
Interval Parallel Global Optimization with Charm++
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Abstract. Interval Global Optimization based on Branch and Bound (B&B) tech-
nique is a standard for searching an optimal solution in the scope of continuous
and discrete Global Optimization. It iteratively creates a search tree where each
node represents a problem which is decomposed in several subproblems pro-
vided that a feasible solution can be found by solving this set of subproblems.
The enormous computational power needed to solved most of the B&B Global
Optimization problems and their high degree of parallelism make them suitable
candidates to be solved in a multiprocessing environment. This work evaluates a
parallel version of AMIGO (Advanced Multidimensional Interval Analysis Global
Optimization) algorithm. AMIGO makes an efficient use of all the available in-
formation in continuous differentiable problems to reduce the search domain and
to accelerate the search. Our parallel version takes advantage of the capabilities
offered by Charm++. Preliminary results show our proposal as a good candidate
to solve very hard global optimization problems.

1 Introduction

The problem of finding the global minimum f∗ of a real valued n-dimensional contin-
uously differentiable function f : S → R, S ⊂ R

n, and the corresponding set S∗ of
global minimizers is considered, i.e.:

f∗ = f(s∗) = min
s∈S

f(s), s∗ ∈ S∗. (1.1)

The following notation is used. I = {X = [a, b] | a ≤ b; a, b ∈ R} is the set
of all one-dimensional intervals. X = [x, x] ∈ I is a one-dimensional interval. X =
(X1, . . . , Xn) ⊆ S, Xi ∈ I, i = 1, . . . , n is an n-dimensional interval, also called box.
I
n is the set of the n-dimensional intervals. f(X) = {f(x) | x ∈ X} is the real range

of f on X ⊆ S. F and F ′ = (F ′
1, . . . , F

′
n) are interval inclusion functions of f and its

derivative f ′, respectively. These interval inclusion functions satisfy that: f(X)⊆ F (X)
and f ′(X) ⊆ F ′(X) [8].

In those cases where the objective function f(x) is given by a formula, it is possible
to use an interval analysis B&B approach to solve problem (1.1) (see [6,8,9,10]). A
general interval GO (IGO) algorithm based on this approach is shown in Algorithm 1.
An overview on theory and history of the rules of this algorithm can be found, for
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Algorithm 1 : A general interval B&B GO algorithm
Funct IGO(S, f )

1. Set the working list L := {S} and the final list Q := {}
2. while ( L �= {} )
3. Select an interval X from L Selection rule
4. Compute a lower bound of f(X) Bounding rule
5. if X cannot be eliminated Elimination rule
6. Divide X into Xj , j = 1, . . . , p, subintervals Division rule
7. if Xj satisfies the termination criterion Termination rule
8. Store Xj in Q
9. else

10. Store Xj in L
11. return Q

example, in [6]. Of course, every concrete realization of Algorithm 1 depends on the
available information about the objective functionf(x). The interval global optimization
algorithm used in this article is called AMIGO [7].

AMIGO supposes that interval inclusion functions can be evaluated for f(x) and its
first derivative f ′(x) on X . Thus, the information about the objective function which
can be obtained during the search is:

F (x), F (X) and F ′(X). (1.2)

When the information stated in (1.2) is available, the rules of a traditional realization
of Algorithm 1 can be written more precisely. Below we shortly describe the main
characteristics of AMIGO. A detailed description can be found in [7].

The Bounding rule lets to get a lower and upper bounds of f(X). Interval arithmetic
provides a natural and rigorous way to compute these bounds by changing the real
function to its interval version F (X). Better approximations are obtained using derivative
information. The Selection rule chooses among all the intervals Xj stored in the working
list L, the interval X with a better lower bound of f(X). Most of the research of interval
global optimization algorithm was done in the elimination rule to reduce as much as
possible the search space. AMIGO incorporates the traditional elimination rules (Cutoff
and Monotonicity tests) and additionally can reduce the size of an interval using the
information given in (1.2). Cutoff test: An interval X is rejected when F(X) > f ,̃ where
f˜ is the best known upper bound of f∗. The value of f˜ = [f ,̃ f ]̃ is usually updated
by evaluating F at the middle point of X . Monotonicity test: If condition 0 /∈ F ′(X)
for an interval X is fulfilled, then this means that the interval X does not contain any
minimum and, therefore, can be rejected. The easier division rule usually generates two
subintervals using bisection on the direction of the wider coordinate. The termination
rule determines the desired accuracy of the problem solution. Therefore, intervals X
with a width smaller or equal to a value ε, are moved to the final list Q.

