

Lecture Notes in Computer Science 3732
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jack Dongarra Kaj Madsen
Jerzy Wasniewski (Eds.)

Applied
Parallel Computing

State of the Art in Scientific Computing

7th International Workshop, PARA 2004
Lyngby, Denmark, June 20-23, 2004
Revised Selected Papers

13

Volume Editors

Jack Dongarra
University of Tennessee
Department of Computer Science
1122 Volunteer Blvd.
Knoxville, TN 37996-3450, USA
and
Oak Ridge National Laboratory
Computer Science and Mathematics Division
E-mail: dongarra@cs.utk.edu

Kaj Madsen
Jerzy Wasniewski
Technical University of Denmark
Informatics and Mathematical Modelling
Richard Petersens Plads, Building 321
2800 Kongens Lyngby, Denmark
E-mail: {km,jw}@imm.dtu.dk

Library of Congress Control Number: 2006920921

CR Subject Classification (1998): G.1-4, F.1-2, D.1-3, J.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-29067-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29067-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 11558958 06/3142 5 4 3 2 1 0

Preface

Introduction

The PARA workshops in the past were devoted to parallel computing methods in science
and technology. There have been seven PARA meetings to date: PARA’94, PARA’95 and
PARA’96 in Lyngby, Denmark, PARA’98 in Umeå, Sweden, PARA 2000 in Bergen, Nor-
way, PARA 2002 in Espoo, Finland, and PARA 2004 again in Lyngby, Denmark. The first
six meetings featured lectures in modern numerical algorithms, computer science, engi-
neering, and industrial applications, all in the context of scientific parallel computing.

This meeting in the series, the PARA 2004 Workshop with the title “State of the
Art in Scientific Computing”, was held in Lyngby, Denmark, June 20–23, 2004. The
PARA 2004 Workshop was organized by Jack Dongarra from the University of Tennessee
and Oak Ridge National Laboratory, and Kaj Madsen and Jerzy Waśniewski from the
Technical University of Denmark. The emphasis here was shifted to high-performance
computing (HPC). The ongoing development of ever more advanced computers provides
the potential for solving increasingly difficult computational problems. However, given
the complexity of modern computer architectures, the task of realizing this potential
needs careful attention. For example, the failure to exploit a computer’s memory hier-
archy can degrade performance badly. A main concern of HPC is the development of
software that optimizes the performance of a given computer.

The high cost of state-of-the-art computers can be prohibitive for many workplaces,
especially if there is only an occasional need for HPC. A solution to this problem can be
network computing, where remote computing facilities are exploited via the Internet.

PARA 2004 featured invited talks, contributed talks, minisymposia, and software and
hardware vendors. The first day, June 20, was devoted to two parallel tutorials. The mini-
symposia and contributed talks during the main part of the workshop, June 21–23, were
scheduled in parallel sessions. All invited and contributed talks were noncommercial.
The workshop attracted 230 speakers from all over the world.

The PARA 2006 Workshop with the title “State-of-the-Art in Scientific and Parallel
Computing” will be held in Umeå (Sweden) on June 17–21, 2006.

Tutorials

Validated Scientific Computing Using Interval Analysis was organized by George
F. Corliss from Marquette University (USA). This tutorial gave an introduction to con-
cepts and patterns of interval analysis. It was assumed that the participants had had a
first course in scientific computation, including floating-point arithmetic, error analysis,
automatic differentiation, Gaussian elimination, Newton’s method, numerical optimiza-
tion, and Runge-Kutta methods for ODEs. The tutorial included lectures, with examples
in MATLAB and Sun’s Fortran 95, and a set of supervised, hands-on exercises.

Automatic Differentiation was organized by Andrea Walther from the Technical Uni-
versity of Dresden (Germany). This tutorial gave a detailed introduction to the chain

VI Preface

rule based technique of automatic differentiation (AD) that provides first and higher
derivatives without incurring truncation errors. Several examples illustrated the theoret-
ical results. Some AD tools, selected as a reasonably representative sample, were tested
in supervised, hands-on exercises.

Key Speakers

Richard P. Brent, Oxford University Computing Laboratory (UK), Fast and Reliable
Random Number Generators for Scientific Computing. Fast and reliable pseudo-random
number generators are required for simulation and other applications in scientific com-
puting. Richard outlined the requirements for good uniform random number generators,
and described a class of generators having very fast vector/parallel implementations with
excellent statistical properties.

Bernd Dammann and Henrik Madsen, the Technical University of Denmark (Den-
mark), High Performance Computing and the Importance of Code Tuning—Some Prac-
tical Experiences from Program Tuning at the DTU HPC Center. This talk gave a short
overview of the High Performance Computer installation at the Technical University of
Denmark (DTU), as well as a summary of some code tuning experiments. It is easy to
reduce the run time of an application for a given problem by buying a computer with
a faster CPU (higher clock frequency). However, very often the same or even better
speed-up of the code can be achieved by analyzing and tuning the code—without the
need to invest in new hardware.

Jack Dongarra, the University of Tennessee and Oak Ridge National Laboratory (USA),
High Performance Computing Trends and Self Adapting Numerical Software (SANS)—
Effort. In this talk Jack looked at how high performance computing has changed over
the last 10 years and predicted future trends. In addition, he advocated the need for self
adapting software.

Iain Duff, the Rutherford Appleton Laboratory (UK) and CERFACS (France), Parti-
tioning and Parallelism in the Solution of Large Sparse Systems. Iain first reviewed the
various levels of parallelism that are available in the direct solution of large sparse linear
systems. He also briefly considered iterative as well as direct methods in this study.

Fred Gustavson, the IBM T.J. Watson Research Center (USA), Ideas for High Per-
formance Linear Algebra Software. In this talk Fred presented several ideas for the
development of sequential and parallel HPC dense linear algebra software. The main
results were obtained from the algorithms and architecture approach.

Per Christian Hansen, the Technical University of Denmark (Denmark), Large-Scale
Methods in Inverse Problems. Inverse problems arise in geophysics, tomography, im-
age deblurring and many other areas where the goal is to compute interior or hidden
information from exterior data. This talk presented a survey of numerical methods and
paradigms suited for large-scale inverse problems.

Bo Kågström, the University of Umeå (Sweden), Recursive Blocked Algorithms and
Hybrid Data Structures for Dense Matrix Library Software. Matrix computations are
both fundamental and ubiquitous in computational science and its vast application areas.
Along with the development of more advanced computer systems with complex memory

Preface VII

hierarchies, there is a continuing demand for new algorithms and library software that
efficiently utilize and adapt to new architecture features.

John K. Reid, the Rutherford Appleton Laboratory (UK), Fortran Is Getting More and
More Powerful. There is much happening just now with respect to Fortran. The features
of Fortran 2003 have been chosen and the standard is very near completion. John is the
convener of the ISO Fortran Committee.

Peter Sloot, the University of Amsterdam (The Netherlands). Scientific Computing in
the Grid: A Biophysical Case Study. Workers at the University of Amsterdam conducted
computer simulation experiments in pre-operative planning of vascular reconstruction
with a physician in the experimental loop. Peter showed new results from numerical
simulations of blood flow with 3D cellular automata.

Zahari Zlatev, National Environmental Research Institute (Denmark), Large-Scale
Computations with the Unified Danish Eulerian Model. The Unified Danish Eulerian
Model (UNI-DEM) is a mathematical model for performing different comprehensive
studies related to damaging effects from high pollution levels in Denmark and Europe.
The model is described by a system of partial differential equations (PDEs).

Minisymposia

Interval Methods, organized by Luke Achenie, University of Connecticut (USA), Vladik
Kreinovich, University of Texas at El Paso (USA), and Kaj Madsen, Technical University
of Denmark (Denmark). In many practical problems there is a need to (a) solve systems of
equations and inequalities, and/or (b) optimize some performance measure. The results
obtained by conventional algorithms are either local or cannot be guaranteed. Interval
analysis provides guaranteed approximations of the set of all the actual solutions of
the problem. This ensures that no solution is missed. There were 21 speakers in this
minisymposium.

Trends in Large Scale Computing, organized by Scott B. Baden, University of Califor-
nia at San Diego (USA). Software infrastructures for large scale computation often fail to
realize the full potential afforded by technological advances, and the result is lost oppor-
tunities for making scientific discoveries. This minisymposium examined two important
issues in software infrastructure for large scale computation: achieving scalability, and
optimization through specialization. There were 5 speakers in this minisymposium.

High Performance Linear Algebra Algorithms, organized by Fred G. Gustavson,
IBM T.J. Watson Research Center (USA), and Jerzy Waśniewski, Technical University
of Denmark (Denmark). The algorithms of Linpack and Eispack and later LAPACK
and ScaLAPACK have stood the test of time in terms of robustness and accuracy. The
focus of this minisymposium was on explaining high performance versions of these
algorithms. There were 7 speakers in this minisymposium.

Substructuring, Dimension Reduction and Applications, organized by Zhaojun Bai,
University of California (USA) and Rencang Li, University of Kentucky USA. There are
a variety of reasons to go for substructuring and dimension reduction in scientific compu-
tations and applications. Substructuring makes it possible to solve large and seemingly
intractable computational problems by some kind of divide-and-conquer technique. It

VIII Preface

also offers a general methodology for parallelization. There were 12 speakers in this
minisymposium.

Parallel Processing in Science and Engineering, organized by Adam W. Bojańczyk,
Cornell University (USA). This minisymposium concerned selected aspects of parallel
and distributing computing as they arise in engineering. Both non-traditional applica-
tions as well as relevant software tools were presented. There were 9 speakers in this
minisymposium.

Distributed Computing: Tools, Paradigms and Infrastructures, organized by Beni-
amino Di Martino, Rocco Aversa, Second University of Naples (Italy), and Laurence
Tianruo Yang, Francis Xavier University (Canada). The minisymposium presented re-
cent advances in distributed computing technology, methodology and tools. The presen-
tations featured a variety of topics ranging from mobile and location-aware computing to
skeletons and high-level parallel languages, from programming environments and tools
for Grid applications development and tuning, to distributed monitoring and security
issues. There were 9 speakers in this minisymposium.

High-Performance Computing in Earth and Space Science, organized by Peter Mess-
mer, Tech-X Corporation at Boulder (USA). High-performance computing facilities
enable simulations of physical phenomena with ever increasing fidelity and accuracy.
The range of resolved scales in a single simulation, as well as the number of physical
processes included, yield results that can be directly compared with observational data.
There were 7 speakers in this minisymposium.

Advanced Algorithms and Software Components for Scientific Computing, orga-
nized by Padma Raghavan, Pennsylvania State University (USA). This minisymposium
concerned algorithms for sparse linear systems solution and function approximation and
their implementation using advanced software architectures. Discussions emphasized
the role of such techniques for improving the performance of long-running PDE-based
simulations. There were 7 speakers in this minisymposium.

Software Engineering and Problem Solving Environments for Scientific Comput-
ing, organized by José C. Cunha, Universidade Nova de Lisboa (Portugal) and Omer
F. Rana, Cardiff University (UK). The emergence of computational grids in the last
few years provides new opportunities for the scientific community to undertake collab-
orative and multi-disciplinary research. The aim of this minisymposium was to bring
together experts who have experience in developing software tools to support applica-
tion scientists, and those who make use of these tools. There were 5 speakers in this
minisymposium.

Runtime Software Techniques for Enabling High-Performance Applications, orga-
nized by Masha Sosonkina, Iowa State University (USA). Parallel computing platforms
are advancing rapidly, both in speed and size. However, often only a fraction of the peak
hardware performance is achieved by high-performancescientific applications. One way
to cope with the changeability of hardware is to start creating applications able to adapt
themselves “on-the-fly”. The talks of the minisymposium discussed this issue from both
the application-centric and system-centric viewpoints. There were 6 speakers in this
minisymposium.

Preface IX

Sparse Direct Linear Solvers, organized by Sivan Toledo, Tel Aviv University (Israel).
The matrices of most of the systems of linear algebraic equations arising from scientific
and engineering applications are sparse. This minisymposium dealt with some modern al-
gorithms for sparse direct linear solvers. There were 12 speakers in this minisymposium.

Treatment of Large Scientific Models, organized by Krassimir Georgiev, Bulgarian
Academy of Science (Bulgaria) and Zahari Zlatev, National Environmental Research
Institute (Denmark). The exploitation of new fast computers in the effort to avoid non-
physical assumptions and, thus, to develop and run more reliable and robust large scien-
tific models was the major topic of this minisymposium. There were 9 speakers in this
minisymposium.

Performance Evaluation and Design of Hardware-Aware PDE Solvers, organized
by Markus Kowarschik and Frank Hülsemann, University of Erlangen-Nuremberg
(Germany). In an ideal situation, all performance optimization of computationally in-
tensive software would take place automatically, allowing the researchers to concentrate
on the development of more efficient methods rather than having to worry about perfor-
mance. However, for the time being, the need to identify and remove the performance
bottlenecks of computationally intensive codes remains. As an example of a class of
computationally intensive problems, this minisymposium concentrated on the numeri-
cal solution of PDEs. There were 7 speakers in this minisymposium.

Computationally Expensive Methods in Statistics, organized by Wolfgang Hartmann,
SAS Institute Inc. (USA) and Paul Somerville, University of Central Florida (USA). A
two-dimensional data set with N observations (rows) and n variables (columns) and
large scale data requires intensive computational work. Of course there may be even
more dimensions of the data set. There were 5 speakers in this minisymposium.

Approaches or Methods of Security Engineering (AMSE), organized by Taihoon
Kim and Ho Yeol Kwon, Kangwon National University (Korea). Security engineering
software is needed for reducing security holes. The talks presented a number of methods
for designing such software. There were 16 speakers in this minisymposium.

Contributed Talks

Some contributed talks were added to the minisymposium sessions. The others were
organized in the following independent sessions: two sessions of “Grid and Network",
two sessions of “HPC Applied to Security Problems”, two sessions of “Clusters and
Graphics”, one session of “HPC Applied to Cryptology”, one session of “ODEs, PDEs
and Automatic Differentiation”, one session of “Computer Tools”, and a special session
of “Computer Vendors”.

Workshop Proceedings

The proceedings of the PARA 2004 Workshop are divided into two complementary
publications, this Springer volume and the following report:

• J. Dongarra, K. Madsen and J. Waśniewski (Eds.)

X Preface

� Complementary proceedings of the PARA 2004 Workshop on State-of-the-Art
in Scientific Computing, Lyngby, Denmark, June, 2004.

� IMM-Technical report-2005-09.
� Informatics and Mathematical Modelling, Technical University of Denmark,

DK-2800 Lyngby, Denmark.
� URL: http://www2.imm.dtu.dk/pubdb/views/publication details.php?id=3927

A list of those papers appearing in the report is given in this volume in Chapter II of the
contributed talks.

Acknowledgments

The organizers are indebted to the PARA 2004 sponsors, whose support was vital to
the success of the workshop. The main sponsor was the Department of Informatics and
Mathematical Modelling of the Technical University of Denmark. The other sponsors
were:

• HP High Performance Computing USA,
• NAG Numerical Algorithms Group Ltd. UK,
• Comsol A/S Denmark (MATLAB distributor),
• Sun Microsystems Denmark,
• UNI•C Danish Computing Center Denmark,
• Microsoft Denmark, and
• IBM (International Business Machines) Denmark.

The organizers would like to thank Kirsten Probst for her excellent work as PARA 2004
secretary. Dorthe Thøgersen, Henrik Krogh and other staff of the conference also pro-
vided very valuable help.

We are very grateful to Prof. Ho Yeol Kwon from the Kangwon National University,
Electrical and Computer Engineering Department for taking many photos during the
PARA 2004 conference. These are available at the PARA 2004 URL

http://www.imm.dtu.dk/˜jw/para04/.

Thanks are also due to Vincent A. Barker for his kind assistance in the preparation of
both the workshop and these proceedings.

The PARA 2004 conference ended on June 23, 2004. The evening of June 23, the eve
of St. Hans Day, is celebrated in Denmark by the lighting of bonfires. We are indebted
to Arriva Denmark A/S for making available two boats for the PARA 2004 participants,
from which we could see some of the bonfires and admire beautiful Copenhagen.

Finally, we would like to thank the PARA 2004 referees for their careful evaluation
of the workshop papers.

Jack Dongarra
Kaj Madsen

Jerzy Waśniewski

Table of Contents

Invited Talks

Fast and Reliable Random Number Generators for Scientific Computing 1

Richard P. Brent

New Generalized Data Structures for Matrices Lead to a Variety
of High Performance Dense Linear Algebra Algorithms 11

Fred G. Gustavson

Management of Deep Memory Hierarchies – Recursive Blocked Algorithms
and Hybrid Data Structures for Dense Matrix Computations 21

Bo Kågström

Fortran Is Getting More and More Powerful . 33

John K. Reid

Large-Scale Computations with the Unified Danish Eulerian Model 43

Zahari Zlatev

Minisymposia

I Interval Methods

Interval Methods: An Introduction . 53

Organizers: Luke E.K. Achenie, Vladik Kreinovich, and Kaj Madsen

A Chemical Engineering Challenge Problem That Can Benefit
from Interval Methods . 57

Luke E.K. Achenie and Gennadi M. Ostrovsky

Performance of Taylor Model Methods for Validated Integration of ODEs 65

Martin Berz and Kyoko Makino

On the Use of Intervals in Scientific Computing:
What Is the Best Transition from Linear to Quadratic Approximation? 75

Martine Ceberio, Vladik Kreinovich, and Lev Ginzburg

XII Table of Contents

HPC-ICTM: The Interval Categorizer Tessellation-Based Model
for High Performance Computing . 83

Marilton S. de Aguiar, Graçaliz P. Dimuro, Fábia A. Costa,
Rafael K.S. Silva, César A.F. De Rose, Antônio C.R. Costa,
and Vladik Kreinovich

Counting the Number of Connected Components of a Set
and Its Application to Robotics . 93

Nicolas Delanoue, Luc Jaulin, and Bertrand Cottenceau

Interval-Based Markov Decision Processes
for Regulating Interactions Between Two Agents in Multi-agent Systems 102

Graçaliz P. Dimuro and Antônio C.R. Costa

A Domain Theoretic Account of Euler’s Method
for Solving Initial Value Problems . 112

Abbas Edalat and Dirk Pattinson

Reliable Computation of Equilibrium States and Bifurcations
in Nonlinear Dynamics . 122

C. Ryan Gwaltney and Mark A. Stadtherr

A Verification Method for Solutions of Linear Programming Problems 132
Ismail I. Idriss

Compressing 3D Measurement Data Under Interval Uncertainty 142
Olga Kosheleva, Sergio Cabrera, Brian Usevitch,
and Edward Vidal Jr.

Computing Interval Bounds for Statistical Characteristics
Under Expert-Provided Bounds on Probability Density Functions 151

Victor G. Krymsky

Interval Parallel Global Optimization with Charm++ . 161
José A. Martı́nez, Leocadio G. Casado, José A. Alvarez,
and Inmaculada Garcı́a

On the Approximation of Interval Functions . 169
Klaus Meer

The Distributed Interval Geometric Machine Model . 179
Renata H.S. Reiser, Antônio C.R. Costa, and Graçaliz P. Dimuro

New Algorithms for Statistical Analysis of Interval Data 189
Gang Xiang, Scott A. Starks, Vladik Kreinovich, and Luc Longpré

On Efficiency of Tightening Bounds in Interval Global Optimization 197
Antanas Žilinskas and Julius Žilinskas

Table of Contents XIII

II Trends in Large Scale Computing

Trends in Large Scale Computing: An Introduction . 206
Organizer: Scott B. Baden

Ygdrasil: Aggregator Network Toolkit for Large Scale Systems
and the Grid . 207

Susanne M. Balle, John Bishop, David LaFrance-Linden,
and Howard Rifkin

Enabling Coupled Scientific Simulations on the Grid . 217
Alan Sussman and Henrique Andrade

III High Performance Linear Algebra Algoritms

High Performance Linear Algebra Algorithms: An Introduction 225
Organizers: Fred G. Gustavson and Jerzy Waśniewski

Applying Software Testing Metrics to Lapack . 228
David J. Barnes and Tim R. Hopkins

A Matrix-Type for Performance–Portability . 237
N. Peter Drakenberg

A New Array Format for Symmetric and Triangular Matrices 247
John A. Gunnels and Fred G. Gustavson

A Family of High-Performance Matrix Multiplication Algorithms 256
John A. Gunnels, Fred G. Gustavson, Greg M. Henry,
and Robert A. van de Geijn

IV Substructuring, Dimension Reduction
and Applications

Substructuring, Dimension Reduction and Applications: An Introduction 266
Organizers: Zhaojun Bai and Ren-Cang Li

Parallel Algorithms for Balanced Truncation Model Reduction
of Sparse Systems . 267

José M. Badı́a, Peter Benner, Rafael Mayo,
and Enrique S. Quintana-Ortı́

Towards an Optimal Substructuring Method for Model Reduction 276
Zhaojun Bai and Ben-Shan Liao

Model Reduction for RF MEMS Simulation . 286
David S. Bindel, Zhaojun Bai, and James W. Demmel

XIV Table of Contents

A Model-Order Reduction Technique for Low Rank Rational Perturbations of
Linear Eigenproblems . 296

Frank Blömeling and Heinrich Voss

Parallel Global Optimization of Foundation Schemes in Civil Engineering 305
Raimondas Čiegis, Milda Baravykait_e, and Rimantas Belevičius

A Combined Linear and Nonlinear Preconditioning Technique
for Incompressible Navier-Stokes Equations . 313

Feng-Nan Hwang and Xiao-Chuan Cai

Structure-Preserving Model Reduction . 323
Ren-Cang Li and Zhaojun Bai

A Comparison of Parallel Preconditioners
for the Sparse Generalized Eigenvalue Problems
by Rayleigh-Quotient Minimization . 333

Sangback Ma and Ho-Jong Jang

Theoretical Relations Between Domain Decomposition
and Dynamic Substructuring . 342

Daniel J. Rixen

Model Order Reduction for Large Scale Engineering Models Developed
in ANSYS . 349

Evgenii B. Rudnyi and Jan G. Korvink

Rational Krylov for Large Nonlinear Eigenproblems . 357
Axel Ruhe

Algebraic Sub-structuring for Electromagnetic Applications 364
Chao Yang, Weiguo Gao, Zhaojun Bai, Xiaoye S. Li,
Lie-Quan Lee, Parry Husbands, and Esmond G. Ng

V Parallel Processing in Science and Engineering

Parallel Processing in Science and Engineering: An Introduction 374
Organizer: Adam W. Bojańczyk

Rapid Development of High-Performance Linear Algebra Libraries 376
Paolo Bientinesi, John A. Gunnels, Fred G. Gustavson,
Greg M. Henry, Margaret Myers, Enrique S. Quintana-Ortı́,
and Robert A. van de Geijn

Automatic Derivation of Linear Algebra Algorithms
with Application to Control Theory . 385

Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

Cluster Computing for Financial Engineering . 395
Shirish Chinchalkar, Thomas F. Coleman, and Peter Mansfield

Table of Contents XV

Semi-automatic Generation of Grid Computing Interfaces
for Numerical Software Libraries . 404

Erik Elmroth and Rikard Skelander

Rapid Development of High-Performance Out-of-Core Solvers 413
Thierry Joffrain, Enrique S. Quintana-Ortı́,
and Robert A. van de Geijn

ALPS: A Software Framework
for Parallel Space-Time Adaptive Processing . 423

Kyusoon Lee and Adam W. Bojańczyk

Hybrid Parallelization of CFD Applications
with Dynamic Thread Balancing . 433

Alexander Spiegel, Dieter an Mey, and Christian Bischof

VI Distributed Computing:
Tools, Paradigms and Infrastructures

Distributed Computing: Tools, Paradigms and Infrastructures.
An Introduction . 442

Organizers: Beniamino Di Martino, Rocco Aversa,
and Laurence Tianruo Yang

Parallelization of GSL: Performance of Case Studies . 444
José Aliaga, Francisco Almeida, José M. Badı́a, Sergio Barrachina,
Vicente Blanco, Marı́a Castillo, U. Dorta, Rafael Mayo,
Enrique S. Quintana, Gregorio Quintana, Casiano Rodrı́guez,
and Francisco de Sande

Design of Policy-Based Security Mechanisms
in a Distributed Web Services Architecture . 454

Valentina Casola, Antonino Mazzeo, Nicola Mazzocca,
and Salvatore Venticinque

Supporting Location-Aware Distributed Applications on Mobile Devices 464
Cristiano di Flora, Massimo Ficco, and Stefano Russo

Grid Application Development on the Basis of Web Portal Technology 472
Gábor Dózsa, Péter Kacsuk, and Csaba Németh

A Distributed Divide and Conquer Skeleton . 481
Juan R. González, Coromoto León, and Casiano Rodrı́guez

A Tool to Display Array Access Patterns in OpenMP Programs 490
Oscar R. Hernandez, Chunhua Liao, and Barbara M. Chapman

XVI Table of Contents

A Model Analysis of a Distributed Monitoring System
Using a Multi-formalism Approach . 499

Mauro Iacono, Stefano Marrone, Nicola Mazzocca, Francesco Moscato, and
Valeria Vittorini

Performance Oriented Development and Tuning of GRID Applications 509
Emilio Mancini, Massimiliano Rak, Roberto Torella,
and Umberto Villano

Towards a Bulk-Synchronous Distributed Shared
Memory Programming Environment for Grids . 519

Håkan Mattsson and Christoph Kessler

VII HPC in Earth and Space Science

High-Performance Computing in Earth- and Space-Science:
An Introduction . 527

Organizer: Peter Messmer

Applying High Performance Computing Techniques in Astrophysics 530
Francisco Almeida, Evencio Mediavilla, Alex Oscoz,
and Francisco de Sande

Statistical Properties of Dissipative MHD Accelerators . 538
Kaspar Arzner, Loukas Vlahos, Bernard Knaepen,
and Nicolas Denewet

A Simulation Model for Forest Fires . 546
Gino Bella, Salvatore Filippone, Alessandro De Maio, and Mario Testa

MHD Modeling of the Interaction Between
the Solar Wind and Solar System Objects . 554

Andreas Ekenbäck and Mats Holmström

Implementing Applications with the Earth System Modeling Framework 563
Chris Hill, Cecelia DeLuca, V. Balaji, Max Suarez, Arlindo da Silva,
William Sawyer, Carlos Cruz, Atanas Trayanov, Leonid Zaslavsky,
Robert Hallberg, Byron Boville, Anthony Craig, Nancy Collins,
Erik Kluzek, John Michalakes, David Neckels, Earl Schwab,
Shepard Smithline, Jon Wolfe, Mark Iredell, Weiyu Yang,
Robert Jacob, and Jay Larson

Parallel Discrete Event Simulations of Grid-Based Models:
Asynchronous Electromagnetic Hybrid Code . 573

Homa Karimabadi, Jonathan Driscoll, Jagrut Dave, Yuri Omelchenko, Kalyan
Perumalla, Richard Fujimoto, and Nick Omidi

Electromagnetic Simulations of Dusty Plasmas . 583
Peter Messmer

Table of Contents XVII

VIII Advanced Algoritms and Software Components
for Scientific Computing

Advanced Algorithms and Software Components for Scientific Computing:
An Introduction . 590

Organizer: Padma Raghavan

Extending PSBLAS to Build Parallel Schwarz Preconditioners 593
Alfredo Buttari, Pasqua D’Ambra, Daniela di Serafino,
and Salvatore Filippone

A Direct Orthogonal Sparse Static Methodology
for a Finite Continuation Hybrid LP Solver . 603

Pablo Guerrero-Garcı́a and Ángel Santos-Palomo

Applying Parallel Direct Solver Techniques
to Build Robust High Performance Preconditioners . 611

Pascal Hénon, François Pellegrini, Pierre Ramet, Jean Roman,
and Yousef Saad

The Design of Trilinos . 620
Michael A. Heroux and Marzio Sala

Software Architecture Issues in Scientific Component Development 629
Boyana Norris

Parallel Hybrid Sparse Solvers
Through Flexible Incomplete Cholesky Preconditioning 637

Keita Teranishi and Padma Raghavan

Parallel Heuristics for an On-Line Scientific Database
for Efficient Function Approximation . 644

Ivana Veljkovic and Paul E. Plassmann

IX Software Engineering and Problem Solving
Environments for Scientific Computing

Software Engineering and Problem Solving Environments
for Scientific Computing: An Introduction . 654

Organizers: Jose C. Cunha and Omer F. Rana

A General Architecture for Grid-Based PSE Toolkits . 656
Mario Cannataro, Carmela Comito, Antonio Congiusta,
Gianluigi Folino, Carlo Mastroianni, Andrea Pugliese,
Giandomenico Spezzano, Domenico Talia, and Pierangelo Veltri

An Expert Assistant for Computer Aided Parallelization . 665
Gabriele Jost, Robert Chun, Haoqiang Jin, Jesus Labarta,
and Judit Gimenez

XVIII Table of Contents

Scalable Middleware Environment for Agent-Based Internet Applications 675
Benno J. Overeinder and Frances M.T. Brazier

Automatic Generation of Wrapper Code and Test Scripts
for Problem Solving Environments . 680

Andreas Schreiber

X Runtime Software Techniques
for Enabling High-Performance Applications

Runtime Software Techniques
for Enhancing High-Performance Applications: An introduction 690

Masha Sosonkina

Efficient Execution of Scientific Computation
on Geographically Distributed Clusters . 691

Eduardo Argollo, Dolores Rexachs, Fernando G. Tinetti,
and Emilio Luque

Improving the Performance
of Large-Scale Unstructured PDE Applications . 699

Xing Cai

A Runtime Adaptive Load Balancing Algorithm for Particle Simulations 709
Matthew F. Dixon

Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix
Equations: Direct Transformation-Based
Versus Iterative Matrix-Sign-Function-Based Methods . 719

Robert Granat and Bo Kågström

Performance Analysis for Parallel Adaptive FEM on SMP Clusters 730
Judith Hippold and Gudula Rünger

Performance Tuning of Matrix Triple Products
Based on Matrix Structure . 740

Eun-Jin Im, Ismail Bustany, Cleve Ashcraft, James W. Demmel,
and Katherine A. Yelick

Adapting Distributed Scientific Applications
to Run-Time Network Conditions . 747

Masha Sosonkina

XI Sparse Direct Linear Solvers

Sparse Direct Linear Solvers: An Introduction . 756
Organizer: Sivan Toledo

Oblio: Design and Performance . 758
Florin Dobrian and Alex Pothen

Table of Contents XIX

Performance Analysis of Parallel Right-Looking Sparse LU Factorization on
Two Dimensional Grids of Processors . 768

Laura Grigori and Xiaoye S. Li

A Shared- and Distributed-Memory Parallel Sparse Direct Solver 778
Anshul Gupta

Simple and Efficient Modifications of Elimination Orderings 788
Pinar Heggernes and Yngve Villanger

Optimization of a Statically Partitioned
Hypermatrix Sparse Cholesky Factorization . 798

José R. Herrero and Juan J. Navarro

Maximum-Weighted Matching Strategies and the Application
to Symmetric Indefinite Systems . 808

Stefan Röllin and Olaf Schenk

An Evaluation of Sparse Direct Symmetric Solvers:
An Introduction and Preliminary Findings . 818

Jennifer A. Scott, Yifan Hu, and Nicholas I.M. Gould

XII Treatment of Large Scale Models

Treatment of Large Scientific Problems: An Introduction 828
Organizers: Zahari Zlatev and Krassimir Georgiev

Towards a Parallel Multilevel Preconditioned Maxwell Eigensolver 831
Peter Arbenz, Martin Bečka, Roman Geus, and Ulrich Hetmaniuk

On Improvement of the Volcano Search and Optimization Strategy 839
Venansius Baryamureeba and John Ngubiri

Aggregation-Based Multilevel Preconditioning
of Non-conforming FEM Elasticity Problems . 847

Radim Blaheta, Svetozar Margenov, and Maya Neytcheva

Efficient Solvers for 3-D Homogenized Elasticity Model 857
Ronald H.W. Hoppe and Svetozara I. Petrova

Performance Evaluation of a Parallel Algorithm
for a Radiative Transfer Problem . 864

Paulo B. Vasconcelos and Filomena d’Almeida

XIII Performance Evaluation and Design
of Hardware-Aware PDE Solvers

Performance Evaluation and Design of Hardware-Aware PDE Solvers:
An Introduction . 872

Organizers: Frank Hülsemann and Markus Kowarschik

XX Table of Contents

A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures 874
Frank Günther, Miriam Mehl, Markus Pögl, and Christoph Zenger

Constructing Flexible, Yet Run Time Efficient PDE Solvers 883
Frank Hülsemann and Benjamin Bergen

Analyzing Advanced PDE Solvers Through Simulation . 893
Henrik Johansson, Dan Wallin, and Sverker Holmgren

Towards Cache-Optimized Multigrid Using Patch-Adaptive Relaxation 901
Markus Kowarschik, Iris Christadler, and Ulrich Rüde

Hierarchical Partitioning and Dynamic Load Balancing
for Scientific Computation . 911

James D. Teresco, Jamal Faik, and Joseph E. Flaherty

Cache Optimizations for Iterative Numerical Codes Aware
of Hardware Prefetching . 921

Josef Weidendorfer and Carsten Trinitis

XIV Computationally Expensive Methods in Statistics

Computationally Expensive Methods in Statistics: An Introduction 928
Organizer: Wolfgang M. Hartmann

Dimension Reduction vs. Variable Selection . 931
Wolfgang M. Hartmann

Reproducible Statistical Analysis in Microarray Profiling Studies 939
Ulrich Mansmann, Markus Ruschhaupt, and Wolfgang Huber

Step-Down FDR Procedures for Large Numbers of Hypotheses 949
Paul N. Somerville

XV Approaches or Methods
of Security Engineering (AMSE)

Applying Security Engineering to Build Security Countermeasures:
An Introduction . 957

Organizers: Tai-hoonn Kim and Ho-yeol Kwon

CC-SEMS: A CC Based Information System Security
Evaluation Management System . 964

Young-whan Bang, Yeun-hee Kang, and Gang-soo Lee

A Secure Migration Mechanism of Mobile Agents
Under Mobile Agent Environments . 974

Dongwon Jeong, Young-Gab Kim, Young-Shil Kim, Lee-Sub Lee,
Soo-Hyun Park, and Doo-Kwon Baik

Table of Contents XXI

A Flexible Privilege Management Scheme for Role Graph Model 983
Yuna Jung and Eenjun Hwang

The System Modeling for Detections of New Malicious Codes 992
EunYoung Kim, CheolHo Lee, HyungGeun Oh, and JinSeok Lee

Information Hiding Method Using CDMA on Wave Files 1000
Young-Shil Kim, Sang Yun Park, Suk-Hee Wang, and Seung Lee

Efficient Key Distribution Protocol for Electronic Commerce
in Mobile Communications . 1009

Jin Kwak, Soohyun Oh, and Dongho Won

A Framework for Modeling Organization Structure in Role Engineering 1017
HyungHyo Lee, YoungLok Lee, and BongNam Noh

An Efficient Pointer Protection Scheme
to Defend Buffer Overflow Attacks . 1025

Yongsu Park and Yookun Cho

Contributed Talks

I Contributed Talks in this Volume

Parallel Hierarchical Radiosity: The PIT Approach . 1031
Fabrizio Baiardi, Paolo Mori, and Laura Ricci

Optimizing Locationing of Multiple Masters
for Master-Worker Grid Applications . 1041

Cyril Banino

An OGSA-Based Bank Service for Grid Accounting Systems 1051
Erik Elmroth, Peter Gardfjäll, Olle Mulmo, and Thomas Sandholm

A Grid Resource Broker Supporting Advance Reservations
and Benchmark-Based Resource Selection . 1061

Erik Elmroth and Johan Tordsson

The Dragon Graph: A New Interconnection Network
for High Speed Computing . 1071

Jywe-Fei Fang

Speeding up Parallel Graph Coloring . 1079
Assefaw H. Gebremedhin, Fredrik Manne, and Tom Woods

On the Efficient Generation of Taylor Expansions for DAE Solutions
by Automatic Differentiation . 1089

Andreas Griewank and Andrea Walther

XXII Table of Contents

Edge-Disjoint Hamiltonian Cycles of WK-Recursive Networks 1099
Chien-Hung Huang, Jywe-Fei Fang, and Chin-Yang Yang

Simulation-Based Analysis of Parallel Runge-Kutta Solvers 1105
Matthias Korch and Thomas Rauber

A Novel Task Scheduling Algorithm
for Distributed Heterogeneous Computing Systems . 1115

Guan-Joe Lai

Study of Load Balancing Strategies
for Finite Element Computations on Heterogeneous Clusters 1123

Kalyani Munasinghe and Richard Wait

Parallel Algorithms for the Determination of Lyapunov Characteristics
of Large Nonlinear Dynamical Systems . 1131

Günter Radons, Gudula Rünger, Michael Schwind, and Hong-liu Yang

Online Task Scheduling on Heterogeneous Clusters:
An Experimental Study . 1141

Einar M.R. Rosenvinge, Anne C. Elster, and Cyril Banino

A Parallel Method for Large Sparse Generalized Eigenvalue Problems
by OmniRPC in a Grid Environment . 1151

Tetsuya Sakurai, Kentaro Hayakawa, Mitsuhisa Sato,
and Daisuke Takahashi

An Implementation of Parallel 3-D FFT
Using Short Vector SIMD Instructions on Clusters of PCs 1159

Daisuke Takahashi, Taisuke Boku, and Mitsuhisa Sato

II Contributed Talks Appearing Elsewhere

Other Para’04 Contributed Talks . 1168

Author Index . 1171

Fast and Reliable Random Number Generators
for Scientific Computing�

Richard P. Brent

Oxford University Computing Laboratory
Wolfson Building, Parks Road

Oxford OX1 3QD, UK
random@rpbrent.co.uk

Abstract. Fast and reliable pseudo-random number generators are required for
simulation and other applications in Scientific Computing. We outline the require-
ments for good uniform random number generators, and describe a class of gen-
erators having very fast vector/parallel implementations with excellent statistical
properties. We also discuss the problem of initialising random number generators,
and consider how to combine two or more generators to give a better (though
usually slower) generator.

1 Introduction

Monte Carlo methods are of great importance in simulation [36], computational finance,
numerical integration, computational physics [13,24], etc. Due to Moore’s Law and
increases in parallelism, the statistical quality of random number generators is becoming
even more important than in the past. A program running on a supercomputer might use
109 random numbers per second over a period of many hours (or even months in some
cases), so 1016 or more random numbers might contribute to the result. Small correlations
or other deficiencies in the random number generator could easily lead to spurious effects
and invalidate the results of the computation, see e.g. [13,34].

Applications require random numbers with various distributions (e.g. normal, expo-
nential, Poisson, . . .) but the algorithms used to generate these random numbers almost
invariably require a good uniform random number generator. A notable exception is
Wallace’s method [7,39] for normally distributed numbers. In this paper we consider
only the generation of uniformly distributed numbers. Usually we are concerned with
real numbers un that are intended to be uniformly distributed on the interval [0, 1).
Sometimes it is convenient to consider integers Un in some range 0 ≤ Un < m. In this
case we require un = Un/m to be (approximately) uniformly distributed.

Pseudo-random numbers generated in a deterministic fashion on a digital computer
can not be truly random. What is required is that finite segments of the sequence
(u0, u1, · · ·) behave in a manner indistinguishable from a truly random sequence. In
practice, this means that they pass all statistical tests that are relevant to the problem
at hand. Since the problems to which a library routine will be applied are not known

� This work was supported in part by EPSRC grant GR/N35366.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 Richard P. Brent

in advance, random number generators in subroutine libraries should pass a number of
stringent statistical tests (and not fail any) before being released for general use.

Random numbers generated by physical sources are available [1,2,15,23,37,38].
However, there are problems in generating such numbers sufficiently fast, and experi-
ence with them is insufficient to be confident of their statistical properties. Thus, for the
present, we recommend treating such physical sources of random numbers with caution.
They can be used to initialise (and perhaps periodically reinitialise) deterministic gener-
ators, and can be combined with deterministic generators by the algorithms considered
in §6. In the following we restrict our attention to deterministic pseudo-random number
generators.

A sequence (u0, u1, · · ·) depending on a finite state must eventually be periodic, i.e.
there is a positive integer ρ such that un+ρ = un for all sufficiently large n. The minimal
such ρ is called the period.

In §§2–3 we consider desiderata for random number generators. In §§4–5, we describe
one popular class of random number generators. In §6 we discuss how to combine two or
more generators to give a (hopefully) better generator. Finally, in §7 we briefly mention
some implementations.

2 Requirements for Good Random Number Generators

Requirements for a good pseudo-random number generator have been discussed in many
surveys, e.g. [5,9,11,17,20,22,25]. Due to space limitations we can not cover all aspects
of random number generation here, but we shall attempt to summarize and comment
briefly on the most important requirements. Of course, some of the requirements listed
below may be irrelevant in certain applications. For example, there is often no need
to skip ahead (§2.4). In some applications, such as Monte Carlo integration, it may be
preferable to use numbers that definitely do not behave like random numbers: they are
“quasi-random” rather than random [32].

2.1 Uniformity

The sequence of random numbers should pass statistical tests for uniformity of distri-
bution. This is usually easy for deterministic generators implemented in software. For
physical/hardware generators, the well-known technique of Von Neumann, or similar
but more efficient techniques [16], can be used to extract uniform bits from a sequence
of independent but possibly biased bits.

2.2 Independence

Subsequences of the full sequence (u0, u1, · · ·) should be independent. Random numbers
are often used to sample a d-dimensional space, so the sequence of
d-tuples (udn, udn+1, . . . , udn+d−1) should be uniformly distributed in the
d-dimensional cube [0, 1]d for all “small” values of d (certainly for all d ≤ 6). For ran-
dom number generators on parallel machines, the sequences generated on each processor
should be independent.

Fast and Reliable Random Number Generators for Scientific Computing 3

2.3 Long Period

As mentioned above, a simulation might use 1016 random numbers. In such a case the
period ρ must exceed 1016. For many generators there are strong correlations between
u0, u1, · · · and um, um+1, · · ·, where m ≈ ρ/2 (and similarly for other simple fractions
of the period). Thus, in practice the period should be much larger than the number of
random numbers that will ever be used. A good rule of thumb is to use at most ρ1/2

numbers. In fact, there are reasons, related to the birthday spacings test [28], for using
at most ρ1/3 numbers: see [22, §6].

2.4 Ability to Skip Ahead

If a simulation is to be run on a machine with several processors, or if a large simula-
tion is to be performed on several independent machines, it is essential to ensure that
the sequences of random numbers used by each processor are disjoint. Two methods
of subdivision are commonly used. Suppose, for example, that we require 4 disjoint
subsequences for a machine with 4 processors. One processor could use the subse-
quence (u0, u4, u8, · · ·), another the subsequence (u1, u5, u9, · · ·), etc. For efficiency
each processor should be able to “skip over” the terms that it does not require.

Alternatively, processor j could use the subsequence (umj , umj+1, · · ·), where the
indices m0,m1,m2,m3 are sufficiently widely separated that the (finite) subsequences
do not overlap, but this requires some efficient method of generating um for large m
without generating all the intermediate values u1, . . . , um−1.

For generators satisfying a linear recurrence, it is possible to skip ahead by forming
high powers of the appropriate matrix (see [22, §3.5] for details). However, it is not so
well known that more efficient methods exist using generating functions. Essentially,
we can replace matrix multiplications by polynomial multiplications. Multiplying two
r × r matrices is much more expensive than multiplying two polynomials modulo a
polynomial of degree r. Details are given in [4] and an implementation that is practical
for r of the order of 106 is available [3].

2.5 Proper Initialization

The initialization of random number generators, especially those with a large amount of
state information, is an important and often neglected topic. In some applications only
a short sequence of random numbers is used after each initialization of the generator, so
it is important that short sequences produced with different seeds are uncorrelated.

For example, suppose that a random number generator with seed s produces a se-
quence (u(s)

1 , u
(s)
2 , u

(s)
3 , . . .). If we use m different seeds s1, s2, . . . , sm and generate n

numbers from each seed, we get an m× n array U with elements Ui,j = u
(si)
j . We do

not insist that the seeds are random – they could for example be consecutive integers.
Packages such as Marsaglia’s Diehard [26] typically test a 1-D array of random

numbers. We can generate a 1-D array by concatenating the rows (or columns) of U.
Irrespective of how this is done, we would hope that the random numbers would pass
the standard statistical tests. However, many current generators fail because they were
intended for the case m = 1 (or small) and n large [14,18]. The other extreme is m large
and n = 1. In this case we expect u(s)

1 to behave like a pseudo-random function of s.

4 Richard P. Brent

2.6 Unpredictability

In cryptographic applications, it is not sufficient for the sequence to pass standard sta-
tistical tests for randomness; it also needs to be unpredictable in the sense that there
is no efficient deterministic algorithm for predicting un (with probability of success
significantly greater than expected by chance) from (u0, u1, . . . , un−1), unless n is so
large that the prediction is infeasible.

At first sight it appears that unpredictability is not required in scientific applications.
However, if a random number generator is predictable then we can always devise a
statistical test (albeit an artificial one) that the generator will fail. Thus, it seems a wise
precaution to use an unpredictable generator if the cost of doing so is not too high. We
discuss techniques for this in §6.

Strictly speaking, unpredictability implies uniformity, independence, and a (very)
long period. However, it seems worthwhile to state these simpler requirements separately.

2.7 Efficiency

It should be possible to implement the method efficiently so that only a few arithmetic
operations are required to generate each random number, all vector/parallel capabilities
of the machine are used, and overheads such as those for subroutine calls are minimal.
Of course, efficiency tends to conflict with other requirements such as unpredictability,
so a tradeoff is often involved.

2.8 Repeatability

For testing and development it is useful to be able to repeat a run with exactly the same
sequence of random numbers as was used in an earlier run. This is usually easy if the
sequence is restarted from the beginning (u0). It may not be so easy if the sequence is to
be restarted from some other value, say um for a large integer m, because this requires
saving the state information associated with the random number generator.

2.9 Portability

Again, for testing and development purposes, it is useful to be able to generate exactly the
same sequence of random numbers on two different machines, possibly with different
wordlengths. This was more difficult to achieve in the past than it is nowadays, when
nearly all computers have wordlengths of 32 or 64 bits, and their floating-point arithmetic
satisfies the IEEE 754 standard.

3 Equidistribution

We should comment on the concept of equidistribution, which we have not listed as one
of our requirements. Definitions and examples can be found in [22, §4.2] and in [30,
§1.2].

Consider concatenating the leading v bits from k consecutive random numbers.
According to [30], a random number generator is said to bek-distributed to v-bit accuracy

Fast and Reliable Random Number Generators for Scientific Computing 5

if each of the 2kv possible combinations of bits occurs the same number of times over
a full period of the random number generator, except that the sequence of all zero bits
is allowed to occur once less often. Some generators with period ρ = 2r or 2r − 1
can be proved to satisfy this condition for kv ≤ r. This is fine in applications such as
Monte Carlo integration. However, the probability that a periodic but otherwise random
sequence will satisfy the condition is vanishingly small. If we perform a “chi-squared”
test on the output of a k-distributed generator, the test will be failed because the value
of χ2 is too small !

To give a simply analogy: if I toss a fair coin 100 times, I expect to get about 50 heads
and 50 tails, but I would be mildly surprised to get exactly the same number of heads
as tails (the probability of this occurring is about 0.08). If (with the aid of a computer)
I toss a fair coin 1012 times, I should be very surprised to get exactly the same number
of heads as tails. (For 2n tosses, the probability of an equal number of heads and tails
occurring is about 1/

√
nπ.) This is another reason for using at most

√
ρ numbers from

the full period of length ρ (compare §2.3).

4 Generalized Fibonacci Generators

In this section we describe a popular class of random number generators. For various
generalizations, see [22].

Given a circular buffer of length r words (or bits), we can generate pseudo-random
numbers from a linear or nonlinear recurrence

un = f(un−1, un−2, . . . , un−r) .

For speed it is desirable that f(un−1, un−2, . . . , un−r) depends explicitly on only a small
number of its r arguments. An important case is the class of “generalized Fibonacci” or
“lagged Fibonacci” random number generators [17].

Marsaglia [25] considers generators F (r, s, θ) that satisfy

Un = Un−r θ Un−s mod m

for fixed “lags” r and s (r > s > 0) and n ≥ r. Here m is a modulus (typically 2w if w is
the wordlength in bits), and θ is some binary operator, e.g. addition, subtraction, multi-
plication or “exclusive or”. We abbreviate these operators by +,−, ∗ and⊕ respectively.
Generators using ⊕ are also called “linear feedback shift register” (LFSR) generators
or “Tausworthe” generators. Usually Un is normalised to give a floating-point number
un = Un/m ∈ [0, 1).

It is possible to choose lags r, s so that the period ρ of the generalized Fibonacci
generators F (r, s,+) is a large prime p or a small multiple of such a prime. Typically,
the period of the least-significant bit is p; because carries propagate from the least-
significant bit into higher-order bits, the overall period is usually 2w−1ρ for wordlength
w. For example, [9, Table 1] gives several pairs (r, s) with r > 106. (The notation in [9]
is different: r + δ corresponds to our r.)

There are several ways to improve the performance of generalized Fibonacci genera-
tors on statistical tests such as the Birthday Spacings and Generalized Triple tests [25,28].

6 Richard P. Brent

The simplest is to include small odd integer multipliers α and β in the generalized Fi-
bonacci recurrence, e.g.

Un = αUn−r + βUn−s mod m .

Other ways to improve statistical properties (at the expense of speed) are to include
more terms in the linear recurrence [19], to discard some members of the sequence [24],
or to combine two or three generators in various ways (see §6).

With suitable choice of lags (r, s), the generalised Fibonacci generators satisfy the
requirements of uniformity, long period, efficiency, and ability to skip ahead. Because
there are only three terms in the recurrence, each number depends on only two previous
numbers, so there may be difficulty satisfying the requirement for independence, at least
if r is small. Because they are based on a linear recurrence, they do not satisfy the
requirement for unpredictability. In §6 we show how to overcome these difficulties.

5 Short-Term and Long-Term Properties

When considering pseudo-random number generators, it is useful to consider their short-
term and long-term properties separately.

short-term means properties that can be tested by inspection of relatively short seg-
ments of the full cycle. For example, suppose that a uniform random number generator
is used to simulate throws of a dice. If consective sixes never occur in the output (or
occur with probability much lower than expected), then the generator is faulty, and this
can be tested by inspection of the results of a few hundred simulated throws. For a more
subtle example, consider a single-bit LFSR generator of the form discussed in §4, with
largest lag r, and period 2r−1. We can form an r× r matrix from r2 consecutive bits of
output. This matrix is nonsingular (considered as a matrix over GF(2)). However, the
probability that a random r × r matrix over GF(2) is nonsingular is strictly less than
1 (about 0.289 for large r, see [8]). Thus, by inspecting O(r2) consecutive bits of the
output, we can detect a short-term nonrandomness.

long-term means properties that can be tested by inspection of a full cycle (or a
significant fraction of a full cycle). For example, a uniform random number generator
might have a small bias, so the expected output is 1/2 + ε instead of 1/2. This could be
detected by taking a sample of size slightly larger than 1/ε2.

Generalized Fibonacci generators based on primitive trinomials generally have good
long-term properties, but bad short-term properties. To improve the short-term properties
we can use tempering (transforming the output vectors by a carefully-chosen linear
transformation), as suggested by Matsumoto and Kurita (see [30] and [22, §4.5]), or the
other devices mentioned in §4.

6 Improving Generators

In this section we consider how generators that suffer some defects can be improved.

Fast and Reliable Random Number Generators for Scientific Computing 7

6.1 Improving a Generator by “Decimation”

If (x0, x1, . . .) is generated by a 3-term recurrence, we can obtain a (hopefully better)
sequence (y0, y1, . . .) by defining yj = xjp, where p > 1 is a suitable constant. In other
words, use every p-th number and discard the others.

Consider the case F (r, s,⊕) with w = 1 (LFSR) and p = 3. (If p = 2, the yj satisfy
the same 3-term recurrence as the xj .)

Using generating functions, it is easy to show that the yj satisfy a 5-term recurrence.
For example, if xn = xn−1 ⊕ xn−127, then yn = yn−1 ⊕ yn−43 ⊕ yn−85 ⊕ yn−127. A
more elementary approach for p ≤ 7 is given in [40].

A possible improvement over simple decimation is decimation by blocks [24].

6.2 Combining Generators by Addition or Xor

We can combine some number K of generalized Fibonacci generators by addition (mod
2w). If each component generator is defined by a primitive trinomial Tk(x) = xrk +
xsk + 1, with distinct prime degrees rk, then the combined generator has period at least
2w−1

∏K
k=1(2

rk − 1) and satisfies a 3K-term linear recurrence.
Because the speed of the combined generator decreases like 1/K , we would probably

take K ≤ 3 in practice. The case K = 2 seems to be better (and more efficient) than
“decimation” with p = 3.

Alternatively, we can combine K generalized Fibonacci generators by bitwise “ex-
clusive or” operating on w-bit words. This has the advantage of mixing different alge-
braic operations (assuming that addition mod 2w is used in the generalized Fibonacci
recurrence). Note that the least-significant bits will be the same for both methods.

6.3 Combining by Shuffling

Suppose that we have two pseudo-random sequences X = (x0, x1, . . .) and
Y = (y0, y1, . . .). We can use a buffer V of size B say, fill the buffer using the se-
quence X , then use the sequence Y to generate indices into the buffer. If the index is j
then the random number generator returns V [j] and replaces V [j] by the next number
in the X sequence [17, Algorithm M].

In other words, we use one generator to shuffle the output of another generator. This
seems to be as good (and about as fast) as combining two generators by addition. B
should not be too small.

6.4 Combining by Shrinking

Coppersmith et al [12] suggested using one sequence to “shrink” another sequence.
Suppose we have two pseudo-random sequences (x0, x1, . . .) and (y0, y1, . . .),

where yi ∈ GF(2). Suppose yi = 1 for i = i0, i1, . . . Define a sequence (z0, z1, . . .) to
be the subsequence (xi0 , xi1 , . . .) of (x0, x1, . . .). In other words, one sequence of bits
(yi) is used to decide whether to “accept” or “reject” elements of another sequence (xi).
This is sometimes called “irregular decimation” (compare §6.1).

8 Richard P. Brent

Combining two sequences by shrinking is slower than combining the sequences by
+ or⊕, but is less amenable to analysis based on linear algebra or generating functions,
so is preferable in applications where the sequence needs to be unpredictable. Note that it
is dangerous to take the xi to be larger than a single bit. For example, if we tried to speed
up the combination process by taking xi to be a whole word, then the cryptographic
security could be compromised.

7 Implementations

Several good random number generators are available. Following is a small sample,
not intended to be exhaustive: Matsumoto and Nishimura’s Mersenne twister, based on
a primitive trinomial of degree 19937 with tempering to improve short-term proper-
ties [30]; L’Ecuyer’s maximally equidistributed combined LFSR generators [21]; and
the author’s ranut (Fortran) and xorgens (C) generators [3]. The xorgens generators are
simple, fast, have passed all statistical tests applied so far, and are based on a general-
ization of a recent idea of Marsaglia [27]. They are related to LFSR generators [6], but
do not use trinomials, and can be implemented faster than most other LFSR generators
because the degree r can be chosen to be a multiple of 64.

To close with a word of warning: all pseudo-random number generators fail some sta-
tistical tests – this is inevitable, since they are generated deterministically. It is ultimately
the user’s responsibility to ensure that the pseudo-random numbers appear sufficiently
random for the application at hand.

References

1. Anonymous, Random number generation and testing, NIST, December 2000.
http://csrc.nist.gov/rng/ .

2. Anonymous, True randomness on request, University of Geneva and id Quantique, May 2004,
http://www.randomnumber.info .

3. R. P. Brent, Some uniform and normal random number generators, ranut version 1.03 (January
2002) and xorgens version 2.01 (August 2004). Available from
http://www.comlab.ox.ac.uk/oucl/work/richard.brent/
random.html .

4. R. P. Brent, On the periods of generalized Fibonacci recurrences, Math. Comp. 63 (1994),
389–401.

5. R. P. Brent, Random number generation and simulation on vector and parallel computers,
LNCS 1470, Springer-Verlag, Berlin, 1998, 1–20.

6. R. P. Brent, Note on Marsaglia’s xorshift random number generators, J. of Statistical Software
11, 5 (2004), 1–4. http://www.jstatsoft.org .

7. R. P. Brent, Some comments on C. S. Wallace’s random number generators, Com-
puter J., to appear. Preprint at http://www.comlab.ox.ac.uk/oucl/work/
richard.brent/pub/pub213.html .

8. R. P. Brent and B. D. McKay, Determinants and ranks of random matrices over Zm , Discrete
Mathematics 66 (1987), 35–49. · · ·/pub094.html .

9. R. P. Brent and P. Zimmermann, Random number generators with period divisible
by a Mersenne prime, LNCS 2667, Springer-Verlag, Berlin, 2003, 1–10. Preprint at
· · ·/pub211.html .

Fast and Reliable Random Number Generators for Scientific Computing 9

10. R. P. Brent and P. Zimmermann, Algorithms for finding almost irreducible and almost primitive
trinomials, in Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh
Cowie Williams, Fields Institute, Toronto, 2004, 91–102. Preprint at · · ·/pub212.html .

11. P. D. Coddington, Random number generators for parallel computers, The NHSE Review 2
(1996). http://nhse.cs.rice.edu/NHSEreview/RNG/PRNGreview.ps .

12. D. Coppersmith, H. Krawczyk and Y. Mansour, The shrinking generator, Advances in Crpyp-
tology – CRYPTO’93, LNCS 773, Springer-Verlag, Berlin, 1994, 22–39.

13. A. M. Ferrenberg, D. P. Landau and Y. J. Wong, Monte Carlo simulations: hidden errors from
“good” random number generators, Phys. Review Letters 69 (1992), 3382–3384.

14. P. Gimeno, Problem with ran array, personal communication, 10 Sept. 2001.
15. M. Jakobsson, E. Shriver, B. K. Hillyer and A. Juels, A practical secure physical random bit

generator, Proc. Fifth ACM Conference on Computer and Communications Security, Novem-
ber 1998. http://www.bell-labs.com/user/shriver/random.html .

16. A. Juels, M. Jakobsson, E. Shriver and B. K. Hillyer, How to turn loaded dice into fair coins,
IEEE Trans. on Information Theory 46, 2000, 911–921.

17. D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms (third
edition), Addison-Wesley, Menlo Park, CA, 1998.

18. D. E. Knuth, A better random number generator, January 2002, http://www-cs-
faculty.stanford.edu/˜knuth/news02.html .

19. T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials (t = 3, 5) over
GF(2) whose degree is a Mersenne exponent, Math. Comp. 69 (2000), 811–814. Corrigenda:
ibid 71 (2002), 1337–1338.

20. P. L’Ecuyer, Random numbers for simulation, Comm. ACM 33, 10 (1990), 85–97.
21. P. L’Ecuyer, Tables of maximally equidistributed combined LFSR generators, Mathematics

of Computation 68 (1999), 261–269.
22. P. L’Ecuyer, Random number generation, Chapter 2 of Handbook of Computational Statistics,

J. E. Gentle, W. Haerdle, and Y. Mori, eds., Springer-Verlag, 2004, 35–70.
23. W. Knight, Prize draw uses heat for random numbers, New Scientist, 17 August 2004.

http://www.newscientist.com/news/news.jsp?id=ns99996289 .
24. M. Lüscher, A portable high-quality random number generator for lattice field theory simu-

lations, Computer Physics Communications 79 (1994), 100–110.
25. G. Marsaglia, A current view of random number generators, in Computer Science and Statis-

tics: The Interface, Elsevier Science Publishers B. V.,1985, 3–10.
26. G. Marsaglia, Diehard, 1995. Available from http://stat.fsu.edu/˜geo/ .
27. G. Marsaglia, Xorshift RNGs, J. of Statistical Software 8, 14 (2003), 1–9.

http://www.jstatsoft.org .
28. G. Marsaglia and W. W. Tsang, Some difficult-to-pass tests of randomness J. of Statistical

Software 7, 3 (2002), 1–9. http://www.jstatsoft.org .
29. M. Mascagni, M. L. Robinson, D. V. Pryor and S. A. Cuccaro, Parallel pseudorandom num-

ber generation using additive lagged-Fibonacci recursions, Lecture Notes in Statistics 106,
Springer-Verlag, Berlin, 1995, 263–277.

30. M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equi-
distributed uniform pseudorandom number generator, ACM Transactions on Modeling and
Computer Simulations 8, 1998, 3–30. Also
http://www.math.keio.ac.jp/˜matumoto/emt.html .

31. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography,
CRC Press, New York, 1997. http://cacr.math.uwaterloo.ca/hac/ .

32. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF
Regional Conference Series in Applied Mathematics 63, SIAM, Philadelphia, 1992.

10 Richard P. Brent

33. W. P. Petersen, Lagged Fibonacci series random number generators for the NEC SX-3, Inter-
nat. J. High Speed Computing 6 (1994), 387–398.

34. L. N. Shchur, J. R. Heringa and H. W. J. Blöte, Simulation of a directed random-walk model:
the effect of pseudo-random-number correlations, Physica A 241 (1997), 579.

35. S. Tezuka, P. L’Ecuyer, and R. Couture, On the add-with-carry and subtract-with-borrow
random number generators, ACM Trans. on Modeling and Computer Simulation 3 (1993),
315–331.

36. I. Vattulainen, T. Ala-Nissila and K. Kankaala, Physical tests for random numbers in simula-
tions, Phys. Review Letters 73 (1994), 2513–2516.

37. J. Walker, HotBits: Genuine random numbers, generated by radioactive decay, Fourmilab
Switzerland, April 2004. http://www.fourmilab.ch/hotbits/.

38. C. S. Wallace, Physically random generator, Computer Systems Science and Engineering 5
(1990), 82–88.

39. C. S. Wallace, Fast pseudo-random generators for normal and exponential variates, ACM
Trans. on Mathematical Software 22 (1996), 119–127.

40. R. M. Ziff, Four-tap shift-register-sequence random-number generators, Computers in Physics
12 (1998), 385–392.

New Generalized Data Structures for Matrices
Lead to a Variety of High Performance Dense

Linear Algebra Algorithms

Fred G. Gustavson

IBM T.J. Watson Research Center, Yorktown Heights NY 10598, USA
fg2@us.ibm.com

Abstract. This paper is a condensation and continuation of [9]. We present a novel
way to produce dense linear algebra factorization algorithms. The current state-of-
the-art (SOA) dense linear algebra algorithms have a performance inefficiency and
hence they give sub-optimal performance for most of Lapack’s factorizations. We
show that standard Fortran and C two dimensional arrays are the main reason for
the inefficiency. For the other standard format (packed one dimensional arrays for
symmetric and/or triangular matrices) the situation is much worse. We introduce
RFP (Rectangular Full Packed) format which represent a packed array as a full
array. This means that performance of Lapack’s packed format routines becomes
equal to or better than their full array counterparts. Returning to full format, we
also show how to correct these performance inefficiencies by using new data
structures (NDS) along with so-called kernel routines. The NDS generalize the
current storage layouts for both standard layouts. We use the Algorithms and
Architecture approach to justify why our new methods gives higher efficiency.
The simplest forms of the new factorization algorithms are a direct generalization
of the commonly used LINPACK algorithms. All programming for our NDS can be
accomplished in standard Fortran, through the use of three- and four-dimensional
arrays. Thus, no new compiler support is necessary. Combining RFP format with
square blocking or just using SBP (Square Block Packed) format we are led to
new high performance ways to produce ScaLapack type algorithms.

1 Introduction

The BLAS (Basic Linear Algebra Subroutines) were introduced to make the algorithms
of dense linear algebra (DLA) performance-portable. There is a performance inefficiency
of LAPACK algorithms and it suffices to discuss the level 3 BLAS, DGEMM (Double
precision GEneral Matrix Matrix) to illustrate this fact.

In [2,7] design principles for producing a high performance “level 3” DGEMM BLAS
are given. A key design principle for DGEMM is to partition its matrix operands into
submatrices and then call an L1 kernel routine multiple times on its submatrix operands.
The suffix i in L i stands for level i cache. L i is not to be confused with level i BLAS.
Another key design principle is to change the data format of the submatrix operands so
that each call to the L1 kernel can operate at or near the peak MFlops (Million FLoating
point OPerations per Second) rate. This format change and subsequent change back to
standard data format is a cause of a performance inefficiency in DGEMM. The DGEMM

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 11–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

12 Fred G. Gustavson

interface definition requires that its matrix operands be stored as standard Fortran or C
two-dimensional arrays. Any Lapack factorization routine of a matrix, A, calls DGEMM
multiple times with all its operands being submatrices of A. For each call data copy
will be done; the principle inefficiency is therefore multiplied by this number of calls.
However, this inefficiency can be ameliorated by using the NDS to create a substitute for
DGEMM, e.g. its analogous L1 kernel routine, which does not require the aforementioned
data copy.

We introduce NDS as a replacement for standard Fortran/C array storage. One of
the key insights is to see that storing a matrix as a collection of submatrices (e.g., square
blocks of size NB) leads to very high performance on today’s, RISC type, processors.
NDS order the blocks in standard Fortran/C order; i.e., store the blocks either in column-
major or row-major order. However, see Section 2.1 ahead. The main benefit of the
simpler data layout is that addressing of an arbitrary a(i, j) element of matrix A can
be easily handled by a compiler and/or a programmer. We call the NDS simple if the
ordering of the blocks follows the standard row / column major order.

For level 3 algorithms, the basis of the ESSL (Engineering and Scientific Subroutine
Library) are kernel routines that achieve peak performance when the underlying arrays
fit into L1 cache [2]. If one were to adopt these new, simple NDS then BLAS and
Lapack type algorithms become almost trivial to write. Also, the combination of using
the NDS with kernel routines is a general procedure and for matrix factorization it helps
to overcomes the current performance problems introduced by having a non-uniform,
deep memory hierarchy. We use the AA (Algorithms and Architecture) approach, see
[2], to illustrate what we mean. We shall make eight points below. Points 1 to 3 are
commonly accepted architecture facts about many of today’s processors. Points 4 to 6
are dense linear algebra algorithms facts that are easily demonstrated or proven. Points
7 and 8 are an obvious conclusion based on the AA approach.

1. Floating point arithmetic cannot be done unless the operands involved first reside
in the L1 cache.

2. Two-dimensional Fortran and C arrays do not map nicely into L1 cache.
(a) The best case happens when the array is contiguous and properly aligned.
(b) At least a three-way set associative cache is required when matrix multiply is

being done.
3. For peak performance, all matrix operands must be used multiple times when they

enter L1 cache.
(a) This assures that the cost of bringing an operand into cache is amortized by its

level 3 multiple re-use.
(b) Multiple re-use of all operands only occurs when all matrix operands map well

into L1 cache.
4. Each scalar a(i, j) factorization algorithm has a square submatrix counterpart

A(I:I+NB-1,J:J+NB-1)
algorithm.
(a) Golub and Van Loan’s “Matrix Computations” book.
(b) The Lapack library.

5. Some submatrices are both contiguous and fit into L1 cache.
6. Dense matrix factorization is a level 3 computation.

New Generalized Data Structures for Matrices 13

(a) Dense matrix factorization, in the context of point 4, is a series of submatrix
computations.

(b) Every submatrix computation (executing any kernel routine) is a level 3 com-
putation that is done in the L1 cache.

(c) A level 3 L1 computation is one in which each matrix operand gets used multiple
times.

7. Map the input Fortran/C array (matrix A) to a set of contiguous submatrices each
fitting into the L1 cache.
(a) For portability (using block hybrid format (BHF)), perform the inverse map

after applying point 8 (below).
8. Apply the appropriate submatrix algorithm.

The block submatrix codes of point 4b use Fortran and C to input their matrices,
so point 5 does not hold for SOA algorithms. See page 739 of [8] for more details.
Point 5 does hold for the NDS described here. Assuming both points 5 and 6 hold,
we see that point 3 holds for every execution of the kernel routines that make up the
factorization algorithm. This implies that near peak performance will be achieved. Point
7 is pure overhead for the new algorithms. Using the new data formats reduces this cost
to zero. By only doing point 8 we see that we can get near peak performance as every
subcomputation of point 8 is a point 6b computation.

Now we discuss the use of kernel routines in concert with NDS. Take any standard
linear algebra factorization code, say Gaussian elimination with partial pivoting or the
QR factorization of an M by N matrix, A. It is quite easy to derive the block equivalent
code from the standard code. In the standard code a floating point operation is usually a
Fused Multiply Add (FMA), (c = c− ab), whose block equivalent is a call to a DGEMM
kernel. Similar analogies exist; e.g., for b = b/a or b = b ∗ a, we have a call to either
a DTRSM or a DTRMM kernel. In the simple block equivalent codes we are led to one of
the variants of IJK order. For these types of new algorithms the BLAS are simply calls
to kernel routines. It is important to note that no data copying need be done.

There is one type of kernel routine that deserves special mention. It is the factor
kernel. Neither Lapack nor the research literature treat factor kernels in sufficient depth.
For example, the factor part of Lapack level 3 factor routines are level 2 routines; they
are named with the suffix TF2, and they call level 2 BLAS repetitively. On the other
hand, [2,3], and [8,5], where recursion is used, have produced level 3 factor routines that
employ level 3 factor kernels to yield level 3 factor parts.

Besides full storage, there is packed storage, which is used to hold symmetric / trian-
gular matrices. Using the NDS instead of the standard packed format [9,3] describes new
algorithms that save “half” the storage of full format for symmetric matrices and outper-
form the current block based level 3 Lapack algorithms done on full format symmetric
matrices. Also, we introduce RFP format which is a variant of hybrid full packed (HFP)
format. HFP format is described in [6] of these proceedings. RFP format is a rearrange-
ment of standard full storage holding a symmetric / triangular matrix A into a compact
full storage rectangular array AR that uses minimal storage NT=N(N+1)/2. Therefore,
level 3 BLAS can be used on AR. In fact, with the equivalent Lapack algorithm, using
AR instead of A, gives slightly better performance. This offers the possibility to replace
all packed or full Lapack routines with equivalent Lapack routines that work on AR. We

14 Fred G. Gustavson

present a new algorithm and indicate its performance for Cholesky factorization using
AR instead of full A or packed AP.

Another generalization of using NDS applies or relates to ScaLapack. The standard
block cyclic layout on a P by Q mesh of processors has parameter NB. Therefore, it is
natural to view the square submatrices of order NB that arise in these layouts as atomic
units. Now, many ScaLapack algorithms can be viewed as right looking Lapack algo-
rithms: factor and scale a pivot panel, broadcast the scaled pivot panel to all processors,
and then perform a Schur complement update on all processors. We describe in Section 4
some benefits: (1) since P and Q are arbitrary integers the square blocks can move about
the mesh as contiguous atomic units; (2) it is possible to eliminate the PBLAS layer of
ScaLapack as only standard Level 3 BLAS are needed; (3) for triangular / symmetric
matrices one only needs to use about half the storage.

In Section 2 we describe some basic algorithmic and architectural results as a ratio-
nale for the work we are presenting. Section 2.1 describes a new concept which we call
the L1 cache / L0 cache interface [4]. L0 cache is the register file of a Floating Point
Unit. In Section 3 we describe SBP formats for symmetric/triangular arrays and show
that they generalize both the standard packed and full arrays used by dense linear algebra
algorithms. We also describe RFP format arrays. They can be used to replace both the
standard packed and full arrays used by DLA algorithms. A minimal new coding effort
is required as existing Lapack routines would constitute most of the new code.

2 Rationale and Underlying Foundations of Our Approach

For a set of linear equations Ax = b there are two points of view. The more popular
view is to select an algorithm, say Gaussian elimination with partial pivoting, and use
it to compute x. The other view, which we adopt here, is to perform a series of linear
transformations on both A and b so that the problem, in the new coordinate system,
becomes simpler to solve. Both points of view have their merits. We use the second
as it demonstrates some reasons why the AA approach, [2], is so effective. Briefly,
the AA approach states that the key to performance is to understand the algorithm and
architecture interaction. Furthermore a significant improvement in performance can be
obtained by matching the algorithm to the architecture and vice-versa. In any case, it is
a very cost-effective way of providing a given level of performance.

In [9] we show that performing two linear transformationsR and S in succession de-
fines matrix multiplication. Let T = S(R) be linear and R and S have basis vectors. The
basis of T , in terms of the bases of R and S defines matrix multiplication. Hence, taking
view two above tells us that many DLAFA (Dense Linear Algebra Factorization Algo-
rithms) are just performing matrix multiplication. Therefore, the AA approach directs
our attention to optimize matrix multiplication and to isolate out all of its occurrences
in each DLAFA. We now know that this is possible to do.

We end this section with brief remarks about blocking. The general idea of blocking
is to get information to a high speed storage and use it multiple times to amortize the
cost of moving the data. In doing so, we satisfy points 1 and 3 of the Introduction. We
only touch upon TLB (Translation Look-aside Buffer), cache, and register blocking. The
TLB contains a finite set of pages. These pages are known as the current working set of

New Generalized Data Structures for Matrices 15

the computation. If the computation addresses only memory in the TLB then there is no
penalty. Otherwise, a TLB miss occurs resulting in a large performance penalty; see [2].
Cache blocking reduces traffic between the memory and cache. Analogously, register
blocking reduces traffic between cache and the registers of the CPU. Cache and register
blocking are further discussed in [2].

2.1 The Need to Reorder a Contiguous Square Block

NDS are basically about using multiple SB (square block) of order NB to represent a
matrix A. Each SB must be contiguous in memory. A contiguous block of memory maps
best into L1 cache as it minimizes L1 and L2 cache misses as well as TLB misses for
matrix multiply and other common row and column matrix operations; see [10]. By
using SB’s one can avoid the O(N3) amount of data copy in calling DGEMM repetitively
in a DLAFA algorithm.

Recently computer manufacturers have introduced hardware that initiates multiple
floating point operations (two to four) in a single cycle; eg [4]. However, each floating
point operation requires several cycles (five to ten) to complete. Therefore, one needs to
be able to schedule many (ten to forty) independent floating point operations every cycle
if one wants to run their floating point applications at their peak (MFlops) rate. To make
this possible hardware needs to introduce larger floating point register files (storage for
the operands and results of the floating point units). We call this tiny memory the L0
cache. We now want to discuss a concept which we call the L1 cache / L0 cache interface.
There are also new floating point multiple load and store instructions associated with
the multiple floating point operations. A multiple load / store operation usually requires
that its multiple operands be contiguous in L1 cache. Hence, data that enters L1 must
also be properly ordered to be able to enter L0 in an optimal way. Unfortunately, layout
of a SB in standard row / column major order no longer leads to an optimal way. Thus it
is necessary to reorder a SB into submatrices which we call register blocks. Doing this
produces a new data layout that will still be contiguous in L1 but also can be loaded into
L0 from L1 in an optimal manner. The order and size in which the submatrices (register
blocks) are chosen are platform dependent.

3 Square Blocked Packed and Rectangular Full Packed Formats
for Symmetric/Triangular Arrays

SBP formats are a generalization of packed format for triangular arrays. They are also a
generalization of full format for triangular arrays. The main benefit of the new formats
is that they allow for level 3 performance while using about half the storage of the full
array cases. In [6,9], there is a description of packed format layout.

For SBP formats there are two parameters,NB andTRANS, where, typically,n ≥ NB.
For this format, we first choose a block size, NB, and then we lay out the data in squares
of sizeNB. Each square block can be in row-major order (TRANS= ’T’) or column-major
order (TRANS = ’N’). This format supports both uplo = ’U’ or ’L’. We only cover the
case uplo = ’L’. For uplo = ’L’, the first vertical stripe is n by NB and it consists of
n1 square blocks where n1 = 	n/NB
. It holds the first trapezoidal n by NB part of L.

16 Fred G. Gustavson

The next stripe has n1 − 1 square blocks and it holds the next trapezoidal n - NB by NB
part of L, and so on, until the last stripe consisting of the last leftover triangle is reached.
There are n1(n1 + 1)/2 square blocks in all.

An example of Square Blocked Lower Packed Format (SBLP) with TRANS = ’T’ is
given in Figure 1 left. Here n = 10, NB = 4 and TRANS = ’T’ and the numbers represent
the position within the array where a(i, j) is stored. Note the missing numbers (e.g., 2,
3, 4, 7, 8, and 12) which correspond to the upper right corner of the first stripe. This
square blocked, lower, packed array consists of 6 square block arrays. The first three
blocks hold submatrices that are 4 by 4, 4 by 4, and 2 by 4. The next two blocks hold
submatrices that are 4 by 4 and 2 by 4. The last square block holds a 2 by 2 submatrix.
Note the padding, which is done for ease of addressing. Addressing this set of six square
blocks as a composite block array is straightforward.

1 * * * 1 * * * * * * * * *
5 6 * * 2 14 * * * * * * * *
9 10 11 * 3 15 27 * * * * * * *

13 14 15 16 4 16 28 40 * * * * * *
-----------| 5 17 29 41 53 * * * * *
17 18 19 20|49 * * * 6 18 30 42 54 66 * * * *
21 22 23 24|53 54 * * 7 19 31 43 55 67 79 * * *
25 26 27 28|57 58 59 * 8 20 32 44 56 68 80 92 * *
29 30 31 32|61 62 63 64 9 21 33 45 57 69 81 93 105 *
-----------|-----------| 10 22 34 46 58 70 82 94 106 118
33 34 35 36|65 66 67 68|81 * * * * * * * * * * * * *
37 38 39 40|69 70 71 72|85 86 * * * * * * * * * * * *
* * * *| * * * *| * * * *
* * * *| * * * *| * * * *

Fig. 1. Square Blocked Lower Packed Format for NB=4 and LDA=NB

Now we turn to full format storage. We continue the example with N = 10, and LDA
= 12. Simply set NB = LDA = 12 and one obtains full format; i.e., square block packed
format gives a single block triangle which happens to be full format (see Figure 1 right).
It should be clear that SBP format generalizes standard full format.

I believe a main innovation in using the SBP formats is to see that one can translate,
verbatim, standard packed or full factorization algorithms into a SBP format algorithm
by replacing each reference to an i, j element by a reference to its corresponding SB
submatrix. This is an application of point 4 in the Introduction. Because of this storage
layout, the beginning of each SB is easily located. Also key is that this format supports
level 3 BLAS. Hence, old, packed and full codes are easily converted into square blocked,
packed, level 3 code. In a nutshell, I am keeping “standard packed or full” addressing
so the library writer/user can handle his own addressing in a Fortran/C environment.
Performance results of SBP (and its variant Block Hybrid Format (BHF)) formats, for
Cholesky factorization, are given [9,3].

3.1 RFP Format

RFP format is a standard full array of size NT that holds a symmetric / triangular matrix
A. It is closely related to HFP (see [6] of this proceedings) format which represents A as

New Generalized Data Structures for Matrices 17

the concatenation of two standard full arrays whose total size is also NT. The basic idea
behind both formats is quite simple. Given an order n symmetric matrix A = LLT , we
break it into a block 2× 2 form

A =
[
A11 AT

21

A21 A22

]
= LLT =

[
L11 0
L21 L22

] [
LT

11 LT
21

0 LT
22

]
(1)

where A11 and A22 are symmetric and L11 and L22 are lower triangular. We need only
store the lower triangles of A11 and A22 as well as the full matrix A21. When n = 2k
is even, the lower triangle of A11 and the upper triangle of AT

22 can be concatenated
together along their main diagonals into an (k + 1)× k dense matrix. The offdiagonal
block A21 is k×k, and so it can be appended below the (k+1)×k dense matrix. Thus,
the lower triangle of A can be stored as a single (n+ 1)× k dense matrix AR. In effect,
each block matrix A11, A21 and A22 is now stored in "full format", meaning its entries
can be accessed with constant row and column strides. The full power of Lapack’s block
level 3 BLAS are now available for symmetric and triangular computations while still
using the minimal amount of storage. Note that ART which is k× (n+1) also has these
two desirable properties; see Figure 2 where n = 10. The performance of the simple
related partition algorithm (SRPA) on RFP format is very similar to the SRPA on HFP
format; see Figure 1 and Table 2 of [6] as space does not allow us to produce these results
here.

LRFP AR LRFP AR transpose

55 65 75 85 95 55|00 10 20 30 40|50 60 70 80 90
00|66 76 86 96 65 66|11 21 31 41|51 61 71 81 91
10 11|77 87 97 75 76 77|22 32 42|52 62 72 82 92
20 21 22|88 98 85 86 87 88|33 43|53 63 73 83 93
30 31 32 33|99 95 96 97 98 99|44|54 64 74 84 94
40 41 42 43 44
50 51 52 53 54
60 61 62 63 64
70 71 72 73 74
80 81 82 83 84
90 91 92 93 94

Fig. 2. Lower Rectangular Full Packed formats when n = 10 , LDAR = n+1

We now illustrate how to program Lapack algorithms for RFP format using existing
Lapack routines and level 3 BLAS. The above SRPA with partition sizes k and k and
n = 2k is: (see equation 1 and Figure 2).

1. call dpotrf(’L’,k,AR(1,0),n+1,info) ! factor L11L
T
11 = A11

2. ! solve L21L
T
11 = A21

call dtrsm(’R’,’L’,’T’,’N’,k,k,one,AR(1,0),n+1,AR(k+1,0),n+1)

3. ! update A22 ← A22 − L21L
T
11

call dsyrk(’U’,’T’,k,k,-one,AR(0,0),n+1,one,AR(k+1,0),n+1)

4. call dpotrf(’U’,k,AR(0,0),n+1,info) ! factor L22L
T
22 = A22

18 Fred G. Gustavson

This covers RFP format when uplo = ’L’ and n is even. A similar result holds for
n odd. Also, for uplo = ’U’ and n both even and odd similar results hold. Because of
space limitations we do not describe these cases.

4 Distributed Memory Computing (DMC)
with SB and SBP Formats

We are concerned with a P × Q mesh of processors and the programming model is a
block cyclic layout of a global rectangular array. Thus, symmetric and triangular arrays
waste half the storage on all processors. Using the results of Section 3 we can save this
wasted storage if we are willing to use SB of order NB2. This is a natural thing to do
as NB is the free parameter of our programming model. Let n1 = 	N/NB
 where N
is the order of our global symmetric matrix A. From now on shall be concerned with A
being a matrix of SB’s of block order n1. Now P and Q can have nothing to do with
n1. This fact tells us that we should treat each SB of A as an atomic unit because when
P and Q are relatively prime the SB’s of A will move about the processors as single
contiguous blocks. We want these SB’s that move to be part of our data layout so that
the Send / Receive buffers of MPI or the BLACs that ScaLapack uses can be treated
as contiguous blocks of storage. This allows us to avoid copying matrix data to a Send
buffer and copying a Receive buffer to matrix data.

We shall use a right looking algorithm (RLA) that is especially tailored to DMC. We
explain it for the global matrix A. A = (F1U1)(F2U2) . . . (Fn1Un1) where Un1 = I
is one way to factor A. Here Fi, Ui are the factor and update parts at stage i of the
RLA. Another way has A = (F1)(U1F2) . . . (Un1−1Fn1). This second way allows us
to overlap Fi+1 with Ui; see [1]. Let processor column (pc) J hold the pivot panel (pp)
of Fi+1. Now pc(J) will update pp(Fi+1) with Ui, factor pp(Fi+1), Send (Broadcast)
pp(Fi+1:n1) to all other pc(K), 0 ≤ K < Q and finally will update its remaining
column panels. Simultaneously, the remaining pc(K),K �= J will just update all of
their column panels.

There are three separate sub algorithms: factor Fi+1, Send / Receive Fi+1:n1 and
update on p(I, J) for all I and J . The update algorithm is called the Schur Complement
Update: Each active SB on p(I, J) gets a DGEMM update. What is missing are the A,B
operands of DGEMM. We add these to our data structure by placing on each p(I, J) West
and South border vectors that will hold all of p(I, J) SB A,B operands. These borders,
now part of our data layout, are the Send / Receive buffers referred to above. Now
SB(il,jl)=SB(il,jl)-W(il)*S(jl) becomes the generic DGEMM update on
p(I, J) where il,jl are local coordinates on p(I, J). Thus, the Schur Complement
update is just a sum of DGEMM’s over all active SB’s and our DMC paradigm guarantees
almost perfect load balance.

There are two algorithms that emerge for A. One is based on the block version of
RFP format. Since AR is rectangular, it should not be hard to see that each p(I, J) holds
a rectangular matrix. It is made up of pieces of two triangles T1, T2 and a square S1;
see [6] for the meaning of T1, S1, T2. And because the SB’s of T2 are reflected in
T2’s main diagonal, we also need to introduce North and East border vectors to hold the
A,B operands of T2 SB’s. The coding becomes intricate because AR consists of three

New Generalized Data Structures for Matrices 19

distinct pieces of A. The second algorithm is simpler to code. Global A consists of NT1
= n1(n1 + 1)/2 SB’s. Because each SB is atomic we may layout A on the P ×Q mesh
in the obvious manner. p(I, J) will hold a quasi lower triangular matrix. We represent
it as a one dimensional array of SB’s with a column pointer (CP) array that points at the
first block in pc(J)(jl), 0 ≤ jl < npc(J). Row indices are not required. This is because
the last row index on each p(I, J) for 0 ≤ J < Q is the same for each I .

Although we described DMC for Symmetric/Triangular matrices it should be clear
that our paradigm of using SB’s works for rectangular matrices as well. Thus, most of
ScaLapack’s factorization codes, eg. LU = PA and QR = A, also work under this
paradigm. Our paradigm is based on the second view point of Section 2. What we have
done is to isolate the major matrix multiply part of our DMC and to relate it to the Schur
complement update. We also needed to add West and South border vectors to our data
layout. In so doing we have eliminated the PBLAS layer. However, this is not to say that
we should avoid the PBLAS layer.

Acknowledgements

The continuation part of [9], mainly Sections 2.1 and 4, as applied LU = PA factor-
ization, are recent results obtained with Sid Chatterjee, Jim Sexton and mainly John
Gunnels. John implemented a Linpack benchmark that obtained 70.72 TFlops in the fall
of 2004 that placed IBM number one in the TOP500 list. I thank Cleve Ashcraft for
suggesting a way to write-up of Section 3.2.

References

1. R. C. Agarwal, F. G. Gustavson. A Parallel Implementation of Matrix Multiplication and LU
factorization on the IBM 3090. Proceedings of the IFIP WG 2.5 Working Group on Aspects of
Computation on Asychronous Parallel Processors, book, Margaret Wright, ed. Stanford CA.
22-26 Aug. 1988, North Holland, pp. 217-221.

2. R. C. Agarwal, F. G. Gustavson, M. Zubair. Exploiting functional parallelism of POWER2 to
design high-performance numerical algorithms. IBM Journal of Research and Development,
Vol. 38, No. 5, Sep. 1994, pp. 563–576.

3. B.S. Andersen, J. Gunnels, F. Gustavson, J. Reid, and J. Waśniewski. A fully portable high
performance minimal storage hybrid format cholesky algorithm. Technical Report RAL-TR-
2004-017, Rutherford Appleton Laboratory, Oxfordshire, UK and IMM-Technical Report-
2004-9 www.imm.dtu.dk/pubdb/views/publication details.php?id=3173, Informatics and
Mathematical Modelling, Technical University of Denmark, DK-2800 Kongens Lyngby, Den-
mark. It is already published in: The Transaction of Mathematical Software of ACM (TOMS),
vol. 31(2), pp. 201-227, 2005.

4. S. Chatterjee et. al. Design and Exploitation of a High-performance SIMD Floating-point Unit
for Blue Gene/L. IBM Journal of Research and Development, Vol. 49, No. 2-3, March-May
2005, pp. 377-391.

5. E. Elmroth, F. G. Gustavson, B. Kagstrom, and I. Jonsson. Recursive Blocked Algorithms
and Hybrid Data Structures for Dense Matrix Library Software. SIAM Review, Vol. 46, No.
1, Mar. 2004, pp. 3,45.

20 Fred G. Gustavson

6. J. A. Gunnels, F. G. Gustavson. A New Array Format for Symmetric and Triangular Matrices.
This Lecture Notes in Computer Science, in section of High Performance Linear Algebra
Algorithms.

7. J. A. Gunnels, F. G. Gustavson, G. M. Henry, R. A. van de Geijn. A Family of High-
Performance Matrix Multiplication Algorithms. This Lecture Notes in Computer Science,
in section of High Performance Linear Algebra Algorithms.

8. F. G. Gustavson. Recursion Leads to Automatic Variable Blocking for Dense Linear-Algebra
Algorithms. IBM Journal of Research and Development, Vol. 41, No. 6, Nov. 1997, pp.
737,755.

9. F. G. Gustavson High Performance Linear Algebra Algorithms using New Generalized Data
Structures for Matrices. IBM Journal of Research and Development, Vol. 47, No. 1, Jan. 2003,
pp. 31,55.

10. N. Park, B. Hong, V. K. Prasanna. Tiling, Block Data Layout, and Memory Hierarchy Perfor-
mance. IEEE Trans. Parallel and Distributed Systems, 14(7):640-654, 2003.

Management of Deep Memory Hierarchies –
Recursive Blocked Algorithms and Hybrid Data

Structures for Dense Matrix Computations

Bo Kågström

Department of Computing Science and HPC2N
Umeå University, SE-901 87 Umeå, Sweden

bokg@cs.umu.se

Abstract. Recent progress in using recursion as a general technique for producing
dense linear algebra library software for today’s memory tiered computer systems
is presented. To allow for efficient utilization of a memory hierarchy, our approach
is to apply the technique of hierarchical blocking. The success of our approach
includes novel recursive blocked algorithms, hybrid data formats and superscalar
kernels.

Keywords: recursion, automatic variable blocking, superscalar, GEMM-based,
level 3 BLAS, hybrid data structures, superscalar kernels, SMP parallelization,
library software, LAPACK, SLICOT, ESSL, RECSY, dense linear algebra, factor-
izations, matrix equations, periodic systems.

1 Introduction

Matrix computations are both fundamental and ubiquitous in computational science and
its vast application areas. Along with the development of more advanced computer sys-
tems with complex memory hierarchies, there is a continuing demand for new algorithms
and library software that efficiently utilize and adapt to new architecture features. Since
several years, our research group in Parallel and Scientific Computing at Umeå Univer-
sity in collaboration with IBM T.J. Watson Research Center run a successful project on
the development of novel, efficient and robust algorithms and library software for the
management of deep memory hierarchies. This contribution gives an introduction to our
work and a brief summary of my invited plenary talk at PARA04, which presented re-
cent advances made by applying the paradigm of recursion to dense matrix computations
on today’s computer systems with deep memory hierarchies (see Elmroth, Gustavson,
Jonsson, and Kågström [6] and Further Readings).

1.1 Why Hierarchical Blocking Matters

Today’s computers have extremely fast processors, but memory access speeds are rel-
atively slow. Thus the performance of algorithms is frequently limited by the need to
move large amounts of data between memory and the processor. This problem is particu-
larly acute in dense matrix computations where algorithms require repeatedly sweeping

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 21–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

22 Bo Kågström

through all elements of the matrix. As a result, features of computer hardware have
profoundly influenced the implementation as well as the abstract description of matrix
algorithms.

A key to efficient matrix computations on hierarchical memory machines is blocking,
i.e., the matrix elements should be grouped to match the structure of a hierarchical
memory system. In turn, this leads to blocked algorithms which are rich in GEMM-
based level 3 operations [2,16,17].

At the top of a computer memory hierarchy are the registers where all computations
(floating point, integer, and logical) take place; these have the shortest access times but
the smallest storage capacities. Between the registers and main memory, there are one or
more levels of cache memory with longer access time and increasing size. Closest to the
registers is the first-level cache memory (L1 cache), the fastest but smallest; next are the
second-level (L2) and possibly third-level (L3) cache memories. Below main memory
are levels of secondary storage with larger capacity but lower access speed, such as disk
and tape.

Different levels in the memory hierarchy display vastly different access times. For
example, register and L1 cache access times are typically on the order of nanoseconds,
whereas disk access times are in milliseconds – a difference of 106. Furthermore, access
time changes by a factor of five or ten between each level. Thus the ideal for such a
system is to perform as many calculations as possible on data that resides in the fastest
cache. The storage capacity of each level also varies greatly. Registers may hold up to a
few kilobytes of data, L1 cache up to a few hundred kilobytes, the highest-level cache up
to a few megabytes (106 bytes), while today’s main memory can hold several gigabytes
(109 bytes).

2 Explicit Versus Recursive Blocking

Various strategies are known for blocking data in order to exploit a hierarchical memory
structure. The classical way is explicit multilevel blocking, where each index/loop set
matches a specific level of the memory hierarchy. This requires a detailed knowledge
of the architecture and (usually) a separate blocking parameter for each level. Register
blocking and cache blocking refer to variants of this idea designed for efficient reuse of
data in the registers and one or more levels of cache, respectively.

The memory of most computers is laid out in blocks of fixed size, called pages. At
any instant of computer time there is a set of “fast" pages, sometimes called the working
set, which resides in the translation look-aside buffer (TLB). The term TLB blocking
means a strategy designed so that memory is mostly accessed in the working set.

In contrast to these approaches, recursive blocking, which combines recursion and
blocking, leads to an automatic variable blocking with the potential for matching the
memory hierarchies of today’s high-performance computing systems. The recursion
repeatedly partitions the problem into smaller and smaller subproblems, so that data
corresponding to different levels of the recursion tree fits into different levels of the
memory hierarchy. Recursive blocking means that “traditional" recursion is to terminate
when the size of the controlling recursion blocking parameter becomes smaller than
some predefined value. This assures that all leaf computations in the recursion tree

Management of Deep Memory Hierarchies 23

will usually be a substantial level 3 (matrix-matrix) computation on data stored in the
top-level caches.

3 Recursive Blocked Algorithms

A recursive blocked algorithm is defined in terms of basic splittings that generate new
smaller subproblems (tasks) in a recursion tree. For each of these subproblems a re-
cursive template is applied, which in turn generates new tasks, etc. Here, we illustrate
such templates by considering two related problems: the solution of a triangular system
with multiple right hand sides (TRSM) and the solution of a continuous-time triangular
Sylvester (SYCT) equation.

TRSM Operation. First, we consider solving AX = C, where X overwrites C. A of
size m×m is upper triangular, and C and X are m× n. Depending on m and n, there
are several alternatives for doing a recursive splitting. Two of them are illustrated below.

Case 1 (1 ≤ m ≤ n/2). Split C by columns only,

A
[
X1 X2

]
=
[
C1 C2

]
,

or, equivalently,

AX1 = C1,

AX2 = C2.

Case 2 (1 ≤ n ≤ m/2). Split A, which is assumed to be upper triangular, by rows
and columns. Since the number of right-hand sides n is much smaller than m, C is split
by rows only, [

A11 A12

A22

][
X1

X2

]
=

[
C1

C2

]
,

or, equivalently,

A11X1 = C1 −A12X2,

A22X2 = C2.

The two splittings above are fundamental in all types of triangular solve (or multiply)
operations and illustrate that a problem is split into two subproblems with dependent and
independent tasks, respectively. In Case 1, a splitting is applied only to C, the right-hand
sides, and we obtain two similar TRSM operations that can be solved independently
and concurrently (illustrated in Figure 1 (left)). In Case 2, we first have to (1) solve for
X2 and (2) update the right-hand side C1 with respect to X2, which is a general matrix
multiply and add (GEMM) operation, before (3) solving for X1. The splitting of A
imposes a critical path at the block level that any algorithm (recursive or nonrecursive)
has to respect (illustrated in Figure 1 (right)).

There is also a Case 3 (n/2 < m < 2n), when all matrices involved are split by
rows and columns leading to four subproblems (illustrated below for solving SYCT).
Other variants of the TRSM operation (op(A)X = C or Xop(A) = C, where op(A)
is A or AT , with A upper or lower triangular) are treated similarly.

24 Bo Kågström

(1)

(2)

(3)

Fig. 1. Splittings defining independent tasks (left) and dependent tasks (right). The right-hand
splitting defines a critical path of subtasks: (1), (2), (3)

Algorithm 1 Recursive blocked algorithm in Matlab-like code for solving the triangular
continuous-time Sylvester (SYCT) equation

Algorithm 1: SYCT function[X] = recsyct(A,B,C,uplo,blksz)
if 1 ≤ m, n ≤ blksz then

X = trsyct(A,B, C, uplo);
else

if 1 ≤ m ≤ n/2 % Case 1: Split B (by rows and colums), C (by columns only)
X1 = recsyct(A, B11, C1, 1, blksz);
C2 = gemm(X1, B12, C2);
X2 = recsyct(A, B22, C2, 1, blksz);
X = [X1, X2];

elseif 1 ≤ n ≤ m/2 % Case 2: Split A (by rows and colums), C (by rows only)
X2 = recsyct(a22, B, C2, 1, blksz);
C1 = gemm(−A12, X2, C1);
X1 = recsyct(A11, B, C1, 1, blksz);
X = [X1; X2];

else % m,n ≥ blksz, Case 3: Split A, B and C (all by rows and colums)
X21 = recsyct(A22, B11, C21, 1, blksz);
C22 = gemm(X21, B12, C22); C11 = gemm(−A12, X21, C11);
X22 = recsyct(A22, B22, C22, 1, blksz); X11 = recsyct(A11, B11, C11, 1, blksz);
C12 = gemm(−A12, X22, C12);
C12 = gemm(X11, B12, C12);
X12 = recsyct(A11, B22, C12, 1, blksz);
X = [X11, X12; X21, X22];

end
end

SYCT Matrix Equation. We consider the matrix equation AX − XB = C, where
A has size m ×m, B has size n × n, and both are upper quasi-triangular, i.e., in real
Schur form. The right-hand side C and the solution X are of size m× n and, typically,
the solution overwrites the right-hand side (C ← X). The SYCT equation has a unique
solution if and only if A and B have no eigenvalue in common or.

Management of Deep Memory Hierarchies 25

As for the TRSM operation, three alternatives for doing a recursive splitting are
considered. In Case 1 (1 ≤ m ≤ n/2), B is split by rows and columns, and C by
columns only. Similarly, in Case 2 (1 ≤ n ≤ m/2), A is split by rows and columns,
and C by rows only. Finally, in Case 3 (n/2 < m < 2n) both rows and columns of the
matrices A, B, and C are split:[

A11 A12

A22

] [
X11 X12

X21 X22

]
−
[
X11 X12

X21 X22

][
B11 B12

B22

]
=

[
C11 C12

C21 C22

]
.

This recursive splitting results in the following four triangular SYCT equations:

A11X11 −X11B11 = C11 −A12X21,

A11X12 −X12B22 = C12 −A12X22 + X11B12,

A22X21 −X21B11 = C21,

A22X22 −X22B22 = C22 + X21B12.

Conceptually, we start by solving for X21 in the third equation. After updating C11 and
C22 with respect to X21, one can solve for X11 and X22. Both updates and the triangular
Sylvester solves are independent operations and can be executed concurrently. Finally,
one updates C12 with respect to X11 and X22 and solves for X12. In practice, all four
subsystems are solved using the recursive blocked algorithm (see Algorithm 1). If a
splitting point (m/2 or n/2) appears at a 2 × 2 diagonal block, the matrices are split
just below this diagonal block. We remark that the issue of 2 × 2 diagonal blocks
corresponding to conjugate eigenvalue pairs would infer extra overhead if a recursive
data layout for matrices is used, and therefore a standard data layout is to be preferred
[12].

In the discussion above, we have assumed that both A and B are upper triangular
(or quasi-triangular). However, it is straightforward to derive similar recursive splittings
for the triangular SYCT, where each of A and B can be in either upper or lower Schur
form.

We remark that by splitting all problem dimensions simultaneously, we do a splitting
by breadth and generate several new tasks (subproblems) at the next level of the recursion
tree (four for Case 3 of SYCT). On the other hand, splitting only one of the problem
dimensions generates only two new tasks (Cases 1 and 2 of SYCT), and we need to
recursively repeat the splitting in order to get the same number of new tasks as when
splitting by breadth. Accordingly, we call this splitting by depth. Typically, one makes
the choice of splitting to generate “squarish” subproblems, i.e., the ratio between the
number of operations made on subblocks and the number of subblocks is maintained as
high as possible.

3.1 Superscalar Kernels for Leaf Computations

In order to reduce the overhead cost of recursion to a tiny and acceptable level, the
recursion is terminated when the new problem sizes are smaller than a certain block size,
blksz. The block size is chosen so that submatrices associated with a leaf computation
fit in L1 cache.

26 Bo Kågström

Superscalar kernels are very highly performing routines working on matrix oper-
ands optimally prepared for excellent performance in L1 cache. Our work has produced
designs for several superscalar kernels that are applied to the leaf nodes in the recur-
sion tree [6]. We have found it necessary to develop such kernels, since most compilers
make a poor job of generating assembler instructions that match a superscalar archi-
tecture with several registers and a long instruction pipeline. Some of the superscalar
kernels make use of recursion as well [13,14]. One example is the superscalar kernel
trsyct(A,B,C, uplo), used in the recursive blocked algorithm for the SYCT equation
(see Algorithm 1).

All superscalar kernels are written in Fortran using register and cache blocking
techniques such as loop unrolling. For each recursive blocked algorithm the same su-
perscalar kernels are used on all platforms. Currently, they are optimized with a generic
superscalar architecture in mind and show very good performance on several differ-
ent platforms. Moreover, the generic superscalar kernels make the recursive blocked
algorithms portable across different computer systems.

4 Locality Issues and Hybrid Data Structures

Recursive blocked algorithms mainly improve on the temporal locality, which means that
blocks (submatrices) which recently have been accessed will most likely be referenced
soon again. For many of our algorithms the use of the recursive blocking technique
together with new superscalar kernels is enough to reach near to optimal performance.

For some problems, we can further increase the performance by explicitly improving
on the spatial locality as well. The goal is now to match the algorithm and the data
structure so that blocks (submatrices) near the recently accessed blocks will also be
referenced soon. In other words, the storing of matrix blocks in memory should match
the data reference pattern of the blocks, and thereby as much as possible minimize data
transfers in the memory hierarchy. We use the divide-and-conquer heuristics leading to
hybrid data structures that store the blocks recursively (e.g., see [9,10,6]). Ultimately,
we want to reuse the data as much as possible at each level of the memory hierarchy
and thereby minimize the cost. The combination of recursive blocking and a hybrid data
format has shown to be especially rewarding in the context of packed factorizations [10].

4.1 Hybrid Packed Data Formats for Matrix Factorizations

The idea behind recursive factorization of a symmetric matrix stored in packed recursive
format is simple: Given AP holding symmetric A in lower packed storage mode, over-
write AP with A in the recursive packed row format. Next, execute the recursive level
3 factorization algorithm. Here, we illustrate with the packed Cholesky factorization of
a positive definite matrix [10]. The approach is applicable to most (if not all) packed
matrix computations in LAPACK [2].

The packed recursive data format is a hybrid triangular format consisting of n − 1
full format rectangles of varying sizes and n triangles of size 1 × 1 on the diagonal.
The format uses the same amount of data storage as the ordinary packed triangular
format, i.e., n(n + 1)/2. Since the rectangles (square submatrices) are in full format
it is possible to use high-performance level 3 BLAS on these square submatrices. The

Management of Deep Memory Hierarchies 27

1 2 4 7 11 16 22 1 2 3 7 10 13 16

3 5 8 12 17 23 4 5 8 11 14 17

6 9 13 18 24 6 9 12 15 18

10 14 19 25 19 20 22 24

15 20 26 21 23 25

21 27 26 27

28 28

Packed upper Recursive packed upper

Fig. 2. Memory indices for 7 × 7 upper triangular matrix stored in standard packed format and
recursive packed format

difference between the standard packed and the recursive packed formats is shown in
Figure 2 for a matrix of order 7.

Notice that the triangles are split into two triangles of sizesn1 = n/2 andn2 = n−n1

and a rectangle of size n2 × n1 for lower format and n1 × n2 for upper format. The
elements in the upper left triangle are stored first, the elements in the rectangle follows,
and the elements in the lower right triangle are stored last. The order of the elements in
each triangle is again determined by the recursive scheme of dividing the sides n1 and
n2 by two and ordering these sets of points in the order triangle, rectangle, triangle. The
elements in the rectangle are stored in full format, either by row or by column. The new
recursive packed format was first presented in [1] and is based on the formats described
in [9]. An algorithm which transforms from conventional packed format to recursive
packed format can be found in [10].

The recursive formulation of the algorithm is straightforwardly derived from the
block factorization of a positive definite matrix A:

A ≡
[
A11 AT

21

A21 A22

]
= LLT ≡

[
L11 0
L21 L22

][
LT

11 LT
21

0 L22

]
,

which consists of two Cholesky factorizations (4.1), (4.4), one triangular system solve
with multiple right-hand sides (4.2), and one symmetric rank-k update (4.3),

A11 = L11L
T
11, (4.1)

L21L
T
11 = A21, (4.2)

Ã22 = A22 − L21L
T
21, (4.3)

Ã22 = L22L
T
22. (4.4)

These equations build the recursive template for the recursive Cholesky factorization.
After recursively solving for L11, a recursive implementation of TRSM is used to solve
for L21. Then a recursive symmetric rank-k update (SYRK) of A22 occurs before L22

is recursively Cholesky factored. The need of the recursive TRSM and SYRK stems
from the recursive packed format. The factorization algorithm calls TRSM and SYRK
with triangular matrix operands stored in recursive packed format, and with rectangular

28 Bo Kågström

matrix operands stored in full format. Dividing the recursive packed matrices in TRSM
and SYRK gives rise to two recursive packed triangular matrices and a rectangular matrix
stored in full format, which becomes an argument to GEMM. The recursive blocking
in the Cholesky algorithm (as well as in the recursive TRSM and SYRK) is only used
down to a fixed block size when superscalar kernels are used to solve the respective leaf
problems.

The recursive algorithm for Cholesky factorization has several attractive features.
First, it uses minimal storage. Second, it attains level 3 performance due to mostly per-
forming GEMM operations during execution. In addition, it outperforms the LAPACK
routine DPPTRF for standard packed data storage up to a factor 3.5 (IBM Power3, 200
MHz)[10]. The main reason is that the standard approach for packed storage of matrices
(typified by LAPACK [2]) cannot use standard level 3 BLAS subroutines. Notably, even
when one includes the cost of converting the data from conventional packed to recursive
packed format, the performance turns out to be better than LAPACK’s level 3 routine
DPOTRF for full storage format.

5 RECSY Library

RECSY [15] is a high-performance library for solving triangular Sylvester-type matrix
equations. The Fortan 90 routines are implementations of the recursive blocked algo-
rithms presented in [13,14] for one-sided and two-sided matrix equations (see Table 1).
The classification in one-sided and two-sided matrix equations distinguishes the type
of matrix product terms that appear and the way updates are performed in the recursive
blocked algorithms. One-sided matrix equations include terms where the solution is only
involved in matrix products of two matrices, e.g., op(A)X or Xop(A), where op(A) can
be A or AT . The SYCT equation discussed earlier is one of them. Two-sided matrix
equations include matrix product terms of type op(A)Xop(B), and examples are the
discrete-time standard and generalized Sylvester and Lyapunov equations.

In total, 42 different cases of eight equations (three one-sided and five two-sided) are
solved by the library, either in serial or in parallel using OpenMP. The library includes
superscalar kernels, much faster than traditional SLICOT [18] or LAPACK kernels. The

Table 1. One-sided (top) and two-sided (bottom) matrix equations. (CT: continuous-time, DT:
discrete-time)

Name Matrix equation Acronym

Standard Sylvester (CT) AX − XB = C SYCT

Standard Lyapunov (CT) AX + XAT = C LYCT

Generalized Coupled Sylvester (AX − Y B, DX − Y E) = (C,F) GCSY

Standard Sylvester (DT) AXBT − X = C SYDT

Standard Lyapunov (DT) AXAT − X = C LYDT

Generalized Sylvester AXBT − CXDT = E GSYL

Generalized Lyapunov (CT) AXET + EXAT = C GLYCT

Generalized Lyapunov (DT) AXAT − EXET = C GLYDT

Management of Deep Memory Hierarchies 29

new kernels do not overflow and provide near-singularity checking. If the problem is
ill-conditioned, the routine as an alternative backtracks and uses a kernel that carries out
complete pivoting in the solution of small-sized leaf problems of the recursion tree.

In order to make the library easy to use, wrapper routines for SLICOT and LAPACK
are included, so the user can keep his/her original code and simply link with RECSY.
This means that the user calls the SLICOT routine for solving an unreduced problem,
and the transformed quasi-triangular matrix equation is automatically solved by RECSY.

For illustration, we show a few results obtained with the RECSY library. In all
cases, m = n. In Table 2 a), results obtained for the continuous-time Lyapunov (LYCT)
equation are shown. Here, the speedup is remarkable. The RECSY library is up to 83
times faster than the original SLICOT library. This is both due to faster kernels and
the automatic variable-sized multi-level blocking from recursion. Similar results can be
observed for LAPACK routines. For example, the RECSY routine RECSYCT is more
than 20 times faster then the LAPACK routine DTRSYL for M = N > 500 on the IBM
PowerPC 604e. Timings for two-sided matrix equation examples are given in Table 2
b). For the largest example, the SLICOT library requires more than 45 minutes to solve
the problem. The RECSY library solves the same problem in less than 30 seconds. The
extra speedup from the OpenMP version of the library is also given. For further results,
we refer to [13,14] and the RECSY homepage [15].

Table 2. a) Performance results for the triangular Lyapunov equation—IBM Power3, 200 MHz
(left) and SGI Onyx2 MIPS R10000, 195 MHz (right). b) Performance results for the triangular
discrete-time Sylvester (SYDT) equation—IBM Power3, 4 × 375 MHz

a) AX + XAT = C b) AXB − X = C

IBM Power3 MIPS R10000 IBM Power3

Mflops/s Speedup Mflops/s Speedup Time (sec) Speedup

m A B B/A A B B/A C D D/C E/D

100 77.0 166.5 2.16 82.0 123.5 1.51 1.73e-2 7.41e-3 2.33 1.16

250 85.3 344.5 4.04 88.7 224.5 2.53 6.20e-1 6.93e-2 8.95 0.98

500 10.6 465.0 43.85 42.2 277.8 6.58 2.32e+1 4.60e-1 50.50 1.48

1000 7.7 554.7 72.20 14.5 254.0 17.57 2.44e+2 3.26e+0 74.65 1.94

1500 7.0 580.5 83.19 9.7 251.0 25.81 9.37e+2 1.08e+1 86.66 2.04

2000 2.84e+3 2.41e+1 117.71 2.14

A – SLICOT SB03MY C – SLICOT SB04PY

B – RECLYCT D – RECSYDT

E – RECSYDT P

30 Bo Kågström

6 Recursion in Matrix Factorizations and Linear Systems

It is straigthforward to design recursive blocked algorihms for one-sided matrix factor-
izations (typified by Cholesky, LU, and QR) [8,6]. Our generic recursive template looks
as follows:

Recursively factor A:

1. Partition

A ≡
[
A1 A2

]
, where A1 ≡

[
A11

A21

]
and A2 ≡

[
A12

A22

]
.

2. Recursively factor A1 (or A11).
3. Apply resulting transformations to A2 ≡

[
A12
A22

]
.

4. Recursively factor A22.

In the algorithm, the template is recursively applied to the two smaller subproblems
(factorizations in steps 2 and 4). As for the triangular solve operation, the recursion
template results in a splitting defining a critical path of dependent subtasks (see Figure
1 (right)).

Recent work includes recursive blocked algorithms for the QR factorization [3,5] and
for solving general linear systems AX = B [4], where both over- and underdetermined
linear systems are considered. One important message is that various level 2 and level 3
algorithms in LAPACK can be successfully replaced by recursive level 3 algorithms.

7 Summary and Future Work

The SIAM Review article [6] gives a survey of recent progress in using recursion as a
general technique for producing dense linear algebra software that is efficient on today’s
memory-tiered computers. In addition to general ideas and techniques, detailed case
studies of matrix computations are presented, which only briefly have been dicussed
here. Some of the main points are the following:

– Recursion creates new algorithms for linear algebra software.
– Recursion can be used to express dense linear algebra algorithms entirely in terms

of level 3 BLAS-like matrix-matrix operations.
– Recursion introduces an automatic variable blocking that targets every level of a

deep memory hierarchy.
– Recursive blocking can also be used to define data formats for storing block-par-

titioned matrices. These formats generalize standard matrix formats for general
matrices, and generalize both standard packed and full matrix formats for triangular
and symmetric matrices.

In addition, new algorithms and library software for level 3 BLAS [16,17,9], matrix
factorizations [3,5,8,10], the solution of general linear systems [4], and common matrix
equations [13,14,15,12,7] are described. Some software implementations are included
in the IBM ESSL library [11], including factorizations and solvers for positive definite

Management of Deep Memory Hierarchies 31

systems as well as the QR factorization and solution of general over- and underdeter-
mined systems. All software implementations of the triangular matrix equations and
condition estimators are available in the RECSY library [15]. The performance results
of our software are close to (i.e., within 50% to 90% of) the peak attainable performance
of the machines for large enough problems, showing the effectiveness of the techniques
described.

Based on our successful work on using recursion in solving different types of matrix
equations (e.g., see [13,14,15,12,7]), ongoing work includes solving periodic Sylvester-
type equations. This leads to recursive blocked algorithms for 3-dimensional data struc-
tures.

Furthermore, we will investigate open problems in how to apply recursion to im-
prove performance of “two-sided” linear algebra operations, such as the reduction to
(generalized) Hessenberg, symmetric tridiagonal, or bidiagonal forms. One challenge is
to see if recursion can reduce the nontrivial fraction of level 1 and level 2 operations that
are currently applied to both sides of the matrix under reduction.

Further Readings and Acknowledgements

Most of the work presented here represents joint work with Erik Elmroth, Fred Gustavson
and Isak Jonsson. For further information about our work, see the SIAM Review article
[6] and the selection of references listed below. In addition, see the comprehensive list
of references in [6] on related and complementary work. Thanks to you all!

This research was conducted using the resources of the High Performance Computing
Center North (HPC2N). Financial support has been provided by the Swedish Research
Council under grant VR 621-2001-3284 and by the Swedish Foundation for Strategic
Research under the frame program grant SSF-A3 02:128.

References

1. B. Andersen, F. Gustavson, and J. Waśniewski, A recursive formulation of Cholesky factor-
ization of a matrix in packed storage, ACM Trans. Math. Software, 27 (2001), pp. 214–244.

2. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed.,
SIAM, Philadelphia, 1999.

3. E. Elmroth and F. G. Gustavson, Applying recursion to serial and parallel QR factorization
leads to better performance, IBM J. Res. Develop., 44 (2000), pp. 605–624.

4. E. Elmroth and F. G. Gustavson, A faster and simpler recursive algorithm for the LAPACK
routine DGELS, BIT, 41 (2001), pp. 936–949.

5. E. Elmroth and F. G. Gustavson, High-performance library software for QR factorization, in
Applied Parallel Computing: New Paradigms for HPC in Industry and Academia, T. Sørvik
et al., eds., Lecture Notes in Comput. Sci. 1947, Springer-Verlag, New York, 2001, pp. 53–63.

6. E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström, Recursive Blocked Algorithms and
Hybrid Data Structures for Dense Matrix Library Software, SIAM Review, Vol. 46, No. 1,
2004, pp. 3–45.

7. R. Granat, I. Jonsson, and B. Kågström, Combining Explicit and Recursive Blocking for
Solving Triangular Sylvester-Type Matrix Equations on Distributed Memory Platforms, in
Euro-Par 2004 Parallel Processing, M. Danelutto, D. Laforenza, and M. Vanneschi, eds.,
Lecture Notes in Comput. Sci. 3149, Springer-Verlag, Berlin Heidelberg, 2004, pp. 742–750.

32 Bo Kågström

8. F. G. Gustavson, Recursion leads to automatic variable blocking for dense linear-algebra
algorithms, IBM J. Res. Develop., 41 (1997), pp. 737–755.

9. F. G. Gustavson, A. Henriksson, I. Jonsson, B. Kågström, and P. Ling, Recursive blocked
data formats and BLAS’s for dense linear algebra algorithms, in Applied Parallel Computing:
Large Scale Scientific and Industrial Problems, B. Kågström et al., eds., Lecture Notes in
Comput. Sci. 1541, Springer-Verlag, New York, 1998, pp. 195–206.

10. F. G. Gustavson and I. Jonsson, Minimal-storage high-performance Cholesky factorization
via blocking and recursion, IBM J. Res. Develop., 44 (2000), pp. 823–849.

11. IBM, Engineering and Scientific Subroutine Library, Guide and Reference, Ver. 3, Rel. 3,
2001.

12. I. Jonsson, Analysis of Processor and Memory Utilization of Recursive Algorithms for
Sylvester-Type Matrix Equations Using Performance Monitoring, Report UMINF-03.16,
Dept. of Computing Science, Umeå University, Sweden, 2003.

13. I. Jonsson and B. Kågström, Recursive blocked algorithms for solving triangular systems—
Part I: One-sided and coupled Sylvester-type matrix equations, ACM Trans. Math. Software,
28 (2002), pp. 392–415.

14. I. Jonsson and B. Kågström, Recursive blocked algorithms for solving triangular systems—
Part II: Two-sided and generalized Sylvester and Lyapunov equations, ACM Trans. Math.
Software, 28 (2002), pp. 416–435.

15. I. Jonsson and B. Kågström, RECSY—A High Performance Library for Sylvester-Type Matrix
Equations, http://www.cs.umu.se/research/parallel/recsy, 2003.

16. B. Kågström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-performance
model implementations and performance evaluation benchmark. ACM Trans. Math. Software,
24(3):268–302, 1998.

17. B. Kågström, P. Ling, and C. Van Loan, Algorithm 784: GEMM-based level 3 BLAS: Porta-
bility and optimization issues, ACM Trans. Math. Software, 24 (1998), pp. 303–316.

18. SLICOT, The SLICOT Library and the Numerics in Control Network (NICONET) website,
http://www.win.tue.nl/niconet/.

Fortran Is Getting More and More Powerful

John K. Reid�

Atlas Centre, Rutherford Appleton Laboratory, UK
j.k.reid@rl.ac.uk

Abstract. There is plenty happening just now with respect to Fortran.
Two sets of features (for exception handling and for enhancements to allocatable
arrays) were defined in Technical Reports1 as extensions to Fortran 95 and have
become widely available in compilers.
The Fortran 2003 Standard has been approved and is about to be published. As well
as adding the contents of the two Technical Reports, this adds interoperability with
C, parameterized derived types, procedure pointers, type extension and polymor-
phism, access to the computing environment, support of international character
sets, and many other enhancements.
A new Technical Report has also been approved and is about to be published. This
enhances the module features and avoids the ‘compilation cascade’ that can mar
the development of very large programs. It is written as an extension of Fortran
2003, but is expected to be widely implemented as an extension to Fortran 95
compilers.
We will summarize all these developments, which will make Fortran even more
suitable for large numerically-demanding applications.

1 Introduction and Overview of the New Features

Fortran is a computer language for scientific and technical programming that is tailored
for efficient run-time execution on a wide variety of processors. It was first standardized
in 1966 and the standard has since been revised three times (1978, 1991, 1997). The
revision of 1991 was major and those of 1978 and 1997 were relatively minor. The fourth
revision is major and has been made following a meeting of ISO/IEC JTC1/SC22/WG5
in 1997 that considered all the requirements of users, as expressed through their national
bodies. At the time of writing (September 2004), it has passed its DIS (Draft International
Standard) ballot and is about to be published as a Standard. The DIS is visible as WG5
document N1601 at ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/.

Two features, allocatable array extensions and support for the exceptions of the IEEE
Floating Point Standard[1] were not ready in time for Fortran 95, but were deemed
too important to wait for the next revision, so were defined in Technical Reports with
a promise that they would be included in the revision. Many Fortran 95 compilers
implement them as extensions.

Late in the revision process, a remedy was suggested for a significant deficiency
in the module feature for very large programs. Rather than risk a delay to the Stan-
dard, it was decided that this should be another Technical Report. It has now caught up

� Convener, ISO Fortran Committee
1 A mini Standard with a simpler and quicker ratification process.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 33–42, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 John K. Reid

with the Standard, has passed its DTR (Draft Technical Report) ballot, and is about
to be published as a Technical Report. The DTR is visible as document N1602 at
ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/.

The significant enhancements in the 1991 revision were dynamic storage, structures,
derived types, pointers, type parameterization, modules, and array language. The main
thrust of the 1997 revision was in connection with alignment with HPF (High Perfor-
mance Fortran). The major enhancements for this revision and its associated Technical
Report are:

1. Allocatable array extensions.
2. Support for the exceptions of the IEEE Floating Point Standard [1].
3. Enhanced module facilities.
4. Interoperability with the C programming language.
5. Data enhancements and object orientation: parameterized derived types, type exten-

sion and inheritance, procedure pointers, polymorphism, dynamic type allocation,
and type-bound procedures.

6. Input/output enhancements: asynchronous transfer, stream access, user specified
transfer operations for derived types, and forms for IEEE Nans and infinities.

7. Miscellaneous enhancements: improved structure constructors, improved allocate
features, access to ISO 10646 4-byte characters, and access to command line argu-
ments and environment variables.

Each of these are described briefly in the sections that follow. It is by no means a
complete description of the whole language. For fuller descriptions, see [3], [4], or [5].

Except in extremely minor ways, this revision is upwards compatible with the current
standard, that is, a program that conforms to the present standard will conform to the
revised standard.

The enhancements are in response to demands from users and will keep Fortran
appropriate for the needs of present-day programmers without losing the vast investment
in existing programs.

2 Allocatable Array Extensions

Fortran 2003, and Technical Report ISO/IEC 15581 TR:2001(E), allows the use of al-
locatable arrays as dummy arguments, function results, and components of structures.
Pointer arrays may be used instead, but there are significant advantages in using allocat-
able arrays:

1. Code for a pointer array is likely to be less efficient because allowance has to
be made for strides other than unity. For example, its target might be the section
vector(1:n:2).

2. Intrinsic assignment is often unsuitable for a derived type with a pointer component
because the assignment

a = b

will leave a and b sharing the same target for their pointer component. If a and b
are of a type with an allocatable component c, the effect is:

Fortran Is Getting More and More Powerful 35

(a) if a%c is allocated, it is deallocated;
(b) if b%c is allocated, a%c is allocated with its size and is given its value.

3. If a defined operation involves a temporary variable of a derived type with a pointer
component, the compiler will probably be unable to deallocate its target when storage
for the variable is freed, that is, memory will ‘leak’. Consider, for example, the
statement

a = b + c*d ! a, b, c, and d
! are of the same derived type

This will create a temporary for c*d, which is not needed once b + c*d has been
calculated.

4. Similar considerations apply to a function invocation within an expression. The
compiler will be unlikely to be able to deallocate the pointer after the expression
has been calculated and memory will leak.

3 Floating-Point Exception Handling

Most computers nowadays have hardware based on the IEEE standard for binary
floating-point arithmetic [1]. Therefore, the exception handling features of Fortran 2003,
and Technical Report ISO/IEC 15580 TR:2001(E), are based on the ability to test and
set the five flags for floating-point exceptions that the IEEE standard specifies. However,
non-IEEE computers have not been ignored; they may provide support for some of the
features and the programmer is able to find out what is supported or state that certain
features are essential.

Few (if any) computers support every detail of the IEEE standard. This is because
considerable economies in construction and increases in execution performance are
available by omitting support for features deemed to be necessary to few programmers.
It was therefore decided to include inquiry facilities for the extent of support of the
standard, and for the programmer to be able to state which features are essential. For
example, the inquiry functions

ieee_support_inf(x)
ieee_support_nan(x)

return true or false according to whether or not IEEE infinities and IEEE NaNs are
supported for the reals of the same kind as x.

The mechanism finally chosen is based on a set of procedures for setting and test-
ing the flags and inquiring about the features, collected in an intrinsic module called
ieee exceptions. For example, the elemental subroutines:

ieee_get_flag(flag,flag_value)
ieee_set_flag(flag,flag_value)

get or set one or more flags.
Given that procedures were being provided for the IEEE flags, it seemed sensible

to provide procedures for other aspects of the IEEE standard. These are collected in a
separate intrinsic module, ieee arithmetic, which contains a use statement for
ieee exceptions. For example, the elemental function

36 John K. Reid

ieee_is_nan(x)

returns true or false according to whether or not the value of x is a NaN. If x is an array,
it returns a logical array of the same shape as x. Another example is that the subroutines

ieee_get_rounding_mode(round_value)
ieee_set_rounding_mode(round_value)

allow the current rounding mode to be determined or changed.
To provide control over which features are essential, there is a third intrinsic mod-

ule, ieee features, containing named constants corresponding to the features. If
a named constant is accessible in a scoping unit, the corresponding feature must be
available there. For example, the statement:

use, intrinsic :: ieee_features, &
only:ieee_invalid_flag

ensures that the IEEE invalid flag is supported.

4 Enhanced Module Facilities

The module facility is useful for structuring Fortran programs because it allows related
procedures, data, and types to be collected into a single coherent program unit. This
facility is adequate for small and moderate-size programs, but has deficiencies for large
programs or programs with large modules. The slightest change in a module can lead to
the recompilation of every program unit that uses the module, directly or indirectly (a
‘compilation cascade’).

Technical Report ISO/IEC 19767 addresses these deficiencies by allowing the im-
plementation parts of a module to be defined separately in submodules. The compilation
of program units that use a module depends only on its interface parts, so this is not
affected by the development and maintenance of its submodules. This also provides
benefits for packaging proprietary software since the module may be published openly
while the submodules remain proprietary.

The provisions are posed as an amendment to Fortran 2003, and are compatible with
it. They are also compatible with Fortran 95 and we expect vendors to implement them
as an extension of Fortran 95.

5 Interoperability with C

Fortran 2003 provides a standardized mechanism for interoperating with C. Clearly, any
entity involved must be such that equivalent declarations of it may be made in the two
languages. This is enforced within the Fortran program by requiring all such entities
to be ‘interoperable’. We will explain in turn what this requires for types, variables,
and procedures. They are all requirements on the syntax so that the compiler knows at
compile time whether an entity is interoperable.

There is an intrinsic module namediso c binding that contains named constants
holding kind type parameter values for many intrinsic C types, for example c float

Fortran Is Getting More and More Powerful 37

for C’s float. The processor is not required to support all of them. Lack of support is
indicated with a negative value.

For a derived type to be interoperable, it must be given the bind attribute explicitly
and each component must be interoperable and must not be a pointer or allocatable. This
allows Fortran and C types to correspond.

A scalar Fortran variable is interoperable if it is of interoperable type and is neither
a pointer nor allocatable.

An array Fortran variable is interoperable if it is of interoperable type, and is of
explicit shape or assumed size. It interoperates with a C array of the same type, type
parameters and shape, but with reversal of subscripts. For example, a Fortran array
declared as

integer :: a(18, 3:7, *)

is interoperable with a C array declared as

int b[][5][18]

A new attribute, value, has been introduced for scalar dummy arguments. When
the procedure is called, a copy of the actual argument is made. The dummy argument is
a variable that may be altered during execution of the procedure, but no copy back takes
place on return.

A Fortran procedure is interoperable if it has an explicit interface and is declared
with the bind attribute:

function func(i,j,k,l,m), bind(c)

All the dummy arguments must be interoperable. The procedure has a ‘binding label’,
which has global scope and is the name by which it is known to the C processor. By
default, it is the lower-case version of the Fortran name, but an alternative may be
specified explicitly:

function func(i,j,k,l,m), bind(c,name=’c_func’)

For interoperating with C pointers (which are just addresses), the module contains the
derived types c ptr and c funptr that are interoperable with C object and function
pointer types, respectively. There are named constants for the corresponding null values
of C. There are procedures for returning the C addresses of a Fortran object or procedure
and for constructing a Fortran pointer from a C pointer.

6 Data Enhancements and Object Orientation

An obvious deficiency of Fortran 95 is that whereas each of the intrinsic types has a kind
parameter and character type has a length parameter, it is not possible to define a derived
type that is similarly parameterized. This deficiency is remedied with a very flexible
facility that allows any number of ‘kind’ and ‘length’ parameters. A kind parameter is a
constant (fixed at compile time) and may be used for a kind parameter of a component of
intrinsic (or derived) type. A length parameter is modelled on the length parameter for
type character and may be used for declaring character lengths of character components
and bounds of array components. For example, the code

38 John K. Reid

type matrix(kind,m,n)
integer, kind :: kind
integer, len :: m,n
real(kind) :: element(m,n)

end type

declares a type for rectangular matrices and the code

type(matrix(kind(0.0d0),10,20)) :: a
write(*,*) a%kind, a%m, a%n

declares an object of this type for holding a 10×20 double precision matrix. The syntax
for component selection, for example, a%kind and a%m, is used for accessing the new
type parameters.

A pointer or pointer component may be a procedure pointer. It may have an explicit
or implicit interface and its association with a target is as for a dummy procedure, so its
interface is not permitted to be generic or elemental. For example

procedure(proc), pointer :: p
procedure(), pointer :: q
procedure(real), pointer :: r
p => fun

declares three procedure pointers and associates p with the procedure fun. The pointer
p has the interface of proc (and so must fun). The pointers q and r have implicit
interfaces; r can point only to a real function.

Having procedure pointers fills a big hole in the Fortran 95 language. It permits
‘methods’ to be carried along with objects (dynamic binding).

A procedure may be bound to a type and accessed by component selection syntax
from a scalar object of the type rather as if it were a procedure pointer component with
a fixed target:

type t
: ! Component declarations

contains
procedure :: proc => my_proc

end type t
type(t) :: a

:
call a%proc(x,y)

A procedure may also be bound to a type as an operator or a defined assignment. In this
case, the operation is accessible wherever an object of the type is accessible.

A derived type may be extended, that is, a new type may be declared that has all
the components of an existing type and some additional ones. For example, the above
matrix type might be extended to a type that also holds its factorization:

Fortran Is Getting More and More Powerful 39

type, extends(matrix) :: factored_matrix
logical :: factored=.false.
real(matrix%kind) :: factors(matrix%m,matrix%n)

end type

The feature allows code to be written for objects of a given type and used later for objects
of an extended type.

The associate construct associates named entities with expressions or variables
during the execution of its block:

associate (z=>exp(-(x**2+y**2)))
print *, a+z, a-z

end associate

The named entity takes its properties from the expression or variable.
An entity may declared with the class keyword in place of the type keyword:

class (matrix(kind(0.0),10)) :: f

It is then polymorphic and is able during execution to take its declared type or any of
its extensions. For example, the type of an actual argument may be an extension of the
type of the corresponding dummy argument.

Access to the extended parts is available through the select type construct,
which selects for execution at most one of its constituent blocks, depending on the
dynamic type of a given variable or expression:

select type (f)
type is (matrix)
: ! block of statements

class is (factored_matrix)
: ! block of statements

class default
end select

An object may be declared as unlimited polymorphic

class (*) :: upoly

so that any extensible type extends it. Its declared type is regarded as different from that
of any other entity.

The allocatable attribute is no longer restricted to arrays and a source variable may
be specified to provide values for deferred-length type parameters and an initial value
for the object itself. For example,

type(matrix(wp,m=10,n=20)) :: a
type(matrix(wp,m=:,n=:)), allocatable:: b

:
allocate(b,source=a)

allocates the scalar object b to be 10×20 matrix with the value of a. Alternatively, the
type and type parameters may be specified directly:

40 John K. Reid

allocate(type(matrix(wp,m=10,n=20)) :: b)

For a polymorphic allocatable object, one or other of these forms must be used in order
to specify the dynamic type.

7 Input/Output Enhancements

Fortran 95 has facilities for defining operators for derived types, but nothing for defining
i/o processing. In Fortran 2003, it may be arranged that when a derived-type object is
encountered in an input/output list, a Fortran subroutine of one of the forms

subroutine formatted_io (dtv,unit,iotype,v_list, &
iostat,iomsg)

subroutine unformatted_io(dtv,unit,iostat,iomsg)

is called. This reads some data from the file and constructs a value of the derived type
or accepts a value of the derived type and writes some data to the file. In the formatted
case, the dt edit descriptor passes a character string and an integer array to control the
action. An example is

character(*) :: format = &
"(dt ’linked-list’ (10, -4, 2))"

:
write(unit,format) a

Here the user’s subroutine receives the structurea, the unit onto which to write its value,
the string linked-list and an integer array with elements 10, -4, 2. This allows it to
perform the appropriate output.

Input/output may be asynchronous, that is, other statements may execute while an
input/output statement is in execution. It is permitted only for external files opened with
asynchronous=’yes’ in the open statement and is indicated by asynchronous
=’yes’ in the read or write statement. Execution of an asynchronous input/output
statement initiates a ‘pending’ input/output operation, which is terminated by an explicit
wait operation for the file:

wait(10)

or implicitly by an inquire, a close, or a file positioning statement for the file.
Stream access is a new method of accessing an external file. It is established by

specifying access=’stream’ on the open statement and may be formatted or un-
formatted. The file is positioned by ‘file storage units’, normally bytes, starting at position
1. The current position may be determined from a pos= specifier in an inquire state-
ment for the unit. A required position may be indicated in a read or write statement
by a pos= specifier.

Input and output of IEEE infinities and NaNs, now done in a variety of ways as
extensions of Fortran 95, is specified. All the edit descriptors for reals treat these values
in the same way and only the field width w is taken into account. The output forms, each
right justified in its field, are:

Fortran Is Getting More and More Powerful 41

1. -Inf or -Infinity for minus infinity
2. Inf, +Inf, Infinity, or +Infinity for plus infinity
3. NaN, optionally followed by non-blank characters in parentheses (to hold additional

information).

8 Miscellaneous Enhancements

The value list of a structure constructor may use the syntax of an actual argument list
with keywords that are component names. Components that were given default values
in the type definition may be omitted.

Individual components of a derived type may be given the private or public
attribute. The protected attribute for a variable declared in a module has been intro-
duced to specify that it may be altered only within the module itself.

Assignment to an allocatable array is treated in the same way as assignment to an
allocatable component (see Section 2): the destination array is allocated to the correct
shape if it is unallocated or reallocated to the correct shape if it is allocated with another
shape.

The intrinsic subroutine move alloc(from,to) has been introduced to move
an allocation from one allocatable object to another.

Pointer assignment for arrays has been extended to allow lower bounds to be specified
and the elements of a rank-one array to be mapped:

p(0:,0:) => a
q(1:m,1:2*m) => a(1:2*m*m)

Fortran 95 did not permit intent to be specified for pointer dummy arguments
because of the ambiguity of whether it should refer to the pointer association status,
the value of the target, or both. It is permitted in Fortran 2003 and refers to the pointer
association status.

Intrinsic procedures have been added to provide access to the command line and to
environment variables.

Fortran 90 introduced the possibility of multi-byte character sets, which provides a
foundation for supporting ISO 10646 [2]. This is a standard for 4-byte characters, which
is wide enough to support all the world’s languages. There is an inquiry function for the
kind value and support for the standardized method (UTF-8) of representing 4-byte
characters as strings of 1-byte characters in a file.

Names of length up to 63 characters and statements of up to 256 lines are allowed.
The main reason for the longer names and statements is to support the requirements of
codes generated automatically.

A binary, octal or hex constant is permitted as a principal argument in a call of the
intrinsic function int, real, cmplx, or dble:

i = int(o’345’)
r = real(z’1234ABCD’)

For int, the ‘boz’ constant is treated as if it were an integer constant. For the others, it
is treated as having the value that a variable of the type and kind would have if its value
was the bit pattern specified.

42 John K. Reid

Square brackets are permitted as an alternative to (/ and /) as delimiters for an
array constructor.

9 Conclusions

We have attempted to give a overview of a major revision of the Fortran language. It
has been designed carefully to preserve major advantages of Fortran: relative ease for
writing codes that run fast and strength for processing of arrays. This has led to a con-
servative approach for object orientation: no multiple inheritance and a clear distinction
between polymorphic and non-polymorphic objects. Similarly, for interfacing with C,
the temptation to import most of the C language into Fortran has been resisted.

Which of the new features excites you most is a personal matter: it may be standard-
ized interfacing with C, exception handling, object orientation, allocatable components,
or being able to access the command line. Certainly, there is something for you - Fortran
will be a more powerful language.

References

1. IEEE. Binary floating-point arithmetic for microprocessor Systems. IEC 60559: 1989. Origi-
nally IEEE 754-1985.

2. ISO 10646. Universal multiple-octet coded character set (UCS) - Part 1: Architecture and basic
multilingual plane. ISO/IEC 10646-1:2000.

3. Michael Metcalf, John Reid, and Malcolm Cohen. Fortran 95/2003 explained. Oxford Univer-
sity Press, 2004.

4. John Reid. The new features of Fortran 2003. ISO/IEC JTC1/SC22/WG5 N1579, 2003.
ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/

5. John Reid. The future of Fortran. Computing in Science and Engineering, 5, 4, 59-67,
July/August 2003.

Large-Scale Computations
with the Unified Danish Eulerian Model

Zahari Zlatev

National Environmental Research Institute
Frederiksborgvej 399, P. O. Box 358, DK-4000 Roskilde, Denmark

zz@dmu.dk
www.dmu.dk/AtmosphericEnvironment/staff/zlatev.htm

Abstract. The Unified Danish Eulerian Model (UNI-DEM) is an mathematical
model for performing different comprehensive studies related to damaging effects
from high pollution levels in Denmark and Europe. The model is described with a
system of partial differential equations (PDEs). The number of equations is equal
to the number of chemical species that are studied by the model. Three chemical
schemes (with 35, 56 and 168 chemical species) are available at present. The
model can be run either as 1-layer model (a 2-D model) or as 10 layer model (a
3-D model). Three grids can be specified in the horizontal planes: (i) a coarse
96 × 96 grid (corresponding to 50 km × 50 km grid-squares), (ii) a medium
288 × 288 grid (corresponding to 16.67 km × 16.67 km grid-squares), (iii) a
fine 480 × 480 grid (corresponding to 10 km × 10 km grid-squares).
The application of some splitting procedure followed by a discretization of the
spatial derivatives leads to the solution of several systems of ordinary differential
equations (ODEs) at each time-step. The number of equations in each system of
ODEs is equal to the product of the number of grid-points and the number of
chemical species. If the 480 × 480 horizontal grid is used in the 3-D model with
168 chemical species, then the number of equations in each system of ODEs is
equal to N = 480 × 480 × 10 × 168 = 387072000. The number of time-steps
for a run covering meteorological data for one year is 213 120 (corresponding
to a time-stepsize of 150 s). Such huge computational tasks can be treated only
if (i) fast numerical methods are selected, (ii) the code is optimized for running
on computers with multi-hierarchical memories (i.e. if the caches are properly
exploited) and (iii) parallel computers are efficiently used. The success achieved in
the efforts to satisfy these three conditions and to carry out long-term computations
with UNI-DEM will be reported in this paper. Studies that are related to different
important topics have been performed by using the model. The most important of
these studies are listed in the end of the paper.

1 Why Are Large-Scale Mathematical Models Used?

The control of the pollution levels in different highly polluted regions of Europe and
North America (as well as in other highly industrialized parts of the world) is an important
task for the modern society. Its relevance has been steadily increasing during the last
two-three decades. The need to establish reliable control strategies for the air pollution
levels will become even more important in the future. Large-scale air pollution models

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 43–52, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

44 Zahari Zlatev

can successfully be used to design reliable control strategies. Many different tasks have
to be solved before starting to run operationally an air pollution model. The following
tasks are most important:

– describe in an adequate way all important physical and chemical processes,
– apply fast and sufficiently accurate numerical methods in the different parts of the

model,
– ensure that the model runs efficiently on modern high-speed computers (and, first

and foremost, on different types of parallel computers),
– use high quality input data (both meteorological data and emission data) in the runs,
– verify the model results by comparing them with reliable measurements taken in

different parts of the space domain of the model,
– carry out some sensitivity experiments to check the response of the model to

changes of different key parameters

and

– visualize and animate the output results to make them easily understandable also
for non-specialists.

The solution of the first three tasks will be the main topic of this paper. However,
different kinds of visualizations have been used to present results from some real-life
runs for the studies that are listed in the end of the paper. The air pollution model,
which is actually used here, is the Danish Eulerian Model (DEM); see [2], [5], [7]. In
fact, a new version of this model, the Unified Danish Eulerian Model (UNI-DEM), has
recently been developed and this new version will mainly be used in the next sections.
The principles are rather general, which means that most of the results are also valid for
other air pollution models.

2 Main Physical and Chemical Processes

Five physical and chemical processes have to be described by mathematical terms in the
beginning of the development of an air pollution model. These processes are:

– horizontal transport (advection),
– horizontal diffusion,
– chemical transformations in the atmosphere combined with emissions from different

sources,
– deposition of pollutants to the surface

and

– vertical exchange (containing both vertical transport and vertical diffusion).

It is important to describe in an adequate way all these processes. However, this is an
extremely difficult task; both because of the lack of knowledge for some of the processes

Large-Scale Computations with the Unified Danish Eulerian Model 45

(this is mainly true for some chemical reactions and for some of the mechanisms de-
scribing the vertical diffusion) and because a very rigorous description of some of the
processes will lead to huge computational tasks which may make the treatment of the
model practically impossible. The main principles used in the mathematical description
of the main physical and chemical processes as well as the need to keep the balance
between the rigorous description of the processes and the necessity to be able to run the
model on the available computers are discussed in [2] and [5].

