
On the Approximation of Interval Functions

Klaus Meer�

Department of Mathematics and Computer Science
Syddansk Universitet, Campusvej 55, 5230 Odense M, Denmark

meer@imada.sdu.dk

Abstract. Many problems in interval arithmetic in a natural way lead to a quanti-
fier elimination problem over the reals. By studying closer the precise form of the
latter we show that in some situations it is possible to obtain a refined complexity
analysis of the problem. This is done by structural considerations of the special
form of the quantifiers and its implications for the analysis in a real number model
of computation. Both can then be used to obtain as well new results in the Tur-
ing model. We exemplify our approach by dealing with different versions of the
approximation problem for interval functions.

1 Introduction

When studying a problem in interval arithmetics one of the basic assumptions is that
the input data is not known accurately. Instead of dealing with say an input sequence
(x1, . . . , xn) of rationals describing our precise data, we consider a sequence of intervals
[x1, x1], . . . , [xn, xn] such that the actual data points xi are only known to belong to
[xi, xi], 1 ≤ i ≤ n.

Example 1. (see [11]) Consider the problem: Given a matrix A ∈ Qm×n, b ∈ Qm, is
there a vector x ∈ Rn such that Ax = b? As a problem in interval arithmetic we should
start with an interval matrix A, i.e. a set of intervals [aij , aij] ⊆ R for each position
(i, j) and an interval vector b of intervals [bi, bi] as components. The only knowledge
about the original data (A, b) then is the information A ∈ A, i.e. ∀i, j aij ∈ [aij , aij] and
similarly for b ∈ b. A typical question then could be: Is there any choice A ∈ A, b ∈ b
such that there is an x ∈ Rn with Ax = b?

The above interval linear systems problem is known to be NP-hard [8]. From an
informal point of view it is easy to get an intuition why this is the case. The interval
framework “automatically” introduces a linear number (in the problem dimension) of
quantifiers ranging over the real numbers; they are used to describe the interval infor-
mation available about the input data:

∃ A ∈ A ∃ b ∈ b ∃ x ∈ Rn Ax = b .

� Partially supported by the EU Network of Excellence PASCAL Pattern Analysis, Statistical
Modelling and Computational Learning and by the Danish Natural Science Research Council
SNF. This publication only reflects the author’s views.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 169–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

170 Klaus Meer

The first two blocks of existential quantifiers are not present in the exact setting and
increase the problem’s complexity. They naturally lead to the consideration of algebraic
models of computation like the BSS model introduced by Blum, Shub, and Smale, [2].

In real-life computers, operations with real numbers are hardware supported. Almost
universally, floating-point arithmetic is used for scientific computation. Therefore, if we
have a certain number of bit operations as part of a single operation with real numbers,
then these operations will be performed much faster than if they were unrelated oper-
ations with bits. From this viewpoint, in addition to the standard Turing complexity, it
is desirable to investigate the complexity in terms of how many operations with real
numbers are necessary. This cost measure is studied in the real number BSS model of
computation (resp. in algebraic complexity theory). The approach is substantiated by the
fact that (see [17]) “most practioneers of scientific computing do not experience much
difference between the real number model and floating point arithmetic." Of course,
there are situations in which a more careful analysis has to be performed. However, for
numerically stable algorithms the real number model seems to reflect pretty well the
floating-point costs. Moreover, as already mentioned, in the framework of interval arith-
metic the real number model comes in quite naturally already through the formulation
of problems.

Note as well that in the BSS model the problem of deciding general existential
formulas in the first-order theory FOR over the reals is NPR-complete, where NPR

denotes a real analogue of NP. For more details see [2].

