ac-counts as a variation of Sybil attack. 
We examine multiple factors that may contribute to the free-riding behavior. 
Our conclusions are that upload speed, NAT and amount of shared files are not 
the problems, and selfish behavior is demonstrated more by shorter online time. 
Since free-riders are also avid consumers of popular files, we suggest a two-
pronged approach to reduce free-riding further: mechanisms to direct queries to 
sources that would otherwise be free-riders, and policies to encourage users 
make their resources more available. 

1   Introduction 

Maze[1] is a peer-to-peer file-sharing application that is developed and deployed by 
an academic research team. Maze is similar in structure to Napster, with a centralized, 
cluster-based search engine, but is additionally outfitted with a social network of 
peers. This hybrid architecture offers keyword-based search, simple locality-based 
download optimizations, and also reduces dependency on the central cluster. Maze 
has a set of evolving incentive policies which, complemented by direct user feedbacks 
via forum, discourage free-loading, a problem plaguing many similar networks. More 
details of the Maze architecture are available in [2][3].  

Maze is in its 4th major software release, and is currently deployed across a large 
number of hosts inside China’s internal network. As of October 2004, Maze includes 
a user population of about 410K users and supports searches on more than 150 mil-
lion files totaling over 200TB of data. At any given time, there are over 10K users 
online simultaneously, and over 200K transfers occurring per day.  
                                                           
* Work done as intern in MSR-Asia. 
1 This work is partially supported by NSFC grant 90412010 (China). 



 An Empirical Study of Free-Riding Behavior in the Maze P2P File-Sharing System 183 

Maze provides an excellent platform to observe many important activities inside the 
network and some of our measurement results have been reported in [2]. In this paper, 
we focus on the reputation and incentive aspects of the Maze architecture. We found 
that, in general, the incentive policies are effective to encourage contribution. How-
ever, one consequence is that free-riders start cheating by account whitewashing. The 
fact that the free-riders are avid consumers of popular con-tents should have made 
them the sources of contributors. However, the slow updating of the Maze central 
indexing makes it harder to direct queries to these users. Looking at the free-riding 
behavior further, we found that one of the more direct measurements of the selfish 
degree is the online session time: free-riding users usually stay only one-third as long 
as the server-like users. Although 40% of users are behind firewall, NAT is generally 
not the source to blame, nor is the upload speed. However, high upload speed and not 
being hindered by firewall are advantageous for motivated users to contribute. 

The roadmap of the paper is as follows. Section-2 gives a quick overview of the 
Maze architecture. Section-3 describes the data collected . Section-4 is the main body 
of this paper, where we take a closer look at the incentive policies and the free-riding 
behavior in Maze. Secition-5 contains related work and we conclude in Section-6. 

2   Maze Architecture Overview 

Maze grew out of the need to address the downloading problem of the FTP part of a 
Web search project called T-net[4]. As the service became popular, the limited num-
ber of FTP servers has led to degrading performance. The first step of Maze is to 
allow parallel downloading from peer users. Each peer will authenticate itself to the 
Maze central server, send periodical heartbeats, and upload the index of the files that 
it has in its local Maze directory. This allows full-text queries to be conducted over 
the set of the online peers. A download request fans out to multiple sources to for 
different chunks of the file, with simple locality hint that gives priority to peers that 
share more prefix of the initiator’s IP address. Maze has an evolving set of incentive 
policies designed to discourage free-loadings. The policies award or deduct points 
according to user behaviors. At the end of each transaction, the peers involved report 
to the central server which adjusts their points accordingly.  

Recognizing that we eventually need to reduce the dependencies upon the central 
server, Maze in addition let each peer to have several peer lists. The first is the 
“friend-list,” which is bootstrapped from the central server with a list of other peers 
when the user first registered, and can be modified later on. Frequently, the user adds 
those who have satisfied her queries before. Thus, the friend-lists collectively form a 
social network that evolves continuously. The second is the “neighborhood-list,” 
which is given by the central server upon a peer logon, contains a set of online peers 
sharing the B-class address. Finally, Maze gives a small list called “good peer-list” of 
peers who currently have high reputation scores as an incentive to reward good shar-
ing behaviors. Users on this list can be thought as a “celebrities” in the entire user 
population. A peer can recursively browse the contents of the Maze directories of any 
level of these lists, and directly initiate downloading when they find interesting con-
tents. These lists form the bases over which we plan to add P2P search capabilities. 
As we will show shortly, these lists comprise a surprisingly large source of finding 
interesting files.  



184 M. Yang et al. 

A NAT client can download from a non-NAT client, or another NAT client behind 
the same firewall. However, we have not implemented relay mechanism and currently 
a NAT user can not download from another NAT user behind a different firewall.  

Maze also has an associated online forum. This is where many discussions among 
the users take place, and is also the venue that Maze developers gather feedbacks. Our 
experience has proven that this forum is invaluable. 

3   Data Collected 

The Maze5.04 release we issued on September 26th has a component to report their 
download behavior includes the source or sink of the transfer, file type, file size, file 
signature (MD5) and the transfer bit rate. The central servers also log the following 
information per client: online time, IP address and network information (such as NAT 
or non-NAT), the files shared, the change of the user’s reputation point, and finally 
the register information. Table 1 gives the summary of the logs. Unless otherwise 
stated, results are analyzed using logs from 9/28 to 10/28. We use mysql to process 
these logs. 

Notice that that the number of transfers is almost 3 times more than the number of 
queries. This suggests that at most one-third of download follows a query to the cen-
tral server. What that means is that more than two-third of transfers occur as a result 
of browsing the three peer lists. Thus, it is evident that the Maze social links have 
been effective. 

Table 1. Summary of log information (9/28~10/28) 

Log duration 30 days 
# of active users 130,205 
# of NAT users 51,613 
# of transfer files 6,831,019 
Total transfer size 97,276GB 
Average transfer file size 14,240KB 
Average transfer speed 327,841 bps 
# of unique transfer files 1,588,409 
# of querying 2,282,625 

4   Reputation and Incentive Mechanism 

In this section, we will start with a description of the Maze incentive policies, and 
then look at its overall impact overtime. Next, we will focus on the free-riders, fol-
lowed by a more detailed analysis of possible courses of free-riding. 

4.1   The Maze Incentive Policies 

In Maze, we use an incentive system where users are rewarded points for uploading, 
and expend points for successful downloads. Recall that Maze has an active forum. 



 An Empirical Study of Free-Riding Behavior in the Maze P2P File-Sharing System 185 

This point system was discussed in the forum and agreed-upon before implemented. 
The rules are: 

1. New users are initialized with 4096 points. 
2. Uploads: +1.5 points per MB uploaded 
3. Downloads: 

• -1.0/MB downloaded within 100MB 
• -0.7/MB per additional MB between 100MB and 400MB 
• -0.4/MB between 400MB and 800MB 
• -0.1/MB per additional MB over 800MB 

4. Download requests are ordered by T = requestTime – 3logP, where P is a user’s 
point total. 

5. Users with P < 512 have a download bandwidth of 200Kb/s. 

 

Fig. 1. The account system 

Maze uses service differentiation as the way of rewarding/punishing good/bad be-
havior. It was designed to give downloading preference to users with high scores. 
These users add to their request time a negative offset whose magnitude grows loga-
rithmically with their score. In contrast, a bandwidth quota is applied to downloads of 
users with lower scores (<512).  Although the quota seems to be high, it is consistent 
with our observation that a large number of users have access to high-bandwidth 
links. Finally, while we encouraged uploads and deducted points for downloads, we 
recognized that the majority of bytes exchanged on Maze were large multimedia files, 
and made the download point adjustment graduated to weigh less heavily on ex-
tremely large files.  For instance, the user will spend all the start points if she 
downloads 4k 1MB size files, or 133 400MB size files, or about 9 800MB size files.  

Our policies award at least 50% more points for uploading than downloading. This 
is based on our belief that the contributing users should earn more rights to download. 
For instance, when a user has uploaded 267MB files, he will earn enough points to 
download 628MB files. Therefore, those who contribute contents shall see their points 
increase quickly. On the other hand, if a user downloads more than uploads, his score 



186 M. Yang et al. 

will decrease over time, and will eventually drop to so low as he may decide to leave 
the system altogether. Since the number of downloads and uploads are equal, the total 
points of the entire Maze population will grow. For the time being, we do not believe 
this is an issue.  

For convenience of discussion, we will define the server-like and client-like users 
for those users whose points are above and below their initial point (4096), respec-
tively. As of 10/28, the ratio between these two classes of users is 4.4:1. We found 
that client-like users are responsible for 51% downloads but only 7.5% uploads. 
These statistics suggest the existence of free-loading. Fig. 2 depicts the CDF curves of 
number of upload and download activities against user reputation scores.  Our reputa-
tion metrics has reflected the user behavior in general. 

0
10

20
30

40
50
60

70
80

90
100

0 100000 200000 300000 400000 500000

Download

Upload

# of User Points

P
er

ce
nt

ag
e 

of
 F

ile
s

Start Piont of User: 4096

 

Fig. 2. CDF distribution of uploads and downloads against user reputation scores up to 500000 

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000
# of User Points

P
er

ce
nt

ag
e 

of
 U

se
r

 

Fig. 3. CDF distribution of user points up to 12000 for the month of May, June, July and October 

One of the top score users that we interviewed share out many popular course ma-
terials, which are video files of various formats and are large enough to earn points 
quickly. The motivation for a Maze user to earn extremely high score is primarily to 
gain social status in the community, rather than earning points to download.  There 
seems to exist a self-enforcing cycle that propels the riches get richer.  



 An Empirical Study of Free-Riding Behavior in the Maze P2P File-Sharing System 187 

A set of good incentive policies should have the net effect of moving users towards 
more sharing behaviors. Since its very first release, Maze has the incentive policies in 
place. However, before 5/20 of 2004 (the release date of Maze3.02), the policies are 
quite different. For each MB of transfer, a download will deduct one point, whereas 
an upload will add one point. Furthermore, the scores are not used in anyway as to 
enforce the QoS measures that this new set of policies do. The new policies were 
extensively discussed in the Maze online forum, and officially launched in May. Over 
the period of several months, we are able to gather the scores and observe the effects. 

The impact of the policies is best understood with the upload and the download 
logs, which are only available after the Maze5.04 release of 9/26. The complete in-
formation that we have are the reputation scores, which are kept on the Maze central 
server. Fig. 3 shows the changes of the reputation CDFs from May till October. There 
are around 20~30% of users who stay at their starting points (4096); these are the 
registered but inactive users. These set of curves are difficult to analyze because, as 
we mentioned earlier, the total point of the system continue to increase and thus the 
“center of the gravity” shall move towards right unless there are absolutely no activi-
ties. However, we do believe that the policies are effective to some extent. For in-
stance, the proportion of client-like users decreases from 76.4 % in May, to 56.2% in 
June, to 48.1% in July and finally to 46.8% in October. Also, if the policies were 
ineffective to change user behavior, the client-like users shall see their point totals 
drop quite rapidly. This does not happen. In the future, we will collect more statistics 
to study this aspect. 

4.2   The Free-Riders  

For simplicity of discussion, we will call the client-like users the free-riders. When a 
free-rider sees her point drops, she has several choices. For instance, she may start to 
aggressively promote himself. Indeed, we have found that once a request for content 
was posed on the forum, it is soon followed by many invitations – typically from those 
with low points – to advise the availability of the content. There are several things a user 
can do to cheat the system. One route he might pursue, for instance, is simply to leave 
the system and re-enter with a different Maze user ID. These are the whitewashers. 
Whitewashers can be detected, but we currently do not ban them. If a user has several 
Maze accounts, he can mount the more elaborate Sybil’s attack [5] by downloading 
among these accounts to earn credits for each one of them. We know for a fact that 
these behaviors exist, and are investigating how much fraction they account for. 

Fig. 4 plots the breakdown of user population according to how many different 
user IDs they own from the time that they first registered. The last bracket includes 
whitewashers with 8 or more. We are surprised to find that a tiny fraction of white-
washers went so far as to own up to 23 different user IDs, although the majority of the 
Maze user have only one user ID (75%). We have verified that those who have owned 
multiple IDs typically spend their points completely before registering a new ID.  

One would expect that there is a strong correlation between owning multiple IDs 
and free-riding behaviors. Our result shows that this is indeed the case. The percent-
age of free-riders increases steadily with number of user IDs. Within the category of 
one user ID, there are only 22% free-riders, whereas for those that owns 8 IDs or 
more, this percentage increases to 77%. 



188 M. Yang et al. 

0

20,000

40,000

60,000

80,000

100,000

120,000

1 2 3 4 5 6 7 8

# of MAZE accounts

T
ot

al
 u

se
rs

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

fr
ac

ti
on

 o
f 

fr
ee

-l
oa

d
er

s

 

Fig. 4. The distribution of user over number of accounts they have owned and the proportion of 
free-riders 

4.3   Understanding the Source of Free-Riding  

The only way that the free-riders can survive the Maze system without cheating is 
through contribution. Since the free-riders account for the majority of download ac-
tivities, they will quickly own many of the popular items as well. For the period of 
9/28~10/28, we found that the top 10% popular files account for more than 98.8% of 
total transfer traffic, and over half of which were downloads from the client-like us-
ers. Therefore, they can easily make back their deficits provided that 1) the Maze 
system can quickly direct queries to them and 2) their contents are available.  

0

100

200

300

400

500

600

700

800

900

1000

0 50000 100000 150000 200000 250000
# of User Points

# 
of

 S
ha

re
d 

F
ile

s

 

Fig. 5. Number of shared files versus points 

The first factor is hindered by one of the artifacts that challenges the scalability of 
Maze recently. Because the Maze central server has limited power, as more and more 
contents become available, we have to slow down the indexing process. On October 
8th, 4 out of the 10 Maze central index servers were decommissioned because of bad 
hard disks. This exacerbates the situation even further. Currently, new content of a 



 An Empirical Study of Free-Riding Behavior in the Maze P2P File-Sharing System 189 

peer does not make into the index until a few days later. Complemented with 
friend/neighborhood-lists and the high-reputation users that Maze recommends, this 
has not made searching for popular items too difficult. It is difficult to quantify how 
this affects the low-point peers to earn back their scores until we perform detailed 
simulation to see how many free-riders can become download targets if the index is 
always up to date. However, we believe that this is indeed a factor. We are replacing 
the bad indexing servers. Still, a more complete solution is to implement the P2P 
searching in the future releases. Since popular contents spread out quickly, P2P search 
will allow more download sources to be discovered at a timely fashion. 

Even if a user downloaded a popular object, he may choose to move the file out of 
his Maze partition. The study in [6] shows that 70% of Gnutella users do have any 
files to share. This is clearly not the case in Maze. Fig. 5 shows the distribution of 
total files shared out versus users' reputation score. In fact, the average number of 
shared files of client-like users is 491, versus 281 of the server-like users. It is logical 
to infer that these users also contain a good portion of interesting files. 

0

5000
10000

15000
20000

25000
30000

35000
40000

45000

-15 -10 -5 0 5 10 15 20

# Change of User Points(10K)

# 
of

 U
se

r 
O

nl
in

e 
tim

e 
(s

ec
)

 

Fig. 6. Online session time versus point changes. Each point is the average of a 10K point 
change segment 

Besides the fact that the slow updating of the central index delays queries to be 
sent to these potential sources, there are many other reasons. For instance, the user 
may choose to turn off the Maze server or shut down the machine, either due to re-
source constraints or selfish behavior. Fig. 6 depicts the correlation of the user session 
time and users reputation of 65K randomly picked users.  Overall, users with positive 
point changes have longer session time, on average 2.89 times more than those with 
negative point changes (218 minutes versus 75 minutes). The figure also shows that 
there are users who have earned high points and then stopped contributing and only 
perform downloading. 

Even when queries have been directed to a Maze user, there are other factors that 
could make her earn points less aggressively. A Maze client employs parallel 
downloading from all sources that the index server advices. A source with higher up-
load bandwidth (and machine power as well) will account for higher proportion of the 
file being downloaded, and hence is advantageous to earn more points. Fig. 7 draws the 
scatter graph of the effective upload speed versus the change of reputation points. The 
effective upload speed is the average upload speed weighted over the transfer size. 



190 M. Yang et al. 

0

500

1000

1500

2000

2500

3000

-400000 100000 600000 1100000 1600000

# Change of User Points

# 
of

 T
ra

ns
fe

r 
Sp

ee
d 

(K
bp

s)

 

Fig. 7. Upload speed versus point change 

The users with negative point changes and those with positive point changes up to 
30K have similar upload speed around 310kbps. However, those with changes above 
30K have upload speed more than 400kbps. Thus, upload speed makes a difference 
for those users want to earn high points, but is not a significant factor for the free-
riders. 

0

10

20

30

40

50

60

70

80

90

100

-4096 0 4096 8192 12288

P
er

ce
nt

ag
e 

of
 U

se
r

# Change of User Points
 

Fig. 8. CDF of point changes for NAT and non-NAT users 

There is also the problem of NAT. We have found that 40% of Maze users are be-
hind firewall. Thus, 16% of upload can not happen because the source and the sink 
are behind different firewalls. This does not in general make the NAT problem an 
issue, since there are still 84% of chances that a NAT user can upload to a non-NAT 
user and therefore earn points. In fact, when we look at the point change distribution 
of the NAT versus non-NAT users (Fig. 8), we found that there are more low score 
NAT users than low score non-NAT users. It is true, however, that the non-NAT users 
are easier to earn higher points, 91% of the top500 users are non-NAT users. In other 
words, although there is significant number of NAT users, firewall traversal is an 
important but not deciding factor in the free-riding behavior. Notice the sharp drop of 
both curves at the -4096 point, these correspond to users that have spent all their ini-
tial quota and either leave the system or enter again by re-registration. 



 An Empirical Study of Free-Riding Behavior in the Maze P2P File-Sharing System 191 

In summary, the selfish behavior has been demonstrated more by reducing online 
session time than other factors. In particular, neither the upload speed nor being behind 
the firewall can be legitimate excuses. On the other hand, high upload speed and/or not 
being hindered by the NAT issue are necessary for motivated users to contribute. 

5   Related Work 

There are many works on incentive policies. Due to space constraint, we can not in-
clude all of them. Many of the works [9][10] focus on modeling, for which the em-
pirical data we obtained would be useful. In terms of measurement studies, [6] was 
the first study that pointed out the degree of free-riding in Gnutella. Our data confirms 
the effect but shows that free-riding is not as pronounced in Maze. Our incentive 
policies could be one of the reasons.  

John Douceur [5] proved that if distinct identities for remote entities are not estab-
lished either by an explicit certification authority or by an implicit one, these systems 
are susceptible to Sybil attacks. We believe that incentive policies will not remove 
these attacks. Quite the contrary, it might actually encourage that, as proven by the 
whitewashing behavior in Maze, simply because this is an easier way out for the selfish 
users. The centralized registration in Maze makes it possible to counter these attacks. 

Several measurement studies have characterized the properties of peer-to-peer file-
sharing systems [7][8]. Some of our other experiment results match what these studies 
have found. However, this paper focuses on free-riding and the contributing factors. 

6   Conclusion and Future Work 

This preliminary study on the free-riding behavior in the Maze system has yielded a 
few interesting insights. First of all, the incentive policies have been effective in gen-
eral, but they are circumvented by free-riders using account white-washing. We have 
examined several factors that could contribute to the free-riding behavior.  

We are reasonably confident to reduce the free-riding behaviors further. Since 
popular contents dominate the sharing activities, we should be able to devise mecha-
nisms and policies to spread the load more easily. As we discussed earlier, this entails 
two different aspects: direct queries to sources that would otherwise become free-
riders, and to ensure that contents are available when queries do arrive. The first is the 
responsibility of the query and search mechanism, and we can accomplish it by in-
stalling P2P searching mechanism and/or increasing the frequency of updating the 
central index. The second is simply human nature, and the only way to influence that 
is through more savvy incentive policies (e.g. encourage people to increase their 
online session durations). 

References 

1. http://maze.pku.edu.cn. 
2. Mao Yang, Ben Y. Zhao, Yafei Dai and Zheng Zhang. “Deployment of a large scale peer-to-

peer social network”, Proceedings of the 1st Workshop on Real, Large Distributed Systems 



192 M. Yang et al. 

3. Hua Chen, Mao Yang, et al. “Maze: a Social Peer-to-peer Network”. The International 
Conference on e-Commerce Technology for Dynamic e-Business (CEC-EAST’04). Bei-
jing, China. September, 2004.  

4. http://e.pku.edu.cn. 
5. John Douceur. “The Sybil Attack”. In Proceedings of the 1st International Workshop on 

Peer-to-Peer Systems, pages 251–260, Boston, MA, USA, March 2002. 
6. E. Adar and B. Huberman. “Free Riding on Gnutella”. October, 2000. 
7. S. Saroiu, P. K. Gummadi, and S. D. Gribble. “A measurement study of peer-to-peer file 

sharing systems”. In Proceedings of Multimedia Computing and Networking (MMCN) 
2002. 

8. Krishna P. Gummadi, Richard J. Dunn and et al. “Measurement, Modeling, and Analysis 
of a Peer-to-Peer File-Sharing Workload”. Proceedings of the 19th ACM Symposium on 
Operating Systems Principles (SOSP-19), Bolton Landing, NY.  

9. http://p2pecon.berkeley.edu. 
10. C. Buragohain, D. Agrawal, and S. Suri. “A game theoretic framework for incentives in 

p2p systems”. In Proc. 3rd Intl. Conf. on Peer-to-Peer Computing, 2003. 



Clustering in P2P Exchanges and Consequences
on Performances

Stevens Le Blond1,2, Jean-Loup Guillaume1, and Matthieu Latapy1

1 liafa – cnrs – Université Paris 7, 2 place Jussieu, 75005 Paris, France
{guillaume, latapy}@liafa.jussieu.fr

2 Faculty of Sciences – Vrije Universiteit, De Boelelaan 1081A,
1081 HV, Amsterdam, The Netherland

slblond@few.vu.nl

Abstract. We propose here an analysis of a rich dataset which gives an
exhaustive and dynamic view of the exchanges processed in a running
eDonkey system. We focus on correlation in term of data exchanged
by peers having provided or queried at least one data in common. We
introduce a method to capture these correlations (namely the data clus-
tering), and study it in detail. We then use it to propose a very sim-
ple and efficient way to group data into clusters and show the im-
pact of this underlying structure on search in typical P2P systems. Fi-
nally, we use these results to evaluate the relevance and limitations of
a model proposed in a previous publication. We indicate some realis-
tic values for the parameters of this model, and discuss some possible
improvements.

1 Preliminaries

P2P networks such as KaZaA, eDonkey or Gnutella and more recently Bit-
Torrent [15] are nowadays the most bandwidth consuming applications on the
Internet, ahead of Web traffic [7,11]. Their analysis and optimisation there-
fore appears as a key issue for computer science research. However, the fully
distributed nature of most of these protocols makes it difficult to obtain rel-
evant information on their actual behavior, and little is known on it [2,8,9].
The fact that these behaviors have some crucial consequences on the perfor-
mance of the underlying protocol (both in terms of answer speed and in term
of used bandwidth) makes it a challenge of prime interest to collect and analyze
such data. The observed properties may then be used for the design of efficient
protocols.

1.1 Context

In the last few years, both active and passive measurements have been used to
gather information on peers behaviors in running P2P networks. These studies
gave evidence for a variety of properties which appear as fundamental charac-
teristics of such systems. Among them, let us notice the high ratio of free-riders

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 193–204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



194 S. Le Blond, J.-L. Guillaume, and M. Latapy

[1,3], the heterogeneous distribution (often approximated by a power law) of the
number of queries by peer [7,12], and recently the presence of semantic clustering
in file sharing networks [3,13].

This last property captures the fact that the data exchanged by peers may
overlap significantly: if two peers are interested in a given data, then they prob-
ably are in some other data. By connecting directly such peers, it is possible
to take benefit from this semantic clustering to improve search algorithms and
scalability of the system.

In [3], the authors propose a protocol based on this idea, which reaches very
high performances. It however relies on a static classification which can hardly
be maintained up to date.

Another approach using the same underlying idea is to add a link in a P2P
overlay between peers exchanging files [13,14]. This has the advantage of being
very simple and permits significant improvement of the search process.

In [3,6] the authors use traces of a running eDonkey network, obtained by
crawling caches of a large number of peers. They study some statistical proper-
ties like replication patterns, various distributions, and clustering based on file
types and geography. They then use these data to simulate protocols and to
evaluate their performances in real-world cases. The use of actual P2P traces
where previous works used models (whose relevance is hard to evaluate) is an
important step. However, the large number of free-riders, as well as other mea-
surements problems, makes it difficult to evaluate the relevance of the data.
Moreover, such measurements miss the dynamic aspects of the exchanges and
the fact that fragment of files are made available by peers during the download
of the files.

1.2 Framework and Contribution

Our work lies in this context and proposes a new step in the direction opened
by previous works. We collected some traces using a modified eDonkey server
[10], which made it possible to grab accurate information on all the exchanges
processed by a large number of peers through this server during a significant
portion of time. The server handled up to 50 000 users simultaneously and we
collected 24 hour traces. The size of a typical trace at various times is given in
Figure 1. See [2,4,5], for details on the measurement procedure, on the protocol
and on the basic properties of our traces.

6h 12h 18h 24h

peers 26187 29667 43106 47245

data 187731 244721 323226 383163

links in Q 811042 1081915 1571859 1804330

links in D 12238038 20364268 31522713 38399705

Fig. 1. Time-evolution of the basic statistics for Q and D



Clustering in P2P Exchanges and Consequences on Performances 195

Data

2

2

3

1

1

1

1D
at

a

2

3

Peers

Fig. 2. A query graph (left) and the associated (weighted) data graph (right)

A natural way to encode the gathered data is to define a bipartite graph
Q = (P, D, E), called query graph, as follows (see Figure 2, left):

– P is the set of peers in the network, D is the set of data,
– E ⊆ P × D is a set of undirected edges, where {p, d} ∈ E if and only if the

peer p is active for the data d, which means that p was interested for the
data d or was a provider of d.

Notice that this graph evolves during time, and we will indeed consider it at
various dates.

In order to analyze our data, we will also consider the (weighted) data graph
D = (D, E, w) obtained from the query graph Q as follows (see Figure 2, right):

– D is the set of data,
– E ⊆ D × D is a set of undirected edges, where {d1, d2} ∈ E if and only if

there exists a peer active for both d1 and d2 in Q,
– w is a weight function over the nodes and the edges such that w(d) is the num-

ber of data having been exchanged by peers active for d in Q and w(d1, d2)
is the number of data exchanged by peers in both d1 and d2 in Q.

The sizes of query graphs and data graphs obtained from a typical trace at
various times are given in Figure 1. We use these graphs, which have properties
representative of what we observed of this kind of graphs, throughout this paper.

In the following, we use these graphs and tools from the recent field of com-
plex network analysis to deepen the study of the dynamic traces. We focus in
particular on the data clustering, which captures how much the exchanges pro-
cessed by two sets of peers are similar. In other words, it is a measure of how
much peers active for at least one common data will exchange the same other
data. We then show that these properties have significant impact on the effi-
ciency of searches in the network, and therefore may be used in the design of
efficient P2P protocols. Finally, we will use this analysis to study the relevance
of a previously proposed model.

2 Data Clustering Analysis

Our aim now is to analyze similarities between data in terms of exchanges pro-
cessed by peers active for them. In particular, given two data u and v exchanged



196 S. Le Blond, J.-L. Guillaume, and M. Latapy

by a given peer p we are interested in the number of other common data ex-
changed by peers actives for u or v. This can be measured using the following
parameter over the edges in D:

c(u, v) =
w(u, v)

w(u) + w(v) − w(u, v)

Indeed, the two data u and v induce an edge {u, v} in D, the weight w(u, v)
is nothing but the number of common data exchanged by peers active for u
or v, and the expression w(u) + w(v) − w(u, v) gives the total number of data
exchanged by peers active for u or v. Finally, c(u, v) therefore measures how
much these exchanges overlap. Notice that its value is between 0 and 1.

The value of c(u, v) may however be strongly biased if one of the two nodes
has a high weight and the other a low one: the value would then be very low.
For example, if a data with an high popularity1 is connected to an unpopular
one, then the clustering will probably be low, even if the few data exchanged by
the lowest population are completely included in the large set of data exchanged
by the highest one.