3 Mathematical Description of a Large Air Pollution Model

The description of the physical and chemical processes, which are related to transport
and transformations of harmful pollutants in the atmosphere, by mathematical terms
leads to a system of partial differential equations (PDEs):

∂cs

∂t
= −∂(ucs)

∂x
− ∂(vcs)

∂y
− ∂(wcs)

∂z
(3.1)

+
∂

∂x

(
Kx

∂cs

∂x

)
+

∂

∂y

(
Ky

∂cs

∂y

)
+

∂

∂z

(
Kz

∂cs

∂z

)
+Es − (κ1s + κ2s)cs + Qs(c1, c2, . . . , cq), s = 1, 2, . . . , q,

where (i) the concentrations of the chemical species are denoted by cs, (ii) u, v and w are
wind velocities, (iii) Kx,Ky and Kz are diffusion coefficients, (iv) the emission sources
are described by Es, (v) κ1s and κ2s are deposition coefficients and (vi) the chemical
reactions are denoted by Qs(c1, c2, . . . , cq).

4 Applying Splitting Procedures

UNI-DEM is split (see [1]) to the following three sub-models:

∂c
(1)
s

∂t
= −∂(wc

(3)
s)

∂z
+

∂

∂z

(
Kz

∂c
(3)
s

∂z

)
(4.2)

∂c
(2)
s

∂t
= −∂(uc(2)s)

∂x
− ∂(vc(2)s)

∂y
+

∂

∂x

(
Kx

∂c
(2)
s

∂x

)
+

∂

∂y

(
Ky

∂c
(2)
s

∂y

)
(4.3)

dc
(3)
s

dt
= Es + Qs(c

(3)
1 , c

(3)
2 , . . . , c(3)q)− (κ1s + κ2s)c(3)s (4.4)

The first of these sub-models, (2), describes the vertical exchange. The second sub-
model, (3), describes the combined horizontal transport (the advection) and the hori-
zontal diffusion. The last sub-model, (4), describes the chemical reactions together with
emission sources and deposition terms. Splitting allows us to apply different numerical
methods in the different sub-models and, thus, to reduce considerably the computational
work and to exploit better the properties of each sub-model.

46 Zahari Zlatev

5 Numerical Methods

Assume that the space domain is discretized by using a grid with Nx × Ny × Nz

grid-points, where Nx, Ny and Nz are the numbers of the grid-points along the grid-
lines parallel to the Ox, Oy and Oz axes. Assume further that the number of chemical
species involved in the model is q = Ns. Finally, assume that the spatial derivatives are
discretized by some numerical algorithm. Then the systems of PDE’s from the previous
section will be transformed into systems of ODEs (ordinary differential equations):

dg(1)

dt
= f (1)(t, g(1)),

dg(2)

dt
= f (2)(t, g(2)),

dg(3)

dt
= f (3)(t, g(3)). (5.5)

The components of functions g(i)(t) ∈ RNx×Ny×Nz×Ns , i = 1, 2, 3, are the ap-
proximations of the concentrations (at time t) at all grid-squares and for all species.
The components of functions f (i)(t, g) ∈ RNx×Ny×Nz×Ns , i = 1, 2, 3, depend on the
numerical method used in the discretization of the spatial derivatives.

A simple linear finite element method is used to discretize the spatial derivatives in (2)
and (3). The spatial derivatives can also be discretized by using other numerical methods
as, for example, a pseudospectral discretization, a semi-Lagrangian discretization (can
be used only to discretize the first-order derivatives, i.e. the advection part should not
be combined with the diffusion part when this method is to be applied) and methods
producing non-negative values of the concentrations.

It is necessary to couple the three ODE systems (5). The coupling procedure is
connected with the time-integration of these systems. Assume that the values of the
concentrations (for all species and at all grid-points) have been found for some t = tn.
According to the notation introduced in the previous sub-section, these values can be
considered as components of a vector-function g(tn) ∈ RNx×Ny×Nz×Ns . The next
time-step, time-step n + 1 (at which the concentrations are found at tn+1 = tn +�t,
where �t is some increment), can be performed by integrating successively the three
systems. The values of g(tn) are used as an initial condition in the solution of the first
ODE system in (5). The solution of of the first system in (5) is used as an initial condition
of the second ODE system in (5). Finally, the solution of the second ODE system in (5)
is used as an initial condition of of the third ODE system in (5). The solution of the last
ODE system in (5) is used as an approximation to g(tn+1). In this way, everything is
prepared to start the calculations in the next time-step, step n + 2.

The first ODE system in (5), can be solved by using many classical time-integration
methods. The so-called θ-method is currently used in UNI-DEM.

Predictor-corrector (PC) methods with several different correctors are used in the
solution of the second ODE system in (5). The correctors are carefully chosen so that
the stability properties of the method are enhanced. If the code judges the time-stepsize
to be too large for the currently used PC method, then it switches to a more stable (but
also more expensive, because more corrector formulae are used to obtain stability) PC
scheme. On the other hand, if the code judges that the stepsize is too small for the
currently used PC method, then it switches to not so stable but more accurate (which is
using less corrector formulae and, therefore is less expensive) PC scheme. In this way
the code is trying both to keep the same stepsize and to optimize the performance.

Large-Scale Computations with the Unified Danish Eulerian Model 47

The solution of the third system in (5) is much more complicated, because this
system is both time-consuming and stiff. Very often the QSSA (Quasi-Steady-State-
Approximation) method is used in this part of the model. It is simple and relatively
stable but not very accurate (therefore it has to be run with a small time-stepsize).
An improved QSSA method was recently implemented in UNI-DEM. The classical
numerical methods for stiff ODE systems (such as the Backward Euler Method, the
Trapezoidal Rule and Runge-Kutta algorithms) lead to the solution of non-linear systems
of algebraic equations and, therefore, they are more expensive. On the other hand, these
methods can be incorporated with an error control and perhaps with larger time-steps.
Partitioning can also be used. Some convergenceproblems related to the implementation
of partitioning have recently been studied (see [6]).

More details about the numerical methods can be found in [1].

6 Moving from Different Versions to a Common Model

Only two years ago several different versions of the model described by the system of
PDEs (1) were available. Six versions were mainly used in the production runs (three 2-D
versions discretized on the 96×96, 288×288 and 480×480 grids respectively together
with the corresponding three 3-D versions). Recently, these versions were combined in
a common model. A special input file, "save inform" is used to decide how to run the
common model. Eight parameters are to be initialized in "save inform" before the start
of the run. These parameters are:

– NX - the number of grid-points along the Ox axis.
– NY - the number of grid-points along the Oy axis.
– NZ - the number of grid-points along the Oz axis.
– NSPECIES - the number of chemical species involved in the model.
– NREFINED - allows us to use refined emissions when available.
– NSIZE - the size of the chunks to be used in the chemical parts.
– NY EAR - the year for which the model is to be run.
– PATH - the working path where the data attached to the different processors will

be stored.

There are several restrictions for the parameters, which can be used at present. The
restrictions are listed below:

1. The allowed values for NX and NY are 96, 288 and 480. Furthermore, NX must
be equal to NY .

2. The allowed values for NZ are 1 (corresponds to the 2-D versions) or 10 (i.e. only
10 layers are allowed for the 3-D versions).

3. Only three chemical schemes (with 35, 56 and 168 species) can be selected at present
by setting NSPECIES equal to 35, 56 or 168.

4. Refined emissions are available only for the 288× 288 case and will be used when
NREFINED = 1. If NREFINED = 0, then the emissions for the 96 × 96
grid will be used (simple interpolation will be used when any of the other two grids,
the 96× 96 grid or the 480× 480 grid, is specified).

48 Zahari Zlatev

5. NSIZE must be a divisor of NX ×NY (the value of NSIZE that is used in the
runs discussed in section 8 is 48).

6. NY EAR can at present be varied from 1989 to 1998 (we are now working to
prolong this interval to year 2003).

Many of these restrictions will be removed (or, at least, relaxed) in the near future.
It will, for example, be allowed to (a) specify a rectangular space domain, (b) use more
than 10 layers and (c) apply more chemical schemes.

The common model, which can be run as described in this section, is called UNI-
DEM (the Unified Danish Eulerian Model).

7 Need for High Performance Computing in the Treatment
of Large Air Pollution Models

The computers are becoming more and more powerful. Many tasks, which several years
ago had to be handled on powerful supercomputers, can be handled at present on PCs
or work-stations. However, there are still many tasks that can only be run on parallel
computers. This is especially true for the large air pollution models. The size of the com-
putational tasks in some versions of UNI-DEM is given in the following two paragraphs
in order demonstrate the fact that high performance computing is needed when large air
pollution models are to be treated.

7.1 Size of the Computational Tasks when 2-D Versions Are Used

Only the last two systems of ODEs in (5) have to be treated in this case. Assume first
that the coarse 96×96 grid is used. Then the number of equations in each of the last two
systems of ODEs in (5) is equal to the product of the grid points (9216) and the number
of chemical species (35), i.e. 322560 equations have to be treated at each time-step when
any of the last two systems of ODEs in (5) is handled. The time-stepsize used in the
transport sub-model, i.e. the second system of ODEs in (5), is 900 s. This stepsize is
too big for the chemical sub-model; the time-stepsize used in the latter model is 150 s.
A typical run of this model covers a period of one year (in fact, as mentioned above,
very often a period of extra five days is needed to start up the models). This means that
35520 time-steps are needed in the transport sub-model, while six times more time-steps,
213120 time-steps, are needed in the chemical part, the third system of ODEs in (5). If
the number of scenarios is not large, then this version of the model can be run on PCs
and work-stations. If the number of scenarios is large or if runs over many years have
to be performed (which is the case when effects of future climate changes on the air
pollution studies is studied), then high performance computations are preferable (this
may be the only way to complete the study when either the number of scenarios is very
large or the time period is very long).

Assume now that the medium 288× 288 grid is used. Since the number of chemical
species remains unchanged (35), the number of equations in each of the last two systems
in (5) is increased by a factor of 9 (compared with the previous case). This means that
2903040 equations are to be treated at each time step when any of the last two systems

Large-Scale Computations with the Unified Danish Eulerian Model 49

of ODEs in (5) is handled. The time-stepsize remains 150 s when the chemical part is
treated. The time-stepsize has to be reduced from 900 s to 300 s in the transport part. This
means that a typical run (one year + 5 days to start up the model) will require 106760
time-steps when the transport sub-model is treated and 213120 time-steps are needed
when the chemical sub-model is handled. Consider the ratio of the computational work
when the medium grid is used and the computational work when the coarse grid is used.
For the transport sub-model this ratio is 18, while the ratio is 9 for the chemical-sub-
model.

Finally, assume that the fine 480 × 480 grid is used. Using similar arguments as in
the previous paragraph, it is easy to show that the number of equations in each of the
last two systems of ODEs in (5) is increased by a factor of 25 (compared with the 96x96
grid). This means that 8064000 equations are to be treated at each time step when any of
the systems the last two systems of ODEs in (5) is handled. The time-stepsize remains
150 s when the chemical part is treated. The time-stepsize has to be reduced from 900
s to 150 s in the transport part. This means that a typical run (one year + 5 days to start
up the model) will require 213520 time-steps for each of the last two systems of ODEs
in (5). Consider the ratio of the computational work when the fine grid is used and the
computational work when the coarse grid is used. For the transport sub-model this ratio
is 150, while the ratio is 25 for the chemical-sub-model. It is clear that this version of
the model must be treated on powerful parallel architectures.

7.2 Size of the Computational Tasks when 3-D Versions Are Used

All three sub-models, i.e. all three systems of ODEs in (5), have to be treated in this case.
Assume that the number of layers in the vertical direction is n (n = 10 is used in this
paper). Under this assumption the computational work when both the second and the
third system of ODEs in (5) are handled by the 3-D versions (either on a coarse grid or
on the finer grids) is n times bigger than the computational work for the corresponding
2-D version. The work needed to handle the first of the three systems of ODEs in (5) is
extra, but this part of the total computational work is much smaller than the parts needed
to treat the second and the third of the three systems of ODEs in (5).

The above analysis of the amount of the computational work shows that it is much
more preferable to run the 3-D version on high-speed parallel computers when the coarse
grid is used. It will, furthermore, be shown that the runs are very heavy when the 3-D
version is to be run on a fine grid. In fact, more powerful parallel computers than the
computers available at present are needed if meaningful studies with the 3-D version of
UNI-DEM discretized on a fine grid are to be carried out.

8 Parallel Computations

As mentioned in the beginning of the previous section, many tasks, which several years
ago had to be handled on powerful supercomputers, can be solved at present on PCs or
work-stations. However, it must be emphasized here that the tasks related to the treatment
if large-scale are certainly not belonging to the class of tasks that can be handled on PCs
or work-stations (see the discussion in the previous section), because several systems of

50 Zahari Zlatev

ODEs containing up to several million equations are to be handled in several hundred
thousand time-steps. Moreover, many scenarios are to be run (several hundreds or even
several thousands). This is why it is essential

– to exploit efficiently the cache memory of the computers

and

– to develop efficient codes for parallel runs.

Several examples which illustrate the efficiency of UNI-DEM with regard to these
two tasks will be given in this section (see more details in [1] and [4]). Computing times
achieved by six options run with the chemical scheme with 35 species on 8 processors
of a SUN computer are given in Table 1.

Table 1. Total computing times (measured in seconds) which are obtained when six options of
UNI-DEM are run on 8 processors

NX × NY 2-D (NZ = 1) 3-D (NZ = 10)

96 5060 33491

288 70407 549801

480 355387 2559173

It is interesting to see whether increasing the number of processors used by a factor
of k will lead to an reduction of the computing time by a factor approximately equal to k.
We selected the most time-consuming option (the option discretized on a 480×480×10
grid) and run it on 32 processors. The results were compared, see Table 2, with the results
obtained when 8 processors were used (i.e. we have k = 4). It is clearly seen that the
speed ups are rather close to linear. It must be stressed however, that the total computing
time (about 8.61 days) remains very large also when 32 processors are used.

The conclusion is that more processors and more powerful processors might resolve
many of the problems mentioned in the previous sub-section.

Table 2. Comparison of the computing times (measured in seconds) which are obtained on 8
processors and 32 processors with UNI-DEM discretized on a 480 × 480 × 10 grid. The speed-
ups obtained in the transition from 8 processors to 32 processors are given in brackets

Process 8 processors 32 processors

Hor. adv. + diff. 986672 308035 (3.20)

Chem. + dep. 1055289 268978 (3.92)

Total 2559173 744077 (3.44)

Large-Scale Computations with the Unified Danish Eulerian Model 51

9 Applications of UNI-DEM in Comprehensive Studies

UNI-DEM was run with different options and different scenarios in a long series of
comprehensive studies. Several of these studies are listed below (see more details in [2]
and [3] as well as in the references there):

– impact of climate changes on air pollution levels,
– influence of the biogenic emissions on the creation of high ozone concentrations,
– long-term variations of the air pollution levels in different parts of Europe,
– influence of European sources outside Denmark on the Danish pollution levels,
– exceedance of critical levels established by EU in Denmark and in other parts of

Europe.

10 Conclusions

The main features of a large-scale air pollution model, the Unified Danish Eulerian
Model (UNI-DEM), are described in this paper. The discretization of this model over an
area containing the whole of Europe leads to the necessity to solve systems containing
many millions of equations at every time-step (the number of time-steps being normally
several hundred thousand). This is why it is only possible to carry out successfully long
series of runs (with many scenarios) when modern high-speed computers are available
and efficiently used. The code is performing very well on parallel computers. This fact
allowed us to perform many important real-life studies with the model.

Acknowledgements

A grant (CPU-1101-17) from the Danish Centre for Scientific Computing (DCSC) gave
us access to the Sun computers at the Technical University of Denmark. The members
of the staff of DCSC helped us to resolve some difficult problems related to the efficient
exploitation of the grid of Sun computers.

The work was partly supported by a grant from NATO (Collaborative Linkage Grant
EST.CLG.980505) in which scientists from five countries united their efforts in a study
on the "Impact of Climate Changes on Pollution Levels in Europe".

References

1. Alexandrov, V., Owcharz, W., Thomsen, P. G. and Zlatev, Z.: Parallel runs of a large air pollution
model on a grid of Sun computers. Mathematics and Computers in Simulation, Vol. 65 (2004),
557-577.

2. Dimov, I. and Zlatev, Z.: Computational and Numerical Challenges in Air Pollution Modelling.
Frontiers in Applied Mathematics, SIAM, Philadelphia, to appear.

3. Havasi, A. and Zlatev, Z.: Trends of Hungarian air pollution levels on a long time-scale.
Atmospheric Environment, Vol 36 (2002), 4145-4156.

4. Owczarz, W. and Zlatev, Z.: Parallel matrix computations in air pollution modelling. Parallel
Computing, Vol. 28 (2002), 355-368.

52 Zahari Zlatev

5. Zlatev, Z.: Computer treatment of large air pollution models,. Kluwer Academic Publishers,
Dordrecht-Boston-London, 1995.

6. Zlatev, Z.: Partitioning ODE systems with an application to air pollution models. Computers
and Mathematics with Applications, Vol. 42 (2001), 817-832.

7. Zlatev, Z.: Massive data set issues in air pollution modelling. In: Handbook on Massive Data
Sets (J. Abello, P. M. Pardalos and M. G. C. Resende, eds.), pp. 1169-1220. Kluwer Academic
Publishers, Dordrecht-Boston-London, 2002.

Interval Methods: An Introduction

Organizers: Luke E.K. Achenie1, Vladik Kreinovich2, and Kaj Madsen3

1 Department of Chemical Engineering, Unit 3222
University of Connecticut, Storrs, CT, USA

achenie@engr.uconn.edu
2 Department of Computer Science, University of Texas

El Paso, TX 79968, USA
vladik@cs.utep.edu

3 Department of Informatics and Mathematical Modelling, Technical University of Denmark
DK-2800 Lyngby, Denmark

km@imm.dtu.dk

Abstract. This chapter contains selected papers presented at the Minisymposium
on Interval Methods of the PARA’04 Workshop “State-of-the-Art in Scientific
Computing”. The emphasis of the workshop was on high-performance computing
(HPC). The ongoing development of ever more advanced computers provides
the potential for solving increasingly difficult computational problems. However,
given the complexity of modern computer architectures, the task of realizing this
potential needs careful attention. A main concern of HPC is the development of
software that optimizes the performance of a given computer.
An important characteristic of the computer performance in scientific computing
is the accuracy of the computation results. Often, we can estimate this accuracy by
using traditional statistical techniques. However, in many practical situations, we
do not know the probability distributions of different measurement, estimation,
and/or roundoff errors, we only know estimates of the upper bounds on the cor-
responding measurement errors, i.e., we only know an interval of possible values
of each such error. The papers from the following chapter contain the description
of the corresponding “interval computation” techniques, and the applications of
these techniques to various problems of scientific computing.

Why Data Processing?

In many real-life situations, we are interested in the value of a physical quantity y that is
difficult or impossible to measure directly. Examples of such quantities are the distance
to a star and the amount of oil in a given well. Since we cannot measure y directly,
a natural idea is to measure y indirectly. Specifically, we find some easier-to-measure
quantitiesx1, . . . , xn which are related to y by a known relation y = f(x1, . . . , xn); this
relation may be a simple functional transformation, or complex algorithm (e.g., for the
amount of oil, numerical solution to an inverse problem). Then, to estimate y, we first
measure the values of the quantities x1, . . . , xn, and then we use the results x̃1, . . . , x̃n

of these measurements to to compute an estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n).
For example, to find the resistance R, we measure current I and voltage V , and then

use the known relation R = V/I to estimate resistance as R̃ = Ṽ /Ĩ.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 53–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

54 Luke E.K. Achenie, Vladik Kreinovich, and Kaj Madsen

In this example, the relation between xi and y is known exactly; in many practical
situations, we only known an approximate relation y ≈ f̃(x1, . . . , xn) between xi and
y. In such situations, the estimate ỹ for y is computed as ỹ = f̃(x̃1, . . . , x̃n).

Computing an estimate for y based on the results of direct measurements is called
data processing; data processing is the main reason why computers were invented in
the first place, and data processing is still one of the main uses of computers as number
crunching devices.

Why Interval Computations?
From Computing to Probabilities to Intervals

Measurement are never 100% accurate, so in reality, the actual value xi of i-th measured
quantity can differ from the measurement result x̃i. Because of these measurement errors

Δxi
def= x̃i−xi, the result ỹ = f(x̃1, . . . , x̃n) of data processing is, in general, different

from the actual value y = f(x1, . . . , xn) of the desired quantity y [6].

It is desirable to describe the error Δy
def= ỹ − y of the result of data processing. To

do that, we must have some information about the errors of direct measurements.
What do we know about the errors Δxi of direct measurements? First, the manufac-

turer of the measuring instrument must supply us with an estimate of the upper bound
Δi on the measurement error. (If no such upper bound is supplied, this means that no
accuracy is guaranteed, and the corresponding “measuring instrument" is practically
useless.) In this case, once we performed a measurement and got a measurement result
x̃i, we know that the actual (unknown) value xi of the measured quantity belongs to the
interval xi = [xi, xi], where xi = x̃i −Δi and xi = x̃i + Δi.

In many practical situations, we not only know the interval [−Δi, Δi] of possible
values of the measurement error; we also know the probability of different values Δxi

within this interval. This knowledge underlies the traditional engineering approach to
estimating the error of indirect measurement, in which we assume that we know the
probability distributions for measurement errors Δxi.

In practice, we can determine the desired probabilities of different values of Δxi by
comparing the results of measuring with this instrument with the results of measuring
the same quantity by a standard (much more accurate) measuring instrument. Since the
standard measuring instrument is much more accurate than the current one, the difference
between these two measurement results is practically equal to the measurement error;
thus, the empirical distribution of this difference is close to the desired probability dis-
tribution for measurement error. There are two cases, however, when this determination
is not done:

– First is the case of cutting-edge measurements, e.g., measurements in fundamental
science. When a Hubble telescope detects the light from a distant galaxy, there is
no “standard" (much more accurate) telescope floating nearby that we can use to
calibrate the Hubble: the Hubble telescope is the best we have.

– The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration is so
costly – usually costing ten times more than the sensor itself – that manufacturers
rarely do it.

Interval Methods: An Introduction 55

In both cases, we have no information about the probabilities ofΔxi; the only information
we have is an estimate on the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result x̃i,
the only information that we have about the actual value xi of the measured quantity
is that it belongs to the interval xi = [x̃i − Δi, x̃i + Δi]. In such situations, the only
information that we have about the (unknown) actual value of y = f(x1, . . . , xn) is that
y belongs to the range y = [y, y] of the function f over the box x1 × . . .× xn:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

The process of computing this interval range based on the input intervals xi is called
interval computations; see, e.g., [1,2,3,5].

Comment. In addition to measurement errors, we also have round-off errors and – in
case some parameters are estimated by experts – also uncertainty of expert estimates.

Interval Computations Techniques: Brief Reminder

Historically the first method for computing the enclosure for the range is the method
which is sometimes called “straightforward" interval computations. This method is based
on the fact that inside the computer, every algorithm consists of elementary operations
(arithmetic operations, min, max, etc.). For each elementary operation f(a, b), if we
know the intervals a and b for a and b, we can compute the exact range f(a,b). The
corresponding formulas form the so-called interval arithmetic. For example,

[a, a] + [b, b] = [a + b, a + b]; [a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b),max(a · b, a · b, a · b, a · b)].
In straightforward interval computations, we repeat the computations forming the pro-
gram f step-by-step, replacing each operation with real numbers by the corresponding
operation of interval arithmetic. It is known that, as a result, we get an enclosure Y ⊇ y
for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples below),
the enclosure has excess width.

There exist more sophisticated techniques for producing a narrower enclosure, e.g.,
a centered form method. However, for each of these techniques, there are cases when
we get an excess width. Reason: as shown in [4,7], the problem of computing the exact
range is known to be NP-hard even for polynomial functions f(x1, . . . , xn) (actually,
even for quadratic functions f).

Applications of Interval Techniques

The ultimate objective of interval computations has always been to apply these methods
to practical problems. The workshop provided us with a unique opportunity to promote
collaboration between interval researchers and researcher interested in applications.

This chapter contains extended versions of selected papers presented at the interval
Minisymposium of PARA’04.

56 Luke E.K. Achenie, Vladik Kreinovich, and Kaj Madsen

Acknowledgments

First of all, we would like to thank the organizers of PARA’04, especially Jerzy Was-
niewski and Kaj Madsen (Technical University of Denmark) and Jack Dongarra (Univer-
sity of Tennessee and Oak Ridge National Laboratory), for their wonderful organization,
their enormous support and help. We also want to thank the anonymous referees for their
help in reviewing the papers, all the attendees of the minisymposium for their fruitful
discussions, and, of course, we want to thank all the authors of the papers, for their hard
work and exciting results.

References

1. Jaulin L., Keiffer M., Didrit O., and Walter E. (2001), “Applied Interval Analysis", Springer-
Verlag, Berlin.

2. Kearfott R. B. (1996), “Rigorous Global Search: Continuous Problems", Kluwer, Dordrecht.
3. Kearfott R. B. and Kreinovich V., eds. (1996), “Applications of Interval Computations" (Parda-

los. P. M., Hearn, D., “Applied Optimization", Vol. 3), Kluwer, Dordrecht.
4. Kreinovich V., Lakeyev A., Rohn J., and Kahl P. (1997), “Computational Complexity and

Feasibility of Data Processing and Interval Computations” (Pardalos. P. M., Hearn, D., “Applied
Optimization", Vol. 10), Kluwer, Dordrecht.

5. Moore R. E. (1979), “Methods and Applications of Interval Analysis", SIAM, Philadelphia.
6. Rabinovich S. (1993), “Measurement Errors: Theory and Practice", American Institute of

Physics, New York.
7. Vavasis S. A. (1991), “Nonlinear Optimization: Complexity Issues", Oxford University Press,

N.Y.

A Chemical Engineering Challenge Problem
That Can Benefit from Interval Methods

Luke E.K. Achenie and Gennadi M. Ostrovsky

Department of Chemical Engineering, Unit 3222
University of Connecticut, Storrs, CT, USA

Abstract. Computational mathematics has been an integral part of Chemical En-
gineering since the early sixties. Unfortunately, researchers within the Applied
and Computational Mathematics community are only minimally aware of this
fact. Here we will discuss one challenge problem in Chemical Engineering which
requires computational mathematics tools and may benefit greatly from interval
analysis. We will also briefly introduce a second challenge problem.

1 Introduction

Computational mathematics has been an integral part of Chemical Engineering since the
early sixties. Unfortunately, researchers within the Applied and Computational Mathe-
matics community are only minimally aware of this fact. The goal of this paper is to dis-
cuss a challenging, unsolved or partially solved problem in Chemical Engineering which
requires computational mathematics tools. An example challenge problem comes from
process simulation that involves hundreds and sometimes thousands of process variables
and/or highly coupled nonlinear process constraints. One of the issues is propagating
uncertainties in the process model parameters throughout the flowsheet. Specifically one
needs to address the question: given a set of uncertain parameters with known bounds,
can all the process constraints be satisfied for all realizations of the uncertain parameters?
How large can the domain of an uncertain parameter be without violating any process
constraint? What is the limiting process constraint? These considerations lead to what
is termed “flexibility analysis” within the Chemical Engineering literature. Flexibility
analysis sub-problems have been modeled as maxminmax nonlinear programs. These
problems are inherently non-linear, non-convex and non-smooth. Can interval methods
be used to solve flexibility analysis sub-problems? It is the authors’ view that this may
very well be the case.

2 Challenge Problem 1 – Flexibility Analysis

The problem of optimal design using mathematical models with bounded uncertain
parameters θ is very important in chemical engineering. We refer to this problem as the
flexibility analysis problem. A formulation of the problem is given in the form of the
two-step optimization problem (TSOP) [1].

f = min
d,zi

∑
i∈I1

ωif(d, zi, θi) (2.1)

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 57–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

58 Luke E.K. Achenie and Gennadi M. Ostrovsky

gj(d, zi, θi) ≤ 0 j ∈ J i ∈ I1 θ ∈ T

χ(d) ≤ 0 (2.2)

where the feasibility function χ(d) is expressed as

χ(d) = max
θ∈T

min
z∈Z

max
j∈J

gj(d, z, θ) J = (1, . . . ,m) (2.3)

The maxminmax operator in (2.3) introduces non-differentiability and multiextremality
in the optimization problem. To address the non-differentiability issue, we have devel-
oped a split and bound (SB) strategy, which systematically provides lower and upper
bounds to the objective function in (2.1) in the space of the constraints. The lower and
upper bound problems are standard NLP problems. To show the suggested approach,
we proceed as follows.

The feasibility function can be represented as

χ(d) = max
θ∈T

ψ(d, θ) (2.4)

where
ψ(d, θ) = min

z∈Z
max
j∈J

gj(d, z, θ) (2.5)

The following relations hold

max
x

max
y

f(x, y) = max
y

max
x

f(x, y) (2.6)

min
x

max
y

f(x, y) ≥ max
y

min
x

f(x, y) (2.7)

maxϕ(x) ≤ 0 ↔ ϕ(x) ≤ 0, ∀x ∈ X (2.8)

where x and y are vectors of continuous or discrete variables. The relations in (2.6) and
(2.8) are fairly straightforward, while (2.7) is proved in [4].

Theorem 1: (see [5]) If [x∗, yi∗] is the solution of

f = min
x,yi

f(x)

ϕi(x, yi) ≤ 0 i = 1, . . . ,m

then x∗ is the solution of
f = min

x∈X
f(x) (2.9)

min
y∈Y

ϕi(x, y) ≤ 0 i = 1, . . . ,m

Let T be partitioned into N subregions Ti: T = T1 ∪ T2 ∪ . . . ∪ TN . For each
subregion Ti define

χU,i(d) = min
z

max
θ∈Ti

max
j∈J

gj(d, z, θ) (2.10)

A Chemical Engineering Challenge Problem That Can Benefit from Interval Methods 59

This function is obtained by rearrangement of the first two operations in (2.3). If Ti

coincides with T then we will designate the function as χU (d). Using inequality (2.7)
one can show that χU (d) is an upper bound of χ(d) on T

χU (d) ≥ χ(d) ≡ max
θ∈T

ψ(d, θ)

Similarly for χU,i we have
χU,i(d) ≥ max

θ∈Ti

ψ(d, θ) (2.11)

Then from (2.11)

max
i

χU,i(d) ≥ max
i

max
θ∈Ti

ψ(d, θ) = max
θ∈T

ψ(d, θ) = χ (2.12)

2.1 A Point Arithmetic Strategy for the Two-Step Optimization Problem

We consider a point arithmetic strategy (namely, the split and bound (SB) algorithm) for
solving the TSOP. The SB is a two-level iterative procedure, which employs a partitioning
of T into subregions T

(k)
i . It has the following two main operations: (1) An algorithm

for estimating an upper bound fU,(k) of the TSOP objective function (2) An algorithm
for estimating a lower bound fL,(k) of the TSOP objective function. The upper level
serves to partition T using information obtained from the lower level. The lower level
is used for calculation of lower and upper bounds.

Consider the algorithm for calculation of an upper bound of the TSOP objective
function. At the k-th iteration in the SB method, let T be partitioned into the subregions
T

(k)
i , i = 1, . . . , Nk. On T

(k)
i an upper bound of the TSOP is given by

fU,(k) = min
d,zi

∑
i∈I1

ωif(d, zi, θi) (2.13)

gj(d, zi, θi) ≤ 0 j ∈ J i ∈ I1 J = (1, . . . , n)

χU,1(d) ≤ 0, . . . , χU,Nk(d) ≤ 0 (2.14)

where χU,i is determined by (2.10). Using χU,i from (2.10), Theorem 1 and relation
(2.6) we can transform (2.13) and (2.14) as

fU,(k) = min
d,zi

∑
i∈I1

ωif(d, zi, θi) (2.15)

gj(d, zi, θi) ≤ 0 j ∈ J i ∈ I1

max
θ∈Ti

gj(d, zi, θ) ≤ 0 l = 1, . . . , Nk, j = 1, . . . ,m (2.16)

Let [d(k), zi,(k), zl,(k)] be the solution of the above problem. Since condition (2.12) is
met, the feasible region of (2.13) is contained in that of the TSOP (see (2.1)). Con-
sequently fU,(k) is an upper bound of the TSOP objective function, thus fU,(k) ≥ f .

60 Luke E.K. Achenie and Gennadi M. Ostrovsky

Problem (2.15) is a semi-infinite programming problem for which the outer approxima-
tion algorithm [2] can be used.

Consider the lower bound problem for the TSOP. Using relation (2.6) and χ2(d) in
the form (2.4), we can reduce the TSOP to

f = min
d,zi

∑
i∈I1

ωif(d, zi, θi) (2.17)

gj(d, zi, θi) ≤ 0 j ∈ J i ∈ I1

ψ(d, θi) ≤ 0 ∀θi ∈ T (2.18)

This is an optimization problem with an infinite number of constraints (2.18). Let [d∗, zi∗]
be the solution of the problem. At the k-th iteration, define the set S(k)

2 = {θ1,r : r ∈
I
(k)
2 }, where I

(k)
2 is a set of indices of the points belonging to S

(k)
2 . We refer to these

points as critical points. Consider the following problem:

fL,(k) = min
d,zi

∑
i∈I1

ωif(d, zi, θi)

gj(d, zi, θi) ≤ 0 j ∈ J i ∈ I1

ψ(d, θi) ≤ 0 ∀θi ∈ S
(k)
2 (2.19)

In contrast to (2.17), this problem has a finite number of constraints. Taking into account
the form of ψ(d, θ) (see (2.5)) and using Theorem 1 and relation (2.6) we can transform
problem (2.19) as

fL,(k) = min
d,zi

∑
i∈I1

ωif(d, zi, θi) (2.20)

gj(d, zi, θi) ≤ 0 j ∈ J i ∈ I1

gj(d, z1,r, θ1,r, θ2) ≤ 0 ∀θr ∈ S
(k)
2 j = 1, . . . ,m

SinceS
(k)
2 ∈ T then the feasible region of problem (2.17) will be contained in the feasible

region of (2.19), therefore fL,(k) is a lower bound on the TSOP objective function, thus
fL,(k) ≤ f .

In the proposed lower bound algorithm, we need rules for partitioning and selection
of the set S

(k)
2 of critical points. For partitioning we will use the following heuristic:

at the k-th iteration, only those subregions T
(k)
l (l = 1, . . . , Nk) for which constraints

(2.16) (in the upper bound problem) are active are partitioned as follows

∃j ∈ J max
θ∈T 1

l

gj(d(k), zl,(k), θ) = 0.

The rationale for the above heuristic is as follows. Partitioning the subregions with active
constraints in (2.15) removes the constraints from the problem. It is well established that
deletion of active constraints leads to an optimal objective function value which is at

A Chemical Engineering Challenge Problem That Can Benefit from Interval Methods 61

least as good as before. In most cases it leads to an improvement in the optimal value of
the objective function.

Now consider the formation of the set of critical point S(k)
2 . Let θl,j be the solution

of the problem in the left-hand side of (2.16) which are active then the set S(k)
2 will have

the following form: S(k)
2 = {θl,j , l = 1, . . . , Nk, j = 1, . . .,m}. We will refer to these

points as active points.
Introduce a set L(k) of subregions T

(k)
i as follows: L(k) = {T (k)

i : r(T (k)
i) > δ},

where δ is a small positive scalar. Now we propose the following algorithm for solving
the TSOP.

Algorithm 1

Step 1: Set k=1. Initialize the set of approximation points, d(0), zi,(0), zl,(0) (l =
1, . . . , N1) and δ.

Step 2: Solve the upper bound problem to obtain the solution

[d(k), zi,(k), zl,(k)] (i ∈ I1, l = 1, . . . , Nk)

Step 3: Determine the set Q(k) of subregions with active constraints in problem
(2.13) as

χU,i(d(k)) = 0, T
(k)
i ∈ Q(k)

Step 4: Calculate a lower bound by solving problem (2.20).
Step 5: If

f
U,(k)
2 − f

L,(k)
2 ≤ εf

U,(k)
2 (2.21)

is met then the solution of TSOP is found, therefore stop.
Step 6: If

r(T (k)
i) ≤ δ, i = 1, . . . , Nk

is met go to Step 8.
Step 7: Find the set R(k) = L(k) ∩ Q(k). Partition each T

(k)
i ∈ R(k) into two

subregions.
Step 8: Set δ = δ/2 and go to Step 7.
Step 9: Set k = k + 1 and go to Step 2.

The SB method will obtain at least a local minimum of TSOP2. Determining an
initial partitioning of T into subregions T

(1)
i (i = 1, . . . , N1), is not simple. Of course,

one can select an initial partition which consists of one subregion, namely the whole of
T . However, in this case it is quite possible that the upper bound problem (2.15) has no
solution. Therefore we need a strategy for determination of the initial partition. For this
we propose the following

min
d,u

χ(d)≤u

u (2.22)

Let d∗ be the solution of the problem. It is clear, that if χ2(d∗) ≥ 0 then TSOP has no
solution. On the other hand if χ2(d∗) ≤ 0 then we obtain the design d∗ and a partition
for which there is a solution to the upper bound problem (2.15). It is easy to see that
(2.22) is a particular case of the TSOP. Therefore we can use Algorithm 1.

62 Luke E.K. Achenie and Gennadi M. Ostrovsky

2.2 Computational Experiments

Using the algorithms above, we optimized (under parametric uncertainty) a chemical
process consisting of a reactor and heat exchanger on a 2GHz Pentium 4 PC. Formulation
of the problem is in [1]. The uncertainty region is represented as: T (γ) = {θi : θN

i −
γΔθi ≤ θi ≤ θN

i + γΔθi} where θN
i is the nominal value of θi, δθi is the maximal

deviation from the nominal values and γ is a positive scalar. We employed the Knitro
software [6] for all the NLP subproblems in Algorithm 1.

Nominal optimization (i.e. no parametric uncertainty) is compared with the TSOP
(i.e. with parametric uncertainty) in Table 1. In the first row we give the results of
nominal optimization (γ = 0). In the first column, nonlinear (linear) means that in the
maximization in (2.23) of Algorithm 1, nonlinear (linear) models are used. In columns 3,
4, and 5, the optimal value of the objective function, the volume and the heat exchanger
area are given. In columns 6 and 7, we give the CPU time (tF) for solving problem of
determination of an initial partition, and the CPU time (t1) for TSOP1.

Table 1. Nominal optimization and TSOP

Max alg. γ F $/yr V m3 A m2 tF sec t1 sec

– 0.0 9769.25 5.42 7.30 – –

nonlinear 1.0 11045.79 6.63 9.28 0 2.19

linear 1.0 11045.79 6.63 9.28 0 0.36

nonlinear 1.5 12078.15 7.47 11.05 7.26 124.14

linear 1.5 12078.15 7.47 11.05 0.72 3.83

nonlinear 1.75 12685.86 8.01 12.18 21.55 427.41

linear 1.75 12685.86 8.01 12.18 1.83 10.80

2.3 What Role Can Interval Analysis Play in the Solution
of the Two-Step Optimization Problem?

From Eqn. (2.3) the feasibility function χ(d) is expressed as

χ(d) = max
θ∈T

min
z∈Z

max
j∈J

gj(d, z, θ) J = (1, . . . ,m) (2.23)

Then the TSOP problem can be expressed as

f = min
d,zi

gj(d,zi,θi)≤0
χ(d)≤0

∑
i∈I1

ωif(d, zi, θi) j ∈ J i ∈ I1 θ ∈ T (2.24)

Consider all the variables [d, θ, z] to be interval variables and the parameters [zi, θi, ωi]
to be point valued. Next designate [d, θ, z] as [p3, p2, p1], then as shown in [3], Eqn.
(2.23) is equivalent to

χ(d) = max
p2

min
p1

gj(d,z,θ)≤u J=(1,...,m)

u (2.25)

A Chemical Engineering Challenge Problem That Can Benefit from Interval Methods 63

Thus the TSOP problem is of the form

f = min
p3

max
p2

min
p1

gj(d,z,θ)≤u J=(1,...,m)

u (2.26)

In [3], an algorithm has been described for the guaranteed solution of problem (2.26)
and has largely been demonstrated on unconstrained problem. In contrast the TSOP
problem when cast in the form of (2.26) has several nonconvex and possibly nonsmooth
constraints. Thus the algorithm in [3] needs to be modified/tailored to the TSOP problem.
Assuming one is able to do this, then the interval arithmetic approach can have at least
one important advantage over the point arithmetic approach described in Section 2 as
follows.

– In Section 2, Algorithm 1 for solving the TSOP problem relies on certain convexity
assumptions. In the absence of these assumptions, global optimization (which is
computationally intensive) will have to be employed in the sub-problems described
under Algorithm 1. In contrast the interval approach does not make any convexity
assumptions.

– The ability to handle problems with all types of convexity characteristics and non-
smoothness characteristics increases the class of TSOP problems that can be solved.

The jury is still out with regard to whether the point arithmetic approach is computa-
tionally more efficient than the interval approach. However, it is most likely the case that
the curse of dimensionality will have a more profound effect on the interval approach.
In addition we expect that the dependency effect which is possibly the Achilles’ heel
of interval computations may play a big role especially in the presence of the kind of
process constraints we encounter.

3 Challenge Problem 2 – Blackbox Process Models

In keeping with the theme of the paper as suggested in the title, this section makes a
passing remark at another problem in Chemical Engineering that can potentially benefit
from interval analysis. In chemical process simulation, we tend to deal with blackbox
models such as those from a simulation engine. The main types of blackbox models are
as follows: (1) can be expressed analytically but the user is not allowed direct access
to the model (proprietary software), (2) can be expressed only algorithmically but the
user is not allowed direct access to the model, (3) can be expressed only algorithmically
and the user is allowed direct access to the model. As one reviewer pointed out, interval
methods had and could be used to estimate not only the range of a function given by an
analytical formula, but also the range of a function given by a more general algorithm.
This would be true only for case (3). Cases (1) and (2) are quite common in Chemical
Engineering practice; therefore development of interval approaches that can handle cases
(1) and (2) will be very helpful.

4 Conclusions

Two examples of challenge problems in chemical engineering have been presented. The
first one presented in greater detail involves propagating uncertainties in the process

64 Luke E.K. Achenie and Gennadi M. Ostrovsky

model parameters throughout the flowsheet. Specifically one needs to address the ques-
tion: given a set of uncertain parameters with known bounds, can all the process con-
straints be satisfied for all realizations of the uncertain parameters? How large can the
domain of an uncertain parameter be without violating any process constraint? What is
the limiting process constraint? These considerations lead to what is termed \flexibility
analysis" within the Chemical Engineering literature. Flexibility analysis sub-problems
have been modeled as maxminmax nonlinear programs. These problems are inherently
non-linear, non-convex and non-smooth. Here in this paper a point arithmetic based
approach and a possible interval approach have been outlined for solving one aspect
(namely the TSOP) of the flexibility problem. The second challenge problem deals with
blackbox models. The broad concepts for using interval analysis to handle the two chal-
lenge problems presented here, are being explored by our group. Additionally, we would
like to encourage the theory experts in the interval community to bring their craft to bear
on problems of importance to the Chemical Engineering community.

References

1. K.P. Halemane and I.E. Grossmann, “Optimal process design under uncertainty,” vol. 29,
pp. 425–433, 1983.

2. R. Hettich and K.O. Kortanek, “Semi-infinite programming: Theory, methods and applica-
tions,” vol. 35(3), pp. 380–429, 1993.

3. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis. London, UK: Springer,
2001.

4. J.C. McKinsey, Introduction to the Theory of Games. New York, NY: McGraw-Hill, 1952.
5. G.M. Ostrovsky, Y.M. Volin, and D. Golovashkin, “Evaluation of chemical process flexibility,”

vol. 20, pp. S617–S622, 1996.
6. R.A. Waltz and J. Nocedal, Knitro 2.0 User’s Handbook, Northwestern University, 2002.

Performance of Taylor Model Methods
for Validated Integration of ODEs

Martin Berz and Kyoko Makino

Department of Physics and Astronomy
Michigan State University

East Lansing, MI 48824, USA

Abstract. The performance of various Taylor model (TM)-based methods for the
validated integration of ODEs is studied for some representative computational
problems. For nonlinear problems, the advantage of the method lies in the ability to
retain dependencies of final conditions on initial conditions to high order, leading
to the ability to treat large boxes of initial conditions for extended periods of time.
For linear problems, the asymptotic behavior of the error of the methods is seen
to be similar to that of non-validated integrators.

1 Introduction

Taylor model methods provide functional inclusions of a function f of the form

f(x) ∈ P (x) + I for x ∈ B

where B is the domain box, P is the nth order Taylor polynomial of f around a point
x0 ∈ B ⊂ Rm expressed by floating point coefficients, and I is an interval remainder
bound including errors associated to the floating point representation ofP. Taylor models
of a given function can be obtained from its code list by use of Taylor model arithmetic.
Compared to other validated methods, the approach has the following advantages:

– Reduction of the dependency problem [1], since the bulk of the functional depen-
dency is represented by the polynomial P

– High-order approximation, since the width of I scales with order (n+ 1) if n is the
order of P [2]

– Simplification of global optimization, since original function is replaced byP,which
has little dependency and is easily amenable to domain reduction

– Availability of advanced tools for solutions of implicit equations

The methods also allow the development of validated integration schemes [3] [4]
that represent the dependence of the solution at the time tk after the kth step in terms of
the initial conditions xi as a Taylor model

x(xi, tk) ∈ Pk(xi) + Ik.

Frequently the dynamics is also represented in a pre-conditioned form by factoring a
co-moving coordinate frame as

x(xi, tk) ∈ (Ck + Jk) ◦ (Prk(xi) + Irk)

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 65–73, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 Martin Berz and Kyoko Makino

where Ck represents a change of variables. Frequently used choices in the study of
dynamics are linear transformations based on curvilinear coordinates (PC-CV) [5] [4]
[6] [7] [8] and blunted parallelepiped coordinates (PC-BL), which prevents the occurring
parallelepipeds from becoming ill-conditioned [9]. For purposes of comparison, we also
utilize the QR coordinate system used for the description of the error term by Lohner
in his code AWA [10] [11] [12], which determines a linear relationship between final
conditions and initial conditions.

Finally it is also possible to give up the direct connection between final conditions
and initial conditions and merely ask that

x (xi, tk) ∈
⋃

xi∈B

P ∗
k (xi, tk)

where P ∗
k is a polynomial obtained in the so-called shrink wrap approach [13] [9], of

which we use the blunted version (SW-BL). All these features are implemented in the
code COSY-VI.

2 Nonlinear Problems

As an example for the behavior for a nonlinear problem, we utilize a classical example
from the literature [14] [15] of validated integration of ODEs, the Volterra equations

dx1

dt
= 2x1(1− x2),

dx2

dt
= −x2(1− x1). (2.1)

The ODEs admit an invariant which has the form

C(x1, x2) = x1x
2
2e

−x1−2x2 = Constant, (2.2)

which is useful for the practical study of the methods under consideration. In the quadrant
characterized by x1,2 > 0, the constant is positive, which implies that contour lines are
restricted to this quadrant and even form closed curves. Figure 1 illustrates the shape of
C and a few of its contour lines. The period of one cycle of the solution depends on the
initial condition, and outer orbits take longer.

We study the ODEs for the initial conditions

x01 ∈ 1 + [−0.05, 0.05], x02 ∈ 3 + [−0.05, 0.05].

In the contour line plot of the invariant in figure 1, the center of these initial conditions lies
on the outermost of the three shown contour lines. Within the Taylor model framework
of COSY-VI, the initial conditions are represented by the initial Taylor models

I COEFFICIENT ORDER EXPONENTS
1 1.000000000000000 0 0 0 0
2 0.5000000000000000E-01 1 1 0 0
R [-.5884182030513415E-015,0.5884182030513415E-015]

1 3.000000000000000 0 0 0 0
2 0.5000000000000000E-01 1 0 1 0
R [-.1476596622751470E-014,0.1476596622751470E-014]

Performance of Taylor Model Methods for Validated Integration of ODEs 67

 0.04
 0.02

 0.00821

0
1

2
3

4
5

x1 0

1

2

3

x2

0

0.01

0.02

0.03

0.04

0.05

C(x1,x2)

Fig. 1. The invariant of the Volterra equations, which has the form C(x1, x2) = x1x
2
2e

−x1−2x2 .

A few contour lines are shown, including the one passing through the initial condition (x1, x2) =

(1, 3) being studied

We use the ODEs to compare the behavior of the code COSY-VI and the code AWA
by Lohner [12] and to study the longer term behavior of the validated integration process.
As a first step, in figure 2 we show the overall width of the validated enclosure of the
solution for one full revolution of the validated enclosure produced by AWA and COSY-
VI. It is seen that shortly before completion of the revolution, the enclosures produced
by AWA grow rapidly.

We now study the Taylor model representation of the solution obtained by COSY-VI
after one revolution; the x1 component has the form

I COEFFICIENT ORDER EXPONENTS
1 0.9999999999999984 0 0 0 0
2 0.4999999999999905E-01 1 1 0 0
3 0.1593548596541794 1 0 1 0
4 0.2987903618516347E-02 2 2 0 0
5 0.7967742982712876E-02 2 1 1 0
6 0.1745863785260356E-01 2 0 2 0
7 0.4979839364191599E-04 3 3 0 0
8 0.5551021321878651E-03 3 2 1 0
9 0.6348634117324201E-03 3 1 2 0

10 0.1191291278992926E-02 3 0 3 0
11 0.3258832737620100E-05 4 4 0 0
12 0.3241341695678232E-06 4 3 1 0
13 0.3862783715688610E-04 4 2 2 0
14 0.2689662978922477E-05 4 1 3 0
15 0.3564904362283420E-04 4 0 4 0

.....
171 0.1136167325983013E-18 18 117 0

68 Martin Berz and Kyoko Makino

0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6

S
ol

ut
io

n
E

nc
lo

su
re

 B
ox

 W
id

th

Time

COSY-VI
AWA

Fig. 2. The width of validated enclosure for solution of the Volterra equation determined by AWA
and COSY-VI

R [-.4707095747144810E-010,0.4699004714805186E-010]

It can be seen that the zeroth order term is reproduced nearly exactly, as necessary
after one revolution. Also the dependence on the first variable is nearly as in the original
Taylor model. However, there is now an additional dependence on the second variable,
which is significantly larger than the dependence on the first variable, and which induces
a significant shearing of the solution. There are also higher order dependencies on initial
variables; up to machine precision, terms of up to order 18 contribute, and some of the
second order contributions indeed have a magnitude similar to the first order contribution,
an indication of strongly nonlinear behavior.

The dependence on the second variable and the higher order contributions are the
reason why the box enclosure produced by COSY-VI shown in figure 2 is larger at the
end of the integration than it was in the beginning. To determine how much of this is
actual overestimation, we insert the Taylor models representing the flow at time t into
the invariant in eq. (2.2) of the ODE and subtract from it the value of the invariant at
time 0. To the extent the Taylor models represent the true solution, the coefficients of
the resulting polynomial should vanish. The bound of the resulting Taylor model is a
measure for the sharpness of the approximation.

As a specific example, we show the resulting Taylor model of the invariant defect
after one full revolution.

I COEFFICIENT ORDER EXPONENTS
1 0.1214306433183765E-16 0 0 0 0
2 -.1100465205072787E-16 1 1 0 0
3 -.4109126233720062E-16 1 0 1 0
4 0.3169597288625592E-17 2 2 0 0
5 0.2035589578841535E-16 2 1 1 0

Performance of Taylor Model Methods for Validated Integration of ODEs 69

1e-16

1e-15

1e-14

1e-13

1e-12

1e-11

1e-10

0 1 2 3 4 5 6

In
va

ria
nt

 D
ef

ec
t

Time

QR-precon, 18th
CV-precon, 18th
QR-precon, 12th
CV-precon, 12th

Fig. 3. Invariant defect of the Taylor model integration of the Volterra equation for one revolution
for oders 12 and 18 and curvilinear (CV) and QR preconditioning

6 0.2318159770045569E-16 2 0 2 0
7 -.3702063375093326E-18 3 3 0 0
8 -.2109853192492055E-17 3 2 1 0
9 0.7358175212798107E-17 3 1 2 0

10 0.2956745849914467E-16 3 0 3 0
.....

76 0.2469510337886316E-19 15 6 9 0
R [-.1689839352652954E-011,0.1691154903051651E-011]

Indeed all remaining coefficients are very small, and the remaining terms are just
of the magnitude of machine precision. The main contribution is in fact the remainder
term of the Taylor model evaluation of the invariant of magnitude around 10−12, which
is similar to that of the Taylor model solution after one revolution. Overall, this study
shows that the original domain box of width 10−1 could be transported for one revolution
with an actual overestimation of only around 10−12.

Figure 3 shows in detail the size of the invariant defect as a function of integration
time for up to one revolution. Shown are computation orders 18 and 12 and curvilinear
(CV) as well as QR preconditioning. It can be seen that the method of order 18 produces
an overestimation of around 10−12 after one revolution; after a fast ramp-up away from
the floating point error floor, a plateau is reached, until the error again increases because
the system of ODEs enters a region of strong nonlinearity. On the other hand, figure 2
shows that AWA already early on exhibits relative overestimation of about 2 and then
fails before t = 5.

In order to assess the long-term behavior of the integration, it is important to first
consider some of the specific properties of the Volterra equations. As can be seen from
the one-revolution Taylor model enclosure of the solution, one of the important features
of the ODEs is that the revolution period strongly depends on the original position on

70 Martin Berz and Kyoko Makino

the invariant curves of the Volterra equations. This entails that when integrating the flow
of an initial condition box of significant size, some of its corners will lag more and more
behind some of the others, and the box will become more and more elongated. Analyzing
the one-revolution Taylor model, one sees that within only about five revolutions, the
image of the original box has a size similar to the entire parameter space reached during
the revolution; thus simplistic long-term integration of this ODE is not possible without
further modifications.

One way to treat this problem is to assess the dynamics in terms of a Poincare section,
a method frequently employed in the study of long-term behavior (see for example [5]).
Here however, we will restrict our attention to a more immediate tool for assessing
the long-term behavior, namely repeated forward-backward integration. This approach
maintains the nonlinear effects of the problem while away from initial conditions, but
avoids the “lag” problem because after one forward-backward cycle, all initial conditions
return to their original values.

In the following we assess the long-term forward-backward integration of the
Volterra equation using the shrink wrap approach utilized in COSY-VI [13] [9]. Roughly
speaking, in this approach the interval remainder bounds are \absorbed" back into the
range of the Taylor polynomial of the flow by slightly enlarging the corresponding co-
efficients. Thus the remaining interval dependencies and the associated risk of eventual
blowup disappear. If the intervals to be absorbed into the range are sufficiently small in
each step, the increase in the size of the coefficients will also be small. The quality of
the invariant over suitable integration times suggests that this is indeed the case.

In figure 4 we show the results of some longer term integration of 100 forward-
backwards cycles. The pictures show the width of the solution enclosure box as a function
of cycles. The left picture shows the situation for five full cycles; while the box width
varies greatly, namely by nearly two orders of magnitude, over one forward-backward
cycle it returns to nearly the previous status. The repeated pattern of five very similar
looking box widths is visible; furthermore, within each of the five cycles, the widths are
mirror symmetric around the middle, which corresponds with the turn-around point.

The right picture in figure 4 shows the situation from cycle 95 to cycle 100. The
remarkable fact is that while the curves have significant fine structure, there is no dif-
ference discernible to the naked eye; hence the transport after nearly 100 cycles looks
almost the same as in the beginning, although the box itself was relatively large and got
enhanced to a width of nearly one in each of the forward and backward passes.

3 Autonomous Linear Problems

While of rather limited practical significance, linear autonomous problems are of the-
oretical interest in the study of integration schemes because much is known about the
asymptotic behavior of error growth of common methods. Thus it is interesting to study
the behavior of validated integration schemes for such cases. Of particular interest are
cases that have eigenvalues of varying magnitudes, since for several validated ODE
integration schemes asymptotically this leads to difficulties with ill-conditioned linear
algebra operations.

Performance of Taylor Model Methods for Validated Integration of ODEs 71

0.01

0.1

1

0 1 2 3 4 5

S
ol

ut
io

n
B

ox
 W

id
th

Number of Cycles

0.01

0.1

1

95 96 97 98 99 100

Fig. 4. Evolution of box widths during forward-backward cycles of the Volterra equation. Shown
are the situation for the first five cycles as well as cycles 95 to 100

To asses the behavior of the methods, we study three test cases for linear ODEs x′ =
Bx originally proposed by Markus Neher. We compare the performance of COSY-VI
with that of the code AWA. This comparison is interesting because AWA can easily handle
these cases since different from the situation in the previous section, the dependence on
initial conditions is always linear, and thus COSY-VI’s advantage to handle higher order
dependence on initial condition is irrelevant. But they are challenging for COSY-VI
because only first order terms in initial conditions appear, resulting in extreme sparsity
in the Taylor model data structure on computers.

We show results of various computation modes with COSY-VI, namely QR precondi-
tioning (PC-QR), curvilinear preconditioning (PC-CV), blunted parallelepiped precon-
ditioning (PC-BL), and blunted shrink wrapping (SW-BL). Both codes use automatic
step size control. COSY-VI uses order 17. AWA uses order 20, and the modes 1 through
4; frequently the mode 4, the \intersection of QR decomposition and interval-vector"
performs best. All runs were performed in the arithmetic environment of a 450MHz
Pentium III processor. Integration was performed until t = 1000 or until failure for the
initial box

(1, 1, 1) + 10−6 · [−1, 1]3.

As a first example, we study a pure contraction with three distinct eigenvalues and
obtained the following result of performance.

B1 =

⎛⎜⎝ −0.6875 −0.1875 0.08838834762
−0.1875 −0.6875 0.08838834762

0.08838834762 0.08838834762 −0.875

⎞⎟⎠ ≈

⎛⎜⎝−
1
2 0 0

0 − 3
4 0

0 0 −1

⎞⎟⎠
Mode t max Steps Width
AWA 1000 1216 1.4e-35
VI PC-QR 1000 1633 3.1e-38
VI PC-CV 1000 1463 4.1e-38
VI PC-BL 1000 1620 3.8e-36

72 Martin Berz and Kyoko Makino

VI SW-BL 1000 1726 6.3e-36

We note that the sweeping variable in COSY’s Taylor model arithmetic [2], which
controls the size of terms retained as significant, has been set to 10−40 for this case.
Running with a larger value for the sweeping variable leads to a solution set with a size
of roughly that larger size.

As the next example, we study a pure rotation

B2 =

⎛⎜⎝ 0 −0.7071067810−0.5
0.7071067810 0 0.5

0.5 −0.5 0

⎞⎟⎠ ≈

⎛⎜⎝0 −1 0
1 0 0
0 0 0

⎞⎟⎠
Mode t max Steps Width
AWA 1000 2549 3.5e-6
VI PC-QR 1000 2021 3.5e-6
VI PC-CV 1000 2046 3.5e-6
VI PC-BL 1000 2021 3.5e-6
VI SW-BL 1000 2030 3.5e-6

Finally we study a combination of a contraction with a rotation

B3 =

⎛⎜⎝ −0.125 −0.8321067810−0.3232233048
0.5821067810 −0.125 0.6767766952
0.6767766952−0.3232233048 −0.25

⎞⎟⎠ ≈

⎛⎜⎝0 −1 0
1 0 0
0 0 − 1

2

⎞⎟⎠
Mode t max Steps Width
AWA 1000 3501 3.0e-6
VI PC-QR 1000 2772 3.0e-6
VI PC-CV 1000 2769 3.0e-6
VI PC-BL 1000 2746 4.7e-6
VI SW-BL 1000 2728 1.2e-5

4 Conclusion

Summarizing the results of the numerical experiments for various nonlinear and linear
problems shows the following results:

– As expected, the ability to treat higher order dependences on initial conditions leads
to a significant performance advantage for COSY-VI for nonlinear problems and
larger initial condition domain boxes

– For extended computation times in the Volterra equations, curvilinear precondition-
ing of Taylor model integration behaves similar to QR preconditioning, and both of
them behave significantly better than the AWA approach

Performance of Taylor Model Methods for Validated Integration of ODEs 73

– Shrink wrapping allows extended integration periods; over 100 forward-backward
cycles through the Volterra equation, growth of box width is not discernible within
printer resolution even for rather large boxes where AWA cannot complete a single
forward integration

– For linear autonomous problems, the COSY-VI preconditioning methods based on
QR, curvilinear, and blunted parallelepiped, all show qualitatively the same behavior
as the QR mode of AWA. The latter is known to have error growth similar to the
non-validated integration for autonomous linear ODEs. Thus we observe that the
three modes of COSY-VI achieve the same type of error growth.

– The number of integration steps of all methods are rather similar.

References

1. K. Makino and M. Berz. Efficient control of the dependency problem based on Taylor model
methods. Reliable Computing, 5(1):3–12, 1999.

2. K. Makino and M. Berz. Taylor models and other validated functional inclusion methods.
International Journal of Pure and Applied Mathematics, 6,3:239–316, 2003. available at
http://bt.pa.msu.edu/pub.

3. M. Berz and K. Makino. Verified integration of ODEs and flows using differential algebraic
methods on high-order Taylor models. Reliable Computing, 4(4):361–369, 1998.

4. K. Makino. Rigorous Analysis of Nonlinear Motion in Particle Accelerators. PhD thesis,
Michigan State University, East Lansing, Michigan, USA, 1998. Also MSUCL-1093.

5. M. Berz. Modern Map Methods in Particle Beam Physics. Academic Press, San Diego, 1999.
Also available at http://bt.pa.msu.edu/pub.

6. K. Makino and M. Berz. Perturbative equations of motion and differential operators in non-
planar curvilinear coordinates. International Journal of Applied Mathematics, 3,4:421–440,
2000.

7. M. Berz and K. Makino. Preservation of canonical structure in nonplanar curvilinear coordi-
nates. International Journal of Applied Mathematics, 3,4:401–419, 2000.

8. M. Berz. Arbitrary order description of arbitrary particle optical systems. Nuclear Instruments
and Methods, A298:426, 1990.

9. K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model based validated
integrators. submitted. Also MSUHEP-40910, available at http://bt.pa.msu.edu/pub.

10. R. J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems. In
E. Kaucher, U. Kulisch, and C. Ullrich, editors, Computer Arithmetic: Scientific Computation
and Programming Languages, pages 255–286. Teubner, Stuttgart, 1987.

11. R. J. Lohner. Einschliessung der Losung gewohnlicher Anfangs- und Randwertaufgaben und
Anwendungen. Dissertation, Fakultat fur Mathematik, Universitat Karlsruhe, 1988.

12. R. J. Lohner. AWA - Software for the computation of guaranteed bounds for solutions of
ordinary initial value problems.

13. K. Makino and M. Berz. The method of shrink wrapping for the validated solution of ODEs.
Technical Report MSUHEP-20510, Department of Physics and Astronomy, Michigan State
University, East Lansing, MI 48824, 2002.

14. W. F. Ames and E. Adams. Monotonically convergent numerical two-sided bounds for a
differential birth and death process. In K. Nickel, editor, Interval Mathematics, volume 29 of
Lecture Notes in Computer Science, pages 135–140, Berlin; New York, 1975. Springer-Verlag.

15. R. E. Moore. Methods and Applications of Interval Analysis. SIAM, 1979.

On the Use of Intervals in Scientific Computing:
What Is the Best Transition

from Linear to Quadratic Approximation?

Martine Ceberio1, Vladik Kreinovich1, and Lev Ginzburg2,3

1 Department of Computer Science, University of Texas
El Paso, TX 79968, USA

{mceberio,vladik}@cs.utep.edu
2 Department of Ecology and Evolution

State University of New York Stony Brook
NY 11794, USA
lev@ramas.com

3 Applied Biomathematics, 100 N. Country Road
Setauket, NY 11733, USA

Abstract. In many problems from science and engineering, the measurements
are reasonably accurate, so we can use linearization (= sensitivity analysis) to
describe the effect of measurement errors on the result of data processing.
In many practical cases, the measurement accuracy is not so good, so, to get a good
estimate of the resulting error, we need to take quadratic terms into consideration
– i.e., in effect, approximate the original algorithm by a quadratic function. The
problem of estimating the range of a quadratic function is NP-hard, so, in the
general case, we can only hope for a good heuristic.
Traditional heuristic is similar to straightforward interval computations: we re-
place each operation with numbers with the corresponding operation of interval
arithmetic (or of the arithmetic that takes partial probabilistic information into
consideration). Alternatively, we can first diagonalize the quadratic matrix – and
then apply the same approach to the result of diagonalization.
Which heuristic is better? We show that sometimes, the traditional heuristic is
better; sometimes, the new approach is better; asymptotically, which heuristic
is better depends on how fast, when sorted in decreasing order, the eigenvalues
decrease.

1 Formulation of the Problem

Need for Data Processing and Indirect Measurements in Scientific Computing. In many
areas of science and engineering, we are interested in the value of a physical quantity
y that is difficult (or even impossible) to measure directly. Examples may include the
amount of a pollutant in a given lake, the distance to a faraway star, etc.

To measure such quantities, we find auxiliary quantities x1, . . . , xn (easier to mea-
sure) that are related to y by a known algorithm y = f(x1, . . . , xn). In some cases, the
relation between xi and y is known exactly. In such cases, to estimate y, we measure xi,
and apply the algorithm f to the results x̃1, . . . , x̃n of measuring xi. As a result, we get
an estimate ỹ = f(x̃1, . . . , x̃n) for y.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 75–82, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

76 Martine Ceberio, Vladik Kreinovich, and Lev Ginzburg

In many other practical situations, we only know an approximate relation y ≈
f̃(x1, . . . , xn), with an upper bound εf on the accuracy of this approximation:

|f̃(x1, . . . , xn)− f(x1, . . . , xn)| ≤ εf .

In such cases, to estimate y, we measure xi, and apply the algorithm f̃ to the results
x̃1, . . . , x̃n of measuring xi. As a result, we get an estimate ỹ = f̃(x̃1, . . . , x̃n) for y.

This indirect measurement (data processing) is one of the main reasons why com-
puters were invented in the first place, and one of the main uses of computers is scientific
computing.

Need for Error Estimation for Indirect Measurements in Scientific Computing. Measure-
ments are never 100% accurate. The results x̃i of direct measurements are, in general,
different from the actual values xi. Therefore, the estimate ỹ = f(x̃1, . . . , x̃n) is, in
general, different from the actual (unknown) value y = f(x1, . . . , xn). What do we

know about the error Δy
def= ỹ − y of the indirect measurement?

Estimating Errors of Indirect Measurements: Formulation of the Problem. In many

cases, we know the upper bounds Δi on the measurement errors Δxi
def= x̃i − xi of

direct measurements. Once we know such an upper bound, we can guarantee that the

actual value xi lies in the interval xi
def= [x̃i −Δi, x̃i +Δi]. In this case, if we know the

relation y = f(x1, . . . , xn) exactly, then the only information that we have about y is

that y belongs to the range [r, r] def= f(x1, . . . ,xn).
In situations when, instead of knowing the exact relation y = f(x1, . . . , xn), we

only know:

– the approximate relation y ≈ f̃(x1, . . . , xn) between xi and y and
– we know the upper bound εf on the accuracy of approximating f by f̃ ,

then we can guarantee that y belongs to the interval [r − εf , r + εf], where [r, r] def=
f̃(x1, . . . ,xn) is the range of a known algorithmic function f̃(x1, . . . , xn) on the “box”
x1 × . . .× xn.

In both cases, to find the range of possible values of y, we must find the range [r, r]
of a known algorithmic function f (or f̃) on the known box.

Comment. In some engineering situations, instead of knowing the guaranteed upper
bounds Δi on the measurement errors, we only have estimates Δi of the upper bounds.
In such situations, it is still desirable to compute the corresponding range for y – but we
can no longer absolutely guarantee that the actual value y belong to the resulting range;
we can only guarantee it under the condition that the estimates are correct.

Interval Computations: A Way to Estimate Errors of Indirect Measurements. Interval
computations enable us to either compute the range a given algorithmic function f (or
f̃) on the given box exactly, or at least to provide an enclosure for this range. For the
case when n = 2 and the function f(x1, x2) is one of the standard arithmetic operations

On the Use of Intervals in Scientific Computing 77

(+, −, multiplication, etc.), there are known explicit formulas for the range of f . For
example,

[x1, x1] + [x2, x2] = [x1 + x2, x1 + x2].

These formulas form interval arithmetic; see, e.g., [3,4,7].
One way to compute the range for more complex functions f is to use straightforward

(“naive”) interval computations, i.e., replace each operation forming the algorithm f with
the corresponding operation from interval arithmetic. This technique leads to an interval
that is guaranteed to be an enclosure, i.e., to contain the desired range, but it is known
that this interval contains excess width, i.e., is wider than the desired range [3,4,7]. How
can we reduce this excess width?

When Measurement Errors Are Small, Linearization Works Well. When the measurement
errors Δxi are relatively small, we can expand f into Taylor series in terms of Δxi and
ignore quadratic and higher terms – i.e., keep only linear terms. In a linear expression
f = a0 + a1 · Δx1 + . . . + an · Δxn, each variable Δxi ∈ [−Δi, Δi] occurs only
once. It is known that for such single-use expressions (SUE), straightforward interval
computations leads to the exact range; see, e.g., [2,3].

Quadratic Approximation Is More Difficult to Analyze. In many real-life situations,
measurement errors Δxi are not so small, so we must also take into consideration terms
that are quadratic in Δxi. So, we must be able to estimate the range of a quadratic
function

f = a0 +
n∑

i=1

ai ·Δxi +
n∑

i=1

n∑
j=1

aij ·Δxi ·Δxj ,

or, equivalently,

f = a0 +
n∑

i=1

ai ·Δxi +
n∑

i=1

aii · (Δxi)2 +
n∑

i=1

∑
j �=i

aij ·Δxi ·Δxj . (1.1)

There exist methods for computing the exact range of such a function (see, e.g., [4]), but
all such methods require 2n steps – the number of steps which, even for a realistically
large number of inputs n ≈ 102 − 103, can be impossibly large. Since the problem of
estimating range of a given quadratic function is, in general, NP-hard (see, e.g., [6,9]),
we cannot hope to get an algorithm that is always faster. So, for large n, we can only
compute enclosures.

Two Natural Approaches to Compute Enclosure: Which Is Better? One approach to
computing the enclosure of a quadratic approximation function (1.1) is to use naive
(straightforward) interval computations. As we have mentioned, in this approach, we
often get excess width.

There is a particular case when we do not have any excess width – when the matrix
A = (aij)i,j is diagonal. In this case, f can be represented as a sum of the terms
ai ·Δxi + aii ·Δx2

i corresponding to different variables, and each of these terms can
be reformulated as a SUE expression aii · (Δxi + ai/(2aii))2 + const – thus making
the whole expression SUE.

78 Martine Ceberio, Vladik Kreinovich, and Lev Ginzburg

Every quadratic function can be represented in a similar diagonal form – as a linear
combination of squares of eigenvectors. It therefore seems reasonable to first represent
a quadratic function in this form, and only then apply straightforward interval compu-
tations.

A natural question is: which approach is better? If none of them is always better,
then when is the first approach better and when is the second one better?

Beyond Interval Computations: Towards Joint Use of Probabilities and Intervals in
Scientific Computing. In many cases, in addition to the upper bounds on Δxi, we have

partial information on the probabilities of different values of Δx
def= (Δx1, . . . , Δxn).

In particular, in some applications, we know that the input variables xi are not
truly independent and are in fact correlated. This knowledge about correlation is also
usually represented in the probabilistic terms, as partial information about the probability
distribution of Δx.

In all such cases, in addition to the interval range, we would like to compute the
information about the probabilities of different values of y. There exist ways of extending
interval arithmetic to such cases; see, e.g., [1]. We can therefore use both approaches in
these cases as well.

What We Are Planning to Do. In this paper, we show that which method is better depends
on the eigenvalues of the matrix B = (aij · Δi · Δj)i,j : on average, the eigenvector
method is better if and only if the eigenvalues (when sorted in decreasing order) decrease
fast enough.

2 Formalizing the Problem in Precise Terms

Simplifying the Problem. Let us start by simplifying the above problem.
In the original formulation of the problem, we have parameters a0, ai, and aij that

describe the function f and the parameters Δi that describe the accuracy of measuring
each of n variables. We can reduce the number of parameters if we re-scale each of n
variables in which a way that Δi becomes 1. Indeed, instead of the variables Δxi, let us

introduce the new variables yi
def= Δxi/Δi. For each of yi, the interval of possible values

is [−1, 1]. Substituting Δxi = Δi · yi into the expression (1.1), we get the expression
for f in terms of yi:

f = b0 +
n∑

i=1

bi · yi +
n∑

i=1

bii · y2
i +

n∑
i=1

∑
j �=i

bij · yi · yj, (2.2)

where b0
def= a0, bi

def= ai ·Δi, and bij
def= aij ·Δi ·Δj .

In the following text, we will therefore assume that Δi = 1 and that the quadratic
form has the form (2.2).

Explicit Expressions for the Results of the Two Compared Methods. Let us explicitly
describe the results of applying the two methods to the quadratic form (2.2).

On the Use of Intervals in Scientific Computing 79

If we directly apply straightforward interval computations to the original expression
(2.2), then, since yi ∈ [−1, 1], we get the enclosure f (0) + f (1) + f (2)

orig, where f (0) = b0,

f (1) = [−
n∑

i=1

|bi|,
n∑

i=1

|bi|], and

f (2)
orig =

n∑
i=1

(bii · [0, 1]) +
n∑

i=1

∑
j �=i

|bij | · [−1, 1]. (2.3)

Alternatively, we can represent the matrix B = (bij)i,j in terms of its eigenvalues λk

and the corresponding unit eigenvectors ek = (ek1, . . . , ekn), as

bij =
n∑

k=1

λk · eki · ekj . (2.4)

In this case, the original expression (2.2) takes the form

b0 +
n∑

i=1

bi · yi +
n∑

k=1

λk ·
(

n∑
i=1

eki · yi

)2

. (2.5)

Since yi ∈ [−1, 1], we conclude that
n∑

i=1

eki · yi ∈ [−Bk, Bk], where Bk
def=

n∑
i=1

|eki|.

Therefore,

(
n∑

i=1

eki · yi

)2

∈ [0, B2
k], and so, when applied to the expression (2.5),

straightforward interval computations lead to the expression f (0) + f (1) + f (2)
new, in which

linear terms f (0) and f (1) are the same, while

f (2)
new =

n∑
k=1

λk ·

⎡⎣0,(n∑
i=1

|eki|
)2
⎤⎦ . (2.6)

So, to decide which method is better, it is sufficient to consider only quadratic terms.

Example When the Eigenvalue-Related Expression Is Better. If the matrix B has only
one non-zero eigenvector λ1 �= 0, then the formula (2.5) takes a simplified form: λ1 ·
(

n∑
i=1

e1i · yi)2. This is a SUE expression, so straightforward interval computations lead

to the exact range.
For such matrices, the original expression (1) is not necessarily SUE, and may lead

to excess width. For example, for a 2×2 matrix with bij = 1 for all i and j, the only non-
zero eigenvalue is λ1 = 2 (with eigenvector (1, 1)). So, the new expression leads to the
exact range [0, 4]. On the other hand, if we apply straightforward interval computations
to the original expression (2.2), then the resulting expression (2.3) leads to [−2, 4], i.e.,
to excess width.

80 Martine Ceberio, Vladik Kreinovich, and Lev Ginzburg

Example When the Original Expression Is Better. For the identity matrix B, the original
quadratic expression (2.2) leads to a SUE expression

∑
bii · (Δxi)2 for which straight-

forward interval computations lead to the exact range. For example, for n = 1, we get
the range [0, 2].

On the other hand, if we select eigenvectors that are different from (1, 0) and (0, 1),
we may get excess width. For example, if we choose e1 = (

√
2/2,

√
2/2) and e2 =

(
√

2/2,−
√

2/2), then, for straightforward interval computations, the range of

√
2

2
Δx1

+
√

2
2

Δx2 is [−
√

2,
√

2], hence the range of its square is [0, 2], and the range of the

resulting quadratic expression is estimated as [0, 4].

How Do We Compare Different Approaches: Randomization Needed. The main differ-
ence between the two cases is in the eigenvalues of the matrix B: In the first example,
we had only one non-zero eigenvalue, and the eigenvalue-related expression leads to
better estimates. In the second example, we have equal eigenvalues, and the original
expression is better. It is therefore natural to assume that which method is better depends
on the eigenvalues λk of the matrix B.

We should not expect a result of the type “if we have certain λk, then the first
method is always better" – which method is better depends also on the eigenvectors.
For example, in the second case, if we select (1, 0) and (0, 1) as eigenvectors, then the
eigenvalue-related expression also leads to the same optimal range estimate. In other
words, for a given set of eigenvalues λk, we should not expect a result saying that one
of the methods is better for all possible eigenvectors: for some eigenvectors the first
methods will be better, for some others the second method will be better. In such a
situation, it is reasonable to analyze which method is better on average, if we consider
random eigenvectors.

Natural Probability Measure on the Set of All Eigenvectors. What is the natural proba-
bility measure on the set of all possible eigenvectors e1, . . . , en? In general, we have n
mutually orthogonal unit vectors, i.e., an orthonormal base in the n-dimensional space.
It is reasonable to assume that the probability distribution on the set of all such bases
is rotation-invariant. This assumption uniquely determines the probability distribution;
see, e.g., [5,8].

Indeed, the first unit vector e1 can be uniquely represented by its endpoint on a unit
sphere. The only possible rotation-invariant distribution on a unit sphere is a uniform
distribution. Once e1 is fixed, e2 can be any vector from a sphere in an (n−1)-dimensional
space of all vectors orthogonal to e1; the only rotation-invariant distribution on this
sphere is also uniform, etc. So, in the resulting distribution, e1 is selected from the
uniform distribution on the unit sphere, e2 from the uniform distribution on the unit
sphere in the subspace of all vectors⊥ e1, etc.

3 Main Result

Theorem 1. When n →∞, then asymptotically, the expected values are:

On the Use of Intervals in Scientific Computing 81

E[f (2)
orig] ∼

⎡⎣−√ 2
π
· n ·

√√√√ n∑
k=1

λ2
k,

√
2
π
· n ·

√√√√ n∑
k=1

λ2
k

⎤⎦ ; (3.7)

E[f (2)
new] ∼

[
2
π
· n ·

∑
k:λk<0

λk,
2
π
· n ·

∑
k:λk>0

λk

]
. (3.8)

Conclusions. If
∑
|λk| <

√
π/2 ·

√∑
λ2

k, then asymptotically, E[f (2)
new] ⊂ E[f (2)

orig],
so the eigenvector-based method is definitely better.

If
∑
|λk| <

√
2π ·
√∑

λ2
k , then the interval E[f (2)

new] is narrower than E[f (2)
orig], so

in this sense, the new method is also better.

Example. The spectrum λk often decreases according to the power law λk ∼ k−α. In

this case,
∑
|λk| ≈

∞∫
1

x−α dx = 1/(α− 1) and
∑

λ2
k ≈

∞∫
1

x−2α dx = 1/(2α− 1), so

the above inequality turns into (α− 1)2 ≥ (2/π) · (2α− 1), which is equivalent to

α ≥ 1 +
2
π

+

√(
1 +

2
π

)
· 2
π
≈ 2.7. (3.9)

Hence, if the eigenvalues decrease fast (α ≥ 2.7), the new method is definitely better.
For α ≥ 1.6, the new method leads to narrower intervals; otherwise, the traditional
method leads, on average, to better estimates.

Proof of the Theorem. Before we start the proof, let us derive some auxiliary formulas.
Since each vector ek is a unit vector, we have

∑
i

e2
ki = 1. Due to rotation invariance,

the expected value E[e2
ki] should not depend on i, hence E[e2

ki] = 1/n. Similarly, from∑
i

eki · eli = 0 and rotation invariance, we conclude that E[eki · eli] = 0.

For given k, l, and i �= j, the value E[eki · elj] should not change under the trans-
formation xi → xi and xj → −xj , so E[eki · elj] = 0.

To compute E[f (2)
orig], we must find E[bii] and E[|bij |]. By definition (2.4), for each

i, E[bii] =
∑
k

λk · E[e2
ki] = (1/n) ·

∑
λk, so the sum of n such terms is proportional

to
∑

λk.
For i �= j, due to the central limit theorem, the distribution for bij (formula (2.4)) is

asymptotically Gaussian, so asymptotically,E[|bij |] ∼
√

2/π ·
√

E[b2ij]. Here, E[b2ij] =∑
k

∑
l

λk · λl ·E[eki · ekj · eli · elj]. Due to symmetry, each k �= l term is 0, so E[b2ij] =∑
k

λ2
k · E[e2

ki · e2
kj]. Asymptotically, eki and ekj are independent, so E[e2

ki · e2
kj] ∼

E[e2
ki] ·E[e2

kj] = (1/n)2. Therefore, E[b2ij] ∼ (1/n)2 ·
∑

λ2
k , hence E[|bij |] ∼

√
2/n ·

(1/n) ·
√∑

λ2
k. The sum of n(n− 1) such terms is∼

√
2/π ·n ·

√
λ2

k. The sum of the
terms E[bii] is asymptotically smaller, so when n →∞, we get the expression (3.7).

82 Martine Ceberio, Vladik Kreinovich, and Lev Ginzburg

For the new expression, we must compute, for every k, the expected value of

E

⎡⎣(∑
i

|eki|
)2
⎤⎦ =
∑
i,j

E[|eki| · |ekj |].

Asymptotically,eki and ekj are independent, andE[|eki|] ∼
√

2/π·
√

E[e2
ki] =

√
2/π ·

(1/
√
n). Thus, the sum of all the terms i �= j is ∼ n2 · (2/π) · (1/n) = (2/π) · n. The

terms with i = j are asymptotically smaller, so we get the desired expression (3.8). ��

Acknowledgments

This work was supported in part by NASA grant NCC5-209, by the Air Force Office
of Scientific Research grant F49620-00-1-0365, by NSF grants EAR-0112968, EAR-
0225670, and EIA-0321328, and by the Army Research Laboratories grant DATM-05-
02-C-0046. This work was partly performed during V. Kreinovich’s visit to Brazil. This
visit was sponsored by the Brazilian funding agency CTINFO/CNPq.

The authors are thankful to the anonymous referees for valuable suggestions.

References

1. Ferson, S.: RAMAS Risk Calc 4.0, CRC Press, Boca Raton, Florida, 2002.
2. Hansen, E.: Sharpness in interval computations, Reliable Computing 3 (1997) 7–29.
3. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis: With Examples in

Parameter and State Estimation, Robust Control and Robotics, Springer, London, 2001.
4. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, 1996.
5. Koltik, E., Dmitriev, V.G., Zheludeva, N.A., Kreinovich, V.: An optimal method for estimating

a random error component, Investigations in Error Estimation, Proceedings of the Mendeleev
Metrological Institute, Leningrad, 1986, 36–41 (in Russian).

6. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of
Data Processing and Interval Computations, Kluwer, Dordrecht, 1997.

7. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
8. Trejo, R., Kreinovich, V.: Error Estimations for Indirect Measurements: Randomized vs. De-

terministic Algorithms For “Black-Box" Programs, In: Rajasekaran, S., Pardalos, P., Reif, J.,
Rolim, J., eds., Handbook on Randomized Computing, Kluwer, 2001, 673-729.

9. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues, Oxford University Press, New York,
1991.

HPC-ICTM: The Interval Categorizer Tessellation-Based
Model for High Performance Computing

Marilton S. de Aguiar1, Graçaliz P. Dimuro1, Fábia A. Costa1, Rafael K.S. Silva2,
César A.F. De Rose2, Antônio C.R. Costa1,3, and Vladik Kreinovich4

1 Escola de Informática, Universidade Católica de Pelotas
Rua Felix da Cunha 412, 96010-000 Pelotas, Brazil

{marilton,liz,fabia,rocha}@ucpel.tche.br
2 PPGCC, Pontifı́cia Universidade Católica do Rio Grande do Sul

Av. Ipiranga 6681, 90619-900 Porto Alegre, Brazil
{rksilva,derose}@inf.pucrs.br

3 PPGC, Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil

4 Department of Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA
vladik@cs.utep.edu

Abstract. This paper presents the Interval Categorizer Tessellation-based Model
(ICTM) for the simultaneous categorization of geographic regions considering
several characteristics (e.g., relief, vegetation, land use etc.). Interval techniques
are used for the modelling of uncertain data and the control of discretization
errors. HPC-ICTM is an implementation of the model for clusters. We analyze
the performance of the HPC-ICTM and present results concerning its application
to the relief/land-use categorization of the region surrounding the lagoon Lagoa
Pequena (RS, Brazil), which is extremely important from an ecological point of
view.

1 Introduction

The ICTM (Interval Categorizer Tessellation Model) is a multi-layered and multi di-
mensional tessellation model for the simultaneous categorization of geographic regions
considering several different characteristics (relief, vegetation, climate, land use etc.) of
such regions, which uses interval techniques [4,9] for the modelling of uncertain data
and the control of discretization errors.

To perform a simultaneous categorization, the ICTM proceeds (in parallel) to indi-
vidual categorizations considering one characteristic per layer, thus generating different
subdivisions of the analyzed region. An appropriate projection procedure of the catego-
rizations performed in each layer into a basis layer provides the final categorization that
allows the combined analysis of all characteristics that are taken into consideration by
the specialists in the considered application, allowing interesting analyzes about their
mutual dependency.

An implementation of the ICTM for the relief categorization of geographic regions,
called TOPO-ICTM (Interval Categorizer Tessellation Model for Reliable Topographic

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 83–92, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

84 Marilton S. de Aguiar et al.

Segmentation), performs a bi-dimensional analysis of the declivity of the relief function
in just one layer of the model [1]. The data input are extracted from satellite images,
where the heights are given in certain points referenced by their latitude and longitude
coordinates. The geographic region is represented by a regular tessellation that is de-
termined by subdividing the total area into sufficiently small rectangular subareas, each
one represented by one cell of the tessellation. This subdivision is done according to a
cell size established by the geophysics or ecology analyst and it is directly associated to
the refinement degree of the tessellation. Applications in Geophysics and Ecology were
found, where an adequate subdivision of geographic areas into segments presenting
similar topographic characteristics is often convenient (see, e.g: [2,5]).

The aim of this paper is to present the ICTM model and describe a particular im-
plementation of the model for clusters, called HPC-ICTM. We discuss the performance
of the HPC-ICTM and present some results concerning the application of a 2-layered
bi-dimensional model to the relief/land use categorization of the region surrounding the
lagoon Lagoa Pequena (Rio Grande do Sul, Brazil), which is extremely important from
an ecological point of view.

The paper is organized as follows. Section 2presents theICTMmodel and the catego-
rization process. Some results on categorizations are shown in Sect. 3. The performance
of the HPC-ICTM is discussed in Sect. 4. Section 5 is the Conclusion.

2 The ICTM Model

This section introduces the multi-layered interval categorizer tessellation-based model
ICTM, formalized in terms of matrix operations, extending the results presented in a
previous paper [1]5, for the single-layered model TOPO-ICTM.

A tessellation6 is a matrix M , whose each entry7 at the x-th row and the y-th column
is denoted by mxy. For L ∈ N and tessellations M1, . . . ,ML, an L-layered tessellation
is a structure ML =

(
M1, . . . ,ML

)
, where each entry at the l-th layer, x-th row and

y-th column is denoted by ml
xy.

2.1 Using Interval Matrices

In many applications considered by the Geophysics and Ecologists, usually there are
too much data to be analyzed, most of which is irrelevant. We take, for each subdivision
of the geographic region, the average of the values attached to the points of each layer,
which are the entries ml

xy of the L matrices of the tessellation ML. To simplify the
data, we normalize them by dividing each ml

xy by the largest ml
max of these values,

obtaining a relative value rml
xy = ml

xy

|ml
max|

. The relative matrix of a layer l is given by

RM l = Ml

|ml
max|

.

5 The proofs are omitted since they are similar to those presented in [1].
6 To simplify the notation, we consider bi-dimensional tessellations only.
7 For the application considered in this paper, the entries of the tesselation matrices are all non-

negative. However, negative values may also be considered (e.g., when the data coming from
the relief are determined with respect to the sea level).

HPC-ICTM: The Interval Categorizer Tessellation-Based Model 85

Sometimes we have problems in representing the uncertain data provided by the
sources of the considered application. Even if the values associated to the points are
pretty accurate (like, for instance, the heights provided by satellite images), we have to
deal with the errors that came from the discretization of the area in terms of the discrete set
of the tessellation cells. We apply techniques from Interval Mathematics [4,9] to control
the errors associated to the cell values. See examples of using intervals in solving similar
problems in [2,4,9].

Observe that, considering a layer l, for each ξυ that is different from xy, it is reason-
able to estimate a value hl

ξυ, attached to the point ξυ in the layer l, as the value rml
xy

at the point xy which is closest to ξυ, meaning that ξυ belongs to the same segment of
area as xy. For each cell xy in the layer l, let Δl

x be the largest possible error of the cor-
responding approximation considering the west-east direction. Then the approximation
error εl

x is bounded by εl
x ≤ Δl

x = 0.5 ·min(|rml
xy − rml

(x−1)y|, |rml
(x+1)y − rml

xy|).
Now, for each cell xy in the layer l, let Δl

y be the largest possible error of the correspond-
ing approximation considering the north-south direction. Therefore, the approximation
error εl

y is bounded by εl
y ≤ Δl

y = 0.5 ·min(|rml
xy− rml

x(y−1)|, |rml
x(y+1)− rml

xy|).
Thus, considering a given y in the layer l, the intervals imx,l

xy = [ml
x−y,m

l
x+y],

where ml
x−y = rml

xy−Δl
x and ml

x+y = rml
xy +Δl

x, contain all the possible values of

hl
ξy , for x − 1

2 ≤ ξ ≤ x + 1
2 . Similarly, for a fixed x in the layer l, for each y such that

y− 1
2 ≤ υ ≤ y+ 1

2 , it follows that hl
xυ ∈ imy,l

xy = [ml
xy− ,ml

xy+ ,ml
xy− = rml

xy−Δl
y,

with ml
xy+ = rml

xy + Δl
y . For each layer l, the interval matrices associated to the

relative matrix RM l are denoted by IM×,l and IMy,l.

2.2 The Categorization Process

To obtain a declivity categorization8 in each layer, we assume that the approximation
functions introduced by the model are piecewise linear functions9. The model determines
a piecewise linear approximation function (and corresponding set of limit points between
the resulting sub-regions) that fits the constraints imposed by the interval matrices.
To narrow the solution space to a minimum, we take a qualitative approach to the
approximation functions, clustering them in equivalence classes according to the signal
of their declivity (positive, negative, null). For each layer l, the model obtains the class of
approximation functions compatible with the constraints of the interval matrices IMx,l

and IMy,l.

Proposition 1. For a given xy in a layer l, it holds that:

(i) Considering the direction west-east, if ml
x+y ≥ ml

(x+1)−y , then there exists a non-
increasing relief approximation function between xy and (x + 1)y.

8 This declivity categorization was inspired by [2]. By declivity we mean the tangent of the angle
α between the approximation function and the positive direction of the horizontal axis. The
declivity happens to be continuous, since the approximation functions of the model are total
and have no steps. The declivity is positive, negative or null if 0 < α < π

2
, π

2
< α < π or

α = 0, respectively.
9 Piecewise linear functions were considered for simplicity. A more general approach may con-

sider other kinds of piecewise monotonic functions.

86 Marilton S. de Aguiar et al.

(ii) Considering the direction west-east, if ml
(x−1)−y ≤ ml

x+y , then there exists a non-
decreasing relief approximation function between (x− 1)y and xy.

(iii) Considering the direction north-south, if ml
xy+ ≥ ml

x(y+1)− , then there exists a
non-increasing relief approximation function between xy and x(y + 1).

(iv) Considering the direction north-south, if ml
x(y−1)− ≤ ml

xy+ , then there exists a
non-decreasing relief approximation function between x(y − 1) and xy.

Definition 1. A declivity register of an xy-cell in a layer l is a tuple

dml
xy = (el

xy, w
l
xy, s

l
xy, n

l
xy),

where el
xy, wl

xy , sl
xy and nl

xy, called directed declivity registers for east, west, south and
north directions, respectively, are evaluated according to the conditions considered in
Prop. 1:

(a) For non border cells: el
xy = 0, if (i) holds; wl

xy = 0, if (ii) holds; sl
xy = 0, if (iii)

holds; nl
xy = 0, if (iv) holds; el

xy = wl
xy = sl

xy = nl
xy = 1, otherwise.

(b) For east, west, south and north border cells: el
xy = wl

xy = sl
xy = nl

xy = 0,
respectively. The other directed declivity registers of border cells are also determined
according to item (a).

The declivity register matrix of the layer l is the matrix dM l =
[
dml

xy

]
.

Corollary 1. Considering a layer l and the west-east direction, any relief approximation
function is either (i) strictly increasing between xy and (x+ 1)y if el

xy = 1 (and, in this
case, wl

(x+1)y = 0); or (ii) strictly decreasing between xy and (x + 1)y if wl
(x+1)y = 1

(and, in this case, el
xy = 0); or (iii) constant between xy and (x + 1)y if el

xy = 0 and
wl

(x+1)y = 0. Similar results hold for the north-south direction.

Associating convenient weights to the directed declivity registers of a cell xy in a
layer l, it is possible to obtain a binary encoding that represents the state sml

xy of such
cell, given by

sml
xy = 1× el

xy + 2× sl
xy + 4× wl

xy + 8× nl
xy.

The state matrix of layer l is given by SM l =
[
sml

xy

]
. Thus, any cell can assume one

and only one state represented by the value sml
xy = 0..15.

A limiting cell is the one where the relief function changes its declivity, presenting
critical points (maximum, minimum or inflection points). According to this criteria, any
non-limiting cell should satisfy one of the conditions listed in Table 1. The border cells
are assumed to be limiting. To identify the limiting cells, we use a limiting register λml

xy

associated to each xy-cell of a layer l, defined as:

λml
xy =

{
0 if one of the conditions listed in Table 1 holds;

1 otherwise.
(2.1)

The limiting matrix of the layer l is λM l =
[
λml

xy

]
. Analyzing this matrix, we proceed

to the subdivision of the whole area into constant declivity categories.

HPC-ICTM: The Interval Categorizer Tessellation-Based Model 87

Table 1. Conditions of non limiting cells

Conditions Conditions

el
(x−1)y = el

xy = 1 nl
xy = nl

x(y+1) = 1

wl
xy = wl

(x+1)y = 1 sl
x(y−1) = sl

xy = 1

el
(x−1)y = el

xy = wl
xy = wl

(x+1)y = 0 sl
x(y−1) = sl

xy = nl
xy = nl

x(y+1) = 0

Definition 2. The constant declivity sub-region SRl
xy , associated to a non limiting cell

xy in a layer l, is inductively defined: (i) xy ∈ SRl
xy; (ii) If x′y′ ∈ SRl

xy, then all its

neighbor cells that are not limiting cells also belong to SRl
xy.

Definition 2 leads to a recursive algorithm similar to the ones commonly used to
fulfill polygons.

2.3 The Projection Procedure

The basis layer λMπ is used to receive the projection of the limiting cells of all layers.
This projection is useful for the identification of interesting information, such as: (i) the
cells which are limiting in all layers; (ii) the projection of all sub-areas; (iii) the certainty
degree of a cell to be limiting etc.

Two projection algorithms were proposed. In the first algorithm (Type I , Fig. 1),
if a certain cell is a limiting cell just in one layer then it will be projected on the basis
layer also as a limiting cell. A weight 0 ≤ wl ≤ 1, for l = 1, . . . , L is associated
to each layer, so that wl = 1 (wl = 0) indicates that the layer l is (is not) selected
for the projection. Then, the projection of limiting cells on the basis layer is given by

λMπ =
L∨

l=1

λM l × wl. In the second algorithm (Type II , Fig. 2), each layer may

present different degrees of participation in the determination of the projection10. In this

case, the projection of limiting cells on the basis layer is given by λMπ =
L∨

l=1

λM l×wl,

where wl =
wl

L∑
i=1

wi

are the normalized weights.

3 Some Results on Categorizations

This section presents the relief and land use categorizations obtained for the region
surrounded the lagoon Lagoa Pequena (Rio Grande do Sul, Brazil). These analyzes are
to be used for the environment characterization of that region, aiming to give subsidies
for its integrated preservation/management.

Figure 3 shows the location of the lagoon and a land use categorization of the region
surrounded it, which shall be combined with relief categorizations. For the portion of

10 Moreover, the sum of the weights may not be equal to 1 in the case that the analyst does not
have a clear perception of the importance of each layer in the whole process.

88 Marilton S. de Aguiar et al.

1−M

2−M

−Mπ

A

B C

D
E

A ∧ D

D ∧ B

B ∧ E
C ∧ E

Fig. 1. Type I projection procedure

−M

1−M

2−M

π

A

B C

D
E

A ∧ D

D ∧ B

B ∧ E
C ∧ E

w2 < w1

Fig. 2. Type II projection procedure

the LANDSAT image11 shown in Fig. 4(a), the ICTM produced the relief categorization
presented in Fig. 4(b), for the Digital Elevation Model (DEM), and in Fig. 4(c), for a 3D
visualization of this categorization. Figure 4(c) shows the ICTM relief characterization
given in terms of the state and limiting matrices, where a pleistocene marine barrier can
be distinguished.

4 Performance Analysis

The parallel implementation of the ICTM model for clusters was done using the library
MPI (Message Passing Interface) [7]. Each process of the parallel program is responsible
for a categorization performed in one of the layers of the model, in a modified master-
slave schema, where the slave processes receive the information sent by the master
process and, after executing their jobs, they generate their own outputs. The master
process is responsible for loading the input files and parameters (the data and the radius),
sending the radius value for the L slave processes to start the categorization process in
each layer. The file system is shared, that is the directory with the input files is accessible
by all the cluster’s nodes.

For the analysis of the performance, we consider three tessellation matrices: M1

(241 × 241), M2 (577 × 817) and M3 (1309 × 1765). The results were processed by
the CPAD (Research Center of High Performance Computing of PUCRS/HP, Brasil),
with the following environment: (i) heterogenous cluster with 24 machines: (e800) 8
machines with two processors Pentium III 1Ghz and 256MB of memory, (e60) 16 ma-
chines with two processors Pentium III 550Mhz and 256MB of memory; (ii) Ethernet
and Myrinet networks; (iii) MPICH version of MPI Library; (iv) 1 front-end machine
with two processors Pentium III 1Ghz and 512MB of memory. Table 2 presents the re-
sults of sequential implementation processed in the cluster front-end, and also the results
of the parallel implementation of ICTM. As expected, the machine e800 is faster then the

11 The coordinates are Datum SAD69 (South American Datum 1969) and UTM (Universal Trans-
verse Mercator), Zone 22 South Hemisphere.

HPC-ICTM: The Interval Categorizer Tessellation-Based Model 89

Fig. 3. Land use Map of the region surrounded the Lagoa Pequena (light blue: wetland, dark blue:
water, yellow: crops and past, purple: transitional, light green: riparia forest, dark green: restinga
forest, red: lagoon beaches, white: without classification)

Table 2. Analysis of ICTM results (Ts is the time of sequential implementation and Te60−Eth,
Te800−Eth, Te60−Myr , Te800−Myr are the times of parallel implementations)

Matrix # of Layers Ts # of Proc. Te60−Eth Te800−Eth Te60−Myr Te800−Myr

M1 3 1.947s 4 2.015s 1.340s 1.998s 1.209s

M1 5 3.298s 6 2.228s 1.510s 2.263s 1.254s

M2 3 16.041s 4 11.180s 6.038s 12.003s 6.248s

M2 5 27.015s 6 11.383s 6.194s 12.011s 6.331s

M3 3 15m50.871s 4 50.277s 27.635s 54.742s 28.982s

M3 5 35m14.322s 6 50.551s 27.665s 55.657s 29.068s

machine e60. However, in some cases, the ethernet network was faster than myrinet net-
work, due to the low volume of inter-processor communication. In general, the difference
between the performance of the two networks is observed when the processors require
a lot of message exchanges. Notice that, even when the number of layers increased, a
significant time variation was not observed.

One interesting feature of the parallel implementation is the partition of input data,
which reduces the amount of memory to be stored in a single processor. We observe

90 Marilton S. de Aguiar et al.

(a) (b)

(c)

(d)

Fig. 4. Relief categorizations of a portion of the region surrounding the Lagoa Pequena: (a) LAND-
SAT image, coordinates: Upper-Left Corner (X: 390735, Y:6512015), Lower-Right Corner (X:
402075, Y:6505685), Pixel Size (X: 30m, Y: 30m); (b) ICTM DEM categorization; (c) ICTM 3D
categorization; (d) ICTM status-limits categorization

that, in the sequential implementation, the data of all layers has to be stored in a unique
processor. Table 3 presents the speedups for the tests realized. Observe that a parallel
implementation may be considered when the ICTM presents more than one layer. How-
ever, it becomes really necessary in the case that it has a great amount of layers, since,
in this case, a sequential implementation is practically not feasible.

HPC-ICTM: The Interval Categorizer Tessellation-Based Model 91

Table 3. Speedups for the tests realized

Matrix # of layers e60-Eth e800-Eth e60-Myr e800-Myr

M1 3 0.97 1.45 0.97 1.61

M1 5 1.48 2.18 1.46 2.63

M2 3 1.43 2.66 1.34 2.57

M2 5 2.37 4.36 2.25 4.27

M3 3 18.91 34.41 17.37 32.81

M3 5 41.83 76.43 37.99 72.74

Fig. 5. Relief categorization of a portion of LANDSAT image with coordinates: Upper-left corner
(X:427559m, Y:6637852m), Lower-right corner (X;480339m, Y:6614507m)

5 Discussion and Conclusion

In the categorizations produced by the ICTM, the state of a cell in relation to its neigh-
bors, concerning the declivity, is shown directly by arrows (see Fig. 5), which has been
considered a very intuitive representation, by the ecologists, since most geographic in-
formation systems present this kind of result by the usual color encoding of declivity,
with no indication of direction.

The ICTM is regulated by two aspects, namely, the spacial resolution of the DEM
and the neighborhood radius of the cell. Thus, regions with an agglomeration of limiting
cells can be studied with more details by just increasing the resolution of altimetry
data, or reducing the neighborhood radius. In plain areas (see Fig. 5 (region A)), a
large neighborhood radius indicated reasonable approximations for the declivity degree.
However, regions with too much declivity variation (see Fig. 5 (region B)) obtained good
approximations only with small radius. The number of categories obtained is always
inversely proportional to the neighborhood radius and to the area of a tessellation cell.

The analysis of some related works concerning image segmentation [3,6,8,10] turns
out that those methods are, in general, heuristic, and, therefore, the ICTM model pre-
sented here is more reliable (for other works, see, e.g.: [2,11]).

92 Marilton S. de Aguiar et al.

Future work is concerned with the aggregation of a dynamic structure, based on
cellular automata [12], for the modelling of the dynamic of populations in a ecological
context.

Acknowledgments

We are very grateful to Alex Bager for his suggestions concerning ecological aspects.
We also thank the referees for the valuable comments. This work is supported by the
CNPq and FAPERGS. V.K. was also supported by NASA under cooperative agreement
NCC5-209, by Future Aerospace Science and Technology Program Center for Structural
Integrity of Aerospace Systems, effort sponsored by the Air Force Office of Scientific
Research, Air Force Materiel Command, USAF, under the grant F49620-00-1-0365),
by NSF grants EAR-0112968 and EAR-0225670, by the Army Research Laboratories
grant DATM-05-02-C-0046, and by IEEE/ACM SC2003 Minority Serving Institutions
Participation Grant.

References

1. M.S. Aguiar, G.P. Dimuro, and A.C.R. Costa. TOPO-ICTM: an interval tessellation-based
model for reliable topographic segmentation. Numerical Algorithms 37(1): 3–11, 2004.

2. D. Coblentz, V. Kreinovich, B. Penn, and S. Starks. Towards reliable sub-division of geo-
logical areas: interval approach. In L. Reznik and V. Kreinovich, editors, Soft Computing in
Measurements and Information Acquisition, pages 223–233, 2003. Springer-Verlag.

3. M. C. Cooper. The Tractability of Segmentation and Scene Analysis. International Journal
on Computer Vision, 30(1): 27–42, 1998.

4. R.B. Kearfort and V. Kreinovich (eds.). Aplications of Interval Computations. Kluwer, Dor-
drecht, 1996.

5. R.T.T. Forman. Land Mosaics: the ecology of landscapes and regions. Cambridge University
Press, Cambridge, 1995.

6. K.S. Fu and J.K. Mui. A Survey on Image Segmentation. Pattern Recognition, 13(1): 3–16,
1981.

7. W. Gropp, E. Lusk e A. Skjellum. Using MPI: portable Parallel Programming with the
Message-Passing Interface, MIT Press, 2nd ed., 1999.

8. J.L. Lisani, L. Moisan, P. Monasse, and J.M. Morel. On The Theory of Planar Shape. Multi-
scale Modeling and Simulation, 1(1): 1–24, 2003.

9. R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
10. S.E. Umbaugh. Computer Vision and Image Processing. Prentice Hall, New Jersey, 1998.
11. K. Villaverde and V. Kreinovich. A Linear-Time Algorithm that Locates Local Extrenma of

a Function of One Variable from Interval Measurements Results. Interval Computations, 4:
176–194, 1993.

12. S. Wolfram. Cellular Automata and Complexity: selected papers. Addison-Wesley, Readings,
1994.

Counting the Number of Connected Components
of a Set and Its Application to Robotics

Nicolas Delanoue1, Luc Jaulin2, and Bertrand Cottenceau1

1 Laboratoire d’Ingénierie des Systèmes Automatisés
LISA FRE 2656 CNRS, Université d’Angers

62, avenue Notre Dame du Lac - 49000 Angers
{nicolas.delanoue,bertrand.cottenceau}@istia.univ-angers.fr

2 Laboratoire E3I2

ENSIETA, 2 rue François Verny
29806 Brest Cedex 09

luc.jaulin@ensieta.fr

Abstract. This paper gives a numerical algorithm able to compute the number
of path-connected components of a set S defined by nonlinear inequalities. This
algorithm uses interval analysis to create a graph which has the same number of
connected components as S. An example coming from robotics is presented to
illustrate the interest of this algorithm for path-planning.

1 Introduction

There exist different kinds of algorithms for path-planning. Most of the approaches are
based on the use of potential function introduced by Khatib [3]. This type of methods
may be trapped in a local minimum and often fail to give any feasible path.

Interval analysis [7] is known to be able to give guaranteed results (See e.g. [2]). In
the first section, the notion of feasible configuration space is recalled and it is shown why
its topology can be a powerful tool for path-planning. In the next section, topological
definitions and a sufficient condition to prove that a set is star-shaped are given. This
sufficient condition is the key result of the CIA algorithm presented in the fourth section.
This algorithm creates a graph which has the same number of connected components as
S where S is a subset of Rn defined by non-linear inequalities. [9] and [8] give algorithms
where S is (closed) semi-algebraic.

Throughout this article, we use a robot to illustrate a new path-planning algorithm.

2 Motivation with an Example Coming from Robotics

2.1 A Robot

Consider a 2-dimensional room which contains two walls (represented in gray in the
Figure 1. The distance between the walls is y0. A robotic arm with two degrees of
freedom α and β is placed in this room. It is attached to a wall at a point O and has two
links OA and AB.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 93–101, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

94 Nicolas Delanoue, Luc Jaulin, and Bertrand Cottenceau

Fig. 1. A robotic arm with two links, OA = 2 and AB = 1.5

The Cartesian coordinates of A and B are given by the following equations:{
xA = 2 cos(α)
yA = 2 sin(α)

{
xB = 2 cos(α) + 1.5 cos(α + β)
yB = 2 sin(α) + 1.5 sin(α + β)

2.2 Configuration Set

Each coordinate of the configuration space represents a degree of freedom of the robot
(See Figure 2). The number of independent parameters needed to specify an object
configuration corresponds to the dimension of the configuration space. In our example,
only α and β are necessary to locate the robot configuration, so our configuration space
is a 2-dimensional space.

Fig. 2. A point in the configuration space (left) and its corresponding robot configuration

Since the robot cannot run through the walls, one has the following constraints yA ∈
[0, y0] and yB ∈] −∞, y0] and α ∈ [−π, π] and β ∈ [−π, π]. When these constraints
are satisfied, the robot is said to be in a feasible configuration. The feasible configuration
set S is thus defined as:

S =

{
(α, β) ∈ [−π, π]2/

{
2 sin(α) ∈ [0, y0]
2 sin(α) + 1.5 sin(α + β) ∈]−∞, y0]

}

2.3 Connectedness of the Feasible Configuration Set and Path-Planning

Figure 3 shows how the feasible configuration set is affected by y0. Three cases are
presented:

Counting the Number of Connected Components of a Set 95

Fig. 3. - Fig. 3.1. Feasible configuration set when y0 = 2.3. The robot can move from every initial
feasible configuration to any goal feasible configuration. In this case, S has only one connected
component. It is said path-connected (See Definition 1). - Fig. 3.2. Feasible configuration set
when y0 = 1.9. The configuration set has two path-connected components. It is impossible to
move the robot from the first configuration FC1 to the second one FC2 without violating any
constraint. - Fig. 3.3. Feasible configuration set when y0 = 1.1. The robot can be trapped in four
regions. S has four connected components. In each connected component, the robot can move but
cannot reach any another components

In this article, a reliable method able to count the number of connected components
of sets described by inequalities is presented. These sets can be feasible configuration
sets. With a couple of configurations, we are able to guarantee that there exists or not
a path to connect this ones. Moreover, when we have proven that two configurations
are connectable, we are able to propose a path to connect them without violating any
constraint.

3 Topological Brief Overview and a Key Result Leading
to Discretization

In this section, definitions of a path-connected set and star-shaped set are recalled. Then,
it is shown how this notions are linked. The last result is the key result leading to a robust
discretization presented in the next section.

3.1 Topological Brief Overview

Definition 1. A topological set S is path-connected if for every two points x, y ∈ S,
there is a continuous function γ from [0, 1] to S such that γ(0) = x and γ(1) = y.
Path-connected sets are also called 0-connected.

96 Nicolas Delanoue, Luc Jaulin, and Bertrand Cottenceau

Definition 2. A point v∗ is a star for a subset X of an Euclidean set if X contains all
the line segments connecting any of its points and v∗. A subset X of an Euclidean set is
star-shaped or v∗-star-shaped if there exists v∗ ∈ X such that v∗ is a star for X .

Proposition 1. A star-shaped set S is a path-connected set.

Proof. Since S is star-shaped, there exists v ∈ S such that v is a star for S. Let x and y
be in S and:

γ : [0, 1] → S

t �→
{

(1− 2t)x + 2tv if t ∈ [0, 1
2 [

(2− 2t)x + (2t− 1)v if t ∈ [12 , 1].

γ is a continuous function from [0, 1] to S such that γ(0) = x and γ(1) = y.

Proposition 2. Let X and Y be two v∗-star-shaped set, then X ∩ Y is also v∗-star-
shaped.

Fig. 4. Intersection stability

The next result is a sufficient condition to prove that a set defined by only one
inequality is star-shaped. This sufficient condition can be checked using interval analysis
(An algorithm such as SIVIA, Set Inversion Via Interval Analysis [5], can prove that
equations (3.1) are inconsistent).

Proposition 3. Let us define S = {x ∈ D ⊂ Rn|f(x) ≤ 0} where f is a C1 function
from D to R, and D a convex set. Let v∗ be in S. If

f(x) = 0, Df(x) · (x − v∗) ≤ 0, x ∈ D (3.1)

is inconsistent then v∗ is a star for S.

Proof. See [1]

Remark 1. Combining this result with the Proposition 2, Proposition 3 can be used to
prove that a set is star-shaped even if the set S is defined by several inequalities.

Counting the Number of Connected Components of a Set 97

4 Discretization

The main idea of this disretization is to generate star-spangled graph which preserves
the number of connected components of S.

Definition 3. A star-spangled graph of a set S, noted by GS, is a relationR on a paving3

P = {pi}i∈I where:

– for all p of P , S ∩ p is star-shaped.
– R is the reflexive and symmetric relation on P defined by

p R q ⇔ S ∩ p ∩ q �= ∅.
– S ⊂

⋃
i∈I

pi

Proposition 4. Let GS be a star-spangled graph of a set S.
GS has the same number of connected components as S. i.e. π0(S) = π0(GS)4.

Proof. See [1].

4.1 The Algorithm CIA

The algorithm called: CIA (path-Connected using Interval Analysis) tries to generate a
star-spangled graph GS (Proposition 4). The main idea is to test a suggested paving P .
In the case where the paving does not satisfy the condition that for all p in P , p ∩ S is
star-shaped, the algorithm tries to improve this one by bisecting any boxes responsible
for this failure.

For a paving P , the algorithm checks for a box p of P whether S ∩ p is star-shaped
or not (Proposition 3.1 and 2), and to build its associated graph with the relation R
mentioned before.

In Alg. 1 CIA5,P∗,Pout,PΔ are three pavings such thatP∗∪Pout∪PΔ = P , with
P is a paving whose support is a (possibly very large) initial box X0 (containing S):

– the star-spangled paving P∗ contains boxes p such that S ∩ p is star-shaped.
– the outer paving Pout contains boxes p such that S ∩ p is empty.
– the uncertain paving PΔ, nothing is known about its boxes.

4.2 Application
Consider again the example presented in Section 1, the feasible configuration set S is:

S =

⎧⎪⎨⎪⎩(α, β) ∈ [−π, π]2/

⎧⎪⎨⎪⎩
−2 sin(α) ≤ 0
2 sin(α)− y0 ≤ 0
2 sin(α) + 1.5 sin(α + β)− y0 ≤ 0

⎫⎪⎬⎪⎭ (4.2)

When y0 is equal to 2.3, 1.9 and 1.1, algorithm CIA generates these star-spangled
graphs presented respectively on Figures 5,6 and 7.

3 A paving is a finite collection of non overlapping n-boxes (Cartesian product of n intervals),
P = {pi}i∈I .

4 In algebraic topology, π0(S) is the classical notation for the number of connected components
of S.

5 This algorithm has been implemented (CIA.exe) and can be found at
http://www.istia.univ-angers.fr/˜delanoue/

98 Nicolas Delanoue, Luc Jaulin, and Bertrand Cottenceau

Algorithm 1 CIA - path-Connected using Interval Analysis
Require: S a subset of Rn, X0 a box of Rn

1: Initialization: P∗ ← ∅, PΔ ← {X0}, Pout ← ∅
2: while PΔ �= ∅ do
3: Pull the last element of PΔ into the box p
4: if "S ∩ p is proven empty" then
5: Push {p} into Pout, Goto Step 2.
6: end if
7: if "S ∩ p is proven star-shaped" and if we can guarantee ∀p∗ ∈ P∗, p ∩ p∗ ∩ S is

empty or not then
8: Push {p} into P∗, Goto Step 2.
9: end if

10: Bisect(p) and Push the two resulting boxes into PΔ

11: end while
12: n ← Number of connected components of GS (i.e. the relation R on P∗).
13: return "S has n path-connected components"

Fig. 5. The feasible configuration set and one of its star-spangled graph generated by CIA when
y0 = 2.3. The star-spangled graph GS is connected. By using Proposition 4, we deduce that from
every couple of endpoints, it is possible to create a path to connect this ones. Subsection 4.3 shows
how a path can be found

Fig. 6. The feasible configuration set and its star-spangled graph generated by CIA when y0 =

1.9. Since GS has two connected components, we have a proof that S has two path-connected
components

Counting the Number of Connected Components of a Set 99

Fig. 7. The feasible configuration set and its star-spangled graph generated by CIAwhen y0 = 1.1.
GS and S have 4 connected components

Fig. 8. Initial configuration, x = (3π
4

, π
3
) and goal configuration, y = (π

6
,−π

6
)

4.3 Path-Planning

A star-spangled graph can be used to create a path between endpoints. Our goal is to
find a path from the initial configuration x to the goal configuration y (e.g. Fig. 8).

As shown in Section 1, it suffices to find a path which connects x to y in the feasi-
ble configuration set. The algorithm Path-planning with CIA, thanks to a star-
spangled graph, creates a path γ in S. This algorithm uses the Dijkstra [6] algorithm
which finds the shortest path between two vertices in a graph. Since GS is a star-shaped
graph, every p in P is necessary star-shaped and we denote by vp one of its stars.

Figure 9 shows the path γ created by Path-planning with CIA.
The corresponding configurations of the path γ are illustrated on Figure 10.

5 Conclusion

In this article, an algorithm which computes the number of connected components of
a set defined by several non-linear inequalities has been presented. This dicretization
makes possible to create a feasible path in S (Alg. 2). One of the main limitations of
the proposed approach is that the computing time increases exponentially with respect
to the dimension of S. At the moment, we do not have a sufficient condition about f
(Proposition 3) to ensure that algorithm CIA will terminate.

100 Nicolas Delanoue, Luc Jaulin, and Bertrand Cottenceau

Algorithm 2 Path-planning with CIA

Require: A set S, x, y ∈ S, GS a star spangled graph of S (The relationR on the paving
P).

Ensure: γ ⊂ S a path whose endpoints are x and y.
1: Initialization: λ ← ∅
2: for all p ∈ P do
3: if x ∈ p then px ← p; if y ∈ p then py ← p
4: end for
5: if Dijkstra(GS, px, py) = "Failure" then
6: Return "x and y are in two different path-connected components"
7: else
8: (pk)1≤k≤n = (px, . . . , py) ← Dijkstra(GS, px, py)
9: end if

10: γ ← [x, vpx]
11: for k ← 2 to n− 1 do
12: wk−1,k ← a point in pk−1 ∩ pk ∩ S; wk,k+1 ← a point in pk ∩ pk+1 ∩ S

13: γ ← γ ∪ [w(k−1,k), vpk
] ∪ [vpk

, w(k,k+1)]
14: end for
15: γ ← γ ∪ [vpy , y]

Fig. 9. Path γ generated by Path-planning with CIA from x to y when y0 = 2.3

Counting the Number of Connected Components of a Set 101

Fig. 10. Corresponding robot motion from the initial to the goal configuration

References

1. Delanoue, N., Jaulin,L., Cottenceau,B. Using interval arithmetic to prove that a set is path-
connected. Theoretical computer science, Special issue: Real Numbers and Computers., 2004.

2. L. Jaulin. Path planning using intervals and graphs. Reliable Computing, issue 1, volume 7,
2001

3. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. International
Journal Of Robotics Research, 1986.

4. Janich, K. Topology (Undergraduate Texts in Mathematics) Springer Verlag
5. Jaulin, L. and Walter, E., Set inversion via interval analysis for nonlinear bounded- error

estimation, Automatica, 29(4), 1993, 1053-1064.
6. Dijkstra, E.W.,. A note on two problems in connection with graphs, Numerische Math, 1,

1959, 269-271.
7. R. E. Moore, 1979, Methods and Applications of Interval Analysis SIAM, Philadelphia, PA
8. F. Rouillier, M.-F. Roy, M. Safey. Finding at least one point in each connected component of

a real algebraic set defined by a single equation, Journal of Complexity 16 716-750 (2000)
9. S. Basu, R. Pollackz, M.-F. Roy. Computing the first Betti number and the connected com-

ponents of semi-algebraic sets,
10. T. Lozano-Pérez, 1983, Spatial Planning: A Configuration Space Approach. IEEETC

Interval-Based Markov Decision Processes
for Regulating Interactions Between Two Agents

in Multi-agent Systems�

Graçaliz P. Dimuro1 and Antônio C.R. Costa1,2

1 Escola de Informática, Universidade Católica de Pelotas
Rua Felix da Cunha 412, 96010-000 Pelotas, Brazil

{liz,rocha}@ucpel.tche.br
2 Programa de Pós-Graduação em Computação

Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil

Abstract. This work presents a model for Markov Decision Processes applied to
the problem of keeping two agents in equilibrium with respect to the values they
exchange when they interact. Interval mathematics is used to model the qualitative
values involved in interactions. The optimal policy is constrained by the adopted
model of social interactions. The MDP is assigned to a supervisor, that monitors
the agents’ actions and makes recommendations to keep them in equilibrium.
The agents are autonomous and allowed to not follow the recommendations. Due
to the qualitative nature of the exchange values, even when agents follow the
recommendations, the decision process is non-trivial.

1 Introduction

There are many different techniques to deal with the problem of choosing optimal agent
actions [11,13], some of them considering stochastic domains. The work presented in [3]
deals with this problem using techniques from operations research, namely the theory
of Markov Decision Processes (MDP) [5,8,12]. In this paper we introduce a qualitative
version of a MDP, called Qualitative Interval-based Markov Decision Process (QI–
MDP). The values characterizing the states and actions of the model are based on intervals
and their calculation performed according to Interval Arithmetic [6]. The model is said
to be qualitative in the sense that intervals are considered equivalent according to a loose
equivalence relation. We apply the QI–MDP model to the analysis of the equilibrium
of social exchanges between two interacting agents. The equilibrium is determined
according to the balance of values the agents exchange during their interactions. The
decision process pertains to a third agent, the equilibrium supervisor, who is in charge of
giving recommendations to the agents on the best exchanges they can perform in order
to keep the balance in equilibrium.

We modelled the social interactions according to Piaget’s theory of exchange val-
ues [7], and derived the idea of casting the equilibrium problem in terms of a MDP from
George Homans’ approach to that same problem [4]. Due the lack of space, we shall

� This work was partially supported by CTINFO/CNPq and FAPERGS.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 102–111, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Interval-Based Markov Decision Processes for Regulating Interactions 103

not consider in detail the social model based on Piaget’s theory, since it was deeply
explored in previous work [1,9,10]. A first application of this model in multi-agent sys-
tems was presented in [9,10]. In [1], exchange values were proposed for the modelling
of collaborative on-line learning interactions.

The paper is organized as follows. The model of social interactions is presented in
Sect. 2, and intervals are introduced in Sect. 3. The QI–MDP model is introduced in
Sect. 4. Section 5 discusses the results. Section 6 is the Conclusion.

2 Social Reasoning About Exchange Values

The Social Exchange Model introduced by Piaget [7] is based on the idea that social
relations can be reduced to social exchanges between individuals. Each social exchange
is a service exchange between individuals and it is also concerned with an exchange of
values between such individuals. The exchange values are of qualitative nature and are
constrained by a scale of values.

A social exchange is assumed to be performed in two stages. Figure 1shows a schema
of the exchange stages. In the stage Iαβ , the agent α realizes a service for the agent β.
The values related with this exchange stage are the following: (i) rIαβ

is the value of the
investment3 done by α for the realization of a service for β; (ii) sIβα

is the value of β’s
satisfaction due to the receiving of the service done by α; (iii) tIβα

is the value of β’s
debt, the debt it acquired to α for its satisfaction with the service done by α; (iv) vIαβ

is
the value of the credit that α acquires from β for having realized the service for β. In the
stage IIαβ , the agent α asks the payment for the service previously done for the agent β,
and the values related with this exchange stage have similar meaning. rIαβ

, sIβα
, rIIβα

and sIIαβ
are called material values. tIβα

, vIαβ
, tIIβα

and vIIαβ
are the virtual values.

The order in which the exchange stage may occur is not necessarily Iαβ − IIαβ .
Piaget’s approach to social exchange was an algebraic one: what interested him

was the algebraic laws that define equilibrium of social exchanges. George Homans [4]
approached the subject from a different view: he was interested in explaining how and
why agents strive to achieve equilibrium in such exchanges. The solution he found,
based on a behavioristic explanation of the agents’ decision, suggested that agents look
for a maximum of profit, in terms of social values, when interacting with each other.
That proposal gave the starting point for the formalization we present below, where the
looking for a maximum of profit is understood as a MDP to be solved by the equilibrium
supervisor.

3 Modelling Social Exchanges with Interval Values

Piaget’s concept of scale of values [7] is now interpreted in terms of Interval Mathe-
matics [6]. Consider the set IRL = {[a, b] | −L ≤ a ≤ b ≤ L, a, b ∈ R} of real
intervals bounded by L ∈ R (L > 0) and let IRL = (IRL,+, Θ,)̃ be a scale of
interval exchange values, where:

3 An investment value is always negative.

104 Graçaliz P. Dimuro and Antônio C.R. Costa

α β

s

t

v

v

t

r

s

α β
IIαβIαβ

IIαβ

IIαβ

II

II

r
Iαβ

Iαβ

Iβα

Iβα βα

βα

Fig. 1. Stages of social exchanges

(i) + : IRL × IRL → IRL is the addition operation [a, b] + [c, d] = [max{−L, a +
c},min{b + d, L}].
(ii) A null value is any [a, b] ∈ IRL such that mid([a, b]) = 0, where mid([a, b]) = a+b

2
is the mid point of [a, b]. The set of null values is denoted by Θ. [0, 0] is called the
absolute null value.
(iii) A quasi-symmetric value for X ∈ IRL is any X ′ ∈ IRL such that X + X ′ ∈ Θ.
The set of quasi-symmetric values of X is denoted by X̃ .

μX̃ ∈ X̃ is said to be the least quasi-symmetric value of X , if whenever there exists
S ∈ X̃ it holds that d(μX̃) ≤ d(S), where d([a, b]) = b−a is the diameter of an interval
[a, b]. A qualitative equivalence relation ≈ is defined on IRL by X ≈ Y ⇔ ∃Y ′ ∈ Ỹ :
X + Y ′ ∈ Θ. For all X ∈ IRL, it follows that:

Proposition 1. (i) X̃ = {−[mid(X) − k,mid(X) + k] | k ∈ R ∧ k ≥ 0}; (ii)
μX̃ = −[mid(X),mid(X)].

Proof. mid(X+(−[mid(X)−k,mid(X)+k])) = mid([a1−a2−2k
2 , a2−a1+2k

2]) = 0,

for X = [a1, a2]. If S ∈ X̃ is such that mid(S) �= mid(X), then mid(X + S) =
mid([a1−a2−2k2

2 , a2−a1+2k1
2]) �= 0, for k1 �= k2 ∈ R, which is a contradiction. ��

For practical applications, we introduce the concept of absolute ε-null value 0ε =
[−ε,+ε], with ε ∈ R (ε ≥ 0) being a given tolerance. In this case, an ε-null value is any
N ∈ IRL such that mid(N) ∈ 0ε. The set of ε-null values is denoted by Θε. The related
set of ε-quasi-symmetric values of X ∈ IRL is denoted by X̃ε.

Let T be a set of discrete instants of time. Let α and β be any two agents. A
qualitative interval exchange-value system for modelling the exchanges from α to
β is a structure IRαβ = (IRL; rIαβ

, rIIβα
, sIβα

, sIIαβ
, tIβα

, tIIβα
, vIαβ

, vIIαβ
) where

rIαβ
, rIIβα

: T → IRL, sIIαβ
, sIβα

: T → IRL, tIβα
, tIIβα

: T → IRL and vIαβ
, vIIαβ

:
T → IRL are partial functions that evaluate, at each time instant t ∈ T , the investment,
satisfaction, debt and credit values4, respectively, involved in the exchange. Denote

4 The values are undefined if no service is done at all at a given moment t ∈ T .

Interval-Based Markov Decision Processes for Regulating Interactions 105

rIαβ
(t) = rt

Iαβ
, rIIβα

(t) = rt
IIβα

, sIIαβ
(t) = st

IIαβ
, sIβα

(t) = st
Iβα

, tIβα
(t) = ttIβα

,
tIIβα

(t) = ttIIβα
, vIαβ

(t) = vt
Iαβ

and vIIαβ
(t) = vt

IIαβ
. A configuration of exchange val-

ues is specified by one of the tuples (rt
Iαβ

, st
Iβα

, ttIβα
, vt

Iαβ
) or (vt

IIαβ
, ttIIβα

, rt
IIβα

, st
IIαβ

).
The sets of configurations of exchange values fromα to β, for stages I and II, are denoted
by EVI

IRαβ
and EVII

IRαβ
, respectively.

Consider the functions Iαβ : T → EVI
IRαβ

and IIαβ : T → EVII
IRαβ

, de-

fined, respectively, by Iαβ(t) = Itαβ = (rt
Iαβ

, st
Iβα

, ttIβα
, vt

Iαβ
) and IIαβ(t) = IItαβ =

(vt
IIαβ

, ttIIβα
, rt

IIβα
, st

IIαβ
). A stage of social exchange from α to β is either a value Itαβ ,

where rt
Iαβ

is defined, or IItαβ , where rt
IIβα

is defined.
A social exchange process between any two agents α and β, occurring during the

time instants T = t1, . . . , tn, is any finite sequence sT
{α,β} = et1 , . . . , etn , n ≥ 2, of

exchange stages from α to β and from β to α, where there are t, t′ ∈ T , t �= t′, with
well defined investment values rt

Iαβ
and rt′

IIβα
(or rt

Iβα
and rt′

IIαβ
).

The material results Mαβ and Mβα of a social exchange process, from the points
of view of α and β, respectively, are given by the respective sum of the material values
involved in the process. Considering kT

Iλδ
=
∑

t∈T kt
Iλδ

and kT
IIλδ

=
∑

t∈T kt
IIλδ

, for
all well defined kt

Iλδ
and kt

IIλδ
, with k = r, s, then Mαβ = rT

Iαβ
+ sT

IIαβ
+ rT

IIαβ
+ sT

Iαβ

and Mβα = rT
Iβα

+ sT
IIβα

+ rT
IIβα

+ sT
Iβα

. The process is said to be in equilibrium if
Mαβ ∈ Θε and Mβα ∈ Θε. If a material result of a social exchange process is not in
equilibrium, then any ε-quasi-symmetric of Mαβ (Mβα) is called a compensation value
from α’s (β’s) point of view.

4 Solving the Equilibration Problem Using QI–MDP

4.1 The Basics of an QI–MDP

We conceive that, in the context of a social exchange process between two agents, a
third agent, called equilibrium supervisor, analyzes the exchange process and makes
suggestions of exchanges to the two agents in order to keep the material results of
exchanges in equilibrium. To achieve that purpose, the equilibrium supervisor models
the exchanges between the two agents as a MDP, where the states of the model represent
“possible material results of the overall exchanges” and the optimal policies represent
“sequences of actions that the equilibrium supervisor recommends that the interacting
agents execute”.

Consider ε, L ∈ R (ε ≥ 0, L > 0), n ∈ N (n > 0) and let Ê = {E−n, . . . , En} be
the set of equivalence classes of intervals, defined, for i = −n, . . . , n, as:

Ei =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{X ∈ IRL | iL
n ≤ mid(X) < (i + 1)L

n } if − n ≤ i < −1
{X ∈ IRL | −L

n ≤ mid(X) < −ε} if i = −1
{X ∈ IRL | −ε ≤ mid(X) ≤ +ε} if i = 0
{X ∈ IRL | ε < mid(X) ≤ L

n} if i = 1
{X ∈ IRL | (i− 1)L

n < mid(X) ≤ iL
n } if 1 < i ≤ n.

(4.1)

The classes Ei are the supervisor representations of classes of unfavorable (i <
0), equilibrated (i = 0) and favorable (i > 0) material results of exchange balances.

106 Graçaliz P. Dimuro and Antônio C.R. Costa

Table 1. Specification of compensation intervals

State Compensation Interval Ci State Compensation Interval Ci

Ei
−n≤i<−1 [− 2i+1

2
L
n

−ε,− 2i+1
2

L
n

+ε] Ei
1<i≤n [(1−2i)

2
L
n
− ε, (1−2i)

2
L
n

+ ε]

E−1 [1
2

L
n

+ ε − ε, 1
2

L
n

+ ε + ε] E1 [− 1
2

L
n

+ ε − ε,
− 1

2
L
n

+ ε + ε]
E0 [0, 0]

Whenever it is understood from the context, we shall denote by E− (or E+) any class
Ei<0 (or Ei>0). The accuracy of the equilibrium supervisor is given by κn = L

n . ε is
the admissible tolerance for the equilibrium point. The range of the midpoints of the
intervals that belong to a class Ei is called the representative of the class Ei, denoted
[Ei]. In this paper, whenever it is clear from the context, we shall identify a class Ei

with its representative.
The states of the QI–MDP model are pairs of classes (Ei

α, Ej
β), representing the

material results of the social exchange process from the point of view of the agents α
and β. The pair of classes (E0

α, E
0
β) is a terminal state, representing that the system is

in equilibrium.
The actions considered in the model are state transitions (X i, Xj) : Ê×Ê → Ê×Ê,

with i, j = −n, . . . , n, defined by (X i, Xj)(Ei
α, Ej

β) = (Ei′
α , Ej′

β) if mid([Ei
α] +

X i) ∈ Ei′
α and mid([Ej

β] + Xj) ∈ Ej′
β , which occur by the addition, to the representa-

tives of the classes Ei
α and Ej

β , of intervals X i and Xj that should be of the following
types: (i) the absolute ε-null value 0ε = [−ε,+ε]; (ii) a compensation interval, which
is the least quasi-symmetric, denoted by Ci, of a class representative Ei; (iii) a go-
forward-k-step interval, which is an interval, denoted by F i

k , that transforms a class Ei

into E(i+k) �=0, with i �= L; (iv) a go-backward-k-step interval, which is an interval,
denoted by Bi

−k, that transforms a class Ei into E(i−k) �=0, with i �= −L.
The set C of compensation intervals is shown in Table 1. The set F of go-forward

intervals and their respective effects are partially presented in Table 2. The set of go-
backward intervals, denoted by B, can be specified analogously.

For example, for a state of type

(Ei
α, Ej

β)−n≤i<−1,1<j≤n ≡ ([i
L

n
, (i + 1)

L

n
], [(j − 1)

L

n
, j

L

n
]),

the compensation–compensation action and the go-backward−3–go-forward+2 actions
are given by (A1) (Ci, Cj) = ([− 2i+1

2
L
n
− ε,− 2i+1

2
L
n

+ ε], [(1−2j)
2

L
n
− ε, (1−2j)

2
L
n

+ ε]) and
(A2) (Bi

−3, F
j
+2) = ([−3L

n
− ε,−3L

n
+ ε], [2L

n
− ε, 2L

n
+ ε]) , respectively, resulting in the

state transitions: (Ei
α, Ej

β)−n≤i<−1,1<j≤n
(A1)�→ (E0

α, E0
β) and (Ei

α, Ej
β)−n≤i<−1,1<j≤n

(A2)�→
(E

(i−3)
α , E

(j+2)
β).

The equilibrium supervisor has to find, for each state E, the action that shall achieve
the terminal state or, at least, another state from where the terminal state can be achieved,

Interval-Based Markov Decision Processes for Regulating Interactions 107

Table 2. Specification of some go-forward intervals and their respective effects

State Go-forward interval F i
+k Effect

Ei
−n≤i<−1 k L

n
− ε, k L

n
+ ε

1−i≤k≤n−i−1
Ei �→ Ei+k, 1 < i + k ≤ n

E−1 k L
n
− ε, k L

n
+ 2ε

2<k≤n
E−1 �→ E−1+k, 1 < −1 + k ≤ n

E0 k L
n

, (k + 1) L
n 0<k≤n−1

E0 �→ Ek+1, 1 < k + 1 ≤ n

E1 k L
n
− 2ε, k L

n
+ ε

0<k≤n−i
E1 �→ E1+k, i < 1 + k ≤ n

Ei
1<i≤n k L

n
− ε, k L

n
+ ε

0<k≤n−i
Ei �→ Ei+k, i < i + k ≤ n

with the least number of steps. The choice of such actions is also regulated by the rules of
the social exchanges, and, therefore, there are some state transitions that are not allowed.
Based on a optimal policy, the equilibrium supervisor may be asked to recommend that
the agents act optimally. An optimal exchange recommendation consists of a function
that gives, for each actual material result (represented by a state of the model), a partially
defined exchange stage that shall restore or establish the material equilibrium or, at least,
give conditions that it be achieved in a least number of steps with least value uncertainty.
The optimal exchange recommendation associates state transitions determined by the
optimal policy with agents’ social exchanges.

Although the interacting agents acknowledge the optimal recommendations from the
equilibrium supervisor, they are autonomous in the sense that they may not follow the
recommendations exactly. Thus, the system may achieve another state different from the
one expected by the supervisor and, therefore, there may be a great deal of uncertainty
about the effects of the agents actions. Even if the agents follow a recommendation
exactly, we will show that the effect may not be the expected by the supervisor, since
it depends on the ratio κn

ε , where κn = L
n is the equilibrium supervisor accuracy and

ε (0 ≤ ε < κn) is the admissible tolerance. On the other hand, we assume that there
is never any uncertainty about the current state of the system, that is, the equilibrium
supervisor always has access to the current configuration of exchange values and has
complete and perfect abilities to evaluate the current material balance.

Definition 1. A Qualitative Interval Markov Decision Process (QI–MDP) for keeping
social exchanges in equilibrium is a tuple 〈E,A, F,R〉L,n

ε , where5:
- The set of the states is the set of pairs of equivalence classes of intervals E =

Eα × Eβ , with Eλ = {Ei | i = −n, . . . ,−1, 0, 1, . . . , n} defined in (4.1).
- A = (C ∪ F ∪ B ∪ {[−ε,+ε]})× (C ∪ F ∪ B ∪ {[−ε,+ε]}) is the set of possible

actions, where C, F and B are the sets of compensation, go-forward and go-backward
intervals, respectively.

- F : E ×A → Π(E) is the state-transition function, that gives for each state and
each action, a probability distribution over the set of states;

- R : (E × A) → R is the reward function, giving the expected immediate reward
gained by choosing an action a when the current state is e.

5 In this model, the next state and the expected reward depend only on the previous state and the
action taken, satisfying the so-called Markov property.

108 Graçaliz P. Dimuro and Antônio C.R. Costa

4.2 The Optimal Policy and the Reward Function

The reward function plays an important role when the equilibrium supervisor is choosing
the action that will generate a recommendation of agents interaction, in each state. The
supervisor aims to maximize the utility of sequences of actions, evaluated according to
the reward function.

A sample reward function R : (E×A) → R that conforms to the idea of supporting
a recommendation function that is able to direct agents into social equilibrium is partially
sketched in Table 3. This particular function illustrates various requirements that should
be satisfied by all reward functions of the model. Observe, for instance, that if the current
state is of the type (E−, E+), then the best action to be chosen is a compensation-
compensation action (C,C), which results in a state transition (E−, E+) �→ (E0, E0).
Any other choice will make the agents either take a long way to the equilibrium or get
away from it.

On the other hand, if the current state is of type (E−, E−), then a compensation-
compensation action (C,C) would generate a recommendation of agent exchanges of
satisfaction-satisfaction type, which is impossible according to the model of social inter-
actions [7], since it is impossible for an agent to get a satisfaction value from no service
at all. The reward function R states that (C,C) is a very bad action to be chosen in such
situation.

Any optimal policy π∗ : E → A solving the social equilibrium problem should
satisfy the set of requirements expressed by the schema partially sketched in Table 4 6

The optimal recommendation associated to an optimal policy π∗ is a function ρπ∗ that
gives, for each state (Ei

α, Ej
β) and optimal action π∗(Ei

α, Ej
β) = (X i, Y j), a partial

definition of a recommended exchange stage, consisting of pairs ((rαβ , X
i), (sβα, Y

j))
or ((rβα, Y

j), (sαβ , X
i)), where (rλδ,W) means the realization, by the agent λ, of a

service with investment valueW < 0, and (sδλ,W
′) means δ’s satisfaction with interval

value W ′, for receiving the service. The optimal recommendation ρπ∗ is also partially
sketched in Table 4.

Table 3. Partial schema of the reward function R

R (C, C) (0ε, C) (C, 0ε) (B−1, F1) (B−3, F3) (F1, B−1) (C, B−1) (F1, C)

(E−, E+) 30 20 -30 -5 -10 3 20 20
(E+, E+) 30 20 20 0 0 0 18 20
(E−, E−) -30 -30 -30 30 0 30 28 -30

5 Discussion

In the following, consider that the agents always follow the recommendations given
by the equilibrium supervisor. We show that, even in this favorable case, the decision
process is a non-trivial one, due the qualitative nature of exchange values. The results
concern the reachability of the terminal state show that under some conditions, it is

6 Notice that it is a non deterministic policy.

Interval-Based Markov Decision Processes for Regulating Interactions 109

Table 4. Partial schemata of the optimal policy π∗ and associated optimal recommendation ρπ∗

State Optimal policy Recommendation

(Ei, Ej)−n≤i<−1
1<j≤n (Ci > 0, Cj < 0) ((rβα, Cj), (sαβ, Ci))

(Ei, Ej)1<i,j≤n (Ci < 0, Cj < 0)
((rαβ, Ci), (sβα, Cj))
or ((rβα, Cj), (sαβ, Ci))

(E0, Ej)1<j≤n (0ε, C
j < 0) ((rβα, Cj), (sαβ, 0ε))

(E0, Ei)−n≤i<−1 (B0
−1 < 0, F i

+(−i+1) > 0) ((rαβ, B0
−1), (sβα, F i

+(−i+1)))

(E1, Ei)−n≤i<−1 (B1
−1 < 0, Ci > 0) ((rαβ, B1

−1), (sβα, Ci))
(E−1, E1) (F−1

+1 > 0, B1
−1 < 0) ((rβα, B1

−1), (sαβ, F−1
+1))

(E1, E−1) (B1
−1 < 0, F−1

+1 > 0) ((rαβ, B1
−1), (sβα, F−1

+1))
(Ei, E1)−n≤i<−1 (Ci > 0, B1

−1 < 0) ((rβα, B1
−1), (sαβ, Ci))

(E−1, E0) (F−1
+1 > 0, B0

−1 < 0) ((rβα, B0
−1), (sαβ, F−1

+1))
(E0, E−1) (B0

−1 < 0, F−1
+1 > 0) ((rαβ, B0

−1), (sβα, F−1
+1))

(Ei, Ej)−n≤i,j<−1
(F i

+(−i+1) > 0, Bj
−1 < 0)

or (Bj
−1 < 0, F i

+(−i+1) > 0)

((rβα, Bj
−1), (sαβ, F i

+(−i+1))

or ((rαβ, Bj
−1), (sβα, F i

+(−i+1))

always possible to have the system equilibrated in at most four steps. Let M τ
αβ and M τ

βα

be the material results of an exchange process, according to the points of view of the
agents α and β, respectively, at step τ .

