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Abstract. This work presents a model for Markov Decision Processes applied to
the problem of keeping two agents in equilibrium with respect to the values they
exchange when they interact. Interval mathematics is used to model the qualitative
values involved in interactions. The optimal policy is constrained by the adopted
model of social interactions. The MDP is assigned to a supervisor, that monitors
the agents’ actions and makes recommendations to keep them in equilibrium.
The agents are autonomous and allowed to not follow the recommendations. Due
to the qualitative nature of the exchange values, even when agents follow the
recommendations, the decision process is non-trivial.

1 Introduction

There are many different techniques to deal with the problem of choosing optimal agent
actions [11,13], some of them considering stochastic domains. The work presented in [3]
deals with this problem using techniques from operations research, namely the theory
of Markov Decision Processes (MDP) [5,8,12]. In this paper we introduce a qualitative
version of a MDP, called Qualitative Interval-based Markov Decision Process (QI–
MDP). The values characterizing the states and actions of the model are based on intervals
and their calculation performed according to Interval Arithmetic [6]. The model is said
to be qualitative in the sense that intervals are considered equivalent according to a loose
equivalence relation. We apply the QI–MDP model to the analysis of the equilibrium
of social exchanges between two interacting agents. The equilibrium is determined
according to the balance of values the agents exchange during their interactions. The
decision process pertains to a third agent, the equilibrium supervisor, who is in charge of
giving recommendations to the agents on the best exchanges they can perform in order
to keep the balance in equilibrium.

We modelled the social interactions according to Piaget’s theory of exchange val-
ues [7], and derived the idea of casting the equilibrium problem in terms of a MDP from
George Homans’ approach to that same problem [4]. Due the lack of space, we shall
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not consider in detail the social model based on Piaget’s theory, since it was deeply
explored in previous work [1,9,10]. A first application of this model in multi-agent sys-
tems was presented in [9,10]. In [1], exchange values were proposed for the modelling
of collaborative on-line learning interactions.

The paper is organized as follows. The model of social interactions is presented in
Sect. 2, and intervals are introduced in Sect. 3. The QI–MDP model is introduced in
Sect. 4. Section 5 discusses the results. Section 6 is the Conclusion.

2 Social Reasoning About Exchange Values

The Social Exchange Model introduced by Piaget [7] is based on the idea that social
relations can be reduced to social exchanges between individuals. Each social exchange
is a service exchange between individuals and it is also concerned with an exchange of
values between such individuals. The exchange values are of qualitative nature and are
constrained by a scale of values.

A social exchange is assumed to be performed in two stages. Figure 1shows a schema
of the exchange stages. In the stage Iαβ , the agent α realizes a service for the agent β.
The values related with this exchange stage are the following: (i) rIαβ

is the value of the
investment3 done by α for the realization of a service for β; (ii) sIβα

is the value of β’s
satisfaction due to the receiving of the service done by α; (iii) tIβα

is the value of β’s
debt, the debt it acquired to α for its satisfaction with the service done by α; (iv) vIαβ

is
the value of the credit that α acquires from β for having realized the service for β. In the
stage IIαβ , the agent α asks the payment for the service previously done for the agent β,
and the values related with this exchange stage have similar meaning. rIαβ

, sIβα
, rIIβα

and sIIαβ
are called material values. tIβα

, vIαβ
, tIIβα

and vIIαβ
are the virtual values.

The order in which the exchange stage may occur is not necessarily Iαβ − IIαβ .
Piaget’s approach to social exchange was an algebraic one: what interested him

was the algebraic laws that define equilibrium of social exchanges. George Homans [4]
approached the subject from a different view: he was interested in explaining how and
why agents strive to achieve equilibrium in such exchanges. The solution he found,
based on a behavioristic explanation of the agents’ decision, suggested that agents look
for a maximum of profit, in terms of social values, when interacting with each other.
That proposal gave the starting point for the formalization we present below, where the
looking for a maximum of profit is understood as a MDP to be solved by the equilibrium
supervisor.