In order to capture these cases, we will also consider the following statistical
parameter:

c̄(u, v) =
w(u, v)

min(w(u), w(v))

which is still in [0; 1] but is always larger than c(u, v) and does not have this
drawback. For instance, in the case described above the obtained value is 1.

We will call c(u, v) the clustering of {u, v} and c̄(u, v) its min-clustering. In
summary, the clustering captures the overlap between data exchanged by two sets
of peers with no consideration of the heterogeneity between the number of data
exchanged, whereas min-clustering takes into account and captures eparticularly
well the fact that a small set of exchanged data can actually be a subset of a
another much larger one.

Figure 3 and 4 show the time-evolution of the distributions2 of c(u, v) and
c̄(u, v), respectively. First notice that the general shape of these distributions is
very stable along time, which indicates that the observations we will derive are
not biased by the timescale or date considered.

Now let us observe (Figure 3) that around 60% of the edges always have a
clustering lower than 0.2. This may indicate that the overlap of exchanges is
not as high as expected. However, this may be a consequence of the fact that
both the peer activity and the data popularity are very heterogeneous: there are
very active peers while most of them are not, and there are very popular data
while most are not. This induces in D many links between data of very different
popularity and a low clustering.
1 The popularity of a data is the number of peers active for that data.
2 The distribution of a parameter x is, for each possible value of x, the ratio between

the number of instances of this value and the total number of instances. Here we
will directly plot the number of instances of each value, which makes it possible to
visualize traces of various sizes (i.e. at various dates) in a same plot.



Clustering in P2P Exchanges and Consequences on Performances 197

%
 o

f 
ed

ge
s

c(u, v)

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

hour 6
hour 12
hour 18
hour 24

Fig. 3. Time evolution of the c(u, v) distribution

c(u, v)

%
 o

f 
ed

ge
s

 0

 5

 10

 15

 20

 25

 30

 0  0.2  0.4  0.6  0.8  1

hour 6
hour 12
hour 18
hour 24

Fig. 4. Time evolution of the c̄(u, v) distribution

This can be corrected using the distribution of min-clustering (Figure 4):
only 15% of the edges have a min-clustering lower than 0.2 while for nearly 60%
higher or equal to 0.5. This indicates that the overlap is indeed high; for instance,
30% of the overlaps between all exchanges actually are a complete inclusion.

Such results may indicate the presence of a hierarchy among exchanges: while
few popular data form the core of D, a large number of less popular ones have
their exchanges mostly included into the ones of the core. If this structure indeed
exists, it may be used to dynamicaly build a multicast tree from a P2P overlay.
We will discuss the presence of such a hierarchy and its implications later in
this contribution.



198 S. Le Blond, J.-L. Guillaume, and M. Latapy

3 Consequences on Searching

Following several previous works (e.g. [3,6,13,14]), one may wonder if the prop-
erties highlighted in previous section may be used to improve search in P2P
systems. To answer this question, we will process the following experiment. We
suppose that each peer has a knowledge of the peers active for the same data as
itself. Then, when a peer p sends a query for a data d, it first looks at the other
peers already active for a data p is active for. If one of them provides d, then
it sends it directly to p. In this case, the clustering has been used and the data
was found using only one hop search.

The time-evolution of this hit ratio is plotted in Figure 5. Despite it is quite
low in the first few minutes (due to the server bootstrap), the ratio quickly
converges to a value close to 50%.

Minutes

%
 o

f 
hi

ts

 25

 30

 35

 40

 45

 50

 55

 60

 0  200  400  600  800  1000  1200  1400

hit

Fig. 5. Time evolution of the hit % using the one hop protocol

To deepen our understanding of what happens, let us consider Figure 6, in
which we plotted the percentage of all the peers, the percentage of all the queries,
and the replication of each data 3 corresponding to the percentage of hits using
a one hop search.

The first thing to notice is that nearly 25% of the peers do not find any
data using the proposed approach. This is quite surprising, since we observed
in Figure 5 that 50% of all the queries are routed with success using the same
approach. This can be understood by observing that this ’null hit’ population
generated only 7% of the queries and so only slighly influenced the high hit
rate previously observed. Additionally, the queried data appear to be very rare
at the time they were asked. This low volume of queries together with the low
replication explain the null hit rate; these peers are not active for enough data
nor enough replicated ones to find them using the one hop search.
3 The replication of a data is the percentage of all the peers active for a given data.



Clustering in P2P Exchanges and Consequences on Performances 199

%

% of hits

 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100

% of peers
% of requests

% of replication

Fig. 6. Correlation between the % of peers, the associated % of queries they generated,

the % of replication of the queried data and the % of hits they obtained after 24h using

the one hop protocol

On the other hand, more than 10% of the peers have a perfect success rate.
One could think that such a result would imply a prohibitive amount of queries;
Figure 6 indicates that it is not the case: the percentage of queries is close to the
number of peers who processed them. Notice however that data found this way
appear to be highly replicated (the population being active for these data at the
time they were asked represents 15% of the peers active for other queried data)
which explains the high success rate. Finally, notice that the average peer’s
success rate increases from 40% to nearly 60% if the ’null hit’ population is
removed from the calculus.

4 Modeling Peer and Data Clusters

In [14] the authors propose a model to represent the semantic structure of P2P
file sharing networks and use it to improve searching. They assume the existence
of semantic types labelled by n ∈ {1, . . . , N} with N denoting the number of
such types. They assume that each data and each peer in the system has exactly
one type. A data of type n is called a n-data, and a peer of type n is called a
n-peer. They denote respectively by dn and un the number of n-data and the
number of n-peer (u for user).

They denote by pn(m) the probability that a query sent by a n-user is for a
m-data.

Clearly, a classification of peers and users captures clustering if, for all n and
m, either pn(m) is close to 0 (n-peers almost never seek m-data) or it is quite
large (n-peers often seek m-data). If it is either 0 or 1 then the clustering is
perfect: n-peers only seek m-data for that value of m such that pn(m) = 1.

This formalism is useful in helping to consider the hierarchical organisation
induced by clustering, for the purpose of simulations for instance. We will see



200 S. Le Blond, J.-L. Guillaume, and M. Latapy

here that the statistical properties observed in previous section may be used to
compute clusters of data, which make it possible to validate the model describe
above. Moreover, we will give some information on parameters which may be
used with the model to make its use realistic.

4.1 Cluster Computation

Notice that computation of relevant clusters in general is a challenging task,
computationaly extensive and untractable in practice on large graphs such as
the one we consider. We can however propose a simple procedure based on the
statistical properties of D observed in previous section: for two given integers
1 < ⊥ < � < |D|,
– sort edges by increasing values of their clustering
– for each edge taken in this order:

• if its removal does not induce a connected component with less than ⊥
vertices then remove it

• if the size of the largest connected component if lower than � then
terminate

We define the data clusters as the connected components finally obtained. The
integers ⊥ and � are respectively the minimal and the maximal sizes of these
clusters.

The idea behind this cluster definition is that edges between data of different
clusters should have a low clustering, indicating that the clusters put together
data with similar sets of exchanges.

In our case, we observed that � = 1000 and ⊥ = 10 give good results,
and that changing their values does not change significantly the results. We will
illustrate this in the following by using � = 1000 and ⊥ ∈ {10, 30, 60, 90}. Notice
that these values ensure both that the clusters will not be too small (they contain
at least ⊥ data) and not too large (their size is bounded by �).

4.2 Cluster Properties

Figure 7 shows that the size distribution of clusters, i.e. the distribution of dn, is
well fitted by a power law (for all considered ⊥). Notice however that the average
clusters sizes are highly influenced by ⊥, for instance, for ⊥ ∈ {10, 30, 60, 90},
the average clusters sizes are 30, 60, 100 and 150 respectively. There is indeed
a natural correlation between ⊥ and the average size of clusters since, despite
some contain up to 1 000 data, most clusters are small, with size close to ⊥. This
indicates that, when using the model proposed in [14], one may suppose a power
law distribution for dn.

Let us now associate to each data cluster all the peers active for a data in the
cluster. The number of peers associated this way is the popularity of the cluster.
One may expect that these popularities will vary much, and that large clusters
will be very popular, possibly concerning almost all the peers in the system.



Clustering in P2P Exchanges and Consequences on Performances 201

Number of data

%
 o

f 
co

m
m

un
iti

es

 0.01

 0.1

 1

 10

 100

 10  100  1000

10
30

90
60

Fig. 7. Distribution of the number of data per cluster for ⊥ ∈ {10, 30, 60, 90}

%
 o

f 
co

m
m

un
iti

es

Number of peers

 0.01

 0.1

 1

 10

 1  10  100  1000  10000

10
30
60
90

Fig. 8. Distribution of the number of peers per cluster for ⊥ ∈ {10, 30, 60, 90}

Figure 8 shows that this is not the case: very few clusters have a low popular-
ity, and none has a huge popularity, the maximum being lower than 4, 000 peers
(to be compared to the total number of peers in the system, around 50, 000).

These statistics show that the clusters we defined, despite their simplicity, do
capture non-trivial information concerning the peers. This might indicate that
data clusters also define peer clusters, as assumed in [14].

In order to check this, we plot in Figure 9 the correlations between the
number of data peers are active for, and the average number of clusters this
population queried in. This plot displays almost linear correlations until peers
reach a degree 100 in D, but the correlation seems to be inverted after this limit:
the most active peers queried data in very few clusters.



202 S. Le Blond, J.-L. Guillaume, and M. Latapy

A
ve

ra
ge

 n
um

be
r 

of
 q

ue
ri

ed
 c

lu
st

er
s

Number of queried data

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700

10
30
60
90

Fig. 9. Correlation between the number of data queried and the average number of

queried cluster for ⊥ ∈ {10, 30, 60, 90}

100% of hit

50% of hit

75% of hit

25% of hit

%
 o

f 
pe

er
s

Number of communities

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

Fig. 10. Number of clusters which has to be queried to get pn(m) = 25%, 50%, 75%

and 100% for ⊥ ∈ {10, 30, 60, 90}

Several important observations can be done here. First, most of the peers
do not ask for data in a constant number of clusters but rather in a number of
clusters which depends on the number of queries they processed. In other words,
peers do not ask for data in only one well identified cluster, in contradiction with
what is assumed in [14].

This could make us conclude that, either the model should be improved
to take this diversity into account, or a more subtle definition of clusters is
necessary. Indeed, there are many ways in which data can be put into clusters,
and the very simple one we proposed capture some features, but not all, of
data/peers relations.



Clustering in P2P Exchanges and Consequences on Performances 203

Notice that the previous plots do not capture the fact that a peer generally
asks for many data in the same cluster (they only show that they ask for data
in many clusters). This is exactly what pn(m), the ratio of m-data asked for by
n-peers, represents.

For each peer, we therefore have taken different values of pn(m) and see how
many clusters have to be queried by this peer to reach each of these values. We
obtained this way the distributions of pn(m) plotted in Figure 10.

It appears that approximately 60% of the peers can find 25% of the data
they look for in only one cluster. This percentage of peers goes over 95% when
we consider up to 3 clusters. Using the same procedure, we can see that asking
only 5 clusters permits to 80% of the peers to find 50% of the data they look
for. Likewise, considering still 5 clusters permits to more than 50% of the peers
to find 75% of the data they look for.

Finally, this analysis shows that our simple cluster definition is enough to argue
that the model proposed in [14] is relevant concerning the data and may be used
with power law distributions of the size of clusters. It however shows that, despite
non-trivial correlations are captured, either the cluster definition or the model fails
in capturing a strict equivalence between a peer and a cluster. It rather indicates
that most of the peers ask their data from a small set clusters, and not only one.

5 Conclusion

In this contribution, we proposed simple statistical parameters to capture the
correlations between the set of peers active for a given data. We used these
parameters first to confirm the previously noticed fact that semantic clustering
can be used to improve search algorithms. Second, we used them to define a
very simple and efficient way to compute data clusters. We have shown that
these clusters succeed in capturing similarities between data.

We used these clusters to discuss the validity of a model of data clustering
proposed in [14]. We obtained information on realistic parameters which should
be used with this model. We also shown that the clusters we define can not be
used directly with this simple model, which indicates that either a more subtle
cluster definition should be considered, or that the model should be extended.
We pointed out some direction for this.

Notice that we focused here on data, but the same kind of approach may be
fruitful with peers. A combination of the clusters we defined on data and clusters
defined in a similar way on peers would probably bring significant improvement.
More subtle cluster computations would also probably help, but we must keep
in mind the huge size of the trace, which forbids intricate methods.

Finally, let us insist on the fact that the analysis of large real-world traces
like the one we presented here is only at its beginning, and that much remains
to understand from it. The lack of relevant statistical parameters (concerning
for example the dynamics of the trace), and of efficient algorithms to deal with
such traces are among the main bottleneck to this, but studies like the one we
presented here show that simple methods can already bring much information.



204 S. Le Blond, J.-L. Guillaume, and M. Latapy

References

1. E. Adar and B. Huberman. Free riding on gnutella, 2000.
2. Stevens Le Blond, Matthieu Latapy, and Jean-Loup Guillaume. Statistical analysis

of a p2p query graph based on degrees and their time evolution. IWDC’04, 2004.
3. F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and L. Massoulié. Clustering

in peer-to-peer file sharing workloads. 3rd International Workshop on Peer-to-Peer
Systems (IPTPS), September 2004.

4. Jean-Loup Guillaume and Stevens Le Blond. P2p exchange network: Measurement
and analysis. 2004.

5. Jean-Loup Guillaume and Stevens Le Blond. Statistical properties of exchanges in
p2p systems. Technical report, PDPTA’04, 2004.

6. S. Handurukande, A.-M. Kermarrec, F. Le Fessant, and L. Massoulié. Exploiting
semantic clustering in the edonkey p2p network. 11th ACM SIGOPS European
Workshop (SIGOPS), September 2004.

7. Nathaniel Leibowitz, Aviv Bergman, Roy Ben-Shaul, and Aviv Shavit. Are file
swapping networks cacheable? characterizing p2p traffic. 7th International Work-
shop on Web Content Caching and Distribution (WCW), August 2002.

8. Nathaniel Leibowitz, Matei Ripeanu, and Adam Wierzbicki. Deconstructing the
kazaa network. The Third IEEE Workshop on Internet Applications, June 2003.

9. Jian Liang, Rakesh Kumar, and Keith Ross. Understanding kazza, 2004.
10. Lugdunum. lugdunum2k.free.fr/.
11. S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy. An analysis of internet

content delivery systems, 2002.
12. Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large networks.

Internet Measurement Workshop 2002, November 2002.
13. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using

interest-based locality in peer-to-peer systems. Internet Measurement Workshop
2002, November 2002.

14. S. Voulgaris, A.-M. Kermarrec, L. Massoulie, and M. van Steen. Exploiting se-
mantic proximity in peer-to-peer content searching. 10th IEEE Int’l Workshop on
Future Trends in Distributed Computing Systems (FTDCS), May 2004.

15. rfc-gnutella.sourceforge.net/developer/testing/index.html
www.bittorrent, www.kazaa.com, www.edonkey2000.com.



The Bittorrent P2P File-Sharing System:
Measurements and Analysis

Johan Pouwelse, Pawe�l Garbacki, Dick Epema, and Henk Sips

Delft University of Technology, Delft, The Netherlands
j.a.pouwelse@ewi.tudelft.nl

Department of Computer Science, Parallel and Distributed systems group

Abstract. Of the many P2P file-sharing prototypes in existence, Bit-
Torrent is one of the few that has managed to attract millions of users.
BitTorrent relies on other (global) components for file search, employs a
moderator system to ensure the integrity of file data, and uses a barter-
ing technique for downloading in order to prevent users from freeriding.
In this paper we present a measurement study of BitTorrent in which we
focus on four issues, viz. availability, integrity, flashcrowd handling, and
download performance. The purpose of this paper is to aid in the under-
standing of a real P2P system that apparently has the right mechanisms
to attract a large user community, to provide measurement data that
may be useful in modeling P2P systems, and to identify design issues in
such systems.

1 Introduction

Even though many P2P file-sharing systems have been proposed and imple-
mented, only very few have stood the test of intensive daily use by a very large
user community. The BitTorrent file-sharing system is one of these systems. Mea-
surements on Internet backbones indicate that BitTorrent has evolved into one
of the most popular networks [8]. In fact, BitTorrent traffic made up 53 % of all
P2P traffic in June 2004 [12]. As BitTorrent is only a file-download protocol, it
relies on other (global) components, such as web sites, for finding files. The most
popular web site for this purpose at the time we performed our measurements
was suprnova.org.

There are different aspects that are important for the acceptance of a P2P
system by a large user community. First, such a system should have a high
availability. Secondly, users should (almost) always receive a good version of
the content (no fake files) [10]. Thirdly, the system should be able to deal with
flashcrowds. Finally, users should obtain a relatively high download speed.

In this paper we present a detailed measurement study of the combination
of BitTorrent and Suprnova. This measurements study addresses all four afore-
mentioned aspects. Our measurement data consist of detailed traces gathered
over a period of 8 months (Jun’03 to Mar’04) of more than two thousand global
components. In addition, for one of the most popular files we followed all 90,155
downloading peers from the injection of the file until its disappearance (several

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 205–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



206 J. Pouwelse et al.

months). In a period of two weeks we measured the bandwidth of 54,845 peers
downloading over a hundred newly injected files. This makes our measurement
effort one of the largest ever conducted.

The contributions of this paper are the following: first, we add to the un-
derstanding of the operation of a P2P file-sharing system that apparently by
its user-friendliness, the quality of the content it delivers, and its performance,
has the right mechanisms to attract millions of users. Second, the results of this
paper can aid in the (mathematical) modeling of P2P systems. For instance,
in the fluid model in [13], it is assumed that the arrival process and the abort
and departure processes of downloaders are Poisson, something that is in obvious
contradiction with our measurements. One of our main conclusions is that within
P2P systems a tension exists between availability, which is improved when there
are no global components, and data integrity, which benefits from centralization.

2 The BitTorrent File-Sharing System

BitTorrent [5] in itself is only a file-downloading protocol. In BitTorrent, files are
split up into chunks (on the order of a thousand per file), and the downloaders
of a file barter for chunks of it by uploading and downloading them in a tit-
for-tat-like manner to prevent parasitic behavior. Each peer is responsible for
maximizing its own download rate by contacting suitable peers, and peers with
high upload rates will with high probability also be able to download with high
speeds. When a peer has finished downloading a file, it may become a seed by
staying online for a while and sharing the file for free, i.e., without bartering.

Table 1. Popular BitTorrent web sites (Oct 2004)

Site name Available files File transfers

Suprnova.org 46,766 2,267,463
Youceff.com 47,137 1,145,889
Piratebay.org 39,294 749,133
Lokitorrent.com 30,957 816,435

To find a file in BitTorrent, users access web sites which act as global direc-
tories of available files. In Table 1, we show for the most popular of these web
sites the number of different files and the number of active file transfers at a
certain time. In december 2004, the top two of these web sites went offline. In
this paper we assume Suprnova as the directory web site.

The Suprnova web site uses a mirroring system to balance user requests across
its mirror sites. The web pages on Suprnova show for each available file the name
and size, the current numbers of downloaders and seeds, and the name of the person
who uploaded the file. To start the download of a file, a user clicks on a link pointing
to .torrentmeta-data file. These meta-data files are not stored on Suprnova or its
mirrors, but are distributed among a number of .torrentfile servers. In turn, each
.torrentfilepoints to a tracker,whichkeeps aglobal registryof all thedownloaders



The Bittorrent P2P File-Sharing System 207

and seeds of the corresponding file. The tracker responds to a user’s request with
a list of some of the peers having (part of) the requested file, with whom the user
can establish direct connections to barter for chunks of the file. One tracker can
supervise the simultaneous downloads of multiple files.

New content is injected into BitTorrent by uploading a .torrent file to the
Suprnova web site and creating a seed with the first copy of the file. In order to
reduce the pollution level, new content is first manually inspected by moderators,
who weed out fake content, content with low perceptual quality, and content
with incorrect naming. A normal user who injects content is called a moderated
submitter. To lower the burden on the moderators, a user who frequently injects
correct content is promoted to the rank of unmoderated submitter, and is allowed
to directly add content. Unmoderated submitters can request a promotion to
moderator status to existing moderators.

Together, BitTorrent and Suprnova form a unique infrastructure that uses
mirroring of the web servers with its directory structure, meta-data distribu-
tion for load balancing, a bartering technique for fair resource sharing, and a
P2P moderation system to filter fake files.

3 Experimental Setup

In this section, we will discuss some details of our measurement software and
the collected data. Our measurement software consists of two parts with three
scripts each. The first part is used for monitoring the global BitTorrent/Suprnova
components, and consists of the Mirror script which measures the availability
and response time of the Suprnova mirrors, the HTML script which gathers
and parses the HTML pages of the Suprnova mirrors and downloads all new
.torrent files, and the Tracker script which parses the .torrent files for new
trackers and checks the status of all trackers.

The second part of our software is used for monitoring actual peers. To
follow thousands of peers at one minute time resolution we used 100 nodes of
our Distributed ASCI Supercomputer (DAS, cs.vu.nl/das2). The Hunt script
selects a file to follow and initiates a measurement of all the peers downloading
this particular file, the Getpeer script contacts the tracker for a given file and
gathers the IP addresses of peers downloading the file, and the Peerping script
contacts numerous peers in parallel and (ab)uses the BitTorrent protocol to
measure their download progress and uptime. The Hunt script monitors once
per minute every active Suprnova mirror for the release of new files. Once a file
is selected for measurement, the Getpeer and Peerping scripts are also activated
at the same time resolution. In this way we are able to obtain the IP addresses of
the peers that inject new content and we can get a good estimate of the average
download speed of individual peers.

In doing our measurements, we experienced three problems. First, our mea-
surements were hindered by the wide-spread usage of firewalls [11]. When a peer
is behind a firewall, our Getpeer script can obtain its IP number, but the Peer-
ping script cannot send any message to it. Therefore, our results for download



208 J. Pouwelse et al.

speed are only valid for non-firewalled peers. The second problem was our in-
ability to obtain all peer IP numbers from a tracker directly. The BitTorrent
protocol specifies that a tracker returns only a limited number (with a default
of 20) of randomly selected peer IP numbers. We define the peer coverage as
the fraction of all peers that we actually discovered. In all our measurements
we obtained a peer coverage of over 95 %. Our final measurement problem was
caused by modifications made to the BitTorrent system itself. Which created
minor gaps in our traces.

4 Measurement Results

In this section, we first show the number of users downloading or seeding on Bit-
Torrent/Suprnova. Then we present detailed performance measurements of the
availability, the integrity, the flashcrowd effect, and the download performance
of the system.

4.1 Overall System Activity

The number of users over time on BitTorrent/Suprnova gives a good indication
of both the general performance and the dynamics of the system. We show the
popularity of BitTorrent/Suprnova in terms of the number of downloads over
time and its dependence on technical failures in the system.

Figure 1 shows the total number of downloads, and the number of downloads of
three types of content (games, movies, and music) in progress in BitTorrent around
Christmas 2003. We have selected this month for presentation because it shows

 0

 100000

 200000

 300000

 400000

 500000

 600000

12/06 12/13 12/20 12/27 01/03 01/10

N
um

be
r 

of
 d

ow
nl

oa
ds

Time [month/day]

HTML mirrors fail
tracker fails

tracker fails

get_mirror

fails

all
movies
games
music

Fig. 1. The number of users downloading or seeding on BitTorrent/Suprnova for one

month (Dec’03-Jan’04)



The Bittorrent P2P File-Sharing System 209

a large variance in the number of downloads due to several BitTorrent/Suprnova
failures. The lowest and highest number of downloads in Figure 1 are 237,500 (on
Christmas day) and 576,500 (on January 9). Our HTML script requests every hour
all pages from one of the active Suprnovamirrors.The consecutive data points have
been connected with a line when there was no overall systems failure.

There are two things to be noted in Figure 1. The first is the daily cycle; the
minimum and maximum (at around 23:00 GMT) number of downloads occur
at roughly the same time each day, which is similar to the results found in [14].
The second is the large variation due to failures of either the mirroring system
across the Suprnova mirrors, of the mirrors themselves, of the .torrent servers,
or of the trackers. For example, on December 8 and 10, gaps occurred due to
failures of the mirroring system and of 6 out of 8 Suprnova mirrors, and on
Christmas day, a large tracker went off-line for 98 hours. The failure of this
single tracker alone reduced the number of available movies from 1675 to 1017,
and resulted in a sharp reduction in the number of downloads. From January 5
to 10, the mirroring system was also off-line a few times, causing suprnova.org
to be unusable and the Suprnova mirrors not being updated, which is visible in
the figure as a few gaps in the ”all” line. The figure suggests that users are not
discouraged by such failures.

We conclude that the number of active users in the system is strongly influ-
enced by the availability of the global components in BitTorrent/Suprnova.

4.2 Availability

In this section we present measurements of the availability of both the global
Suprnova components and the BitTorrent peers.

The BitTorrent/Suprnova architecture is vulnerable because of potential fail-
ures of the four types of global components. The main suprnova.org server
sometimes switched IP number and was down several times. The various mir-
rors rarely survive longer than a few days due to the high demands of over
1,200,000 daily visitors (Oct 2004), and sometimes, fewer than five mirrors were
up. Occasionally, no .torrent file servers were available, blocking all new down-
loads. In general, trackers are a frequent target for denial-of-service attacks and
are costly to operate due to GBytes of daily bandwidth consumption.

Figure 2 shows the results of our availability measurements of 234 Suprnova
mirrors, 95 .torrent file servers, and 1,941 BitTorrent trackers (Suprnova.org it-
self is not shown). In the figure we plot the average uptime in days for these global
components ranked according to decreasing uptime. Only half of the Suprnova
mirrors had an average uptime of over 2.1 days, which is a good indication of their
(un)availability. In addition, only 39 mirrors had a continuous uptime period
longer than two weeks. We can conclude that reliable webhosting of Suprnova
pages is a problem. As shown in the figure, the .torrent file servers are even
less reliable. A few trackers show a high degree of availability, with one tracker
even showing a continuous uptime period of over 100 days. Half of the trackers
had an average uptime of 1.5 day or more, and the 100 top ranking trackers had
an average uptime of more than 15.7 days.



210 J. Pouwelse et al.

 0.1

 1

 10

 100

 1  10  100  1000

A
ve

ra
ge

 u
pt

im
e 

pe
rio

d 
[d

ay
s]

Average-uptime ranking

Trackers

HTML mirrors

.torrent servers

Fig. 2. The uptime ranking of three types of BitTorrent/Suprnova global components

In Figure 1 we have shown that unavailability has a significant influence
on popularity. Combined with the high frequency of such failures as apparent
from Figure 2, we conclude that there is an obvious need to decentralize the
global components. However, all the features that make BitTorrent/Suprnova
exceptional (easy single-click-download web interface, low level of pollution, and
high download performance) are heavily dependent on these global components.

The availability of individual peers over a long time period has never been
studied, despite its importance. We measured peer availability for over three
months, which is significantly longer than reported in [2], [4], and [14].

On December 10, 2003 the popular PC game “Beyond Good and Evil” from
Ubisoft was injected into BitTorrent/Suprnova and on March 11, 2004 it died.
We followed this content and obtained 90,155 peer IP numbers using our Getpeer
script. Of these IP numbers, only 53,883 were not behind firewalls and could be
traced by our Peerping script. We measured the uptime of all non-firewalled
peers with a one minute resolution.

Figure 3 shows the results of our uptime measurements. Here we plot the
peer uptime in hours after they have finished downloading with the peers ranked
according to decreasing uptime. The longest uptime is 83.5 days. Note that this
log-log plot shows an almost straight line between peer 10 and peer 5,000. The
sharp drop after 5,000 indicates that the majority of users disconnect from the
system within a few hours after the download has been finished. This sharp
drop has important implications because the actual download time of this game
spans several days. Figure 3 shows that seeds with a high availability are rare.
Only 9,219 out of 53,883 peers (17 %) have an uptime longer than one hour after
they finished downloading. For 10 hours this number has decreased to only 1,649
peers (3.1 %), and for 100 hours to a mere 183 peers (0.34 %).

