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Abstract. We present the software mor4ansys that allows engineers to employ
modern model reduction techniques to finite element models developed in AN-
SYS. We focus on how one extracts the required information from ANSYS and
performs model reduction in a C++ implementation that is not dependent on a
particular sparse solver. We discuss the computational cost with examples related
to structural mechanics and thermal finite element models.

1 Introduction

The model order reduction of linear large-scale dynamic systems is already quite an
established area [1]. In many papers (see references in [2]), advantages of model reduc-
tion have been demonstrated for a variety of scientific and engineering applications. In
the present work, we focus on how engineers can combine this technique with existing
commercial finite element software in order to

– Speed up a transient or harmonic analysis,
– Generate automatically compact models for system-level simulation,
– Incorporate finite element packages during the design phase.

Model reduction is conventionally applied to a large-scale dynamic system of the
first order as follows

Eẋ = Ax + Bu

y = Cx
(1.1)

where A and E are system matrices, B is the input matrix, C is the output matrix. The
aim of model reduction is to generate a low-dimensional approximation to (1.1) in a
similar form

Er ż = Arz + Bru

y = Crz
(1.2)

that describes well the dependence of the output vector y on the input vector u and so
that, at the same time, the dimension of the reduced state vector z is much less than the
dimension of the original state vector x.
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After discretization in space of the partial differential equations describing a user
model, a finite element package generally produces a system of ordinary differential
equations. At this stage, it is possible to directly apply modern model reduction methods
[1]. However, the extraction of the system matrices from a commercial package happens
not to be straightforward and here we share our experience on how it can be done with
ANSYS [3].

We have chosen the Matrix Market format [4] to represent the reduced model
(1.2). We suppose that its simulation will be done in another package, such as Matlab
or Mathematica. Functions to work with the reduced model in Mathematica are available
at the IMTEK Mathematica Supplement athttp://www.imtek.uni-freiburg.
de/simulation/mathematica/IMSweb/.

The system matrices are high-dimensional and sparse. As a result, the implementation
of a model reduction algorithm usually depends on a particular sparse solver and a storage
scheme for sparse matrices. We discuss a C++ interface that allows us to isolate the model
reduction and sparse solvers completely for negligible overhead.

Finally, we analyse the computation cost and give the performance results for a few
ANSYS models. The comparison of the accuracy of reduced models in respect to the
original ANSYS models is given elsewhere [5].

2 mor4ansys

The developed software [6] comprises two almost independent modules (see Fig. 1).
The first reads a binary ANSYS file and assembles a dynamic system in the form of Eq
(1.1) for first order systems or

M ẍ + Eẋ + Kx = Bu

y = Cx
(2.3)

for second order systems, where M , E and K are the three system matrices. The second
module applies the model reduction algorithm to Eq (1.1) or (2.3), that is, it finds a
low-dimensional basis V so that the approximation

x = V z + ε (2.4)

allows us to reproduce the transient behaviour of the original state vector within the error
margin ε.

After that, the original equations are projected to the subspace found, for example
for Eq (1.2) we have Er = V T EV , Ar = V T AV , Br = V T B, Cr = CV .

We support three methods to treat second-order systems. When the damping matrix
is modeled as Rayleigh damping E = αM + βK , the method from Ref [7] allows us
to preserve the coefficients α and β as parameters in the reduced model. In the general
case, one can choose between the transformation to a first-order system, and second
order Arnoldi algorithm (SOAR) [8].

The software can also read, as well as write, the matrices for the original system
in the Matrix Market format [4]. A number of model reduction benchmarks has been
obtained from ANSYS by means of mor4ansys [9].

http://www.imtek.uni-freiburg.de/simulation/mathematica/IMSweb/
http://www.imtek.uni-freiburg.de/simulation/mathematica/IMSweb/
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Fig. 1. mor4ansys block-scheme

2.1 Interfacing with ANSYS

The development of the first module happen to be rather difficult because most users of
a commercial finite element package do not need the capability to extract the dynamics
system in the form of Eq (1.1) or (2.3) and, as a result, this is not a trivial operation.

ANSYS is a huge package and its behavior is not completely consistent. For exam-
ple, the information described below is not applicable for the fluid dynamics module
FLOTRAN.