Example 2. This example deals with the best linear approximation of quadratic interval
functions (BLA for short, see [10,8]). A problem instance is given by a box B =
[b1, b1] × . . . × [bn, bn] ⊆ Rn, a bound M ∈ Rn and a quadratic interval function
f : B �→ {intervals in R}. The latter means that there are two quadratic polynomials
f, f : B �→ R such that ∀ y ∈ B f(y) ≤ f(y) and the only information we have about
f is that ∀ y ∈ B f(y) ∈ [f(y), f(y)]. The task is to approximate f as best as possible
with respect to the maximum norm on B by two linear functions X, X : B → R, i.e. to
compute

min
X,X

max
y∈B

X(y) − X(y) ≤ M

under the constraints

∀ y ∈ B :
X(y) ≥ f(y)
X(y) ≤ f(y)

As decision problem we ask whether the minimal value is at most M. This problem
is a linear semi-infinite optimization problem that was studied in [10]. There, it was
shown that the problem (when restricted to rational input data) is NP-hard. However,
no upper bound is known, i.e. the problem is not known to belong to a certain level
of the polynomial hierarchy. It is neither known what the complexity for a fixed input
dimension n is (Koshelev et al. [10] showed polynomial solvability for n = 1.)

For our approach it is most interesting to see that the BLA problem logically can
be expressed as a ΣR

2 formula in the first order theory over the reals. The first block of

On the Approximation of Interval Functions 171

existential quantifiers asks for the linear functions X, X, the second block of universal
quantifiers checks the constraints. The entire formula thus has the shape

∃ X, X ∈ Rn ∀ y ∈ B Φ(X, X, y) ,

where Φ is a quantifier free FOR formula. However, note that this does not automatically
imply the problem to belong to Σ2 in the classical polynomial hierarchy when inputs
are restricted to be rational numbers.

In this extended abstract we show how a further analysis of the logical structure of
the above formula results in refined and even new complexity results concerning the
BLA problem, both in the Turing and the BSS model. For full details on this part see
[13]. We then also discuss more generally the limits of our approach.

2 Framework and Techniques

We shall use Example 2 to clarify our general ideas. Given the real quantifiers naturally
involved in many such interval problems we start from real number complexity theory
as described in [2]. In this framework we perform an analysis that allows us as well
to obtain new and to refine known results for the problem’s complexity in the Turing
model. In particular, we show:

- many of the NP-hard interval problems do likely not capture the full complexity of
the analogue class NPR;

- for expressing many such problems the full power of real quantifier elimination is
not necessary;

- a new upper bound for the BLA problem in the Turing model: BLA ∈ Σ2;
- a new fixed parameter result: BLA is polynomial time solvable in the Turing model

for fixed variable dimension n ∈ N.

The proofs of the above results are divided into two main parts. In the first we analyse
consequences the logical description of a problem has with respect to its real number
complexity. In the second we check the particular problem we are interested in with
respect to the special logical form it can be expressed in. Whereas the first part is using
structural complexity theory in the BSS model, the second part is depending very much
on the problem under consideration. In case of the BLA problem, the Reduction Ansatz
from semi-infinite optimization together with arguments from [12] are crucial.

2.1 Digital Quantifiers

Similar to the class NP in the BSS model the real analogue NPR can be characterized as
all real number decision problems A such that there is a (real) decision problem B ∈ PR

together with a polynomial p such that

A = {x ∈ Rn|∃ y ∈ Rm m ≤ p(n) and (x, y) ∈ B for some n, m} .

The class DNPR is the subclass of problems for which in the above characterization
it is sufficient to let the existential quantifiers range over some {0, 1}m, only, see [3].

172 Klaus Meer

Thus, a problem is in DNPR if the verification procedure can be performed using a
proof from a finite search space instead of one from an uncountable set Rm. Clearly, it
is PR ⊆ DNPR ⊆ NPR. Similarly for the real version ΣR

2 of Σ2 (and for all the other
levels of the real polynomial time hierarchy) we can define the digital subclass DΣR

2 .
Though we cannot expect to be able to prove DNPR 	= NPR or DΣR

2 	= ΣR

2 it is possible
to substantiate these conjectures by the theorem below. Before stating it let us shortly
explain two notions used in the theorem.

Weak reductions in the BSS model were introduced by Koiran [7] as a way to penalize
computations that produce high degree polynomials by repeated squaring. For example,
under the weak cost measure performing n times a repeated squaring of an input x ∈ R

has exponential cost since the polynomial generated when x is seen as a variable has
degree 2n. For a real number complexity class C we denote by the superscript Cw the
corresponding real number complexity classes when implicit complexity statements
refer to the weak cost measure. For example, DNPw

R
is the class of problems verifiable

in weak polynomial time by guessing a sequence in {0, 1}∞. Similarly, DΣR,w
2 is the

weak version of DΣR

2 .