Our two availability figures depict crucial information for architectural im-
provements. To increase the availability of the whole system, the functionality



The Bittorrent P2P File-Sharing System 211

 0.1

 1

 10

 100

 1000

 1  10  100  1000  10000

P
ee

r 
up

tim
e 

[h
ou

rs
]

Peer uptime ranking

Content lifetime

Fig. 3. The uptime distribution of the 53,833 peers downloading ”Beyond Good

and Evil”

of the global components would have to be distributed, possibly across the ordi-
nary peers. However, as peers with a high uptime are currently very rare, then
peers should be given incentives to lengthen their uptimes.

4.3 Integrity

This sectionanalyses the integrity inBitTorrent/Suprnovaofboththecontent itself
and of the associated meta-data, which is a notorious problem in P2P systems.

In order to test the integrity of meta-data, we donated to Suprnova an ac-
count for hosting a mirror. By installing spyware in the HTML code, we have
registered each .torrent download and could have easily corrupt the meta-
data. We conclude that using donated resources for hosting meta-data entails
substantial integrity and privacy risks.

As to the integrity of the content, P2P message boards and other sources
strongly indicate that BitTorrent/Suprnova is virtually pollution free. However,
a direct measurement of fake or corrupted files is difficult; manually checking
the content of many files is not really a viable option. Instead, we actively tried
to pollute the system. We created several accounts on different computers from
which we tried to insert files that were obviously fake. We failed; the moderators
filtered out our fake files.

The system of moderators seems to be very effective in removing fake and
corrupted files. The following measurements show that only a few of such vol-
unteers are needed. Figure 4 shows the numbers of files that have been injected
by the 20 moderators, the 71 unmoderated submitters, and the 7,933 mod-
erated submitters that were active between June 2003 and March 2004. The
ten most active moderated submitters injected 5,191 files, versus 1,693 for the
unmoderated submitters and 274 for the moderators. We are surprised that a



212 J. Pouwelse et al.

 1

 10

 100

 1000

 1  10  100  1000  10000

A
m

ou
nt

 o
f c

on
te

nt
 in

se
rt

ed
 [.

to
rr

en
ts

]

User ranking

Moderated submitters

Unmoderated submitters

Moderators

Fig. 4. The activity of the different content submitters on Suprnova to prevent

pollution

mere 20 moderators were able to effectively manage the numerous daily content
injections with such a simple system. Unfortunately, this system of moderation
relies on global components and is extremely difficult to distribute.

4.4 Flashcrowds

We now focus on the system’s reaction to the sudden popularity of a single (new)
file. This phenomenon is also called the flashcrowd effect. Figure 5 shows the num-
ber ofdownloads for a single file as a functionof time (theLordof theRings IIImovie
with size 1.87 GByte). We have selected this file because it uses a tracker (Future-
Zone.TV) which provides access to detailed statistics, which we collected every five
minutes with ourTracker script.The top line shows the sum of the number of down-
loads inprogressandthenumberof seedsaccording to this tracker,while thebottom
lineonly shows thenumberof seeds.During thefirstfivedays,nopeerfinisheddown-
loading the file and the injector of the file was continuously online. This long time
period provides a clear opportunity to identify copyright violators. The statistics
from Suprnova were fetched by our HTML script every hour, and are in agreement
with the total tracker results to such an extent that the lines overlap almost com-
pletely. Only on December 23, 2003 there was a problem with the tracker for a few
minutes, which is not visible in the Suprnova data. The results from the Peerping
script show a significantly lower number of downloads, which is due to the firewall
problem (40 % of the peers were firewalled). The gaps in the Peerping results were
due to disk quota problems on theDAS,which ran ourmeasurement software.From
the measurements we conclude that the global BitTorrent/Suprnova components
are capableof efficientlyhandlingvery largeflashcrowds.Also,becauseof the strong
sudden increase in the number of downloaders, it is clear that the arrival process is
not Poisson.



The Bittorrent P2P File-Sharing System 213

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

12/21 12/23 12/25 12/27 12/29 12/31 01/02 01/04

N
um

be
r 

of
 d

ow
nl

oa
ds

Time [month/day]

seeds

peerping

tracker and Suprnova

Tracker FutureZone.TV
Suprnova.org HTML

Peerping scripts
Seeders only

Fig. 5. Flashcrowd effect of “Lord of the Rings III”

4.5 Download Performance

In this section, we examine the efficiency (download speed) and the effectiveness
(number of available files) of downloading.

Figure 6 presents the results of a two-week experiment in which the average
download bandwidth of 54,845 peers was measured. To obtain these measure-
ments, our Hunt script followed the first 108 files that where added to Suprnova
on March 10, 2004. The figure also shows the Cumulative Distribution Function
(CDF) of the fraction of peers with a certain download speed. It turns out that
90% of the peers had a download speed below 520 kbps; the average download

 1

 10

 100

 1000

 10000

 0  500  1000  1500  2000  2500  3000  3500  4000
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r 

of
 d

ow
nl

oa
de

rs

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n 

(C
D

F
)

Average downstream bandwidth [kbps]

Number of downloaders
CDF

Fig. 6. The average download speed of peers



214 J. Pouwelse et al.

speed of 240 kbps allowed peers to fetch even large files in one day. An important
observation is the exponential relation between the average download speed and
the number of downloads at that speed.

In BitTorrent the availability of content is unpredictable. When the popu-
larity drops and the last peer/seed with certain content goes offline, the content
dies. Figure 7 shows the content lifetime of all large files (at least 500 MByte) on

 20

 40

 60

 80

 100

 120

 140

 160

 1  10  100  1000

F
ile

 li
fe

tim
e 

[d
ay

s]

Number of seeds after 10 days

Fig. 7. The content lifetime versus the number of seeds after 10 days for over

14,000 files

BitTorrent/Suprnova we have followed. Each file is represented as a data point
with on the horizontal axis the number of seeds for the file 10 days after its in-
jection time, and on the vertical axis its content lifetime. Important observations
are that the number of seeds after 10 days is not an accurate predictor for the
content lifetime, and that files with only a single seed can still have a relatively
long content lifetime.

BitTorrent itself does not have incentives to seed, but there are Suprnova-like
websites that do so. For instance, the software from Yabtuc.org consists of such
a website with an integrated tracker which registers seeding behaviour. When
users do not upload sufficiently, their access is temporarily denied. However, this
system is even more centralized then Suprnova due to the integration of website
and tracker at a single location.

5 Related Work

Previous work on BitTorrent has focused on measurements [5,12,8,7], theoreti-
cal analysis [13], and improvements [16]. In [7], the log of a Bittorrent tracker
is analysed; it shows for a single file the flashcrowd effect and download speed.
In [13] a fluid model is used to determine the average download time of a single



The Bittorrent P2P File-Sharing System 215

file. This remarkable model assumes Poisson arrival and departure processes for
downloaders and seeds, equal upload and download bandwidths for all peers, and
no flashcrowd effect. However, their assumption of Poisson processes is contra-
dicted by the results of this paper, indicating the strong need for proper workload
characterization to validate P2P models.

Improvements to BitTorrent-like software are presented in [16]. Their sys-
tem effectively decentralizes the tracker. However, due to the complete lack of
integrity measures it will be trivial to corrupt this system.

For other P2P systems than BitTorrent, several measurement studies of P2P
networks have addressed the issues of availability [2,4,6], integrity [10], flashcrowds
[5,9], anddownloadperformance [1,15,14,3,4]. Most of the availability studies only
span a few days [2] or weeks [4], making it difficult to draw conclusions on long-
term peer behavior. The only long-term study is a 200-day trace of the Kazaa
traffic on the University of Washington backbone [6], but the well-connected
users with free Internet access in this environment are not average P2P users.
Integrity of P2P systems has received little attention from academia. A unique
study found that for popular songs on Kazaa, up to 70 % of the different versions
are polluted or simply fake [10]. The Kazaa moderation system based on voting
is therefore completely ineffective. In one of the first studies (August 2000) re-
lated to download performance [1], over 35,000 Gnutella peers where followed for
one day. Nearly 70 % of the peers did not contribute any bandwidth. In [15] it
is found that less than 10 % of the IP numbers fill about 99 % of all P2P band-
width. In [14], SProbe (sprobe.cs.washington.edu) was used to measure the
bandwidth of 223,000 Gnutella peers in May 2001. It turned out that roughly
8 % of the Gnutella peers downloaded files at speeds lower than 64 kbps.

Content lifetime is still a poorly understood and unexplored research area.
Only one paper has investigated when content appeared on a P2P network, but
not when it disappeared [3].

6 Discussion and Conclusions

In this paper we have presented a detailed measurement study and an analysis
of the BitTorrent/Suprnova P2P system. We believe that this study is a con-
tribution to the ongoing effort to gain insight into the behavior of widely used
P2P systems. In order to share our findings we have published all raw data files
(anonymized), measurement software, and documentation on peer-2-peer.org.

One of the big advantages of BitTorrent/Suprnova is the high level of integrity
of both the content and the meta-data due to the working of its global compo-
nents. We have shown that only 20 moderators combined with numerous other
volunteers solve the fake-file problem on BitTorrent/Suprnova. However, this
comes at a price: system availability is hampered by the global nature of these
components. Decentralization would provide an obvious solution, but makes the
meta-data more vulnerable. Also, a decentralized scheme such as in Kazaa has no
availability problems but lacks integrity, since Kazaa is plagued with many fake
files. Clearly, decentralization is an unsolved issue that needs further research.



216 J. Pouwelse et al.

Another future design challenge for P2P file sharing is creating incentives to
seed. For example, peers that seed files should be given preference to barter for
other files.

References

1. E. Adar and B. A. Huberman. Free riding on gnutella. Technical report, Xerox
PARC, August 2000.

2. R. Bhagwan, S. Savage, and G. M. Voelker. Understanding availability. In Inter-
national Workshop on Peer to Peer Systems, Berkeley, CA, USA, February 2003.

3. S. Byers, L. Cranor, E. Cronin, D. Kormann, and P. McDaniel. Analysis of security
vulnerabilities in the movie production and distribution process. In The 2003 ACM
Workshop on DRM, Washington, DC, USA, Oct 2003.

4. J. Chu, K. Labonte, and B. Levine. Availability and locality measurements of peer-
to-peer file systems. In ITCom: Scalability and Traffic Control in IP Networks,
Boston, MA, USA, July 2002.

5. B. Cohen. Incentives build robustness in bittorrent. In Workshop on Economics
of Peer-to-Peer Systems, Berkeley, USA, May 2003. http://bittorrent.com/.

6. K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan. Measure-
ment, modeling, and analysis of a peer-to-peer file-sharing workload. In 19-th ACM
Symposium on Operating Systems Principles, Bolton Landing, NY, USA, October
2003.

7. M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and L. Garces-Erice.
Dissecting bittorrent: Five months in a torrent’s lifetime. In Passive and Active
Measurements, Antibes Juan-les-Pins, France, April 2004.

8. T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and M. Faloutsos. Is p2p dying
or just hiding? In Globecom, Dallas, TX, USA, November 2004.

9. N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstructing the kazaa network.
In 3rd IEEE Workshop on Internet Applications (WIAPP’03), San Jose, CA, USA,
June 2003.

10. J. Liang, R. Kumar, Y. Xi, and K. Ross. Pollution in p2p file sharing systems. In
IEEE Infocom, Miami, FL, USA, March 2005.

11. T. Oh-ishi, K. Sakai, T. Iwata, and A. Kurokawa. The deployment of cache servers
in p2p networks for improved performance in content-delivery. In Third Inter-
national Conference on Peer-to-Peer Computing (P2P’03), Linkoping, Sweden,
September 2003.

12. A. Parker. The true picture of peer-to-peer filesharing, 2004.
http://www.cachelogic.com/.

13. D. Qiu and R. Srikant. Modeling and performance analysis of bit torrent-like
peer-to-peer networks. In ACM SIGCOMM, Portland, OR, USA, August 2004.

14. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-
peer file sharing systems. In Multimedia Computing and Networking (MMCN’02),
San Jose, CA, USA, January 2002.

15. S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks.
IEEE/ACM Transactions on Networking, 12(2):219–232, 2004.

16. R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A cooperative bulk data
transfer protocol. In IEEE Infocom, Honk Kong, China, March 2004.



Dynamic Load Balancing in Distributed
Hash Tables �

Marcin Bienkowski1, Miroslaw Korzeniowski1, and
Friedhelm Meyer auf der Heide2

1 International Graduate School of Dynamic Intelligent Systems,
Computer Science Department, University of Paderborn,

D-33102 Paderborn, Germany
{young, rudy}@upb.de

2 Heinz Nixdorf Institute and Computer Science Department,
University of Paderborn, D-33102 Paderborn, Germany

fmadh@upb.de

Abstract. In Peer-to-Peer networks based on consistent hashing and
ring topology, each server is responsible for an interval chosen (pseudo-)
randomly on a unit circle. The topology of the network, the communica-
tion load, and the amount of data a server stores depend heavily on the
length of its interval.

Additionally, the nodes are allowed to join the network or to leave
it at any time. Such operations can destroy the balance of the network,
even if all the intervals had equal lengths in the beginning.

This paper deals with the task of keeping such a system balanced,
so that the lengths of intervals assigned to the nodes differ at most by
a constant factor. We propose a simple fully distributed scheme, which
works in a constant number of rounds and achieves optimal balance with
high probability. Each round takes time at most O(D + log n), where D
is the diameter of a specific network (e.g. Θ(log n) for Chord [15] and

Θ log n
log log n

for the continous-discrete approach proposed by Naor and

Wieder [12,11]).
The scheme is a continuous process which does not have to be informed

about the possible imbalance or the current size of the network to start
working. The total number of migrations is within a constant factor from
the number of migrations generated by the optimal centralized algorithm
starting with the same initial network state.

1 Introduction

Peer-to-Peer networks are an efficient tool for storage and location of data since
there is no central server which could become a bottleneck and the data is evenly
distributed among the participants.
� Partially supported by DFG-Sonderforschungsbereich 376 “Massive Parallelität: Al-

gorithmen, Entwurfsmethoden, Anwendungen” and by the Future and Emerging
Technologies programme of EU under EU Contract 001907 DELIS ”Dynamically
Evolving, Large Scale Information Systems”.

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 217–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



218 M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide

The Peer-to-Peer networks which we are considering are based on consistent
hashing [6] with ring topology like Chord [15], Tapestry [5], Pastry [14], and a
topology inspired by de Bruijn graph [12,11]. The exact structure of the topology
is not relevant. It is, however, important that each server has direct links to its
successor and predecessor on the ring and that there is a routine that lets any
server contact the server responsible for any given point in the network in time D.

A crucial parameter of a network defined in this way is its smoothness which is
the ratio of the length of the longest interval to the length of the shortest interval.
The smoothness is a parameter, which informs about three aspects of load balance.

– Storage load of a server: The longer its interval is, the more data has to be
stored in the server. On the other hand, if there are n servers and Ω(n ·
log n) items distributed (pseudo-) randomly on the ring, then, with high
probability, the items are distributed evenly among the servers provided
that the smoothness is constant.

– Degree of a node: A longer interval has a higher probability of being con-
tacted by many short intervals which increases its in-degree.

– Congestion and dilation: Having constant smoothness is necessary to get
small such routing parameters for example in [12,11] .

Even if we choose the points for the nodes fully randomly, the smoothness is
as high as Ω(n · log n) with high probability1 , whereas we would like it to be
constant (n denotes the current number of nodes).

1.1 Our Results

We present a fully distributed algorithm which makes the smoothness constant
using Θ(D + log n) direct communication steps per node. The algorithm can
start with any distribution of nodes on the ring. It does not need to know D or
n. A knowledge of an upper bound of log n suffices.

1.2 Related Work

Load balancing has been a crucial issue in the field of Peer-to-Peer networks
since the design of the first network topologies like Chord [15]. It was proposed
that each real server works as log n virtual servers, thus greatly decreasing the
probability that some server will get a large part of the ring. Some extensions of
this method were proposed in [13] and [4], where more schemes based on virtual
servers were introduced and experimentally evaluated. Unfortunately, such an
approach increases the degree of each server by a factor of log n, because each
server has to keep all the links of all its virtual servers.

The paradigm of many random choices [10] was used by Byers et al [3] and
by Naor and Wieder [12,11]. When a server joins, it contacts log n random places
in the network and chooses to cut the longest of all the found intervals. This
yields constant smoothness with high probability.
1 With high probability (w.h.p.) means with probability at least 1 −O 1

nl for arbi-
trary constant l.



Dynamic Load Balancing in Distributed Hash Tables 219

A similar approach was proposed in [1]. It extensively uses the structure
of the hypercube to decrease the number of random choices to one and the
communication to only one node and its neighbors. It also achieves constant
smoothness with high probability.

The approaches above have a certain drawback. They both assume that
servers join the network sequentially. What is more important, they do not pro-
vide analysis for the problem of balancing the intervals afresh when servers leave
the network.

One of the most recent approaches due to Karger and Ruhl is presented in
[7,8]. The authors propose a scheme, in which each node chooses Θ(log n) places
in the network and takes responsibility for only one of them. This can change
if some nodes leave or join, but each node migrates only among the Θ(log n)
places it chose and after each operation Θ(log log n) nodes have to migrate on
expectation. The advantage of our algorithm is that the number of migrations is
always within a constant factor from optimal centralized algorithm. Both their
and our algorithms use only tiny messages for checking the network state, and in
both approaches the number of messages in half-life2 can be bounded by Θ(log n)
per server. Their scheme is claimed to be resistant to attacks thanks to the fact
that each node can only join in logarithmically bounded number of places on
the ring. However, in [2] it is stated that such a scheme cannot be secure and
that more sophisticated algorithms are needed to provide provable security. The
reasoning for this is that with IPv6 the adversary has access to thousands of
IP numbers and she can join the system with the ones falling into an interval
that she has chosen. She does not have to join the system with each possible IP
to check if this IP is useful, because the hash functions are public and she can
compute them offline.

Manku [9] presented a scheme based on a virtual binary tree that achieves
constant smoothness with low communication cost for servers joining or leaving
the network. It is also shown that the smoothness can be diminished to as low
as (1 + ε) with communication cost per operation increased to O(1/ε). All the
servers form a binary tree, where some of them (called active) are responsible
for perfect balancing of subtrees rooted at them. Our scheme treats all servers
evenly and is substantially simpler.

2 The Algorithm

In this paper we do not aim at optimizing the constants used, but rather at
the simplicity of the algorithm and its analysis. For the next two subsections
we fix a situation with some number n of servers in the system, and let l(Ii)
be the length of the interval Ii corresponding to server i. For the simplicity of
the analysis we assume a static situation, i.e. no nodes try to join or leave the
network during the rebalancing.

2 Half-life of the network is the time it takes for half of the servers in the system to
arrive or depart.



220 M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide

2.1 Estimating the Current Number of Servers

The goal of this subsection is to provide a scheme which, for every server i,
returns an estimate ni of the total number of nodes, so that each ni is within a
constant factor of n, with high probability.

Our approach is based on [2] where Awerbuch and Scheideler give an algo-
rithm which yields a constant approximation of n in every node assuming that
the nodes are distributed uniformly at random in the interval [0, 1].

We define the following infinite and continuous process. Each node keeps a
connection to one random position on the ring. This position is called a marker.
The marker of a node is fixed only for D rounds during which the node is looking
for a new random location for the marker.

The process of constantly changing the positions of markers is needed for the
following reason. We show that for a fixed random configuration of markers our
algorithm works properly with high probability. However, since the process runs
forever, and nodes are allowed to leave and join (and thus change the positions
of their markers), a bad configuration may (and will) appear at some point in
time. We assure that the probability of failure in time step t is independent of
the probability of failure in time step t + D, and this enables the process to
recover even if a bad event occurs.

Each node v estimates the size of the network as follows. It sets initially
l := lv which is the length of its interval and m := mv which is the number of
markers its interval stores. As long as m < log 1

l , the next not yet contacted
successor is contacted, and both l and m are increased by its length and the
number of markers, respectively.

Finally, l is decreased so that m = log 1
l . This can be done locally using only

the information from the last server on our path.
The following Lemma from [2] states how large l is when the algorithm stops.

Lemma 1. With high probability, α · log n
n ≤ l ≤ β · log n

n for constants α and β.

In the following corollary we slightly reformulate this lemma in order to get
an approximation of the number of servers n from an approximation of log n

n .

Corollary 1. Let l be the length of an interval found by the algorithm. Let
ni be the solution of log x − log log x = log(1/l). Then with high probability
n
β2 ≤ ni ≤ n

α2 .

In the rest of the paper we assume that each server has computed ni. Ad-
ditionally, there are global constants l and u such that we may assume l · ni ≤
n ≤ u · ni, for eeach i.

2.2 The Load Balancing Algorithm

We call the intervals of length at most 4
l·ni

short and intervals of length at least
12·u
l2·ni

long. Intervals of length between 4
l·ni

and 12·u
l2·ni

are called middle. Notice
that short intervals are defined so that each middle or long interval has length
at least 4

n . On the other hand, long intervals are defined so that by halving a
long interval we never obtain a short interval.



Dynamic Load Balancing in Distributed Hash Tables 221

The algorithm will minimize the length of the longest interval, but we also
have to take care that no interval is too short. Therefore, before we begin the
routine, we force all the intervals with lengths smaller than 1

2·l·ni
to leave the

network. By doing this, we assure that the length of the shortest interval in the
network will be bounded from below by 1

2·n . We have to explain why this does
not destroy the structure of the network.

First of all, it is possible that we remove a huge fraction of the nodes. It is
even possible that a very long interval appears, even though the network was
balanced before. This is not a problem, since the algorithm will rebalance the
system. Besides, if this algorithm is used also for new nodes at the moment of
joining, this initialization will never be needed. We do not completely remove
the nodes with too short intervals from the network. The number of nodes n and
thus also the number of markers is unaffected, and the removed nodes will later
act as though they were simple short intervals. Each of these nodes can contact
the network through its marker.

Our algorithm works in rounds. In each round we find a linear number of
short intervals which can leave the network without introducing any new long
intervals and then we use them to divide the existing long intervals.

The routine works differently for different nodes, depending on the initial
server’s interval’s length. The middle intervals and the short intervals which
decided to stay help only by forwarding the contacts that come to them. The
pseudocodes for all types of intervals are depicted in Figure 1.

short
state := staying
if (predecessor is short )

with probability 1
2

change state to leaving
if (state = leaving and predecessor.state = staying)
{

p := random(0..1)
P := the node responsible for p
contact consecutively the node P and its 6 · log(u · ni) successors on the ring
if (a node R accepts)

leave and rejoin in the middle of the interval of R
}
At any time, if any node contacts, reject.

middle
At any time, if any node contacts, reject.

long
wait for contacts
if any node contacts, accept

Fig. 1. The algorithm with respect to lengths of intervals (one round)



222 M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide

Theorem 1. The algorithm has the following properties, all holding with high
probability:

1. In each round each node incurs a communication cost of at most O(D +
log n).

2. The total number of migrated nodes is within a constant factor from the
number of migrations generated by the optimal centralized algorithm with
the same initial network state.

3. Each node is migrated at most once.
4. O(1) rounds are sufficient to achieve constant smoothness.

Proof. The first statement of the theorem follows easily from the algorithm due
to the fact that each short node sends a message to a random destination which
takes time D and then consecutively contacts the successors of the found node.
This incurs additional communication cost of at most r · (log n + log u). Ad-
ditionaly in each round each node changes the position of its marker and this
operation also incurs communication cost D.

The second one is guaranteed by the property that if a node tries to leave
the network and join it somewhere else, it is certain that its predecessor is short
and is not going to change its location. This assures that the predecessor will
take over the job of our interval and it will not become long. Therefore, no
long interval is ever created. Both our and the optimal centralized algorithm
have to cut each long interval into middle intervals. Let M and S be the upper
thresholds for the lengths of a middle and short interval, respectively, and l(I)
be the length of an arbitrary long interval. The optimal algorithm needs at least
�l(I)/M� cuts, wheras ours always cuts an interval in the middle and performs
at most 2�log(l(I)/S)� cuts, which can be at most constant times larger because
M/S is constant.

The statement that each server is migrated at most once follows from the
reasoning below. A server is migrated only if its interval is short. Due to the gap
between the upper threshold for short interval and the lower threshold for long
interval, after being migrated the server never takes responsibility for a short
interval, so it will not be migrated again.

In order to prove the last statement of the theorem, we show the following
two lemmas. The first one shows how many short intervals are willing to help
during a constant number of rounds. The second one states how many helpful
intervals are needed so that the algorithm succeeds in balancing the system.

Lemma 2. For any constant a ≥ 0, there exists a constant c, such that in c
rounds at least a · n nodes are ready to migrate, w.h.p.

Proof. As stated before, the length of each middle or long interval is at least 4
n

and thus at most 1
4 · n intervals are middle or long . Therefore, we have at least

3
4 · n nodes responsible for short intervals.

We number all the nodes in order of their position in the ring with numbers
0, . . . , n − 1. For simplicity we assume that n is even, and divide the set of all
nodes into n/2 pairs Pi = (2i, 2i + 1), where i = 0, ..., n

2 − 1. Then there are at



Dynamic Load Balancing in Distributed Hash Tables 223

least 1
2 ·n− 1

4 ·n = 1
4 ·n pairs Pi, which contain indexes of two short intervals. Since

the first element of a pair is assigned state staying with probability at least 1/2
and the second element state leaving with probability 1/2, the probability that
the second element is eager to migrate is at least 1/4. For two different pairs
Pi and Pj migrations of their second elements are independent. We stress here
that this reasoning only only bounds the number of nodes able to migrate from
below. For example, we do not consider first elements of pairs which also may
migrate in some cases. Nevertheless, we are able to show that the number of
migrating elements is large enough. Notice also that even if in one round many
of the nodes migrate, it is still guaranteed that in each of the next rounds there
will still exist at least 3

4 · n short intervals.
The above process stochastically dominates a Bernoulli process with c · n/4

trials and single trial success probability p = 1/4. Let X be a random variable
denoting the number of successes in the Bernoulli process. Then E[X ] = c ·n/16
and we can use Chernoff bound to show that X ≥ a · n with high probability if
we only choose c large enough with respect to a. ��
In the following lemma we deal with cutting one long interval into middle intervals.

Lemma 3. There exists a constant b such that for any long interval I, after b · n
contacts are generated overall, the interval I will be cut into middle intervals, w.h.p.

Proof. For the further analysis we will need that l(I) ≤ log n
n , therefore we first

consider the case where l(I) > log n
n . We would like to estimate the number of

contacts that have to be generated in order to cut I into intervals of length at
most log n

n . We depict the process of cutting I on a binary tree. Let I be the root
of this tree and its children the two intervals into which I is cut after it receives
the first contact. The tree is built further in the same way and achieves its lowest
level when its nodes have length s such that 1

2 · log n
n ≤ s ≤ log n

n . The tree has
height at most log n. If a leaf gets log n contacts, it can use them to cover the
whole path from itself to the root. Such covering is a witness that this interval
will be separated from others. Thus, if each of the leaves gets log n contacts,
interval I will be cut into intervals of length at most log n

n .
Let b1 be a sufficiently large constant and consider first b1 · n contacts. We will

bound the probability that one of the leaves gets atmost log n of these contacts. Let
X be a random variable depicting how many contacts fall into a leaf J . The prob-
ability that a contact hits a leaf is equal to the length of this leaf and the expected
number of contacts that hit a leaf is E[X ] ≥ b1 · log n. Chernoff bound guarantees
that, if b1 is large enough, the number of contacts is at least log n, w.h.p.

There are at most n leaves in this tree, so each of them gets sufficiently
many contacts with high probability. In the further phase we assume that all
the intervals existing in the network are of length at most log n

n .
Let J be any of such intervals. Consider the maximal possible set K of

predecessors of J , such that their total length is at most 2 · log n
n . Maximality

assures that l(K) ≥ log n
n . The upper bound on the length assures that even if the

intervals belonging to K and J are cut (“are cut” in this context means “have
been cut”, “are being cut” and/or ”will be cut”) into smallest possible pieces



224 M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide

(of length 2
n ), their number does not exceed 6 · log n. Therefore, if a contact hits

some of them and is not needed by any of them, then it is forwarded to J and
can reach its furthest end. We consider only the contacts that hit K. Some of
them will be used by K and the rest will be forwarded to J .

