
A Domain Theoretic Account of Euler’s Method for
Solving Initial Value Problems

Abbas Edalat and Dirk Pattinson

Department of Computing, Imperial College London, UK

Abstract. This paper presents a method of solving initial value problems us-
ing Euler’s method, based on the domain of interval valued functions of a real
variable. In contrast to other interval based techniques, the actual computation
of enclosures to the solution is not based on the code list (term representation)
of the vector field that defines the equation, but assumes instead that the vector
field is approximated to an arbitrary degree of accuracy. By using approximations
defined over rational or dyadic numbers, we obtain proper data types for approxi-
mating both the vector field and the solution. As a consequence, we can guarantee
the speed of convergence also for an implementation of the method. Furthermore,
we give estimates on the algebraic complexity for computing approximate solu-
tions.

1 Introduction

We consider initial value problems given by a system of differential equations

ẏi = vi(y), yi(0) = 0 (i = 1, . . . , n) (1)

where the vector field v : [−K, K]n → [−M, M]n is continuous in a rectangle con-
taining the origin. Our goal is to compute a function y = (y1, . . . , yn) : [0, a] → R

n

which satisfies (1), up to any given degree of accuracy.
Standard numerical packages usually compute approximations to a solution with

good precision, but there is no guarantee on the correctness of the computed values;
indeed it is easy to find examples where they output inaccurate results [7]. Interval
Analysis [13,14] provides a method for computing guaranteed upper and lower enclo-
sures of the solution of initial value problems, see e.g. [2,3,8,9,11] and the references
therein for a survey of current interval techniques.

In the approach of interval analysis based on the Euler method, real numbers are
represented as intervals and outward rounding is applied if the result of an operation
is not machine representable. For many practical applications, these methods produce
good enclosures, but one has no control over widening of intervals, which can make
the result unduly large. As a consequence, implementations of interval methods are not
guaranteed to produce approximations which actually converge to the solution of the
problem, or satisfy an a priori estimate on the actual convergence speed.

These questions are addressed in the present paper using the framework of domain
theory [1,6]. Based on the domain of interval valued functions of a real variable, we con-
struct enclosures of the solutions of an IVP with an a priori guaranteed width. Moreover,

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 112–121, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 113

our construction gives rise to proper data types, which can be directly implemented on a
digital computer. This allows us to guarantee the speed of convergence also for existing
implementations.

Our new approach is based on a sequence of successively finer approximations to
the vector field. Using these approximations, we obtain enclosures of the solution of the
problem, which are then shown to converge to the solution. As the approximations of
the vector field can be defined using rational (or dyadic) numbers, no loss of precision
is incurred, and we can therefore guarantee the convergence speed also for an imple-
mentation of our techniques. These new techniques for the Euler method follow closely
those for the Picard method as developed recently in [5].

The main contributions of the paper are (i) to show that we can compute arbitrary
tight enclosures of the solution using approximations of the vector field, and (ii) to
show that these computations can be carried out on data types, defined over the rational
or dyadic numbers. Furthermore, we give an estimate on the speed of convergence to
the solution and an estimate of the algebraic complexity of computing approximations
for two different realisations of Euler’s technique.

Plan of the paper: We recall basic notions from domain theory in Section 2, and
introduce two realisations of Euler’s technique in Section 3, which are shown to pro-
duce approximations to the solution of the problem. We then add approximations of the
vector field that defines the IVP (Section 4), and give an estimate on the speed of conver-
gence of our method. Section 5 shows how our techniques can actually be implemented
on a digital computer and gives the promised estimates on the algebraic complexity.
Finally, the last section puts our results into perspective with related research.

2 Preliminaries and Notation

First note that the continuity assumption on v entails that v attains its maximum, and
we can therefore restrict the range of v to [−M, M]n without loss of generality. For the
expression (1) to be well defined, we make the standard assumption aM ≤ K .

Our investigations are based on the interval domain (IR,�) where IR = {[a, a] |
a ≤ a and a, a ∈ R} ∪ {R} ordered by reverse inclusion, i.e. α � β if β ⊆ α. For a
compact rectangle R ⊆ R, the sub-domain of compact intervals [a, a] ⊆ R is denoted
by IR with inherited order relation.

