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Abstract. This paper is concerned with the verification of a solution of a lin-
ear programming problem obtained by an interior-point method. The presented
method relies on a reformulation of the linear programming problem as an equiva-
lent system of nonlinear equations and uses mean value interval extension of func-
tions and a computational fixed point theorem. The designed algorithm
proves or disproves the existence of a solution on a computer and, if it exists,
encloses this solution in narrow bounds.
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1 Introduction

Linear programming problems have a wide range of practical applications that arise
in such diverse areas as economics, computer science, operations research, medicine,
finance, mathematics, as well as many branches of engineering.

There are a number of general algorithms for the solution of the linear programming
problem. It can be solved very efficiently by recently developed interior-point methods.
An interior-point algorithm is an iterative technique that approaches the optimal solution
by generating a sequence of points in the interior of the feasible region.

The modern era of interior-point methods dates to 1984, when Karmarkar [7] pro-
posed his new polynomial-time algorithm for linear programming. After the publication
of Karmarkar’s algorithm, various interior point methods were developed which are
based on it. However, until now these algorithmic developments have always aimed at
increasing the runtime efficiency and limiting the computational effort, not at improving
the accuracy and reliability of the computational results.

Infeasible interior-point algorithms are known as the most efficient computational
methods for solving linear programming problems. But these algorithms sometimes
compute an approximate solution with duality gap less than a given tolerance even when
the problem may not have a solution [14,17].

One approach for proving or disproving the existence and possibly also uniqueness of
a solution on computers is the use of interval arithmetic, e.g., [1,8,12]. This enables data
uncertainties to be considered. Moreover, by performing outward rounding all rounding
errors appearing during the computation can be taken into account. As a consequence, one
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works with intervals of floating point numbers instead of with the numbers themselves.
The computation of intervals is performed according to the rules of interval arithmetic.
An algorithm implemented with interval arithemtic delivers (often tight) upper and lower
bounds on the exact solution which are guaranteed also in the presence of rounding errors.

The use of interval arithmetic enables a rigorous verification of the existence and
uniqueness of a solution and the computation of a guaranteed enclosure [8]. This verifica-
tion is an application of Brouwer’s fixed-point theorem which requires that a continuous
function maps an interval vector onto itself. Such conditions can easily be tested on
computers using fundamental properties of interval arithmetic. Enclosures with narrow
bounds usually cannot be obtained by naively replacing real numbers by intervals and
every arithmetic operation by the corresponding interval operation. One approach to
improve enclosures of a differentiable function evaluated with interval arguments is to
use the mean value theorem for differentiable functions in connection with an interval
extension of the derivative.

The paper is organized as follows. In Section 2 we consider an infeasible interior-
point algorithm for solving linear programming problems. In Section 3 we propose
an algorithm that tests for the existence of a solution. Numerical results are presented
in Section 4. We conclude with an empirical evaluation of our algorithm and some
suggestions for further research.

In this paper, vectors are usually denoted by lower case letters, and matrices by
upper case letters. Intervals and interval vectors are usually denoted by boldface lower
case letters. It should be clear from the context, whether the letter denotes an interval or
an interval vector. We denote the set of real numbers by R and the set of the compact
nonempty real intervals by IR.

2 Infeasible Interior-Point Algorithm

We consider the linear programming problem in standard form, which is generally re-
ferred to as the primal problem

Minimize c�x

subject to Ax = b,

x ≥ 0

(P)

and its dual problem after adding the slack variable z to convert it to equality form

Maximize b�y

subject to A�y + z = c,

z ≥ 0

(D)

where c, x, z ∈ R
n, b, y ∈ R

m are vectors and A ∈ R
m×n is a matrix. Every feasible

solution for one of these two problems gives considerable information about the fea-
sibility and optimality of the other. Moreover, it can easily be shown that for a primal
feasible x and dual feasible y and z,
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c�x − b�y = x�z,

holds true. The left hand side is called the duality gap and provides an excellent and
easily obtainable measure of closeness of the computed solution to the optimal one.