Let b2 bea constant andY bea randomvariabledenoting thenumber of contacts
that fall intoK in a process inwhich b2 ·n contacts are generated in thenetwork.We
want to show that, with high probability, Y is large enough, i.e. Y ≥ 2 · n · (l(J) +
l(K)). The expected value of Y can be estimated as E[Y ] = b2 ·n · l(K) ≥ b2 · log n.
Again, Chernoff bound guarantees that Y ≥ 6 · log n, with high probability, if b2 is
large enough. This is sufficient to cut both K and J into middle intervals.

Now taking b = b1 + b2, finishes the proof of Lemma 3. ��
Combining Lemmas 2 and 3 and setting a = b, finishes the proof of Theorem 1. ��

3 Conclusion and Future Work

We have presented a distributed randomized scheme that continously rebalances
the lengths of intervals of a Distributed Hash Table based on a ring topology.
We proved that the scheme succeeds with high probability and that its cost
measured in the terms of migrated nodes is comparable to the best possible.

Our scheme still has some deficiencies. The constants which emerge from the
analysis are huge. We are convinced that these constants are much smaller than
their bounds implied by the analysis. In the experimental evaluation one can
play with at least a few parameters to see which configuration yields the best
behavior in practice. The first parameter is how well we approximate the number
of servers n present in the network. Another one is how many times a help-offer
is forwarded before it is discarded. And the last one is the possibility to redefine
the lengths of short , middle and long intervals. In the future we plan to redesign
the scheme so that we can approach the smoothness of 1+ ε with additional cost
of 1/ε per operation, as it is done in [9].

Another drawback at the moment is that the analysis demands that the algo-
rithm is synchronized. This can probably be avoided with more careful analysis
in the part where nodes with short intervals decide to stay or help. On the one
hand, if a node tries to help, it blocks its predecessor for Θ(log n) rounds. On
the other, only one decision is needed per Θ(log n) steps.

Another issue omitted here is counting of nodes. Due to the space limitations
we have decided to use the scheme proposed by Awerbuch and Scheideler in [2].
We developed another algorithm which is more compatible to our load balancing
scheme. It inserts Δ ≥ log n markers per node and instead of evening the lengths
of intervals it evens their weights defined as the number of markers contained in
an interval. We can prove that such scheme also rebalances the whole system in
constant number of rounds, w.h.p.

As mentioned in the introduction our scheme can be proven to use Θ(log n)
messages in a half-life, provided that the half-life is known. Our proof, however,
is based on the assumption that join (or leave) operations are distributed evenly
in a half-life and not generated in an adversarial fashion (for example if nothing



Dynamic Load Balancing in Distributed Hash Tables 225

happens for a long time and then many new nodes join at once). We are working
on bounding the communication cost using techniques from online analysis.

References

1. M. Adler, E. Halperin, R. Karp, and V. Vazirani. A stochastic process on the
hypercube with applications to peer-to-peer networks. In Proc. of the 35th ACM
Symp. on Theory of Computing (STOC), pages 575–584, June 2003.

2. B. Awerbuch and C. Scheideler. Group spreading: A protocol for provably se-
cure distributed name service. In Proc. of the 31st Int. Colloquium on Automata,
Languages, and Programming (ICALP), pages 183–195, July 2004.

3. J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing for distributed
hash tables. In 2nd International Workshop on Peer-to-Peer Systems (IPTPS),
pages 80–87, Feb. 2003.

4. B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load bal-
ancing in dynamic structured P2P systems. In 23rd Conference of the IEEE Com-
munications Society (INFOCOM), Mar. 2004.

5. K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object location
in a dynamic network. In Proc. of the 14th ACM Symp. on Parallel Algorithms
and Architectures (SPAA), pages 41–52, Aug. 2002.

6. D. R. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web. In Proc. of the 29th ACM Symp. on Theory of
Computing (STOC), pages 654–663, May 1997.

7. D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-to-
peer systems. In 3rd International Workshop on Peer-to-Peer Systems (IPTPS),
2004.

8. D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-to-
peer systems. In Proc. of the 16th ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pages 36–43, June 2004.

9. G. S. Manku. Balanced binary trees for id management and load balance in dis-
tributed hash tables. In Proc. of the 23rd annual ACM symposium on Principles
of Distributed Computing (PODC), pages 197–205, 2004.

10. M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two random
choices: A survey of techniques and results. In Handbook of Randomized Computing.
P. Pardalos, S.Rajasekaran, J.Rolim, and Eds. Kluwer, 2000.

11. M. Naor and U. Wieder. Novel architectures for P2P applications: the continuous-
discrete approach. In Proc. of the 15th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pages 50–59, June 2003.

12. M. Naor and U. Wieder. A simple fault tolerant distributed hash table. In 2nd
International Workshop on Peer-to-Peer Systems (IPTPS), Feb. 2003.

13. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing in
structured P2P systems. In 2nd International Workshop on Peer-to-Peer Systems
(IPTPS), Feb. 2003.

14. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science,
2218:329–350, 2001.

15. I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proc. of the
ACM SIGCOMM, pages 149–160, 2001.



High Availability in DHTs: Erasure
Coding vs. Replication

Rodrigo Rodrigues1 and Barbara Liskov2

1 INESC-ID / Instituto Superior Técnico, Lisbon, Portugal
2 MIT Computer Science and Artificial Intelligence Laboratory,

Cambridge MA, USA

Abstract. High availability in peer-to-peer DHTs requires data redun-
dancy. This paper compares two popular redundancy schemes: replica-
tion and erasure coding. Unlike previous comparisons, we take the char-
acteristics of the nodes that comprise the overlay into account, and con-
clude that in some cases the benefits from coding are limited, and may
not be worth its disadvantages.

1 Introduction

Peer-to-peer distributed hash tables (DHTs) propose a logically centralized,
physically distributed, hash table abstraction that can be shared simultane-
ously by many applications [1,2,3,4]. Ensuring that data objects in the DHT
have high availability levels when the nodes that are storing them are not them-
selves 100% available requires some form of data redundancy. Peer-to-peer DHTs
have proposed two different redundancy schemes: replication [2,3] and erasure
coding [1,4]. This paper aims to provide a comprehensive discussion about the
advantages of each scheme.

While previous comparisons exist [4,5,6] they mostly argue that erasure cod-
ing is the clear victor, due to huge storage savings for the same availability levels
(or conversely, huge availability gains for the same storage levels). Our conclu-
sion is somewhat different: we argue that while gains from coding exist, they are
highly dependent on the characteristics of the nodes that comprise the overlay.
In fact, the benefits of coding are so limited in some cases that they can easily
be outweighed by some disadvantages and the extra complexity of erasure codes.

We begin this paper by performing an analytic comparison of replication and
coding that clearly delineates the relative gains from using coding vs. replication
as a function of the server availability and the desired DHT object availability
(Section 2). We present a model [7] that allows us to understand server avail-
ability (Section 3). Then we use measured values from three different traces to
find out exact values for the parameters of the model (Section 4). This allows
us to draw more precise conclusions about the advantages of using coding or
replication (Section 5).

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 226–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



High Availability in DHTs: Erasure Coding vs. Replication 227

2 Coding vs. Replication – Redundancy Levels

This section summarizes the two redundancy schemes and presents an analytic
comparison that highlights the main advantage of coding: the savings in terms of
the required redundancy. Section 5 outlines other positive and negative aspects
of the two schemes.

2.1 Replication

Replication is the simplest redundancy scheme; here k identical copies of each
data object are kept at each instant by system members.

The value of k must be set appropriately depending on the desired per object
unavailability target, ε (i.e., 1 − ε has some “number of nines”), and on the
average node availability, a. Assuming that node availability is independent and
identically distributed (I.I.D.), and assuming we only need one out of the k
replicas of the data to be available in order to retrieve it (this would be the
case if the data is immutable and therefore a single available copy is sufficient
to retrieve the correct object), we compute the following values for ε.

ε = P (object o is unavailable)
= P (all k replicas of o are unavailable)
= P (one replica is unavailable)k

= (1 − a)k

which upon solving for k yields

k =
log ε

log(1 − a)
(1)

2.2 Erasure Coding

With an erasure-coded redundancy scheme, each object is divided into m frag-
ments and recoded into n fragments which are stored separately, where n > m.
The key property of erasure codes is that the original object can be recon-
structed from any m fragments (where the combined size for the m fragments is
approximately equal to the original object size). This means that the effective
redundancy factor is kc = n

m .
We now exhibit the equivalent of Equation (1) for the case of erasure coding.

(This is a summary of a complete derivation that can be found in [8].) Object avail-
ability is givenbytheprobability thatat leastmoutofkc ·m fragmentsareavailable:

1 − ε =
kcm∑
i=m

(
kcm

i

)
ai(1 − a)kcm−i.



228 R. Rodrigues and B. Liskov

Using algebraic simplifications and the normal approximation to the bino-
mial distribution (see [8]), we get the following formula for the erasure coding
redundancy factor:

kc =

⎛
⎝σε

√
a(1−a)

m +
√

σ2
ε a(1−a)

m + 4a

2a

⎞
⎠

2

(2)

where σε is the number of standard deviations in a normal distribution for
the required level of availability. E.g., σε = 3.7 corresponds to four nines of
availability.

Note that we considered the use of deterministic coding schemes with a con-
stant rate of encoding (e.g., Reed-Solomon [9] or IDA [10]). Our analysis does
not extend to rateless codes [11], since it is not consensual how to use such codes
in a storage environment like a DHT.

2.3 Comparing the Redundancy

The previous discussion highlights the main reason for using coding: the in-
creased redundancy allows the same level of availability to be achieved with
much smaller additional storage.

The exact gains are depicted in Figure 1. This plots the ratio between the
required replication and the required erasure coding expansion factor (i.e., the
ratio between equations 1 and 2) for different server availability levels (assuming
server availability is I.I.D.) and for three different per-object availability targets:
3, 4, and 5 nines of availability. In this figure we set the number of fragments
needed to reconstruct an object to be 7 (i.e., we set m = 7 in Equation 2). This
is the value used by Chord [4]. Increasing m would lead to more redundancy
savings, but at the cost of exacerbating the disadvantages of coding we detail in
Section 5.

The conclusion is that erasure coding is going to matter more if you store the
data in unreliable servers (lower server availability levels) or if you target better
guarantees from the system (higher number of nines in object availability). The
redundancy gains from using coding range from 1 to 3-fold.

The remainder of our discussion assumes a per-object availability target of
4 nines. Targeting higher levels of availability seems exaggerated since other
aspects of the system will not keep up with such high availability levels. For
instance, a measurement study of MIT’s client access link found that a host at
MIT was able to reach the rest of the Internet 99.9% of the time [12]. The same
study pointed out that the MIT access link was more reliable than two other
links (a DSL line and a 100 Mbits/s link from Cogent).

Since the overall end-to-end availability will be given by the product

end-to-end avail. = client access link avail. · DHT object avail.

and considering that the client access link only has 3 nines of availability, then
making a distinction between, for instance, 5 and 6 nines of of DHT object



High Availability in DHTs: Erasure Coding vs. Replication 229

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
p
l
i
c
a
t
i
o
n
/
S
t
r
e
t
c
h
 
R
a
t
i
o

Server Availability

3 9s
4 9s
5 9s

Fig. 1. Ratio between required replication and required expansion factors as a function

of the server availability and for three different per-object availability levels. We used

m = 7 in equation 2, since this is the value used in the Chord implementation [4].

availability is irrelevant since the end-to-end object availability is dominated by
the uplink quality (or other factors we are not considering), and the extra DHT
availability is in the noise.

A question we may ask is why are redundancy savings important? Obviously,
they lead to lower disk usage. Also they may improve the speed of writes, since
a smaller amount of data has to be uploaded from the writer to the servers, and
therefore, if client upload bandwidth limits the write speed, then coding will
lead to faster writes.

But more important than these two aspects is the savings in the bandwidth
required to restore redundancy levels in the presence of a changing membership.
This importance is due to the fact that bandwidth, and not spare storage, is most
likely the limiting factor for the scalability of peer-to-peer storage systems [7].

3 Basic Model

This section presents a simple model that allows us to (1) quantify the bandwidth
cost for maintaining data redundancy in the presence of membership changes (as
a function of the required redundancy), and (2) understand the concept of server
availability in a peer-to-peer DHT so we can measure it. The core of the model,
described in Sections 3.1 and 3.2, was presented in a previous publication [7], so
we will only summarize it.

3.1 Assumptions

Our model assumes a large, dynamic collection of nodes that cooperatively store
data. The data set is partitioned and each subset is assigned to different nodes
using a well-known data placement mapping (i.e., a function from the current



230 R. Rodrigues and B. Liskov

membership to the set of replicas of each block). This is what happens, for
instance, in consistent hashing [13], used by storage systems such as CFS [4].

We make a number of simplifying assumptions. The main simplification
comes from the fact that we will only focus on an average-case analysis. When
considering the worse-case values for certain parameters, like the rate at which
nodes leave the system, the model underestimates the required bandwidth.

We assume a fixed redundancy factor and identical per-node space contribu-
tions. A previous system [5] dropped these two assumptions and used a variable
redundancy factor where many copies are created initially, and, as flaky nodes
leave the system, the redundancy levels will drop. This leads to a biased system
where the stable nodes donate most of the storage, therefore drastically reducing
bandwidth costs. This affects some of our conclusions, and, as future work, we
would like to understand how our analysis would change in this new design.

We assume a constant rate of joining and leaving and we assume that join and
leave events are independent. We also assume a constant steady-state number
of nodes.

3.2 Data Maintenance Model

We consider a set of N identical hosts that cooperatively provide guaranteed
storage over the network. Nodes are added to the set at rate α and leave at
rate λ, but the average system size is constant, i.e. α = λ. On average, a node
stays a member for T = N/λ (this is a queuing theory result known as Little’s
Law [14]).

Our data model is that the system reliably stores a total of D bytes of
unique data stored with a redundancy factor k, for a total of S = kD bytes of
contributed storage. k is either the replication factor or the expansion due to
coding and must be set (depending on a desired availability target and on the
node availability of the specific deployment) according to equations 1 and 2.

Each node joining the system must download all the data that it must serve
later, however that subset of data might be mapped to it. The average size of this
transfer is S/N , since we assume identical per-node storage contributions. Join
events happen every 1

α = 1
λ time units on average. So the aggregate bandwidth

to deal with nodes joining the overlay is λS
N , or S/T .

When a node leaves the overlay, all the data it housed must be copied over to
new nodes; otherwise redundancy would be lost. Thus, each leave event also leads
to the transfer of S/N bytes of data. Leaves therefore also require an aggregate
bandwidth of λS

N , or S/T .
In some cases the cost of leaving the system can be avoided: for instance,

if the level of redundancy for a given block is sufficiently high, a new node can
both join and leave without requiring data movement.

We will ignore this optimization and therefore the total bandwidth usage for
data maintenance is 2S

T = 2kD
T , or a per node average of:

B/N = 2
kD/N

T
, or BW/node = 2

space/node

lifetime
(3)



High Availability in DHTs: Erasure Coding vs. Replication 231

3.3 Restoring Redundancy with Coding

When coding is used, creating new fragments to cope with nodes holding other
fragments leaving the system is not a trivial task. The problem is that to create
a new fragment we must have access to the entire data object. We envision two
alternative approaches. The more expensive alternative would be to download
enough fragments to reconstruct the object and then create a new fragment.
This is costly since, for each fragment that is lost and needs to be reinstated,
some system node needs to download m− 1 fragments (assuming it has another
fragment already) and upload the new fragment. Thus the amount of data that
needs to be transferred is m times higher than the amount of redundancy lost.

The alternative is to maintain a full copy of the object at one of the nodes,
along with the fragments at the remaining nodes that share the responsibility
for the object. In practice, this corresponds to increasing the redundancy factors
for erasure coding by one unit.

Note that the analysis above is still correct when we mix fragments with
complete copies, namely the fact that the amount of data that needs to be
moved when nodes leave is equal to the amount of data the departing node
stored. This is correct because to restore a fragment, the node that keeps a
complete copy can create the new fragment and push it to the new owner, and
to restore a complete copy the node that will become responsible for that copy
can download m fragments with the combined size approximately equal to the
size of the object.

In the remainder of the paper we will assume that a system using coding
keeps the additional complete copy for each object stored in the system.

3.4 Distinguishing Downtime vs. Departure

In the model we presented, we refer to joins and leaves as joining the system for the
first time or leaving forever, and data movement is triggered only by these events.

In other words, we try to make a simple distinction between session times and
membership lifetimes (as other authors have noted [8,15]). This distinction is illus-
trated in Figure 2: A session time corresponds to the duration of an interval when
a node is reachable, whereas a membership lifetime is the time from when the node
enters the system for the first time until it leaves the system permanently.

This distinction is important since it avoids triggering data movement to
restore redundancy due to a temporary disconnection. The side effect of doing

Session
Time

Lifetime
Membership

time

Fig. 2. Distinction between sessions and lifetimes



232 R. Rodrigues and B. Liskov

this is that nodes will be unavailable for some part of their membership lifetime.
We define node availability, a, as the fraction of the time a member of the system
is reachable, or in other words, the sum of the node’s session times divided by
the node’s membership lifetime.

3.5 Detecting Permanent Departures

The problem with this simple model for distinguishing between sessions and
membership lifetimes is that it requires future knowledge: applications have no
means to distinguish a temporary departure from a permanent leave at the time
of a node’s disconnection. To address this problem we introduce a new concept,
a membership timeout, τ , that measures how long the system delays its response
to failures. In other words, the process of making new hosts responsible for a
host’s data does not begin until that host has been out of contact for longer than
time τ , as illustrated in Figure 3.

There are two main consequences of increasing the membership timeout:
First, a higher τ means that member lifetimes are longer since transient failures
are not considered leaves (and as a consequence the total member count will also
increase). Second, the average host availability, a, will decrease if we wait longer
before we evict a node from the system.

Translating this into our previous model, T and N will now become T (τ) and
N(τ), and a will now become a(τ), which implies that k will become k(a(τ), ε)
(set accordingly to the equations above). Note that a decreases with τ , whereas
T , N , and k increase with τ . By our definition of availability, N(τ) can be
deduced as N(0)/a(τ).

Another consequence is that some joins are not going to trigger data move-
ment, as they will now be re-joins and the node will retain the data it needs to
serve after re-joining the system. According to the measurements we will present
later, this has a minor impact on data movement when we set long membership
timeouts (i.e., if τ is large enough then there will hardly exist any re-joins) so
we will ignore this issue.

Equation 3 can therefore be rewritten as

B/N(τ) = 2
k(a(τ), ε)D/N(τ)

T (τ)
(4)

Membership
Interval

Membership
Interval

time

Join Join LeaveLeave

Fig. 3. Membership timeout, τ



High Availability in DHTs: Erasure Coding vs. Replication 233

Note that B/N(τ) is the average bandwidth used by system members. At
any point in time some of these members are not running the application (the
unavailable nodes) and these do not contribute to bandwidth usage. Thus we
may also want to compute the average bandwidth used by nodes while they are
available (i.e., running the application). To do this we replace the left hand side
of Equation 4 with a(τ)B/N(0) and compute B/N(0) instead.

4 Measured Dynamics and Availability

In this section we present results from measurements of how the membership
dynamics and the node availability change as a function of the membership
timeout (τ), and derive the corresponding redundancy requirements and main-
tenance bandwidth (for both replication and coding).

We use numbers from three different traces that correspond to distinct likely
deployments of a peer-to-peer storage system:

– Peer-to-peer (volunteer-based) – We used the data collected by Bhagwan et
al. on their study of the Overnet file sharing system [8]. This tracked the
reachability of 2,400 peers (gathered using a crawl of the system membership)
during 7 days by looking up their node IDs every 20 minutes.

– Corporate Desktop PCs – We used the data collected by Bolosky et al. [16] on
their study of the availability of 51,663 desktop PCs at Microsoft Corporation
over the course of 35 days by pinging a fixed set of machines every hour.

– Server Infrastructure – This data was collected by Stribling [17] and re-
flects the results of pinging every pair among 186 hosts of the Planet Lab
testbed every 15 minutes. We used the data collected over the course of 70

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70 80A
v
g
 
L
e
a
v
e
 
R
a
t
e
 
(
f
r
a
c
t
i
o
n
 
o
f
 
N
/
h
r
)

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Fig. 4. Membership dynamics as a function of the membership timeout (τ )



234 R. Rodrigues and B. Liskov

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

A
v
e
r
a
g
e
 
A
v
a
i
l
a
b
i
l
i
t
y

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Fig. 5. Average node availability as a function of the membership timeout (τ )

days between October and December 2003. Here we considered a host to be
reachable if at least half of the nodes in the trace could ping it.

Our graphs only show the average case behavior of the system.
Figure 4 shows how increasing the membership timeout τ decreases the dy-

namics of the system. In this case, the dynamics are expressed as the average
fraction of system nodes that leave the system during an hour (in the y axis).
Note that by leave we are now referring to having left for over τ units of time
(i.e., we are referring to membership dynamics, not session dynamics).

As expected, the system membership becomes less dynamic as the member-
ship timeout increases, since some of the session terminations will no longer be
considered as membership leaves, namely if the node returns to the system before
τ units of time.

As mentioned, the second main effect of increasing τ is that the node avail-
ability in the system will decrease. This effect is shown in Figure 5.

Node availability is, as one would expect, extremely high for PlanetLab (above
97%on average), slightly lower for Farsite (but still above 85%on average), and low
for the peer-to-peer trace (lower than 50% when τ is greater than 11 hours).

Note that we did not plot how N varies with τ but this can be easily deduced
from the fact that N(τ) = N(0)/a(τ).

4.1 Needed Redundancy and Bandwidth

Finally, we measure the bandwidth gains of using erasure coding vs. replication
in the three deployments.

First, we compute the needed redundancy for the two redundancy schemes
as a function of the membership timeout (τ). To do this we used the availabil-
ity values of Figure 5 in Equations (1) and (2), and plotted the correspond-
ing redundancy factors, assuming a target average per-object availability of
four nines.



High Availability in DHTs: Erasure Coding vs. Replication 235

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80

R
e
q
u
i
r
e
d
 
R
e
p
l
i
c
a
t
i
o
n
 
F
a
c
t
o
r

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Fig. 6. Required replication factor for four nines of per-object availability, as a function

of the membership timeout (τ )

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80

R
e
q
u
i
r
e
d
 
R
e
d
u
n
d
a
n
c
y
 
(
S
t
r
e
t
c
h
)

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Fig. 7. Required coding redundancy factor for four nines of per-object availability, as a

function of the membership timeout (τ ) as determined by Equation 2, and considering

the extra copy required to restore lost fragments

The results for replication are shown in Figure 6. This shows that Overnet
requires the most redundancy, as expected, reaching a replication factor of 20.
In the other two deployments replication factors are much lower, on the order
of a few units. Note that the replication values in this figure are rounded off to
the next integer, since we cannot have a fraction of copies.

Figure 7 shows the redundancy requirements (i.e., the expansion factor) for
the availability values of Figure 5 (using Equation 2 with m = 7 and four nines of
target availability). The redundancy values shown in Figure 7 include the extra



236 R. Rodrigues and B. Liskov

copy of the object required to create new fragments as nodes leave the system
(as we explained in Section 3.3).

As shown in Figure 7, Overnet still requires more redundancy than the other
two deployments, but for Overnet coding leads to the most substantial storage
savings (for a fixed amount of unique data stored in the system) since it can
reduce the redundancy factors by more than half.

Finally, we compare the bandwidth usage of the two schemes. For this we
use the basic equation for the cost of redundancy maintenance (Equation 3)
and apply for membership lifetimes the values implied by the leave rates from
Figure 4 (recall the average membership lifetime is the inverse of the average join
or leave rate). We will also assume a fixed number of servers (10, 000), and a fixed
amount of unique data stored in the system (10 TB). We used the replication
factors from Figure 6, and for coding the redundancy factors from Figure 7.

Figure 8 shows the average bandwidth used for the three different traces and
for different values of τ . An interesting effect can be observed in the Farsite
trace, where the bandwidth has two “steps” (around τ = 14 and τ = 64 hours).
These correspond to the people who turn off their machines at night, and during
the weekends, respectively. Setting τ to be greater than each of these downtime
periods will prevent this downtime from generating a membership change and
the corresponding data movement.

Figure 9 shows the equivalent of Figure 8 for the case when coding is used
instead of replication. The average bandwidth values are now lower due to the
smaller redundancy used with coding, especially in the Overnet deployment
where we achieve the most substantial redundancy savings.

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80

M
a
i
n
t
e
n
a
n
c
e
 
B
W
 
(
k
b
p
s
)

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Fig. 8. Maintenance bandwidth – Replication. Average bandwidth required for redun-

dancy maintenance as a function of the membership timeout (τ ). This assumes that

10, 000 nodes are cooperatively storing 10TB of unique data, and replication is used

for data redundancy.



High Availability in DHTs: Erasure Coding vs. Replication 237

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80

M
a
i
n
t
e
n
a
n
c
e
 
B
W
 
(
k
b
p
s
)

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Fig. 9. Maintenance bandwidth – Erasure coding. Average bandwidth required for

redundancy maintenance as a function of the membership timeout (τ ). This assumes

that 10, 000 nodes are cooperatively storing 10TB of unique data, and coding is used

for data redundancy.

5 Discussion and Conclusion

Several conclusions can be drawn from Figures 8 and 9.
For the Overnet trace, coding is a win since server availability is low (we are

on the left hand side of Figure 1) but unfortunately the maintenance bandwidth
for a scalable and highly available storage system with Overnet-like member-
ship dynamics can be unsustainable for home users [7] (around 100 kbps on
average for a modest per-node contribution of a few gigabytes). Therefore, co-
operative storage systems should target more stable environments like Farsite or
PlanetLab.

For the PlanetLab trace, coding is not a win, since server availability is
extremely high (corresponding to the right hand side of Figure 1).

So the most interesting deployment for using erasure codes is Farsite, where
intermediate server availability of 80–90% already presents visible
redundancy savings.

However, the redundancy savings from using coding instead of full replication
come at a price.

The main point against the use of coding is that it introduces complexity
in the system. Not only there is complexity associated with the encoding and
decoding of the blocks, but the entire system design becomes more complex (e.g.,
the task of redundancy maintenance becomes more complicated as explained in
Section 3).

As a general principle, we believe that complexity in system design should be
avoided unless proven strictly necessary. Therefore system designers should ques-
tion if the added complexity is worth the benefits that may be limited depending
on the deployment.



238 R. Rodrigues and B. Liskov

Another point against the use of erasure codes is the download latency in a
environment like the Internet where the inter-node latency is very heterogeneous.
When using replication, the data object can be downloaded from the replica that
is closest to the client, whereas with coding the download latency is bounded
by the distance to the mth closest replica. This problem was illustrated with
simulation results in a previous paper [4].

The task of downloading only a particular subset of the object (a sub-block)
is also complicated by coding, where the entire object must be reconstructed.
With full replicas sub-blocks can be downloaded trivially.

A similar observation is that erasure coding is not adequate for a system
design where operations are done at the server side, like keyword searching.

A final point is that in our analysis we considered only immutable data. This
assumption is particularly important for our distinction between session times
and membership lifetimes, because we are assuming that when an unreachable
node rejoins the system, its state is still valid. This would not be true if it
contained mutable state that had been modified in the meantime. The impact
of mutability on the redundancy choices is unclear, since we have to consider
how a node determines whether its state is accurate, and what it does if it isn’t.
A study of redundancy techniques in the presence of mutability is an area for
future work.

Acknowledgements

We thank Jeremy Stribling, the Farsite team at MSR, and the Total Recall
team at UCSD for supplying the data collected in their studies. We thank Mike
Walfish, Emil Sit, and the anonymous reviewers for their helpful comments.
Special thanks to Steven Richman that helped process the Overnet trace, and
to Chuck Blake that was part of the genesis of this series of papers and wrote
some of the scripts that were reused here.

This research is supported by DARPA under contract F30602-98-1-0237 and
by the NSF under Cooperative Agreement ANI-0225660. Rodrigo Rodrigues was
supported by a fellowship from the Calouste Gulbenkian Foundation, and was
previously supported by a Praxis XXI fellowship.