Proposition 2. IfM0
αβ ∈ E−1 andM0

βα ∈ E1, then the system achieves the equilibrium
in one step if and only if 1 < κn

ε ≤ 3, ε > 0.

Proof. (⇒) If the system is at the state (E−1, E1), then, for the β’s material result,
it holds that ε < mid(M0

βα) ≤ L
n , and the optimal recommendation (Table 4, row7)

is based on the optimal action (C,C) =
[
− 1

2

(
L
n + ε

)
,− 1

2

(
L
n + ε

)]
. It follows that:

ε− 1
2

L
n

+ ε < mid(M0
βα)− 1

2
L
n

+ ε ≤ L
n
− 1

2
L
n

+ ε ⇒ 1
2

−L
n

+ ε < mid(M1
βα) ≤

1
2

L
n
− ε ⇒ 1

2
(−hε + ε) < mid(M1

βα) ≤ 1
2

(hε − ε), where L
n = hε, with h > 1. If

the system achieves the equilibrium in the step 1, then it holds that 1
2 (hε− ε) ≤ ε. It

follows that 1 < h ≤ 3, and therefore, 1 < κn

ε ≤ 3, since κn = L
n . The proofs for α’s

material result and of (⇐) are analogous. ��

Proposition 3. (i) If M0
αβ ∈ Ei, with 1 < i ≤ n, then it is possible to get M τ

αβ ∈ E0
α

in at most τ = 2 steps if and only if 1 < κn

ε ≤ 3; (ii) If M0
βα ∈ Ei, with −n ≤ i < −1,

then it is possible to get M τ
βα ∈ E0

β in at most τ = 2 steps if and only if 1 < κn

ε ≤ 3.

Proof. (i)(⇒) If (i− 1) L
n ≤ mid(M0

αβ) < iL
n and the optimal recommendation (Ta-

ble 4, row2) is based on the optimal action C =
[

(1−2i)
2

L
n , (1−2i)

2
L
n

]
, then (i − 1)L

n
+

(1−2i)
2

L
n

< mid(M0
βα) + (1−2i)

2
L
n

≤ iL
n

+ (1−2i)
2

L
n

, that is, − 1
2

L
n < mid(M1

βα) ≤ 1
2 . It

holds that M1
βα ∈ E1

α. From Prop. 2, it follows that with more one step we can get the
desired result. The proofs of (i)(⇐) and (ii) are analogous. ��

From Prop. 3 it follows that an individual transition from a material result that belongs
to a class Ei, with 1 < i ≤ n or−n ≤ i < −1, to the equilibrium can be done in at most

110 Graçaliz P. Dimuro and Antônio C.R. Costa

two steps (Ei �→ E1(or E−1) �→ E0). However, in any interaction between two agents,
combined transitions departing from a state (Ei, Ej) or (Ej , Ei), with 1 < i ≤ n and
−n ≤ j < −1, may result in a state different from (E1, E−1), (E−1, E1) or (E0, E0).
We may have, for example, (E−1, E0), and, in this case, it will not be possible to get the
equilibrium in one more step, since any compensation or go-forward action for α is not
allowed without a correspondent β’s service. The solution given by the optimal policy
is then to have a transition to (E1, E−1) and then, finally, to reach (E0, E0). Thus, the
overall process takes three steps.

The worst case is when the interaction presents material results that belong to the state
(Ei, Ej), with −n ≤ i, j < −1, since two simultaneous positive compensation actions
(that would require a recommendation of satisfaction values for the two agents without
any service at all) are not allowed. In this case, the optimal recommendation (Table 4)
leads the agents to get the material equilibrium in at most four steps, by one of the
following transitions: (Ei, Ej)−n≤i,j<−1

row12�→ (E1, Ej)−n≤j<−1
row6�→ (E0, E−1)

row11�→
(E−1, E1)

row7�→ (E0, E0), or (Ei, Ej)−n≤i,j<−1
row13�→ (Ej , E1)−n≤j<−1

row9�→ (E−1, E0)
row10�→ (E1, E−1)

row8�→ (E0, E0).

6 Conclusion

This paper introduced the QI–MDP version of the Markov Decision Process. The combi-
nation of interval-based modelling and qualitative approach to the comparison of values
of the model made it well suited for solving the problem of keeping social exchanges
in equilibrium. From the point of view of Jean Piaget’s theory of social interactions,
the QI–MDP means a sound way of making practical use of the INRC group of social
exchanges that structure the social interactions and defines its equilibrium problem [1].
The QI–MDP model is general enough to be applied to other problems, besides the prob-
lem of keeping social interactions in equilibrium. It can also be applied to equilibrium
problems of other kinds of systems, besides systems of social exchanges, if such systems
have one single equilibrium state.

Future work will be concerned with the case of an equilibrium supervisor that is
not able to determine the material balance of social exchange processes with complete
reliability (i.e., it is not allowed to know all the exchange values of the two agents). In this
case, a partially observable Markov decision process (POMDP) shall be considered (see,
p.ex., [3]), since the equilibrium supervisor shall be able to make external observations
(also probabilistic) to help him to decide about the recommendations.

References

1. A.C.R. Costa and G.P. Dimuro. The Case for Using Exchange Values in the Modelling of
Collaborative Learning Interactions. In J. Mostow and P. Tedesco, eds, Proceedings of Work-
shop 9 in the 7th International Conference on Intelligent Tutoring Systems, ITS 2004, pages
19–24, Maceió, 2004.

2. M. d’Inverno and M. Luck. Understanding Agent Systems. Springer, Berlin, 2001.
3. L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and Acting in Partially Observabe

Stochastic Domains. Artificial Intelligence, 101(1):99–134, 1998.

Interval-Based Markov Decision Processes for Regulating Interactions 111

4. G.C. Homans. Social Behavior - Its Elementary Forms. Harcourt, Brace & World, New York,
1961.

5. R.A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge, 1960.
6. R.E. Moore. Methods and Applications of Interval Analysis, SIAM, Philad., 1979.
7. J. Piaget. Socialogical Studies. Routlege, London, 1995.
8. M.L. Puterman. Markov Decision Processes – Discrete Stochastic Dynamic Programming.

Wiley, New York, 1994.
9. M.R. Rodrigues, A.C.R. Costa, and R. Bordini. A System of Exchange Values to Support So-

cial Interactions in Artificial Societes. In Proceeding of the Second International Conference
on Autonomous Agnets and Multiagents Systems, AAMAS 2003, pages 81–88, Melbourne,
Australia, 2003. ACM.

10. M.R. Rodrigues and A.C.R. Costa. Using Qualitative Exchange Values to Improve the Mod-
elling of Social Interactions. In D. Hales, B. Edmonds, E. Norling, and J. Rouchier, eds,
Procedings of 4th Workshop on Agent Based Simulations, n. 2927 in Lecture Notes in Com-
puter Science, pages 57–72, Melbourne, Australia, 2003.

11. S. Russel and P. Norvig. Artificial Intelligence, a Modern Approach. Prentice Hall, Reading,
2003.

12. D.J. White. Markov Decision Processes. Wiley, New York, 2002.
13. M. Wooldridge. An Introduction to Multi-Agent Systems. Wiley, New York, 2002.

A Domain Theoretic Account of Euler’s Method for
Solving Initial Value Problems

Abbas Edalat and Dirk Pattinson

Department of Computing, Imperial College London, UK

Abstract. This paper presents a method of solving initial value problems us-
ing Euler’s method, based on the domain of interval valued functions of a real
variable. In contrast to other interval based techniques, the actual computation
of enclosures to the solution is not based on the code list (term representation)
of the vector field that defines the equation, but assumes instead that the vector
field is approximated to an arbitrary degree of accuracy. By using approximations
defined over rational or dyadic numbers, we obtain proper data types for approxi-
mating both the vector field and the solution. As a consequence, we can guarantee
the speed of convergence also for an implementation of the method. Furthermore,
we give estimates on the algebraic complexity for computing approximate solu-
tions.

1 Introduction

We consider initial value problems given by a system of differential equations

ẏi = vi(y), yi(0) = 0 (i = 1, . . . , n) (1)

where the vector field v : [−K,K]n → [−M,M]n is continuous in a rectangle con-
taining the origin. Our goal is to compute a function y = (y1, . . . , yn) : [0, a] → Rn

which satisfies (1), up to any given degree of accuracy.
Standard numerical packages usually compute approximations to a solution with

good precision, but there is no guarantee on the correctness of the computed values;
indeed it is easy to find examples where they output inaccurate results [7]. Interval
Analysis [13,14] provides a method for computing guaranteed upper and lower enclo-
sures of the solution of initial value problems, see e.g. [2,3,8,9,11] and the references
therein for a survey of current interval techniques.

In the approach of interval analysis based on the Euler method, real numbers are
represented as intervals and outward rounding is applied if the result of an operation
is not machine representable. For many practical applications, these methods produce
good enclosures, but one has no control over widening of intervals, which can make
the result unduly large. As a consequence, implementations of interval methods are not
guaranteed to produce approximations which actually converge to the solution of the
problem, or satisfy an a priori estimate on the actual convergence speed.

These questions are addressed in the present paper using the framework of domain
theory [1,6]. Based on the domain of interval valued functions of a real variable, we con-
struct enclosures of the solutions of an IVP with an a priori guaranteed width. Moreover,

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 112–121, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 113

our construction gives rise to proper data types, which can be directly implemented on a
digital computer. This allows us to guarantee the speed of convergence also for existing
implementations.

Our new approach is based on a sequence of successively finer approximations to
the vector field. Using these approximations, we obtain enclosures of the solution of the
problem, which are then shown to converge to the solution. As the approximations of
the vector field can be defined using rational (or dyadic) numbers, no loss of precision
is incurred, and we can therefore guarantee the convergence speed also for an imple-
mentation of our techniques. These new techniques for the Euler method follow closely
those for the Picard method as developed recently in [5].

The main contributions of the paper are (i) to show that we can compute arbitrary
tight enclosures of the solution using approximations of the vector field, and (ii) to
show that these computations can be carried out on data types, defined over the rational
or dyadic numbers. Furthermore, we give an estimate on the speed of convergence to
the solution and an estimate of the algebraic complexity of computing approximations
for two different realisations of Euler’s technique.

Plan of the paper: We recall basic notions from domain theory in Section 2, and
introduce two realisations of Euler’s technique in Section 3, which are shown to pro-
duce approximations to the solution of the problem. We then add approximations of the
vector field that defines the IVP (Section 4), and give an estimate on the speed of conver-
gence of our method. Section 5 shows how our techniques can actually be implemented
on a digital computer and gives the promised estimates on the algebraic complexity.
Finally, the last section puts our results into perspective with related research.

2 Preliminaries and Notation

First note that the continuity assumption on v entails that v attains its maximum, and
we can therefore restrict the range of v to [−M,M]n without loss of generality. For the
expression (1) to be well defined, we make the standard assumption aM ≤ K .

Our investigations are based on the interval domain (IR,%) where IR = {[a, a] |
a ≤ a and a, a ∈ R} ∪ {R} ordered by reverse inclusion, i.e. α % β if β ⊆ α. For a
compact rectangle R ⊆ R, the sub-domain of compact intervals [a, a] ⊆ R is denoted
by IR with inherited order relation.

Note that both IR and IR, for R ⊆ R a compact interval, are directed complete:
For a directed set D ⊆ IR of intervals, the least upper bound

⊔
D always exists and

is given by
⋂

D. In interval terms, suprema of a directed subset of IR correspond to
Moore’s principle of nested convergence of [13].

The order on an arbitrary directed complete partial order (dcpo, for short) (D,%)
induces a topology on D, the so called Scott topology: We call a set O ⊆ D open, if

1. it is upward closed, i.e. d ∈ O and d % e implies e ∈ O
2. it is inaccessible by directed suprema, i.e. if A ⊆ D is directed and

⊔
A ∈ O, then

a ∈ O for some a ∈ A.

In the case of the interval domain IR, a base of the Scott topology is given by
subsets of the form {α ∈ IR | α ⊆ β◦} for any β ∈ IR, where β◦ is the interior of β. It

114 Abbas Edalat and Dirk Pattinson

can easily be seen that the Scott topology is T0 and convergence in the Scott topology
implies convergence in the metric topology, used by Moore [14], but not vice versa. In
the sequel of the paper, we always consider a dcpo, or a space of intervals, as equipped
with the Scott topology.

Given an arbitrary set X , every function f : X → IR can be represented by a
pair (f, f) representing the upper and the lower interval boundary of f , that is, f(x) =
[f(x), f(x)] for all x ∈ X . We write this as f = [f, f]. We often make use of the
following crucial fact [1]:

Fact 1. Suppose f = [f, f] : R → IR. Then f is Scott continuous iff f is lower and f
is upper semi continuous.

If the domain of a function is also a dcpo (topologised with the Scott topology), we
have the following alternative characterisation of continuity:

Fact 2. Suppose (D,%) and (E,%) are dcpos. Then a monotone function f : D → E
is continuous iff

⊔
a∈A f(a) = f(

⊔
A) for all directed A ⊆ D.

We also note that the space X ⇒ D of continuous functions of type X → D,
for a topological space X and a dcpo D, is again a dcpo in the pointwise order: given
f, g : X → D, we put f % g if f(x) % g(x) for all x ∈ X . Hence we can view the
space of continuous functions X → D as a topological space w.r.t. the Scott topology
on X ⇒ D. In case X = {1, . . . , n} with the discrete topology, we write Dn for
X ⇒ D and obtain the n-fold cartesian product of the dcpo D with itself. In the special
case D ⊆ IR is a sub-dcpo, Dn is canonically isomorphic to the dcpo of n-dimensional
compact rectangles, and we will use this isomorphism without further mention.

For our purposes, the following spaces of functions are of particular interest:

1. The space S = [0, a] ⇒ I[−K,K]n (with the Euclidean topology on [0, a]) for
constructing solutions of (1)

2. The space V = I[−K,K]n ⇒ I[−M,M]n of interval vector fields.

We use the notion of width to measure the quality of an approximation. Given α =
([a0, a0], . . . [an, an]) ∈ IRn, we put w(α) = max{ai − ai | 1 ≤ i ≤ n}, and for a
function f : X → IRn we let w(f) = sup{w(f(x)) | x ∈ X} and call f real valued
if w(f) = 0 and identify f with the induced function X → Rn.

The relation between vector fields in the classical sense and interval vector fields
is given by the notion of extension: we say that u ∈ V extends v : [−K,K]n →
[−M,M]n if u({x}) = {v(x)} for all x ∈ [−K,K]n. In the sequel, we assume
that u ∈ V is an extension of the classical vector field v. Note that every continuous
v = (v1, . . . , vn) : [−K,K]n → [−M,M] has an extension, the canonical extension
canv whose i-th component is given by I[−K,K]n ' α �→ {vi(x) | x ∈ α}. We
emphasise that our framework does not force us to work with the canonical extension
of the classical vector field v.

Finally, we introduce integrals of interval valued functions, which we use in the
construction of solutions of the IVP. Suppose p ≤ q and f : [p, q] → IR. Then the
integral of f = [f, f] is defined as

∫ q

p f(t)dt = [
∫ q

p f(t)dt,
∫ q

p f(t)dt]. The existence

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 115

of the integrals follows from lower (resp. upper) semi continuity of f (resp. f). If f =
(f1, . . . , fn) : [p, q] → IRn, we let

∫ q

p f(t)dt = (
∫ q

p f1(t)dt, . . . ,
∫ q

p fn(t)dt). The
following property follows easily from the monotone convergence theorem:

Fact 3. The integration operator
∫ q

p
: ([p, q] ⇒ IRn) → ([p, q] ⇒ IRn), defined by

f �→ λx.
∫ x

p f(t)dt, is monotone and continuous.

3 Euler’s Operator in Domain Theory

We use a formulation of Euler’s operator similar to the one given by Moore. The results
of this section are in essence standard [14] and are reproduced here in the framework of
domain theory for the reader’s convenience.

The formalisation of Euler’s method for solving initial value problems relies on the
notion of partitions of the interval [0, a]:

Definition 1 (Partitions).

1. A partition of [0, a] is a finite sequence (q0, . . . , qk) of real numbers 0 = q0 < · · · <
qk = a; the set of partitions of [0, a] is denoted by P .

2. The norm |Q| of a partition Q = (q0, . . . , qk) is given by |Q| = max1≤i≤k qi−qi−1

and its minimal width is m(Q) = min1≤i≤k qi−qi−1. We denote the ratio between
maximal and minimal width by r(Q) = |Q|/m(Q).

3. A partition Q = (q0, . . . , qk) refines a partition P = (p0, . . . , pl) if {p0, . . . , pl} ⊆
{q0, . . . , qk}; this is denoted by P % Q.

We now introduce two different realisations of Euler’s technique for solving IVPs.
The first has better convergence properties whereas computing with the second turns
out to be more efficient.

For the remainder of the paper, we fix an extension u : I[−K,K]n → I[−M,M]n

of the classical vector field v. If α = ([a1, a1], . . . , [an, an]) ∈ IRn and r ∈ R, we
write α ⊕ r = ([a1 − r, a1 + r], . . . , [an − r, an + r]) for the symmetric expansion of
the interval vector α with the real constant r.

Definition 2. Suppose Q = (q0, . . . , qn) ∈ P . Then the Euler operator with linear
expansion El : P × V → [0, a] ⇒ I[−K,K]n is defined by

El
u(Q)(x) =

{
(0, . . . , 0) x = 0
El

u(Q)(qi) +
∫ x

qi
u(El

u(Q)(qi)⊕ (x− qi)M)dt qi ≤ x ≤ qi+1

for x ∈ [0, a]. The Euler operator with constant expansion is given similarly by

Ec
u(Q)(x) =

{
(0, . . . , 0) x = 0
Ec

u(Q)(qi) +
∫ x

qi
u(Ec

u(Q)(qi)⊕ΔqiM)dt qi ≤ x ≤ qi+1

where Δqi = qi+1 − qi. In the sequel, E stands for either El or Ec

116 Abbas Edalat and Dirk Pattinson

The operator with constant expansion represents an interval version of Euler’s
method for constructing solutions of differential equations, as described by Moore [14].
An equivalent definition could also be given without the use of integration. However,
our definition allows us to treat both operators in the same framework, and therefore
enables us to use the same proof techniques for both.

We collect some basic facts on the operators Ec and El. First, note that Eu is (i.e.
El

u and Ec
u are) well defined, monotone and computes enclosures of the solution.

Proposition 4. Eu is well defined, monotone (Eu(Q) ∈ S and Eu(P) % Eu(Q) when-
ever P % Q) and satisfies Eu(Q) % z for any solution z of (1).

Using the fact that every initial value problem of the form (1) has at least one solu-
tion, it is easy to see that if the supremum of the Euler iterates is real valued, it solves
(1).

Corollary 5. Suppose P is a directed set of partitions and y = [y, y] =
⊔

Q∈P Eu(Q)
and y = y. Then y = y is a solution of (1).

In order to be able to compute arbitrarily tight enclosures of the solution, we need
to impose a Lipschitz condition on the vector field; this is as in the classical theory. The
following definition translates this into an interval setting:

Definition 3 (Interval Lipschitz Condition). The function u : I[−K,K]n →
I[−M,M]n satisfies an interval Lipschitz condition with Lipschitz constant L if
w(u(α)) ≤ L · w(α) for all α ∈ I[−K,K]n.

For the rest of the paper, we assume that u is an extension of v, which satisfies
an interval Lipschitz condition with Lipschitz constant L. The assumption that u is
interval Lipschitz is actually equivalent to v satisfying a Lipschitz condition [5], hence
our assumption is in accordance with the classical theory.

Assuming a Lipschitz condition, we can give guarantees on the speed of conver-
gence. We begin with an auxiliary lemma which helps to show that in this case, the
approximations converge to a real valued function. In particular, this lemma also shows
that El has better convergence properties than Ec.

Lemma 6. Suppose Q = (q0, . . . , qn) is a partition. Then

w(E∗
u(Q)(x)) ≤ w(E∗

u(Q)(qi))(1 + |Q| · L) + C|Q|2LM

for x ∈ [qi, qi+1], where C = 1 for ∗ = l and C = 2 for ∗ = c.

Based on the previous lemma, we can now give an estimate on the speed of conver-
gence; recall from Definition 1 that r(Q) is the ratio of the largest and smallest distance
between two partition points.

Proposition 7. Suppose P is a partition of [0, a]. Then

w(E∗
u(P)) ≤ C · |Q|M(eaLr(Q) − 1)

where C = 1 for ∗ = l and C = 2 for ∗ = c.

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 117

By suitably modifying non-equidistant partitions, the term r(Q) can be eliminated.

Corollary 8 (Speed of Convergence).

1. If Q is equidistant, then w(E∗
u(Q)) ≤ C · |Q|M(eaL − 1).

2. If Q is arbitrary, then w(E∗
u(Q)) ≤ 2C|Q|M · (e4aL − 1).

where, in both cases, C = 1 for ∗ = l and C = 2 for ∗ = c.

Our main result is thus:

Theorem 9. Suppose (Qn)n∈N is an increasing sequence of partitions with
limn→∞ |Qn| = 0 and y =

⊔
n∈N

Eu(Qn). Then w(yn) ≤ C · |Qn| for some C ≥ 0
and
⊔

n∈N
yn is real valued and a solution of (1).

4 Approximation of the Vector Field

We have seen in the previous section how to construct approximations for the solution
of an IVP directly in terms of the interval extension of the classical vector field itself.
From a computational point of view, this is unrealistic. In practice, only approximations
to the vector field up to an arbitrary degree of accuracy are available for computation.
In this section, we show that Euler’s operator Eu is continuous in u, which will allow
us to use approximations of the vector field for computing the solution of the IVP up
to an arbitrary degree of accuracy. Instead of assuming that the vector field is given as
a term involving certain basic functions like arithmetic operations and trigonometric
functions, we assume that the vector field is given as a supremum of simple functions,
each of which takes only finitely many values. As we will see in the next section, the
use of simple functions allows us to compute the solution without loss of accuracy, and
we can therefore guarantee the convergence also for an implementation of the method.
We follow the convention of the previous section and use Eu to stand for both El

u and
Ec

u.

Lemma 10. Suppose u1, u2 : I[−K,K]n → I[−M,M]n with u1 % u2. Then Eu1 %
Eu2 , i.e. Eu1 (Q) % Eu2 (Q) for all partitions Q.

Informally speaking, if u1 contains more information than u2, the operator associ-
ated with u2 produces a better enclosure of the solution than that of u1. We show that
Eu is actually continuous in u, allowing us to use approximations of u for computing
approximations of the solution.

Proposition 11. Suppose (uj)j∈J is a directed collection of vector fields uj :
I[−K,K]n → I[−M,M]n with u =

⊔
j∈J uj . Then Eu =

⊔
j∈J Euj .

As an immediate consequence, we deduce that continuity in u allows us to use
approximations of u for computing solutions.

Corollary 12. Suppose (un)n∈N is a sequence in V with u =
⊔

n∈N
un and (Qn)n∈N

is a sequence of partitions with limn→∞ |Qn| = 0. Then
⊔

n∈N
Eun(Qn) is real valued

and satisfies the IVP (1).

118 Abbas Edalat and Dirk Pattinson

In presence of approximationsun of u, the speed of convergence will clearly depend
on the speed of convergence of the sequence un to u. We now introduce the measure
which we use to express the convergence rate of un to u.

Definition 4. If α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ IRn, we let d(α, β) =
max{|ai − bi|, |ai − bi|, i = 1, . . . , n} where αi = [ai, ai] and βi = [bi, bi]. For
u, u′ ∈ V , we put d(u, u′) = supα∈I[−K,K]n d(u(α), u′(α)).

Note that d(α, β) is the Hausdorff distance for compact intervals, already used by
Moore [14]. The following Lemma is the key for obtaining a result on the speed of
convergence in presence of approximations of the vector field.

Lemma 13. Suppose u′ % u and Q = (q0, . . . , qk) ∈ P . Then

w(E∗
u′ (Q)(x)) ≤ w(E∗

u′ (Q)(pi))(1 + |Q| · L) + C|Q|2LM + |Q|d(u, u′)

for x ∈ [qi, qi+1], where C = 1 for ∗ = l and C = 2 for ∗ = c.

Similar to the development in the previous section, we obtain the following global
estimate.

Proposition 14. Suppose Q is a partition of [0, a] and u′ % u. Then

w(E∗
u′ (Q)) ≤ C · (|Q|M +

d(u, u′)
L

)(eaLr(Q) − 1)

where C = 1 for ∗ = l and C = 2 for ∗ = c.

Modifying the partitions which are used to obtain the above estimate, we can elim-
inate the term r(Q) and obtain the following global estimate.

Corollary 15 (Speed of Convergence).

1. If Q is equidistant, then w(E∗
u′ (Q)) ≤ C · (|Q|M + d(u,u′)

L)(eaL − 1).

2. If Q is arbitrary, then w(E∗
u′ (Q)) ≤ C · (2|Q|M + d(u,u′)

L) · (e4aL − 1).

where, in both cases, C = 1 for ∗ = l and C = 2 for ∗ = c.

In summary, we see that adding approximations to the vector field does not destroy
the order of convergence speed, given that the approximations of the vector field con-
verge as fast as the partitions decrease in width.

Theorem 16. Suppose (Qn)n∈N is a monotone sequence of partitions of [0, a] with
limn→∞ |Qn| = 0, u =

⊔
n∈N

un with d(u, un) ≤ C0 · |Qn| for some constant C0 ≥ 0
and yn = Eun(Qn). Then w(yn) ≤ C1 · |Qn| for some C1 ≥ 0 and

⊔
n∈N

yn is real
valued and solves the IVP (1).

The next section shows, how we can implement the proposed method as to guarantee
the speed of convergence also for actual implementations of the method.

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 119

5 Implementation of the Domain Theoretic Method

In this section, we demonstrate how the domain theoretic approach to solving initial
value problems can be implemented on a digital computer in such a way that the esti-
mates on the speed of convergence can be guaranteed for an implementation. The key
concept here is that of a base. Informally speaking, a base of a directed complete partial
D order is a collection B ⊆ D of elements which generate all of D by means of di-
rected suprema. For the interval domain, it is easy to see that the intervals with rational
(or dyadic) endpoints for a base, and we introduce suitable bases for the spaces V and
S later. The main point about these bases is that (i) base elements form a proper data
type and (ii) can be manipulated without any loss of precision.

The main contribution of this section is the proof that, if u is approximated by base
elements, Eu(Q) is also an element of the corresponding base. Furthermore, we give
estimates on the algebraic complexity of computing Eu(Q) both for Ec

u and El
u.

We refer the reader to [1, Section 2.2.2] for the formal definition of a base, and
instead introduce the bases we work with in the sequel.

Definition 5. Let D ⊆ R be a dense subset with 0, a ∈ D and assume that 0 = a0 <
· · · < ak = a with a0, . . . , ak ∈ D, β0, . . . , βk ∈ I[−K,K]nD and γ1, . . . , γk ∈
I[−M,M]nD, where RD denotes the set of rectangles, which are contained in R and
whose endpoints lie in Dn. We write βi for the vector representing the upper endpoints
of the interval vector βi with β

i
given similarly. We consider the following classes of

functions, where βo is the interior of β:

1. The class SD of piecewise D-linear functions [0, a] → I[−K,K]n,

f = (a0, . . . , ak) ↘ (β0, . . . , βk)

where f(x) = βj−1+
x−aj−1
aj−aj−1

(βj−βj−1) and f(x) = β
j−1

+ x−aj−1
aj−aj−1

(β
j
−β

j−1
)

for x ∈ [aj−1, aj]. Every component of a D-linear function is piecewise linear and
takes values in D at a0, a1 . . . , ak.

2. The set VD of finite sups of step functions I[−K,K]n → I[−M,M]n,

f =
⊔

1≤j≤k

βj ↘ γj where β ↘ γ(x) =

{
γ x ⊆ βo

[−M,M]n otherwise

3. For any f as above, we put N (f) = k and call it the complexity of representation
of f .

The set of partitions Q with partition points in D is denoted byPD; we writeN (Q) = k
if Q = (q0, . . . , qk) has k + 1 partition points.

It is easy to see that SD and VD are bases of the dcpos S and V , respectively.

Fact 17. If D ⊆ R is a dense subset, then SD and VD are bases of S and V .

For a particular dense subset D ⊆ R, such as the rational or dyadic numbers, the
elements of SD and VD are data types, the elements of which can be manipulated with-
out loss of precision. This allows us to guarantee the convergence speed also for an
implementation of our method. We now show that in the computation of Eu(Q) these
data types are actually preserved.

120 Abbas Edalat and Dirk Pattinson

Proposition 18. Suppose D ⊆ R is dense.

1. If D is a ring and u ∈ VD, Q ∈ PD, then Ec
u(Q) ∈ SD and Ec

u(Q) can be
computed in O(N (Q) · N (u)) algebraic steps.

2. If D is a field and u ∈ VD, Q ∈ PD, then El
u(Q) ∈ SD and can be computed in

O(N (Q) · N (u)2)) algebraic steps.

This proposition in particular highlights the difference between the two operators
Ec and El: computing with El yields a better speed of convergence to the solution
(Corollary 15), at the cost of a higher complexity of the computation of the approximate
solution. Furthermore, we have to work with rational (as opposed to dyadic numbers)
when implementing the method using the operator El, as the base we need to work with
is constructed using a dense subfield of the real numbers.

As we have seen, our methods for computing solutions of initial value problems
hinges on the fact that we can actually produce approximations un to u of the form⊔

1≤j≤l βj ↘ γj . For a classical vector field v : [−K,K]n → [−M,M]n, such approx-
imations can be produced given a function v̂ that computes rational approximations of v
up to any desired degree of accuracy, i.e. v̂ : [−K,K]n∩Qn×Q → [−M,M]n∩Qn for
which ||v(x)− v̂(x, ε)|| ≤ ε. For many functions, e.g. polynomials or analytic functions,
such approximating functions are both known and easy to implement.

Given v̂ as above, we can use the Lipschitz constant L of v and the error bound to
approximate an interval extension of v by finite suprema of step functions of the form
({b} ⊕ δ) ↘ {v̂(b, ε)} ⊕ (ε + δL), where δ and ε vary over positive real numbers and
b ∈ [−K,K]n. In the term {v̂(b, ε)} ⊕ (ε + δL), ε is needed to accommodate the error
of v̂ and expanding further with δL uses the Lipschitz constant of v to give a guaranteed
enclosure of the values of v on the interval {b}⊕ δ. This is developed in the full version
of this paper.

6 Conclusions and Further Work

We have presented a domain theoretic method for solving initial value problems, with
the domain of intervals at the heart of our approach. The main difference to other in-
terval methods [3,9] is that we use approximations of the vector field in the process
of computing solutions. As these approximations are elements of proper data types, no
loss of precision is incurred when working with these approximations, allowing us to
guarantee convergence also for implementations.

From the perspective of domain theory, differential equations have been studied in
[4,5], using a Picard operator. This requires us to store approximative solutions in mem-
ory before being able to compute a further iterate. In comparison, the method outlined
in this paper is more memory effective.

Differential equations have also been considered in the framework of exact compu-
tation, e.g. [15,10], but to our knowledge, this not has lead to practical implementations
of methods for solving IVPs with guaranteed error bounds.

Finally, we remark that this is only part of a first investigation for using domain
theoretic methods in the context of ODE solving. Further work is needed to be able to
exploit information about the derivatives of the vector field. Also, our approach does not

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems 121

include any control over the step size (distance between successive partition points), but
we believe that the standard techniques developed in interval analysis fit in smoothly
to our framework. On the practical side, our next task is to compare implementations
of our method to traditional interval based approaches, such as Lohner’s AWA [12] and
Nedialkov’s VNODE [16].

References

1. S. Abramsky and A. Jung. Domain Theory. In S. Abramsky, D. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 3. Clarendon Press,
1994.

2. M. Berz and K. Makino. Verified integration of odes and flows using differential algebraic
methods on high-order taylor models. Reliable Computing, 4:361–369, 1998.

3. G. Corliss. Survey of interval algorithms for ordinary differential equations. Journal of
Applied Mathematics and Computation, 31:112–120, 1989.

4. A. Edalat, M. Krznarić, and A. Lieutier. Domain-theoretic solution of differential equations
(scalar fields). In Proceedings of MFPS XIX, volume 83 of Elect. Notes in Theoret. Comput.
Sci., 2004.

5. A. Edalat and D. Pattinson. A domain theoretic account of picard’s theorem. In Proc. ICALP
2004, Lect. Notes in Comp. Sci., 2004.

6. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. Scott. Continuous
Lattices and Domains. Cambridge University Press, 2003.

7. A. Iserles. Numerical Analysis of Differential Equations. Cambridge Texts in Applied Math-
ematics. Cambridge University Press, 1996.

8. K. Jackson and N. Nedialkov. Some recent advances in validated methods for ivps for odes.
Applied Numerical Mathematics archive, 42(1):269–284, 2002.

9. K. Jackson, N. Nedialkov, and G.Corliss. Validated solutions of initial value problems for
ordinary differential equations. Applied Mathematics and Computation, 105:21–68, 1999.

10. K. Ko. On the computational complexity of ordinary differential equations. Inform. Contr.,
58:157–194, 1983.

11. R. Lohner. Enclosing the solution of ordinary initial and boundary value problems. In
E. Kaucher, U. Kulisch, and C. Ullrich, editors, Computer Arithmetic: Scientific Computation
and Programming Languages, Wiley-Teubner Series in Computer Science. 1987.

12. R. Lohner. Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und
Anwendungen. PhD thesis, 1988.

13. R. Moore. Methods and Applications of Interval Analysis. Number 2 in SIAM studies in
applied mathematics. SIAM, 1979.

14. R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
15. N. Müller and B. Moiske. Solving initial value problems in polynomial time. In In Proceed-

ings of the 22th JAIIO - Panel’93, pages 283–293, 1993.
16. N. Nedialkov and K.Jackson. The design and implementation of an object-oriented validated

ode solver. Draft, available via http://www.cas.mcmaster.ca/~nedialk/.

Reliable Computation of Equilibrium States
and Bifurcations in Nonlinear Dynamics

C. Ryan Gwaltney and Mark A. Stadtherr�

Department of Chemical and Biomolecular Engineering, 182 Fitzpatrick Hall
University of Notre Dame, Notre Dame IN 46556, USA

markst@nd.edu

Abstract. A problem of frequent interest in the analysis of nonlinear ODE mod-
els is the location of equilibrium states and bifurcations. Interval-Newton tech-
niques are explored for identifying, with certainty, all equilibrium states and all
codimension-1 and codimension-2 bifurcations of interest within specified model
parameter intervals. The methodology is demonstrated using a tritrophic food
chain in a chemostat (Canale’s model), and a modification thereof.

1 Introduction

A problem of frequent interest in many fields of science and engineering is the study
of nonlinear dynamics. Through the use of bifurcation diagrams, a large amount of in-
formation concerning the number and stability of equilibria in a nonlinear ODE model
can be concisely represented. Bifurcations of equilibria can be found by solving a non-
linear algebraic system consisting of the equilibrium (steady-state) conditions along
with one or more augmenting functions. Typically this equation system is solved using
some continuation-based tool (e.g., AUTO). However, in general, these methods do not
provide any guarantee that all bifurcations will be found, and are often initialization de-
pendent. Thus, without some a priori knowledge of system behavior, one may not know
with complete certainty if all bifurcation curves have been identified and explored. We
consider here the use of an interval-Newton methodology as a way to ensure that all
equilibrium states and bifurcations of interest are found.

In particular, we are interested in locating equilibrium states and bifurcations in food
chain models. These models are descriptive of a wide range of behaviors in the environ-
ment, and are useful as a tool to perform ecological risk assessments. These models are
often simple, but display rich mathematical behavior, with varying numbers and stability
of equilibria that depend on the model parameters (e.g., [1,2]). Therefore, bifurcation
analysis is quite useful in characterizing the mathematical behavior of predator/prey
systems, as it allows for the concise representation of model behavior over a wide range
of parameters. We will focus on one particular food chain model here, namely Canale’s
chemostat model. We will also develop and study a version of the model that incorporates
an ecosystem contaminant.

Our interest in ecological modeling is motivated by its use as one tool in studying the
impact on the environment of the industrial use of newly discovered materials. Clearly

� Author to whom all correspondence should be addressed. Fax: (574) 631-8366

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 122–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reliable Computation of Equilibrium States and Bifurcations in Nonlinear Dynamics 123

it is preferable to take a proactive, rather than reactive, approach when considering the
safety and environmental consequences of using new compounds. Of particular interest
is the potential use of room temperature ionic liquid (IL) solvents in place of traditional
solvents [3]. IL solvents have no measurable vapor pressure and thus, from a safety and
environmental viewpoint, have several potential advantages relative to the traditional
volatile organic compounds (VOCs) used as solvents, including elimination of hazards
due to inhalation, explosion and air pollution. However, ILs are, to varying degrees,
soluble in water, thus if they are used industrially on a large scale, their entry into the
environment via aqueous waste streams is of concern. The effects of trace levels of ILs
in the environment are today essentially unknown and thus must be studied. Ecological
modeling provides a means for studying the impact of such perturbations on a localized
environment by focusing not just on the impact on one species, but rather on the larger
impacts on the food chain and ecosystem.

2 Problem Formulation

2.1 Canale’s Chemostat Model

Canale’s chemostat model is a tritrophic (prey, predator, superpredator) food chain model
embedded in a chemostat. The predator and superpredator grow by consuming the prey
and predator species, respectively, while the prey grows by consuming nutrients in the
chemostat. The rate at which the prey, predator, and superpredator consume food is
modeled by a hyperbolic functional response. There is a constant flow through the
chemostat, which carries nutrients into and out of the system. The model is given by:

dx0

dt
= D(xn − x0)−

a1x0x1

b1 + x0
(2.1)

dx1

dt
= x1

[
e1

a1x0

b1 + x0
− a2x2

b2 + x1
− d1 − ε1D

]
(2.2)

dx2

dt
= x2

[
e2

a2x1

b2 + x1
− a3x3

b3 + x2
− d2 − ε2D

]
(2.3)

dx3

dt
= x3

[
e3

a3x2

b3 + x2
− d3 − ε3D

]
(2.4)

Herex0 is the nutrient concentration in the system andx1,x2, andx3 are the biomasses of
the prey, predator, and superpredator populations, respectively. The parameters ai, bi, di,
and ei are the maximum predation rate, half-saturation constant, density-dependent death
rate, and predation efficiency of the prey (i = 1), predator (i = 2), and superpredator
(i = 3) species. The parameter xn is the nutrient concentration flowing into the system,
and the parameter D is the inflow rate (equal to the outflow rate). The term εiD is
the density-dependent washout rate of species i. This model has received considerable
attention in the field of theoretical ecology [2,4].

124 C. Ryan Gwaltney and Mark A. Stadtherr

2.2 Equilibrium States and Bifurcations

The equilibrium (steady-state) condition is simply dx/dt = 0, which in this case is
subject to the feasibility condition x ≥ 0. Here x = [x0, x1, x2, x3]T and dx/dt is
given by Eqs. (2.1–2.4). Thus, once all the model parameters have been specified, there
is a 4 × 4 system of nonlinear equations to be solved for the equilibrium states. In
general, equation systems of this type may have multiple solutions, and the number of
equilibrium states may be unknown a priori. For simple models, it may be possible to
solve for many of the equilibrium states analytically, but for more complex models a
computational method is needed that is capable of finding, with certainty, all the solutions
of the nonlinear equation system.

A bifurcation is a change in the topological type of the phase portrait as one or more
model parameters are varied [5]. Bifurcations of interest here occur at parameter values
where the number and/or stability of equilibrium states change. These include three
types of codimension-1 bifurcations, namely fold, transcritical and Hopf, and two types
of codimension-2 bifurcations, namely double-fold (or double-zero) and fold-Hopf.

When a fold or transcritical bifurcation of equilibrium occurs, two equilibria “col-
lide" as the bifurcation parameter is varied. This collision results in either an exchange of
stability (transcritical) or mutual annihilation of two equilibria (fold). Mathematically,
when an equilibrium state undergoes either a fold or transcritical bifurcation, an eigen-
value of its Jacobian is zero. Since the determinant of a matrix is equal to the product
of its eigenvalues, the determinant of the Jacobian will be zero at a fold or transcritical
bifurcation, thereby providing a convenient test function [5]. Thus, to locate fold or
transcritical bifurcations of equilibria, the equilibrium condition can be augmented with
the additional equation det[J(x, α)] = 0 and additional variable α, the free parameter.
The augmented system is then solved to find the fold and transcritical bifurcations, along
with the corresponding value of α.

When a Hopf bifurcation occurs, an equilibrium state simply changes stability. Math-
ematically, when an equilibrium state undergoes a Hopf bifurcation, its Jacobian has a
pair of complex conjugate eigenvalues whose real parts are zero. Thus, there must be
a pair of eigenvalues that sums to zero. According to Stephanos’s theorem [5], for an
N × N matrix J with eigenvalues λ1, λ2, . . . , λN , the bialternate product J) J has
eigenvaluesλiλj and the bialternate product 2J)I has eigenvaluesλi +λj . Thus, to lo-
cate a Hopf bifurcation, the equilibrium condition can be augmented with the additional
equation det[2J(x, α)) I] = 0. Note that while solutions to the augmented system will
include all Hopf bifurcation points, there may be other solutions corresponding to the
case of two eigenvalues that are real additive inverses. To identify such “false positives"
it is necessary to compute the eigenvalues of the Jacobian at each solution. If the Hopf
bifurcation occurs in an independent two-variable subset of state space, this is referred
to as a planar Hopf bifurcation.

The two types of codimension-2 bifurcations (double-fold and fold-Hopf) can both
be located by using the same augmenting functions as introduced above. When an equi-
librium undergoes a double-fold bifurcation, its Jacobian has two zero eigenvalues. When
an equilibrium undergoes a fold-Hopf bifurcation, its Jacobian has one eigenvalue that is
zero and a pair of purely imaginary complex conjugate eigenvalues. Thus, the determi-
nant of the Jacobian will be zero in both a double-fold and a fold-Hopf bifurcation, be-

Reliable Computation of Equilibrium States and Bifurcations in Nonlinear Dynamics 125

cause in both cases there is at least one eigenvalue that is zero. Furthermore, in both cases,
there is a pair of eigenvalues that will sum to zero, and so the determinant of the bialternate
product 2J) I will be zero. Thus, to locate a double-fold or a fold-Hopf codimension-
two bifurcation of equilibrium, the equilibrium condition can be augmented with the
two additional equations det[J(x, α, β)] = 0 and det[2J(x, α, β)) I] = 0 and two
additional variables (free parameters) α and β. The augmented system is then solved to
find the codimension-2 bifurcations of interest, along with the corresponding values of
α and β. Once found, these solutions must be screened for solutions that have a pair of
(nonzero) eigenvalues that are purely real additive inverses, and the solutions must be
further sorted and classified by type.

Whether one is looking for equilibrium states, or the bifurcations of equilibria dis-
cussed above, there is a system of nonlinear equations to be solved that may have multiple
solutions, or no solutions, and the number of solutions may be unknown a priori. A com-
putational method is needed that is capable of finding, with certainty, all the solutions
of these nonlinear equation systems. An interval-Newton methodology is explored here
for this purpose.

3 Computational Methodology

Consider an n×n nonlinear equation system f(x) = 0 with a finite number of real roots
in some initial interval X(0). The interval-Newton methodology (e.g., [6,7]) is applied
to a sequence of subintervals of X(0). For a subinterval X(k) in the sequence, the first
step is the function range test. An interval extension F(X(k)) of the function f(x) is
calculated, which provides upper and lower bounds on the range of values of f(x) in
X(k). If there is any component of the interval extension F(X(k)) that does not include
zero, then the interval can be discarded. Additional tools (e.g., constraint propagation)
may also be applied at this point in order to reduce the size of X(k) or eliminate it.

If it has not been eliminated, the testing of X(k) continues with the interval-Newton
test, which involves the solution of a linear interval equation system. There are three
possible outcomes: 1. X(k) is shown to contain no root, so it can be discarded; 2. X(k)

is shown to contain a unique root, so it need not be further tested; 3. Neither of the
above, but the size of X(k) may have been reduced. In the last case, if there has been a
significant reduction is size, then the interval-Newton test can be reapplied. Otherwise,
the current X(k) is bisected, and the resulting two subintervals are added to the sequence
of subintervals to be tested. If an interval containing a unique root has been identified, then
this root can be tightly enclosed by continuing the interval-Newton iteration, which will
converge quadratically to a desired tolerance. This approach is referred to as an interval-
Newton/generalized-bisection (IN/GB) method. At termination, when the subintervals
in the sequence have all been tested, either all the real roots of f(x) = 0 have been tightly
enclosed or it is determined rigorously that no roots exist. An important feature of this
approach is that, unlike standard methods for nonlinear equation solving that require a
point initialization, the IN/GB methodology requires only an initial interval.

4 Results: Canale’s Model

Following Gragnani et al. [2], the parameters used are set to a1 = 1.25, b1 = 8, e1 = 0.4,
d1 = 0.01, ε1 = 1, a2 = 0.33, b2 = 9, e2 = 0.6, d2 = 0.001, ε2 = 0.8, a3 = 0.021,

126 C. Ryan Gwaltney and Mark A. Stadtherr

Fig. 1. Bifurcation of equilibrium diagram of nutrient inflow concentration (xn) versus inflow rate
(D) for Canale’s chemostat model. TE: Transcritical of equilibrium; FE: Fold of equilibrium; H:
Hopf; Hp: Planar Hopf; FH: Fold-Hopf codimension-2

b3 = 15.19, e3 = 0.9, d3 = 0.0001, ε3 = 0.1. A bifurcation diagram with the inflow
rate, D, and the concentration of the nutrient in the inflow,xn, as the free parameters was
then computed using the IN/GB methodology and compared to the D vs. xn bifurcation
diagram determined by Gragnani et al. [2] using continuation techniques. The bifurcation
diagram for Canale’s model computed using IN/GB is given in Fig. 1. The codimension-
1 bifurcation curves were computed by solving the appropriate equation systems (see
Section 2.2), first fixing xn at many (400) closely spaced values over the interval [0,400]
and determining the value(s) ofDat which bifurcations occurs, and then fixingDat many
(700) closely spaced values over the interval [0,0.14] and determining the value(s) of xn

at which bifurcations occurs. The average CPU time to solve a system for transcritical
and fold bifurcations was about 15 seconds (1.7 GHz Xeon processor running Linux)
and for Hopf bifurcations about 100 seconds (the many nonlinear systems that must be
solved are independentand can be solved in parallel). Some planar Hopf (Hp) bifurcation
curves are shown (both in Fig. 1 and in Gragnani et al.’s diagram) for which a stability
change occurs only in a two-variable subspace, with the stability of the overall system
remaining unchanged (unstable) due to the sign (positive) of the third and/or fourth
eigenvalue.

Fig. 1 captures all bifurcations of equilibria shown in theDvs.xn bifurcation diagram
presented by Gragnani et al. [2] However, we have also located other bifurcation curves
not shown by Gragnani et al. First, we compute a transcritical bifurcation curve very
near the D axis (the leftmost TE in Fig. 1) that is not given by Gragnani et al. At this
bifurcation, a stable nutrient-only equilbrium state collides with an infeasible nutrient-
prey equilibrium state; the nutrient-prey state becomes feasible and exchanges stability

Reliable Computation of Equilibrium States and Bifurcations in Nonlinear Dynamics 127

Fig. 2. Solution branch diagram illustrating the change in equilibrium states (species biomass)
with change in the nutrient concentration of the inflow (xn) for Canale’s chemostat model. From
left to right: prey, predator, and superpredator biomasses. D = 0.09 for all three plots

with the nutrient-only state. Second, we compute a planar Hopf bifurcation curve near
the xn axis (lowest Hp in Fig. 1) that is not shown by Gragnani et al (we have also
computed other planar Hopf bifurcations curves very near the xn axis, but these are not
visible in Fig. 1 due to the scale used). However, for all of these Hp bifurcations, the
stability change occurs only in a two-variable subspace, with the stability of the overall
system remaining unchanged (unstable).

Another useful type of diagram in nonlinear dynamics is the solution branch diagram,
which shows how the equilibrium states change as one model parameter is varied. For
example, Fig. 2 shows how the equilibrium states change as the inflow nutrient concen-
tration, xn, is varied from 0 to 400, while the inflow rate, D, is held constant at a value of
0.09. This was computed by using IN/GB to solve the equilibrium conditions for many
(4000) closely spaced values of xn. The average CPU time to solve for the equilibrium
states for one xn value was about 0.06 seconds. In Fig. 2, thin lines represent unstable
equilibria while thick lines represent stable equilibria. This figure tracks the behavior of
equilibrium states as xn is increased from 0 to 400 along the horizontal line D = 0.09
in Fig. 1. Moving to the right along this line, seven bifurcations are encountered, namely
(and in order) TE, TE, Hp, FE, TE, H, H. The first TE is not clearly visible in Fig. 2
due to the scale used. The sixth and seventh bifurcations, both Hopf, are of particular
interest here. The sixth bifurcation (xn ≈ 112.5) results in the first stable coexistence
equilibrium state (all three species present). But at the seventh bifurcation (xn ≈ 184.5),
this state becomes unstable. This illustrates the “paradox of enrichment." Enriching the
food chain (increasing nutrient inflow) in order to increase a stable population of the top

128 C. Ryan Gwaltney and Mark A. Stadtherr

predator may be successful, but only to a point. Beyond that point (Hopf bifurcation) the
system becomes unstable and the populations may experience “boom and bust" cycles.

5 Canale’s Model with Contaminant

As previously stated, our interest in ecological modeling is motivated by its use as a tool
for assessing the risk of the industrial use of newly discovered materials, which may
enter the environment as contaminants. A straightforward way of linking the effects of
contamination to a food chain model is to directly consider the impact of a contaminant
on the model parameters. For instance, one way of modeling the effect of a contaminant
on a food chain would be to link the death rate parameters to experimentally measured
toxicological parameters such as LC50. The LC50 value is the concentration at which
50 percent of the organisms in a test sample die. Thus, an expression for the density
dependent death rate di could be given by:

di = d0
i +

C

2CLC50
i

(5.5)

where d0
i is the baseline death rate, CLC50

i is the LC50 value for species i, and C is the
concentration of the contaminant in the system. The effect of a contaminant on other
model parameters could be described in a similar manner.

Canale’s chemostat model was modified to include the linearly increasing death
rate function given by Eq. (5.5). The base-line death rates d0

1, d0
2, and d0

3 were set to
the d1, d2, and d3 values given above [2]. The values for the LC50 were chosen to be
CLC50

1 = 1000, CLC50
2 = 10, and CLC50

3 = 100. These values were chosen to reflect
orders of magnitude difference in the sensitivity of each species. In this case, the predator
species is particularly sensitive to the contaminant, while the superpredator is moderately
sensitive and the prey species is hardly sensitive at all. A bifurcation diagram for this new
model was generated using the concentration of the contaminant, C, and the nutrient
inflow concentration, xn, as the bifurcation parameters, while holding D constant at
0.07. This diagram appears in Fig. 3.

Initially one notices that the characteristics of this bifurcation diagram (Fig. 3) are
quite similar to those in the top half of Fig. 1. In fact, though the shape of some of the
bifurcation curves (e.g. the second TE curve from the left) is decidedly different, all of the
curves appear in the same order. Thus, it appears that, at least qualitatively, increasing the
contaminant concentration in the system has an effect similar to increasing the inflow
rate D. Intuitively, this makes sense because increasing the inflow rate increases the
washout rate, while increasing the death rate of each species effectively produces the
same effect, namely removal of the organisms from the system.

Fig. 4 is a solution branch diagram that illustrates the effect of increasing the conta-
minant concentration in the system. Fig. 4 was generated at D = 0.07 and xn = 200.
From Fig. 4 the effects of increasing the contaminant concentration on species biomass
are apparent. As the contaminant concentration increases, the system transitions to a
stable, coexisting steady-state. The contaminant initially increases the death-rates of the
species, causing population cycles to dampen and collapse in a Hopf bifurcation. This

Reliable Computation of Equilibrium States and Bifurcations in Nonlinear Dynamics 129

Fig. 3. Bifurcation of equilibrium diagram of nutrient inflow concentration (xn) versus contami-
nant concentration (C) for Canale’s chemostat model with modified death rates given by Eq. 5.5.
D = 0.07 TE: Transcritical of equilibrium; FE: Fold of equilibrium; H: Hopf; Hp: Planar Hopf;
FH: Fold-Hopf codimension-2

stable, coexisting steady-state does become unstable prior to the decimation of the super-
predator population. However, while this coexisting steady-state is stable, increasing the
contaminant concentration on the system has an unexpected effect. The superpredator
and prey populations both decrease while the predator population increases, despite the
fact that the predator species is the most sensitive to the contaminant. This behavior is
obviously counterintuitive, but is indicative of the complex interactions that often occur
in food chain models. As the concentration of the contaminant increases further, a se-
ries of three bifurcations occur, beginning with a transcritical bifurcation, then a Hopf
bifurcation which destabilizes the coexisting steady-state, and finally a fold bifurcation
which results in the mutual annihilation of the two unstable coexisting steady-states. Past
these bifurcations, another Hopf bifurcation occurs that results in a change of stability
allowing a stable steady-state with only a prey and predator population to form. As the
concentration of contaminant increases, the prey population increases while the predator
population declines to zero. The prey population then begins to decline very slowly with
increasing C.

Though not presented here, we have also used the IN/GB approach to compute other
bifurcation and solution branch diagrams for Canale’s chemostat model, both with and
without the death rate modification, as well as for a tritrophic Rosenzweig-MacArthur
model [8].

130 C. Ryan Gwaltney and Mark A. Stadtherr

Fig. 4. Solution branch diagram illustrating the change in equilibrium states (species biomass) with
change in the contaminant concentration (C) for Canale’s chemostat model with modified death
rates given by Eq. 5.5. From left to right: prey, predator, and superpredator biomasses. D = 0.07

and xn = 200 for all three plots

6 Concluding Remarks

Using an interval-Newton approach, one can compute, with certainty, all equilibrium
states and bifurcations of equilibria (fold, transcritical, Hopf, double-fold and fold-
Hopf) in a nonlinear dynamic model. Using this methodology one can easily, without
any need for initialization or a priori insight into system behavior, generate complete
solution branch and bifurcation diagrams. While CPU intensive, since the diagrams can
be generated automatically, without user intervention to deal with initialization issues,
the actual elapsed time to create a new bifurcation diagram may actually be less than
when initialization-dependent methods are used.

Acknowledgments

This work was supported in part by the Department of Education Graduate Assistance
in Areas of National Needs (GAANN) Program under Grant #P200A010448, and by the
State of Indiana 21st Century Research and Technology Fund under Grant #909010455.

References

1. Moghadas, S. M., Gumel, A. B.: Dynamical and numerical analysis of a generalized food-chain
model. Appl. Math. Comput. 142 (2003) 35–49

Reliable Computation of Equilibrium States and Bifurcations in Nonlinear Dynamics 131

2. Gragnani, A., De Feo, O., Rinaldi, S.: Food chains in the chemostat: Relationships between
mean yield and complex dynamics. Bull. Math. Biol. 60 (1998) 703–719

3. Brennecke, J. F., Maginn, E. J.: Ionic liquids: Innovative fluids for chemical processing. AIChE
J. 47 (2001) 2384–2389

4. Kooi, B. W.: Numerical bifurcation analysis of ecosystems in a spatially homogeneous envi-
ronment. Acta Biotheoretica 51 (2003) 189–222

5. Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory. Springer-Verlag, New York (1998)
6. Kearfott, R. B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, The

Netherlands (1996)
7. Gau, C.-Y., Stadtherr, M. A.: New interval methodologies for reliable chemical process mod-

eling. Comput. Chem. Eng. 26 (2002) 827–840
8. Gwaltney, C. R., Styczynski, M. P., Stadtherr, M. A.: Reliable computation of equilibrium

states and bifurcations in food chain models. Comput. Chem. Eng. 28 (2004) 1981-1996

A Verification Method for Solutions
of Linear Programming Problems

Ismail I. Idriss

Institute for Applied Research
University of Applied Sciences / FH Konstanz

D-78405 Konstanz, Germany
idriss@fh-konstanz.de

Abstract. This paper is concerned with the verification of a solution of a lin-
ear programming problem obtained by an interior-point method. The presented
method relies on a reformulation of the linear programming problem as an equiva-
lent system of nonlinear equations and uses mean value interval extension of func-
tions and a computational fixed point theorem. The designed algorithm
proves or disproves the existence of a solution on a computer and, if it exists,
encloses this solution in narrow bounds.

Keywords: interior-point algorithms, linear programming, interval arithmetic,
verified computation.

1 Introduction

Linear programming problems have a wide range of practical applications that arise
in such diverse areas as economics, computer science, operations research, medicine,
finance, mathematics, as well as many branches of engineering.

There are a number of general algorithms for the solution of the linear programming
problem. It can be solved very efficiently by recently developed interior-point methods.
An interior-point algorithm is an iterative technique that approaches the optimal solution
by generating a sequence of points in the interior of the feasible region.

The modern era of interior-point methods dates to 1984, when Karmarkar [7] pro-
posed his new polynomial-time algorithm for linear programming. After the publication
of Karmarkar’s algorithm, various interior point methods were developed which are
based on it. However, until now these algorithmic developments have always aimed at
increasing the runtime efficiency and limiting the computational effort, not at improving
the accuracy and reliability of the computational results.

Infeasible interior-point algorithms are known as the most efficient computational
methods for solving linear programming problems. But these algorithms sometimes
compute an approximate solution with duality gap less than a given tolerance even when
the problem may not have a solution [14,17].

One approach for proving or disproving the existence and possibly also uniqueness of
a solution on computers is the use of interval arithmetic, e.g., [1,8,12]. This enables data
uncertainties to be considered. Moreover, by performing outward rounding all rounding
errors appearing during the computation can be taken into account. As a consequence, one

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 132–141, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Verification Method for Solutions of Linear Programming Problems 133

works with intervals of floating point numbers instead of with the numbers themselves.
The computation of intervals is performed according to the rules of interval arithmetic.
An algorithm implemented with interval arithemtic delivers (often tight) upper and lower
bounds on the exact solution which are guaranteed also in the presence of rounding errors.

The use of interval arithmetic enables a rigorous verification of the existence and
uniqueness of a solution and the computation of a guaranteed enclosure [8]. This verifica-
tion is an application of Brouwer’s fixed-point theorem which requires that a continuous
function maps an interval vector onto itself. Such conditions can easily be tested on
computers using fundamental properties of interval arithmetic. Enclosures with narrow
bounds usually cannot be obtained by naively replacing real numbers by intervals and
every arithmetic operation by the corresponding interval operation. One approach to
improve enclosures of a differentiable function evaluated with interval arguments is to
use the mean value theorem for differentiable functions in connection with an interval
extension of the derivative.

The paper is organized as follows. In Section 2 we consider an infeasible interior-
point algorithm for solving linear programming problems. In Section 3 we propose
an algorithm that tests for the existence of a solution. Numerical results are presented
in Section 4. We conclude with an empirical evaluation of our algorithm and some
suggestions for further research.

In this paper, vectors are usually denoted by lower case letters, and matrices by
upper case letters. Intervals and interval vectors are usually denoted by boldface lower
case letters. It should be clear from the context, whether the letter denotes an interval or
an interval vector. We denote the set of real numbers by R and the set of the compact
nonempty real intervals by IR.

2 Infeasible Interior-Point Algorithm

We consider the linear programming problem in standard form, which is generally re-
ferred to as the primal problem

Minimize c�x

subject to Ax = b,

x ≥ 0

(P)

and its dual problem after adding the slack variable z to convert it to equality form

Maximize b�y

subject to A�y + z = c,

z ≥ 0

(D)

where c, x, z ∈ Rn, b, y ∈ Rm are vectors and A ∈ Rm×n is a matrix. Every feasible
solution for one of these two problems gives considerable information about the fea-
sibility and optimality of the other. Moreover, it can easily be shown that for a primal
feasible x and dual feasible y and z,

134 Ismail I. Idriss

c�x− b�y = x�z,

holds true. The left hand side is called the duality gap and provides an excellent and
easily obtainable measure of closeness of the computed solution to the optimal one.

An infeasible interior-point algorithm solves a primal-dual pair starting from an
arbitrary infeasible point that satisfies the positivity constraints, but does not necessarily
satisfy the equality constraints. Then the algorithm usually generates a sequence of
iterates of feasible or infeasible solutions that approach feasibility and optimality. In the
limit the iterates will converge to an approximate optimal solution with duality gap less
than a given tolerance. The algorithm can be derived by applying the logarithmic barrier
method to the primal problem (P), or alternatively, to the dual problem (D). Here we
consider the dual problem (D) which is transformed to

Maximize b�y − μ
n∑

j=1

ln zj

subject to A�y + z = c,

(Dμ)

where μ > 0 is a barrier parameter. For more details on the relation between (D) and
(Dμ), see [2], where the logarithmic barrier method is introduced and [3], where it is
developed. The Lagrangian for (Dμ) is

L(x, y, z, μ) = b�y − μ

n∑
j=1

ln zj − x�(A�y + z − c)

and the first order conditions for (Dμ) are

∇xL = c− z −A�y = 0,

∇yL = b−Ax = 0,

∇zL = μZ−1e−X = 0,

(2.1)

where X and Z are n× n diagonal matrices with elements x and z, respectively, and e
is the n-vector of all ones. Newton’s method can be applied to (1) in order to compute a
search direction and then to determine a better estimate of the solution of the primal-dual
pair.

Furthermore, Mehrotra [10] proposed a predictor-corrector method as an efficient
strategy to compute the search direction. In particular, the method can be derived directly
from the optimality conditions (2.1). Substituting (x, y, z) by (x+Δx, y+Δy, z+Δz)
leads to the implicit equations

A�Δy + Δz = c− z −A�y,

AΔx = b−Ax,

XΔz + ZΔx = μe−XZe−ΔXΔZe,

(2.2)

where ΔX and ΔZ are n × n diagonal matrices with elements equal to Δx and Δz,
respectively.

A Verification Method for Solutions of Linear Programming Problems 135

Mehrotra proposed to first solve the affine system

A�Δŷ + Δẑ = c− z −A�y,

AΔx̂ = b−Ax,

XΔẑ + ZΔx̂ = −XZe,

(2.3)

and then substitute the vectors Δx̂ and Δẑ computed from (2.3) in the term ΔXΔZe
on the right-hand side of (2.2). Moreover, he suggested testing the reduction in the
complementarity (x + αP Δx̂)�(z + αDΔẑ), where αP and αD are the largest step
lengths in the primal and dual variables which ensure x > 0 and z > 0. If we let

μ̂ = (x + αPΔx̂)�(z + αDΔẑ),

then a good estimate for the barrier parameter μ is

μ =
(

μ̂

x�

)2(
μ̂

n

)
.

This generates μ to be small when the affine direction produces a large decrease in
complementarity and large otherwise.

Finally, the most current interior-point codes are based on the predictor–corrector
technique [10]. Implementations of the algorithm also incorporate other heuristics that
are essential for robust behaviour on many practical problems, including the determina-
tion of a starting point, the choice of step length, updating the barrier parameter μ, and
the computing of the predictor–corrector direction. More details and further information
on implementation techniques and the most relevant issues of infeasible interior–point
methods are given in [17].

3 A Verification Method

In this section, we develop a practical verification method via reformulation of the linear
programming problem as an equivalent system of nonlinear equations.

We define the function F : R2n+m → R2n+m by

F (x, y, z) =

⎛⎜⎝ Ax− b

A�y + z − c

xZe− μe

⎞⎟⎠ .

Then we can rewrite conditions (2.1) in the form F (x, y, z) = 0. The Jacobian of F is
given by

JF (x, y, z) =

⎛⎜⎝A 0 0
0 A� I

Z 0 x

⎞⎟⎠ ,

which is nonsingular for all (x, z) > 0.

136 Ismail I. Idriss

By using the notation

u = (x, y, z),
u = {(u1, u2, . . . , u2n+m)� ∈ R2n+m | ui ≤ ui ≤ ui, 1 ≤ i ≤ 2n + m},

the problem is then to verify that there exists a u∗ ∈ u such that F (u∗) = 0. Interval
arithmetic in combination with the mean value extension and Brouwer’s fixed point
theorem can be used to verify the existence and uniqueness of a solution to F (u) = 0
(see [8]).

The mean value extension can be constructed using both the mean value theorem
and the interval extension of the derivative.

Theorem 1 (Mean value extension). Let f : D ⊆ Rn → R be a continuously differ-
entiable function and let the gradient∇f have an interval extension for all u contained
in the domain of f . Then

f(u) ∈ f(ũ) + ∇f(u) (u− ũ) for all u, ũ ∈ u.

Proof. For a proof see, for example, [1].

A computationally verifiable sufficient condition is given by Krawczyk [9] for the
existence of a solution to a system of nonlinear equations using an interval version of
Newton’s method.

Definition 1. Let F : D ⊆ Rn → Rn be a continuously differentiable function and let
u be an interval vector in IRn with u ⊆ D. Then shape Krawczyk’s operator is defined
as:

K(u, ũ) = ũ−R · F (ũ) + (I −R · JF (u))(u − ũ),

where ũ is a vector in u, JF (u) is an interval evaluation of the Jacobian of F , R is a
real nonsingular matrix approximating (JF (ũ))−1 and I is the n× n identity matrix.

A verification method can be derived by iteratively applying Krawczyk’s operator
until the conditions of the following theorem are satisfied:

Theorem 2 (Existence and uniqueness). If K(u, ũ) ⊆ u, then F has a zero u∗ in
K(u, ũ) and therefore also in u.

Proof. For a proof see, for example, [9] or [11].

Let a continuously differentiable function F and an interval vector u be given. The
midpoint of u is defined as mid(u) = (u + u)/2. A verification algorithm for testing
the existence or nonexistence of a solution of F (u) = 0 in u is based on a sequence of
iterates of the form:

u0 = u,

ũk = mid(uk),
uk+1 = K(uk, ũk) ∩ uk, k = 0, 1, 2, . . .

Our numerical experiences show that during the first iteration it can often be decided
whether there is a zero of F in u, if u is sufficiently small. Sharper interval bounds may

A Verification Method for Solutions of Linear Programming Problems 137

be obtained by continuing the iteration. Moreover, an important and powerful result is
that we do not need to solve a system of linear equations to find an enclosure of zeroes of
a system of nonlinear equations. More details and further information on this algorithm
can be found in [9], where the method was first introduced, and in [11], where the power
of the method as a computational fixed point theorem was first analyzed.

Furthermore, the following properties of this algorithm are remarkable, see also
[8,12], where its theory and practice have been expounded. Here it is assumed that
mid
(
JF (uk)

)
is nonsingular.

1. Every zero of F in u can be computed and correctly bounded.
2. If there is no zero of F in u, the algorithm will automatically prove this fact in a

finite number of iterations.
3. The proof of existence or nonexistence of a zero of F in a given interval vector u

can be delegated to the computer. If K(u, ũ)
◦
⊂ u, then there exists a unique zero

of F in u. If K(u, ũ) ∩u = ∅, then there is no zero of F in u. Here, the relation
◦
⊂

denotes inner inclusion, i.e., K(u, ũ)
◦
⊂ u states that the interval vector K(u, ũ) is

contained in the interior of u.
4. In practice, the algorithm converges quadratically when ũ is taken to be the mid-

point vector of u, R is an appropriate approximation to the midpoint inverse, the
interval extensions are sufficiently sharp, and the widths of the components of u are
sufficiently small.

Now, the general algorithm for verification of approximate solutions of linear program-
ming problems can be stated as follows:

ALGORITHM (General verification algorithm)

Step 0. Let a primal problem (P) and its dual (D) be given.
Step 1. Compute an approximate solution ũ = (x̃, ỹ, z̃) for the primal problem (P) and

its dual (D) by running an infeasible interior-point algorithm.
Step 2. Construct a small box u = (x,y, z) around the approximate solution by using

epsilon-inflation [13]
u = ũ + ε [−e, e], (3.4)

where ε is a given small positive machine number and e is the (2n + m)-vector
of all ones.

Step 3. Perform a verification step:
Step 3.1. Prove the existence or nonexistence of a zero by applying Krawczyk’s

method to the nonlinear system F (u) = 0.
Step 3.2. Enclose the optimal solution value by the interval

c�x ∩ b�y. (3.5)

We conclude with some practical remarks on the algorithm. If the optimality condi-
tions (2.1) hold and the existence of an optimal feasible solution in the constructed box
is proved, then bounds on the exact optimal objective value are provided by (3.5). How-
ever, the approximate solution ũ should be near an exact solution. Thus, if the tolerance
of the stopping criterion in the approximate algorithm is set smaller than ε (3.4), then

138 Ismail I. Idriss

the verification step will succeed. Finally, if the infeasible interior-point algorithm fails
to compute a solution to the primal-dual pair, then the verification algorithm requires
an initial interval vector approximation to be prescribed by the user. It then manages to
contract this initial interval vector.

4 Numerical Results

In this section, we evaluate the practical efficiency of the presented algorithm. To
demonstrate the effects of our verification algorithm, we have compared it against the
software package LOQO [15] which is a linear programming solver based on an infeasi-
ble primal-dual interior-point algorithm. The computations are performed on a personal
computer using FORTRAN–XSC [16]. In all our examples the quantity ε in (3.4) is set
to 0.25. For more details on the efficient use of epsilon–inflation in verification methods,
refer to [13].

Several software tools have been developed over the last decades to improve the
accuracy of computer arithmetic. They include the library FORTRAN–XSC for interval
arithmetic which provides reliable arithmetic by producing two values for each result.
These two values correspond to the endpoints of an interval such that the exact result
is guaranteed to be contained within it. Moreover, FORTRAN–XSC provides special
notations and data types for interval arithmetic and an exact dot product which is par-
ticularly suited to the design of algorithms delivering automatically verified results with
high accuracy. For more details, see [16], where the concepts and the important features
are described.

Example 1. Consider the following linear programming problem

Minimize −50x1 − 9x2 + 10−40x3

subject to x1 ≤ 50
x2 ≤ 200

100x1 + 18x2 ≤ 5000
x1, x2 ≥ 0.

This example is taken from [4], page 221, where the exact optimal value enclosure,

[−2.500000000000000 · 103,−2.500000000000000 · 103],

is computed by using the verified simplex method from [6]. The results achieved by
running the infeasible interior-point algorithm [15] for this problem show that the primal
problem and its dual are infeasible. Our verification algorithm proves that this problem
has a solution. The optimal value is enclosed in the interval

[−2.5000000000000019 · 103,−2.4999999999999981 · 103].

A comparison between the results obtained for this test problem indicates that the ap-
proximate result from LOQO is quantitatively, but also qualitatively incorrect.

A Verification Method for Solutions of Linear Programming Problems 139

Example 2. Consider the following linear programming problem given in the form (P)
with

A =

⎛⎜⎝−2 −1 −2
−1 −2 −2
−1 −3 −1

⎞⎟⎠ , b =

⎛⎜⎝−3
−1
−3

⎞⎟⎠ , and c =

⎛⎜⎝2
5
6

⎞⎟⎠ .

This linear programming problem has no feasible solution, and this fact is proved by
our verification algorithm. LOQO computes after 9 iterations an approximate optimal
solution of this problem

=

⎛⎜⎝ 2.6
0.6

−1.4

⎞⎟⎠
with the optimal objective values,

primal objective = −0.2000000028
dual objective = −0.1999999998 .

The infeasibility of this solution is not recognized by this algorithm. By constructing
a small box u around the obtained approximate solution using epsilon-inflation and
performing a verification step, we obtain that

K(u, ũ) ∩ u = ∅.

Hence, the linear programming problem has no solution in u in spite of the fact that
an approximate optimal solution with optimal objective values has been computed by
LOQO. Therefore, our verification method provides a safety valve for the infeasible
interior-point algorithm.

Example 3. Consider the following linear programming problem

Minimize 2x1 + x2

subject to −x1 − x2 = 10−6,

x1, x2 ≥ 0.

When our algorithm attempts to verify the existence of a solution for this problem, it
affirms that the problem is infeasible. In contrast, LOQO terminated after 254 iterations
with the result that the primal problem and its dual are infeasible. This result from LOQO

typically specifies that a maximum number of iterations is performed and no optimal
solution has been computed.

5 Conclusions

We conclude with some observations and propose directions for future research.

140 Ismail I. Idriss

The main goal was to develop an effective verification method for solutions of linear
programming problems which computes enclosures for the solutions also in the presence
of roundoff errors.

In combination with the fundamental properties of interval arithmetic, other tools
such as Brouwer’s fixed point theorem are used to automatically compute rigorous
bounds on exact solutions.

The infeasible interior-point method and the stopping criteria have been realized
in floating point arithmetic. The verification algorithm has been implemented using
FORTRAN–XSC. The potential of this approach has been documented by comparing
the results for three linear programming problems. Our results for many other larger
problems up to a hundred variables indicate that the presented algorithm is robust [5].
A reliable result was obtained for all test problems.

We outline some directions for further research. It is essential for the infeasible
interior-point algorithm to have a good starting point. The choice of starting point has a
strong influence on the number of iterations, and a bad choice may lead to divergence
or cycling so that a solution can never be reached. The best choice for a default starting
point is still very much an open question. This problem concerns not only the verifica-
tion algorithm but is more generally a problem of any infeasible interior-point algorithm.
Further research for algorithmic improvements should be aimed at accelerating the ver-
ification process. In particular, the computation of an approximation to the midpoint
inverse usually requires a lot of runtime. Finally, although interior-point methods have
been extended to more general classes of problems, verification algorithms for these
have not yet appeared.

Acknowledgment

The author would like to thank Jürgen Garloff and Andrew P. Smith for the careful
reading of the manuscript and numerous suggestions for improvements in the presen-
tation. Support from Damascus University, the Ministry of High Education of Syria,
and the Ministry of Education and Research of Germany under contract no. 1705803 is
gratefully acknowledged.

References

1. G. E. ALEFELD and J. HERZBERGER, Introduction to Interval Computations, Academic Press,
New York and London, 1983.

2. R. K. FRISCH, The logarithmic potential method of convex programming, Memorandum,
University Institute of Economics, Oslo, 1955.

3. A. V. FIACCO and G. P. MCCORMICK, Nonlinear Programming: Sequential Unconstraint
Minimization Techniques. SIAM Classics in Applied Mathematics, vol. 4 (1990), Philadel-
phia.

4. R. HAMMER, M. HOCKS, U. KULISCH and D. RATZ, Numerical Toolbox for Verified Com-
puting I, Springer-Verlag, Berlin, 1993.

5. I. I. IDRISS, Verified Linear Programming in Control System Analysis and Design, Dresden
University of Technology, Dissertation, 2001.

A Verification Method for Solutions of Linear Programming Problems 141

6. C. JANSSON, Zur Linearen Optimierung mit unscharfen Daten. Dissertation, Universität
Kaiserslautern, 1985.

7. N. K. KARMARKAR, A New Polynomial-Time Algorithm for Linear Programming, Combi-
natorica 4 (1984) 373-395.

8. R. B. KEARFOTT, Rigorous Global Search: Continuous Problems, Kluwer Academic Pub-
lishers, Dordrecht, Netherlands, 1996.

9. R. KRAWCZYK, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken,
Computing 4 (1969) 187–201.

10. S. MEHROTRA, On the Implementation of a Primal-Dual Interior Point Method, SIAM Journal
on Optimization 2:4 (1992) 575–601.

11. R. E. MOORE, A Test for Existence of Solutions to Nonlinear Systems, SIAM Journal on
Numerical Analysis 14 (1977) 611-615.

12. A. NEUMAIER, Interval Methods for Systems of Equations, Cambridge University Press,
London, 1990.

13. S. M. RUMP, Verification Methods for Dense and Sparse Systems of Equations, Topics in
Validated Computations — Studies in Computational Mathematics, J. Herzberger , editor,
Elsevier Amsterdam, (1994) 63–136.

14. M. J. TODD, Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization,
in: Foundations of Computational Mathematics, F. Cucker, R. DeVore, P. Olver and E. Suli,
(editors) Cambridge University Press (2004) 157–192.

15. R. J. VANDERBEI, LOQO User’s Manual, Version 4.05, Technical Report NO. ORFE-99-307,
Department of Operation Research and Financial Engineering, Princeton University, 2000.

16. W. V. WALTER, FORTRAN-XSC: A Portable Fortran 90 Module Library for Accurate and
Reliable Scientific Computing, in Validation Numerics — Theory and Application, R. Al-
brecht, G. Alefeld and H. J. Stetter (eds.), Computing Supplementum 9 (1993) 265–285.

17. S. J. WRIGHT, Primal-Dual Interior-Point Methods, SIAM Publication, Philadelphia, 1997.

Compressing 3D Measurement Data
Under Interval Uncertainty

Olga Kosheleva1, Sergio Cabrera1,
Brian Usevitch1, and Edward Vidal Jr.2

1 Department of Electrical and Computer Engineering
University of Texas, El Paso, TX 79968, USA

olgak@utep.edu
2 Army Research Laboratory, While Sands Missile Range, NM 88002-5501, USA

evidal@arl.army.mil

Abstract. The existing image and data compression techniques try to minimize
the mean square deviation between the original data f(x, y, z) and the com-
pressed-decompressed data f (x, y, z). In many practical situations, reconstruction
that only guaranteed mean square error over the data set is unacceptable.
For example, if we use the meteorological data to plan a best trajectory for a plane,
then what we really want to know are the meteorological parameters such as wind,
temperature, and pressure along the trajectory. If along this line, the values are
not reconstructed accurately enough, the plane may crash – and the fact that on
average, we get a good reconstruction, does not help.
In general, what we need is a compression that guarantees that for each (x, y), the
difference |f(x, y, z) − f(x, y, z)| is bounded by a given value Δ – i.e., that the
actual value f(x, y, z) belongs to the interval

[f(x, y, z) − Δ, f(x, y, z) + Δ].

In this paper, we describe new efficient techniques for data compression under
such interval uncertainty.

1 Formulation of the Problem

Compression Is Important. At present, so much data is coming from measuring in-
struments that it is necessary to compress this data before storing and processing. We
can gain some storage space by using lossless compression, but often, this gain is not
sufficient, so we must use lossy compression as well.

Successes of 2-D Image Compression. In the last decades, there has been a great progress
in image and data compression. In particular, the JPEG2000 standard (see, e.g., [8]) uses
the wavelet transform methods together with other efficient compression techniques to
provide a very efficient compression of 2D images.

Within this standard, we can select different bitrates (i.e., number of bits per pixel
that is required, on average, for the compressed image), and depending on the bitrate,
get different degrees of compression.

When we select the highest possible bitrate, we get the lossless compressions that
enables us to reconstruct the original image precisely. When we decrease the bitrate, we
get a lossy compression; the smaller the bitrate, the more the compressed/decompressed
image will differ from the original image.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 142–150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Compressing 3D Measurement Data Under Interval Uncertainty 143

2-D Data Compression. In principle, it is possible to use these compression techniques
to compress 2D measurement data as well.

Compressing 3-D Data: Layer-by-Layer Approach. It is also possible to compress 3D
measurement data f(x, y, z) – e.g., meteorological measurements taken in different
places (x, y) at different heights z.

One possibility is simply to apply the 2D JPEG2000 compression to each horizontal
layer f(x, y, z0).

Compressing 3-D Data – An Approach That Uses KLT Transform: General Idea. An-
other possibility, in accordance with Part 2 of JPEG2000 standard, is to first apply the
KLT transform to each vertical line. Specifically, we:

– compute the average value f̄(z) = N−1 ·
∑
x,y

f(x, y, z) of the analyzed quantity at

a given height z, where N is the overall number of horizontal points (x, y);
– compute the covariances between different heights:

V (z1, z2) = N−1 ·
∑
x,y

(f(x, y, z1)− f̄(z1)) · (f(x, y, z2)− f̄(z2));

– find the eigenvalues λk and the eigenvectors ek(z) of the covariance matrix
V (z1, z2);

we sort these eigenvectors into a sequence
e1(z), e2(z), . . . so that |λ1| ≥ |λ2| ≥ . . .;

– finally, we represent the original 3D data values f(x, y, z) as a linear combination

f(x, y, z) = f̄(z) +
∑

k

ak(x, y) · ek(z)

of the eigenvectors ek(z).

An Approach That Uses KLT Transform: Details. How can we implement this approach?

– The first two steps are straightforward.
– The third step – computing eigenvalues and eigenvectors – is a known computa-

tional problem for which many standard software packages provides an efficient
algorithmic solution.

– So, to specify how this method can be implemented, we must describe how the last
step can be implemented, i.e., how we can represent the original 3D data as a linear
combination of the eigenvectors.

First, why is such a representation possible at all? It is known (see, e.g., [8]), that in
general, the eigenvalues of a covariance matrix form a orthonormal basis in the space
of all Nz-dimensional vectors e = {e(z)} = (e(1), e(2), . . . , e(Nz)). By definitionof

144 Olga Kosheleva et al.

a basis this means, in particular, for every (x, y), the corresponding difference vec-

tor dx,y(z) def= f(x, y, z) − f̄(z) can be represented as a linear combination of these
eigenvalues, i.e., that for every z, we have

dx,y(z) = f(x, y, z)− f̄(z) =
∑

k

ak(x, y) · ek(z),

where by ak(x, y), we denoted the coefficient at ek(z) in the corresponding expansion.
From this formula, we get the desired representation of f(x, y, z).

How can we actually compute this representation? Since the vectors ek(z) form
an orthonormal basis, we can conclude that for the expansion of the vector dx,y, each
coefficient ak(x, y) at ek(z) is a dot (scalar) product of the vector dx,y and the k-th
vector ek(z) from the basis, i.e., that

ak(x, y) = dx,y · ek
def=
∑

z

dx,y(z) · ek(z).

Substituting the expression for dx,y(z) into this formula, we conclude that

ak(x, y) =
∑

z

(f(x, y, z)− f̄(z)) · ek(z).

Comment. Actually, instead of using this explicit (thus fast-to-compute) formula, we
can use even faster formulas of the so-called fast KLT transform (see, e.g., [8]).

KLT Transform: Result. As a result of the KLT approach, we represent the original 3-D
data as a sequence of the horizontal slices ak(x, y):

– the first slice a1(x, y) corresponds to the main (1-st) eigenvalue;
– the second slice a2(x, y) corresponds to the next (2-nd) eigenvalue;
– etc.,

with the overall intensity decreasing from one slice to the next one.
Next, to each of these slices ak(x, y), we apply a 2D JPEG2000 compression with

the appropriate bit rate bk depending on the slice k.

Decompressing 3-D Data: KLT-Based Approach. To reconstruct the data, we so the
following:

– First, we apply JPEG2000 decompression to each slice; as a result, we get the values
ã
[bk]
k (x, y).

– Second, based on these reconstructed slices, we now reconstruct the original 3-D
data data as f̃(x, y, z) = f̄(z) +

∑
k

ã
[bk]
k (x, y) · ek(z).

Compressing 3D Measurement Data Under Interval Uncertainty 145

This Approach Is Tailored Towards Image Processing – And Towards Mean Square
Error. The problem with this approach is that for compressing measurement data, we
use image compression techniques. The main objective of image compression is to retain
the quality of the image. From the viewpoint of visual image quality, the image distortion
can be reasonably well described by the mean square difference MSE (a.k.a. L2-norm)
between the original image I(x, y) and the compressed-decompressed image Ĩ(x, y).
As a result, sometimes, under the L2-optimal compression, an image may be vastly
distorted at some points (x, y) – and this is OK as long as the overall mean square error
is small.

For Data Compression, MSE May Be a Bad Criterion. When we compress measurement
results, however, our objective is to be able to reproduce each individual measurement
result with a certain guaranteed accuracy.

In such a case, reconstruction that only guaranteed mean square error over the data set
is unacceptable: for example, if we use the meteorological data to plan a best trajectory
for a plane, what we really want to know are the meteorological parameters such as
wind, temperature, and pressure along the trajectory.

If along this line, the values are not reconstructed accurately enough, the plane may
crash – and the fact that on average, we get a good reconstruction, does not help.

An Appropriate Criterion for Data Compression. What we need is a compression that
guarantees the given accuracy for all pixels, i.e., that guarantees that the L∞-norm
max
x,y,z

|f(x, y, z)− f̃(x, y, z)| is small.

What We Need Is Data Compression Under Interval Uncertainty. In other words, what
we need is a compression that guarantees that for each (x, y), the difference |f(x, y, z)−
f̃(x, y, z)| is bounded by a given value Δ – i.e., that the actual value f(x, y, z) belongs
to the interval [f̃(x, y, z)−Δ, f̃(x, y, z) + Δ].

Comment. In engineering applications of interval computations, “interval uncertainty”
usually means that the problem’s parameters are uncertain parameters, known only with
interval uncertainty.

In the above data compression problem, we have a non-parametric problem, so the
traditional engineering meaning of interval uncertainty does not apply. In our problem,
by interval uncertainty, we mean guaranteed bounds on the loss of accuracy due to
compression.

Need for Optimal Data Compression Under Interval Uncertainty. There exist several
compressions that provide such a guarantee. For example, if for each slice, we use
the largest possible bitrate – corresponding to lossless compression – then ãk(x, y) =
ak(x, y) hence f̃(x, y, z) = f(x, y, z) – i.e., there is no distortion at all.

What we really want is, among all possible compression schemes that guarantee the
given upper bound Δ on the compression/decompression error, to find the scheme for

which the average bitrate b
def= (1/Nz) ·

∑
k

bk is the smallest possible.

146 Olga Kosheleva et al.

In some cases, the bandwidth is limited, i.e., we know the largest possible average
bitrate b0. In such cases, among all compression schemes with b ≤ b0, we must find a
one for which the L∞ compression/decompression error is the smallest possible.

What We Have Done. In this paper, we describe new efficient (suboptimal) techniques
for data compression under such interval uncertainty.

2 New Technique: Main Ideas, Description, Results

What Exactly We Do. Specifically, we have developed a new algorithm that uses
JPEG2000 to compress 3D measurement data with guaranteed accuracy. We are follow-
ing the general idea of Part 2 of JPEG2000 standard; our main contribution is designing
an algorithm that selects bitrates leading to a minimization of L∞ norm as opposed to
the usual L2-norm.

Let Us Start Our Analysis with a 2-D Case. Before we describe how to compress 3-
D data, let us consider a simpler case of compressing 2-D data f(x, y). In this case,
for each bitrate b, we can apply the JPEG2000 compression algorithm corresponding
to this bitrate value. After compressing/decompressing the 2-D data, we get the values
f̃ [b](x, y) which are, in general, slightly different from the original values f(x, y).

In the interval approach, we are interested in the L∞ error

D(b) def= max
x,y

∣∣∣f̃ [b](x, y)− f(x, y)
∣∣∣ .

The larger the bitrate b, the smaller the error D(b). When the bitrate is high enough – so
high that we can transmit all the data without any compression – the error D(b) becomes
0.

Our objective is to find the smallest value b for which the L∞ error D(b) does not
exceed the given threshold Δ. For the 2-D case, we can find this optimal bopt by using
the following iterative bisection algorithm. In the beginning, we know that the desired
bitrate lies between 0 and the bitrate B corresponding to lossless compression; in other
words, we know that b ∈ [b−, b+], where b− = 0 and b+ = B.

On each iteration of the bisection algorithm, we start with an interval [b−, b+] that
contains bopt and produce a new half-size interval still contains bopt. Specifically, we

take a midpoint bmid
def= (b−+b+)/2, apply the JPEG2000 compression with this bitrate,

and estimate the corresponding value D(bmid). Then:

– If D(bmid) ≤ Δ, this means that bopt ≤ bmid, so we can replace the original interval
[b−, b+] with the half-size interval [b−, bmid].

– If D(bmid) > Δ, this means that bopt > bmid, so we can replace the original interval
[b−, b+] with the half-size interval [bmid, b

+].

After each iteration, the size of the interval halves. Thus, after k iterations, we can
determine bopt with accuracy 2−k.

Compressing 3D Measurement Data Under Interval Uncertainty 147

3-D Problem Is Difficult. In the 3-D case, we want to find the bitrate allocation b1, . . . ,
bNz that lead to the smallest average bit rate b among all the allocations that fit within the
given interval, i.e., for which the L∞ compression/decompression error does not exceed
the given value Δ: D(b1, b2, . . .) ≤ Δ.

For each bitrate allocation, we can explicitly compute this error, but there are no
analytic formulas that describe this dependence, so we end up having to optimize a
complex function with a large number of variables bi.

Such an optimization is known to be a very difficult task, because the computational
complexity of most existing optimization algorithms grows exponentially with the num-
ber of variables. There are theoretical results showing that in general, this growth may
be inevitable; to be more precise, this problem is known to be NP-hard; see, e.g., [9].

The Source of Our Main Idea: Use of Enclosures in Interval Computations. To solve
our problem, we use the experience of interval computations; see, e.g., [4].

In many areas of science and engineering, we are interested in the value of a physical
quantity y that is difficult (or even impossible) to measure directly. To measure such
quantities, we find auxiliary easier-to-measure quantities x1, . . . , xn that are related to
y by a known algorithm y = g(x1, . . . , xn) – an algorithm that, in general, computes a
complex functions with a large number of variables. Then, we measure xi, and apply the
algorithm f to the results x̃1, . . . , x̃n of measuring xi. As a result, we get an estimate
ỹ = g(x̃1, . . . , x̃n) for y.

Since the measured values x̃i are, in general, slightly different from the actual values
xi, a natural question is: what is the error of the resulting estimate?

In many practical situations, the only information that we have about the measure-

ment errors Δxi
def= x̃i − xi of direct measurements is the upper bounds Δi on |Δxi|

guaranteed by the manufacturer of the measuring instrument. In such situations, the
only information that we have about the actual value xi is that xi lies in the interval

xi
def= [x̃i −Δi, x̃i +Δi]. In this case, the only information that we have about y is that

y belongs to the range

y = g(x1, . . . ,xn) def= {g(x1, . . . , xn) |x1 ∈ x1 & . . . & xn ∈ xn}.

It is known that computing this range exactly is an NP-hard problem; see, e.g., [5].
Crudely speaking, NP-hard means that we cannot have an algorithm that always finished
in reasonable time and that always produces the exact range.

The objective of interval computation is find guaranteed bounds for the actual value
of y. Since we cannot find the exact range y, researchers in interval computations design
algorithms that provide us with an enclosure Y ⊇ y for the actual range.

Our Main Idea: Using the Upper Estimate (Enclosure) for the Optimized Error Function.
In our case, the problem is, e.g., to find, among all bitrate allocations (b1, b2, . . .) with
b ≤ b0, the one for which the L∞ compression/decompression error D(b1, b2, . . .) is
the smallest possible.

Since it is difficult to minimize the original function D(b1, . . .), we find easier-
to-optimize upper estimate D̃(b1, b2, . . .) ≥ D(b1, b2, . . .) and then find the values

148 Olga Kosheleva et al.

bi that minimize D̃(b1, . . .). As a result, we find an allocation bi guaranteeing that
D̃(b1, . . .) ≤ D̃min and thus, that D(b1, . . .) ≤ D̃min.

Since, in general,D(b1, . . .) ≤ D̃(b1, . . .), the resulting allocation is only suboptimal
with respect to D(b1, . . .).

Explicit Formula for the Enclosure. Since we use the KLT, the difference

f(x, y, z)− f̃(x, y, z)

is equal to
∑
k

(ak(x, y) − ã
[bk]
k (x, y)) · ek(z). Therefore, once we know the L∞-norms

Dk(bk) def= max
x,y

|ak(x, y) − ã
[bk]
k (x, y)| of the compression/decompression errors of

each slice, we can conclude that |ak(x, y)− ã
[bk]
k (x, y)| ≤ Dk(bk), hence, that

|(ak(x, y)− ã
[bk]
k (x, y)) · ek(z)| ≤ Dk(bk) · Ek,

where Ek
def= max

z
|ek(z)|. Thus, the desired L∞ error is bounded by

D̃(b1, . . .)
def=
∑
k

Dk(bk) ·Ek,

Resulting Algorithm: Derivation. In accordance with the above idea, to get the (subop-
timal) bitrate allocation bi, we must minimize the function D̃(b1, . . .) =

∑
k

Dk(bk) ·Ek

under the condition that the
∑
k

bk = Nz · b0. By using the Kuhn-Tucker approach, we

can reduce this problem to the unconstrained problem – of finding stationary points
of the function

∑
k

Dk(bk) · Ek + λ ·
∑
k

bk − Nz · b0. By definition of a stationary

point, derivatives w.r.t. all the variables bi should be 0s, so we end up with the equation
−D′

k(bk) = λ/Ek, where the parameters λ should be selected based on the value b0.
It can be easily shown that the other problem – of minimizing the average bitrate

under the constraint that the compression/decompressionerror does not exceedΔ – leads
to the same equation.

As we have mentioned, the functionDk(b)decreases when b increases, soD′
k(b) < 0,

with D′
k(b) → 0 as b grows. It is therefore reasonable to represent the desired equation

as |D′
k(bk)| = λ/Ek.

What are the bounds on λ? The larger bk, the smaller λ.

From the above formula, we conclude that λ = |D′
k(bk)| · Ek, hence λ ≤ Λk

def=

(max
b
|D′

k(b)|) · Ek, so λ ≤ Λ
def= min

k
Λk.

Algorithm: Description. Once we know, for each slice k, the dependence Dk(b) of the
corresponding L∞-error on the bitrate b, we can find the desired (suboptimal) values bk

as follows.
At first, we compute the above-described values Λk and Λ. We know that λ ≤

[λ−, λ+] := [0, Λ]. We use bisection to sequentially halve the interval containing λ and
eventually, find the optimal value λ.

Once we know an interval [λ−, λ+] that contains λ, we pick its midpoint λmid, and
then use bisection to find, for each k, the value bk for which |D′

k(bk)| = λmid/Ek. Based

Compressing 3D Measurement Data Under Interval Uncertainty 149

on these bk, we compute the average bitrate b. If b > b0, this means that we have chosen
too small λmid, so we replace the original λ-interval with a half-size interval [λmid, λ

+].
Similarly, if b < b0, we replace the originalλ-interval with a half-size interval [λ−, λmid].

After k iterations, we get λ with the accuracy 2−k, so a few iterations are sufficient.
Once we are done, the values bk corresponding to the final λmid are returned as the
desired bitrates.

The only remaining question is how to determine the dependenceDk(b). In principle,
we can try, for each layer k, all possible bitrates b, and thus get an empirical dependence
Dk(b).

We have shown, that this dependence can be described by the following analytical
formula: A1 · (b− b0)α for all the values b until a certain threshold b0, and A2 · 2−b for
b ≥ b0. This model is a slight modification of a model from [6]. So, instead of trying all
possible values b, it is sufficient to try a few to determine the values of the parameters
Ai, b0, and α corresponding to the given layer.

Results. To test our algorithm, we applied it to 3-D meteorological data: temperature T,
pressure P, the components U, V, and W of the wind speed vector, and the waver vapor
missing ratio WV.

For meteorological data, the resulting compression indeed leads to a much smaller
L∞ error bound Δnew than the L∞ error bound ΔMSE corresponding to the bitrate
allocation that optimizes the MSE error. The ratio Δnew/ΔMSE decreases from 0.7 for
b0 = 0.1 to 0.5 for b0 = 0.5 to ≤ 0.1 for b0 ≥ 1.

Acknowledgments

This work was partially supported by NSF Grant CDA-9522207, the ARO grants DAA
H04-95-1-0494 and DAA D19-99-1-0012, by the Texas Instruments Grant, and by NASA
under cooperative agreement NCC5-209. This work was partly performed during O.
Kosheleva’s visit to Brazil; this visit was sponsored by the Brazilian funding agency
CTINFO/CNPq.

The authors are thankful to the anonymous referees for valuable suggestions.

References

1. Cabrera, S.D.: Three-Dimensional Compression of Mesoscale Meteorological Data based on
JPEG2000, Battlespace Digitization and Network-Centric Warfare II, Proc. SPIE 4741 (2002)
239–250.

2. Kosheleva, O.M.: Task-Specific Metrics and Optimized Rate Allocation Applied to Part 2 of
JPEG2000 and 3-D Meteorological Data, Ph.D. Dissertation, University of Texas at El Paso,
2003.

3. Kosheleva, O.M., Usevitch, B., Cabrera, S., Vidal, E.Jr.: MSE Optimal Bit Allocation in the
Application of JPEG2000 Part 2 to Meteorological Data, Proceedings of the 2004 IEEE Data
Compression Conference DCC’2004, Snowbird, Utah, March 23–25, 2004, p. 546.

4. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, Springer, London,
2001.

150 Olga Kosheleva et al.

5. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of
Data Processing and Interval Computations, Kluwer, Dordrecht, 1997.

6. Mallat, S., Falzon, F.: Analysis of low bit rate image transform coding, IEEE Trans. Signal
Proc. 46 (1998) 1027–1042.

7. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
8. Taubman, D.S., Marcellin, M.W.: JPEG2000 Image Compression Fundamentals, Standards

and Practice, Kluwer, Boston, Dordrecht, London, 2002.
9. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues, Oxford University Press, New York,

1991.

Computing Interval Bounds for Statistical
Characteristics Under Expert-Provided Bounds

on Probability Density Functions

Victor G. Krymsky

Ufa State Aviation Technical University
12 K. Marx Street, Ufa, Bashkortostan, 450000, Russia

kvg@mail.rb.ru

Abstract. The paper outlines a new approach developed in the framework of
imprecise prevision theory. This approach uses expert-provided bounds as con-
straints on the values of probability density functions. Such approach allows us
to overcome the difficulties caused by using traditional imprecise reasoning tech-
nique: by eliminating non-physical degenerate distributions, we reduce the widths
of the resulting interval estimates and thus, make these estimates more practically
useful.

1 Introduction

Imprecise prevision theory (IPT) started from fundamental publications [1,2] (see also
[3]); it now attracts significant attention of researchers from many countries. An impor-
tant advantage of IPT is its capacity to combine both objective statistical information
and expert information when estimating the lower and the upper bounds on probabilities
and other relevant characteristics. Such estimates can be obtained without introducing
any additional assumptions about a probability distribution; these estimates are usually
obtained by solving problems of linear programming type.

In some practical applications, however, the bounds generated by the traditional IPT
approach are too wide, so wide that they are not very practically useful. This happens, e.g.,
in practical problems related to reliability and risk analysis. As shown in [4], one of the
main reasons why these bounds are too wide is exactly that in the IPT methodology, we
do not make any assumption about the probability distribution. As a result, the “optimal”
distributions, i.e., the distributions for which the estimated characteristic attains its largest
possible (or smallest possible) value, are degenerate – in the sense that the probability
distribution is located on a (small) finite set of values (and the corresponding probability
density function is a linear combination of the δ-functions). Such degenerate distributions
are not physically possible – e.g., it is not possible that the failure occurs only at certain
moments of time. It is therefore desirable to restrict ourselves to physically possible
probability distributions; hopefully, such a restriction would decrease the width of the
resulting interval estimates and thus, make these estimates more practically useful.

A natural way to impose such a restriction is when we know an upper bound on
the values of the probability density. In many practical situations, such upper bounds
can be elicited from experts. For example, in reliability problems, we can ask an expert

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 151–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

152 Victor G. Krymsky

questions like “what is the largest possible percentage of failures per year for a given
component”. In other cases, such bounds can be obtained from the statistical data or
from the physical models of the corresponding phenomena.

It is worth mentioning that in all these cases, all we get is an upper bound on the
value of the probability density, we do not get any information about the actual shape of
the corresponding probability distribution.

Once we know such an upper bound, we can use it to restrict possible probability
distributions. In other words, we can use these upper bounds as additional constraints
in the original optimization problems; as we will show, we will then be able to use
variational calculus to solve the corresponding optimization problems and thus, generate
the desired narrower interval estimates for the statistical characteristics which are of
interest to us.

2 Traditional Formulation of the Problem

In order to describe how we can use the upper bounds on the probability density, let us
first recall how the corresponding problems are formulated and solved in the situation
when no such bounds are available.

Let us restrict ourselves to the practically useful one-dimensional case, in which we
are interested in the distribution of a single (real-valued) variable. Formally, let ρ(x) be
an (unknown) probability density function of a random variable X distributed on the
interval [0, T]. In the traditional formulation of an IPT problem for one-dimensional case
(see, e.g., [1,2,3,4]), we assume that we know the bounds ai and ai on the (unknown)
expected values ai = M(fi) of several characteristics fi(x), i.e., functions of this
random variable. For example, if fi(x) = xk , then the expected value of fi(x) is the
corresponding moment; if fi(x) = 1 for x ≤ x0 and 0 otherwise, then the expected
value is the probability that x ≤ x0, etc.

The class of all probability distributions that are consistent with our knowledge about
ρ(x) can be therefore described by the following constraints:

ρ(x) ≥ 0,

T∫
0

ρ(x) dx = 1, and ai ≤
T∫

0

fi(x) · ρ(x) dx ≤ ai, i = 1, 2, . . . , n. (1)

Here, fi(x) are given real-valued functions; in most cases, these functions are non-
negative. (In the IPT approach [1,2,3], such functions are called gambles.) The values
ai, ai ∈ R+ are given numbers.

We are interested in the expected value M(g) of an additional non-negative gam-
ble g(x). For different distributions satisfying the constraint (1), we may get different
expected values of g(x). What we are therefore interested in is the interval of possi-
ble values of M(g). The smallest possible value of M(g) is called the coherent lower
prevision and denoted by M(g); the largest possible value of M(g) is called the co-
herent upper prevision and denoted by M(g); Thus, computing the coherent lower and
upper previsions M(g) and M(g) for the expectation M(g) of the function g(x) means
estimating

Computing Interval Bounds for Statistical Characteristics 153

inf
ρ(x)

T∫
0

g(x) · ρ(x) dx, and sup
ρ(x)

T∫
0

g(x) · ρ(x) dx, (2)

subject to the constraints (1).
Both the objective function (2) and the constraints (1) are linear in terms of the values

of the unknown function ρ(x). Thus, the optimization problem (1)–(2) requires that we
optimize a linear function under linear equalities and inequalities; in other words, the
optimization problem (1)–(2) is a linear programming-type problem.

One of the known ways to solve linear programming problems is to form dual linear
programming problems. It is known [1,2,3] that in many practically useful cases, the
dual problem can be easily solved – thus, the original problem can be solved as well.

For the optimization problem (1)–(2), the dual problem has the following form:

M(g) = sup
c0,ci,di

(
c0 +

n∑
i=1

(ci · ai − di · ai)

)
, (3)

where the supremum is taken over all c0 ∈ R and ci, di ∈ R+ for which, for every
x ≥ 0, we have

c0 +
n∑

i=1

(ci − di) · fi(x) ≤ g(x). (4)

Similarly,

M(g) = inf
c0,ci,di

(
c0 +

n∑
i=1

(ci · ai − di · ai)

)
, (5)

where the supremum is taken over all c0 ∈ R and ci, di ∈ R+ for which, for every
x ≥ 0, we have

c0 +
n∑

i=1

(ci − di) · fi(x) ≥ g(x). (6)

In [4], it was shown that, in general, the functions ρ(x) at which M(g) attains its
maximum and its minimum – i.e., at which it attains the values M(g) and M(g) –
are degenerate – i.e., probability density functions which are linear combinations of
δ-functions.

The fact that we get such physically unrealistic (and hence, undesirable) probability
distributions is due to the lack of restrictions of ρ(x). That such distributions are allowed
shows that in the traditional approach, the level of uncertainty is unreasonably high.

It is therefore desirable to dis-allow such physically unreasonable probability distrib-
utions – by explicitly introducing upper bounds on the probability density. This approach
is described, in detail, in the next section.

3 Modified Formulation of the Problem:
The Case of Bounded Densities

As we have mentioned, often, in addition to the restrictions (1), we also know an upper
bound K ∈ R+ on the values of the probability density function, i.e., we know that for
every x:

154 Victor G. Krymsky

ρ(x) ≤ K = const. (7)

Comment. Since the overall probability on the interval [0, T] has to be equal to 1, the
upper bound K must satisfy the inequality K · T ≥ 1.

In the new formulation of the problem, we must find the optimal values of the
objective function (2) subject to constraints (1), (7).

How can we solve this new problem? This new optimization problem is still a problem
of optimizing a linear function (2) under linear constraints (1) and (7). However, in this
new problem, we have infinitely many variables and infinitely many constraints, so, to
solve this problem, we can no longer apply the dual problem approach, an approach that
is so helpful in the solution of the traditional problem (1)–(2). Indeed, the number of
variables in the dual problem is equal to the number of constraints in the original problem.
In the formulation (1)–(2), we had a problem with a small number of constraints (1). In
a dual problem (3)–(4) (or (5)–(6)), we, accordingly, had a small number of variables;
so, although we had infinitely many constraints, the problem was still much easier to
solve than the original problem (1)–(2). In our new problem, we have infinitely many
constraints (7); so, the dual problem also has infinitely many variables (and infinitely
many constraints). Hence, for the new problem, duality does not help.

To solve the new problems, we propose a new idea based on the following theorem:

Theorem. If there is no non-degenerate interval [α, β] ⊆ [0, T] on which the function
g(x) can be represented in the form

g(x) = h0 +
n∑

i=1

hi · fi(x), (8)

for some h0, h1, . . . , hn ∈ R, then each piece-wise continuous function ρ(x) providing
the solution to the above optimization problem mentioned (1), (2), (7), is a piece-wise
constant step-function whose values are either 0 or K .

Comment. In practice, we can restrict ourselves to piece-wise continuous functionsρ(x).

Comment. In many practical situations, the functions fi(x) and g(x) are smooth (differ-
entiable). For smooth functions, the equality (8) takes place only if the system of linear
algebraic equations

h0 +
n∑

i=1

hi ·fi(x) = g(x);
n∑

i=1

hi ·f ′
i(x) = g′(x); · · ·

n∑
n=1

hi ·f (n)
i (x) = g(n)(x), (9)

with unknowns h0, h1, . . . , hn has at least one solution (independent on x) on some
interval x ∈ [α, β]. (Here we used the standard notations for the derivatives: g(l)(x) =
d(l)g(x)/dx(l); f (l)

i (x) = d(l)fi(x)/dx(l), i, l = 1, 2, . . . , n.)
In most practical situations, this condition is not satisfied – so, the theorem is ap-

plicable in most practical situations.

Proof. Let us apply the methods of variational calculus to the above optimization prob-
lem, with the constraints (1), (7). To be able to do that, we must somehow eliminate the

Computing Interval Bounds for Statistical Characteristics 155

inequalities
0 ≤ ρ(x) ≤ K (10)

because the variational calculus is based on the idea that we can always apply a small
change ρ(x) → ρ(x)+δρ(x) to an unknown function – i.e., in topological terms, that the
set of possible functionsρ(x) is an open domain. On the other hand, with the inequalities
(10), when ρ(x) = 0 or ρ(x) = K , a small change in ρ(x) leads us outside the domain.

The requirementρ(x) ≥ 0 can be eliminated by introducing a new unknown function
z(x) for which

ρ(x) = z2(x). (11)

(We then have to substitute z2(x) instead of ρ(x) in the expressions for objective func-
tions and for the constraints.)

To take the requirement (7) into account, we use an idea from the optimal control the-
ory (see, e.g., [5]) and introduce yet another unknown function v(x) with the additional
restriction that

z2(x) + v2(x) = K. (12)

Now, we must optimize w.r.t. both unknown functions z(x) and v(x). In terms of these
new unknown functions, the original problem takes the following form:

We want to find

inf
z(x)

T∫
0

g(x) · z2(x) dx and sup
z(x)

T∫
0

g(x) · z2(x) dx (13)

subject to
z2(x) + v2(x) = K, (14)

T∫
0

z2(x) dx = 1,

T∫
0

fi(x) · z2(x) dx ≤ ai, −
T∫

0

fi(x) · z2(x) dx ≤ −ai, (15)

where i = 1, 2, . . . , n.
In variational calculus, expressions like (14) (algebraic relations between the un-

known functions) are called holonomic constraints, and equalities and inequalities like
(15) – that estimate the values of some integrals depending on the unknown functions –
are called belong isoperimetric constraints. The standard way of solving the correspond-
ing optimization problem is to replace the original constraint optimization problem with
the objective function

F (z, v) = g(x) · z2(x) (16)

by an unconstrained optimization problem with a new objective function
F ∗(z, v) = g(x) · z2(x) + λ∗(x) · (z2(x) + v2(x)) + λ0 · z2(x)

+
n∑

i=1

λi · fi(x) · z2(x) −
2n∑

i=n+1

λi · fi(x) · z2(x)

= g(x) · z2(x) + λ∗(x) · (z2(x) + v2(x)) + λ0 · z2(x)

+
n∑

i=1

(λi − λi+n) · fi(x) · z2(x),

(17)

156 Victor G. Krymsky

where λ∗(x), λ0, λ1, . . . , λ2n are the (unknown) Lagrange multipliers.
Note that λ∗(x) is a function of x because it corresponds to a holonomic constraint;

on the other hand,λ0, λ1, . . . , λ2n are constants because they correspond to isoperimetric
constraints.

For unconstrained optimization problem, it is known that the Euler-Lagrange equa-
tions provide the necessary condition of optimality. For our problem, these equations
take the following form:

∂F ∗(z, v)
∂z

=
d

dx

(
∂F ∗(z, v)

∂ż

)
;
∂F ∗(z, v)

∂v
=

d

dx

(
∂F ∗(z, v)

∂v̇

)
, (18)

where ż
def= dz/dx; v̇

def= dv/dx. For the function (17), these equations take the form:

z(x) ·
(
g(x) + λ∗(x) + λ0 +

n∑
i=1

(λi − λi+n)fi(x)

)
= 0; (19)

λ∗(x) · v(x) = 0. (20)

The equations (19), (20) should be considered together with the constraints (14), (15).
Let us consider an arbitrary point x0 ∈ [0, T] at which z(x0) �= 0. Since the function

z(x) is assumed to be piece-wise continuous, it is either continuous to the right of x0

or to the left of x0. Without loosing generality, let us assume that it is continuous to
the right of x0, i.e., on some interval [x0, β] with β > x0. Since the function z(x) is
continuous on this interval and z(x0) �= 0, we conclude that for some ε > 0, we have
z(x) �= 0 for all x ∈ [x0, x0 + ε]. For every δ ∈ (0, ε), from (19) and z(x) �= 0, we
conclude that for all x ∈ [x0, x0 + δ], we have

λ∗(x) = −g(x)− λ0 −
n∑

i=1

(λi − λi+n) · fi(x).

Due to the main assumption of the theorem – that the condition (8) cannot take place
everywhere on an interval – we have λ∗(x) �= 0 for some xδ ∈ [x0, x0 + δ]. For this
xδ , the equation (20) implies that v(xδ) = 0 – hence, due to (14), that z(xδ) =

√
K.

When δ → 0, we have xδ → x0; since the function z(x) is continuous on the interval
[x0, x0 + β], we conclude, in the limit, that z(x) =

√
K. So, if a piece-wise constant

continuous function z(x) attains a non-zero value for some x, this value can only be√
K which corresponds to ρ(x) = K . The theorem is proven.

This theorem enables us to reduce the original difficult-to-solve variational optimiza-
tion problem to an easier-to-solve problem of optimizing a multivariate function under
algebraic constraints.

Indeed, let (x0, x1), (x2, x3), (x4, x5), . . . , (x2m, x2m+1) be the intervals on which
ρ(x) = K �= 0, and let (x1, x2), . . . be the intervals on which ρ(x) = 0 (Fig. 1).
Let us denote

G(xj , xj+1)
def=

xj+1∫
xj

g(x) dx; Φi(xj , xj+1)
def=

xj+1∫
xj

fi(x) dx, i = 1, 2, . . . , n. (21)

Computing Interval Bounds for Statistical Characteristics 157

�

�
0

ρ(x)

K

xTx0 x1 x2 x3 x2m x2m+1

. . .
� �

Fig. 1. The optimal density function

Then, the problem (1), (2), (7) takes the following form:
We want to find

min
x0,x1,...

⎧⎨⎩K ·
m∑

j=0

G(x2j , x2j+1)

⎫⎬⎭ and max
x0,x1,...

⎧⎨⎩K ·
m∑

j=0

G(x2j , x2j+1)

⎫⎬⎭ (22)

subject to

K ·
m∑

j=0

(x2j+1 − x2j) = 1; ai ≤ K ·
m∑

j=0

Φ(x2j , x2j+1) ≤ ai, i = 1, 2, . . . , n. (23)

Once we know the number of intervals m, we can solve this optimization prob-
lem by using standard numerical techniques such as gradient methods, simplex-based
search methods, genetic algorithms, etc. In simple situations, solution can be obtained
in analytical form.

How can we findm? A natural idea is to start with a small valuem (e.g., withm = 0),
to solve the optimization problem for this m, then increase m by 1, solve the problem
again, etc. We stop if for the new m, we get the exact same optimizing function ρ(x) as
for the previous m – this means that a further subdivision of intervals will probably not
improve the value of the objective function (2).

Example 1. Let us consider the simplest possible example in which the inequality (7)
is the only restriction on ρ(x) (i.e., n = 0). In this case, what are the bounds on the
expected value M(x) of the corresponding random variable?

In this example, g(x) = x. Obviously, there exists no interval on which g(x) = x =
c0 = const, so the theorem can be applied.

Let us start with the case m = 0, i.e., with the case when the solution of the opti-
mization problem is equal to K on a single interval (x0, x1). Here we have only one

constraint
T∫
0

ρ(x) dx = K · (x1 − x0) = 1, hence x1 = 1/K + x0. The objective

function takes the form

J =

T∫
0

x · ρ(x) dx = K ·
T∫

0

xdx = K · x
2
1 − x2

0

2
.

Substituting x1 = 1/K + x0 into the expression for J , we conclude that J = K ·
2x0/K + 1/K2

2
= x0 +

1
2K

. Here, x0 ≥ 0 and x1 ≤ T – hence x0 ≤ T − 1
2K

.

158 Victor G. Krymsky

It is clear that the smallest value of J is attained when x0 = 0, so min J =
1

2K
.

Similar, to get J → max, we take the largest possible value of x0, i.e., x0 = T − 1/K ,

hence max J =
(
T − 1

K

)
+

1
2K

= T − 1
2K

.

Now, according to our procedure, we try m = 1. In this case, we have

J =

T∫
0

x · ρ(x) dx = K ·

⎛⎝ x1∫
x0

xdx +

x3∫
x2

xdx

⎞⎠ = K ·
(

x2
1 − x2

0

2
+

x2
3 − x2

2

2

)
.

The constraint becomes

T∫
0

ρ(x) dx = K · (x1 − x0 + x3 − x2) = 1, x0 ≥ 0; x1 ≤ T.

It is easy to see that the requirement J → min leads to x2 = x0 = 0 and x3 = x1 =
1/K; so, the new optimal function is identical to the function corresponding to m = 0.
The similar situation occurs for maximizing J ; we can show that the choice of m = 0
is really optimal.

Example 2. In this example, we are again interested in the bounds on the expected value,
but we now have an additional constraint

Prob(x ∈ [q, q]) =

T∫
0

f1(x) · ρ(x) dx = b,

for some q, q ∈ R+. Here, f1(x) = I[q,q](x) is the characteristic function of the interval,
i.e., the function that is equal to 1 if x ∈ [q, q] and to 0 otherwise.

Here the theorem can be also applied. Further analysis shows that m = 1 is the best
choice for such situations. To provide J → min we have to set: if q ≥ (1− b)/K ,

ρ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K for 0 ≤ x ≤ (1− b)/K;
0 for (1− b)/K < x < q;
K for q ≤ x ≤ q + b/K;
0 for q + b/K < x ≤ T ;

and for q < (1− b)/K:

ρ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K for 0 ≤ x ≤ q + b/K;
0 for q + b/K < x < q;
K for q ≤ x ≤ q + (1− q ·K − b)/K;
0 for q + (1− q ·K − b)/K < x ≤ T.

Computing Interval Bounds for Statistical Characteristics 159

As a result, we get, correspondingly,

min J =
1

2K
+

b · (q ·K − (1− b))
K

or

min J =
1

2K
+

q ·K − (q ·K + b)(1 + (q − q) ·K − b)
K

.

Solution of the problem J → max can be obtained in a similar way.
Let us compare this solution with the solution to the corresponding “traditional” IPT

problem – in which we impose no restrictions on the upper bound of ρ(x). In this case,
the dual problem has the form c0 + c1 · b → max under the constraint g(x) = x ≥
c0 + c1 · I[q,q](x). To satisfy this constraint, we have to place the function ψ(x) def=
c0 + c1 · I[q,q](x) under the curve y = x (as shown in Fig. 2).

�g(x), ψ(x)

�
x

�
�

�
�

�
�

�
�� g(x)

q q

� ψ(x)

Fig. 2. Plots of the functions g(x) and ψ(x)

Hence, we obtain c0 = 0 and c1 = q, so M [g]trad = q · b. Let us find the difference
Δ(min J) = minJ −M [g]trad.

If q ≥ 1− b

K
, then

Δ(min J) =
1

2K
+

b · (q ·K − (1− b))
K

− q ·K =
b2 + (1− b)2

2K
> 0.

So, the expert-provided upper bound K on ρ(x) indeed improves the bounds on J
– and the smaller the bound the larger the improvement. For example, for T = 1,
K = 5.0, q = 0.2, and b = 0.5, we get M [g]trad = 0.1 and Δ(min J) = 0.05 – a 50%
improvement.

If q <
1− b

K
, then

Δ(minJ) =
(b − 1)2 + b2 + 2b · (q − q) · (1− b− q ·K)

2K
> 0.

160 Victor G. Krymsky

Acknowledgments

I would like to express my sincere gratitude to Dr. Igor Kozine of Risø National Lab-
oratory, Denmark, for kind attention to this research. I am very grateful to Professor
Vladik Kreinovich of University of Texas at El Paso, the USA, for valuable suggestions,
important comments and helpful corrections. The work was partially supported by the
grant T02-3.2-346 of Russian Ministry for Education.

References

1. Walley, P. Statistical reasoning with imprecise probabilities. Chapman and Hall. New York,
1991.

2. Kuznetsov, V. Interval statistical models. Radio and Sviaz. Moscow, 1991 (in Russian).
3. Kuznetsov, V. Interval methods for processing statistical characteristics. Proceedings of

APIC’95 Conference at El Paso, Extended Abstracts, A Supplement to Int. Journal of Re-
liable Computing, 1995, pp. 116–122.

4. Utkin, L., Kozine, I. Different faces of the natural extension. Proceedings of the Second In-
ternational Symposium on Imprecise Probabilities and Their Applications, ISIPTA ’01, 2001,
pp. 316–323.

5. Ivanov, V.A., Faldin, N.V. Theory of optimal control systems. Nauka. Moscow, 1981 (in
Russian).

Interval Parallel Global Optimization with Charm++

José A. Martı́nez, Leocadio G. Casado,
José A. Alvarez, and Inmaculada Garcı́a

Computer Architecture and Electronics Dpt.
University of Almerı́a
04120 Almerı́a, Spain

{jamartin,leo,jaberme,inma}@ace.ual.es

Abstract. Interval Global Optimization based on Branch and Bound (B&B) tech-
nique is a standard for searching an optimal solution in the scope of continuous
and discrete Global Optimization. It iteratively creates a search tree where each
node represents a problem which is decomposed in several subproblems pro-
vided that a feasible solution can be found by solving this set of subproblems.
The enormous computational power needed to solved most of the B&B Global
Optimization problems and their high degree of parallelism make them suitable
candidates to be solved in a multiprocessing environment. This work evaluates a
parallel version of AMIGO (Advanced Multidimensional Interval Analysis Global
Optimization) algorithm. AMIGO makes an efficient use of all the available in-
formation in continuous differentiable problems to reduce the search domain and
to accelerate the search. Our parallel version takes advantage of the capabilities
offered by Charm++. Preliminary results show our proposal as a good candidate
to solve very hard global optimization problems.

1 Introduction

The problem of finding the global minimum f∗ of a real valued n-dimensional contin-
uously differentiable function f : S → R, S ⊂ Rn, and the corresponding set S∗ of
global minimizers is considered, i.e.:

f∗ = f(s∗) = min
s∈S

f(s), s∗ ∈ S∗. (1.1)

The following notation is used. I = {X = [a, b] | a ≤ b; a, b ∈ R} is the set
of all one-dimensional intervals. X = [x, x] ∈ I is a one-dimensional interval. X =
(X1, . . . , Xn) ⊆ S,Xi ∈ I, i = 1, . . . , n is an n-dimensional interval, also called box.
In is the set of the n-dimensional intervals. f(X) = {f(x) | x ∈ X} is the real range
of f on X ⊆ S. F and F ′ = (F ′

1, . . . , F
′
n) are interval inclusion functions of f and its

derivative f ′, respectively. These interval inclusion functions satisfy that: f(X)⊆ F (X)
and f ′(X) ⊆ F ′(X) [8].

In those cases where the objective function f(x) is given by a formula, it is possible
to use an interval analysis B&B approach to solve problem (1.1) (see [6,8,9,10]). A
general interval GO (IGO) algorithm based on this approach is shown in Algorithm 1.
An overview on theory and history of the rules of this algorithm can be found, for

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 161–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 José A. Martı́nez et al.

Algorithm 1 : A general interval B&B GO algorithm
Funct IGO(S, f)

1. Set the working list L := {S} and the final list Q := {}
2. while (L �= {})
3. Select an interval X from L Selection rule
4. Compute a lower bound of f(X) Bounding rule
5. if X cannot be eliminated Elimination rule
6. Divide X into Xj , j = 1, . . . , p, subintervals Division rule
7. if Xj satisfies the termination criterion Termination rule
8. Store Xj in Q
9. else

10. Store Xj in L
11. return Q

example, in [6]. Of course, every concrete realization of Algorithm 1 depends on the
available information about the objective functionf(x). The interval global optimization
algorithm used in this article is called AMIGO [7].

AMIGO supposes that interval inclusion functions can be evaluated for f(x) and its
first derivative f ′(x) on X . Thus, the information about the objective function which
can be obtained during the search is:

F (x), F (X) and F ′(X). (1.2)

When the information stated in (1.2) is available, the rules of a traditional realization
of Algorithm 1 can be written more precisely. Below we shortly describe the main
characteristics of AMIGO. A detailed description can be found in [7].

The Bounding rule lets to get a lower and upper bounds of f(X). Interval arithmetic
provides a natural and rigorous way to compute these bounds by changing the real
function to its interval versionF (X). Better approximations are obtained using derivative
information. The Selection rule chooses among all the intervalsXj stored in the working
list L, the interval X with a better lower bound of f(X). Most of the research of interval
global optimization algorithm was done in the elimination rule to reduce as much as
possible the search space. AMIGO incorporates the traditional elimination rules (Cutoff
and Monotonicity tests) and additionally can reduce the size of an interval using the
information given in (1.2). Cutoff test: An intervalX is rejected when F(X) > f ,̃ where
f˜ is the best known upper bound of f∗. The value of f˜ = [f ,̃ f]̃ is usually updated
by evaluating F at the middle point of X . Monotonicity test: If condition 0 /∈ F ′(X)
for an interval X is fulfilled, then this means that the interval X does not contain any
minimum and, therefore, can be rejected. The easier division rule usually generates two
subintervals using bisection on the direction of the wider coordinate. The termination
rule determines the desired accuracy of the problem solution. Therefore, intervals X
with a width smaller or equal to a value ε, are moved to the final list Q.

This deterministic global optimization algorithm exhibits a strong computational
cost, mainly for hard to solve problems. Nevertheless, it exhibits a high degree of par-

Interval Parallel Global Optimization with Charm++ 163

allelism which can be exploited by using a multicomputer system. It also exhibits a
high degree of irregularity. This means that special attention has to be paid to the load
balancing and communication cost problems.

In this work we are using a SPMD parallel programing model. In our proposals,
the set of subproblems generated by the B&B procedure is distributed among proces-
sors following a random strategy, which is appropriate when the number of generated
subproblems is huge.

This paper is outlined as follows: Section 2 describes some issues related to the
general framework of parallel B&B algorithms. Section 3 is a brief description of the
Charm++ environment and of the parallel version of AMIGO algorithm. Finally, in Sec-
tion 4 experimental results and evaluations of our parallel implementation on a distributed
system are shown.

2 Parallel Issues in Interval B&B Global Optimization

The verified global optimization method considered in this paper belongs to the B&B
class of methods, where the given initial problem is successively subdivided into smaller
subproblems. Some of these subproblems are again subdivided while other do not need
to be considered anymore because it is known they cannot contain the solution of the
problem. Parallelizing B&B methods mainly consists of distributing among processors
the set of independent subproblems being dynamically created. In order to achieve an
efficient parallel method one should be concerned with the following issues:

1. All processors should always be busy handling subproblems;
2. The total cost of handling all the subproblems should not be greater than the cost of

the serial method;
3. The overhead due to communications among processors should be small.

More precisely, issue 2 means that all processors should not be just busy but doing
useful work. It is necessary to point out that a B&B algorithm executed in parallel
does not process the subproblems in the same order that a sequential program does,
so the number of created (and eliminated) subproblems will depend on the number of
processors used in a particular execution. The resulting effect is that a specific parallel
execution will create more (or sometime less) subproblems depending on the specific
function and the number of processors.

Here we shall investigate the parallelization of a B&B global optimization algorithm
(AMIGO) on a distributed memory multicomputers. In this case it is difficult to fulfill
all the above described issues (1-3), simultaneously. For issue 2, it is important that the
current best bounding criterion (in our case the smallest value of f̃ on all processors)
is sent to every processor as soon as possible. Additionally, one must try to distribute
among processors all the subproblems created thus far. This will contribute to keep all
processors equally loaded or at least to keep them all busy. In addition one should try to
fulfill all three issues to get an efficient parallel method.

When parallelizing the B&B method there are two possibilities for managing sub-
problems. The first is to store subproblems on one central processor. The other is to
distribute them among processors. In our context of verified global optimization this

164 José A. Martı́nez et al.

means either to store boxes in a list on one processor or to store them in several lists
each created on every processor. The first case has a disadvantage: the maximal length
of a list is limited by the amount of memory of one processor, whereas in the second
case the memory of all processors can be used.

In [12], where parallelization of different methods for verified global optimization
was investigated, one can find a very simple strategy where boxes are stored in a central
list which can be handled by all processors. Similar parallelizations of this master-slave
principle were proposed in [5] and [1]. Contrarily, Eriksson manages processors in a
ring where each processor has its own list of not processed subproblems [4].

3 Parallel Implementation in Charm++

The main characteristics of Charm++, an object oriented portable parallel programming
language based on C++, are introduced here to describe our parallel algorithm.

What sets Charm++ apart from traditional programming models such as message
passing and shared variable programming is that the execution model of Charm++ is
message-driven. Therefore, computations in Charm++ are triggered based on arrival of
associated messages. These computations in turn can fire off more messages to other
(possibly remote) processors that trigger more computations on those processors. Some
of the programmer-visible entities in a Charm++ program are:

Concurrent Objects (Chares): A chare is a Charm++ object that can be created on
any available processor and can be accessed from remote processors. A chare is
similar to a process. Chares are created dynamically, and many chares may be active
simultaneously.

Communication Objects (Messages): Chares send messages to one another to invoke
methods asynchronously. Conceptually, the system maintains a “work-pool” con-
sisting of seeds for new chares, and messages for existing chares.

Every Charm++ program must have at least one mainchare. Charm++ starts a pro-
gram creating a single instance of each mainchare on processor 0, and invokes constructor
methods of these chares. Typically, these chares then create a number of other chares,
possibly on other processors, which can simultaneously work to solve the problem at
hand.

Each chare contains a number of entry methods, which are methods that can be
invoked from remote processors. In Charm++, the only communication method among
processors is an invocation to an asynchronous entry method on remote chares. For
this purpose, Charm Kernel needs to know the types of chares in the user program, the
methods that can be invoked on these chares from remote processors, the arguments
these methods take as input, etc.

Charm++ also permits prioritizing executions (associating priorities with method
invocations), conditional message packing and unpacking (for reducing messaging over-
head), quiescence detection (for detecting completion of some phase of the program),
and dynamic load balancing (during remote object creation).

In our parallel program, a chare has two entry methods:

Interval Parallel Global Optimization with Charm++ 165

Process-Box: It execute one iteration of AMIGO algorithm over the box received in
the given message.

Update-f̃: It upgrade the current f̃ value in the current chare.

We use a static mapping of chares on processors and there is only one chare in one
processor. Therefore, we do not use the Charm++ dynamic load balancing capability.
Each chare will be triggered when receives a message which invokes its entry methods.
A chare also can generate messages for other chares (or itself). For instance, when a
message with a Process-Box entry method arrives to a chare in one processor, the entry
method can:

– Reject the box by some elimination rule: No messages are generated.
– Divide the box: Two new sub-boxes are generated and two new messages with

a Process-Box entry method are generated. The receiver (chare) of these new
messages are randomly selected.

– A solution box was found: A message with the solution box is generated and sent
to the mainchare.

The possibility of associating priorities to entry method invocations is very important
in our model. For instance if one chare obtains a better value of f̃ , this value has to be
broad-casted to all the chares, then they will apply the Cutoff test as soon as possible.
Therefore, the Update-f̃ messages will have more priority that the Process-Box ones.
If a Process-Box message arrives and its associated box satisfies the Cutoff test then it
will not be processed. A priority also has been established in the Process-Box messages
to first process the more promising boxes, i.e, those which let to obtain a better f̃ value.
This tries to minimize the possibility that the search region visited by the parallel version
will be larger than the visited by the sequential one.

4 Performance Results

The speed-up and work load imbalance for our parallel implementation of AMIGO
algorithm are shown in Figures 1 and 2, respectively. All the data where obtained from
executions carried out on a cluster of workstations composed of 16 nodes with two
Pentium XEON 3Ghz, with Hyper-threading running Linux. The nodes are connected
by a Gigabit Ethernet network.

Table 1 shows the set of test problems used to evaluate the algorithms. T1 correspond
with the execution time in seconds of AMIGO algorithm and ε1 with the precision
reached by AMIGO to obtain a solution in less than one hour of running time [7]. T2 and
ε2 are analogous but for the parallel algorithm running in one processor. Our experiments
were done in such a way that executions spend less that one hour. It means that increasing
the accuracy of ε1 and ε2 one order of magnitude, algorithms do not provide any solution
after running one hour. From results in Table 1 is clear that the parallel version can reach
better precision. A possible reason is that the parallel version do not need to handle the
storage of the pending boxes, just to process the entry methods.

Figure 1 clearly shows that, for this set of very hard to solve problems, an average
linear speed-up was obtained.

166 José A. Martı́nez et al.

Table 1. Comparison between sequential AMIGO (T1, ε1) and AMIGO-Charm++ (T2, ε2) algo-
rithms

Name Ref n T1(sec.) ε1 T2(sec.) ε2

Schwefel 2.14 (Powell) [11] 4 15,85 10−5 1898,97 10−7

Schwefel 3.1p [11] 3 1302,67 10−4 24,14 10−4

Ratz 5 [11] 3 667,35 10−3 2245,77 10−5

Ratz 6 [11] 5 823,49 10−3 1007,58 10−4

Ratz 7 [11] 7 903,75 10−3 2459,16 10−4

Schwefel 2.10 (Kowalik) [14] 4 405,54 10−2 3116,71 10−9

Griewank 10 [13] 10 334,04 10−2 1114,49 10−14

Rosenbrock 10 [3] 10 199,19 10−2 1357,70 10−14

Neumaier 2 [9] 4 84,41 10−2 1615,26 10−14

EX2 [2] 5 44,38 10−2 3302,40 10−10

Ratz 8 [11] 9 10,65 10−2 685,48 10−3

A

A

A

A

A
A

A

A

A

A

A

A

A

A

A

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of PE

5

10

15

20

25

Sp
ee

d-
U

p

ex2
griew10
kowalik
n2
ratz5
ratz6
ratz7
ratz8
rb10
schw31p
shw214A A

Speed-up vs number of PEs

Fig. 1. Speed-up

The workload imbalance has been obtained as (Lmax−Lav)/Lav ∈ [0, p−1]; where
Lmax is the maximum workload and Lav is the average workload in a set of p processors.
Notice (see Figure 2) that the workload imbalance in all the cases is negligible.

As the numerical results show, the parallel implementation of AMIGO using
Charm++ is suitable to obtain solutions with near linear and sometimes with super
speed-ups.

Interval Parallel Global Optimization with Charm++ 167

A A A A A A A
A A

A
A A A

A A

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of PE

0

0.002

0.004

0.006

0.008

0.01

0.012

ex2
griew10
kowalik
n2
ratz5
ratz6
ratz7
ratz8
rb10
schw31p
schw214A A

Workload Imbalance

Fig. 2. Workload imbalance

Acknowledgement

This work was supported by the Ministry of Education of Spain(CICYT TIC2002-
00228).

References

1. Berner, S. Parallel methods for verified global optimization, practice and theory. Journal of
Global Optimization 9:1–22, 1996.

2. Csendes, T. and D. Ratz: 1997, ‘Subdivision Direction Selection in Interval Methods for
Global Optimization’. SIAM Journal of Numerical Analysis 34, 922–938.

3. Dixon, L.W.C. and G.P. Szego (eds.): 1975, Towards Global Optimization. North-Holland
Publishing Company.

4. Eriksson, J., Lindström, P.: A parallel interval method implementation for global optimization
using dynamic load balancing. Reliable Computing 1:77-91, 1995.

5. Henriksen, T., Madsen, K. Use of a depth-first strategy in parallel Global Optimization.
Technical Report 92-10, Institute for Numerical Analysis, Technical University of Denmark,
1992.

6. Kearfott, R.B. Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers,
Dordrecht, Holland, 1996.

7. Martı́nez, J.A., Casado, L.G., Garcı́a, I., Tóth, B.: AMIGO: Advanced Multidimensional In-
terval Analysis Global Optimization Algorithm. In Floudas, C., Pardalos, P., eds.: Nonconvex
Optimization and Applications Series. Frontiers in Global Optimization. 74:313-326. Kluwer
Academic Publishers, 2004.

168 José A. Martı́nez et al.

8. Moore, R.: Interval analysis. Prentice-Hall, 1966.
9. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, 1990.

10. Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis Horwood
Ltd., 1988.

11. Ratz, D., Csendes, T.: On the selection of subdivision directions in interval branch and bound
methods for global optimization. Journal of Global Optimization 7:183-207, 1995.

12. Suiunbek, I.: A New Parallel Method for Verified Global Optimization. PhD thesis, University
of Wuppertal, 2002.

13. Törn, A. and A. Žilinskas: 1989, Global Optimization, Vol. 3350. Berlin, Germany: Springer-
Verlag.

14. Walster, G., E. Hansen, and S. Sengupta: 1985, ‘Test results for global optimization algorithm’.
SIAM Numerical Optimization 1984 pp. 272–287.

On the Approximation of Interval Functions

Klaus Meer�

Department of Mathematics and Computer Science
Syddansk Universitet, Campusvej 55, 5230 Odense M, Denmark

meer@imada.sdu.dk

Abstract. Many problems in interval arithmetic in a natural way lead to a quanti-
fier elimination problem over the reals. By studying closer the precise form of the
latter we show that in some situations it is possible to obtain a refined complexity
analysis of the problem. This is done by structural considerations of the special
form of the quantifiers and its implications for the analysis in a real number model
of computation. Both can then be used to obtain as well new results in the Tur-
ing model. We exemplify our approach by dealing with different versions of the
approximation problem for interval functions.

1 Introduction

When studying a problem in interval arithmetics one of the basic assumptions is that
the input data is not known accurately. Instead of dealing with say an input sequence
(x1, . . . , xn) of rationals describing our precise data, we consider a sequence of intervals
[x1, x1], . . . , [xn, xn] such that the actual data points xi are only known to belong to
[xi, xi], 1 ≤ i ≤ n.

Example 1. (see [11]) Consider the problem: Given a matrix A ∈ Qm×n, b ∈ Qm, is
there a vector x ∈ Rn such that Ax = b? As a problem in interval arithmetic we should
start with an interval matrix A, i.e. a set of intervals [aij , aij] ⊆ R for each position
(i, j) and an interval vector b of intervals [bi, bi] as components. The only knowledge
about the original data (A, b) then is the informationA ∈ A, i.e. ∀i, j aij ∈ [aij , aij] and
similarly for b ∈ b. A typical question then could be: Is there any choice A ∈ A, b ∈ b
such that there is an x ∈ Rn with Ax = b?

The above interval linear systems problem is known to be NP-hard [8]. From an
informal point of view it is easy to get an intuition why this is the case. The interval
framework “automatically” introduces a linear number (in the problem dimension) of
quantifiers ranging over the real numbers; they are used to describe the interval infor-
mation available about the input data:

∃ A ∈ A ∃ b ∈ b ∃ x ∈ Rn Ax = b .

� Partially supported by the EU Network of Excellence PASCAL Pattern Analysis, Statistical
Modelling and Computational Learning and by the Danish Natural Science Research Council
SNF. This publication only reflects the author’s views.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 169–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

170 Klaus Meer

The first two blocks of existential quantifiers are not present in the exact setting and
increase the problem’s complexity. They naturally lead to the consideration of algebraic
models of computation like the BSS model introduced by Blum, Shub, and Smale, [2].

In real-life computers, operations with real numbers are hardware supported. Almost
universally, floating-point arithmetic is used for scientific computation. Therefore, if we
have a certain number of bit operations as part of a single operation with real numbers,
then these operations will be performed much faster than if they were unrelated oper-
ations with bits. From this viewpoint, in addition to the standard Turing complexity, it
is desirable to investigate the complexity in terms of how many operations with real
numbers are necessary. This cost measure is studied in the real number BSS model of
computation (resp. in algebraic complexity theory). The approach is substantiated by the
fact that (see [17]) “most practioneers of scientific computing do not experience much
difference between the real number model and floating point arithmetic." Of course,
there are situations in which a more careful analysis has to be performed. However, for
numerically stable algorithms the real number model seems to reflect pretty well the
floating-point costs. Moreover, as already mentioned, in the framework of interval arith-
metic the real number model comes in quite naturally already through the formulation
of problems.

Note as well that in the BSS model the problem of deciding general existential
formulas in the first-order theory FOR over the reals is NPR-complete, where NPR

denotes a real analogue of NP. For more details see [2].

Example 2. This example deals with the best linear approximation of quadratic interval
functions (BLA for short, see [10,8]). A problem instance is given by a box B =
[b1, b1] × . . . × [bn, bn] ⊆ Rn, a bound M ∈ Rn and a quadratic interval function
f : B �→ {intervals in R}. The latter means that there are two quadratic polynomials
f, f : B �→ R such that ∀ y ∈ B f(y) ≤ f(y) and the only information we have about
f is that ∀ y ∈ B f(y) ∈ [f(y), f(y)]. The task is to approximate f as best as possible
with respect to the maximum norm on B by two linear functions X,X : B → R, i.e. to
compute

min
X,X

max
y∈B

X(y)−X(y) ≤ M

under the constraints

∀ y ∈ B :
X(y) ≥ f(y)
X(y) ≤ f(y)

As decision problem we ask whether the minimal value is at most M. This problem
is a linear semi-infinite optimization problem that was studied in [10]. There, it was
shown that the problem (when restricted to rational input data) is NP-hard. However,
no upper bound is known, i.e. the problem is not known to belong to a certain level
of the polynomial hierarchy. It is neither known what the complexity for a fixed input
dimension n is (Koshelev et al. [10] showed polynomial solvability for n = 1.)

For our approach it is most interesting to see that the BLA problem logically can
be expressed as a ΣR

2 formula in the first order theory over the reals. The first block of

On the Approximation of Interval Functions 171

existential quantifiers asks for the linear functions X,X, the second block of universal
quantifiers checks the constraints. The entire formula thus has the shape

∃ X,X ∈ Rn ∀ y ∈ B Φ(X,X, y) ,

where Φ is a quantifier free FOR formula. However, note that this does not automatically
imply the problem to belong to Σ2 in the classical polynomial hierarchy when inputs
are restricted to be rational numbers.

In this extended abstract we show how a further analysis of the logical structure of
the above formula results in refined and even new complexity results concerning the
BLA problem, both in the Turing and the BSS model. For full details on this part see
[13]. We then also discuss more generally the limits of our approach.

2 Framework and Techniques

We shall use Example 2 to clarify our general ideas. Given the real quantifiers naturally
involved in many such interval problems we start from real number complexity theory
as described in [2]. In this framework we perform an analysis that allows us as well
to obtain new and to refine known results for the problem’s complexity in the Turing
model. In particular, we show:

- many of the NP-hard interval problems do likely not capture the full complexity of
the analogue class NPR;

- for expressing many such problems the full power of real quantifier elimination is
not necessary;

- a new upper bound for the BLA problem in the Turing model: BLA ∈ Σ2;
- a new fixed parameter result: BLA is polynomial time solvable in the Turing model

for fixed variable dimension n ∈ N.

