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Abstract. Fast and reliable pseudo-random number generators are required for
simulation and other applications in Scientific Computing. We outline the require-
ments for good uniform random number generators, and describe a class of gen-
erators having very fast vector/parallel implementations with excellent statistical
properties. We also discuss the problem of initialising random number generators,
and consider how to combine two or more generators to give a better (though
usually slower) generator.

1 Introduction

Monte Carlo methods are of great importance in simulation [36], computational finance,
numerical integration, computational physics [13,24], etc. Due to Moore’s Law and
increases in parallelism, the statistical quality of random number generators is becoming
even more important than in the past. A program running on a supercomputer might use
109 random numbers per second over a period of many hours (or even months in some
cases), so 1016 or more random numbers might contribute to the result. Small correlations
or other deficiencies in the random number generator could easily lead to spurious effects
and invalidate the results of the computation, see e.g. [13,34].

Applications require random numbers with various distributions (e.g. normal, expo-
nential, Poisson, . . .) but the algorithms used to generate these random numbers almost
invariably require a good uniform random number generator. A notable exception is
Wallace’s method [7,39] for normally distributed numbers. In this paper we consider
only the generation of uniformly distributed numbers. Usually we are concerned with
real numbers un that are intended to be uniformly distributed on the interval [0, 1).
Sometimes it is convenient to consider integers Un in some range 0 ≤ Un < m. In this
case we require un = Un/m to be (approximately) uniformly distributed.

Pseudo-random numbers generated in a deterministic fashion on a digital computer
can not be truly random. What is required is that finite segments of the sequence
(u0, u1, · · ·) behave in a manner indistinguishable from a truly random sequence. In
practice, this means that they pass all statistical tests that are relevant to the problem
at hand. Since the problems to which a library routine will be applied are not known
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in advance, random number generators in subroutine libraries should pass a number of
stringent statistical tests (and not fail any) before being released for general use.

Random numbers generated by physical sources are available [1,2,15,23,37,38].
However, there are problems in generating such numbers sufficiently fast, and experi-
ence with them is insufficient to be confident of their statistical properties. Thus, for the
present, we recommend treating such physical sources of random numbers with caution.
They can be used to initialise (and perhaps periodically reinitialise) deterministic gener-
ators, and can be combined with deterministic generators by the algorithms considered
in §6. In the following we restrict our attention to deterministic pseudo-random number
generators.

A sequence (u0, u1, · · ·) depending on a finite state must eventually be periodic, i.e.
there is a positive integer ρ such that un+ρ = un for all sufficiently large n. The minimal
such ρ is called the period.

In §§2–3 we consider desiderata for random number generators. In §§4–5, we describe
one popular class of random number generators. In §6 we discuss how to combine two or
more generators to give a (hopefully) better generator. Finally, in §7 we briefly mention
some implementations.

2 Requirements for Good Random Number Generators

Requirements for a good pseudo-random number generator have been discussed in many
surveys, e.g. [5,9,11,17,20,22,25]. Due to space limitations we can not cover all aspects
of random number generation here, but we shall attempt to summarize and comment
briefly on the most important requirements. Of course, some of the requirements listed
below may be irrelevant in certain applications. For example, there is often no need
to skip ahead (§2.4). In some applications, such as Monte Carlo integration, it may be
preferable to use numbers that definitely do not behave like random numbers: they are
“quasi-random” rather than random [32].

2.1 Uniformity

The sequence of random numbers should pass statistical tests for uniformity of distri-
bution. This is usually easy for deterministic generators implemented in software. For
physical/hardware generators, the well-known technique of Von Neumann, or similar
but more efficient techniques [16], can be used to extract uniform bits from a sequence
of independent but possibly biased bits.

2.2 Independence

Subsequences of the full sequence (u0, u1, · · ·) should be independent. Random numbers
are often used to sample a d-dimensional space, so the sequence of
d-tuples (udn, udn+1, . . . , udn+d−1) should be uniformly distributed in the
d-dimensional cube [0, 1]d for all “small” values of d (certainly for all d ≤ 6). For ran-
dom number generators on parallel machines, the sequences generated on each processor
should be independent.
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2.3 Long Period

As mentioned above, a simulation might use 1016 random numbers. In such a case the
period ρ must exceed 1016. For many generators there are strong correlations between
u0, u1, · · · and um, um+1, · · ·, where m ≈ ρ/2 (and similarly for other simple fractions
of the period). Thus, in practice the period should be much larger than the number of
random numbers that will ever be used. A good rule of thumb is to use at most ρ1/2

numbers. In fact, there are reasons, related to the birthday spacings test [28], for using
at most ρ1/3 numbers: see [22, §6].