An infeasible interior-point algorithm solves a primal-dual pair starting from an
arbitrary infeasible point that satisfies the positivity constraints, but does not necessarily
satisfy the equality constraints. Then the algorithm usually generates a sequence of
iterates of feasible or infeasible solutions that approach feasibility and optimality. In the
limit the iterates will converge to an approximate optimal solution with duality gap less
than a given tolerance. The algorithm can be derived by applying the logarithmic barrier
method to the primal problem (P), or alternatively, to the dual problem (D). Here we
consider the dual problem (D) which is transformed to

Maximize b�y − µ
n∑

j=1

ln zj

subject to A�y + z = c,

(Dµ)

where µ > 0 is a barrier parameter. For more details on the relation between (D) and
(Dµ), see [2], where the logarithmic barrier method is introduced and [3], where it is
developed. The Lagrangian for (Dµ) is

L(x, y, z, µ) = b�y − µ

n∑

j=1

ln zj − x�(A�y + z − c)

and the first order conditions for (Dµ) are

∇xL = c − z − A�y = 0,

∇yL = b − Ax = 0,

∇zL = µZ−1e − X = 0,

(2.1)

where X and Z are n × n diagonal matrices with elements x and z, respectively, and e
is the n-vector of all ones. Newton’s method can be applied to (1) in order to compute a
search direction and then to determine a better estimate of the solution of the primal-dual
pair.

Furthermore, Mehrotra [10] proposed a predictor-corrector method as an efficient
strategy to compute the search direction. In particular, the method can be derived directly
from the optimality conditions (2.1). Substituting (x, y, z) by (x+∆x, y+∆y, z+∆z)
leads to the implicit equations

A�∆y + ∆z = c − z − A�y,

A∆x = b − Ax,

X∆z + Z∆x = µe − XZe − ∆X∆Ze,

(2.2)

where ∆X and ∆Z are n × n diagonal matrices with elements equal to ∆x and ∆z,
respectively.
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Mehrotra proposed to first solve the affine system

A�∆ŷ + ∆ẑ = c − z − A�y,

A∆x̂ = b − Ax,

X∆ẑ + Z∆x̂ = −XZe,

(2.3)

and then substitute the vectors ∆x̂ and ∆ẑ computed from (2.3) in the term ∆X∆Ze
on the right-hand side of (2.2). Moreover, he suggested testing the reduction in the
complementarity (x + αP ∆x̂)�(z + αD∆ẑ), where αP and αD are the largest step
lengths in the primal and dual variables which ensure x > 0 and z > 0. If we let

µ̂ = (x + αP ∆x̂)�(z + αD∆ẑ),

then a good estimate for the barrier parameter µ is

µ =
(

µ̂

x�

)2(
µ̂

n

)

.

This generates µ to be small when the affine direction produces a large decrease in
complementarity and large otherwise.

Finally, the most current interior-point codes are based on the predictor–corrector
technique [10]. Implementations of the algorithm also incorporate other heuristics that
are essential for robust behaviour on many practical problems, including the determina-
tion of a starting point, the choice of step length, updating the barrier parameter µ, and
the computing of the predictor–corrector direction. More details and further information
on implementation techniques and the most relevant issues of infeasible interior–point
methods are given in [17].

3 A Verification Method

In this section, we develop a practical verification method via reformulation of the linear
programming problem as an equivalent system of nonlinear equations.

We define the function F : R
2n+m → R

2n+m by

F (x, y, z) =

⎛

⎜
⎝

Ax − b

A�y + z − c

xZe − µe

⎞

⎟
⎠ .

Then we can rewrite conditions (2.1) in the form F (x, y, z) = 0. The Jacobian of F is
given by

JF (x, y, z) =

⎛

⎜
⎝

A 0 0
0 A� I

Z 0 x

⎞

⎟
⎠ ,

which is nonsingular for all (x, z) > 0.
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By using the notation

u = (x, y, z),
u = {(u1, u2, . . . , u2n+m)� ∈ R

2n+m | ui ≤ ui ≤ ui, 1 ≤ i ≤ 2n + m},

the problem is then to verify that there exists a u∗ ∈ u such that F (u∗) = 0. Interval
arithmetic in combination with the mean value extension and Brouwer’s fixed point
theorem can be used to verify the existence and uniqueness of a solution to F (u) = 0
(see [8]).

The mean value extension can be constructed using both the mean value theorem
and the interval extension of the derivative.

Theorem 1 (Mean value extension). Let f : D ⊆ R
n → R be a continuously differ-

entiable function and let the gradient ∇f have an interval extension for all u contained
in the domain of f . Then

f(u) ∈ f(ũ) + ∇f(u) (u − ũ) for all u, ũ ∈ u.

Proof. For a proof see, for example, [1].

A computationally verifiable sufficient condition is given by Krawczyk [9] for the
existence of a solution to a system of nonlinear equations using an interval version of
Newton’s method.