The proofs of the above results are divided into two main parts. In the first we analyse
consequences the logical description of a problem has with respect to its real number
complexity. In the second we check the particular problem we are interested in with
respect to the special logical form it can be expressed in. Whereas the first part is using
structural complexity theory in the BSS model, the second part is depending very much
on the problem under consideration. In case of the BLA problem, the Reduction Ansatz
from semi-infinite optimization together with arguments from [12] are crucial.

2.1 Digital Quantifiers

Similar to the class NP in the BSS model the real analogue NPR can be characterized as
all real number decision problems A such that there is a (real) decision problem B ∈ PR

together with a polynomial p such that

A = {x ∈ Rn|∃ y ∈ Rm m ≤ p(n) and (x, y) ∈ B for some n,m} .

The class DNPR is the subclass of problems for which in the above characterization
it is sufficient to let the existential quantifiers range over some {0, 1}m, only, see [3].

172 Klaus Meer

Thus, a problem is in DNPR if the verification procedure can be performed using a
proof from a finite search space instead of one from an uncountable set Rm. Clearly, it
is PR ⊆ DNPR ⊆ NPR. Similarly for the real version ΣR

2 of Σ2 (and for all the other
levels of the real polynomial time hierarchy) we can define the digital subclass DΣR

2 .
Though we cannot expect to be able to prove DNPR �= NPR or DΣR

2 �= ΣR
2 it is possible

to substantiate these conjectures by the theorem below. Before stating it let us shortly
explain two notions used in the theorem.

Weak reductions in the BSS model were introduced by Koiran [7] as a way to penalize
computations that produce high degree polynomials by repeated squaring. For example,
under the weak cost measure performing n times a repeated squaring of an input x ∈ R

has exponential cost since the polynomial generated when x is seen as a variable has
degree 2n. For a real number complexity class C we denote by the superscript Cw the
corresponding real number complexity classes when implicit complexity statements
refer to the weak cost measure. For example, DNPw

R is the class of problems verifiable
in weak polynomial time by guessing a sequence in {0, 1}∞. Similarly, DΣR,w

2 is the
weak version of DΣR

2 .

The family of (particular) resultant polynomials RESn is known from algebraic
geometry, see f.e. [5] and [16]:

Definition 1. Let n ∈ N, N := 1
2 · n2 · (n + 1). The resultant polynomial RESn :

RN → R is a polynomial which as its indeterminates takes the coefficient vectors of n
homogeneous degree two polynomials. It is the unique (up to sign) irreducible polynomial
with integer coefficients that generates the variety of (coefficient vectors of) systems that
have a non-trivial complex zero. The set of these systems is denoted by H, the solvable
ones by H0.

Resultants are conjectured not to be efficiently computable, see [14] for some hard-
ness results and [5] for the general theory of resultants.

Theorem 1. a) No problem in DNPw
R

is NPR-complete under weak polynomial time
reductions. No problem in DΣR,w

2 is NPR-hard under weak polynomial time reductions.
b) Suppose there is no (non-uniform) polynomial time algorithm which for each n ∈ N

computes a non-zero multiple ofRESn on a Zariski-dense subset ofH0.Then no problem
in DNPR is NPR-complete and no problem in DΣR

2 is NPR-hard under polynomial time
reductions in the BSS model.
c) Part b) also holds with respect to Turing instead of many-one reductions. It is as well
true for computational (instead of decision) problems that can be solved in polynomial
(real) time using oracle calls to a DNPR-oracle.

Proof. This is done by generalizing related results in [4] and [12]. Part a) follows almost
straightforwardly from those results. For part b) assume the hardness of the problems
under consideration. Now study the following real number decision problem: Given a
system f of n homogeneous real polynomials of degree 2, is there a common non-trivial
(complex) zero. This problem clearly belongs to NPR and thus, under the assumption
that the theorem is false, can be polynomially reduced to a DΣR

2 problem (respectively
one in DNPR). This potential reduction is now combined with the Dubois-Risler real
Nullstellensatz. It is then shown that the Nullstellensatz implies the claimed efficient

On the Approximation of Interval Functions 173

computation of a non-zero multiple of RESn to be part of the reduction algorithm.
Part c) follows directly from the proof of part b): Also from a potential Turing reduction
the desired algorithm for computing the resultant polynomials (modulo the cited condi-
tions) can be designed. ��

Since the computation of RESn is conjectured to be difficult, the above theorem
informally can be phrased as: A problem in DNPR or in DΣR

2 is NPR-hard only if the
potentially difficult problem of computing RESn is efficiently solvable (modulo the
above conditions). We thus take a proof that a ΣR

2 -problem actually belongs to DΣR
2

as indication for it not to be NPR-hard. Concerning weak classes and reductions the
statements are absolute; note that for the weak versions of the real number complexity
classes PR and NPR their inequality was proven in [4].

2.2 BLA Lies in DΣR

2

For a concrete problem in ΣR
2 it might of course be unclear whether it belongs to DΣR

2

and how to prove it. In case of the BLA problem this can be achieved by combining
techniques from semi-infinite optimization and structural results from classical quadratic
programming. The proof will not only establish BLA ∈ DΣR

2 but allows as well to
conclude new results for BLA in the Turing model.

Theorem 2. a) The BLA problem with real input data lies in

DΣR

2 (actually in DΣR,w
2).

b) The BLA problem with rational input data lies in Σ2.
c) For fixed variable number n ≥ 1 both in the BSS and in the Turing model BLA is

solvable in polynomial time.

Proof. The main work of the proof is to show part a). The overall idea is to find a solution
(X,X) and verify its correctness as linear approximation as well as verify whether this
approximation realizes the demanded bound M of the maximum norm of X −X on B.
This program is performed along the following steps

1) Assuming (X,X) to be known we guess certain discrete information which then
is used to compute at least two points y(i) and y(j) satisfying necessary optimality
conditions resulting from the Reduction Ansatz of semi-infinite optimization, see
[6]. This reduces the infinitely many y ∈ B to finitely many. However, these finitely
many points still are real, i.e. this step does not yet remove the real quantifiers.

2) From step 1) we deduce conditions that have to be fulfilled by an optimal solution
(X,X). These conditions lead to a linear programming problem. The solution of
the latter, using additional work, can be shown to be computable by a digital ΣR

1

algorithm.
3) Finally, the candidate obtained in 2) is checked for optimality. This mainly requires

to check the constraints, which result in two quadratic programs in y representing
the lower level of the initial semi-infinite problem. Using the results of [12] this
problem belongs to class co-DNPR = DΠ1

R
. Together, we obtain a DΣR

2 algorithm.

174 Klaus Meer

We remark that the above analysis actually implies all computations to be executable in
the corresponding weak classes as well.
b) The precise analysis of the proof of part a) shows that in case of rational input data the
numbers of 0’s and 1’s quantified in the verification procedure are only chosen to select
certain positions in the initial matrices and vectors giving the problem coefficients. They
do neither depend on intermediately generated rationals of larger bit-size nor on newly
introduced real constants. It follows membership in Σ2 for rational inputs.
c) Similarly, the proof of a) shows that the number of quantified variables in the corre-
sponding Σ2 formula is a (linear) function of n. Thus, if n is fixed we can eliminate the
quantifiers in polynomial time by evaluating all possible 0-1 assignments for the bound
variables. Finally, a property in complexity class P has to be checked. ��

Part a) above allows to conclude that BLA is unlikely to be NPR-hard under full and
is not NPR-hard under weak polynomial reductions. Part b) gives a new upper bound for
the rational version extending the NP-hardness result in [10]. Finally, part c) answers an
open question of [8].

3 How Far Does the Approach Lead?

A huge number of NP-hard problems in interval arithmetics is studied in [8]. One might
ask in how far the above methods will work at least for some of those problems as well.
It should be clear that there are a lot of interval problems not only NP-hard in the Turing
model, but also in the real number framework. If we start from an algebraic problem that
already in its exact form is NPR-hard (when real inputs are considered), then its interval
version maintains this property as well.

Let us clarify this by some examples. The problems of deciding the existence of a
common real root for a system of quadratic (real) polynomials or existence of a real root
of a single (real) degree 4 polynomial are well known to be NPR-complete [2]. Thus, as
soon as one of these problems is involved in the exact formulation the interval version is
at least as hard and the above techniques do not apply. An extremely important question
is where the boundary is. For the Best Linear Approximation problem of Example 2 the
decisive properties are

- the Reduction Ansatz and
- the structural properties of (non-convex) quadratic programming allowing for a

discrete coding of optimal points.

It is unclear whether, in particular, the techniques related to the second property can be
extended to higher degree polynomials as objective functions. The above result is based
on the fact that quadratic programs (i.e. a quadratic polynomial as objective function
together with linear constraints) attain their infimum if they are bounded from below.
This results in the possibility to reduce the problem to linear programs by using necessary
first order optimality conditions. And the Linear Programming decision problem belongs
to class DNPR.

If we consider degree 4 polynomials as objective functions everything is different.
The related approximation problem is NPR-hard.

Before we prove this result we state the

On the Approximation of Interval Functions 175

Theorem 3. Given n ∈ N, a compact box B ⊂ Rn and a degree 4 polynomial f ∈
R[x1, . . . , xn] that satisfies f(x) ≥ 0 for all x ∈ B, it is NPR-complete to decide
whether f has a real zero in B. We denote this problem by BOX-4-FEAS. ��

Due to space limitations we postpone the proof of this result to a future paper [9]. It
is basically a straightforward though tedious application of the known quantifier elimi-
nation algorithms and their complexity bounds as given, for example, in [1].

Theorem 4. Consider the problem of finding the best linear approximation of an interval
function of degree 4 (cf. Example 2): Given a (compact) box B ⊂ Rn, a quartic interval
function f : B �→ {intervals in R}, i.e. there are two degree 4 polynomials f, f : B �→ R

such that ∀ y ∈ B f(y) ≤ f(y) ≤ f(y). Find two linear functions X,X : B → R

that solve the constrained optimization problem

min
X,X

max
y∈B

X(y)−X(y)

under the constraints

∀ y ∈ B :
X(y) ≥ f(y)
X(y) ≤ f(y).

Then this problem is NPR-hard.
Similarly, for the decision version it holds: Given, in addition to f, n and B, a bound

M ∈ R, does the best linear approximation (X,X) satisfy

max
x∈B

|X(x) −X(x)| ≤ M ?

is NPR-complete.

Proof. We reduce the BOX-4-FEAS problem to the decision problem under consider-
ation. Given n, f and B as input for the former it is easy to compute an upper bound
M ∈ R such that f(x) ≤ M for all x ∈ B. Just plug in the largest possible value B
for all xi and sum up the absolute values of all monomials occuring in f. This bound
clearly is computable in polynomial time.

As input for the approximation problem we now choose

f(x) := M ∀ x ∈ B , f(x) := f(x) ∀ x ∈ B .

Since f is a constant function it follows that the optimal choice for X is as well the
constant function M. As continuous function f = f attains its infimum on the compact
box B, say in a point x∗ : f(x∗) = min

x∈B
f(x). By assumption, f(x) ≥ 0 for all choices

of x. Let X be an optimal choice (there might be several) for the approximation problem.
It is clear that

max
x∈B

X(x)−X(x) = max
x∈B

M −X(x) ≤ M,

since X(x) := 0 is a suitable candidate for computing min
X

max
x∈B

M−X(x). In the latter

inequality we actually get equality if and only if f has a real zero in B. Otherwise, the
choice X(x) := f(x∗) > 0 gives a better (the optimal!) result. ��

176 Klaus Meer

The theorem shows that if we share the general believe that DNPR �= NPR, then a
limit for our techniques is reached with the linear approximation problem for interval
functions of degree 4.

Open Problem: What’s about the real number complexity of the best linear approxi-
mation problem for (polynomial) interval functions of degree 3? In particular: Does the
decision version belong to DNPR?

The above arguments are closely related to the range problem of interval functions.
This issue will be discussed in more detail in [9].

For many other problems related to linear interval systems (for a collection of such
problem see Chapters 11 and 12 in [8]) it seems that our results can be applied. They
yield some more optimistic upper bounds than what could be feared from solving them
with general quantifier elimination methods. It might be fruitful to analyze further such
problems under this point of view.

We give one such result here. It deals with the computation of a solution interval of
an interval linear system. As in Example 1 let A := [A,A] be an interval matrix and
b := [b, b] an interval vector in Rm.

Definition 2. (see [8]) a) A possible solution of the interval linear system A · x = b is
a vector y ∈ Rn such that there exist A ∈ A, b ∈ b for which A · y = b.
b) By the j-th solution interval yj = [y

j
, yj] of the system we mean a (possibly infinite)

interval such that for all possible solutions y of the system the j-th component yj of
y belongs to [y

j
, yj]. Moreover, the values y

j
, yj do occur as components of certain

possible solutions (i.e. they are the minimal and maximal such components).

We consider the problem of computing the solution intervals of an interval linear system.
It was shown by Rohn [15] that

Theorem 5. (Rohn) The problem of computing the yj’s (or even computing what is
called a possibly finite enclosure) is NP-hard in the Turing model.

Here, we show that in the real number framework Theorem 2, part c) applies, i.e. the
problem likely does not share the full difficulty of class NPR.

Theorem 6. The problem to compute the solution intervals of an interval linear system

can be solved in FPDNPR

R
, i.e. by a polynomial time real number oracle algorithm that

has access to an oracle for problems in DNPR. Thus, Theorem 2, part c) applies.

Proof. Let A, b be the data of an interval linear system. We use the following result from
[11] to characterize the set R of possible solutions of A · x = b :

R = {y(1) − y(2)|y(1) ≥ 0, y(2) ≥ 0, y(1)T · y(2) = 0,

A · y(1) −A · y(2) ≤ b, A · y(1) −A · y(2) ≥ b}.

On the Approximation of Interval Functions 177

Clearly, for 1 ≤ j ≤ n the endpoints y
j
, yj of the solution interval yj are given as

solutions of the following optimization problems: y
j

is the solution of

min
y(1),y(2)∈Rn

y
(1)
j − y

(2)
j subject to the constraints

y(1) ≥ 0, y(2) ≥ 0, y(1)T · y(2) = 0,

A · y(1) −A · y(2) ≤ b, A · y(1) −A · y(2) ≥ b .

The solution of the corresponding maximization problem is yj .
Given the previous results we now can easily design an FPR algorithm for computing

the solutions of these optimization problems. First, we use the DNPR oracle to remove the

complementary slackness condition y(1)T · y(2) = 0 by figuring out which components
of the two vectors are zero in an optimal solution. This clearly is a DNPR problem since
we only have to code the component indices. We plug in the corresponding zero values
into the problem. This turns it into a Linear Programming problem. As mentioned before,
a solution of a Linear Programming problem (with real data) can be computed using a
DNPR oracle, thus finishing the proof. ��

Let us finally mention that, once more using the characterizations given in [11],
similar results hold as well for the linear interval systems problem from Example 1 and
some related variants, see [13].

4 Conclusions

We have seen that some problems in interval arithmetic in a very natural manner give
rise to study the problem in the BSS model. A concise analysis concerning the logical
expressibility of a problem then allows to obtain structural complexity results not only
in the BSS model but also in the Turing model. The latter can refine investigations that
do not go further than stating NP-hardness of a problem as soon as real quantifiers come
into play.

Acknowledgement

I want to thank G.W. Weber for helpful discussions on semi-infinite programming.
Thanks are due to V. Kreinovich and two anonymous referees for useful comments
concerning the preparation of this paper.

References

1. S. Basu, R. Pollack, M.F. Roy. On the combinatorial and algebraic complexity of quantifier
elimination. Journal of the ACM, 43(6), 1002–1045, 1996.

2. L. Blum, F. Cucker, M. Shub, S. Smale. Complexity and Real Computation. Springer, 1998.
3. F. Cucker, M. Matamala. On digital nondeterminism. Mathematical Systems Theory, 29, 635–

647, 1996.

178 Klaus Meer

4. F. Cucker, M. Shub, S. Smale. Complexity separations in Koiran’s weak model. Theoretical
Computer Science, 133, 3–14, 1994.

5. I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky. Discriminants, resultants, and multidimen-
sional determimants. Birkhäuser , 1994.

6. S.Å. Gustafson, K.O. Kortanek. Semi-infinte programming and applications. Mathematical
Programming: The State of the Art, A. Bachem, M. Grötschel, B. Korte, eds., Springer, 132–
157, 1983.

7. P. Koiran. A weak version of the Blum-Shub-Smale model. 34th Annual IEEE Symposium
on Foundations of Computer Science, 486–495, 1993.

8. V. Kreinovich, A.V. Lakeyev, J. Rohn, P. Kahl. Computational Complexity and Feasibility of
Data Processing and Interval Computations. Kluwer, 1997.

9. V. Kreinovich, K. Meer. Complexity results for the range problem in interval arithmetic. In
preparation.

10. M. Koshelev, L. Longpré, P. Taillibert. Optimal Enclusure of Quadratic Interval Functions.
Reliable Computing, 4, 351–360, 1998.

11. A.V. Lakeyev, S.I. Noskov. A description of the set of solutions of a linear equation with
interval defined operator and right-hand side. Russian Acad. Sci. Dokl. Math., 47(3), 518–
523, 1993.

12. K. Meer. On the complexity of quadratic programming in real number models of computation.
Theoretical Computer Science, 133, 85–94, 1994.

13. K. Meer. On a refined analysis of some problems in interval arithmetic using real number
complexity theory. Reliable Computing, 10(3), 209–225, 2004.

14. D.A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility problems.
Theoretical Computer Science, 31, 125–138, 1984.

15. J. Rohn. Enclosing solutions of linear interval equations is NP-hard. Computing, 53, 365–368,
1094.

16. B. Sturmfels. Introduction to resultants. Application of Computational Algebraic Geometry,
D.A. Cox B. Sturmfels (eds.), Proc. of Symposia in Applied Mathematics, Vol. 53, American
Mathematical Society, 25–39, 1998

17. H. Woźniakowski: Why does information-based complexity use the real number model?
Theoretical Computer Science 219, 451 – 465, 1999.

The Distributed Interval Geometric Machine Model�

Renata H.S. Reiser1, Antônio C.R. Costa1,2, and Graçaliz P. Dimuro1

1 Escola de Informática
Universidade Católica de Pelotas

96010-000 Pelotas, Brazil
{reiser,rocha}@atlas.ucpel.tche.br
2 Programa de Pós-Graduação em Computação

Universidade Federal do Rio Grande do Sul
90501-970, Porto Alegre, Brazil

Abstract. This paper presents a distributed version of the Interval Geometric
Machine Model, called Distributed Interval Geometric Machine, whose inductive
construction allows recursive definitions for interval algorithms involving possibly
infinite distributed and synchronous parallel computations performed over array
structures. In addition, the programming language L(D∞) is extended to model
the semantics of sample distributed algorithms applied to Interval Mathematics.

1 Introduction

Based on the set of transfinite ordinal numbers [10], an extension of the Interval Geomet-
ric Machine Model (IGM) [4,5], called Distributed Interval Geometric Machine (DIGM),
is presented. This constructive model of distributed interval systems allows the mod-
elling of non-determinism and two special types of parallelism: the temporal parallelism,
with infinite memory and infinite processes defined over array structures, operating in a
synchronized way; and the spatial parallelism, with a transfinite global memory shared
by interval processes distributed in a enumerable set of Geometric Machines, temporar-
ily synchronized. We take use of the advantages of Girard’s Coherence Spaces [2] to
obtain the domain-theoretic structure of the DIGM model. Following the methodology
proposed by Scott[9], the coherence space of distributed processes, denoted by D∞2 ,
is built over the coherence space of distributed elementary processes, which are single
coherent subsets of tokens (actions labeled by positions of a geometric space) associated
to an instant of computational time. The completion procedure of the space D∞2 ensures
interpretations of spatial and temporal infinite computations. Each coherent set in D∞2

provides a description of the constructors (sequential or parallel products, deterministic
or non-deterministic sums) of a distributed process and selects the machines used in
its performance. The theoretical language L(D∞) [7,6] induced by the interpretations
obtained in the ordered structure D∞ of the IGM model is extended to describe the inter-
val arithmetic operations [3] involving the spatial and temporal recursive construction,
based on coherence spaces and linear functions [2].

� Partially supported by CTINFO/CNPq and FAPERGS.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 179–188, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 Renata H.S. Reiser, Antônio C.R. Costa, and Graçaliz P. Dimuro

2 The Ordered Structure of the DIGM Model

In the following, we summarize the construction of the ordered structure of the DIGM
model, including the following domains: S of spatially transfinite states, B of distributed
Boolean tests and D∞2 of distributed processes. Firstly, basic concepts of coherence
spaces and linear functions are considered, to obtain the ordered structure of the DIGM
model, including the related morphisms.

2.1 Coherence Spaces and Linear Functions

A web W = (W,≈W) is a pair consisting of a set W with a symmetric and reflexive
relation ≈W , called coherence relation. A subset of this web with pairwise coherent
elements is called a coherent subset. The collection of coherent subsets of the web
W, ordered by the inclusion relation, is called a coherence space, denoted by W ≡
(Coh(W),⊆) [11].

Linear functions are continuous functions in the sense of Scott also satisfying the
stability and linearity properties that assure the existence of least approximations in the
image set [11]. Considering the coherence spaces A and B, a linear function f : A → B

is given by its linear trace, a subset of A×B given by ltr(f) = {(α, β) |β ∈ f(α)}. Let
A � B = (A × B,≈�) be the web of linear traces such that (α, β) ≈� (α′, β′) ↔
((α ≈A α′ → β ≈B β′) and (β = β′ → α = α′)). The family of coherent subsets
of the web A � B, ordered by inclusion relation, defines the domain A � B ≡
(Coh(A � B),⊆) of the linear traces of functions from A to B.

2.2 The Coherence Space of Machine States

The machine states in DGM model are modeled as functions from memory positions
to values [8]. When the memory values are taken in the set of real intervals we ob-
tain the interval version of the DGM model. In a non-deterministic approach, machine
states are modeled as families of deterministic machine states, with singletons modeling
deterministic states.

The ordering of the natural numbers (N), as dictated by their role as ordinals in [10],
coincides with that in their original role as members of N. The order type of the whole
sequence 0, 1, 2, . . . is usually denoted by ω and indicated here by 1. There follows its
successor 10, then 11, and so on, whose order type is denoted by 2. Continuing on this
fashion, we arrive at the following sequence:

0, 1, . . . , 10,11, . . . , 20,21, . . . , m0,m1, . . .

with order type ω2, which is used to index its transfinite global memory. The DIGM
memory is shared by synchronized processes distributed over an enumerable set of
machines, each operating on a part m of such indexing. Let ξ = (ξn)n∈N be a possible
infinite enumerable and ordered set related to the multi-dimensional geometric space Ξ .
In n-dimensional geometric space Ξn, ξ = (ξ0, ξ1, . . . , ξn) denotes the canonical basis
and a n-dimensional vector is given by (αξ0 , αξ1 , . . . , αξn). When m ∈ N, ξn ∈ ξ and
αξn denotes the value of the n-th coordinate of a vector in the geometric space, then

The Distributed Interval Geometric Machine Model 181

(m,αξ0αξ1 . . .) denotes the memory position of a deterministic transfinite machine state,
where m is the index of the machine that operates on that position.

The IGM model [5] was constructed over a geometric space given by the finite
basic set ξ = (ξ0, ξ1, ξ2) and taking values in the set of real numbers. In this case,
memory values are taken from the set of real intervals, whose elements (a ∈ IR) are
defined in the center-radius form ((ac, ar) ∈ R×R+) and placed in the IGM memory
by the corresponding coordinates of the three-dimensional Euclidean geometric space
((αξ0 , αξ1 , 0), (αξ0 , αξ1 , 1) ∈ R3).

Let IIQ ≡ (Coh(IQ),⊆) be the Bi-structured Coherence Space of Rational Inter-
vals [1], representing the values that can be assigned to the variables. This domain is
defined on the web IQ = (IQ,≈IQ), given by the set of rational intervals with the
coherence relation p ≈IQ q ↔ p ∩ q �= ∅. In order to provide representation of the
computable real numbers, it will be considered a restriction of IIQ, called the domain
of total objects of IIQ and denoted by tot(IIQ). Thus, the ordered structure of the IGM
memory is defined by the coherence space R3 � tot(IIQ), with R3 and tot(IIQ) as
flat domains representing the memory values and memory positions, respectively.

In the global transfinite memory of the distributed version of the IGM model, the real
numbers ac and ar are labeled by the positions (m, αξ0 , αξ1 , 0) and (m, αξ0 , αξ1 , 1)
belong to the geometric space R3

∞ = N×R3.
Taking R3

∞ as the flat domain of memory positions:

Definition 1. The coherence space modelling (transfinite) distributed deterministic
states is defined by R3

∞ � IIQ. Let S = (Coh(R3
∞ � IIQ),≈S) be the web given by

the set of all coherent subsets of R3
∞ � IIQ together with the trivial (i.e., universal)

coherence relation ≈S . The coherence space S ≡ (Coh(S),⊆) models the distributed
non deterministic memory states in DIGM model, which is defined as the collection of
all coherent subsets of S, ordered by inclusion.

In order to represent the deterministic sums of processes, we consider the set B of
distributed Boolean tests related to the binary logic and assume the Coherence Space B of
Boolean Tests as the set of all coherent subsets of tests of the discrete web B ≡ (B,=),
ordered by the inclusion relation. The coherence space S � B models the distributed
Boolean tests. Non-determinism enforces a non-traditional treatment of tests, in the same
way that was done in [6] .

2.3 The Coherence Space of Processes

Now, we consider the main properties of the Coherence Space D∞2 of distributed
processes in the DGM model3, inductively constructed from the coherence space D∞
introduced in [4]. Following the methodology proposed in [9], each level in the con-
struction of D∞2 is identified by a subspace D∞+m, which reconstructs all the objects
from the level below it, preserving their properties and relations, and constructs the new
objects specific of this level. The relationship between the levels is expressed by linear
functions, called embedding and projection functions, interpreting constructors and de-
structors of processes, respectively. Based on the definition of an elementary process in

3 The Coherence Spaces constructors used in the definition of D∞2 can be found in [11].

182 Renata H.S. Reiser, Antônio C.R. Costa, and Graçaliz P. Dimuro

the IGM model [4], a distributed elementary process in the DIGM model is described
by a transition between distributed deterministic memory states performed over a sin-
gle memory position, in a single unit of computational time (uct). It is a function d(k)

satisfying:

Proposition 1. Let A ≡ [R3
∞ � IIQ] � IIQ be the domain of the so-called compu-

tational actions. If d, pr(k) ∈ A, with pr(k)(s) = s(k) then the next function d(k) ∈
[R3

∞ → IIQ]2 is a linear function.

d(k)(s)(i) =

{
pr(i)(s) if i �= k,

d(s) if i = k.

The collection of all linear functions d(k) in [R3
∞ → IIQ]2 satisfying the Prop. 1 is

called the set of distributed elementary processes, whose elements can simultaneously
read of distinct memory positions in the global shared memory (concurrent reading), but
can only write to exactly one memory position (distributed exclusive writing). It means
that in synchronous computations, each memory position is written to by exactly one
process, in 1uct.

In the global transfinite memory of the DIGM model, shared by an enumerable set of
GM models, an elementary process can be conceived as a synchronization of a subset of
distributed elementary processes, performed in the same memory position in all machine
models.

The domain D∞+m realizes the set Dm of distributed elementary processes per-
formed over the subset of transfinite memory position R3

m = {0, 1, . . . ,m} × R3 ⊆
R3

∞. The modeling of concurrency and the conflict of memory access between distrib-
uted processes in D∞+m is represented in the domains D̄∞+m and D̄⊥

∞+m. Thus, taking
the direct sum P∞+m = D∞+m

∐
D̄∞+m

∐
D̄⊥

∞+m, each level D∞+m is defined by
the recursive domain equation

D∞+m+1 = P∞+m

∐
(P∞+m

∏
P∞+m)

∐
(P∞+m

∏
B

P∞+m). (1)

The processes are represented in D∞+m+1 as objects defined by coherent subsets of
elementary processes labeled by positions of the geometric subspace R3

m+1 interpret-
ing sequential products (P∞+m

∏
P∞+m) or deterministic sums (P∞+m

∏
B

P∞+m)
performed over parallel product or non-deterministic sums (P∞+m) of distributed ele-
mentary processes constructed in the level below. Following the methodology resumed in
Fig. 1, analogous descriptions can be obtained in the levels above, including the domain
of distributed processes D∞2.

The objects in D∞+m are coherent subsets of indexed tokens. Each index (string) has
a prefix modeling the relationship in the levels D∞+m−D∞+m+1, whose expression is
obtained by concatenating finite substrings of two or three symbols. Let Σ = {0, 1, 2}×
({0}
⋃

({0, 1}×{1, 2}))be an alphabet and Σ∗ as the set of finite words. Then an index
is a string of the language

I = {αv;βw |αv, βw ∈ Σ∗Σ∞, α, β ∈ Σ∗, v, wΣ∞ = {: 00, : 001, : 002}}.

The leftmost symbol of a substring (α, β) indicates one of the constructors:
(0) for the inclusion of an element of the previous levels in the new domain,

The Distributed Interval Geometric Machine Model 183

0

...

1 2

1

0

1

2

00

1

sequential product of
distributed processes

deterministic sums of
distributed processes

mD +∞

⊥
+∞ mD

 non-deterministic
distributed processes

mD +∞
concurrent distributed

processes

mP +∞

1mD ++∞

3R ∞2D∞2

2∞

mP +∞

∞2 ∞D

Completion

3R

mB P +∞mP +∞ mP +∞

...... ...Temporal
 Interpretations (uct)

Geometric
 Space

... ...

Fig. 1. Methodology of Construction of the D∞2

(1) indicating the parallel product of elements existing in the previous domains,
(2) denoting the non-deterministic sum of elements existing in the previous level.
In the level P∞+m − D∞+m+1, the second and third symbols, if present, mean:
(i) the first (02) or the second (12) summand in a deterministic sum, or
(ii) the first (01) or the second (11) term in a sequential product.
When the index is given by two symbols, the second one (0) is the inclusion.

The morphisms related to the indexes are projections and immersions, whose defin-
ition are obtained as extensions of the corresponding morphism presented in the levels
Dm − Pm and Pm − Dm+1, in the construction of the D∞ [4].

The coherence space D∞2 of transfinite processes is introduced as a lest fixpoint of
the equation (1). By the completion procedure, recursive processes can be represented
in D∞2 , without temporal and spatial constrained, including the immersion of coherent
subsets from D∞+m to D∞2 .This can be expressed by the suffix (w) of its indexed tokens
(αv;βw), given by the following expressions: (i) : 00 ≡ 00.00.00 . . . indicates finite or
infinite processes (related to string αv);
(ii) : 001 ≡ 001.001.001 . . . indicates transfinite sequential processes; and
(iii) : 002 ≡ 002.002.002 . . . related to transfinite deterministic sums.

3 The Core Programming Language of L(D∞2)

Based on the interpretation of D∞2 , we extend the programming language introduced
in [6,7] for implementing parallel and sequential distributed algorithms in the DIGM
model, in order to analyze temporal and spatial recursive construction. For that, an
element (i, j) of an interval matrix stored in the memory of the DIGM model is given
by a position pair (a, l, i, 0), (a, l, i, 1) ∈ R3

∞, with the first coordinate indicating the
machine (a) that operates in such position, and the last one identifying its center (0) and
radius (1) in the position (a, l, i) ∈ R2

∞.

184 Renata H.S. Reiser, Antônio C.R. Costa, and Graçaliz P. Dimuro

The set of identifiers of the constant symbols is given by the union of the set IP of
symbols representing processes, where are included the elementary processes and the
skip process, together with the set IT of Boolean tests of D∞2 . In addition, FOp =
{Id, ‖ , |, ; , + } denotes the the constructors of distributed processes, which has Id as
the symbol of the identity constructor, and ‖, | and · as the binary symbols representing
the parallel product, sequential product and non deterministic sum, respectively. The
deterministic sum is represented by + : IP × IP × IT → IP . Each one of these
constructors admits a restriction related to a constrained written in the distributed shared
memory. In this case, we take use of the index of the machine over that the constructor
can be applied, e.g. IP /{(0,l,i,u)∈R3∞} = {Id0, ‖0, ·0, |0,+0} ⊆ IP

The set L(D∞2) of expressions of the language of D2
∞ includes variables and the

above constant symbols. An expression of L(D∞
)
2 is a representation of a process of

D∞2 , and that the process is the interpretation of this expression.
Recursive equations can be used in L(D∞2) to specify, through their fixpoints, ex-

pressions of distributed processes. Let t0, t1, . . . , tn, tn+1, . . . b be elements ofL(D∞2).
Thus, the distributed processes can be represented by finite, infinite or transfinite expres-
sions of L(D∞2) given by:

1. ∗0
i=n(ti) = tn ∗ . . . ∗ t0 and ∗n+1

i=0 (ti) = t0 ∗ . . . ∗ tn;
2. ∗∞n=0tn = t0 ∗ t1 ∗ . . . ∗ tn+1 ∗ . . .;
3. ∗∞m=0(∗∞n=0)tn = (t00∗t01∗ . . .∗t0n∗ . . .)∗ . . . ∗(tm0∗tm1∗ . . .∗tmn∗ . . .)∗ . . .

We define the DIGM model and its computations following [8].

Definition 2. The tuple of functionsM = (MI,MD∞2 ,MB,MO) defines the DIGM
model. The input and output values are taken in the set IR of real intervals, represented
in the center-radius form [ac, ar], and using s[i, j, k] for s((i, j, k)):

1. MI : IR → S is the interval input function. When I = {ia00},

M{ia00}([ac, ar]) = {s}, s(a, 0, 0, k) =

⎧⎪⎨⎪⎩
xac ∈ IIQ, if k = 0,
xar ∈ IIQ, if k = 1,
∅, otherwise.

where xac and xar are the coherent sets of tot(IIQ) that best approximate the real
numbers ac and ar, see [1].

2. MD∞2 : L(D∈∞2) � (S � S) is the program interpretation function, such that
MD∞2 (p) = x interprets the program p as the process x ∈ D2∞.

3. MB : IT � (S � B) is the test interpretation function, such that MB(b) = t
interprets the symbol b as the test t ∈ B, as it is defined in 2.2.

4. MO : S → IR is the output function. When O = {oij}, then

M{oaij}(s) = {[ac, ar] | s[a, i, j, 0] = xac , s[a, i, j, 1] = xar ∈ IIQ, s ∈ s}.

The computation of a program p with an input data in results in the production of the
output data out = MO ◦MD∞(p) ◦MI(in). An application of the languageL(D∞2),
in the construction of sample interval algorithms for scalar multiplication and arithmetic
operations, is presented.

The Distributed Interval Geometric Machine Model 185

4 Sample Interval Algorithms Expressed in L(D∞2)

Taking an interval in the center-radius form, ac, ar, α ∈ R, and the real functions
max,min, | |, ·,+ : R2 → R, the interval scalar multiplication ∗ : IR × R → IR is
defined by α ∗ a = [α · ac, |α| · bc] and the interval arithmetic operations ⊕,,,),- :
IR2 → IR and are given by

a ⊕ b = [ac + bc, ar + br] a
 b = 1/2 ∗ [Mmax + Mmin, Mmax − Mmin],

a � b = [ac − bc, ar + br] a � b =
a
 [bc

b2c−b2r
, br

b2c−b2r
] if |bc| > br,

undefined if |bc| ≤ br,

when M = {A,B,C,D} and A = ac · bc +ar · bc +ac · br +ar · br, B = ac · bc −ar · bc +

ac ·br −ar ·br, C = ac ·bc +ar ·bc−ac ·br −ar ·br and D = ac ·bc−ar ·bc−ac ·br +ar ·br.
Some expressions of elementary processes (assignment statements) and their corre-
sponding interpretation in the domain D∞2 are given in Table 1. In order to simplify
the denotation, consider α = s[b, m, j, 0] · s[c, n, k, 0], β = s[b, m, j, 1] · s[c, n, k, 0] ,
γ = s[b, m, j, 1] · s[c, n, k, 0] and θ = s[b, m, j, 1] · [c, n, k, 1].

Table 1. Elementary processes and their domain interpretations

L(D∞2)
D∞2

sum c(a, l, i;b, m, j; c, n, k) ≡ (s[a, l, i, 0] :=
s[b, m, j, 0] + s[c, n, k, 0])

{sum c
(a,l,i,0)
:00;00 }

sum r(a, l, i;b, m, j; c, n, k) ≡ (s[a, l, i, 1] :=
s[b, m, j, 1] + s[c, n, k, 1])

{sum c
(a,l,i,1)
:00;00 }

sub c(a, l, i;b, m, j; c, n, k) ≡ (s[a, l, i, 0] :=

s[b, m, j, 0] − s[c, n, k, 0])

{sub c
(a,l,i,0)
:00;00 }

sc c(a, l, i;b, m, j; α) ≡ (s[a, l, i, 0] := |α|·s[a, m, j, 0] {esc c
(a,l,i,0)
:00;00 }

sc r(a, l, i;b, m, j; α) ≡ (s[a, l, i, 1] := α · s[b, m, j, 0]
{esc c

(a,l,i,0)
:00;00 }

p 2(a, l, i, u;b, m, j; c, n, k) ≡ (s[a, l, i, u + 2] := α +
β + γ + θ)

{p 2
(a,l,i,u+2)
:00;00 }

p 3(a, l, i, u;b, m, j; c, n, k) ≡ (s[a, l, i, u + 3] := α −
β + γ + θ)

{p 3
(a,l,i,u+3)
:00;00 }

p 4(a, l, i, u;b, m, j; c, n, k) ≡ (s[a, l, i, u + 4] := α +
β − γ + θ)

{p 4
(a,l,i,u+4)
:00;00 }

p 5(a, l, i, u;b, m, j; c, n, k) ≡ (s[a, l, i, u + 5] := α −
β − γ + θ)

{p 5
(a,l,i,u+5)
:00;00 }

zero(a, l, i, u) ≡ (s[a, l, i, u] := 0) {zero
(a,l,i,u)
:00;00 }

Based on the above assignment statements expressing distributed elementary pro-
cesses, we illustrate the representation of some compound distributed (non elementary)

186 Renata H.S. Reiser, Antônio C.R. Costa, and Graçaliz P. Dimuro

processes in DIGM. Let F(10) : D∞2 �D∞2 → D∞2 be the parallel product operator of
D∞2 , represented inL(D∞2) by the symbol ‖. In addition,Fm(10) : D∞+m�D∞+m →
D∞+m is the correspond restriction.

(1) Zero(a, l, i, u) ≡ (zero(a, l, i, u) ‖ Zero(a + 1, l, i, u))

zero(a, l, i, u) ≡ (zero(a, l, i, u) ‖a Zero(a, l + 1, i, u))

The expressions Zero(0, 0, 0, 0) and zero(0, 0, 0, 0) represent the processes of ini-
tialization performed over the distributed memory in 1 uct, but they are recursively
defined by iterations applied to distinct enumerable subsets of the memory position.
The action executed by the first process change the memory values of the first posi-
tion in all blocks. The action of the second one is performed over the first column and
restricted to the first block. When x0 = {zero(0,l,i,1)

10:00}, their related interpretation

Z = a{zero
(a,l,i,0)
:00;10:00} ∈ D∞2 z = l{zero

(a,l,i,0)
10:00;00} ∈ D∞2

can be computed as a fixpoint of the spatial recursive equation

F(10)({zero
(a+1,l,i,0)
00;10:00 } � xa) = xa+1 Fa(10)({zero

(a,l+1,i,0)
10:00;00 } � xl) = xl+1,

Analogous construction can be obtained to the other constructors. Some compound
distributed processes related to addition are presented below.

(2) sum(a, l, i, m, j, n, k) ≡ (sum c(a, l, i;a, m, j; a, n, k) ‖a sum r(a, l, i; a, m, j; a, n, k)

This expression is the sum of two intervals, labeled by reference positions (a,m, j)
and (a, n, k), with the result placed in the (a, l, i) position in the a − th block of
the global memory. The sum of the centers and the sum of the radii performed in
parallel, in 1uct.

(3)
sum row(a, l, m,n, i) ≡ (sum(a, l, i, m, i, n, i) ‖a sum row(a, l, m, n, i − 1))

sum row(a, l, m,n, i) ≡ Skip
Sum row(a, l, m, n, i) ≡ (sum row(a, l, m, n, i) ‖ Sum row(a + 1, l, m, n, i)

When s[a, l, i + 1] := 0, the recursive expression Sum row(0, l, m, n, 10) represents
the process that executes, in parallel, the addition of the first ten intervals stored
in the m-th and n-th rows, and assigns the result to the corresponding positions in
the l-th row. This action is simultaneously performed over all blocks in the DIGM
memory, in 1uct.

(4)
Sum Row(a, l, 0) ≡ sum(a, l, 0; a, l, 0; a, l, 1),

Sum Row(a, l, i) ≡ (sum(a, l, i, l, i, l, i + 1) ·a Sum Row(a, l, i − 1)).

The above algorithm is a temporal recursive process related to sequential product,
whose time performance is related to i. Thus, Sum Row(a, l, i) accumulates the ad-
dition of the first i + 1-th intervals stored in the l − th row. The result is obtained
in the last iteration and it is placed in the first position of the corresponding row.
The synchronous performance of this process, over the first a − th blocks of the
transfinite memory, can be expressed by:
R(0, l, i) ≡ skip, S(a, l, i) ≡ Sum Row(a, l, i) ‖ R(a− 1, l, i)).

(5) S(a, l, ;b, j; c, k)≡ (sum c(a, l, k+1; b, l, j; c, j, k)‖asum r(a, l, k+1; b, l, j; c, j, k)).
O(a,b, c, l, j, k) ≡ (S(a, l, ;b, j; c, k)·sum(a, l, k, l, k, l, k+1)) ‖a O(a,b, c, l, j+1, k).
When inic(a, l, k) ≡ (zero(a, l, k+1, 0) ‖a zero(a, l, k+1, 1)) ‖a s[a, l, k, 0] := 0,

The Distributed Interval Geometric Machine Model 187

the expression O(a,b, c, l, j, k) interprets an infinite distributed process performing
the accumulated addition between the intervals of the l-th row, in the b-th block,
and the correspond elements of the column k − th, in the c-th block. The result is
placed in the (l, k)-th position of the a-th block.
Now, other expressions involving scalar product are considered.

(6) sc(a, l, i;b, m, j; α) ≡ (sc c(a, l, i;b, m, j; α) ‖a sc r(a, l, i;b, m, j; α) This ex-
pression represents the scalar multiplication, where the real operations related to the
centers and the radiuses are performed in parallel, in 1uct.

(7)
rot(a, l, i, p) ≡ (sc(a, l, i − 1; a, l, i; 1) ‖a rot(a, l, i − 1, p + 1))

rot(a, l, 0, p) ≡ (sc(a, l, p;a, l, i; 1)

The expression Rot(a, l, i, p) ≡ rot(a, l, i, p) ‖a Rot(a + 1, l, i, p) represents a
distributed process performing a periodic rotation in all transfinite memory.

(8)
sign(a, l, m, i) ≡ (sc(a, l, i; a, m, i; (−1)i) ‖a sign(a, l, m, i − 1))

sign(a, l, m, 0) ≡ skip)

Based on (8), the sign in the alternative transfinite memory position can be changed
by a distributed process, whose expression in L(D∞2) is given by
Sign(a, l, i, p) ≡ sign(a, l, i, p) ‖a Sign(a + 1, l, i, p).
In the following, multiplication between interval matrices is presented.

(9)
Max(a, l, i, 0) := skip

Max(a, l, i, u) := maxi(a, l, i, u − 1) ·a Max(a, l, i, u − 1),

This is an example of a temporal recursive process, which is obtained by iterating
the sequential product and related to the maximal elements, when
maxi(a, l, i, 2) ≡ skip,

maxi(a, l, i, u) ≡ (s[a, l, i, u + 2] := max(s[b,m, j, u + 2], s[c, n, k, u + 3])

The same construction can be obtained if we consider the minimum operator.
(10) p(a, l, m, n, i, j, k) ≡ (p par(a, l, m, n, i, j, k) ·a (p c(a, l, i) ‖a p r(a, l, i))),

is a parallel product performing the multiplication of an interval placed in the (m, j)-
th memory position by another one in the (n, k)-th memory position, and the result
is placed in the (l, i)-th position, in the a-th block of shared memory. In this case,
the definition of the other operations are presented in the following.

p par(a,b, c, l, m,n, i, j, k) ≡ p 2(a,b, c, l, m, n, i, j, k, 2) ‖a

p 3(a,b, c, l, m, n, i, j, k, 2) ‖a

p 4(a,b, c, l, m, n, i, j, k, 2) ‖
a p 5(a,b, c, l, m, n, i, j, k, 2)

p c(a, l, i) ≡ (s[a, l, i, 0] := (Max(a, l, i, 5) + Min(a, l, i, 5))/2)

p r(a, l, i) ≡ (s[a, l, i, 1] := (Max(a, l, i, 5) − Min(a, l, i, 5))/2)

(11)
pd row(a, n, 0, n, i) ≡ (p(a, n, 0, n, i, i, i) ·a R(a, n, i))‖apd row(a, n, 0, n, i−1)

pd row(a, n, 0, n, 0)≡p(a, n, 0, n, 0, 0, 0) ·a R(a, n, 0)

When R(a, n, 0) ≡ (s[a, l, i + 1] := 0 · sum(a, l, l, l, i, i, i + 1)(4), the expression
(11) interprets the synchronous product of interval arrays of i-th dimension, whose
position is related to the a-th block of shared memory, in the 0-th and n-th rows.
Thus, the summation is placed in the position (a, n, 0) and the iteration of the process

188 Renata H.S. Reiser, Antônio C.R. Costa, and Graçaliz P. Dimuro

in (11) is obtained by the recursive expression
Prod row(a, n, i) ≡ pd row(a, n, 0, n, i) ‖ Prod row(a, n − 1, i)

Prod row(a, 0, i) ≡ pd row(a, 0, 0, 0, i).

The above algorithms (10− 11) compound the next process, whose expression pro-
vide interpretation for the multiplication of interval matrices related to synchronous
product performed by distributed processes:
PRow(a, n, i)≡Prod row(a, n, i)‖PRow(a−1, n, i), PRow(0, n, i)≡pd row(0, n, i).

5 Conclusions

In this work we described the main characteristics of the DIGM model. Sample exam-
ples of distributed programs are written in the programming language extracted from
D∞2 . The visual programming environment, designed to support the programming in
the theoretical DIGM is work in progress. In this environment, various kinds of par-
allel computations involving array structures, such as array computations and cellular
automata, will be possible. This language allows (spacial and temporal) semantic specifi-
cation of a process in a bi-dimensional way. In addition, the visual representation allows
simulations performed by parallel processes in a intuitive way.

References

1. G. P. Dimuro, A. C. R. Costa and D. M. Claudio, A Coherence Space of Rational Intervals
for a Construction of IR, Reliable Computing 6(2), (2000), 139–178.

2. J. -Y. Girard, Linear logic, Theoretical Computer Science 1 (1987), 187–212.
3. R. E. Moore, Methods and Applications of Interval Analysis, SIAM Publ., Philadelphia, 1979.
4. R. H. S. Reiser, A. C. R. Costa and G. P. Dimuro, First steps in the construction of the

Geometric Machine, TEMA. RJ: SBMAC, 3(1), (2002), 183–192.
5. R. H. S. Reiser, A. C. R. Costa and G. P. Dimuro, The Interval Geometric Machine, Numerical

Algorithms, Dordrecht: Kluwer, 37 (2004), 357–366.
6. R. H. S. Reiser, A. C. R. Costa and G. P. Dimuro, A Programming Language for the Interval

Geometric Machine Model, Electronic Notes in Theoretical Computer Science 84 (2003),
1–12.

7. R. H. S. Reiser, A. C. R. Costa and G. P. Dimuro, Programming in the Geometric Machine,
Frontiers in Artificial Intelligence and Its Applications, Amsterdam: IOS Press, 101 (2003),
95–102.

8. D. Scott, Some Definitional Suggestions for Automata Theory, Journal of Computer and
System Sciences, New York, 1 (1967), 187–212.

9. D. Scott, The lattice of flow diagrams, Lecture Notes. Berlin: Springer Verlag, 188(1971),
311–372.

10. R. R. Stoll, Set Theory and Logic. New York: Dover Publication Inc. 1961. 474 p.
11. A. S. Troelstra, Lectures on Linear Logic, Lecture Notes. Stanford: CSLI/Leland Stanford

Junior University, 29 (1992).

New Algorithms for Statistical Analysis of Interval Data

Gang Xiang, Scott A. Starks, Vladik Kreinovich, and Luc Longpré

NASA Pan-American Center for Earth and Environmental Studies (PACES)
University of Texas, El Paso, TX 79968, USA

vladik@cs.utep.edu

Abstract. It is known that in general, statistical analysis of interval data is an
NP-hard problem: even computing the variance of interval data is, in general,
NP-hard. Until now, only one case was known for which a feasible algorithm
can compute the variance of interval data: the case when all the measurements are
accurate enough – so that even after the measurement, we can distinguish between
different measured values xi. In this paper, we describe several new cases in which
feasible algorithms are possible – e.g., the case when all the measurements are
done by using the same (not necessarily very accurate) measurement instrument
– or at least a limited number of different measuring instruments.

1 Introduction

Once we have several results x̃1, . . . , x̃n of measuring some physical quantity – e.g., the
amount of pollution in a lake – traditional statistical data processing starts with computing
the sample average E = E(x̃1, . . . , x̃n), the sample median M = M(x̃1, . . . , x̃n), and
the sample variance V = V (x̃1, . . . , x̃n) of these results. For example,

E(x̃1, . . . , x̃n) =
1
n

n∑
i=1

x̃i.

The values x̃i come from measurements, and measurements are never 100% accurate.
In many real-life situations, the only information about the corresponding measurement
errors is the upper bound Δi on the absolute value of the measurement error. As a result,
the only information we have about the actual value xi of each measured quantity is that

xi belongs to the interval xi
def= [x̃i −Δi, x̃i + Δi].

For interval data, instead of the exact values of E, M , and V , it is desirable to get
the intervals E, M, and V of possible values, intervals formed by all possible values of
E (correspondingly, M or V) when each xi takes values from the interval xi.

Computing E = [E,E] and M = [M,M] is straightforward: indeed, both the
sample averageE and the sample medianM are (non-strictly) increasing functions of the
variables x1, . . . , xn. So, the smallest possible value E (correspondingly,M) is attained
when we take the smallest possible values x1, . . . , xn from the corresponding intervals;
similarly, the largest possible value E (correspondingly, M) is attained when we take
the largest possible values x1, . . . , xn from the corresponding intervals. Thus, E =
E(x1, . . . , xn), E = E(x1, . . . , xn), M = M(x1, . . . , xn), and M = M(x1, . . . , xn).

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 189–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

190 Gang Xiang et al.

On the other hand, computing the exact range V = [V , V] of V turns out to be an
NP-hard problem; specifically, computing the upper endpoint V is NP-hard (see, e.g.,
[2]).

It is worth mentioning that computing the lower endpoint V is feasible; in [3], we
show that it can done in time O(n · log(n)).

In the same paper [2] in which we prove that computing V is, in general, NP-hard,
we also show that in the case when the measuring instruments are accurate enough – so
that even after the measurements, we can distinguish between different measured values
x̃i (e.g, if the corresponding intervals xi do not intersect) – we can compute V (hence,
V) in feasible time (actually, quadratic time).

In some practical examples, the measurement instruments are indeed very accurate,
but in many other practical cases, their accuracy may be much lower – so the algorithm
from [2] is not applicable.

In this paper, we describe new practically useful cases when we can compute V by
a feasible (polynomial-time) algorithm.

The first case is when all the measurements are made by the same measuring instru-
ment or by similar measurement instruments. In this case, none of two input intervals
xi is a proper subset of one another, and as a result, we can find the exact range V in
time O(n · log(n)).

The second case is when instead of a single type of measuring instruments, we use
a limited number (m > 1) of different types of measuring instruments. It turns out that
in this case, we can compute V in polynomial time O(nm+1).

The third case is related to privacy in statistical databases; see details below.

2 First Case: Measurements by Same Measuring Instrument

In the proof that computing variance is NP-hard (given in [2]), we used interval data in
which some intervals are proper subintervals of others: xi ⊂ xj (and xi �= xj).

From the practical viewpoint, this situation makes perfect sense: the interval data
may contain values measurement by more accurate measuring instruments – that produce
narrower intervals xi – and by less accurate measurement instruments – that produce
wider intervals xj . When we measure the same value xi = xj , once with an accurate
measurement instrument, and then with a less accurate instrument, then it is quite possible
that the wider interval corresponding to the less accurate measurement properly contains
the narrower interval corresponding to the more accurate instrument.

Similarly, if we measure close values xi ≈ xj , it is quite possible that the wider
interval coming from the less accurate instrument contains the narrower interval coming
from the more accurate instrument.

In view of the above analysis, a natural way to avoid such difficult-to-compute
situations is to restrict ourselves to situations when all the measurement are done with
the same measuring instrument.

For a single measuring instrument, it is not very probable that in two different mea-
surements, we get two intervals in which one is a proper subinterval of the other.

Let us show that in this case, we have a feasible algorithm for computing V . For
each interval x = [x, x], we will denote its half-width (x−x)/2 by Δ, and its midpoint
(x + x)/2 by x̃.

New Algorithms for Statistical Analysis of Interval Data 191

Definition 1. By an interval data, we mean a finite set of intervals x1, . . . ,xn.

Definition 2. For n real numbers x1, . . . , xn, their variance V (x1, . . . , xn) is defined

in the standard way – as V
def=

1
n
·

n∑
i=1

x2
i − E2, where E

def=
1
n
·

n∑
i=1

xi.

Definition 3. By the interval variance V of the interval data, we mean the interval

V def= {V (x1, . . . , xn) |xi ∈ xi} filled by the values V (x1, . . . , xn) corresponding to
different xi ∈ xi.

Theorem 1. There exists an algorithm that computes the variance V of the interval
data in time O(n · log(n)) for all the cases in which no element of the interval data is a
subset of another element.

Proof. In order to compute the interval V, we must compute both endpoints V and V
of this interval.

The proof of the theorem consists of three parts:

– in Part A, we will mention that the algorithm for computing V in time O(n · log(n))
is already known;

– in Part B, we describe a new algorithm for computing v;
– in Part C, we prove that the new algorithm is correct and has the desired complexity.

A. Algorithm for computing V with desired time complexity is already known. The
algorithm for computing V in time O(n · log(n)) is described in [4].

B. New algorithm for computing V : description. The proposed algorithm for computing
V is as follows:

– First, we sort n intervals xi in lexicographic order:

x1 ≤lex x2 ≤lex . . . ≤lex xn,

where [a, a] ≤lex [b, b] if and only if either a < b, or a = b and a ≤ b.
– Second, we use bisection to find the value k (1 ≤ k ≤ n) for which the following

two inequalities hold:

x̃k +
1
n
·

k−1∑
i=1

Δi ≤
1
n
·

n∑
i=k+1

Δi +
1
n
·

n∑
i=1

x̃i; (2.1)

x̃k+1 +
1
n
·

k∑
i=1

Δi ≥
1
n
·

n∑
i=k+2

Δi +
1
n
·

n∑
i=1

x̃i. (2.2)

At each iteration of this bisection, we have an interval [k−, k+] that is guaranteed
to contain k. In the beginning, k− = 1 and k+ = n. At each stage, we compute the
midpoint kmid = .(k− + k+)/2/, and check both inequalities (2.1) and (2.2) for
k = kmid. Then:

192 Gang Xiang et al.

• If both inequalities (2.1) and (2.2) hold for his k, this means that we have found
the desired k.

• If (2.1) holds but (2.2) does not hold, this means that the desired value k is larger
than kmid, so we keep k+ and replace k− with kmid + 1.

• If (2.2) holds but (2.1) does not hold, this means that the desired value k is
smaller than kmid, so we keep k− and replace k+ with kmid − 1.

– Once k is found, we compute

Vk
def=

1
n
·

k∑
i=1

x2
i +

1
n
·

n∑
i=k+1

x2
i −
(

1
n

k∑
i=1

xi +
1
n
·

n∑
i=k+1

xi

)2

. (2.3)

This is the desired value V .

C. Proof of correctness and complexity. Let us prove that this algorithm indeed produces
the correct result and indeed requires time O(n · log(n)).

1◦. Let us first prove that if no element of the interval data is a subset of another element,
then, after we sort these elements in lexicographic order, both the lower endpointsxi and
the upper endpoints xi are sorted in non-decreasing order: xi ≤ xi+1 and xi ≤ xi+1.

Indeed, by definition of a lexicographic order, we always have xi ≤ xi+1. If xi =
xi+1, then, by definition of the lexicographic order, we have xi ≤ xi+1. If xi < xi+1,
then we cannot have xi ≥ xi+1 – otherwise, we would have xi+1 ⊂ xi – hence
xi < xi+1. The statement is proven.

It is known that sorting requires time O(n · log(n)); see, e.g., [1].

In the following text, we will assume that the sequence of intervals has been sorted
in this manner.

2◦. Let us now prove that the desired maximum of the variance V is attained when each
variable xi is at one of the endpoints of the corresponding interval xi.

Indeed, if the maximum is attained in the interior point of this interval, this would
means that in this point, ∂V/∂xi = 0 and ∂2V/∂x2

i ≤ 0. For variance, ∂V/∂xi =
(2/n) · (xi − E), so ∂2V/∂x2

i = (2/n) · (1 − 1/n) > 0 – hence maximum cannot be
inside.

3◦. Let us show the maximum is attained at a vector

x = (x1, . . . , xk, xk+1, . . . , xn) (2.4)

in which we first have lower endpoints and then upper endpoints.

What we need to prove is that there exists a maximizing vector in which, once we
have an upper endpoint, what follows will also be an upper endpoint, i.e., in which we
cannot have xk = xk > xk and xk+1 = xk+1 < xk+1.

For that, let us start with a maximizing vector in which this property does not hold,
i.e., in whichxk = xk > xk andxk+1 = xk+1 < xk+1 for some k. Based on this vector,
we will now construct a different maximizing vector with the desired property. For that,

New Algorithms for Statistical Analysis of Interval Data 193

let us consider two cases: Δk < Δk+1 and Δk ≥ Δk+1, where Δi
def= (xi − xi)/2 is

the half-width of the interval xi.
In the first case, let us replace xk = xk + 2Δk with xk, and xk+1 with xk+1 + 2Δk

(since Δk < Δk+1, this new value is < xk+1). Here, the average E remains the same,
so the only difference between the new value V ′ of the variance and its old value V
comes from the change in terms x2

k and x2
k+1. In other words,

V ′ − V =
1
n
· ((xk+1 + 2Δk)2 − x2

k+1)−
1
n
· ((xk + 2Δk)2 − x2

k).

Opening parentheses and simplifying the resulting expression, we conclude that V ′ −
V = (4Δk/n) · (xk+1 − xk). Since V is the maximum, we must have V ′ − V ≤ 0,
hence xk+1 ≤ xk. Due to our ordering, we thus have xk+1 = xk. Since we assumed that
Δk < Δk+1, we have xk = xk + 2Δk < xk+1 = xk+1 + 2Δk+1, hence the interval
xk is a proper subset of xk+1 – which is impossible.

In the second case, when Δk ≥ Δk+1, let us replace xk with xk − 2Δk+1 (which
is still ≥ xk), and xk+1 = xk+1 − 2Δk+1 with xk+1. Here, the average E remains the
same, and the only difference between the new value V ′ of the variance and its old value
V comes from the change in terms x2

k and x2
k+1, hence

V ′ − V =
1
n
· (x2

k+1 − (xk+1 − 2Δk+1)2)−
1
n
· (x2

k − (xk − 2Δk+1)2),

i.e., V ′ − V = (4Δk+1/n) · (xk+1 − xk). Since V is the maximum, we must have
V ′ − V ≤ 0, hence xk+1 ≤ xk. Due to our ordering, we thus have xk+1 = xk. Since
we assumed that Δk ≥ Δk+1, we have xk = xk − 2Δk ≥ xk+1 = xk+1 − 2Δk+1,
i.e., xk ⊆ xk+1. Since intervals cannot be proper subsets of each other, we thus have
xk = xk+1. In this case, we can simply swap the values xk and xk+1, variance will not
change.

If necessary, we can perform this swap for all needed k; as a result, we get the
maximizing vector with the desired property.

4◦. Due to Part 3 of this proof, the desired value V = maxV is the largest of n + 1
values (2.3) corresponding to k = 0, 1, . . . , n.

In principle, to compute V , we can therefore compute each of these values and find
the largest of them. Computing each value takes O(n) times, so computing n + 1 such
values would require time O(n2). Let us show that we can compute V faster.

We must find the index k for which Vk is the largest. For the desired k, we have
Vk ≥ Vk−1 and Vk ≥ Vk+1. Due to (2.3), we conclude that

Vk − Vk−1 =
1
n
·
(
x2

k − x2
k

)

−
(

1
n
·

k∑
i=1

xi +
1
n
·

n∑
i=k+1

xi

)2

+

(
1
n
·

k−1∑
i=1

xi +
1
n
·

n∑
i=k

xi

)2

. (2.5)

Each pair of terms in the right-hand side of (2.5) can be simplified if we use the fact that

a2 − b2 = (a− b) · (a + b) and use the notations Δk and x̃k
def= (xk + xk)/2. First, we

194 Gang Xiang et al.

get x2
k − x2

k = (xk − xk) · (xk + xk) = −4Δk · x̃k. Second, we get(
1
n
·

k−1∑
i=1

xi +
1
n
·

n∑
i=k

xi

)2

−
(

1
n
·

k∑
i=1

xi +
1
n
·

n∑
i=k+1

xi

)2

=

2
n
· (xk − xk) ·

(
1
n
·

k−1∑
i=1

xi +
1
n
· x̃k +

1
n
·

n∑
i=k+1

xi

)
.

Here, xk − xk = 2Δk, hence the formula (2.5) takes the following form:

Vk − Vk−1 =
4
n
·Δk ·

(
−x̃k +

1
n
·

k−1∑
i=1

xi +
1
n
· x̃k +

1
n
·

n∑
i=k+1

xi

)
.

Since Vk ≥ Vk−1 and Δk > 0, we conclude that

−x̃k +
1
n
·

k−1∑
i=1

xi +
1
n
· x̃k +

1
n
·

n∑
i=k+1

xi ≥ 0. (2.6)

Substituting the expressions xi = x̃i −Δi and xi = x̃i +Δi into the formula (2.6) and
moving all the negative terms to the other side of the inequality, we get the inequality
(2.1). Similarly, the inequality Vk+1 ≤ Vk leads to (2.2).

When k increases, the left-hand side of the inequality (2.1) increases – because x̃k

increases as the average of the two increasing valuesxk andxk, and the sum is increasing.
Similarly, the right-hand side of this inequality decreases with k. Thus, if this inequality
holds for k, it should also hold for all smaller values, i.e., for k − 1, k − 2, etc.

Similarly, in the second desired inequality (2.2), when k increases, the left-hand side
of this inequality increases, while the right-hand side decreases. Thus, if this inequality
is true for k, it is also true for k + 1, k + 2, . . .

If both inequalities (2.1) and (2.2) are true for two different values k < k′, then
they should both be true for all the values intermediate between k and k′, i.e., for
k + 1, k + 2, . . . , k′ − 1. If (2.1) and and (2.2) are both true for k and k + 1, this means
that in both cases, we have equality, thus Vk = Vk+1, so it does not matter which of
these values k we take.

Thus, modulo this equality case, there is, in effect, only one k for which both in-
equalities are true, and this k can be found by the bisection method as described in the
above algorithm.

How long does this algorithm take? In the beginning, we only know that k belongs
to the interval [1, n] of width O(n). At each stage of the bisection step, we divide the
interval (containingk) in half. After I iterations, we decrease the width of this interval by
a factor of 2I . Thus, to find the exact value of k, we must have I for which O(n)/2I = 1,
i.e., we need I = O(log(n)) iterations. On each iteration, we need O(n) steps, so we
need a total of O(n · log(n)) steps. With O(n · log(n)) steps for sorting, and O(n) for
computing the variance, we get a O(n · log(n)) algorithm. ��

New Algorithms for Statistical Analysis of Interval Data 195

3 Second Case: Using a Limited Number of Different Types
of Measuring Instruments

In this case, the interval data consists of m families of intervals such that within each
family, no two intervals are proper subsets of each other.

Similarly to the proof of Theorem 1, we can conclude that if we sort each family in
lexicographic order, then, within each family, the maximum of V is attained on one of the
sequences (2.4). Thus, to find the desired maximum V , it is sufficient to know the value
kα ≤ n corresponding to each of m families. Overall, there are ≤ nm combinations
of such values, and for each combination, computing the corresponding value of the
variance requires O(n) steps. Thus, overall, we need time O(nm+1).

4 Third Case: Privacy in Statistical Databases

When the measurements x̃i correspond to data that we want to keep private, e.g., health
parameters of different patients, we do not want statistical programs to have full access
to the data – because otherwise, by computing sufficiently many different statistics, we
would be able to uniquely reconstruct the actual values x̃i. One way to prevent this from
happening is to supply the statistical data processing programs not with the exact data,
but only with intervals of possible values of this data, intervals corresponding to a fixed
partition; see, e.g., [4]. For example, instead of the exact age, we tell the program that a
person’s age is between 30 and 40.

To implement the above idea, we need to fix a partition, i.e., to fix the values t1 <
t2 < . . . < tn. In this case, instead of the actual value of the quantity, we return the
partition-related interval [ti, ti+1] that contains this value.

Privacy-related intervals [ti, ti+1] satisfy the same property as intervals from the first
case: none of them is a proper subset of the other. Thus, we can apply the algorithm
described in Section 2 and compute the exact range V in polynomial time – namely, in
time O(n · log(n)).

Acknowledgments

This work was supported in part by NASA grant NCC5-209, by the AFOSR grant
F49620-00-1-0365, by NSF grants EAR-0112968, EAR-0225670, and EIA-0321328,
by the Army Research Laboratories grant DATM-05-02-C-0046, and by NIH grant
3T34GM008048-20S1.

The authors are thankful to the anonymous referees for the valuable suggestions.

References

1. Cormen Th. H., Leiserson C. E., Rivest R. L., and Stein C.: Introduction to Algorithms, MIT
Press, Cambridge, MA, 2001.

2. Ferson, S., Ginzburg, L., Kreinovich, V., Longpré, L., Aviles, M.: Computing Variance for
Interval Data is NP-Hard, ACM SIGACT News 33(2) (2002) 108–118

196 Gang Xiang et al.

3. Granvilliers, L., Kreinovich, V., Müller, L.: Novel Approaches to Numerical Software with
Result Verification", In: Alt, R., Frommer, A., Kearfott, R. B., Luther, W. (eds.), Numerical
software with result verification, Springer Lectures Notes in Computer Science, 2004, Vol.
2991, pp. 274–305.

4. Kreinovich, V., Longpré, L.: Computational complexity and feasibility of data processing
and interval computations, with extension to cases when we have partial information about
probabilities, In: Brattka, V., Schroeder, M., Weihrauch, K., Zhong, N.: Proc. Conf. on Com-
putability and Complexity in Analysis CCA’2003, Cincinnati, Ohio, USA, August 28–30,
2003, pp. 19–54.

On Efficiency of Tightening Bounds
in Interval Global Optimization

Antanas Žilinskas1,2 and Julius Žilinskas1

1 Institute of Mathematics and Informatics
Akademijos g. 4, MII, 08663, Vilnius, Lithuania

{antanasz,julius.zilinskas}@ktl.mii.lt
2 Vytautas Magnus University

Abstract. The tightness of bounds is very important factor of efficiency of branch
and bound based global optimization algorithms. An experimental model of in-
terval arithmetic with controllable tightness of bounds is proposed to investigate
the impact of bounds tightening in interval global optimization. A parallel version
of the algorithm is implemented to cope with the computational intensity of the
experiment. The experimental results on efficiency of tightening bounds are pre-
sented for several test and practical problems. The suitability of mater-slave type
parallelization to speed up the experiments is justified.

1 Introduction

Global optimization techniques are generally classified in two main classes: deterministic
and stochastic [1,2,3]. An important subclass of deterministic algorithms constitute inter-
val arithmetic-based algorithms [4,5,6]. The advantages of interval global optimization
methods are well known. Interval arithmetic-based methods guarantee the prescribed
precision of computed solutions. Application of these methods does not suppose any
parametric characterizations of objective functions, as for example, a Lipshitz constant
is requested by Lipshitz model-based algorithms. There are many examples of global
optimization problems successfully solved by interval methods. However, the serious
disadvantage of these methods is their computational complexity. Despite of numerous
recently proposed improvements, the practical efficiency of interval methods is hardly
predictable: some problems are solved rather fast, but some problems of modest di-
mensionality cannot be solved in acceptable time. Normally the dependency problem
is claimed as a main reason of inefficiency since it causes overestimating of function
ranges by inclusion functions. In the present paper we investigate how much the overes-
timation level influences the efficiency of an interval global optimization method. Since
the experiments are computing intensive, a parallel implementation of the algorithm is
used.

2 Interval Arithmetic Branch and Bound Strategy

A minimization problem f(x), x ∈ A ⊆ Rn is considered assuming that objective
function f(x) is continuous, and A is a box, i.e. A =

[
a1, a1

]
× . . . ×

[
an, an

]
. We

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 197–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

198 Antanas Žilinskas and Julius Žilinskas

assume that an interval technique can be applied to calculate upper and lower bounds for
values of the function f(x) over a box B ⊂ A; we denote these bounds f(B) and f(B).
Since bounds are available, a branch and bound technique can be applied to construct
a global optimization algorithm. Let us denote a current upper bound for the minimum
by f . Only the boxes with f(B) ≤ f can contain a minimizer, and they form a work

pool or candidate set for further processing. The boxes with f(B) > f are deleted. A
box is chosen from the candidate set for the subdivision with subsequent updating of the
current f and of the candidate set. The efficiency of the algorithm depends on choice
and on subdivision strategies. However, it depends first of all on early deleting of the
non-promising boxes. The latter can crucially depend on the tightness of bounds. In
the present paper we experimentally investigate the influence of the tightness of bounds
on algorithm efficiency. The quantitative estimates are needed when developing new
methods of bound tightening, e.g. by means of stochastic random arithmetic [7,8].

The efficiency of minimization can be enhanced introducing additional deleting
strategies. An efficient version of interval global optimization method involving mono-
tonicity and convexity tests and auxiliary interval Newton procedure is proposed in [4].
The method is applicable for twice continuously differentiable objective functions,
whose derivatives are available either via mathematical expressions or automatic differ-
entiation. Although these enhancements could be applied for the considered functions
they have not been included in our algorithm since they would complicate investigation
of the relation between the algorithm efficiency and relative tightness.

The standard choice and subdivision strategies are used in our branch and bound
algorithm: a box with minimal f(B) is chosen for the subdivision, and the subdivision is
implemented as bisection of the longest edges. While these strategies are not necessarily
optimal, they provide a basis on which to compare the effects of tightness. The efficiency
of the deleting crucially depends on the estimate of the upper bound for the minimum.
We have investigated two estimates. The result of both cases are presented below under
headings ‘interval and real’ and ‘interval only’. ‘Interval and real’ means that the smallest
of function values at the middle points in the evaluated boxes is used as an upper bound
for the minimum. ‘Interval only’ means that the smallest upper bound over the evaluated
boxes is used as an upper bound for the minimum.

We are interested in the number of evaluations of a subroutine calculating bounds as
a function of the tightness of bounds. The first extreme case corresponds to the bounds
produced by the standard interval arithmetic for computing the inclusion function. The
second extreme case corresponds to the exact bounds. The intermediate tightness of
bounds are obtained as the convex combination of the extreme cases. The procedure
for calculating the exact bounds is an auxiliary procedure needed for our experimental
investigation. Of course, such a procedure is not intended for practical implementation
since it is too expensive. In our experiments we compute the exact bounds minimizing and
maximizing the objective function over the considered boxes. The auxiliary optimization
problems are tackled by means of interval global optimization using the same interval
arithmetic libraries and including an enhanced strategy of deleting of the non-promising
boxes. In this case the optimization algorithm uses interval derivatives and tests for
monotonicity and convexity.

On Efficiency of Tightening Bounds in Interval Global Optimization 199

The efficiency of tightening bounds is measured using numbers of function evalua-
tions. Optimization time here is not a suitable criterion since large fraction of total time
is spent to compute exact bounds, which are used only in experimental investigation. In
practical implementations calculation of practically meaningful bounds will, of course,
avoid computation of exact bounds.

3 Implementation

The investigation of efficiency of the bounds tightening is computing intensive. There-
fore a parallel implementation of the algorithm is needed. We refer to the papers [9,10,11]
for the discussion on the performance of parallel implementations of branch and bound
algorithms. For our experiments a parallel version of the considered algorithm is con-
structed using the master-slave paradigm. The master runs the core branch and bound
algorithm and holds a candidate set – yet not explored boxes. To model different tight-
ness of bounds the master needs precise bounds for the candidate set boxes. The tasks of
estimation of exact bounds are sent to the slaves, who use the bound constrained interval
global optimization algorithm including monotonicity and convexity tests. The master-
slave paradigm is appropriate here because the slave tasks of global minimization and
maximization are time consuming, and therefore communications are not too frequent.

The algorithm is implemented in C++. Two implementations of interval arithmetic
are used: the integrated interval arithmetic library [12] for the SUN Forte Compiler and
a C++ interval library filib++ [13]. The former implementation is used for parallel and
serial version of the algorithm on Sun systems, and the latter is used for its serial version
on Linux systems. It has been shown in [14] that these libraries are most fast and accurate.
Both libraries support extended interval arithmetic, and use templates to define intervals.
Interval definitions in these libraries are similar, and the global optimization algorithm
has been adapted so that the used library could be exchanged easily. The algorithm was
compiled with SUN Forte and GNU C++ compilers.

A parallel version of the algorithm has been implemented using MPI (Message-
Passing Interface – a standard specification for message-passing libraries [15]). The
algorithm has been tested and the experiments have been performed on the Sun HPC
6500 UltraSPARC-III based system with Sun MPI.

4 Results of Experimental Investigation

We were interested to estimate quantitatively the influence of bounds’ tightening to the
number of calls of procedures calculating real and interval objective function values. Test
functions for global optimization known from literature and two practical problems were
used in our experiments. For the description of the used test functions we refer to [16].
The multidimensional scaling (MDS) problem and the used data are presented in [16] as
well. A chemical engineering problem called ‘separation problem’ is described in [17].
Rosenbrock, Box and Betts, McCormic, Six Hump Camel Back functions were mini-
mized with tolerance 10−4, and the other functions were minimized with tolerance 10−2.
The numbers of interval function and real function evaluations NIFE and NFE needed

200 Antanas Žilinskas and Julius Žilinskas

to solve the problems with prescribed tolerance are presented in Table 1. The standard
interval arithmetic bounds were used by the implemented optimization algorithm.

Table 1. Experimental estimation of optimization complexity using standard interval arithmetic

interval and real interval only

Test function or problem NIFE NFE NIFE

Rosenbrock 273 141 905

Box and Betts 10367 6502 19029

McCormic 1105657 784452 1568899

Six Hump Camel Back 5935219 4407615 8714819

Goldstein and Price 351219 247359 398117

Multidimensional scaling 66513 47720 119569

Separation problem 102893 70402 363479

Speedup and efficiency criteria was used to evaluate performance of parallel algo-
rithm. The speedup is the ratio of time between the sequential version of algorithm and
the parallel one: sm = t1/tm, where t1 is time of sequential algorithm and tm is time
used by the parallel algorithm running on m processors. The efficiency of paralleliza-
tion is the speedup divided by the number of processors: em = sm/m. Speedup and
efficiency of parallelization have been estimated for the case of exact bounds, estimated
by slaves using enhanced interval minimization and maximization of the objective func-
tion over the received box. Up to 14 processors have been used. The estimated criteria
are shown in Figure 1. For most functions the highest efficiency of parallelization is
achieved with 6-8 processors. For some of test functions (for example, Rosenbrock, Box
and Betts, and Multidimensional scaling), efficiency was rather low, since the number of
tasks was too small to justify parallelization. However, these functions can be success-
fully minimized by a sequential algorithm. For other functions improvement is evident,
and parallelization significantly speeds up the experiments.

Several versions of the algorithm with ‘interval and real’ and ‘interval only’ upper
bound for minimum, and several relative tightness of bounds were used. The relative
tightness of bounds is specified by a number between 0.0 and 1.0, where 0.0 corresponds
to the exact bounds for function values and 1.0 corresponds to the standard interval
inclusion. The criteria of the algorithm efficiency are the numbers of bounding function
and real function evaluations performed by the algorithm before termination: NBFE and
NFE. The results of the experiments are presented graphically to show dependence of
NBFE and NFE on relative tightness of bounds.

To evaluate dependency quantitatively we estimate the dependency factor by the
mean ratio of the width of the standard inclusion interval to the width of exact bounds
for the function values. The dependency factor for each test function and each value of
relative tightness shows how much the standard inclusion interval overestimates exact
bounds for function values because of the dependency problem.

Results of optimization of the Rosenbrock test function are shown in Figure 2a. The
experimental estimates of the dependency factor are 1.0005-1.0010 for the case ‘interval

On Efficiency of Tightening Bounds in Interval Global Optimization 201

interval and real interval only

number of processors

sp
ee

du
p

1 14
0

14

number of processors
sp

ee
du

p
1 14

0

14

number of processors

ef
fi

ci
en

cy

1 14
0

1

number of processors

ef
fi

ci
en

cy

1 14
0

1

Rosenbrock – dotted line, Box and Betts – dashed line, McCormic – solid line, Six Hump Camel
Back – dot dash, Goldstein and Price – dot dot dash, Multidimensional scaling – dot dash dash

Fig. 1. Speedup and efficiency of the parallel algorithms

and real’ and 1.0050-1.0053 for the case ‘interval only’. These values of dependency
factors show that dependency for the Rosenbrock function is very weak. The conclusion
that the dependency practically can be ignored explains why the graphs in Figure 2a are
practically horizontal. The graphs of NBFE and NFE with respect to relative tightness
for the Box and Betts, Six Hump Camel Back, and Goldstein and Price functions are
presented in Figures 2b, 2c and 2d correspondingly. The graphs are almost linear. The
numbers of objective functions evaluations can be reduced approximately twice by means
of improving tightness of bounds. We have not included the graphs for the McCormic
test function since qualitatively they seem identical to Figure 2c.

202 Antanas Žilinskas and Julius Žilinskas

relative tightness

nf
e

an
d

nb
fe

0.0 1.0
0

98141
187
273

787

905

relative tightness

nf
e

an
d

nb
fe

0.0 1.0
0

2795

6502

3627

10367
10579

19029

a) Rosenbrock b) Box and Betts

relative tightness

nf
e

an
d

nb
fe

0.0 1.0
0

2208861

4407615

2891175

5935219

4457991

8714819

relative tightness

nf
e

an
d

nb
fe

0.0 1.0
0

114580

247359

147709

351219

189297

398117

c) Six Hump Camel Back d) Goldstein and Price

relative tightness

nf
e

an
d

nb
fe

0.0 1.0
3936

47720

4505

66513

24017

119569

relative tightness

nf
e

an
d

nb
fe

0.0 1.0
0

40826
70402
49521

102893

214021

363479

e) Multidimensional Scaling f) Separation

Fig. 2. Efficiency of tightening. Solid line represents numbers of bounding function evaluations
and dashed line represents numbers of real function evaluations for the case ‘interval and real’,
dotted line represents numbers of bounding function evaluations for the case ‘interval only’

On Efficiency of Tightening Bounds in Interval Global Optimization 203

The experimental results concerning two practical problems are presented in Fig-
ures 2e and 2f. The impact of dependency factor to the needed number of function
evaluations is much larger for MDS problem than for the test functions as well as for
the Separation problem.

The experimental estimates of impact of the dependency factor to the optimization
complexity are summarized in Table 2, where the first line for each problem corresponds
to the case ‘interval and real’ and the second line corresponds to the case ‘interval
only’. There is no doubt that improvement of bounds, e.g. by means of elimination of
dependency, increases the efficiency of branch and bound global optimization based on
interval arithmetic. However, the quantitative estimate of improvement is difficult. From
our research we can conclude that for relatively simple test problems the algorithm using
exact bounds is at least twice more efficient than the algorithm using standard interval
arithmetic inclusion. In special cases, e.g. for MDS problem, such an improvement can
be up to 10 times.

Table 2. Experimental estimation of impact of dependency factor to optimization complexity

interval bounds exact bounds

Test function or problem Dependency factor NIFE NFE NBFE NFE

Rosenbrock 1.0005–1.0010 98 273 141 187

1.0050–1.0053 905 787

Box and Betts 1.1675–1.2362 10367 6502 3627 2795

1.1544–1.2045 19029 10579

McCormic 1.6032–1.9829 1105657 784452 466695 394134

1.6013–1.8497 1568899 788617

Six Hump Camel Back 1.6497–1.8433 5935219 4407615 2891175 2208861

1.6489–1.7740 8714819 4457991

Goldstein and Price 1.6385–1.8726 351219 247359 147709 114580

1.6344–1.8304 398117 189297

Multidimensional scaling 1.4623–2.0704 66513 47720 4505 3936

1.3908–1.5798 119569 24017

Separation problem 1.1344–1.3080 102893 70402 49521 40826

1.1154–1.1933 363479 214021

Although precision of bounds is an important factor of efficiency of a branch and
bound algorithm, it does not uniquely define the efficiency. Further investigation is
needed taking into account more subtle details of algorithms and objective functions.
For example, tightness of bounds is more important where the measure of set {x :
f(x) < minx∈A f(x) + ε} is large relatively to A. MDS is namely such a problem.
Similar problems are frequent in statistical parameter estimation by least squares.

Sometimes a minimization problem can be solved fast even without tight bounds.
This can happen in case when global minimum is much lower than the average value

204 Antanas Žilinskas and Julius Žilinskas

of f(x) over A, and a good estimate f is accidentally found. In this case many boxes
can be deleted from the candidate set in next iterations after estimation of f even using
interval arithmetic inclusion.

5 Conclusions

The relative tightness of bounds strongly influences efficiency of global optimization
algorithms based on branch and bound approach combined with interval arithmetic.
Numbers of objective functions evaluations are approximately linear functions of the
relative tightness of bounds. For the standard test functions the branch and bound algo-
rithm using exact bounds is approximately twice more efficient than using the interval
arithmetic inclusion. However, in special cases efficiency can be increased up to 10 times.
For quantitative estimation of potential improvement of efficiency further investigation
is necessary taking into account more subtle details of the algorithm and properties of
an objective function.

Parallelization of the algorithm for modeling variable tightness of bounds speeds up
the experiments. The master-slave paradigm is suitable for such experiments because
the slave tasks of global minimization/maximization are time consuming, and commu-
nications are not too frequent.

Acknowledgment

The work of the second co-author is supported by NATO CBP.EAP.RIG.981300 (the
Reintegration grant).

The authors thank anonymous reviewers for many constructive remarks enabling us
to improve the manuscript.

References

1. R. Horst, and H. Tuy. Global Optimization: Deterministic Approaches. 2nd. edn. Springer-
Verlag, Berlin Heidelberg New York, 1993.

2. R. Horst, and P. Pardalos. Handbook of Global Optimization. Kluwer Academic Publishers,
Dodrecht, 1995.

3. A. Törn, and A. Žilinskas. Global optimization. Lecture Notes in Computer Science, 350:1–
255, 1989.

4. E. Hansen, and G.W. Walster. Global Optimization Using Interval Analysis. 2nd. edn. Marcel
Dekker, New York, 2003.

5. R.B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers,
Dodrecht, 1996.

6. H. Ratschek, and J. Rokne. New Computer Methods for Global Optimization. Ellis Horwood,
Chichester, 1995.

7. J. Žilinskas, and I.D.L. Bogle. Balanced random interval arithmetic. Computers and Chemical
Engineering, 28(5):839–851, 2004.

8. J. Žilinskas, and I.D.L. Bogle. Evaluation ranges of functions using balanced random interval
arithmetic. Informatica, 14(3):403–416, 2003.

On Efficiency of Tightening Bounds in Interval Global Optimization 205

9. J. Clausen. Parallel branch and bound – principles and personal experiences. In Migdalas,
A., Pardalos, P.M., Storøy, S., eds.: Parallel Computing in Optimization. Kluwer Academic
Publishers, 239–267, 1997.

10. C.Y. Gau, and M.A. Stadtherr. Parallel branch-and-bound for chemical engineering applica-
tions: Load balancing and scheduling issues. Lecture Notes in Computer Science, 1981:273–
300, 2001.

11. B. Gendron, and T.G. Crainic. Parallel branch-and-bound algorithms – survey and synthesis.
Operations Research, 42(6):1042–1066, 1994.

12. SUN Microsystems. C++ Interval Arithmetic Programming Reference. Forte Developer 6
update 2 (Sun WorkShop 6 update 2), 2001.

13. M. Lerch, G. Tischler, J.W. von Gudenberg, W. Hofschuster, and W. Krämer. The interval
library filib++ 2.0 - design, features and sample programs. Preprint 2001/4, Universität Wup-
pertal, 2001.

14. J. Žilinskas. Comparison of packages for interval arithmetic. Informatica, 16(1):145–154,
2005.

15. Message Passing Interface Forum. MPI: A message-passing interface standard (version 1.1).
Technical report, 1995.

16. K. Madsen, and J. Žilinskas. Testing branch-and-bound methods for global optimization.
Technical report 05/2000, Technical University of Denmark, 2000.

17. T. Csendes. Optimization methods for process network synthesis – a case study. In Carlsson,
C., Eriksson, I., eds.: Global & multiple criteria optimization and information systems quality.
Abo Academy, Turku, 113–132, 1998.

Trends in Large Scale Computing: An Introduction

Organizer: Scott B. Baden

Department of Computer Science and Engineering
University of California, San Diego, USA

http://www-cse.ucsd.edu/˜baden

Software infrastructure for large scale computation often fails to realize the full poten-
tial afforded by technological advances, and the result is lost opportunities for making
scientific discovery. This workshop will examine two important issues in software in-
frastructure for large scale computation: achieving scalability, and optimization through
specialization. Three presentations address scalability: tolerating latency, and aggre-
gating and analyzing voluminous simulation and performance data. Two presentations
address optimization: run time optimization of task graphs and compile time techniques
for incorporating semantic information into the optimization of object oriented frame-
works.

Speakers:

– Scott B. Baden, Department of Computer Science and Engineering, University of
California, San Diego, USA

– Susanne M. Balle, Hewlett-Packard Company, Nashua, NH, USA
– Olav Beckmann, Department of Computing, Imperial College, London, UK
– Dan Quinlan, Center for Applied Scientific Computing, Lawrence Livermore Na-

tional Laboratory
– Allan Sussman, Department of Computer Science and UMIACS, University of

Maryland, Chaos Project Faculty, USA

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, p. 206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ygdrasil: Aggregator Network Toolkit
for Large Scale Systems and the Grid

Susanne M. Balle, John Bishop, David LaFrance-Linden, and Howard Rifkin

Hewlett-Packard
110 Spit Brook Road, Nashua, NH, 03062, USA

{Susanne.Balle,John.Bishop,David.LaFrance-Linden,
Howard.Rifkin}@hp.com

Abstract. Many tools such as user programming tools, performance tools and
system administration tools, which are targeted to be used on a very large number
of processors (1,000+) have the same common problems. They need to deal with
the large amount of data created by the large number of processes as well as
be scalable. The data need to be condensed and reorganized into a useful set of
information before it is presented to the user. We present an aggregating network
toolkit, which due to its modularity can be tailored to almost any purpose involving
reduction of data, from a large number of individual back-ends (connected to a
tool or a user application), to a user portal. The latter allows the user to visualize
as well as re-arrange the data to fit his need (integration with statistical packages,
visualization, etc.). The user can write his own plug-ins and thereby tell the network
what is getting aggregated, how to aggregate the data (identical data, discard data,
etc.), as well as how to display the data in the user portal.

1 Introduction

With the expansion of the grid, more and more users (developers as well as system
administrators) have to deal with larger and larger systems. Users want to run their
application on larger and larger number of processors as their application becomes grid-
enabled [1,2]. System administrators want to manage thousands of processors in an
easy way without having to go through tedious operations. Along with the large num-
ber of processes, they have to deal with heterogeneous systems composed of differing
operating systems and hardware. Both types of users need tools. Developers need user-
programming tools such as debuggers, performance monitoring tools, etc. Other users
need tools for system administration tasks, database retrieval, etc.

The common problems for all these tools are (1) dealing with the huge amount of
output the thousands or tens of thousands processes generate, (2) present these outputs
to the user in an understandable way, (3) launch efficiently a job or a tool onto a set of
nodes given a specified topology and (4) scalability. In the case of (1), the data are often
identical (example debugger, booting process, cluster-wise shell).

We present enhancements to the aggregator network infrastructure described in
Balle [3] as well as make it available to users as a standalone toolkit. The main idea
behind the toolkit is to give the tool writers as well as advanced users the opportunity
to take advantage of the aggregating network infrastructure with little work from their
part.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 207–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

208 Susanne M. Balle et al.

2 Prior Work

The aggregating network approach described in Balle [3] and related work by Roth [4]
present approaches which try to solve problems (1) to (4). Analytic work regarding the
reduction of output is presented in Waheed [5].

The aggregating network described in [3] is composed of a tree-like network and at
each node in the tree, aggregators are inserted. The tree-like network reduces the message
latency to O(log(n)) instead of O(n) in traditional design. Along with decreasing the
message latency, this approach introduces parallelism into the overall architecture. Each
message from the back-ends (see Fig. 1) can flow down to the next level in the tree without
being delayed or stalled due to synchronization with other components in the network.
This design allows the aggregators and back-ends to work independently (therefore in
parallel). The aggregators condense the output of the tools into a smaller and more
manageable sub-set, which is then displayed to the user. Each aggregator condenses the
output it receives from the back-end under its control independent of its peers at the
same level in the tree. The architecture’s parallelism is limited by how fast the slowest
tool responds to a given event or by a time-out mechanism [3]. The aggregators are
distributed onto the available nodes using a load-balanced scheme.

The aggregators condense outputs from the tools/aggregators at each level in the
tree. In order to handle the huge amount of output from the tools (in [3] the tool is a
debugger), outputs are categorized and aggregated using the following guidelines:

– Type 1: Identical outputs from each of the tools/aggregators,
– Type 2: Identical outputs apart from containing different numbers and
– Type 3: Widely differing outputs.

It is easy to extend this categorization as well as these aggregation guidelines to
include binary outputs and additional aggregating strategies.

Using the aggregating tree network approach, described in Balle [3], creates a pow-
erful, scalable and user-friendly parallel debugger. Performance results show that the
debugger scales well both in the startup phase and with respect to the user commands’s
response time. A user only has to wait 31 seconds for the debugger to startup up on 2700
processors [3].

The Ladebug MPP project [3] illustrates how to achieve a parallel, scalable debugger
based on using a serial command line debugger on each node. During that project we
came to realize that the infrastructure could be used to create other types of tools such
as system administrators tools, that monitor the status of systems in a cluster, cluster
booting tools, parallel versions of performance tools such as Paradyn [18], PAPI [19],
etc. The Ygdrasil toolkit allows tool writers to create all kind of tools. Only people’s
imagination, not technology, should be the limit to what they want to do.

The Ygdrasilt toolkit provides a number of enhancements to the work described in
Balle [3]:

– A tool independent portable infrastructure: to allow tools writers to develop parallel
versions of their favorite serial tools as well as of their own tools.

– Customizable toolkit via plug-ins: to provide the ability to customize the components
to do specify tasks, the rest of the features in the toolkit are easily enhanceable as
well. For example it is trivial to add support for a new job launcher.

Ygdrasil: Aggregator Network Toolkit for Large Scale Systems and the Grid 209

– User portal (UP)/GUI: to allow users to customize the displayed output. Users can
connect UPs to already existing Application Portals (AP) and check on the status of
a session. This is useful if we had used Ygdrasil as a launcher and wanted to check
on the status of a running job at a later time. Another usage could be if we know
that our job fails after running for 3 or 4 hours under debugger control, this feature
allows us to connect back via a home PC or a handheld to an existing session and
continue the debugging session. The same is true for any session using a tool created
with the Ygdrasil toolkit.

– Minimal Grid support

Each of these features are discussed in details in Sections 3, 4 and 5.

3 Ygdrasil Toolkit

The Ygdrasil toolkit is composed of an aggregator tree-like network, a parallel tool and
network startup mechanism, and is customizable via components plug-ins.

The main idea behind the toolkit is to give the tool writers as well as advanced users
the opportunity to take advantage of the aggregating network infrastructure and create
their own tools with very little work from their part. The toolkit provides all the necessary
“plumbing" to create scalable tools. Tool writers only have to concentrate their effort on
what is really of interest to them namely their tool.

The toolkit can be used to create tools for large scale systems as well as in very
limited cases in a Grid environment. Enhancing the toolkit for a full Grid environment
is the topic of future research.

The Ygdrasil toolkit is composed of four major components interconnected with an
aggregator network infrastructure as illustrated in Fig. 1. The four specialized compo-
nents are: the User Portal (UP), the Application Portal (AP), the Aggregator Node (AN),
and the Backend (BE). A plug-in, which is part of each component, allows users to cus-
tomize each component of the toolkit. An example of such customization is described in
Section 5. The toolkit is very modular which makes it very flexible and thereby useful
for a large range of purposes.

Each component has a specific role within the toolkit. The UP handles all user
interactions and passes user commands to the AP. Within the network (from UP to
BE and back), the user commands and other messages, which are sent up and down
the tree, are encapsulated as objects. Information passing is done via serialization of
specialized objects [7]. Each component identifies the type of object it receives, unpacks
the data (if needed), do what it needs to do for that specific object type given the specific
plug-in, repackages (if needed) the resulting data into an object which is then sent to
the next component. The AP, a persistent component, integrates with launchers such as
globus run [2], mpirun (mpich) [8], etc. to retrieve the needed job information to launch
the tools. The user can launch the application directly under the control of a tool such
as a debugger if needed. The AP controls the other components in the tree and can be
considered as the root of the tree. The AP passes data/objects back and forth in the tree
as well as massaging the data according to the AP plug-in. Going leaf-ward (from the
UP to the BE), the AN distributes commands. Going root-ward (from the BE to the UP),
the AN reduces data. The plug-in allows users to tell each component what they want it

210 Susanne M. Balle et al.

Aggregator
Node

Aggregator
Node

Aggregator
Node

Back
end

Back
end

UDDI Registry

Globus Authentication/
Launchers

User Portal Application Portal

User Portal
plug-in

Appl. Portal
plug-in

Aggregator
plug-in

Aggregator
plug-in

Back end
plug-in

Launcher

Fig. 1. Ygdrasil Infrastructure

to do. In Section 5, we describe a debugger plug-in where the plug-in in the AN reduces
data/objects by aggregating similar outputs. The BE is the leaf node of the tree and is
the interface between the tool and the Ygdrasil network.

The tool writer or advanced user can customize the network to suit his needs via the
plug-in toolkit. The latter is composed of all the individual plug-ins (UP, AP, AN, BE).
As part of our prototyping phase, we wrote two plug-in toolkits: (1) a debugger plug-in
which works with serial command line debuggers such as GNU gdb, Compaq Ladebug
[9], and HP’s wdb and (2) a memory checking tool plug-in. The debugger plug-in is very
similar in functionality to the Compaq Ladebug parallel debugger [9] and is described
in Section 5.

The Ygdrasil toolkit does not directly interact with the parallel application. Instead
it interacts with a user specified tool, e.g. debugger, that will run on the compute nodes.
An exception would be if advanced users develop their application using the Ygdrasil
toolkit as their middleware. The encapsulation of the data into known objects needs to
be specified by the users since tools can be externally supplied. As mentioned earlier,
each major component is designed to use a user specified plug-in which implements that
component’s function for a specific tool.

The Ygdrasil toolkit is written in Java [7] for portability. We use Java serialization
over TCP to communicate between components. In the future we will integrate with
the Globus communication fabric [2]. We then expect users to be able to select their
preferred communication protocol.

An example of how we expect users, tools and the Ygdrasil toolkit to interact in
a Grid environment is illustrated in Fig. 2. Fig. 2 shows a user application running
across multiple clusters. We assume that each of the clusters is located in geographically

Ygdrasil: Aggregator Network Toolkit for Large Scale Systems and the Grid 211

Back End B15 User program
Process U15Plug-in

Helper

Back End B10 User program
Process U10Plug-in

Helper

Back End B5 User program
Process U5Plug-in

Helper

Back End B0 User program
Process U0Plug-in

Helper
Branching factor = 8

Output from
 Back End

Aggregated output
from aggregator

Launcher

Objects destined for
 the tool or the Ygdrasil

infrastructure
User Portal

Plug-in

Objects destined for
 the tool or the Ygdrasil

infrastructure

Application Portal

Plug-in

Aggregator Node

Plug-in

Aggregator Node

Plug-in

Aggregator Node

Plug-in

Fig. 2. Aggregator tree-like network

different locations. A user launches his grid-enabled application [1,2] and then wants to
start a tool (debugger, performance monitoring tool, etc.) on the remote nodes. The user
can, via the user portal, launch an aggregating tree-like network infrastructure which
will interconnect each of the individual tools. Each tool is connected to a back-end node.
The tool can be a stand-alone tool (shell, performance tool, etc.) or attached to the user
application (debugger, message passing tool, etc.). The user portal can either be started
up at the user’s desktop or the user can connect back into an already existing job. A
special interface for handhelds such as the IPaQ [6] is provided so that the user can
check the status of his job as well as get a summary of certain properties either default
or pre-selected properties.

The tree-like network is composed of aggregator nodes which can be placed either
on the compute clusters or on middleware servers. It is easy to imagine that in the future
these middleware servers could be located at miscellaneous ISPs between the end-user
and the compute nodes.

4 User Portal

The UP displays the “customized" outputs from the tools connected to the Ygdrasil
Aggregator Network and allows users to interact with the network. The UP can be
considered to be a client to the AP (see Fig. 1).

The UP’s tool panel is customized via a plug-in as illustrated in Fig. 1. An example
of such a customization is described in Section 5. The current version of the UP has been
tested on Tru64 [10], HP-UX [11], Windows ME/2000/XP [12], Alpha Linux [13], and
on handhelds Windows CE/PocketPC [14], Familiar Linux [15], and in a browser.

212 Susanne M. Balle et al.

5 Debugger Plug-In

In this Section we briefly describe how we have customized the toolkit and thereby its
UP, AP, AN, and BE plug-ins to create a scalable debugger with features and capabilities
similar to the scalable debugger described in [3]. The main difference with [3] is that
we get the same look-and-feel for 3 different command line debuggers.

We have created plug-ins for the GNU gdb debugger, the Compaq Ladebug debug-
ger [5] and HP’s gdb variant wdb which allow users to transparently use the same tool
with either of the debuggers. The look-and-feel is the same independent of what debug-
ger is used. Users can either select a specific debugger or let the network choose based
on the platform-OS combination the debugger is used on. As mentioned earlier the BE
is the leaf node of the tree and is the interface between the tool and network. The role
of the debugger BE Plug-in is to translate output from the debuggers into something
that the aggregators and the network can understand. In the case of the debugger, the
BE plug-in has to do the initial bookkeeping such as tagging individual output, tagging
outputs that belongs together, etc. as well as package the output into tagged objects that
can be transmitted root-ward (from BE to UP). The debugger BE Plug-in also has a pre-
defined set of default parameters such as preferred debugger for a specific platform-OS
combination, etc.

The AN is a complex component which plays a role in the leaf-ward direction (from
UP to BE) as well as in the root-ward direction. The AN captures the unique tag and
other relevant information of objects that are sent leaf-ward for later use when correlating
output objects will be coming root-wards. In the root-ward direction, it unpacks the
objects, redirects the unpacked object to the correct plug-in, hosts the necessary timeout
mechanism to avoid severe bottlenecks in the flow of objects, repackages objects from
the plug-in into a tagged object which is sent to the next level in the tree. The debugger
AN plug-in ensure that objects received from the BE or ANs are aggregated correctly
and uses sophisticated timeout mechanisms to aggregate outputs in an optimal way even
when network performance or tool response time aren’t at their best.

The AP component and its debugger plug-in are mainly pass through components.
The UP component and its plug-in are shown in Fig. 3. The window is divided into two
panels: an annotation panel and a data panel. In the annotation panel is listed the processor
set corresponding to the output listed in the data panel. As mentioned in Section 2, we
have aggregated the data into Type 1, Type 2 and Type 3 objects. In the case of Type 2
aggregation (identical outputs apart from containing different numbers), we have placed
a “+" in the annotation panel. The user can click on the “+" and the objects will expand
and let the user see all the individual outputs. An example of Type 2 is shown below:
+[0 : 3][0 : 3] which expands to

Annotation: Data:

- [0:3] [0:3]

- 0 0

- 1 1

- 2 2

- 3 3

Ygdrasil: Aggregator Network Toolkit for Large Scale Systems and the Grid 213

Fig. 3. User Portal with Debugger Plug-in

When the user clicks on the “-" in front of the Type 2 output, the displayed object
retracts itself and only the Type 2 output is shown: + [0 : 3][0 : 3].

The Ygdrasil toolkit and the debugger plug-ins have been tested on Tru64 [10], Linux
(Alpha) [13], and HPUX (PA-Risc and ia64) [11].

6 Experimental Results

The timings reported in this section were achieved on the Pittsburgh Supercomput-
ing Center’s Alphaserver SC cluster [16]. The Sierra Cluster supercomputer [16,17]
is composed of 750 Compaq Alphaserver ES45 nodes and a separate front-end node.
Each computational node contains four 1-GHz processors, totaling 3000 processors, and
runs the Tru64 Unix operating system. A Quadrics interconnection network connects the
nodes [16]. We chose to time the Ygdrasil toolkit startup when using the Ladebug debug-
ger Plug-ins since the serial Ladebug debugger is available on the Terascale Computing
System AlphaServer SC cluster at Pittsburgh Supercomputing Center.

6.1 Startup

The parallelism in the startup is achieved by having each aggregator at a given level
startup the aggregators or leaf debuggers in its control at the next level. Each level

214 Susanne M. Balle et al.

Fig. 4. Ladebug Debugger Plug-in Toolkit startup

can therefore be started in parallel. The amount of parallelism in the startup is mainly
limited by the interactions between the debugger and the operating system. There is
an initial serialization to gather the process information and calculate the specifics of
the network tree. The approach implemented in the Ygdrasil toolkit is similar to the
approach described in Balle [3].

Fig. 4 presents the Ygdrasil toolkit using the Ladebug debugger plug-ins’ startup
time as a function of the number of processors n. We chose a branching factor of 8
which means that the tree will have two levels of aggregators for n = 64, three levels
for n = 512, etc.

When n ≤ 320, the startup time increases by 137 milliseconds/processor. The time
increase per processor is due to the fact that each process has to read the hostname
table before it can determine where to startup its children processes. The reading of the
hostname information is a serial process and will therefore prohibit the startup mecha-
nism from being fully processed in parallel. This limitation is known and will be part
of future improvements to the toolkit. When n > 320 we notice that the startup time is
close to constant. We do expect that the startup time will increase again as the number
of processors and the number of aggregator level increases. Unfortunately we only had
limited access to the cluster and were not able to run on more than 512 processors.

7 Conclusion

The Ygdrasil toolkit is a modular and flexible infra-structure. We have shown that the
startup phase is scalable up to 500 processors and expect it to scale to the thousands of
processors. The flexibility of the toolkit was one of our major goals while designing and

Ygdrasil: Aggregator Network Toolkit for Large Scale Systems and the Grid 215

implementing the toolkit. We didn’t want to limit the toolkit’s users’ imaginations. We
envision that the toolkit can be used to create tools i.e. our debugger plug-in, standalone
application i.e. genealogy data mining, etc.

The toolkit has achieved its goals namely - give the tool writers as well as advanced
users the opportunity to create scalable tools or applications by taking advantage of the
aggregating network infrastructure with little work from their part. They can concentrate
on what really interest them: their tool. The toolkit solves the common problem of
collecting, organizing, and presenting, in a scalable manner, the output of large scale
computations.

At SC2002, we presented a debugger prototype based on the Ygdrasil toolkit which
allowed users to debug an application using the Compaq ladebug debugger on Compaq
Tru64 platforms and the wdb debugger (HP’s variant of gdb) on HP HPUX platforms
from the same UP.

In order to maximize the usability of the Ygdrasil toolkit we are currently investiga-
tion a possibility of open sourcing the toolkit.

Acknowledgements

The authors wish to thank J. Ray Scott and Sergiu Sanielevici from the Pittsburgh
Supercomputing Center for letting us get access to the Terascale Computing System
AlphaServer SC cluster. Finally, we thank Rae Eastland for his Grid-service contribu-
tion, Jim Bovay for supporting the project, and the anonymous referees for suggesting
improvements to the manuscript.

References

1. I. T. Foster and C. Kessleman. The Globus Project: a status report. Seventh Heterogeneous
Computing Workshop, Orlando, Florida, March 1998.

2. Globus Toolkit 2.0 (www.globus.org).
3. S. M. Balle, B. R. Brett, C. P. Chen, and D. LaFrance-Linden. Extending a Traditional

Debugger to Debug Massively Parallel Applications. Journal of Parallel and Distributed
Computing, Volume 64, Issue 5 , May 2004, Pages 617-628.

4. P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A Software-Based Multicast/Reduction
Network For Scalable Tools. SC 2003, Phoenix, AZ, November 2003.

5. A. Waheed, D. T. Rover, and J. K. Hollingsworth. Modeling and Evaluating Design Alterna-
tives for an On-Line Instrumentation System: A Case Study. IEEE Transactions on Software
Engineering, Vol 24, No 6, June 1998.

6. http://www.handhelds.org/geeklog/index.php.
7. Java 2 Platform. Version 1.3, Standard Edition (J2SE). http://java.sun.com/
8. MPICH. http://www-unix.mcs.anl.gov/mpi/mpich/
9. Ladebug Debugger Manual Version 67. Compaq Computer Corporation, February 2002.

http://www.compaq.com/ladebug.
10. Tru64 UNIX for HP AlphaServer Systems. http://h30097.www3.hp.com/
11. HPUX UNIX. http://www.hp.com/products1/unix/operating/
12. Windows 2000. http://www.microsoft.com/windows2000/
13. HP Alpha Linux. http://h18002.www1.hp.com/alphaserver/linux/

216 Susanne M. Balle et al.

14. Window CE/Pocket PC. (http://www.microsoft.com/windowsmobile/products/pocketpc/)
15. Familiar Linux. http://familiar.handhelds.org/
16. Compaq Computer Corporation. Alphaserver SC: Scalable Supercomputing, July 2000. Doc-

ument number 135D-0900A-USEN.
17. Pittsburgh Supercomputing Center. http://www.psc.edu
18. Paradyn http://www.cs.wisc.edu/ paradyn/
19. PAPI http://icl.cs.utk.edu/papi/

Enabling Coupled Scientific Simulations on the Grid

Alan Sussman and Henrique Andrade

Department of Computer Science
University of Maryland
College Park, Maryland

{als,hcma}@cs.umd.edu

Abstract. This paper addresses the problem of providing software support for
simulating complex physical systems that require multiple physical models, po-
tentially at multiple scales and resolutions and implemented using different pro-
gramming languages and distinct parallel programming paradigms. The individual
models must be coupled to allow them to exchange information either at bound-
aries where the models align in physical space or in areas where they overlap in
space. Employing multiple physical models presents several difficult challenges,
both in modeling the physics correctly and in efficiently coupling multiple simula-
tion codes for a complete physical system. As a solution we describe InterComm,
a framework that addresses three main parts of the problem: (1) providing compre-
hensive support for specifying at runtime what data is to be transferred between
models, (2) flexibly specifying and efficiently determining when the data should
be moved, and (3) effectively deploying multiple simulation codes in a high per-
formance distributed computing environment (the Grid).

1 Introduction

Simulation of physical systems has become the third main form of investigation in many
scientific disciplines, along with theory and experimentation. There have been many
software projects and tools that have addressed issues related to efficiently supporting
running simulations of individual physical models of such systems on large scale parallel
and distributed systems. However, not much attention has been paid to software support
for simulation of complex physical systems requiring multiple physical models. One
reason is that there have not been many efforts in scientific disciplines to model complex
phenomena using multiple models. This is now changing in areas such as earth science,
space science, and other physical sciences, where the use of multiple physical models
can provide great advantages over single models.

Employing multiple physical models presents several difficult challenges, both in
modeling the physics correctly, and in efficiently using multiple simulation codes to
model a complete physical system. In particular, the individual models must be coupled
to allow them to exchange information either at boundaries where the models align
in physical space, or in areas where the models overlap in space. Providing effective
software support for building and deploying coupled simulations will have an immediate
impact in multiple scientific disciplines that have realized the necessity for coupling
models at multiple scales and resolutions. Such support will also have a wide impact in
the future as comprehensive modeling of additional complex physical systems becomes
more common.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 217–224, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

218 Alan Sussman and Henrique Andrade

1.1 Space Weather Modeling – An Example of Coupled Simulations

An interesting simulation coupling example comes from the domain of space science, in
particular space weather modeling. With collaborators at the Center for Integrated Space
Weather Modeling at Boston University, we have been working on a set of simulation
codes that model both the large scale and microscale structures and dynamics of the Sun-
Earth system as depicted in Figure 1. The models include the SAIC corona code [14],
the Maryland-Dartmouth solar wind code [15], the LFM global magnetohydrodynamics
(MHD) magnetospheric code [5], the TING ionosphere-thermosphere code [20], and
the microscale Hall MHD, hybrid, and particle codes [18]. Each code is among the
best regarded for modeling its respective niche, and they span the physics regimes of
the Sun-Earth system covering many, if not all, of the physical regimes needed for a
comprehensive model. They also present most of the coupling issues that will be faced in
coupling other physical systems. While ad-hoc coupling works, it provides no generality
for further simulation extensions; each new case must be done from scratch. What these
efforts show, however, are the issues that a general infrastructure must address. While
these models cover a multitude of different spatial scales and physical models, they share
one feature. All use spatial grids to organize the computations, in this case structured
grids, as do most space physics codes. The issue of dealing with grids, both structured
and unstructured, is central to the design of InterComm.

Inner
Magnetosphere

Solar Corona
MAS

Solar Wind
ENLIL Ionosphere

T*CGM

Active Regions

SEP

Ring Current

Radiation Belts

Geocorona and
Exosphere

Plasmasphere

MI Coupling

Magnetosphere
LFM

Fig. 1. The coupled space physics models

In Section 2, we present the InterComm framework, show how it addresses the
question of code interoperability and describe how employing the InterComm framework
facilitates the deployment of coupled codes on the Grid. In Section 3 we discuss how

Enabling Coupled Scientific Simulations on the Grid 219

InterComm compares to existing computational science tools. Finally, in Section 4, we
conclude with a discussion of the set of InterComm features already available and present
the set of design and development activities that we are currently pursuing.

2 Overview of the InterComm Framework

The InterComm framework addresses the problem of providing support for coupled sim-
ulations by allowing for direct model to model data transfers. Three issues are addressed:
(1) Providing comprehensive support for specifying at runtime what data is to be moved
between simulations, (2) Flexibly specifying and efficiently determining when the data
should be moved, and (3) Effectively deploying multiple coupled simulation codes in a
high performance distributed computing environment (i.e., the Computational Grid [6]).
For all parts of the problem, a major goal is to minimize the changes that must be made
to each individual simulation code, because those codes are generally very complex and
difficult to modify and maintain.

The Data Coupler Infrastructure

The foremost issue to be addressed when coupling two physical simulation codes con-
sists of enabling the exchange of data between them. In InterComm, support is provided
for many different kinds of parallel (and sequential) programs, written in multiple lan-
guages (including C, C++, Fortran77, Fortran90, Java, etc.) and using common scientific
parallel programming techniques such as message-passing and multi-threading.

The elementary entity required for enabling communication to/from a parallel pro-
gram is the data descriptor. A data descriptor essentially defines the distribution of a
data structure across multiple address spaces (i.e., processes or processors). For an array
data structure, the descriptor contains information about where each array element is
located, namely which process owns the element and where in the address space of the
owner process the element is located. The InterComm framework provides an API for
building the descriptors necessary to describe the data distributions utilized by all the
individual models and for specifying the part of the data structure to move. The initial
array distributions we support include regular and generalized block distributions, as
seen in Figure 2, and completely irregular, or explicit, distributions [9].

P7

P5 P6

P8 P9

P2

N/3 2N/3

N/3

Generalized BlockRegular Block

P1 P2 P3

P4 P5 P6

P7 P9P8

P1

2N/3

P4

1

N

1 N
1

N

1 N

P3

Fig. 2. Block data distributions for an N × N two-dimensional array

220 Alan Sussman and Henrique Andrade

Conceptually, only three communication calls are required for exchanging data: (1)
Export makes a consistent version of the distributed data structure available for a poten-
tial data transfer; (2) Import requests that a consistent version of a matching data structure
be copied into the argument data structure (the semantics of the matching process are de-
scribed later in this section); and (3) BuildDescriptor builds the data descriptor required
so that the framework can schedule and perform the needed interprocessor communi-
cation across all processes in each program. If one side of the data transfer is a parallel
program, all three calls on that side are collective across the processes in that program,
meaning that the call occurs in all processes, with appropriately matching parameters
(i.e., the data descriptor and subset specification must match, but the actual data will
likely reside in different memory locations in different processes). Given data descriptors
for both sides of the data transfer, and specifications of the subsets of the data structures
that will participate in the transfer, the InterComm framework can build a communica-
tion schedule (i.e., a description of the set of messages that must be sent between each
pair of processes) for a matching export/import pair. Schedules can be built and reused,
since they are explicit objects in the model codes.

In the near future, InterComm will also provide support for translation of data be-
tween models. From the point of view of the computational scientist, a very important
feature of the framework is that it allows existing codes to be coupled in most cases
by modifying no more than a few lines of code in the existing models. There may be
a substantial amount of work (and code) required to translate or interpolate from one
physical model to another (or the grids used in the models). However, that work can all
be done externally to the existing codes and only a few communication calls need to be
inserted in the original programs. Figure 3 shows a conceptual picture of how two model
codes, A and B, will be coupled, including the data translation component.

The Control Infrastructure

A second problem in supporting the exchange of data between two models consists of
mechanisms for describing when data will be exported/imported. Specifying when a
data structure (or some part of) should be transferred between model components can be
solved either statically or dynamically. A dynamic coordination language approach [8]
could be employed, providing arbitrary expressive power, but we are concerned with be-
ing able to efficiently decide when a data transfer should take place. For this reason Inter-
Comm employs a static approach, whereby a mapping specification is provided when the
various model components begin execution. For each pair of matched imported/exported
data structures in different components, the mapping specification describes which ex-
port call should be used to satisfy a given import call (e.g., export calls may not result in
data transfers if no other program imports that data). The mapping specification design
relies on the notion of a timestamp, which must be provided as a parameter to every
export and import call in a model component. A timestamp is a floating point number
(or a simple counter) intended to capture the time-dependent nature of the solution to
most models of physical systems, and can often be directly taken or derived from the
time step used in the simulation code. For any mapping specification, one guarantee that
must be made to be able to determine whether exported data is needed (to avoid storing it
indefinitely) is that timestamps from a single model are monotonically non-decreasing.

Enabling Coupled Scientific Simulations on the Grid 221

MPI, P++, ...

Overture/P++, ...

MPI, P++, ...

Call Export(YP)
 ...
Call Import(YP)
 ...
YP = BuildDescriptor(Y)

Call Import(XP)
 ...
Call Export(XP)
 ...
XP = BuildDescriptor(X)

Model A

InterCommInterComm

Model B

X[iGridA].send();
X=Y*Y;
Y.interpolate();
Y[iGridB].receive();

Y[iGridB].send()
Y=sqrt(X);
X.interpolate();
X[iGridA].receive();

Interpolant interpolant(cg);
floatCompositeGridFunction X,Y;
CompositeGrid cg;

Fig. 3. A simple example illustrating how the framework can be used to couple two Fortran codes.
B is a computation embedded in the larger simulation A. There is an overlap region for the two
computations where information needs to be passed back and forth. Array variable X in A provides
the necessary information to B in the overlap region, but B requires Y for its computation. A, in
turn, requires an update on X in its overlap region with B. The center of the diagram shows the
inter-grid and data translation program

This guarantee is enforced by InterComm, implying that once an import statement in a
program requests a data structure with a timestamp with value i, the program will never
request one with a value smaller than i.

A Grid and Component-Based Framework

Another facet of the coupled simulation problem lies in effectively deploying the coupled
simulation models in the high performance distributed computing environment. The
individual model codes have different computational and storage requirements and may
be designed to run in different sequential and parallel environments. Deploying coupled
simulations on the Grid requires starting each of the models on the desired Grid resources,
then connecting the models together via the InterComm framework.

One difficult issue is the initial discovery problem. InterComm will make use of
existing Grid discovery service mechanisms (e.g., the Globus Monitoring and Discovery
Service, MDS [3]), to allow the individual components to register, to locate appropriate
resources for each component, and also to enable components to find each other. In
practice, adhering to Grid services interfaces means that InterComm will deploy its
services through Web and Grid service compliant interfaces.

222 Alan Sussman and Henrique Andrade

3 Related Work

While there have been several efforts to model and manage parallel data structures and
provide support for coupled simulation, they all have significant limitations. Parallel
programming tools such as Overture/P++ [1] and MPI [19] provide support for devel-
oping single applications programs on high-performancemachines. Parallel Application
Work Space (PAWS) [11] and the Model Coupling Toolkit (MCT) [12] provide the abil-
ity to share data structures between parallel applications. MCT has been developed for
the Earth System Modeling Framework (ESMF) [4]. PAWS and MCT determine inter-
program communication patterns within a separate component, while in InterComm
such patterns are generated directly in the processes that are part of the parallel ap-
plications. Collaborative User Migration, User Library for Visualization and Steering
(CUMULVS) [7] is a middleware library that facilitates the remote visualization and
steering of parallel applications and supports sharing parallel data structures between
programs. Roccom [10] is an object-oriented software framework targeted at parallel
rocket simulation, but does not address high performance inter-component communica-
tion. Our prior work on the data coupler part of the overall problem led to the design
and development of the Meta-Chaos library [17], which makes it possible to integrate
data parallel components (potentially written using different parallel programming para-
digms) within a single application. A complication in using MetaChaos is that it requires
that inquiry functions be produced for each data distribution. Producing those inquiry
functions can be a difficult task and InterComm addresses this issue by obtaining the data
distribution information from each application component. On the other hand, an effort
that we intend to leverage is being carried out by the Common Component Architecture
(CCA) Forum [2]. CCA comprises a set of common interfaces to provide interoperability
among high performance application components. In particular, the CCA MxN working
group has designed interfaces to transfer data elements between parallel components,
and InterComm can be used to implement that interface.

4 Conclusions and Future Work

Currently the data movement middleware for InterComm is fully functional, contain-
ing support for multiple languages and parallel programming paradigms [13] (e.g., C,
C++, P++/Overture, Fortran77, and Fortran90), and the control part is in an advanced
stage of development. The initial coupling efforts are now underway, employing some
of the space weather modeling codes. In addition, we are addressing several ongoing
research issues: (1) The initial description of the portions of the data to be moved is
explicit. For example, for a two-dimensional array data structure, two pairs of array
indices are required to describe a contiguous subarray. However, the spatio-temporal
characteristics of most physical models can enable specifying the data to be moved by
a multi-dimensional bounding box. We plan to investigate using such techniques to al-
low implicit specification of the part(s) of the data structure that will participate in the
transfer; (2) The data descriptors described in Section 2 can also be useful to enable
model components to interact with other software tools, such as debuggers (including
performance debugging tools such as Paradyn [16]), visualization tools, checkpointing

Enabling Coupled Scientific Simulations on the Grid 223

tools, etc. We plan to investigate how these applications can further benefit from the
information stored in data descriptors; and, finally, (3) Our team is actively involved in
the CCA MxN design and development effort [2].

References

1. D. L. Brown, G. S. Chesshire, W. D. Henshaw, and D. J. Quinlan. Overture: An object oriented
software system for solving partial differential equations in serial and parallel environments. In
Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing.
SIAM, 1997.

2. Common Component Architecture Forum. http://www.cca-forum.org.
3. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services for

distributed resource sharing. In Proceedings of the Tenth IEEE International Symposium on
High Performance Distributed Computing (HPDC 2001). IEEE Computer Society Press, Aug.
2001.

4. Earth System Modeling Framework (ESMF), 2003. http://www.esmf.ucar.edu/.
5. J. Fedder, S. Slinker, J. Lyon, and R. Elphinstone. Global numerical simulation of the growth

phase and the expansion onset for substorm observed by Viking. Journal of Geophysical
Research, 100:19083, 1995.

6. I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure (Second
Edition). Morgan Kaufman / Elsevier, 2003.

7. G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing Fault-Tolerance, Vi-
sualization and Steering of Parallel Applications. International Journal of High Performance
Computing Applications, 11(3):224–236, Aug. 1997.

8. D. Gelernter and N. Carriero. Coordination languages and their significance. Commun. ACM,
32(2), Feb. 1992.

9. High Performance Fortran Forum. HPF language specification, version 2.0. Available from
http://www.netlib.org/hpf, Jan. 1997.

10. X. Jiao, M. Campbell, and M. Heath. Roccom: An object-oriented, data-centric software
integration framework for multiphysics simulations. In Proceedings of the 2003 International
Conference on Supercomputing, pages 358–368. ACM Press, June 2003.

11. K. Keahey, P. Fasel, and S. Mniszewski. PAWS: Collective Interactions and Data Transfers.
In Proceedings of the Tenth IEEE International Symposium on High Performance Distributed
Computing (HPDC 2001). IEEE Computer Society Press, Aug. 2001.

12. J. W. Larson, R. Jacob, I. Foster, and J. Guo. The Model Coupling Toolkit. In Proceedings of
International Conference on Computational Science, 2001.

13. J. Y. Lee and A. Sussman. Efficient communication between parallel programs with Inter-
Comm. Technical Report CS-TR-4557 and UMIACS-TR-2004-04, University of Maryland,
Department of Computer Science and UMIACS, Jan. 2004.

14. J. Linker, Z. Mikic, D. Biesecker, R. Forsyth, S. Gibson, A. Lazarus, A. Lecinski, P. Riley,
A. Szabo, and B. Thompson. Magnetohydrodynamic modeling of the solar corona during
whole sun month. Journal of Geophysical Research, 104:9809–9830, 1999.

15. R. McNutt, J. Lyon, C. Goodrich, and M. Wiltberger. 3D MHD simulations of the heliosphere-
VLISM interaction. In AIP Conference Proceedings 471: Solar Wind Nine, page 823. Amer-
ican Institute of Physics, 1999.

16. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn parallel performance measurement tool.
IEEE Computer, 28(11):37–46, Nov. 1995.

224 Alan Sussman and Henrique Andrade

17. J. Saltz, A. Sussman, S. Graham, J. Demmel, S. Baden, and J. Dongarra. The high-performance
computing continuum: Programming tools and environments. Commun. ACM, 41(11):64–73,
Nov. 1998.

18. M. Shay. The Dynamics of Collisionless Magnetic Reconnection. PhD thesis, University of
Maryland, College Park, 1999.

19. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI–The Complete Refer-
ence, Second Edition. Scientific and Engineering Computation Series. MIT Press, 1998.

20. W. Wang, T. Killeen, A. Burns, and R. Roble. A high-resolution, three dimensional, time de-
pendent, nested grid model of the coupled thermosphere-ionosphere. Journal of Atmospheric
and Terrestrial Physics, 61:385–397, 1999.

High Performance Linear Algebra Algorithms:
An Introduction

Organizers: Fred G. Gustavson1 and Jerzy Waśniewski2

1 IBM T.J. Watson Research Center
Yorktown Heights NY 10598, USA

fg2@us.ibm.com
2 Department of Informatics & Mathematical Modeling

of the Technical University of Denmark
DK-2800 Lyngby, Denmark

jw@imm.dtu.dk

1 Introduction

This Mini-Symposium consisted of two back to back sessions, each consisting of five
presentations, held on the afternoon of Monday, June 21, 2004. A major theme of both
sessions was novel data structures for the matrices of dense linear algebra, DLA. Talks
one to four of session one all centered on new data layouts of matrices. Cholesky factor-
ization was considered in the first three talks and a contrast was made between a square
block hybrid format, a recursive packed format and the two standard data structures of
DLA, full and packed format. In both talks one and two, the first two new formats led
to level three high performance implementations of Cholesky factorization while using
exactly the same amount of storage that standard packed format required. Of course,
full format requires twice the amount of storage of the other three formats. In talk one,
John Reid presented a definitive study of Cholesky factorization using a standard block
based iterative Cholesky factorization, [1]. This factorization is typical of Lapack type
factorizations; the major difference of [1] is the type of data structure it uses: talk one
uses square blocks of orderNB to represent a lower (upper) triangular matrix. In talk two,
Jerzy Waśniewski presented the recursive packed format and its related Cholesky fac-
torization algorithm, [2]. This novel format gave especially good Cholesky performance
for very large matrices. In talk three, Jerzy Waśniewski demonstrated a detailed tuning
strategy for talk one and presented performance results on six important platforms, Al-
pha, IBM, Intel, Itanium, SGI and Sun. The performance runs covered the algorithms of
talks one and two as well as Lapack’s full and packed Cholesky codes, [3]. Overall, the
square block hybrid method was best but was not a clear winner. The recursive method
suffered because it did not combine blocking with recursion, [4]. Talk four, presented by
Fred Gustavson, had a different flavor. Another novel data format was described which
showed that two standard full format arrays could represent a triangular or symmetric
matrix using only a total storage that was equal to the storage of standard packed stor-
age, [5]. Therefore, this format has the same desirable property of standard full format
arrays: one can use standard level 3 BLAS, [6] as well as some 125 or so full format
Lapack symmetric / triangular routines on it. Thus new codes written for the new format
are trivial to produce as they mostly consist of just calls to already existing codes. The last

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 225–227, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

226 Fred G. Gustavson and Jerzy Waśniewski

talk of session one, by James Sexton was on the massively parallel IBM BG/L machine
consisting of up to 65,536 processors. Jim presented some early Linpack benchmark
numbers which were quite impressive, [7]. A surprising property of this machine was its
low power requirement which was only about 10 % of the current state-of-art massively
parallel designs.

In the second session five talks were given on varied topics. Talk one, presented
by Carstin Scholtes considered a direct mapped cache design and it then showed how
source codes for sparse dense matrix multiply and sparse Cholesky factorization could
be examined to derive a set of calculations that could be evaluated in constant time to
yield a probabilistic determination of the number of cache misses to be expected when
the program was executed on a specific architecture, [8]. The second talk, presented by
Fred Gustavson, described a new algorithm for the level 3 BLAS DGEMM on a computer
with M + 1 levels of memory, M caches and main memory. Its main contribution was
to extend the basic two level algorithm M = 1 in two ways: (1) streaming was added to
the basic two level algorithm and (2) the basic two level algorithm was shown to work
at level i + 1 to level i for i = 1, . . . ,M . These two ideas were combined with another
idea: conservation of matrix data. The combination of these three ideas allowed one to
show that one could reduce the number of basic DGEMM algorithms from 6M+1 to just
4, [9]. Paper three, presented by Keshav Pingali was about a general purpose compiler
that obtains high performance for some common dense linear algebra codes, [10]. This
method was a deterministic method for finding key hardware parameters of an archi-
tecture as opposed to the AEOS approach of the ATLAS project, [11]. Paper four was
on software testing of Library Software and in particular, the Lapack Library, [12]. It
was presented by Tim Hopkins. This paper defines a quantitative measure of software
quality (metrics) and a way to reduce the amount of software testing by allowing tests
that fail to improve the metrics to be discarded. The paper observes how Lapack’s testing
codes actually “measure up" in a software engineering sense. Their initial results indicate
that many of Lapack’s test codes fail to improve the coverage of their metrics and that
many sections of Lapack’s code are never executed by the testing software. Some of this
lack of coverage is easily remedied; other parts require expertise about the codes being
tested. The last paper by Peter Drackenberg is somewhat related to the theme of new
data structures of DLA. His approach is to describe a data type for dense matrices whose
primitive operations are decomposition and composition (of submatrices) as opposed to
indexed element access which is the primitive operation on conventional arrays. This
work appears to be related to the Lapack approach and recent work on recursion and
iteration done by many authors. Performance results on SGI Octane Systems for level 3
BLAS were found to be encouraging.

Not all of these talks appears in these Lecture Notes. Only talk four of Session one, [5]
and talks two, four and five of Session two, [9,12,13] appear. However, for completeness
the following references [1,2] covers talks one to three of Session one. An excellent set
of slides is available for talk five of Session one and talk one of Session two, [7,8]. [10]
covers talk three of Session 2.

High Performance Linear Algebra Algorithms: An Introduction 227

References

1. B. S. Andersen, J. A. Gunnels, F. G. Gustavson, J. K. Reid and J. Waśniewski. A Fully Portable
High Performance Minimal Storage Hybrid Cholesky Algorithm. ACM TOMS, Vol. 31, No.
2 June 2005, pp. 201-227.

2. B. S. Andersen, F. G. Gustavson, and J. Waśniewski. A Recursive Formulation of Cholesky
Factorization of a Matrix in Packed Storage. ACM TOMS, Vol. 27, No. 2 June 2001, pp.
214-244.

3. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz,
S. Hammarling, A. Greenbaum, A. McKenney, D. Sorensen: LAPACK Users’ Guide 3rd Ed.,
Society for Industrial and Applied Mathematics, pub.

4. F. G. Gustavson and I. Jonsson. Minimal Storage High Performance Cholesky via Blocking
and Recursion IBM Journal of Research and Development, Vol. 44, No. 6, Nov. 2000, pp.
823,849.

5. J. A. Gunnels, F. G. Gustavson. A New Array Format for Symmetric and Triangular Matrices.
Para’04 Workshop on State-of-the-Art in Scientific Computing, J. J. Dongarra, K. Madsen, J.
Waśniewski, eds., Lecture Notes in Computer Science (this proceedings). Springer-Verlag,
2004.

6. J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A Set of Level 3 Basic Linear
Algebra Subprograms. ACM Transactions on Mathematical Software, 16(1):1-17, Mar. 1990.

7. The BlueGene/L Supercomputer Architecture. J. C. Sexton. Slides on Para04 website
8. C. Scholtes. A Method to Derive the Cache Performance of Irregular Applications on Machines

with Direct Mapped Caches. Slides on Para04 website
9. J. A. Gunnels, F. G. Gustavson, G. M. Henry, R. A. van de Geijn. A Family of High-

Performance Matrix Multiplication Algorithms. Para’04 Workshop on State-of-the-Art in
Scientific Computing, J. J. Dongarra, K. Madsen, J. Waśniewski, eds., Lecture Notes in Com-
puter Science, (this proceedings). Springer-Verlag, 2004.

10. J. A. Gunnels, F. G. Gustavson, K. Pingali, K. Yotov. A General Purpose Compiler that obtains
High performance for Some Common Dense Linear Algebra Codes. Slides on Para04 website

11. R. Clint Whaley, Antoine Petitet, Jack J. Dongarra. Automated Empirical Optimization of
Software and the ATLAS Project. LAWN Report #147, Sept., 2000, pp. 1-33.

12. D. J. Barnes, T. R. Hopkins. Applying Software Testing Metrics to Lapack. Para’04 Workshop
on State-of-the-Art in Scientific Computing, J. J. Dongarra, K. Madsen, J. Waśniewski, eds.,
Lecture Notes in Computer Science, (this proceedings). Springer-Verlag, 2004.

13. N. P. Drackenberg. A Matrix-type for Performance Portability. Para’04 Workshop on State-
of-the-Art in Scientific Computing, J. J. Dongarra, K. Madsen, J. Waśniewski, eds., Lecture
Notes in Computer Science, (this proceedings). Springer-Verlag, 2004.

Applying Software Testing Metrics to Lapack

David J. Barnes and Tim R. Hopkins

Computing Laboratory, University of Kent
Canterbury, Kent, CT2 7NF, UK

{d.j.barnes,t.r.hopkins}@kent.ac.uk

Abstract. We look at how the application of software testing metrics affects the
way in which we view the testing of the Lapack suite of software. We discuss how
we may generate a test suite that is easily extensible and provides a high degree
of confidence that the package has been well tested.

1 Introduction

Good software engineering practice decrees that testing be an integral activity in the
design, implementation and maintenance phases of the software life cycle. Software
that executes successfully on an extensive, well constructed suite of test cases provides
increased confidence in the code and allows changes to and maintenance of the code
to be closely monitored for unexpected side effects. An important requirement is that
the test suite evolves with the software; data sets that highlight the need for changes to
be made to the source code should automatically be added to the suite and new tests
generated to cover newly added features.

To gauge the quality of a test suite we require quantitative measures of how well it
performs. Such metrics are useful to developers in a number of ways; first, they determine
when we have achieved a well-defined, minimal level of testing; second, they can reduce
the amount (and, thus, the cost) of testing by allowing tests that fail to improve the metric
to be discarded and, third, they can provide a starting point for a search for new test cases.

In this paper we discuss the strategy that has been used for testing the Lapack suite
of linear algebra routines and we quantify the level of testing achieved using three test
metrics. Lapack is unusual amongst numerical software packages in that it has been
updated and extended over a substantial period of time and several public releases have
been made available in that time. It is thus possible to obtain a change history of the
code and thus identify maintenance fixes that have been applied to the software either
to remove errors or to improve the numerical qualities of the implementation.

In section 2 we discuss the testing metrics we are using and why we would consider
using more than one of these measurements. In section 3we describe the testing strategies
used by the Lapack package and discuss how the use of the proposed testing metrics
alters the way in which we test some parts of the software.

Section 4 presents our results and our conclusions are given in section 5.

2 Software Testing Metrics

Although some work has been done on the application of formal methods to provide the
basis for correctness proofs of linear algebra software and formal derivation of source

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 228–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Applying Software Testing Metrics to Lapack 229

code (see, for example, Gunnels [5]) the vast majority of numerical software in day-to-
day use has been produced by more traditional styles of software development techniques
that require extensive testing to increase confidence that it is functioning correctly.

One of the most potent and often underused tools available to assist with this process
is the compiler. Most modern compilers will perform a variety of static checks on the
source code for adherence to the current language standard (for example, ANSI For-
tran [9] and ANSI C [8]). Some (for example, Nag [14] and Lahey [11]) go further
and provide feedback on such things as undeclared variables, variables declared but
never used, variables set but never used, etc. Although these often only require cosmetic
changes to the software in some cases these messages are flagging genuine errors where,
for example, variable names have been misspelt.

Furthermore, with judicious use of compilation options, compilers will now produce
executable code that performs extensive run-time checks that would be exceedingly
difficult to perform in any other way. Almost all will check that array indexes are within
their declared bounds but many will go further and check, for example, that variables
and array elements have been assigned values before they are used. Such checks are
useful even where correctness proofs are available, since simple typographical errors
are common wherever human editing is involved in the implementation or maintenance
processes.

While it is true that such checking imposes a run-time overhead that would make the
executable code produced unusable for many applications where high-performance is
essential, it should be mandatory that these capabilities are used during the development,
testing and maintenance stages of any software project.

Thus our first requirement is that all the software compiles without any warning
messages and that no run-time errors are reported when running the test suite and all
the possible execution-time checks have been enabled for the compilation system being
used. For such a requirement to have teeth, we must have confidence that the test suite
thoroughly exercises the source code.

In order to determine the effectiveness of the testing phase, quantitative measure-
ments are required. Most of the basic testing metrics are white-box and aim to measure
how well the test data exercises the code. The simplest is to calculate the percentage of
basic blocks (linear sections of code) that are executed. While 100% basic-block cov-
erage is considered by many experts [10] to be the weakest of all coverage criteria its
achievement should always be regarded as an initial goal by testers. After all how can
we have confidence that software will perform as required if blocks of statements are
never executed during the testing process?

Confidence in the software can be further enhanced by extending the testing process
to provide more stringent forms of code coverage, for example, branch coverage and
linear code sequences and jumps (LCSAJ).

For branch coverage we attempt to generate data sets that will ensure that all
branches within the code are executed. For example, in a simple if-then-endif block we
seek data that will cause the condition to be both true and false. We note here that 100%
branch coverage implies 100% basic-block coverage. Thus in the example above basic-
block coverage would only require the test to be true in order to execute the statements

230 David J. Barnes and Tim R. Hopkins

within the if ; branch coverage testing would require data to be found that causes the test
to be false as well.

The LCSAJ metric measures coverage of combinations of linear sequences of basic
blocks, on the grounds that computational effects in a single basic block are likely to
have impacts on the execution behavior of immediately following basic blocks. Errors
not evident from the analysis of a single basic block may be revealed when executed
in combination with other basic blocks, in the same way that module integration test-
ing often reveals further errors beyond those revealed by individual module testing.
However, since some calculated LCSAJ combinations may be infeasible, for instance if
they involve contradictory condition values, a requirement of 100% LCSAJ coverage is
unreasonable and a more modest figure such as 60% would be more approachable.

For the testing metrics described above the amount and quality of test data required
to obtain a determined percentage of coverage will generally grow as we progress from
basic-block coverage, through branch coverage to LCSAJ testing. Even more thorough
testing procedures are available, for example, mutation testing [15] and MC/DC [6]. We
do not consider these in this paper.

To be able to obtain metrics data requires tool support. Some compilers provide
the ability to profile code execution (for example Sun Fortran 95 Version 7.1 [16] and
the NagWare tool nag profile [13]) although, typically, this only provides basic-block
coverage.

Tools which perform more sophisticated profiling tend to be commercial; we are
using the LDRA Fortran Testbed [12] to generate basic-block and branch coverage and
LCSAJ metrics.

3 Testing Lapack

The Lapack suite [1] consists of well over a thousand routines which solve a wide range
of numerical linear algebra problems. In the work presented here we have restricted our
attention to the single precision real routines thus reducing the total amount of code to
be inspected to a little over 25% of the total.

The first release of Lapack was in 1992. Part of the intention of the package’s de-
signers was to provide a high quality and highly-portable library of numerical routines.
In this, they have been very successful. Since its early releases, which were written in
Fortran 77, the software has been modernized with the release of Lapack 95 [2]. Lapack
95 took advantage of features of Fortran 95, such as optional parameters and generic
interfaces, to provide wrapper routines to the original Fortran 77 code. This exploited
the fact that parameter lists of some existing routines were effectively configured by the
types of their actual parameters, and that calls to similar routines with different preci-
sions could be configured using this type information. These wrappers provided the end
user with improved and more robust calling sequences whilst preserving the investment
in the underlying, older code. Finally, while the injudicious use of wrapper routines may
cause performance overheads, this is unlikely to be a problem for the high level user
callable routines in Lapack.

Comprehensive test suites are available for both the Fortran 77 and Fortran 95 ver-
sions of the package and these have provided an excellent starting point for the focus of

Applying Software Testing Metrics to Lapack 231

our work on the testing of the package. Indeed a core component of the Lapack package
is its testing material. This has been an important resource in assisting with the imple-
mentation of the library on a wide variety of platform/compiler combinations. However,
little, if any, measurement appears to have been made of how well the testing material
actually performs from a software engineering sense.

Finally, a package of this size and longevity is potentially a valuable source of data
for the evaluation of software quality metrics. Over the past 12 years there have been
eight releases of Lapack and this history has allowed us to track the changes made to
the software since its initial release. This has provided us with, among other things,
data on the number of faults corrected and this has enabled us to investigate whether
software quality metrics can be used to predict which routines are liable to require future
maintenance (see [3] for further details). It has also been possible to determine whether
the associated test suites have been influenced by the fault history.

The main purpose of the supplied testing material is to support the porting process.
An expectation of this process is that all of the supplied tests should pass without failures.
Following on from the work by Hopkins [7], we were keen to explore how safe this ex-
pectation was, by using state-of-the-art compile-time and run-time checks. We began by
executing all the supplied test software using a variety of compilers (including NagWare
Fortran 95, Lahey Fortran 95 and Sun Fortran 95) that allowed a large number of internal
consistency checks to be performed. This process detected a number of faults in both the
testing code and the numerical routines of the current release, including accessing array
elements outside of their declared bounds, type mismatches between actual arguments
and their definitions and the use of variables before they have been assigned values.
Such faults are all non-standard Fortran and could affect the final computed results. In
all, some 50 of the single precision real and complex routines were affected.

The test-rigs provided are monolithic in that each generates a large number of datasets
and routine calls. The number and size of the datasets used are controlled by a user
supplied configuration file with the majority of the data being generated randomly and
error exits tested separately (but still inside the monolithic drivers and outside of user
control). We used the default configuration file in our analysis. Results obtained from
each call are checked automatically via an oracle rather than against predefined expected
results. This approach has a number of disadvantages

1. there is no quantitative feedback as to how thorough the actual testing process is,
2. running multiple datasets in a single run masks problems that could be detected

easily (for example, via run-time checking) if they were run one at a time,
3. the use of a large number of randomly generated datasets is very inefficient in that,

from the tester’s point of view, the vast majority are not contributing to improving
any of the test metrics.