2.4 Ability to Skip Ahead

If a simulation is to be run on a machine with several processors, or if a large simula-
tion is to be performed on several independent machines, it is essential to ensure that
the sequences of random numbers used by each processor are disjoint. Two methods
of subdivision are commonly used. Suppose, for example, that we require 4 disjoint
subsequences for a machine with 4 processors. One processor could use the subse-
quence (u0, u4, u8, · · ·), another the subsequence (u1, u5, u9, · · ·), etc. For efficiency
each processor should be able to “skip over” the terms that it does not require.

Alternatively, processor j could use the subsequence (umj , umj+1, · · ·), where the
indices m0, m1, m2, m3 are sufficiently widely separated that the (finite) subsequences
do not overlap, but this requires some efficient method of generating um for large m
without generating all the intermediate values u1, . . . , um−1.

For generators satisfying a linear recurrence, it is possible to skip ahead by forming
high powers of the appropriate matrix (see [22, §3.5] for details). However, it is not so
well known that more efficient methods exist using generating functions. Essentially,
we can replace matrix multiplications by polynomial multiplications. Multiplying two
r × r matrices is much more expensive than multiplying two polynomials modulo a
polynomial of degree r. Details are given in [4] and an implementation that is practical
for r of the order of 106 is available [3].

2.5 Proper Initialization

The initialization of random number generators, especially those with a large amount of
state information, is an important and often neglected topic. In some applications only
a short sequence of random numbers is used after each initialization of the generator, so
it is important that short sequences produced with different seeds are uncorrelated.

For example, suppose that a random number generator with seed s produces a se-
quence (u(s)

1 , u
(s)
2 , u

(s)
3 , . . .). If we use m different seeds s1, s2, . . . , sm and generate n

numbers from each seed, we get an m × n array U with elements Ui,j = u
(si)
j . We do

not insist that the seeds are random – they could for example be consecutive integers.
Packages such as Marsaglia’s Diehard [26] typically test a 1-D array of random

numbers. We can generate a 1-D array by concatenating the rows (or columns) of U.
Irrespective of how this is done, we would hope that the random numbers would pass
the standard statistical tests. However, many current generators fail because they were
intended for the case m = 1 (or small) and n large [14,18]. The other extreme is m large
and n = 1. In this case we expect u

(s)
1 to behave like a pseudo-random function of s.
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2.6 Unpredictability

In cryptographic applications, it is not sufficient for the sequence to pass standard sta-
tistical tests for randomness; it also needs to be unpredictable in the sense that there
is no efficient deterministic algorithm for predicting un (with probability of success
significantly greater than expected by chance) from (u0, u1, . . . , un−1), unless n is so
large that the prediction is infeasible.

At first sight it appears that unpredictability is not required in scientific applications.
However, if a random number generator is predictable then we can always devise a
statistical test (albeit an artificial one) that the generator will fail. Thus, it seems a wise
precaution to use an unpredictable generator if the cost of doing so is not too high. We
discuss techniques for this in §6.

Strictly speaking, unpredictability implies uniformity, independence, and a (very)
long period. However, it seems worthwhile to state these simpler requirements separately.

2.7 Efficiency

It should be possible to implement the method efficiently so that only a few arithmetic
operations are required to generate each random number, all vector/parallel capabilities
of the machine are used, and overheads such as those for subroutine calls are minimal.
Of course, efficiency tends to conflict with other requirements such as unpredictability,
so a tradeoff is often involved.

2.8 Repeatability

For testing and development it is useful to be able to repeat a run with exactly the same
sequence of random numbers as was used in an earlier run. This is usually easy if the
sequence is restarted from the beginning (u0). It may not be so easy if the sequence is to
be restarted from some other value, say um for a large integer m, because this requires
saving the state information associated with the random number generator.

2.9 Portability

Again, for testing and development purposes, it is useful to be able to generate exactly the
same sequence of random numbers on two different machines, possibly with different
wordlengths. This was more difficult to achieve in the past than it is nowadays, when
nearly all computers have wordlengths of 32 or 64 bits, and their floating-point arithmetic
satisfies the IEEE 754 standard.

3 Equidistribution

We should comment on the concept of equidistribution, which we have not listed as one
of our requirements. Definitions and examples can be found in [22, §4.2] and in [30,
§1.2].