This deterministic global optimization algorithm exhibits a strong computational
cost, mainly for hard to solve problems. Nevertheless, it exhibits a high degree of par-
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allelism which can be exploited by using a multicomputer system. It also exhibits a
high degree of irregularity. This means that special attention has to be paid to the load
balancing and communication cost problems.

In this work we are using a SPMD parallel programing model. In our proposals,
the set of subproblems generated by the B&B procedure is distributed among proces-
sors following a random strategy, which is appropriate when the number of generated
subproblems is huge.

This paper is outlined as follows: Section 2 describes some issues related to the
general framework of parallel B&B algorithms. Section 3 is a brief description of the
Charm++ environment and of the parallel version of AMIGO algorithm. Finally, in Sec-
tion 4 experimental results and evaluations of our parallel implementation on a distributed
system are shown.

2 Parallel Issues in Interval B&B Global Optimization

The verified global optimization method considered in this paper belongs to the B&B
class of methods, where the given initial problem is successively subdivided into smaller
subproblems. Some of these subproblems are again subdivided while other do not need
to be considered anymore because it is known they cannot contain the solution of the
problem. Parallelizing B&B methods mainly consists of distributing among processors
the set of independent subproblems being dynamically created. In order to achieve an
efficient parallel method one should be concerned with the following issues:

1. All processors should always be busy handling subproblems;
2. The total cost of handling all the subproblems should not be greater than the cost of

the serial method;
3. The overhead due to communications among processors should be small.

More precisely, issue 2 means that all processors should not be just busy but doing
useful work. It is necessary to point out that a B&B algorithm executed in parallel
does not process the subproblems in the same order that a sequential program does,
so the number of created (and eliminated) subproblems will depend on the number of
processors used in a particular execution. The resulting effect is that a specific parallel
execution will create more (or sometime less) subproblems depending on the specific
function and the number of processors.

Here we shall investigate the parallelization of a B&B global optimization algorithm
(AMIGO) on a distributed memory multicomputers. In this case it is difficult to fulfill
all the above described issues (1-3), simultaneously. For issue 2, it is important that the
current best bounding criterion (in our case the smallest value of f̃ on all processors)
is sent to every processor as soon as possible. Additionally, one must try to distribute
among processors all the subproblems created thus far. This will contribute to keep all
processors equally loaded or at least to keep them all busy. In addition one should try to
fulfill all three issues to get an efficient parallel method.

When parallelizing the B&B method there are two possibilities for managing sub-
problems. The first is to store subproblems on one central processor. The other is to
distribute them among processors. In our context of verified global optimization this
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means either to store boxes in a list on one processor or to store them in several lists
each created on every processor. The first case has a disadvantage: the maximal length
of a list is limited by the amount of memory of one processor, whereas in the second
case the memory of all processors can be used.

In [12], where parallelization of different methods for verified global optimization
was investigated, one can find a very simple strategy where boxes are stored in a central
list which can be handled by all processors. Similar parallelizations of this master-slave
principle were proposed in [5] and [1]. Contrarily, Eriksson manages processors in a
ring where each processor has its own list of not processed subproblems [4].

3 Parallel Implementation in Charm++

The main characteristics of Charm++, an object oriented portable parallel programming
language based on C++, are introduced here to describe our parallel algorithm.

What sets Charm++ apart from traditional programming models such as message
passing and shared variable programming is that the execution model of Charm++ is
message-driven. Therefore, computations in Charm++ are triggered based on arrival of
associated messages. These computations in turn can fire off more messages to other
(possibly remote) processors that trigger more computations on those processors. Some
of the programmer-visible entities in a Charm++ program are:

Concurrent Objects (Chares): A chare is a Charm++ object that can be created on
any available processor and can be accessed from remote processors. A chare is
similar to a process. Chares are created dynamically, and many chares may be active
simultaneously.

Communication Objects (Messages): Chares send messages to one another to invoke
methods asynchronously. Conceptually, the system maintains a “work-pool” con-
sisting of seeds for new chares, and messages for existing chares.

Every Charm++ program must have at least one mainchare. Charm++ starts a pro-
gram creating a single instance of each mainchare on processor 0, and invokes constructor
methods of these chares. Typically, these chares then create a number of other chares,
possibly on other processors, which can simultaneously work to solve the problem at
hand.