The family of (particular) resultant polynomials RESn is known from algebraic
geometry, see f.e. [5] and [16]:

Definition 1. Let n ∈ N, N := 1
2 · n2 · (n + 1). The resultant polynomial RESn :

RN → R is a polynomial which as its indeterminates takes the coefficient vectors of n
homogeneous degree two polynomials. It is the unique (up to sign) irreducible polynomial
with integer coefficients that generates the variety of (coefficient vectors of) systems that
have a non-trivial complex zero. The set of these systems is denoted by H, the solvable
ones by H0.

Resultants are conjectured not to be efficiently computable, see [14] for some hard-
ness results and [5] for the general theory of resultants.

Theorem 1. a) No problem in DNPw
R

is NPR-complete under weak polynomial time
reductions. No problem in DΣR,w

2 is NPR-hard under weak polynomial time reductions.
b) Suppose there is no (non-uniform) polynomial time algorithm which for each n ∈ N

computes a non-zero multiple of RESn on a Zariski-dense subset ofH0.Then no problem
in DNPR is NPR-complete and no problem in DΣR

2 is NPR-hard under polynomial time
reductions in the BSS model.
c) Part b) also holds with respect to Turing instead of many-one reductions. It is as well
true for computational (instead of decision) problems that can be solved in polynomial
(real) time using oracle calls to a DNPR-oracle.

Proof. This is done by generalizing related results in [4] and [12]. Part a) follows almost
straightforwardly from those results. For part b) assume the hardness of the problems
under consideration. Now study the following real number decision problem: Given a
system f of n homogeneous real polynomials of degree 2, is there a common non-trivial
(complex) zero. This problem clearly belongs to NPR and thus, under the assumption
that the theorem is false, can be polynomially reduced to a DΣR

2 problem (respectively
one in DNPR). This potential reduction is now combined with the Dubois-Risler real
Nullstellensatz. It is then shown that the Nullstellensatz implies the claimed efficient

On the Approximation of Interval Functions 173

computation of a non-zero multiple of RESn to be part of the reduction algorithm.
Part c) follows directly from the proof of part b): Also from a potential Turing reduction
the desired algorithm for computing the resultant polynomials (modulo the cited condi-
tions) can be designed.
�

Since the computation of RESn is conjectured to be difficult, the above theorem
informally can be phrased as: A problem in DNPR or in DΣR

2 is NPR-hard only if the
potentially difficult problem of computing RESn is efficiently solvable (modulo the
above conditions). We thus take a proof that a ΣR

2 -problem actually belongs to DΣR

2

as indication for it not to be NPR-hard. Concerning weak classes and reductions the
statements are absolute; note that for the weak versions of the real number complexity
classes PR and NPR their inequality was proven in [4].

2.2 BLA Lies in DΣR

2

For a concrete problem in ΣR

2 it might of course be unclear whether it belongs to DΣR

2

and how to prove it. In case of the BLA problem this can be achieved by combining
techniques from semi-infinite optimization and structural results from classical quadratic
programming. The proof will not only establish BLA ∈ DΣR

2 but allows as well to
conclude new results for BLA in the Turing model.

Theorem 2. a) The BLA problem with real input data lies in

DΣR

2 (actually in DΣR,w
2).

b) The BLA problem with rational input data lies in Σ2.
c) For fixed variable number n ≥ 1 both in the BSS and in the Turing model BLA is

solvable in polynomial time.

Proof. The main work of the proof is to show part a). The overall idea is to find a solution
(X, X) and verify its correctness as linear approximation as well as verify whether this
approximation realizes the demanded bound M of the maximum norm of X −X on B.
This program is performed along the following steps

1) Assuming (X, X) to be known we guess certain discrete information which then
is used to compute at least two points y(i) and y(j) satisfying necessary optimality
conditions resulting from the Reduction Ansatz of semi-infinite optimization, see
[6]. This reduces the infinitely many y ∈ B to finitely many. However, these finitely
many points still are real, i.e. this step does not yet remove the real quantifiers.