Our software reads the binary EMAT file with element matrices in order to assemble
global system matrices. The file format is documented and ANSYS supplies a library
of Fortran subroutines to work with it [10]. An example of how one can use them can
be found in the mor4ansys code [6]. ANSYS has a special command, called a partial
solve PSOLVE, with which one can evaluate element matrices for a given state vector
without going through the real solution stage. This allows us to generate an EMAT file
efficiently for a given model. However, it was necessary to overcome the following
problems:

– The EMAT file does not contain the information about either Dirichlet boundary
conditions or equation constraints. They should be extracted separately.

– The EMAT file has a contribution to the load vector from element matrices only. If
nodal forces or accelerations are used to apply the load, this information should also
be extracted individually.

– It is necessary to assemble the global matrices from the element matrices.

During the solution phase, ANSYS can write a binary FULL file with the assembled
system matrices. When we started the development with ANSYS 5.7, this file did not
contain the load vector (input matrix). Since then there have been many changes. Since
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ANSYS 6.0 theFULLfile maintains all the original matrices, the load vector, the Dirichlet
and equation constraints in the file. ANSYS 8.0 allows us to make the assembly only
and write the FULL file without a real solution phase (equivalent to a partial solution
with EMAT). One can now also dump the information from the FULL file in the Harwell-
Boeing matrix format. Hence, since ANSYS 8.0, it is possible to use the FULL file
efficiently. However, depending on the analysis type the FULL file may contain not the
original stiffness matrix, but rather, a linear combination of system matrices instead.

In the current version of mor4ansys, the EMAT file is employed as the main source
to build Eq (1.1) or (2.3). Additional information on the Dirichlet and equation constraints
and nodal forces is written in the form of text files by means of ANSYS macros we have
developed. The FULL file can be used to extract the load vector when otherwise this is
difficult, for example, as in the case when the acceleration load is used.

ANSYS cannot write several load vectors into the FULL and EMAT files. When
multiple-input is to be preserved in Eq (1.1) or (2.3), a user should for each input:

– Delete the previously applied load,
– Apply a new load,
– Generate matrices.

In order to ease this process, the second strategy is also allowed when a user does
not have to delete the previous load. In this case, each new load vector contains all the
previous vectors and mor4ansys corrects them at the end of the first phase.

2.2 Running the Model Reduction Algorithm

The Krylov subspaces allow us to obtain a low-dimensional subspace basis for (2.4) with
excellent approximating properties by means of a very efficient computation [11,8]. The
current version of mor4ansys implements the block Arnoldi algorithm [11] in order
to support multiple inputs, the block size being equal to the number of inputs.

Each step of an iterative Krylov subspace algorithm requires us to compute a matrix-
vector product, for example, for the first-order system

A−1Eh (2.5)

where h is some vector. The system matrices are high-dimensional and sparse and one
does not compute A−1 explicitly. The only feasible solution is to solve a linear system
of equations for each step as follows

Ag = Eh (2.6)

This constitutes the main computational cost up to the order of the reduced system 30.
Later on, the additional cost associated with the orthogonolization process can be also
added.

There are many sparse solvers as well as many storage schemes for sparse matrices.
Our goal was to implement a model reduction algorithm in a way that does not depend
on a particular solver. In addition, we wanted to change solvers at run-time, that is,
to allow for run-time polymorphism. As a result, we have chosen the virtual function
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Fig. 2. Use of model reduction during design and system-level simulation

mechanism, as its overhead is negligible in our case when the operations by themselves
are computationally intensive.

Our approach is similar to that in the PETs [12] and Trinilos [13] libraries. The
abstract interface is written in terms of relatively low-level functions, as the goal was to
cover many different scenarios. The vectors are represented by continuous memory, as
they are dense in the case of the Krylov subspaces.

At present, the direct solvers from the TAUCS [14] and UMFPACK [15,16] libraries
are supported. The ATLAS library [17] has been used to generate the optimized BLAS.
We have found that for many ANSYS models up to 500 000 degrees of freedom the
modern direct solvers are quite competitive as the matrix factor fits within 4 Gb of
RAM. This allows us to reuse the factorization and achieve good performance.