Note that both IR and IR, for R ⊆ R a compact interval, are directed complete:
For a directed set D ⊆ IR of intervals, the least upper bound

⊔
D always exists and

is given by
⋂

D. In interval terms, suprema of a directed subset of IR correspond to
Moore’s principle of nested convergence of [13].

The order on an arbitrary directed complete partial order (dcpo, for short) (D,�)
induces a topology on D, the so called Scott topology: We call a set O ⊆ D open, if

1. it is upward closed, i.e. d ∈ O and d � e implies e ∈ O
2. it is inaccessible by directed suprema, i.e. if A ⊆ D is directed and

⊔
A ∈ O, then

a ∈ O for some a ∈ A.

In the case of the interval domain IR, a base of the Scott topology is given by
subsets of the form {α ∈ IR | α ⊆ β◦} for any β ∈ IR, where β◦ is the interior of β. It

114 Abbas Edalat and Dirk Pattinson

can easily be seen that the Scott topology is T0 and convergence in the Scott topology
implies convergence in the metric topology, used by Moore [14], but not vice versa. In
the sequel of the paper, we always consider a dcpo, or a space of intervals, as equipped
with the Scott topology.

Given an arbitrary set X , every function f : X → IR can be represented by a
pair (f, f) representing the upper and the lower interval boundary of f , that is, f(x) =
[f(x), f(x)] for all x ∈ X . We write this as f = [f, f]. We often make use of the
following crucial fact [1]:

Fact 1. Suppose f = [f, f] : R → IR. Then f is Scott continuous iff f is lower and f
is upper semi continuous.

If the domain of a function is also a dcpo (topologised with the Scott topology), we
have the following alternative characterisation of continuity:

Fact 2. Suppose (D,�) and (E,�) are dcpos. Then a monotone function f : D → E
is continuous iff

⊔
a∈A f(a) = f(

⊔
A) for all directed A ⊆ D.

We also note that the space X ⇒ D of continuous functions of type X → D,
for a topological space X and a dcpo D, is again a dcpo in the pointwise order: given
f, g : X → D, we put f � g if f(x) � g(x) for all x ∈ X . Hence we can view the
space of continuous functions X → D as a topological space w.r.t. the Scott topology
on X ⇒ D. In case X = {1, . . . , n} with the discrete topology, we write Dn for
X ⇒ D and obtain the n-fold cartesian product of the dcpo D with itself. In the special
case D ⊆ IR is a sub-dcpo, Dn is canonically isomorphic to the dcpo of n-dimensional
compact rectangles, and we will use this isomorphism without further mention.

For our purposes, the following spaces of functions are of particular interest:

1. The space S = [0, a] ⇒ I[−K, K]n (with the Euclidean topology on [0, a]) for
constructing solutions of (1)

2. The space V = I[−K, K]n ⇒ I[−M, M]n of interval vector fields.

We use the notion of width to measure the quality of an approximation. Given α =
([a0, a0], . . . [an, an]) ∈ IRn, we put w(α) = max{ai − ai | 1 ≤ i ≤ n}, and for a
function f : X → IRn we let w(f) = sup{w(f(x)) | x ∈ X} and call f real valued
if w(f) = 0 and identify f with the induced function X → R

n.
The relation between vector fields in the classical sense and interval vector fields

is given by the notion of extension: we say that u ∈ V extends v : [−K, K]n →
[−M, M]n if u({x}) = {v(x)} for all x ∈ [−K, K]n. In the sequel, we assume
that u ∈ V is an extension of the classical vector field v. Note that every continuous
v = (v1, . . . , vn) : [−K, K]n → [−M, M] has an extension, the canonical extension
canv whose i-th component is given by I[−K, K]n � α 	→ {vi(x) | x ∈ α}. We
emphasise that our framework does not force us to work with the canonical extension
of the classical vector field v.