Consider concatenating the leading v bits from k consecutive random numbers.
According to [30], a random number generator is said to bek-distributed to v-bit accuracy
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if each of the 2kv possible combinations of bits occurs the same number of times over
a full period of the random number generator, except that the sequence of all zero bits
is allowed to occur once less often. Some generators with period ρ = 2r or 2r − 1
can be proved to satisfy this condition for kv ≤ r. This is fine in applications such as
Monte Carlo integration. However, the probability that a periodic but otherwise random
sequence will satisfy the condition is vanishingly small. If we perform a “chi-squared”
test on the output of a k-distributed generator, the test will be failed because the value
of χ2 is too small !

To give a simply analogy: if I toss a fair coin 100 times, I expect to get about 50 heads
and 50 tails, but I would be mildly surprised to get exactly the same number of heads
as tails (the probability of this occurring is about 0.08). If (with the aid of a computer)
I toss a fair coin 1012 times, I should be very surprised to get exactly the same number
of heads as tails. (For 2n tosses, the probability of an equal number of heads and tails
occurring is about 1/

√
nπ.) This is another reason for using at most

√
ρ numbers from

the full period of length ρ (compare §2.3).

4 Generalized Fibonacci Generators

In this section we describe a popular class of random number generators. For various
generalizations, see [22].

Given a circular buffer of length r words (or bits), we can generate pseudo-random
numbers from a linear or nonlinear recurrence

un = f(un−1, un−2, . . . , un−r) .

For speed it is desirable that f(un−1, un−2, . . . , un−r) depends explicitly on only a small
number of its r arguments. An important case is the class of “generalized Fibonacci” or
“lagged Fibonacci” random number generators [17].

Marsaglia [25] considers generators F (r, s, θ) that satisfy

Un = Un−r θ Un−s mod m

for fixed “lags” r and s (r > s > 0) and n ≥ r. Here m is a modulus (typically 2w if w is
the wordlength in bits), and θ is some binary operator, e.g. addition, subtraction, multi-
plication or “exclusive or”. We abbreviate these operators by +,−, ∗ and⊕ respectively.
Generators using ⊕ are also called “linear feedback shift register” (LFSR) generators
or “Tausworthe” generators. Usually Un is normalised to give a floating-point number
un = Un/m ∈ [0, 1).

It is possible to choose lags r, s so that the period ρ of the generalized Fibonacci
generators F (r, s, +) is a large prime p or a small multiple of such a prime. Typically,
the period of the least-significant bit is p; because carries propagate from the least-
significant bit into higher-order bits, the overall period is usually 2w−1ρ for wordlength
w. For example, [9, Table 1] gives several pairs (r, s) with r > 106. (The notation in [9]
is different: r + δ corresponds to our r.)

There are several ways to improve the performance of generalized Fibonacci genera-
tors on statistical tests such as the Birthday Spacings and Generalized Triple tests [25,28].
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The simplest is to include small odd integer multipliers α and β in the generalized Fi-
bonacci recurrence, e.g.

Un = αUn−r + βUn−s mod m .

Other ways to improve statistical properties (at the expense of speed) are to include
more terms in the linear recurrence [19], to discard some members of the sequence [24],
or to combine two or three generators in various ways (see §6).

With suitable choice of lags (r, s), the generalised Fibonacci generators satisfy the
requirements of uniformity, long period, efficiency, and ability to skip ahead. Because
there are only three terms in the recurrence, each number depends on only two previous
numbers, so there may be difficulty satisfying the requirement for independence, at least
if r is small. Because they are based on a linear recurrence, they do not satisfy the
requirement for unpredictability. In §6 we show how to overcome these difficulties.

5 Short-Term and Long-Term Properties

When considering pseudo-random number generators, it is useful to consider their short-
term and long-term properties separately.

short-term means properties that can be tested by inspection of relatively short seg-
ments of the full cycle. For example, suppose that a uniform random number generator
is used to simulate throws of a dice. If consective sixes never occur in the output (or
occur with probability much lower than expected), then the generator is faulty, and this
can be tested by inspection of the results of a few hundred simulated throws. For a more
subtle example, consider a single-bit LFSR generator of the form discussed in §4, with
largest lag r, and period 2r −1. We can form an r× r matrix from r2 consecutive bits of
output. This matrix is nonsingular (considered as a matrix over GF(2)). However, the
probability that a random r × r matrix over GF(2) is nonsingular is strictly less than
1 (about 0.289 for large r, see [8]). Thus, by inspecting O(r2) consecutive bits of the
output, we can detect a short-term nonrandomness.

long-term means properties that can be tested by inspection of a full cycle (or a
significant fraction of a full cycle). For example, a uniform random number generator
might have a small bias, so the expected output is 1/2 + ε instead of 1/2. This could be
detected by taking a sample of size slightly larger than 1/ε2.