Having removed all the run-time problems mentioned above our next goal was to
reduce the number of tests being run (i.e., the number of calls being made to Lapack
routines) by ensuring that each test made a positive contribution to the metrics being
used. In order to preserve the effort already invested in testing the Lapack routines it
was decided to extract as much useful data as possible from the distributed package.
To do this we modified nag profile [13] so that it generated basic-block coverage data

232 David J. Barnes and Tim R. Hopkins

(profiles) for each individual call to an Lapack routine. We discovered that, for most of
the routines, we could obtain the same basic-block coverage using only a small fraction
of the generated test sets; see Section 4 for details. Scripts were constructed to extract
relevant datasets and to generate driver programs for testing each routine. In order to
keep these driver programs simple we only extracted legal data, preferring to run the
error exit tests separately; this ensured that such tests were generated for all the Lapack
routines.

The routines within the Lapack package split into two distinct subsets; those that
are expected to be called directly by the user of the package and those that are only
envisioned as being called internally and not described in the user manual. The testing
strategy currently employed by the Lapack 77 test suite actually goes further and creates
first and second class user callable routines. For example, the testing of the routine
SGBBRD is piggy-backed onto the data used in the testing of a more general routine.
This leads to 13 out of the 111 basic blocks in SGBBRD being untested; of these 11 were
concerned with argument checking for which no out-of-bounds data were provided as
it was not treated as a first class citizen — such data had already been filtered out by its
caller. The other two were in the main body of code. The data used by the test program
was generated from a standard data file that defines the total bandwidth. This routine
also requires the number of sub- and super- diagonals to be specified and this pair of
values is generated from the total bandwidth value. Unfortunately the method fails to
produce one of the special cases.

However there is a deeper testing problem revealed by this example. When testing
we usually generate data which constitutes a well-defined and well documented, high
level problem (for example, a system of linear equations), we call the relevant solver
and then check the computed results. We assume that it is relatively straightforward to
perform checking at this level of problem definition. But, having run enough data sets to
obtain 100% basic-block coverage of the user callable routine we often find that one of
the internally called routines has a much lower coverage. The problem now for the tester
is can they actually find high level user data that will provide the required coverage in
the internal routines? In many cases the answer will be no. For example, when using
many of the level 1 Blas routines the only possible stride value may be one; no data to
the higher level routines will then test the non-unit stride sections of the Blas code.

Where it is impossible for user callable routines to fully exercise internal routines,
there are two possibilities. Either require full coverage to be demonstrated through unit
tests that are independent of higher level calls, or supplement the higher level calls with
additional unit test data for the lower level calls. The former approach is less fragile than
the latter, in that it retains complete coverage even in the face of changes to the data sets
providing coverage of the higher level routines. On the other hand, it conflicts with the
goal of trying to minimise duplicate and redundant coverage.

Over the course of its history, Lapack has undergone a number of revisions, which
have included the usual modifications typical of a package of this size: addition of new
routines, bug fixes, enhancements of routines, minor renaming, commentary changes,
and so on. Somewhat surprising is that the test coverage does not always appear to have
been extended to reflect these changes. For instance between version 2.0 and 3.0, several
changes were made to SBDSQR, such as the section concerned with QR iteration with

Applying Software Testing Metrics to Lapack 233

zero shift, but many of these changes remain untested by the suite, as they were before
the modification.

4 Results

Out of the 316 single precision routines (s*.f) executed when running the Lapack 77
testing software 14,139 basic blocks out of a total of 16,279 were executed. This rep-
resents a basic-block coverage metric of 86.9% which is extremely high for numerical
software; many packages tested achieve values closer to 50%. Of the approximately
2,000 unexecuted blocks many are due to the lack of coverage of argument checking
code. However, there are still a substantial number of statements concerned with core
functionality that require data sets to be provided at a higher problem definition level.

Ideally we would like each test to count; each test should cause basic blocks to
be executed that no other test exercises. To obtain some idea of the possible degree of
redundancy of the supplied tests we looked at individual execution profiles. We define a
profile as a bit string that shows the basic blocks executed by each call to a routine; i.e.,
the string contains a one if the block has been executed and zero if it has not. Note that
we cannot extract any path information from this.

The Lapack 77 test cases cause almost 24 million subroutine calls to be made (note
that this does not include low level routines like LSAME which was called over 150
million times.) The most called routine was SLARFG which accounted for over 1.7
million calls. This routine illustrates the difficulty in obtaining complete coverage as a
side effect of calling higher level routines in that out of the 12 basic blocks that make
up this routine one still remained unexecuted.

More telling was that out of more than 20 million profiles obtained less than ten
thousand were distinct. Note that it is not the case that we can reduce the number of
subroutine calls down to 10,000 since repeated profiles will occur in higher level routines
to generate different profiles within lower level routines and vice versa. However it
is clear that we should be able to reduce the total number of tests being performed
substantially without reducing basic-block coverage. In SLARFG only 3 distinct profiles
were generated.

SSBGVD provides a good illustration of the value of the combined compile-time
and run-time approach we have been discussing. It has only 2 distinct profiles from the
Lapack 77 test cases, and analysis of the basic-block coverage reveals that neither covers
cases where N has a value greater than one. However, the Lapack 95 tests do exercise
those cases and reveal a work-array dimension error because of the incorrect calculation
of LWMIN.

The original 1.3 million data sets generated were reduced to only 6.5K, producing
an equivalent basic-block coverage of the top level routines. The data extraction process
was not perfect in that we only extracted data which generated unique execution profiles
for the user callable routines. We would thus expect a reduction in the overall coverage
due to the fact that two identical profiles to a high level routine generated distinct profiles
at a lower level.

Having instrumented the Lapack routines using LDRA Testbed the driver programs
were run using all the extracted datasets. Our experience of using this package was that

234 David J. Barnes and Tim R. Hopkins

the initial effort of instrumenting and running the bulk of the reduced data to analyse the
execution histories took several overnight runs on a 1GHz Pentium 3 with 256K RAM.
Adding new datasets is then relatively cheap taking just a few minutes per dataset. We
obtained the following coverage metric values with the reduced data sets

1. basic-block coverage: 80%
2. branch coverage: 72%
3. LCSAJ: 32%

These results show that we have lost about 7% coverage of the basic blocks in the
secondary level routines. At this level it is worthwhile upgrading our extraction process
in order to associate the secondary level profiles with the top level data sets that generated
them. This will allow the checking of results to take place at a higher level. It is still
most likely that we will not be able to achieve 100% basic-block coverage without
making independent calls to second level routines, although, in this case, there is no
way of knowing whether such calls are possible using legal data at the user callable
routine level. Additionally it is possible that some paths and blocks of code can never
be executed; in some instances it may be possible to identify dead code and remove it.
However there may be circumstances where unexecuted code is the result of defensive
programming and in these cases the statements should certainly not be removed. It would
be useful (and possibly interesting) if the user could be prompted to submit data causing
execution of these sections of code for inclusion in the test data.

The achieved branch coverage is lagging a further 8% behind the basic-block cover-
age and the LCSAJ metric is well below the recommended level of 60%. Further work
is needed with individual routines where LCSAJ coverage is particularly low from the
reduced datasets in order to determine whether it is significantly better with the full
complement of randomly generated datasets.

While most of the work we have reported here has focussed on the Lapack 77 test-
ing strategy, we are also actively looking at the Lapack 95 test routines in order to
compare the coverage they provide. It is interesting to note that the addition of compile-
time and run-time checks to the test routines and example programs supplied with that
version of the package reveal many problems simlar to those thrown up with the 77
version: unchecked use of optional arguments (SGELSD F90); deallocation of unallo-
cated space (SSPGVD F90); use of an incorrect-precision routine (SCHKGE); incorrect
array sizes (LA TEST SGBSV, SERRGE and many others); use of literals as INOUT pa-
rameters (SERRVX); use of unset OUT parameters (LA TEST SGECON); incorrect in-
tent (LA TEST SGELSS); incorrect slicing (LA TEST SGESDD); floating-point overflow
(LA TEST SPPSV).

5 Conclusions

Particular testing strategies should be chosen to fit specific goals and it is important to
appreciate that the existing test strategy of the Lapack suite is strongly influenced by the
desire to check portability rather than code coverage. A feature of the existing testing
strategy is to batch up tests in two ways

– using multiple data sets on a single routine

Applying Software Testing Metrics to Lapack 235

– using similar data on multiple routines.

It was discovered that the very act of batching up tests allowed some errors to be masked
— typically through uninitialised variables used in later tests having been set by earlier
tests. Thus, while it requires far more organization, there are very definite advantages to
be gained from running each test separately. An approach using separate tests also sup-
ports the incremental approach to improving testing metrics along with the introduction
of additional tests whenever a routine is enhanced, or a new error is discovered and then
corrected. Such additional tests serve as regression tests for future releases.

The need for dealing with a large number of test cases has led us to develop a more
flexible testing environment which allows for the easy documentation and addition of
test cases while keeping track of the code coverage obtained. Ideally, we would aim to
extend the existing test suite in order to achieve 100% basic-block coverage as well as
increasing the metric values obtained for branch and conditional coverage. Our major
problem at present is finding data that will exercise the remaining unexecuted statements.
The calling structure of the numerical routines is hierarchical and, in many cases it is
clear that unexecuted code in higher level routines would only be executed after the
failure of some lower level routine. It is not clear whether such situations are actually
known to occur or if the higher level code is the result of defensive programming. In the
former case it might be useful to issue a message encouraging the user to submit such
data to the project team. While defensive programming practices are obviously not to be
discouraged, they can potentially confuse the picture when considering how thorough a
test suite is in practice and defensive code should be well documented within the source
code.

We have shown how the use of software testing metrics may be used to provide a
quantitative measure of how good the testing process actually is as a confidence boosting
measure of program correctness.

We have set up a framework for testing the Lapack suite of routines in terms of
a highly targetted reduced collection of datasets. Even so we are still some way from
achieving 100% basic-block coverage which is considered to be the weakest coverage
metric. Indeed Beizer [4] has argued that even if complete branch coverage is achieved
then probably less than 50% of the faults left in the released software will have been
found. We will be endeavouring to increase the basic-block coverage as well as improving
the condition and branch coverage and LCSAJ metrics.

References

1. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: users’ guide.
SIAM, Philadelphia, third edition, 1999.

2. V. A. Barker, L. S. Blackford, J. Dongarra, J. Du Croz, S. Hammarling, M. Marinova,
J. Waśniewski, and P. Yalamov. LAPACK95: Users’ Guide. SIAM, Philadelphia, 2001.

3. D.J. Barnes and T.R. Hopkins. The evolution and testing of a medium sized numerical package.
In H.P. Langtangen, A.M. Bruaset, and E. Quak, editors, Advances in Software Tools for
Scientific Computing, volume 10 of Lecture Notes in Computational Science and Engineering,
pages 225–238. Springer-Verlag, Berlin, 2000.

236 David J. Barnes and Tim R. Hopkins

4. B. Beizer. Software System Testing and Quality Assurance. Van Nostrand Reinhold, New
York, US, 1984.

5. John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:
Formal Linear Algebra Methods Environment. ACM Transactions on Mathematical Software,
27(4):422–455, December 2001.

6. Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson. A practical
tutorial on modified condition/decision coverage. Technical Report TM-2001-210876, NASA,
Langley Research Center, Hampton, Virginia 23681-2199, May 2001.

7. Tim Hopkins. A comment on the presentation and testing of CALGO codes and a remark on
Algorithm 639: To integrate some infinite oscillating tails. ACM Transactions on Mathematical
Software, 28(3):285–300, September 2002.

8. ISO, Geneva, Switzerland. ISO/IEC 9899:1990 Information technology - Programming Lan-
guage C, 1990.

9. ISO/IEC. Information Technology – Programming Languages – Fortran - Part 1: Base Lan-
guage (ISO/IEC 1539-1:1997). ISO/IEC Copyright Office, Geneva, 1997.

10. C. Kaner, J. Falk, and H.Q. Nguyen. Testing Computer Software. Wiley, Chichester, UK,
1999.

11. Lahey Computer Systems, Inc., Incline Village, NV, USA. Lahey/Fujitsu Fortran 95 User’s
Guide, Revision C edition, 2000.

12. LDRA Ltd, Liverpool, UK. LDRA Testbed: Technical Description v7.0, 2000.
13. Numerical Algorithms Group Ltd., Oxford, UK. NAGWare Fortran Tools (Release 4.0), Sep-

tember 1999.
14. Numerical Algorithms Group Ltd., Oxford, UK. NAGWare f95 Compiler (Release 5.0), No-

vember 2003.
15. A.J. Offut, A. Lee, G. Rothermel, R.H. Untch, and C. Zapf. An experimental determination

of sufficient mutant operators. ACM Transactions on Software Engineering Methodology,
5(2):99–118, April 1996.

16. Sun Microsystems , Inc., Santa Clara, CA. Fortran User’s Guide (Forte Developer 7), Revision
A edition, May 2002.

A Matrix-Type for Performance–Portability

N. Peter Drakenberg

Department of Microelectronics and Information Technology
The Royal Institute of Technology

Stockholm, Sweden

Abstract. When matrix computations are expressed in conventional program-
ming languages, matrices are almost exclusively represented by arrays, but arrays
are also used to represent many other kinds of entities, such as grids, lists, hash ta-
bles, etc. The responsibility for achieving efficient matrix computations is usually
seen as resting on compilers, which in turn apply loop restructuring and reordering
transformations to adapt programs and program fragments to target different ar-
chitectures. Unfortunately, compilers are often unable to restructure conventional
algorithms for matrix computations into their block or block-recursive counter-
parts, which are required to obtain acceptable levels of perfomance on most current
(and future) hardware systems.
We present a datatype which is dedicated to the representation of dense matrices.
In contrast to arrays, for which index-based element-reference is the basic (prim-
itive) operation, the primitive operations of our specialized matrix-type are com-
position and decomposition of/into submatrices. Decomposition of a matrix into
submatrices (of unspecified sizes) is a key operation in the development of block
algorithms for matrix computations, and through direct and explicit expression of
(ambiguous) decompositions of matrices into submatrices, block algorithms can
be expressed explicitly and at the same time the task of finding good decompo-
sition parameters (i.e., block sizes) for each specific target system, is exposed to
and made suitable for compilers.

1 Introduction

In current practice, computational software needs to be more or less extensively adapted
to and tuned for each kind of target platform it will run on in order to satisfy per-
formance expectations. In contrast, performance–portable software would achieve high
performance on different kinds of target platforms without human involvement in target-
specific tuning and optimization, and is therefore clearly desirable.

In mainstream software development, adapting and tuning programs to target plat-
forms is seen as the responsibility of compilers, and significant research efforts have been
devoted to the automatic application of reordering and restructuring program transforma-
tions by compilers (e.g., see [1,2] and references therein). Unfortunately, such methods
are unable to derive important rephrasings of key algorithms in matrix computations [3,4]
and have for the most part also not been successful in automatic parallelization for hard-
ware systems with distributed memory. One of the main reasons behind these difficulties
is that in typical programming languages it is not possible to express how to perform a

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 237–246, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

238 N. Peter Drakenberg

computation, with sufficient ambiguity to allow compilers to adapt such computations
in different ways to systems with different hardware characteristics.

As a concrete example to illustrate our notion of ambiguity as it pertains to dense
matrices, we consider the operation of multiplying matrices. As is well known, efficient
matrix computations rely on so-called block-algorithms, which perform their computa-
tions on appropriately sized sub-matrices rather than complete matrices. For conventional
matrix multiplication:

do i = 1,M
do j = 1,N

do k = 1,P
C(i,j) = C(i,j) + A(i,k) * B(k,j)

enddo
enddo

enddo

(1.1)

the transformation into a corresponding block algorithm:

do it = 1,M step T1
do jt = 1,N step T2

do kt = 1,P step T3
do i = it,it+l-1

do j = jt,jt+l-1
do k = kt,kt+l-1

C(i,j) = C(i,j) + A(i,k) * B(k,j)
end do

end do
end do

end do
end do

end do

(1.2)

is known as loop-tiling or unroll-and-jam [1,2] and is applied to simply structured pro-
gram fragments, such as matrix multiplication, by many restructuring compilers (e.g.,
see [5,6]). However, the block algorithms of choice for QR factorization [7] and LU fac-
torization with partial pivoting cannot be derived through program restructuring transfor-
mations [3,4]. In practice, therefore, authors of programs with portability requirements
that exclude the option of maintaining different program sources for different target ar-
chitectures are faced with the alternatives of either writing code of the kind shown in
(1.1) and rely on compiler transformations to meet performance requirements, or writing
code of the kind shown in (1.2) and decide upon fixed values for T1,T2,T3 which will lead
to sub-optimal performance on many systems and/or very poor performance for some
matrix sizes [8]. The alternative of calculating suitable values for T1,T2,T3 at run-time
has also been investigated [9], but is rarely if ever adopted in practice because of the
difficulty of finding appropriate and fast functions that compute suitable such values.

2 A Dedicated Dense–Matrix Type

Using arrays to implement matrices, as is usually the only reasonable alternative in
most programming languages, has the drawbacks that it is difficult or impossible for

A Matrix-Type for Performance–Portability 239

compilers to reliably and precisely infer storage demands and usage across non-trivial
program fragments (as witnessed by the work-region arguments of LAPACK [10] func-
tions/subroutines), and that as mentioned above, there are no natural means of express-
ing block matrix algorithms abstractly (i.e., without explicitly specifying block sizes).
In addition, the use of arrays has its usual performance issues of possibly needing costly
bounds checking on indices to ensure correctness and that the program analyses needed
for aggressive loop and array usage optimizations require very simply structured pro-
gram fragments and simple array index expressions [11,12,13]. The option of explicitly
calculating block-sizes at run-time, mentioned above, will frequently inhibit both elim-
ination of array bounds checking and array dependence analysis as it requires forms of
analyses which are usually not implemented in compilers (e.g., [12]).

In contrast, the matrix-type which is the subject of this paper and which we now
describe, does not as its primary function provide a mapping from indices to values, nor
is direct access to matrix elements through index values a “built-in” operation of these
matrices. Instead, matrix elements are accessed by decomposition of matrices, similarly
to how elements of lists are accessed in functional languages such as Haskell [14] and
Standard ML [15]:

function ddot: (DM[1,n], DM[n,1]) --> Double Real is
ddot(<a>,) = a * b
ddot((1,2)::<a>|A:[1,*], (2,1)::|B:[*,1]) =

let d = ddot(A,B) in a*b + d
end function

Despite the conceptual similarities with list-types illustrated by the example, matrices
of the type being described are very different entities from lists. First of all and unlike
lists, matrices are always two-dimensional (row- and column-vectors are seen as special
cases of m × n matrices for which m = 1 and n = 1, respectively), and may be
composed and/or decomposed with equal efficiency from all four (4) sides. Secondly, in
order to ensure that otherwise potentially costly matrix composition- and decomposition-
operations really can be performed efficiently, “behavioral” constraints are imposed on
all program fragments that use or define (i.e., create) matrices. These constraints read
as follows:

– More than one reference to the same matrix or to shared/common sub-matrices are
never allowed to simultaneously leave a scope of definitions, such aslet-constructs
or function definitions.

– For each function that takes matrix argument(s) and yields matrix result(s), the
dimensions (i.e., size) of each result matrix must be an affine (i.e., linear+constant)
function of the dimensions of argument matrices that is inferable at compile-time.

– For all matrices involved in a composition, which do not have constant dimensions,
it must be possible to preallocate memory for all run-time instances so as to let all
compositions be performed without any copying of matrix elements.

For ordinary arrays, constraints corresponding to those above would impose sufficiently
strong limitations as to render such arrays essentially useless for everything except pos-
sibly dense matrix computations. Furthermore, finding ways to reliably and reasonably
impose such constraints on uses of ordinary arrays would be fairly difficult.

240 N. Peter Drakenberg

In addition to the patterns for decomposition of matrices shown above and their
obvious extension to general m× n matrices (e.g., using a pattern such as

(2,2)::<a>|b:[1,*]|c:[*,1]|D:[*,*],

to decompose an m × n matrix into a scalar a, row-vector b, column-vector c and an
(m − 1) × (n − 1) matrix D), it is rather natural to permit ambiguous decompositions
such as

(2,2)::A:[*,*]|B:[*,*]|C:[*,*]|D:[*,*],

according to which an m×n matrix is decomposed into the submatrices A, B, C, and D,
such that mA = mB, mC = mD, nA = nC, nB = nD and mA+mC = m, nA+nB = n. The
constraints on matrix usage described above ensure that the dimensions of result matrices
of functions remain the same for all specific choices of decompositions that are consistent
with the ambiguous decomposition patterns used, and that storage for such result matrices
can be preallocated ahead of time. Clearly, ambiguous matrix decompositions make it
possible to explicitly express block matrix algorithms while leaving block-sizes open
for compilers to select so as to best suit each specific hardware target.

Before looking more closely at how matrix algorithms would be expressed using the
just described matrix-type and decomposition constructs, we mention that the meanings
of the latter are not really intuitively and immediately obvious when written as plain text.
Current integrated development environments (IDEs), such as for example Eclipse and
NetBeans, could clearly be extended to support entry and display of matrix expressions
in closer agreement with established typographical conventions. For this reason, we
henceforth use bold capital letters as names of m × n matrices for arbitrary m,n ≥ 1,
bold non-capital letters as names of row- and column-vectors, and non-bold letters as
names of scalar values. The decomposition patterns

(2,2)::<a>:[1,1]|b:[1,*]|c:[*,1]|D:[*,*]

and

(2,2)::A:[*,*]|B:[*,*]|C:[*,*]|D:[*,*]

are presented/displayed as [
<a> bbb

ccc DDD

]
and

[
AAA BBB

CCC DDD

]
,

respectively, for which the intended meanings when used both as decomposition patterns
composition expressions, are intuitively obvious.

3 Expressing Matrix Computations

Our first example of a matrix algorithm expressed using the matrix-type described in the
previous section is used (by other functions) to compute the Cholesky factorization of
small matrices and is defined as follows:

A Matrix-Type for Performance–Portability 241

function dpotf2U: (DM[*,*], DM[*,*], DM[*,*]) --> DM[*,*] is

dpotf2U([<e>], xxx, RRR) =
let t = e - ddotTN(xxx,xxx) ;

zzzt = zeros(transpose(xxx))

in
RRR xxx

zzzt <
√
t>

dpotf2U(
<e> vvvt

www MMM
, xxx AAA , RRR Ê) =

let t = e - ddotTN(xxx,xxx) ;
yyy = dgemvT(-1.0, AAA, xxx, 1.0, vvvt) ;
uuut = dscal(1.0/t, transpose(yyy)) ;
zzzt = zeros(transpose(xxx))

in dpotf2U(MMM,
AAA

uuut
,

RRR yyy

zzzt <t>
)

end function

The third argument of dpotf2 is used as an accumulator of partial results, and is
the main contributor to the result returned when the first two arguments of dpotf2
is a scalar and a column vector, respectively. In the definition of the dpotf2 func-
tion we have used superscripted letters in names to add clarity (i.e., zzzt, vvvt and uuut are
all row-vectors) and so as not to prevent the matrix usage constraints from being en-
forced. Specifically, character arguments to BLAS functions/subroutines which typically
have far-reaching implications on the actual computations performed (e.g., by indicating
whether matrix arguments should be transposed or not), and therefore such character
arguments have been incorporated into the names of functions by using superscript let-
ters (e.g., dgemvT and dgemvN, within which the argument matrix is transposed and
not transposed, respectively, when forming matrix–vector products). With the exception
of zeros, transpose and the use of superscript letters in the manner just described,
all functions mentioned in the definition of dpotf2 correspond to identically named
BLAS functions/subroutines [16,17,18].

The dpotf2 function would not be suitable to export from a linear algebra package,
as it may easily be mistakenly used in erroneous ways. Figure 1 instead shows several
different definitions of functions for Cholesky factorization that are more suitable to
export, and of which one (c) is a block-algorithm that is expressed using ambiguous
decompositions. The same conventions as used in the definition of dpotf2 regarding
superscript letters and names of BLAS functions have been used in Figure 1, and in
addition four different variants of the ddot-function are assumed to exist for which
argument vectors are either transposed or untransposed, respectively, as indicated by the
superscripted letters that follow ddot in their names.

4 Experimental Evaluation

The current version of our compiler translates a syntactically less pleasant but other-
wise identical language to that described above, by the name of core-Aslan, into the IF1
representation [20] of the Optimizing Sisal compiler (OSC). The advantages gained by

242 N. Peter Drakenberg

function cholesky: (DM[*,*]) --> (DM[*,*]) is

cholesky([<a>]) = [<
√
a>]

cholesky(
AAA bbb

ccct <s>
) =

letRRR = cholesky(AAA)
vvv = trsvUNN(RRR,bbb)
t = s - ddotTN(vvv,vvv)
zzzt = zeros(ccct)

in
RRR vvv

zzzt <
√
t>

end cholesky

(a) Plain (textbook) Cholesky factorization

function cholesky: (DM[*,*]) --> (DM[*,*]) is

cholesky([<a>]) = [<
√
a>]

cholesky(
<s> bbbt

ccc AAA
) =

let t = s - ddotNT(bbbt, bbbt)
uuut = dscal(1.0/t,bbbt)

in dpotf2U(AAA, uuut,[<t>])

end cholesky

(b) Pointwise Cholesky from LAPACK [10]

function cholesky: (DM[*,*]) --> (DM[*,*]) is

cholesky([<a>]) = [<
√
a>]

cholesky(
<s> bbbt

ccc AAA
) =

let t = s - ddotNT(bbbt, bbbt)
uuut = dscal(1.0/t,bbbt)

in dpotf2U([<t>], uuut, AAA)

cholesky(
AAA BBB

CCC DDD
) =

let UUU = cholesky(AAA)
VVV = trsmLUTN(1.0,UUU,BBB)
WWW = syrkUT(-1.0,VVV,1.0,DDD)
XXX = cholesky(WWW)
ZZZ = zeros(CCC)

in
UUU VVV

ZZZ XXX

end cholesky

(c) Block-recursive Cholesky factorization [19]

Fig. 1. Pretty-printed forms of three algorithms for Cholesky factorization

A Matrix-Type for Performance–Portability 243

generating IF1-format representations of programs are that the analyses and optimiza-
tions performed by OSC, such as update-in-place analysis, copy elimination, and array
pre-allocation [21] are applied to our programs without us having had to implement
these analyses and optimizations.

We have expressed the subroutinesdgemm,dsyrk,dgemv anddtrsm from level-2
(only dgemv) and level-3 BLAS using the matrix-type, composition and decomposition
constructs, and other language elements described above. The performance achieved by
these core-Aslan implementations was subsequently measured and compared against
that achieved by the corresponding subroutines from the hardware vendor’s (SGI) hand-
tuned BLAS library.

Fig. 2. Execution times of core-Aslan (black lines) and vendor hand-tuned (gray lines) implemen-
tations of the BLAS operations dgemm, dsyrk, dgemv and dtrsm

The diagrams in Figure 2 show execution times vs. matrix dimensions, measured on an
SGI Octane2 system1, for our core-Aslan implementations of dgemm, dsyrk, dgemv
and dtrsm (black lines) and corresponding measurements for the dgemm, dsyrk,
dgemv and dtrsm functions from the hardware vendor’s hand-tuned implementation

1 The machine that was used for our measurements was equipped with 2 R12000 processors
with operating frequencies of 400 MHz, each of which has a 32 kbyte 2-way set-associative L1
data cache, a 32 kbyte 2-way set-associative L1 instruction cache, and a 2 megabyte 2-way set-
associative unified L2 cache. The two processors of the system share a 1 Gbyte main memory.
No attempts towards parallel or multithreaded execution were made, and at all times the 2nd
processor was unused with the exception of possible kernel/daemon-process activity.

244 N. Peter Drakenberg

of the BLAS-library (gray lines). As can be seen in Figure 2, the executable code generated
from our more abstractly expressed BLAS functions is for the most part highly compet-
itive with that of the presumably thoroughly optimized and tuned versions provided by
the hardware vendor. The most notable case of worse performance (longer excecution
times) for the core-Aslan implementation than for the hardware vendor’s correspond-
ing BLAS subroutine is observed for dgemv. However, as mentioned by Agarwal et
al. in [22] and others, high-performance matrix–vector multiplication relies heavily on
data-prefetching, but current compiler back-ends (which also the core-Aslan compiler
depend on at present), are for the most part not able to insert prefetch operations with
sufficient accuracy not to disturb the reuse of data already present in cache, and for this
reason compiler/code-generator directives and/or flags to enable prefetching have not
been used.

5 Related Work

To our knowledge, only programming languages embedded in numerical and symbolic
computation environments, such as MATLABTM, MapleTM, etc. have provided specific
matrix-types. However, these matrix-types have been designed primarily to be reasonably
convenient for interactive use rather than to promote and ensure efficiency in a compiled
context. In contrast to the situation for matrix computations, the languages FIDIL [23],
ZPL [24] and Titanium [25] all have types suitable for computational solution of partial
differential equations.

In addition to the systems and languages mentioned above, languages and sys-
tems have been developed to support systematic design and implementation of high-
performance matrix algorithms for cross-platform deployment. However, these lan-
guages and/or systems are either essentially languages for specification rather than
implementation of algorithms [26], or systems that search the space of target-system re-
lated tuning parameters (e.g., software pipelining, prefetching, register blocking, cache
blocking, etc., parameters) using a generate-and-measure methodology (a.k.a. empiri-
cal optimization) to find optimal combinations of parameter values [27]. None of these
systems depart significantly from the model of matrices provided by widely used pro-
gramming languages and the issue of how to reasonably expose tuning parameters to
compilers is not addressed.

6 Conclusions

We have demonstrated that dense matrix computations can be expressed at higher levels
of abstraction than usual and still achieve highly competitive performance. We show
that through careful design of a specific data-type for dense matrices it is possible to
express dense matrix computations so that target dependent tuning parameters can be
identified and understood by compilers, and compilers can thereby potentially maintain
performance–portabilityof such software across a wide range of different target systems,
without any need for manual target-specific tuning.

Having a distinct type for dense matrices in languages intended for scientific com-
putations has the advantages that it is feasible to impose stricter usage constraints and

A Matrix-Type for Performance–Portability 245

these in turn enable more precise and extensive analyses and optimization of run-time
behavior. Furthermore, it becomes feasible also in practice to use different storage lay-
outs for different kinds of aggregate data, and much more natural to provide distinct and
specialized types for sparse matrices and other kinds of irregular data whose proper-
ties and run-time behaviors are otherwise very difficult (i.e., effectively impossible) for
compilers to determine.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Dependence-
Based Approach. Morgan Kaufmann Publishers, San Francisco, California (2002)

2. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley, Redwood
City, California (1996)

3. Carr, S., Kennedy, K.: Compiler blockability of numerical algorithms. In: Proc. Supercom-
puting’92, Minneapolis, Minn. (1992) 114–124

4. Carr, S., Lehoucq, R.B.: Compiler blockability of dense matrix factorizations. ACM Trans.
Math. Softw. 23 (1997) 336–361

5. Sarkar, V.: Automatic selection of high-order transformations in the IBM XL FORTRAN
compilers. IBM J. Res. Develop. 41 (1997) 233–264

6. Wolf, M., Maydan, D., Chen, D.K.: Combining loop transformations considering caches and
scheduling. In: Proc. 29th IEEE/ACM Intl. Symp. on Microarchitecture, Paris, France (1996)

7. Schreiber, R., Van Loan, C.: A storage efficient WY representation for products of householder
transformations. SIAM J. Scientific and Statistical Computing 10 (1989) 53–57

8. Lam, M.S., Rothberg, E.E., Wolf, M.E.: The cache performance and optimizations of blocked
algorithms. In: Proc. 4th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems. (1991) 63–74

9. Coleman, S., McKinley, K.S.: Tile size selection using cache organization and data layout.
In: Proc. Conf. on Prog. Lang. Design and Implementation, La Jolla, CA (1995) 279–290

10. Anderson, E., et al.: LAPACK Users’ Guide. 2nd edn. SIAM, Philadelphia, PA 19104-2688
(1995)

11. Feautrier, P.: Dataflow analysis of scalar and array references. Int. J. Parallel Prog. 20 (1991)
23–53

12. Maslov, V., Pugh, W.: Simplifying polynomial constraints over integers to make dependence
analysis more precise. Technical Report UMIACS-CS-TR-93-68.1, Dept. of Computer Sci-
ence, University of Maryland, College Park, MD 20742 (1994)

13. Barthou, D., Collard, J.F., Feautrier, P.: Fuzzy array dataflow analysis. J. Parall. Distr. Comput.
40 (1997) 210–226

14. Peyton Jones, S., Hughes, J. (Eds.): Report on the programming language Haskell 98.
http://www.haskell.org/report (1998)

15. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML. Revised
edn. The MIT Press, Cambridge, Massachusetts (1997)

16. Lawson, C., Hanson, R., Kincaid, R., Krogh, F.: Basic linear algebra subprograms for Fortran
usage. ACM Trans. Math. Softw. 5 (1979) 308–323

17. Dongarra, J., Du Croz, J., Hammarling, S., Hansson, R.: An extended set of Fortran basic
linear algebra subprograms. ACM Trans. Math. Softw. 14 (1988) 1–17, 18–32

18. Dongarra, J., Du Croz, J., Duff, I., Hammarling, S.: A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Softw. 16 (1990) 1–17

19. Gustavson, F.G.: Recursion leads to automatic blocking for dense linear-algebra algorithms.
IBM J. Res. Develop. 41 (1997) 737–755

246 N. Peter Drakenberg

20. Skedzielewski, S., Glauert, J.: IF1 An intermediate form for applicative languages. Technical
Report M-170, Lawrence Livermore National Laboratory, Livermore, CA 94550 (1985)

21. Cann, D.C., Evripidou, P.: Advanced array optimizations for high performance functional
languages. IEEE Trans. Parall. Distr. Sys. 6 (1995) 229–239

22. Agarwal, R.C., Gustavson, F.G., Zubair, M.: Improving performance of linear algebra al-
gorithms for dense matrices, using algorithmic prefetch. IBM J. Res. Develop. 38 (1994)
265–275

23. Hilfinger, P.N., Colella, P.: FIDIL: A language for scientific programming. In: R. Grossman,
editor, Symbolic Computing: Applications to Scientific Computing, Society for Industrial and
Applied Mathematics, Philadelphia (1989), 97–138

24. Lin, C.: ZPL Language reference manual. Technical Report 94-10-06, Dept. of Computer
Science, University of Washington (1994)

25. Yelick, K. et al., Aiken A.: Titanium: A high-performance Java dialect. Concurrency: Practice
and Experience 10 (1998) 825–836

26. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: Flame: Formal linear algebra
methods environment. ACM Trans. Math. Softw. 27 (2001) 422–455

27. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of software and
the ATLAS project. Parallel Computing 27 (2001) 3–35

28. Demmel, J.W., Dongarra, J.J., et al.: Self-adapting linear algebra algorithms and software.
Proc. IEEE, Special issue on program generation, optimization, and adaptation (2005) to
appear. See also http://bebop.cs.berkeley.edu/pubs/ieee sans.pdf

A New Array Format for Symmetric
and Triangular Matrices

John A. Gunnels and Fred G. Gustavson

IBM T.J. Watson Research Center, Yorktown Heights NY 10598, USA

Abstract. We introduce a new data format for storing triangular and symmetric
matrices called HFP (Hybrid Full Packed). The standard two dimensional arrays
of Fortran and C (also known as full format) that are used to store triangular and
symmetric matrices waste half the storage space but provide high performance
via the use of level 3 BLAS. Packed format arrays fully utilize storage (array
space) but provide low performance as there are no level 3 packed BLAS. We
combine the good features of packed and full storage using HFP format to obtain
high performance using L3 (Level 3) BLAS as HFP is totally full format. Also,
HFP format requires exactly the same minimal storage as packed storage. Each
LAPACK full and/or packed symmetric/triangular routine becomes a single new
HFP routine. LAPACK has some 125 times two such symmetric/triangular routines
and hence some 125 new HFP routines can be produced. These new routines are
trivial to produce as they merely consist of calls to existing LAPACK routines and
Level 3 BLAS. Data format conversion routines between the conventional formats
and HFP are briefly discussed as these routines make existing codes compatible
with the new HFP format. We use the LAPACK routines for Cholesky factorization
and inverse computation to illustrate this new work and to describe its performance.
Performance of HPF verses LAPACK full routines is slightly better while using
half the storage. Performance is roughly one to seven times faster for LAPACK
packed routines while using the same storage. Performance runs were done on the
IBM Power 4 using only existing LAPACK routines and ESSL level 3 BLAS.

1 Introduction

We introduce a new matrix storage format called HFP (Hybrid Full Packed). We will
cover six points about current LAPACK [1999] and HFP [2004] storage formats as well
as seeing how general the HFP format is for LAPACK routines that operate on symmetric
/ triangular matrices.

Full format triangular and symmetric arrays waste half the storage but provide high
performance for LAPACK via the use of level 3 BLAS. By full format we mean the
standard 2D arrays of Fortran and C that are used by LAPACK routines to store these
matrices. Packed format arrays fully utilize storage but provide low performance as there
are no level 3 packed BLAS. An LAPACK example of this is its routines DPOTRF /
DPPTRF which compute the Cholesky factorization of a positive definite symmetric
matrix. This paper will demonstrate that it is possible combine the strong feature of both
full and packed format by replacing both of them with the new HFP format.

HFP format is totally full format and hence it is possible to obtain high performance
using L3 (Level 3) BLAS. Additionally HFP format requires exactly NT = N(N+1)/2

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 247–255, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

248 John A. Gunnels and Fred G. Gustavson

storage locations to represent an order N symmetric and/or triangular matrix. Thus an
LAPACK full and/or packed symmetric/triangular routine becomes a single new HFP
routine. There are some 125 times two such LAPACK symmetric/triangular routines and
hence some 125 new routines can be produced.

The HFP format is possible because two orderN isosceles triangles can be rearranged
to form a rectangle of size N by N + 1 or because an order N isosceles triangle and an
order N + 1 isosceles triangle can be rearranged to form a square of order N + 1. Here
an order N isosceles triangle is made up of NT unit squares.

Let A be an order N symmetric / triangular matrix. In Section 2 we give an example
where N is odd and N is even. Covering the odd and even cases of N for both UPLO
= ‘U’ and ‘L’ is general. However, because of symmetry there can be different ways to
define HFP format. Our definition is essentially independent of uplo as are the example
Cholesky and Inverse codes that operate on HPF format. These codes are given in Section
3.

HFP format consist of two full arrays concatenated along their common row dimen-
sion. Let n1 = N/2 andn2 = N−n1. The first full array T holds two isosceles triangles
T1 and T2 of sizes n1 and n2. For both uplo = ‘L’ and ‘U’ T1 is in lower format and
T2 is in upper format. The second full array S1 contains the square or the near square
between the two triangles T1 and T2. For uplo = ‘L’ S1 is stored in row major order
(format is ‘Transpose’) and for uplo = ‘U’ S1 is stored in col major order (format is
‘Normal’). Together these two arrays occupy a single array space of size 2n1 + 1 rows
by n2 columns.

We now consider performance aspects of using HFP format in the context of using
LAPACK routines on triangular matrices stored in HPF format. Let X be a level 3
LAPACK routine that operates either on standard packed or full format. X has a full L3
LAPACK block algorithm, call it FX. Write a simple related partition algorithm SRPA
with partition sizes n1 and n2. Apply the new SRPA on the new HPF data structure. The
new SRPA almost always has four major steps consisting entirely of calls to existing full
format LAPACK routines in two steps and calls to level 3 BLAS in the remaining two
steps:

call FX(‘L’,n1,T1,ldt) ! step 1
call L3BLAS(n1,n2,‘L’,T1,ldt,S,lds) ! step 2
call L3BLAS(n1,n2,S,lds,‘U’,T2,ldt) ! step 3
call FX(‘U’,n2,T2,ldt) ! step 4

Section 4 gives performance results for the four LAPACK routines detailed in Section
3, namely DPOTRF / DPPTRF(uplo=‘L’ and uplo = ‘U’) verses SRPA for DPOTRF /
DPPTRF and for DPOTRI / DPPTRI(uplo=‘L’ and uplo = ‘U’) verses SRPA for DPOTRI
/ DPPTRI. Results were run on an IBM Power4 processor using ESSL Level 3 BLAS.
In all cases, only LAPACK code was called so in a sense all that is being compared is
standard LAPACK on different standard full and packed data formats verses SRPA. The
results show that SRPA is slightly better than LAPACK full routines and roughly one to
seven times faster than LAPACK packed routines.

The SRPA algorithm assumes the input matrix is in HFP format. We have produced
eight routines for converting between packed / full format and HFP format, both inplace
and out-of-place. The packed routines are called DPTHF and DHFTP. It is suggested

A New Array Format for Symmetric and Triangular Matrices 249

that the eight routines be made available with LAPACK. This method described above
is quite general. It offers the possibility to replace all LAPACK packed L2 codes and
all LAPACK full L3 codes with new simple L3 codes based on existing LAPACK L3
full format codes. These new simple L3 codes are like the example code given above.
The appeal is especially strong for SMP codes as many L3 BLAS are enabled for SMP
implementations. Four routines offer efficient SMP implementations. Finally, if this new
HFP format catches on as it might one can offer any user the ability to only use full format
L2 BLAS. The user will not use the current packed L2 BLAS as HFP L2 BLAS are easily
implemented by calls to full format L2 BLAS. These new codes will be efficient as no
calls to DPTHF or DHFTP are needed as then the data format is already HFP.

2 Array Folding

We begin this section by reviewing standard packed format. It suffices to consider the
order N of a packed array to be odd and even. And, it also suffices to consider specific
values say N = 9 and N = 8 to describes what goes on generally for N odd and even.
Recall first that a packed array stores it matrix elements column wise as concatenation
of column vectors. For uplo = ‘U’ the vectors have lengths 1, 2, ..., N and for uplo =‘L’
the vectors have lengths N,N − 1, ..., 1. In the pictorial description of packed format
below with N = 9 we show the i, j elements with zero origin and 0 <= i <= j < N
for uplo=‘U’ and N > i >= j >= 0 for uplo=‘L’. To further elucidate, the 3,5 element
of A which is depicted by 35 in the picture is in UP location 18 and the 5,3 element of
A is in LP location 26. Both arrays UP and LP occupy locations 0:44; ie, 45 words of a
linear array.

The case N = 9
UP LP

00 01 02 03 04 05 06 07 08 00
11 12 13 14 15 16 17 18 10 11

22 23 24 25 26 27 28 20 21 22
33 34 35 36 37 38 30 31 32 33

44 45 46 47 48 40 41 42 43 44
55 56 57 58 50 51 52 53 54 55

66 67 68 60 61 62 63 64 65 66
77 78 70 71 72 73 74 75 76 77

88 80 81 82 83 84 85 86 87 88

Both UHFP and LHFP formats consist of two full arrays. The first full array T holds
two isosceles triangles T1 and T2 of sizes n1 and n2. The LDT of T is n1 + 1 and the
number cols is n2. In the ‘L’ case T2 is stored in upper format so that the two isosceles
triangles concatenate to form a compact square. In the ‘U’ case T1 is stored in lower
format. Again T1 and T2 form a compact square. Now we remark about the storage
location of the i, j element in a standard full 2D array A that is stored in column major
order. Again, we are using 0 origin for both i and j. Ai,j resides at location i + lda ∗ j
in the array holding A. For example the 2,3 element in UHFP T and the 2,3 element in
LHFT are both at location 2 + 5*3 = 17 of arrays UHFT and LHFT. According to the
above mapping the elements are 6,7 of UP and 7,6 of LP and of course, due to symmetry,
they are equal.

250 John A. Gunnels and Fred G. Gustavson

UHFP T LHFP T
44 45 46 47 48 44 54 64 74 84
00 55 56 57 58 00 55 65 75 85
01 11 66 67 68 10 11 66 76 86
02 12 22 77 78 20 21 22 77 87
03 13 23 33 88 30 31 32 33 88

The second full array S1 contains the near square between the two triangles of sizes
n1 and n2. For uplo = ‘L’ S1 is stored in row major order (format is ‘Transpose’) and
for uplo = ‘U’ S1 is stored in col major order (format is ‘Normal’).

UHFP S1 LHFP S1
04 05 06 07 08 40 50 60 70 80
14 15 16 17 18 41 51 61 71 81
24 25 26 27 28 42 52 62 72 82
34 35 36 37 38 43 53 73 73 83

Together these two arrays (concatenation along the row dimension) occupy a single
full array space of size 2n1 + 1 rows by n2 columns. Note that LDS = n1 and that both
arrays T and S1 are in column major format. The example is general for N odd and T +
S1 hold exactly NT = N(N + 1)/2 elements as does the UP and LP arrays.

When N is even we get triangular arrays T1 and T2 of sizes n1 and n2 = n1. We
give an example where N = 8. In the pictorial description of packed format below with
N = 8 we show the i, j elements with zero origin and 0 <= i <= j < N for uplo=‘U’
and N > i >= j >= 0 for uplo=‘L’. To further elucidate, the 3,5 element of A denoted
by 35 in the picture is in UP location 18 and the 5,3 of element of A is in LP location
23. Both arrays UP and LP occupy locations 0:35; ie, 36 locations of a linear array.

The case N = 8
UP LP

00 01 02 03 04 05 06 07 00
11 12 13 14 15 16 17 10 11

22 23 24 25 26 27 20 21 22
33 34 35 36 37 30 31 32 33

44 45 46 47 40 41 42 43 44
55 56 57 50 51 52 53 54 55

66 67 60 61 62 63 64 65 66
77 70 71 72 73 74 75 76 77

Both UHFP and LHFP formats consist two full arrays. The first full array T holds
two triangles T1 and T2 of sizes n1 and n2. The LDT is n1 + 1 and the number cols
is n2. In the ‘L’ case T2 is stored in upper format so that the two triangles form a near
compact square. In the ‘U’ case T1 is stored in lower format so that the two triangles
form a near compact square.

UHFP T LHFP T
44 45 46 47 44 54 64 74
00 55 56 57 00 55 65 75

A New Array Format for Symmetric and Triangular Matrices 251

01 11 66 67 10 11 66 76
02 12 22 77 20 21 22 77
03 13 23 33 30 31 32 33

Now the 2,3 element in UHFP T and the 3,2 element in LHFT are both at location
2 + 5*3 = 17 of arrays UHFT and LHFT. According to the above mapping the elements
are 6,7 of UP and 7,6 of LP and of course, due to symmetry they are equal. The second
full array S1 contains the square between the two triangles. For uplo = ‘L’ S1 is stored
in row major order (format is ‘Transpose’) and for uplo = ‘U’ S1 is stored in col major
order (format is ‘Normal’).

UHFP S1 LHFP S1
04 05 06 07 40 50 60 70
14 15 16 17 41 51 61 71
24 25 26 27 42 52 62 72
34 35 36 37 43 53 63 73

Together these two arrays (concatenation along the row dimension) form a single
full array space of size 2n1+1 rows by n2 columns. The example is general for N even
and T + S1 hold exactly NT = N(N + 1)/2 elements as does the UP and LP arrays.

Let A be symmetric. Then, because of symmetry, the UHFP arrays for T and S1 are
identical to the LHFP arrays for T and S1. Hence we identify UHFP with LHFP and
this defines HFP format. Let A be triangular. Note that LT = U and UT = L, so A has
dual representations. In this case we define HFP as the UHFP or LHFP representation
containing the nonzero part of A.

3 LAPACK Compatibility

In this section we consider two sets of LAPACK routines, DPOTRF/DPPTRF and
DPOTRI/DPPTRI. Each set has two subcases uplo = ‘L’ and ‘U’. Thus for each set
consisting of four LAPACK codes we shall produce a single new code with exactly the
same LAPACK function but which operates on the new HFP format described in section
2. Take any packed or full LAPACK routine. Both are based upon a full LAPACK L3
block algorithm that performs O(N3) operations. We write a Simple Related Partition
Algorithm (SRPA) with partition sizes n1 and n2. Apply the new SRPA on the new HPF
data structure. As our first example of this Section we take DPPTRF. The SRPA consists
of 4 subroutine calls (steps 1 to 4) to existing L3 codes. Steps 1 and 4 are to DPOTRF
to Cholesky factor matrices T1 and T2. Step 2 uses Cholesky factored T1 to compute
the scaling of S1 by calling DTRSM. Then S1 is used to update T2 by calling DSYRK.
Steps 1 to 4 are certainly not new. We are using a basic paradigm of the LAPACK library
which is blocked based factorization. Here the blocking is two by two. Based on this
remark it is should clear that this example is typical of the four step procedure given in
the Introduction.

n1=n/2
n2=n-n1
it1=1 ! -> T1 in HPF

252 John A. Gunnels and Fred G. Gustavson

it2=0 ! -> T2 in HPF
ldt= n1+1 ! lda of both T1 and T2
lds=n1 ! lda of S1
is1=n2*(n1+1) ! -> S1 in HPF

! the routine dpthf converts packed format
! in AP to HFP format in AH
call dpthf(ilu,N,AP,AH(it1),AH(it2),ldt, &

AH(is1),lds)
call dpotrf(‘L’,n1,AH(it1),ldt,info) ! step 1
if(info.gt.0)return
call dtrsm(‘L’,‘L’,‘N’,‘N’,n1,n2,one,AH(it1), &

ldt,AH(is1),lds) ! step 2
call dsyrk(‘U’,‘T’,n2,n1,-one,AH(is1),lds, &

one,AH(it2),ldt) ! step 3
call dpotrf(‘U’,n2,AH(it2),ldt,info) ! step 4
if(info.gt.0)then

info=info+n1
return

endif
! the routine dhftp converts HFP format in AH to
! packed format in AP
call dhftp(ilu,N,AP,AH(it1),AH(it2),ldt,AH(is1),lds)

As our second example we take DPPTRI. Both subroutines DPOTRI/DPPTRI take the
Cholesky factor, call it U, where UT × U = A and computes A−1 = V × V T where
V = U−1. This is done in two stages: Subroutine DTRTRI/DTPTRI computes V given
triangular U and subroutine DLAUUM computes V ×V T given triangular V. Thus, fol-
lowing LAPACK there will be two related SRPAs. The first replaces DTRTRI/DTPTRI
and each of these routines has two subcases for uplo=‘L’ and ‘U’. We now assume that
above dhftp was NOT called so that T1, T2, and S1 are still in AH and pointers it1, it2
and is1 point to T1, T2, and S1. The SRPA code now follows:

call dtrtri(‘L’,DIAG,n1,AH(it1),ldt,info) ! step 1
if(info.gt.0)return
call dtrmm(‘L’,‘L’,‘T’,DIAG,n1,n2,-one,AH(it1), &

ldt,AH(is1),lds) !step 2
call dtrtri(‘U’,DIAG,n2,AH(it2),ldt,info) ! step 3
if(info.gt.0)then
info=info+n1
RETURN

endif
call dtrmm(‘R’,‘U’,‘N’,DIAG,n1,n2, one,AH(it2), &

ldt,AH(is1),lds) !step 4
RETURN

In the second stage we want the SRPA to replace the LAPACK routine DLAUUM:

call DLAUUM(‘L’,n1,AH(it1),ldt,info) ! step 1
call dsyrk(‘L’,‘N’,n1,n2,one,AH(is1),lds, &

one,AH(it1),ldt) !step 2

A New Array Format for Symmetric and Triangular Matrices 253

call dtrmm(‘R’,‘U’,‘T’,‘N’,n1,n2,one,AH(it2), &
ldt,AH(is1),lds) !step 3

call DLAUUM(‘U’,n2,AH(it2),ldt,info) ! step 4
RETURN

It should be quite clear now that the SRPAs are merely subroutine calls to existing
LAPACK codes.

4 Performance Results

It is fairly obvious that the SRPAs of Section 3 operating on HFP format of Section
2 should perform about the same as the corresponding full format LAPACK routines.
This is because both the SRPA code and the corresponding LAPACK code are the same
and both data formats are full format. Also the SRPA code should outperform the cor-
responding LAPACK packed code by about the same margin as does the corresponding
LAPACK full code. We give performance results for the IBM Power 4 Processor. The
gain of full code over packed code is anywhere from roughly a factor of one to a factor
of seven.

There are two performance graphs, one for Cholesky factor, suffix C and the other
for Cholesky inverse, suffix I. For each graph we give four curves for LAPACK called
FL, FU, PL, PU corresponding to Full,Uplo=‘L’, Full,Uplo=‘U’, Packed,Uplo=‘L’, and
Packed,Uplo=‘U’ and a single curve HFP corresponding to SRPA. This is because the
SRPA replaces each of these four LAPACK subroutines. Actually, we ran the SRPA
routine four times and averaged their times. Performance is given in MFLOPS. We chose
the order N of the matrices to follow a base 10 log distrbution. The values chosen were
N = 40, 64, 100, 160, 250, 400, 640, 1000, 1600, 2500, and 4000. The corresponding
log N values are 1.60, 1.81, 2, 2.20 2.40, 2.60, 2.81, 3, 3.20. 3.40, and 3.60.

As can be seen from Graph 1, SRPA performance is greater than FLC, PLC, and
PUC performance. And SRPA performance is greater than FUC performance except at
N = 1000 where FUC is 3 % faster. For graph two, with N ≥ 400 the SRPA curve is
faster than the other four curves. For N ≤ 250 the performance ratios range from .92 to
2.18 (see Fig. 2). Returning to Graph 1, we see that SRPA is 1.33 to 7.35 times faster
than PLC and 1.64 to 3.20 times faster than PUC. Similarly, for Graph 2, SRPA is .92
to 3.21 times faster than PLI and 1.01 to 5.24 times faster than PUI.

In Figure 2 we give performance ratios of HFP to the four LAPACK routines, FL,
FU, PL, and PU. The row labeled HFP give MFLOPs values for that routine. To obtain
the MFLOPs values for the other four routines, simply divide MFLOPs value by its
associated ratio. For example, for N = 640, the MFLOPs for suffix C are 3818, 4042,
1011, 2041 and for suffix I, they are 4020, 3907, 2179, 1409.

254 John A. Gunnels and Fred G. Gustavson

(a)

(b)

Fig. 1. Absolute performance of algorithms (a) Cholesky Factorization. (b) Inversion

5 Conclusion

We have described a novel data format, HFP that can replace both standard full and
packed formats for triangular and symmetric matrices. We showed that codes for the new
data format HFP can be written by simply making calls to existing LAPACK routines and
level 3 BLAS. Each new SRPA operating on HFP format data replaces two corresponding

A New Array Format for Symmetric and Triangular Matrices 255

N 40 64 100 160 250 400 640 1000 1600 2500 4000

HFP 914 1568 1994 2883 3302 3861 4123 4198 4371 4358 4520

FLC 2.12 1.97 1.37 1.32 1.17 1.10 1.10 1.07 1.08 1.08 1.08

FUC 2.14 2.32 1.45 1.29 1.13 1.03 1.02 .97 1.00 1.01 1.01

PLC 1.33 1.72 1.93 2.92 3.24 3.62 4.08 6.42 7.18 7.30 7.35

PUC 1.73 1.82 1.64 1.89 1.84 1.91 2.02 2.58 3.10 3.13 3.20

HFP 755 1255 1656 2481 3081 3775 4141 4141 4351 4394 4544

FLI 1.26 1.31 .98 1.00 .98 1.00 1.03 1.00 1.02 1.05 1.05

FUI 1.23 1.25 .95 .99 .99 1.02 1.06 1.03 1.05 1.08 1.07

PLI .92 .93 .93 1.25 1.43 1.64 1.90 2.69 3.05 3.14 3.21

PUI 1.01 1.16 1.26 1.86 2.18 2.54 2.94 4.06 4.97 5.13 5.24

Fig. 2. Relative Performance Comparison of Algorithms

LAPACK routines (four if you count dual cases of uplo=‘L’ and ‘U’). Performance of
SRPA routines on HFP format is slightly better than LAPACK full routines while using
half the storage and performance is roughly one to seven times faster than LAPACK
packed routines while using the same storage.

References

[1999] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz,
S. Hammarling, A. Greenbaum, A. McKenney, D. Sorensen: LAPACK Users’ Guide 3rd
Ed., Society for Industrial and Applied Mathematics, pub.

[2004] J. A. Gunnels and F. G. Gustavson. HFP Format Saves Storage and Increases Performance
of LAPACK Symmetric and Triangular Packed and Full Routines, Poster Presentation at
SIAM, San Francisco, CA. Feb. 26, 2004.

A Family of High-Performance
Matrix Multiplication Algorithms

John A. Gunnels1, Fred G. Gustavson1, Greg M. Henry2, and Robert A. van de Geijn3

1 IBM T.J. Watson Research Center
2 Intel Corporation

3 The University of Texas at Austin

Abstract. We describe a model of hierarchical memories and we use it to deter-
mine an optimal strategy for blocking operand matrices of matrix multiplication.
The model is an extension of an earlier related model by three of the authors.
As before the model predicts the form of current, state-of-the-art L1 kernels. Ad-
ditionally, it shows that current L1 kernels can continue to produce their high
performance on operand matrices that are as large as the L2 cache. For a hierar-
chical memory with L memory levels (main memory and L-1 caches), our model
reduces the number of potential matrix multiply algorithms from 6L to four. We
use the shape of the matrix input operands to select one of our four algorithms.
Previously four was 2L and the model was independent of the matrix operand
shapes. Because of space limitations, we do not include performance results.

1 Introduction

In this paper, we discuss an approach to implementing matrix multiplication, C =
AB+C, that is based on a model of moving data between adjacent memory layers. This
model allows us to make the following theoretical contributions: (1) At each level of the
memory hierarchy most of that layer should be filled with a submatrix of one of the three
operands while smaller submatrices of the other two operands are “streamed in” from
the previous (slower) memory layer; (2) If a given layer is mostly filled with a submatrix
of an operand, the next (faster) layer should be filled mostly with a submatrix of one of
the other two operands. (3) At the L1 level, where all computations must take place, the
model accurately predicts the form of two kernel routines. Embodied in points (1-3) is
the general idea of using cache blocking at every memory level. The amount of work (
FLOPS) done at every level is 2MNK on operands of size MN + MK + KN . We
are assuming that any computer architecture, at every memory level, can feed (stream)
the operands through the memory hierarchy in time less than or equal to the time for
doing 2MNK FLOPS at maximum floating point rate (peak MFLOPs). This paper
is a condensation of a 26 page paper that was written in Februrary 2002. It extends the
model of [2001]. There are two new features: A new concept called (1) conservation
of matrix operand sizes is used to (2) reduce the number of algorithms from 2L to just
four.

Over the last two decades, numerical linear algebra libraries have been re-designed to
accommodate multi-level memory hierarchies, thereby replacing earlier libraries such

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 256–265, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Family of High-Performance Matrix Multiplication Algorithms 257

as LINPACK and EISPACK. It was demonstrated, e.g. [1986,1987], that on cache-
based (multi-level memory) machines, block-partitioned matrix algorithms could evince
dramatic performance increases, when contrasted with their non-blocked counterparts.
The key insight of block partitioning research was that it allowed the cost of O(n2)
data movement between memory layers to be amortized over O(n3) computations,
which had to be performed by kernel routines executing data residing in the L1 (lowest
level) cache. At the base of our algorithms are kernel routines used in concert with
submatrix partitioning (referred to as cache blocking). Our new memory model provides
a mathematical “prediction” for the necessity of both. Prior work [1994,1997,1998],
produced kernel routines, first by hand and, later, via a code generator, which employed
parameter variations and careful timing in order to complete the generate-and-test cycle.
The principles used in these automatic code generating versions were, for the most part,
the same as those used by the ESSL library. The PHiPAC [1997] and ATLAS [1998]
projects each employ a code generator approach. This methodology uses a program that
writes a series of programs, each differing by a set of parameters varied by the “parent”
(code writing) program. Each of these produced programs is automatically compiled
and carefully timed. Using the timing characteristics of these programs, the most time-
efficient code is selected. The work presented here generalizes the ATLAS model. In
Section 4.1 a fuller comparison of ATLAS and our model is given. It is also related to
[2002] which is discussed in Section 4.2

Our model partitions matrices A, B, and C into submatrices Aip, Bpj , and Cij and
performs submatrix multiplication and this is illustrated in Section 2. In Section 3, we
state a result on the minimal amount of times any matrix algorithm must bring matrix
elements into and out of a given cache level. Our model achieves this lower bound
complexity to within a constant factor [1999]. An important point is that A, B, and C
must come through the caches multiple times. With this result in mind, Sections 2.3,
2.4 and Section 3.1 takes the L algorithmic pieces developed in Section 2 and combines
them into just four different, composite algorithms. These three Sections along with
Section 2.3 show why we can reduce the number of different algorithms from 2L to just
four.

Now, since the submatrices of A, B, and C must be brought through the memory
hierarchy multiple times, it pays to reformat them once so that data re-arrangement
is not done multiple times. This also aids the effort for achieving optimal L1 kernel
performance. In Sections 4, 4.1 and 4.2 we briefly describe how this is done in greater
detail. Our main point is that our model features loading and storing submatrices at
each cache level. Clearly, loading and storing is overhead and only serves to reduce the
MFLOPS value predicted by our model. By using the new data structures, NDS, [2001],
we can dramatically reduce the loading and storing overhead cost, thereby increasing
our MFLOP rate. Because of space limitations using NDS in the context of our model
as well as our two kernel routines that feature streaming cannot be covered in sufficient
detail.

Our model does not involve automatic blocking via recursion. Recently, this area
has received a great deal of attention from many important computations such as matrix
factorizations, FFT, as well as matrix multiplication. See [2004]. Some researchers have
referred to such methods as cache oblivious [1999]. Others have focused on “recursion”

258 John A. Gunnels et al.

to produce new data formats for matrices, instead of the traditional Fortran and C data
structures. Our view is that recursion is very powerful and excellent results are obtainable,
but only if one combines recursion with blocking. However, whenever one neglects
specific features of a computer architecture, one can expect performance to suffer.

2 Overview of Our Model

The general form of a matrix-matrix multiply is C ← αAB + βC where C is m× n,
A is m× k, and B is k × n. Table 1 introduces some terminology that we will use.

Table 1. Three basic ways to perform matrix multiply

Condition Shape

Matrix-panel multiply n is small
C = A B + C

Panel-matrix multiply m is small C
=

A
B +

C

Panel-panel multiply k is small
C = A

B
+ C

2.1 A Cost Model for Hierarchical Memories

We will briefly model the memory hierarchy as follows:

1. The memory hierarchy consists of L + 1 levels, indexed 0, . . . , L. Level 0 corre-
sponds to the registers, level L as main memory and the reamining levels as caches.
We will often denote the hth level by Lh.

2. If mh × nh matrix C(h), mh × kh matrix A(h), and kh × nh matrix B(h) are all
stored in level h of the memory hierarchy then forming C(h) ← A(h)B(h) + C(h)

costs time 2mhnhkhγh. γh is defined to be effective unit cost of a floating point
operation over all mhnhkh multiply-adds at level Lh.

2.2 Building-Blocks for Matrix Multiplication

Consider the matrix multiplication C(h+1) ← A(h+1)B(h+1) +C(h+1) where mh+1×
nh+1 matrix C(h+1), mh+1 × kh+1 matrix A(h+1), and kh+1 × nh+1 matrix B(h+1)

are all resident in Lh+1. Let us assume that somehow an efficient matrix multiplication
procedure exists for matrices resident in Lh. According to Table 1, we develop three
distinct approaches for matrix multiplication procedures for matrices resident in Lh+1.

A Family of High-Performance Matrix Multiplication Algorithms 259

for i = 1, . . . , Mh, mh

for j = 1, . . . , Nh, nh

for p = 1, . . . , Kh, kh

C
(h)
ij ← A

(h)
ip B

(h)
pj + C

(h)
ij

endfor
endfor

endfor

Fig. 1. Generic loop structure for blocked matrix-matrix multiplication

Partition

C(h+1) =

C
(h)
11 · · · C

(h)
1Nh

...
...

C
(h)
Mh1 · · · C

(h)
MhNh

, A(h+1) =

A
(h)
11 · · · A

(h)
1Kh

...
...

A
(h)

M(h)1
· · · A

(h)

M(h)K(h)

, and (1)

B(h+1) =

B
(h)
11 · · · B

(h)
1Nh

...
...

B
(h)
Kh1 · · · B

(h)
KhNh

(2)

where C
(h)
ij is mh×nh, A(h)

ip is mh×kh, and B
(h)
pj is kh×nh. A blocked matrix-matrix

multiplication algorithm is given in Figure 1 where the order of the loops is arbitrary.
Here, Mh, Nh, and Kh are the ratios mh+1/mh, nh+1/nh, and kh+1/kh, respectively,
which for clarity we assume to be integers. Further, the notation, i = 1, . . . ,Mh,mh,
means that the index, i iterates from 1 to Mh in steps of 1, where each block has size
mh. The unit cost γh+1 will depend on the unit cost γh, the cost of moving data between
the two memory layers, the order of the loops, the blocking sizes mh, nh, and kh, and
finally the matrix dimensions mh+1, nh+1, and kh+1. The purpose of our analysis will
be to determine optimal mh+1, nh+1, and kh+1 by taking into account the cost of all
the above mentioned factors.

We can assume thatmh,nh, andkh are known whenh = 0. Floating-point operations
can only occur with data being transferred between the L1 cache (level 1) and the registers
(level 0). This is, obviously, where all of the arithmetic of matrix-matrix multiply is done
and it is a separate problem which is probably the most important part of any matrix-
matrix multiply algorithm to get “right” (to optimize). Hence, via an induction-like
argument we can, using our model, find optimal m1, n1, and k1. Similar inductive
reasoning leads to optimal blockings for the slower and larger memory layers h =
2, . . . , L.

In the expanded version of this paper we analyze Figure 1 for all of its six vari-
ants, formed by permuting i, j, and p. For all six variants the central computation is:
C

(h)
ij ← A

(h)
ip B

(h)
pj + C

(h)
ij . Now elements of C(h)

ij , A(h)
ip , and B

(h)
pj , are used kh, nh, and

mh times, respectively, during this matrix computation. Thus, we identify kh, nh, and
mh as the re-use factors of C

(h)
ij , A

(h)
ip , and B

(h)
pj , respectively. And, when we speak

of amortizing the computation, we mean that elements of elements of C
(h)
ij , A(h)

ip , and

260 John A. Gunnels et al.

B
(h)
pj , have re-use factors, kh, nh, and mh and it is advantageous to make these factors

as high as possible.
Also, the inner loop repetition factors Kh, Nh or Mh will each take the value one

because of the aforementioned streaming resulting in “ loop fusion ”. The reason is given
in Section 3.1 ahead. This means that the cache resident operand has an extra large re-use
factor and thereby can benefit from streaming.

2.3 A Corresponding Notation

By examining Figure 1 and Table 1 the following correspondence becomes evident:
(i, j, p) ↔ (RPM, RMP, RPP). Here P stands for panel, M for matrix, and R for re-
peated. Think of repeated as a synomyn for streaming. For example, algorithmRMP-RPP
is uniquely designated by its outer and inner loop indices, j and p. Similarly, algo-
rithm RPM-RPP is uniquely designated by its outer and inner loop indices, i and p. For
the remaining four combinations: algorithms RPM-RMP , RPP-RMP and RMP-RPM ,
RPP-RPM correspond to outer-inner loop pairings i, j , p, j and j, i , p, j respectively.

Floating point arithmetic must be performed out of the L1 cache. Let h = 1. It is
clear that p should be the inner loop variable as then a DDOT (as opposed to a DAXPY
) kernel can be chosen. Choosing DDOT saves loading and storing C values for each
floating point operation. In practice, at the L1 level, almost all implementations that we
are aware of are limited to these RMP-RPP and RPM-RPP algorithms. Hence we limit
ourselves to only these two algorithms at the L1 level. The “RPP” is redundant and will
be dropped. The RMP, RPM and RPP notation is fully described in [2001].

So, we have two L1 kernels, called RMP and RPM. When h > 1, we refer to the six
algorithms illustrated in Table 1 and Figure 1 as algorithmic pieces. In the next section we
will see that, for anL level memory hierarchy,L−1 algorithmic pieces,h = 1, . . . , L−1
can be merged into a single algorithm. Because of the above-mentioned correspondence,
we can label the distinct algorithms that emerge either by a string of loop indices (i, j,
p) or by the analogous (RPM, RMP, RPP) designations. Each such string will contain
L − 1 loop indices or L − 1 hyphenated symbol pairs from the (RPM, RMP, RPP)
alphabet.

2.4 Matrix Operand Sizes Dictate the Streaming Values

Consider again Figure 1 for a particular value of h so that problem size is mh+1 ×
nh+1 × kh+1. The outer loop index can be i, j or p. Thus we have three cases and
for each there are two algorithms corresponding to the order of the middle and inner
loops indices. Also, there are six possible size orderings for the problem dimensions,
(e.g. M > N > K , etc.). It is self-evident that any ordering of the three sizes imposes
an unambiguous ordering on the size of the three operands A, B, and C, involved in
matrix multiplication. For example, M > N > K implies that C(M × N) is larger
than A(M ×K), which is, in turn, larger than B(K ×N). Consider the case where K
is the largest dimension and h = L− 1, as follows:

1. K > M > N which becomes kh+1 > mh+1 > nh+1 or |A| > |B| > |C|.
2. K > N > M which becomes kh+1 > nh+1 > mh+1 or |B| > |A| > |C|.

A Family of High-Performance Matrix Multiplication Algorithms 261

In both cases, the algorithms used should have p as the inner loop index. Streaming
provides us with the reason for this assertion. To be more specific, operand C benefits
from the large streaming value of kh+1. Since C is the smallest matrix in these cases, C
will tend to be composed of fewer submatices making up all ofC. In other words,Mh and
Nh, the repetition values, will tend to be the two smallest integers, as the mh+1×nh+1

matrix, C, is the smallest operand. Refer to case (1) above which depicts Figure 1 with
loop order j, i, p. The cache resident matrix in this case is the A operand and hence N is
the streaming value. In case (2) above the loop order is i, j, p and B is the cache resident
matrix and M is the streaming value. Finally, in the remaining four cases we have nh+1

as the largest value for two cases corresponding to inner loop index j and mh+1 as the
largest value for two cases corresponding to inner loop index i.

In Table 2 we list the six possible size-orderings for problem dimensions, M , N ,
and K . In cases where two or more dimensions are equal, > can be viewed as ≥.

Table 2. The six possible matrix size orderings delineated

Case Dimensions Matrix Sizes L2-Resident L1-Resident “Streaming” Matrix
1 M > N > K |C| > |A| > |B| A B C
2 M > K > N |A| > |C| > |B| C B A
3 N > M > K |C| > |B| > |A| B A C
4 N > K > M |B| > |C| > |A| C A B
5 K > M > N |A| > |B| > |C| B C A
6 K > N > M |B| > |A| > |C| A C B

Row entries 5 and 6 of Table 2 suggest that the C operand should be L1 cache-
resident. However, for reasons given in Section 2.3, this situation leads to an inefficient
inner kernel. Our solution to this dilemma is to reverse the L2/L1 residence roles of the
smaller two operands.

The case L = 2 suggests a strategy for algorithmic choices when L > 2. Choose
the smaller two operands to be cache-resident with the large operand supplying the
streaming values. This choice is based on maximizing the streaming feature exhibited
by L1 cache algorithms on current architectures and machine designs. The smaller two
operands will alternate in the role of cache-resident matrix.

3 Theoretical Results on Blocking for Matrix Multiplication

Our model features block-based (submatrix) matrix multiplication. One might object to
our research on the grounds that there exists some other, as yet unknown, superior method
for performing the standard matrix multiply. We now state that this cannot happen as
our model is optimal in the following sense:

Theorem 1. Any algorithm that computes aikbkj for all 1 ≤ i, j, k ≤ n must transfer
between memory and D word cache Ω(n3/

√
D) words if D < n2/5.

262 John A. Gunnels et al.

This theorem, was first demonstrated by Hong and Kung [1981] in 1981. Toledo [1999]
gives another, simplified, proof of their result. Our model of block-based matrix multi-
plication transfers O(n3/

√
D) words for an L1 cache of size D words. Furthermore, we

can apply this theorem to every cache level residing “below” L1 in the memory pyra-
mid: L2, L3, . . ., in the same way. Our model evinces the Ω(n3/

√
Dh) word movement,

where Dh is the size of Lh, h = 1, 2, To illustrate this, let us review Figure 1 and
Table 1. In Figure 1 with inner loop index p, matrix C is brought into Lh once while
matrices A and B are brought through Lh, Nh and Mh times, respectively. Similarly,
in Figure 1 with inner loop index j, matrix A is brought into Lh once while matrices
B and C are brought through Lh, Mh and Kh times, respectively. Finally, in Figure 1
with inner loop index i, matrix B is brought into Lh once while matrices A and C are
brought throughLh, Nh and Kh times, respectively. Thus, we can see that the streaming
matrices employed in our algorithms have the repetitive factors, Nh, Mh, and Kh.

3.1 Bridging the Memory Layers

Overall, the number of single choices is bounded by 6L+1 as each instance of Figure 1
has six choices and h takes on L + 1 values. In Section 2.3, with h = 1 we restricted
our choice to two L1 kernels; i.e. we set the inner loop index to be p. For h > 1 we
shall “fuse” the inner loop index at level h + 1 to be equal to the outer loop index at
level h. This amounts to using streaming at every memory level. This means the number
of algorithmic choices reduces to 2L. Thus, Figure 1 will have only 2 loops (instead of
3) when they are combined into a composite algorithm for a processor with L caches,
where cache L is memory. When L is one, we have a flat (uniform) memory and a call
to either of our kernel routines, RMP (j0, i0, p0) or RPM (i0, j0, p0), will conform to our
model. For arbitrary L, we get a nested looping structure consisting of 2(L − 1) loop
variables, 2 each from levels 2 to L. When one considers the L1 kernel as well, there are
2L + 1 variables (as we must add i0, j0, and p0).

Furthermore, for streaming to fully work one must have matrix operands to stream
from. We call this conservation of matrix operands. M,N , and K are inputs to DGEMM.
In Table 2 and Section 2.3 we saw that were four algorithms as cases 5 and 6 were
mapped to cases 2 and 4 respectively. Thus, the 2L choices map to just four algorithms
as the choice of the outer and inner indices becomes fixed for each value of h. The
reason to do this is based on the conservation of matrix operand sizes for the given
DGEMM problem. The two largest of the three input dimensions M,N , and K determine
the streaming matrix as the A,B, or C operand of largest size. The four patterns that
emerge for cache residency are A,B,A, . . ., B,A,B, . . ., A,C,A, . . ., and B,C,B, . . .,
for h = 1, 2, 3, . . . The associated streaming values come from the two dimensions of
the matrix operands C,C,B, and A respectively.

4 Practical Considerations

In the previous section we developed a model for the implementation of matrix-matrix
multiplication that amortizes movement of data between memory hierarchies from a local
point of view. However, there are many issues associated with actual implementation

A Family of High-Performance Matrix Multiplication Algorithms 263

that are ignored by the analysis and the heuristic. In this section we briefly discuss some
implementation details that do take some of those issues into account. We do so by
noting certain machine characteristics that to our knowledge hold for a wide variety of
architectures. While in the previous sections we argued from the bottom of the pyramid
to the top (Lh+1 in terms of Lh), we now start our argument at the top of the pyramid
after providing some general guidelines and background.

4.1 Background and Related Work

In the Introduction, we mentioned both the PHiPAC and the ATLAS research efforts.
We now describe ATLAS in more detail as it more closely relates to our contributions.
In ATLAS, the code generation technique is only applied to the generation of a single L1
kernel. The ATLAS L1 kernel has the same form as the ESSL DGEMM kernel outlined
in [1994] and their code generator uses many of the architectural and coding principles
described in that paper. Our model predicts two types of L1 kernel and, for IBM plat-
forms, we have an efficient implementation of each. ATLAS literature does mention this
second kernel, stating that either kernel could be used and it was an arbitrary choice
on their part to generate the one they selected. However, they did not pursue including
this second kernel, nor did they justify their conclusion, that both kernel routines were
basically the same.

Most practical matrix-matrix multiply L1 kernel routines have the form that our
model predicts. For example, ESSL’s kernel for the RISC-based RS/6000 processors,
since their inception in 1990, have used routines that conform to this model. The same
is true of the kernel for Intel’s CISC Pentium III processor, which is described in an
expanded version of this paper. Since ATLAS’s code generator for its L1 kernel also
fits our model and has shown cross-platform success, we can expect that our model will
work on other platforms as well.

For the L1 level of memory, our model predicts that one should load most of the L1
cache with either the A or the B matrix operand. The other operands, C, and B or A,
respectively, are streamed into and out of (through) the remainder of the L1 cache while
the large A or B operand remains consistently cache-resident. Another theory predicts
that each operand should be square and occupy one-third of the L1 cache. In this regard,
we mention that ATLAS only uses its L1 kernel on square matrix operands. Hence the
maximum operation count (multiply-add) that an invocation of the ATLAS kernel can
achieve is NB3. Our (first) model places the A operand, of size MB ×KB, into the
L1 cache, filling most of available memory at that level. However, we can stream N ,
nb-sized blocks of the remaining operands through the L1 cache. By selecting nb based
on the register sizes, we can allow N to be, essentially, infinite. Thus, the streamed form
of our L1 kernel can potentially support 2×MB ×KB ×N flops per invocation. We
observe two practical benefits from our form of kernel construction and usage:

1. A rectangular blocking where MB < KB leads to a higher FLOP rate, due to the
inherent asymmetry that results from having to load and store C.

2. The streaming feature allows a factor of N/NB fewer invocations of the kernel
routine.

264 John A. Gunnels et al.

Now we turn to partitioning the matrices, A, B, and C, into comforming submatrix
blocks. ATLAS’s model advises only two such partitioning strategies: (1) J, I, L and (2)
I, J, L, where the outer loop increments are the smallest and the inner loop, the largest.
Further, for both partitionings, the ATLAS model only allows a single square blocking
factor of size NB. By having only two such partitionings ATLAS documentation states
that it can only block for one other memory level, for example, L2, and that their method
for doing so is only approximate. Our model differs from the one employed by ATLAS
in that our model has three potential blocking factors, MB, NB, and KB, at every
cache level of the memory hierarchy.

Strangely, our model does not predict the two partitionings selected by ATLAS. The
reason for this is that ATLAS’s partitionings use K as the “streaming” parameter. In
our model, the blocking parameter, KB, would be tiny. This would lead to a DAXPY-
like kernel which is known to be inferior to a DDOT-like kernel because the former
continually loads and stores the C operand, whereas the latter keeps the C operand in
registers.

4.2 Goto BLAS

Presently the DGEMM provided by [2004] gives very high performance on a variety of
platforms. The G authors think our model encompasses all the principles espoused in
[2002]. TLB blocking is automatically handled when one performs data copy via the
use of NDS. Our RPMB kernel is used in [2002]. And our RMPA kernel is probably not
used because data copy of C is required to avoid TLB misses. The third and second last
paragraphs of the Conclusion of [2002] corroborates the statements made above.

5 Summary and Conclusion

This paper extends the results of [2001] by introducing the concept of conservation of
matrix operand sizes. By doing so, we show that the number of algorithms reduces from
2L to four. It emphasizes the importance of streaming and generalizes it from L2 to L1
caches to caches h + 1 to h for all h > 1. Because of space limitations the role of NDS
via data copy as well as descriptions of our two kernel routines that feature streaming
is not adequately covered. Finally, our model is claimed to encompass the principles of
Goto BLAS as described in [2002].

References

2001. J A Gunnels, G M Henry, and R A van de Geijn: A Family of High-Performance Matrix
Multiplication Algorithms., LNCS 2073, pp. 51-60. V N Alexandrov, J J Dongarra, B A
Juliano, R S Renner, C J K Tan, Ed., Springer-Verlag, Pub.

1986. ESSL Guide and Reference for IBM ES/3090 Vector Multiprocessors. Order No. SA22-7220,
Feb. 1986., IBM Corporation.

1987. Kyle Gallivan, William Jalby, Ulrike Meier, and Ahmed Sameh, The Impact of Hierarchical
Memory Systems on Linear Algebra Algorithm Design, CSRD Tech Report 625, University
of Illinois at Urbana Champaign, pub.

A Family of High-Performance Matrix Multiplication Algorithms 265

1994. R. C. Agarwal, F. Gustavson, and M. Zubair, Exploiting functional parallelism on Power2
to design high-performance numerical algorithms, IBM Journal of Research and Develop-
ment, Volume 38, Number 5, pp. 563-576, 1994.

1997. Jeff Bilmes, Krste Asanovic, Chee-whye Chin, and Jim Demmel, Optimizing Matrix Mul-
tiply using PHiPAC: a Portable, High-Performance, ANSI C Coding Methodology, Proc. of
Int. Conf. on Supercomputing, Vienna, Austrian. July 1997.

1998. R. Clint Whaley and Jack J. Dongarra, Automatically Tuned Linear Algebra Software, In
Proceedings of Supercomputing 1998.

2002. K. Goto and R. vandeGeijn, On reducing TLB misses in matrix multiplication, University
of Texas at Austin, FLAME Working Note #9, November, 2002.

2001. Fred G. Gustavson, New Generalized Matrix Data Structures Lead to a Variety of High-
Performance Algorithms, The Architecture of Scientific Software, Ronald F. Boisvert and
Ping Tak Peter Tang, Ed., Kluwer Academic Press, Pub., 2001.

2004. Erik Elmroth, Fred Gustavson, Isak Jonsson, Bo Kagstrom, Recursive Blocked Algorithms
and Hybrid Data Structures for Dense Matrix Library Software, SIAM Review, Volume 46
Number 1, pp. 3-45. 2004.

1999. Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran, Cache-
Oblivious Algorithms, Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, 1999,IEEE Computer Society, pub.

1981. J. Hong and H. Kung, Complexity: The Red-Blue Pebble Game, In Proceedings of the 13th
Annual ACM Symposium on Theory of Computing, pp. 326-333, 1981.

1999. Sivan Toledo, A Survey of Out-of-Core Algorithms in Numerical Linear Algebra, in External
Memory Algorithms and Visualization,J Abello & J S Vitter, Ed., DIMACS Series in Disc.
Math. & Theo. Comp. Sci., pp. 161-180, AMS Press, pub.

2004. Kazushige Goto, http://www.cs.utexas.edu/users/kgoto

Substructuring, Dimension Reduction and Applications:
An Introduction

Organizers: Zhaojun Bai1 and Ren-Cang Li2

1 Department of Computer Science and Department of Mathematics, University of California
Davis, CA 95616, USA

bai@cs.ucdavis.edu
2 Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA

rcli@ms.uky.edu

There are a variety of reasons to go for substructuring and dimension reduction in scien-
tific computations and applications. Substructuring makes it possible to solve large and
seemingly intractable computational problems solvable in today technology by some
kind of Divide-and-Conquer technique; Substructuring offers a general methodology
to do parallelization; And substructuring allows one to design algorithms to preserve
substructures at a very fine level of underlying problems of interest, which usually go
unnoticed by more general purposed methods. Often if done right, payoff will be signifi-
cant. Dimension reduction is a rather broader concept referring to techniques that achieve
significant reductions of problem sizes so as to make intractable numerical simulations
tractable. Successful examples are abundant, including reduced order modelling from
dynamical systems and circuit design, cluster text data analysis, and data mining. This
minisymposium presents currently active researches in substructuring strategies, model
reduction and applications, and domain decompositions, among others.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, p. 266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Parallel Algorithms for Balanced Truncation
Model Reduction of Sparse Systems�

José M. Badı́a1, Peter Benner2, Rafael Mayo1, and Enrique S. Quintana-Ortı́1

1 Depto. de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I
12.071–Castellón, Spain

{badia,mayo,quintana}@icc.uji.es
2 Fakultät für Mathematik, Technische Universität Chemnitz

D-09107 Chemnitz, Germany
benner@mathematik.tu-chemnitz.de

Abstract. We describe the parallelization of an efficient algorithm for balanced
truncation that allows to reduce models with state-space dimension up to O(105).
The major computational task in this approach is the solution of two large-
scale sparse Lyapunov equations, performed via a coupled LR-ADI iteration with
(super-)linear convergence. Experimental results on a cluster of Intel Xeon proces-
sors illustrate the efficacy of our parallel model reduction algorithm.

1 Introduction

Consider the continuous linear time-invariant (LTI) dynamical system in state-space
form:

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) + Du(t), t ≥ 0,
(1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and x0 ∈ Rn is the initial state
of the system. Also, the number of states, n, is known as the state-space dimension (or
the order) of the system, and the associated transfer function matrix (TFM) is defined
by G(s) = C(sI − A)−1B + D. Hereafter, we assume that the spectrum of the state
matrix, A, is contained in the open left half plane, implying that the system is stable.

The model reduction problem requires finding a reduced-order LTI system,

˙̂x(t) = Âx̂(t) + B̂û(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂û(t), t ≥ 0,
(1.2)

of order r, r 0 n, and associated TFM Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂ which approxi-
mates G(s). The reduced-order model can then replace the original high-order system
in subsequent calculations including, e.g., the design of controllers [19], thus saving
valuable hardware resources.
� José M. Badı́a, Rafael Mayo, and E.S. Quintana-Ortı́ were supported by the CICYT project

No. TIC2002-004400-C03-01 and FEDER, and project No. P1B-2004-6 of the Fundación
Caixa-Castellón/Bancaixa and UJI. P. Benner was supported by the DFG Research Center
“Mathematics for key technologies” (FZT 86) in Berlin.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 267–275, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

268 José M. Badı́a et al.

Model reduction of moderately large linear systems (n in the hundreds) arises, e.g.,
in control of large flexible mechanical structures or large power systems [5,7,8,11,20].
Problems of such dimension can be reduced using libraries such as SLICOT3 or the
MATLAB control-related toolboxes on current desktop computers. Larger problems can
still be reduced by using the methods in PLiCMR4 on parallel computers [3,4]. Never-
theless, the applicability of these methods is ultimately limited as they do not exploit
the usual sparse structure of the state matrix A and thus present a computational cost
ofO(n3) floating-point arithmetic operations (flops) and require storage forO(n2) real
numbers.

Therefore, a different approach is necessary for very large sparse systems, with
state-space dimension as high as O(105)–O(106), such as those arising, among others,
in weather forecast, circuit simulation and VLSI design, as well as air quality simulation
(see, e.g., [2,6,13,14]). The model reduction method considered in this paper is based
on the so-called state-space truncation and requires, at a first stage, the solution of two
large sparse Lyapunov equations whose coefficient matrix is the state matrix of the
system. A low-rank iteration [17,22] is employed for this purpose which only involves
sparse numerical computations such as the solution of linear systems and matrix-vector
products. The reduced-order system is then obtained using a slightly modified version
of the balanced truncation (BT) method [4,21], and only requires dense linear algebra
operations on much smaller data matrices.

Although there exist several other approaches for model reduction (see [2,12] and
the references therein), those are specialized for certain problem classes and often lack
properties such as error bounds or preservation of stability, passivity, or phase informa-
tion. A complete comparison between the numerical properties of SVD-based methods
(as BT) and Krylov subspace methods can be found in [2].

The paper is structured as follows. In Section 2 we briefly review the method for
model reduction of sparse linear systems, based on the BT method and low-rank solvers
for the Lyapunov equations arising in state-space truncation. In Section 3 we describe a
few parallelization and implementation details of our model reduction algorithm. Finally,
the efficacy of the algorithm is reported in Section 4, and some concluding remarks follow
in Section 5.

2 Model Reduction of Sparse Linear Systems

2.1 The Square-Root BT Method

BT model reduction [18,23,24,25] belongs to the family of absolute error methods which
aim at minimizing ‖Δa‖∞ = ‖G− Ĝ‖∞. Here ‖G‖∞ denotes the L∞- or H∞-norm
of a stable, rational matrix function defined as

‖G‖∞ = sup
ω∈R

σmax(G(jω)), (2.3)

where j :=
√
−1 and σmax(M) stands for the largest singular value of M .

3 Available from http://www.slicot.net
4 Available from http://spine.act.uji.es/˜plicmr.html

Parallel Algorithms for Balanced Truncation Model Reduction of Sparse Systems 269

BT methods are strongly related to the controllability Gramian Wc and the observ-
ability Gramian Wo of the system 1.1, given by the solutions of the two dual Lyapunov
matrix equations:

AWc + WcA
T + BBT = 0, AT Wo + WoA + CT C = 0. (2.4)

As the state matrix A is assumed to be stable, Wc and Wo are positive semidefinite
and therefore can be factored as Wc = STS and Wo = RTR, where S and R are the
corresponding Cholesky factors.

Efficient Lyapunov solvers that exploit the sparsity of the coefficient matrix A and
provide full-rank factors Ŝ and R̂ that can replace S and R in subsequent computations
are described in the next subsection.

Consider now the singular value decomposition (SVD) of the product

SRT = UΣV T = [U1 U2]

[
Σ1

Σ2

]
[V1 V2]T , (2.5)

where U and V are orthogonal matrices, and Σ = diag (σ1, σ2, . . . , σn) is a diagonal
matrix containing the singular values σ1, . . . , σn of SRT , which are called the Hankel
singular values of the system.

Both common versions of BT, the square-root (SR) and balancing-free square-root
(BFSR) BT algorithms, allow an adaptive choice of the state-space dimension r of the
reduced-order model as they provide a realization Ĝ which satisfies

‖Δa‖∞ = ‖G− Ĝ‖∞ ≤ 2
n∑

j=r+1

σj . (2.6)

Besides, if σr > σr+1 = 0, then r is the state-space dimension of a minimal realization
of the system.

SR BT methods determine the reduced-order model of order r as

Â = TlATr, B̂ = TlB, Ĉ = CTr, D̂ = D, (2.7)

with the projection matrices Tl and Tr given by

Tl = Σ
−1/2
1 V T

1 R and Tr = STU1Σ
−1/2
1 . (2.8)

BFSR BT algorithms often provide more accurate reduced-order models in the pres-
ence of rounding errors.These algorithms obtain Tl and Tr from the following two QR
factorizations,

STU1 = [P1 P2]

[
Rs

0

]
, RTV1 = [Q1 Q2]

[
Rr

0

]
, (2.9)

where the columns of P1, Q1 ∈ Rn×r form orthonormal bases for range(Tr),
range(Tl), respectively, and Rs, Rr ∈ Rr×r are upper triangular. The reduced sys-
tem is then given by 2.7 and the projection matrices

Tl = (QT
1 P1)−1QT

1 , Tr = P1. (2.10)

270 José M. Badı́a et al.

2.2 Low Rank Solution of Lyapunov Equations

In this subsection we revisit the Lyapunov solvers introduced in [17,22]. These iterative
algorithms benefit from the frequently encountered low-rank property of the constant
terms in 2.4 to provide low-rank approximations to a Cholesky or full-rank factor of the
solution matrix. These approximations can reliably substitute S andR in the computation
of 2.5, 2.8, and 2.9.

Specifically, given an “l–cyclic” set of (complex) shift parameters {p1, p2, . . .},
pk = αk + βk j, such that pk = pk+l, the cyclic low-rank alternating direction implicit
(LR-ADI) iteration proposed in [22] can be reformulated as follows:

V0 = (A + p1In)−1B, Ŝ0 =
√
−2 α1 V0,

Vk+1 = Vk − δk(A + pk+1In)−1Vk, Ŝk+1 =
[
Ŝk , γkVk+1

]
,

(2.11)

where γk =
√

αk+1/αk, δk = pk+1 + pk, pk being the conjugate of pk, and In denotes
the identity matrix of order n. On convergence, after kmax iterations, a low-rank matrix
Ŝk of order n × kmaxm is computed such that ŜkŜ

T
k approximates Wc = STS. An

analogous iteration involving AT provides a low-rank approximation R̂k of R.
The performance of iteration 2.11 strongly depends on the selection of the shift pa-

rameters. In practice, the set {p1, p2, . . . , pl} should be chosen so that it is closed under
complex conjugation. In case the eigenvalues of A are real, the optimal parameters can
be computed explicitly [27]. Otherwise, an optimal solution is not known. A heuristic
procedure is proposed in [22] to compute the parameters by approximating the eigenval-
ues of A and A−1 of largest magnitude. The procedure is based on an Arnoldi iteration
involving A and A−1. For further details on the convergence of the LR-ADI iteration
and the properties of the heuristic selection procedure, see [22].

It should be emphasized that the methods just described for solving 2.4and 2.5 signif-
icantly differ from standard methods used in the MATLAB toolboxes or SLICOT [26].
First, the proposed LR-ADI iteration for the solution of the dual Lyapunov equation
exploits the sparsity in the coefficient matrix. Besides, as we are using low-rank ap-
proximations to the full-rank or Cholesky factors, the computation of the SVD in 2.5 is
usually much more efficient: instead of a computational cost of O(n3) when using the
Cholesky factors, this approach leads to an O(k2

max · m · p · n) cost where, in model
reduction, often m, p 0 n; see [4]. This latter advantage is shared by the routines in our
dense parallel model reduction library PLiCMR [4]. However, PLiCMR routines do not
exploit the sparsity of the coefficient matrix.

3 Parallel Implementation

3.1 Implementation Details

Iteration 2.11 can be stopped when the contribution of the columns added to Ŝk+1 is
negligible; thus, in practice, we stop the iteration when ||γkVk+1||1 is “small”.

The use of direct linear system solvers [10] (based, e.g., on the LU or Cholesky
factorization) is appealing as the same coefficient matrix is involved in iterations k

Parallel Algorithms for Balanced Truncation Model Reduction of Sparse Systems 271

and k + l. Therefore, the computed factorization can be re-used several times provided
sufficient workspace is available to store the factors. Also, many direct sparse solvers
that include an initial phase of symbolic factorization only need to perform this phase
once, as all linear systems share the same sparsity pattern.

Notice that even in case all data matrices are real, the LR-ADI iteration will involve
complex arithmetic in case any of the shifts is complex. Special care must be taken so that
all shifts are real in case all eigenvalues of A are real as that reduces the computational
cost of the iteration significantly.

3.2 Parallelization

The LR-ADI iteration and the computation of the acceleration shifts basically require
linear algebra operations such as matrix-vector products (in the Arnoldi procedure for
computation of the shifts for the iteration) and the solution of linear systems (also in the
computation of the shifts, and in the LR-ADI iteration). Our approach for dealing with
these matrix operations is based on the use of parallel linear algebra libraries. (For an
extensive list of those, visit

http://www.netlib.org/utk/people/JackDongarra/la-sw.html.)

Specifically, in case sparse matrices are involved, the matrix-vector products are
computed as a series of “usaxpy” (y = y + α · x) operations, with each process in
the parallel system performing, approximately, an equal amount of these operations.
Although beneficial, no attempt to balance the computational load is done here as the
contribution of the matrix-vector products to the cost of the model reduction algorithm
is a minor one: in practice, the number of matrix-vector products is proportional to the
number of different shifts, and much smaller than the number of linear systems that need
to be solved (one per iteration). Besides, the cost of a matrix-vector product is in general
much lower than that of solving a linear system.

Sparse linear systems can be solved in our parallel codes by using appropriate kernels
from MUMPS or SuperLU [1,9]. In both cases, the analysis phase (corresponding to a
symbolic factorization) is performed only once for the iteration, and the factorization
phase is only performed during the first l iterations.

In case the coefficient matrix is banded we use the linear system solvers in ScaLA-
PACK. We also implemented our own parallel routine for the banded matrix-vector
product as this is not available in the library.

Our parallel codes can also deal with dense linear systems using the kernels in
ScaLAPACK. However, in such case the methods in PLiCMR (see [4] for an overview)
are preferred as the Lyapunov equation solvers used there have quadratic convergence
rate as opposed to the (super-)linear convergence of the ADI method at a comparable
cost of the remaining computational stages.

After the LR-ADI iteration is completed, the model reduction algorithm proceeds
to compute the product of ŜkR̂

T
k as in 2.5 and the reduced-order model using 2.8 or

2.9–2.10. As both Ŝk and R̂k are full dense factors, their product and the SVD are
computed using the kernels in ScaLAPACK. The SVD of a matrix with complex entries
is not available in ScaLAPACK. This difficulty is circumvented by collecting the product

272 José M. Badı́a et al.

ŜkR̂
T
k into a single node and computing its SVD using the serial routine from LAPACK.

We exploit here that the size of the resulting matrix is order of kmaxm× kmaxp which,
in general, is much smaller than n× n.

Once the projection matrices Tl and Tr have been computed, it only remains to
apply these matrices to form the reduced-order system (TlATr, TlB,CTr, D). These
matrix products are performed by taking into account the characteristics of matrices A,
B, and C which can be sparse, banded, or dense. In the former two cases, the product
is computed as a series of matrix-vector products, while in the latter case we rely again
on the corresponding ScaLAPACK routine.

4 Experimental Results

All the experiments presented in this section were performed on a cluster of np = 32
nodes using IEEE double-precision floating-point arithmetic (ε ≈ 2.2204×10−16). Each
node consists of an Intel Xeon processor at 2.4 GHz with 1 GByte of RAM. We employ
a BLAS library specially tuned for this processor that achieves around 3800 Mflops
(millions of flops per second) for the matrix product (routine DGEMM) [15]. The nodes
are connected via a Myrinet multistage network and the MPI communication library is
specially developed and tuned for this network. The performance of the interconnection
network was measured by a simple loop-back message transfer resulting in a latency of
18 μsec. and a bandwidth of 1.4 Gbit/sec.

Our benchmark for model reduction of sparse systems consists of three scalable
models and serves to illustrate the benefits gained from applying model reduction via BT
combined with parallelism to large-scale systems. This is by no means a comparison of
the efficacy of the direct linear system solvers in MUMPS, SuperLU, and ScaLAPACK.
In order to avoid it, we report results using a different solver and problem size for each
example.

As in all our experiments both SR and BFSR BT algorithms delivered closely similar
results, we only report data for the first algorithm.

Example 1. This example models the heat diffusion in a (1-dimensional) thin rod with a
single heat source [5]. The system is parameterized by a scalar α that we set to α = 0.1
in our experiments. The spatial domain is discretized into segments of length h = 1

n+1
and centered differences are used to approximate the diffusion operator. A heat point is
assumed to be located at 1/3 of the length of the rod and the temperature is recorded at
2/3 of the length.

In this case, a model of state-space dimension n = 10, 000 was reduced to order
r = 85 using the sparse direct solvers in SuperLU 2.0 (distr.) and l = 50 different shifts
for the LR-ADI iteration. Only 16 nodes of the parallel system were used resulting in
the following execution times (expressed in minutes and seconds) for each one of the
stages of the algorithm:

Comp. shifts LR-ADI iter. Comp. SVD+SR Total

11.74” (11.3%) 1’ 28” (86.1%) 2.49” (2.4%) 1’ 42”

Thus, the computation of the reduced-order model required slightly more than 1.5
minutes. This is clearly a low temporal cost that we may be willing to pay for the great

Parallel Algorithms for Balanced Truncation Model Reduction of Sparse Systems 273

benefits obtained from using the reduced-order model in the subsequent computations
needed for simulation, optimization, or control purposes.

These results also show that the most expensive part of the model reduction procedure
was the LR-ADI iteration, which required about 86% of the total time. Notice that, as
l = 50, this phase requires the computation of 50 matrix (LU) factorizations, while the
computation of the shifts only requires one factorization. Convergence was achieved for
this example after 128 iterations producing full-rank approximations of the Cholesky
factors, Ŝk and R̂k, of order 128×n. Thus, the SVD computation only involved a square
matrix of order 128 requiring around 2.5 sec.

The reduced-order system obtained with our method satisfies the absolute error
bound ‖G− Ĝ‖∞ ≈ 1.91× 10−16, showing that it is possible to reduce the order of the
system from n = 10, 000 to 85 without a significative difference between the behavior
of the original and the reduced-order models. Actually, the reduced-order model can be
seen as a numerically minimal realization of the LTI system.

Example 2. The matrices in this case model the temperature distribution in a 2-D surface.
The state matrix of the system presents a block tridiagonal sparse structure of order
N2 and is obtained from a discretization of the Poisson’s equation with the 5-point
operator on an N × N mesh. The input and output matrices were constructed as B =[
eT
1 , 01×N(N−1)

]T
(with e1 ∈ RN the first column of the identity matrix) and C =[

eT
1 , 1, 01×N−2, 1

]
(with e1 ∈ RN(N−1)). A large system of order n = 202, 500, with

a single input and a single output, was reduced in this case to order r = 30. The parallel
algorithm employed MUMPS 4.3 as the direct linear system solver, l = 15 shifts, and
16 nodes, resulting in the following execution times:

Comp. shifts LR-ADI iter. Comp. SVD+SR Total

9.62” (0.7%) 19’ 54” (97.6%) 19.9” (1.6%) 20’ 22”

Here, obtaining the reduced-order model required about 20 minutes. This time could
be further reduced by employing more nodes of the system. In this example the most
expensive part was again the LR-ADI iteration, which required the major part of the
execution time of the procedure. Convergence was achieved after 69 iterations, producing
a reduced-order model which satisfies ‖G − Ĝ‖∞ ≈ 3.2 × 10−17. From this absolute
error bound we again conclude that, for this example, it is possible to reduce the order
of the system from n = 202, 500 to 30 without a significative difference between the
behavior of the original and the reduced-order models.

Example 3. The matrices in this example model a RLC circuit of n0 sections intercon-
nected in cascade resulting in a system withn = 2n0 states and a single input/output [16].
The system is parameterized by scalars R = 0.1, R̄ = 1.0, C = 0.1, and L = 0.1. The
state matrix in this example is tridiagonal.

In this third example we reduced a system of order n = 200, 000 and a single input
and output to order r = 50. Using the solver in ScaLAPACK 1.6 for banded linear
systems, l = 15 shifts for the LR-ADI iteration, and 16 nodes of the parallel system, the
model reduction algorithm required the following execution times:

Comp. shifts LR-ADI iter. Comp. SVD+SR Total

2.26” (7.4%) 5.14” (16.9%) 22.87” (75.4%) 30.33”

274 José M. Badı́a et al.

The results show that scarcely more than half a minute was sufficient to reduce a
large scale system of order n = 200, 000. Convergence of the LR-ADI iteration was
achieved for this example after 57 iterations, resulting in a reduced-order system that,
for r = 50, satisfied ‖G− Ĝ‖∞ < 4.9× 10−23.

There are two important differences between the results for Examples 2 and 3. First,
although the order of the models are of the same magnitude, the execution times for
Example 3 are much lower. This is due to the ability of the banded solvers in ScaLAPACK
to exploit the structure of the state matrix for Example 3. Second, the largest part of the
computation time lies for Example 3 in the computation of the SVD and the reduced-
order system (SVD+SR stage) while, for Example 2, it is spent in the LR-ADI iteration.
However, the execution times of the SVD+SR stage are comparable for both examples.
Thus, it is really the important reduction of the execution time of the LR-ADI iteration
which, for Example 3, produced the shift of the bulk of the computation time to the
SVD+SR stage.

5 Concluding Remarks

We have presented parallel algorithms for BT model reduction of large sparse (and dense)
linear systems of order as large asO(105). Our model reduction algorithms employ ker-
nels from parallel linear algebra libraries such as SuperLU, MUMPS, and ScaLAPACK.
Three large-scale models are used in the experimental results to illustrate the benefits
gained from applying model reduction via BT combined with parallel execution and to
report the performance of the approach on a cluster of Intel Xeon processors.

The parallelism of our approach depends on the problem structure and the parallelism
of the underlying parallel linear algebra library (SuperLU, MUMPS, or the banded codes
in ScaLAPACK).

References

1. P.R. Amestoy, I.S. Duff, J. Koster, and J.-Y. L’Excellent. MUMPS: a general purpose dis-
tributed memory sparse solver. In Proc. PARA2000, 5th International Workshop on Applied
Parallel Computing, pages 122–131, 2000.

2. A.C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM Publications,
Philadelphia, PA, 2005.

3. P. Benner, E.S. Quintana-Ortı́, and G. Quintana-Ortı́. Balanced truncation model reduction of
large-scale dense systems on parallel computers. Math. Comput. Model. Dyn. Syst., 6(4):383–
405, 2000.

4. P. Benner, E.S. Quintana-Ortı́, and G. Quintana-Ortı́. State-space truncation methods for
parallel model reduction of large-scale systems. Parallel Comput., 29:1701–1722, 2003.

5. Y. Chahlaoui and P. Van Dooren. A collection of benchmark examples for model reduction
of linear time invariant dynamical systems. SLICOT Working Note 2002–2, February 2002.
Available from http://www.win.tue.nl/niconet/NIC2/reports.html.

6. C.-K. Cheng, J. Lillis, S. Lin, and N.H. Chang. Interconnect Analysis and Synthesis. John
Wiley & Sons, Inc., New York, NY, 2000.

7. J. Cheng, G. Ianculescu, C.S. Kenney, A.J. Laub, and P. M. Papadopoulos. Control-structure
interaction for space station solar dynamic power module. IEEE Control Systems, pages 4–13,
1992.

Parallel Algorithms for Balanced Truncation Model Reduction of Sparse Systems 275

8. P.Y. Chu, B. Wie, B. Gretz, and C. Plescia. Approach to large space structure control system
design using traditional tools. AIAA J. Guidance, Control, and Dynamics, 13:874–880, 1990.

9. J.W. Demmel, J.R. Gilbert, and X.S. Li. SuperLU User’s Guide.
10. I.S. Duff, A.M. Erisman, and J.K. Reid. Direct methods for sparse matrices. Oxford Science

Publications, Oxford, UK, 1993.
11. L. Fortuna, G. Nummari, and A. Gallo. Model Order Reduction Techniques with Applications

in Electrical Engineering. Springer-Verlag, 1992.
12. R. Freund. Reduced-order modeling techniques based on Krylov subspaces and their use in

circuit simulation. In B.N. Datta, editor, Applied and Computational Control, Signals, and
Circuits, volume 1, chapter 9, pages 435–498. Birkhäuser, Boston, MA, 1999.

13. R. Freund. Model reduction methods based on Krylov subspaces. Acta Numerica, 12:267–319,
2003.

14. R. W. Freund and P. Feldmann. Reduced-order modeling of large passive linear circuits by
means of the SyPVL algorithm. In Technical Digest of the 1996 IEEE/ACM International
Conference on Computer-Aided Design, pages 280–287. IEEE Computer Society Press, 1996.

15. K. Goto and R. van de Geijn. On reducing TLB misses in matrix multiplication. FLAME
Working Note 9, Department of Computer Sciences, The University of Texas at Austin,
http://www.cs.utexas.edu/users/flame, 2002.

16. S. Gugercin and A.C. Antoulas. A survey of balancing methods for model reduction. In Proc.
European Control Conf. ECC 03 (CD-ROM), Cambridge, 2003.

17. J.-R. Li and J. White. Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl.,
24(1):260–280, 2002.

18. B.C. Moore. Principal component analysis in linear systems: Controllability, observability,
and model reduction. IEEE Trans. Automat. Control, AC-26:17–32, 1981.

19. G. Obinata and B.D.O. Anderson. Model Reduction for Control System Design. Communi-
cations and Control Engineering Series. Springer-Verlag, London, UK, 2001.

20. C.R. Paul. Analysis of Multiconductor Transmission Lines. Wiley–Interscience, Singapur,
1994.

21. T. Penzl. Algorithms for model reduction of large dynamical systems. Technical Report
SFB393/99-40, Sonderforschungsbereich 393 Numerische Simulation auf massiv paralle-
len Rechnern, TU Chemnitz, 09107 Chemnitz, Germany, 1999. Available from
http://www.tu-chemnitz.de/sfb393/sfb99pr.html.

22. T. Penzl. A cyclic low rank Smith method for large sparse Lyapunov equations. SIAM J. Sci.
Comput., 21(4):1401–1418, 2000.

23. M.G. Safonov and R.Y. Chiang. A Schur method for balanced-truncation model reduction.
IEEE Trans. Automat. Control, AC–34:729–733, 1989.

24. M.S. Tombs and I. Postlethwaite. Truncated balanced realization of a stable non-minimal
state-space system. Internat. J. Control, 46(4):1319–1330, 1987.

25. A. Varga. Efficient minimal realization procedure based on balancing. In Prepr. of the IMACS
Symp. on Modelling and Control of Technological Systems, volume 2, pages 42–47, 1991.

26. A. Varga. Model reduction software in the SLICOT library. In B.N. Datta, editor, Applied
and Computational Control, Signals, and Circuits, volume 629 of The Kluwer International
Series in Engineering and Computer Science, pages 239–282. Kluwer Academic Publishers,
Boston, MA, 2001.

27. E.L. Wachspress. ADI iteration parameters for the Sylvester equation, 2000. Available from
the author.

Towards an Optimal Substructuring Method
for Model Reduction

Zhaojun Bai1 and Ben-Shan Liao2

1 Department of Computer Science and Department of Mathematics
University of California at Davis

Davis, CA 95616
bai@cs.ucdavis.edu

2 Department of Mathematics
University of California at Davis

Davis, CA 95616
liao@math.ucdavis.edu

Abstract. Substructuring methods have been studied since 1960s. The modes
of subsystems associated with the lowest frequencies are typically retained. This
mode selection rule is largely heuristic. In this paper, we use a moment-matching
analysis tool to derive a new mode selection criterion, which is compatible to the
one recently derived by Givoli et al using Dirichlet-to-Neumann (DtN) map as an
analysis tool. The improvements of the new mode selection criterion are demon-
strated by numerical examples from structural dynamics and MEMS simulation.

1 Introduction

Model-order reduction techniques play an indispensable role to meet the continual and
compelling need for accurately and efficiently simulating dynamical behavior of large
and complex physical systems. One popular method is the substructuring or the com-
ponent mode synthesis (CMS), which was developed back to early 1960s [7,8,4]. CMS
explicitly exploits underlying structures of a system and effectively avoids the expenses
of processing the entire system at once. The model-order reduction of subsystems can
be conducted in parallel. The subsystem structure is preserved.

Specifically, in this paper, we consider a lumped MIMO dynamical system of the
form

ΣN :

{
Mẍ(t) + Kx(t) = Bu(t),

y(t) = LTx(t),
(1.1)

with the initial conditions x(0) = x0 and ẋ(0) = v0. Here t is the time variable,
x(t) ∈ RN is a state vector, N is the degree of freedoms (DOFs), u(t) ∈ Rp the input
excitation force vector, and y(t) ∈ Rm the output measurement vector. B ∈ RN×p and
L ∈ RN×m are input and output distribution arrays, respectively. M and K are system
matrices, such as mass and stiffness. Assume that M is symmetric positive definite and
K is symmetric semidefinite. Furthermore, the state vector x(t) and the system matrices
M and K are posed of subsystem structure, namely, they are partitioned into the three
blocks, representing subsystems I, II and interface:

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 276–285, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards an Optimal Substructuring Method for Model Reduction 277

x(t) =

⎡⎢⎣x1(t)
x2(t)
x3(t)

⎤⎥⎦ , M =

⎡⎢⎣M11 M13

M22 M23

MT
13 MT

23 M33

⎤⎥⎦ , K =

⎡⎢⎣K11 K13

K22 K23

KT
13 KT

23 K33

⎤⎥⎦ . (1.2)

We denote the number of DOFs of subsystems I, II and the interface by N1, N2 and N3,
respectively. Thus the total number of DOFs of ΣN is N = N1 + N2 + N3.

By Laplace transform, the input-output behavior of ΣN in the frequency domain is
characterized by the transfer function

H(ω) = LT (−ω2M + K)−1B,

where ω is referred to as the frequency. For the simplicity of exposition, we have assumed
that x(0) = ẋ(0) = 0.

A substructuring method replaces the system ΣN with a system of the same form
but (much) smaller dimension of the state-vector z(t):

Σn :

{
Mnz̈(t) + Knz(t) = Bn u(t),

ŷ(t) = LT
n z(t),

(1.3)

such that the input-output behavior of Σn is an acceptable approximation of ΣN . The
number of DOFs of the new state-vector z(t) is n = n1 + n2 + N3 with n1 < N1 and
n2 < N2. The DOFs of the interface block is unchanged. Furthermore, Mn and Kn

preserve the block structures of M and K .
A key step in substructuring methods is to compute and retain the modes of sub-

systems. A standard mode selection practice is to retain the modes associated with few
lowest frequencies. This is largely heuristic and does not guarantee to produce an optimal
reduced system Σn as shown by the following simple example. Let

M =

⎡⎢⎢⎢⎢⎣
1 0.7

1 10−3

1 0.3

0.7 10−3 0.3 1

⎤⎥⎥⎥⎥⎦ , K =

⎡⎢⎢⎢⎢⎣
0.9

1
2

1

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
1

0
0

0

⎤⎥⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎢⎣
1

1
1

1

⎤⎥⎥⎥⎥⎦ . (1.4)

Suppose the subsystem II is reduced. Then by the standard lowest frequency mode
selection criterion, the reduced system Σn is given by

Mn =

⎡⎢⎣ 1 0.7

1 10−3

0.7 10−3 1

⎤⎥⎦ , Kn =

⎡⎢⎣0.9

1

1

⎤⎥⎦ , Bn =

⎡⎢⎣1

0

0

⎤⎥⎦ , Ln =

⎡⎢⎣1

1

1

⎤⎥⎦ . (1.5)

However, if we retain the other mode in the system II, then the reduced system Σ̂n is
given by

M̂n =

⎡⎢⎣ 1 0.7

1 0.3

0.7 0.3 1

⎤⎥⎦ , K̂n =

⎡⎢⎣0.9

2

1

⎤⎥⎦ , B̂n =

⎡⎢⎣1

0

0

⎤⎥⎦ , L̂n =

⎡⎢⎣1

1

1

⎤⎥⎦ . (1.6)

278 Zhaojun Bai and Ben-Shan Liao

Figure 1 shows the magnitudes (in log of base 10) of the transfer function H(ω)
of the original system ΣN and the reduced ones Hn(ω) (called CMS line) and Ĥn(ω)
(called CMSχ line). It is clear that the low-frequency dominant mode selection criterion
is not optimal.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−3

−2

−1

0

1

2

3

4
Miniature Example: N=4 −> n=3, (1,2,1)−>(1,1,1)

Frequency (Hz)

lo
g1

0(
M

ag
ni

tu
de

)

Exact
CMSχ
CMS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−15

10
−10

10
−5

10
0

R
el

at
iv

e
E

rr
or

Frequency (Hz)

ErrCMSχ
ErrCMS

Fig. 1. The frequency response analysis (top) and relative error (bottom) for the miniature example

A question that arises naturally is “which are the important modes of subsystems?”
In the recent work of Givoli et al [1,6], an optimal modal reduction (OMR) algorithm is
proposed. In contrast to the low-frequency dominant mode selection rule, they introduce
the concept of coupling matrix-based mode selection criterion. The concept is derived via
the DtN map analysis tool, originally developed for solving partial differential equations
with non-reflecting boundary conditions [9]. They show that the OMR method is better
than the standard modal reduction (SMR) method. However, there are a number of
limitations in the OMR method, such as the assumption of external force Bu(t) only
applied to one of the subsystems.

In this paper, we present an alternative mode selection criterion to the CMS method.
The resulting method is called CMSχ. The new mode selection criterion in CMSχ is
derived in an algebraic setting based on the concept of moment-matching in frequency
domain. It coincides with the coupling matrix-based mode selection criterion used in
the OMR method. However, mathematical derivation of moment-matching based mode
selection criterion is much simpler than the DtN mapping based derivation used in OMR.
Moreover, it does not need the assumption of the special form of external force Bu(t)
as used in OMR.

2 Substructuring Methods

In this section, we first discuss a generic CMS method, which is based on the origi-
nal CMS developed by Hurty [7,8] and Craig and Bampton [4]. Then we specify the

Towards an Optimal Substructuring Method for Model Reduction 279

difference between the standard CMS method and the new one we propose. We give a
justification for the new method in the next section.

In a generic and compact form, the key step of the CMS method is on the construction
of the transformation matrix Vn of the form

Vn =

⎛⎝
n1 n2 N3

N1 Φ1 Ψ13

N2 Φ2 Ψ23

N3 IN3

⎞⎠, (2.7)

where Ψi3 = −K−1
ii Ki3 for i = 1, 2, and Φi is an Ni × ni matrix whose columns are

the selected ni eigenvectors φ
(i)
j of the matrix pair (Mii,Kii):

Kiiφ
(i)
j = λ

(i)
j Mii φ

(i)
j and (φ(i)

j)TMiiφ
(i)
k = δjk, (2.8)

where δjk is the Kronecker delta. In structural dynamics, Φi is the interior partition of
the fixed-interface modal matrix and Ψi3 is the interior partition of the constraint-mode
matrix.

An orthogonal projection technique for model-order reduction seeks an approxima-
tion of x(t) constrained to stay in the subspace spanned by the columns of Vn, namely

x(t) ≈ Vnz(t) .

Then by imposing the so-called Galerkin orthogonal condition:

MVnz̈(t) + KQnz(t)−Bu(t) ⊥ span{Vn}.

it yields a reduced-order system:

Σn :

{
Mnz̈(t) + Knz(t) = Bnu(t)

ŷ(t) = LT
nz(t)

, (2.9)

where Mn = V T
n MVn,Kn = V T

n KVn, Bn = V T
n B and Ln = V T

n L. By the definition
of Vn, the matrices Mn and Kn of the reduced system Σn are of the following forms

Mn =

⎡⎢⎣ I M
(n)
13

I M
(n)
23

(M (n)
13)T (M (n)

13)T M̂33

⎤⎥⎦ and Kn =

⎡⎢⎣ Λ
(n)
1

Λ
(n)
2

K̂33

⎤⎥⎦ ,

where

M
(n)
i3 = ΦT

i M̂i3 and M̂i3 = Mi3 −MiiK
−1
ii Ki3 for i = 1, 2,

M̂33 = M33 −
2∑

i=1

(
KT

i3K
−1
ii Mi3 + MT

i3K
−1
ii Ki3 −KT

i3K
−1
ii MiiK

−1
ii Ki3

)
,

and K̂33 is the Schur complement of diag(K11,K22) in K of the form

K̂33 = K33 −KT
13K

−1
11 K13 −KT

23K
−1
22 K23,

280 Zhaojun Bai and Ben-Shan Liao

and Λ
(n)
i = diag(λ(i)

1 , λ
(i)
2 , . . . , λ

(i)
ni).

A high-level description of a generic CMS method is as followings.

Generic CMS Method

1. Compute the selected eigenpairs (λ(i)
j ,φ

(i)
j) of the generalized eigenproblems

Kiiφ
(i)
j = λ

(i)
j Miiφ

(i)
j for i = 1, 2,

2. Retain some eigenpairs (λ(i)
j ,φ

(i)
j) to define transformation matrix Vn,

3. Form Mn,Kn, Bn, Ln to define the reduced system Σn as in (2.9).

In the standard CMS method, the ni modes φ
(i)
j associated with smallest eigenvalues

λ
(i)
j are retained to define the projection matrix Vn. Vn is called the Craig-Bampton

transformation matrix in structure dynamics [3].
In an alternative method, which we call the CMSχ, the ni modes φ

(i)
j in Vn are

selected according to the highest norm of the rank-one coupling matrices S
(i)
j :

S
(i)
j =

1

λ
(i)
j

M̂T
i3φ

(i)
j (φ(i)

j)T M̂i3. (2.10)

Therefore, the selected modes φ
(i)
j in CMSχ may not be in the natural order as in CMS.

As a result, to find such ni modes, we may have to find more than ni smallest eigenpairs
of the matrix pairs (Mii,Kii). This will be shown by numerical examples in section 4.
But first we give a justification for the CMSχ method in the next section.

3 Derivation of CMSχ

Let us assume that Φi contains all Ni modes of the submatrix pairs (Mii,Kii) for
i = 1, 2. Then the system ΣN in its modal coordinate in frequency domain is of the
form

−ω2

I M
(N)
13

I M
(N)
23

(M
(N)
13)T (M

(N)
23)T M33

+

Λ
(N)
1

Λ
(N)
2

K33

X1(ω)

X2(ω)

X3(ω)

=

B
(N)
1

B
(N)
2

B3

U(ω).

(3.11)
For the sake of notation, we will drop the superscript ·(N) in the rest of section. By solving
X1(ω) and X2(ω) from the first and second equations of (3.11) and then substituting
into the third interface equation of the (3.11), it yields(

ω4
2∑

i=1

[
−MT

i3(−ωI + Λi)−1Mi3

]
− ω2M̂33 + K̂33

)
X3(ω)

=

(
ω2

2∑
i=1

[
MT

i3(−ωI + Λi)−1Bi

]
+ B̂3

)
U(ω). (3.12)

Towards an Optimal Substructuring Method for Model Reduction 281

In the context of structural dynamics, the equation (3.12) presents the force applied to
the interface and applied to it by the subsystems.

Instead of solving equation (3.12) for X3(ω) directly, we simplify the equation first,
since we are only interested in looking for “important modes”. An approximation of
(3.12) is taking the first three terms of the power expansion in ω2 of the coefficient
matrix on the left hand side, and taking the constant term on the right hand side. This
yields an approximate equation of (3.12):[
−ω4
(
MT

13Λ
−1
1 M13 + MT

23Λ
−1
2 M23

)
− ω2M̂33 + K̂33

]
X̃3(ω) = B̂3U(ω), (3.13)

Let the power series expansion of X̃3(ω) be formally denoted by

X̃3(ω) =

(∞∑
�=0

r�ω
2�

)
U(ω),

where r� are called the -th moment (vector) of X̃3(ω). Then by comparing the two sides
of equation (3.13) in the power of ω2, the moments r� are given by

r0 = K̂−1
33 B̂3,

r1 = K̂−1
33 M̂33r0,

r� = K̂−1
33 (M̂33r�−1 + (

2∑
i=1

MT
i3Λ

−1
i Mi3)r�−2) for ≥ 2.

By an exactly analogous calculation, for the reduced-order system Σn in its modal
coordinates form, namely

Mn =

⎡⎢⎣ I M
(n)
13

I M
(n)
23

(M (n)
13)T (M (n)

13)T M
(n)
33

⎤⎥⎦ , Kn =

⎡⎢⎣ Λ
(n)
1

Λ
(n)
2

K
(n)
33

⎤⎥⎦
and

Bn =

⎡⎢⎣B
(n)
1

B
(n)
2

B
(n)
33

⎤⎥⎦ , Ln =

⎡⎢⎣L
(n)
1

L
(n)
2

L
(n)
33

⎤⎥⎦ .

The moment vectors r(n)
� for the solution X̃

(n)
3 (ω) of the approximate interface equation

are given by

r
(n)
0 = (K(n)

33)−1B
(n)
3 ,

r
(n)
1 = (K(n)

33)−1M
(n)
33 r

(n)
0 ,

r
(n)
� = (K(n)

33)−1(M (n)
33 r

(n)
�−1 + (

2∑
i=1

(M (n)
i3)T (Λ(n)

i)−1M
(n)
i3)r(n)

�−2) for ≥ 2.

282 Zhaojun Bai and Ben-Shan Liao

Note that the dimensions of the moment vectors {r�} and {r(n)
� } are the same since we

assume that the DOFs of the interface block is unchanged.
A natural optimal strategy to define a reduced-order systemΣn is to match or approx-

imate as many moments as possible. To match the first moment r0 = r
(n)
0 , it suggests

that

K
(n)
33 = K̂33 and B

(n)
3 = B̂3.

To match the second moment r1 = r
(n)
1 , it derives that

M
(n)
33 = M̂33.

Unfortunately, there is no easy way to match the third moment r2 exactly. Instead, we
try to minimize the difference between r2 and r

(n)
2 :

‖r2 − r
(n)
2 ‖2 = ‖K̂−1

33

(
2∑

i=1

MT
i3Λ

−1
i Mi3 − (M (n)

i3)T (Λ(n)
i)−1M

(n)
i3

)
K̂−1

33 B̂3‖2

≤ c‖
N1∑
j=1

S
(1)
j −

n1∑
j=1

(S(1)
j)(n)

︸ ︷︷ ︸
1

+
N2∑
j=1

S
(2)
j −

n2∑
j=1

(S(2)
j)(n)

︸ ︷︷ ︸
2

‖2, (3.14)

where c = ‖K̂−1
33 ‖2‖K̂−1

33 B̂3‖2, a constant independent of the modes φ
(i)
j . S

(i)
j and

(S(i)
j)(n) are the coupling matrices for the j-th mode of the subsystem i as defined in

(2.10). Assume that S(i)
j and (S(i)

j)(n) are in descending order according to their norms,
respectively,

‖S(i)
1 ‖ ≥ ‖S(i)

2 ‖ ≥ · · · ≥ ‖S(i)
Ni
‖, ‖(S(i)

1)(n)‖ ≥ ‖(S(i)
2)(n)‖ ≥ · · · ≥ ‖(S(i)

ni
)(n)‖.

The best we can do is to set

(S(i)
j)(n) = S

(i)
j for j = 1, 2, . . . , ni.

This cancels out the first ni terms of the differences labled as 1 and 2 of the upper bound
in (3.14), and leaves the sums of the remaining terms smallest possible. This yields the
CMSχ-mode selection rule as we described in section 2: retain the first ni modes of the

subsystem i according to the largest norms of the coupling matrices S
(i)
j .

Note that the matrices M̂i3 which couples subsystems and the interface are included
in the coupling matrices S

(i)
j . Therefore, they are reflected for the retention of modes of

importance. These coupling effects are essentially ignored by the CMS mode selection.
To this end, we also note that CMSχ-mode selection criterion is essentially the same
as the one in the OMR method derived by the DtN mapping [1,6], but without the
assumption of the special form of the external force term Bu(t) in the original system
ΣN (1.1).

Towards an Optimal Substructuring Method for Model Reduction 283

4 Numerical Experiments

In this section, we present two numerical examples to compare the two mode selection
criteria discussed in this paper. All numerical experiments were run in MATLAB on a
Linux Server with Dual 1.2Ghz CPUs and 2GB of memory.

0 1 2 3 4 5 6 7 8 9 10
−14

−12

−10

−8

−6

−4
Bcsstb06: N=420 −> n=153, (190,194,36)−>(52,65,36)

Frequency (Hz)

M
ag

ni
tu

de

Exact
CMSχ
CMS

0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−2

10
0

10
2

10
4

R
el

at
iv

e
E

rr
or

Frequency (Hz)

ErrCMSχ
ErrCMS

10
3

10
4

10
5

10
6

10
7

10
8

52 modes selected out of 190 of (K
11

,M
11

)

Frequency

10
3

10
4

10
5

10
6

10
7

10
8

65 modes selected out of 194 of (K
22

,M
22

)

Frequency

CMSχ

CMS

Exact

CMSχ

CMS

Exact

Fig. 2. Left: magnitudes (in log of base 10) of the transfer functions (top) and relative errors
(bottom). Right: retained modes of subsystems by CMS and CMSχ

Example 1. In this example, the mass and stiffness matrices M and K are from Harwell-
Boeing BCS sparse matrix collection [5]. The number of DOFs of ΣN is N = 420, and
that of two subsystems are N1 = 190 and N2 = 194, respectively. The top left plot
of Fig. 2 shows the magnitude (in log of base 10) of the transfer function H(ω) of the
SISO system ΣN with B = L = [1 0 . . . 0]T . The transfer functions HCMS

n (ω)
and H

CMSχ
n (ω) of the reduced systems Σn, computed by CMS and CMSχ, are shown

in the same plot. The number of DOFs of reduced-order systems Σn is n = 153 with
n1 = 52 and n2 = 65, respectively. The relative errors |H(ω) − HCMS

n (ω)|/|H(ω)|
and |H(ω) − H

CMSχ
n (ω)|/|H(ω)| shown in the lower left plot of Fig. 2 indicate that

H
CMSχ
n (ω) is a much accurate approximation of H(ω) than HCMS

n (ω), under the same
order of reduced DOFs.

Two right plots of Fig. 2 show the eigenvalues of original systems and the ones
retained by CMS and CMSχ. Note again that the numbers of eigenvalues of subsystems
retained by the two methods are the same. CMSχ skips some of lower frequency eigen-
values, and uses some higher frequency eigenvalues to take into the account of coupling
effects between the subsystems and the interface. On the other, CMS simply takes the
lowest frequency eigenvalues in order.

Example 2. This is a SISO system ΣN arised from simulation of a prototype radio-
frequency MEMS filter [2]. The DOFs of ΣN is N = 490 and that of two subsystems
are N1 = N2 = 238. The DOFs of interface is N3 = 14. Fig. 3 shows the transfer
functions H(ω), HCMS

n (ω) and H
CMSχ
n (ω). The DOFs of reduced subsystems by the

284 Zhaojun Bai and Ben-Shan Liao

both methods are n1 = n2 = 85. The relative errors |H(ω)−HCMS
n (ω)|/|H(ω)| and

|H(ω) − H
CMSχ
n (ω)|/|H(ω)| in the lower left plot of Fig. 3 show the improvement

made by the new CMSχ method. Two right plots of Fig. 3 show the differences in the
retention of the same number of modes of subsystems.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
5

−22

−20

−18

−16

−14

−12

−10
Resonator 490: N=490 −> n=184, (238,238,14)−>(85,85,14)

Frequency (Hz)

lo
g1

0(
M

ag
ni

tu
de

)

Exact
CMSχ
CMS

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
5

10
−6

10
−4

10
−2

10
0

10
2

10
4

R
el

at
iv

e
E

rr
or

Frequency (Hz)

ErrCMSχ
ErrCMS

10
11

10
12

10
13

10
14

10
15

85 modes selected out of 238 of (K
11

,M
11

)

Frequency

10
11

10
12

10
13

10
14

10
15

85 modes selected out of 238 of (K
22

,M
22

)

Frequency

CMSχ

CMSχ

CMS

Exact

CMS

Exact

Fig. 3. Left: magnitudes (in log of base 10) of the transfer functions (top) and relative errors
(bottom). Right: retained modes of subsystems by CMS and CMSχ

5 Conclusion Remarks

A new coupling matrix-based mode selection criterion for the popular CMS method
is presented in this paper. It is derived based on moment-matching property for the
interface solution. Our work is motivated by the recent work of Givoli et al [1,6], in
which the term “coupling matrix” is coined. Our mode selection criterion is compatible
to the one proposed by Givoli et al, which uses Dirichlet-to-Neumann (DtN) mapping
as an analysis tool. The performance improvement of the new mode selection criterion
is demonstrated by numerical examples.

The coupling matrix-based mode selection costs more than the standard one, since
some extra eigenpairs of the subsystems are typically required. If the sizes of subsystems
are moderate, the extra cost may not be significant measured by the CPU time. Multilevel
substructuring with an optimal mode selection is a subject of future study. It is worth to
note that modal reduction methods as discussed in this paper are generally less accurate
and efficient than Krylov subspace-based reduction methods. A Krylov subspace-based
substructuring method is in progress.

Acknowledgments

The work is supported in part by the National Science Foundation under grant
No. 0220104.

Towards an Optimal Substructuring Method for Model Reduction 285

References

1. P.E. Barbone and D. Givoli. Optimal modal reduction of vibrating substructures. Int. J. Numer.
Meth. Engng, 57:341–369, 2003.

2. D. Bindel, Z. Bai, and J. Demmel. Reduced order models in Microsystems and RF MEMS. To
appear in the proceedings of PARA’04: Workshop on the state-of-the-art in scientific comput-
ing, Lyngby, Denmark, June 20-23, 2004.

3. R. R. Craig Jr. Coupling of substructures for dynamic analysis - an overview. AIAA-2000-1573,
2000.

4. R. R. Craig Jr. and M. C. C. Bampton. Coupling of substructures for dynamic analysis. AIAA
Journal, 6(7):1313–1319, 1968.

5. I.S. Duff, R.G. Grimes, and J.G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix col-
lection (release 1). Technical Report RAL-92-086, Rutherford Appleton Laboratory, December
1992. Available at the MatrixMarket: http://math.nist.gov/MatrixMarket.

6. D. Givoli, P. E. Barbone, and I. Patlashenko. Which are the important modes of a subsystem?
Int. J. Numer. Meth. Engng, 59:1657–1678, 2004.

7. W. C. Hurty. Vibrations of structural systems by component-mode synthesis. Journal of the
Engineering Mechanics Division, ASCE, 86:59–69, 1960.

8. W. C. Hurty. Dynamic analysis of structural systems using component modes. AIAA Journal,
3:678–685, 1965.

9. J.B. Keller and D. Givoli. Exact non-reflecting boundary conditions. Journal of Computational
Physics, 82:172–192, 1989.

Model Reduction for RF MEMS Simulation

David S. Bindel1, Zhaojun Bai2, and James W. Demmel3

1 Department of Electrical Engineering and Computer Science
University of California at Berkeley

Berkeley, CA 94704
dbindel@eecs.berkeley.edu
2 Department of Computer Science

University of California at Davis
Davis, CA 95616

bai@cs.ucdavis.edu
3 Department of Electrical Engineering and Computer Science and

Department of Mathematics
University of California at Berkeley

Berkeley, CA 94704
demmel@eecs.berkeley.edu

Abstract. Radio-frequency (RF) MEMS resonators, integrated into CMOS
chips, are of great interest to engineers planning the next generation of com-
munication systems. Fast simulations are necessary in order to gain insights into
the behavior of these devices. In this paper, we discuss two structure-preserving
model-reduction techniques and apply them to the frequency-domain analysis of
two proposed MEMS resonator designs.

1 Introduction

Radio-frequency (RF) electromechanical resonators used in frequency references and
filters are critical to modern communication systems. For RF engineers using quartz, ce-
ramic, and surface acoustic wave devices, surface-micromachined MEMS resonators in
development offer an attractive alternative. Because they can be integrated into CMOS,
MEMS resonators have the potential to cost less area, power, and money than existing
alternatives [10]. Such integrated high-frequency filters could qualitatively change the
design of cell phones, making it possible to build a cheap phone to work with mul-
tiple networks operating at different carrier frequencies, and lowering power and size
constraints to the point that inexpensive “Dick Tracy” watch phones could be a reality.

Researchers working on integrated MEMS resonators currently rely on a trial-and-
error design process. There is a clear need for quick, accurate simulations to minimize
the labor and fabrication costs of trial-and-error design. Lumped-parameter models and
simple modal analyses do not adequately describe subtle continuum-level effects and
mode interactions which strongly affect device behavior. We therefore rely on model-
reduction methods to perform frequency-response computations quickly.

Energy losses in high-frequency resonators are critical to designers. The quality
factor (Q), a ratio of energy stored in a resonator to energy lost in each cycle, must
be high for a resonator to be useful in a filter or frequency reference. Despite their

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 286–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model Reduction for RF MEMS Simulation 287

importance, the details of energy loss in MEMS resonators are not well understood, and
accurate loss modeling remains an area of active research. Among other mechanisms,
energy can be lost through viscous damping, through thermoelastic effects, or through
elastic waves carrying energy away into the substrate [8]. Each mechanism leads to
a different structure in the model equations. A mechanical system subject to viscous
damping is modeled by a second-order system of equations with a nonzero first-order
term; the thermoelastic equations are coupled first- and second-order equations; while
infinite-domain problems can be modeled by a coordinate transformation resulting in
complex symmetric mass and stiffness matrices. Here we consider viscous and anchor
losses. Viscous loss models are relatively common, but to our knowledge, ours is the
first physical model of anchor loss in a bulk-mode MEMS resonator.

In this paper, we describe two model reduction techniques for computing the fre-
quency response of MEMS resonators. We first describe how to reduce second order
systems using a Second-Order Arnoldi (SOAR) algorithm which preserves the second-
order structure of the equations; we use this technique to simulate a checkerboard-shaped
mechanical filter. We then describe how we model infinite-domain problems using a
perfectly-matched layer (PML), and describe a model-reduction technique which pre-
serves the structure of the PML; we use this technique to study the frequency response
of a disk resonator.

2 Model Reduction for Second-Order Systems

2.1 Second-Order Systems and SOAR

Since they are partly mechanical, most MEMS models are naturally second-order in
time. Depending on the device, there may also be equations which are first order in time
or algebraic, such as the equations for heat transport or for electrostatics. The linearized
equations for the coupled system can be written as a continuous time-invariant single-
input single-output second-order system

ΣN :

{
Mq̈(t) + Dq̇(t) + Kq(t) = b u(t)

y(t) = lT q(t)
(2.1)

with initial conditions q(0) = q0 and q̇(0) = q̇0. Here t is time; q(t) ∈ RN is a vector of
state variables;N is the state-space dimension;u(t) ∈ R and y(t) ∈ R are the input force
and output measurement functions; M , D, K ∈ RN×N are system mass, damping, and
stiffness matrices; and b and l are input distribution and output measurement vectors.
The state-space dimension N of the system ΣN is typically large and it can be slow
to use for practical analysis and design. Therefore, model-order reduction techniques
are needed to construct compact models which both retain important properties of the
original model and are fast to simulate.

A common approach to model-order reduction for the second-order model ΣN is
to add variables for the velocities q̇(t), and so create a first-order model of twice the
dimension of the original. Then the first-order model is reduced. However, the reduced
first-order model may not correspond to any second-order model, and may lack properties

288 David S. Bindel, Zhaojun Bai, and James W. Demmel

of the original model, such as stability and passivity. There have been a number of
efforts toward such structure-preserving model-order reduction methods; we focus on
a subspace projection method based on a second-order Arnoldi (SOAR) procedure that
not only preserves the second-order structure, but also matches the same number of
moments as the standard Arnoldi-based Krylov subspace method via linearization for
about the same amount of work. For the rest of this subsection, we present a SOAR-based
model-order reduction method from the view discussed in [2].

The second-order system ΣN is represented in the time domain in (2.1). Equiva-
lently, one can represent the system in the frequency domain via the Laplace transform.
Assuming homogeneous initial conditions, the frequency-domain input U(s) and output
Y (s) are related by the transfer function

H(s) = lT (s2M + sD + K)−1b =
∞∑

�=0

m�(s− s0)�, (2.2)

where the coefficientsm� in the Taylor series about s0 are called moments. The moments
can be written as m� = lT r�, where the second-order Krylov vector sequence {r�} is
defined by the following recurrence:

r0 = K̂−1b

r1 = −K̂−1D̂r0 (2.3)

r� = −K̂−1(D̂r�−1 + Mr�−2) for = 2, 3, . . .

where K̂ = s2
0M + s0D + K and D̂ = 2s0M + D.

The subspace Gn = span{r�}n−1
�=0 is called a second-order Krylov subspace. Let Qn

be an orthonormal basis of Gn. We seek an approximation q(t) ≈ Qnz(t) ∈ Gn; this is
often referred to as a change of state coordinates. By imposing the Galerkin condition:

MQnz̈(t) + DQnż(t) + KQnz(t)− b u(t) ⊥ Gn,

we obtain the following structure-preserving reduced-order model:

Σn :

{
Mnz̈n(t) + Dnżn(t) + Knz(t) = bn u(t)

ỹ(t) = lTn z(t)
, (2.4)

where Mn = QT
nMQn, Dn = QT

nDQn, Kn = QT
nKQn, bn = QT

n b and ln = QT
n l.

It can be shown that the first n moments of the reduced model Σn agree with those of
the original model ΣN . Furthermore, if M , D, and K are symmetric and b = l, then
the first 2n moments of the models are the same. This method has the same order of
approximation as the standard Arnoldi-based Krylov subspace method via linearization.

We produce an orthonormal basis Qn for the second-order Krylov subspaceGn using
a Second-Order ARnoldi (SOAR) procedure proposed by Su and Craig [12] and further
improved by Bai and Su [3]. At step j, the algorithm computes

r = −K̂−1(D̂qj + Mw) (2.5)

where w is an auxiliary vector computed at the end of the previous step. Then r is
orthogonalized against Qj and normalized to produce qj+1 and w is recomputed.

Model Reduction for RF MEMS Simulation 289

In contrast to the standard Arnoldi algorithm, the transformed matrix triplet
(M, D̂, K̂) is used to generate an orthonormal basis Qn of Gn, but the original matrix
triplet (M,D,K) is directly projected onto the subspace Gn to define the reduced-order
model Σn. By explicitly formulating the matrices Mn, Dn and Kn, essential structures
of M , D and K are preserved. For example, if M is symmetric positive definite, so is
Mn. As a result, we can preserve the stability, symmetry and physical meaning of the
original second-order model ΣN . This is in the same spirit as the widely-used PRIMA
algorithm for passive reduced-order modeling of linear dynamical systems arising from
interconnect analysis in circuit simulations [11].

The SOAR-based model-order reduction algorithm has many desirable properties
compared to the linearization approach. The reduced system Σn not only preserves the
second-order structure, but also matches the same number of moments as the standard
method of projecting a linearized system onto a basis of n Arnoldi vectors. SOAR-based
algorithms require less space and fewer flops (for a subspace of the same dimension),
and also provide more accurate results.

2.2 Modeling of a Checkerboard Resonator

As an application, we build a reduced-order model from a finite element simulation
of a prototype MEMS filter. The goal for this device is to produce a high-frequency
bandpass filter to replace, for example, the surface acoustic wave (SAW) devices used in
cell phones. The device (Figure 1) consists of a checkerboard of silicon squares which
are linked at the corners [6]. The “checkers” are held at a fixed voltage bias relative to the
drive and sense electrodes placed around the perimeter. A radio-frequency (RF) voltage
variation on drive electrodes at the northwest corner creates an electrostatic force which
causes the device to move in plane. The motion induces changes in capacitance at the
sense electrodes at the southwest corner of the device. The induced motion is typically
very small; the checker squares are two microns thick and tens of microns on a side, and
the maximum displacement is on the order of tens of nanometers.