Finally, we introduce integrals of interval valued functions, which we use in the
construction of solutions of the IVP. Suppose p ≤ q and f : [p, q] → IR. Then the
integral of f = [f, f] is defined as

∫ q

p f(t)dt = [
∫ q

p f(t)dt,
∫ q

p f(t)dt]. The existence

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 115

of the integrals follows from lower (resp. upper) semi continuity of f (resp. f). If f =
(f1, . . . , fn) : [p, q] → IRn, we let

∫ q

p f(t)dt = (
∫ q

p f1(t)dt, . . . ,
∫ q

p fn(t)dt). The
following property follows easily from the monotone convergence theorem:

Fact 3. The integration operator
∫ q

p
: ([p, q] ⇒ IRn) → ([p, q] ⇒ IRn), defined by

f 	→ λx.
∫ x

p f(t)dt, is monotone and continuous.

3 Euler’s Operator in Domain Theory

We use a formulation of Euler’s operator similar to the one given by Moore. The results
of this section are in essence standard [14] and are reproduced here in the framework of
domain theory for the reader’s convenience.

The formalisation of Euler’s method for solving initial value problems relies on the
notion of partitions of the interval [0, a]:

Definition 1 (Partitions).

1. A partition of [0, a] is a finite sequence (q0, . . . , qk) of real numbers 0 = q0 < · · · <
qk = a; the set of partitions of [0, a] is denoted by P .

2. The norm |Q| of a partition Q = (q0, . . . , qk) is given by |Q| = max1≤i≤k qi−qi−1

and its minimal width is m(Q) = min1≤i≤k qi−qi−1. We denote the ratio between
maximal and minimal width by r(Q) = |Q|/m(Q).

3. A partition Q = (q0, . . . , qk) refines a partition P = (p0, . . . , pl) if {p0, . . . , pl} ⊆
{q0, . . . , qk}; this is denoted by P � Q.

We now introduce two different realisations of Euler’s technique for solving IVPs.
The first has better convergence properties whereas computing with the second turns
out to be more efficient.

For the remainder of the paper, we fix an extension u : I[−K, K]n → I[−M, M]n

of the classical vector field v. If α = ([a1, a1], . . . , [an, an]) ∈ IRn and r ∈ R, we
write α ⊕ r = ([a1 − r, a1 + r], . . . , [an − r, an + r]) for the symmetric expansion of
the interval vector α with the real constant r.

Definition 2. Suppose Q = (q0, . . . , qn) ∈ P . Then the Euler operator with linear
expansion El : P × V → [0, a] ⇒ I[−K, K]n is defined by

El
u(Q)(x) =

{
(0, . . . , 0) x = 0
El

u(Q)(qi) +
∫ x

qi
u(El

u(Q)(qi) ⊕ (x − qi)M)dt qi ≤ x ≤ qi+1

for x ∈ [0, a]. The Euler operator with constant expansion is given similarly by

Ec
u(Q)(x) =

{
(0, . . . , 0) x = 0
Ec

u(Q)(qi) +
∫ x

qi
u(Ec

u(Q)(qi) ⊕ ∆qiM)dt qi ≤ x ≤ qi+1

where ∆qi = qi+1 − qi. In the sequel, E stands for either El or Ec

116 Abbas Edalat and Dirk Pattinson

The operator with constant expansion represents an interval version of Euler’s
method for constructing solutions of differential equations, as described by Moore [14].
An equivalent definition could also be given without the use of integration. However,
our definition allows us to treat both operators in the same framework, and therefore
enables us to use the same proof techniques for both.

We collect some basic facts on the operators Ec and El. First, note that Eu is (i.e.
El

u and Ec
u are) well defined, monotone and computes enclosures of the solution.

Proposition 4. Eu is well defined, monotone (Eu(Q) ∈ S and Eu(P) � Eu(Q) when-
ever P � Q) and satisfies Eu(Q) � z for any solution z of (1).

Using the fact that every initial value problem of the form (1) has at least one solu-
tion, it is easy to see that if the supremum of the Euler iterates is real valued, it solves
(1).