3 Modelling Social Exchanges with Interval Values

Piaget’s concept of scale of values [7] is now interpreted in terms of Interval Mathe-
matics [6]. Consider the set IRL = {[a, b] | −L ≤ a ≤ b ≤ L, a, b ∈ R} of real
intervals bounded by L ∈ R (L > 0) and let IRL = (IRL, +, Θ, )̃ be a scale of
interval exchange values, where:

3 An investment value is always negative.
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Fig. 1. Stages of social exchanges

(i) + : IRL × IRL → IRL is the addition operation [a, b] + [c, d] = [max{−L, a +
c}, min{b + d, L}].
(ii) A null value is any [a, b] ∈ IRL such that mid([a, b]) = 0, where mid([a, b]) = a+b

2
is the mid point of [a, b]. The set of null values is denoted by Θ. [0, 0] is called the
absolute null value.
(iii) A quasi-symmetric value for X ∈ IRL is any X ′ ∈ IRL such that X + X ′ ∈ Θ.
The set of quasi-symmetric values of X is denoted by ˜X .

µ ˜X ∈ ˜X is said to be the least quasi-symmetric value of X , if whenever there exists
S ∈ ˜X it holds that d(µ ˜X) ≤ d(S), where d([a, b]) = b−a is the diameter of an interval
[a, b]. A qualitative equivalence relation ≈ is defined on IRL by X ≈ Y ⇔ ∃Y ′ ∈ ˜Y :
X + Y ′ ∈ Θ. For all X ∈ IRL, it follows that:

Proposition 1. (i) ˜X = {−[mid(X) − k, mid(X) + k] | k ∈ R ∧ k ≥ 0}; (ii)
µ ˜X = −[mid(X), mid(X)].

Proof. mid(X +(−[mid(X)−k, mid(X)+k])) = mid([a1−a2−2k
2 , a2−a1+2k

2 ]) = 0,

for X = [a1, a2]. If S ∈ ˜X is such that mid(S) 	= mid(X), then mid(X + S) =
mid([a1−a2−2k2

2 , a2−a1+2k1
2 ] ) 	= 0, for k1 	= k2 ∈ R, which is a contradiction. 
�

For practical applications, we introduce the concept of absolute ε-null value 0ε =
[−ε, +ε], with ε ∈ R (ε ≥ 0) being a given tolerance. In this case, an ε-null value is any
N ∈ IRL such that mid(N) ∈ 0ε. The set of ε-null values is denoted by Θε. The related
set of ε-quasi-symmetric values of X ∈ IRL is denoted by ˜Xε.

Let T be a set of discrete instants of time. Let α and β be any two agents. A
qualitative interval exchange-value system for modelling the exchanges from α to
β is a structure IRαβ = (IRL; rIαβ

, rIIβα
, sIβα

, sIIαβ
, tIβα

, tIIβα
, vIαβ

, vIIαβ
) where

rIαβ
, rIIβα

: T → IRL, sIIαβ
, sIβα

: T → IRL, tIβα
, tIIβα

: T → IRL and vIαβ
, vIIαβ

:
T → IRL are partial functions that evaluate, at each time instant t ∈ T , the investment,
satisfaction, debt and credit values4, respectively, involved in the exchange. Denote

4 The values are undefined if no service is done at all at a given moment t ∈ T .
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rIαβ
(t) = rt

Iαβ
, rIIβα

(t) = rt
IIβα

, sIIαβ
(t) = st

IIαβ
, sIβα

(t) = st
Iβα

, tIβα
(t) = ttIβα

,
tIIβα

(t) = ttIIβα
, vIαβ

(t) = vt
Iαβ

and vIIαβ
(t) = vt

IIαβ
. A configuration of exchange val-

ues is specified by one of the tuples (rt
Iαβ

, st
Iβα

, ttIβα
, vt

Iαβ
) or (vt

IIαβ
, ttIIβα

, rt
IIβα

, st
IIαβ

).
The sets of configurations of exchange values from α to β, for stages I and II, are denoted
by EVI

IRαβ
and EVII

IRαβ
, respectively.