2) From step 1) we deduce conditions that have to be fulfilled by an optimal solution
(X, X). These conditions lead to a linear programming problem. The solution of
the latter, using additional work, can be shown to be computable by a digital ΣR

1

algorithm.
3) Finally, the candidate obtained in 2) is checked for optimality. This mainly requires

to check the constraints, which result in two quadratic programs in y representing
the lower level of the initial semi-infinite problem. Using the results of [12] this
problem belongs to class co-DNPR = DΠ1

R
. Together, we obtain a DΣR

2 algorithm.

174 Klaus Meer

We remark that the above analysis actually implies all computations to be executable in
the corresponding weak classes as well.
b) The precise analysis of the proof of part a) shows that in case of rational input data the
numbers of 0’s and 1’s quantified in the verification procedure are only chosen to select
certain positions in the initial matrices and vectors giving the problem coefficients. They
do neither depend on intermediately generated rationals of larger bit-size nor on newly
introduced real constants. It follows membership in Σ2 for rational inputs.
c) Similarly, the proof of a) shows that the number of quantified variables in the corre-
sponding Σ2 formula is a (linear) function of n. Thus, if n is fixed we can eliminate the
quantifiers in polynomial time by evaluating all possible 0-1 assignments for the bound
variables. Finally, a property in complexity class P has to be checked.
�

Part a) above allows to conclude that BLA is unlikely to be NPR-hard under full and
is not NPR-hard under weak polynomial reductions. Part b) gives a new upper bound for
the rational version extending the NP-hardness result in [10]. Finally, part c) answers an
open question of [8].

3 How Far Does the Approach Lead?

A huge number of NP-hard problems in interval arithmetics is studied in [8]. One might
ask in how far the above methods will work at least for some of those problems as well.
It should be clear that there are a lot of interval problems not only NP-hard in the Turing
model, but also in the real number framework. If we start from an algebraic problem that
already in its exact form is NPR-hard (when real inputs are considered), then its interval
version maintains this property as well.

Let us clarify this by some examples. The problems of deciding the existence of a
common real root for a system of quadratic (real) polynomials or existence of a real root
of a single (real) degree 4 polynomial are well known to be NPR-complete [2]. Thus, as
soon as one of these problems is involved in the exact formulation the interval version is
at least as hard and the above techniques do not apply. An extremely important question
is where the boundary is. For the Best Linear Approximation problem of Example 2 the
decisive properties are

- the Reduction Ansatz and
- the structural properties of (non-convex) quadratic programming allowing for a

discrete coding of optimal points.

It is unclear whether, in particular, the techniques related to the second property can be
extended to higher degree polynomials as objective functions. The above result is based
on the fact that quadratic programs (i.e. a quadratic polynomial as objective function
together with linear constraints) attain their infimum if they are bounded from below.
This results in the possibility to reduce the problem to linear programs by using necessary
first order optimality conditions. And the Linear Programming decision problem belongs
to class DNPR.

If we consider degree 4 polynomials as objective functions everything is different.
The related approximation problem is NPR-hard.

Before we prove this result we state the

On the Approximation of Interval Functions 175

Theorem 3. Given n ∈ N, a compact box B ⊂ Rn and a degree 4 polynomial f ∈
R[x1, . . . , xn] that satisfies f(x) ≥ 0 for all x ∈ B, it is NPR-complete to decide
whether f has a real zero in B. We denote this problem by BOX-4-FEAS.
�

Due to space limitations we postpone the proof of this result to a future paper [9]. It
is basically a straightforward though tedious application of the known quantifier elimi-
nation algorithms and their complexity bounds as given, for example, in [1].

Theorem 4. Consider the problem of finding the best linear approximation of an interval
function of degree 4 (cf. Example 2): Given a (compact) box B ⊂ Rn, a quartic interval
function f : B �→ {intervals in R}, i.e. there are two degree 4 polynomials f, f : B �→ R

such that ∀ y ∈ B f(y) ≤ f(y) ≤ f(y). Find two linear functions X, X : B → R

that solve the constrained optimization problem

min
X,X

max
y∈B

X(y) − X(y)

under the constraints

∀ y ∈ B :
X(y) ≥ f(y)
X(y) ≤ f(y).