3 Computational Cost of Model Reduction

We have experimentally observed that for many ANSYS models a reduced model of
order 30 is enough to accurately represent the original high-dimensional system [5].
Hence, for simplicity we limit the analysis of the computational cost to this case.

The simulation time of the reduced system comprising 30 equations is very small
and we can neglect it. Therefore, for the case when several simulations with different
input functions are necessary (the system-level simulation case), the advantage of model
reduction is out of the question.

Yet, during the design phase, a reduced model should be generated each time when
a user changes the geometry or material properties of the original model. In this case,
a reduced model might be used just once. Nevertheless, the model reduction time can
be smaller than the simulation time of the original system even in this case. These two
different situations are shown in Fig. 2. Below we consider the second case.
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Table 1. Computational times on Sun Ultra-80 with 4 Gb of RAM in seconds

dimension nnz stationary
solution

in ANSYS
7.0

stationary
solution

in ANSYS
8.0

factoring
in TAUCS

generation
of the first
30 vectors

4 267 20 861 0.87 0.63 0.31 0.59

11 445 93 781 2.1 2.2 1.3 2.7

20 360 265 113 16 15 12 14

79 171 2 215 638 304 230 190 120

152 943 5 887 290 130 95 91 120

180 597 7 004 750 180 150 120 160

375 801 15 039 875 590 490 410 420

Let us assume that a direct solver is applicable and the dimension of 30 for the reduced
system is sufficient. Then the model reduction time is equal to the time of factoring A
in Eq (2.5) and the time required for 30 back substitution steps in Eq (2.6). Table 1
presents computational times for seven ANSYS models where the system matrices are
symmetric and positive definite. The first four rows correspond to thermal simulations
[18] and the last three to structural mechanics of a bond wire [7].

Each case is specified by its dimension and the number of non zero elements in
the stiffness matrix. The time of a stationary solution in ANSYS is given as a reference
point. Note that the real simulation time in ANSYS required for the stationary solution is
larger than in Table 1 as it includes reading/writing files as well as some other operations.
After that is listed the time to factor a matrix by means of a multifrontal solver from the
TAUCS library [14] and the time to generate the first 30 vectors. The latter is dominated
by the solution of Eq (2.6) by means of back substitution. As the difference to generate
the first and thirtieth vectors was less than 10-20%, we can say that the orthogonalization
cost was relatively small.

Note that the TAUCS multifrontal solver is even faster than the ANSYS solver. The
total time to generate a reduced model is about twice more than that for the stationary
solution. At the same time, the reduced model can accurately reproduce any transient
and harmonic simulation of the original models within a reasonable frequency range.

The simulation time of a harmonic analysis is the product of solution time for a
complex linear system by the number of frequencies needed. The matrix factor cannot
be re-used as the linear system to solve depends on frequency. The solution time for a
complex linear system is about twice more expensive. Hence model reduction allows
us to save simulation time by a factor close to the number of frequencies at which the
harmonic response is required. For example, if it is necessary to estimate the transfer
function at ten frequencies, then the model reduction plus the simulation of the reduced
system is roughly ten times faster than the simulation of the original system.

For the transient simulation, the situation is more difficult to analyse as this depends
on the integration strategy. In principle, it is possible to say that the model reduction time
above is equivalent to 30 equally spaced timesteps as in this case the same strategy with
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the re-use of the matrix factor can be applied. However, in our experience, in order to
achieve accurate integration results for the examples in Table 1, one either needs at least
600 equally-spaced timesteps or one needs to use adaptive integration schemes where
the factor re-use is not possible. In both cases, model reduction plus simulation of the
reduced system was more than ten times faster. This shows that model reduction can
also be viewed as a fast solver and can be employed even during the optimization phase.

4 Conclusions

We have shown that in the case of the linear dynamics systems (1.1) and (2.3) modern
model reduction techniques can speed up finite element transient and harmonic simu-
lation significantly. For nonlinear systems, there are promising theoretical results in the
case of polynomial type nonlinearity [19]. Yet, in the nonlinear case in addition to many
theoretical problems, it happens that extracting a nonlinear system (1.1) or (2.3) from a
commercial finite element tool is a challenge by itself.
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