Consider the functions Iαβ : T → EVI
IRαβ

and IIαβ : T → EVII
IRαβ

, de-

fined, respectively, by Iαβ(t) = Itαβ = (rt
Iαβ

, st
Iβα

, ttIβα
, vt

Iαβ
) and IIαβ(t) = IItαβ =

(vt
IIαβ

, ttIIβα
, rt

IIβα
, st

IIαβ
). A stage of social exchange from α to β is either a value Itαβ ,

where rt
Iαβ

is defined, or IItαβ , where rt
IIβα

is defined.
A social exchange process between any two agents α and β, occurring during the

time instants T = t1, . . . , tn, is any finite sequence sT
{α,β} = et1 , . . . , etn , n ≥ 2, of

exchange stages from α to β and from β to α, where there are t, t′ ∈ T , t 	= t′, with
well defined investment values rt

Iαβ
and rt′

IIβα
(or rt

Iβα
and rt′

IIαβ
).

The material results Mαβ and Mβα of a social exchange process, from the points
of view of α and β, respectively, are given by the respective sum of the material values
involved in the process. Considering kT

Iλδ
=

∑

t∈T kt
Iλδ

and kT
IIλδ

=
∑

t∈T kt
IIλδ

, for
all well defined kt

Iλδ
and kt

IIλδ
, with k = r, s, then Mαβ = rT

Iαβ
+ sT

IIαβ
+ rT

IIαβ
+ sT

Iαβ

and Mβα = rT
Iβα

+ sT
IIβα

+ rT
IIβα

+ sT
Iβα

. The process is said to be in equilibrium if
Mαβ ∈ Θε and Mβα ∈ Θε. If a material result of a social exchange process is not in
equilibrium, then any ε-quasi-symmetric of Mαβ (Mβα) is called a compensation value
from α’s (β’s) point of view.

4 Solving the Equilibration Problem Using QI–MDP

4.1 The Basics of an QI–MDP

We conceive that, in the context of a social exchange process between two agents, a
third agent, called equilibrium supervisor, analyzes the exchange process and makes
suggestions of exchanges to the two agents in order to keep the material results of
exchanges in equilibrium. To achieve that purpose, the equilibrium supervisor models
the exchanges between the two agents as a MDP, where the states of the model represent
“possible material results of the overall exchanges” and the optimal policies represent
“sequences of actions that the equilibrium supervisor recommends that the interacting
agents execute”.

Consider ε, L ∈ R (ε ≥ 0, L > 0), n ∈ N (n > 0) and let Ê = {E−n, . . . , En} be
the set of equivalence classes of intervals, defined, for i = −n, . . . , n, as:

Ei =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{X ∈ IRL | iL
n ≤ mid(X) < (i + 1)L

n } if − n ≤ i < −1
{X ∈ IRL | −L

n ≤ mid(X) < −ε} if i = −1
{X ∈ IRL | −ε ≤ mid(X) ≤ +ε} if i = 0
{X ∈ IRL | ε < mid(X) ≤ L

n} if i = 1
{X ∈ IRL | (i − 1)L

n < mid(X) ≤ iL
n } if 1 < i ≤ n.

(4.1)

The classes Ei are the supervisor representations of classes of unfavorable (i <
0), equilibrated (i = 0) and favorable (i > 0) material results of exchange balances.
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Table 1. Specification of compensation intervals

State Compensation Interval Ci State Compensation Interval Ci

Ei
−n≤i<−1 [−

�
2i+1

2
L
n

�
−ε,−

�
2i+1

2
L
n

�
+ε] Ei

1<i≤n [ (1−2i)
2

L
n
− ε, (1−2i)

2
L
n

+ ε]

E−1 [ 1
2

�
L
n

+ ε
�
− ε, 1

2

�
L
n

+ ε
�

+ ε] E1 [− 1
2

�
L
n

+ ε
�
− ε,

− 1
2

�
L
n

+ ε
�

+ ε]
E0 [0, 0]