D+

D−

D+

D−

S+ S+

S−

S−

Fig. 1. Illustration of a checkerboard resonator. The SEM picture (left) shows a fabricated device,
and the simulation (right) shows one resonant mode excited during operation. The motion is
excited at the northwest corner and sensed at the southeast corner (center)

A single square pinned at the corners exhibits a “Lamé mode.” If the interaction
between squares was negligible, the system would have a five-fold eigenvalue corre-
sponding to independent Lamé-mode motions for each square. The coupling between

290 David S. Bindel, Zhaojun Bai, and James W. Demmel

80 85 90 95 100 105 110 115 120
−26

−24

−22

−20

−18

−16

lo
g1

0(
m

ag
ni

tu
de

)

Bode plot

80 85 90 95 100 105 110 115 120
−4

−2

0

2

4

ph
as

e(
ra

d)

Frequency (MHz)

Exact
SOAR

Fig. 2. Bode plots from finite element model and reduced order model for a 3-by-3 checkerboard
resonator

the squares causes the five eigenvalues to split, so there are several poles near each
other; consequently, the array has low motional resistance near the target frequency. The
same idea of using weakly coupled arrays has also been applied to other RF resonator
designs [9].

We model the checkerboard with linear 2D plane stress elements and an empirical
viscous damping model. Even for a small mesh (N = 3231), model reduction is benefi-
cial. Using a reduced model with 150 degrees of freedom, we obtain a Bode plot which
is visually indistinguishable from the plot for the unreduced system (Figure 2). We have
also created a visualization tool which designers can use to see the forced motion at
different frequencies (Figure 3). With a reduced model, we can compute the shape of the
motion at a specified frequency within tens of milliseconds instead of seconds, quickly
enough for the user to interactively scan through frequencies of interest. Designers can
use these visualizations to build intuition about different strategies for constructing an-
chors, connecting resonator components, and placing drive and sense electrodes.

3 Model Reduction for Perfectly-Matched Layers

3.1 Perfectly-Matched Layers and Symmetry-Preserving Projection

In several high MHz or GHz frequency resonator designs, the dominant loss mechanism
appears to be radiation of elastic energy through anchors. In these designs, the resonating
device is so much smaller than the silicon substrate that waves leaving the anchor are so
attenuated by material losses as to render negligible any reflections from the sides of the
chip. That is, the bulk of the chip can be modeled as a semi-infinite medium. We model
this semi-infinite domain using a perfectly matched layer (PML), which absorbs waves
at any angle of incidence [4].

Model Reduction for RF MEMS Simulation 291

Fig. 3. Screenshot of a visualization tool for observing forced response shapes for in-plane res-
onators. Using a reduced model, the tool can compute and plot the response shape quickly enough
for interactive use

Bérenger invented the perfectly matched layer for problems in electromagnetics [5],
but it was almost immediately re-interpreted as a complex-valued change of coordinates
which can be applied to any linear wave equation [14,13]. The weak form of the PML
equations for time-harmonic linear elasticity [4] is∫

Ω

ε̃(w)T Dε̃(u)J̃ dΩ − ω2

∫
Ω

ρw · uJ̃ dΩ =
∫

Γ

w · t dΓ (3.6)

where u and w are displacement and weight functions on the domain Ω; t is a traction
defined on the boundary Γ ; ρ and D are the mass density and the elasticity matrix; ε̃ is a
transformed strain vector; and J̃ is the Jacobian determinant of the PML transformation.
This weak form is nearly identical to the standard weak form of linear elasticity, and
when we discretize with finite elements, we have the familiar system

(K − ω2M)q = b (3.7)

where K and M are now complex symmetric.
To make the attenuation through the PML frequency-independent, the coordinate

transformations in [4] are frequency-dependent. Using a frequency-dependent transfor-
mation, the transfer function is given by

H(iω) = lT
(
K(ω)− ω2M(ω)

)−1
b (3.8)

and complex resonances satisfy the nonlinear eigenvalue equation

det
(
K(ω)− ω2M(ω)

)
= 0. (3.9)

However, when the frequency range of interest is not too wide – when the maximum
and minimum frequency considered are within a factor of two or three of each other –

292 David S. Bindel, Zhaojun Bai, and James W. Demmel

the parameters of the PML may be chosen once to give acceptable attenuation over the
desired frequency range. So for ω near enough to ω0, we approximate H(iω) by

H0(iω) = lT
(
K(ω0)− ω2M(ω0)

)−1
b. (3.10)

Similarly, the nonlinear eigenvalue problem (3.9) may be replaced by a (generalized)
linear eigenvalue problem.

In [1], Arbenz and Hochstenbach suggest a variant of the Jacobi-Davidson al-
gorithm for complex symmetric eigenvalue problems. In this method, the standard
Rayleigh quotient estimate of the eigenvalue, θ(v) = (vHKv)/(vHMv), is replaced by
ψ(v) = (vT Kv)/(vT Mv). Assuming vT Mv �= 0, ψ(v) converges quadratically to an
eigenvalue of a complex-symmetric pencil as v approaches an eigenvector, while θ(v)
converges only linearly. The extra order of accuracy comes from the symmetry of the
quadratic forms

uTMv = vT Mu and uTKv = vT Ku.

We wish to maintain this symmetry in our reduced-order models as well.
To build a reduced-order model, we generate a basis V for the Krylov subspace

Kn((K(ω0)−ω2
0M(ω0))−1, b) with the standard Arnoldi algorithm. We then construct

a symmetry-preserving reduced-order model by choosing an orthonormal projection
basis W such that

span(W) = span([Re(V), Im(V)]). (3.11)

The reduced model will be at least as accurate as the usual Arnoldi projection, but
will maintain the complex symmetry of the original system. This reduced model also
corresponds to a Bubnov-Galerkin discretization of the PML equation with a set of
real-valued global shape functions.

3.2 Modeling of a Disk Resonator

As an example of PML model reduction, we study the anchor loss in a disk-shaped
MEMS resonator presented in [15] (Figure 4). The disk sits on a silicon post, and
differences in voltage between the disk and the surrounding drive electrodes pull the disk
rim outward, exciting an axisymmetric motion. The disk is driven near the frequency of

DiskElectrode

Wafer V+

V−

V+

Fig. 4. Schematic of the Michigan disk resonator. An overhead view (right) shows the arrangement
of the resonating disk and the electrodes which force it. An idealized cross-section (left) is used in
an axisymmetric simulation, where the wafer substrate is treated as semi-infinite using a perfectly
matched layer

Model Reduction for RF MEMS Simulation 293

the first or second radial mode, and the motion is sensed capacitively by electrodes on
the surface of the substrate.

We model this resonator using axisymmetric finite elements, with a PML region to
mimic the effects of a semi-infinite substrate. We wish to use this model to study sharp-
ness of resonant peaks, as quantified by the quality factor Q. For a resonant frequency
ω = α + iβ, Q is given by α/(2β). For typical RF applications, Q values of at least
1000 are required; higher values are better.

Because the discretization errors in the real and imaginary parts of the computed
eigenvalues are about the same size, we must resolve ω to an overall relative error
significantly less than Q−1 before the computed Q converges. Consequently, we use a
relatively fine mesh of high-order (bicubic) elements with 57475 unknowns in order to
resolve the behavior of this device. With this mesh, the computed Q value of the second
radial mode was 6250; the measured value of an actual device was 7330 (in vacuum).

Because we expect a single sharp peak to dominate the response in the frequency
range of interest, we might expect a single step of shift-invert Arnoldi with a good shift
to produce a reasonable approximation to H0(iω). If the device possesses two nearly
coincident modes, then two Arnoldi iterations are needed. When the two modes are very
close, they strongly interact, and any reduced model must account for both. Furthermore,
when multiple poles are involved, the Q values provided by eigenvalue computations no
longer provide a complete picture of the behavior near a resonant peak. To understand
the response, we use a reduced model with three Arnoldi vectors (two steps of Arnoldi
plus a starting vector), which approximates the full model very closely near the peak
(Figure 5). Though the peak for one of the modes has negligible magnitude compared
to the peak for the other mode, the interaction of the two modes strongly affects the
sharpness of the dominant mode peak: for values of the disk thickness where the two
modes most closely coincide, the computed Q value for the dominant-mode peak varies
over five orders of magnitude [7].

4 Conclusion

In this paper, we have described two model reduction techniques: a method based on the
SOAR (Second-Order ARnoldi) algorithm, which preserves the second-order structure
of a full system; and a method which uses a standard Arnoldi basis in a novel way to pre-
serve the complex-symmetric structure of an infinite-domain problem approximated by
a perfectly matched layer. We have illustrated the utility of these methods by computing
the frequency-response behavior of two real designs of very high-frequency MEMS res-
onators. In each case, the interactions between multiple resonant modes proves critical,
so that naive projection onto a single mode is inadequate for exploring even the local
frequency-response behavior.

As we continue to study energy loss mechanisms in RF MEMS, we expect model re-
duction to play an even more critical role. For example, to study anchor loss in the
checkerboard resonator, we plan to build a 3D finite element model with perfectly
matched layers below the anchors; this model will be much larger than the 2D model
described in this paper. We are also interested in structure-preserving model reduc-
tion for thermoelastic damping, which is an important loss mechanism in at least some

294 David S. Bindel, Zhaojun Bai, and James W. Demmel

453 453.1 453.2 453.3 453.4 453.5 453.6 453.7 453.8 453.9 454
−50

−40

−30

−20

−10

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

453 453.1 453.2 453.3 453.4 453.5 453.6 453.7 453.8 453.9 454
0

50

100

150

200

Frequency (MHz)

P
ha

se
(d

eg
re

e)

Fig. 5. Bode plot for a disk resonator with nearly coincident modes. The exact model (solid)
matches the reduced model (dashed) produced from two Arnoldi steps

types of flexural resonators [8]. Finally, to more quickly study how variations in device
geometry affect performance, we plan to investigate methods for building parameterized
reduced-order models and reusable reduced-order models for substructures.

Acknowledgements

Sunil Bhave and Roger Howe of the Berkeley EECS department proposed and fabricated
the checkerboard resonator design, and have provided valuable feedback during the
development of our simulations. The study of resonator loss mechanisms is collaborative
work with Sanjay Govindjee and Tsuyoshi Koyama of the Berkeley Civil Engineering
department.

References

1. P. Arbenz and M. E. Hochstenbach. A Jacobi-Davidson method for solving complex sym-
metric eigenvalue problems. SIAM J. Sci. Comp., 25(5):1655–1673, 2004.

2. Z. Bai and Y. Su. Dimension reduction of second-order dynamical systems via a second-order
Arnoldi method. SIAM J. Sci. Comp., 2004. to appear.

3. Z. Bai and Y. Su. SOAR: A second-order Arnoldi method for the solution of the quadratic
eigenvalue problem. SIAM J. Matrix Anal. Appl., 2004. to appear.

4. U. Basu and A. Chopra. Perfectly matched layers for time-harmonic elastodynamics of un-
bounded domains: theory and finite-element implementation. Computer Methods in Applied
Mechanics and Engineering, 192:1337–1375, 2003.

Model Reduction for RF MEMS Simulation 295

5. J.-P. Bérenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal
of Computational Physics, 114(2):185–200, 1994.

6. S. Bhave, D. Gao, R. Maboudian, and R. T. Howe. Fully differential poly-SiC Lamé mode
resonator and checkerboard filter. In Proceedings of MEMS 05, Miami, FL, January 2005.

7. D. S. Bindel, E. Quévy, T. Koyama, S. Govindjee, J. W. Demmel, and R. T. Howe. Anchor
loss simulation in resonators. In Proceedings of MEMS 05, Miami, FL, January 2005.

8. R. N. Candler, H. Li, M. Lutz, W.-T. Park, A. Partridge, G. Yama, and T. W. Kenny. Investiga-
tion of energy loss mechanisms in micromechanical resonators. In Proceedings of Transducers
03, pages 332–335, Boston, June 2003.

9. M. U. Demirci, M. A. Abdelmoneum, and C. T.-C. Nguyen. Mechanically corner-coupled
square microresonator array for reduced series motional resistance. In Proc. of the 12th Intern.
Conf. on Solid State Sensors, Actuators, and Microsystems, pages 955–958, Boston, June 2003.

10. C. T.-C. Nguyen. Vibrating RF MEMS for low power wireless communications. In Proceed-
ings of the 2001 International MEMS Workshop (iMEMS01), pages 21–34, Singapore, July
2001.

11. A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: passive reduced-order interconnect
macromodeling algorithm. IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, 17:645–654, 1998.

12. T.-J. Su and R. R. Craig Jr. Model reduction and control of flexible structures using Krylov
vectors. J. of Guidance, Control and Dynamics, 14:260–267, 1991.

13. F. Teixeira and W. Chew. Complex space approach to perfectly matched layers: a review
and some new developments. International Journal of Numerical Modelling, 13(5):441–455,
2000.

14. E. Turkel and A. Yefet. Absorbing PML boundary layers for wave-like equations. Applied
Numerical Mathematics, 27(4):533–557, 1998.

15. J. Wang, Z. Ren, and C. T-C. Nguyen. Self-aligned 1.14 GHz vibrating radial-mode disk
resonators. In Proceedings of Transducers 03, pages 947–950, 2003.

A Model-Order Reduction Technique for Low Rank
Rational Perturbations of Linear Eigenproblems

Frank Blömeling and Heinrich Voss

Department of Mathematics
Hamburg University of Technology

D-21071 Hamburg, Germany
{f.bloemeling,voss}@tu-harburg.de

Abstract. Large and sparse rational eigenproblems where the rational term is of
low rank k arise in vibrations of fluid–solid structures and of plates with elas-
tically attached loads. Exploiting model order reduction techniques, namely the
Padé approximation via block Lanczos method, problems of this type can be re-
duced to k–dimensional rational eigenproblems which can be solved efficiently
by safeguarded iteration.

1 Introduction

In this paper we consider the rational eigenvalue problem

T (λ)x := −Kx + λMx + CD(λ)CT x = 0, (1.1)

where K ∈ RN×N and M ∈ RN×N are sparse symmetric and positive (semi-) definite
matrices, C ∈ RN×k is a rectangular matrix of low rank k, and D(λ) ∈ Rk×k is a
real diagonal matrix depending rationally on a real parameter λ. Problems of this type
arise in (finite element models of) vibrations of fluid–solid structures and of plates with
elastically attached loads, e.g.

Problem (1.1) has a countable set of eigenvalues which can be characterized as
minmax values of a Rayleigh functional [8], and its eigenpairs can be determined by
iterative projection methods of Arnoldi [9] or Jacobi–Davidson type [2].

In this paper we take advantage of the fact that problem (1.1) can be interpreted as a
rational perturbation of small rankkof a linear eigenproblem. Decomposingx ∈ RN into
its component in the range of C and its orthogonal complement, (1.1) can be rewritten
as

T̃ (λ)x̃ := D(λ)−1x̃ + CT (−K + λM)−1Cx̃ = 0, (1.2)

which is a rational eigenvalue problem of much smaller dimension k.
The eigenproblem (1.2) retains the symmetry properties of problem (1.1), and hence,

in principle it can be solved efficiently by safeguarded iteration. However, every step
of safeguarded iteration requires the evaluation of T̃ (λ) for some λ, i.e. of CT (−K +
λM)−1C, which is too expensive because the dimension N is very large.

The term CT (−K + λM)−1C appears in transfer functions of time invariant linear
systems, and in systems theory techniques have been developed to reduce the order

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 296–304, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Model-Order Reduction Technique for Low Rank Rational Perturbations 297

of this term considerably. Taking advantage of these techniques, namely of the Padé
approximation via the block Lanczos method, problem (1.2) is replaced by a problem of
the same structure of much smaller order. Since this approximating problem inherits the
symmetry properties of the original problem it can be solved efficiently by safeguarded
iteration.

This paper is organized as follows. Section 2 presents the rational eigenproblems
governing free vibrations of a plate with elastically attached loads, and of a fluid–
solid structure. Section 3 summarizes the minmax theory for nonoverdamped nonlinear
symmetric eigenvalue problems, and recalls the safeguarded iteration for determining
eigenpairs of dense problems of this type in a systematic way. Section 4 discusses the
reduction of problem (1.1) to a k dimensional rational eigenproblem and the application
of the Padé–by–Lanczosmethod to reduce the order of the rational term. We demonstrate
that the eigenvalues of the reduced problem allow a minmax characterization. Hence,
it can be solved in a systematic way and efficiently by safeguarded iteration. Section 5
reports on the numerical behaviour of the model–order reduction technique for a finite
element discretization of a plate problem with elastically attached loads. It demonstrates
that for this type of problems the method is superior to iterative projection methods like
Arnoldi’s method [9].

2 Rational Eigenvalue Problems

In this section we briefly present two examples of rational eigenproblems of type (1.1).
Consider an isotropic thin plate occupying the plane domain Ω, and assume that for

j = 1, . . . , p at points ξj ∈ Ω masses mj are joined to the plate by elastic strings with
stiffness coefficients kj .

Then the the flexurable vibrations are governed by the eigenvalue problem

Lu(ξ) = ω2ρdu +
p∑

j=1

ω2σj

σj − ω2
mjδ(ξ − ξj)u , ξ ∈ Ω (2.3)

Bu(ξ) = 0 , ξ ∈ ∂Ω (2.4)

where ρ = ρ(ξ) is the volume mass density, d = d(ξ) is the thickness of the plate at a
point ξ ∈ Ω, and σj = kj

mj
. B is some boundary operator depending on the support of

the plate, δ denotes Dirac’s delta distribution, and

L = ∂11D(∂11 + ν∂22) + ∂22D(∂22 + ν∂11) + 2∂12D(1− ν)∂12

is the plate operator where ∂ij = ∂i∂j and ∂i = ∂/∂ξi, D = Ed3/12(1 − ν2) the
flexurable rigidity of the plate, E is Young’s modulus, and ν the Poisson ratio.

Discretizing by finite elements yields a matrix eigenvalue problem

−Kx + λMx +
p∑

j=1

λσj

σj − λ
eije

T
ij
x = 0,

which can be easily given the form (1.1). Here λ = ω2 and u(ξj) = xij

298 Frank Blömeling and Heinrich Voss

Another rational eigenproblem of type (1.1) is governing free vibrations of a tube
bundle immersed in a slightly compressible fluid under the following simplifying as-
sumptions: The tubes are assumed to be rigid, assembled in parallel inside the fluid, and
elastically mounted in such a way that they can vibrate transversally, but they can not
move in the direction perpendicular to their sections. The fluid is assumed to be con-
tained in a cavity which is infinitely long, and each tube is supported by an independent
system of springs (which simulates the specific elasticity of each tube). Due to these
assumptions, three-dimensional effects are neglected, and so the problem can be studied
in any transversal section of the cavity. Considering small vibrations of the fluid (and
the tubes) around the state of rest, it can also be assumed that the fluid is irrotational.

Let Ω ⊂ R2 denote the section of the cavity, and Ωj ⊂ Ω, j = 1, . . . , p, the sections
of the tubes. Then the free vibrations of the fluid are governed by (cf. [3])

c2Δφ + ω2φ = 0 in Ω \ ∪p
j=1Ωj

∂φ

∂n
=

ρ0ω
2

kj − ω2mj
n ·
∫

∂Ωj

φn ds on ∂Ωj , j = 1, . . . , p

∂φ

∂n
= 0 on ∂Ω

Here φ is the potential of the velocity of the fluid, c denotes the speed of sound in the
fluid, ρ0 is the specific density of the fluid, kj represents the stiffness constant of the
spring system supporting tube j, mj is the mass per unit length of the tube j, and n is
the outward unit normal on the boundary of Ω and Ωj , respectively. Again, discretizing
by finite elements yields a rational eigenproblem (1.1).

3 Minmax Characterization for Nonlinear Eigenproblems

In this section we briefly summarize the variational characterization of eigenvalues for
nonlinear symmetric eigenvalue problems of finite dimension.

For λ ∈ J , where J is an open interval, let T (λ) ∈ Rn×n be a symmetric matrix,
whose elements are differentiable functions of λ. We assume that for every x ∈ Rn\{0}
the real equation

f(λ, x) := xT T (λ)x = 0 (3.5)

has at most one solution λ ∈ J . Then equation (3.5) defines a functional p on some
subset D ⊂ Rn which obviously generalizes the Rayleigh quotient for linear pencils
T (λ) = λB−A, and which we call the Rayleigh functional of the nonlinear eigenvalue
problem

T (λ)x = 0. (3.6)

We further assume that

xT T ′(p(x))x > 0 for every x ∈ D (3.7)

A Model-Order Reduction Technique for Low Rank Rational Perturbations 299

generalizing the definiteness requirement for linear pencils. By the implicit function
theorem D is an open set, and differentiating the identity xT T (p(x))x = 0 one obtains,
that the eigenvectors of (3.6) are stationary points of p.

For overdamped problems, i.e. if the Rayleigh functional p is defined on Rn \ {0},
Rogers [6] generalized the minmax characterization of Poincaré for symmetric eigen-
problems to nonlinear ones. In this case problem (3.6) has exactly n eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn in J , and it holds

λj = min
dim V =j

max
v∈V, v �=0

p(v).

For the general symmetric nonlinear case this characterization does not hold. This
is easily seen considering a linear family T (λ) = λB − A on an interval J which does
not contain the smallest eigenvalue of Ax = λBx.

The key idea introduced in [10] is to enumerate the eigenvalues appropriately. The
value λ ∈ J is an eigenvalue of problem (3.6) if and only if μ = 0 is an eigenvalue of
the matrix T (λ), and by Poincaré’s maxmin principle there exists m ∈ N such that

0 = max
dim V =m

min
x∈V \{0}

xT T (λ)x
‖x‖2

.

Then we assign this m to λ as its number and call λ an m-th eigenvalue of problem (3.6).
With this enumeration the following minmax characterization holds (cf. [10]):

Theorem 1. Assume that for every x �= 0 equation (3.5) has at most one solution p(x)
in the open real interval J , and that condition (3.7) holds.

Then for every m ∈ {1, . . . , n} the nonlinear eigenproblem (3.6) has at most one
m-th eigenvalue λm in J , which can be characterized by

λm = min
dim V =m
D∩V �=∅

sup
v∈D∩V

p(v). (3.8)

Conversely, if
λm := inf

dim V =m
D∩V �=∅

sup
v∈D∩V

p(v) ∈ J, (3.9)

then λm is an m-th eigenvalue of (3.6), and the characterization (3.8) holds.
The minimum is attained by the invariant subspace of the matrix T (λm) correspond-

ing to its m largest eigenvalues, and the supremum is attained by any eigenvector of
T (λm) corresponding to μ = 0.

To prove this characterization we took advantage of the following relation

λ

⎧⎪⎨⎪⎩
>

=
<

⎫⎪⎬⎪⎭λm ⇔ μm(λ) := max
dim V =m

min
x∈V, x �=0

xT T (λ)x
‖x‖2

⎧⎪⎨⎪⎩
>

=
<

⎫⎪⎬⎪⎭ 0. (3.10)

The Rayleigh functional suggests the method in Algorithm 1 called safeguarded
iteration for computing the m–th eigenvalue.

The following theorem contains the convergence properties of the safeguarded iter-
ation (cf. [11], [7]).

300 Frank Blömeling and Heinrich Voss

Algorithm 1 Safeguarded iteration
1: Start with an approximation σ1 to the m-th eigenvalue of (3.6)
2: for k = 1, 2, . . . until convergence do
3: determine an eigenvector xk corresponding to the m-largest eigenvalue of T (σk)

4: evaluate σk+1 = p(xk), i.e. solve xT
k T (σk+1)xk = 0 for σk+1

5: end for

Theorem 2. (i) If λ1 := infx∈D p(x) ∈ J and σ1 ∈ p(D) then the safeguarded
iteration converges globally to λ1.

(ii) If λm ∈ J is an m-th eigenvalue of (3.6) which is simple then the safeguarded
iteration converges locally and quadratically to λm.

(iii) Let T (λ) be twice continuously differentiable, and assume that T ′(λ) is positive
definite for λ ∈ J . If xk in step 3. of Algorithm 1 is chosen to be an eigenvec-
tor corresponding to the m largest eigenvalue of the generalized eigenproblem
T (σk)x = μT ′(σk)x then the convergence is even cubic.

4 Order Reduction for Rational Eigenproblems

Let K ∈ RN×N and M ∈ RN×N be sparse symmetric matrices where M is positive
definite andK is positive semidefinite, letC ∈ RN×k be a rectangular matrix of low rank
k 0 N , and let D(λ) := diag{ λ

κj−λmj
} ∈ Rk×k be a real diagonal matrix depending

rationally on a real parameter λ.
We consider the rational eigenvalue problem

T (λ)x := −Kx + λMx + CD(λ)CT x = 0. (4.11)

Decomposing x = Cy + z with y ∈ Rk and z ∈ range{C}⊥, and multiplying equation
(4.11) by CT (−K + λM)−1 one obtains

CT (Cy + z) + CT (−K + λM)−1CD(λ)CT (Cy + z) = 0

which is equivalent to

T̃ (λ)x̃ := −D(λ)−1x̃ + CT (K − λM)−1Cx̃ = 0, x̃ := D(λ)CT Cy. (4.12)

This eigenproblem is of much smaller dimension than problem (4.11), and it retains
the symmetry properties of (4.11). It is easily seen that T̃ (λ) satisfies the conditions
of the minmax characterization in each interval J := (πj , πj+1) where πj denotes
the eigenvalues of the generalized problem Kx = πMx in ascending order. Hence,
(4.12) could be solved by safeguarded iteration. However, since the dimension N of the
original problem is usually very large, it is very costly to evaluate CT (K − λM)−1C
and therefore T̃ (λ) for some given λ.

The term H(λ) := CT (K−λM)−1C appears in transfer functions of time invariant
linear systems, and in systems theory techniques have been developed to reduce the

A Model-Order Reduction Technique for Low Rank Rational Perturbations 301

order of this term considerably. One way to define such a reduction is by means of Padé
approximation of H(λ), which is a rational matrix function of the same type with a
much smaller order than N .

Let λ0 ∈ C be a shift which is not a pole of H . Then H has a Taylor series about λ0

H(λ) =
∞∑

j=0

μj(λ − λ0)j (4.13)

where the moments μj are k × k matrices. A reduced-order model of state-space di-
mension n is called an n-th Padé model of system (4.13), if the Taylor expansions of
the transfer function H of the original problem and Hn of the reduced model agree in
as many leading terms as possible, i.e.

H(λ) = Hn(λ) +O
(
(λ− λ0)q(n)

)
, (4.14)

where q(n) is as large as possible, and which was proved by Freund [5] to satisfy

q(n) ≥ 2.n
k
/.

Although the Padé approximation is determined via a local property (4.14) it usually has
excellent approximation properties in large domains which may even contain poles. As
introduced by Feldmann and Freund [4] the Padé approximation Hn can be evaluated
via the Lanczos process.

To apply the Padé–by–Lanczos process to the rational eigenproblem we transform
T̃ further to a more convenient form. Choosing a shift λ0 close to the eigenvalues we
are interested in problem (4.12) can be rewritten as

T̃ (λ)x̃ = − 1
λ
D1x̃ + D2x̃ + Hλ0 x̃ + (λ− λ0)BT (I − (λ− λ0)A)−1Bx̃ = 0 (4.15)

where M = EET is the Cholesky factorization of M , Hλ0 := CT (K − λ0M)−1C,
B := ET (K − λ0M)−1C, A := ET (K − λ0M)−1E, and D1 and D2 are diagonal
matrices with positive entries κj and mj , respectively.

If no deflation is necessary the order of BT (I − (λ − λ0)A)B can be reduced by
block Lanczos method, and the following theorem holds.

Theorem 3. Let Vm ∈ RN×mk be an orthonormal basis of the block Krylov space
Km(A,B) := span{B,AB, . . . , Am−1B} generated by the block Lanczos process
such that the following recursion holds

AVm = VmAm + [O, . . . , O, V̂m+1βm+1] (4.16)

where V̂m+1 ∈ RN×k, βm+1 ∈ Rk×k, and Am ∈ Rmk×mk.
Then with B = V1Φ, and Bm := [Ik, O, . . . , O]T Φ the moments are given by

BAiB = BT
mAi

mBm, i = 0, 1, . . . , 2m− 1, (4.17)

and it holds

BT (I − sA)−1B = BT
m(I − sAm)−1Bm +O(|s|2m). (4.18)

302 Frank Blömeling and Heinrich Voss

A more general version taking into account deflation is proved in [5], a different
approach based on a coupled recurrence is derived in [1]. Note that we will consider
only real shifts and therefore all appearing matrices can be assumed to be real.

Replacing BT (I− (λ−λ0)A)−1B by BT
m(I− (λ−λ0)Am)−1Bm one obtains the

reduced eigenvalue problem

S(λ)x̃ := − 1
λ
D1x̃+D2x̃+Hλ0 x̃+(λ−λ0)BT

m(I−(λ−λ0)Am)−1Bmx̃ = 0 (4.19)

which again is a rational eigenproblem with poles π̃0 = 0 and π̃j = λ0 + 1/αj where
αj , j = 1, . . . , km denote the eigenvalues of Am.

Let π̃ν < π̃ν+1 denote two consecutive poles of S, and let Jν = (π̃ν , π̃nu+1). Then
for λ ∈ Jν it holds

x̃T S′(λ)x̃ =
1
λ2

x̃T D1x̃ +
km∑
j=1

β2
j

(1− αj(λ− λ0))2
> 0, Bmx̃ = (βj)j=1,...,km,

and hence the conditions of the minmax characterization are satisfied for the reduced
eigenproblem in every interval Jν , and therefore its eigenvalues can be determined by
safeguarded iteration.

Moreover, for every x̃ the Rayleigh quotient of S(λ)

R(x̃;λ) :=
x̃T S(λ)x̃
‖x̃‖2

2

is monotonely increasing in Jν with respect to λ. Hence, if μj(λ) denote the eigenvalues
of S(λ) ordered in decreasing order, then every μj(λ) is monotonely increasing, and it
follows immediately from (3.10)

Theorem 4. For two consecutive poles π̃ν < π̃ν+1 of S(·), and π̃ν < ξ < ζ < π̃nu+1

let
μ�1(ξ) ≤ 0 < μ�1−1 and μ�2(ζ) < 0 ≤ μ�2−1(ζ).

Then the reduced eigenvalue problem (4.19) has 2 − 1 eigenvalues

ξ ≤ λ�1 ≤ λ�1+1 ≤ · · · ≤ λ�2−1 ≤ ζ

which can be determined by (the cubically convergent version of) safeguarded iteration.

5 Numerical Results

We consider a clamped plate occupying the region Ω = (0, 4)× (0, 3), and we assume
that 6 identical masses are attached at the points (i, j), i = 1, 2, 3, j = 1, 2.

Discretizing with Bogner–Fox–Schmid elements with stepsize h = 0.05 one gets a
rational eigenvalue problem

T (λ)x := −Kx + λMx +
1000λ

1000− λ
CT Cx = 0

A Model-Order Reduction Technique for Low Rank Rational Perturbations 303

of dimension N = 18644 and k = 6 governing free vibrations of the plate which has
32 eigenvalues in the interval J = (0, 2000).

For m = 12 with shift λ0 = 1000 all 32 eigenvalues are found requiring 103.5
seconds on an Intel Centrino M processor with 1.7 GHz and 1 GB RAM under MATLAB
6.5. For m = 6 only 27 eigenvalues are found in 50.8 sec. For comparison, the nonlinear
Arnoldi in [9] requires 227.1 seconds

Figure 1 demonstrates the approximation properties of the reduced problem. The
eigenvalues are marked as vertical bars at the top of the picture, crosses indicate the
relative errors of the eigenvalue approximations obtained for m = 12, and plus signs
the errors for 27 eigenvalue approximations obtained for m = 6.

0 500 1000 1500 2000

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

eigenvalues

re
la

tiv
e

er
ro

rs

References

1. Z. Bai and R.W. Freund. A symmetric band Lanczos process based on coupled recurrences
and some applications. SIAM J. Sci. Comput., 23:542 – 562, 2001.

2. T. Betcke and H. Voss. A Jacobi–Davidson–type projection method for nonlinear eigenvalue
problems. Future Generation Computer Systems, 20(3):363 – 372, 2004.

3. C. Conca, J. Planchard, and M. Vanninathan. Fluid and Periodic Structures, volume 24 of
Research in Applied Mathematics. Masson, Paris, 1995.

4. P. Feldmann and R.W. Freund. Efficient linear circuit analysis by Padé approximation via the
Lanczos process. In Proceedings of EURO-DAC ’94 with EURO-VHDL ’94, pages 170 – 175,
Los Alamitos, Ca., 1994. IEEE Computer Society Press.

5. R.W. Freund. Computation of matrix Padé approximations of transfer functions via a Lanczos-
type process. In C. Chui and L. Schumaker, editors, Approximation Theory VIII, Vol. 1: Ap-
proximation and Interpolation, pages 215 – 222, Singapore, 1995. World Scientific Publishing
Co.

6. E.H. Rogers. A minmax theory for overdamped systems. Arch.Rat.Mech.Anal., 16:89 – 96,
1964.

304 Frank Blömeling and Heinrich Voss

7. H. Voss. Initializing iterative projection methods for rational symmetric eigenprob-
lems. In Online Proceedings of the Dagstuhl Seminar Theoretical and Computational
Aspects of Matrix Algorithms, Schloss Dagstuhl 2003, ftp://ftp.dagstuhl.de
/pub/Proceedings/03/03421/03421.VoszHeinrich.Other.pdf, 2003.

8. H. Voss. A rational spectral problem in fluid–solid vibration. Electronic Transactions on
Numerical Analysis, 16:94 – 106, 2003.

9. H. Voss. An Arnoldi method for nonlinear eigenvalue problems. BIT Numerical Mathematics,
44:387 – 401, 2004.

10. H. Voss and B. Werner. A minimax principle for nonlinear eigenvalue problems with appli-
cations to nonoverdamped systems. Math.Meth.Appl.Sci., 4:415–424, 1982.

11. H. Voss and B. Werner. Solving sparse nonlinear eigenvalue problems. Technical Report 82/4,
Inst. f. Angew. Mathematik, Universität Hamburg, 1982.

Parallel Global Optimization of Foundation Schemes
in Civil Engineering

Raimondas Čiegis, Milda Baravykait_e, and Rimantas Belevičius

Vilnius Gediminas Technical University
Saul_etekio Str. 11, LT-10223 Vilnius, Lithuania

{rc,mmb,rb}@fm.vtu.lt

Abstract. The important problem in civil engineering is obtaining optimal pile
placement schemes for grillage-type foundations. The standard technique for so-
lution of problem is application of local optimization methods, starting from initial
guess obtained by means of engineering heuristics. We propose a new technology
based on the use of global optimization algorithms, which are implemented as
the "black-boxes". In the real world applications the problems of interest involve
till 500 design parameters. Therefore such problems can not be solved using one
processor due to the huge CPU and computer memory requirements. We pro-
pose a parallel version of global optimization algorithm. The results of computa-
tional experiments for a number of practical problems are presented. Efficiency
of suggested parallel algorithms is investigated and results for different clusters
of workstations are presented.

1 Introduction

Optimization is an inherent part of all engineering practice. In the construction of build-
ings that means, all parts of a building from foundations to the roof should be designed
and built optimally and thrifty as much as the conditions of safety and comfort allow.
In this paper we shall concentrate on the optimal design of grillage-type foundations,
which are the most popular and effective scheme of foundations, especially in case of
weak grounds.

Grillage consists of separate beams, which may be supported by piles, or may reside
on other beams, or a mixed scheme may be the case. The optimal placement of grillage
should possess, depending on given carrying capacities of piles, the minimum possible
number of piles. Theoretically, reactive forces in all piles should approach the limit
magnitudes of reactions for those piles. Limit pile reactions may differ from beam to
beam provided different characteristics (i.e., diameters, lengths, profiles) of piles are
given. Practically, this is difficult to achieve for grillages of complex geometries, and
it is even a more difficult task if a designer due to some considerations introduces into
the grillage scheme the so-called immovable supports. Such supports should retain their
positions and do not participate in optimization process. These goals can be achieved by
choosing appropriate pile positions.

A designer can obtain the optimal pile placement schema by implementing the well
known engineering tests algorithms, which are described e.g. in [2]. However this is

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 305–313, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

306 Raimondas Čiegis, Milda Baravykait_e, and Rimantas Belevičius

likely only in case of simple geometries, simple loadings and limited number of de-
sign parameters. The works employing local optimization methods were published by
Baravykait_e et al. [1], Belevičius et al. [2], Kim et al. [7]. The proposed techniques
enabled the authors to find only local minimum solutions. But it is evident that the
global minimum solution is desirable and it can improve the quality of obtained grillage
scheme.

The main goal of this work is to use global optimization techniques in order to find
optimal placement of piles. Here we should take into account the fact that the objective
function is not given analytically and the properties of this function (e.g. the Lipschitz
constant) can not be obtained apriori. The value of the objective function for fixed values
of its arguments is obtained by solving a nonlinear PDE problem. Thus we should use
so called black box global minimization algorithms.

The size of the given problem consists of hundreds of design parameters, thus we
have developed a parallel version of the algorithm. Efficiency of the obtained algorithm
is investigated using different clusters of workstations.

2 Local Optimization

A full formulation of the mathematical model for determination of reactive forces in
piles is given in [2].

2.1 Idealization

It is well-known that minimization problem of reactive forces in piles is non-linear and
non-convex. The following algorithm was employed for solution of this problem in [2].

The optimization of a single beam is the basis for whole optimization process of
grillage. A grillage is divided into separate beams, the upper beams are resting on
the lower beams. First, all beams are analyzed and optimized separately. Joints and
intersections of the upper and lower beams are idealized as immovable supports for upper
beams. Reactive forces in these fictitious supports are obtained during the analysis stage
of the upper beams. Joints for the lower beams are idealized as concentrated loads of
same magnitude but of opposite sign as reactive forces in fictitious supports. If more than
two beams meet at joint, all beams are considered to be the "uppers" except for one – the
"lower". Distinguishing between the upper and lower beams can be done automatically
by program or by the designer. Later on, as these fictitious reactions/concentrated loads
depend on pile positions obtained in optimization problem, all calculations are iterated
in order to level with proper accuracy forces at joints (or stiffnesses, if desired). The
problem has to be solved in static and in linear stage. Now let us consider optimization
of a particular beam of grillage.

2.2 Mathematical Model

The optimization problem is stated as follows (see also our paper [1])

min
s.t. x∈D

P (x) , (2.1)

Parallel Global Optimization of Foundation Schemes in Civil Engineering 307

where P is the objective function, D is the feasible shape of structure, which is defined
by the type of certain supports, the given number and layout of different cross-sections,
and different materials in the structure, and x are design parameters.

In our problem P is defined by the maximum difference between vertical reactive
force at a support and allowable reaction for this support, thus allowing us to achieve
different reactions at supports on different beams, or even at particular supports on the
same beam:

P (x) = max
1≤i≤Ns

|Ri − fi Rallowable| ,

here Ns denotes the number of supports, Rallowable is allowable reaction, fi are factors
to this reaction and Ri are reactive forces in each support and x are nodal co-ordinates
of all (or a chosen set of) supports.

Further, the minimum–maximum problem is converted to a pure minimum problem
with constraints by treating Pmax as unknown subject to constraints that Pmax limits the
magnitudes of P everywhere in the structure and for all load cases when design changes
Δxi are performed:

P (x) +
Ns∑
i=1

∂P (x)
∂xi

Δxi − Pmax ≤ 0 . (2.2)

All derivatives
∂P (x)
∂xi

are computed numerically by using finite difference approxima-

tions of the second order accuracy.
For computational reasons a beam length constraint is also included into formulation

of the problem:

L(x) +
Ns∑
i=1

∂L(x)
∂xi

Δxi − L0 ≤ 0 , (2.3)

where L0 is the initial length of the model.
Several possibilities exist in the choice of design parameters xi. Our choice is to use

the most evident from the engineering point of view parameters: nodal co-ordinates of
all (or a chosen set of) supports.

The problem is strongly non-linear, thus it is solved iteratively. In each iteration the
current shape is changed to a better neighbouring shape. The solution requires three
steps:

– finite element analysis,
– sensitivity analysis with regard to design parameters,
– optimal re-design with linear programming.

Simple two-node beam element with 4 d.o.f.’s has been implemented in analysis,
therefore the analytical sensitivity analysis with regard to nodal co-ordinates was feasi-
ble. "Move limit technique" (see, Pedersen [9]) relates the design parameters’ alterations
per one iteration of Simplex procedure to the objective function and assures adjustment
of those alterations to the extent of problem non-linearity (see, e.g., [2] for the details).

308 Raimondas Čiegis, Milda Baravykait_e, and Rimantas Belevičius

2.3 Optimization Algorithm

Optimization of separate beams has to be included into a general iterative algorithm
for optimization of the whole system of piles, because pile placement scheme of one
beam influences reactions distribution in remaining beams. The following algorithm is
employed:

Algorithm 1

Initialization:
Set stiffnesses at fictitious immovable supports of upper
beams simulating joints with lower beams and
accuracy tolerance.
Set stop ← false.

while (stop = false) do
1.1. Optimize the upper beams using defined in the last

iteration stiffnesses of fictitious immovable supports.

1.2. Optimize the lower beams in addition to specified
loadings taking into account concentrated loads
coming from the upper beams.

1.3. if (stiffnesses of the upper and lower beams at joints
match (with specified accuracy)) do
Set stop ← true.

end if
end while

1.4. Filtering results to exclude matching supports at joints of beams.
The Simplex method is used to solve optimization subproblems in steps 1.1 and 1.2.

In order to find a proper solution, the algorithm should be launched from a near-
optimum initial scheme, which is delivered by special expert system. This should ensure
the global solution for many practical foundation schemes. However, it was shown
that grillages expose high sensitivity to the pile positions, especially when the stiffness
characteristics of piles are not known exactly and the piles have to be idealized as the
rigid supports. In all those cases solutions are evidently far from global ones.

3 Global Optimization

The most simple global optimization algorithm is obtained by starting local search
algorithm from many different trial points. Such strategy can be easily implemented in
parallel (see, [1]). In some cases it gives sufficiently good solutions. The quality of the
obtained solution depends on the initial trial points, and some heuristic for the selection
of such initial approximations should be given (see [2]).

In general the probability of finding the global minimum can be increased by using
a big number of starting points of local searches and it approaches one only when the
number of trial points approaches the infinity (or when we have some apriori information
about the distribution of possible solutions).

Parallel Global Optimization of Foundation Schemes in Civil Engineering 309

4 Branch and Bound Algorithm

In our work we have applied more sophisticated methods, which are based on branch
and bound (BB) algorithms. For an introduction to BB method we refer the reader to [6].

Let assume that we solve a global minimization problem. Any BB algorithm consists
of two main steps: a) branching rule, i.e. we select a subdomain from D and divide it
into two or more smaller parts, b) computation of lower bounds on the objective function
value for each new subdomain. If the lower bound of the objective function is lager than
the best known approximation of the value of this function, then such a subdomain it is
taken out from farther searches.

The starting point of our method is the algorithm developed by Žilinskas [11]. This
method can be interpreted as a strategy for managing local searches in a search for global
minimizers. Once a local minimizer has been found by the local search method described
above, a domain around it is taken out from farther searches. The branch strategy is taken
from [11].

Main Steps of the BB Algorithm

– The monotonicity test, which tries to prove that no local minimum exists in the
tested subdomain;

– Once a local minimizer has been found, a domain around it is taken out from father
searches;

– A subdivision step, where the estimation of the lower bound is computed, if needed.

We note that the lower bound of the objective function can be computed only approx-
imately, since the objective function is not given explicitly. Thus we can not guarantee
that the exact global minimum solution is obtained. But in real world applications we
are mostly interested in finding a sufficiently good solution, since the problem is too
large to be solved exactly. The stopping condition of computations is usually specified
by a limit of CPU time. Thus parallel computations are aimed to test a bigger subset of
D, but not to decrease a time of computations.

5 Parallel Algorithm

Parallelization of branch and bound type algorithms is a difficult problem. It has many
common points with parallel adaptive multidimensional integration problem (see a re-
view of such methods in Čiegis et al. [3]). The most obvious way is to use a functional
parallelization paradigm, for example when the objective function is computed in paral-
lel. One interesting approach for parallel global minimization is proposed by Groenwold
and Hindley [5], who have applied competing in parallel different algorithms for solving
a problem of structural optimization.

The parallel implementation of the branch and bound type global minimization al-
gorithm from [11] was obtained in [12] by using the domain distribution method. The
domain is divided into sub-domains, which are distributed among processors. Then all
processors work independently using the sequential algorithm and exchanging between
processors only the currently known best value of the objective function. The efficiency

310 Raimondas Čiegis, Milda Baravykait_e, and Rimantas Belevičius

of this type parallel algorithms depends on the quality of the apriori sub-problems dis-
tribution.

In most cases some processors (or even a big part of processors) will become idle.
Thus we have applied a distributed dynamic load balancing algorithm from [3] to ensure
that the work load is distributed uniformly (see, also [4,8,10], where different parallel
branch and bound methods are given and investigated).

Application of the dynamic load balancing algorithm improves the load balance
among processors but introduces additional synchronization and data movement costs.
Thus some balance between decrease of computation time and enlargement of data
sending time should be preserved.

But even if a time used for communications between processors is neglected, the
efficiency of the parallel algorithm can be not good. It is due to the fact, that branching
strategy of the parallel BB algorithm is different from the serial version of BB algorithm.
For example, if the serial BB algorithm uses the depth first search branching strategy
and the objective function has many similar local minimum points, then it is possible
that all work, which is done by the other processors, will be useless.

6 Numerical Examples

To illustrate the proposed technology, two support placement schemes for relatively
simple grillages were obtained. Our codes require only input on geometry of grillage,
loading, grillage material characteristics, and on support characteristics (i.e. carrying
capacity or stiffnesses). Also, some scalars render limitations on scheme: the allowable
vertical reaction, minimum allowable distance between two adjacent support due to
technological reasons of construction, maximum allowable deflection of console-parts
of grillage should be given.

The optimization program-kernel is embraced with design program Matrix Frame,
which supplies all the pre- and postprocessors needed. It should be noted, some gril-
lage schemes expose extreme sensitivity to the positions of supports. Small changes
of supports’ co-ordinates may raise significant perturbations in reactive forces. The two
examples below belong just to this category of schemes. Earlier, using local optimization
methods, we even did not obtain a reasonable solutions for these problems. As to the
results of examples, there the global solution, i.e., an even distribution of reactive forces
across the scheme was not achieved, because the design program stops optimization
after the allowable reaction is reached.

Computational experiments are performed on a cluster of Vilnius Gediminas tech-
nical university. It consist of 10 dual processor PC, running LINUX.

Example 1. Grillage of rectangular shape loaded with two sets of distributed vertical
loadings (Fig. 1a). Construction of grillage consists of standard prefab reinforced con-
crete girders. The main determinant data for support scheme are the maximum allowable
vertical reaction, the minimum allowable distance between two adjacent supports, and
the vertical stiffness of support: 200, 0.210, and 1.e15, accordingly. Theoretical number
of supports is 10.

As we have mentioned above, the stopping condition of computations is specified by
a limit of CPU time. After 60 minutes of computations the proposed algorithm yields the

Parallel Global Optimization of Foundation Schemes in Civil Engineering 311

a) b)

Fig. 1. a) geometry, b) loadings and the obtained optimized pile placement scheme

a) b)

Fig. 2. a) geometry, b) loadings and the obtained optimized pile placement scheme

following supports placement scheme (see Fig. 1b), for which the maximum allowable
reaction (with given tolerance of 0.05) 207.5 is achieved. All reactive forces for supports,
ordered as shown in Fig. 1, are the following:

− 206.3, −170.6, −204.5, −189.0, −94.96,
− 196.8, −168.6, −207.5, −192.1, −207.4 .

Example 2. Grillage consists of two rectangular frames under distributed loadings (see
Fig. 2a). Theoretical number of supports for initial data on limiting factors 150, 0.10,
1.e10 (as in the Example 1) is 15. After 5 hours of computations on 20 processors cluster
the following placement scheme was achieved (see Fig. 2b). The obtained reactions are
the following: -156.4, -158.1, -147.4, -161.2, -153.6, -118.8, -130.6, -161.3, -161.5,
-139.7, -161.2, -144.0, -94.37, -121.1, -136.4.

Acknowledgements

The authors would like to thank one of the referee for his constructive criticism which
helped to improve the clarity of this note.

312 Raimondas Čiegis, Milda Baravykait_e, and Rimantas Belevičius

This work was partially supported by the Lithuanian State Science and Studies Foun-
dation within the framework of the Eureka project OPTPAPER EU-2623,
E-2002.02.27.

Parallel Global Optimization of Foundation Schemes in Civil Engineering 313

References

1. M. Baravykait_e, R. Belevičius, and R. Čiegis. One application of the parallelization tool of
Master – Slave algorithms. Informatica, 13(4): 393–404, 2002.

2. R. Belevičius, S. Valentinavičius, and E. Michnevič. Multilevel optimization of grillages.
Journal of Civil Engineering and Management, 8(1): 98–103, 2002.

3. R. Čiegis, R. Šablinskas, and J. Wasniewski. Hyper-rectangle distribution algorithm for paral-
lel multidimensional numerical integration. In J. Dongarra, E. Luque, and T. Margalef, editors,
Proceedings of 6th European PVM/MPI User’s Group Meeting, Recent advances in PVM and
MPI, in Lecture Notes in Computer Science, Number 1697, pages 275–282, Barselona, Spain,
June 1999. Springer.

4. J. Clausen. Parallel search–based methods in optimization. Applied Parallel Computing –
Industrial Computation and Optimization, PARA96, in Lecture Notes in Computer Science,
Number 1184, pages 176–185, 1997. Springer.

5. A.A. Groenwold and M.P. Hindley. Competing parallel algorithms in structural optimization.
Struct. Multidisc. Optim., 24: 343–350, 2002.

6. R. Horst and H.Tuy. Global Optimization: Deterministic Approaches. Springer–Verlag, 1993.
7. K. Kim, S. Lee, C. Chung, and H. Lee. Optimal pile placement for minimizing differential

settlements in piled raft foundations.
http://strana.snu.ac.kr/laboratory/publications, 2004.

8. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel computing. The
Benjamin/Cummings Publishing Company, Inc., Amsterdam, Bonn, Tokyo, Madrid, 1994.

9. P. Pedersen. Design for minimum stress concentration – some practical aspects. In: Structural
Optimization, Kluwer Academic, 225–232, 1989.

10. Ch. Xu and F. Lau. Load balancing in parallel computers. Kluwer Academic Publishers,
Boston, Dordrecht, London, 1997.

11. J. Žilinskas. Black Box global optimization inspired by interval methods. Information Tech-
nology and Control, 21(4): 53–60, 2001.

12. J. Žilinskas. Black box global optimization: covering methods and their parallelization. Doc-
toral dissertation, Kaunas Technological University, Kaunas, 2002.

A Combined Linear and Nonlinear Preconditioning
Technique for Incompressible Navier-Stokes Equations�

Feng-Nan Hwang and Xiao-Chuan Cai

Department of Computer Science, University of Colorado, Boulder, CO 80309, USA
hwangf@colorado.edu, cai@cs.colorado.edu

Abstract. We propose a new two-level nonlinear additive Schwarz precondi-
tioned inexact Newton algorithm (ASPIN). The two-level nonlinear precondi-
tioner combines a local nonlinear additive Schwarz preconditioner and a global
linear coarse preconditioner. Our parallel numerical results based on a lid-driven
cavity incompressible flow problem show that the new two-level ASPIN is nearly
scalable with respect to the number of processors if the coarse mesh size is fine
enough.

1 Introduction

We focus on the parallel numerical solution of large, sparse nonlinear systems of equa-
tions arising from the finite element discretization of nonlinear partial differential equa-
tions. Such systems appear in many computational science and engineering applications,
such as the simulation of fluid flows [8]. In particular, we introduce a nonlinearly pre-
conditioned iterative method that is robust and scalable for solving nonlinear systems
of equations. Our approach is based on the inexact Newton method with backtracking
technique (INB) [4], which can be briefly described as follows. Let

F (x∗) = 0 (1.1)

be a nonlinear system of equations and x(0) a given initial guess. Assume x(k) is the
current approximate solution. Then a new approximate solution x(k+1) of (1.1) can be
computed by first finding an inexact Newton direction s(k) satisfying

||F (x(k)) + F ′(x(k))s(k)||2 ≤ ηk||F (x(k))||2,

then obtaining x(k+1) with x(k+1) = x(k) + λ(k)s(k). The scalar ηk is often called
the “forcing term", which determines how accurately the Jacobian system needs to be
solved by some iterative method, such as GMRES. The scalar λ(k) is selected using a
linesearch technique. Although INB has the desirable property of local fast convergence,
like other nonlinear iterative methods, INB is very fragile. It converges rapidly for a
well-selected set of parameters (for example, certain initial guess, certain range of the
Reynolds number Re), but fails to converge due to a change in some parameters. It is

� The work was partially supported by the Department of Energy, DE-FC02-01ER25479, and by
the National Science Foundation, CCR-0219190, ACI-0072089 and CCF-0305666.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 313–322, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

314 Feng-Nan Hwang and Xiao-Chuan Cai

often observed that INB converges well at the beginning of the iterations, then suddenly
stalls for no apparent reason. In [2,3,6] some nonlinear preconditioning techniques were
developed, and the convergence of Newton-type methods becomes not sensitive to these
unfriendly parameters if INB is applied to a nonlinearly preconditioned system

F(x∗) = 0 (1.2)

instead. Here the word “preconditioner” refers to the fact that systems (1.1) and (1.2)
have the same solution and the new system (1.2) is better conditioned, both linearly
and nonlinearly. The preconditioner is constructed using a nonlinear additive Schwarz
method. To improve the processor scalability, a two-level method was then proposed
in [3], which works well if the number of processors is not large. For a large number
of processors, the nonlinear coarse solver takes too much CPU and communication
times. In this paper, we suggest a combined linear and nonlinear additive Schwarz
preconditioner and show that using a linear coarse solver we can retain the nonlinear
robustness and reduce the nonlinear complexity considerably.

2 Nonlinear Preconditioning Algorithms

In this section, we describe a two-level nonlinear preconditioner based on a combi-
nation of local nonlinear additive Schwarz preconditioners and a global linear coarse
preconditioner. We restrict our discussion to a two-component system (velocity and
pressure) resulting from the finite element discretization of two-dimensional steady-
state incompressible Navier-Stokes equations defined on a bounded domain Ω in R2

with a polygonal boundary Γ :⎧⎪⎨⎪⎩
u · ∇u− 2ν∇ · ε(u) +∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = g on Γ,

(2.3)

where u = (u1, u2) is the velocity, p is the pressure, ν = 1/Re is the dynamic viscosity,
and ε(u) = 1/2(∇u + (∇u)T) is the symmetric part of the velocity gradient. The
pressure p is determined up to a constant. To make p unique, we impose an additional
condition

∫
Ω

p dx = 0. To discretize (2.3), we use a stabilized finite element method [5]
on a given quadrilateral mesh T h = {K}. Let V h and P h be a pair of finite element
spaces for the velocity and pressure, given by

V h = {vh ∈ (C0(Ω) ∩H1(Ω))2 : v|K ∈ Q1(K)2, K ∈ T h } and

P h = {ph ∈ C0(Ω) ∩ L2(Ω) : p|K ∈ Q1(K), K ∈ T h}.

Here, C0(Ω), L2(Ω), and H1(Ω) are the standard notations with usual meanings in
the finite element literature [5]. For simplicity, our implementation uses a Q1 − Q1

element (continuous bilinear velocity and pressure). The weighting and trial velocity
function spaces V h

0 and V h
g are

V h
0 = {vh ∈ V h : v = 0 on Γ} and V h

g = {vh ∈ V h : v = g on Γ}.

A Combined Linear and Nonlinear Preconditioning Technique 315

Similarly, let the finite element spaceP h
0 be both the weighting and trial pressure function

spaces:

P h
0 = {ph ∈ P h :

∫
Ω

p dx = 0}.

Following [5], the stabilized finite element method for steady-state incompressible
Navier-Stokes equations reads: Find uh ∈ V h

g and ph ∈ P h
0 , such that

B(uh, ph; v, q) = 0 ∀(v, q) ∈ V h
0 × P h

0 (2.4)

with

B(u, p; v, q) =
((∇u) · u, v) + (2νε(u), ε(v))− (∇ · v, p)− (∇ · u, q) + (∇ · u, δ∇ · v)+∑
K∈T h

((∇u) · u +∇p− 2ν∇ · ε(u), τ((∇v) · v−∇q − 2ν∇ · ε(u))K .

We use the stabilization parameters δ and τ as suggested in [5]. The stabilized finite
element formulation (2.4) can be written as a nonlinear algebraic system

F (x) = 0, (2.5)

which is often large, sparse, and highly nonlinear when the value of Reynolds number
is large. The vector x corresponds to the nodal values of uh = (uh

1 , u
h
2) and ph in (2.4).

2.1 Subdomain Partition and One-Level Nonlinear Preconditioner

To define parallel Schwarz type preconditioners, we partition the finite element mesh
T h introduced in the previous section. Let {Ωh

i , i = 1,, N} be a non-overlapping
subdomain partition whose union covers the entire domain Ω and its mesh T h. We use
T h

i to denote the collection of mesh points in Ωh
i . To obtain overlapping subdomains,

we expand each subdomain Ωh
i to a larger subdomain Ωh,δ

i with the boundary ∂Ωh,δ
i .

Here δ is an integer indicating the degree of overlap. We assume that ∂Ωh,δ
i does not

cut any elements of T h. Similarly, we use T h,δ
i to denote the collection of mesh points

in Ωh,δ
i . Now, we define the subdomain velocity space as

V h
i = {v ∈ V h ∩ (H1(Ωh,δ

i))
2

: vh = 0 on ∂Ωh,δ
i }

and the subdomain pressure space as

P h
i = {ph ∈ P h ∩ L2(Ωh,δ

i) : ph = 0 on ∂Ωh,δ
i \Γ}.

On the physical boundaries, Dirichlet conditions are imposed according to the original
equations (2.3). On the artificial boundaries, both u = 0 and p = 0.

Let Ri : V h × P h → V h
i × P h

i be a restriction operator, which returns all degrees
of freedom (both velocity and pressure) associated with the subspace V h

i × P h
i . Ri is

an 3ni × 3n matrix with values of either 0 or 1, where n and ni are the total number of

316 Feng-Nan Hwang and Xiao-Chuan Cai

mesh points in T h and T h,δ
i , respectively, and

∑N
i=1 3ni ≥ 3n. Note that for Q1 −Q1

elements, we have three variables per mesh point, two for the velocity and one for the
pressure. Then, the interpolation operator RT

i can be defined as the transpose of Ri. The
multiplication of Ri (and RT

i) with a vector does not involve any arithmetic operation,
but does involve communication in a distributed memory parallel implementation. Using
the restriction operator, we define the subdomain nonlinear function Fi : R3n → R3ni

as
Fi = RiF.

We next define the subdomain mapping functions, which in some sense play the role
of subdomain preconditioners. For any given x ∈ R3n, Ti(x) : R3n → R3ni is defined
as the solution of the following subspace nonlinear systems,

Fi(x−RT
i Ti(x)) = 0, for = 1, ..., N. (2.6)

Throughout this paper, we always assume that (2.6) is uniquely solvable. Using the
subdomain mapping functions, we introduce a new global nonlinear function,

F (1)(x) =
N∑

i=1

RT
i Ti(x), (2.7)

which we refer to as the nonlinearly preconditioned F (x). The one-level additive
Schwarz inexact preconditioned Newton algorithm (ASPIN(1)) is defined as: Find the
solution x∗ of (2.5) by solving the nonlinearly preconditioned system,

F (1)(x) = 0, (2.8)

using INB with an initial guess x(0). As shown in [2,6], an approximation of the Jacobian
of F (1) takes the form

Ĵ (1)(x) =
N∑

i=1

J−1
i J(x), (2.9)

where J is the Jacobian of the original function F (x) and Ji = RiJRi
T .

2.2 A Parallel Linear Coarse Component for the Nonlinear Preconditioner

The one-level ASPIN is robust, but not linearly scalable with respect to the number of
processors. Some coarse preconditioner is required to couple the subdomain precondi-
tioners. One such coarse preconditioner is proposed and tested in [3,7]. The nonlinear
coarse system is obtained by the discretization of original nonlinear partial differential
equations on a coarse mesh. Although, in general, solving the coarse systems is easier
than the fine systems, a Newton-Krylov-Schwarz method sometimes is not good enough
to converge the coarse system. Therefore, ASPIN(1) is used to solve the coarse system
in [3,7]. To evaluate the coarse function at certain point, one needs to solve a set of
nonlinear systems of equations. Although the ASPIN(1)-based coarse solver provides
good mathematical properties, such as helping speed up the convergence of the linear

A Combined Linear and Nonlinear Preconditioning Technique 317

iterative method, the computational cost to solve many coarse systems is usually high in
practice. Numerical experiments [7] show that the ASPIN(1)-based coarse solver works
fine only for a moderate number of processors, for a large number of processors, a more
efficient coarse solver is needed.

Here we introduce a new coarse system, which is linear, and the system is constructed
by a linearization of the nonlinear coarse system mentioned above, using a Taylor approx-
imation. The coarse function evaluation only requires the solution of a linear system, and
hence the computational cost is reduced considerably. More precisely, we assume there
exists a finite element mesh T H covering the domain Ω. The two meshes T H and T h

do not have to be nested. For the purpose of parallel computing, the coarse mesh is par-
titioned into non-overlapping subdomains {ΩH

i } and overlapping subdomains {ΩH,δ
i }.

The corresponding sets of mesh points are denoted by {T H
i }, and {T H,δ

i }. For the sim-
plicity of our software implementation, we assume a non-overlapping partition to be
nested. In other words, we must have

Ωh
i = ΩH

i

for i = 1, . . . , N , even though the corresponding sets of mesh points do not have to be
nested; i.e.,

T h
i �= T H

i .

This also means that the same number of processors is used for both the fine and coarse
mesh problems. If the overlap is taken into account, in general,

Ωh,δ
i �= ΩH,δ

i , and T h,δ
i �= T H,δ

i .

As in the fine mesh case, we can also define the restriction and extension operators Rc
i

and (Rc
i)

T for each coarse subdomain. On the coarse mesh T H , we can define finite
element subspaces similar to the ones defined on the fine meshes, and discretize the
original Navier-Stokes equations to obtain a nonlinear system of equations,

F c(x∗
c) = 0, (2.10)

where the coarse solution x∗
c of (2.10) is determined through a pre-processing step.

Similar to the fine mesh, on the coarse subdomains, we obtain the coarse Jacobian
submatrices

Jc
i = (Rc

i)J
c(Rc

i)
T , i = 1, . . . , N,

where Jc is the Jacobian matrix of the coarse mesh function F c.
We next define the coarse-to-fine and fine-to-coarse mesh transfer operators. Let

{φH
j (x), j = 1, . . . ,m} be the finite element basis functions on the coarse mesh, where

m is the total number of coarse mesh points in T H . We define an 3n× 3m matrix Ih
H ,

the coarse-to-fine extension matrix, as

Ih
H = [E1 E2 · · ·En]T ,

where the block matrix Ei of size 3× 3m is given by

Ei =

⎡⎢⎣ (eh
H)i 0 0
0 (eh

H)i 0
0 0 (eh

H)i

⎤⎥⎦

318 Feng-Nan Hwang and Xiao-Chuan Cai

and the row vector (eh
H)i of length m is given by

(eh
H)i =

[
φH

1 (xi), φH
2 (xi), . . . φH

m(xi)
]
, xi ∈ T h

for i = 1, . . . , n. A global coarse-to-fine extension operator Ih
H can be defined as the

transpose of IH
h .

To define the coarse function T0 : R3n → R3n, we introduce a projection T c :
R3n → R3m as the solution of the linearize coarse system

F c(x∗
c) + Jc(x∗

c)(T
c(x) − x∗

c) = IH
h F (x), (2.11)

for any given x ∈ R3n. Note that the left hand side of (2.11) is a first order Taylor
approximation of F c(x) at the exact coarse mesh solution, x∗

c . Since F c(x∗
c) = 0, we

rewrite (2.11) as
T c(x) = x∗

c + (Jc(x∗
c))

−1IH
h F (x),

provided thatJc(x∗
c) is nonsingular. It is easy to see thatT c(x∗) can be computed without

knowing the exact solution x∗ of F , and T c(x∗) = x∗
c . Then the coarse function can be

defined as

T0(x) = Ih
H(T c(x)− T c(x∗)) = Ih

H(Jc(x∗
c))

−1IH
h F (x)

and its derivative is given by

∂T0(x)
∂x

= Ih
H(Jc(x∗

c))
−1IH

h J(x). (2.12)

We introduce a new nonlinear function

F (2)(x) = T0(x) +
N∑

i=1

RT
i Ti(x),

and combining (2.12) and (2.9), we obtain an approximation of Jacobian of F (2) in the
form

Ĵ (2)(x) =

{
Ih
H(Jc(x∗

c))
−1IH

h +
N∑

i=1

[
RT

i (Ji(x))−1Ri

]}
J(x).

The two-level additive Schwarz preconditioned inexact Newton algorithm with a
linear coarse solver (ASPIN(2)) is defined as: Find the solution x∗ of (2.5) by solving
the nonlinearly preconditioned system

F (2)(x) = 0, (2.13)

using INB with an initial guess x(0). Details of ASPIN(2) is given below. Let x(0) be an
initial guess andx(k) the current approximate solution. Then a new approximate solution
x(k+1) can be computed by the ASPIN(2) algorithm as follows:

Step 1: Evaluate the nonlinear residual F (2)(x) at x(k) through the following steps:

A Combined Linear and Nonlinear Preconditioning Technique 319

1. Find w
(k)
0 by solving the linearize coarse mesh problem

Jc(x∗
c)zc = IH

h F (x(k)) (2.14)

using a Krylov-Schwarz method with a left preconditioner,
P−1 =

∑N
i=1(R

c
i)

T (Jc
i)−1Rc

i and the initial guess zc = 0.

2. Find w
(k)
i = Ti(x(k)) by solving in parallel, the local nonlinear systems

Gi(w) ≡ Fi(x
(k)
i − w) = 0 (2.15)

using Newton method with backtracking and the initial guess w = 0.
3. Form the global residual

F (2)(x(k)) = Ih
Hw

(k)
0 +

N∑
i=1

RT
i w

(k)
i .

Step 2: Check the stopping condition on ||F (2)(x(k))||2. If ||F (2)(x(k))||2 is small enough,
stop, otherwise, continue.

Step 3: Evaluate pieces of the Jacobian matrix J (2)(x) of the preconditioned system that
are needed in order to multiply (2.16) below with a vector in the next step. This
includes J(x(k)) as well as Ji and its sparse LU factorization.

Ĵ (2) =

{
Ih
H(Jc(x∗

c))
−1IH

h +
N∑

i=1

[
RT

i (Ji(x(k)))−1Ri

]}
J(x(k)). (2.16)

Step 4: Find an inexact Newton direction s(k) by solving the following Jacobian system
approximately using a Krylov subspace method

Ĵ (2)s(k) = −F (2)(x(k)) (2.17)

in the sense that

||F (2)(x(k)) + Ĵ (2)(x(k))s(k)||2 ≤ ηk||F (2)(x(k))||2 (2.18)

for some ηk ∈ [0, 1).
Step 5: Scale the search direction s(k) ← smax

||s(k)||2
s(k) if ||s(k)||2 ≥ smax.

Step 6: Compute a new approximate solution

x(k+1) = x(k) + λ(k)s(k),

where λ(k) is determined by the linesearch technique.

Remark 1. No preconditioning is used in Step 4 of ASPIN(2). In fact, Ĵ (2) can be viewed
as the original Jacobian system J preconditioned by a two-level additive
Schwarz preconditioner, where the coarse preconditioner Ih

H(Jc(Ih
Hx(k)IH

h)−1IH
h is

approximated by Ih
H(Jc(x∗

c))
−1IH

h . Hence, Ĵ (2) is well-conditioned through nonlinear
preconditioning as long as Ih

Hx(k)IH
h is close to x∗

c .

320 Feng-Nan Hwang and Xiao-Chuan Cai

Remark 2. Although each component of Ĵ (2) is sparse, Ĵ (2) itself is often dense and
expensive to form explicitly. However, if a Krylov subspace method is used to the global
Jacobian system (2.17), only the Jacobian-vector product, u = Ĵ (2)v, is required. In a
distributed-memory parallel implementation, this operation consists of five phrases:

1. Solve Jc(x∗
c)zc = IH

h v, using a Krylov-Schwarz method with a left preconditioner,
P−1 =

∑N
i=1(R

c
i)

T (Jc
i)−1Rc

i and the initial guess zc = 0.
2. Perform the matrix-vector multiply, w = Jv, in parallel.
3. On each subdomain, collect the data from the subdomain and its neighboring sub-

domains, wi = Riw.
4. Solve Jiui = wi using a sparse direct solver.
5. Send the partial solutions to its neighboring subdomain and take the sum, u =∑N

i=1 RT
i ui + Ih

Hzc.

3 Numerical Results

In this section, we consider a two-dimensional lid-driven cavity flow problem. We
used PETSc [1] for the parallel implementation and obtained all numerical results on
a cluster of workstations. Only machine independent results are reported. In our im-
plementation, after ordering the mesh points, we numbered unknown nodal values in
the order of uh

1 , uh
2 , and ph at each mesh point. The mesh points were grouped sub-

domain by subdomain for the purpose of parallel processing. Regular checkerboard
partitions were used for our experiments. The number of subdomains was always the
same as the number of processors, np. At the fine mesh level, the linesearch tech-
nique [4] was used for both global and local nonlinear problems. The global nonlinear
iteration was stopped if the condition ||F (2)(x(k))||2 ≤ 10−6||F (2)(x(0))||2 was satis-
fied, and the local nonlinear iteration on each subdomain was stopped if the condition
||Gi(w

(k)
i,l)||2 ≤ 10−4||Gi(w

(k)
i,0)||2 is satisfied. Restarted GMRES(200) was used for

solving the global Jacobian systems (2.17). The global linear iteration was stopped if
the relative tolerance ||F (2)(x(k)) + J (2)(x(k))s(k)||2 ≤ 10−6||F (2)(x(k))||2 was sat-
isfied. During local nonlinear iterations, a direct sparse solver, LU decomposition, was
employed for solving each local Jacobian system. At the coarse mesh level, restarted
GMRES(200) with a left Schwarz preconditioner was used for solving the coarse sys-
tems (2.14). The stopping criterion for the coarse mesh problem was that the condition
||IH

h F (x(k)) − Jc(x∗
c)zc||2 ≤ 10−10||IH

h F (x(k))||2 was satisfied. δ = 2 for both the
fine and coarse systems. As suggested in [6], we included the re-scaling of the search
direction s(k) in Step 5 if ||s(k)||2 ≥ smax to enhance the robustness of ASPIN for solv-
ing incompressible flows. This step also reduces the number of line search steps, since
the evaluation of nonlinearly preconditioned function is expensive. All numerical results
reported here are based on the optimal choice of the parameter smax, which results in
the smallest number of global nonlinear iterations.

We first study the effect of the coarse mesh size on the global nonlinear iterations
and the global linear iterations of ASPIN(2) for different values of Reynolds number.
In this set of numerical experiments, all results are obtained using a fixed fine mesh
128× 128 on 16 processors, and the coarse mesh size is varied from 16× 16 to 80× 80.

A Combined Linear and Nonlinear Preconditioning Technique 321

Table 1. ASPIN(2): Varying the coarse mesh size for different values of Reynolds number. Fine
mesh: 128 × 128. The number of processors np=16

Coarse meshes Re=103 Re=3×103 Re=5×103 Re=8×103 Re=104

Number of global nonlinear iterations

16 × 16 8 11 11 14 17

20 × 20 9 9 11 13 14

32 × 32 8 9 11 10 12

40 × 40 8 9 9 10 11

64 × 64 8 10 9 11 11

Average number of global linear iterations

16 × 16 58 74 94 111 122

20 × 20 50 66 75 89 103

32 × 32 45 52 59 64 68

40 × 40 43 50 54 60 60

64 × 64 42 49 52 55 65

Table 2. ASPIN(1) and ASPIN(2): Varying the number of processors. Fine mesh size: 128×128.
Coarse mesh size: 40 × 40

np Re=103 Re=3×103 Re=5×103 Re=8×103 Re=104

Number of global nonlinear iterations

ASPIN(1)

2 × 2 = 4 9 10 13 19 19

4 × 4 = 16 9 12 12 16 18

8 × 8 = 64 10 15 14 19 19

ASPIN(2)

2 × 2 = 4 9 9 11 10 12

4 × 4 = 16 8 9 9 10 11

8 × 8 = 64 8 9 12 12 14

Average number of global linear iterations

ASPIN(1)

2 × 2 = 4 67 69 71 73 74

4 × 4 = 16 127 128 133 137 140

8 × 8 = 64 395 394 400 497 655

ASPIN(2)

2 × 2 = 4 33 40 40 40 46

4 × 4 = 16 43 50 54 60 60

8 × 8 = 64 49 62 61 78 79

322 Feng-Nan Hwang and Xiao-Chuan Cai

Table 1 shows that to apply two-level methods on a moderate number of processors, the
coarse mesh has to be sufficiently fine, say 40× 40 in this case. For this particular case,
the numbers of global nonlinear iterations, as well as global linear iterations, are not
very sensitive with the increase of Reynolds number. To study the parallel scalability
of ASPIN(2) with respect to the number of processors, we use a fixed fine mesh 128×
128 and a coarse mesh 40 × 40. For comparison purposes, we also include the results
obtained using ASPIN(1). Table 2 shows that by adding a coarse preconditioner, not
only the global linear iterations is reduced significantly as we increase the number of
processors from 4 to 64, but also the global nonlinear iterations is improved especially
for high Reynolds number flows.

References

1. S. BALAY, K. BUSCHELMAN, W. D. GROPP, D. KAUSHIK, M. KNEPLEY, L. C. MCINNES,
B. F. SMITH, AND H. ZHANG, Portable, Extensible, Toolkit for Scientific Computa-
tion(PETSc) home page, http://www.mcs.anl.gov/petsc, 2004.

2. X.-C. CAI AND D. E. KEYES, Nonlinearly preconditioned inexact Newton algorithms, SIAM
J. Sci. Comput., 24 (2002), pp. 183-200.

3. X.-C. CAI, D. E. KEYES, AND L. MARCINKOWSKI, Nonlinear additive Schwarz precon-
ditioners and applications in computational fluid dynamics, Int. J. Numer. Meth. Fluids, 40
(2002), pp. 1463-1470.

4. J. DENNIS AND R. SCHNABEL, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, SIAM, Philadelphia, 1996.

5. L. P. FRANCA AND S. L. FREY, Stabilized finite element method: II. The incompressible
Navier-Stokes equation, Comput. Methods Appl. Mech. Engrg., 99 (1992), pp. 209-233.

6. F.-N. HWANG AND X.-C. CAI, A parallel nonlinear additive Schwarz preconditioned inexact
Newton algorithm for incompressible Navier-Stokes equations, J. Comput. Phys., (2004), to
appear.

7. L. MARCINKOWSKI AND X.-C. CAI, Parallel performance of some two-level ASPIN algo-
rithms, Lecture Notes in Computational Science and Engineering, ed. R. Kornhuber, R. H.
W. Hoppe, D. E. Keyes, J. Periaux, O. Pironneau and J. Xu, Springer-Verlag, Haidelberg, pp.
639-646.

8. J. N. SHADID, R. S. TUMINARO, AND H. F. WALKER, An inexact Newton method for fully
coupled solution of the Navier-Stokes equations with heat and mass transport, J. Comput.
Phys., 137 (1997), pp. 155-185.

Structure-Preserving Model Reduction

Ren-Cang Li1 and Zhaojun Bai2

1 Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA
rcli@ms.uky.edu

2 Department of Computer Science and Department of Mathematics
University of California, Davis, CA 95616, USA

bai@cs.ucdavis.edu

Abstract. A general framework for structure-preserving model reduction by
Krylov subspace projection methods is developed. The goal is to preserve any
substructures of importance in the matrices L, G, C, B that define the model pre-
scribed by transfer function H(s) = L∗(G + sC)−1B. Many existing structure-
preserving model-order reduction methods for linear and second-order dynamical
systems can be derived under this general framework.

1 Introduction

Krylov subspace projection methods are increasingly popular in model reduction owing
to their numerical efficiency for very large systems, such as those arising from structural
dynamics, control systems, circuit simulations, computational electromagnetics and mi-
croelectromechanical systems. Recent survey articles [1,2,7] provide in depth review
of the subject and comprehensive references. Roughly speaking, these methods project
the original system onto a smaller subspace to arrive at a (much) smaller system having
properties, among others, that many leading terms (called moments) of the associated
(matrix-valued) transfer functions expanded at given points for the original and reduced
systems match.

Consider the matrix-valued transfer function of the form

H(s) = L∗(G + sC)−1B, (1.1)

which describes an associated multi-input multi-output (MIMO) time-invariant system
to be studied. Here G,C ∈ CN×N , B ∈ CN×m, L ∈ CN×p. In today’s applications
of interests, such as VLSI circuit designs and structural dynamics, N can be up to
millions [1,2,7]. Computations of H(s) usually have to be done through some kind of
reduction on L, G, C and B. Let X,Y ∈ CN×n such that Y ∗GX is nonsingular (and
thus rank(X) = rank(Y) = n). We may reduce the transfer function H(s) to

HR(s) = L∗
R(GR + sCR)−1BR, (1.2)

where
LR = X∗L, GR = Y ∗GX, CR = Y ∗CX, BR = Y ∗B. (1.3)

There are various techniques to pick X and Y to perform reductions. Among them
Krylov subspace-based model-reduction is getting much of the attention. The idea is

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 323–332, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

324 Ren-Cang Li and Zhaojun Bai

to pick X and Y as the bases of properly defined Krylov subspaces so that H(s) =
HR(s)+O(s�+1). In this paper, we show, in addition, X and Y can be chosen specially
enough to preserve meaningful physical substructures.

2 Framework for Structure-Preserving Model Reduction

Suppose the matrices L,G,C,B in the transfer function (1.1) have some natural parti-
tioning that is derived from, e.g., the physical layout of a VLSI circuit or a structural
dynamical system:

G =
(N1 N2

N ′
1 G11 G12

N ′
2 G21 G22

)
, C =

(N1 N2

N ′
1 C11 C12

N ′
2 C21 C22

)
, (2.1)

L =
(p

N1 L1

N2 L2

)
, B =

(m

N ′
1 B1

N ′
2 B2

)
, (2.2)

where N ′
1 + N ′

2 = N1 + N2 = N . We wish that the reduced system would inherit the
same structure; that is, LR, GR, CR and BR could be partitioned so that

GR =
(n1 n2

n′
1 GR11 GR12

n′
2 GR21 GR22

)
, CR =

(n1 n2

n′
1 CR11 CR12

n′
2 CR21 CR22

)
, (2.3)

LR =
(p

n1 LR1

n2 LR2

)
, BR =

(m

n′
1 BR1

n′
2 BR2

)
, (2.4)

with each sub-block a direct reduction from the corresponding sub-block in the original
system, e.g., GR11 from G11, where n1 + n2 = n′

1 + n′
2. In the formulation (1.3) for

the reduced system, this can be accomplished by picking

X =
(n1 n2

N1 X1 0
N2 0 X2

)
, Y =

(n′
1 n′

2

N ′
1 Y1 0

N ′
2 0 Y2

)
, (2.5)

such that rank(Xj) = nj , rank(Yi) = n′
i. Then the submatrices of the coefficient

matrices LR, GR, CR and BR of the reduced system are given by

LRj = X∗
j Lj, GRij = Y ∗

i GijXj , CRij = Y ∗
i CijXj , BRi = Y ∗

i Bi. (2.6)

A reduction as in (2.3) – (2.6) is conceivably useful for the system matrices with mean-
ingful substructures. For example, for the time-domain modified nodal analysis (MNA)
circuit equations targeted by PRIMA [12] and SyMPVL [6], system matrices have the
following natural partitioning (adopting the formulation in [6])

G =
(
G11 G12

G∗
12 0

)
, C =

(
C11 0
0 −C22

)
, G∗

11 = G11, C∗
ii = Cii, L = B,

(2.7)

Structure-Preserving Model Reduction 325

where all sub-matrices have their own physical interpretations. As proved in [12], re-
duction (1.3) (and thus (2.6) included) with Y = X preserves passivity of the system
(2.7).

Remark 1. This substructural preserving model reduction technique (2.3) – (2.6) was
inspired by Su and Craig [17] concerning a second-order system which can always be
equivalently turned into a linear system (see (4.2) in the next section) with a natural
partitioning just as in (2.1) and (2.2).

Define the kth Krylov subspace generated by A ∈ CN×N on Z ∈ CN×� as

Kk(A,Z) def= span(Z,AZ, . . . , Ak−1Z),

where span(· · ·) is the subspace spanned by the columns of argument matrices.

Theorem 1. Assume that G and GR are nonsingular (and thus the total number of
columns in all Xi and that in all Yi must be the same).

1. If Kk(G−1C,G−1B) ⊆ span(X) and Y = X , then H(s) = HR(s) +O(sk).
2. If G andC are Hermitian, and ifKk

(
G−1C,G−1(B L)

)
⊆ span(X) andY = X ,

then H(s) = HR(s) +O(s2k).
3. If Kk(G−1C,G−1B) ⊆ span(X) and Kr(G−∗C∗, G−∗L) ⊆ span(Y), then

H(s) = HR(s) +O(sk+r).

Remark 2. Theorem 1 in its generality is due to [8]. It is an extension of similar theorems
in [19] for C = I and G−1B = b (vector). For a simpler and cleaner proof based on the
projector language, the reader is referred to [10].

Now that we have shown the substructures in (2.1) and (2.2) can be preserved via
(2.3) – (2.6). But this is for approximating H(s) around s = 0 only and in practice
approximations to H(s) around other selected points s0 �= 0 may be sought, too. Can a
shift be incorporated without destroying the existing substructures? The answer is yes.
Let s0 be a shift and write

s = s0 + (s− s0), (2.8)

and then
G + sC = G + s0C + (s− s0)C

def= G(s0) + s̃C. (2.9)

Upon substitutions (i.e., renaming)

G(s0) → G, s̃ → s,

the problem of approximating H(s) around s = s0 becomes equivalently to approximate
the substituted H(s) around s = 0. Observe that any reduction on G(s0) and C by
Y ∗G(s0)X and Y ∗CX can be done through reducing G and C directly as in (1.3)
because

GR(s0)
def= Y ∗G(s0)X = Y ∗GX + s0Y

∗CX = GR + s0CR. (2.10)

This is a significant observation because it says that even for approximating H(s) near
a different point s0 �= 0, reduction can still be done directly to the original matrices L,
G, C, and B, regardless of the shift (2.8).

As a straightforward application of Theorem 1, we have the following theorem.

326 Ren-Cang Li and Zhaojun Bai

Theorem 2. Let integers k, r ≥ 0, and let G(s0) be defined as in (2.9). Assume that
G(s0) and GR(s0) are nonsingular.

1. If Kk(G(s0)−1C,G(s0)−1B) ⊆ span(X) and Y = X , then H(s) = HR(s) +
O((s− s0)k).

2. For real s0, if G and C are Hermitian, and if Kk

(
G−1(s0)C,G(s0)−1(B L)

)
⊆

span(X) and Y = X , then H(s) = HR(s) +O((s− s0)2k).
3. If Kk(G(s0)−1C,G(s0)−1B) ⊆ span(X) and Kr(G(s0)−∗C∗, G(s0)−∗L) ⊆

span(Y), then H(s) = HR(s) +O((s − s0)k+r).

A sample Arnoldi-type implementation to realize Item 1 of this theorem is given
below, where strAMR stands for structural preserving Arnoldi-type model reduction.
Sample implementations to Items 2 and 3 can be given in a similar way.

strAMR – Sample Implementation:
Given L, G, C, B as in (2.1) and (2.2), and expansion point s0.

1. G = G + s0C; solve GQ = B for Q;
2. Q1 = orth(Q): an orthonormal basis matrix for span(G−1B);
3. Arnoldi process computes X:

For j = 1 to k − 1 do
Solve GQ = CQj for Q;
For i = 1 to j do

Q = Q − Qi(Q
∗
i Q);

EndFor
Qj+1 = orth(Q);

EndFor

Partition X = (Q1 Q2 · · · Qk) as X =
N1 X1

N2 X2
;

4. X1 = orth(X1); X2 = orth(X2); Yi = Xi;
5. Compute nonzero blocks of LR, GR, CR, and BR, as in (2.6);
6. Evaluate the reduced HR(s) as needed.

Remark 3. The invariance property (2.10) of the reduction on L, G, C, and B regardless
of the shift (2.8) makes it possible to match moments at multiple points by one reduction.
This is done by enforcing span(X) and/or span(Y) containing more appropriate Krylov
subspaces associated at multiple points. To avoid repetition, we shall omit explicitly
stating it. See [8] and Ruhe [13,14].

3 Structures of Krylov Subspaces of Block Matrices

The results of this section are of general interest. The matrices here do not necessarily
have anything to do with the transfer function. Consider

Structure-Preserving Model Reduction 327

A =
(N1 N2

N1 A11 A12

N2 A21 A22

)
, B =

(m

N1 B1

N2 B2

)
, (3.1)

where N1 + N2 = N . The following theorem describes the structures in a basis matrix
of Kk(A,B) when one of Aij’s is zero.

Theorem 3. Let A and B be partitioned as in (3.1), and let span(X̃) = Kk(A,B) be
partitioned as

X̃ =
(n′

1 n′
2

N1 X̃11 X̃12

N2 X̃21 X̃22

)
≡

(n′
1+n′

2

N1 X̃1

N2 X̃2

)

such that span

(
X̃11

X̃21

)
= Kk−1(A,B), and let α �= 0 be a scalar which may be

different at different occurrences. Then

1. If A11 = 0, then span(X̃1) = span(B1 A12X̃21) ⊆ span(B1 A12X̃2). If in

addition A12 = αI (and thus N1 = N2), span(X̃1) = span(B1 X̃21) ⊆
span(B1 X̃2).

2. If A12 = 0, then span(X̃1) = Kk(A11, B1).
3. If A21 = 0, then span(X̃2) = Kk(A22, B2).
4. If A22 = 0, then span(X̃2) = span(B2 A21X̃11) ⊆ span(B2 A21X̃1). If in

addition A21 = αI (and thus N1 = N2), span(X̃2) = span(B2 X̃11) ⊆
span(B2 X̃1).

Proof: All claims are consequences of the following observation:

if AiB =
(
Z1

Z2

)
, then Ai+1B =

(
A11Z1 + A12Z2

A21Z1 + A22Z2

)
.

Then combining the assumption that one of Aij = 0 will complete the proof. ��
Item 4 of Theorem 3 was implicitly stated in [3,4,17]. It gives a relation between

span(X̃1) and span(X̃2); so does Item 1. It is Item 4 that led to structure-preserving
dimension reductions of second-order systems. See § 4.

4 Model Reduction of Second-Order Systems

In this section, we show how to apply the theory presented in the previous sections to the
structure-preserving model reduction of a second-order system. Consider the transfer
function of a second-order system

H(s) = (V ∗ + sT ∗)(s2M + sD + K)−1R, (4.1)

where M,D,K ∈ CN×N , R ∈ CN×m, T, V ∈ CN×p. Notation here is adopted from
structural dynamics, where M,D,K are mass, damping, and stiffness matrices and are

328 Ren-Cang Li and Zhaojun Bai

usually Hermitian, but can be non-Hermitian at times. It is quite common to deal with
(4.1) by a linearization technique to turn it into the form of (1.1). This is done by setting

C =
(

D M
M 0

)
, G =

(
K 0
0 −M

)
, L =

(
V
T

)
, B =

(
R
0

)
. (4.2)

By now, all existing developments for the transfer function (1.1) can be applied in a
straightforward way, but then reduced models likely lose the second-order characteris-
tics, i.e., they may not be turned into the second-order transfer functions3 and conse-
quently the reduced models have little physical significance. To overcome this, Su and
Craig [17] made an important observation about the structures of the associated Krylov
subspaces that make it possible for the reduced second-order system to still have the
second-order form

HR(s) = (V ∗
R + sT ∗

R)(s2MR + sDR + KR)−1RR, (4.3)

where
MR = Y ∗

1 MX1, DR = Y ∗
1 DX1, KR = Y ∗

1 KX1,
VR = X∗

1V, TR = X∗
1T, RR = Y ∗

1 R.
(4.4)

and X1, Y1 ∈ CN×n having full column rank. Together with L, G, C and B as defined
by (4.2), the transfer functions H(s) and HR(s) of (4.1) and (4.3) takes the forms (1.1)
and (1.2) with (1.3), and

X =
(n n

N X1 0
N 0 X1

)
and Y =

(n n

N Y1 0
N 0 Y1

)
. (4.5)

Reduction as such for the second-order system falls nicely into our framework in §2.
The question is how to construct X and Y , noticing the differences in X and Y between
(2.5) and (4.5). This is where Theorem 3 comes in to help. A sample Arnoldi-type
implementation qAMR is as follows. For more detail, see [10]. Another implementation
includes the original one of [17].

5 Numerical Examples

The first example is taken from [16]. Here N = 256, The structure of G and C are as in
Figure 1, N ′

i = Ni = 128 (i = 1, 2), p = m = 1, and L and B are randomly chosen.
We compare the approximate accuracy of the “structurally reduced” models by

strAMR as proposed against otherwise “generally reduced” ones, i.e., strAMR without
Step 4 (and therefore X = X̃). Figure 2 plots the values of the original and reduced
transfer functions and the relative errors of the reduced functions, where Y = X and
span(X) ⊃ K20(G−1C,G−1B). It clearly shows that the structurally reduced model
is more accurate in the long range of frequency.

3 It is possible to turn a linear system of even dimension into a second-order system. Recently
[11,15] and [9] propose two different ways to do that; but in both cases the coefficient matrices
of the resulted second-order system cannot be related to the original system in a meaningful
way.

Structure-Preserving Model Reduction 329

qAMR – Sample Implementation: Computing X1.

1. Compute X such that Kq(G
−1C, G−1(B L) ⊆ span(X), by, e.g., strAMR;

2. Partition X =
N X1

N X2
;

3. Compute X1 = orth((X1 M−1T)).

Fig. 1. Block Structure of G (left) and C (right)

Fig. 2. Transfer functions (left) and relative errors (right)

330 Ren-Cang Li and Zhaojun Bai

Fig. 3. Transfer functions (left) and relative errors (right); Preserving incorrect structure can lead
less accurate approximations

It is natural to wonder whether incorrect structural partitioning would make any
difference. Indeed it does. Supposedly we take N ′

1 = N1 = 128 + 20 and N ′
2 = N2 =

128−20. Figure 3 plots the same things as Figure 2, except with this new partition, where
again Y = X and span(X) ⊃ K20(G−1C,G−1B). This figure shows that improper
partitioning can degrade accuracy. But more than that, for this partitioning “structural
reduction” is less accurate than the “general reduction” which is quite counter-intuitive
and surprising because span(X) with some partitioning includes span(X) without any
partitioning, and thus a reduction with partitioning should do at least just as well as one
without in terms of accuracy – further studies needed.

Next example is the second-order system from [2, §3.3]: N = 400, p = m = 1,
T = 0, and V = R randomly chosen. Figure 4 plots the values of the original and
reduced transfer functions and relative errors, where “quadratically reduced” refers to
(4.3) with (4.4) and X1 by, e.g., qAMR, and “linearly reduced” refers to (1.2) and (1.3)
through linearization (4.2) with Y = X(= X̂ in qAMR without Step 3).

6 Conclusions

A general framework for structural model reduction is established. Existing technique of
Su and Craig for the second-order system can be easily realized within the framework.
The idea is extensible to block partitioning with more than 2-by-2 blocks and thus makes
it possible to conserve sub-structures as fine as needed for any particular system. The
idea about the structures of Krylov subspaces of block matrices is not limited to 2-by-
2 blocks as in Theorem 3, either and consequently the development outlined in §4 is
extensible to systems of order higher than 2. Detail is in [10]. Numerical examples show
the worth of the idea, as well as that incorrect identification of structures can result in
poor numerical accuracy.

The work of Su and Craig [17] has spawned several recent research papers on
model reduction of second-order systems and quadratic eigenvalue problems, includ-

Structure-Preserving Model Reduction 331

Fig. 4. Transfer functions (left) and relative errors (right): a second-order example

ing [3,4,5,18]. But the attempt to preserve meaningful substructures as in (2.3) – (2.6)
for any general linear systems, not necessarily from linearizing a second-order system,
appears to be conceived first by [10].

Acknowledgments

Li and Bai are supported in part by NSF CAREER award under grant CCR-9875201
and NSF ITR grant ACI-0220104, respectively.

References

1. A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model reduction methods for
large-scale systems. In Vadim Olshevsky, editor, Structured Matrices in Mathematics, Com-
puter Science, and Engineering I: Proceedings of an AMS-IMS-SIAM joint summer research
conference, University of Co0lorado, Boulder, June 27–July 1, 1999, volume 280 of Comtem-
porary Mathematics, pages 193–219. American Mathematical Society, Providence, Rhode
Island, 2001.

2. Zhaojun Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynam-
ical systems. Applied Numerical Mathematics, 43:9–44, 2002.

3. Zhaojun Bai and Yangfeng Su. SOAR: A second-order Arnoldi method for the solution of the
quadratic eigenvalue problem. Computer Science Technical Report CSE-2003-21, University
of California, Davis, California, SIAM J. Matrix Anal. Appl., 26(3):640–659, 2003.

4. Zhaojun Bai and Yangfeng Su. Dimension reduction of second-order dynamical systems via a
second-order Arnoldi method. Computer Science Technical Report CSE-2004-1, University
of California, Davis, California, SIAM J. Sci. Comp., 26(5):1692–1709, 2004.

5. R. Freund. Pade-type reduced-order modeling of higher-order systems. Presentation at Ober-
wolfach Mini-Workshop on Dimensional Reduction of Large-Scale Systems, October, 2003.

332 Ren-Cang Li and Zhaojun Bai

6. R. W. Freund and P. Feldmann. The SyMPVL algorithm and its applications to interconnect
simulation. In Proc. 1997 International Conference on Simulation of Semiconductor Processes
and Devices, pages 113–116, Piscataway, New Jersey, 1997. IEEE.

7. Roland W. Freund. Model reduction methods based on Krylov subspaces. Acta Numerica,
12:267–319, 2003.

8. E. J. Grimme. Krylov Projection Methods For Model Reduction. PhD thesis, University of
Illinois at Urbana-Champaign, Urbana, Illinois, 1997.

9. Leonard Hoffnung. Subspace Projection Methods for the Quadratic Eigenvalue Problem.
PhD thesis, University of Kentucky, Lexington, KY, August 2004.

10. Ren-Cang Li and Zhaojun Bai. Structure-preserving model reductions using a Krylov sub-
space projection formulation. Technical Report CSE-2004-24, Department of Computer Sci-
ence, University of California, Davis, Comm. Math. Sci., 3(2):179–199, 2004.

11. D.G. Meyer and S. Srinivasan. Balancing and model reduction for second-order form linear
systems. IEEE Transactions on Automatic Control, 41(11):1632–1644, November 1996.

12. A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: passive reduced-order interconnect
macromodeling algorithm. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 17(8):645–654, August 1998.

13. Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation. Linear Algebra
and Its Applications, 58:391–405, 1984.

14. Axel Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue problems. ii. matrix
pairs. Linear Algebra and Its Applications, 197-198:283–295, 1994.

15. B. Salimbahrami and B. Lohmann. Structure preserving order reduction of large scale second
order systems. In Proceeding of 10th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale
Systems: Theory and Applications, pages 245–250, Osaka, Japan, July 2004.

16. Rodney Daryl Slone. A computationally efficient method for solving electromagnetic inter-
connect problems: the Padé approximation via the Lanczos process with an error bound.
Master’s thesis, University of Kentucky, Lexington, KY, 1997.

17. T.-J. Su and R. R. Craig. Model reduction and control of flexible structures using Krylov
vectors. J. Guidance, Control, and Dynamics, 14(2):260–267, 1991.

18. A. Vandendorpe and P. Van Dooren. Krylov techniques for model reduction of second-order
systems. Unpublished Note, March 2, 2004.

19. C. E. Villemagne and R. E. Skelton. Model reduction using a projection formulation. Int. J.
Control, 46(6):2141–2169, 1987.

A Comparison of Parallel Preconditioners
for the Sparse Generalized Eigenvalue Problems

by Rayleigh-Quotient Minimization

Sangback Ma1 and Ho-Jong Jang2

1 School of Electrical Engineering and Computer Science
Hanyang University, Ansan, Korea
sangback2001@empal.com
2 Department of Mathematics

Hanyang University, Seoul, Korea
hjang@hanyang.ac.kr

Abstract. In this paper we address ourselves to the problem of finding efficient
parallel preconditioner for the interior generalized eigenvalue problem Ax =
λBx, where A and B are large sparse symmetric positive definite matrices. We
consider incomplete LU(ILU)(0) in two variants, Multi-Color block successive
over-relaxation(SOR), and Point-symmetric SOR(SSOR). Our results show that
for small number of processors the Multi-Color ILU(0) gives the best performance,
while for large number of processors the Multi-Color Block SOR does.

1 Introduction

Recently, there has been much efforts to find the interior eigenvalues of the generalized
eigenproblem by iterative algorithms based on the optimization of the Rayleigh quotient,
and the conjugate gradient(CG) method for the optimization of the Rayleigh quotient
has been proven a very attractive and promising technique for large sparse eigenprob-
lems [1,3,4,11,12]. Such applications arise in many cases, e.g., structural mechanics,
computational chemistry and plasma physics.

As in the case of a system of linear equations, successful application of the CG method
to eigenproblem depends upon the preconditioning techniques. We also need a suitable
preconditioner for the parallel processing. ILU(0) is a very popular technique among the
various preconditioning techniques, but it has limitations in the parallelization, since it
is inherently serial. We consider ILU(0) with Muti-Coloring and wavefront techniques
to increase parallelism of preconditioner for eigenproblem.

In the present paper we calculate the leftmost m eigenpairs (m = 5) and for finite
difference matrices with much larger dimensions N (1282 ≤ N ≤ 5122). We follow the
approach developed in [4] which is based on the minimization of the Rayleigh quotient
over a subspace of orthogonal vectors, obtained with a conveniently preconditioned
CG(PCG) method. This approach is parallelized and used for the evalution of m leftmost
eigenpairs of test matrices coming from finite difference discretizations(FDM).

All computing was performed on a Cray-T3E in Electronics and Telecommunications
Research Institute(ETRI), Korea. Cray-T3E is a massively parallel message-passing ma-

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 333–341, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

334 Sangback Ma and Ho-Jong Jang

chine with the 136 individual processing node(PE)s interconnected in a 3D-Torus struc-
ture. Each PE, a DEC Alpha EV5.6 chip, is capable of delivering up to 900 Megaflops,
amounting to 115 GigaFlops in total. Each PE has 128 MBs core memory.

2 Generalized Eigenproblem via Preconditioned CG

2.1 Conjugate Gradient Method

We shall be concerned with computing a few of the smallest eigenvalues and their
corresponding eigenvectors of the generalized eigenvalue problem

Ax = λBx, (2.1)

where A and B are large sparse symmetric positive definite matrices of order N . We
look for the m smallest eigenvalues

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λm

and for the corresponding eigenvectors z1, z2, · · · , zm of (1) such that

Azi = λiBzi, zi
TBzi = 1, i = 1, 2, · · · ,m. (2.2)

The number m of the desired eigenpairs (λi, zi) is much smaller than the order N of the
matrices.

We recall that the eigenvectors of (1) are the stationary points of the Rayleigh quotient

R(x) =
xTAx

xT Bx
, (2.3)

and the gradient of R(x) is given by

g(x) =
2

xTBx
[Ax−R(x)B x].

For an iterate x(k), the gradient of R(x(k)),

∇R(x(k)) = g(k) =
2

x(k)T
Bx(k)

[
Ax(k) −R(x(k))Bx(k)

]
,

is used to fix the direction of descent p(k+1) in whichR(x) is minimized. These directions
of descent are defined by

p(1) = −g(0), p(k+1) = −g(k) + β(k)p(k), k = 1, 2, · · · ,

where β(k) =
g(k)T

g(k)

g(k−1)T
g(k−1)

. The subsequent iterate x(k+1) along p(k+1) through x(k)

is written as
x(k+1) = x(k) + α(k+1)p(k+1), k = 0, 1, · · · ,

where α(k+1) is obtained by minimizing R(x(k+1)),

R(x(k+1)) =
x(k)T

Ax(k) + 2α(k+1)p(k+1)T
Ax(k) + α(k+1)2p(k+1)T

Ap(k+1)

x(k)T
Bx(k) + 2α(k+1)p(k+1)T

Bx(k) + α(k+1)2p(k+1)T
Bp(k+1)

.

A detailed explanation to get the values for α(k+1) can be found in [8].

A Comparison of Parallel Preconditioners 335

2.2 Preconditioned CG Method

The performance of the CG method for computing the eigenpairs of (1) can be improved
by using a preconditioner [1,12]. The idea behind the PCG method is to apply the
“regular” CG method to the transformed system

Ãx̃ = λB̃x̃,

where Ã = C−1AC−1, x̃ = Cx, and C is nonsingular symmetric matrix. By substi-
tuting x = C−1x̃ into (2.3), we obtain

R(x̃) =
x̃T C−1AC−1x̃

x̃T C−1BC−1x̃
=

x̃T Ãx̃

x̃T B̃x̃
, (2.4)

where the matrix Ã is symmetric positive definite. The transformation (2.4) leaves the
stationary values of (2.3) unchanged, which are eigenvalues of (2.1), while the corre-
sponding stationary points are obtained from x̃j = Czj , j = 1, 2, · · · , N. The matrix
M = C2 is called the preconditioner. There are a number of choices of M ranging from
simple to complicated forms. In this paper, Multi-Color Block SSOR(MC-BSSOR) pre-
conditioner is used with parallel computation aspect. The PCG algorithm for solving the
smallest eigenpair with implicit preconditioning is summarized as follows.

ALGORITHM 21 The PCG method for computing the smallest eigenpair
1. Compute the preconditioner M .
2. Choose an initial guess x(0) �= 0.
3. Construct the initial gradient direction g(0).

Set p(1) = −g(0) and Mh(0) = g(0).

4. Iterate for k = 0 to NMAX(maximum number of iterations).
5. If k = 0 then set β(k) = 0, otherwise compute

Mh(k) = g(k) and β(k) =
g(k)T

h(k)

g(k−1)T
h(k−1)

.

6. Compute
p(k+1) = −h(k) + β(k)p(k). (2.5)

7. Compute α(k+1) by minimizing R(x(k+1)).
8. Compute

x(k+1) = x(k) + α(k+1)p(k+1). (2.6)

9. Test on convergence.

2.3 Orthogonal Deflation-PCG Method

Although the PCG method only produces the smallest eigenpair of (1), this algorithm
can also be used to evaluate a few of the smallest eigenvalues and their corresponding
eigenvectors together with the aid of orthogonal deflation [3,4].

336 Sangback Ma and Ho-Jong Jang

Table 1. Rate of convergence when reordering is used. h is the mesh size

SOR SSOR ILU-CG

Natural Ordering O(h) O(h) O(
√

h)

Red/Black Ordering O(h) O(h2) O(h)

Following [4], the basic idea underlying orthogonal deflation-PCG method is as
follows. Assume that the eigenpairs (λi, zi), i = 1, · · · , r− 1, have been computed. To
avoid convergence toward one of the computed eigenvectorszi, i = 1, · · · , r−1, the next
initial vector x̃(0)

r is chosen to be B-orthogonal to Zr−1 = span{zi | i = 1, · · · , r− 1}.

And the direction vector p̃
(k)
r is evaluated by B-orthogonalizing p

(k)
r (in (2.5)) with

respect to Zr−1. Also the new approximation vector x̃(k)
r is evaluated by B-normalizing

x
(k)
r (in (2.6)). Now from the characterization of the eigenvectors [7]

R(zr) = min
x⊥B

Zr−1
R(x),

x̃
(k)
r converges toward zr as k increases. That is, after zi, i = 1, · · · , r − 1 have been

evaluated, zr can be determined by minimizing R(x) over the vector space which is the
B-orthogonal complement to Zr−1. The minimization is performed by the PCG scheme
in S2.2.

3 Multi-coloring and Wavefront Reordering

3.1 Multi-color Reordering

Given a mesh, multi-coloring consists of assigning a color to each point so that the cou-
plings between two points of the same color are eliminated in the discretization matrix.
For example, for the 5-point Laplacian on a square with two colors in the checkerboard
fashion we can remove the coupling between any two points of the same color, so that the
values at all points of one color can be updated simultaneously. Similarly, four colors are
needed to color the grid points of the 9-point Laplacian. However, it has been known that
the convergence rate for the reordered systems often deteriorates. For the model problem
SSOR and PCG method with the Red/Black ordering have a worse convergence rate than
with the natural ordering, while SOR has the same rate if optimal ω is used. The table
1 contains the rates of convergence for SSOR with optimal ω, and ILU(0) PCG method
with natural and red/black ordering for the 5-point Laplacian matrix [5].

The Red/Black ordering can be extended to Multi-Color ordering schemes.

3.2 Wavefront-Ordering (Level Scheduling)

Rather than pursuing the parallelisms through reordering, the wavefront technique ex-
ploits the structure of the given matrix. If the matrix comes from the discretizations of

A Comparison of Parallel Preconditioners 337

PDEs such as by FDM or finite element method(FEM), the value of a certain node is usu-
ally depend on only the values of its neighbors. Hence, once the values of its neighbors
are known that node can be updated.

Wavefront technique(or Level scheduling) is a process of finding new ordering of
the nodes extracting the parallelism inherent in the matrix. This technique would work
equally well for three dimensional problems as well as two dimensional problems. For
references, see [10].

4 Multi-color Block SSOR Method

Multi-Coloring is a way to achieve parallelism of order N , where N is the order of the
matrix. For example, it is known that for 5-point Laplacian we can order the matrix in
2-colors so that the nodes are not adjacent with the nodes with the same color. This is
known as Red/Black ordering. For planar graphs maximum four colors are needed.

Blocked methods are useful in that they minimize the interprocessor communica-
tions, and increases the convergence rate as compared to point methods. SSOR is a sym-
metric preconditioner that is expected to perform as efficiently as incomplete Cholesky
factorization combined with blocking. Instead we need to invert the diagonal block. In
this paper we used the MA48 package from the Harwell library, which is a direct method
using reordering strategy to reduce the fill-ins. Since MA48 type employ some form of
pivoting strategy, this is expected to perform better for ill-conditioned matrices than
incomplete Cholesky factorization, which does not adopt any type of pivoting strategy.

SSOR needs a ω parameter for overrelaxation. However, it is known that the conver-
gence rate is not so sensitive to the ω parameter.

Let the domain be divided into L blocks. Suppose that we apply a multi-coloring
technique, such as a greedy algorithm described in [9] to these blocks so that a block of
one color has no coupling with a block of the same color. Let Dj be the coupling within
the block j, and color(j) be the color of the j-th block. We denote byUj,k, k = 1, q, j < k
and Lj,k, k < j the couplings between the j-th color block and the k-th block.

Then, we can describe the MC-BSSOR as follows.

ALGORITHM 41 Multi-Color Block SSOR
Let q be the total number of colors, and color(i), i = 1, L, be the array of the color

for each block.
1. Choose u0, and ω > 0.
2. For i > 0 Until Convergence Do
3. For kolor = 1, q Do
4. For j = 1, L Do
5. if(color(j) = kolor) then
6. (ui+1/2)j

= Dj
−1(b− ω ∗

∑k=q
k �=kolor Lj,kui+1/2).

7. endif
8. Endfor
9. For kolor = 1, q Do
10. For j = 1, L Do
11. if(color(j) = kolor) then

338 Sangback Ma and Ho-Jong Jang

12. (ui+1)j = Dj
−1(ui+1/2 − ω ∗

∑k=q
k �=kolor Uj,kui+1).

13. endif
14. Endfor
15. Endfor
16. Endfor

5 Numerical Experiments

Here we test the algorithms on the following two examples.

Problem 1. Poisson equation on a square,

−�u = f (5.7)

Ω = (0, 1)× (0, 1)
u = 0 on δΩ

f = x(1− x) + y(1− y).

Problem 2. Elman’s problem [2],

− (bux)x − (cuy)y + f u = g (5.8)

Ω = (0, 1)× (0, 1)
u = 0 on δΩ,

where b = exp (−xy), c = exp (xy), f = 1
(1+xy) , and g is such that exact solution

u = x exp (xy) sin (πx) sin (πy).
For the square domain we used the Block-Row mapping, i.e, that the domain is

divided into p rectangle-shaped blocks, wherep is the number of the available processors.
Further we assume that there is a one-to-one correspondence between the p blocks and
p processors.

Tables 2-7 contain the timings for the cases with 4 preconditioners with various N .
All of our test problems assume B = I . We used Message Passing Machine library
for the interprocessor communications. We used the Block-Row mapping for the graph
partitioning of the matrix. The number of colors needed is two. For the multi-coloring
we have adopted the greedy heuristic as described in [9]. We have used the epsilon
parameter to be 10−6 for stopping criterion. ‘X’ stands for the cases with insufficient
memory. As for the ω parameter we have set ω to be 1.

For the inversion of diagonal blocks in Block SSOR method, we have used the MA48
routine of the Harwell library, which adopts direct methods for sparse matrices with the
reordering strategy reducing fill-ins. The cost of the MA48 is roughly proportional to
L2, where L is the size of the matrix. Since L is roughly N/p, we expect a quadratic
decrease with the increasing number of processors.

The results show that for small number of processors Multi-Color ILU(0) shows the
best performance, but for large number of processors the Multi-Color Block shows the
best performance. In all cases, Multi-Color ILU(0) outperforms ILU(0) in the wavefront

A Comparison of Parallel Preconditioners 339

Table 2. Problem 1 with FDM, N = 1282

p = 4 p = 8 p = 16 p = 32 p = 64

CPU time

ILU(0)/wavefront 1.6 0.8 0.8 1.1 1.6

ILU(0)/Multi-color 0.9 0.7 0.7 1.0 1.5

Point-SSOR 2.1 0.8 0.9 1.3 1.7

MC-BSSOR 3.7 1.3 0.72 0.54 0.6

Table 3. Problem 1 with FDM, N = 2562

p = 4 p = 8 p = 16 p = 32 p = 64

CPU time

ILU(0)/wavefront 5.8 3.2 2.5 2.3 3.1

ILU(0)/Multi-color 4.9 3.1 2.3 2.0 2.8

Point-SSOR 7.5 3.9 3.1 2.8 3.8

MC-BSSOR 27.2 10.7 5.0 2.2 1.4

Table 4. Problem 1 with FDM, N = 5122

p = 4 p = 8 p = 16 p = 32 p = 64

CPU time

ILU(0)/wavefront X X 12.5 8.6 8.2

ILU(0)/Multi-color X X 11.4 7.4 7.0

Point-SSOR X X 13.8 10.2 9.9

MC-BSSOR X X 34.7 14.6 7.4

order and Point SSOR preconditioners. The reason that the performance of the MC-
BSSOR improves with increasing number of processors is that the block inversion cost
is inversely proportional to p2.

The results show that for small number of processors Multi-Color ILU(0) shows the
best performance, but for large number of processors the Multi-Color Block shows the
best performance. In all cases, Multi-Color ILU(0) outperforms ILU(0) in the wavefront
order and Point SSOR preconditioners. The reason that the performance of the MC-
BSSOR improves with increasing number of processors is that the block inversion cost
is inversely proportional to p2.

For N = 1282 and 2562 the CPUtime often increass as the number of processors
increases. This is due to the communication overhead associated with the high number
of processors.

340 Sangback Ma and Ho-Jong Jang

Table 5. Problem 2 with FDM, N = 1282

p = 4 p = 8 p = 16 p = 32 p = 64

CPU time

ILU(0)/wavefront 2.1 1.0 1.2 1.5 2.4

ILU(0)/Multi-color 0.9 1.0 1.2 1.4 2.2

Point-SSOR 2.8 1.2 1.4 1.7 2.7

MC-BSSOR 4.3 1.6 1.0 0.7 0.8

Table 6. Problem 2 with FDM, N = 2562

p = 4 p = 8 p = 16 p = 32 p = 64

CPU time

ILU(0)/wavefront 9.3 5.1 4.1 3.8 5.1

ILU(0)/Multi-color 8.0 4.9 3.8 3.3 4.7

Point-SSOR 11.4 6.0 4.7 4.2 6.9

MC-BSSOR 29.5 12.6 6.8 3.0 2.1

Table 7. Problem 2 with FDM, N = 5122

p = 4 p = 8 p = 16 p = 32 p = 64

CPU time

ILU(0)/wavefront X X 18.1 12.9 12.2

ILU(0)/Multi-color X X 16.9 11.1 10.7

Point-SSOR X X 20.0 14.6 14.4

MC-SSOR X X 47.7 19.7 10.6

6 Conclusions

For the problems tested MC-BSSOR shows the best performance than the other pre-
conditioners with high number of processors, while for small number of processors
Multi-Color ILU(0) shows the best performance. Due to the nature of MA48 library, we
expect MC-BSSOR to be scalable with the increasing number of processors.

References

1. Y. Cho and Y. K. Yong. A multi-mesh, preconditioned conjugate gradient solver for eigenvalue
problems in finite element models. Computers and Structures, 58:575–583, 1996.

2. H. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations. Ph.
D Thesis, Yale University, 1982.

3. G. Gambolati, G. Pini, and M. Putti. Nested iterations for symmetric eigenproblems. SIAM
Journal of Scientific Computing, 16:173–191, 1995.

A Comparison of Parallel Preconditioners 341

4. G. Gambolati, F. Sartoretto, and P. Florian. An orthogonal accelerated deflation technique
for large symmetric eigenproblems. Computer Methods in Applied Mechanical Engineering,
94:13–23, 1992.

5. C. -C. Jay Kuo and Tony Chan. Tow-color Fourier analysis of iterative algorithms for elliptic
problems with red/black ordering. SIAM Journal of Scientific Computing, 11:767–793, 1990.

6. Sangback Ma. Comparisons of the parallel preconditioners on the CRAY-T3E for large non-
symmetric linear systems. International Journal of High Speed Computing, 10:285–300, 1999.

7. B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ, 1980.
8. A. Ruhe. Computation of eigenvalues and eigenvectors. Sparse Matrix Techniques, 130–184,

V. A. Baker, ed., Springer-Verlag, Berlin, 1977.
9. Y. Saad. Highly parallel preconditioner for general sparse matrices. Recent Advances in

Iterative Methods, 60:165–199, IMA Volumes in Mathematics and its Applications, G. Golub,
M. Luskin and A. Greenbaum, eds, Springer-Verlag, Berlin, 1994.

10. Y. Saad. Krylov subspace methods on supercomputers. SIAM Journal of Scientific Computing,
10:1200–1232, 1989.

11. F. Sartoretto, G. Pini and G. Gambolati. Accelerated simultaneous iterations for large finite
element eigenproblems. Journal of Computational Physics, 81:53–69, 1989.

12. H. R. Schwarz. Eigenvalue problems and preconditioning. International Series of Numerical
Mathematics, 96:191–208, 1991.

Theoretical Relations Between Domain Decomposition
and Dynamic Substructuring

Daniel J. Rixen

Delft University of Technology
Faculty of Design, Engineering and Production

Engineering Mechanics - Dynamics
Mekelweg 2, 2628 CD Delft, The Netherlands

d.j.rixen@wbmt.tudelft.nl

Abstract. Domain decomposition methods used for solving linear systems are
strongly related to dynamic substructuring methods commonly used to build a
reduced model. In this study we investigate some theoretical relations between the
methods. In particular we discuss the conceptual similarities between the Schur
Complement solvers and the Craig-Bampton substructuring techniques, both for
their primal and dual form.

1 Introduction

While reduction techniques for structural dynamics models have been developed and
applied for decades [1,2], fast solution techniques such as domain decomposition solvers
are just becoming mature and are starting to be used in industrial applications [3].
Fast solvers and reduction techniques are two different approaches to speed up the
analysis procedure in structural dynamics (as well as in other fields). Nevertheless both
approaches are strongly linked and it is not always clear what the connections are.

In this paper we will expose some of the most relevant similarities and differences
between model reduction and domain decomposition methods. Finally we will indicate
some research challenges that will be major topics in the years to come.

2 Tearing and Assembling Substructures

Let us call Ω the (structural) domain for which a Finite Element model has been con-
structed. Assume now that the domain is subdivided in a numberN (s) of non-overlapping
substructures called Ω(s) such that every node belongs to one and only one substruc-
tures except for those on the interface boundaries. The linear dynamic behavior of each
substructure Ω(s) is governed by the local equilibrium equations

M (s)ü(s) + K(s)u(s) = f (s) + g(s) s = 1, . . .Ns (2.1)

where M (s) and K(s) are the substructure mass and stiffness matrices, u(s) are the
local dof, f (s) the external loads applied to the substructure and g(s) the internal forces
on the interfaces between substructures that ensure compatibility. Damping will not be
discussed here for simplicity.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 342–348, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Theoretical Relations Between Domain Decomposition and Dynamic Substructuring 343

2.1 Primal Assembly

The substructures (commonly called sub-domains in domain decomposition terminol-
ogy) can be interpreted as macro-element: the local degrees of freedom u(s) are related
to a global set of assembled degrees of freedom ua by

u(s) = L(s)ua (2.2)

where L(s) is a Boolean matrix. Substituting the compatibility condition (2.2), the local
equilibrium equations (2.1) can be assembled as

Maüa + Kaua = fa(t) (2.3)

where üa is the second-order time derivative of ua and

Ma =
Ns∑
s=1

L(s)T

M (s)L(s) Ka =
Ns∑
s=1

L(s)T

K(s)L(s) (2.4)

are the assembled mass and stiffness matrices. Note that the interface forces g(s) cancel
out when assembled on the interface.

2.2 Dual Assembly

Let us once more consider the decomposed equations (2.1) and explicitly express the
interface forces as unknowns determined by the interface compatibility requirement
(2.2): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M (s)ü(s) + K(s)u(s) +

[
b(s)

T

λ

0

]
= f (s)

Ns∑
s=1

b(s)u
(s)
b = 0

(2.5)

where b(s) are signed Boolean matrices and where b(s)
T

λ represent the interconnecting
forces between substructures. The description (2.5) is in fact a mixed approach where
primal (displacements) are used inside the substructures while dual quantities (forces)
describe the interface problem. In the domain decomposition world, the approach de-
scribed in (2.5) is called dual. Note that those equations are exactly equivalent to the
assembled system (2.3) since they express the same local equilibrium and enforce the
same interface compatibility. However (2.3) is in fact a primal approach since the inter-
face problem is described in terms of displacements only and therefore both approaches
will lead to different solution techniques. The dual (or mixed formulation) (2.5) can be
written in the block format[

M 0
0 0

][
ü

λ

]
+

[
K BT

B 0

][
u

λ

]
=

[
f

0

]
(2.6)

More details on dual assembly and its connection to primal assembly can be found
in [3,4].

344 Daniel J. Rixen

3 Dynamic Substructuring and Domain Decomposition Solvers

Structural models for industrial applications are most often very large (of the order of
several millions of degrees of freedom) because the models are often inherited from
static models where the meshing is fine, or because complex meshes are needed in order
to represent the geometrical and topological complexity of the structure.

Solving dynamical problems requires solving a large number of static-like problems,
either in the inverse-iteration loops of the eigensolvers or when stepping through the time
or the frequency in transient or harmonic analysis. For a vast majority of applications, the
dynamical behavior relevant for the analysis at hand involves simple global deformation
modes and therefore could be represented with a simple discretization whereas the
models at hand are very complex and refined. Therefore reducing the models before
solving them is often a necessary step. This does not mean that the mesh is going to be
coarsened (this would be a very tedious if not impossible task), but rather the dynamic
behavior of the model will be represented by a small number of well chosen modes.
One approach is to use methods based on global modes such as in the Rayleigh-Ritz
methods [5] or in the Proper Orthogonal decomposition technique. Another approach,
better suited for parallel computation and in industrial projects consists in reducing every
submodel such as in the dynamic substructuring techniques. This will be discussed in
section 3.1

Another way to tackle the challenge of solving many large static-like problems such
as encountered in dynamics consists in applying highly efficient parallel solvers derived
from domain decomposition techniques. They will be shortly described in section 3.2

3.1 Primal and Dual Substructuring

An efficient way to build reduced models consists in building reduction bases for each
substructures. We will shortly lay out the primal and dual approaches to reduction.

In the primal approach, each substructure is considered as being excited through its
interface degrees of freedom and therefore the interior degrees of freedom are governed
by the equilibrium equations

M
(s)
ii ü

(s)
i + K

(s)
ii u

(s)
i = f

(s)
i −K

(s)
ib u

(s)
b −M

(s)
ib ü

(s)
b (3.7)

Therefore the natural reduction basis for the internal degrees of freedom u
(s)
i is given

by the eigenmodes associated with the matrices M (s)
ii and K

(s)
ii , namely the eigenmodes

of the substructures when the interface is fixed. An efficient reduction basis is then

ua=

⎡⎢⎢⎢⎢⎣
ub

u
(1)
i

...

u
(Ns)
i

⎤⎥⎥⎥⎥⎦ 2
⎡⎢⎢⎢⎢⎣

I 0 · · · 0
Ψ (1)L

(1)
b Φ(1) 0

...
. . .

Ψ (Ns)L
(Ns)
b 0 Φ(Ns)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ub

η(1)

...

η(Ns)

⎤⎥⎥⎥⎥⎦ = TCB

⎡⎢⎢⎢⎢⎣
ub

η(1)

...

η(Ns)

⎤⎥⎥⎥⎥⎦ (3.8)

where
Ψ (s) = −K

(s)
ib K

(s)−1

ii (3.9)

Theoretical Relations Between Domain Decomposition and Dynamic Substructuring 345

are static response modes and where Φ(s) are n
(s)
i × n

(s)
φ matrices which columns

contain the first n(s)
φ free vibration modes of the substructure clamped on its interface.

The reduced matrices are then

K̄CB = T T
CBKaTCB =

⎡⎢⎢⎢⎢⎣
Sbb 0

Λ(1)2

. . .

0 Λ(Ns)
2

⎤⎥⎥⎥⎥⎦

M̄CB = T T
CBMaTCB =

⎡⎢⎢⎢⎢⎢⎣
M∗

bb L
(s)T

b M
(1)
bφ · · · L

(s)T

b M
(Ns)
bφ

M
(1)
φb L

(s)
b I 0

...
. . .

M
(Ns)
φb L

(s)
b 0 I

⎤⎥⎥⎥⎥⎥⎦

where Λ(s)2 are diagonal matrices of the n
(s)
φ local eigenfrequencies and where Sbb and

M∗
bb are the statically condensed stiffness and mass matrices. This approach is known

as the Craig-Bampton reduction [6]. Many variants have been proposed based on this
idea. See for instance [1] for an comprehensive overview.

In the dual approach, each substructure is considered as being excited through the
interface forces as described by (2.5). The substructure response can therefore be ap-
proximated as a static response plus a dynamic contribution related to the eigenmodes
of the substructure when its interface is free:

u(s) 2 u
(s)
stat + Θ(s)η(s) (3.10)

where

u
(s)
stat = −K(s)+B(s)T

λ +
m(s)∑
i=1

R
(s)
i α

(s)
i (3.11)

where K(s)+ is the inverse of K(s) when there are enough boundary conditions to
prevent the substructure from floating when its interface with neighboring domains is
free [5]. If a substructure is floating, K(s)+ is a generalized inverse of K(s) and R(s) is
the matrix having as column the corresponding rigid body modes. α(s)

i are amplitudes
of the local rigid body modes. The dynamic contribution is approximated in (3.10) by
a small number k(s) of local eigenmodes forming the reduced dynamic basis Θ(s). The
local degrees of freedom and the Lagrange multipliers (interconnecting forces) can thus
be approximated by [7]

346 Daniel J. Rixen

u

λ
= Tdual

α(1)

η(1)

...

α(Ns)

η(Ns)

λ

=

R(1) Θ(1) 0 −G
(1)
resB

(1)T

. . .
. . .

...

0 R(Ns) Θ(Ns) −G
(Ns)
res B(Ns)T

0 · · · 0 I

α(1)

η(1)

...

α(Ns)

η(Ns)

λ
(3.12)

where the residual flexibilities are defined as

G(s)
res = K(s)+ −

n
(s)
θ∑

r=1

θ
(s)
r θ

(s)T

r

Λ
(s)2
r

(3.13)

Finally, applying the reduction transformation (3.12) to the dual form (2.5), one gets
the so-called dual Craig-Bampton reduced system [7]:

M̃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

α̈(s)

η̈(s)

...

λ̈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ K̃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

α(s)

η(s)

...

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= T T

dualf (3.14)

with the reduced hybrid matrices

M̃ = T T
dual

[
M 0
0 0

]
Tdual (3.15)

K̃ = T T
dual

[
K BT

B 0

]
Tdual (3.16)

3.2 Domain Decomposition

Domain decomposition methods (DD) can be seen as fast solvers. For a static problem

Kaua = fa (3.17)

primal DD approaches consists in first factorizing the substructure internal operators in
order to write the interface problem as the statically condensed problem

Sbbub = f∗
a (3.18)

An efficient manner to solve (3.17) on parallel processing machines is then found by
solving (3.18) iteratively (usually with a Conjugate Gradient scheme). Hence, at every

Theoretical Relations Between Domain Decomposition and Dynamic Substructuring 347

iteration an new estimate of the interface displacement is found and, after solving the
local problems for the internal degrees of freedom, the interface equilibrium residual is
computed.

In a dual DD approach [4], the local degrees of freedom u(s) are condensed out from
the dual static problem ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K(s)u(s) +

[
b(s)

T

λ

0

]
= f (s)

Ns∑
s=1

b(s)u
(s)
b = 0

(3.19)

The dual interface problem can then be written in terms of λ alone. Solving for the
interface forces λ iteratively then yields an efficient parallel solver. At every iteration
an estimate of the interface forces is found. Then the corresponding local solutions are
computed and the compatibility error on the interface is found.

A mechanical description of the primal and dual DD approaches as well as a descrip-
tion of the different variants of the methods for instance for multiple right hand sides
can be found in the review paper [8].

3.3 Connections and Differences

Obviously the substructuring techniques and the domain decomposition solvers are
strongly related since they all originate from the same primal or dual decomposed de-
scription of the problem.

In order to understand the major connection between substructuring and domain
decomposition solvers, let us assume that inverse iteration methods are applied on the
primal or dual Craig-Bampton reduced systems (3.10) and (3.15). An inverse iteration
step in the primal method corresponds to solving a static-like problem of the form
(3.18) and thus corresponds to the primal DD formulation. Hence applying a primal
DD iterative scheme to solve the iterface problem for ub thus corresponds to building
successive approximations for the interface degrees of freedom ub.

If we now write an inverse iteration step for the dual Craig-Bampton reduced model
(3.15) it is readily seen that the static problem to solve corresponds to the dual interface
problem as solved in the dual DD method.

Hence one can conclude that the main differences between solving dynamic problems
based on reduced Craig-Bampton models or applying DD methods directly on the non-
reduced system are that

– In the Craig-Bampton models, the dynamical behavior of the substructures is ap-
proximated by a reduced modal basis, whereas when applying DD methods on the
full model no reduction is performed on the substructure.

– When applying DD techniques to solve the interface problem iteratively, one au-
tomatically builds an approximation basis for the interface degrees of freedom or
forces, whereas in the standard Craig-Bampton reduction procedures interface vari-
ables are not reduced (note that reduction techniques that a priori define reduction
basis for the interface problem have also been proposed).

348 Daniel J. Rixen

Hence it would be equivalent to use DD solvers to solve the interface problems
arising in reduction procedures, or to apply DD solvers where the local problems are
approximated by reduced modal basis.

The combination of reduction of substructures and iterative solution of interface
problems appears to be a very attractive idea to solve large dynamical problems effi-
ciently. Moreover such an approach is naturally parallel and has therefore more potential
for efficient implementation on supercomputers than the fast but inherently sequential
multi-level substructuring methods [9].

4 Conclusion

In this presentation, we show the links between reduction techniques based on dynamic
substructuring and domain decomposition solution techniques. It appears that combin-
ing reduction techniques for the local dynamic behavior of substructures together with
iterative solution of the interface problems opens new opportunities to build fast and
parallel solvers for structural dynamics. Future research will investigate the possibility
of such approaches particularly when applied to industrial problems.

References

1. Roy R. Craig. Coupling of substructures for dynamic analyses: an overview. In Struc-
tures, Structural Dynamics and Material Conference, Atlanta, April 3-6 2000. 41st
AIAA/ASME/ASCE/AHS/ASC. AIAA-2000-1573.

2. S. H. Fransen. Data Recovery Methodologies for Reduced Dynamic Substructure Models with
Internal Loads. Am. Inst. Aero. Astro. J., 42(10):2130–2142, 2004.

3. P. Gosselet and C. Rey and D.J. Rixen On the initial estimate of interface forces in FETI
methods. Int. J. Num. Meth. Eng., 192:2749–2764, 2003.

4. C. Farhat and F. X. Roux. Implicit parallel processing in structural mechanics. Computational
Mechanics Advances, 2(1):1–124, 1994. North-Holland.

5. M. Géradin and D. Rixen. Mechanical Vibrations. Theory and Application to Structural Dy-
namics. Wiley & Sons, Chichester, 2d edition, 1997.

6. R.R. Craig and M.C.C. Bampton. Coupling of substructures for dynamic analysis. Am. Inst.
Aero. Astro. J., 6(7):1313–1319, July 1968.

7. Daniel Rixen. A Dual Craig-Bampton Method for Dynamic Substructuring. J. Comp. App.
Math., 168 (1-2):383–391, 2004.

8. Daniel Rixen. Encyclopedia of Vibration, chapter Parallel Computation, pages 990–1001. Aca-
demic Press, 2002. isbn 0-12-227085-1.

9. Jeffrey K. Bennighof and R. B. Lehoucq. An automated multilevel substructuring method
for eigenspace computation in linear elastodynamics. SIAM J. Sc. Computing, 2002.
http://www.cs.sandia.gov/ rlehoucq/papers.html.

Model Order Reduction for Large Scale Engineering
Models Developed in ANSYS

Evgenii B. Rudnyi and Jan G. Korvink

IMTEK, Institute of Microsystem Technology
Freiburg University

Georges-Köhler-Allee, 103
D-79110, Freiburg, Germany

{rudnyi,korvink}@imtek.de
http://www.imtek.uni-freiburg.de/simulation/

Abstract. We present the software mor4ansys that allows engineers to employ
modern model reduction techniques to finite element models developed in AN-
SYS. We focus on how one extracts the required information from ANSYS and
performs model reduction in a C++ implementation that is not dependent on a
particular sparse solver. We discuss the computational cost with examples related
to structural mechanics and thermal finite element models.

1 Introduction

The model order reduction of linear large-scale dynamic systems is already quite an
established area [1]. In many papers (see references in [2]), advantages of model reduc-
tion have been demonstrated for a variety of scientific and engineering applications. In
the present work, we focus on how engineers can combine this technique with existing
commercial finite element software in order to

– Speed up a transient or harmonic analysis,
– Generate automatically compact models for system-level simulation,
– Incorporate finite element packages during the design phase.

Model reduction is conventionally applied to a large-scale dynamic system of the
first order as follows

Eẋ = Ax + Bu

y = Cx
(1.1)

where A and E are system matrices, B is the input matrix, C is the output matrix. The
aim of model reduction is to generate a low-dimensional approximation to (1.1) in a
similar form

Er ż = Arz + Bru

y = Crz
(1.2)

that describes well the dependence of the output vector y on the input vector u and so
that, at the same time, the dimension of the reduced state vector z is much less than the
dimension of the original state vector x.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 349–356, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

350 Evgenii B. Rudnyi and Jan G. Korvink

After discretization in space of the partial differential equations describing a user
model, a finite element package generally produces a system of ordinary differential
equations. At this stage, it is possible to directly apply modern model reduction methods
[1]. However, the extraction of the system matrices from a commercial package happens
not to be straightforward and here we share our experience on how it can be done with
ANSYS [3].

We have chosen the Matrix Market format [4] to represent the reduced model
(1.2). We suppose that its simulation will be done in another package, such as Matlab
or Mathematica. Functions to work with the reduced model in Mathematica are available
at the IMTEK Mathematica Supplement athttp://www.imtek.uni-freiburg.
de/simulation/mathematica/IMSweb/.

The system matrices are high-dimensional and sparse. As a result, the implementation
of a model reduction algorithm usually depends on a particular sparse solver and a storage
scheme for sparse matrices. We discuss a C++ interface that allows us to isolate the model
reduction and sparse solvers completely for negligible overhead.

Finally, we analyse the computation cost and give the performance results for a few
ANSYS models. The comparison of the accuracy of reduced models in respect to the
original ANSYS models is given elsewhere [5].

2 mor4ansys

The developed software [6] comprises two almost independent modules (see Fig. 1).
The first reads a binary ANSYS file and assembles a dynamic system in the form of Eq
(1.1) for first order systems or

M ẍ + Eẋ + Kx = Bu

y = Cx
(2.3)

for second order systems, where M , E and K are the three system matrices. The second
module applies the model reduction algorithm to Eq (1.1) or (2.3), that is, it finds a
low-dimensional basis V so that the approximation

x = V z + ε (2.4)

allows us to reproduce the transient behaviour of the original state vector within the error
margin ε.

After that, the original equations are projected to the subspace found, for example
for Eq (1.2) we have Er = V TEV , Ar = V T AV , Br = V TB, Cr = CV .

We support three methods to treat second-order systems. When the damping matrix
is modeled as Rayleigh damping E = αM + βK , the method from Ref [7] allows us
to preserve the coefficients α and β as parameters in the reduced model. In the general
case, one can choose between the transformation to a first-order system, and second
order Arnoldi algorithm (SOAR) [8].

The software can also read, as well as write, the matrices for the original system
in the Matrix Market format [4]. A number of model reduction benchmarks has been
obtained from ANSYS by means of mor4ansys [9].

Model Order Reduction for Large Scale Engineering Models Developed in ANSYS 351

Fig. 1. mor4ansys block-scheme

2.1 Interfacing with ANSYS

The development of the first module happen to be rather difficult because most users of
a commercial finite element package do not need the capability to extract the dynamics
system in the form of Eq (1.1) or (2.3) and, as a result, this is not a trivial operation.

ANSYS is a huge package and its behavior is not completely consistent. For exam-
ple, the information described below is not applicable for the fluid dynamics module
FLOTRAN.

Our software reads the binary EMAT file with element matrices in order to assemble
global system matrices. The file format is documented and ANSYS supplies a library
of Fortran subroutines to work with it [10]. An example of how one can use them can
be found in the mor4ansys code [6]. ANSYS has a special command, called a partial
solve PSOLVE, with which one can evaluate element matrices for a given state vector
without going through the real solution stage. This allows us to generate an EMAT file
efficiently for a given model. However, it was necessary to overcome the following
problems:

– The EMAT file does not contain the information about either Dirichlet boundary
conditions or equation constraints. They should be extracted separately.

– The EMAT file has a contribution to the load vector from element matrices only. If
nodal forces or accelerations are used to apply the load, this information should also
be extracted individually.

– It is necessary to assemble the global matrices from the element matrices.

During the solution phase, ANSYS can write a binary FULL file with the assembled
system matrices. When we started the development with ANSYS 5.7, this file did not
contain the load vector (input matrix). Since then there have been many changes. Since

352 Evgenii B. Rudnyi and Jan G. Korvink

ANSYS 6.0 theFULLfile maintains all the original matrices, the load vector, the Dirichlet
and equation constraints in the file. ANSYS 8.0 allows us to make the assembly only
and write the FULL file without a real solution phase (equivalent to a partial solution
with EMAT). One can now also dump the information from the FULL file in the Harwell-
Boeing matrix format. Hence, since ANSYS 8.0, it is possible to use the FULL file
efficiently. However, depending on the analysis type the FULL file may contain not the
original stiffness matrix, but rather, a linear combination of system matrices instead.

In the current version of mor4ansys, the EMAT file is employed as the main source
to build Eq (1.1) or (2.3). Additional information on the Dirichlet and equation constraints
and nodal forces is written in the form of text files by means of ANSYS macros we have
developed. The FULL file can be used to extract the load vector when otherwise this is
difficult, for example, as in the case when the acceleration load is used.

ANSYS cannot write several load vectors into the FULL and EMAT files. When
multiple-input is to be preserved in Eq (1.1) or (2.3), a user should for each input:

– Delete the previously applied load,
– Apply a new load,
– Generate matrices.

In order to ease this process, the second strategy is also allowed when a user does
not have to delete the previous load. In this case, each new load vector contains all the
previous vectors and mor4ansys corrects them at the end of the first phase.

2.2 Running the Model Reduction Algorithm

The Krylov subspaces allow us to obtain a low-dimensional subspace basis for (2.4) with
excellent approximating properties by means of a very efficient computation [11,8]. The
current version of mor4ansys implements the block Arnoldi algorithm [11] in order
to support multiple inputs, the block size being equal to the number of inputs.

Each step of an iterative Krylov subspace algorithm requires us to compute a matrix-
vector product, for example, for the first-order system

A−1Eh (2.5)

where h is some vector. The system matrices are high-dimensional and sparse and one
does not compute A−1 explicitly. The only feasible solution is to solve a linear system
of equations for each step as follows

Ag = Eh (2.6)

This constitutes the main computational cost up to the order of the reduced system 30.
Later on, the additional cost associated with the orthogonolization process can be also
added.

There are many sparse solvers as well as many storage schemes for sparse matrices.
Our goal was to implement a model reduction algorithm in a way that does not depend
on a particular solver. In addition, we wanted to change solvers at run-time, that is,
to allow for run-time polymorphism. As a result, we have chosen the virtual function

Model Order Reduction for Large Scale Engineering Models Developed in ANSYS 353

Fig. 2. Use of model reduction during design and system-level simulation

mechanism, as its overhead is negligible in our case when the operations by themselves
are computationally intensive.

Our approach is similar to that in the PETs [12] and Trinilos [13] libraries. The
abstract interface is written in terms of relatively low-level functions, as the goal was to
cover many different scenarios. The vectors are represented by continuous memory, as
they are dense in the case of the Krylov subspaces.

At present, the direct solvers from the TAUCS [14] and UMFPACK [15,16] libraries
are supported. The ATLAS library [17] has been used to generate the optimized BLAS.
We have found that for many ANSYS models up to 500 000 degrees of freedom the
modern direct solvers are quite competitive as the matrix factor fits within 4 Gb of
RAM. This allows us to reuse the factorization and achieve good performance.

3 Computational Cost of Model Reduction

We have experimentally observed that for many ANSYS models a reduced model of
order 30 is enough to accurately represent the original high-dimensional system [5].
Hence, for simplicity we limit the analysis of the computational cost to this case.

The simulation time of the reduced system comprising 30 equations is very small
and we can neglect it. Therefore, for the case when several simulations with different
input functions are necessary (the system-level simulation case), the advantage of model
reduction is out of the question.

Yet, during the design phase, a reduced model should be generated each time when
a user changes the geometry or material properties of the original model. In this case,
a reduced model might be used just once. Nevertheless, the model reduction time can
be smaller than the simulation time of the original system even in this case. These two
different situations are shown in Fig. 2. Below we consider the second case.

354 Evgenii B. Rudnyi and Jan G. Korvink

Table 1. Computational times on Sun Ultra-80 with 4 Gb of RAM in seconds

dimension nnz stationary
solution

in ANSYS
7.0

stationary
solution

in ANSYS
8.0

factoring
in TAUCS

generation
of the first
30 vectors

4 267 20 861 0.87 0.63 0.31 0.59

11 445 93 781 2.1 2.2 1.3 2.7

20 360 265 113 16 15 12 14

79 171 2 215 638 304 230 190 120

152 943 5 887 290 130 95 91 120

180 597 7 004 750 180 150 120 160

375 801 15 039 875 590 490 410 420

Let us assume that a direct solver is applicable and the dimension of 30 for the reduced
system is sufficient. Then the model reduction time is equal to the time of factoring A
in Eq (2.5) and the time required for 30 back substitution steps in Eq (2.6). Table 1
presents computational times for seven ANSYS models where the system matrices are
symmetric and positive definite. The first four rows correspond to thermal simulations
[18] and the last three to structural mechanics of a bond wire [7].

Each case is specified by its dimension and the number of non zero elements in
the stiffness matrix. The time of a stationary solution in ANSYS is given as a reference
point. Note that the real simulation time in ANSYS required for the stationary solution is
larger than in Table 1 as it includes reading/writing files as well as some other operations.
After that is listed the time to factor a matrix by means of a multifrontal solver from the
TAUCS library [14] and the time to generate the first 30 vectors. The latter is dominated
by the solution of Eq (2.6) by means of back substitution. As the difference to generate
the first and thirtieth vectors was less than 10-20%, we can say that the orthogonalization
cost was relatively small.

Note that the TAUCS multifrontal solver is even faster than the ANSYS solver. The
total time to generate a reduced model is about twice more than that for the stationary
solution. At the same time, the reduced model can accurately reproduce any transient
and harmonic simulation of the original models within a reasonable frequency range.

The simulation time of a harmonic analysis is the product of solution time for a
complex linear system by the number of frequencies needed. The matrix factor cannot
be re-used as the linear system to solve depends on frequency. The solution time for a
complex linear system is about twice more expensive. Hence model reduction allows
us to save simulation time by a factor close to the number of frequencies at which the
harmonic response is required. For example, if it is necessary to estimate the transfer
function at ten frequencies, then the model reduction plus the simulation of the reduced
system is roughly ten times faster than the simulation of the original system.