Then this problem is NPR-hard.
Similarly, for the decision version it holds: Given, in addition to f, n and B, a bound

M ∈ R, does the best linear approximation (X, X) satisfy

max
x∈B

|X(x) − X(x)| ≤ M ?

is NPR-complete.

Proof. We reduce the BOX-4-FEAS problem to the decision problem under consider-
ation. Given n, f and B as input for the former it is easy to compute an upper bound
M ∈ R such that f(x) ≤ M for all x ∈ B. Just plug in the largest possible value B
for all xi and sum up the absolute values of all monomials occuring in f. This bound
clearly is computable in polynomial time.

As input for the approximation problem we now choose

f(x) := M ∀ x ∈ B , f(x) := f(x) ∀ x ∈ B .

Since f is a constant function it follows that the optimal choice for X is as well the
constant function M. As continuous function f = f attains its infimum on the compact
box B, say in a point x∗ : f(x∗) = min

x∈B
f(x). By assumption, f(x) ≥ 0 for all choices

of x. Let X be an optimal choice (there might be several) for the approximation problem.
It is clear that

max
x∈B

X(x) − X(x) = max
x∈B

M − X(x) ≤ M,

since X(x) := 0 is a suitable candidate for computing min
X

max
x∈B

M −X(x). In the latter

inequality we actually get equality if and only if f has a real zero in B. Otherwise, the
choice X(x) := f(x∗) > 0 gives a better (the optimal!) result.
�

176 Klaus Meer

The theorem shows that if we share the general believe that DNPR 	= NPR, then a
limit for our techniques is reached with the linear approximation problem for interval
functions of degree 4.

Open Problem: What’s about the real number complexity of the best linear approxi-
mation problem for (polynomial) interval functions of degree 3? In particular: Does the
decision version belong to DNPR?

The above arguments are closely related to the range problem of interval functions.
This issue will be discussed in more detail in [9].

For many other problems related to linear interval systems (for a collection of such
problem see Chapters 11 and 12 in [8]) it seems that our results can be applied. They
yield some more optimistic upper bounds than what could be feared from solving them
with general quantifier elimination methods. It might be fruitful to analyze further such
problems under this point of view.

We give one such result here. It deals with the computation of a solution interval of
an interval linear system. As in Example 1 let A := [A, A] be an interval matrix and
b := [b, b] an interval vector in Rm.

Definition 2. (see [8]) a) A possible solution of the interval linear system A · x = b is
a vector y ∈ Rn such that there exist A ∈ A, b ∈ b for which A · y = b.
b) By the j-th solution interval yj = [y

j
, yj] of the system we mean a (possibly infinite)

interval such that for all possible solutions y of the system the j-th component yj of
y belongs to [y

j
, yj]. Moreover, the values y

j
, yj do occur as components of certain

possible solutions (i.e. they are the minimal and maximal such components).

We consider the problem of computing the solution intervals of an interval linear system.
It was shown by Rohn [15] that

Theorem 5. (Rohn) The problem of computing the yj’s (or even computing what is
called a possibly finite enclosure) is NP-hard in the Turing model.

Here, we show that in the real number framework Theorem 2, part c) applies, i.e. the
problem likely does not share the full difficulty of class NPR.

Theorem 6. The problem to compute the solution intervals of an interval linear system

can be solved in FPDNPR

R
, i.e. by a polynomial time real number oracle algorithm that

has access to an oracle for problems in DNPR. Thus, Theorem 2, part c) applies.

Proof. Let A, b be the data of an interval linear system. We use the following result from
[11] to characterize the set R of possible solutions of A · x = b :

R = {y(1) − y(2)|y(1) ≥ 0, y(2) ≥ 0, y(1)T · y(2) = 0,

A · y(1) − A · y(2) ≤ b, A · y(1) − A · y(2) ≥ b}.

On the Approximation of Interval Functions 177

Clearly, for 1 ≤ j ≤ n the endpoints y
j
, yj of the solution interval yj are given as

solutions of the following optimization problems: y
j

is the solution of

min
y(1),y(2)∈Rn

y
(1)
j − y

(2)
j subject to the constraints

y(1) ≥ 0, y(2) ≥ 0, y(1)T · y(2) = 0,

A · y(1) − A · y(2) ≤ b, A · y(1) − A · y(2) ≥ b .