References

1. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
OceanStore: An architecture for global-scale persistent storage. In: ASPLOS-IX:
Proceedings of the ninth international conference on Architectural support for pro-
gramming languages and operating systems. (2000) 190–201

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, San Diego, California, United States (2001) 161–172



High Availability in DHTs: Erasure Coding vs. Replication 239

3. Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In: Proceedings of the 18th ACM
Symposium on Operating System Principles, Banff, Canada (2001)

4. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, F., Morris, R.: Designing a DHT
for low latency and high throughput. In: Proceedings of the First ACM/Usenix
Symposium on Networked Systems Design and Implementation (NSDI), San Fran-
cisco, California (2004)

5. Bhagwan, R., Tati, K., Cheng, Y.C., Savage, S., Voelker, G. In: Proceedings of the
First ACM/Usenix Symposium on Networked Systems Design and Implementation
(NSDI), San Francisco, California, United States (2004)

6. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: A quanti-
tative comparison. In: Proc. 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), Cambridge, Massachusetts, United States (2002)

7. Blake, C., Rodrigues, R.: High availability, scalable storage, dynamic peer net-
works: Pick two. In: Proceedings of The Ninth Workshop on Hot Topics in Oper-
ating Systems (HotOS-IX), Lihue, Hawaii, United States (2003)

8. Bhagwan, R., Savage, S., Voelker, G.: Understanding availability. In: Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley,
California (2003)

9. Reed, S., Solomon, G.: Polynomial codes over certain finite fields. J. SIAM 8
(1960) 300–304

10. Rabin, M.: Efficient dispersal of information for security, load balancing, and fault
tolerance. J. ACM 36 (1989)

11. Luby, M.: LT codes. In: Proceedings of the 43rd Symposium on Foundations of
Computer Science (FOCS 2002), Vancouver, Canada (2002)

12. Andersen, D.: Improving End-to-End Availability Using Overlay Networks. PhD
thesis, MIT (2005)

13. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In: Proc. 29th Symposium on Theory of Computing,
El Paso, Texas (1997) 654–663

14. Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall (1987)
15. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:

Proceedings of the USENIX Annual Technical Conference. (2004)
16. Bolosky, W.J., Douceur, J.R., Ely, D., Theimer, M.: Feasibility of a serverless

distributed file system deployed on an existing set of desktop PCs. In: Proceedings
of the international conference on measurement and modeling of computer systems
(SIGMETRICS). (2000) 34–43

17. Stribling, J. : Planetlab - all pairs pings. http://pdos.lcs.mit.edu/~strib/

pl_app (2005)



Conservation vs. Consensus in
Peer-to-Peer Preservation Systems

Prashanth P. Bungale, Geoffrey Goodell, and Mema Roussopoulos

Harvard University, Cambridge, MA 02138, USA
{prash, goodell, mema}@eecs.harvard.edu

Abstract. The problem of digital preservation is widely acknowledged,
but the underlying assumptions implicit to the design of systems that ad-
dress this problem have not been analyzed explicitly. We identify two ba-
sic approaches to address the problem of digital preservation using peer-
to-peer systems: conservation and consensus. We highlight the design
tradeoffs involved in using the two general approaches, and we provide a
framework for analyzing the characteristics of peer-to-peer preservation
systems in general. In addition, we propose a novel conservation-based
protocol for achieving preservation and we analyze its effectiveness with
respect to our framework.

1 Introduction

Recently, a number of peer-to-peer approaches have been proposed to address the
problem of preservation (e.g., [4,7,11,2,3,6]). In their attempt to preserve some
data so that it is available in the future, these systems face a number of challenges
including dealing with natural degradation in storage media, catastrophic events
or human errors, attacks by adversaries attemtping to change the data preserved,
as well as providing incentives to other peers to help in the preservation task.
These systems differ in their approaches and the systems’ designers characterize
their approaches in different ways: archiving, backup, digital preservation. But
these peer-to-peer systems share a basic premise: that each peer is interested in
preserving one or more archival units (AUs) and uses the aid and resources of
other peers to achieve its goal.

In this paper we provide a framework for analyzing the characteristics and
highlighting the design tradeoffs of peer-to-peer preservation approaches. Sup-
pose that our preservation system involves each AU of interest being replicated
on a subset of the peer population. Consider a particular archival unit being
replicated on a subset consisting of n peers, denoted (p1, p2, ..., pn). We use pi(t)
to denote the copy of the archival unit held by peer pi at time t. To simplify
the scenario somewhat, presume that all peers enter the system at time t0. We
assert that there are two basic approaches to providing preservation:

– Consensus. The goal is for all peers in the system to come to a uniform
agreement over time; that is to say that as t → ∞, we have that ∀i, j :
pi(t) = pj(t). In essence, each peer always believes that the version of the

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 240–251, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Conservation vs. Consensus in Peer-to-Peer Preservation Systems 241

AU it has may be questionable and is willing to use the aggregate opinion
of the community to influence its own copy, even if that sometimes involves
replacing the current copy with a new one.

– Conservation. The goal is for each peer to retain indefinitely the exact
copy of the AU that it holds initially; that is to say that as t → ∞, we
have that ∀i, t : pi(t) = pi(t0). In essence, each peer believes that the version
of the AU it starts with is the “right” version, and it always attempts to
preserve this copy, even if other peers disagree. When it suffers a damage to
its AU, it seeks the help of other peers to recover this right version.

There is a fundamental trade-off between these two approaches. If a peer
happens to have a wrong version, conserving the data as it is is detrimental
to preservation, whereas consensus helps preserve the right version if the other
peers happen to supply the right version as the consensus version. On the other
hand, if a peer happens to have the right version, conserving the data as it is
helps preserve the right version, whereas consensus can potentially cause it to
get infected with a wrong version (if the other peers happen to supply a wrong
version to it as the consensus version).

2 Framework for Design Considerations

The design choice between conservation and consensus is not straightforward,
but involves balancing and prioritizing various conflicting goals and choosing the
best suited approach. To aid this process, we discuss below a list of considerations
for designing a peer-to-peer preservation system. There may be other useful
considerations, but we’ve found this list to be particularly useful.

Trust in the source of the AU. If the original source of the AU is perfectly
trusted to supply the right version of the AU always, consistently, to all the
subscriber peers (i.e., peers that will hold replicas of this AU), conservation
might be a better preservation strategy. On the other hand, if the source supplies
the right version to some subscriber peers and a wrong version to some others,
consensus could help, as long as the subscribers with the right version outnumber
those with a wrong version and are thus able to convince those with the wrong
version to replace their archived documents.

Trust in the means of procuring the AU. If peers in the system use an
unreliable means of obtaining the AUs to be archived, then it is likely that
only a fraction of the peers will obtain the correct copy at the outset. This
circumstance may provide an argument in favor of a consensus-based approach,
since conservation alone will lead to preservation of invalid copies.

Frequency of storage faults. If storage degradation is frequent because of the
environment or particular storage medium chosen, then, it could prove difficult to
achieve consensus on an AU. This is because if a substantial portion of peers are
in damaged state at any point of time, then a deadlock situation could arise. The
peers need to get a consensus copy to recover from their damage, and on the other



242 P.P. Bungale, G. Goodell, and M. Roussopoulos

hand, the peers need to first recover from their damage in order to achieve good
consensus. Thus, the consensus approach may not be well-suited for systems with
high frequencies of storage faults. On the other hand, a conservation approach
might avoid this problem because all it requires to recover from a damage is any
one peer being able to respond with the AU being conserved.

Frequency of human error. If system operators are likely to commit errors,
for instance, while loading an AU to be preserved or while manually recovering
the AU from a damage occurrence, conservation could be detrimental because
the system may end up preserving an incorrect AU, whereas consensus could
help recover the right AU from other peers.

Resource relavance to participants. Relevance [10] is the likelihood that a
“unit of service” within a problem (in our case, an archival unit) is interesting to
many participants. When resource relevance is high, both consensus and conser-
vation could benefit from the relevance and would be equally suitable. However,
when the resource relevance is low, because cooperation would require artifi-
cial or exrinsic incentives to make the peer-to-peer solution viable, conservation
would be better suited as it would require less frequent interactions (specifically,
only during recovery from damage) and smaller number of peers participating
as compared to consensus.

Presence of adversaries. Preservation systems may be subject to various at-
tacks from adversaries. We focus on two kinds of attacks that exploit peer in-
teractions in the system: stealth-modification attack and nuisance attack. In a
stealth-modification attack, the adversary’s goal is to modify the data being
preserved by a victim peer, but without being detected. In a nuisance attack,
the adversary’s goal is to create nuisance for a victim peer, for instance by rais-
ing intrusion detection alarms that may require human operator intervention.
The design of a preservation system that takes these attacks into account would
involve the following two considerations:

– Tolerance for stealth-modification : Is it acceptable to the users of the
preservation system for some peers being successfully attacked by a stealth
modification adversary, and possibly recovering eventually? i.e., Is it tolerable
for some of the peers to have an incorrect AU sometimes? If the answer is ’yes’,
then both conservation and consensus may be equally suitable approaches.
But, if the system has very low tolerance for stealth-modification attacks, con-
servation may be appropriate as it is less influenced by (and thus, less suscep-
tible to) other peers. Consider the case in which there is substantial likelihood
that adversaries may have subverted peers, or if there is fear that adversarial
peers form a large percentage of the overall peer population. In this circum-
stance, consensus is a dangerous strategy because it may cause all of the well-
behaved peers that have the rightversion to receive an invalid version, and thus
conservation may be appropriate. However, there is also a downside to using
conservation in that once the adversary is somehow able to carry out a stealth-
modification attack successfully, the victim peer, by definition, believes that



Conservation vs. Consensus in Peer-to-Peer Preservation Systems 243

its copy is the right one and is thus prevented from being able to recover, even
after the adversary has stopped actively attacking it.

– Tolerance for nuisances: Can the users tolerate frequent nuisances? The
frequency of possible nuisance attacks is limited by the frequency of invoking
peer participation. Thus, if there is low tolerance to nuisance attacks, then
a conservation approach may be preferable because each peer relies on other
peers only when it suffers a damage.

3 LOCKSS - An Example of the Consensus Approach

In this section, we consider LOCKSS, an example of a preservation system fol-
lowing the consensus approach, and discuss its design with respect to our frame-
work.

The LOCKSS system [7,9] preserves online academic journals using a peer-to-
peer auditing mechanism. The system provides a preservation tool for libraries,
whose budgets for preservation are typically quite small [1]. Each (library) peer
crawls the websites of publishers who have agreed to have their content preserved
and downloads copies of published material (e.g. academic journals) to which the
library in question has subscribed. The cached information is then used to satisfy
requests from the library’s users when the publisher’s website is unavailable.

Web crawling is an unreliable process, making it difficult for peers to deter-
mine without manual inspection of the crawled material whether complete and
correct replicas of the AUs of interest have been downloaded. Peers therefore
need some automated way to determine if their copy is correct. LOCKSS uses
consensus for this purpose. Peers perform sampled-auditing of their local copies
to ensure that it agrees with the consensus of peers.

The LOCKSS design is based on the following characteristics and/or assump-
tions in our design framework:

Trust in the source of the AU and trust in the means of procuring the AU : low,
as long as only a relatively small portion of the overall peer population initially
acquires an incorrect AU either from the source or through the procurement
means.

Frequency of storage faults: extremely low (assumed to be once in 200 ma-
chine years on an average); Frequency of human error : can be high; Resource
relevance to participants : high (as libraries often subscribe to the same AU’s
from the publishers).

Presence of adversaries : at most one-third to 40% of the peer population
could be adversarial; the adversary is assumed to have unlimited computation
power and unlimited identities. Tolerance for stealth-modification and for nui-
sances: medium.

Looking at these characteristics and assumptions, and considering the suit-
ability of the approaches described in our design framework, we can clearly see
why the system designers have chosen the consensus approach. We descibe be-
low the design of the consensus protocol of LOCKSS, and discuss the factors
relevant to our framework on the way.



244 P.P. Bungale, G. Goodell, and M. Roussopoulos

Each peer maintains two lists: a friends list and a reference list. The reference
list is a list of peers that the peer in question has recently discovered in the
process of participating in the LOCKSS system. The friends list is a list of
peers (friends) that the peer knows externally and with whom it has an out-of-
band relationship before entering the system. When a peer joins the system, his
reference lists starts out containing the peers on his friends list.

Periodically, at a rate faster than the rate of natural bit degradation, a peer
(the poller conducts an opinion poll on an AU. The peer takes a random sample
of peers as a quorum from its reference list and invites the chosen peers as voters
into a poll. The voters vote on the AU by sending hashes of their individual copies
of the AU to the peer initiating the poll. The poller compares the votes it receives
with its local copy. If an overwhelming majority of the hashes received agrees
with the poller’s hash, then the poller concludes that its copy is good, (i.e., it
agrees with the consensus) and it resets a refresh timer to determine the next
time to check this AU. If an overwhelming majority of hashes disagree, then the
peer fetches a repair by obtaining a copy of the AU from one of the disagreeing
peers and re-evaluating the votes it received. That is, the peer alters its copy
of the AU so that it agrees with the consensus. If there is neither landslide
agreement nor landslide disagreement, then the poll is deemed inconclusive and
the poller raises an alarm.

Because natural storage degradation is assumed to be a relatively infrequent
occurrence, it is unlikely that many peers will simultaneously be experiencing
degradation. If an inconclusive poll results, it is an indication that an attack
might be in progress. LOCKSS uses alarms as a way of performing intrusion
detection, so that when an attack is suspected, humans are called upon to ex-
amine, heal, and restart the system. This requirement of humans being expected
to examine, heal, and restart the system every time an alarm is raised, which
could happen on every poll in the theoretically worst case, is the reason why the
system cannot tolerate frequent nuisance attacks. Therefore, the designers aim
for nuisance attacks being only infrequently possible.

At the conclusion of a poll, the poller updates its reference list as follows. First,
it removes those peers that voted in the poll so that the next poll is based on a
different sample of peers. Second, the poller replenishes its reference list by adding
nominated peers and peers from the friends list. Nominated peers, or nominees,
are peers that are introduced by the voters when the voters are first invited to
participate in the poll. Nominees are used solely for discovery purposes so that the
poller can replenish its reference list. Nominees vote on the AU, but their votes
are not considered in determining the outcome of the poll. Instead, their votes are
used to implement admission control into the reference list. Nominees whose votes
agree with the poll outcome are added to the reference list.

The bias of friends to nominees added is called churn. The contents of the
reference list determine the outcome of future polls. Adding more friends to
the reference list than nominees makes the poller vulnerable to targeted attacks
aimed at its friends. Adding more nominees than friends to the reference list
increases the potential for Sybil attacks [5].



Conservation vs. Consensus in Peer-to-Peer Preservation Systems 245

Using a combination of defense techniques such as rate-limitation, effort-
balancing, reference list refreshes and churn, among others, the LOCKSS pro-
tocol achieves strong, but imperfect, defense against a stealth-modification ad-
versary. Experimental results show that the probability that, at any point in
time, the user at a peer would access a bad AU was increased by just 3.5%.
However, it was also observed that around one-third of the loyal (i.e., non-
adversarial) peers end up being attacked by a stealth-modification adversary
who starts with an initial subversion of 40% of the overall peer poulation. Al-
though the LOCKSS authors have reported that successful nuisance attacks
have been observed to be seldom, they have not looked into what exactly hap-
pens when an alarm is raised at a peer (i.e., to what extent the adversary is
rooted out), and so we cannot analyze the real impact of nuisance attacks at
this time.

4 Sierra - An Example of the Conservation Approach

The key notion of the conservation approach is that each peer, being fully confi-
dent that the version of the AU it stores is the right version, attempts to conserve
its own version. To do so, the peer ignores what the version may look like at
other peers, except when it suffers a “bit-rot”, i.e., a storage failure or some
other event that results in its AU being damaged, at which point it looks to
other peers for recovery.

Given just the conservation notion, one might consider a simple solution for
implementing conservation such as storing the AU, along with a signed hash of
the AU remotely on other peers, and relying on this information while recovering
from a bit-rot. This solution may be perfectly acceptable in peer-to-peer backup
applications. However, in a LOCKSS-like application that would want to exploit
the high resource relevance existing in the system (to reduce unnecessary storage
overhead) and avoid long-term secrets (which may be unreasonable for long-
term preservation on the order of decades), this simple solution may not be
suitable.

We propose Sierra as a conservation-based alternative to the LOCKSS pro-
tocol. Sierra shares some features with LOCKSS in that it exploits resource
relevance and does not depend on long-term secrets. It also borrows some tech-
niques from LOCKSS such as calling opinion polls using a sample of the peer
population. However, Sierra’s primary goal departs fundamentally from that
of LOCKSS. While Sierra makes use of opinion polls (which have a consensus
flavor), it does not blindly rely on the results of the polls. We thus refer to
Sierra as using a tamed-consensus approach towards achieving the conservation
goal.

Following are the characteristics and/or assumptions we use that are relevant
to our design framework:

Trust in the source of the AU and trust in the means of procuring the AU :
high; Frequency of storage faults: low; Frequency of human error : low; Resource
relevance to participants : high.



246 P.P. Bungale, G. Goodell, and M. Roussopoulos

Presence of adversaries : up to 60% of the peer population could be adver-
sarial; the adversary is assumed to have unlimited computation power and un-
limited identities; Tolerance for stealth-modification: zero-tolerance; Tolerance
for nuisances: low.

Since we prioritize allowing higher presence of adversaries, and yet having
zero-tolerance for stealth-modification attacks and low tolerance for nuisance
attacks, we are forced to make the stronger assumption of high trust in the
source and procurement means for the AU.

Since a conservation-based system assumes complete confidence in the local
AU, a bit-rot occurrence is the only “time-of-need” when a peer might have to
rely on the other peers to recover its AU. During the remaining time, the peer
would be “self-sufficient” in terms of preserving the AU. Alongside each stored
AU, a peer stores a hash of that AU and periodically checks the AU against the
hash to determine if it is self-sufficient or in its time of need.

In addition, we introduce a host of defense techniques to help a peer conserve
its AU. Peers call polls periodically as in LOCKSS. If the stored AU and hash
match, then the poller ignores the result of the poll. However, the poller updates
its reference list as in the LOCKSS protocol with the following change. Any
voters whose votes disagree with the poller’s AU are removed from the reference
list and also blacklisted from providing votes to this poller in the future.

If the AU and local hash do not match when the poller calls its next poll, it
enters a “time-of-need” state and remains in this state for the next n polls, where
n is a system-defined parameter. During (and only during) a time-of-need poll,
the poller checks to see if any of the peers that are in the minority agree with each
other. If a minority threshold number of peers agree with each other, the poller
raises an alarm to notify its local operators. Otherwise, the poller repairs using
the version of the AU stored by the majority. A minority alarm indicates that
either the majority or the minority is potentially adversarial. When this alarm
is raised, the operator is expected to examine and choose the right one among
the different contending versions of the AU and then, the peers who supplied the
incorrect versions will be blacklisted. Note that the larger n is, the more likely a
stealth-modification attack will be detected because the higher the chance that
the poller will find, in a subsequent poll, a minority threshold number of peers
that agree with each other.

In Sierra, voters only vote if they are in the self-sufficient state (i.e., their
stored AU and hash match) and decline the poll invitation otherwise.

4.1 Analysis

The Sierra protocol uses the basic underlying features of the LOCKSS protocol
for calling polls and managing the peer-to-peer network, and thus to analyze
its effects theoretically, we start by examining existing theoretical properties of
LOCKSS. Due to lack of space, we omit the details of the LOCKSS analysis [8]
here.

Attaining a presence in a victim peer’s reference list is the only means through
the protocol by which an adversary can launch a stealth-modification or a nui-



Conservation vs. Consensus in Peer-to-Peer Preservation Systems 247

symbol default description

C 0.1 churn rate (ratio)
M0 1000 initial number of malign peers
Q 100 quorum # of voters needed per poll
P 10000 total population
T 600 reference list size

Int 3 months mean inter-poll interval

Fig. 1. Parameters for Sierra analysis

sance attack. We call the strength of adversarial presence, i.e., the proportion of
reference list peers that are adversarial, the adversary’s foothold. The only way
for an adversary to attain higher foothold in a peer’s reference list is to lurk, i.e.,
to act loyal (or non-malign) by voting using the correct version of the AU and
nominating its minions for entrance into the poller’s reference list.

Consider an adversary in LOCKSS that lurks. We can model the expected
number of malign (i.e., adversarial) peers, Mrt, in a loyal peer’s reference list at
time t, given a uniform distribution of adversaries throughout the population,
as a function of time and a set of system parameters (See Figure 1) [8]:

Mr(t+1) = − X

T 2
M2

rt +
(

1 − Q + 2X

T

)
Mrt +

CTM0

P
(1)

where X , the expected number of nominees in steady-state equilibrium, is given
by:

X = Q + T

(
1 − C2

1 + C
− 1

)
(2)

However, because Sierra introduces blacklisting as a means by which a peer
may eradicate those who vote with invalid copies from its reference list, the
recurrence equation for Sierra is somewhat different. The only opportunity for
an adversary to have its set of malign peers (pm1, ..., pmk) vote with an invalid
copy and still increase its expected foothold in the reference lists of some target
peer pt occurs when pt suffers a bit-rot and enters its time-of-need state.

Suppose that μ is the threshold for raising an alarm in the event of minority
agreement. Given that a stealth-modification adversary seeks to win a poll and
avoid detection, the malign peers must vote with the invalid copy of the AU
only if there exist at least Q − μ malign peers in a given poll called by pt,
and further if the poll happens to be a time-of-need poll. Otherwise, if the
adversary attacks with its bad copy, it ends up losing all of its hard-earned
foothold due to blacklisting. Therefore, the optimal strategy for the stealth-
modification adversary in the case where there are less than Q−μ malign peers
in a poll is to lurk, so that it can try to increase its foothold further. Thus, the
recurrence equation does not change for the stealth-modification adversary if we
assume an optimal adversary strategy (and therefore no blacklisting).



248 P.P. Bungale, G. Goodell, and M. Roussopoulos

If an adversary wants to simply create a nuisance that raises an alarm, then at
least μ malign peers must vote with a non-majority copy of the AU. Since the act
of creating a nuisance does not benefit from having more than μ peers vote with
the invalid copy, it is in the best interest of the adversary to have only μ peers,
(pm1, ..., pmμ) perform this task. The adversary would now lose some foothold
due to blacklisting whenever it creates a nuisance, and therefore, the recurrence
equation changes. Next, we introduce three other variables: F , the mean time
between failures (in terms of number of polls) for the particular storage system, d,
the likelihood that an adversary will choose to create a nuisance when it can, and
K, the likelihood that an adversary will create a nuisance even when a peer is not
in time-of-need. K represents the extent to which the adversary has knowledge
of when a bit-rot occurs for a particular loyal peer. If the adversary has perfect
knowledge (through some covert channel or out-of-band means), then K = 0,
but we believe that in most realistic cases, K would be closer to 1. Whenever the
adversary tries to create a nuisance for a given peer pt by supplying μ malicious
votes, pt will evict μ adversarial peers from its reference list. Thus, our new
recurrence is represented by the following equations:

M ′
r(t+1) = − X

T 2
M2

rt + (1 − Q + 2X

T
)Mrt +

CTM0

P
(3)

Mrt = M ′
rt −

dμ(1 + K(F − 1))
F

(4)

Since we are interested in powerful adversaries, we assume for the rest of our
analysis that an adversary somehow has perfect knowledge about peers suffering
bit-rots and will attack or create a nuisance only when a peer is in time-of-need.

Effectiveness against Stealth Modification Attacks. We first consider the
question of what conditions can actually lead to an adversary being able to carry
out a stealth-modification attack successfully (i.e., without being detected). An
attack is possible only if:

– The adversary has somehow achieved very high (close to 100%) foothold in
the victim’s reference list – because it would otherwise be detected through
the minority threshold alarm within the n polls called during the time-of-
need.

– More importantly, the adversary is able to sustain that foothold for a suf-
ficient number of consecutive polls – specifically, during the n time-of-need
polls.

– The adversary is able to somehow magically attack exactly when a damage
has just occurred at the victim, i.e., should have perfect knowledge of the
victim’s damage occurrences.

We now use the mathematical model discussed earlier to show that the ad-
versary is not able to carry out stealth-modification attacks successfully. Recall
that the the optimal adversary strategy for stealth-modification is lurking con-
tinuously until it attains enough foothold. We find that the adversary is unable



Conservation vs. Consensus in Peer-to-Peer Preservation Systems 249

to lurk and attain footholds high enough (i.e., enough to ensure at least Q − μ
poll invitations) to be able to carry out successful attacks. Figure 2 shows the
result of using equations 3 and 4 with d = 0 to obtain the equilibrium foothold
value (which is the maximum expected number of malicious peers on the refer-
ence list of a given loyal peer) for different initial subversion values. As we can
see from this graph, even for initial subversions as high as 60%, the equilibrium
foothold never reaches 80%, which is the foothold required to ensure at least
Q − μ poll invitations.

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

F
oo

th
ol

d 
(%

)

Initial subversion (%)

initial
equilibrium

Fig. 2. Equilibrium Foothold Achieved with Varying Initial Subversion. Pre-
suming MTBF F = 10 years, nuisance probability d = 0, and minority threshold
μ = 20.

Note that we have assumed that the adversary has perfect knowledge of
the victim’s damage occurrences. If the adversary has no out-of-band means to
acquire this knowledge, it is close to impossible for the adversary to be able
to lurk for the entire period that the victim peer is healthy (to avoid being
blacklisted) and then attack exactly when it suffers a damage.

Effectiveness against Nuisance Attacks. First, we note that in Sierra, the
maximum frequency at which an adversary can create nuisance is limited to
once every bit-rot occurrence instead of once every poll as in LOCKSS. Next, we
observe that creating a nuisance comes with an associated penalty: peers voting
with an invalid copy are blacklisted by the operator upon being notified by the
alarm, and they cannot return to the reference list. We want to show that the
penalty associated by blacklisting creates some disincentive for nuisance attacks.
For the following analysis, we consider adversaries having an initial subversion
of 10% of the peer population. First, this subversion ratio is enough for the
adversary to be able to carry out nuisance attacks. Second, while an adversary
with a higher subversion ratio could very well carry out nuisance attacks, it does
not lose much foothold because it can quickly make up for the loss it suffers (due
to blacklisting) by nominating its minions.

Figure 3 shows what happens when we vary the probability in which an
adversary creates a nuisance. Observe that even if an adversary has complete



250 P.P. Bungale, G. Goodell, and M. Roussopoulos

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0  0.2  0.4  0.6  0.8  1

E
qu

lib
riu

m
 fo

ot
ho

ld
 (

%
)

Probability of creating nuisance

MTBF 2 years
MTBF 4 years
MTBF 6 years
MTBF 8 years

Fig. 3. Varying Nuisance Probability. Presuming 10% initial subversion and mi-
nority threshold μ = 20.

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35  40

E
qu

lib
riu

m
 fo

ot
ho

ld
 (

%
)

Minority threshold

MTBF 2 years
MTBF 4 years
MTBF 6 years
MTBF 8 years

Fig. 4. Varying Minority Threshold. Presuming 10% initial subversion and nui-
sance probability d = 1. Note that the x-axis shows the minority threshold as an absolute
number of peers and the quorum is 100.

knowledge of when a given peer’s AU is damaged, it may still have substantial
incentive not to create a nuisance too frequently, particularly if the MTBF is suf-
ficiently short that the adversary does not have time to restore its representation
on the peer’s reference list between successive failures.

Finally, Figure 4 shows the effect of varying the minority threshold. We see
that with lower minority thresholds, the adversary incurs lesser penalty and
therefore, the adversary has less of an incentive not to create a nuisance. On the
other hand, we know intuitively that increasing the threshold, while contributing
to a better defense against nuisance attacks, leads to more opportunities for
stealth modification attacks.