Generalized Fibonacci generators based on primitive trinomials generally have good
long-term properties, but bad short-term properties. To improve the short-term properties
we can use tempering (transforming the output vectors by a carefully-chosen linear
transformation), as suggested by Matsumoto and Kurita (see [30] and [22, §4.5]), or the
other devices mentioned in §4.

6 Improving Generators

In this section we consider how generators that suffer some defects can be improved.
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6.1 Improving a Generator by “Decimation”

If (x0, x1, . . .) is generated by a 3-term recurrence, we can obtain a (hopefully better)
sequence (y0, y1, . . .) by defining yj = xjp, where p > 1 is a suitable constant. In other
words, use every p-th number and discard the others.

Consider the case F (r, s,⊕) with w = 1 (LFSR) and p = 3. (If p = 2, the yj satisfy
the same 3-term recurrence as the xj .)

Using generating functions, it is easy to show that the yj satisfy a 5-term recurrence.
For example, if xn = xn−1 ⊕ xn−127, then yn = yn−1 ⊕ yn−43 ⊕ yn−85 ⊕ yn−127. A
more elementary approach for p ≤ 7 is given in [40].

A possible improvement over simple decimation is decimation by blocks [24].

6.2 Combining Generators by Addition or Xor

We can combine some number K of generalized Fibonacci generators by addition (mod
2w). If each component generator is defined by a primitive trinomial Tk(x) = xrk +
xsk + 1, with distinct prime degrees rk, then the combined generator has period at least
2w−1

∏K
k=1(2

rk − 1) and satisfies a 3K-term linear recurrence.
Because the speed of the combined generator decreases like 1/K , we would probably

take K ≤ 3 in practice. The case K = 2 seems to be better (and more efficient) than
“decimation” with p = 3.

Alternatively, we can combine K generalized Fibonacci generators by bitwise “ex-
clusive or” operating on w-bit words. This has the advantage of mixing different alge-
braic operations (assuming that addition mod 2w is used in the generalized Fibonacci
recurrence). Note that the least-significant bits will be the same for both methods.

6.3 Combining by Shuffling

Suppose that we have two pseudo-random sequences X = (x0, x1, . . .) and
Y = (y0, y1, . . .). We can use a buffer V of size B say, fill the buffer using the se-
quence X , then use the sequence Y to generate indices into the buffer. If the index is j
then the random number generator returns V [j] and replaces V [j] by the next number
in the X sequence [17, Algorithm M].

In other words, we use one generator to shuffle the output of another generator. This
seems to be as good (and about as fast) as combining two generators by addition. B
should not be too small.

6.4 Combining by Shrinking

Coppersmith et al [12] suggested using one sequence to “shrink” another sequence.
Suppose we have two pseudo-random sequences (x0, x1, . . .) and (y0, y1, . . .),

where yi ∈ GF(2). Suppose yi = 1 for i = i0, i1, . . . Define a sequence (z0, z1, . . .) to
be the subsequence (xi0 , xi1 , . . .) of (x0, x1, . . .). In other words, one sequence of bits
(yi) is used to decide whether to “accept” or “reject” elements of another sequence (xi).
This is sometimes called “irregular decimation” (compare §6.1).
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Combining two sequences by shrinking is slower than combining the sequences by
+ or ⊕, but is less amenable to analysis based on linear algebra or generating functions,
so is preferable in applications where the sequence needs to be unpredictable. Note that it
is dangerous to take the xi to be larger than a single bit. For example, if we tried to speed
up the combination process by taking xi to be a whole word, then the cryptographic
security could be compromised.

7 Implementations

Several good random number generators are available. Following is a small sample,
not intended to be exhaustive: Matsumoto and Nishimura’s Mersenne twister, based on
a primitive trinomial of degree 19937 with tempering to improve short-term proper-
ties [30]; L’Ecuyer’s maximally equidistributed combined LFSR generators [21]; and
the author’s ranut (Fortran) and xorgens (C) generators [3]. The xorgens generators are
simple, fast, have passed all statistical tests applied so far, and are based on a general-
ization of a recent idea of Marsaglia [27]. They are related to LFSR generators [6], but
do not use trinomials, and can be implemented faster than most other LFSR generators
because the degree r can be chosen to be a multiple of 64.

To close with a word of warning: all pseudo-random number generators fail some sta-
tistical tests – this is inevitable, since they are generated deterministically. It is ultimately
the user’s responsibility to ensure that the pseudo-random numbers appear sufficiently
random for the application at hand.
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