Corollary 5. Suppose P is a directed set of partitions and y = [y, y] =
⊔

Q∈P Eu(Q)
and y = y. Then y = y is a solution of (1).

In order to be able to compute arbitrarily tight enclosures of the solution, we need
to impose a Lipschitz condition on the vector field; this is as in the classical theory. The
following definition translates this into an interval setting:

Definition 3 (Interval Lipschitz Condition). The function u : I[−K, K]n →
I[−M, M]n satisfies an interval Lipschitz condition with Lipschitz constant L if
w(u(α)) ≤ L · w(α) for all α ∈ I[−K, K]n.

For the rest of the paper, we assume that u is an extension of v, which satisfies
an interval Lipschitz condition with Lipschitz constant L. The assumption that u is
interval Lipschitz is actually equivalent to v satisfying a Lipschitz condition [5], hence
our assumption is in accordance with the classical theory.

Assuming a Lipschitz condition, we can give guarantees on the speed of conver-
gence. We begin with an auxiliary lemma which helps to show that in this case, the
approximations converge to a real valued function. In particular, this lemma also shows
that El has better convergence properties than Ec.

Lemma 6. Suppose Q = (q0, . . . , qn) is a partition. Then

w(E∗
u(Q)(x)) ≤ w(E∗

u(Q)(qi))(1 + |Q| · L) + C|Q|2LM

for x ∈ [qi, qi+1], where C = 1 for ∗ = l and C = 2 for ∗ = c.

Based on the previous lemma, we can now give an estimate on the speed of conver-
gence; recall from Definition 1 that r(Q) is the ratio of the largest and smallest distance
between two partition points.

Proposition 7. Suppose P is a partition of [0, a]. Then

w(E∗
u(P)) ≤ C · |Q|M(eaLr(Q) − 1)

where C = 1 for ∗ = l and C = 2 for ∗ = c.

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 117

By suitably modifying non-equidistant partitions, the term r(Q) can be eliminated.

Corollary 8 (Speed of Convergence).

1. If Q is equidistant, then w(E∗
u(Q)) ≤ C · |Q|M(eaL − 1).

2. If Q is arbitrary, then w(E∗
u(Q)) ≤ 2C|Q|M · (e4aL − 1).

where, in both cases, C = 1 for ∗ = l and C = 2 for ∗ = c.

Our main result is thus:

Theorem 9. Suppose (Qn)n∈N is an increasing sequence of partitions with
limn→∞ |Qn| = 0 and y =

⊔
n∈N

Eu(Qn). Then w(yn) ≤ C · |Qn| for some C ≥ 0
and

⊔
n∈N

yn is real valued and a solution of (1).

4 Approximation of the Vector Field

We have seen in the previous section how to construct approximations for the solution
of an IVP directly in terms of the interval extension of the classical vector field itself.
From a computational point of view, this is unrealistic. In practice, only approximations
to the vector field up to an arbitrary degree of accuracy are available for computation.
In this section, we show that Euler’s operator Eu is continuous in u, which will allow
us to use approximations of the vector field for computing the solution of the IVP up
to an arbitrary degree of accuracy. Instead of assuming that the vector field is given as
a term involving certain basic functions like arithmetic operations and trigonometric
functions, we assume that the vector field is given as a supremum of simple functions,
each of which takes only finitely many values. As we will see in the next section, the
use of simple functions allows us to compute the solution without loss of accuracy, and
we can therefore guarantee the convergence also for an implementation of the method.
We follow the convention of the previous section and use Eu to stand for both El

u and
Ec

u.

Lemma 10. Suppose u1, u2 : I[−K, K]n → I[−M, M]n with u1 � u2. Then Eu1 �
Eu2 , i.e. Eu1 (Q) � Eu2 (Q) for all partitions Q.

Informally speaking, if u1 contains more information than u2, the operator associ-
ated with u2 produces a better enclosure of the solution than that of u1. We show that
Eu is actually continuous in u, allowing us to use approximations of u for computing
approximations of the solution.