Definition 1. Let F : D ⊆ R
n → R

n be a continuously differentiable function and let
u be an interval vector in IR

n with u ⊆ D. Then shape Krawczyk’s operator is defined
as:

K(u, ũ) = ũ − R · F (ũ) + (I − R · JF (u))(u − ũ),

where ũ is a vector in u, JF (u) is an interval evaluation of the Jacobian of F , R is a
real nonsingular matrix approximating (JF (ũ))−1 and I is the n × n identity matrix.

A verification method can be derived by iteratively applying Krawczyk’s operator
until the conditions of the following theorem are satisfied:

Theorem 2 (Existence and uniqueness). If K(u, ũ) ⊆ u, then F has a zero u∗ in
K(u, ũ) and therefore also in u.

Proof. For a proof see, for example, [9] or [11].

Let a continuously differentiable function F and an interval vector u be given. The
midpoint of u is defined as mid(u) = (u + u)/2. A verification algorithm for testing
the existence or nonexistence of a solution of F (u) = 0 in u is based on a sequence of
iterates of the form:

u0 = u,

ũk = mid(uk),
uk+1 = K(uk, ũk) ∩ uk, k = 0, 1, 2, . . .

Our numerical experiences show that during the first iteration it can often be decided
whether there is a zero of F in u, if u is sufficiently small. Sharper interval bounds may
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be obtained by continuing the iteration. Moreover, an important and powerful result is
that we do not need to solve a system of linear equations to find an enclosure of zeroes of
a system of nonlinear equations. More details and further information on this algorithm
can be found in [9], where the method was first introduced, and in [11], where the power
of the method as a computational fixed point theorem was first analyzed.

Furthermore, the following properties of this algorithm are remarkable, see also
[8,12], where its theory and practice have been expounded. Here it is assumed that
mid

(
JF (uk)

)
is nonsingular.

1. Every zero of F in u can be computed and correctly bounded.
2. If there is no zero of F in u, the algorithm will automatically prove this fact in a

finite number of iterations.
3. The proof of existence or nonexistence of a zero of F in a given interval vector u

can be delegated to the computer. If K(u, ũ)
◦
⊂ u, then there exists a unique zero

of F in u. If K(u, ũ) ∩u = ∅, then there is no zero of F in u. Here, the relation
◦
⊂

denotes inner inclusion, i.e., K(u, ũ)
◦
⊂ u states that the interval vector K(u, ũ) is

contained in the interior of u.
4. In practice, the algorithm converges quadratically when ũ is taken to be the mid-

point vector of u, R is an appropriate approximation to the midpoint inverse, the
interval extensions are sufficiently sharp, and the widths of the components of u are
sufficiently small.

Now, the general algorithm for verification of approximate solutions of linear program-
ming problems can be stated as follows:

ALGORITHM (General verification algorithm)

Step 0. Let a primal problem (P) and its dual (D) be given.
Step 1. Compute an approximate solution ũ = (x̃, ỹ, z̃) for the primal problem (P) and

its dual (D) by running an infeasible interior-point algorithm.
Step 2. Construct a small box u = (x,y, z) around the approximate solution by using

epsilon-inflation [13]
u = ũ + ε [−e, e], (3.4)

where ε is a given small positive machine number and e is the (2n + m)-vector
of all ones.

Step 3. Perform a verification step:
Step 3.1. Prove the existence or nonexistence of a zero by applying Krawczyk’s

method to the nonlinear system F (u) = 0.
Step 3.2. Enclose the optimal solution value by the interval

c�x ∩ b�y. (3.5)

We conclude with some practical remarks on the algorithm. If the optimality condi-
tions (2.1) hold and the existence of an optimal feasible solution in the constructed box
is proved, then bounds on the exact optimal objective value are provided by (3.5). How-
ever, the approximate solution ũ should be near an exact solution. Thus, if the tolerance
of the stopping criterion in the approximate algorithm is set smaller than ε (3.4), then
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the verification step will succeed. Finally, if the infeasible interior-point algorithm fails
to compute a solution to the primal-dual pair, then the verification algorithm requires
an initial interval vector approximation to be prescribed by the user. It then manages to
contract this initial interval vector.

4 Numerical Results

In this section, we evaluate the practical efficiency of the presented algorithm. To
demonstrate the effects of our verification algorithm, we have compared it against the
software package LOQO [15] which is a linear programming solver based on an infeasi-
ble primal-dual interior-point algorithm. The computations are performed on a personal
computer using FORTRAN–XSC [16]. In all our examples the quantity ε in (3.4) is set
to 0.25. For more details on the efficient use of epsilon–inflation in verification methods,
refer to [13].