5 Conclusions

Preservation is not a straighforward problem. Peer-to-peer systems aimed at pro-
viding a preservation solution face a number of conflicting design considerations



Conservation vs. Consensus in Peer-to-Peer Preservation Systems 251

that force designers to make difficult choices. We have presented a framework
for considering the tradeoffs involved in designing such a system. We have also
discussed two example systems with respect to this framework, LOCKSS and
Sierra, that embody the two basic approaches to preservation: consensus and
conservation, respectively. We observe that LOCKSS allows assumptions of dis-
trustful source and procurement means for the AU, while achieving moderately
strong defense against stealth-modification and nuisance attacks. On the other
hand, Sierra achieves much stronger defense against both attacks, but at the ex-
pense of making assumptions of high trust in the source and procurement means
for the AU.

Acknowledgments

We would like to thank the following people for their very helpful feedback
and suggestions: Mary Baker, T. J. Giuli, Rachel Greenstadt, Petros Maniatis,
Radhika Nagpal, Bryan Parno, Vicky Reich, and David S. H. Rosenthal.

References

1. ARL – Association of Research Libraries. ARL Statistics 2000-01.
http://www.arl.org/stats/arlstat/01pub/intro.html , 2001.

2. T. Burkard. Herodotus: A Peer-to-Peer Web Archival System, Master’s thesis,
MIT, Jun 2002.

3. B. F. Cooper and H. Garcia-Molina. Peer-to-peer data preservation through storage
auctions. IEEE Transactions on Parallel and Distributed Systems, to appear.

4. Landon P. Cox and Brian D. Noble. Samsara: Honor Among Thieves in Peer-
to-Peer Storage. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, pages 120–132, Bolton Landing, NY, USA, October 2003.

5. J. Douceur. The Sybil Attack. In 1st Intl. Workshop on Peer-to-Peer Systems,
2002.

6. HiveCache, Inc. Distributed disk-based backups. Available at http://www.

hivecache.com/.
7. P. Maniatis, M. Roussopoulos, TJ Giuli, D. S. H. Rosenthal, M. Baker, and Y. Mu-

liadi. Preserving Peer Replicas By Rate-Limited Sampled Voting. In SOSP, 2003.
8. B. Parno and M. Roussopoulos. Predicting Adversary Infiltration in the LOCKSS

System. Technical Report TR-28-04, Harvard University, October 2004.
9. D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis, and M. Baker. Economic Mea-

sures to Resist Attacks on a Peer-to-Peer Network. In Workshop on Economics of
Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.

10. M. Roussopoulos, TJ Giuli, M. Baker, P. Maniatis, D. S. H. Rosenthal, and
J. Mogul. 2 P2P or Not 2 P2P? In IPTPS, 2004.

11. D. Wallach. A Survey of Peer-to-Peer Security Issues. In Intl. Symp. on Software
Security, 2002.



Locality Prediction for Oblivious Clients

Kevin P. Shanahan and Michael J. Freedman

New York University
www.coralcdn.org

Abstract. To improve performance, large-scale Internet systems require
clients to access nearby servers. While centralized systems can leverage
static topology maps for rough network distances, fully-decentralized sys-
tems have turned to active probing and network coordinate algorithms
to scalably predict inter-host latencies. Internet applications seeking im-
mediate adoption, however, must inter-operate with unmodified clients
running existing protocols such as HTTP and DNS.

This paper explores a variety of active probing algorithms for local-
ity prediction. Upon receiving an external client request, peers within
a decentralized system are able to quickly estimate nearby servers, us-
ing a minimum of probes from multiple vantages. We find that, while
network coordinates may play an important role in scalably choosing ef-
fective vantage points, they are not directly useful for predicting a client’s
nearest servers.

1 Introduction

Many replicated Internet systems can improve performance by servicing clients
at nearby hosts. The performance of a distributed web mirror, for example, is
highly dependent on the network distance between client and server. Commercial
content distribution networks (CDNs) like Akamai [1] build large maps of the
Internet topology and use this information to redirect clients to nearby hosts.
These hosts are carefully deployed at specific access sites or behind bottleneck
links. This technique for locality prediction, however, requires centralized map-
ping, aggregation, extensive network knowledge, and often ISP-specific heuris-
tics. But by using existing protocols like HTTP and DNS, these systems can
achieve immediate and wide-spread use.

More recent distributed systems use self-organizing techniques to reduce the
infrastructure’s administrative and operational overhead, while still providing
service to unmodified clients. Such peer-to-peer systems include static and dy-
namic CDNs [5,6], distributed hash storage services [7], and new Internet naming
systems [13,14]. Such decentralized systems, however, cannot easily produce ag-
gregated static topology maps nor specify host deployments [4].

Active probing provides a simple alternative to static topology mapping that
can be easily realized in a decentralized system. In its simplest form, when an un-
modified client contacts any system peer, this ingress peer probes the client and
directs other so-called landmarks to do the same. By collecting these round-trip-
time (RTT) measurements, the ingress concludes which corresponding peer is clos-
est to the client in terms of network distance, requiring no a priori knowledge of

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 252–263, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Locality Prediction for Oblivious Clients 253

a client’s location. Coupled with some application-level mechanism such as DNS
redirection, this approach can be leveraged to service clients from nearby hosts.

Recent network coordinate systems [8,10,12,9,2,3] offer new methodologies for
active probing. These systems allow peers to estimate inter-host latency with-
out topological maps or explicit all-pairs measurements, by assigning synthetic
coordinates to each peer. The distance between peers in the coordinate space
accurately predicts their RTT. Thus, for example, by combining active probing
with network coordinates, a peer can map its client onto the system’s underly-
ing coordinate space. Then, it can use these coordinates to estimate the client’s
location and redirect it accordingly, potentially to a destination other than from
among the landmarks.

This paper explores various methodologies for locality prediction using ac-
tive probing. We concentrate our analysis on four main properties: (1) the
method used for landmark selection, (2) the number of landmarks selected, (3)
the method used for destination determination, and (4) the number of redirection
iterations performed by a client.

We present and analyze several algorithms for landmark selection, destina-
tion determination, and methods of iterative redirection. We find that network
coordinates enable landmark-selection algorithms that yield better client redirec-
tion, but are not as useful in directly finding a client’s nearby hosts via coordinate
distance estimation.

2 Design

In an abstract model, we consider a network comprised of a core decentral-
ized system and external clients. Internal system peers communicate with one
another, sharing liveness information and measuring internal round-trip-times,
potentially as part of a network coordinate system.

Client

4

1
2

Landmark
Landmark

3
2

Ingress

Destination

Fig. 1. Redirection architecture. When an oblivious client c contacts any system peer

(step 1), this ingress peer directs other known landmark peers to probe the client to

determine RTT (step 2). The ingress accumulates these measurements and selects some

destination peer that is closest to c. It returns this peer (step 3), which the client can

subsequently contact for application-level operation (step 4). The destination may or

may not be restricted to the set of landmarks (latter condition shown).



254 K.P. Shanahan and M.J. Freedman

We assume that an external client has some method of contacting a random
system peer, via DNS for example.1 As shown in Figure 1, upon receiving a
request, this ingress peer selects some subset of system peers to act as landmarks
for probing the client. All landmark peers probe the client after receiving a
corresponding request from the ingress. Landmarks respond to the ingress with
all measured RTTs to the client.

2.1 Network Coordinates

In network coordinate systems, peers derive synthetic coordinates based on
measurements to a limited subset of other peers, either using a fixed set of
public landmarks [8,10,12] or in a fully-decentralized fashion [9,2,3]. Given an-
other peer’s coordinates, a peer can accurately predict its RTT without physical
measurement.

In our decentralized model, hosts within the core peer-to-peer infrastructure
can easily maintain and disseminate network coordinates as a by-product of
other communication: (1) A peer includes its coordinates in all application-level
messages it sends. (2) Whenever communication is two-way, the sender learns
the RTT to the recipient using packet timestamps.(1)).

For concreteness, we use the decentralized Vivaldi algorithm [3] for our net-
work coordinate system. Vivaldi coordinates are represented by a (x, y, h, e) tu-
ple, corresponding to a two-dimensional Euclidean coordinate space (x, y), with
an additional height scalar h and an error term e. Conceptually, the Euclidean
coordinates model the peer’s location in the high-speed Internet backbone, the
height models the additional access link latency at the Internet’s edge, and
the error term captures the host’s confidence in its coordinates. The distance
Da,b = ‖Ca − Cb‖ between two peers’ coordinates Ca, Cb approximates their
RTT; it is calculated by taking the Euclidean distance of their (x, y) coordinates
and adding the height vectors. A peer updates its own coordinates whenever
communicating with other peers, taking the others’ error estimates into account.

External unmodified clients cannot themselves engage in the network co-
ordinate algorithms. However, an ingress can estimate a client’s coordinates, if
desired, by collecting the landmarks’ RTT measurements and coordinates. Then,
it can synthesize client coordinates by running the centralized Vivaldi algorithm
repeatedly on these measurements.2

2.2 Design Considerations

The landmark selection and redirection mechanisms we explore rely on two as-
sumptions. First, all internal peers can select a random subset of other peers

1 For example, if the system is named with a particular domain and every peer runs
a DNS server authoritative for the name, clients initially contact one of 13 or so
peers listed with a registrar. Nameserver caching from prior requests can increase
the client’s view to the entire system.

2 The Vivaldi algorithm is analogous to a mass spring network, which does not con-
verge immediately, but rather has a period of oscillation before resting at the (locally)
lowest energy-level configuration.



Locality Prediction for Oblivious Clients 255

from the network. Second, peers can obtain a subset of those peers closest to
some distance d from a particular peer.

The second assumption requires some practical consideration. Without using
network coordinates, each peer must maintain complete O(n2) network state,
and each peer must continually probe all others to generate these RTTs. Network
coordinates, however, allow peers to predict all pair-wise latencies with only n
state. In fact, each peer need only continually probe a small number of other
peers, independent of n. To learn all n coordinates, a peer can then perform some
gossiping protocol in an unstructured overlay. Alternatively, new distributed data
structures may be designed to support closest-point queries (like a dynamic
Voronoi diagram) using significantly less communication. We leave this as an
open problem.

Based on having n2 RTT estimates via n network coordinates, our results
serve as an upper-bound for the performance benefit of more complex redirection
algorithms over mere random selection. If less state is available at an ingress, this
performance gap shrinks. System designers should therefore weigh this benefit
in locality prediction against its usage and maintenance cost.

System designers must consider other practical issues when performing active
probing. To handle packet losses or excessive queuing delays, an ingress peer may
choose to use k + α landmarks to ensure k timely results. Second, clients may
be behind firewalls or NATs, where UDP probes, TCP requests to high ports,
or ICMP packets have varied success. If client requests use connection-based
protocols, RTTs can be measured directly during connection establishment. Or,
fast traceroute-like scans can at least report timing information to the client’s
firewall. Still, the system should seek to use a minimal number of probes when-
ever possible, as additional probing increases network traffic, response time, and
the probability of abuse complaints.

2.3 Selecting Landmarks

We consider three different metrics for choosing k landmarks with which to probe
the client.

Random. k peers are selected uniformly at random from the system, fresh for
each query.

Well-distributed. This approach attempts to select landmarks that have
good coverage throughout the network—e.g., spread across North America, Eu-
rope, and Asia—without requiring static configuration. Thus, our algorithm
works by selecting random subsets of k peers, then choosing the subset that
minimizes the following:

|mean(Dn) − mean(Dk)|2 + var(Dk)

where Dk is the set of all pair-wise distances for the k peers in the subset (resp.
n peers in the network).

Intuitively, minimizing the difference in mean distance between peers in the
subset and those in the network ensures that landmarks are not all clustered



256 K.P. Shanahan and M.J. Freedman

together. Minimizing variance ensures that peers are approximately equidistant
from one another. Taken together, these properties attempt to spread landmarks
evenly throughout the network. Experimental analysis (not included) showed
that minimizing only one property yielded strictly worse performance than that
obtained using this given metric.

While this well-distributed metric is computationally more expensive, an
ingress peer need not perform this selection process online nor upon each client
request. For example, it may only reselect the set of well-distributed landmarks
once every five minutes.

Sphere. In our third metric, the ingress attempts to choose landmarks that
are likely to be closer to the client. Specifically, an ingress selects landmarks
whose distances from the ingress are closest to the distance between ingress and
client. This implies, of course, that the ingress must first calculate the RTT r to
the client before choosing k−1 other such landmarks. We select k−1 non-ingress
landmarks in order to fairly compare this metric with the former two, based on
the total number of vantage points probing the client (k).

Intuitively, if one is working in a three-dimensional coordinate space, the
resulting set of k − 1 landmarks and the client are located on the surface of
a sphere with radius r, centered about the ingress peer. Thus, any particular
landmark on this sphere is ≤ 2r from the client, provided the triangle inequality
holds. While Vivaldi uses instead a 2-D space with a height vector, (x, y, h), we
use this nomenclature for illustrative clarity.

Note that neither the sphere nor the well-distributed metrics strictly require
network coordinates: The distance calculations used when selecting landmarks
could be based on measured RTTs instead of coordinate distances, although this
practice would significantly limit the system’s scalability.

2.4 Selecting Destinations

We consider two different metrics for determining the destination peer to which
the client is redirected.

Direct RTT measurements. Given the k RTTs between landmarks and the
client, based on direct network probes, the ingress peer chooses the landmark
with the smallest measured RTT.

Estimated coordinate distance. After collecting the k RTT measurements
from landmarks, as well as the landmarks’ latest coordinates, the ingress peer
synthesizes the client’s coordinates Cc per Section 2.1. Then, given the coordi-
nates of all other system peers, the ingress chooses the peer d that is closest to
the client in the coordinate space, i.e., minimizes Dc,d = ‖Cc − Cd‖. Note that,
unlike the direct measurement approach, this destination is not restricted to the
set of landmarks.

2.5 Iterating Redirection

Finally, we consider whether repetitions of the redirection mechanism will im-
prove the system’s predictive accuracy, where each step of the algorithm attempts



Locality Prediction for Oblivious Clients 257

to find a destination closer to the client.3 Thus, the destination from iteration
i − 1 is contacted by the client as an ingress peer for iteration i. Although such
iteration does not make sense for random landmark selection, we can consider
iteration for the latter selection metrics.

For the well-distributed landmark metric, we attempt to decrease the mean
distance between peers by half during each iteration, using var(Dk) + |2−i ·
mean(Dn) − mean(Dk)|2 for the ith iteration. The ingress peer must include
itself among the landmark set for i > 0, given that the algorithm should select
some set of well-distributed peers that are closer to the client at each iteration.

For the sphere metric, each iteration proceeds as expected. Intuitively, the
ingress from iteration i selects landmarks from a sphere with radius ri ≤ ri−1.
To ensure forward progress, landmarks should not be reused between iterations.
As the ingress of iteration i can use its measured RTT to the client from i−1
whenever possible, it selects k other landmarks for i > 0, not k−1 as described
for i=0 above.

3 Evaluation

This section evaluates the proposed selection metrics for choosing both landmarks
and destinations, as well as the effect of the number of landmarks and of iterations.

3.1 Methodology and Terminology

We performed wide-area experiments on the PlanetLab testbed [11] and then
simulated client-system interactions. On 105 randomly-chosen PlanetLab hosts
(as of November 2004), we ran peers that implemented the Vivaldi network co-
ordinate algorithm [3], where each peer regularly probed 32 others. These peers
functioned as landmarks to allow the collection of RTT measurements accom-
panied by their sources’ network coordinates. Peers sent ICMP echo messages
as probes; we used the response’s kernel timestamp to minimize the effect of
scheduling latency.

A non-PlanetLab server directed all peers to probe each client once, with a
25 ms delay between each probe request to reduce congestion at the specified
client. These clients were restricted to the same set of PlanetLab peers, although
peers did not simultaneously play the roll of client and landmark. Each peer
was simulated as a client three times. We collected the resulting ˜30,000 RTT
measurements for subsequent analysis.

Figure 2 briefly characterizes the predictive error of our Vivaldi implementa-
tion, defined by the difference between predicted distance in network coordinate
space and the measured RTT for any two peers a, b: |Da,b − RTTa,b|. This is
plotted alongside the cumulative distribution function (CDF) of all measured
pair-wise RTTs. Additionally, we plot the error of the client coordinates synthe-
sized by the ingress using only 3 landmarks, against all peers as before. Thus, we

3 An iterative redirection mechanism is readily feasible even for unmodified clients.
For example, custom DNS servers can synthesize artificially-hierarchical hostnames,
as in [5], causing DNS resolvers to resolve the names recursively.



258 K.P. Shanahan and M.J. Freedman

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350  400

P
er

ce
nt

Milliseconds

Vivaldi Prediction Error
Triangulation Prediction Error

Pairwise RTT

Fig. 2. Coordinate predictive error vs. network RTTs

find that client coordinates can achieve relatively good accuracy, even though
these coordinates are “fitted” against only a few points. Using 32 landmarks
yielded client results indistinguishable from that of internal peers.

For our analysis, we consider how effectively a mechanism can predict the
system’s optimal destination o. Given that our experiments calculate RTTs be-
tween a client c and all system peers, we call the peer with minimum RTT
optimal. We say that the metric’s predictive error is the absolute RTT difference
between the client with the predicted destination d and with the optimal peer:
|RTTc,d − RTTc,o|.4

3.2 Results

We now evaluate the specified metrics and parameters for active probing. For
predictive sphere selection, a random peer was selected as an ingress peer for each
client test. For random landmark selection, a random subset was selected for each
client test. For the distributed metric, 10,000 subsets were considered, chosen
uniformly at random with replacement.5 The subset that minimized the well-
distributed metric (per Section 2.3) was used for the duration of the experiment.
The following figures are the combined results from 10 such evaluations on all
clients. As a baseline, each graph includes the error CDF of using one randomly-
selected destination.

Landmark selection metrics. Figure 3 compares the efficacy of the three
landmark selection metrics for decreasing predictive error. All three CDFs shown
use three landmarks and the direct RTT measurement approach for selecting a
destination. An error of 0 ms corresponds to predicting the optimal destination.

4 We note that an alternate metric to consider is the relative RTT difference, or stretch,
which normalizes the absolute difference by the optimal RTT. We do not include
such analysis in this paper, however, due to our interest in the system’s absolute
performance: An increase from 2ms to 5ms, while having high stretch, is irrelevant
in practice.

5 Testing all n
k

possible subsets was computationally infeasible.



Locality Prediction for Oblivious Clients 259

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140

P
er

ce
nt

 o
f P

re
di

ct
io

ns
 H

av
in

g 
E

rr
or

 (
%

)

Prediction Error (ms)

3 Landmarks + Sphere + RTT
3 Landmarks + Distributed + RTT

3 Landmarks + Random + RTT
1 Landmark + Random + RTT

Fig. 3. Comparison of landmark selection metrics

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140

P
er

ce
nt

 o
f P

re
di

ct
io

ns
 H

av
in

g 
E

rr
or

 (
%

)

Prediction Error (ms)

11 Landmarks + Sphere + RTT
9 Landmarks + Sphere + RTT
7 Landmarks + Sphere + RTT
5 Landmarks + Sphere + RTT
3 Landmarks + Sphere + RTT
1 Landmark + Random + RTT

Fig. 4. The effect of the multiple landmarks

The sphere metric makes the most accurate predictions, with a median error
of 25.9 ms and optimal selection of 6.8%. The distributed metric has a median
error of 42.8 ms and optimal selection of 2.1%. Randomly selected landmarks
have a median error of 45.9 ms and optimal selection of 2.3%.

Number of landmarks. Figure 4 shows the effect of multiple landmarks on
predictive error. Increasing the number of landmarks improves the accuracy of
destination selection, with decreasing returns as the set size increases. Thus,
even a moderate number of landmarks greatly improves performance: Using 3
landmarks results in a destination with median predictive error that is 4x better
than that of random selection (i.e., 1 landmark).

Destination selection metrics. Figure 5 compares the two methods for se-
lecting destinations, that of direct RTT measurement versus using network co-
ordinates to estimate a client’s location and predict a nearby peer. Somewhat
surprisingly, we find that the coordinate prediction approach yields strictly worse
performance. These results are shared across all landmark selection metrics and
all evaluated landmark set sizes (up to 11).



260 K.P. Shanahan and M.J. Freedman

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140

P
er

ce
nt

 o
f P

re
di

ct
io

ns
 H

av
in

g 
E

rr
or

 (
%

)

Prediction Error (ms)

5 Landmarks + Sphere + RTT
3 Landmarks + Sphere + RTT

5 Landmarks + Sphere + Coords
3 Landmarks + Sphere + Coords

1 Landmark + Random + RTT

Fig. 5. Comparison of destination selection metrics

A (strong) form of the destination selection problem is the following: generate
a sorted list of peers with increasing distance from the client. The RTT metric
samples from this list in some (possibly biased) manner. The coordinate met-
ric uses the same set of peers, but sorts on coordinate distance. Therefore, any
inaccuracy in the coordinate system—which is inherent whenever mapping the
Internet onto a lower-dimensional space—is reflected in the differences between
the orderings of these two lists and hence in their first elements. This intuition
is reflected by the data: the median error in destination prediction when us-
ing coordinates is 35.5 ms, while the median error in the coordinates’ accuracy
themselves (Figure 2) is 29.4 ms. Lower-error coordinate systems can potentially
improve the accuracy of destination selection based on network coordinates.

Number of iterations. Next, we examine the effect of iteratively repeating
the redirection mechanism. Each iteration uses a set of k landmarks not included
in previous iterations. We find that iteration improves accuracy, but again with
diminishing results. The results are similar across all evaluated selection metrics
(noting that random selection cannot be expressed as an iteration problem).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140

P
er

ce
nt

 o
f P

re
di

ct
io

ns
 H

av
in

g 
E

rr
or

 (
%

)

Prediction Error (ms)

3 Landmarks + Sphere + RTT + 4 Iters
12 Landmarks + Sphere + RTT + 1 Iter
3 Landmarks + Sphere + RTT + 2 Iters
6 Landmarks + Sphere + RTT + 1 Iter
3 Landmarks + Sphere + RTT + 1 Iter

1 Landmark + Random + RTT

Fig. 6. Redirection iteration vs. landmark number



Locality Prediction for Oblivious Clients 261

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140

P
er

ce
nt

 o
f P

re
di

ct
io

ns
 H

av
in

g 
E

rr
or

 (
%

)

Prediction Error (ms)

3 Landmarks + Sphere + RTT + 2 Iters
6 Landmarks + Random + RTT + 1 Iter

1 Landmark + Random + RTT

Fig. 7. Simple random vs. iterative distance metrics

One must consider whether these benefits are simply caused by increasing
the total number of landmarks, instead of any additional “forward progress”
made during each iteration step. Figure 6 compares the predictive error of k
landmarks against i iterations of j landmarks each, where i · j = k, again using
the sphere and RTT metrics. We find that iterations do have some additional
benefit beyond merely increasing the number of landmarks, although it is quite
small. Thus, system designers must weigh whether the gain from iteration (in
returning a closer destination) outweighs its cost (in added latency during the
redirection protocol) for their particular application domain.

Repeated probing. Additionally, one might consider the effect of taking mul-
tiple probes versus using only a single probe per landmark, given that any tran-
sient network congestion can cause queuing delays and affect RTT measure-
ments. However, we found no real difference in predictive errors between the two
cases.

Minimizing complexity. In summary, Figure 7 shows the benefit of using
the more complex locality prediction mechanisms explored in this paper. We
compare the simple random approach to our “best” solution, which couples
iteration with the sphere landmark metric. We see that 6 random landmarks
achieve a median predictive error of 26.7 ms and a 90th percentile of 105.4 ms.
Using two iterations of three sphere-chosen landmarks, we decrease the median
error to 12.0 ms (a 2.2x improvement) and the 90th percentile to 61.5 ms (1.7x
better). Certainly, both are better than random selection, with its median of
101.1 ms and 90th percentile of 230.5 ms. Thus, while the advantage of the more
complex redirection mechanism is significant, we also conclude that the simplest
approach can in fact achieve reasonable results.

4 Conclusions

To improve performance, large-scale Internet systems require clients to access
nearby servers. Unfortunately, the techniques usually associated with generat-
ing static topology maps—centralized mapping, trustworthy aggregated results,



262 K.P. Shanahan and M.J. Freedman

extensive network knowledge, ISP-specific heuristics, infrastructure deployment,
etc.—are not readily available to fully-decentralized systems. Thus, such systems
have turned to active probing and network coordinate algorithms to scalably pre-
dict inter-host latencies.

This paper explores various methodologies for locality prediction using ac-
tive probing, showing that a distributed system can achieve high accuracy with
minimal probing. We concentrate on four properties. (1) We conclude that,
when selecting landmarks, a peer should choose ones that are more likely to
be close to the client (the so-called sphere metric). If such selection is not fea-
sible, well-distributed landmarks perform better than randomly-selected peers,
but only when using smaller numbers of landmarks. (2) Increasing the number
of landmarks improves the system’s predictive accuracy, although with dimin-
ishing returns. (3) Iteratively redirecting clients provides minimal improvements
over that obtained only from increasing the number of landmarks. (4) Choosing
a client’s destination based on coordinate distances yields strictly worse accu-
racy than simply using the landmark with smallest RTT. Thus, network coordi-
nates enable certain landmark-selection algorithms—like the sphere metric—to
scale to large systems, but are not as directly useful for determining a client’s
nearest hosts.

Acknowledgments. Special thanks to Russ Cox, Frank Dabek, Jinyang Li,
David Mazières, and members of the NYU Systems Group for helpful discus-
sions. This research was conducted as part of the IRIS project (http://project-
iris.net/), supported by the NSF under Cooperative Agreement No. ANI-
0225660. Michael Freedman is supported by an NDSEG Fellowship.

References
1. Akamai Technologies. http://www.akamai.com/, 2004.

2. M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical Internet coordi-
nates for distance estimation. In Conference on Distributed Systems, Tokyo, Japan,
March 2004.

3. F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network
coordinate system. In ACM SIGCOMM, Portland, OR, August 2004.

4. P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. IDMaps: A
global Internet host distance estimation service. IEEE/ACM Trans. on Networking,
Oct 2001.

5. M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content publi-
cation with Coral. In USENIX/ACM NSDI, San Francisco, CA, March 2004.

6. R. Grimm, A. Kravetz, G. Lichtman, N. Michalakis, S. Raza, A. Elliston, and
J. Miller. OpenEdge: A unified architecture for edge-side content creation, trans-
formation, and caching. Technical report, NYU, February 2005.

7. B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Spurring adoption of DHTs with
OpenHash, a public DHT service. In 3rd Intl. Workshop on Peer-to-Peer Systems,
San Diego, CA, February 2004.

8. E. Ng and H. Zhang. Predicting Internet network distance with coordinates-based
approaches. In IEEE INFOCOM, New York, NY, June 2002.



Locality Prediction for Oblivious Clients 263

9. E. Ng and H. Zhang. A network positioning system for the Internet. In USENIX
Conference, Boston, MA, March 2004.

10. M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris. Lighthouses for
scalable distributed location. In 2nd Intl. Workshop on Peer-to-Peer Systems,
February 2003.

11. PlanetLab. http://www.planet-lab.org/, 2004.
12. L. Tang and M. Crovella. Virtual landmarks for the Internet. In Internet Mea-

surement Conference, Miami Beach, FL, October 2003.
13. M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the Web from DNS. In

USENIX/ACM NSDI, San Francisco, CA, March 2004.
14. M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.

Middleboxes no longer considered harmful. In USENIX OSDI, San Francisco, CA,
December 2004.



Impact of Neighbor Selection on Performance and
Resilience of Structured P2P Networks

Byung-Gon Chun1, Ben Y. Zhao2, and John D. Kubiatowicz1

1 Computer Science Division, U.C. Berkeley
{bgchun, kubitron}@cs.berkeley.edu

2 Department of Computer Science, U.C. Santa Barbara
ravenben@cs.ucsb.edu

Abstract. Recent work has shown that intelligent neighbor selection during con-
struction can significantly enhance the performance of peer-to-peer overlay net-
works. While its impact on performance has been recognized, few have examined
the impact of neighbor selection on network resilience. In this paper, we study
the impact with a generalized cost model for overlay construction that takes into
consideration different types of heterogeneity, such as node capacity and network
proximity. Our simulation results show that the resulting performance improve-
ment comes at the cost of static resilience against targeted attacks and adding
random redundancy can improve the resilience significantly.