Proposition 11. Suppose (uj)j∈J is a directed collection of vector fields uj :
I[−K, K]n → I[−M, M]n with u =

⊔
j∈J uj . Then Eu =

⊔
j∈J Euj .

As an immediate consequence, we deduce that continuity in u allows us to use
approximations of u for computing solutions.

Corollary 12. Suppose (un)n∈N is a sequence in V with u =
⊔

n∈N
un and (Qn)n∈N

is a sequence of partitions with limn→∞ |Qn| = 0. Then
⊔

n∈N
Eun(Qn) is real valued

and satisfies the IVP (1).

118 Abbas Edalat and Dirk Pattinson

In presence of approximations un of u, the speed of convergence will clearly depend
on the speed of convergence of the sequence un to u. We now introduce the measure
which we use to express the convergence rate of un to u.

Definition 4. If α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ IRn, we let d(α, β) =
max{|ai − bi|, |ai − bi|, i = 1, . . . , n} where αi = [ai, ai] and βi = [bi, bi]. For
u, u′ ∈ V , we put d(u, u′) = supα∈I[−K,K]n d(u(α), u′(α)).

Note that d(α, β) is the Hausdorff distance for compact intervals, already used by
Moore [14]. The following Lemma is the key for obtaining a result on the speed of
convergence in presence of approximations of the vector field.

Lemma 13. Suppose u′ � u and Q = (q0, . . . , qk) ∈ P . Then

w(E∗
u′ (Q)(x)) ≤ w(E∗

u′ (Q)(pi))(1 + |Q| · L) + C|Q|2LM + |Q|d(u, u′)

for x ∈ [qi, qi+1], where C = 1 for ∗ = l and C = 2 for ∗ = c.

Similar to the development in the previous section, we obtain the following global
estimate.

Proposition 14. Suppose Q is a partition of [0, a] and u′ � u. Then

w(E∗
u′ (Q)) ≤ C · (|Q|M +

d(u, u′)
L

)(eaLr(Q) − 1)

where C = 1 for ∗ = l and C = 2 for ∗ = c.

Modifying the partitions which are used to obtain the above estimate, we can elim-
inate the term r(Q) and obtain the following global estimate.

Corollary 15 (Speed of Convergence).

1. If Q is equidistant, then w(E∗
u′ (Q)) ≤ C · (|Q|M + d(u,u′)

L)(eaL − 1).

2. If Q is arbitrary, then w(E∗
u′ (Q)) ≤ C · (2|Q|M + d(u,u′)

L) · (e4aL − 1).

where, in both cases, C = 1 for ∗ = l and C = 2 for ∗ = c.

In summary, we see that adding approximations to the vector field does not destroy
the order of convergence speed, given that the approximations of the vector field con-
verge as fast as the partitions decrease in width.

Theorem 16. Suppose (Qn)n∈N is a monotone sequence of partitions of [0, a] with
limn→∞ |Qn| = 0, u =

⊔
n∈N

un with d(u, un) ≤ C0 · |Qn| for some constant C0 ≥ 0
and yn = Eun(Qn). Then w(yn) ≤ C1 · |Qn| for some C1 ≥ 0 and

⊔
n∈N

yn is real
valued and solves the IVP (1).

The next section shows, how we can implement the proposed method as to guarantee
the speed of convergence also for actual implementations of the method.

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 119

5 Implementation of the Domain Theoretic Method

In this section, we demonstrate how the domain theoretic approach to solving initial
value problems can be implemented on a digital computer in such a way that the esti-
mates on the speed of convergence can be guaranteed for an implementation. The key
concept here is that of a base. Informally speaking, a base of a directed complete partial
D order is a collection B ⊆ D of elements which generate all of D by means of di-
rected suprema. For the interval domain, it is easy to see that the intervals with rational
(or dyadic) endpoints for a base, and we introduce suitable bases for the spaces V and
S later. The main point about these bases is that (i) base elements form a proper data
type and (ii) can be manipulated without any loss of precision.

The main contribution of this section is the proof that, if u is approximated by base
elements, Eu(Q) is also an element of the corresponding base. Furthermore, we give
estimates on the algebraic complexity of computing Eu(Q) both for Ec

u and El
u.