Whenever it is understood from the context, we shall denote by E− (or E+) any class
Ei<0 (or Ei>0). The accuracy of the equilibrium supervisor is given by κn = L

n . ε is
the admissible tolerance for the equilibrium point. The range of the midpoints of the
intervals that belong to a class Ei is called the representative of the class Ei, denoted
[Ei]. In this paper, whenever it is clear from the context, we shall identify a class Ei

with its representative.
The states of the QI–MDP model are pairs of classes (Ei

α, Ej
β), representing the

material results of the social exchange process from the point of view of the agents α
and β. The pair of classes (E0

α, E0
β) is a terminal state, representing that the system is

in equilibrium.
The actions considered in the model are state transitions (X i, Xj) : Ê×Ê → Ê×Ê,

with i, j = −n, . . . , n, defined by (X i, Xj)(Ei
α, Ej

β) = (Ei′

α , Ej′

β ) if mid( [Ei
α] +

X i) ∈ Ei′

α and mid([Ej
β ] + Xj) ∈ Ej′

β , which occur by the addition, to the representa-

tives of the classes Ei
α and Ej

β , of intervals X i and Xj that should be of the following
types: (i) the absolute ε-null value 0ε = [−ε, +ε]; (ii) a compensation interval, which
is the least quasi-symmetric, denoted by Ci, of a class representative Ei; (iii) a go-
forward-k-step interval, which is an interval, denoted by F i

k , that transforms a class Ei

into E(i+k) �=0, with i 	= L; (iv) a go-backward-k-step interval, which is an interval,
denoted by Bi

−k, that transforms a class Ei into E(i−k) �=0, with i 	= −L.
The set C of compensation intervals is shown in Table 1. The set F of go-forward

intervals and their respective effects are partially presented in Table 2. The set of go-
backward intervals, denoted by B, can be specified analogously.

For example, for a state of type

(Ei
α, Ej

β)−n≤i<−1,1<j≤n ≡ ([i
L

n
, (i + 1)

L

n
], [(j − 1)

L

n
, j

L

n
]),

the compensation–compensation action and the go-backward−3–go-forward+2 actions
are given by (A1) (Ci, Cj) = ([− 2i+1

2
L
n
− ε,− 2i+1

2
L
n

+ ε], [ (1−2j)
2

L
n
− ε, (1−2j)

2
L
n

+ ε]) and
(A2) (Bi

−3, F
j
+2) = ([−3L

n
− ε,−3L

n
+ ε], [2L

n
− ε, 2L

n
+ ε]) , respectively, resulting in the

state transitions: (Ei
α, Ej

β)−n≤i<−1,1<j≤n
(A1)�→ (E0

α, E0
β) and (Ei

α, Ej
β)−n≤i<−1,1<j≤n

(A2)�→
(E

(i−3)
α , E

(j+2)
β ).

The equilibrium supervisor has to find, for each state E, the action that shall achieve
the terminal state or, at least, another state from where the terminal state can be achieved,
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Table 2. Specification of some go-forward intervals and their respective effects

State Go-forward interval F i
+k Effect

Ei
−n≤i<−1

�
k L

n
− ε, k L

n
+ ε

�
1−i≤k≤n−i−1

Ei �→ Ei+k, 1 < i + k ≤ n

E−1
�
k L

n
− ε, k L

n
+ 2ε

�
2<k≤n

E−1 �→ E−1+k, 1 < −1 + k ≤ n

E0
�
k L

n
, (k + 1) L

n

�
0<k≤n−1

E0 �→ Ek+1, 1 < k + 1 ≤ n

E1
�
k L

n
− 2ε, k L

n
+ ε

�
0<k≤n−i

E1 �→ E1+k, i < 1 + k ≤ n

Ei
1<i≤n

�
k L

n
− ε, k L

n
+ ε

�
0<k≤n−i

Ei �→ Ei+k, i < i + k ≤ n

with the least number of steps. The choice of such actions is also regulated by the rules of
the social exchanges, and, therefore, there are some state transitions that are not allowed.
Based on a optimal policy, the equilibrium supervisor may be asked to recommend that
the agents act optimally. An optimal exchange recommendation consists of a function
that gives, for each actual material result (represented by a state of the model), a partially
defined exchange stage that shall restore or establish the material equilibrium or, at least,
give conditions that it be achieved in a least number of steps with least value uncertainty.
The optimal exchange recommendation associates state transitions determined by the
optimal policy with agents’ social exchanges.