Several software tools have been developed over the last decades to improve the
accuracy of computer arithmetic. They include the library FORTRAN–XSC for interval
arithmetic which provides reliable arithmetic by producing two values for each result.
These two values correspond to the endpoints of an interval such that the exact result
is guaranteed to be contained within it. Moreover, FORTRAN–XSC provides special
notations and data types for interval arithmetic and an exact dot product which is par-
ticularly suited to the design of algorithms delivering automatically verified results with
high accuracy. For more details, see [16], where the concepts and the important features
are described.

Example 1. Consider the following linear programming problem

Minimize −50x1 − 9x2 + 10−40x3

subject to x1 ≤ 50
x2 ≤ 200

100x1 + 18x2 ≤ 5000
x1, x2 ≥ 0.

This example is taken from [4], page 221, where the exact optimal value enclosure,

[−2.500000000000000 · 103,−2.500000000000000 · 103],

is computed by using the verified simplex method from [6]. The results achieved by
running the infeasible interior-point algorithm [15] for this problem show that the primal
problem and its dual are infeasible. Our verification algorithm proves that this problem
has a solution. The optimal value is enclosed in the interval

[−2.5000000000000019 · 103,−2.4999999999999981 · 103].

A comparison between the results obtained for this test problem indicates that the ap-
proximate result from LOQO is quantitatively, but also qualitatively incorrect.
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Example 2. Consider the following linear programming problem given in the form (P)
with

A =

⎛

⎜
⎝

−2 −1 −2
−1 −2 −2
−1 −3 −1

⎞

⎟
⎠ , b =

⎛

⎜
⎝

−3
−1
−3

⎞

⎟
⎠ , and c =

⎛

⎜
⎝

2
5
6

⎞

⎟
⎠ .

This linear programming problem has no feasible solution, and this fact is proved by
our verification algorithm. LOQO computes after 9 iterations an approximate optimal
solution of this problem

=

⎛

⎜
⎝

2.6
0.6

−1.4

⎞

⎟
⎠

with the optimal objective values,

primal objective = −0.2000000028
dual objective = −0.1999999998 .

The infeasibility of this solution is not recognized by this algorithm. By constructing
a small box u around the obtained approximate solution using epsilon-inflation and
performing a verification step, we obtain that

K(u, ũ) ∩ u = ∅.

Hence, the linear programming problem has no solution in u in spite of the fact that
an approximate optimal solution with optimal objective values has been computed by
LOQO. Therefore, our verification method provides a safety valve for the infeasible
interior-point algorithm.

Example 3. Consider the following linear programming problem

Minimize 2x1 + x2

subject to −x1 − x2 = 10−6,

x1, x2 ≥ 0.

When our algorithm attempts to verify the existence of a solution for this problem, it
affirms that the problem is infeasible. In contrast, LOQO terminated after 254 iterations
with the result that the primal problem and its dual are infeasible. This result from LOQO

typically specifies that a maximum number of iterations is performed and no optimal
solution has been computed.

5 Conclusions

We conclude with some observations and propose directions for future research.
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The main goal was to develop an effective verification method for solutions of linear
programming problems which computes enclosures for the solutions also in the presence
of roundoff errors.

In combination with the fundamental properties of interval arithmetic, other tools
such as Brouwer’s fixed point theorem are used to automatically compute rigorous
bounds on exact solutions.

The infeasible interior-point method and the stopping criteria have been realized
in floating point arithmetic. The verification algorithm has been implemented using
FORTRAN–XSC. The potential of this approach has been documented by comparing
the results for three linear programming problems. Our results for many other larger
problems up to a hundred variables indicate that the presented algorithm is robust [5].
A reliable result was obtained for all test problems.

We outline some directions for further research. It is essential for the infeasible
interior-point algorithm to have a good starting point. The choice of starting point has a
strong influence on the number of iterations, and a bad choice may lead to divergence
or cycling so that a solution can never be reached. The best choice for a default starting
point is still very much an open question. This problem concerns not only the verifica-
tion algorithm but is more generally a problem of any infeasible interior-point algorithm.
Further research for algorithmic improvements should be aimed at accelerating the ver-
ification process. In particular, the computation of an approximation to the midpoint
inverse usually requires a lot of runtime. Finally, although interior-point methods have
been extended to more general classes of problems, verification algorithms for these
have not yet appeared.
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