The solution of the corresponding maximization problem is yj .
Given the previous results we now can easily design an FPR algorithm for computing

the solutions of these optimization problems. First, we use the DNPR oracle to remove the

complementary slackness condition y(1)T · y(2) = 0 by figuring out which components
of the two vectors are zero in an optimal solution. This clearly is a DNPR problem since
we only have to code the component indices. We plug in the corresponding zero values
into the problem. This turns it into a Linear Programming problem. As mentioned before,
a solution of a Linear Programming problem (with real data) can be computed using a
DNPR oracle, thus finishing the proof.
�

Let us finally mention that, once more using the characterizations given in [11],
similar results hold as well for the linear interval systems problem from Example 1 and
some related variants, see [13].

4 Conclusions

We have seen that some problems in interval arithmetic in a very natural manner give
rise to study the problem in the BSS model. A concise analysis concerning the logical
expressibility of a problem then allows to obtain structural complexity results not only
in the BSS model but also in the Turing model. The latter can refine investigations that
do not go further than stating NP-hardness of a problem as soon as real quantifiers come
into play.

Acknowledgement

I want to thank G.W. Weber for helpful discussions on semi-infinite programming.
Thanks are due to V. Kreinovich and two anonymous referees for useful comments
concerning the preparation of this paper.

References

1. S. Basu, R. Pollack, M.F. Roy. On the combinatorial and algebraic complexity of quantifier
elimination. Journal of the ACM, 43(6), 1002–1045, 1996.

2. L. Blum, F. Cucker, M. Shub, S. Smale. Complexity and Real Computation. Springer, 1998.
3. F. Cucker, M. Matamala. On digital nondeterminism. Mathematical Systems Theory, 29, 635–

647, 1996.

178 Klaus Meer

4. F. Cucker, M. Shub, S. Smale. Complexity separations in Koiran’s weak model. Theoretical
Computer Science, 133, 3–14, 1994.

5. I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky. Discriminants, resultants, and multidimen-
sional determimants. Birkhäuser , 1994.

6. S.Å. Gustafson, K.O. Kortanek. Semi-infinte programming and applications. Mathematical
Programming: The State of the Art, A. Bachem, M. Grötschel, B. Korte, eds., Springer, 132–
157, 1983.

7. P. Koiran. A weak version of the Blum-Shub-Smale model. 34th Annual IEEE Symposium
on Foundations of Computer Science, 486–495, 1993.

8. V. Kreinovich, A.V. Lakeyev, J. Rohn, P. Kahl. Computational Complexity and Feasibility of
Data Processing and Interval Computations. Kluwer, 1997.

9. V. Kreinovich, K. Meer. Complexity results for the range problem in interval arithmetic. In
preparation.

10. M. Koshelev, L. Longpré, P. Taillibert. Optimal Enclusure of Quadratic Interval Functions.
Reliable Computing, 4, 351–360, 1998.

11. A.V. Lakeyev, S.I. Noskov. A description of the set of solutions of a linear equation with
interval defined operator and right-hand side. Russian Acad. Sci. Dokl. Math., 47(3), 518–
523, 1993.

12. K. Meer. On the complexity of quadratic programming in real number models of computation.
Theoretical Computer Science, 133, 85–94, 1994.

13. K. Meer. On a refined analysis of some problems in interval arithmetic using real number
complexity theory. Reliable Computing, 10(3), 209–225, 2004.

14. D.A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility problems.
Theoretical Computer Science, 31, 125–138, 1984.

15. J. Rohn. Enclosing solutions of linear interval equations is NP-hard. Computing, 53, 365–368,
1094.

16. B. Sturmfels. Introduction to resultants. Application of Computational Algebraic Geometry,
D.A. Cox B. Sturmfels (eds.), Proc. of Symposia in Applied Mathematics, Vol. 53, American
Mathematical Society, 25–39, 1998

17. H. Woźniakowski: Why does information-based complexity use the real number model?
Theoretical Computer Science 219, 451 – 465, 1999.

	Introduction
	Framework and Techniques
	Digital Quantifiers
	BLA Lies in D2R

	How Far Does the Approach Lead?
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