For the transient simulation, the situation is more difficult to analyse as this depends
on the integration strategy. In principle, it is possible to say that the model reduction time
above is equivalent to 30 equally spaced timesteps as in this case the same strategy with

Model Order Reduction for Large Scale Engineering Models Developed in ANSYS 355

the re-use of the matrix factor can be applied. However, in our experience, in order to
achieve accurate integration results for the examples in Table 1, one either needs at least
600 equally-spaced timesteps or one needs to use adaptive integration schemes where
the factor re-use is not possible. In both cases, model reduction plus simulation of the
reduced system was more than ten times faster. This shows that model reduction can
also be viewed as a fast solver and can be employed even during the optimization phase.

4 Conclusions

We have shown that in the case of the linear dynamics systems (1.1) and (2.3) modern
model reduction techniques can speed up finite element transient and harmonic simu-
lation significantly. For nonlinear systems, there are promising theoretical results in the
case of polynomial type nonlinearity [19]. Yet, in the nonlinear case in addition to many
theoretical problems, it happens that extracting a nonlinear system (1.1) or (2.3) from a
commercial finite element tool is a challenge by itself.

Acknowledgment

ANSYS models of the microthruster and the bonded wire have been made by T. Bech-
told and J. Lienemann respectively. We would also like to acknowledge an anonymous
reviewer for the very helpful comments and suggestions to improve the paper. Partial
funding by the DFG project MST-Compact (KO-1883/6), the Italian research council
CNR together with the Italian province of Trento PAT, the European Union (grant EU
IST-1999-29047, Micropyros) and an operating grant of the University of Freiburg is
gratefully acknowledged.

References

1. A. C. Antoulas, D. C. Sorensen. Approximation of Large-Scale Dynamical Systems: An
overview. Applied Mathematics & Computer Science, 11(5):1093–1121, 2001.

2. E. B. Rudnyi, J. G. Korvink. Automatic Model Reduction for Transient Simulation of MEMS-
based Devices. Sensors Update, 11:3–33, 2002.

3. ANSYS, ANSYS Inc. http://www.ansys.com/
4. R. F. Boisvert, R. Pozo, K. A. Remington. The Matrix Market Exchange Formats: Initial

Design. NIST Interim Report 5935, 1996. http://math.nist.gov/MatrixMarket/
5. E. B. Rudnyi, J. G. Korvink. Model Order Reduction of MEMS for Efficient Computer

Aided Design and System Simulation. In Sixteenth International Symposium on Mathematical
Theory of Networks and Systems, Belgium, July 5-9, 2004. Minisymposium TA8: Issues in
model reduction of large-scale systems.

6. E. B. Rudnyi, J. G. Korvink. mor4ansys (version 1.6): Compact Behavioral Models from
ANSYS by Means of Model Order Reduction. User Manual, 2004.
http://www.imtek.uni-freiburg.de/simulation/mor4ansys/

7. E. B. Rudnyi, J. Lienemann, A. Greiner, and J. G. Korvink. mor4ansys: Generating Compact
Models Directly from ANSYS Models. In Technical Proceedings of the 2004 Nanotechnology
Conference and Trade Show, Nanotech 2004, March 7-11, 2004, Bosten, Massachusetts, USA.

356 Evgenii B. Rudnyi and Jan G. Korvink

8. Z. J. Bai, K. Meerbergen, Y. F. Su. Arnoldi methods for structure-preserving dimension
reduction of second-order dynamical systems. In: P. Benner, G. Golub, V. Mehrmann, D.
Sorensen (eds), Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational
Science and Engineering. Springer-Verlag, Berlin/Heidelberg, Germany, 2005.

9. J. G. Korvink, E. B. Rudnyi. Oberwolfach Benchmark Collection. In: P. Benner, G. Golub, V.
Mehrmann, D. Sorensen (eds), Dimension Reduction of Large-Scale Systems, Lecture Notes
in Computational Science and Engineering. Springer-Verlag, Berlin/Heidelberg, Germany,
2005. http://www.imtek.uni-freiburg.de/simulation/benchmark/

10. Guide to Interfacing with ANSYS, ANSYS Inc. 2001.
11. R. W. Freund. Krylov-subspace methods for reduced-order modeling in circuit simulation.

Journal of Computational and Applied Mathematics, 123: 395–421, 2000.
12. S. Balay, V. Eijkhout, W. D. Gropp, L. C. McInnes, B. F. Smith. Efficient Management of

Parallelism in Object Oriented Numerical Software Libraries. In E. Arge, A. M. Bruaset,
H. P. Langtangen (eds), Modern Software Tools in Scientific Computing, Birkhäuser Press,
163–202, 1997.
http://www-unix.mcs.anl.gov/petsc/petsc-2/

13. M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, et al. An Overview of Trilinos. Sandia
National Laboratories report SAND2003-2927, 2003. http://software.sandia.gov/trilinos/

14. V. Rotkin, S. Toledo. The design and implementation of a new out-of-core sparse Cholesky
factorization method. ACM Transactions on Mathematical Software, 30: 19–46, 2004.
http://www.tau.ac.il/ stoledo/taucs/

15. T. A. Davis. Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern multifrontal method.
ACM Transactions on Mathematical Software, 30(2): 196–199, 2004.
http://www.cise.ufl.edu/research/sparse/umfpack/

16. T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method.
ACM Transactions on Mathematical Software, 30(2): 165–195, 2004.

17. R. C. Whaley, A. Petitet, J. Dongarra. Automated Empirical Optimization of Software and
the ATLAS project. Parallel Computing, 27(1-2): 3-35, 2001.
http://math-atlas.sourceforge.net/

18. J. Lienemann, E. B. Rudnyi, J. G. Korvink. MST MEMS model order reduction: Requirements
and Benchmarks. Submitted to Linear Algebra and its Applications, 2004.

19. J. R. Phillips. Projection-based approaches for model reduction of weakly nonlinear, time-
varying systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 22:171–187, 2003.

Rational Krylov for Large Nonlinear Eigenproblems

Axel Ruhe�

Department of Numerical Analysis and Computer Science
Royal Institute of Technology, SE-10044 Stockholm, Sweden

ruhe@kth.se

Abstract. Rational Krylov is an extension of the Lanczos or Arnoldi eigenvalue
algorithm where several shifts (matrix factorizations) are used in one run. It corre-
sponds to multipoint moment matching in model reduction. A variant applicable
to nonlinear eigenproblems is described.

1 Introduction, Nonlinear Eigenvalues

We are interested in the eigenvalue problem

A(λ)x = 0 (1.1)

linear in the vector x but nonlinear in the eigenvalue parameter λ. Typical examples are
mechanical systems with viscous damping or nonlinear materials. We seek values of λ
where the matrix A(λ) is singular.

For reasonably large linear eigenproblems, a shift and invert spectral transformation
is the algorithm of choice, see the collection [2]! A Rational Krylov approach makes it
possible to use several shifts (poles) in one run [10]. This is of special interest in a model
reduction context, where it corresponds to multipoint moment matching, see reports by
Skoogh [12] and Olsson [8]!

For moderate dimension n, the nonlinear eigenproblem (1.1) is treated by varying it-
erative algorithms, see the early work by Kublanovskaya for a QR Newton algorithm [7].
The evident idea of solving a sequence of linear eigenproblems, studied in [9], was shown
to have significant advantages.

When the dimension is large, methods based on solving nonlinear problems projected
in subspaces expanded by Krylov or Jacobi Davidson, is reported in works by Voss and
collaborators [14,3,?].

We have developed a nonlinear Rational Krylov algorithm, see the preliminary re-
port [11] and the thesis works by Hager [5] and Jarlebring [6]. Let me describe this
approach!

Approximate A(λ) by linear Lagrange interpolation between a shift μ and a pole σ
and get

A(λ) =
λ− μ

σ − μ
A(σ) +

λ− σ

μ− σ
A(μ) + (λ− σ)(λ − μ)R(λ) . (1.2)

� Talk given at PARA 04, Copenhagen June 21, 2004. Partial support given by VR, the Swedish
Research Council.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 357–363, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

358 Axel Ruhe

If we disregard the second order term with R(λ), we predict singularity of A(λ) at λ
satisfying

[(λ− μ)A(σ) − (λ− σ)A(μ)]w = 0 , (1.3)

solution to the linear eigenproblem

A(σ)−1A(μ)w = wθ, with θ = (λ− μ)/(λ− σ) , (1.4)

predicting singularity at

λ = μ +
θ

1− θ
(μ− σ) =

1
1− θ

μ− θ

1− θ
σ .

Let us plot the transformed eigenvalues θ as a function of the original eigenvalues λ
in Fig. 1. The extreme eigenvalues θ correspond to the interesting singularities that are
close to the pole σ. There will be many eigenvalues close to θ = 1 corresponding to λ
values far away, while the singularities close to the shift μ will correspond to θ close to
zero.

Fig. 1. The Spectral Transformation

Use the Arnoldi algorithm on the generalized eigenvalue problem (1.4), with a
Gaussian elimination LU -factorization of A(σ) regarded as a preconditioner,

A(σ)−1A(μ)Vj = VjHj,j + Rj , (1.5)

where Vj is the computed orthogonal basis with j columns, Hj,j is a j × j Hessenberg
matrix. The n × j residual matrix Rj has only its last column filled with a multiple of
the next basis vector vj+1.

Rational Krylov for Large Nonlinear Eigenproblems 359

2 Nonlinear Rational Krylov Algorithm

Our algorithm for the nonlinear problem (1.1) will consist of three parts, one outer
iteration, where the basis Vj is expanded, one inner iteration that computes a new basis
vector vj+1 for a fixed basis size j, and finally a lock and purge phase, where latent
vectors xl are delivered and the basis size is decreased. The inner iteration is run until
the residual of the nonlinear problem (1.1) is orthogonal to the basis Vj , while the outer
iteration is continued until this residual is small, indicating that one or several latent
roots λl have converged.

The implementation of our algorithm is closely related to implicitly restarted
Arnoldi, IRA [13,2], but the nonlinearity makes the inner iteration necessary. Defla-
tion has to be done precisely when a latent value has converged.

Outer Iteration: ALGORITHM NLRKS, OUTER ITERATION

1. Start with pole σ, shift μ, starting vector v1

2. For j = 1, 2, . . . until Convergence,
(a) Do inner iteration to solve projected problem. Update shift μ.
(b) If ‖r‖ < tolc, Convergence break
(c) vj+1 = r/hj+1,j , where hj+1,j = ‖r‖/sj , (Add vector to basis)

3. Deliver λl = μ, xl = x, (Latent root and vector)
4. Select new pole σ if needed
5. Do lock and purge
6. Select new shift μ, (Next latent root).

Note that the inner iteration is converged when the residual, r = A(σ)−1A(μ), is
orthogonal to the subspace spanned by Vj . If furthermore its norm ‖r‖ is small enough,
we signal convergence of the outer iteration to an eigenvalue of the nonlinear problem
(1.1), we call these values latent values.

The outer iteration can be regarded as an inverse iteration with shift at the pole
σ. If we update the pole, we get a Newton iteration, the same as Rayleigh quotient
iteration for the linear eigenvalue problem. However, updating the pole σ would demand
refactorization of the matrix, so we keep the same pole σ for a long time, often over
several latent values.

As soon as a latent value is converged, we deliver λl and its vector xl as a solution.
When a new pole σ is chosen, the latent root λl is no longer an eigenvalue of the
linearization (1.4).

In the lock and purge operation, we keep the dominating eigenvalues θ of the eigen-
value problem, shifted and inverted at the new pole σ. Some of the eigenvalues that were
dominating at a previous pole will become small and can be purged.

Inner Iteration: The task of the inner iteration is now to solve the projected problem
over the subspace spanned by Vj , and deliver an orthogonal residual r to be added to the
basis as vj+1.

360 Axel Ruhe

ALGORITHM NLRKS, INNER ITERATION

1. Start with vector x = vj , shift μ, sj = 1

Hj,j =
[
Hj,j−1 0

]
, (Hessenberg matrix)

2. Repeat until ‖kj‖2 < toln , (residual orthogonal)
(a) Compute r = A(σ)−1A(μ)x (Operate)
(b) Compute kj = V ∗

j r, (Gram Schmidt)
(c) Orthogonalize r = r − Vjkj

(d) Accumulate hj = hj + kjs
−1
j

(e) Compute eigensystem Hj,jS = S diag(θi)
(f) Choose θ = θi close to 0, s = si, (Ritz value correction)
(g) Update μ := μ + θ

1−θ (μ− σ) = 1
1−θμ−

θ
1−θσ

(h) Update Hj,j := 1
1−θHj,j − θ

1−θ I .
(i) Compute x = Vjs, (Ritz vector)

The updating of the last column of the Hessenberg matrix H in step 2d may need
some explanation. First time we reach this step, we fill the column with Gram Schmidt
coefficients, precisely as in Arnoldi for a linear eigenproblem (1.5). Next time, we operate
on the Ritz vector x = Vjs,

A(σ)−1A(μ)Vjs = Vjkj + r

Add the recursion from previous iterations to the left of this column vector and get,

A(σ)−1A(μ)Vj

[
Ij−1 s1

0 sj

]
= Vj

[
Hj,j−1 kj

]
+ reT

j

Postmultiply with the inverse of the elimination matrix and get the updated Hessenberg
matrix,

H
′
j,j =

[
Hj,j−1 kj

] [Ij−1 −s1s
−1
j

0 s−1
j

]
=
[
Hj,j−1 −Hj,j−1s1s

−1
j + kjs

−1
j

]
=
[
Hj,j−1 hj + kjs

−1
j

]
The last equality is a consequence of the updating in step 2h. That update makes sure
that s is an eigenvector corresponding to a zero eigenvalue of Hj,j which means that
Hj,js = Hj,j−1s1 + hjsj = 0.

The shift μ is updated until close enough to a latent root, and kept as soon as |θ| <
C|sj |. This means that the last column update is a Gram Schmidt orthogonalization
and the inner iteration is completed. Note that the last element sj is not small during
early iterations, this is an interesting difference to the linear case, when it gets small as
soon as the Krylov space has expanded sufficiently. We need to analyze conditions for
convergence of this inner iteration.

When the vector r is delivered as a new basis vector vj+1, it will be orthogonal to
the previous basis Vj but it will only be an approximate solution, ‖A(σ)−1A(μ)x‖ =
‖kj‖ < toln .

Rational Krylov for Large Nonlinear Eigenproblems 361

Viewport: 1 Model: kupol Part: PART-1

1

2

3

Fig. 2. Finite element model of dome

3 A Numerical Example

We report a run from the thesis of Patrik Hager [5]. He used a FORTRAN90 code on a
SGI Origin 2000 computer at Chalmers. The local finite element package FEM 90 was
used, together with LAPACK [1] for the dense, and superLU [4] for the sparse matrix
operations.

A finite element model of a viscously damped vibrating system is formulated as,

A(λ) = λ2M + K −
NMAT∑

m=1

1
1 + bmλ

ΔKm

where K , M , ΔKm denote stiffness, mass and relaxation strength, NMAT is the number
of materials and bm the relaxation constant for the mth material.

We show results for a dome, a stiff half sphere on a stiff tube connected by a damped
soft thin layer, this is a model with NMAT = 3 materials. A FEM model with shell
elements gives matrices of size n = 13357, see Fig. 2!

We seek the 50 smallest latent roots in the third quadrant, see the plot in Fig. 3!
Note that this figure is not equally scaled, actually all latent roots are very close to the
imaginary axis.

The algorithm is restricted to run up to 30 basis vectors. Follow the progress in Fig. 4!
In average 2.15 inner iterations were needed in each RKS step and 15.2 RKS steps for
each latent root. Note that the shift μ is updated frequently, while the same pole σ is
used for several iterations.

362 Axel Ruhe

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

real part

im
ag

in
ar

y
pa

rt
λ

σ

Fig. 3. Latent roots of dome. Dots are latent roots, Pluses are poles σ used. Note unequal scaling!

−90 −80 −70 −60 −50 −40 −30 −20 −10 0
0

500

1000

1500

2000

2500

3000

μ σ

tim
e

[s
]

imaginary part

Fig. 4. Follow algorithm for dome. Time flows upwards, imaginary parts of shift μ and pole σ on
x-axis

Rational Krylov for Large Nonlinear Eigenproblems 363

References

1. E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. D. CROZ,
A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, S. OSTROUCHOV, AND

D. SORENSEN, LAPACK Users’ Guide, SIAM, Philadelphia, second ed., 1995.
2. Z. BAI, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. VAN DER VORST, eds., Templates

for the solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia,
2000.

3. T. BETCKE AND H. VOSS, A Jacobi–Davidson–type projection method for nonlinear eigen-
value problems, Future Generation Computer Systems, 20 (2004), pp. 363 – 372.

4. J. DEMMEL, S. C. EISENSTAT, J. R. GILBERT, X. S. LI, AND J. W. H. LIU, A supernodal
approach to sparse partial pivoting, SIAM J. Matr. Anal. Appl., 20 (1999), pp. 720–755.

5. P. HAGER, Eigenfrequency Analysis - FE-Adaptivity and a Nonlinear Eigenproblem Algo-
rithm, PhD thesis, Chalmers University of Technology, Göteborg, Sweden, 2001.

6. E. JARLEBRING, Krylov methods for nonlinear eigenvalue problems, Master’s thesis, NADA
KTH, Stockholm Sweden, 2003. TRITA-NA-E03042.

7. V. N. KUBLANOVSKAJA, On an applicaton of Newton’s method to the determination of eigen-
values of λ-matrices, Dokl. Akad. Nauk SSSR, 188 (1969), pp. 1240–1241. Page numbers
may refer to AMS translation series.

8. K. H. A. OLSSON, Model Order Reduction in FEMLAB by Dual Rational Arnoldi. Licentiate
thesis, Chalmers University of Technology, Göteborg, Sweden, 2002.

9. A. RUHE, Algorithms for the nonlinear algebraic eigenvalue problem, SIAM J. Num. Anal,
10 (1973), pp. 674–689.

10. A. RUHE, Rational Krylov, a practical algorithm for large sparse nonsymmetric matrix pen-
cils, SIAM J. Sci. Comp., 19 (1998), pp. 1535–1551.

11. A. RUHE, A Rational Krylov algorithm for nonlinear matrix eigenvalue problems, vol. 268
of Zapiski Nauchnyh Seminarov POMI, S:t Petersburg, 2000, pp. 176–180.

12. A. RUHE AND D. SKOOGH, Rational Krylov algorithms for eigenvalue computation and
model reduction, in Applied Parallel Computing. Large Scale Scientific and Industrial Prob-
lems., B. Kågström, J. Dongarra, E. Elmroth, and J. Waśniewski, eds., Lecture Notes in
Computer Science, No. 1541, 1998, pp. 491–502.

13. D. C. SORENSEN, Implicit application of polynomial filters in a k-step Arnoldi method,
SIAM J. Matr. Anal. Appl., 13 (1992), pp. 357–385.

14. H. VOSS, An Arnoldi method for nonlinear eigenvalue problems, BIT Numerical Mathemat-
ics, 44 (2004), pp. 387 – 401.

15. H. VOSS, A Jacobi–Davidson method for nonlinear eigenproblems, in Computational Science
– ICCS 2004, 4th International Conference, Kraków, Poland, June 6–9 2004, Proceedings,
Part II, M. Buback, G. van Albada, P. Sloot, and J. Dongarra, eds., vol. 3037 of Lecture Notes
in Computer Science, Berlin, Heidelberg, New York, 2004, Springer Verlag, pp. 34–41.

Algebraic Sub-structuring
for Electromagnetic Applications

Chao Yang1, Weiguo Gao1, Zhaojun Bai2, Xiaoye S. Li1, Lie-Quan Lee3,
Parry Husbands1, and Esmond G. Ng1

1 Computational Research Division
Lawrence Berkeley National Lab

Berkeley CA 94720, USA
{CYang,WGGao,XSLi,PJRHusbands,EGNg}@lbl.gov

2 Department of Computer Science
The University of California at Davis

Davis, CA 95616, USA
bai@cs.ucdavis.edu

3 Stanford Linear Accelerator Center
Menlo Park, CA 94025, USA

liequan@slac.stanford.edu

Abstract. Algebraic sub-structuring refers to the process of applying matrix re-
ordering and partitioning algorithms to divide a large sparse matrix into smaller
submatrices from which a subset of spectral components are extracted and com-
bined to form approximate solutions to the original problem. In this paper, we
show that algebraic sub-structuring can be effectively used to solve generalized
eigenvalue problems arising from the finite element analysis of an accelerator
structure.

1 Introduction

Sub-structuring is a commonly used technique for studying the static and dynamic prop-
erties of large engineering structures [3,6,11]. The basic idea of sub-structuring is anal-
ogous to the concept of domain-decomposition widely used in the numerical solution
of partial differential equations [13]. By dividing a large structure model or computa-
tional domain into a few smaller components (sub-structures), one can often obtain an
approximate solution to the original problem from a linear combination of solutions to
similar problems defined on the sub-structures. Because solving problems on each sub-
structure requires far less computational power than what would be required to solve
the entire problem as a whole, sub-structuring can lead to a significant reduction in the
computational time required to carry out a large-scale simulation and analysis.

The automated multi-level sub-structuring (AMLS) method introduced in [1,7] is an
extension of a simple sub-structuring method called component mode synthesis (CMS)
[3,6] originally developed in the 1960s to solve large-scale eigenvalue problems. The
method has been used successfully in the vibration and acoustic analysis of large-scale
finite element models of automobile bodies [7,9]. The timing results reported in [7,9]
indicate that AMLS is significantly faster than conventional Lanczos-based approaches

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 364–373, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Algebraic Sub-structuring for Electromagnetic Applications 365

[10,5]. However, it is important to note that the accuracy achieved by a sub-structuring
method such as AMLS is typically lower than that achieved by the standard Lanczos
algorithm. The method is most valuable when a large number of eigenpairs with relatively
low accuracy are of interest.

In [15], we examined sub-structuring methods for solving large-scale eigenvalue
problems from a purely algebraic point of view. We used the term algebraic sub-
structuring to refer to the process of applying matrix reordering and partitioning al-
gorithms (such as the nested dissection algorithm [4]) to divide a large sparse matrix
into smaller submatrices from which a subset of spectral components are extracted and
combined to form an approximate solution to the original eigenvalue problem. Through
an algebraic manipulation, we identified the critical conditions under which algebraic
sub-structuring works well. In particular, we observed an interesting connection be-
tween the accuracy of an approximate eigenpair obtained through sub-structuring and
the distribution of components of eigenvectors associated with a canonical matrix pencil
congruent to the original problem. We developed an error estimate for the approximation
to the smallest eigenpair, which we will summarize in this paper. The estimate leads to
a simple heuristic for choosing spectral components from each sub-structure.

Our interest in algebraic sub-structuring is motivated in part by an application arising
from the simulation of the electromagnetic field associated with next generation particle
accelerator design [8]. We show in this paper that algebraic sub-structuring can be used
effectively to compute the cavity resonance frequencies and the electromagnetic field
generated by a linear particle accelerator model.

Throughout this paper, capital and lower case Latin letters denote matrices and vec-
tors respectively, while lower case Greek letters denote scalars. An n×n identity matrix
will be denoted by In. The j-th column of the identity matrix is denoted by ej . The
transpose of a matrix A is denoted by AT . We use ‖x‖ to denote the standard 2-norm
of x, and use ‖x‖M to denote the M -norm defined by ‖x‖M =

√
xTMx. We will use

∠M (x, y) to denote the M -inner product induced acute angle (M -angle for short) be-
tween x and y. This angle can be computed from cos∠M (x, y) = xT My/‖x‖M‖y‖M .
A matrix pencil (K,M) is said to be congruent to another pencil (A,B) if there exits a
nonsingular matrix P , such that A = PTKP and B = PTMP .

2 Algebraic Sub-structuring

In this section, we briefly describe a single-level algebraic sub-structuring algorithm.
This is also known as the component synthesis method (CMS) in the engineering literature
[6]. Our description does not make use of any information regarding the geometry or
the physical structure on which the original problem is defined.

We are concerned with solving the following generalized algebraic eigenvalue prob-
lem

Kx = λMx, (2.1)

where K is symmetric and M is symmetric positive definite. We assume K and M are
both sparse. They may or may not have the same sparsity pattern. Suppose the rows and
columns of K and M have been permuted so that these matrices can be partitioned as

366 Chao Yang et al.

K =

⎛⎝
n1 n2 n3

n1 K11 K13

n2 K22 K23

n3 KT
13 KT

23 K33

⎞⎠ and M =

⎛⎝
n1 n2 n3

n1 M11 M13

n2 M22 M23

n3 MT
13 MT

23 M33

⎞⎠, (2.2)

where the labels n1, n2 and n3 denote the dimensions of each sub-matrix block. The per-
mutation can be accomplished by applying a matrix ordering and partitioning algorithm
such as the nested dissection algorithm [4] to the matrix K + M .

The pencils (K11,M11) and (K22,M22) now define two algebraic sub-structures
that are connected by the third block rows and columns of K and M which we will refer
to as the interface block. We assume that n3 is much smaller than n1 and n2.

A single-level algebraic sub-structuring algorithm proceeds by performing a block
factorization

K = LDLT , (2.3)

where

L =

⎛⎜⎝ In1

In2

KT
13K

−1
11 KT

23K
−1
22 In3

⎞⎟⎠ and D =

⎛⎜⎝K11

K22

K̂33

⎞⎟⎠ .

The last diagonal block of D, often known as the Schur complement, is defined by

K̂33 = K33 −KT
13K

−1
11 K13 −KT

23K
−1
22 K23.

The inverse of the lower triangular factor L defines a congruence transformation that,
when applied to the matrix pencil (K,M), yields a new matrix pencil (K̂, M̂):

K̂ = L−1KL−T = D and M̂ = L−1ML−T =

⎛⎜⎝M11 M̂13

M22 M̂23

M̂T
13 M̂T

23 M̂33

⎞⎟⎠ . (2.4)

The pencil (K̂, M̂) is often known as the Craig-Bampton form [3] in structural engi-
neering. Note that the eigenvalues of (K̂, M̂) are identical to those of (K,M), and the
corresponding eigenvectors x̂ are related to the eigenvectors of the original problem
(2.1) through x̂ = LTx.

The sub-structuring algorithm constructs a subspace spanned by

S =

⎛⎝
k1 k2 n3

n1 S1

n2 S2

n3 In3

⎞⎠ (2.5)

where S1 and S2 consist of k1 and k2 selected eigenvectors of (K11,M11) and
(K22,M22) respectively. These eigenvectors will be referred to as sub-structure modes

Algebraic Sub-structuring for Electromagnetic Applications 367

in the discussion that follows. Note that k1 and k2 are typically much smaller than n1

and n2, respectively.
The approximation to the desired eigenvalues and eigenvectors of the pencil (K̂, M̂)

are obtained by projecting the pencil (K̂, M̂) onto the subspace spanned by S, i.e., we
seek θ and q ∈ Rk1+k2+n3 such that

(ST K̂S)q = θ(ST M̂S)q. (2.6)

It follows from the standard Rayleigh-Ritz theory [12, page 213] that θ serves as an
approximation to an eigenvalue of (K,M), and the vector formed by z = L−TSq is the
approximation to the corresponding eigenvector.

One key aspect of the algebraic sub-structuring algorithm is that ki can be chosen to
be much smaller than ni. Thus, Si can be computed by a shift-invert Lanczos procedure.
The cost of this computation is generally small compared to the rest of the computation,
especially when this algorithm is extended to a multi-level scheme. Similarly, because
n3 is typically much smaller than n1 and n2, the dimension of the projected problem
(2.6) is significantly smaller than that of the original problem. Thus, the cost of solving
(2.6) is also relatively small.

Decisions must be made on how to select eigenvectors from each sub-structure. The
selection should be made in such a way that the subspace spanned by the columns of S
retains a sufficient amount of spectral information from (K,M). The process of choosing
appropriate eigenvectors from each sub-structure is referred to as mode selection [15].

The algebraic sub-structuring algorithm presented here can be extended in two ways.
First, the matrix reordering and partitioning scheme used to create the block structure of
(2.2) can be applied recursively to (K11,M11) and (K22,M22) respectively to produce
a multi-level division of (K,M) into smaller sub-matrices. The reduced computational
cost associated with finding selected eigenpairs from these even smaller sub-matrices
further improves the efficiency of the algorithm. Second, one may replace In3 in (2.5)
with a subset of eigenvectors of the interface pencil (K̂33, M̂33). This modification will
further reduce the computational cost associated with solving the projected eigenvalue
problem (2.6). A combination of these two extensions yields the AMLS algorithm pre-
sented in [7]. However, we will limit the scope of our presentation to a single level
sub-structuring algorithm in this paper.

3 Accuracy and Error Estimation

One of the natural questions one may ask is how much accuracy we can expect from the
approximate eigenpairs obtained through algebraic sub-structuring. The answer to this
question would certainly depend on how S1 and S2 are constructed in (2.5). This issue is
carefully examined in [15]. In this section, we will summarize the error estimate results
established in [15].

To simplify the discussion, we will work with the matrix pencil (K̂, M̂), where K̂

and M̂ are defined in (2.4). As we noted earlier, (K̂, M̂) and (K,M) have the same set
of eigenvalues. If x̂ is an eigenvector of (K̂, M̂), then x = L−T x̂ is an eigenvector of
(K,M), where L is the transformation defined in (2.3).

368 Chao Yang et al.

If (μ(i)
j , v

(i)
j) is the j-th eigenpair of the i-th sub-problem, i.e.,

Kiiv
(i)
j = μ

(i)
j Miiv

(i)
j ,

where (v(i)
j)T Miiv

(i)
k = δj,k, and μ

(i)
j has been ordered such that

μ
(i)
1 ≤ μ

(i)
2 ≤ · · · ≤ μ(i)

ni
, (3.7)

then we can express x̂ as

x̂ =

⎛⎜⎝V1

V2

In3

⎞⎟⎠
⎛⎜⎝ y1

y2

y3

⎞⎟⎠ , (3.8)

where Vi = (v(i)
1 v

(i)
2 ... v

(i)
ni), and y = (yT

1 , yT
2 , yT

3)T �= 0.
It is easy to verify that y satisfies the following canonical generalized eigenvalue

problem ⎛⎜⎝Σ1

Σ2

K̂33

⎞⎟⎠
⎛⎜⎝y1

y2

y3

⎞⎟⎠ = λ

⎛⎜⎝ In1 G13

In2 G23

GT
13 GT

23 M̂33

⎞⎟⎠
⎛⎜⎝y1

y2

y3

⎞⎟⎠ , (3.9)

where Σi = diag(μ(i)
1 , μ

(i)
2 , . . . , μ

(i)
ni), Gi3 = V T

i M̂i3 for i = 1, 2. This pencil is clearly
congruent to the pencils (K̂, M̂) and (K,M). Thus it shares the same set of eigenvalues
with that of (K,M).

If x̂ can be well approximated by a linear combination of the columns of S, as
suggested by the description of the the algorithm in Section 2, then the vector yi (i = 1, 2)
must contain only a few large entries. All other components of yi are likely to be small
and negligible.

In [15], we showed that

|yi| = diag

(
ρλ(μ(i)

1), ρλ(μ(i)
2), · · · , ρλ(μ(i)

ni
)
)
g(i), (3.10)

where g(i) = |eT
j Gi3y3|, and

ρλ(ω) = |λ/(ω − λ)|. (3.11)

When elements of g(i) can be bounded (from above and below) by a moderate
constant, the magnitude of |eT

j yi| is essentially determined by ρλ(μ(i)
j) which is called

a ρ-factor in [15].
It is easy to see that ρλ(μ(i)

j) is large when μ
(i)
j is close to λ, and it is small when

μ
(i)
j is away from λ. For the smallest eigenvalue (λ1) of (K,M), it is easy to show

that ρλ1(μ
(i)
j) is monotonically decreasing with respect to j. Thus, if λ1 is the desired

eigenvalue, one would naturally choose the matrix Si in (2.5) to contain only the leading
ki columns of Vi, for some ki 0 ni.

Algebraic Sub-structuring for Electromagnetic Applications 369

If we define hi by

eT
j hi =

{
0 for j ≤ ki,

eT
j yi for ki < j ≤ ni,

(3.12)

then following theorem, which we proved in [15], provides an a priori error estimate for
the Rayleigh-Ritz approximation to (λ1, x̂1) from the subspace spanned by columns of
S defined in (2.5).

Theorem 1. Let K̂ and M̂ be the matrices defined in (2.4). Let (λi, x̂i) (i = 1, 2, ...n)
be eigenpairs of the pencil (K̂, M̂), ordered so that λ1 < λ2 ≤ · · · ≤ λn. Let (θ1, u1)
be the Rayleigh-Ritz approximation to (λ1, x̂1) from the space spanned by the columns
of S defined in (2.5). Then

θ1 − λ1 ≤ (λn − λ1)(hT
1 h1 + hT

2 h2), (3.13)

sin ∠
M

(u1, x̂1) ≤
√

λn − λ1

λ2 − λ1

√
hT

1 h1 + hT
2 h2, (3.14)

where hi (i = 1, 2) is defined by (3.12).

Theorem 1 indicates that the accuracy of (θ1, u1) is proportional to the size ofhT
1 h1+

hT
2 h2, a quantity that provides a cumulative measure of the “truncated" components in

(3.8).
If ρλ1(μ

(i)
j) < τ < 1 holds for ki < j ≤ ni, and if eT

j g(i) ≤ γ for some moderate
sized constant γ, we can show [15] that hT

1 h1 +hT
2 h2 can be bounded by a quantity that

is independent of the number of non-zero elements in hi. Consequently, we can establish
the following bounds:

θ1 − λ1

λ1
≤ (λn − λ1)(2ατ), (3.15)

sin ∠
M

(x̂1, u1) ≤

√
λ1

(
λn − λ1

λ2 − λ1

)√
2ατ, (3.16)

where α = γ2/δ.
We should mention that (3.15) and (3.16) merely provide a qualitative estimate of

the error in the Ritz pair (θ1, u1) in terms of the threshold τ that may be used as a
heuristic in practice to determine which spectral components of a sub-structure should
be included in the subspace S defined in (2.5). It is clear from these inequalities that a
smaller τ , which typically corresponds to a selection of more spectral components from
each sub-structure, leads to a more accurate Ritz pair (θ1, u1).

4 Numerical Experiment

We show by an example that algebraic sub-structuring can be used to compute approxi-
mate cavity resonance frequencies and the electromagnetic field associated with a small

370 Chao Yang et al.

Fig. 1. The finite element model corresponding to a 6-cell damped detuned structure

accelerator structure. The matrix pencil used in this example is obtained from a finite el-
ement model of a six-cell Damped Detuned accelerating Structure (DDS) [8]. The three
dimensional geometry of the model is shown in Figure 1. The dimension of the pencil
(K,M) is n = 5584. The stiffness matrix K has 580 zero rows and columns. These zero
rows and columns are produced by a particular hierarchical vector finite element dis-
cretization scheme [14]. Because K is singular, we cannot perform the block elimination
in (2.3) directly. A deflation scheme is developed in [15] to overcome this difficulty. The
key idea of the deflation scheme is to replace K−1

ii (i = 1, 2) with a pseudo-inverse in the
congruence transformation calculation. We refer the reader to [15] for the algorithmic
details. To facilitate deflation, we perform a two-stage matrix reordering described in
[15]. Figure 2 shows the non-zero patterns of the permuted K and M .

Fig. 2. The non-zero pattern of the permuted stiffness matrix K (left) and the mass matrix M

(right) associated with the 6-cell DDS model

We plot the approximateρ-factors associated with smallest eigenvalue of the deflated
problem in Figure 3. The approximation is made by replacing λ1 (which we do not
know in advance) in (3.11) with σ ≡ min(μ(1)

1 , μ
(2)
1)/2. We showed in [15] that such

an approximation does not alter the qualitative behavior of the ρ-factor. Three different

Algebraic Sub-structuring for Electromagnetic Applications 371

Fig. 3. The approximate ρ-factors associated with each sub-structure of the 6-cell DDS model

Fig. 4. The relative error of the smallest 50 Ritz values extracted from three subspaces constructed
by using different choices of the ρ-factor thresholds (τ values) for the DDS model

choices of τ values were used as theρ-factor thresholds (τ = 0.1, 0.05, 0.01) for selecting
sub-structure modes, i.e., we only select sub-structure modes that satisfy ρσ(μ(i)

j) ≥ τ .
The relative accuracy of the 50 smallest non-zero Ritz values extracted from the

subspaces constructed with these choices of τ values is displayed in Figure 4.
We observe that with τ = 0.1, θ1 has roughly three digits of accuracy, which is quite

sufficient for this particular discretized model. If we decrease τ down to 0.01, most of
the smallest 50 non-zero Ritz values have at least 4 to 5 digits of accuracy.

The least upper bound for elements of g(i) used in (3.10) is γ = 0.02. Thus the
ρ-factor gives an over-estimate of elements of |yi| in this case. In Figure 5, we plot
elements of |y1| and |y2|, where (yT

1 , yT
2 , yT

3)T is the eigenvector associated with the
smallest non-zero eigenvalue of (3.9). For simplicity, we excluded the elements of |y1|
and |y2| corresponding to the null space of (K11,M11) and (K22,M22), which have been

deflated from our calculations. We observe that |eT
j yi| is much smaller than ρσ(μ(i)

j),
and it decays much faster than the the ρ-factor also.

372 Chao Yang et al.

Fig. 5. The magnitude of |y1| (left) and |y2| (right) elements, where (yT
1 , yT

2 , yT
3)T is the eigen-

vector corresponding to the smallest eigenvalue of the canonical problem (3.9) associated with
the DDS model

5 Concluding Remarks

In this paper, we discussed the possibility of using algebraic sub-structuring to solve
large-scale eigenvalue problems arising from electromagnetic simulation. We examined
the accuracy of the method based on the analysis developed in [15]. A numerical example
is provided to demonstrate the effectiveness of the method.

We should point out that the block elimination and congruence transformation per-
formed in algebraic sub-structuring can be costly in terms of memory usage. However,
since no triangular solves on the full matrix, which are typically used in a standard
shift-invert Lanczos algorithm, are required, an efficient multi-level out-of-core imple-
mentation is possible. We will discuss the implementation issues and comparison with
other methods in a future study.

References

1. J. K. Bennighof. Adaptive multi-level substructuring method for acoustic radiation and scat-
tering from complex structures. In A. J. Kalinowski, editor, Computational methods for
Fluid/Structure Interaction, volume 178, pages 25–38, AMSE, New York, November, 1993.

2. F. Bourquin. Component mode synthesis and eigenvalues of second order operators: Dis-
cretization and algorithm. Mathematical Modeling and Numerical Analysis, 26:385–423,
1992.

3. R. R. Craig and M. C. C. Bampton. Coupling of substructures for dynamic analysis. AIAA
Journal, 6:1313–1319, 1968.

4. A. George. Nested dissection of a regular finite element mesh. SIAM J. Num. Anal., 10:345–
363, 1973.

5. R. G. Grimes, J. G. Lewis, and H. D. Simon. A shifted block Lanczos algorithm for solving
sparse symmetric generalized eigenproblems. SIAM Journal on Matrix Analysis and Appli-
cations, 15(1):228–272, January 1994.

6. W. C. Hurty. Vibrations of structure systems by component-mode synthesis. Journal of the
Engineering Mechanics Dvision, ASCE, 86:51–69, 1960.

Algebraic Sub-structuring for Electromagnetic Applications 373

7. M. F. Kaplan. Implementation of Automated Multilevel Substructuring for Frequency Re-
sponse Analysis of Structures. PhD thesis, University of Texas at Austin, Austin, TX, Decem-
ber 2001.

8. K. Ko, N. Folwell, L. Ge, A. Guetz, V. Ivanov, L. Lee, Z. Li, I. Malik, W. Mi, C. Ng, and
M. Wolf. Electromagnetic systems simulation - from simulation to fabrication. SciDAC report,
Stanford Linear Accelerator Center, Menlo Park, CA, 2003.

9. A. Kropp and D. Heiserer. Efficient broadband vibro-accoutic analysis of passenger car bodies
using an FE-based component mode synthesis approach. In Proceedings of the fifth World
Congress on Computational Mechanics (WCCM V), Vienna University of Technology, 2002.

10. R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide – Solution of Large-
scale eigenvalue problems with implicitly restarted Arnoldi Methods. SIAM, Philadelphia,
PA., 1999.

11. R. H. MacNeal. Vibrations of composite systems. Technical Report OSRTN-55-120, Office of
Scientific Research, Air Research of Scientific Research and Development Command, 1954.

12. B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1980.
13. B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition. Cambridge University Press,

Cambridge, UK., 1996.
14. Din-Kow Sun, Jin-Fa Lee, and Zoltan Cendes. Construction of nearly orthogonal Nedelec

bases for rapid convergence with multilevel preconditioned solvers. SIAM Journal on Scientific
Computing, 23(4):1053–1076, 2001.

15. C. Yang, W. Gao, Z. Bai, X. Li, L. Lee, P. Husbands, and E. G. Ng. An Algebraic Sub-
structuring Algorithm for Large-scale Eigenvalue Calculation. Technical Report, LBNL-
55055, Submitted to SIAM Journal on Scientific Computing.

Parallel Processing in Science and Engineering:
An Introduction

Organizer: Adam W. Bojańczyk

School of Electrical and Computer Engineering
Cornell University

Ithaca, NY, 14850, USA
adamb@ece.cornell.edu

Introduction

This minisymposium addressed selected aspects of parallel and distributing computing
as they arise in engineering, industrial and scientific computing. Both non-traditional
applications as well as relevant software tools were presented.

A big concern of HPC is the development of software that optimizes the performance
of a given computer. Several papers addressed this problem.

Several papers discussed systems for automatic generation of provably correct linear
algebra solvers. These systems take as input information about the operation to be per-
formed and about the target architectures, and generate an optimized library routine for
that operation even if the operation has not previously been implemented. These system
speed up creation of application specific libraries for the target architectures and target
applications.

Another pressing problem is that of load balancing on SMP clusters which run hybrid
MPI and OpenMP applications. In a paper addressing this problem a software system
is presented which automatically decreases or increase number of threads on a node
depending on the dynamically changing workload of the node relatively to other nodes.
This feature helps keeping workloads on all nodes balanced and hence increases the
utilization of the cluster.

The high cost of HPC systems can keep them beyond the reach of many potential
users. A solution to this problem is offered by grid computing where remote] com-
puting facilities are made available to users via internet. In the grid paradigm all small
computations are performed on a single local computer, while large-scale computations
are automatically distributed to more powerful computing resource on the grid. In this
scenario there is a need for interfacing software libraries on remote resources. This
problem is address in a paper which presents a prototype for semi-automatic genera-
tion of NetSolve interfaces for complete numerical software libraries. The prototype is
demonstrated by generating NetSolve interfaces for the complete SLICOT library for
the design and analysis of control systems.

The ongoing development of advanced computers provides the potential for solving
increasingly difficult computational problems either in terms of massive datasets, real
time requirements or computational complexity.

One promising application area of HPC is in risk management and financial engineer-
ing. Commodity clusters , with point-and-click access from a desktop, offer substantial

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 374–375, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Parallel Processing in Science and Engineering: An Introduction 375

computing power for the financial analyst or risk manager to consider complicated fi-
nancial models that arise in computational risk management. A paper on financial risk
management demonstrates the convenience and power of cluster approaches when work-
ing with pricing and hedging of large portfolios, Value-at-Risk, credit risk computations,
or sensitivity analysis.

Another computation intensive application where HPC are indispensable is that of
Space-Time Adaptive Processing (STAP). STAP refers to adaptive radar processing
algorithms which operate on data collected from both multiple sensors and multiple
pulses to cancel interference and detect signal sources. As the optimal method cannot
be implemented in real-time, many different STAP heuristic which trade computational
complexity with accuracy of the detection have been proposed. The last paper in the
minisymposium introduces a software framework called ALPS for rapid prototyping
and optimizing these various heuristic methods. Within this framework, users describe
STAP heuristics with basic building blocks. The software finds the optimal parallel
implementation of the heuristic as well as assesses its detection properties.

Rapid Development of High-Performance
Linear Algebra Libraries

Paolo Bientinesi1, John A. Gunnels4, Fred G. Gustavson4, Greg M. Henry3,
Margaret Myers1, Enrique S. Quintana-Ortı́2, and Robert A. van de Geijn1

1 Department of Computer Sciences
The University of Texas at Austin

{pauldj,myers,rvdg}@cs.utexas.edu
2 Universidad Jaume I, Spain
quintana@inf.uji.es

3 Intel Corp.
greg.henry@intel.com

4 IBM’s T.J. Watson Research Center
{gunnels,fg2}@us.ibm.com

Abstract. We present a systematic methodology for deriving and implementing
linear algebra libraries. It is quite common that an application requires a library of
routines for the computation of linear algebra operations that are not (exactly) sup-
ported by commonly used libraries like LAPACK. In this situation, the application
developer has the option of casting the operation into one supported by an existing
library, often at the expense of performance, or implementing a custom library, of-
ten requiring considerable effort. Our recent discovery of a methodology based on
formal derivation of algorithm allows such a user to quickly derive proven correct
algorithms. Furthermore it provides an API that allows the so-derived algorithms
to be quickly translated into high-performance implementations.

1 Introduction

We have recently written a series of journal papers where we illustrate to the HPC com-
munity the benefits of the formal derivation of algorithms [7,2,11,3]. In those papers,
we show that the methodology greatly simplifies the derivation and implementation of
algorithms for a broad spectrum of dense linear algebra operations. Specifically, it has
been successfully applied to all Basic Linear Algebra Subprograms (BLAS) [9,5,4],
most operations supported by the Linear Algebra Package (LAPACK) [1], and many
operations encountered in control theory supported by the RECSY library [8]. We il-
lustrate the methodology and its benefits by applying it to the inversion of a triangular
matrix, L := L−1, an operation supported by the LAPACK routine DTRTRI.

2 A Worksheet for Deriving Linear Algebra Algorithms

In Fig. 1, we give a generic “worksheet” for deriving a large class of linear algebra
algorithms. Expressions in curly-brackets (Steps 1a, 1b, 2, 2,3, 6, 7) denote predicates

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 376–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Rapid Development of High-Performance Linear Algebra Libraries 377

Step Annotated Algorithm: [D, E, F, . . .] = op(A, B, C, D, . . .)

1a {Ppre}
4 Partition

where

2 {Pinv}
3 while G do

2,3 {(Pinv) ∧ (G)}
5a Repartition

where

6 {Pbefore}
8 SU

7 {Pafter}
5b Continue with

2 {Pinv}
enddo

2,3 {(Pinv) ∧ ¬ (G)}
1b {Ppost}

Fig. 1. Worksheet for developing linear algebra algorithms

that describe the state of the various variables at the given point of the algorithm. The
statements between the predicates (Steps 3, 4, 5a, 5b, 8) are chosen in such a way that, at
the indicated points in the algorithm, those predicates hold. In the left column of Fig. 1,
the numbering of the steps reflects the order in which the items are filled in.

3 Example: Triangular Matrix Inversion

Let us consider the example L := L−1 where L is an m ×m lower triangular matrix.
This is similar to the operation provided by the LAPACK routine DTRTRI [4]. In the
discussion below the “Steps” refer to the step numbers in the left column of Figs. 1
and 2.

Step 1: Determine Ppre and Ppost. The conditions before the operation commences
(the precondition) can be described by the predicate indicated in Step 1a in Fig. 2. Here
L̂ indicates the original contents of matrix L. The predicate in Step 1b in Fig. 2 indicates
the desired state upon completion (the postcondition).

Step 2: Determine Pinv. In order to determine possible intermediate contents of the
matrix L, one starts by partitioning the input and output operands, in this case L and
L̂. The partitioning corresponds to an assumption that algorithms progress through data
in a systematic fashion. Since L is lower triangular, it becomes important to partition it
into four quadrants,

378 Paolo Bientinesi et al.

Step Annotated Algorithm: L := L−1

1a
{

L = L̂ ∧ LowerTri(L)
}

4 Partition L =

(
LTL 0

LBL LBR

)
and L̂ =

(
L̂TL 0

L̂BL L̂BR

)

where LTL and L̂TL are 0 × 0

2

{(
LTL 0

LBL LBR

)
=

(
L−1

TL 0

LBL LBR

)}

3 while ¬SameSize(L, LTL) do

2,3

{((
LTL 0

LBL LBR

)
=

(
L−1

TL 0

LBL LBR

))
∧ (¬SameSize(L, LTL))

}

5a Determine block size b
Repartition(

LTL 0

LBL LBR

)
→

⎛
⎜⎜⎝

L00 0 0

L10 L11 0

L20 L21 L22

⎞
⎟⎟⎠ and

(
L̂TL 0

L̂BL L̂BR

)
→

⎛
⎜⎜⎝

L̂00 0 0

L̂10 L̂11 0

L̂20 L̂21 L̂22

⎞
⎟⎟⎠

where L11 and L̂11 are b × b

6

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

L00 0 0

L10 L11 0

L20 L21 L22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

L̂−1
00 0 0

L̂10 L̂11 0

L̂20 L̂21 L̂22

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

8
L10 := −L−1

11 L10L00

L11 := L−1
11

7

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

L00 0 0

L10 L11 0

L20 L21 L22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

L̂−1
00 0 0

−L̂−1
11 L̂10L̂

−1
00 L̂−1

11 0

L̂20 L̂21 L̂22

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

5b Continue with(
LTL 0

LBL LBR

)
←

⎛
⎜⎜⎝

L00 0 0

L10 L11 0

L20 L21 L22

⎞
⎟⎟⎠ and

(
L̂TL 0

L̂BL L̂BR

)
←

⎛
⎜⎜⎝

L̂00 0 0

L̂10 L̂11 0

L̂20 L̂21 L̂22

⎞
⎟⎟⎠

2

{(
LTL 0

LBL LBR

)
=

(
L−1

TL 0

LBL LBR

)}

enddo

2,3

{((
LTL 0

LBL LBR

)
=

(
L−1

TL 0

LBL LBR

))
∧ ¬ (¬SameSize(L, LTL))

}

1b
{

L = L̂−1
}

Fig. 2. Worksheet for developing an algorithm for symmetric matrix multiplication

L →
(

LTL 0

LBL LBR

)
,

where LTL and LBR are square so that these diagonal blocks are lower triangular. Here
the indices T , B, L, and R stand for Top, Bottom, Left, and Right, respectively.

Rapid Development of High-Performance Linear Algebra Libraries 379

Now, this partitioned matrix is substituted into the postcondition after which algebraic
manipulation expresses the desired final contents of the quadrants in terms of operations
with the original contents of those quadrants:

(
LTL 0

LBL LBR

)
=

(
L̂TL 0

L̂BL L̂BR

)−1

=

(
L̂−1

TL 0

−L̂−1
BRL̂BLL̂−1

TL L̂−1
BR

)
.

At an intermediate stage (at the top of the loop-body) only some of the operations will
have been performed. For example, the intermediate state(

LTL 0

LBL LBR

)
=

(
L̂−1

TL 0

L̂BL L̂BR

)

comes from assuming that only LTL has been updated with the final result while the
other parts of the matrix have not yet been touched. Let us use this example for the
remainder of this discussion: it becomes Pinv in the worksheet in Fig. 1 as illustrated in
Fig. 2.

Step 3: Determine Loop-Guard G. We are assuming that after the loop completes,
Pinv ∧ ¬G holds. Thus, by choosing a loop-guard G such that (Pinv ∧ ¬G) ⇒ Ppost,
it is guaranteed that the loop completes in a state that implies that the desired result has
been computed. Notice that when LTL equals all of L,((

LTL 0

LBL LBR

)
=

(
L̂−1

TL 0

L̂BL L̂BR

)
∧ SameSize(L,LTL)

)
⇒ (L = L̂−1).

Here the predicate SameSize(L,LTL) is true iff the dimensions of L and LTL are equal.
Thus, the iteration should continue as long as ¬SameSize(L,LTL), the loop-guard G in
the worksheet.

Step 4: Determine the Initialization. The loop-invariant must hold before entering the
loop. Ideally, only the partitioning of operands is required to attain this state. Notice that
the initial partitionings given in Step 4 of Fig. 2 result in an L that contains the desired
contents, without requiring any update to the contents of L.

Step 5: Determine How to Move Boundaries. Realize that as part of the initialization
LTL is 0×0, while upon completion of the loop this part of the matrix should correspond
to the complete matrix. Thus, the boundaries, denoted by the double lines, must be moved
forward as part of the body of the loop, adding rows and columns to LTL. The approach
is to identify parts of the matrix that must be moved between regions at the top of the
loop body, and adds them to the appropriate regions at the bottom of the loop body, as
illustrated in Steps 5a and 5b in Fig. 2.

Step 6: Determine Pbefore. Notice that the loop-invariant is true at the top of the loop
body, and is thus true after the repartitioning that identifies parts of the matrices to
be moved between regions. In Step 6 in Fig. 2 the state, in terms of the repartitioned
matrices, is given.

380 Paolo Bientinesi et al.

Partition L =
LTL 0

LBL LBR

where LTLis 0 × 0

while ¬SameSize(L, LTL) do

Determine block size b
Repartition

LTL 0

LBL LBR

→
L00 0 0

L10 L11 0

L20 L21 L22

where L11 is b × b

L10 := −L−1
11 L10L00

L11 := L−1
11

Continue with

LTL 0

LBL LBR

←
L00 0 0

L10 L11 0

L20 L21 L22

enddo

Fig. 3. Final algorithm

Step 7: Determine Pafter. Notice that after the regions have been redefined, (as in Step
5b in Fig. 2), the loop-invariant must again be true. Given the redefinition of the regions
in Step 5b, the loop-invariant, with the appropriate substitution of what the regions will
become, must be true after the movement of the double lines. Thus,

L̂−1
TL 0

L̂BL L̂BR

=

L̂00 0

L̂10 L̂11

−1

0

L̂20 L̂21 L̂22

=

L̂−1
00 0 0

−L̂−1
11 L̂10L̂

−1
00 L̂−1

11 0

L̂20 L̂21 L̂22

must be true after the movement of the double lines.

Step 8: Determine the Update SU . By comparing the state in Step 6 with the desired
state in Step 7, the required update, given in Step 8, can be easily determined.

Final Algorithm. Finally, by noting that L̂ was introduced only to denote the original
contents of L and is never referenced in the update, the algorithm for computing L :=
L−1 can be stated as in Fig. 3.

Note that the second operation in updateSU requires itself an inversion of a triangular
matrix. When b = 1, this becomes an inversion of the scalar L11. Thus, the so-called
“blocked” version of the algorithm, where b > 1, could be implemented by calling an
“unblocked” version, where b = 1 and L11 := L−1

11 is implemented by an inversion of
a scalar.

Rapid Development of High-Performance Linear Algebra Libraries 381

1 FLA_Part_2x2(L, <L, <R,
2 &LBL, &LBR, 0, 0, FLA_TL);
3
4 while (FLA_Obj_length(LTL) != FLA_Obj_length(L)){
5 b = min(FLA_Obj_length(LBR), nb_alg);
6 FLA_Repart_2x2_to_3x3(
7 LTL, /**/ LTR, &L00, /**/ &L01, &L02,
8 /* ************* */ /* ******************** */
9 &L10, /**/ &L11, &L12,
10 LBL, /**/ LBR, &L20, /**/ &L21, &L22,
11 b, b, FLA_BR);
12 /*---*/
13
14 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR,
15 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
16 MINUS_ONE, L11, L10);
17
18 FLA_Trmm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,
19 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
20 ONE, L00, L10);
21
22 FLA_TriInv(L11);
23
24 /*---*/
25 FLA_Cont_with_3x3_to_2x2(
26 <L, /**/ <R, L00, L01, /**/ L02,
27 L10, L11, /**/ L12,
28 /* *************** */ /* ***************** */
29 &LBL, /**/ &LBR, L20, L21, /**/ L22,
30 FLA_TL);
31 }

Fig. 4. C implementation

Alternative Algorithms. The steps we just described allow one to derive alternative
algorithms: by applying Steps 3-8 with different loop-invariants one can obtain different
variants for the same operation.

4 Implementation and Performance

In order to translate the proven correct algorithm into code, we have introduced APIs
for the Mscript [10], C, and Fortran programming languages. The APIs were designed
to mirror the algorithms as obtained from the worksheet. This allows for a rapid and
direct translation to code, reducing chances of coding errors. The C code corresponding
to the algorithm in Fig. 3 is illustrated in Fig. 4. The Partition statement in the algorithm

382 Paolo Bientinesi et al.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

matrix dimension n

P
er

ce
nt

 o
f p

ea
k

Performance on Itanium2 SMP

1CPU LAPACK
1CPU FLAME Variant 3
4CPU LAPACK
4CPU FLAME Variant3

Fig. 5. Performance of LAPACK vs. FLAME on a single CPU and four CPUs of an Itanium2-
based SMP. Here Variant3 indicates a different loop invariant which results in an algorithm rich
in triangular matrix matrix multiply (TRMM). It is known that the rank-k update is an operation
that parallelizes better than TRMM. This explain the better peformance of Variant3 with respect
to LAPACK

corresponds to lines 1 and 2 in the code; The Repartition and Continue with statements
are coded by lines 6 to 11 and 25 to 30 respectively. Finally, the updates in the body of
the loop correspond to lines 14 to 22 in the code.

Performance attained on an SMP system based on the Intel Itanium2 (R) processor
is given in Fig. 5. For all the implementations reported, parallelism is achieved through
the use of multithreaded BLAS. While the LAPACK implementation uses the algorithm
given in Fig. 3, the FLAME one uses a different algorithmic variant that is rich in rank-k
updates, which parallelize better with OpenMP. For this experiment, both libraries were
linked to a multithreaded BLAS implemented by Kazushige Goto [6].

5 Conclusion

We presented a methodolody for rapidly deriving and implementing algorithms for linear
algebra operations. The techniques in this paper apply to operations for which there are

Rapid Development of High-Performance Linear Algebra Libraries 383

algorithms that consist of a simple initialization followed by a loop. While this may
appear to be extremely restrictive, the linear algebra libraries community has made
tremendous strides towards modularity. As a consequence, almost any operation can
be decomposed into operations (linear algebra building blocks) that, on the one hand,
are themselves meaningful linear algebra operations and, on the other hand, whose
algorithms have the structure given by the algorithm in Fig. 1.

The derivation of algorithms is dictated by eight steps, while the implementation is
a direct translation of the algorithm through a number of API’s that we have developed.
Using PLAPACK [12], a C library based on MPI, even a parallel implementation for a
distributed memory architecture closely mirrors the algorithm as represented in Fig. 3
and is no different from the C code shown in Fig. 4.

One final comment about the eight steps necessary to fill the worksheet in: the process
is so systematic that we were able to develop a semi-automated system capable of gen-
erating one algorithm starting from a loop invariant. In the paper Automatic Derivation
of Linear Algebra Algorithms with Application to Control Theory, also presented at this
conference, we show how to use the system to solve the Triangular Sylvester Equation.

Additional Information

For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/

Acknowledgments

This research is partially supported by NSF grants ACI-0305163 and CCF-0342369. We
thank NEC Solutions (America), Inc. for access to the Intel Itanium2 processor SMP
used for the performance experiments.

References

1. E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling,
A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadel-
phia, 1992.

2. Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ortı́, and
Robert A. van de Geijn. The science of deriving dense linear algebra algorithms. ACM Trans-
actions on Mathematical Software, 31(1), March 2005.

3. Paolo Bientinesi, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn. Representing linear
algebra algorithms in code: The FLAME application programming interfaces. ACM Trans-
actions on Mathematical Software, 31(1), March 2005.

4. Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

5. Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended
set of FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1–17,
March 1988.

384 Paolo Bientinesi et al.

6. Kazushige Goto and Robert A. van de Geijn. On reducing tlb misses in matrix multiplication.
Technical Report CS-TR-02-55, Department of Computer Sciences, The University of Texas
at Austin, 2002.

7. John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:
Formal linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–455, De-
cember 2001.

8. Isak Jonsson. Recursive Blocked Algorithms, Data Structures, and High-Performance Soft-
ware for Solving Linear Systems and Matrix Equations. PhD thesis, Dept. Computing Science,
Umeå University, SE-901 87, Sweden., 2003.

9. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms
for Fortran usage. ACM Trans. Math. Soft., 5(3):308–323, Sept. 1979.

10. C. Moler, J. Little, and S. Bangert. Pro-Matlab, User’s Guide. The Mathworks, Inc., 1987.
11. Enrique S. Quintana-Ortı́ and Robert A. van de Geijn. Formal derivation of algorithms: The

triangular Sylvester equation. ACM Transactions on Mathematical Software, 29(2):218–243,
June 2003.

12. Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press,
1997.

Automatic Derivation of Linear Algebra Algorithms
with Application to Control Theory

Paolo Bientinesi1, Sergey Kolos2, and Robert A. van de Geijn1

1 Department of Computer Sciences, The University of Texas at Austin
{pauldj,rvdg}@cs.utexas.edu

2 The Institute for Computational Engineering and Sciences, The University of Texas at Austin
skolos@mail.utexas.edu

Abstract. It is our belief that the ultimate automatic system for deriving linear
algebra libraries should be able to generate a set of algorithms starting from the
mathematical specification of the target operation only. Indeed, one should be
able to visit a website, fill in a form with information about the operation to be
performed and about the target architectures, click the SUBMIT button, and re-
ceive an optimized library routine for that operation even if the operation has not
previously been implemented. In this paper we relate recent advances towards
what is probably regarded as an unreachable dream. We discuss the steps neces-
sary to automatically obtain an algorithm starting from the mathematical abstract
description of the operation to be solved. We illustrate how these steps have been
incorporated into two prototype systems and we show the application of one the
two systems to a problem from Control Theory: The Sylvester Equation. The
output of this system is a description of an algorithm that can then be directly
translated into code via API’s that we have developed. The description can also
be passed as input to a parallel performance analyzer to obtain optimized parallel
routines [5].

1 Introduction

In a series of journal papers we have demostrated how formal derivation techniques
can be applied to linear algebra to derive provably correct families of high performance
algorithms [6,9,3]. In the paper Rapid Development of High-Performance Linear Algebra
Libraries, also in this volume [2], we describe the FLAME procedure which returns
algorithms for linear algebra operations. It is beneficial for the reader to review that
paper to better understand the following discussion.

While the procedure ensures the derived algorithm to be correct, it is the application
of the procedure itself that is error prone. It involves tedious algebraic manipulations.
As the complexity of the operation we want to implement increases, it becomes more
cumbersome to perform the procedure by hand.

We want to stress that the procedure does not introduce unnecessary elements of
confusion. Operations once deemed “for experts only” can now be tackled by un-
dergraduates, leaving more ambitious problems for the experts. Let us illustrate this
concept with a concrete example: the solution to the triangular Sylvester equation
AX + XB = C. Algorithms for solving the Sylvester equation have been known for

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 385–394, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

386 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

Step Annotated Algorithm: [D, E, F, . . .] = op(A, B, C, D, . . .)

1a {Ppre}
4 Partition

where
2 {Pinv}
3 while G do

2,3 {(Pinv) ∧ (G)}
5a Repartition

where
6 {Pbefore}
8 SU

7 {Pafter}
5b Continue with

2 {Pinv}
enddo

2,3 {(Pinv) ∧ ¬ (G)}
1b {Ppost}

Fig. 1. Worksheet for developing linear algebra algorithms

about 30 years [1]. Nonetheless new variants are still discovered with some regularity
and published in journal papers [4,8]. The methodolody we describe in [3] has been
applied to this operation yielding a family of 16 algorithms, including the algorithms
already known as well as many undiscovered ones [9]. The only complication is that, as
part of the derivation, complex matrix expressions are introduced that require simplifi-
cation, providing an opportunity for algebra mistakes to be made by a human. One of
the variants derived in [9], did not return the correct outcome when implemented and
executed. Mistakes in simplifying expressions in order to determine the update were
only detected when the updates were rederived with the aid of one of the automated
systems described next.

2 Automatic Generation of Algorithms

In Figure 1 we show a generic “worksheet” for deriving linear algebra algorithms. The
blanks in the worksheet are filled in by following an eight step procedure, generating
algorithms for linear algebra operations. A description of the eight steps is given in the
paper Rapid Development of High-Performance Linear Algebra Libraries, also in this
volume [2]. Here we present the steps again, looking at opportunities for automation.
Step 1: Determine Ppre and Ppost. These two predicates are given as part of the spec-
ifications for the operation we want to implement; therefore they are the input to an
automated system.

Automatic Derivation of Linear Algebra Algorithms 387

Step 2: Determine Pinv. Once the operands have been partitioned and substituted into
the postcondition, with the aid of mathematical relations and simplifications, we get the
expression for the operation we want to implement as function of the exposed subma-
trices (partitions) of the input operands. We call this expression the partitioned matrix
expression (PME).

Loop invariants are obtained by selecting a subset of the operations that appear in
the PME.
Step 3: Determine Loop-Guard G. The loop invariant describes the contents of output
variables at different points of the program. Upon completion of the loop, the loop invari-
ant is true and the double lines (representing the boundaries of how far the computation
has gotten) can be expected to reside at the edges of the partitioned operands. These two
pieces of information, the loop invariant and the where boundaries are, can be exploited
together to automatically deduce a loop-guard. If a loop-guard cannot be found, the
selected loop invariant is labelled as infeasible and no further steps are executed.
Step 4: Determine the Initialization. We require the initialization not to involve any
computation. It can be observed that by placing the double lines on the boundaries, the
precondition implies the loop invariant. This placement can be automated. If such a
placement cannot be found, the selected loop invariant is labelled as infeasible and no
further steps are executed.
Step 5: Determine How to Move Boundaries. How to traverse through the data is
determined by relating the state of the partitioning (after initialization) to the loop-
guard. Also, operands with a particular structure (triangular, symmetric matrices) can
only be partitioned and traversed in a way that preserves the structure, thus limiting
degrees of freedom. This determination can be automated.
Step 6: Determine Pbefore. This predicate is obtained by: 1) applying the substitution
rules dictated by the Repartion statement to the loop invariant and 2) expanding and
simplifying the expressions. Stage 1) is straightforward. Stage 2) requires symbolic
computation tools. Mathematica [11] provides a powerful environment for the required
algebraic manipulations, facilitating automation.
Step 7: Determine Pafter. Computing this predicate is like the computation of the state
Pbefore except with different substitution rules. In this case the rules are dictated by the
Continue ... with statement. Therefore automation is possible.
Step 8: Determine the Update SU . The updates are determined by a comparison of the
states Pbefore and Pafter. Automation of this step is a process that involves a great deal of
pattern matching, symbolic manipulations and requires a library of transformation rules
for matrix expressions. While we believe that automation for this step is at least partially
achievable, we feel that human intervention is desirable to supervise the process. For
this step we envision an interactive system that suggests possible updates and drives user
through the process.

3 Automated Systems

Initially, for a limited set of target operations, a fully automated system was prototyped.
This system took a description of the PME as input and returned all the possible algo-
rithms corresponding to the feasible loop invariants. This system provided the evidence
that at least for simple operations all the steps in Section 1 can be automated. The biggest

388 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

drawback of the system was that there was no easy way for a user to extend its functional-
ity, to include other classes of input matrices, and to deal with more complex operations
(involving the computation of the inverse, transpose, or the solution to linear systems).

In a second effort we developed a more interactive tool that guides the user through
the derivation process. The input for this system is a loop invariant for the operation under
consideration and the output is a partially filled worksheet (see Fig. 2). We designed this
system aiming at modularity and generality. Strong evidence now exists that it can be used
to semi-automatically generate all algorithms for all operations to which FLAME has
been applied in the past. These include all the BLAS operations, all major factorization
algorithms, matrix inversion, reductions to condensed forms, and a large number of
operations that arise in control theory.

This semi-automated system plays an important role as part of a possible fully auto-
mated system: First, it automatically computes the predicates Pbefore and Pafter. Second,
it can express the status Pafter as a function of Pbefore, thus pointing out to the user the
updates to be computed. Finally, it can determine dependencies among the updates, thus
avoiding redundant computations and problems with data being overwritten.

Notice that once the operation we want to implement is expressed in terms of parti-
tioned operands, it is feasible to list possible loop invariants. Not all the loop invariants
are feasible: not every loop invariant leads to an algorithm for the target operation. In
order to decide whether a loop invariant is feasible, some computations needs to be done.
The second prototype system can be used as part of a more complete system to test loop
invariants and determine whether they are feasible (thus producing an algorithm) or not
(thus discarding it).

4 An Example from Control Theory

We illustrate here how the semi-automated system can be used to derive, with little
human intervention, a family of algorithms to solve the triangular Sylvester equation.
The solution of such an equation is given by a matrix X that satisfies the equality
AX + XB = C, where A and B are triangular matrices. We use X = Ω(A,B,C)
to indicate that the matrix X is the solution of the Sylvester equation identified by the
matrices A,B and C. Without loss of generality, in the following we assume that both
matrices A and B are upper triangular.

As we mentioned in the previous section, the semi-automated system takes a loop
invariant as input. Loop invariants are obtained from the PME of the operation we are
solving. Partitioning the matrices A,B,C and X ,(

ATL ATR

0 ABR

)
,

(
BTL BTR

0 BBR

)
,

(
CTL CTR

CBL CBR

)
,

(
XTL XTR

XBL XBR

)
,

it is then possible to state the PME for X , solution to the triangular Sylvester equation:

XTL XTR

XBL XBR

=

Ω(ATL, BTL,

CTL − ATRXBL)

Ω(ATL, BBR,

CTR − ATRXBR − XTLBTR)

Ω(ABR, BTL, CBL)
Ω(ABR, BBR,

CBR − XBLBTR)

.

Automatic Derivation of Linear Algebra Algorithms 389

From this expression a list of loop invariants are systematically generated by selecting
a subset of the operations to be performed. The simplest loop invariant is:(

XTL XTR

XBL XBR

)
=

(
CTL CTR

Ω(ABR, BTL, CBL) CBR

)
,

which identifies a computation of the solution matrixX in which the bottom left quadrant
XBL contains the solution of the equationABRXBL+XBLBTL = CBL; the algorithm
proceeds by expanding the quadrant XBL in the top-right direction, until XBL includes
the whole matrix X and therefore contains the solution (when quadrant XBR coincides
with matrix X , matrices ABR, BTL and CBL coincide with A,B and C).

In the remainder of the paper we concentrate on a slightly more complicated loop
invariant: (

XTL XTR

XBL XBR

)
=

(
CTL −ATRXBL CTR

Ω(ABR, BTL, CBL) CBR

)
,

which corresponds to an algorithm where the quadrant XBL contains again the solution
of the equation ABRXBR + XBRBTL = CBL, and the quadrant XTL is partially
updated. Figure 2 shows the output algorithm generated by the automated system for
this loop invariant.

The crucial expressions appear in the boxes labeled “Loop invariant before the up-
dates” (LI-B4)

loop invariant before the updates �LI�B4�

��A�02 ��� �A�22 , B
�
00 , C

�
20��� � C

�
00 C

�
01 C

�
02

��A�12 ��� �A�22 , B
�
00 , C

�
20��� � C

�
10 C

�
11 C

�
12

� �A�22 , B
�
00 , C

�
20� C

�
21 C

�
22

and “Loop invariant after the updates” (LI-Aft).

loop invariant after the update �LI�Aft�
��A�01 � AFT1,0� � B40,0 ��A�01 � AFT1,1� � A

�
02 � AFT2,1 � B40,1 B40,2

� �A�11 , B
�
00 , B41,0� � �A�11 , B

�
11 , ��AFT1,0 �B

�
01� � A

�
12 � AFT2,1 � B41,1� B41,2

B42,0 � �A�22 , B
�
11 , ��AFT2,0 �B

�
01� � B42,1� B42,2

These two predicates dictate the computations to be performed in the algorithm. LI-B4
expresses the current contents of the matrix X (i.e. the loop invariant), while LI-Aft
indicates what X needs to contain at the bottom of the loop, i.e. -after- the updates. This
is to ensure that the selected loop invariant holds at each iteration of the loop. For the
sake of readability Fig. 2 presents abbreviated versions of these predicates, and the box
“Updates” is left empty. LI-Aft presents a few visual cues to compress the otherwise
long and unreadable expressions. We provide here a full description of both predicates
and we explicitly state the updates which are encoded in LI-Aft.

390 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

Operation: sylv3(A B C)

�Precondition: ...�

Partition

A �
�

	

A
�
TL A

�
TR

0 A
�
BR

�

�
 B �

�

	

B
�
TL B

�
TR

0 B
�
BR

�

�
 C �

�

	

C
�
TL C

�
TR

C
�
BL C

�
BR

�

�

where ...

loop invariant:

�

	

��A�TR ��� �A�BR , B

�
TL , C

�
BL��� � C

�
TL C

�
TR

� �A�BR , B
�
TL , C

�
BL� C

�
BR

�

�

While ...

Repartition

�

	

A
�
TL A

�
TR

0 A
�
BR

�

�
 �

�

	

�

	

A
�
00 A

�
01

0 A
�
11

�

�

�

	

A
�
02

A
�
12

�

�

0 A
�
22

�

�

,
�

	

B
�
TL B

�
TR

0 B
�
BR

�

�
 �

�

	

B
�
00 �B�01 , B

�
02�

0
�

	

B
�
11 B

�
12

0 B
�
22

�

�

�

�

,
�

	

C
�
TL C

�
TR

C
�
BL C

�
BR

�

�
 �

�

	

�

	

C
�
00

C
�
10

�

�

�

	

C
�
20

loop invariant before the updates �LI�B4�

��A�02 ��� �A�22 , B
�
00 , C

�
20��� � C

�
00 C

�
01 C

�
02

��A�12 ��� �A�22 , B
�
00 , C

�
20��� � C

�
10 C

�
11 C

�
12

� �A�22 , B
�
00 , C

�
20� C

�
21 C

�
22

UPDATES...

loop invariant after the update �LI�Aft�
��A�01 � AFT1,0� � B40,0 ��A�01 � AFT1,1� � A

�
02 � AFT2,1 � B40,1 B40,2

� �A�11 , B
�
00 , B41,0� � �A�11 , B

�
11 , ��AFT1,0 �B

�
01� � A

�
12 � AFT2,1 � B41,1� B41,2

B42,0 � �A�22 , B
�
11 , ��AFT2,0 �B

�
01� � B42,1� B42,2

Continue with

�

	

A
�
TL A

�
TR

0 A
�
BR

�

�
 �

�

	

A
�
00 �A�01 , A

�
02�

0
�

	

A
�
11 A

�
12

0 A
�
22

�

�

�

�

,
�

	

B
�
TL B

�
TR

0 B
�
BR

�

�
 �

�

	

�

	

B
�
00 B

�
01

0 B
�
11

�

�

�

	

B
�
02

B
�
12

�

�

0 B
�
22

�

�

,
�

	

C
�
TL C

�
TR

C
�
BL C

�
BR

�

�
 �

�

	

�C�00 , C
�
01

�

	

C
�
10 C

�
11

C
�
20 C

�
21

end while

Fig. 2. Algorithm returned by the semi-automatic system

Automatic Derivation of Linear Algebra Algorithms 391

The complete expression for the predicate LI-B4 is:⎛⎜⎝X00 X01 X02

X10 X11 X12

X20 X21 X22

⎞⎟⎠ =

⎛⎜⎝ C00 −A02X20 C01 C02

C10 −A12X20 C11 C12

Ω(A22, B00, C20) C21 C22

⎞⎟⎠ ,

and we refer to the (i, j) quadrant of the right-hand side as B4ij . So for instance B420

corresponds to the expression Ω(A22, B00, C20).
The complete expression for the predicate LI-Aft is daunting:⎛⎜⎝X00 X01 X02

X10 X11 X12

X20 X21 X22

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
C00 − A02Ω(A22, B00, C20)−
A01Ω A11, B00,

C10 − A12Ω(A22, B00, C20)

C01−
A01Ω A11, B11, C11−

Ω A11, B00, C10 − A12Ω(A22, B00, C20) B01−
A12Ω A22, B11, C21 − Ω(A22, B00, C20)B01 −

A02Ω A22, B11, C21 − Ω(A22, B00, C20)B01

C02

Ω A11, B00,
C10 − A12Ω(A22, B00, C20)

Ω A11, B11, C11−
Ω A11, B00, C10 − A12Ω(A22, B00, C20) B01−
A12Ω A22, B11, C21 − Ω(A22, B00, C20)B01

C12

Ω(A22, B00, C20) Ω A22, B11, C21 − Ω(A22, B00, C20)B01 C22

⎞⎟⎟⎟⎟⎟⎠ ,

and the quadrants in the right-hand side of LI-Aft are identified by

Aft00 Aft01 Aft02
Aft10 Aft11 Aft12
Aft20 Aft21 Aft22

.

Once the predicates LI-B4 and LI-Aft are known, we are one step away to have a
complete algorithm. The updates SU remain to be computed (Step 8 in Section 2). SU

are statements to be executed in a state in which the predicate LI-B4 holds and they
ensure that upon termination the predicate LI-Aft holds.

In this example, given the complexity of the expressions, such a task can be chal-
lenging even for experts, and is definitely prone to errors. A (semi-)automated system
is useful, if not indispensable. Our system has a number of features to make Step 8
(discovering the updates SU) as simple as possible:

– The expressions in LI-Aft are scanned to detect quantities contained in LI-B4. Such
quantities are currently stored and therefore available to be used as operands; they
are identified by boxed grey highlighting. For example, recognizing that the expres-
sion Ω(A22, B00, C20) is contained in the quadrant B420, the system would always

display it as: Ω(A22, B00, C20)
– A quantity currently available (therefore higlighted) can be replaced by a label

indicating the quadrant that contains it. This feature helps to shorten complicated
expressions. As an example, one instance of Ω(A22, B00, C20) would be replaced
by B420 . Notice that Ω(A22, B00, C20) appears in the quadrant Aft00, as part of

392 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

the expression C00−A02Ω(A22, B00, C20); in this case the instance is not replaced
by B420 because the entire (and more complex) expression is recognized to appear

in B400. Therefore, C00 −A02Ω(A22, B00, C20) is displayed as B400 .
– Dependencies among quadrants are investigated. If the same computation appears in

two or more quadrants, the system imposes an ordering to avoid redundant compu-
tations. Example: the quadrant Aft00, after the replacements explained in the former
two items, would look like B400 −A01Ω

(
A11, B00, C10−A12 B420)

)
, and recog-

nizing that the quantity Ω
(
A11, B00, C10−A12 B420)

)
is what the quadrant Aft10

has to contain at the end of the computation, the system leaves such an expression
unchanged in quadrant Aft10 and instead replaces it in quadrant Aft00, which would
then be displayed as B400 −A01 Aft10 .

The repeated application of all these steps yields a readable expression for LI-Aft, as
shown in Figure 2. The updates are encoded in LI-Aft and can be made explicit by
applying the following simple rules:

– The assignments are given by the componentwise assignment

X00 X01 X02

X10 X11 X12

X20 X21 X22

:=

Aft00 Aft01 Aft02
Aft10 Aft11 Aft12
Aft20 Aft21 Aft22

.

In our example it results:
X00 X01 X02

X10 X11 X12

X20 X21 X22

:=

B400 − A01 Aft10 B401 - A01 Aft11 - A02 Aft21 B402

Ω(A11, B00, B410) Ω(A11, B11, B411 − Aft10 B01 − A12 Aft21) B412

B420 Ω(A22, B11, B421 − Aft20 B01) B422

– Every assignment of the form Xij = B4ij corresponds to a no-operation.
– Every assignment whose right-hand side presents one or more operands of the form

Aftij has to be executed after the quadrant (i, j) has been computed. Once the

expression in quadrant (i, j) has been computed, Aftij has to be rewritten as Xij .
– Assignments with a right-hand side containing only non-highlighted expressions

and/or operands of the form B4ij can be computed immediately.

A valid set of updates for the current example is given by:

X10 := Ω(A11, B00, B410)

X00 := B400 −A01X10

X21 := Ω(A22, B11, B421 −X20B01)

X11 := Ω(A11, B11, B411 −X10B01 −A12X21)

X01 := B401 −A01X11 −A02X21.

Automatic Derivation of Linear Algebra Algorithms 393

The final algorithm is:

Partition A =
ATL ATR

0 ABR

, B =
BTL BTR

0 BBR

, C =
CTL CTR

CBL CBR

where ATL is 0 × 0, BBR is 0 × 0, CBL is 0 × 0

while ¬SameSize(C, CBL) do

Determine block size bm and bn

Repartition

ATL ATR

0 ABR

→
A00 A01 A02

0 A11 A12

0 0 A22

,
BTL BTR

0 BBR

→
B00 B01 B02

0 B11 B12

0 0 B22

CTL CTR

CBL CBR

→
C00 C01 C02

C10 C11 C12

C20 C21 C22

where A11 is bm × bm, B11 is bn × bn, C11 is bm × bn

C10 := Ω(A11, B00, C10)

C00 := C00 − A01C10

C21 := Ω(A22, B11, C21 − C20B01)

C11 := Ω(A11, B11, C11 − C10B01 − A12C21)

C01 := C01 − A01X11 − A02X21

Continue with

ATL ATR

0 ABR

←
A00 A01 A02

0 A11 A12

0 0 A22

,
BTL BTR

0 BBR

←
B00 B01 B02

0 B11 B12

0 0 B22

CTL CTR

CBL CBR

←
C00 C01 C02

C10 C11 C12

C20 C21 C22

enddo

which appears in [9] as Algorithm C2 in Table II.

5 Conclusion

In an effort to demonstrate that automatic derivation of linear algebra algorithm is achiev-
able, we developed two (semi-)automated systems. The first system is fully automated
but with very limited scope. It showed that at least for simple operations all steps of the
FLAME procedure can be automated. The second system is more interactive and we
believe as general as the FLAME approach itself.

The described system has allowed us to automatically generate algorithms for most of
the equations in a recent Ph.D. dissertation [7]. In that dissertation, a number of important
and challenging linear algebra problems arising in control theory are studied. For most of

394 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

these problems, one algorithm and implementation is offered. By contrast, with the aid
of our automated systems we were able to derive whole families of algorithms and their
implementations (in Matlab Mscript as well as in C) collectively in a matter of hours.
The implementations yielded correct answers for the first and all inputs with which they
were tested. Moreover, parallel implementations can be just as easily created with the
FLAME-like extension of our Parallel Linear Algebra Package (PLAPACK) [10].

Additional Information: For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/

Acknowledgments

This research was partially supported by NSF grants ACI-0305163 and CCF-0342369.

References

1. R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX + XB = C. Commun.
ACM, 15(9):820–826, 1972.

2. Paolo Bientinesi, John A. Gunnels, Fred G. Gustavson, Greg M. Henry, Margaret E. Myers, En-
rique S. Quintana-Orti, and Robert A. van de Geijn. Rapid development of high-performance
linear algebra libraries. In Proceedings of PARA’04 State-of-the-Art in Scientific Computing,
June 20-23 2004. To appear.

3. Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ortı́, and
Robert A. van de Geijn. The science of deriving dense linear algebra algorithms. ACM Trans-
actions on Mathematical Software, 31(1), March 2005.

4. Bo Kågström and Peter Poromaa. Lapack-style algorithms and software for solving the gen-
eralized Sylvester equation and estimating the separation between regular matrix pairs. ACM
Transactions on Mathematical Software, 22(1):78–103, 1996.

5. John Gunnels. A Systematic Approach to the Design and Analysis of Parallel Dense Linear
Algebra Algorithms. PhD thesis, The University of Texas at Austin, Department of Computer
Sciences. Technical Report CS-TR-01-44, December 2001.

6. John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:
Formal linear algebra methods environment. ACM Transactions on Mathematical Software,
27(4):422–455, December 2001.

7. Isak Jonsson. Recursive Blocked Algorithms, Data Structures, and High-Performance Soft-
ware for Solving Linear Systems and Matrix Equations. PhD thesis, Dept. Computing Science,
Umeå University, SE-901 87, Sweden., 2003.

8. Isak Jonsson and Bo Kågström. Recursive blocked algorithms for solving triangular systems—
part i: one-sided and coupled Sylvester-type matrix equations. ACM Transactions on Mathe-
matical Software, 28(4):392–415, 2002.

9. Enrique S. Quintana-Ortı́ and Robert A. van de Geijn. Formal derivation of algorithms: The
triangular Sylvester equation. TOMS, 29(2):218–243, June 2003.

10. Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. MIT Press ’97.
11. Stephen Wolfram. The Mathematica Book: 3rd Edition. Cambridge University Press, 1996.

Cluster Computing for Financial Engineering

Shirish Chinchalkar, Thomas F. Coleman, and Peter Mansfield

Cornell Theory Center
Cornell University

55 Broad Street, Third Floor
New York, NY 10004, USA

{shirish,coleman,peterm}@tc.cornell.edu

Abstract. The pricing of a portfolio of financial instruments is a common and
important computational problem in financial engineering. In addition to pricing,
a portfolio or risk manager may be interested in determining an effective hedging
strategy, computing the value at risk, or valuing the portfolio under several different
scenarios. Because of the size of many practical portfolios and the complexity of
modern financial instruments the computing time to solve these problems can be
several hours. We demonstrate a powerful and practical method for solving these
problems on clusters using web services.

1 Introduction

The problems of financial engineering, and more generally computational finance, repre-
sent an important class of computationally intensive problems arising in industry. Many
of the problems are portfolio problems. Examples include: determine the fair value of a
portfolio (of financial instruments), compute an effective hedging strategy, calculate the
value-at-risk, and determine an optimal rebalance of the portfolio. Because of the size
of many practical portfolios, and the complexity of modern financial instruments, the
computing time to solve these problems can be several hours.

Financial engineering becomes even more challenging as future ‘scenarios’ are con-
sidered. For example, hedge fund managers must peer into the future. How will the
value of my portfolio of convertibles change going forward if interest rates climb but
the underlying declines, and volatility increases? If the risk of default of a corporate
bond issuer rises sharply over the next few years, how will my portfolio valuation be
impacted? Can I visualize some of these dependencies and relationships evolving over
the next few years? Within a range of parameter fluctuations, what is the worst case
scenario?

Clearly such “what if” questions can help a fund manager decide today on portfolio
adjustments and hedging possibilities. However, peering into the future can be very
expensive. Even “modest” futuristic questions can result in many hours of computing
time on powerful workstations. The obvious alternative to waiting hours (possibly only to
discover that a parameter has been mis-specified), is to move the entire portfolio system
to a costly supercomputer. This is a cumbersome, inefficient, and “user unfriendly”
approach. However, there is good news: most of these practical problems represent
loosely-coupled computations and can be solved efficiently on a cluster of processors in
a master-worker framework.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 395–403, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

396 Shirish Chinchalkar, Thomas F. Coleman, and Peter Mansfield

We have been investigating the design of effective parallel approaches to the problems
of financial engineering, and computational finance, on clusters of servers using web
services. Our particular approach is to represent the portfolio in Excel with the back-end
computing needs satisfied by a cluster of industry standard processors running in web
services mode. The user environment we have used is Microsoft’s .NET.

2 Introduction to Web Services

A web service is a piece of functionality, such as a method or a function call, exposed
through a web interface ([1]). Any client on the internet can use this functionality by
sending a text message encoded in XML to a server, which hosts this functionality.
The server sends the response back to the client through another XML message. For
example, a web service could compute the price of an option given the strike, the stock
price, volatility, and interest rate. Any application over the internet could invoke this
web service whenever it needs the price of such an option. There are several advantages
in using web services to perform computations:

1. XML and HTTP are industry standards. So, we can write a web service in Java on
Linux and invoke it from a Windows application written in C# and vice a versa.

2. Using Microsoft’s .NET technology, we can invoke web services from office appli-
cations such as Microsoft Excel. This feature is especially useful in the financial
industry, since a lot of end-user data is stored in Excel spreadsheets.

3. No special-purpose hardware is required for running web services. Even different
types of computers in different locations can be used together as a web services
cluster.

4. Since the web service resides only on the web server(s), the client software does not
need to be updated every time the web service is modified. (However, if the interface
changes, the client will need to be updated).

5. The web service code never leaves the server, so proprietary code can be protected.
6. Web services can be accessed from anywhere. No special purpose interface is nec-

essary. Even a hand-held device over a wireless network and the internet can access
web services.

In the context of large-scale financial computations, there are some limitations to the
utilization of web services as well:

1. There is no built-in mechanism to communicate with other web services. This limits
the use to loosely coupled applications.

2. The results of any computation performed during a single web service call can only
be sent to the client at the end of that web service call. Thus, there is no mechanism
for sending partial results while the computation is going on, without using another
technology such as MPI.

3. Since messages are sent using a text format over the internet, this is not a viable
computational technique for “short” computations involving a lot of data to be
communicated.

Cluster Computing for Financial Engineering 397

2.1 A Simple Web Service

The following code shows a web service which adds two integers. It is written using the
C# programming language. This code is written in the form of a class. When compiled
it produces a dll which can be installed on the web server.

using System;
using System.Web.Services;
using System.Web.Services.Protocols;

namespace testnamespace
{

public class testcls : System.Web.Services.WebService
{

[WebMethod]
public int add(int a, int b)
{

return a + b;
}

}
}

This example shows that writing a web service is no different from writing a function
or a method that performs the same computation. Other than a couple of declarative
statements, there is no difference between a web service and an ordinary function.
Notice that there is no reference to message passing, converting data into XML, and so
on. These details are hidden from the programmer.

2.2 A Simple Main Program

The following code shows a main program which accesses this web service and adds
two numbers.

using System;
using testclient.localhost;

namespace testclient
{

class Class1
{

[STAThread]
static void Main(string[] args)
{

testcls t = new testcls();
int a, b, c;
a = 1;
b = 2;

398 Shirish Chinchalkar, Thomas F. Coleman, and Peter Mansfield

c = t.add(a, b);
Console.WriteLine("{0} + {1} = {2}", a, b, c);

}
}

}

Again, from this main program, it is evident that invoking the web service is no
different from making a function call within the same process. Only one additional
statement refers to the web service at the top of the program.

2.3 Cluster Computing Using Web Services

A typical portfolio manager could have a large portfolio of complex instruments. These
instruments may have to be priced every day. Often, several future scenarios of the stock
market or interest rates may have to be simulated and the instruments may have to be
priced in each scenario. Clearly, a lot of computing power is necessary. If the instruments
can be priced independently of one another, we can make use of web services to perform
this computation.

The entire computation can be partitioned into several tasks. Each task can consist
of the pricing of a single instrument. We can have a separate web service to price each
instrument. The client then simply needs to invoke the appropriate web service for each
instrument. We can use other models of computation as well. For instance, in case of
Monte Carlo simulation, we could split the simulations among the processors.

Figure 1 shows the overall organization of our architecture. The front-end is a typical
laptop or a desktop running Excel. Data related to the portfolio is available in an Excel
spreadsheet. This front-end is connected over internet or a LAN to a cluster of nodes, each
of which runs a web server. When a large computation is to be performed, it is broken
into smaller tasks by the Excel front-end. Each task is then shipped to an individual node
which works on it independent of the other nodes. The nodes send results back to Excel,
which is used to view results.

3 Load Balancing

Given a set of tasks, we can distribute them across a .NET web services cluster in two
different ways. We could send all the tasks at once to the main cluster node which uses
Network Load Balancing (NLB) to distribute the tasks. However, the NLB monitors
network traffic and considers those nodes that are actively communicating as busy and
those that are not as idle. This is reasonable in transaction processing applications where
each task can be processed quickly and the number of tasks is very large. For the problems
we are interested in, we have a relatively small number of tasks, each of which takes
seconds, minutes, or hours of computational time. For such problems, a node which is
not sending messages might be busy doing computation and might be wrongly classified
as idle by NLB. In such cases, the following approach is more suitable: We first assign
tasks, one to each processor. When any task finishes, the next task is sent to the node

Cluster Computing for Financial Engineering 399

Fig. 1. Overview of computing architecture

which finished that task. This algorithm works well in practice provided there is only one
application running on the cluster. If multiple applications need to run simultaneously,
a centralized manager is necessary.

The load balancing mechanism described above can be implemented as a class shown
below, provided all data for all tasks is known before any task is executed. Fortunately,
most finance applications that involve pricing portfolios of instruments fall in this cate-
gory. By using a load balancing template, we can remove from the user application, most
of the low-level “plumbing” related to multi-threaded operation. This makes applications
significantly easier to program and promotes code reuse.

The following pseudo-code shows how such a load balancing class can be used inside
a C# client application:

allargs = Array.CreateInstance(typeof(appinclass),
numprobs);

for (int i=0; i<numprobs; i++)
{

appinclass argtemp = new appinclass();

// set arguments here
// . . .
// . . .

allargs.SetValue(argtemp, i);
}
LBclass lb = new LBclass();
lb.allargs = allargs;
lb.serverURL = "http://hostname/webservice.asmx";
lb.numnodes = 4;

400 Shirish Chinchalkar, Thomas F. Coleman, and Peter Mansfield

lb.run();

// wait for results
while (!lb.done) Thread.Sleep(50);

All code related to invoking the web service asynchronously on a multi-node clus-
ter, determining free nodes, using locks for multi-threaded operation, sending inputs,
receiving results, and generating timing and speedup information is handled by the class
LBclass. If the user wishes to process results as they are returned, he needs to write an
application-specific callback, which is not shown above. Again, this callback does not
involve any lower-level message passing related code.

4 An Example

Cluster computing using web services as outlined above can be used to price portfolios
comprising different types of instruments such as risky bonds, convertible bonds, and
exotic options. We give an example which involves pricing a portfolio of callable bonds.

A typical corporate bond has a face value, a fixed coupon, and a maturity date. Such
a bond pays a fixed amount of interest semi-annually until maturity. At maturity, the face
value or principal is returned[3]. A callable bond has an additional feature - the bond
may be ‘called back’ by the issuing company by offering the bond holder or the investor
an amount equal to the face value of the bond. This buy-back can be made on any of the
coupon payment dates. Whether it is optimal for the issuing company to call in the bond
or not depends on the prevailing interest rates and predictions of future interest rates.
For example, if interest rates drop, it may be in the best interests of the issuing company
to buy back the bond. If interest rates are high, the issuing company is unlikely to call
in the bond. This presents two problems - first, future interest rates must be simulated,
and second, the decision to buy the bond or not should be made at each coupon date,
depending on the prevailing interest rate and the prediction of future interest rates.

For this work, we have used the Vasicek model for simulating interest rates. In this
model, changes in interest rates are given by the formula

dr = a(r̄ − r)dt + σdW (4.1)

where dr is the change in the interest rate in a small time interval, dt, a is the mean
reversion rate, r̄ is the mean reversion level, and σ is the volatility. dW is a small incre-
ment of the Brownian motion, W (see [4] for more details). Given an initial interest rate,
r0, we can easily simulate future interest rates using the above equation. For valuation
of callable bonds and the calculation of greeks (see below), we need several tens of
thousands of simulations.

Optimal exercise along each interest rate path is determined using the Least Squares
Monte Carlo algorithm, which involves the solution of a linear regression problem at
each coupon date and discounting of cashflows along each interest rate path. Details of
this algorithm can be found in Longstaff and Schwartz[2].

Cluster Computing for Financial Engineering 401

We illustrate a few additional computations for a single bond. They can be extended
to a portfolio quite easily. Along with the price of the bond, we also want the bond’s
‘greeks’; for example bond delta and bond gamma. Delta is the first derivative of the
bond price with respect to the initial interest rate (∂B/∂r) and gamma is the second
derivative of the bond price with respect to the initial interest rate (∂2B/∂r2), where B
is the price of the bond. In this work, we have computed them using finite differences
as follows

Δ =
∂B

∂r

∣∣∣∣
r=r0

≈ B(r0 + dr) −B(r0 − dr)
2dr

(4.2)

Γ =
∂2B

∂r2

∣∣∣∣
r=r0

≈ B(r0 + dr) − 2B(r0) + B(r0 − dr)
dr2

(4.3)

The above calculations require the pricing of the bond at two additional interest rates,
r0 + dr and r0 − dr. For all three pricing runs, we use the same set of random numbers
to generate the interest rate paths (see [4]).

Once the greeks are computed, we can approximate the variation of the bond price
by the following quadratic

B(r) ≈ B(r0) + Δ(r − r0) +
1
2
Γ (r − r0)2 (4.4)

A risk manager would be interested in knowing how much loss this bond is likely to
make, say, 1 month from now. This can be characterized by two metrics: Value at Risk
(VaR) and Conditional Value at Risk (CVaR). These can be computed from the above
approximation by another Monte Carlo simulation. For an introduction to VaR and CVar
see [4].

The portfolio price, V , is simply a linear function of the individual bond prices

V =
n∑
1

wiBi (4.5)

where the portfolio consists of n bonds, with wi number of bonds of type i. The greeks
can be computed analogously, and VaR and CVaR can be determined easily once the
greeks are known.

Figure 2 shows the Excel front-end developed for this example. This interface can
be used to view bond computing activity, cluster utilization and efficiency, a plot of
portfolio price versus interest rate, and portfolio price, Value at Risk (VaR), Conditional
Value at Risk (CVaR), and portfolio delta and gamma.

In our example, the web service computes the bond price and bond greeks, whereas
the Excel front-end computes the portfolio price, greeks, VaR, and CVaR. Our experi-
ments with portfolios of as few 50 instruments show that on 8 processors, we get speedups
of 6.5 or more. On a 64 processor cluster, we have obtained speedups in excess of 60
for portfolios consisting of 2000 instruments, reducing 9 hours of computation to about
9 minutes.

402 Shirish Chinchalkar, Thomas F. Coleman, and Peter Mansfield

Fig. 2. Callable bond pricing in Excel

5 Conclusion

Parallel computing, used to speed up a compute-intensive computation, has been under
development, and in use by researchers and specialists, for over a dozen years. Because
a parallel computing environment is typically an isolated and impoverished one (not to
mention very costly!), general industry has been slow to adopt parallel computing tech-
nology. Recent web services developments suggest that this situation is now improving,
especially for certain application classes, such as portfolio modeling and quantitative
analysis in finance. The work we have described here illustrates that a powerful analytic
tool can be designed using web services technology to meet some of the computational
challenges in computational finance and financial engineering.

Acknowledgements

This research was conducted using resources of the Cornell Theory Center, which is
supported by Cornell University, New York State, and members of the Corporate Part-
nership Program. Thanks to Dave Lifka and his systems group at the Cornell Theory
Center (Ithaca) for their support and to the other members of the CTC Computational
Finance Group (Yuying Li and Cristina Patron) for their help.

Cluster Computing for Financial Engineering 403

References

1. A. Banerjee, et. al. C# web services - building web services with .NET remoting and ASP.NET.
Wrox Press Ltd., Birmingham, UK, 2001.

2. F. Longstaff and E. Schwartz. Valuing American Options by Simulation: A Simple Least
Squares Approach. The Review of Financial Studies, 14:113-147, 2001.

3. Z. Bodie, A. Kane, and A.J. Markus, Investments. McGraw Hill. 2001.
4. P. Wilmott. Paul Wilmott on Quantitative Finance, Volume 2. John Wiley and Sons, New York,

2000.

Semi-automatic Generation of Grid Computing
Interfaces for Numerical Software Libraries�

Erik Elmroth and Rikard Skelander

Dept. of Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth,rikard}@cs.umu.se

Abstract. There is an immediate need to develop Grid interfaces for a large
set of numerical software libraries, in order to make popular software of today
available in the computing infrastructure of tomorrow. As this development work
tend to be both tedious and error-prone, this contribution presents a semi-automatic
process for generating the interfaces. The underlying principle is to use a front-
end tuned for each numerical library and a back-end for each Grid environment
considered. Then all library—Grid environment combinations can be generated
with a small amount of manual work. The presentation of the main ideas is followed
by a proof-of-concept implementation that generates NetSolve interfaces for the
complete SLICOT software library, a numerical library comprising nearly 400
Fortran subroutines for numerical computations in the design and analysis of
control systems.

Keywords: Grid computing, numerical software libraries, remote computing, in-
terface, SLICOT, NetSolve.

1 Introduction

The rapid development of the Grid computing infrastructure puts strong demands on
development of Grid-enabled application software and software libraries. Some of the
typical Grid resource usage scenarios are based on the underlying idea that all small
computations are performed on a single local computer, while large-scale computations
are automatically distributed to appropriate and more powerful computing resources
on the Grid. Examples include Grid-empowered problem solving environments and
application-oriented web-based Grid portals, so-called science portals.

For both these scenarios, there is an immediate need for interfacing standard software
libraries on remote resources. The development of such interfaces tend to be both tedious
and error-prone. This contribution presents a semi-automatic process for generating the
interfaces, and a proof-of-concept implementation that generates NetSolve interfaces
for the complete SLICOT software library.

The front-end of the prototype performs a parsing of calling sequences, variable
declarations, and source code documentation in order to automatically determine the
subroutine interfaces. Notably, the front-end needs to be tuned to the conventions of

� Financial support has been provided by the Swedish Foundation for Strategic Research under
the frame program grant A3 02:128 and The Swedish Research Council (VR) under contract
343-2003-953.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 404–412, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Semi-automatic Generation of Grid Computing Interfaces 405

each specific library and the programming language used. Depending on the level
of consistency of the documentation, some parts of the calling sequence may not be
uniquely determined by the automatic procedure. Such cases are reported and taken care
of by hand.

The back-end, which in our proof-of-concept implementation generates so called
NetSolve Problem Description Files, is general with respect to which library that has
been processed by the front-end, and the interfaces generated are completely portable. As
the original SLICOT software includes routines for testing and timing, they can directly
be used to verify the correctness of the NetSolve interfaces, by simply calling routines
in the NetSolve-enabled library instead of the standard library.

The prototype is demonstrated by generating NetSolve interfaces for the complete
SLICOT library. SLICOT is a subroutine library comprising nearly 400 Fortran routines
for numerical computations in the design and analysis of control systems.

The outline of the rest of the paper is as follows. The remote computing scenario
and the motivation for this work is presented in Section 2. Here, we also exemplify the
types of Grid middleware and software libraries considered. The general process for
generating interfaces is described in Section 3. The usage of this process in practice, and
some lessons learned follows in the description of our proof-of-concept implementation
in Section 4. Section 5 briefly describes how to use the NetSolve version of the SLICOT
library on more powerful remote resources without having to install more than a small
set of NetSolve client software on the local computer. We finally make some concluding
remarks in Section 6.

2 Background and Motivation

Several common Grid middleware solutions are based on the underlying principle that
data should be sent to some remote resource where the software resides. This principle is
often referred to as remote computing. In alternative approaches, both data and software
are sent from the client machine to a resource (code shipping), or both software and data
are sent from different locations to a third, computational resource (proxy computing).

Our focus is on the generation of interfaces for software libraries in the remote com-
puting scenario. The middleware solution used for our proof-of-concept implementation
is NetSolve [3]. NetSolve basically makes it possible to call subroutines on remote sys-
tems with interfaces for Fortran, C, Matlab, Mathematica, and Octave (see also Section
4). Similar functionality using alternative interfaces is provided by the Ninf (Network-
based information library) software [15], and a recent enhanced version, named Ninf-G
[20], that is built on top of standard Globus-based Grid services. Other related efforts
include the Purdue Network Computing Hub (PUNCH) [11], Network Enabled Opti-
mization Server (NEOS) [14], the Remote Computing System (RCS) [2], etc. Moreover,
the Open Grid Services Architecture [8] defines a more general framework for specify-
ing Grid services based on Web services, that also can be used in the specific scenario
outlined here [16].

Application-oriented Grid portals represent another type of Grid environments that
in one aspect may have similar requirements. Also a portal may be seen as a remote
interface to the software. Given a semi-automated process for generating other Grid

406 Erik Elmroth and Rikard Skelander

interfaces for remote computing, also the set of application-oriented portals may be
considered as target. We have already seen both automated efforts and different types
of toolkits for constructing application-specific portals, including an automatic tool for
Ninf-coupled portals [19] and the SLICOT web portal [7,10].

Our aim is to Grid-enable scientific software libraries typified by LAPACK, SLICOT,
Linpack, IBM ESSL [1,4,9,18], and several others. This type of large numerical libraries
have been developed for many years, and have proved to be robust, popular and long-
lived. Over the years, we have seen that many such libraries, e.g., written in Fortran
77, have continued to stay popular even by users preferring more modern programming
languages. Hence, we expect that there will be a demand for using todays numerical
libraries also in the future and from the next generation of computing environments,
including Grids and web-based Grid portals.

Over time, the relative overhead for transferring the data to a remote resource before
performing the computations is decreasing as network performance is increasing more
rapidly than the performance of the computers. Today, we see a doubling of network
bandwidth every 9–12 months which should be related to the doubling of computer
performance every 18 months. As this trend continues, the overhead of data transfer
may well be compensated by the reduced manual work for software library installations
and tuning.

Clearly, we can foresee the need for at least a number of different interfaces for each
of quite a few different libraries, leading to a significant number of library-interface
combination. If manually generated one-by-one, without making any attempt to reuse
results between the different interfaces generated, we can easily foresee an enormous
amount of both tedious and error-prone work.

Hence, we propose to use a semi-automated process where we only need one front-
end process for each library and one back-end process for each Grid environment con-
sidered, in order to generate all software library—Grid environment combinations re-
quested.

3 Semi-automatic Interface Generation

The interface generation process can basically be viewed as two nearly independent
processes performed in sequence. First, a semi-automatic process parses the numerical
software library in order to extract all library-specific information required to define
the correct calling sequences for all subroutines. This information is then stored in a
basic internal format. The second process is the generation of Grid middleware specific
interfaces for all subroutines.

The parsing process of the front-end described below is aiming at numerical libraries
written in Fortran, as these still are dominating among existing numerical libraries. The
general idea, however, is applicable to libraries written in other programming languages
as well.

3.1 Front-End: Extracting Software Library Information

The front-end parses the source code of the numerical software library and extracts the
required information from the

Semi-automatic Generation of Grid Computing Interfaces 407

– Calling sequences.
– Parameter declarations.
– Inline documentation.

The information that can be extracted from the calling sequence is obviously the name
and the order of all parameters. The parameter declarations give additional information
about the data types, the number of dimensions of array elements, and the leading
dimension of at least all but the last dimension of the array arguments. As parameters
are passed by reference, the declarations do not have to (and do not in general) contain
information about the last dimension of array arguments, which is required to determine
the total size of such objects. This information is, however, typically included in the inline
documentation of the code. The inline documentation together with the declarations may
also tell if the parameters are of type input, output, or both.

The parsing of the inline documentation is by nature more difficult than that of
the calling sequence and the parameter declarations, as it does not follow any well-
defined syntactical and semantical rules and definitions. Despite this fact, it is typically
possible to automatically extract a vast majority of the information required from this
documentation by taking advantage of the more or less strict conventions that often are
used in state-of-the-art libraries.

If the size of a dimension is expressed in the inline documentation as a constant or as
a single input parameter, the automated process has no problems. However, it becomes
more complicated if the dimension size is expressed as some function of input parame-
ters. For example, the automatic process may determine from the inline documentation,
that a parameter declared as A(LDA, *) is to be used as A(LDA, MAX(M, N)),
where M and N are included in the list of parameters. In order to perform the communi-
cation correctly, both the client and the server resource need to know the exact size the
array A. Since how to handle this type of issues depends on the functionality of the Grid
software, and we strive to make the internal format general with no dependencies on
the back-end, we add one extra variable to the internal storage format for each function
value requested (e.g., one extra parameter for the function value MAX(M, N) in the
example above).

There will normally also be cases where the automated process fails to determine,
e.g., the size of an array, possibly because its size is expressed in terms of natural
language. Such cases are simply identified by a “flag”, telling where the user needs to
put in some manual work.

The fact that the conventions are different for different libraries makes it necessary to
adapt the front-end for each case. Then, the extent to which all routines in a library follows
these conventions determines how much manual work is needed after the automatic
process.

As the result of the parsing, all information required for each subroutine call is
extracted and stored in an internal format. The information includes the subroutine
name, the lists of input and output parameters, data types for the parameters, array
dimensionality, etc.

3.2 Back-End: Generating Grid Interfaces
The input data for the back-end process is the data generated by the front-end, stored
in the internal format. From this data, the back-end can be configured and tuned to

408 Erik Elmroth and Rikard Skelander

automatically generate all the interfaces in the exact format requested for a specific Grid
middleware. Of course, this is a process that can be rather different for different Grid
middleware, but in most cases the code to be generated has rather limited syntax and
semantics which makes the back-end easily developed. Hence, most of this generation
is trivial, but we will in the following proof-of-concept implementation also illustrate
some technical problems that need to be handled.

Notably, given a back-end for one middleware, it can be used for a automatic trans-
lation for any software library for which the requested information is available in the
internal format.

4 Proof-of-Concept Demonstration

The feasibility of the process described above have been investigated in a proof-of-
concept implementation, that makes the complete SLICOT library available from remote
resources via NetSolve.

4.1 Aggregation of Interface Data for the SLICOT Library

SLICOT is a numerical software library for computations in systems and control theory
[18], freely available for non-commercial use. The library provides Fortran 77 imple-
mentations of algorithms and methods for the design and analysis of control systems.
Among the more pronounced design principles for SLICOT is the strive to provide ro-
bust, stable and accurate algorithms, to take both memory requirements and floating point
performance issues into account, and to follow strict programming and documentation
conventions throughout the library.

In total, SLICOT comprises nearly 400 user-callable and computational routines.
Around 200 of the routines have associated example programs, example data files and re-
sults for illustrations and comparisons. The Basic Linear Algebra Subprograms (BLAS)
[5,6,13] and LAPACK [1] are used for underlying linear algebra computations.

SLICOT is organized in eleven groups of routines, depending of their applicability
or type:

A: Analysis Routines
B: Benchmark and Test Problems
C: Adaptive Control
D: Data Analysis
F: Filtering
I: Identification
M: Mathematical Routines
N: Nonlinear Systems
S: Synthesis Routines
T: Transformation Routines
U: Utility Routines

The parsing of the library has been performed as described in Section 3.1. It should be
remarked that the documentation style in SLICOT is not completely homogeneous and

Semi-automatic Generation of Grid Computing Interfaces 409

does not follow one unified convention as strictly as the SLICOT design goal suggests.
This implies some extra efforts in designing and tuning the front-end parser, but it should
be noted that almost all information required has been gathered through the automatic
process.

The only type of information for which we do not think it is worth the effort to build
an automatic tool, is for identifying array dimensions that are not only parameter values.
A typical example is to determine the size of an array declared as WORK(*), where
the documentation tells that the array is of size LWORK and LWORK is not a parameter
itself but a more complex function of the input parameters. In these cases the automated
process simply indicates that manual work is required to add this information.

After completing the automatic parsing and some work by hand, all the requested
information is stored in the internal format. Notably, this information is now gathered
once and for all and can be use to generate any number of different Grid interfaces using
differently configured back-ends. In this proof-of-concept implementation we generate
interfaces for NetSolve.

4.2 Generating the NetSolve-SLICOT Interfaces

NetSolve is a Network-enabled solver that gives clients transparent access to software on
remote servers [3]. NetSolve agents match service requests with the resources available.
In order to make software available via NetSolve, each subroutine interface must be
specified in a NetSolve Problem Description File (PDF). Based on such files, NetSolve
provides interfaces to be called from Fortran, C, Matlab, Mathematica, and Octave. The
actual software made available via NetSolve can be written in C or Fortran.

Almost all of the translation from the internal format to the rather basic language of
the PDF files can be done automatically. Again, it is only some of the more complicated
array dimensions that cause problems. Sizes that are parameter values, e.g., LDA in
Section 3.1, or unconditional functions of the input parameters, e.g., LDA*M, do not
cause any problems in the back-end process. For conditional expressions, it is possible
to use so called “@COMP” expressions in the PDF file. The “@COMP” expressions can
be used to handle cases, where the array size depends on, e.g., if another parameter is
TRANS = ’Y’ or TRANS = ’N’ (i.e., if the matrix transpose should be used or not).
However, the “@COMP” functionality can currently only handle conditional expressions
including tests of equality. Apparently, this limitation of the “@COMP” expressions will
be removed in future NetSolve versions, but for the current version we overcome the
problem by adding an extra parameter where the user specifies the array size in these
rare cases.

The output from this back-end is one NetSolve PDF-file for each SLICOT subroutine.
These files are then to be stored on a server resource that has the NetSolve server software
running, and access to the complete SLICOT library including the underlying BLAS and
LAPACK routines. In addition to this, the server must register with a NetSolve agent,
which then can direct the user’s requests to the server.

In order to test the generated interfaces, we have modified the nearly 200 test routines
available with SLICOT to call the NetSolve versions or the routines instead of routines
in a local SLICOT library. We remark that for libraries where test routines are available,
this is in general a very convenient way of testing also the new interfaces.

410 Erik Elmroth and Rikard Skelander

5 Using SLICOT via NetSolve

In order to use the NetSolve version of SLICOT the user must install the NetSolve client
routines on the local computer, set the appropriate environment variable and link with
the appropriate NetSolve library. Notably, there is no need to install SLICOT, BLAS,
and LAPACK on the local computer as these libraries will only be accessed on remote
resources. NetSolve also provides commands for querying an agent about available
servers.

With the basic installations in place, there are only marginal changes that have to
be made to an application software in order to call the NetSolve version of SLICOT on
a remote computer system instead of calling a locally installed SLICOT library. This
is illustrated by following small example, showing how a standard SLICOT routine is
called via NetSolve from a Fortran or C to application program.

The subroutine head of the original Fortran code for the SLICOT routine SB02MD is
outlined below. SB02MD is a routine implementing a Schur vectors method for solving
algebraic Riccati equations [12,17,21].

SUBROUTINE SB02MD(DICO, HINV, UPLO, SCAL, SORT, N, A,
LDA, G, LDG, Q, LDQ, RCOND, WR, WI,
S, LDS, U, LDU, IWORK, DWORK,
LDWORK, BWORK, INFO)

A remote NetSolve call to this routine from a Fortran program is made through
a subroutine call to FNETSL with the routine name (SB02MD) and a NetSolve status
variable as two additional arguments preceding the list of the parameters for the standard
SB02MD routine:

CALL FNETSL(’SB02MD()’, STATUS, DICO, HINV, UPLO,
SCAL, SORT, N, A, LDA, G, LDG, Q, LDQ,
RCOND, WR, WI, S, LDS, U, LDU, IWORK,
DWORK, LDWORK, BWORK, INFO)

A corresponding call from a C program is made as a function call to “netsl”. Here
the NetSolve status variable is the function return value:

status = netsl("SB02MD()", &DICO, &HINV, &UPLO,
&SCAL, &SORT, &N, A, &LDA, G, &LDG,
Q, &LDQ, &RCOND, WR, WI, S, &LDS,
U, &LDU, IWORK, DWORK, &LDWORK,
BWORK, &INFO);

6 Concluding Remarks

The semi-automatic process described aims at minimizing and improving the tedious
and error-prone work required to develop a set of different Grid interfaces for each
of a large number of numerical software libraries. The underlying idea is to develop

Semi-automatic Generation of Grid Computing Interfaces 411

one front-end for each numerical library and one back-end for each Grid environment
considered, and then with a small amount of work be able to obtain all library—Grid
environment combinations. The extent to which this process can be made automatic or
needs additional manual work depends both on how well structured and consistent the
inline documentation is and the features provided by the Grid software. However, our
experience from this proof-of-concept implementation is that a vast majority the tedious
and error-prone work can better be done automatically.

The proof-of-concept implementation illustrates this process for one libary (SLI-
COT) and one Grid environment (NetSolve). In order to make SLICOT available in
some other Grid environment or via a web portal as done in [7], the same front-end
could be used with a new back-end generating, e.g., PHP-scripts for a web portal.

We remark that new numerical libraries could benefit from having the interfaces
specified in, for example, XML. Based on such specification, the front-end process
could be made trivial and completely automatic.

Acknowledgements

We acknowledge the anonymous referees for their comments and suggestions.

References

1. E. Anderson, Z. Bai, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide, Third Edition. Society
for Industrial and Applied Mathematics, Philadelphia, 1999.

2. P. Arbenz, W. Gander, and M. Oettli. The remote computation system. Parallel Computing,
23:1421–1428, 1997.

3. D.C. Arnold, H. Casanova, and J. Dongarra. Innovations of the NetSolve grid computing sys-
tem. Concurrency and Computation: Practice and Experience, 14(13-15):1457–1479, 2002.

4. J. Bunch, J. Dongarra, C. Moler, and G.W. Stewart. LINPACK User’s Guide. SIAM, Philadel-
phia, PA, 1979.

5. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A proposal for a set of level 3 basic
linear algebra subprograms. SIGNUM Newsletter, 22(3):2–14, February 1987.

6. J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An extended set of Fortran
basic linear algebra subroutines. ACM Transactions on Mathematical Software, 14(1):1–17,
March 1988.

7. E. Elmroth, P. Johansson, B. Kågström, and D. Kressner. A Web Computing Environment
for the SLICOT Library. In P. Van Dooren and S. Van Huffel, editors, The Third NICONET
Workshop on Numerical Control Software, pages 53–61, 2001.

8. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for distributed systems integra-
tion. IEEE Computer, 35(6):37–46, 2002.

9. IBM. Engineering and Scientific Subroutine Library, Guide and Reference. Ver. 3, Rel. 1.
10. P. Johansson and D. Kressner. Semi-Automatic Generation of Web-Based Computing Envi-

ronments for Software Libraries. In Proceedings of The 2002 International Conference on
Computational Science (ICCS2002), 2002.

11. N. Kapaida and J. Fortes. An architecture for Web-enabled wide-area network-computing.
Journal of Networks, Software Tools and Applications, 2(2):153–164, 1999.

412 Erik Elmroth and Rikard Skelander

12. A. Laub. A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Contr.,
AC-24:913–921, 1979.

13. C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for Fortran
usage. ACM Transactions on Mathematical Software, 5:308–323, 1979.

14. J. More, J. Czyzyj, and M. Mesnier. The NEOS server. IEEE Journal on Computational
Science and Engineering, 5:68–75, 1998.

15. M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi. Ninf: A
network based information library for global world-wide computing infrastructure. In HPCN
Europe, pages 491–502, 1997.

16. S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. Evaluating Web services based
implementations of GridRPC. In 11th IEEE International Symposium on High Performance
Distributed Computing, Edinburgh, Scotland. IEEE Computer Society Press, Los Alamitos,
CA, 2001.

17. V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied
Mathematics: A Series of Monographs and Textbooks. Marcel Dekker, Inc., New York, 1996.

18. SLICOT. The SLICOT library and the numerics in control network (NICONET) website.
http://www.win.tue.nl/niconet/.

19. T. Suzumura, H. Nakada, M. Saito, S. Matsuoka, Y. Tanaka, and S. Sekiguchi. The Ninf portal:
An automatic generation tool for Grid portals. In Proceedings of the 2002 joint ACM-ISCOPE
conference on Java Grande, pages 1–7. ACM Press, 2002.

20. Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A reference
implementation of RPC based programming middleware for Grid computing. Journal of
Grid Computing, 1(1):41–51, 2003.

21. W.M. Wonham. On a Matrix Riccati Equation of Stochastic Control. SIAM J. Contr., 6:681–
697, 1968.

Rapid Development
of High-Performance Out-of-Core Solvers

Thierry Joffrain1, Enrique S. Quintana-Ortı́2, and Robert A. van de Geijn1

1 Department of Computer Sciences, The University of Texas at Austin, Austin, TX-78712
{joffrain,rvdg}@cs.utexas.edu

2 Departamento de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I
12.071–Castellón, Spain

quintana@icc.uji.es

Abstract. In this paper, we discuss a more scalable OOC implementation of a
dense linear system solver via LU factorization that presents numerical stability
similar to that of the LU factorization with partial pivoting. Our implementation
builds on the Formal Linear Algebra Methods Environment (FLAME), the Par-
allel Linear Algebra Package (PLAPACK), and the Parallel Out-of-Core Linear
Algebra Package (POOCLAPACK) infrastructures. Experimental results on an
Intel Itanium2 (R) platform demonstrate the high performance of this approach.

1 Introduction

Numerical linear algebra is an area that traditionally has been prone to consume vasts
amounts of computer memory. When the structures that store the data are too large to fit
in memory, the only solution is to rely on disk storage. Although such additional memory
can be accessed via virtual memory, careful design of Out-of-Core (OOC) algorithms is
generally required to attain high performance.

Practical applications of OOC computing arise in Boundary Element Methods
(BEM), e.g., in the solution of integral equations in electromagnetics and acoustics.
Problems with hundreds of thousands or even millions of degrees of freedom are not
uncommon [4,7], leading to dense linear systems of that order.

The popular LAPACK [1] does not explicitly include OOC capabilities. For large-
scale problems, prototype OOC implementations of some linear system solvers are
provided in ScaLAPACK [3,5]. A more serious effort is developed in SOLAR [16]. This
library uses ScaLAPACK routines for in-core computation, and also provides an I/O
layer that manages matrix input-output.

As an alternative to ScaLAPACK, we developed the Parallel Linear Algebra Package
(PLAPACK) [18]. Its OOC extension, POOCLAPACK, was then introduced in [13]. It
is this infrastructure, together with FLAME [9,2], that we have used to implement the
algorithms for dense unsymmetric linear systems described in this paper. For a complete
survey on parallel OOC implementations of individual operations or machine specific
libraries for dense linear systems, see [15].

In order to provide stability, OOC LU factorizations traditionally use so-called slab
approaches: Blocks of columns of the matrix are brought into memory to allow the

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 413–422, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

414 Thierry Joffrain, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn

choosing of the row to be swapped from among the subdiagonal rows. These methods
are inherently not scalable since, as the overall matrix problem grows, the row dimension
of the slab increases and the number of columns that can fit in memory decreases so
that, eventually, the cost of I/O becomes significant. (A possible manner to keep this
cost bounded is described in [14].)

Thus, it is widely recognized that working with so-called (square) tiles is prefer-
able [16,10]. The size of the tile brought into memory can always be kept constant, and
therefore the ratio between the computation and I/O overhead can be fixed. The problem
with this approach is that it stands in the way of partial pivoting for stability.

Our approach is different: We introduce the method of incremental pivoting to main-
tain most of the benefits of partial pivoting while allowing us to design an algorithm
that proceeds by tiles. The result is a relatively simple, but very powerful, design. In this
paper we illustrate the potential for implementing parallel versions of our approach by
focusing on a sequential implementation using FLAME. Although we have a parallel
implementation as well, we have not timing results yet.

The rest of the paper is organized as follows: In Section 2 we review the numerical
computation of the LU factorization with partial pivoting (LUPP). In Section 3we discuss
issues regarding the LU factorization of a 2× 2 blocked matrix. The insights from this
study help us to present a parallel OOC algorithm for the LUPP in Section 4. Numerical
stability is discussed in Section 5 and performance results are presented in Section 6.
Concluding remarks are then given in the final section.

2 The LU Factorization with Partial Pivoting

Consider an m× n matrix A and its LUPP is given by

PA = LU, (2.1)

where P is a permutation matrix, L is lower trapezoidal, and U is upper triangular.
The LU factorization is obtained by means of a triangularization procedure also known
as Gaussian elimination. Here, a sequence of permutation matrices P1, P2, . . . , Pn and
Gauss elimination matrices L1, L2, . . . , Ln are computed to reduce matrix A to upper
triangular form. In practice the factors L and U overwrite matrix A, and the pivots are
stored in an array of n elements. The factorization of a square matrix of order n into L
and U requires 2/3n3 floating-point arithmetic operations (or flops).

The LINPACK [6] implementation of (2.1) corresponds to an expression of the form

L−1
n Pn · · ·L−1

2 P2L
−1
1 P1A = U,

that does not provide the factor L explicitly. During the LINPACK algorithm the row
permutations are applied to A as the matrix is factorized. The LAPACK implementation
provides the lower triangular factor by rearranging the computations in this expression
as

L̂−1
n · · · L̂−1

2 L̂−1
1 Pn · · ·P2P1A = L−1PA = U.

In order to do so, the LAPACK algorithm requires the row permutations to be applied
to both L and A [8].

Rapid Development of High-Performance Out-of-Core Solvers 415

Blocked variants of these algorithms cast the bulk of the computation in terms of
matrix-matrix multiplications and inherently attain high performance on modern archi-
tectures (see, e.g., [12]).

3 The LU Factorization with Incremental Pivoting

In this section, we discuss how to compute the LU factorization of the matrix(
A B

C D

)
(3.2)

so that the LUPP of A can be reused if B, C, and/or D change. For simplicity, hereafter
we consider all four quadrants in (3.2) to be of size t× t, with t an exact multiple of the
block size k: t = M · k.

We recognize that we can do so with the following steps:

Step 1: Compute the LUPP
PA = LU.

The cost of this operation is 2
3 t

3 flops.
Step 2: Update B consistent with the factorization of A in the previous step. This is

done as
B := L−1PB,

at a cost of t3 flops.
Step 3: Compute the LUPP

P̄

(
U

C

)
=

(
L̄1

L̄2

)
Ū = L̄Ū . (3.3)

The key to our OOC LU factorization relies in exploiting the upper triangular struc-
ture of U in this step. By applying a blocked algorithm that proceedsk rows/columns
at a time, the cost of this factorization can be reduced to t3+ 2

3 t
2k. In Fig. 1 we depict

graphically the three steps in the computation of an LUPP of a matrix composed of
3k columns (M = 3). The approach is fully described in the algorithm in Fig. 2. In
the algorithms, the permutations are stored using a vector p. In our notation, P (p)
then stands for corresponding permutation matrix, of the appropriate dimensions,
that is constructed from vector p. Also, m(A) and n(A) stand, respectively, for the
number of rows and columns of matrix A; and {L1\U1} denotes a matrix with L1

and U1 stored in its strictly lower and upper triangular parts, respectively. The algo-
rithm produces M = t/k lower triangular matrices T , of dimension k × k each, to
hold L̄1 (see also Fig. 1) and thus avoids destroying the contents of L as computed
in Step 1. It is this sequence of triangular matrices that form the diagonal blocks of
L̄1.
As a result of this procedure, we obtain a LINPACK-like factorization of the form

L−1
M PM · · ·L−1

2 P2L
−1
1 P1

(
U

C

)
=

(
Ū

0

)
. (3.4)

416 Thierry Joffrain, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn

P
0

L
0

U
0

= =

= =

k

k

= =

P
1

L
1

U
1

P
2

L
2

U
2

Fig. 1. LUPP factorization of UT , CT T
exploiting the upper triangular structure of U . The

LU factorization of the first, second, and third column blocks (in black) produce Pi, Li, and
Ui, i = 0, 1, 2, respectively. The lower triangular matrices Li produced from each one of this
factorizations together form the matrix on the right of the figure

It is important to realize that reorganizing this expression as in (3.3) destroys the
structure of the lower triangular factors.

Step 4: Now, had Step 3 produced an LAPACK-like factorization as in (3.3), we would
then have to apply the pivots from the previous step(

B

D

)
:= P̄

(
B

D

)
,

and then compute the update(
B

D

)
:=

(
L̄−1

1 B

D − L̄2(L̄−1
1 B)

)
.

Instead, Step 3 produced the LINPACK-like factorization in (3.4), and the operation
that is performed in this Step is

Rapid Development of High-Performance Out-of-Core Solvers 417

Partition U →
UT L UT R

UBL UBR

, C → CL CR , T →
TT

TB

, and p →
pT

pB

where UT L is 0 × 0, CL has 0 columns, TT has 0 rows, and pT has 0 elements

while n(UBR) �= 0 do
Determine block size k
Repartition

UT L UT R

UBL UBR

→
U00 U01 U02

U10 U11 U12

U20 U21 U22

, CL CR → C0 C1 C2 ,

TT

TB

→
T0

T1

T2

, and
pT

pB

→
p0

p1

p2

where U11 is k × k, C1 has k columns, T1 has k rows, and p1 has k elements
T1 := triu(U11) % Copy upper triangular part of U11

T1

C1
, p1 :=

{L1\U1}
L2

, p1 = LU
T1

C1
% LAPACK-like LU factorization

U12

C2
:= P (p1)

U12

C2
% Apply permutations defined by p1

U12 := L−1
1 U12

C2 := C2 − L2U12

triu(U11) := triu(T1)

Continue with
UT L UT R

UBL UBR

←
U00 U01 U02

U10 U11 U12

U20 U21 U22

, CL CR ← C0 C1 C2 ,

TT

TB

←
T0

T1

T2

, and
pT

pB

←
p0

p1

p2

enddo

Fig. 2. LINPACK-like blocked LU factorization of UT , CT T
built upon an LAPACK-like panel

factorization

(
B

D

)
:= L−1

M PM · · ·L−1
2 P2L

−1
1 P1

(
B

D

)
.

Figure 3 presents a code for this update. It is the use of the LINPACK-like blocked
LU factorization in the previous step that allows us to exploit the special structure
of L̄1 in this step and leads to a cost of only 2t3 + tk2 flops. Using a LAPACK-like
blocked LU factorization destroys the structure of L̄1 increasing the cost of this step
to 3t3 flops!

Step 5: Compute the LUPP
P̂D = L̂Û ,

with a cost of 2
3 t

3 flops.

Factoring the matrix in (3.2) using the standard LUPP costs 2
3 (2t)3 = 16

3 t3 flops.
Thus, the algorithm just described only incurs additional 3

2 t
2k + tk2 flops which repre-

sents a lower-order term that can be neglected if k 0 t.

418 Thierry Joffrain, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn

Partition B →
BT

BB

, C → CL CR , T →
TT

TB

, and p →
pT

pB

where CL has 0 columns, BT and TT have 0 rows, and pT has 0 elements

while m(BB) �= 0 do
Determine block size k
Repartition

BT

BB

→
B0

B1

B2

, CL CR → C0 C1 C2 ,

TT

TB

→
T0

T1

T2

, and
pT

pB

→
p0

p1

p2

where C1 has k columns, B1 and T1 have k rows, and p1 has k elements
B1

D
:= P (p1)

B1

D

B1 := (tril(T1) − diag(T1) + Ik)−1B1 % Solve with unit lower triangular matrix in T1

D := D − C1B1

Continue with
BT

BB

←
B0

B1

B2

, CL CR ← C0 C1 C2 ,

TT

TB

←
T0

T1

T2

, and
pT

pB

←
p0

p1

p2

enddo

Fig. 3. Update of BT , DT T
consistent with the LINPACK-like blocked LU factorization of

UT , CT T

4 Out-of-Core LU Factorization

In this section we show how the insights from the previous section can be used to imple-
ment a tile-based OOC LU factorization with incremental partial pivoting for matrices
of arbitrary size.

Let us first examine the factorization of (3.2) where we assume that the matrix resides
on disk. An OOC LU factorization can be computed as follows:

Step 1: Factor A. This step requires t2 I/O operations (iops) for reading A from disk
and t2 iops more to store L, U , and the pivots back on disk.

Step 2: Update B. After reading B from disk, at a cost of t2 iops, this matrix is per-
muted as B := PB, and updated by bringing panels of b columns of the lower

triangular part of L in one at a time. Consider

⎛⎜⎝ 0
L11

L21

⎞⎟⎠ to be one of these pan-

els, with L11 lower triangular of dimension b × b, and a conformal row partition-

Rapid Development of High-Performance Out-of-Core Solvers 419

ing of B as

⎛⎜⎝B0

B1

B2

⎞⎟⎠. Then, we need to perform the updates B1 := L−1
11 B1 and

B2 := B2 − L21B1. This requires a total of t2/2 iops. Then, B is written back to
disk requiring t2 additional iops.

Step 3: Factor

(
U

C

)
. After reading C from disk, with a cost of t2 iops, U and C are

updated by bringing panels of b rows of U into memory. Consider now the row block
(0 U11 U12), where U11 is upper triangular of dimension b × b, and a conformal

column partitioning (C0 C1 C2) of C. Then, during this procedure,

(
U11

C1

)
needs

to be factored and

(
U12

C2

)
is to be updated. This requires a total of t2 iops (elements

of U must be read and written back). Then, C is written back to disk at a cost of t2

iops.

Step 4: Update

(
B

D

)
. Here, D is first read from disk at a cost of t2 iops, and then it

is used in the update of B and D by bringing into memory at a time a block T1 of
dimension b× b from T , and slabs C1 and B1 of b rows and columns, respectively.

These are used to pivot

(
B1

D

)
, compute B1 := T−1

1 B1, and finally update D :=

D − C1B1. This requires 3t2 iops (elements of B must be read and written).
Step 5: Factor D. Finally, D is factored and written to disk at a cost t2 iops.

In total, roughly 25
2 t2 iops are required for the 16

3 t3 useful flops.
Now, consider matrix A square, of ordern, and partitioned into N×N square tiles of

dimension t, with the (i, j) block denoted asAi,j. It is easy to see that the above described
approach can be employed to factorize the tiles in this partitioning by considering(

Ak,k Ak,j

Ai,k Ai,j

)
=

(
A B

C D

)
, (4.5)

k = 1, . . . , N , i, j = k + 1, . . . , N . and applying the steps to these blocks in a certain
order. In particular, our OOC LU factorization algorithm employs a blocked version of
the so-called a right-looking variant of the LU factorization at the OOC level.

5 Remarks on Numerical Stability

The numerical (backward) stability of an algorithm for the LU factorization depends
on the magnitude of the entries of A, L, and U during the factorization. In particular,
the growth factors of these entries for complete and partial pivoting are bounded as
ρc ≤ n1/2(2·31/2 · · ·n1/n−1) andρp ≤ 2n−1, respectively. Element growth for pairwise

420 Thierry Joffrain, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn

0 1 2 3 4 5 6 7 8

x 10
4

0

500

1000

1500

2000

2500

3000

3500

Intel Itanium2@900MHz with 8GBytes of RAM memory

Matrix dimension n

M
fl
o
p
s

1× 8Gbytes

2× 8Gbytes

3× 8Gbytes

4× 8Gbytes

5× 8Gbytes

t = 1040 (8MB/tile)
t = 2080 (32MB/tile)
t = 4160 (128MB/tile)
t = 6240 (288MB/tile)
t = 8320 (512MB/tile)

Fig. 4. Performance of the tile-based OOC LU factorization algorithm with incremental pivoting

pivoting [17] (also known as Neville elimination) is given by ρw ≤ 4n−1, respectively.
This shows that neither partial nor pairwise pivoting ensure the stability of the algorithm.
It is only practice that taught us to trust these approaches as, on average, the growth factors
are much smaller, about n1/2, n2/3, and n for complete, partial, and pairwise pivoting,
respectively [11].

The OOC algorithm for the LU factorization that we propose combines partial piv-
oting within the diagonal tiles of the matrix and a blocked version of pairwise pivoting
between the diagonal block and each subdiagonal block, with partial pivoting being used
again to factorize these two blocks. Thus, we can expect the numerical behavior of the
OOC LU algorithm to be between those of the LU factorization with partial and pair-
wise pivoting. Our experiments confirm this conjecture. If necessary, iterative refinement
can be employed to ensure numerical stability of pairwise pivoting (with a negligible
additional cost for problems with a small number of right-hand side vectors).

For very large-scale problems, element growth should be monitored and a condition
number estimator is often helpful. If element growth is unacceptable (note this can be
the case using partial or pairwise pivoting), the user could rely on a similar tile-based
QR factorization [10].

6 Performance

We report results for our OOC LU factorization algorithm on an Intel Itanium2 (R) (900
MHz) processor based workstation, with 8 Gbytes of RAM memory, capable of attaining
3.6 GFLOPS. High performance can be attained on this machine using only a fraction
of the RAM memory. The algorithm for the (in-core) LU factorization in LAPACK
delivered 3.1 GFLOPS for a square matrix of order 5200 in this platform.

In Fig. 4 we show the performance of a sequential implementation of the proposed
OOC algorithm using square tiles of order t. An operation count of 2/3n3 for the
LU factorization is used to compute the GFLOPS ratio. The results show a remarkable

Rapid Development of High-Performance Out-of-Core Solvers 421

scalability of the OOC algorithm which is not affected by the matrix size, and an excellent
performance, that rivals that of the in-core LU factorization.

7 Conclusions

We have demonstrated that a combination of the standard in-core right-looking LU
factorization algorithms, together with a tile-based approach, results in a powerful new
method for computing the LUPP of large, dense matrices. The tile-based approach
provides true scalability and is well suited for dense linear algebra operations. The
implementation of the algorithms is straight-forward, and is made particularly simple
when using the FLAME environment and the PLAPACK and POOCLAPACK parallel
infrastructures. Although parallel versions of the tile-based OOC LU factorization have
been created using these infrastructures, these are still under evaluation.

For further information, visit http://www.cs.utexas.edu/users/flame.

Acknowledgments

This research was partially sponsored by NSF grants ACI-0305163 and CCF-0342369
and an equipment donation from Hewlett-Packard.

References

1. E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling,
A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadel-
phia, 1992.

2. P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ortı́, and R. A. van de Geijn. The
science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. To appear.

3. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. SIAM, 1997.

4. Tom Cwik, Robert van de Geijn, and Jean Patterson. The application of parallel computation
to integral equation models of electromagnetic scattering. Journal of the Optical Society of
America A, 11(4):1538–1545, April 1994.

5. E. F. D’Azevedo and J. J. Dongarra. The design and implementation of the parallel out-of-
core scalapack LU, QR, and Cholesky factorization routines. LAPACK Working Note 118
CS-97-247, University of Tennessee, Knoxville, Jan. 1997.

6. J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’ Guide. SIAM,
Philadelphia, 1979.

7. Po Geng, J. Tinsley Oden, and Robert van de Geijn. Massively parallel computation for
acoustical scattering problems using boundary element methods. Journal of Sound and Vi-
bration, 191(1):145–165, 1996.

8. Gene Golub and Charles Van Loan. Matrix Computations. The Johns Hopkins University
Press, 3rd edition, 1996.

9. J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME: Formal Linear
Algebra Methods Environment. ACM Transactions on Mathematical Software, 27(4):422–
455, December 2001.

422 Thierry Joffrain, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn

10. Brian Gunter and Robert A. van de Geijn. Parallel out-of-core computation and updating of
the QR factorization. ACM Transactions on Mathematical Software, 2004. To appear.

11. Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.

12. B. Kågström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-performance
model, implementations and performance evaluation benchmark. LAPACK Working Note
#107 CS-95-315, Univ. of Tennessee, Nov. 1995.

13. Wesley C. Reiley and Robert A. van de Geijn. POOCLAPACK: Parallel Out-of-Core Linear
Algebra Package. Technical Report CS-TR-99-33, Department of Computer Sciences, The
University of Texas at Austin, Nov. 1999.

14. S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM J. Matrix
Anal. and Appl., 18(4):1065–1081, 1997.

15. Sivan Toledo. A survey of out-of-core algorithms in numerical linear algebra. In DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 1999.

16. Sivan Toledo and Fred G. Gustavson. The design and implementation of SOLAR, a portable
library for scalable out-of-core linear algebra computation. In Proceedings of IOPADS ’96,
1996.

17. L. N. Trefethen and R. S. Schreiber. Average-case stability of Gaussian elimination. SIAM J.
Matrix Anal. and Appl., 11(3):335–360, 1990.

18. Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press,
1997.

ALPS: A Software Framework
for Parallel Space-Time Adaptive Processing

Kyusoon Lee and Adam W. Bojańczyk

School of Electrical and Computer Engineering
Cornell University
Ithaca, NY, 14850

{kl224,awb8}@cornell.edu

Abstract. Space-Time Adaptive Processing (STAP) refers to adaptive radar pro-
cessing algorithms that take the signals from both multiple sensors and multiple
pulses to cancel interferences and detect a target. Fully-adaptive STAP is known
to be optimal, but the required number of operations is overwhelming, and makes
this method impractical. Hence, many different heuristic approaches are sought to
approximate the optimal method with smaller number of operations. In this work,
we present a software framework called ALPS to help prototype various parallel
STAP methods, and predict their performances.

1 Introduction

Space-Time Adaptive Processing (STAP) refers to a class of adaptive radar processing
algorithms. In space-time adaptive processing, a series of M pulses are collected from
N sensors multiple (L) times. Hence, the data is viewed a three-dimensional cube of
size L ×M × N as in Figure 1. Typical dimensions are: 16 ≤ M ≤ 256, 16 ≤ N ≤
256, and L ≈ MN . Fully-adaptive STAP algorithm solves a constrained minimization
problem defined on this cube to calculate a quantity known as a weight vector. This
algorithm require O(L2MN) ≈ O(M3N3) ≈ 109–1012 operations [1], which cannot
be delivered in real-time with current technology.

Hence, partially-adaptive techniques which approximate the fully-adaptive algo-
rithm and require fewer number of operations have been studied [1]. In these algorithms,
the data cube is transformed into smaller size sub-cubes which are next subjected to

Delays(M,PRI)

Channels(N,CHAN)

Snapshots(L,RANGE)

FFT Weight Application

Fig. 1. Three-dimensional data cube

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 423–432, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

424 Kyusoon Lee and Adam W. Bojańczyk

CHAN CHAN

PRI PRI

RANGE
RANGE

M

M

M

N

N

N

N

N

N

N

L

L

L

L

L

L

L

K

K

FFT

FFTFFTFFT

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

. . .

M −K

M −K

(0)

(0)

(0)

(0)

(1)

(1)

(1)

(1) (M − 1)

(M −K − 1)

(K − 1)

(K − 1)

Step A1

Step A2

Step B1

Step B2

Step B3

Fig. 2. Two representative pre-STAP processings (a) PRI-overlapped (left), (b) PRI-staggered
(right)

CHAN

CHAN

CHAN

RANGE

RANGERANGE PRI

PRI

PRI

RANGE-CHAN-PRI

(RCP)

RANGE-PRI-CHAN

(RPC)

PRI-CHAN-RANGE

(PCR)

fastest-varying

slowest-varying

Fig. 3. Different orientations

adaptive processing. This downsizing transformation is called pre-STAP processing.
Two representative approaches are PRI-overlapped and PRI-staggered methods as il-
lustrated in Figure 2. In these methods, STAP algorithms can run on many sub-cubes
simultaneously. Computed weight vectors on these sub-cubes are combined together to
give an approximation to a fully-adaptive weight vector. Because of the parallelism and
smaller sizes of sub-cubes, partially-adaptive algorithms can be run in real time.