Each chare contains a number of entry methods, which are methods that can be
invoked from remote processors. In Charm++, the only communication method among
processors is an invocation to an asynchronous entry method on remote chares. For
this purpose, Charm Kernel needs to know the types of chares in the user program, the
methods that can be invoked on these chares from remote processors, the arguments
these methods take as input, etc.

Charm++ also permits prioritizing executions (associating priorities with method
invocations), conditional message packing and unpacking (for reducing messaging over-
head), quiescence detection (for detecting completion of some phase of the program),
and dynamic load balancing (during remote object creation).

In our parallel program, a chare has two entry methods:
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Process-Box: It execute one iteration of AMIGO algorithm over the box received in
the given message.

Update-f̃: It upgrade the current f̃ value in the current chare.

We use a static mapping of chares on processors and there is only one chare in one
processor. Therefore, we do not use the Charm++ dynamic load balancing capability.
Each chare will be triggered when receives a message which invokes its entry methods.
A chare also can generate messages for other chares (or itself). For instance, when a
message with a Process-Box entry method arrives to a chare in one processor, the entry
method can:

– Reject the box by some elimination rule: No messages are generated.
– Divide the box: Two new sub-boxes are generated and two new messages with

a Process-Box entry method are generated. The receiver ( chare ) of these new
messages are randomly selected.

– A solution box was found: A message with the solution box is generated and sent
to the mainchare.

The possibility of associating priorities to entry method invocations is very important
in our model. For instance if one chare obtains a better value of f̃ , this value has to be
broad-casted to all the chares, then they will apply the Cutoff test as soon as possible.
Therefore, the Update-f̃ messages will have more priority that the Process-Box ones.
If a Process-Box message arrives and its associated box satisfies the Cutoff test then it
will not be processed. A priority also has been established in the Process-Box messages
to first process the more promising boxes, i.e, those which let to obtain a better f̃ value.
This tries to minimize the possibility that the search region visited by the parallel version
will be larger than the visited by the sequential one.

4 Performance Results

The speed-up and work load imbalance for our parallel implementation of AMIGO
algorithm are shown in Figures 1 and 2, respectively. All the data where obtained from
executions carried out on a cluster of workstations composed of 16 nodes with two
Pentium XEON 3Ghz, with Hyper-threading running Linux. The nodes are connected
by a Gigabit Ethernet network.

Table 1 shows the set of test problems used to evaluate the algorithms. T1 correspond
with the execution time in seconds of AMIGO algorithm and ε1 with the precision
reached by AMIGO to obtain a solution in less than one hour of running time [7]. T2 and
ε2 are analogous but for the parallel algorithm running in one processor. Our experiments
were done in such a way that executions spend less that one hour. It means that increasing
the accuracy of ε1 and ε2 one order of magnitude, algorithms do not provide any solution
after running one hour. From results in Table 1 is clear that the parallel version can reach
better precision. A possible reason is that the parallel version do not need to handle the
storage of the pending boxes, just to process the entry methods.

Figure 1 clearly shows that, for this set of very hard to solve problems, an average
linear speed-up was obtained.
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Table 1. Comparison between sequential AMIGO (T1, ε1) and AMIGO-Charm++ (T2, ε2) algo-
rithms

Name Ref n T1(sec.) ε1 T2(sec.) ε2

Schwefel 2.14 (Powell) [11] 4 15,85 10−5 1898,97 10−7

Schwefel 3.1p [11] 3 1302,67 10−4 24,14 10−4

Ratz 5 [11] 3 667,35 10−3 2245,77 10−5

Ratz 6 [11] 5 823,49 10−3 1007,58 10−4

Ratz 7 [11] 7 903,75 10−3 2459,16 10−4

Schwefel 2.10 (Kowalik) [14] 4 405,54 10−2 3116,71 10−9

Griewank 10 [13] 10 334,04 10−2 1114,49 10−14

Rosenbrock 10 [3] 10 199,19 10−2 1357,70 10−14

Neumaier 2 [9] 4 84,41 10−2 1615,26 10−14

EX2 [2] 5 44,38 10−2 3302,40 10−10

Ratz 8 [11] 9 10,65 10−2 685,48 10−3
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Fig. 1. Speed-up

The workload imbalance has been obtained as (Lmax−Lav)/Lav ∈ [0, p−1]; where
Lmax is the maximum workload and Lav is the average workload in a set of p processors.
Notice (see Figure 2) that the workload imbalance in all the cases is negligible.

As the numerical results show, the parallel implementation of AMIGO using
Charm++ is suitable to obtain solutions with near linear and sometimes with super
speed-ups.
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