1 Introduction

Recent research has shown structured peer-to-peer overlay networks to provide scalable
and resilient abstractions to large-scale applications [20, 12, 15, 9, 11]. They support
routing to endpoints or nodes inside a network requiring only logarithmic routing state
at each node. Nodes in structured peer-to-peer networks choose their neighbors based
on optimization metrics. A recent study by Gummadi et al. [7] shows that neighbor
selection based on network proximity significantly improves overall performance.

However, such neighbor selection can lead to an unbalanced overlay structure.
Figure 1 shows a snapshot of the number of incoming edges (in-degree) and outgo-
ing edges (out-degree) of nodes in a Bamboo [11] overlay running on PlanetLab [5].
Because the overlay uses proximity neighbor selection, some nodes in the system are
more popular (have higher in-degree) than others. The impact of such a skewed degree
distribution on the static resilience of networks has yet to be quantified. The focus of
our study is to look at the impact of different neighbor selections on static resilience
and performance of networks.

To better model neighbor selection across these networks, we first present a gener-
alized cost model. While the heterogeneity of Internet hosts in bandwidth, inter-node
latency and availability are well measured [13], most current protocols only consider
network proximity in neighbor selection. Thus we use different neighbor selection mod-
els based on network proximity and node capacity. We study the impact they have on
lookup latency and static resilience by incorporating the neighbor selection algorithms
into ring and tree geometries, and show that the performance improvement from ex-
ploiting network proximity or node capacity comes at a price of increased vulnerability

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 264–274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Impact of Neighbor Selection on Performance 265

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Degree

In-degree
Out-degree

Fig. 1. Cumulative distribution of node degrees of a 205-node Bamboo overlay running on Plan-
etLab. In-degree and out-degree represent the number of incoming edges and the number of
outgoing edges of each overlay node. The graph does not include default links (i.e., leafset) used
for failure tolerance. This is a snapshot taken on August 26, 2004.

against targeted attacks. Finally, we show that adding random redundancy can signifi-
cantly improve static resilience against targeted attacks.

The paper is organized as follows. We discuss related work in Section 2 and describe
details of the neighbor selection model in Section 3. We then measure the impact of
different cost functions on both resilience and performance in Section 4 and conclude
in Section 5.

2 Related Work

The closest work to ours was done by Gummadi et al. [7]. The authors quantified the
impact of routing geometry on performance and static resilience. In contrast, we fo-
cus on the impact of neighbor selection on these factors. Albert et al. [1] show a clear
correlation between the scale-free nature of networks and resilience to attacks and fail-
ures. Chun et al. [6] show the tradeoff between performance and network resilience of
selfishly constructed unstructured overlays.

Castro et al. studied a defense mechanism against Eclipse attacks where attackers
fake proximity to increase the fraction of bad routing entries in structured peer-to-peer
networks using proximity neighbor selection [2]. They proposed to use two routing
tables — proximity-based one and constrained one. Singh et al. proposed to bound the
degree of overlay nodes in one proximity-based routing table to defend against Eclipse
attacks [14]. In our work, attackers affect network connectivity by taking down nodes
with high degree.

Several research efforts propose optimizing overlay construction of structured over-
lays using the network proximity metric [3, 10, 16, 18, 20], but generally ignore other
factors such as CPU load, storage and bandwidth capacity. Brocade [19] proposes the
use of supernodes for more efficient routing, but requires static selection of supernodes.

Other work [8] proposes the use of multiple “virtual servers” for load balancing
among nodes of varying resource capacity, but does not consider network proximity for



266 B.-G. Chun, B.Y. Zhao, and J.D. Kubiatowicz

routing performance. Gia [4] performs continuous topology adaptation on an unstruc-
tured overlay such that nodes participate with network degree matching their resource
capacity, without considering network proximity.

3 Structured Overlay Construction

In the construction of structured peer-to-peer networks, each node chooses neighbors
that meet logical identifier constraints (e.g., prefix matching or identifier range), and
builds directional links to them. These constraints are flexible such that a number of
nodes are possible neighbors for each routing table entry. Intelligent selection of neigh-
bors from the set of possible neighbor nodes significantly impacts the overlay’s perfor-
mance, resilience, and load balancing properties.

The neighbor selection problem can be reduced to a generalized cost minimiza-
tion problem. We present here a generalized cost model that captures general node and
link characteristics during neighbor selection. Ideally, optimizing neighbor selection for
node i means minimizing the sum of the cost from i to all other nodes. The cost from i
to j consists of two factors: cost incurred by intermediate overlay nodes (node cost: cn)
and cost incurred by overlay network links (edge cost: ce). Let N be the network size.
The cost of node i (Ci) is:

Ci =
∑N

j=1 t(i, j)cp(i, j) where
cp(i, j) =

∑
n∈V (i,j) cn(n) +

∑
e∈P (i,j) ce(e)

(1)

where t(i, j) is the traffic from i to j, cp(i, j) is the cost of the path from i to j, P (i, j) is
the path (a set of edges) from i to j, V (i, j) is the set of intermediate overlay nodes in the
path P (i, j) (it does not include i and j), e is an edge in the path P (i, j), n is a node in
V (i, j), cn(n) is the cost of node n, and ce(e) is the cost of edge e. If t(i, j)=0, there is
no incentive for the node to optimize the path from i to j. In this model, cn captures the
heterogeneity in node capacity, which is a function of bandwidth, computation power,
disk access time, and so on. ce captures network proximity.

For structured networks such as Chord, Pastry, and Tapestry, the cost function can
be rearranged as follows:

Ci =
∑Nb

b=1

∑
j∈Rb

t(i, j)cp(i, j, nb) where
cp(i, j, nb) = [cn(nb) + ce(i, nb)] + [

∑
n∈V (nb,j) cn(n) +

∑
e∈P (nb,j) ce(e)]

= [cn(nb) + ce(i, nb)] + cp(nb, j)

(2)

where b is the neighbor index, nb is the neighbor indexed by b, Nb is the number of
neighbors, Rb is the set of destinations routed through the neighbor nb, cn(i) is the
node cost value of i, ce(k, l) is the edge cost between two nodes k and l, and ce(e) is
the edge cost of e. cp(i, j, nb) is the cost of the path from i to j with nb as a first hop;
we see that this includes terms from the first hop [cn(nb) + ce(i, nb)] and terms from
the remainder of the path cp(nb, j).

Depending on the optimization goal, we can choose different metrics for cn and
ce, including latency, throughput, reliability, availability, monetary cost, or any combi-
nation thereof. For example, choosing high capacity nodes as neighbors can decrease
lookup latency and increase the overall lookup processing capacity of the system. On



Impact of Neighbor Selection on Performance 267

Table 1. Cost functions studied. cn(i) represents the processing delay in node i. This is a de-
creasing function of capacity of node i. ce(i, nb) represents the direct overlay link delay between
node i and node nb.

Model Cost (Ci)

Random None
Dist

∑Nb
b=1 ce(i, nb)

Cap
∑Nb

b=1 cn(nb)

CapDist
∑Nb

b=1{ cn(nb) + ce(i, nb)}

the other hand, using availability as a metric creates a more stable network or using
monetary cost can create a network that is more economically incentivized.

Note that our idealized cost function assumes full knowledge of the network compo-
nents, and is therefore not feasible in practice. Since most peer-to-peer protocols focus
on optimizing neighbor tables locally, we will focus on the application of our cost func-
tion to the cost of the first overlay hop. In this work we focus on neighbor selections
that consider the first hop and optimize latency under uniform traffic (t(i, j) = 1, ∀i, j).

Table 1 shows the four neighbor selection cost functions. Random chooses neigh-
bors randomly. Dist chooses neighbors physically closest in the network to adapt to the
underlying network topology. Currently, Bamboo, Pastry, and Tapestry use this mecha-
nism. Cap chooses neighbors that have the smallest processing delay. CapDist chooses
neighbors that gives the smallest combined latency, which is the sum of the node pro-
cessing delay and the overlay link delay.

4 Simulation Results

In this section, we first present simulation results that quantify the performance benefits
of using intelligent neighbor selection algorithms. We then examine the impact such
algorithms have on the static resilience of the resulting overlay to randomized failures
and targeted attacks.

4.1 Simulation Setup

We simulate the Tapestry [20] and Chord [15] protocols as representatives of their re-
spective geometries (tree and ring). When each node optimizes its cost function, it per-
forms random sampling to select neighbors and choose the best one among the samples.
In our experiments, we use 32 samples for each routing level in Tapestry or each finger
in Chord.

We use practical greedy routing algorithms for both Tapestry and Chord. For
Tapestry, each node forwards messages to the first live neighbor matching one more
prefix digit. The lookup fails if all primary and backup links in the routing entry fail.
For our Chord experiments, each node forwards messages to the live neighbor that is
closest to the destination in the identifier space. The lookup fails if all neighbors be-
fore the destination in the namespace fail. Note that the measured network resilience
depends on the routing algorithms we use.



268 B.-G. Chun, B.Y. Zhao, and J.D. Kubiatowicz

Our simulations use 5100 node transit-stub network topologies generated using the
GT-ITM library [17]. We construct Chord and Tapestry overlays of 4096 nodes by plac-
ing overlay nodes to random physical locations. We gather results with 9 different con-
figurations for GT-ITM, generate 3 transit-stub topologies each, and choose 3 overlay
node placements on each topology.

4.2 Performance

We begin by quantifying the effects of neighbor selection algorithms on performance.
We look at two different distributions of node processing delay: uniform and bimodal.
Because Tapestry and Chord results are similar in both cases, we will only show
Tapestry results.

We start by assigning node processing delay from a coarse-grained uniform distri-
bution. We choose one of 10 values uniformly from the range (0, α], where α is the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.2  0.4  0.6  0.8  1

Lo
ok

up
 la

te
nc

y 
(s

ec
on

d)

Maximum processing delay (Alpha) (second)

Random
Cap
Dist

CapDist

Fig. 2. Average lookup latency for uniform processing delay distribution. When processing delay
variation is low, neighbor selections that exploit network proximity (Dist and CapDist) have low
latency. However, when processing delay variation is high, neighbor selections that exploit node
capacity (Cap and CapDist) have low latency.

 0

 1

 2

 3

 4

 5

 6

 0  0.05  0.1  0.15  0.2

Lo
ok

up
 la

te
nc

y

Fraction of fast nodes (%)

Random
Dist
Cap

CapDist

Fig. 3. Average lookup latency for bimodal processing delay distribution. As the fraction of fast
nodes increases, neighbor selections using node capacity can have better lookup latency than
those that do not use node capacity.



Impact of Neighbor Selection on Performance 269

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

In-degree

Random
Dist
Cap

Capdist

Fig. 4. CDF of the number of incoming edges for uniform processing delay distribution. Random
shows an even in-degree distribution, but the others have very skewed distributions.

maximum processing delay. Figure 2 shows average lookup latency over all node pairs
in Tapestry. By exploiting network proximity and heterogeneous capacity, CapDist
achieves the best lookup performance. When processing delay variation is high (α=1s),
CapDist performs 30% better than Dist and 48% better than Random. When no vari-
ation exists (i.e., α=0s), Dist and CapDist exploit network proximity to outperform
Random and Cap.

We now look at a bimodal model for processing capacity, where nodes are either
fast or slow. Fast nodes process 100 lookup messages per second while slow nodes
process 1 message per second. Figure 3 shows that as we vary the fraction of fast nodes
from 0% to 20%, neighbor selection using capacity (Cap and CapDist) favors routes
through fast nodes and achieves better performance. For instances where the variation
in processing capacity is extremely high, we expect that capacity utilization at fast nodes
will be limited by the routing constraints of the protocol, and the deployment of virtual
nodes is necessary to fully exploit the excess processing capacity.

Using latency optimization creates uneven distributions of nodes’ incoming node
degrees. Nodes near the center of the network (i.e., transit domains) and nodes with
high capacity are preferred, and minimize path latency by utilizing low latency links
or low processing delay. Figure 4 shows the cumulative distribution function (CDF) of
nodes’ in-degrees in Tapestry networks with different neighbor selection algorithms.
Unlike Random, results from cost-optimized overlays show slow transitions and long
tails. We also observe that the CDF of nodes in transit domains is more skewed and has
longer tails than that of nodes in stub domains.

4.3 Static Resilience

Previous work by Albert et al. showed an inherent tradeoff for unstructured networks
between resilience against random node failures and resilience against targeted at-
tacks [1]. In this section, we explore the impact that neighbor selection algorithms have
on static resilience.

We measure resilience as the proportion of all pairs of live endpoints that can still
route to each other via the overlay after an external event, either randomized node fail-



270 B.-G. Chun, B.Y. Zhao, and J.D. Kubiatowicz

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Randomly failed nodes (%)

Cap
CapDist

Dist
Random

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Randomly failed nodes (%)

Cap
CapDist

Dist
Random

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Randomly failed nodes (%)

Cap
CapDist

Dist
Random

(c)

Fig. 5. Tapestry under random node failures. (a) Tapestry varying neighbor selection on one pri-
mary link (e.g., Dist: primary link chosen to optimize the Dist cost function), (b) Tapestry
varying neighbor selection on one primary link and two backup links (e.g., Dist: all three links
chosen to optimize the Dist cost function), (c) Tapestry varying neighbor selection on one pri-
mary link and choosing two backup links randomly (e.g., Dist: primary link chosen to optimize
the Dist cost function and two backup links chosen randomly).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Randomly failed nodes (%)

Cap
CapDist

Dist
Random

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Randomly failed nodes (%)

Cap
CapDist

Dist
Random

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Randomly failed nodes (%)

Cap
CapDist

Dist
Random

(c)

Fig. 6. Chord under random node failures. Chord varying finger selection on finger table having
(a) one sequential neighbor, (b) four sequential neighbors, and (c) 12 sequential neighbors.

ures or targeted attacks. We assume attacks focus on removing nodes with the highest
in-degree in order to maximize damage to overall network reachability. For these exper-
iments, we assume nodes have a uniform processing delay distribution with α = 0.5s.

For Tapestry, we examine resilience of the base protocol, the base protocol plus
additional backup links (all chosen using a number of neighbor selection algorithms),
and the base protocol plus backup links chosen at random. We maintain backup links
for each routing level, so adding two backup links triples the number of neighbors. For
Chord, we examine the base protocol (i.e., protocol with one sequential neighbor) and
the base protocol plus multiple sequential neighbors. Sequential neighbors are succes-
sors in the identifier space. They can make progress to route to all destinations.

Random Node Failures. We first examine the impact of randomized node failures. In
general, we would expect that using selection algorithms that prefer high capacity nodes
results in more hierarchy in the network, where many weaker nodes are connected by
highly interconnected high capacity nodes. In such cases, we expect that randomized
failures will disconnect weaker nodes from the network, but have a relatively low impact
on overall connectivity.



Impact of Neighbor Selection on Performance 271

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Nodes attacked (%)

Cap
CapDist

Dist
Random

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Nodes attacked (%)

Cap
CapDist

Dist
Random

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Nodes attacked (%)

Cap
CapDist

Dist
Random

(c)

Fig. 7. Tapestry under attack. (a) Tapestry varying neighbor selection on one primary link (e.g.,
Dist: primary link chosen to optimize the Dist cost function), (b) Tapestry varying neighbor
selection on one primary link and two backup links (e.g., Dist: all three links chosen to optimize
the Dist cost function), (c) Tapestry varying neighbor selection on one primary link and choosing
two backup links randomly (e.g., Dist: primary link chosen to optimize the Dist cost function
and two backup links chosen randomly).

Figures 5 and 6 show the failure tolerance of Tapestry and Chord, respectively.
Surprisingly, we see the failure tolerance is a little affected by neighbor selections. The
tighter outgoing link constraints of structured peer to peer networks allow less variation
in the resulting topology than unstructured networks. Every node has at least O(logN)
outgoing links, and randomized naming also smoothens out distribution of outgoing
links. Since each lookup takes O(logN) hops regardless of neighbor selection cost
functions, the probability of meeting randomly failed nodes in a lookup will be similar.

Adding backup links in Tapestry and sequential neighbors in Chord dramatically
improves failure tolerance (Figures 5(b), 5(c), 6(b), and 6(c)). Note that in Tapestry,
failure behavior changes from extremely brittle (concave downward with increasing
node failure) to smoothly varying (an S-shaped curve with increasing node failure) with
the addition of path diversity.

Targeted Node Attacks. While structured peer to peer overlays define a minimum
number of outgoing links per node, a node’s number of incoming links is unrestricted.
This means that neighbor selection algorithms considering capacity or network proxim-
ity will skew the network such that powerful or central nodes have significantly higher

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Nodes attacked (%)

Cap
CapDist

Dist
Random

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Nodes attacked (%)

Cap
CapDist

Dist
Random

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Nodes attacked (%)

CapDist
Dist

Random

(c)

Fig. 8. Chord under attack. Chord varying finger selection on finger table having (a) one sequen-
tial neighbor, (b) four sequential neighbors, and (c) 12 sequential neighbors. For (c), we do not
present Cap. We cannot find an order to launch targeted attacks, since Cap creates networks
where many nodes have the same node degree.



272 B.-G. Chun, B.Y. Zhao, and J.D. Kubiatowicz

in-degrees than weaker or boundary nodes. This means that structured peer to peer over-
lays that consider capacity or network proximity in neighbor selection can be vulnerable
to attacks.

As shown in Figures 7(a) and 8(a), attacking nodes with high in-degree affects net-
work connectivity severely. Random shows the best attack tolerance among neighbor
selections. CapDist has worse attack tolerance than Dist, although it has the best per-
formance among neighbor selections we examine. In Tapestry, when 30% of nodes are
attacked, 0.4% of pairs of live nodes can communicate in the networks created with
CapDist, but 20.4% of pairs of live nodes can still communicate in the networks cre-
ated with Random. In Chord, when 50% of nodes are attacked, 0.2% of pairs of live
nodes can communicate in the networks created with CapDist, but 51.8% of pairs of
live nodes can still communicate in the networks created with Random.

This result demonstrates a fundamental tradeoff between performance and attack
resilience in structured overlay construction. The performance gain from neighbor se-
lection algorithms increases the variability of in-degrees among nodes. Nodes with high
capacity or nodes near the center of the network end up with high in-degrees and have
a disproportionately large impact on network connectivity when they are attacked.

Adding Redundancy. From Figures 5(a) and 7(a) we observe that the resilience of
Random under random failures is the same as that under targeted attacks. This re-
sult shows that randomness can shield against attacks targeting biases. If we can bring
the randomness back into the system, we may improve the resilience against targeted
attacks.

Paying the additional cost of maintaining extra links improves static resilience
against targeted attacks. Figures 7(c) and 8(c) show that adding backup links or se-
quential neighbors can increase attack tolerance significantly. When 30% of nodes are
attacked in Tapestry with one primary link optimizing CapDist and two random backup
links, 76% of pairs of live nodes can communicate. When 50% of nodes are attacked in
Chord with 12 sequential neighbors, all nodes can still communicate. Randomly choos-
ing backup links in Tapestry and sequential neighbors in Chord avoids routing hotspots
that are vulnerable to targeted attacks. In Tapestry for example, cost-optimized backup
links are less effective at improving attack tolerance than random backup links (Fig-
ure 7(b)). Using sequential neighbors gains good attack resilience with the overhead of
high lookup latency under attacks.

5 Conclusion

Previous research argued for the consideration of network or physical characteristics of
nodes in overlay construction. In this paper, we take a quantitative approach to examin-
ing the benefits and costs of considering such criteria in overlay construction.

We present a generalized model for neighbor selection that incorporates metrics for
network proximity and available resources (capacity), and show that while considering
these factors can lead to significant gains in routing performance, these benefits come
with their associated costs. We find that the choice of neighbor selection algorithm
drives a tradeoff between performance and resilience to attacks.



Impact of Neighbor Selection on Performance 273

Optimized structured overlays have unbalanced structures. These overlays do not
bound the number of incoming links per node. Thus central nodes in a network or
nodes with more resources will have much higher in-degree than others. Should high
degree nodes be attacked, the impact on network connectivity is severe. On the other
hand, the minimum out-degree means even for overlays that optimize towards prox-
imity or available resources, most nodes achieve enough resilience against randomized
failures. Finally, we show that adding random redundancy can improve the resilience
significantly.

As future work, we intent to investigate the resilience of different geometries un-
der different neighbor selection algorithms. We also plan to investigate the impact of
these neighbor selection algorithms on dynamic resilience, such as when maintenance
algorithms repair failures over time.

References

1. ALBERT, R., JEONG, H., AND BARABASI, A.-L. Error and attack tolerance of complex
networks. Nature 406 (July 2000), 378–381.

2. CASTRO, M., DRUSCHEL, P., GANESH, A., AND ROWSTRON, A. Secure routing for struc-
tured peer-to-peer overlay networks. In Proc. of USENIX OSDI (December 2002).

3. CASTRO, M., DRUSCHEL, P., HU, Y. C., AND ROWSTRON, A. Exploiting network prox-
imity in peer-to-peer overlay networks, technical report msr-tr-2002-82, 2002.

4. CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM, N., AND SHENKER, S. Mak-
ing gnutella-like p2p systems scalable. In Proc. of ACM SIGCOMM (2003).

5. CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETERSON, L., WAWRZONIAK, M.,
AND BOWMAN, M. Planetlab: An overlay testbed for broad-coverage services. In ACM
Computer Communication Review (July 2003).

6. CHUN, B.-G., FONSECA, R., STOICA, I., AND KUBIATOWICZ, J. Characterizing selfishly
constructed overlay routing networks. In Proceedings of IEEE INFOCOM (2004).

7. GUMMADI, K. P., GUMMADI, R., GRIBBLE, S. D., RATNASAMY, S., SHENKER, S., AND

STOICA, I. The impact of dht routing geometry on resilience and proximity. In Proc. of
ACM SIGCOMM (2003).

8. RAO, A., LAKSHMINARAYANAN, K., SURANA, S., KARP, R., AND STOICA, I. Load
balancing in structured p2p systems. In Proc. of IPTPS (2003).

9. RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. A scalable
content-addressable network. In Proc. of SIGCOMM (August 2001), ACM.

10. RATNASAMY, S., HANDLEY, M., KARP, R., AND SHENKER, S. Topologically-aware over-
lay construction and server selection. In Proc. of IEEE INFOCOM (2002).

11. RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J. Handling churn in a dht. In
Proc. of the USENIX Annual Technical Conference (June 2004).

12. ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In Proc. of Middleware (Nov 2001), ACM.

13. SAROIU, S., GUMMADI, P. K., AND GRIBBLE, S. D. A measurement study of peer-to-peer
file sharing systems. In Proc. of MMCN (2002).

14. SINGH, A., CASTRO, M., DRUSCHEL, P., AND ROWSTRON, A. Defending against eclipse
attacks on overlay networks. In Proc. of the ACM SIGOPS European Workshop (September
2004).

15. STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proc. of SIG-
COMM (August 2001), ACM.



274 B.-G. Chun, B.Y. Zhao, and J.D. Kubiatowicz

16. WALDVOGEL, M., AND RINALDI, R. Efficient topology-aware overlay network. In Proc.
of HotNets (2002).

17. ZEGURA, E. W., CALVERT, K. L., AND BHATTACHARJEE, S. How to model an internet-
work. In Proc. of IEEE INFOCOM (1996).

18. ZHANG, H., GOEL, A., AND GOVINDAN, R. Incrementally improving lookup latency in
distributed hash table systems. In Proc. of ACM SIGMETRICS (2003).

19. ZHAO, B. Y., DUAN, Y., HUANG, L., JOSEPH, A., AND KUBIATOWICZ, J. Brocade:
Landmark routing on overlay networks. In Proc. of IPTPS (2002).

20. ZHAO, B. Y., HUANG, L., RHEA, S. C., STRIBLING, J., JOSEPH, A. D., AND KUBIA-
TOWICZ, J. D. Tapestry: A global-scale overlay for rapid service deployment. IEEE J-SAC
22, 1 (January 2004), 41–53.



Evaluating DHT-Based Service Placement for
Stream-Based Overlays

Peter Pietzuch, Jeffrey Shneidman, Jonathan Ledlie,
Matt Welsh, Margo Seltzer, and Mema Roussopoulos

Harvard University, Cambridge MA 02138, USA
hourglass@eecs.harvard.edu

Abstract. Stream-based overlay networks (SBONs) are one approach
to implementing large-scale stream processing systems. A fundamental
consideration in an SBON is that of service placement, which determines
the physical location of in-network processing services or operators, in
such a way that network resources are used efficiently. Service placement
consists of two components: node discovery, which selects a candidate set
of nodes on which services might be placed, and node selection, which
chooses the particular node to host a service. By viewing the placement
problem as the composition of these two processes we can trade-off qual-
ity and efficiency between them.

We evaluate the appropriateness of using DHT routing paths for ser-
vice placement in an SBON, when aiming to minimize network usage. For
this, we consider two DHT-based algorithms for node discovery, which
use either the union or intersection of DHT routing paths in the SBON,
and compare their performance to other techniques. We show that cur-
rent DHT-based schemes are actually rather poor node discovery al-
gorithms, when minimizing network utilization. An efficient DHT may
not traverse enough hops to obtain a sufficiently large candidate set for
placement. The union of DHT routes may result in a low-quality set of
discovered nodes that requires an expensive node selection algorithm. Fi-
nally, the intersection of DHT routes relies on route convergence, which
prevents the placement of services with a large fan-in.

1 Introduction

A marriage between the database and networking communities has produced a
series of interesting systems for continous queries, large-scale stream processing,
and application-level multicast. These systems are examples of a generic class of
stream-based overlay networks (SBONs). SBON applications include real-time
processing of financial data (Aurora [1], Borealis [2]), Internet health monitor-
ing (PIER [3]) and querying geographically diverse sensor networks (IrisNet [4]).

SBONs pose two important challenges. First, a suitable choice of services,
such as database operators, multicast points, or stream processors, must be
provided by the system to satisfy user requirements. Second, these services must
be deployed efficiently in the network according to user queries. Thus far, most

M. Castro and R. van Renesse (Eds.): IPTPS 2005, LNCS 3640, pp. 275–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



276 P. Pietzuch et al.

existing research into SBONs has focused on the former question, with much
less emphasis on efficient service placement. However, network-aware service
placement becomes a crucial factor that determines the scalability and impact
of an SBON when deployed in a shared network. Therefore, a service placement
algorithm should be scalable and adaptive, and perform well based on several
cost metrics, such as network utilization and application latency.

Service placement is actually composed of two mechanisms: node discovery
and node selection. Discovery is the process of identifying a set of nodes capable
of hosting a service; we call this set of nodes the candidate set. Selection is the act
of selecting a particular member of the candidate set to actually host the service.
Traditionally, these two mechanisms have been intertwined, but by viewing them
as separable processes, it is possible to gain greater insight into the performance
of existing systems and develop new approaches to placing services.

In this paper, we investigate how well-suited current DHTs are to the task
of node discovery with respect to efficient network utilization. We evaluate two
DHT-based placement algorithms in comparison to non-DHT-based approaches,
such as a globally optimal placement algorithm and a scheme based on spring
relaxation [5]. Our analysis highlights the tight relationship between discovery
and placement. A bad discovery mechanism can sometimes yield a good place-
ment, but at the cost of an expensive selection mechanism. For the topologies we
have considered, DHT-based schemes produce candidate sets that are marginally
distinguishable from a random sampling. In particular, the union of DHT paths
from producers to consumers creates a large collection of nodes and selecting the
best one does yield a good placement, but we would have done equally well by
selecting nodes at random. When considering the intersection of routing paths,
services with a large fan-in are always placed at consumer nodes.

We conclude that current DHTs are not well-suited to this particular chal-
lenge of optimizing network utilization. We suggest that one should turn toward
alternate solutions, such as the relaxation-based approach analyzed here, or a
new generation of DHTs that are designed to address the needs of SBONs.

The outline of paper is as follows. Section 2 summarizes SBONs and describes
the service placement problem. Section 3 introduces several node discovery and
selection schemes that are then evaluated in Section 4. In Section 5 we review
related work and Section 6 concludes.

2 Stream-Based Overlay Networks

An SBON is an overlay network that streams data from one or more producers to
one or more consumers, possibly via one or more operator services that perform
in-network processing. In an SBON, circuits interconnect multiple services. A
circuit is a tree that specifies the identities and relationships between services in
a data stream and corresponds to a query. Services that are part of a circuit are
connected with circuit links.