Although the interacting agents acknowledge the optimal recommendations from the
equilibrium supervisor, they are autonomous in the sense that they may not follow the
recommendations exactly. Thus, the system may achieve another state different from the
one expected by the supervisor and, therefore, there may be a great deal of uncertainty
about the effects of the agents actions. Even if the agents follow a recommendation
exactly, we will show that the effect may not be the expected by the supervisor, since
it depends on the ratio κn

ε , where κn = L
n is the equilibrium supervisor accuracy and

ε (0 ≤ ε < κn) is the admissible tolerance. On the other hand, we assume that there
is never any uncertainty about the current state of the system, that is, the equilibrium
supervisor always has access to the current configuration of exchange values and has
complete and perfect abilities to evaluate the current material balance.

Definition 1. A Qualitative Interval Markov Decision Process (QI–MDP) for keeping
social exchanges in equilibrium is a tuple 〈E, A, F, R〉L,n

ε , where5:
- The set of the states is the set of pairs of equivalence classes of intervals E =

Eα × Eβ , with Eλ = {Ei | i = −n, . . . ,−1, 0, 1, . . . , n} defined in (4.1).
- A = (C ∪ F ∪ B ∪ {[−ε, +ε]})× (C ∪ F ∪ B ∪ {[−ε, +ε]}) is the set of possible

actions, where C, F and B are the sets of compensation, go-forward and go-backward
intervals, respectively.

- F : E × A → Π(E) is the state-transition function, that gives for each state and
each action, a probability distribution over the set of states;

- R : (E × A) → R is the reward function, giving the expected immediate reward
gained by choosing an action a when the current state is e.

5 In this model, the next state and the expected reward depend only on the previous state and the
action taken, satisfying the so-called Markov property.
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4.2 The Optimal Policy and the Reward Function

The reward function plays an important role when the equilibrium supervisor is choosing
the action that will generate a recommendation of agents interaction, in each state. The
supervisor aims to maximize the utility of sequences of actions, evaluated according to
the reward function.

A sample reward function R : (E×A) → R that conforms to the idea of supporting
a recommendation function that is able to direct agents into social equilibrium is partially
sketched in Table 3. This particular function illustrates various requirements that should
be satisfied by all reward functions of the model. Observe, for instance, that if the current
state is of the type (E−, E+), then the best action to be chosen is a compensation-
compensation action (C, C), which results in a state transition (E−, E+) �→ (E0, E0).
Any other choice will make the agents either take a long way to the equilibrium or get
away from it.

On the other hand, if the current state is of type (E−, E−), then a compensation-
compensation action (C, C) would generate a recommendation of agent exchanges of
satisfaction-satisfaction type, which is impossible according to the model of social inter-
actions [7], since it is impossible for an agent to get a satisfaction value from no service
at all. The reward function R states that (C, C) is a very bad action to be chosen in such
situation.

Any optimal policy π∗ : E → A solving the social equilibrium problem should
satisfy the set of requirements expressed by the schema partially sketched in Table 4 6

The optimal recommendation associated to an optimal policy π∗ is a function ρπ∗ that
gives, for each state (Ei

α, Ej
β) and optimal action π∗(Ei

α, Ej
β) = (X i, Y j), a partial

definition of a recommended exchange stage, consisting of pairs ((rαβ , X i), (sβα, Y j))
or ((rβα, Y j), (sαβ , X i)), where (rλδ, W ) means the realization, by the agent λ, of a
service with investment value W < 0, and (sδλ, W ′) means δ’s satisfaction with interval
value W ′, for receiving the service. The optimal recommendation ρπ∗ is also partially
sketched in Table 4.