We refer the reader to [1, Section 2.2.2] for the formal definition of a base, and
instead introduce the bases we work with in the sequel.

Definition 5. Let D ⊆ R be a dense subset with 0, a ∈ D and assume that 0 = a0 <
· · · < ak = a with a0, . . . , ak ∈ D, β0, . . . , βk ∈ I[−K, K]nD and γ1, . . . , γk ∈
I[−M, M]nD, where RD denotes the set of rectangles, which are contained in R and
whose endpoints lie in Dn. We write βi for the vector representing the upper endpoints
of the interval vector βi with β

i
given similarly. We consider the following classes of

functions, where βo is the interior of β:

1. The class SD of piecewise D-linear functions [0, a] → I[−K, K]n,

f = (a0, . . . , ak) ↘ (β0, . . . , βk)

where f(x) = βj−1+
x−aj−1
aj−aj−1

(βj−βj−1) and f(x) = β
j−1

+ x−aj−1
aj−aj−1

(β
j
−β

j−1
)

for x ∈ [aj−1, aj]. Every component of a D-linear function is piecewise linear and
takes values in D at a0, a1 . . . , ak.

2. The set VD of finite sups of step functions I[−K, K]n → I[−M, M]n,

f =
⊔

1≤j≤k

βj ↘ γj where β ↘ γ(x) =

{
γ x ⊆ βo

[−M, M]n otherwise

3. For any f as above, we put N (f) = k and call it the complexity of representation
of f .

The set of partitions Q with partition points in D is denoted by PD; we write N (Q) = k
if Q = (q0, . . . , qk) has k + 1 partition points.

It is easy to see that SD and VD are bases of the dcpos S and V , respectively.

Fact 17. If D ⊆ R is a dense subset, then SD and VD are bases of S and V .

For a particular dense subset D ⊆ R, such as the rational or dyadic numbers, the
elements of SD and VD are data types, the elements of which can be manipulated with-
out loss of precision. This allows us to guarantee the convergence speed also for an
implementation of our method. We now show that in the computation of Eu(Q) these
data types are actually preserved.

120 Abbas Edalat and Dirk Pattinson

Proposition 18. Suppose D ⊆ R is dense.

1. If D is a ring and u ∈ VD, Q ∈ PD, then Ec
u(Q) ∈ SD and Ec

u(Q) can be
computed in O(N (Q) · N (u)) algebraic steps.

2. If D is a field and u ∈ VD, Q ∈ PD, then El
u(Q) ∈ SD and can be computed in

O(N (Q) · N (u)2)) algebraic steps.

This proposition in particular highlights the difference between the two operators
Ec and El: computing with El yields a better speed of convergence to the solution
(Corollary 15), at the cost of a higher complexity of the computation of the approximate
solution. Furthermore, we have to work with rational (as opposed to dyadic numbers)
when implementing the method using the operator El, as the base we need to work with
is constructed using a dense subfield of the real numbers.

As we have seen, our methods for computing solutions of initial value problems
hinges on the fact that we can actually produce approximations un to u of the form⊔

1≤j≤l βj ↘ γj . For a classical vector field v : [−K, K]n → [−M, M]n, such approx-
imations can be produced given a function v̂ that computes rational approximations of v
up to any desired degree of accuracy, i.e. v̂ : [−K, K]n∩Q

n×Q → [−M, M]n∩Q
n for

which ||v(x)− v̂(x, ε)|| ≤ ε. For many functions, e.g. polynomials or analytic functions,
such approximating functions are both known and easy to implement.

Given v̂ as above, we can use the Lipschitz constant L of v and the error bound to
approximate an interval extension of v by finite suprema of step functions of the form
({b} ⊕ δ) ↘ {v̂(b, ε)} ⊕ (ε + δL), where δ and ε vary over positive real numbers and
b ∈ [−K, K]n. In the term {v̂(b, ε)} ⊕ (ε + δL), ε is needed to accommodate the error
of v̂ and expanding further with δL uses the Lipschitz constant of v to give a guaranteed
enclosure of the values of v on the interval {b}⊕ δ. This is developed in the full version
of this paper.