We model a circuit as a logical query statement that is then realized on phys-
ical nodes. Some logical elements are constrained when the query is first stated.



Evaluating DHT-Based Service Placement 277

For example, the destination and data sources are specific physical nodes. We
call these elements consumer and producer services, respectively, and consider
them pinned because their logical-to-physical mapping is fixed. Other services,
e.g., a join operator, might be placed at any appropriate node in the network.
We call these unassigned logical services unpinned. Logically, a join operator re-
sides between two or more producers and one or more consumers, but its physical
mapping is unassigned, i.e., it is initially unplaced.

2.1 Placement Problem

Determining a placement for unpinned services is the fundamental placement
problem in an SBON. Some placements are better than others: each placement
has a cost and the quality of a placement is revealed by a cost function. Therefore,
a solution to the placement problem calculates a valid placement for all unplaced
services that minimizes the total incurred cost in the SBON.

Cost functions in an SBON can be categorized into two classes. Minimizing
application-specific costs, such as circuit delay and jitter, addresses the applica-
tion’s desire for quality of service in the SBON. Global cost functions, such as
network utilization and resource contention, attempt to capture the impact of a
placement decision on other participants of the SBON.

In this paper, we concentrate on the global cost of utilizing the network when
streaming data through the SBON, which is important in cooperative network
environment, such as PlanetLab. One way to capture overall network utilization
is the bandwidth-latency (BW-Lat) product, which is the sum of the data rates
consumed by circuit links multiplied by their communication latencies calculated
over all circuit links. The BW-Lat product captures network utilization as the
amount of in-transit data in the network at a particular point in time.

The rationale behind this cost function is that the less data is put into the
network by a placed circuit, the more network capacity is available to other
circuits or applications. The BW-Lat cost function makes the assumption that
high latency network links are more costly to use than low latency ones. Often
high latency indicates network congestion or long geographical distance that
means higher network operating costs. In both cases, the utilization of such links
should be reduced. By factoring in the used bandwidth of a circuit link into the
BW-Lat metric, the cost is proportional to the amount of network traffic used
by a circuit. In other words, overall network utilization can be reduced more
when good placement decisions are chosen for circuits with a high data rate.

3 Placement Algorithms

Many service placement algorithms can be viewed as consisting of two steps: node
discovery and node selection. Node discovery identifies a subset of all nodes in
the SBON as a possible candidate set for service placement, and node selection
chooses a suitable node for the actual placement. An optimal node selection
would consider all nodes in the SBON, but requiring global knowledge is clearly
not feasible for a scalable system. Even in a moderately-sized network, such as



278 P. Pietzuch et al.

PlanetLab, up-to-date node characteristics for 500 nodes cannot be gathered
in a resource efficient manner. Therefore, most placement algorithms use the
results of a node discovery scheme as the input for node selection to cope with
the complexity of the placement problem. Other placement algorithms, such as
the Relaxation placement scheme described below, reverse the ordering of the
two steps or coalesce them into one.

3.1 Node Discovery

The goal of node discovery is to generate a list of physical nodes on which an
unpinned service can be placed. This list is known as the candidate set. The
quality of the candidate set, in terms of the placement cost, is an important
consideration: if no nodes with a low placement cost are part of the candidate
set, a good placement cannot be found even with an optimal node selection
algorithm. The size of the candidate set and the distribution of placement costs
for the included nodes determines the flexibility that the node selection algorithm
has when the best choice from the set cannot support the placement due to
resource limitations. In this section, we describe several possible candidate sets.

All. Setting the candidate set to be the entire overlay network gives the node
selection algorithm the most flexibility to make a good placement. However,
it is infeasible to maintain global knowledge about all nodes in a large-scale
distributed system and process a large set of candidate nodes efficiently.

Consumer. This algorithm returns the node hosting the consumer service as the
placement location, which models a centralized data warehouse system. While
it trivially solves the placement problem, it makes no attempt to optimize the
placement decision.

Producer. Since data producers are pinned services in the circuit, one can
select these nodes as the candidate set. Using known producer nodes solves the
discovery problem, but can result in a small, badly-chosen candidate set.

Random. A candidate set of k random nodes can be discovered through some
mechanism. However, the average quality of this set may be worse than that of
any other scheme that favors nodes with lower placement costs.

DHT Routing Path. A natural way to build a candidate set is to route a
message between pinned services through an overlay network, such as a DHT.
In a DHT setting, a message will traverse �logb(N)� hops in the worst case,
where N is the number of nodes in the DHT and b is the numeric base used for
hash keys during routing. There are two obvious ways to generate a candidate
set when a circuit contains a consumer and multiple producers:

1. DHT Union takes the total set of overlay nodes in the paths from pro-
ducers to the consumer as the candidate set. The service is then placed at one
of these nodes.

2. DHT Intersection takes the intersection of overlay nodes in the routing
path from producers to the consumer. The service is then placed at one of these
ordered nodes, such as the node closest to the producers.



Evaluating DHT-Based Service Placement 279

The goal of this paper is to explore the performance of these two DHT
routing schemes in comparison with the other schemes and to determine their
applicability for service placement in an SBON.

3.2 Node Selection

For each unplaced service in a circuit, the node selection algorithm must place the
service on some node in the candidate set. In this paper, we consider three gen-
eral selection algorithms. Other selection schemes are possible, but will produce
placements no better than optimal selection. Of course, no selection algorithm
is necessary when the candidate set contains only a single node.

Random. selects a node out of the candidate set with uniform probability. This
is a trivial scheme to implement, and may do well with a well-chosen candidate
set. However, it does not attempt to optimize the placement decision.

Optimal. chooses the best node from the candidate set with respect to some
metric, such as network utilization or application latency. In this paper, we con-
sider the BW-Lat product from Section 2.1. If the candidate set is well-chosen
or large, optimal may find a globally-optimal placement. However, an efficient
implementation of optimal selection is hard. An exhaustive search over all pos-
sibilities may result in a large amount of network probing and computational
overhead for non-trivial circuits.

Relaxation. [5] places services using a spring-relaxation model in an artificial
coordinate space [6], in which distance corresponds to latency between phys-
ical nodes in the SBON. The placement coordinate is then mapped back to
physical network space to perform the actual service placement. Prior work has
shown that relaxation placement performs well compared to other algorithms
and supports scalable and dynamic cross-circuit optimization decision [5]. How-
ever, relaxation requires additional overhead in calculating the latency space in
a distributed fashion and maintaining a mapping back to physical space.

4 Evaluation

In this section we present our evaluation of DHT-based service placement com-
pared to other, non-DHT-based placement schemes. The goal is to determine
the performance of the DHTUnion and DHTIntersection algorithms when ap-
plied to different topologies and DHT parameters. Our evaluation focuses on the
efficiency of network utilization, as captured by the BW-Lat product. Through-
out this section, we refer to a placement algorithm by its discovery and selec-
tion schemes, e.g., All/Random. The Optimal selection scheme uses the BW-Lat
product as its metric.

4.1 Experimental Set-Up

To evaluate the placement efficiency for a large number of circuits, we imple-
mented a discrete-event simulator that operates either on the PlanetLab [7]



280 P. Pietzuch et al.

topology with 186 nodes generated from all-pairs-ping measurements [8], or an
artificial 600-node transit-stub topology created by the GATech topology gen-
erator [9]. After placing 1000 circuits each consisting of 4 pinned producers,
1 unpinned service, and 1 pinned consumer, the simulator calculates the place-
ment cost per circuit for each of the placement algorithms. The four producers
in the circuits produce streams with a data rate of 2 kb/s each, which are then
aggregated into a single 1 kb/s stream by the unpinned service.

Two separate DHT implementations were used for the DHT-based placement
schemes. We leverage a recent DHT implementation by crawling the Open-
Hash [10] routing tables running on PlanetLab, which uses the Bamboo [11]
routing algorithm. OpenHash has a DHT key base of 2 and a leaf set size of 8.
We performed latency measurement with Scriptroute [12] to fill in the missing
Bamboo nodes in the all-pair pings data. We also implemented our own Pastry-
like DHT, called Pan, which allowed us to vary the key base. A comparison of
Pan and Bamboo routing with key base 2 shows that the average routing hop
count of Pan is within 2 % of Bamboo’s value. Both DHTs used are proximity-
aware because otherwise the DHT routing paths would be essentially random.
Pan follows Pastry’s approach to achieve proximity awareness by prefering DHT
nodes for its routing tables that are close in terms of latency.

4.2 Network Utilization

The experiment in Figure 1 depicts the efficiency of network utilization in terms
of the amount of data in the network for five different, non-DHT placement
schemes. Each curve shows the BW-Lat distribution as a CDF after placing
1000 circuits. As expected, All/Opt performs best and All/Random worst. All/-
Relaxation is close to optimal, and outperforms the random selection of a pro-
ducer (Producer/Random) and consumer placement (Consumer/—). We will use
these placement schemes as baselines for comparison to DHT-based placement.
All our experimental results for DHT-based service placement are summarized
in Table 1. The data is listed as the ratio of the 80th percentile of the BW-Lat
product compared to the 80th percentile of All/Opt after placing 1000 circuits

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000

BW-Lat product (in ms)

All / Opt
All / Relaxation

Producer / Random
Consumer / -
All / Random

C
um
ul
at
iv
e
D
is
tr
ib
ut
io
n
F
un
ct
io
n

Fig. 1. Non-DHT: CDF of the BW-Lat product on the PlanetLab topology



Evaluating DHT-Based Service Placement 281

Table 1. 80th percentile of the BW-Lat product as a ratio of the 80th percentile of

All/Opt after placing 1000 circuits for two topologies with DHT bases 2 and 64

Node Topology

Discovery Selection PlanetLab Transit-Stub
b=2 b=64 b=2 b=64

All Optimal 1.00 1.00
All Relax. 1.24 1.09
RandomSet(6) Optimal 1.26 1.36
Producer Random 1.60 1.43
Consumer — 1.70 1.63
All Random 1.96 1.84

DHTUnion Optimal 1.13 1.13 1.14 1.18
DHTUnion-NoProd Optimal 1.17 1.31 1.16 1.31
DHTUnion Random 1.60 1.63 1.56 1.52

DHTIntersec. — 1.68 1.67 1.63 1.63
DHTIntersec.-Split — 1.61 1.55 1.59 1.54
DHTIntersec.-Data — 2.82 1.96 3.31 2.25

using various placement schemes. In the next two sections, we discuss the results
for two DHT-based node discovery schemes, DHTUnion and DHTIntersection,
using several topologies and DHT parameters.

DHTUnion. The DHTUnion scheme for node selection uses the DHT routing
paths from the producers to the consumer in a circuit to obtain a set of candidate
nodes for service placement. The size and the quality of the set with respect
to the placement cost function, will depend on the network topology and the
specifics of the particular DHT, such as its network awareness, key base and leaf
set size. Most DHTs are optimized for efficient key retrieval, which means that
the number of routing hops is kept low by choosing a large key base. However,
this reduces the size of the candidate set for node selection when using a DHT,
potentially missing good placement nodes from the set. In terms of quality, the
choice of the routing path by the DHT will determine the suitability of the
candidate set for service placement.

PlanetLab Topology. In Figure 2, we plot the distribution of the BW-Lat product
for three variations of the DHTUnion scheme on the PlanetLab topology using
the Bamboo DHT. For such a small topology, many nodes are included in the
candidate set because the Bamboo deployment on PlanetLab has a large average
routing path length of 3.18 hops due to its binary key base. Therefore, the figure
shows that DHTUnion/Opt placement performs well compared to All/Opt : the
candidate set covers a significant fraction of all nodes and therefore is likely to
include at least one good placement node. However, this good placement node
must be found through an expensive exhaustive search.

The DHT contributes little to placement efficiency, which is supported by the
fact that RandomSet(6)/Opt (1.26) performs similarly to DHTUnion/Opt (1.13).
RandomSet uses a node size of six because this is close to the average number of



282 P. Pietzuch et al.

nodes in the DHTUnion candidate set. A random choice of six nodes out of 186
is likely to include a good placement candidate. This is especially the case for
the PlanetLab network, which mainly interlinks well-provisioned educational in-
stitutions. In general, performing optimal node selection on large candidate sets
is not desirable because of the probing and computational overheads when plac-
ing complex circuits with multiple unpinned services. The DHTUnion/Random
algorithm (1.60) has a similar cost as Producer/Random (1.60) and Consumer/—
(1.70) because of the probability that either the producer or consumer nodes are
chosen randomly.

We study the effect of a more efficient DHT deployment on PlanetLab by
simulating a DHT with a larger key base of 64. For this DHT, the average
routing path length drops to 1.6 hops. Table 1 shows that the performance
of DHTUnion/Opt is still good (1.13) when compared to All/Opt. Although
the DHT routing paths are shorter due to the larger key base, the candidate
set now becomes dominated by the 5 nodes hosting either pinned producers or
consumers. We verify this claim with the DHTUnion-NoProd scheme: when the
producer nodes are removed from the candidate set in DHTUnion-NoProd/Opt
placement, the placement cost increases to 1.31. This means that the in-network
DHT routing path is not long enough to contribute a good placement node.

Transit-Stub Topology. The problem of a small, low-quality candidate set, as
returned by DHTUnion, is even more pronounced in larger topologies. In Fig-
ure 2, we consider an efficient DHT deployment with a key base of 64 de-
ployed on a 600-node transit-stub topology. The average DHT path length
here is 1.89 hops. In this topology, DHTUnion/Opt (1.18) performs worse than
All/Relaxation (1.09). Removing the producer nodes (DHTUnion-NoProd/Opt)
reduces the efficiency to 1.31, resulting in only a small gain when compared to
RandomSet(6)/Opt (1.36).

An obvious way to enlarge the candidate set is to consider the round-trip
DHT routing path. However, increasing the size of candidate set without picking
good nodes does not lead to efficient service placement in a large topology. The

Fig. 2. DHTUnion: CDF of the BW-Lat product with Bamboo (base=2) on the Planet-

Lab topology (left) and CDF of the BW-Lat product with Pan (base=64) on 600-node

transit-stub topology (right)



Evaluating DHT-Based Service Placement 283

Fig. 3. RandomSet/Opt: BW-Lat product with Pan (base=64) on 600-node transit-

stub topology (left). DHT-Intersection: CDF of the BW-Lat product with Bamboo

(base=2) on the PlanetLab topology (right).

experiment in Figure 3 with the same 600-node transit-stub topology investigates
the minimum size of a randomly chosen candidate set (RandomSet(k)) that is
necessary to perform a good node selection with an exhaustive search (Opt).
Even when the candidate set includes 10 % of all nodes, it does not achieve
the performance of All/Relaxation placement. Note that RandomSet performs
worse on the transit-stub topology than before because this network is not as
homogeneous as PlanetLab.

DHTIntersection. The DHTIntersection discovery scheme considers the nodes
in the intersection of all DHT routing paths between the producers and the
consumer as the candidate set. It relies on the route convergence property of
DHT routing [13], which states that routing paths to the same destination are
likely to converge. A service is then placed on the farthest node along the path
that is shared by all other routing paths. In this case, node discovery is equivalent
to selection, so the selection scheme is represented by —.

In Figure 3, we evaluate three types of DHTIntersection. The overlapping
curves of DHTIntersection/— and Consumer/— reveal that DHTIntersection
performs only marginally better than consumer selection. In most cases the in-
tersection of the four routing paths from the producers to the consumer contains
only the node hosting the consumer. This means that DHTIntersection is not a
good scheme for unpinned services with a large fan-in. Since the candidate set
returned by DHTIntersection contains a single node in most cases, varying the
node selection scheme is unnecessary.

The DHTIntersection-Split scheme recognizes this lack of convergence of mul-
tiple routes by assuming that an unpinned service can be split into sub-services.
These sub-services can then be placed independently. A sub-service is created
at the intersection between any two routing paths from producers to consumer.
This is similar to the setup of multicast trees in DHT-based systems, such as
Scribe [13], where a multicast node is created at the node joining the path from a
new subscriber to the root of the multicast tree. The graph shows that splitting



284 P. Pietzuch et al.

services improves the fraction of cases, in which services are placed in-network.
However, it does not reach the performance of All/Relaxation, which optimizes
for the BW-Lat product. Moreover, it is not applicable if services cannot be
decomposed into sub-services.

Application-level multicast schemes based on DHTs often send data along
DHT routing hops. This has the advantage that the data flows benefit from
the resilience and load-balancing properties of the DHT but it also incurs the
penalty of more network traffic in the system. To evaluate this effect, the fi-
nal placement scheme is DHTIntersection-Data, as shown in Figure 3, which
in addition to using the DHT for service placement, also routes the data itself
through the DHT. The last row in Table 1 suggests that the penalty is directly
related to the key base, which determines the number of hops in the routing
path. For the Bamboo DHT on PlanetLab, the penalty of routing data through
the DHT compared to All/Opt placement is almost a factor of 3. We suggest
that many applications would benefit from including their own resilience mech-
anisms at the application-level without paying the price for using the DHT for
data routing.

4.3 Summary

Our experiments suggest that DHTs are less efficient than non-DHT alterna-
tives, such as Relaxation placement, for service placement in SBONs. DHTs are
designed for efficient key lookup, but this yields small candidate set sizes for ser-
vice placement. Using a small key base increases the number of routing hops thus
helping node discovery but also reduces the efficiency of key lookup for other
applications sharing the DHT. A large key base, such as in one-hop routing, may
not return enough useful nodes for service placement.

Another drawback is the low quality of the obtained candidate set from the
DHT, which makes it necessary to perform a costly exhaustive search through
all placement possibilities. Fundamentally, DHTs are not designed to optimize
stream-based processing in the overlay network. A topology-aware DHT uses
only latency to optimize its overlay routing paths. Since DHTs are connection-
less by nature and thus unaware of the data streams in the SBON, they cannot

Table 2. SBONs classified by their placement techniques

Node
Discovery Selection SBON Examples

All Random PIER[3]

All Relaxation Hourglass[14]

All Other (Human Decision) GATES[15]

Consumer — Typ. Warehouse

Con. & Prod. Varies (Random, Heuristic) Typ. CQ System

DHTUnion Greedy Heuristic on Opt Borealis, SAND[2,16]

DHTIntersec. — Scribe[13], Bayeux[17]



Evaluating DHT-Based Service Placement 285

easily optimize their routing tables for efficient service placement. Algorithms,
such as Relaxation placement [5], designed specifically to minimize the amount
of traffic in the SBON do not suffer from the same restrictions.

The intersection of DHT routing paths avoids the issue of a large, low-quality
candidate set but has the problem that routing paths between pinned services
may not converge. This is especially the case for services with a large number of
incoming circuit links. Splitting services into sub-services addresses this problem
but is not applicable in general. Routing data along DHT hops, as done by certain
application-level multicast schemes, carries a large efficiency penalty.

5 Related Work

We suspect that the optimization of service placement decision in SBONs will
be a growing research area, as can be seen from the wide-range of related work.
New continuous query (CQ) work breathes life into questions that arose in dis-
tributed database optimization. Most related to our work is SAND [16] in the
context of the stream-processing system Borealis [2]. In our terminology, they
use DHTUnion to pick the candidate set, and a greedy heuristic on optimal for
node selection. Their scheme can do no better than a DHTUnion/Opt placement.

The location of operators and corresponding relational tables in PIER [3], a
distributed database built on top of a DHT, is determined through random hash
selection from all overlay nodes and explicitly recognizes the possible inefficiency
in such a service placement scheme, and is essentialy an All/Random placement.

Overlay routing and application level multicast systems consider where to
place multicast services to best optimize an expanding array of metrics. For ex-
ample, Scribe [13] uses a DHT to produce a multicast tree to connect publishers
to subscribers. In our terminology, Scribe uses DHTIntersection-Split as its dis-
covery mechanism and a “farthest common ancestor” heuristic as its selection
mechanism. Grid users are recognizing the need to use in-network services to
help process massive data streams. For instance, GATES [15] provides a way
of introducing processing services but requires these services be pre-placed by a
system administrator.

6 Conclusions

In this paper, we have shown that current DHTs do not produce a particularly
good candidate set of nodes for service placement. DHT Union does not provide
significant discovery value beyond that of selecting a random set of nodes from
the overlay. If services cannot be split, DHT Intersection tends to reduce to Con-
sumer placement, resulting in highly restricted and poor placement. If services
can be split, we found that DHT Intersection still does not perform as well as a
dedicated mechanism like Relaxation.

These results suggest a number of areas for further research. First, it remains
an open question of whether it is possible to construct a DHT that is sufficiently
network-aware such that it could be used to easily construct a good candidate set



286 P. Pietzuch et al.

for node placement. How might we construct such a DHT? What does it mean for
a DHT to be dynamically aware of network conditions? Second, should we declare
that DHTs are not the correct abstraction on top of which to construct service
placement algorithms? What alternative structures are possible? Third, is it nec-
essary to globally optimize streaming applications? Do we believe that there will
be sufficiently large amounts of streaming traffic to warrant building a system that
does cross-circuit optimization instead of just local optimization? Answering these
questions is crucial for successful deployment of stream-based applications.

References

1. Abadi, D., Carney, D., Cetintemel, U., et al.: Aurora: A New Model and Architec-
ture for Data Stream Management. VLDB (2003)

2. Abadi, D., Ahmad, Y., Balakrishnan, H., et al.: The Design of the Borealis Stream
Processing Engine. Technical Report CS-04-08, Brown University (2004)

3. Huebsch, R., Hellerstein, J.M., Lanham, N., et al.: Querying the Internet with
PIER. In: VLDB, Berlin, Germany (2003)

4. Gibbons, P.B., Karp, B., Ke, Y., Nath, S., Seshan, S.: IrisNet: An Architecture for
a World-Wide Sensor Web. IEEE Pervasive Computing 2 (2003)

5. Pietzuch, P., Shneidman, J., Welsh, M., Seltzer, M., Roussopoulos, M.: Path Op-
timization in Stream-Based Overlay Networks. Tr, Harvard University (2004)

6. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A Decentralized Network
Coordinate System. In: Proc. of ACM SIGCOMM’04, Portland, OR (2004)

7. The Planetlab Consortium. http://www.planet-lab.org (2004)
8. Stribling, J.: All-Pairs-Pings for PlanetLab (2004)
9. Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to Model an Internetwork.

In: Proc of IEEE Infocom’96. Volume 2., San Francisco, CA (1996) 594–602
10. Karp, B., Ratnasamy, S., Rhea, S., Shenker, S.: Spurring Adoption of DHTs with

OpenHash, a Public DHT Service. In: Proc. of IPTPS’04, San Diego, CA (2004)
11. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling Churn in a DHT. In:

USENIX ’04, Boston, MA (2004)
12. Spring, N., Wetherall, D., Anderson, T.: Scriptroute. In: USITS’02. (2003)
13. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: A Large-scale

and Decentralized Application-level Multicast Infrastructure. JSAC 20 (2002)
14. Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M., Seltzer, M., Welsh, M.:

Hourglass: An Infrastructure for Connecting Sensor Networks and Applications.
Technical report, Harvard University (2004)

15. Chen, L., Reddy, K., Agrawal, G.: GATES: A Grid-Based Middleware for Process-
ing Distributed Data Streams. In: HPDC-13, Honolulu, Hawaii (2004)

16. Ahmad, Y., Çetintemel, U.: Network-Aware Query Processing for Stream-based
Applications. In: VLDB. (2004)

17. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.: Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemination. In:
NOSSDAV. (2002)



Author Index

Abraham, Ittai 173

auf der Heide, FriedhelmMeyer 217

Aurell, Erik 93

Badola, Ankur 173
Balakrishnan, Hari 104
Balakrishnan, Mahesh 1
Bharambe, Ashwin R. 115
Bickson, Danny 173
Bienkowski, Marcin 217
Bungale, Prashanth P. 240

Chien, Steve 24
Chun, Byung-Gon 264
Clements, Austin T. 58
Cooper, Brian F. 163
Costa, Manuel 24
Councill, Isaac G. 69
Crosby, Scott A. 36

Dai, Yafei 182
Druschel, Peter 141

El-Ansary, Sameh 93
Epema, Dick 205

Freedman, Michael J. 252

Garbacki, Pawe�l 205
Goodell, Geoffrey 240
Guillaume, Jean-Loup 193

Haridasan, Maya 1
Haridi, Seif 93

Immorlica, Nicole 24

Kaashoek, M. Frans 69
Karger, David R. 58, 69
Korzeniowski, Miroslaw 217
Krishnamurthy, Arvind 47
Krishnamurthy, Supriya 93
Kubiatowicz, John D. 264
Kuhn, Fabian 13
Kumar, Kapil 127

Latapy, Matthieu 193
Le Blond, Stevens 193
Ledlie, Jonathan 275
Li, Bo 152
Li, Jinyang 69
Li, Xiaoming 182
Li, Xing 152
Linga, Prakash 1
Liskov, Barbara 226
Liu, Hongzhou 1

Malkhi, Dahlia 173
Maloo, Sharad 173
McSherry, Frank 24

Mislove, Alan 141
Mohr, Alexander E. 127
Morris, Robert 69

Nielson, Seth James 36

Padhye, Jitendra 80
Padmanabhan, Venkata N. 80, 115
Pai, Vinay 127
Pietzuch, Peter 275
Ports, Dan R.K. 58
Post, Ansley 141
Pouwelse, Johan 205

Ramabhadran, Sriram 80
Ramasubramanian, Venu 1
Rao, Sanjay G. 115
Rhea, Sean 1
Rodrigues, Rodrigo 226
Ron, Saar 173
Roussopoulos, Mema 240, 275

Sambamurthy, Vinay 127
Sandler, Daniel 141
Schmid, Stefan 13
Seltzer, Margo 275
Seshan, Srinivasan 115
Shanahan, Kevin P. 252



288 Author Index

Shenker, Scott 69, 104
Shneidman, Jeffrey 275
Singh, Manpreet 1
Sips, Henk 205
Stribling, Jeremy 69

Tamilmani, Karthik 127
Tian, Ruixiong 152

Venkatraman, Vidhyashankar 1
Vishnumurthy, Vivek 1

Walfish, Michael 104
Wallach, Dan S. 36
Walsh, Kevin 1
Wang, Randolph Y. 47

Wattenhofer, Roger 13
Welsh, Matt 275
Wong, Bernard 1

Xiong, Yongqiang 152

Yang, Mao 182

Zhang, Chi 47
Zhang, Hui 115
Zhang, Lintao 24
Zhang, Zheng 182
Zhang, Qian 152
Zhao, Ben Y. 152, 264
Zhong, Ming 1
Zhou, Lidong 24


	Frontmatter
	Workshop Report
	Security and Incentives
	A Self-repairing Peer-to-Peer System Resilient to Dynamic Adversarial Churn
	A First Look at Peer-to-Peer Worms: Threats and Defenses
	A Taxonomy of Rational Attacks

	Search
	Brushwood: Distributed Trees in Peer-to-Peer Systems
	Arpeggio: Metadata~Searching and Content~Sharing with~Chord
	OverCite: A Cooperative Digital Research Library

	Miscellaneous
	NetProfiler: Profiling Wide-Area Networks Using Peer Cooperation
	A Statistical Theory of Chord Under Churn
	Peering Peer-to-Peer Providers

	Multicast
	The Impact of Heterogeneous Bandwidth Constraints on DHT-Based Multicast Protocols
	Chainsaw: Eliminating Trees from Overlay Multicast
	FeedTree: Sharing Web Micronews with Peer-to-Peer Event Notification

	Overlay Algorithms
	Hybrid Overlay Structure Based on Random Walks
	Quickly Routing Searches Without Having to Move Content
	Practical Locality-Awareness for Large Scale Information Sharing

	Empirical Studies
	An Empirical Study of Free-Riding Behavior in the Maze P2P File-Sharing System
	Clustering in P2P Exchanges and Consequences on Performances
	The Bittorrent P2P File-Sharing System: Measurements and Analysis

	Miscellaneous
	Dynamic Load Balancing in Distributed Hash Tables
	High Availability in DHTs: Erasure Coding vs. Replication
	Conservation vs. Consensus in Peer-to-Peer Preservation Systems

	Exploiting Network Locality
	Locality Prediction for Oblivious Clients
	Impact of Neighbor Selection on Performance and Resilience of Structured P2P Networks
	Evaluating DHT-Based Service Placement for Stream-Based Overlays

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