Table 3. Partial schema of the reward function R

R (C, C) (0ε, C) (C, 0ε) (B−1, F1) (B−3, F3) (F1, B−1) (C, B−1) (F1, C)

(E−, E+) 30 20 -30 -5 -10 3 20 20
(E+, E+) 30 20 20 0 0 0 18 20
(E−, E−) -30 -30 -30 30 0 30 28 -30

5 Discussion

In the following, consider that the agents always follow the recommendations given
by the equilibrium supervisor. We show that, even in this favorable case, the decision
process is a non-trivial one, due the qualitative nature of exchange values. The results
concern the reachability of the terminal state show that under some conditions, it is

6 Notice that it is a non deterministic policy.
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Table 4. Partial schemata of the optimal policy π∗ and associated optimal recommendation ρπ∗

State Optimal policy Recommendation

(Ei, Ej)−n≤i<−1
1<j≤n (Ci > 0, Cj < 0) ((rβα, Cj), (sαβ, Ci))

(Ei, Ej)1<i,j≤n (Ci < 0, Cj < 0)
((rαβ, Ci), (sβα, Cj))
or ((rβα, Cj), (sαβ, Ci))

(E0, Ej)1<j≤n (0ε, C
j < 0) ((rβα, Cj), (sαβ, 0ε))

(E0, Ei)−n≤i<−1 (B0
−1 < 0, F i

+(−i+1) > 0) ((rαβ, B0
−1), (sβα, F i

+(−i+1)))

(E1, Ei)−n≤i<−1 (B1
−1 < 0, Ci > 0) ((rαβ, B1

−1), (sβα, Ci))
(E−1, E1) (F−1

+1 > 0, B1
−1 < 0) ((rβα, B1

−1), (sαβ, F−1
+1 ))

(E1, E−1) (B1
−1 < 0, F−1

+1 > 0) ((rαβ, B1
−1), (sβα, F−1

+1 ))
(Ei, E1)−n≤i<−1 (Ci > 0, B1

−1 < 0) ((rβα, B1
−1), (sαβ, Ci))

(E−1, E0) (F−1
+1 > 0, B0

−1 < 0) ((rβα, B0
−1), (sαβ, F−1

+1 ))
(E0, E−1) (B0

−1 < 0, F−1
+1 > 0) ((rαβ, B0

−1), (sβα, F−1
+1 ))

(Ei, Ej)−n≤i,j<−1
(F i

+(−i+1) > 0, Bj
−1 < 0)

or (Bj
−1 < 0, F i

+(−i+1) > 0)

((rβα, Bj
−1), (sαβ, F i

+(−i+1))

or ((rαβ, Bj
−1), (sβα, F i

+(−i+1))

always possible to have the system equilibrated in at most four steps. Let M τ
αβ and M τ

βα

be the material results of an exchange process, according to the points of view of the
agents α and β, respectively, at step τ .

Proposition 2. If M0
αβ ∈ E−1 and M0

βα ∈ E1, then the system achieves the equilibrium
in one step if and only if 1 < κn

ε ≤ 3, ε > 0.

Proof. (⇒) If the system is at the state (E−1, E1), then, for the β’s material result,
it holds that ε < mid(M0

βα) ≤ L
n , and the optimal recommendation (Table 4, row7)

is based on the optimal action (C, C) =
[

− 1
2

(

L
n + ε

)

,− 1
2

(

L
n + ε

)]