6 Conclusions and Further Work

We have presented a domain theoretic method for solving initial value problems, with
the domain of intervals at the heart of our approach. The main difference to other in-
terval methods [3,9] is that we use approximations of the vector field in the process
of computing solutions. As these approximations are elements of proper data types, no
loss of precision is incurred when working with these approximations, allowing us to
guarantee convergence also for implementations.

From the perspective of domain theory, differential equations have been studied in
[4,5], using a Picard operator. This requires us to store approximative solutions in mem-
ory before being able to compute a further iterate. In comparison, the method outlined
in this paper is more memory effective.

Differential equations have also been considered in the framework of exact compu-
tation, e.g. [15,10], but to our knowledge, this not has lead to practical implementations
of methods for solving IVPs with guaranteed error bounds.

Finally, we remark that this is only part of a first investigation for using domain
theoretic methods in the context of ODE solving. Further work is needed to be able to
exploit information about the derivatives of the vector field. Also, our approach does not

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 121

include any control over the step size (distance between successive partition points), but
we believe that the standard techniques developed in interval analysis fit in smoothly
to our framework. On the practical side, our next task is to compare implementations
of our method to traditional interval based approaches, such as Lohner’s AWA [12] and
Nedialkov’s VNODE [16].

References

1. S. Abramsky and A. Jung. Domain Theory. In S. Abramsky, D. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 3. Clarendon Press,
1994.

2. M. Berz and K. Makino. Verified integration of odes and flows using differential algebraic
methods on high-order taylor models. Reliable Computing, 4:361–369, 1998.

3. G. Corliss. Survey of interval algorithms for ordinary differential equations. Journal of
Applied Mathematics and Computation, 31:112–120, 1989.

4. A. Edalat, M. Krznarić, and A. Lieutier. Domain-theoretic solution of differential equations
(scalar fields). In Proceedings of MFPS XIX, volume 83 of Elect. Notes in Theoret. Comput.
Sci., 2004.

5. A. Edalat and D. Pattinson. A domain theoretic account of picard’s theorem. In Proc. ICALP
2004, Lect. Notes in Comp. Sci., 2004.

6. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. Scott. Continuous
Lattices and Domains. Cambridge University Press, 2003.

7. A. Iserles. Numerical Analysis of Differential Equations. Cambridge Texts in Applied Math-
ematics. Cambridge University Press, 1996.

8. K. Jackson and N. Nedialkov. Some recent advances in validated methods for ivps for odes.
Applied Numerical Mathematics archive, 42(1):269–284, 2002.

9. K. Jackson, N. Nedialkov, and G.Corliss. Validated solutions of initial value problems for
ordinary differential equations. Applied Mathematics and Computation, 105:21–68, 1999.

10. K. Ko. On the computational complexity of ordinary differential equations. Inform. Contr.,
58:157–194, 1983.

11. R. Lohner. Enclosing the solution of ordinary initial and boundary value problems. In
E. Kaucher, U. Kulisch, and C. Ullrich, editors, Computer Arithmetic: Scientific Computation
and Programming Languages, Wiley-Teubner Series in Computer Science. 1987.

12. R. Lohner. Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und
Anwendungen. PhD thesis, 1988.

13. R. Moore. Methods and Applications of Interval Analysis. Number 2 in SIAM studies in
applied mathematics. SIAM, 1979.

14. R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
15. N. Müller and B. Moiske. Solving initial value problems in polynomial time. In In Proceed-

ings of the 22th JAIIO - Panel’93, pages 283–293, 1993.
16. N. Nedialkov and K.Jackson. The design and implementation of an object-oriented validated

ode solver. Draft, available via http://www.cas.mcmaster.ca/~nedialk/.

	Introduction
	Preliminaries and Notation
	Euler's Operator in Domain Theory
	Approximation of the Vector Field
	Implementation of the Domain Theoretic Method
	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