. It follows that:
ε− 1

2

�
L
n

+ ε
�

< mid(M0
βα)− 1

2

�
L
n

+ ε
�
≤ L

n
− 1

2

�
L
n

+ ε
�
⇒ 1

2

�
−L

n
+ ε

�
< mid(M1

βα) ≤
1
2

�
L
n
− ε

�
⇒ 1

2
(−hε + ε) < mid(M1

βα) ≤ 1
2

(hε − ε), where L
n = hε, with h > 1. If

the system achieves the equilibrium in the step 1, then it holds that 1
2 (hε − ε) ≤ ε. It

follows that 1 < h ≤ 3, and therefore, 1 < κn

ε ≤ 3, since κn = L
n . The proofs for α’s

material result and of (⇐) are analogous. 
�

Proposition 3. (i) If M0
αβ ∈ Ei, with 1 < i ≤ n, then it is possible to get M τ

αβ ∈ E0
α

in at most τ = 2 steps if and only if 1 < κn

ε ≤ 3; (ii) If M0
βα ∈ Ei, with −n ≤ i < −1,

then it is possible to get M τ
βα ∈ E0

β in at most τ = 2 steps if and only if 1 < κn

ε ≤ 3.

Proof. (i)(⇒) If (i − 1) L
n ≤ mid(M0

αβ) < iL
n and the optimal recommendation (Ta-

ble 4, row2) is based on the optimal action C =
[

(1−2i)
2

L
n , (1−2i)

2
L
n

]

, then (i − 1)L
n

+

(1−2i)
2

L
n

< mid(M0
βα) + (1−2i)

2
L
n

≤ iL
n

+ (1−2i)
2

L
n

, that is, − 1
2

L
n < mid(M1

βα) ≤ 1
2 . It

holds that M1
βα ∈ E1

α. From Prop. 2, it follows that with more one step we can get the
desired result. The proofs of (i)(⇐) and (ii) are analogous. 
�

From Prop. 3 it follows that an individual transition from a material result that belongs
to a class Ei, with 1 < i ≤ n or−n ≤ i < −1, to the equilibrium can be done in at most
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two steps (Ei �→ E1( or E−1) �→ E0). However, in any interaction between two agents,
combined transitions departing from a state (Ei, Ej) or (Ej , Ei), with 1 < i ≤ n and
−n ≤ j < −1, may result in a state different from (E1, E−1), (E−1, E1) or (E0, E0).
We may have, for example, (E−1, E0), and, in this case, it will not be possible to get the
equilibrium in one more step, since any compensation or go-forward action for α is not
allowed without a correspondent β’s service. The solution given by the optimal policy
is then to have a transition to (E1, E−1) and then, finally, to reach (E0, E0). Thus, the
overall process takes three steps.

The worst case is when the interaction presents material results that belong to the state
(Ei, Ej), with −n ≤ i, j < −1, since two simultaneous positive compensation actions
(that would require a recommendation of satisfaction values for the two agents without
any service at all) are not allowed. In this case, the optimal recommendation (Table 4)
leads the agents to get the material equilibrium in at most four steps, by one of the
following transitions: (Ei, Ej)−n≤i,j<−1

row12�→ (E1, Ej)−n≤j<−1
row6�→ (E0, E−1)

row11�→
(E−1, E1)

row7�→ (E0, E0), or (Ei, Ej)−n≤i,j<−1
row13�→ (Ej , E1)−n≤j<−1

row9�→ (E−1, E0)
row10�→ (E1, E−1)

row8�→ (E0, E0).

6 Conclusion

This paper introduced the QI–MDP version of the Markov Decision Process. The combi-
nation of interval-based modelling and qualitative approach to the comparison of values
of the model made it well suited for solving the problem of keeping social exchanges
in equilibrium. From the point of view of Jean Piaget’s theory of social interactions,
the QI–MDP means a sound way of making practical use of the INRC group of social
exchanges that structure the social interactions and defines its equilibrium problem [1].
The QI–MDP model is general enough to be applied to other problems, besides the prob-
lem of keeping social interactions in equilibrium. It can also be applied to equilibrium
problems of other kinds of systems, besides systems of social exchanges, if such systems
have one single equilibrium state.

Future work will be concerned with the case of an equilibrium supervisor that is
not able to determine the material balance of social exchange processes with complete
reliability (i.e., it is not allowed to know all the exchange values of the two agents). In this
case, a partially observable Markov decision process (POMDP) shall be considered (see,
p.ex., [3]), since the equilibrium supervisor shall be able to make external observations
(also probabilistic) to help him to decide about the recommendations.
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