However, the optimal parallel implementation of these algorithms is far from obvious.
For example, FFT operations in pre-STAP processing and weight application in STAP
require access to orthogonal dimensions of data cube as in Figure 1. This suggests that
different memory layout of a data cube, or its different distribution among processors for

ALPS: A Software Framework for Parallel Space-Time Adaptive Processing 425

different operations might lead to different performances. We call the mapping from three
physical dimensions (PRI, CHAN, and RANGE) of a data cube to fastest-, intermediate-,
slowest-varying dimension of a memory an orientation. Figure 3 shows three different
orientations of a data cube that we are currently considering.

Parallel processing of STAP algorithms has been considered by many researchers.
Basic theories and techniques for parallel pipelined implementation of STAP algorithms
were presented in [13], [14]. Software systems for designing portable, optimized parallel
signal processing algorithms based on PVL and S3P were developed by MIT Lincoln
Laboratory [15], [16].

In [17], we introduced another framework for prototyping STAP methods that also
considers the three-dimensional topology of processors that allows users to easily de-
scribe various STAP algorithms, to build execution time models of the basic building
blocks, and to optimize the algorithms based on these models automatically. In that
framework, we considered the three-dimensional topology of processors and the orien-
tation of data cubes as variables in the performance optimization process while others
considered only the number of processors as a variable and left other decisions to users
[15], [16]. This work presents modification to a modeler described in [17]. We ported the
ALPS software framework onto linux machines, and here we present the results from a
linux cluster as well as the one from a windows cluster. We also extended this software
framework to answer questions such as, given the time constraint, how large data cubes
can be processed.

2 Algorithmic Library for Parallel STAP (ALPS)

In various STAP methods, similar tasks are processed in different order [4]. For example,
the tasks in step A1 and step B2 in Figure 2, are both FFT operations. The tasks of the data
cube reorganization in steps A2 and B1, which we call split-staggered operation,
are also the same. It turns out that various partially-adaptive STAP algorithms can be
implemented with a small number of such tasks [4]. Based on this observation, we built
a parallel library called ALPS which includes implementations of common STAP tasks.

In the ALPS library, a data cube is modeled as a three-dimensional data located on
a three-dimensional processor cube with a block-cyclic distribution. ALPS library pro-
vides the transformation routines (split-staggered,join,recube) to cover var-
ious pre-STAP processings such as those shown in Figure 2. Complete space-time adap-
tive processing routines (fullupdate, predictres) are included too. It also pro-
vides communication routines to change the processor cube dimensions
(fewtomany, manytofew) and to change the orientation of 3-dimensional data cube
(transpose).

Figure 4 shows the task graph of a prototype partially-adaptive STAP algorithm with
PRI-staggered pre-STAP processing (called PRI-staggered STAP) implemented with
ALPS library routines. In the figure, fullUpdate STAP methods operate on three
data cubes; training cube to compute a weight vector, steer cube which specifies the
constraints, and search cube which is filtered according to the direction of the computed
weight vector. All these cubes undergo the same pre-STAP processing. join at the end
of each algorithm merges the results from fullUpdate operations. Figure 5 shows a

426 Kyusoon Lee and Adam W. Bojańczyk

search cube

steer cube

training cube

transformation

transformation

transformation

read

read

read

splitStaggered

splitStaggered

splitStaggered

fft1d’s

fft1d’s

fft1d’s

reCube

reCube

reCube

fullUpdate’s

join write

PRI-staggered pre-STAP

Fig. 4. Task graph of PRI-staggered STAP described with ALPS building blocks

search cube

steer cube

transformation

transformation read

read

splitStaggered

splitStaggered

fft1d’s

fft1d’s

predictRes’s

join write

PRI-overlapped pre-STAP

Fig. 5. Task graph of PRI-overlapped STAP described with ALPS building blocks

similar task graph of a prototype partially-adaptive STAP algorithm with PRI-overlapped
pre-STAP processing (called PRI-overlapped STAP)

3 ALPS Benchmarking and Modeling

We assume that the execution time can be described as a function of input parameters. For
example, fewtomany operation moves a data cube of size (dx, dy, dz) on a processor
cube of size (px, py, pz) to a processor cube of size (p′x, p

′
y, p

′
z). Hence, the execution

time model of fewtomany is assumed to be a function of these parameters. ALPS
Benchmarker runs each routine and records its execution time for given values of input
parameters. The range for the input parameters is specified by the user.ALPS Modeler
constructs execution time models by solving multiple linear regression problems for
these parameters, and reports many metrics including the mean of relative errors of a
model:

(mean of relative errors, m.r.e.) ≡ 1
#cases

∑ |predictioni −measurementsi|
measurementsi

In [17], we observed rather high mean of relative errors for communication routines.
To understand where this large error results from, we drew a scattered plot of mean
of 5 replications for each measurement versus the standard deviation, and the standard
deviation over the mean as in Figure 6. A commercial off-the-shelf (COTS) linux cluster

ALPS: A Software Framework for Parallel Space-Time Adaptive Processing 427

Fig. 6. Scattered plot of measurement vs. standard deviation (left) and coefficient of variance =
standard deviation / mean (right) of 5 replications

of 8 PCs with a single switch network was used to plot Figure 6. Another experiment on
a COTS windows cluster with 64 PCs with a gigabit network showed similar patterns.
The relative standard deviation defined as the ratio of the standard deviation and the
mean, can be as large as 200% of the mean for measurements shorter than 0.1 sec. These
large relative standard deviations are the causes of large relative error in the model.

One way of improving the model is to eliminate outliers. In one experiment, we
removed those measurements with relative standard deviations larger than 50%. Then,
we randomly picked 70% of measurements to build execution time models, and used
the other 30% to validate these models. The results are shown in Figure 7. The mean
of relative errors for the communication routines (FewToMany, ManyToFew, and
Transpose) is around 50%. Eliminating those outliers made the mean of relative
errors on the test set comparable to the mean of relative errors on the training set. In
[17], the mean of relative errors on the test set was always substantially higher than the
mean of relative errors on the training set.

428 Kyusoon Lee and Adam W. Bojańczyk

FewToMany ManyToFew Transpose Join FFT FU PR
0

10

20

30

40

50

60

70

80

90

100
m.r.e. on linux cluster

Routines

m
.r

.e
. (

%
)

train
test

Recube

SplitStaggered

FewToMany ManyToFew Transpose Join FFT FU PR
0

10

20

30

40

50

60

70

80

90

100
m.r.e. on windows cluster

Routines

m
.r

.e
. (

%
)

train
test

Recube

SplitStaggered

Fig. 7. Mean of relative errors (m.r.e.) on training set and test set

20 40 60 80

20

25

30

35

40

45

50

55

60

#elements

#p
ul

se
s

PRI−overlapped STAP

20 40 60 80

20

25

30

35

40

45

50

55

60

#elements

#p
ul

se
s

PRI−staggered STAP

 1
 2
 4
 8
16
32

 2
 4
 8
16
32

Fig. 8. PRI-overlapped vs. PRI-staggered STAP: 2048 snapshots, deadline 100 sec

ALPS: A Software Framework for Parallel Space-Time Adaptive Processing 429

20 40 60 80

20

30

40

50

60

70

80

90

#elements

#p
ul

se
s

overlap=0

20 40 60 80

20

30

40

50

60

70

80

90

#elements

#p
ul

se
s

overlap=2

20 40 60 80

20

30

40

50

60

70

80

90

#elements

#p
ul

se
s

overlap=4

 1
 2
 4
 8
16
32

 1
 2
 4
 8
16
32

 1
 2
 4
 8
16
32

Fig. 9. PRI-overlapped vs. overlap parameter: 2048 snapshots, deadline 20 sec

4 STAP Algorithm Performance Optimization and Prediction

While general processor assignment problems on a task graph such as Figure 4 are NP-
complete [9], [11], those problems on a linear task graph or a layered structure can be
solved by dynamic programming [12].

Dynamic programming is a technique to find a minimum-cost path on a layered
problem. With some modification, it can be applied to our problem of deciding the
optimal processor cube dimension and orientation for tasks in a task graph like the one
in Figure 4. There, we have a node with multiple incoming paths. For such nodes, we
redefined the recurrence function of dynamic programming to be the sum of minimum
costs from all preceding tasks. This means that any tasks in one path cannot be run
simultaneously with tasks in another path.

In [17], we introduced a software tool called ALPS Optimizer to perform the
modified dynamic programming optimization for task graphs such as that in Figure 4
and 5.ALPS Optimizer accepts the pseudo-codes corresponding to these task graphs
and finds the optimal orientations and processor cube dimensions and the minimum time
that it takes to run these task graphs.

430 Kyusoon Lee and Adam W. Bojańczyk

20 40 60 80

20

30

40

50

60

70

80

90

#elements

#p
ul

se
s

overlap=M−1

20 40 60 80

20

30

40

50

60

70

80

90

#elements

#p
ul

se
s

overlap=M−3

20 40 60 80

20

30

40

50

60

70

80

90

#elements

#p
ul

se
s

overlap=M−5

 1
 2
 4
 8
16
32

 2
 4
 8
16
32

 4
 8
16
32

Fig. 10. PRI-staggered vs. overlap parameter: 2048 snapshots, deadline 20 sec

Based on the best execution time returned by this ALPS Optimizer, we could
compare, given the execution time constraint and the number of available processors, how
large data cubes can be processed by different partially-adaptive STAP algorithms. Figure
8 shows the number of pulses(PRI dimension), and the number of
elements(CHAN dimension) that each partially-adaptive STAP algorithm can process,
given the time limit of 100 sec, and the resource limit of 1, 2, 4, 8, 16, and 32 proces-
sors. It is worth noting that with the algorithmic parameters that we assumed here,
PRI-staggered STAP is very computationally demanding, hence could not meet the time
limit of 100 sec when run on one processor. On the other hand, PRI-overlapped was
able to process data within given time limit. We also could see how large the number of
pulses and the number of elements can be processed within a given time limit when the
algorithmic parameter overlap changes. In Figure 9 and 10, the values of overlap
are varied. The plots show dimensions of data cubes which can be processed within the
set deadline of 20 sec. In this way, users can see the trade-off between the change in the
algorithmic parameter, and the corresponding execution time.

ALPS: A Software Framework for Parallel Space-Time Adaptive Processing 431

5 Conclusion

Space-time adaptive processing techniques must be implemented on parallel comput-
ers if they are to meet real-time processing requirements. However, the complexity of
these algorithms and the difficulty of deciding optimal processor cube dimension and
orientation for each task makes it hard to find the optimal parallel implementation by
hand.

In this work, we extended the ALPS software framework that was first introduced
in [17] for prototyping parallel STAP methods. We investigated where the large mod-
eling errors came from, and modified the execution time modeler accordingly. We also
extended its optimizing tools to answer questions such as the size of data cubes that vari-
ous STAP algorithms can process within certain time limit and resource limit. Examples
illustrated our general approach, and showed that this approach is feasible.

References

1. James Ward. Space-time adaptive processing for airborne radar. Technical report 1014, Massa-
chusetts Institute of Technology Lincoln Laboratory, Lexington, MA, December 1994.

2. R.C. DiPietro. Extended factored space-time processing for airborne radar systems. In Twenty-
sixth Annual Asilomar Conference on Signals, Systems, and Computing, pages 425–430,
Pacific Grove, CA, 1992.

3. L.E. Brennan and F.M. Staudaher. Subclutter Visibility Demonstration. Technical Report
RL-TR-92-21, Adaptive Sensors Incorporated, March, 1992.

4. James M. Lebak and Adam W. Bojanczyk, Design and Performance Evaluation of a Portable
Parallel Library for Space-Time Adaptive Processing. IEEE Transactions on Parallel and
Distributed Systems, Vol. 11, No. 3, March 2000.

5. R. Dimitrov and A. Skjellum, An efficient MPI implementation for Virtual Interface (VI)
Architecture, September 11th, 1999.
http://www.mpi-softtech.com/company/publications/?view=1037051037

6. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A. and Sorensen, D. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, third edition, 1999.

7. Frigo, Matteo and Johnson, Steven G. FFTW: An adaptive software architecture for the FFT.
Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing, pages 1381–1384, Vol.
3, 1998.

8. Jame M. Lebak, Robert C. Durie, and Adam W. Bojanczyk. Toward A Portable Parallel Library
for Space-Time Adaptive Methods. Technical Report CTC96TR242, Cornell University, June,
1996.

9. Hesham El-Rewini, Theodore G. Lewis and Hesham H. Ali. Task Scheduling in Parallel and
Distributed Systems, Prentice Hall, 1994.

10. Andreas S. Schulz. Scheduling to Minimize Total Weighted Completion Time: Performance
Guarantees of LP-Based Heuristics and Lower Bounds. IPCO: 5th Integer Programming and
Combinatorial Optimization Conference, 1996, pages 301–315.

11. Anant Singh Jain and Sheik Meeran. A State-of-the-Art Review of Job-Shop Scheduling
Techniques, Technical Report, Department of Applied Physics, Electronic and Mechanical
Engineering, University of Dundee, Dundee, Scotland, 1998.

12. Frederick S. Hillier and Gerald J. Lieberman. Introduction to Mathematical Programming.
McGraw-Hill, second edition, 1995.

432 Kyusoon Lee and Adam W. Bojańczyk

13. Alok Choudhary, Wei-keng Liao, Donald Weiner, Pramod Varshney, Richard Linderman and
Mark Linderman. Design, Implementation and Evalutation of Parallel Pipelined STAP on
Parallel Computers, 12th. International Parallel Processing Symposium, March 30–April 03,
1998, pages 220–225.

14. Myungho Lee and Viktor K. Prasanna. High Throughput-Rate Parallel Algorithms for Space
Time Adaptive Processing, 2nd International Workshop on Embedded Systems and Applica-
tions, Apr. 1997.

15. Edward Rutledge and Jeremy Kepner. PVL: An Object Oriented Software Library for Parallel
Signal Processing, IEEE International Conference on Cluster Computing, Oct 8–11, 2001.

16. Jeremy Kepner, DoD Sensor Processing: Applications and Supporting Software Technology,
Supercomputing 2002 Tutorial S14, Nov. 17, 2002.

17. Kyusoon Lee and Adam W. Bojanczyk, Performance Modeling and Optimization Framework
for Space-Time Adaptive Processing (STAP), 3rd International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems (PMEO-PDS’
2004), April 26–April 30, Santa Fe, New Mexico.

Hybrid Parallelization of CFD Applications
with Dynamic Thread Balancing

Alexander Spiegel1, Dieter an Mey1, and Christian Bischof1,2

1 Center for Computing and Communications, RWTH Aachen University, Germany
{spiegel,anmey,bischof}@rz.rwth-aachen.de

2 Institute for Scientific Computing and Center for Computing and Communications
RWTH Aachen University, Germany

Abstract. SMP Clusters with fat nodes offer an interesting capability for large
applications that employ a hybrid parallelization model: to improve load balance,
the number of threads can be increased in order to speed-up busy MPI processes
or decreased to slow down idle MPI processes, provided these processes reside on
the same SMP node. We developed a library which performs this thread adjust-
ment automatically during program execution. Experimental results demonstrate
remarkable speed-ups with minimal programming effort.

1 Introduction

Hybrid parallelization using message-passing and multi-threading with OpenMP or au-
toparallelization on clusters of shared-memory computers is not always profitable [1,3],
yet it offers interesting opportunities [2], particularly on SMP clusters with fat nodes.
If an application employs a hybrid parallel programming model utilizing both MPI and
threads (from now on we call such an application a "hybrid application" for simplicity),
the number of threads can be increased in order to speed-up busy MPI processes or de-
creased to slow down idle MPI processes, provided these processes reside on the same
SMP node.

It may not always be easy to find out the optimal distribution of threads to the MPI
processes, however, and the optimal distribution may change in the course of the runtime
of an application. Therefore, we developed a dynamic thread balancing (DTB) library
which performs this thread adjustment automatically, requiring the user just to insert
one extra MPI call in the code to trigger this feature.

The PMPI profiling interface, which is part of the MPI specification and therefore part
of each compliant implementation, offers an easy and portable way of intercepting calls
to the MPI library. The DTB library uses this interface to capture the user time of each
MPI process and the time spent in MPI routines. This information is evaluated to adjust
the number of threads for each MPI process, taking care not to oversubscribe the number
of processors dedicated to the application. The major features and the implementation
of the DTB library are described in section 2.

Experiments were performed on a Sun Fire SMP cluster with the new multi-zone
version of the BT code of the NAS Parallel Benchmark suite and the FLOWer Navier-
Stokes solver and the results are reported on in section 3. Section 4 concludes with a
summary and an outlook on future work.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 433–441, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

434 Alexander Spiegel, Dieter an Mey, and Christian Bischof

2 The Dynamic Thread Balancing (DTB) Library

2.1 Usage of the DTB Library

The DTB library has to be linked between the user program and the MPI library. One or
more calls to the newly provided routineMPI Pcontrol have to be inserted in suitable
spots of the program code in order to regularly - typically once per outer loop iteration
(e.g. a time step in a CFD application) - trigger the steering mechanism. Thus, program-
ming effort for the user of the DTB library is minimal. The calls of the MPI Pcontrol
routine are ignored when the DTB library is not linked. The user time (time spent in
user routines) and the MPI overhead (time spent in MPI routines) between two succes-
sive MPI Pcontrol calls of each MPI process are measured and evaluated to adjust
the number of threads. The DTB steering mechanism shifts threads between the MPI
processes residing on the same node with the OpenMP omp set num threads call.
If freed threads stay in a busy waiting state, they still consume compute cycles. Therefore
they have to be put to sleep completely. On Solaris we hence set the environment variable
SUNW MP THR IDLE to sleep. Of course the more MPI processes reside on one node
and the more CPUs are available on a node, the better the algorithm is able to shift
threads between the MPI processes and to improve load balancing.

When using multiple SMP nodes, the initial distribution of MPI processes onto the
nodes is very important: If all the busiest processes are started on the same node, the DTB
algorithm has little to gain. It is thus advantageous to first execute a shorter profiling
run - with the balancing mechanism of the DTB library turned off - and then use an
optimized distribution for the production run.

2.2 Prediction of the Runtime of the MPI Process

In each iteration the number of threads and the user time is stored for each MPI process.
This information is then used to calculate an approximation function T (t) of the runtime
of each MPI process depending on the number of threads t

T (t) = Ts + Tp/t + To ∗ t

with

Ts = serial part of the runtime

Tp = parallel part of the runtime

To = parallelization overhead

by using the least square method to determine Ts, Tp and To.
If the program behaves smoothly, the corresponding linear equation system will have

a unique solution with non-negative components. If the system does not have a unique
solution, which typically happens during the start phase or if the thread distribution
process has well stabilized, the approximation formula is simplified by setting To to
zero or To and Ts to zero. If the solution has negative components, for example because
a loaded system disturbs the program performance, the optimal positive solution can

Hybrid Parallelization of CFD Applications with Dynamic Thread Balancing 435

be determined by setting one or even two out of the three parameters to zero. In any
case, in an overloaded system any increase of the number of threads will diminish the
performance and the DTB library will therefore most likely reduce the thread number.

In order to adapt to a changing runtime behavior, an aging factor is employed to
give more recent timing measurements a higher weight. In each iteration the impact of
all previous measurements is reduced depending on the difference between the recently
predicted runtime and the currently measured runtime. This aging factor can also be
fixed by an environment variable.

At program start we can activate a warm-up phase in order to speed-up the initial
balancing process. Thereby we quickly gather three values of T (t) for the approximation
formula by explicitly varying the number of threads t. This helps to avoid linear equation
systems without a unique solution in the beginning. If warm-up is disabled, all processes
are started with only one thread and all remaining threads are put into the thread pool
(see below).

2.3 The DTB Steering Algorithm

A pool of unused threads is managed by the following inexpensive steering mechanism:

– Search for the MPI process taking maximum compute time (maxwork task).
(This process has to be accelerated.)

– If the thread pool is empty, search for the MPI process with more than one thread and
minimum predicted compute time with one less threads (minwork task). (This
process will suffer the least from losing one thread.)

– If the thread pool is empty and the predicted compute time of minwork taskwith
one less thread is less than the current compute time of maxwork task, reduce the
number of threads of process minwork task by one and increase the thread pool.
(This process may loose one thread, without slowing down the whole application.)

– If the thread pool is not empty and if the predicted compute time of process
maxwork task with one more thread is less than the current maximum com-
pute time, increase the number of threads of process maxwork task and reduce
the thread pool by one. (The busiest process really profits from an additional thread.)

– Else if the predicted compute time of process maxwork task when loosing one
thread is less than the current maximum compute time, decrease the number of
threads of processmaxwork task and increase the thread pool by one. (The busiest
process does not scale well. In fact, one less thread might be profitable.)

2.4 Limitations of the DTB Library

The DTB library currently is limited to the masteronly hybrid programming method
(described, for example, in [3]), in which only the master thread calls the MPI library
routines outside of any parallel regions. As DTB uses the PMPI interface, other MPI
profiling tools like Vampirtrace can not be combined with the DTB library. Lastly, the
current thread assignment mechanism does not yet take the data affinity of threads into
account. Thus, we may experience some minor performance degradation on a ccNUMA
machine when threads are shifted between MPI processes.

436 Alexander Spiegel, Dieter an Mey, and Christian Bischof

3 Experimental Results

3.1 Computing Environment

Timing experiments were performed on the Sun Fire SMP Cluster at RWTH Aachen
University. It consists of two groups of eight Sun Fire 6800 nodes each and one group of
four Sun Fire 15K nodes which are tightly connected by a fast Sun Fire Link network.
The Sun Fire 6800 nodes are equipped with 24 UltraSPARC III Cu processors running
at 900 MHz and the Sun Fire 15K nodes contain 72 processors of the same kind. The
current production environment is Solaris 9 8/03 and we use the Sun ONE Studio 8
compilers. The Sun HPC ClusterTools 5 package includes a fully thread-safe MPI 2
implementation.

The DTB library also uses MPI for internal communication itself and has to do
some minor computations. In our experiments, we observed an overhead of up to 5
percent for the library, but usually this is more than made up for by the resulting runtime
improvements.

3.2 NAS Parallel Benchmark BT - Multi-zone Version (Class A)

We used the BT benchmark from the NAS Parallel Benchmark collection (NPB) (see
[7,8,9]) for testing the DTB library. The BT benchmark solves discretized versions of
the unsteady and compressible Navier-Stokes equations in three spatial dimensions. In
order to profit from multi-level parallelism recently a multi-zone (MZ) version of the
benchmark has been developed.

The BT-MZ benchmark is a good experimental choice, because the overall mesh is
partitioned such that the size of successive zones in one particular coordinate direction
is increased in a roughly geometric fashion. The class A benchmark contains 16 zones
and the ratio of the largest over the smallest total zone size is approximately 20. As a
result, this program suffers from an inherent load imbalance. To illustrate, tables 1 and
2 show the timing distribution among 8 and 16 MPI processes on a Sun Fire 15K. In the
8-processor run, the user time of the process with rank 0 is about 2 times higher than
the user time of the processes with ranks 6 and 7. With 16 processors, the user time of
the process with rank 0 is now over 22 times higher than the user time of the process
with rank 15. In fact, the latter process spends only about 4 percent of its overall runtime
doing useful work.

The BT-MZ code features hybrid parallelism with OpenMP on the lower level. The
BT-MZ developers also implemented a balancing mechanism which determines a fixed
number of threads for each process based on the grid size of the zones at program start.
We compare the performance of the unmodified BT-MZ code with the built-in balancing
turned off and on to our DTB mechanism in tables 3 and 4. The activation of the DTB
load balancing required us to add two invocations of the MPI Pcontrol routine.

These tables show the overall runtime (that is, user time plus MPI Overhead) versus
the numbers of processors (which equals the sum of the number of OpenMP threads
of all MPI processes). For 8 (16) MPI processes, the hybrid parallelism built into BT-
MZ can employ additional processors in multiples of 8 (16), hence there are no timing
numbers for a number of processors that does not fulfill this criterion. The DTB library,

Hybrid Parallelization of CFD Applications with Dynamic Thread Balancing 437

Table 1. NPB BT-MZ Class A benchmark with 8 MPI-Processes on one Sun Fire 15K; runtime
of the single MPI processes in seconds

Rank-ID User Time MPI Overhead Rank-ID User Time MPI Overhead

0 92.8 0.5 4 46.5 46.9

1 56.7 36.6 5 42.8 50.6

2 56.0 37.3 6 44.2 49.1

3 44.8 48.5 7 44.5 48.8

Table 2. NPB BT-MZ Class A benchmark with 16 MPI-Processes on one Sun Fire 15K; runtime
of the single MPI processes in seconds

Rank-ID User Time MPI Overhead Rank-ID User Time MPI Overhead

0 90.4 0.5 8 18.7 72.0

1 55.1 35.8 9 18.9 72.0

2 54.9 36.0 10 11.6 79.3

3 33.7 57.2 11 11.5 79.4

4 31.0 59.9 12 10.9 78.0

5 31.2 59.7 13 6.7 84.2

6 19.1 71.8 14 6.7 84.3

7 19.1 71.8 15 4.0 86.9

Table 3. NPB BT-MZ Class A benchmark with 8 MPI-Processes on one Sun Fire 15K; comparison
of runtime with different thread distribution methods in seconds

#procs built-in built-in DTB #procs built-in built-in DTB

balanc. off balanc. on balanc. off balanc. on

8 92.1 22 29.0

10 55.7 24 40.8 34.8 35.1

12 46.4 26 28.7

14 46.5 28 27.2

16 66.6 43.7 44.7 30 24.3

18 38.0 32 31.9 25.6 24.1

20 34.0

on the other hand, does not have such a restriction, and can employ an arbitrary number
of threads.

The results in tables 3 and 4 show the remarkable impact of DTB on the performance
of BT-MZ. While the runtimes are not monotonically decreasing, due to interference with
other unrelated jobs running on the 72-processor Sun Fire 15K, overall the use of DTB
results in considerable improvement. In particular, just adding 2 additional threads results
in a roughly 40 percent improvement in runtime for both 8 and 16 MPI processes, as the

438 Alexander Spiegel, Dieter an Mey, and Christian Bischof

Table 4. NPB BT-MZ Class A benchmark with 16 MPI-Processes on one Sun Fire 15K; comparison
of runtime with different thread distribution methods in seconds

#procs built-in built-in DTB #procs built-in built-in DTB
balanc. off balanc. on balanc. off balanc. on

16 89.6 26 31.6
18 55.1 28 26.1
20 41.8 30 25.6
22 35.4 32 60.2 24.8 24.5
24 32.4

Table 5. NPB BT-MZ Class A benchmark with 16 MPI-Processes on two Sun Fire 6800; com-
parison of runtime with different thread distribution methods in seconds

#threads #processors built-in DTB DTB
per MPI process balancing off worst case best case

1 16 89.5
2 32 47.7 31.2 23.4
3 48 37.6 27.1 21.5

DTB library is able to allocate these additional resources in a fashion that substantially
reduces load imbalance. Further it is noteworthy that the runtimes of the hand-coded,
BT-specific load balancing scheme and of the much less programming-intensive DTB
parallelization are comparable.

Lastly, in table 5 we describe an experiment with 16 MPI processes distributed over
two Sun Fire 6800 nodes. In this case, the BT-specific load balancing mechanism cannot
be employed as it assumes that all processes have access to the same shared memory.
In such a case, the initial distribution of processes to nodes has an important impact on
how much can be achieved with the DTB mechanism. Starting the first 8 processes on
the first node and the second 8 processes on the second node is the worst case, as most
of the work resides on the first node, whereas distributing the processes alternatingly to
the nodes is the best case.

We conclude that in all experiments the DTB load balancing approach worked
well. In cases where the built-in balancing scheme based on the grid sizes is applica-
ble, it performs quite similar to the DTB mechanism. However, the DTB library of-
fers greater flexibility with respect to the number of CPUs that can profitably be em-
ployed, and in particular already adding just a few processors results in greatly reduc-
ing load imbalance. Given that we had to add just two lines of code to the "unbal-
anced" BZ-MZ benchmark, the DTB library offers a very good return for a very limited
programming investment.

3.3 The FLOWer Navier-Stokes-Solver

In an ongoing project sponsored by the German Research Council (DFG), scientists of
the Laboratory of Mechanics of RWTH Aachen University are simulating PHOENIX,
a small scale prototype of the Space Hopper, a space launch vehicle designed to take

Hybrid Parallelization of CFD Applications with Dynamic Thread Balancing 439

Table 6. FLOWer on one Sun Fire 6800; 6 processes with 2 threads each; runtime of the single
MPI processes in seconds

Rank-ID User Time MPI Overhead Rank-ID User Time MPI Overhead
0 258.5 253.3 3 187.5 324.3
1 182.8 329.0 4 186.0 325.8
2 210.6 301.2 5 497.6 14.2

Table 7. FLOWer on one Sun Fire 6800; runtime with and without DTB in seconds

#processors #MPI processes #threads without DTB with DTB
12 6 2 499.8 350.6
14 7 2 606.9 450.7
16 8 2 511.0 317.0
18 6 3 408.8 286.3
21 7 3 474.3 347.1
24 6 4 363.2 314.0

off horizontally and glide back to earth after placing its cargo in orbit (see [4,5,6]).
The corresponding Navier-Stokes Equations are solved on a block structured grid with
FLOWer, a flow solver developed at the German Aerospace Center (DLR).

The code is parallelized with the CLIC-3D communication library which encapsu-
lates all the MPI communication. As all information exchange is grid block-oriented,
the number of grid blocks - which in our case is 20 - limits the number of MPI
processes. When less MPI processes are started than blocks are used, FLOWer dis-
tributes the blocks over the processes according to the grid sizes in an effort to bal-
ance computational load. Underneath the coarse-grained parallelization with CLIC-
3D/MPI, the most computationally expensive loop nests can be efficiently parallelized
using threads.

We carried out similar experiments as with the BT-MZ benchmark on a 24-processor
Sun Fire 6800. In table 6, the runtimes of a job with six MPI processes, each using 2
threads, is shown in detail. It can be seen that the compute time of the various processes
differs by a factor of over two.

In table 7, we show the impact of adding more threads, with or without employing the
DTB library. We noticed that an increase of the number of MPI processes not necessarily
improves performance, which probably has to do with the fact that a greater number of
MPI processes leads to a greater communication overhead overall.

However, more importantly, the use of the DTB library resulted in substantial im-
provements in any case. Given that FLOWer is a code used in production in many
projects, these results show the benefit of hybrid parallel programming and the perfor-
mance potential that can be gained from dynamic thread balancing schemes on large
SMP nodes.

440 Alexander Spiegel, Dieter an Mey, and Christian Bischof

4 Conclusions

By automatically varying the number of threads per MPI process based on timing results
of the running program we offer an easy-to-use opportunity to improve the load balance
of hybrid applications on clusters of shared-memory machines with fat nodes. The PMPI
profiling interface of MPI allows us to easily capture relevant timing information, and
as a result, a potential user only has to add a subroutine call in a few places of the code
to trigger the dynamic thread balancing (DTB) mechanism.

Experimental results with the NAS BT parallel multizone benchmark and the
FLOWer CFD solver show that use of the DTB library results in substantial improve-
ments, already when just a few processors are added. In the case of the BT-MZ bench-
mark, the DTB library resulted in performance improvements comparable to that
achieved by the BT-specific balancing mechanism provided by the benchmark devel-
opers, when the BT-specific load balancing mechanism could be employed. However,
the programming effort required to use the DTB library is substantially less and it can
be employed in a much more flexible fashion as the number of additional processors is
concerned.

In future work, we will investigate to what extent we can take the ccNUMA architec-
ture of the Sun Fire 15K architecture into account to migrate data closer to computational
threads, and whether we can reduce overhead by decreasing the number of times we ac-
tivate the DTB mechanism. We will also work on improving the robustness of the DTB
mechanism during the warm-up phase and on loaded systems.

References

1. G. Jost, H. Jin, H., D. an Mey, and F. Hattay. Comparing the OpenMP, MPI and Hybrid
Programming Paradigms on an SMP Cluster, NAS Technical Report NAS-03-019, NASA Ames
Research Center, Moffet Field, CA, November 2003.

2. S.W. Bova, C.P. Breshears, H. Gabb, B. Kuhn, B. Magro, R. Eigenmann, G. Gaertner, S.
Salvini, and H. Scott. Parallel Programming with Message Passing and Directives. Computing
in Science and Engineering, September 2001, pp. 22-37.

3. R. Rabenseifner. Hybrid Parallel Programming on Parallel Platforms. EWOMP’03 - Fifth Eu-
ropean Workshop on OpenMP,
http://www.rz.rwth-aachen.de/ewomp03/omptalks/Tuesday/Session7/T01p.pdf.

4. M.K. Hesse, B. Reinartz, and J. Ballmann. Inviscid Flow Computation for the Shuttle-Like
Configuration PHOENIX. Notes on Numerical Fluid Mechanics, Vol. 87, Eds. Chr. Breitsamter,
B. Laschka, H.-J. Heinemann, R. Hilbig, Springer 2003, pp. 172-179.

5. M.K. Hesse, B. Reinartz, and J. Ballmann. Numerical Investigation of the Shuttle-Like Con-
figuration PHOENIX. High Performance Computing in Science and Engineering 2002, Ed.
E. Krause, W. Jäger, Springer Verlag, ISBN 3-540-43860-2, pp. 379-390.

6. M.K. Hesse, B. Reinartz, and J. Ballmann. Numerical Investigation of a Reusable Space
Transportation System. In: Proceedings of the 3rd International Symposium on Atmospheric
Reentry Vehicles and Systems, Arcachon/France, 24-27 March 2003.

7. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.
The NAS Parallel Benchmarks, NAS Technical Report RNR-94-007, NASA Ames Research
Center, Moffet Field, CA, March 1994.

Hybrid Parallelization of CFD Applications with Dynamic Thread Balancing 441

8. D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow. The NAS Parallel
Benchmarks 2.0. NAS Technical Report NAS-95-020, NASA Ames Research Center, Moffet
Field, CA, December 1995.

9. R.F. Van der Wijngaart, and H. Jin. NAS Parallel Benchmarks, Multi-Zone Versions. NAS
Technical Report NAS-03-010, NASA Ames Research Center, Moffet Field, CA, July 2003.

Distributed Computing: Tools, Paradigms
and Infrastructures. An Introduction

Organizers: Beniamino Di Martino1, Rocco Aversa1, and Laurence Tianruo Yang2

1 Second University of Naples, Italy
2 Francis Xavier University, Canada

An Overview

The technology and performance improvements of computational architectures and com-
munication infrastructure, together with the increase of the demand for a greater and more
easily usable computing power, generate new sophisticated requirements for distributed
application development. The methodologies, infrastructures and tools traditionally used
to develop distributed applications disclose a variety of limitations when applied to these
new and evolving scenarios. The goal of this minisymposium is to investigate these is-
sues, presenting some innovative approaches in managing the complexity in the design,
development and performance analysis of distributed systems. Papers included in this
minisymposium primary face the challenges of using the computing Grids as a com-
monly accepted general purpose computing platform, but the focus is also on paradigms
and tools to support the programmers in developing efficient parallel solutions using
MPI and OpenMP libraries. Furthermore, particular emphasis is given to some signifi-
cant aspects of industrial and commercial distributed applications such as, the mobility,
the dependability and the security.

Grid computing has become an area of extensive research. Major efforts are necessary
to develop suitable parallel programming environments for computational grids.

Easy and convenient access of Grid systems is a foremost need for Grid end-users as
well as for Grid application developers. Grid portals are the most promising environments
to fulfill these requirements and Dózsa et al. decided to create a Grid portal for a Parallel
Grid Runtime and Application Development Environment (P-GRADE) system. The
portal allows users to manage the whole life-cycle of building and executing complex
applications in the Grid: editing workflows, submitting jobs relying on Grid credentials
and analyzing the monitored trace-data by means of visualization.

Mattson and Kessler describe research in progress on a new parallel program-
ming environment for computational grids, called GridNestStep. It adopts a well estab-
lished parallel programming model, namely bulk-synchronous parallel (BSP) comput-
ing,
which, by enforcing a clear organization of the program into parallel supersteps, provides
an easily analyzable structure of GridNestStep programs.

In recent years, great effort has been made in developing methodologies and tools
that could help programmers to develop applications independently of the underlying
architecture, as in GRID environments; unfurtanatly,very few results have been obtained
to support prediction and evaluation of prototypal applications. Mancini et al. propose a
simulation-based methodology, based on HeSSE, a simulator of distributed applications
executed in heterogeneous systems, and MetaPL, a prototype-based language based on

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 442–443, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Computing: Tools, Paradigms and Infrastructures. An Introduction 443

XML, able to support many different programming paradigms. This allows to predict
GRID application and system performance, even when the execution environment is not
available and the application is not completely developed.

Some papers included in this minisymposium present paradigms and tools to support
the programmers in developing efficient parallel solutions.

Aliaga et al. employ two classical numerical computations to explore the challenges
and difficulties involved in the parallelization of GNU Scientific Library (GSL), a collec-
tion of routines for numerical scientific computations. The present performance results
for the parallelization of sparse matrix-vector product and for the Fast Fourier transform
(FFT) with shared memory architectures, multicomputers and clusters of networked
personal computers.

Gonzales et al. present a new MPI asynchronous peer-processor implementation of
the MaLLBa:DnC skeleton where all processors are peered and behave the same way
(except during the initialization phase) and where decisions are taken based only on local
information. The MaLLBa:DnC skeleton solves problems that fit in the Divide and Con-
quer paradigm; its main objective is to simplify the implementation of algorithms based
on some commonly used techniques such as Branch and Bound, Dynamic Programming
or Divide and Conquer.

One way to improve OpenMP performance is to minimize the data sharing among
threads, either by rearranging code or by privatizing data structures where possible.
Prior to an effort of this kind, it is crucial to know how the arrays are being accessed by
the executing threads, and detect which regions of arrays are shared between multiple
threads. The idea of the paper presented by Hernandes et al. is to provide a visual
environment to display the array access patterns detected at runtime. This information
can help the programmer restructure their code to maximize data locality or to achieve
OpenMP SPMD style code.

The minisymposium also includes some works on emerging aspects of industrial and
commercial distributed applications.

The emerging technology to primary face integration and cooperation of services, is
based on web services solutions, it is based on open standards and common data formats
which allow a deep cooperation among entities and applications and guarantee strong
resource sharing. In such context security plays a primary role to authenticate all subjects
involved in any transaction and to guarantee correct authorizations to access data and
functionalities offered by distributed services.

Casola et al. illustrate a policy-based approach to manage security and personaliza-
tion issues in a distributed infrastructure based on web services, by presenting a cen-
tralized and distributed architecture to enforce security mechanisms and meet different
security requirements.

Iacono et al. illustrate performability and dependability issues in distributed platform
proposing a mobile agents monitoring system. They propose a multi-formalism approach
based on model-checking techniques, queuing networks and timed Petri nets to model
a real-time mobile agents-based monitoring system.

Di Flora et al. also have worked on mobile agent system and they propose a technique
to estimate device location by evaluating the Received Signal Strength Indicator (RSSI).
They present the effectiveness of the approach by providing preliminary experimental
results obtained from our prototype system.

Parallelization of GSL:
Performance of Case Studies�

José Aliaga1, Francisco Almeida2, José M. Badı́a1, Sergio Barrachina1,
Vicente Blanco2, Marı́a Castillo1, U. Dorta2, Rafael Mayo1, Enrique S. Quintana1,

Gregorio Quintana1, Casiano Rodrı́guez2, and Francisco de Sande2

1 Depto. de Ingenierı́a y Ciencia de Computadores, Univ. Jaume I, 12.071–Castellón, Spain
{aliaga,badia,barrachi,castillo,

mayo,quintana,gquintan}@icc.uji.es
2 Depto. de Estadı́stica, Investigación Operativa y Computación, Univ. de La Laguna

38.271–La Laguna, Spain
{falmeida,vblanco,casiano,fsande}@ull.es

Abstract. In this paper we explore the parallelization of the scientific library
from GNU both on shared-memory and distributed-memory architectures. A pair
of classical operations, arising in sparse linear algebra and discrete mathematics,
allow us to identify the major challenges involved in this task, and to analyze
the performance, benefits, and drawbacks of two different possible parallelization
approaches.

1 Introduction

The GNU Scientific Library (GSL) [4] is a collection of hundreds of routines for nu-
merical scientific computations written in ANSI C, which includes codes for complex
arithmetic, matrices and vectors, linear algebra, integration, statistics, and optimization,
among others. The reason GSL was never parallelized seems to be the lack of a glob-
ally accepted standard for developing parallel applications. We believe that with the
introduction of OpenMP and MPI the situation has changed substantially. OpenMP has
become a standard de facto for exploiting parallelism using threads, while MPI is nowa-
days accepted as the standard interface for developing parallel applications following
the message-passing programming model.

In this paper we investigate the parallelization of a specific part of GSL using
OpenMP and MPI and their respective performances on shared-memory multiproces-
sors (SMPs) and distributed-memory multiprocessors (or multicomputers). In Section 2
we give a general overview of our parallel integrated version of GSL. Two classical
numerical computations, arising in sparse linear algebra and discrete mathematics, are
employed to explore the challenges involved in this task. In Section 3 we elaborate our
first case study, describing a parallelization of the sparse matrix-vector product addressed
to SMPs. In Section 4 the analysis is repeated for a parallel routine that computes the Fast
Fourier Transform (FFT) targeted in this case for multicomputers. Finally, concluding
remarks follow in Section 5.
� This work has been partially supported by the EC (FEDER) and the Spanish MCyT (Plan

Nacional de I+D+I, TIC2002-04498-C05-05 and TIC2002-04400-C03).

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 444–453, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Parallelization of GSL: Performance of Case Studies 445

2 Parallel GSL

Our general goal is to develop parallel versions of GSL using MPI and OpenMP which
are portable to several parallel architectures, including distributed and shared-memory
multiprocessors, hybrid systems, and clusters of heterogeneous nodes. Besides, we want
to reach two different classes of users: a programmer with no experience in parallel
programming, who will be denoted as user A, and a second programmer, or user B,
that regularly utilizes MPI or OpenMP. As additional objectives, the routines included
in our library should execute efficiently on the target parallel architecture and, equally
important, the library should appear to user A as a collection of traditional serial rou-
tines. We believe our approach to be different to some other existing parallel scientific
libraries (see, e.g., http://www.netlib.org) in that our library targets multiple classes of
architectures while maintaining the sequential interface of the routines.

Fig. 1. Software architecture of the parallel version of GSL

Our library has been designed as a multilevel software architecture; see Fig. 1. The
User Level (the top level) provides a sequential interface that hides the parallelism to
user A and supplies the services through C/C++ functions according to the prototypes
specified by the sequential GSL interface.

The Programming Model Level provides a different instantiation of the GSL li-
brary for each one of the computational models: sequential, distributed-memory, shared-
memory, and hybrid. The semantics of the functions in the Programming Model Level
are those of the parallel case so that user B can invoke them directly from her own parallel
programs. The Programming Model Level implements the services for the upper level
using standard libraries and parallelizing tools such as (the sequential) GSL, MPI, and
OpenMP.

In the distributed-memory (or message-passing) programming model we view the
parallel application as being executed by p peer processes, P0, P1,. . . ,Pp−1, where the
same parallel code is executed by all processes on different data.

In the Physical Architecture Level the design includes shared-memory platforms,
distributed-memory architectures, and hybrid and heterogeneous systems.

For further details of the functionality and interfaces, see [1].

446 José Aliaga et al.

3 Case Study I: Sparse Matrix-Vector Product

3.1 Operation

Sparse matrices arise in a vast amount of areas. Surprisingly enough, GSL does not
include routines for sparse linear algebra, most likely due to the lack of an standardized
interface definition, which was only developed very recently [3].

Here we explore the parallelization of the sparse matrix-vector product, denoted as
USMV in the Level-2 sparse BLAS [3]. In this operation an m×n sparse matrix A, with
nz nonzero elements, is multiplied by a vector x with n elements. The result, scaled by
a value α, is used to update a vector y of order m as y ← y + α ·A · x.

The implementation, parallelization, and performance of the USMV operation
strongly depends on the storage scheme employed for the sparse matrix. In the co-
ordinate format, two integer arrays of length nz hold the row and column indices of
the nonzero elements of the matrix, while a third array, of the same dimension, holds
the values. In the columnwise variant of this format, the values are listed by columns.
The rowwise Harwell-Boeing scheme also employs a pair of arrays of length nz for
the column indices and the values. A third array, of length m + 1, determines then the
starting/ending indices for each one of the rows of the matrix. Figure 2 illustrates the
use of these two storage schemes by means of a simple example.

0

2

0 1 2 3

1

1.0 2.0

4.0

3.0 1.0 2.0 3.0 4.0

0 1 1 3

0 1 2 3

0 0 2 1

A 3x4 sparse matrix

rows

cols.

values 1.0 2.0 4.0 3.0

0 2 3 4

1

0 1 2 3

0 13

Rowwise Harwell−BoeingColumnwise coordinate

Fig. 2. Storage schemes for a 3 × 4 sparse matrix with nz = 4 nonzero elements

The USMV operation is usually implemented as a series of saxpy (scalar α times
x plus y) operations or dot products depending respectively on whether the matrix is
stored columnwise or rowwise. In particular, in the columnwise implementation of the
matrix-vector product, for each column of A, denoted as A(:, j), a saxpy operation is
performed to update vector y as y ← y + A(:, j) · (α ∗ x[j]). In the rowwise case,
the matrix-vector product is computed as a series of dot products, involving a row of
matrix A, denoted as A(i, :), and x. The result is used to update a single element of y as
y[i] ← y[i]+α · (A(i, :) ·x). Codes for the columnwise/rowwise implementation of the
sparse matrix-vector product are given in Fig. 3. Minor modifications are introduced in
those codes to facilitate the exposition of the parallel implementations using OpenMP.

3.2 Parallel Implementation Using OpenMP

Parallelizing a sequential code using OpenMP is, in most cases, straight-forward. One
only needs to evaluate possible data dependencies and then place the appropriate direc-
tives in loops/regions of the code that indicate the OpenMP environment how to extract

Parallelization of GSL: Performance of Case Studies 447

indval=0;
for(j=0;j<n;j++){
nzj=nz_in_column(j);
temp=alpha*x[j];
for(i=0;i<nzj;i++){

k=rows[indval+i];
y[k]+=values[indval+i]

*temp;
}
indval+=nzj;

}

for(i=0;i<m;i++){
indval=rows[i];
temp=0.0;
for(j=rows[i];j<rows[i+1];
j++){
k=cols[indval];
temp+=values[indval]

*x[k];
indval++;

}
y[i]=y[i]+alpha*temp;

}

Fig. 3. Implementation of the USMV operation for the columnwise coordinate format (left) and the
rowwise Harwell-Boeing format (right). Routine nz in column returns the number of nonzero
elements in a column

parallelism from the corresponding parts using threads. As a general rule, in codes com-
posed of nested loops it is better to parallelize the outermost loop as that distributes a
larger part computational load among the threads.

Consider now the columnwise coordinate implementation of USMV (left of Fig. 3).
Parallelizing the outer loop in this code implies that two or more threads could be
concurrently updating the same element of vector y, which is a well-known case for a
race condition. A solution to this problem is to guarantee exclusive access to the elements
of y; however, synchronization mechanisms for mutual exclusion usually result in large
overheads and performance loss. Therefore, we decide to only parallelize the inner loop
in this case so that the outer loop is executed by a single master thread, while multiple
threads will cooperate during the computation of each saxpy operation performed in the
inner loop. In order to do so, we need to introduce the OpenMP directive:

#pragma omp parallel for private (i, k)
just above the inner loop. Given that each iteration of the inner loop requires the same
amount of computations, a static scheduling of the threads achieves a good distribution
of the computational load for this implementation. The parallelization of the inner loop,
though simple, is not completely satisfactory. In general, the number of nonzero entries
per column is small, while the number of columns of the matrix is much larger. Since
the threads need to be synchronized every time execution of the inner loop is terminated
(that is, once per column), a large overhead is again likely to arise in this approach.

The parallelization of the rowwise implementation (right of Fig. 3) using multi-
ple threads is much easier. As each iteration of the outer loop is independent, we can
parallelize this loop by introducing the directive:

#pragma omp parallel for private (indval, temp, j, k)
just before the outer loop. A certain amount of dot products are thus computed by each
thread and the threads only need to be synchronized once, on termination of the outer
loop. A dynamic scheduling of the threads provides a better computational load balancing
in this case as usually the nonzero entries of the matrix are distributed unevenly among
the rows.

448 José Aliaga et al.

Table 1. Time (in sec.) of the parallel implementations for the USMV operation

Density Columnwise coordinate Rowwise Harwell-Boeing

1 Thread 2 Threads 4 Threads 1 Thread 2 Threads 4 Threads

0.01 0.031 1.961 0.485 0.029 0.021 0.012

0.1 0.292 1.676 0.608 0.207 0.162 0.097

1.0 2.855 2.389 1.390 1.976 1.560 0.917

3.3 Experimental Results

All the experiments in this subsection were obtained on a 4-way SMP UMA platform
consisting of 4 Intel Pentium Xeon@700MHz processors with 2.5 Gbytes of RAM and
a 1 Mbyte L3 cache. We employed the Omni 1.6 portable implementation of OpenMP
for SMPs (http://phase.hpcc.jp/Omni/).

We report the performance of the parallel implementations of the USMV operation
for a sparse matrix with m = n = 50, 000 rows/columns and a rate of nonzero elements
(density) ranging from 0.01% to 1%. The sparse matrices are generated so that the
elements are randomly distributed among the rows/columns of the matrix resulting in
a similar number of nonzero elements per row/column. The number of (floating-point
arithmetic) operations of the sparse matrix-vector product is proportional to the square
of the number of nonzero entries of the matrix, and therefore the computational cost
of this problem can be considered as moderate. In other words, one should not expect
large speed-ups unless the matrix becomes “less sparse”. However, sparse matrices with
a density rate larger than 1% are rare.

Table 1 shows the execution times of the sequential code (columns labeled as 1 thread)
and the parallel columnwise/rowwise codes using 2 and 4 threads. Comparing only the
sequential codes, the columnwise implementation obtains larger execution times. This is
usual as current architectures, where the memory is structured hierarchically in multiple
levels, benefit more from an operation such as the dot product than saxpys. One could
then argue against the use of the columnwise code. However, notice that once the storage
scheme of the matrix is fixed as rowwise, the computation of y ← y + α · AT · x, an
operation probably as frequent as the non-transposed matrix-vector product, requires
accessing the elements of the matrix as in the columnwise code.

Now, let us consider the parallel performances of both variants. The columnwise
implementation offers poor parallel results until the density of nonzero elements reaches
1%. This behaviour was already predicted in the previous subsection: As the threads need
to be synchronized once per column, when the number of nonzero entries per column
is small compared with the number of columns of the matrix, the overhead imposed by
the synchronization degrades the performance of the algorithm. Only when the density
rate is 1% the parallel implementation outperforms the serial code, with speed-ups of
1.19 and 2.05 for 2 and 4 threads, respectively.

For the rowwise implementation, the experimental results show maintained speed-
ups around 1.3 and 2.4 using 2 and 4 threads, respectively, for all density rates. Fur-
ther experimentation is needed here to evaluate whether a different implementation of
OpenMP, or even a different platform, would offer better performances.

Parallelization of GSL: Performance of Case Studies 449

4 Case Study II: FFT

4.1 Operation

The Fast Fourier Transform (FFT) plays an important role in many scientific and en-
gineering applications arising, e.g., in computational physics, digital signal processing,
image processing, and weather simulation and forecast.

We analyze hereafter the parallelization of the FFT routines in GSL. The case when
the number of processors is a power of two has been extensively analyzed, and we employ
here the version in [5]. The FFT algorithms can be generalized for the case when neither
the number of processors nor the problem size,n, are a power of two. However, in general,
this introduces a non-negligible communication overhead and results in a considerable
load imbalance. We follow the parallel mixed-radix FFT algorithm presented in [2],
which is a variant of Temperton’s FFT [6]. The algorithm presents a low communication
overhead, has good load balance properties, is independent of the number of processors,
and poses no restrictions on the number of processors nor the size of the input vector.

We start by introducing some preliminary notation needed for the description of the
FFT algorithm [2]:

– Rows and columns of matrices are indexed starting from 0.
– Element (j, k) of matrix A is stated to as | A | (j, k).
– The Kronecker product of matrices A and B is denoted as A⊗B = (aijB).
– The permutation matrix P p

q of order pq is defined as

| P p
q | (j, k) =

{
1 if j = rp + s and k = sq + r,

0 otherwise.

– The diagonal matrix Dp
q of order pq is defined as

| Dp
q | (j, k) =

{
wsm if j = k = sq + m,

0 otherwise,

where w = exp(2πı/pq), ı =
√
−1.

– Im states for the square identity matrix of order m.

By definition, the Discrete Fourier Transform (DFT) of z = (z0, ..., zn−1)T ∈ Cn

is given by

xj =
n−1∑
k=0

zk exp(2πjkı/n), 0 ≤ j ≤ n, x ∈ Cn. (4.1)

Alternatively,

x = Wnz, Wn(j, k) = wjk , w = exp(2πι/n). (4.2)

Here, Wn is known as the DFT matrix of order n. The idea behind the FFT algorithm
is to factorize Wn so that the multiplication by Wn is broken up into O(n logn) mul-
tiplications involving smaller matrices (each one of a small constant size). Temperton

450 José Aliaga et al.

presented in [6] several variants of the FFT algorithm by rearranging the terms as differ-
ent factorized multiplications of the form Wnz. In particular, for n = f1f2 · · · fk−1fk,

Wn = Tk Tk−1 · · ·T2 T1 P1 P2 · · ·Pk−1 Pk, (4.3)

with
Ti = (Imi ⊗Wfi ⊗ Ili) (Imi ⊗Dfi

li
), Pi = (Imi ⊗ P li

fi
),

li = 1, li+1 = fili,mi = n/li+1, and 1 ≤ i ≤ k. Notice that all permutation matrices
in (4.3) are shifted to the right. From this formulation we arrive at the following sequential
algorithm for the FFT, with complexity O(n

∑
fi):

Factorize(n, k); // Compute f[0], ..., f[k-1]
for (i = k-1; i >= 0; i--)

z = P[i] * z;
for (i = 0; i < k; i++)

z = T[i] * z; // m[i]*l[i] sub-DFTs of size n
// have to be solved

While the first loop computes a permutation of the input array, the parallelization effort
is focused in the second loop.

4.2 Parallel Implementation Using MPI

The parallelization of the above algorithm has been also presented in [2] and we de-
scribe it with the code below. The algorithm is based on a particular layout of the
data to reduce the communication overhead with a proper load balance. At the be-
ginning of each iteration, processor pj receives just the data needed for the com-
putation during this iteration, according to a Rolled Break Cyclic distribution
(to be described later; see fig. 4). Only fi communication steps among processors
pj − 1 and pj + 1 are involved. After the computation of the local subproblems, the
Reverse Distributed Rolled Break Cyclic routine reallocates the data ac-
cording to a pure cyclic layout.

Factorize(n, k); // Compute f[0], ..., f[k-1]
Distribute_Cyclic(); // The permutation of the

// input array is distributed
// following a cyclic distribution

l = 1; // l = l[i]; m = m[i]
for (i = 0; i < k; i++) {

m = n / (f[i] * l);

Distribute_Rolled_Break_Cyclic(l, m, f);
// m[i] * l[i]/p sub-DFTs of size
// f[i] have been distributed on
// each processor

for (j = 0; j < m * l /p; j++) {

Parallelization of GSL: Performance of Case Studies 451

v[j] = D * v[j]; // v[j] is the local vector
// corresponding to sub-DFT j
// D is the diagonal matrix of order
// f[i]l. Submatrices of D of order
// f[i]f[i] are involved in each
// product

v[j] = Wf * v[j]; // Wf is the DFT matrix of order f
}
Reverse_Distributed_Rolled_Break_Cyclic(l, m, f);
l = l * f[i];

}

A total number of lm sub-DFTs of size f must be solved in iteration i. The perfect load
balance of the work is found when the lm sub-DFTs can be evenly distributed among the
actual number of processors. The Rolled Break Cyclic distribution groups them
into m blocks of size l among the processors. Each block has a representative processor,
procorig, from which the allocation of data starts in the block. A cyclic assignment is
then performed. After l data elements have been allocated, the cyclic distribution breaks
and continues again starting from procorig. The balanced load of work is attained
since procorig receives .l/p/ + 1 sub-DFTs and the remaining processors receive
.l/p/ sub-DFTs. Figure 4 depicts a Rolled Break Cyclic distribution of n = 30
elements on p = 4 processors. The number of blocks is m = 2, and the number of
sub-DFTs, per block, l = 5, is divided among the processors. In block m = 0 processor
p0 is procorg and is assigned 2 sub-DFTs, with the first one composed by the elements
{x0, x5, x10} and the second one consisting of {x4, x5, x14}. The remaining processors
receive 1 sub-DFT in this block. In block m = 1 procorig is processor p3.

Fig. 4. A Rolled Break Distribution of n = 30 elements on p = 4 processors. l = 5, f = 3 and
m = 2

4.3 Experimental Results

The experiments presented in this subsection were performed on a PC Cluster consisting
of a 32 Intel Pentium Xeon running at 2.4 GHz, with 1 GByte of RAM memory each,
and connected through a Myrinet switch. We have used the MPI implementation GMMPI

1.6.3. Vectors with complex entries randomly distributed were generated as input signals
for the algorithm. Two instance problem sizes are considered in the experiments, n =

452 José Aliaga et al.

510, 510 and n = 1, 048, 576. The first one is not a power of two. An interesting
feature is shown in Fig. 5, where the variation of the communication cost for the FFT
algorithm is reported. For both problem sizes, the communication volume remains almost
constant when the number of processors is increased, that is, the total time invested in
communications is not incremented as more processors are added. Table 2 shows the
execution times for the FFT algorithm. Although the first instance size is not a power of
two, the curves show a similar behaviour for both problem dimensions: execution times
decrease as more processors are added to the experiment. The load balance achieved
by the Rolled Break Cyclic distribution is strongly dependent on the factors fi

selected so that better performances can be expected if the factorizations are adapted
to the problem size and the number of processors but the computational effort may be
prohibitive.

Fig. 5. Variation of the communication cost of the FFT algorithm

Table 2. Time (in sec.) of the parallel implementations for the FFT operation

Number of processors

Problem Size 1 2 4 8 16 32

510,510 9.80 8.45 5.27 3.40 2.66 2.16

1,048,576 16.30 14.21 8.95 5.99 4.56 3.67

5 Concluding Remarks

We have described our efforts towards an efficient and portable parallelization of the GSL
library using OpenMP and MPI. Experimental results on an SMP and a multicomputer
report the performance of several parallel codes for the computation of two classical,
simple operations arising in linear algebra and discrete mathematics: the sparse matrix-
vector product and the FFT.

In particular, we have experienced that parallelizing the codes for the computation
of the sparse matrix-vector product is simple, but the performance depends not only

Parallelization of GSL: Performance of Case Studies 453

on the algorithm but also on the matrix storage scheme, sparsity pattern, and density
rate. Although the scalability of shared-memory architectures is intrinsically limited,
experience taught us that in a parallelization of the sparse matrix-vector product on
a multicomputer, the communication time plays an important role, becoming a major
bottleneck.

We have also observed that the parallelization of the FFT general algorithm is quite
elaborate. Although many parallel algorithms have been implemented on dozens of par-
allel platforms, most of them use internal code optimizations to run efficiently both se-
quentially and in parallel. Our own FFT codes should then make use of similar optimiza-
tion techniques to be competitive at the cost of loosing portability. Better performances
are expected in shared-memory architectures, where the communication overhead can
be avoided, but the load imbalance inherent to the distribution of the sub-DFTs in the
parallel algorithm seems difficult to avoid.

References

1. J. Aliaga, F. Almeida, J. M. Badı́a, V. Blanco, M. Castillo, U. Dorta, R. Mayo, E.S. Quin-
tana, G. Quintana, C. Rodrı́guez, and F. de Sande. Parallelization of gsl: Architecture, in-
terfaces, and programming models. In D. Kranzlmüller, P. Kacsuk, and J. Dongarra, editors,
EuroPVM/MPI 2004, number 3241 in Lecture Notes in Computer Science, pages 199–206.
Springer-Verlag, Berlin, Heidelberg, New York, 2004.

2. G. Banga and G. M. Shroff. Communication efficient parallel mixed-radix FFTs. Technical
Report 94-1, Indian Institute of Technology, February 1994.

3. I.S. Duff, M.A. Heroux, and R. Pozo. An overview of the sparse basic linear algebra subpro-
grams. ACM Trans. Math. Software, 28(2):239–267, 2002.

4. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi. GNU scientific
library reference manual, July 2002. Ed. 1.2, for GSL Version 1.2.

5. M. J. Quinn. Parallel Computing. Theory and Practice. McGraw-Hill, 1994.
6. C. Temperton. Self-sorting mixed-radix fast fourier transforms. Journal of Computational

Physics, 52:1–23, 1983.

Design of Policy-Based Security Mechanisms
in a Distributed Web Services Architecture�

Valentina Casola1, Antonino Mazzeo2,
Nicola Mazzocca2, and Salvatore Venticinque1

1 Seconda Universita’ di Napoli
Dipartimento di Ingegneria dell’Informazione

Aversa (CE), Italy
{valentina.casola,salvatore.venticinque}@unina2.it

2 Universita’ degli Studi di Napoli, Federico II
Dipartimento di Informatica e Sistemistica

Naples, Italy
{mazzeo,n.mazzocca}@unina.it

Abstract. In the recent years, modern complex infrastructures are built on inte-
gration and cooperation of legacy and/or new systems; the emerging technology,
to primary face the involved interoperability problems, is based on web service
solutions. It is based on open standards and common data formats which allow a
deep cooperation among Entities and applications and guarantee strong resource
sharing. In such context security plays a primary role to control access to data
and functionalities offered by distributed services. In this paper we illustrate a
policy-based approach to manage security and personalization, in particular we
have designed a hybrid infrastructure based on web services in which policy en-
forcer mechanisms are managed both in a centralized way by the registry server
and in a distributed way, i.e. each service implements security mechanisms to
authenticate and authorize users. A case study is illustrated showing a distributed
architecture for health-care applications.

1 Introduction

In the recent years we are assisting to a wide number of experiences in the integration
and cooperation of legacy and/or new systems; in general, complex transactions involve
the integration of services managed by different Entities. Sometimes the integration is
performed by a human worker who is able to access the different providers and to com-
plete each transaction by a special interface. However, the integration should be handled
by software applications that can automatically access the system and then exploit the
required services. In the latter situation we distinguish two different approaches:

1. All Providers are forced to observe a set of fixed rules conceived by a centralized
authority in order to grant interoperability and to provide common mechanisms for
accessing services and resources.

� This work was partially supported by “Centro Regionale di Competenze" and “Progetto
Telemedicina" Regione Campania.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 454–463, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Design of Policy-Based Security Mechanisms 455

2. There are no restraints about the implementation of services. Each provider has just in
charge the definition of its own policies in such a way that Security Level Agreements
and Quality of Services constraints are satisfied for the global transaction.

In order to realize a cooperative system we need a physical infrastructure that makes
the facilities accessible by software applications from remote requestors. The main re-
quirements for such kind of systems are interoperability, heterogeneity support, capabil-
ity to adopt and integrate legacy systems. The emerging infrastructure to primary face
interoperability problems and to efficiently meet the listed requirements, is based on Web
Service solutions [5]; they are in fact based on open standards and common data formats
which allow a deep cooperation among Entities and applications and guarantee strong re-
source sharing. In such context, security plays a primary role to authenticate all subjects
involved in any transaction and to control the access to data and functionalities offered by
distributed services. Usually, each service manages its own security mechanism. When
we integrate different services, how a security manager could manage the global secu-
rity? To address this problems, we have first introduced the adoption of policy-based
approaches which are able to split security and application specific problems, then, we
have investigated two security models to manage policies to finally propose a hybrid
security mechanism. The reminder of this paper is structured as follows: details about
Security mechanisms in Web Service architectures are reported in Section 2 while in
Section 3 we will focus our attention on design principles which should be taken in
count to enforce and manage proper security policies and mechanisms in a distributed
infrastructure; a case study is illustrated in Section 4 showing an implementation of a
prototypal architecture for the application of our approach for healthcare services.

2 Providing Security in Web Services Architectures

Web services are an emerging distributed technology which focuses on Internet-based
standards technology such as XML, HTTP, SOAP, WSDL and so on [6]; they have
been conceived to support interoperability, i.e. independence of the transport protocols,
programming language, programming models and system software. The main actors in
a Web Service architecture are requestors and providers. The first ones access service
providers acting as clients in order to provide new value added services to the final users.
The added-value can deal with the best suited service to users’ profile, with the cheaper
one or with the integration of more services in a wide transaction. A registry server, im-
plemented by the Universal Description Discovery and Integration (UDDI) technology
[12], allows the requestor to look for available services, which are delivered by the dif-
ferent providers. The integration is performed at application level by the requestor that is
able to access external services according to a specific workflow. Web Service is a widely
accepted standard for interoperability among web oriented multi-tier applications and it
seems to be plain how the system design has to be approached and what technologies
have to be involved. However it is not clear how a common security infrastructure should
be built in order to grant some basic requirements [3,9] and available solutions are not
mature, yet. Security problems need to be addressed very carefully as security “threats"
are very subtle, furthermore they act at all levels of the Infrastructure.

456 Valentina Casola et al.

For these reasons, there is the need of designing more than just one mechanism, and
there is the need to properly design, implement and manage them at all levels [2]. In this
paper we have focused our attention on security at application level, in particular on:

– Identification and Authentication,
– Access Control: Authorization.

In distributed systems, each transaction needs to be traced from the origin to its
completion, across different domains or tiers, without losing its security level; at this
aim we intend to propose not a proprietary technique but a policy-based approach, as
it allows an efficient and flexible management of security. It is based on two distinct
elements:

– a policy, that is a set of security rules which are able to express security statements
on who (a single user, a group, a special role,..) can access a resource and which
actions are allowed.

– a policy enforcer engine which is enforced by a resource manager to protect the
resource (functionalities and data of a generic service).

The reminder of this paper is focused on design principles to implement policy-based
security mechanisms in a complex web-services architecture.

3 Design of Security Mechanisms

In general, security problems involve both technical and management issues. In fact,
when we talk about security technical issues, we rely not only on mechanisms to protect
the infrastructure and all services/resources from malicious or not-authorized users, but
also on organizational aspects which are subtler and that need to be managed by proper
security policies. In this paper we will focus our attention on Web Service and introduce
two architectural choices:

1. centralized security mechanisms, enforced on the Access Point,
2. distributed security mechanisms, enforced on each single service provider.

In the next subsections we will illustrate these two design solutions and our novel
hybrid approach.

3.1 Centralized Mechanisms

In a centralized approach, when an external user (or other external services) asks for
a service, the Access Point implements Resource Manager functionalities enforcing
the policy engine. In this case the Access Point is responsible for implementing au-
thentication mechanisms (weak or strong); for example, a weak authentication method
(login/password based) verifies whether the user login is in the user-DB (identification)
and the corresponding password matches the one in the passwd-DB (authentication). If
these steps are successfully completed, the Policy Manager performs the authorization
process.

Design of Policy-Based Security Mechanisms 457

Policy DB

Service 1

Service 2

Service n

Access
Point

Policy
Manager

UDDI
registry

Fig. 1. Centralized security mechanisms

Policy DB

Service 1
Policy
Manager

Access
Point

UDDI
registry

Policy DB
Service n

Policy
Manager

Fig. 2. Distributed security mechanisms

The request is forwarded to a Provider registered in the UDDI server only if the
Policy manager has granted the claimed authorization (Figure 1).

The Service Provider itself needs to authenticate the Access Point and to process its
authorizations before granting and serving the request. If the communication between the
service provider and the Access Point uses a secure channel the request needs to include
just the proper parameters and the service invocation request. If the communication uses
a public channel then we need to provide other security mechanisms acting at different
levels (for example SSL, Kerberos).

In conclusion, the centralized method is conceptually very simply to implement;
the access evaluation function is enforced on the Access Point to manage the global
security; the real drawbacks are the growing of database size (data and policies) and the
centralized management of different security domains.

3.2 Distributed Mechanisms

In a distributed approach, the Access Point forwards the access request to the service
provider which locally implements all security mechanisms, as shown in Figure 2.

Practically, the authentication and authorization evaluation model is the same of the
centralized way but the policy manager is locally managed and enforced, so we would
not spend many words on this, indeed, what we want to underline here is that, locally,

458 Valentina Casola et al.

a security administrator could enforce a very fine-grain policy. This implies that it is
possible to manage a very fine access control based on credentials. Furthermore it is
possible to personalize each request according to users’ profiles, even on the single user
and not just on his group/role. The personalization is important for two primary reasons:
to manage different client technologies and, furthermore, to manage a fine grain access
control to resources [4]. Indeed, defining very fine grain access rules and policies makes
possible to associate a very detailed access profile to users and so to apply very restrictive
policies not just on functionalities but on data, too. For example suppose you need to
implement the following rule:
“Only the medical doctor of the patient X affected by AIDS could read and modify his
medical records".
This is a very simple example of rule which could not be enforced with the simple
use of high-level credentials such as the role “medical doctor" who can, in general,
modify a clinical record. The privacy issue involved in the specific pathology (AIDS)
puts in relation both the subject who wants to “act on" the resource (modify) and some
“attributes" of the resource itself (who is the subject of the records? and who is the doctor
of the subject?).

In order to make possible the implementation of such rules, we want to propose a
mechanism to make service provider able to delegate the access control of his services
to other trusted providers when a fine grain authentication is not required. At the same
time the service provider is able to locally perform the access control when a fine grain
control is required.

3.3 Our Approach

The main goal of this paper is to propose a hybrid security mechanism to overcome
the limitation of classical models (e.g. the pure centralized one and the pure distributed
one) and to allow the exploitation of more flexible authentication and authorization
mechanisms.

The classical distributed mechanism allows a fine-grain access control, but the over-
head of authentication and authorization must carried on by the service provider. In the
centralized mechanism the providers have to delegate the access control to others (in
our design, to the Access Point) and this is not so easy to manage in a large distributed
environment.

We propose a hybrid model that allows the provider to define and expose its autho-
rization policy in order to delegate authentication and authorization to a trusted Third
Party (the Access Point). Furthermore, when the service exploitation requires a finer
access control the requestor will include clients’ credential in the message that will be
locally processed and authorized by the Provider which could apply more restrictive
policies.

We have developed a security infrastructure that works as follows:

1. The service provider defines a role based security policy for a subset of its services
which need a coarse grain authorization. The service provider defines a fine grain
policy for all the other services;

2. The service provider trusts a third party that is able to download the policy and to
access any service belonging to the first subset;

Design of Policy-Based Security Mechanisms 459

3. The trusted party authenticates the users and it performs the coarse grain authoriza-
tion;

4. If these steps are successfully completed, the Policy Manager gathers the credentials
(typically a role or a group) of the user and downloads the policy of the requested
service as shown in Figure 3, in order to verify if the claimed request is allowed to
him. Finally the request is submitted to the provider that holds the invoked service.

5. When the user invokes a service belonging to the first subset, the trusted party
access the service; when the user invokes a service belonging to the second subset
the trusted party access the service forwarding users credentials in the request itself
(for example X.509 certificate) and access control is locally performed.

Policy DB

Policy DB

Policy DB

Policy DB s

Service 1

Service 2

Service n

Access
Point

Policy
Manager

Fig. 3. Hybrid security manager

Service providers have to define policies, and let them be available for download
from the trusted party. In this case the service provider must just authenticate this party
and trust any access from it.

4 Case Study

Having introduced the general design of security mechanisms, we are now concerned
with a closer look onto the implementation of a prototypal architecture with a hy-
brid mechanism applied on web services infrastructures for health-care applications.
In health-care applications, there is the need to control access to private data (e.g. med-
ical records) and specific functionalities. At this aim we have first defined different users
typologies and roles and then we have written different access control rules to adopt the
Role-based Access Control model [7], then we have implemented the applications and
defined the operations that each role could acts on them. The chosen policy language is
the XML Access Control Language (XACL) [8], by which security rules are expressed
by the ternary vector (role, resource, operation). XACL is quite similar to the standard
eXtensible Access Control Markup Language (XACML) [11], its expression power is
limited, but a free policy enforcer engine is available and it is suitable for our prototype.
We have defined 4 different user typologies:

460 Valentina Casola et al.

role resource operation

primary doctor registry records “read"

primary doctor analysis records “read" and “write"

primary doctor therapy records “read" and “write"

assistant doctor registry records “read"

assistant doctor analysis records “read"

assistant doctor therapy records “read" and “write"

therapy doctor registry records “read"

therapy doctor analysis records “read"

therapy doctor therapy records “read" and “write"

administrators registry records “read" and “write"

administrators analysis records -

administrators therapy records -

patients registry records “read"

patients analysis records “read"

patients therapy records “read"

Fig. 4. Access Control Rules

medical personnel; administrators; patients; generic users;

In each typology we have located different roles, for example the roles involved
in the medical personnel one are: primary doctor, assistant doctor, therapy doctor and
nurse. As already said, they were adopted for the implementation of the Role based
Access Control model (RBAC) [7]. Our critical application consists of the management
of medical records; in particular, the implemented functionalities are the basic operations
(“read" and “write"), while the resources (that is the sensible data) are the specific fields
of the medical record. In our prototype we have assumed the resources are: registry
records, analysis records and therapy records, which have different privacy issues and
security requirements.

In Figure 4 we report an useful representation of some access control rules, in it
each column represents an element of the vector (role, resource, operation) and each
raw represents a rule.

It is important to underline that the management of user profiles is completely inde-
pendent from the Web Services Security layer but it is exploited in each transaction. We
have defined different profiles for authorization and for different device technologies;
so, we have also adopted this information to early discover the best service available for
a user according to both his authorization and technological profile.

4.1 The Provided Implementation

In our implementation the published services provide a method to download vendor’s
policy. The prototype is illustrated in Figure 5. Three providers offer some services

Design of Policy-Based Security Mechanisms 461

(6) Service invocation

(3) Signature
download

(2) Authentication

Access
Point
XACL

Policy engine

UDDI
Registry

SOAP Interface

Ws Wrapper

Medical
Service
Provider

SOAP Interface

Ws Wrapper

Medical
Service
Provider

SOAP Interface

Ws Wrapper

Medical
Service
Provider

(1) Services discovery

(5) Service
personalization

(4) Policy
download

Fig. 5. Service exploitation in the implemented prototype

to their customers, who need to be subscribed to the deployed services. The subscrip-
tions, the roles and the authorization rules for each service are defined by each provider
autonomously. Each time the policies are upgraded they are signed, stored and made
available to be downloaded by the policy enforcer engine. The providers deploy their
services in a public or private UDDI register. The Access Point hosts a web portal that
provides an integrated web access to distributed Health Care services. It provides three
different authentication mechanisms (i.e. login/passwd, hashed challenge response and
authentication by means of X.509 digital certificates [10,1]) and provides authorization
by an XACL policy enforcer engine developed by the IBM [8].

The authorization engine retrieves user’s credentials from the certificate (according
to an Italian law we put the role information in the subject field of the X.509 certificate)
and it gathers the signed policies from remote providers. According to the authorization
results it is possible to personalize the access by presenting to the user just the allowed
services and functionalities. In the following we describe the logical sequence for service
exploitation.

After an user request, the Access Point is able to discover the allowable services
searching for them in the register and to present them to the user (1);the research result
is a list of available providers offering the requested service. The first time the user asks
for a service, beyond a successful authentication (2), the Access Point is able to retrieve
the signature of the policy (3) and to check if it is still consistent with the owned one.
If the signatures do not match a new policy is downloaded from the provider (4). After
the evaluation of the authorizations, the service is presented to the user with the specific
functionalities which are allowed to him (5). This choice allows the provider to delegate
to an external web portal the presentation and the personalization of its services without
to relax the relationships with their customers, and preserving the full control of its own
security policies. In fact the users do not need to establish any other relationship with
other third parties (i.e. the Portal) in order to exploit the services. This aspect is important
because, for example, a doctor could be employed in different hospitals assuming the
same or different roles but with different authorization rules, since each provider defines
its own policies. In the same way a patient could be a customer of different hospitals,

462 Valentina Casola et al.

and be registered with their services, according to its own needs. About the selected case
study, a primary doctor could look for his patients’ records, and will be able to read or to
modify the information. In the same way a patient will be able just to look for his data to
read and not to modify them. In order to support interoperability between any provider
and the Access Point, we deployed the services by the Web Services technology.
The execution environment is the J2SE 1.4.0 and the application platform is J2EE inte-
grated with the JWSDP 1.0.01 (The Java Web Services Developer Pack). JWSDP 1.0.01
provides: the Java XML Pack to support XML-based applications and the SOAP pro-
tocol, a tool for Web Services deploying an application server (Tomcat 4.0), a registry
server that implements the UDDI register named Xindice. We have installed the appli-
cation environment on each provider to deploy the services and on the registry server
in order to allow publication and discovery in the UDDI register. The Access Point in-
tegrates Apache2.0 and Tomcat4.0 to adopt the suite of implemented servlets and Java
Server Pages (JSP), which exploit a set of high level APIs to access to UDDI register, and
to invoke XACL mechanism. As we have enforced security mechanisms on the Access
Point, we have assumed that the nodes of the Infrastructure (the web portal, its compo-
nents, the DB serve and the service providers) are connected by a virtual private network
(VPN) that provides security at network and transport layers and allows the authentica-
tion among the nodes. In a different application context, for example e-commerce and
marketplace, the Access Point could offer the personalization as a value-added service
by defining new policies and profiles for its customers; in this case the new security
engine should process a combination of the local and the remote policies to guarantee
security and personalization, too.

5 Conclusions and Future Works

In this paper we have described different approaches for designing security mechanisms
in Web Service architectures and we have proposed a novel hybrid security mechanisms
in order to efficiently manage security issues. We have presented a Health Care case
study and developed a prototypal implementation that uses the hybrid model to provide
security and personalization for web services in Telemedicine Projects. We have adopted
a proprietary UDDI register, so in an early version of our system the security enforcer
engine is integrated in the Access Point and not directly in the register. Actually we
are implementing an extended model of the UDDI register which is integrated with the
enforcer and is able to process profiled requests, too.

References

1. G.B. Barone, N.Margarita, N.Mazzocca, A.Mazzeo and L.Romano. Secure Access to Person-
alized Web Services. Proceedings of Pacific Rim International Symposium on Dependable
Computing. IEEE Comput. Soc, pp. 266-269. Seoul, Korea, 2001.

2. M.S. Baum, W. Ford. Secure Electronic Commerce. Ed. Prentice Hall, 1997.
3. K. Beznosov, B. Hartman, D.J. Flinn, and S Kawamoto. Mastering Web Services Security.

Wiley.

Design of Policy-Based Security Mechanisms 463

4. S. Boll. Modular Content Personalization Service Architecture for E-Commerce Applications.
Proceedings of the 4th IEEE Int’l Workshop on Advanced Issues of E-Commerce and Web-
Based Information Systems (WECWIS 2002). IEEE Comput. Soc. pp. 213-220

5. A. Bosworth. Developing Web Services. Proceedings 17th International Conference on Data
Engineering. IEEE Comput. Soc, pp.477-81. Los Alamitos, CA, USA, 2001.

6. A. David , Chappell and Tyler Jewell. Java Web Services. O’Reilly.
7. D. Ferraiolo, J. Cugini, and D. Kuhn (1995). Role-Based Access Control (RBAC): Features

and Motivations. In Computer Security Applications, pages 241–248.
8. S. Hada, M. Kudo. XML Access Control Language: Provisional Authorization for XML

Documents. Tokyo Research Laboratory,IBM Research, 2003.
(http://www.alphaworks.ibm.com/aw.nsf/download/xmlsecuritysuite)

9. H. Kreger. Web Services Conceptual Architecture. IBM Software Group May 2001
10. RFC 2459. Internet X.509 Public Key Infrastructure Certificate and CRL Profile.
11. XACML: eXtensible Access Control Markup Language.

http://www.oasis-open.org/committees/xacml/repository/
12. AA.VV. UDDI technical white paper Role Uddi.Org, september 2000.

Supporting Location-Aware Distributed Applications
on Mobile Devices

Cristiano di Flora1, Massimo Ficco2, and Stefano Russo1,2

1 Computer Science Department
“Federico II” University of Naples

Via Claudio 21, 80125 - Napoli, Italy
{diflora,stefano.russo}@unina.it

2 Laboratorio Nazionale per l’Informatica e la Telematica Multimediali CINI - ITEM
Via Diocleziano 328, 80124 - Napoli, Italy

massimo.ficco@napoli.consorzio-cini.it

Abstract. This work proposes to extend the Java APIs for Bluetooth (JSR82) in
order to provide the Location API (JSR179) with a source of indoor-location infor-
mation. The proposed extension relies on a specific indoor positioning technique
to track current location. The adopted technique uses the Received Signal Strength
Indicator (RSSI) as a good room-fingerprint. We evaluate the effectiveness of the
approach by examining preliminary experimental results obtained from our first
system prototype.

1 Introduction

The Wireless World Research Forum (WWRF) has identified device diversity and
ambient-awareness as two key properties of applications and services in future mobile
systems [1]. According to the WWRF, emerging applications for mobile devices will be
adaptive, personalized, and context-aware. Indoor applications are specially concerned
with ambient-awareness. Indeed, most of these applications adapt their behavior [2] to
the physical location of users, and of other entities (i.e. services and devices) [3] as well.
Moreover, they will be delivered to different end-devices (phones, computers, home
appliances) over diverse wireless networks. Despite this diversity, many mobile devices
(e.g. smart-phones and PDAs) now support the Mobile Information Device Profile of
the Java 2 Micro Edition (J2ME) platform. This platform provides a common yet flex-
ible computing and communication environment that can be fitted for (and shared by)
devices having different capabilities. Many modern mobile terminals are also equipped
with wireless connectivity devices, such as IEEE 802.11 or Bluetooth adapters. There-
fore, the Java Community Process has recently finalized two Java Specification Requests
(JSRs) in order to cope with location-awareness (JSR-179) [5] and Bluetooth commu-
nication (JSR82) [6] in Connected Limited Device Configuration (CLDC).

Several indoor-positioning techniques, including the one we presented in [7], exploit
the Received Signal Strength Indicator (RSSI) to determine the zone that the mobile de-
vice is operating in. Though Bluetooth’s Host Configuration Interface allows the RSSI
to be read, the JSR82 API does not provide such functionality; hence it is not suitable for
RSSI-based approaches. In this paper we propose to extend the JSR82 API in order to

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 464–471, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Supporting Location-Aware Distributed Applications on Mobile Devices 465

provide the Location API with a source of local information. We also show how to im-
plement an RSSI-based locationing technique in compliance with the JSR179 API. Our
solution is based on the insertion of a new component, called RSSI_Provider, into
the JSR82 API. This is in charge of producing information about signal strength and link
quality, which is needed in order to buildLocationobjects. We bridged the two APIs by
implementing a specificLocationProvider class (i.e. a location-providing module,
generatingLocations, as stated in JSR179), which exploits the RSSI_Provider to
generate Locations. The proposed solution can suit a wide variety of mobile devices,
since it requires no additional positioning device but a Bluetooth adapter. Based on
the designed extensions, we propose an implementation of the LocationProvider,
which relies on a specific RSSI-based indoor positioning technique [7].

The rest of the paper is organized as follows. In Section 2 we describe several
approaches to develop Location-Aware applications for mobile devices. Section 3 casts
some light on the Bluetooth and Location APIs. In Section 4 we present our solution with
some comments about the current prototype implementation. In Section 5 we provide
preliminary experimental results, and present some conclusions.

2 Developing Location-Aware Distributed Applications

In the last years a great deal of research has been conducted to realize systems and
technologies for automatic location-sensing of either people or devices. Each existing
approach solves a different problem or supports different applications. The work in [3]
proposed a taxonomy for location-sensing systems. This taxonomy is based on several
parameters, such as the physical phenomena used for determining location, the form
factor of the sensing apparatus, power requirements, infrastructure, and resolution in
time and space. A mobile user’s location can be determined using several techniques,
which are comprehensively described in [8]. Several positioning systems that use a tri-
angulation technique have been proposed [9,10,11,12]; such systems provide location
information by measuring either the distance between known points or the relative angle
with respect to known referring poles. In [7,13] location is calculated as a function of the
proximity to a known set of points. The mentioned works rely on different technologies,
such as Bluetooth, IEEE 802.11 RF, GPS, and ad-hoc solutions. They are conceptually
independent of the adopted technologies and techniques; unfortunately, to the best our
knowledge, they lack a common high-level software application programming inter-
face for location sensing. Thus using these solutions may result in ever heterogeneous
applications.

As for location-aware computing, no single location-sensing technology is likely to
become dominant, since each technology can either satisfy different requirements or
suit different devices. Since several technologies will coexist into future mobile sys-
tems, such systems will need a high-level software application programming interface
for technology-independent location sensing [4]. Several organizations have recently
proposed location APIs to leverage the interoperability of outdoor positioning systems.
The Open Mobile Alliance (OMA) Location Working Group (LOC), which continues
the work originated in the former Location Interoperability Forum (LIF) [15], is de-
veloping specifications to ensure interoperability of Mobile Location Services on an

466 Cristiano di Flora, Massimo Ficco, and Stefano Russo

end-to-end basis. This working group has defined a location services solution, which
allows users and applications to obtain location information from the wireless networks
independently of the air interface and positioning method. The Finnish Federation for
Communications and Teleinformatics (FiCom) has built a national location API to en-
able location-information exchange between network operators, and between operators
and service providers as well [14]. FICOM’s API is compliant with the LIF location
services specifications.

3 The Bluetooth and Location APIs for J2ME CLDC Profile

The JSR179 [5] defines a J2ME optional package to enable location-aware applications
for mobile devices. The functionality addressed by this specification can be classified
into the following two main categories: i) obtaining information about location and
orientation of the mobile device; and ii) accessing a landmark database stored on the
device. Each functionality exploits specific objects as information containers; indeed,
the Location class represents the standard set of basic device-location information,
whereas the Landmark class represents known locations (i.e. the places that mobile
users can go through).

The LocationProvider class represents a module that is able to determine the
location of the terminal. This may be implemented by using existing location methods,
including satellite based methods like GPS, and short-range positioning methods like
Bluetooth Local Positioning.

The JSR82 [6] aims to define a standard set of APIs that will enable an open software-
development environment for Bluetooth-based devices. The main functionality provided
by this specification encompasses discovery, communication, and device management.
As for the discovery API, it is used to register services, as well as to discover devices
and services. The communication API is used to establish connections between devices,
including RFCOMM, L2CAP, and OBEX connections. The device management API
allows to manage and control the communication connections, and to provide security
for these activities as well.

4 Supporting RSSI-Based Locationing on J2ME Devices

In this work we adopt an indoor-positioning technique which is suitable for detecting
the symbolic position [3] of mobile users within a set of buildings. We believe that a
good understanding of the underlying positioning technique can also clarify the logic
which is behind the proposed extension. Hence, we briefly describe this technique before
analyzing in detail the proposed extension to the JSR82. The interested reader may refer
to [7] for further details on the adopted approach. According to this technique, each
room of the building is represented by a symbolic location, called "zone"; we assume
the presence of one sensor for each zone. The topology of the considered environment is
mapped through the Sensor-Coordinates table, which associates each Bluetooth sensor
to a specific room, and the Sensor-Neighbors table, which logically links each sensor to
the sensors of adjacent rooms.

Supporting Location-Aware Distributed Applications on Mobile Devices 467

The adopted technique uses the Received Signal Strength Indicator (RSSI) as a
good fingerprint for the room the mobile device is in. It is worth noting that, although
our representation of location implies an additional layer of indirection to retrieve the
geometric information, it has some great advantages. First, storage and retrieval of sym-
bolic location data can be more suitable to location applications than geometric location
data. Second, a hierarchical (e.g., building-floor-room) symbolic data model can ease
the integration of multiple wireless technologies within the same application. The third
advantage is that the symbolic model can be used to predict user location, for it helps
building secondary models of location information such as individual mobility patterns.

In the rest of this section we show how the adopted positioning technique can be
mapped onto the JSR179 API. Moreover, we show how we extended the JSR82 API to
bridge it to the JSR179’s LocationProviders, and provide some comments about
the current implementation.

4.1 Representing Rooms as JSR179 Locations

According to the zoning approach, each Location has a one-to-one relationship with
a specific room of the building. Within the JSR179 specifications, Location objects
represent the up-to-date location in terms of timestamped coordinates, accuracy, speed,
course, and information about the positioning method used for the location, plus an
optional textual address. Thus, it is crucial that our technique be mapped onto JSR179
semantics. As for theQualifiedCoordinates, we associate each room to a specific
set of latitude, longitude, and altitude parameters. Landmarks and the already men-
tioned tables represent the topology of the considered environment. As forLandmarks,
we describe each known Location (i.e., each room) by means of a name that identi-
fies the room to the end user (e.g., the Contemporary Art gallery within an exhibition).
We manage each table by means of a specific component. The SensorLocator is
in charge of managing the Sensor-Coordinates table; hence it associates each zone (i.e.
each Landmark) to a specific Bluetooth sensor. The SensorConnector manages
the Sensor-Neighbors table; hence it represents the interconnections between rooms.

4.2 Enabling the RSSI-Based Locationing Technique

In order to enable the mentioned technique, we added a new class to the JSR82, namely
the RSSI_Provider, which allows to measure the value of the RSSI, as well as
to measure the Bluetooth connection’s Link-Quality (i.e., the measurement of signal
quality in terms of bit error rate (BER)). Both the mentioned measurements refer to the
communication between the device itself and another Bluetooth device (i.e., a sensor).

Figure 1 shows the retrieval of user’s location by means of the described exten-
sions. It is worth noting that the LocationEstimator component exploits the
RSSI_Provider to discover the zone where the mobile device is. It specifically an-
alyzes the Sensor-Neighbors table by means of the SensorConnector component,
and reads the RSSI value for each neighbored sensor. Upon the identification of the
nearest sensor (i.e., the identification of the current room), the LocationEstimator
can i) retrieve its spatial coordinates by means of the SensorLocator component,
and ii) return them to the LocationProvider.

468 Cristiano di Flora, Massimo Ficco, and Stefano Russo

JSR179-based application LocationProvider LocationEstimator RSSI_Provider HCI_DriverLandmarkStore

GetCurrentPosition

GetRSSI (neighbor_1)

getAddressInfo

getLocation()

Address Info

CurrentPosition (x,y,z)

SensorConnector SensorLocator

GetRSSI (neighbor_n)

Read_RSSI()

getCoordinates(nearest_Sensor)

Location

Find_Nearest_Sensor

Get_Neighbors (last_sensor)

Read_RSSI()

Fig. 1. Retrieval of a mobile user’s location

Implementation Details. We implemented the RSSI_Provider class as an ex-
tension to the JBlueZ library. JBlueZ is an implementation of the JSR82 specifica-
tions, which relies on the official Linux Bluetooth protocol stack, namely BlueZ [16].
Since BlueZ is implemented as library of native procedures written in C, the
RSSI_Provider uses the Java Native Interface (JNI) to retrieve RSSI and quality
information through the BlueZ’s Host COnfiguration Interface. As for the Location API,
we developed a JSR179 implementation skeleton consisting of aLandmarkStore and
a LocationProvider.

5 Experimental Results and Future Work

We tested the solution on Compaq iPAQ 3970 PDAs running the Familiar 0.7.0 Linux
distribution. As for sensors, we used ANYCOM Bluetooth dongles configured to accept
connections from mobile devices.

The results described herein were obtained by measuring the RSSI multiple times
while moving through a simple sequence of three adjacent rooms. We put one sensor in
the middle of each room; in other words, each zone represents a single room. Figure 2
depicts the topology and the preliminary results of the experiments we conducted on
the first system prototype. As Figure 2 shows, during these preliminary experiments, the
mobile device moves from Zone 1 to Zone 3, passing through Zone 2. The current zone is
discovered by comparing the RSSI read from the sensor of the current zone and the one
of the adjacent zones. Figure 2 shows also how the strength of the signal coming from
each sensor varies according to device movements. Preliminary experiments showed
that the time required to detect the movement from a certain room to another one is not

Supporting Location-Aware Distributed Applications on Mobile Devices 469

Zone1 Zone2 Zone3

Zone4

Zone5 Zone6 Zone7

-3

-10

-4

-9

-5

-6

-7

-4

-9

-1

-10

-1

-10

-10

-3

-10

-10

-5

-10

-8

-6

-7

-8

-5

-9

-2

-10

0

-10

0

-10

Sensor 1 Sensor 2 Sensor 3

Fig. 2. Signal strength while moving between different rooms

significantly influenced by the distance from sensors, and it is smaller than 100ms, which
is a reasonable time if compared to the speed of a walking user. Hence the proposed
approach can cope with the change in user’s location while providing location-aware
applications with a JSR179-compliant interface.

It is worth pointing out that we were interested in identifying the room that the
device is moving in; thus the accuracy information in Location objects is related to
the coordinates-error probability (i.e. associating a device to a wrong room). Since an
effective measurement of such an error probability goes beyond the scope of this work,
we assumed here the coordinates to have a constant accuracy. Future work will aim to
address the following issues: i) evaluating the accuracy and device-speed limitations of

470 Cristiano di Flora, Massimo Ficco, and Stefano Russo

the implemented mechanism; ii) defining an approach to determine the best location
of each sensor in a certain topology; iii) evaluating and improving the robustness of
the provided positioning services; and iv) experimenting the proposed approach over a
different wireless-communication technology than Bluetooth (e.g., WiFi).

Acknowledgments

This work has been partially supported by the Italian Ministry for Education, University
and Research (MIUR) in the framework of the FIRB Project “Middleware for advanced
services over large-scale, wired-wireless distributed systems (WEB-MINDS), and by
Regione Campania in the framework of “Centro di Competenza Regionale ICT”).

References

1. Wireless World Research Forum. Book of Visions 2001.
http://www.wireless-world-research.org/

2. K. Raatikainen, H.B. Christensen and T. Nakajima. Application Requirements for Middleware
for Mobile and Pervasive Systems. ACM SIGMOBILE Mobile Computing and Communica-
tions Review, 6(4):16–24, October 2002.

3. J. Hightower, and G. Borriello. Location Systems for Ubiquitous Computing. IEEE Computer,
34(8):57–66, August 2001.

4. C.A. Patterson, R.R. Muntz and C.M. Pancake. Challenges in Location-Aware Computing.
IEEE Pervasive Computing, 2(2):80–89, June 2003.

5. Java Community Process. Location API for J2ME Specification 1.0 Final Release. September
2003.

6. Java Community Process. Java APIs for Bluetooth Specification 1.0 Final Release. March
2002.

7. F. Cornevilli, D. Cotroneo, M. Ficco, S. Russo, and V. Vecchio. Implementing Positioning
Services Over an Ubiquitous Infrastructure. accepted for publication into the Proceedings
of 2nd IEEE Workshop on Software Technologies for Embedded and Ubiquitous Computing
Systems (WSTFEUS ’04), Vienna, Austria, May 2004.

8. J. Hightower, and G. Borriello. Location Sensing Techniques. Technical report UW-CSE-01-
07-01, University of Washington, July 2001.

9. A. Harter et al. The Anatomy of a Context-Aware Application. Proceedings of 5th Annual
International Conference on Mobile Computing and Networking (Mobicom 99), pp. 59–68,
ACM Press, New York, 1999.

10. P. Bahl, and V.N. Padmanabham. RADAR: An In-Building RF-based User Location and
tracking System. In Proceedings of the IEEE Infocom 2000, Vol.2, pp. 775–784, Tel-Aviv,
Israel, March 2000.

11. G. Anastasi, R. Bandelloni, M. Conti, F. Delmastro, E. Gregori, and G. Mainetto. Experi-
menting an Indoor Bluetooth-Based Positioning Service. In Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems Workshops (ICDCSW’03), pp. 480–
483, IEEE CS Press, 2003.

12. A. Kotanen, M. Hannikainen, H. Lappakoski, and T.D. Hamalainen. Experiments on Local
Positioning with Bluetooth. In Proceedings of the International Conference on Information
Technology, Computers and Communication (ITCC03), pp. 297–303, IEEE CS Press, 2003.

Supporting Location-Aware Distributed Applications on Mobile Devices 471

13. Y. Fukuju, M. Minami, H. Morikawa and T. Aoyama. DOLPHIN: An Autonomous Indoor
Positioning System in Ubiquitous Computing Enviroment. In Proceedings of the IEEE Work-
shop on Software for Future Embedded Systems (WSTFES’03), pp. 53–56, Hakodate, Japan,
May 2003.

14. FiCom Location API Working Group. FiCom Location API 2.0.0 Interface specification,
2002.

15. Location Inter-operability Forum. Mobile Location Protocol LIF TS 101 Specification, Ver-
sion 3.0.0, June 2002.

16. Bluez: Official Linux Bluetooth protocol stack. http://bluez.sourceforge.net/

Grid Application Development
on the Basis of Web Portal Technology�

Gábor Dózsa, Péter Kacsuk, and Csaba Németh

MTA SZTAKI, Laboratory of Parallel and Distributed Systems
H-1518 Budapest, Hungary

{dozsa,kacsuk,csnemeth}@sztaki.hu
http://www.lpds.sztaki.hu

Abstract. Providing Grid users with a widely accessible, homogeneous and
easy-to-use graphical interface is the foremost aim of Grid-portal development.
These portals, if designed and implemented in a proper and user-friendly way,
might fuel the dissemination of Grid-technologies, hereby promoting the shift of
Grid-usage from research into real life, industrial application, which is to happen
in the foreseeable future, hopefully. Grid portals are quite frequently applied in
order to utilize common user tasks like access control, data and application code
transfers, job control and status monitoring but design, development and perfor-
mance tuning of complex Grid or HPC applications are usually not supported
directly by such portals. This paper introduces P-GRADE Portal being developed
at MTA SZTAKI. It allows users to manage the whole life-cycle of building and
executing complex applications in the Grid: editing workflows, submitting jobs
relying on Grid-credentials and analyzing the monitored trace-data by means of
visualization.

1 Introduction

Easy and convenient access of Grid systems is a foremost need for Grid end-users as well
as for Grid application developers. Grid portals are the most promising environments to
fulfill these requirements and hence we decided to create a Grid portal for our P-GRADE
(Parallel Grid Run-time and Application Development Environment) system.

P-GRADE is an integrated graphical programming environment to develop and
execute parallel applications on supercomputers, clusters and Grid systems [8][9]. P-
GRADE supports the generation of either PVM or MPI code, creation and execution of
Condor or Globus jobs. More advanced features include support for application migra-
tion, dynamic load-balancing, workflow definition and coordinated multi-job execution
in the Grid. The aim of the portal is to make available these functionalities through
the web. While P-GRADE in its original form requires the installation of the whole
P-GRADE system on the client machines, the portal version needs only a web browser
and all the P-GRADE portal services are provided by one or more P-GRADE portal
servers that can be connected to various Grid systems.

� The work presented in this paper was partially supported by the following grants: EU-
GridLab IST-2001-32133, IHM 4671/1/2003, Hungarian Scientific Research Fund (OTKA)
No. T042459 and National Research and Technology Office, No. IKTA-00064/2003 projects.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 472–480, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Grid Application Development on the Basis of Web Portal Technology 473

We developed the portal using GridSphere, a Grid portal development framework
[3]. The framework among other things saved us from implementing user management
for the portal, by using its tag-library we could easily develop a coherent web interface,
and enjoyed the way one can configure and manage portlets in GridSphere.

In general, a grid portal has to deal with three basic types of objects: users, resources
and applications. The P-GRADE portal currently provides the following fundamental
services.

result files
(tracefiles)

Fig. 1. P-GRADE Portal Services

– User management: User accounts are managed by the help of the core GridSphere
portlets. As an extension of the fundamental user management tasks, we have de-
veloped a new portlet for credential management. It aims at providing a convenient
interface for the users to contact various MyProxy servers in order to get proxy
certificates. The portlet can manage several proxy certificates for the same user and
allows she to use any of them as required by particular computational resources.

– Resource management: Computational resources (i.e. clusters or supercomputers)
on which applications can be executed from the portal are represented simply as a list
of Globus-2 contact strings. The portal provides a default list (set up by the portal
administrator) but each individual user can customize it by including additional
resources to which the user has access or disabling some of them as she likes.

– Application management: There are two main aspects of application management:
application development and execution control of existing applications. Although
many portals put the focus on the execution control, we think that development of

474 Gábor Dózsa, Péter Kacsuk, and Csaba Németh

new applications is rather important as well. Not many Grid applications exist today
so the users (or application developers) need appropriate tools to make legacy appli-
cations Grid enabled or to use them as components of complex Grid applications.
The P-GRADE portal provides the usual execution control mechanism (start/kill
jobs, transfer input/output data) including status monitoring and animation. Fur-
thermore, as a first step towards Grid application development support, the portal
is equipped by a graphical workflow editor and a job performance visualization
system. They are described in detail in the next section.

The common schema for a new user to start working with the P-GRADE Portal is
the following. First, the user must upload a valid X.509 certificate to a certificate server
(MyProxy) if she has not been uploaded it before. From the portal, she can then download
a proxy certificate that enables her to run jobs in the Grid. The next step is to invoke the
workflow editor that runs on the user’s machine as a Java WebStart application. By the
help of this editor, complex workflows can be defined by graphical means. Workflows
can be stored (uploaded) on the portal server machine by the help of the editor to store
them in a persistent (i.e. client machine independent) way. After finishing the design, the
user can submit the workflow to the GT-2 Grid for execution. During the execution, the
portal provides job status information as well as execution behaviour visualisations for
each active workflow and their component jobs. Fig. 1 depicts such basic development
steps supported in the current version of the P-GRADE Portal.

In the rest of the paper we describe the application development and execution control
capabilities of the P-GRADE portal in brief - on the basis of a meteorology application
as a case study - and outline our future plans to improve the usability of our portal.

2 Workflow Editing and Execution

A workflow is a set of consecutive and parallel jobs which are cooperating in the execution
of a complex application. One job’s output may provide input for the next. In the literature
workflow is also referenced as application flow. The workflow concept is a widely
accepted and convenient approach to construct complex large coarse grain applications
- that fit well to be executed in a Grid - on the basis of existing programs as components.

In the P-GRADE portal, a graphical workflow editor is provided for the user to
construct workflow applications.

For illustration purpose we use a meteorological application [4] called MEANDER
developed by the Hungarian Meteorological Service. The aim of MEANDER is to ana-
lyze and predict in the ultra short-range (up to 6 hours) those weather phenomena which
might be dangerous for life and property. Typically such events are snow-storms, freez-
ing rain, fog, convictive storms, wind gusts, hail storms and flash floods. The complete
MEANDER package consists of more than ten different algorithms from which we have
selected four to compose a workflow application for demonstration purpose. Each calcu-
lation algorithm is computation intensive and implemented as a parallel program written
in mixed C/C++ and FORTRAN.

Fig. 2 shows the workflow editor - which is implemented as a Java WebStart ap-
plication - with the MEANDER meteorology application loaded in. The editor can be

Grid Application Development on the Basis of Web Portal Technology 475

Fig. 2. Workflow editor of the P-GRADE portal

launched from the user’s Web browser after logging into our portal. The important as-
pect of creating a graph is the possibility of composing the workflow application from
existing code components. These components can be sequential programs (e.g. Ready
in Fig. 2) or MPI programs (e.g. Satel in Fig. 2). This flexibility enables the application
developer to create computation-intensive applications where several components are
parallel programs to be run on supercomputers or clusters of the Grid.

Small rectangles (labelled by numbers) around nodes represent data files (of types
input or output) of the corresponding job and directed arcs interconnect pairs of input and
output files if an input file serves as an output for another job. In other words, arcs denote
the necessary file transfers among jobs. A job can be started when all the necessary input
files are available and transferred to the site where the job is allocated for execution.
Naturally, independent jobs can be executed in parallel. Managing the file-transfers
(both executables and data files) and recognition of feasibility to start the execution of
a particular job is the task of our workflow manager that extends the capabilities of the
Condor DAGMan [10] system serving as a Grid level job manager for the portal.

The P-GRADE workflow manager takes care of the - possible - parallel execution
of these components. The graph depicted in Fig. 2 consists of four MPI jobs (nodes)
corresponding to four different parallel algorithms of the MEANDER ultra-short range
weather prediction package (Delta, Cummu, Visib and Satel) and a sequential job that

476 Gábor Dózsa, Péter Kacsuk, and Csaba Németh

collects the final results and presents them to the user as a kind of meteorological map
(Ready).

This distinction among job types is necessary because the job manager on the selected
grid site should be able to support the corresponding parallel execution mode, and the
workflow manager is responsible for the handling of various job types by generating the
appropriate submit files.

Besides the job type and the name of the executable, the user can specify the neces-
sary arguments and the hardware/software requirements (architecture, operating system,
minimal memory and disk size, number of processors, etc.) for each job. To specify the
resource requirements, the application developer can currently use either the Condor
resource specification syntax and semantics for Condor based grids or the explicit dec-
laration of a grid site where the job is to be executed for Globus based grids.

In order to define the necessary file operations of the workflow execution, the user
should define the attributes of the file symbols (ports of the workflow graph) and file
transfer channels (arcs of the workflow graph). The main attributes of the file symbols
are as follows:

– file name
– type

The type can be permanent or temporary. Permanent files should be preserved during
the workflow execution but temporary files can be removed immediately when the job
using it (as input file) has been finished. It is the task of the workflow manager to transfer
the input files to the selected site where the corresponding job will run. The transfer can
be done in two ways. The off-line transfer mode means that the whole file should be
transferred to the site before the job is started. The on-line transfer mode enables the
producer job and the consumer job of the file to run in parallel in a pipeline fashion. When
a part of the file is produced the workflow manager will transfer it to the consumer’s
site. However, this working mode obviously assumes a restricted usage of the file both
at the producer and consumer sites and hence, it should be specified by the user that
the producer and consumer meet these special conditions. In the current implementation
only the off-line transfer mode is supported.

Once the workflow is specified, the necessary executables and input files should be
uploaded to the P-GRADE portal server - this can be initiated from the workflow editor
- and then the server will take care of the complete execution of the workflow and the
transfer of results back to the client.

Fig. 3 shows the job status page (within the Netscape browser) of a running instance
of the MEANDER application. Beside displaying the current statuses of all workflow
jobs, this page also serves for controlling the execution of the workflow and also viewing
and downloading standard output,error and final result files of jobs. Final results files
can be downloaded in a compressed tarball form to the client machine after the execution
having finished while standard output and error files are refreshed regularly and can be
visited at any time during the execution as well.

Grid Application Development on the Basis of Web Portal Technology 477

Fig. 3. Status page of the active MEANDER workflow

3 Performance Monitoring and Visualization

Besides creating and managing workflows the P-GRADE portal enables on-line monitor-
ing and visualization of the workflow execution. For monitoring jobs we use the Mercury
[5] monitoring tool developed in our laboratory within the framework of the GridLab EU
project . Its architecture complies with the Grid Monitoring Architecture proposed by
the Global Grid Forum. Producers send measurement data to consumers upon request.
For job monitoring, when submitting a job we subscribe to the corresponding metric. As
progress unfolds, Mercury will send trace-data back to the TraceFile Monitor component
in the portal, which collects trace-files and passes them to the visualizer applet provided
that the Mercury monitoring service is available on the executing Grid resource and the
application is instrumented with the necessary trace generation function calls.

Basically, there are two ways to obtain such an instrumented parallel application.
One can use the P-GRADE program development environment to create the parallel
application by graphical means. Probably this is the most convenient way since, P-
GRADE can generate automatically the proper instrumented MPI executables to be
used as a component in the portal.

478 Gábor Dózsa, Péter Kacsuk, and Csaba Németh

The other way is to insert all the necessary instrumentation function call into the
MPI source code either by hand or by the help of our semi-automatic instrumentation
script. The latter can be used if the MPI program complies with some basic restrictions
like relying only on the default communicator.

Fig. 4. Space-time diagram of the MEANDER workflow

There is a three level visualisation facility in the P-GRADE portal. First, a status
window is available providing information for each workflow about the component
jobs, their executing Grid sites and their status as illustrated in Fig. 3. The workflow level
execution visualisation window shown in Fig. 4graphically represents the progress of the
workflow execution. In the workflow space-time diagram, the horizontal bar represents
the progress of each component job in time (see the time axis at the bottom of the
diagram) and the arrows among bars represent the file operations performed to make
accessible the output file of a job as an input of another one. Finally, a similar window can
be opened for any parallel component job. Interpretation of the same diagram elements is
a bit different in this case (like job Cummu, see Fig. 5). Here the horizontal bars represent
the progress of each process comprising the parallel job whereas arrows between bars
represent (MPI) message transfers among the processes [11].

4 Related and Future Works

A Grid portal is usually deployed as an interface for a particular Grid testbed. This is the
main reason behind the idea of portal frameworks like GridSphere, i.e. it is expected to

Grid Application Development on the Basis of Web Portal Technology 479

Fig. 5. Space-time diagram of the ’cummu’ parallel job from the MEANDER workflow

implement a specific portal for each different Grid infrastructure. Our approach differs
from this concept in the sense that we would like to provide a general purpose Grid
portal equipped with all the necessary tools to support Grid application development and
execution in an integrated way. As a first step towards this direction, our portal can harness
the computational power of any Globus-2 type Grid (e.g. Hungarian SuperGrid [12] and
GridLab [16] testbed) and it provides a convenient graphical workflow editor to compose
large coarse grain Grid applications. As our primary targets are HPC applications, we
provide integrated graphical support also for performance monitoring and visualisation.

To pursue our ultimate goal further, we plan to connect our portal to other types
(not pure GT2 type) of Grids like Hungarian ClusterGrid [14] and NorduGrid [15].
We also would like to further develop our workflow manager in order not to burden
the user with assigning jobs to computing resources instead, most promising resources
should be selected by the workflow manager automatically relying on a Grid information
system. With respect to the application development support we plan to extend the
capabilities of the workflow editor in order to support also parallelization of existing
sequential applications on the basis of the GRED editor approach [9]. In this way we
will cover both the composition of Grid applications (workflows) and the parallelization
of existing sequential computation intensive programs (i.e. making them Grid enabled
HPC applications). Furthermore, we plan to adapt some advance tools exist in our original
P-GRADE environment to the P-GRADE portal, like task migration and fault tolerant
execution of message-passing applications.

With respect to our workflow editor/manager, several other similar systems exist
like Unicore [13], Triana [17] and Pegasus [1]. None of them puts the focus on HPC
application as our portal does by providing explicit support for MPI applications, per-

480 Gábor Dózsa, Péter Kacsuk, and Csaba Németh

formance visualisation and parallelization (in the near future). On the other hand, some
of the other workflow systems (most notably Pegasus) can support parameter study like
applications and automatic generation of complex large workflows that is currently out
of the scope of the P-GRADE portal.

Executing the MEANDER meteorology application workflow through the
P-GRADE portal has already been successfully presented at Supercomputing Con-
ference and Exhibition 2003 in Phoenix/AZ (U.S.A.) [6], and at IEEE International
Conference on Cluster Computing in Hong Kong/China, 2003 [7].

References

1. Ewa Deelman, et al: Mapping Abstract Complex Workflows onto Grid Environments, Journal
of Grid Computing, Vol. 1, no. 1, 2003, pp. 25-39

2. J. Novotny: The Grid Portal Development Kit. IEEE Concurrency and Practice vol. 13, 2002
3. J. Novotny, M. Russell, O. Wehrens: GridSphere: A Portal Framework for Building Collabo-

rations. 1st International Workshop on Middleware for Grid Computing, Rio de Janeiro, June
15, 2003

4. R. Lovas, et al.: Application of P-GRADE Development Environment in Meteorology. Proc.
of DAPSYS’2002, Linz, pp. 30-37, 2002

5. Z. Balaton, G. Gombás: Resource and Job Monitoring in the Grid., Proc. of EuroPar’2003
Conference, Klagenfurt, Austria, pp. 404-411, 2003

6. Supercomputing 2003 in Phoenix/AZ (U.S.A.).
http://www.sc-conference.org/sc2003/

7. IEEE International Conference on Cluster Computing in Hongkong/China.
http://www.hipc.org/

8. P-GRADE Graphical Parallel Program Development Environment.
http://www.lpds.sztaki.hu/pgrade

9. P. Kacsuk, G. Dózsa, R. Lovas: The GRADE Graphical Parallel Programming Environment.
In the book: Parallel Program Development for Cluster Computing: Methodology, Tools and
Integrated Environments (Chapter 10), Editors: P. Kacsuk, J.C. Cunha and S.C. Winter, pp.
231-247, Nova Science Publishers New York, 2001

10. James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke: Condor-G: A
Computation Management Agent for Multi-Institutional Grids. Journal of Cluster Computing
volume 5, pages 237-246, 2002

11. Z. Balaton, P. Kacsuk, and N. Podhorszki: Application Monitoring in the Grid with GRM and
PROVE. Proc. of the Int. Conf. on Computational Science ICCS 2001, San Francisco, pp.
253-262, 2001

12. P. Kacsuk: Hungarian Supercomputing Grid. Proc. of ICCS’2002, Amsterdam. Springer Ver-
lag, Part II, pp. 671-678, 2002

13. Unicore project, www.unicore.org
14. P. Stefán: The Hungarian ClusterGrid Project. Proc. of MIPRO’2003, Opatija, 2003
15. O.Smirnova et al: The NorduGrid Architecture And Middleware for Scientific Applications.

ICCS 2003, LNCS 2657, p. 264. P.M.A. Sloot et al. (Eds.) Springer-Verlag Berlin Heidelberg
2003

16. GridLab project, www.gridlab.org
17. I. Taylor, et al: Grid Enabling Applications Using Triana, workshop onGrid Applications and

Programming Tools, June 25, Seattle, 2003

A Distributed Divide and Conquer Skeleton

Juan R. González, Coromoto León, and Casiano Rodrı́guez

Dpto. Estadı́tica, I.O. y Computación
Universidad de La Laguna

E-38271 La Laguna, Tenerife, Spain
{jrgonzal,cleon,casiano}@ull.es

Abstract. The MaLLBa library provides skeletons to solve combinatorial op-
timization problems. Its main objective is to simplify the implementation of al-
gorithms based on some commonly used techniques such as Branch and Bound,
Dynamic Programming and Divide and Conquer.
This work is focused on the MaLLBa::DnC skeleton, which solves problems
that fit in the Divide and Conquer paradigm. The user has to provide functions
particularized to the problem he wants to solve. Given that functions the skeleton
encapsulates all remaining work and allows the problem to be solved either in a
sequential or parallel way.
In this work we will present a new MPI asynchronous peer-processor implementa-
tion of the MaLLBa::DnC skeleton where all processors are peers and behave the
same way (except during the initialization phase) and where decisions are taken
based only on local information. Results on a Linux cluster of PC for matrix and
huge integer multiplication are presented.

1 Introduction

The Divide and Conquer technique is a general method to solve problems. Algorithms
based in this technique divide the original problem in smaller subproblems, solve them
and combine the obtained sub-solutions to get the solution of the original problem.
The MaLLBa::DnC skeleton requires from the user the implementation of a C++ class
Problem defining the problem data structures, a class Solution to represent the
result and a class SubProblem to specify subproblems. In some cases, an additional
Auxiliar class is needed to represent the subproblems which do not have exactly the
same structure of the original one.

It is in the SubProblem class where the user has to provide the methods easy(),
solve() and divide(). The easy() function must check if a problem is simple
enough to apply the simple resolution method solve(). The divide() function
must implement an algorithm to divide the original problem into smaller problems with
the same structure as the original one.

The class Solution has to provide an algorithm to put together partial solutions
in order to obtain the solution of a larger problem through the combine() function.

MaLLBa::DnC provides a sequential resolution pattern and a message-passing
master-slave resolution pattern for distributed memory machines [3]. This work presents
a new fully distributed parallel skeleton that provides the same user interface and conse-
quently is compatible with already implemented codes. The new algorithm is a MPI [7]

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 481–489, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

482 Juan R. González, Coromoto León, and Casiano Rodrı́guez

asynchronous peer-processor implementation where all the processors are peers and be-
have the same way (except during the initialization phase) and where decisions are taken
based on local information.

There are several implementations of general purpose skeletons using Object Ori-
ented paradigms [2], [6]. Regarding Divide-and-Conquer we can mention the following
ones: Cilk [4] based on the C language and Satin [5] codified in Java. As far as we
know there are no tools integrating more than one exact technique. An innovation of our
approach is that it allows the combined and nested use of all MaLLBa skeletons [1].

The contents of the paper are as follows: section 2 describes the data structures used
to represent the search space and the parallel MPI skeleton. Computational results are
discussed in section 3. Finally, the conclusions and future prospectives are commented
in section 4.

2 The Algorithm of the Skeleton

The algorithm has been implemented using Object Oriented and Message Passing tech-
niques. Figure 1 graphically displays the data structure used to represent the tree space.
It is a tree of subproblems (sp) where each node has: a pointer to its father, the solution
of the subproblem (sol) and the auxiliar variable (aux) for the exceptional cases when
the subproblems have not the same structure than the original one. Additionally, a queue
with the nodes pending of being explored is kept (p and n). The search tree is distrib-
uted among the processors. Registered in each node is the number of unsolved children
and the number of children sent to other processors (remote children). Also an array of
pointers to the solutions of the children nodes (subsols) is kept. When all the children
nodes are solved, the solution of the actual node, sol, will be calculated combining the
partial solutions stored in subsols. The solution is sent up to the father node in the
tree and the partial solutions are disposed. Since the father of a node can be located in
another processor, the rank of the processor owning the father is stored on each node.

The implementation of the algorithmic skeleton has been divided in two stages: An
intialization phase and a resolution phase.

2.1 The Initialization Stage

The data required to tackle the resolution of the problem is placed into the processors.
Initially only the master processor (master) has the original problem and proceeds to
distribute it to the remaining processors. Next, it creates the node representing the initial
subproblem and inserts it into its queue. All the processors perform monitor and work
distribution tasks. The state of the set of processors intervening in the resolution is kept
by all the processors. At the beginning, all the processors except the master are idle.
Once this phase is finished, all the processors behave the same way.

2.2 Resolution Stage

The goal of this stage is to find the solution of the original problem. The majority of the
skeleton tasks occur during this phase. The main aim of the design of the skeleton has

A Distributed Divide and Conquer Skeleton 483

head

Processor 0
sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

tail

Processor 1

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

tail

Processor 2

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

sp
aux

sol
*subsols
p n

tailhead head

Fig. 1. Data structure for the tree space

been to achieve a balanced distribution of the work load. Furthermore, such arrangement
is performed in a fully distributed manner using only asynchronous communication and
information that is local to each processor, avoiding this way the use of a central control
and synchronization barriers.

The developed control is based on a request-answer system. When a processor is idle
it performs a request for work to the remaining processors. This request is answered by
the remaining processors either with work or with a message indicating their inability to
send work. Since the state of the processors has to be registered locally, each one sends
its answer not only to the processor requesting work but also to the remaining others,
informing of what the answer was (if work was sent or not) and to which processor it was.
This allows to keep updated the state of busy or idle for each processor. According to this
approach, the algorithm would finish when all the processors are marked idle. However,
since request and answer messages may arrive in any arbitrary order, a problem arises:
the answers may arrive before the requests or messages referring to different requests
may be tangled. Additionally, it may also happen that a message is never received if the
processors send a message corresponding to the resolution phase to a processor that has
decided the others are idle.

To cope with these problems, a turn of requests is associated with each processor,
assigning a rank or order number to the requests in such a way that it can be determined
which messages correspond to what request. They also keep a counter of pending ans-

484 Juan R. González, Coromoto León, and Casiano Rodrı́guez

wers. To complete the frame, additional constraints are imposed to the issue of messages:
(i) A processor that becomes idle, performs a single request until it becomes busy again.
This avoids an excess of request messages at the end of the resolution phase. (ii) A
processor does not perform any request while the number of pending answers to its
previous request is not zero. Therefore, work is not requested until checking that there
is no risk to acknowledge work corresponding to a previous request. (iii) No processor
sends messages not related with this protocol while it is idle.

Though the former restrictions solve the aforementioned protocol problems, a new
problem has been introduced: if a processor makes a work request and none sends
work as answer, that processor, since it is not allowed to initiate new petitions, will
remain idle until the end of the stage (starvation). This has been solved making the busy
processors to check, when it is their turn to communicate, if there are idle processors
without pending answers to their last petition and, if there is one and they have enough
work, to force the initiation of a new turn of request for that idle processor. Since the
processor(s) initiating the new turn are working, such messages will be received before
any subsequent messages of work request produced by it (them), so there is no danger
of a processor finishing the stage before that messages are received and therefore they
will not be lost.

... // Resolution phase
1 problemSolved = false;
2 while (!problemSolved) {
3 // Conditional communication
4 if (time to communicate) {
5 // Message reception
6 while (pending packets) {
7 inputPacket = packetComm.receive(SOLVING_TAG);
8 switch (inputPacket.msgType) { // Messages types
9 case NOT_WORKING_MSG:...

10 case CANT_SEND_WORK_MSG:...
11 case SEND_WORK_MSG_DONE:...
12 case SEND_WORK_MSG:...
13 case CHILD_SOL_MSG:...
14 } }
15 // Avoid starvation when a request for work was neglected
16 }
17 // Computing ...
18 // Work request ...
19 // Ending the resolution phase ...
20 } ...

Fig. 2. Resolution phase outline

The scheme in Figure 2 shows the five main tasks performed in this phase. The
“conditional communication” part (lines 3-16) is in charge of the reception of all sort of
messages and the work delivery. The communication is conditional since is not made per

A Distributed Divide and Conquer Skeleton 485

1 if (!dcQueue.empty()) { // Computing
2 node = dcQueue.removeFromBack();
3 sp = node.getSubProblem();
4 if (sp.easy()) {
5 sp.solve(node.getSolution());
6 node = dcQueue.combineNode(pbm, node);
7 if (node.getNumChildren() == 0) {
8 if (node.getFather() == NULL) { // solution of original
9 sol = node.getSolution();

10 }
11 else { // combination must continue in other processor
12 packetComm.send(node.getFatherProc(),

SOLVING_TAG, CHILD_SOL_MSG,
pack(node.getIdInFather(),

node.getFather(),
node.getSolution());

13 } } }
14 else {
15 sp.divide(pbm, subPbms[], node.getAuxiliar());
16 for (i = 1; i < subPbms[].size; i++) {
17 dcQueue.insertAtBack(dcNode.create(subpbms[i]), 0, i,

node);
18 } } } ...

Fig. 3. Divide and Conquer computing tasks

iteration of the main loop but when the condition time to communicate == TRUE

is held. The goal of this is to limit the time spent checking for messages, assuring the
fulfilment of a minimum work between communications. The current implementation
checks the time that has passed is larger than a given threshold. The threshold value
has been established to a small value, since for larger values the work load balance gets
poorer and the subsequent delay of the propagation of bounds leads to the undesired
exploration of non promising nodes.

Inside the “message reception” loop (lines 6-14) the labels to handle the messages
described in previous paragraphs are specified. Messages of type CHILD SOL MSG are
used to communicate the solution of a subproblem to the receiver processor.

The “computing subproblems” part (line 17) is where the generic Divide and Conquer
algorithm is implemented. Each time the processor runs out of work, one and only one
“work request” (line 18) is performed. This request carries the beginning of a new petition
turn. To determine the “end of the resolution phase” (line 19) there is a check that no
processor is working and that there are no pending answers. Also, it is required that all
the nodes in the tree have been removed. In such case the problem is solved and the
optimal solution has ben found. The last condition is needed because the algorithm does
not establish two separate phases for the division and combination processes, but both
tasks are made coordinately. Therefore, if some local nodes have not been removed,
there are one or more messages with a partial solution (CHILD SOL MSG) pending to be
received, to combine them with the not deleted local nodes.

486 Juan R. González, Coromoto León, and Casiano Rodrı́guez

Figure 3 shows the computing task in more depth. First, the queue is checked
and a node is removed if it is not empty. If the subproblem is easy (lines 4-13) the
user method solve() is invoked to obtain the partial solution. Afterwards, the call
to combineNode() will combine all the partial solutions that are available. The
combineNode() method inserts the solution received as a parameter in the array
of partial solutions subsols in the father node. If after adding this new partial solution
the total number of sub-solutions in the father node is completed, all of them are com-
bined using the user method combine(). Then, the father node is checked to know
if the combination process can be applied again. The combination process stops in any
node not having all its partial solutions or when the root node is reached. This node is
returned by the combineNode()method. If the returned node is the root node (it has
not father) and the number of child pending to solutions is zero, the problem is solved
(lines 8-10). If the node has no unsolved children but it is an intermediate node, its
father must be in another processor (lines 11-13). The solution is sent to this processor
with a CHILD SOL MSG message and it continues with the combination process from
this point. If the subproblem removed from the queue is not simple (lines 14-18), it is
divided in new subproblems using the divide() method provided by the user. The
new subproblems are inserted at the end of the queue. In order to traverse the tree in
depth, the insert and remove actions in the queue are always made at the end. This allows
a faster way to combine partial solutions and a more efficient use of memory.

3 Computational Results

The experiments were performed instantiating the MaLLBa::DnC skeleton for some
classic Divide and Conquer algorithms: sorting (quicksort and mergesort), convex hull,
matrix multiplication, Fast Fourier Transform and huge integer product. Results were
taken on a heterogeneous PC network, configured with: four 800 MHz AMD Duron
processors and seven AMD-K6 3D 500 MHz processors, each one with 256 MBytes of
memory and a 32 GBytes hard disk. The installed operating system was Debian Linux
version 2.2.19 (herbert@gondolin), the C++ compiler used was GNU gcc version 2.95.4
and the message passing library was mpich version 1.2.0.

Figure 4 shows the speedups obtained for the huge integer product implementation
with a problem of size 4,096. The parallel times were the average of five executions.
The experiments labeled ‘ULL 500 Mhz’ and ‘ULL 800 Mhz’ were carried out on
homogeneous set of machines of sizes seven and four respectively. Label ‘ULL 800-500
Mhz’ depict the experiment on a heterogeneous set of machines where half the machines
(four) were at 800 MHz and the other half were at 500 MHz. The sequential execution
for the ‘ULL 800-500 Mhz’ experiment was performed on a 500 MHz processor. To
interpretate the ‘ULL 800-500 Mhz’ line take into account that the ratio between the
sequential executions was 1.53. For eight processors the maximum speed up expected
will be 10.12, that is, 1.53× 4 (fast processors)+4 (slow processors), see Figure 4 (b).
Comparing the three experiment depicted, Figure 4 (c), we conclude that the algorithm
does not experiment any lost of performance due to the fact of being executed on a
heterogeneous network. Figure 4 (d) represents the average number of visited nodes, for
the experiment labelled ‘ULL 800-500 Mhz’. It is clear that an increase of the number of

A Distributed Divide and Conquer Skeleton 487

(a) Homogeneous case (b) Heterogeneous case

(c) Speedups (d) Average number of visited nodes

(e) Heterogeneous case (f) Homogeneous case

Fig. 4. Results for the Huge Integer Product

processors carries a reduction of the number of visited nodes. This evidences the good
behaviour of the parallel algorithm.

A parameter to study is the load balance among the different processors intervening
in the execution of the algorithm. Figure 4 (e) shows the per processor average of the
number of visited nodes for the five executions. Observe how the slow processors exa-

488 Juan R. González, Coromoto León, and Casiano Rodrı́guez

(a) Homogeneous case (b) Heterogeneous case

(c) Speedups (d) Average number of visited nodes

(e) Heterogeneous case (f) Homogeneous case

Fig. 5. Results for the Strassen’s Matrix Multiplication

mine less nodes than the faster ones. It is interesting to compare these results with those
appearing in Figure 4 (f) corresponding the homogeneous executions. Both pictures
highlight the fulfilled fairness of the work load distribution.

Similar results are obtained for the implementation of the other algorithms. Figure 5
presentsthe same study for the Strassen’s Matrix Product algorithm. Thogh the grain is
finer than in the previous example, the performance behaviour is similar.

A Distributed Divide and Conquer Skeleton 489

4 Conclusions

This work describes a parallel implementation of a skeleton for the Divide and Conquer
technique using the Message Passing paradigm. The main contribution of the algorithm
is the achievement of a balanced work load among the processors. Furthermore, such
arrangement is accomplished in a fully distributed manner, using only asynchronous
communication and information that is local to each processor. To this extent, the use
of barriers and a central control has been avoided. The results obtained shows a good
behaviour in the homogeneous and the heterogeneous case.

Ongoing work focuses on lighten the replication of information relative to the state
of a certain neighbourhood.An OpenMP [8] based resolution pattern for shared memory
machines is in the agenda.

Acknowledgements

This work has been partially supported by the EC (FEDER) and by the Spanish Ministry
of Science and Technology inside the “Plan Nacional de I+D+I” with contract number
TIC2002-04498-C05-05 and the Canary Government contract number COF2003-022.

References

1. E. Alba, F. Almeida, M. Blesa, J. Cabeza, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró, C. León,
J. Luna, L. Moreno, J. Petit, A. Rojas and F. Xhafa. MaLLBa: A Library of skeletons for com-
binatorial optimisation. In Proceedings of the International Euro-Par Conference. Paderborn,
Germany, LNCS 2400, 927–932, 2002.

2. J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling and K. Tan. Generating Parallel
Programs from the Wavefront Design Pattern. In Proceedings of the 7th International Work-
shop on High-Level Parallel Programming Models and Supportive Environments (HIPS’02).
Fort Lauderdale, Florida, 2002.

3. I. Dorta, C. León, C. Rodrı́guez and A. Rojas. Parallel Skeletons for Divide-and-Conquer and
Branch-and-Bound Techniques. Proceedings of the 11th Euromicro Conference on Parallel,
Distributed and Network Based Processing. Geneva, Italy, 292–298, 2003.

4. T. Kielmann, R. Nieuwpoort, H. Bal. Cilk-5.3 Reference Manual. Supercomputing Technolo-
gies Group. 2000.

5. T. Kielmann, R. Nieuwpoort, H. Bal. Satin: Efficient Parallel Divide-and-Conquer in Java.
In Proceedings of the International Euro-Par Conference. 690–699, 2000.

6. H. Kuchen. A Skeleton Library. In Proceedings of the International Euro-Par Conference.
620–629, 2002.

7. M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, J.J. Dongarra. MPI: The Complete
Reference. The MIT Press, 1996.

8. OpenMP Architecture Review Board. OpenMP C and C++ Application Program Interface.
Version 1.0, http://www.openmp.org, 1998.

A Tool to Display Array Access Patterns
in OpenMP Programs

Oscar R. Hernandez, Chunhua Liao, and Barbara M. Chapman

Computer Science Department
University of Houston

4800 Calhoun Rd.
Houston, TX 77204-3010

{oscar,liaoch,chapman}@cs.uh.edu

Abstract. A program analysis tool can play an important role in helping users
understand and improve OpenMP codes. Array privatization is one of the most
effective ways to improve the performance and scalability of OpenMP programs.
In this paper we present an extension to the Open64 compiler and the Dragon tool,
a program analysis tool built on top of this compiler, to enable them to collect
and represent information on the manner in which threads access the elements of
shared arrays at run time. This information can be useful to the programmer for
restructuring their code to maximize data locality, reducing false sharing, iden-
tifying program errors (as a result of unintended true sharing) or accomplishing
aggressive privatization.

1 Introduction

OpenMP is a de facto standard for shared memory programming that can be used to
program SMPs and distributed shared memory systems. OpenMP follows the wellknown
fork-join model, a parallel execution model where teams of threads are created when a
program enters a parallel region [16] and terminated upon its completion. Studies [15]
have shown that good array privatizations techniques are one of the most effective ways
to improve OpenMP performance and scalability. The reason for this is that private data is
local to a thread, and systematic privatization will minimize data sharing among threads
and thus the cost of cache coherency mechanisms and the long latency incurred when
fetching data updated elsewhere in the system. Achieving good privatization in OpenMP
might require extensive rearrangement of code, particularly when this is applied to the
entire application, as is required by the OpenMP SPMD style [8][9]. Unfortunately this
is not an easy task. Prior to an effort of this kind, it is crucial to know how the arrays
are being accessed by the executing threads, and determine which regions of arrays are
shared between multiple threads. A number of tools have been developed that analyze
memory references; however, none of them summarize accesses to OpenMP shared data
and display that information to help the user privatize or otherwise study and potentially
reorganize memory accesses.

In this paper we present the enhancements made to the Open64 compiler [11] and
the Dragon tool [5], a program analysis tool built on top of this compiler, to enable them
to collect and represent information on the manner in which threads access the elements

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 490–498, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Tool to Display Array Access Patterns in OpenMP Programs 491

of shared arrays at run time. We also describe how we have accomplished this task.
In the next section, we briefly describe the current functionality of Dragon and give an
overview of Dragon and those analysis modules that we use for the implementation of the
tool. Then in Section 3 we focus on the problems of determining and representing array
sections in interprocedural code regions. After that we explain how OpenMP is lowered
in our version of the Open64 compiler, and how this affects the region calculation and
our instrumentation strategy. As part of this section, we provide a simple case study that
illustrates our extension to the Dragon tool. Finally, we discuss related work, and present
some conclusions and future work.

2 Dragon and Open64

The Dragon analysis tool is a production tool for developing, understanding, and main-
taining large scale sequential and parallel programs. It is built on top of our enhanced
version of Open64 compiler [11] to displays program analysis information in a intuitive
way to application developers who need to understand a given source code in depth. The
Open64 compiler was originally developed by Silicon Graphics Inc. and is currently
maintained by Intel. It is an optimizing compiler suite for Linux/Intel IA-64 systems.
Our version of Open64, Open64.UH, has refined interprocedural analsis module and
accepts special flags to extract various program information used in Dragon. The input
languages for Dragon are FORTRAN 77/90, C, and OpenMP/MPI. Current supported
program analsis information includes static/dynamic call graph, flow graph, data depen-
dence results, automatic performance and feedback instrumentation.

Fig. 1. The modules of Open64 compiler. The user can select interprocedural analysis using the
(-ipa flag) or go directly to the backend, where the loop nest and global optimizer reside. The user
has the option to automatically instrument a program and obtain feedback files for one or more
runs; this information is used for further optimizations

The Open64 intermediate representation, called WHIRL, has five different levels,
starting with very high level (VHL) WHIRL, and serves as the common interface among
all its components. Each optimization phase is designed to work at a specific level of
WHIRL. Our extensions to Dragon use information primarily from the VHL and High
Level (HL) WHIRL phases, which preserve high level control flow constructs, such
as loops and arrays, as well as OpenMP directives, which are preserved as compiler
pragmas. It is very important for our purposes to work in the high level representa-
tion because the arrays are still represented explicitly as high level constructs (before

492 Oscar R. Hernandez, Chunhua Liao, and Barbara M. Chapman

they become addresses/pointers), allowing the compiler to perform high level array re-
gion analysis calculations. The Open64 compiler consists of five modules as shown in
Fig. 1. Multiple frontends (FE) parse C/Fortran programs and translate them into VHL
WHIRL. If interprocedural analysis is invoked, then IPL (the local part of interproce-
dural analysis) first gathers data flow analysis information from each procedure, and
then summarizes and saves it in files. Array accesses are summarized into array regions
for each individual procedure. Then, the main IPA module generates the call graph
and performs interprocedural analysis and transformations based on the call graph data
structure. In this phase, the array regions are propagated to determine how the arrays
are being accessed across the entire program. If the program is instrumented, the in-
teprocedural analyzer is able to exploit runtime feedback to optimize the callgraph, in
particular to decide when to clone procedures with constant parameters, and for inlining
purposes. Our extensions to Open64 were mainly concentrated in the interprocedural
analyzer module (IPA), where we retrieve static array regions calculations and in the
instrumentation libraries, which we have used to instrument the program at the control
flow level using array region information. We will explain this instrumentation process
in the following sections and will also show how we have used the analysis within the
compiler. The backend module consists of the loop nest optimizer (LNO), the medium-
level code optimizer (WOPT), and the code generator (CG). We do not discuss these
further here.

3 Array Regions and Interprocedural Analysis

Most of the data processed by scientific programs are stored in arrays. Therefore a good
method to represent and manipulate array access information is key to the success of
interprocedural data flow analysis. The classical analysis methods [18,19] treat an array
as a whole and only use two bits (one for DEF and the other for USE) to represent the
accesses to an array. They are very efficient in terms of storage space and computation
complexity. However, they are too coarse for many optimizations. Several more accurate
methods have been proposed to address this problem. They are largely categorized into
exact and summary methods. Exact methods, also called reference-list-based, maintain
information about each reference to the elements of an array. Linearization [4] and Atom
Images [7] are two implementations of this idea. They are precise, but are very expensive
in terms of representation size and operations on them. On the other hand, summary
methods require storage space which is independent of the size of the access sets. Well-
known strategies for summarizing array regions are Regular Sections [21], Bounded
Regular Sections [20] using triplet notations, and Linear-constraint methods such as
Data Access Descriptors [22] and Regions [23]. They use geometrical spaces containing
accessed array elements to approximate and represent access information rather than
storing individual references. Each summary method has its benefits and drawbacks
in terms of complexity and accuracy. Flexible shapes usually mean high precision but
also complex computation. For example, Triolet’s Regions method is fairly accurate
because it applies a set of linear constraints to express a convex region. However, the
standard operations (union and intersection) to form and compare such regions are very
time-consuming.

A Tool to Display Array Access Patterns in OpenMP Programs 493

Open64 adopts Triolet’s Regions to perform its array access analysis at both intrapro-
cedural (LNO) and interprocedural levels (IPA). The IPA array regions are summarized
and propagated from local region information generated in LNO for global and formal
parameter arrays. An IPA level region is created for each type of access mode (USE,
DEF, FORMAL (formal parameter) or PASSED(actual parameter)) for each array vari-
able at procedural level, which in turn includes detailed region information at each array
access site in form of Projected Regions. A Projected Region consists of a set of triplet
notations [LowerBound, UpperBound, Stride](Projected Nodes in Open64) for each di-
mension. System of linear equations are formed from constraints for each axis of an
array using lower ≤ axis ≤ upper. To propagate array region information, there is a
mapping between caller and callee. Open64 first performs a reshape analysis and checks
if there are aliases and global variables involved. It then propagates information about
formal parameters used as symbolic terms in array region summaries, which later will
be used to trigger cloning, if possible. A region could be MESSY or UNPROJECTED
if it encounters non-linear access or unknown values of bounds.

Fig. 2. Open64 calculation of the regions in a Jacobi OpenMP program. Note that there is one
region for each access mode per array for a subroutine and it is given in triplet notation

Figure 2 gives an example of the array region analysis in Open64 using a simple
Jacobi code. In this subroutine, uold is a local array and u is a formal parameter array.
The DEF region of uold, (1:n:1,1:m:1) comes from only one definition site while its
USE region (1:n:1,1:m:1) is the result of summarizing 6 usage sites. The boundary
constraints are used to form system of equations for each region. For example, u(2:n-
1:1,2:m-1:1)DEF corresponds to two linear equations: 2 ≤ dim1 ≤ n − 1 and 2 ≤
dim2 ≤ m− 1.

494 Oscar R. Hernandez, Chunhua Liao, and Barbara M. Chapman

4 Extensions to Dragon and Open64: OpenMP Early Lowering,
Array Regions Calculations and Instrumentation

Our extensions to Dragon to provide this new functionality uses the static symbolic
analysis and array data flow analysis within the compiler to instrument the program
strategically at the control flow level using array region information. Our goal is to
calculate the how threads access the array regions in an OpenMP code. To do so requires
us to take into consideration how OpenMP is lowered in Open64, since many of the
arrays change in scope and definitions (from local variables to global/interprocedural
variables, in the case of shared variables). This is the result of the compilation phase
where OpenMP directives are transformed into multi-threaded code. It typically involves
outlining parallel regions by turning them into procedures containing the code in the
region, making shared data available by turning them into global variables or passing
them as arguments to the parallel region procedures, redefining private data as local
variables to parallel region procedures, and inserting new loop bounds with scheduling
calls for parallel loops. [17] discusses a similar strategy for lowering OpenMP in a
source to source compiler.

Our extensions to Open64 force the compiler to lower OpenMP directives before
the Array region analysis take place. This allow us to accurately calculate the array
regions accessed on a thread by thread basis. Since shared data becomes global in
Open64’s OpenMP lowering process, the array regions accessed are propagated across
the procedure boundaries, allowing us to determine how shared arrays are accessed in
the entire program. This information helps us to figure out what information we need
to gather at runtime and to instantiate any symbolic expressions that describe array
Regions. Information such as unknown loop bounds etc. In Figure 3 we show how the
Jacobi program looks after OpenMP lowering.

Figure 3 shows how an OpenMP program is lowered. It also illustrates how a parallel
region is translated to a procedure that every thread participating in the computation of the
parallel region will execute. The run-time schedule assigns temporary upper and lower
bounds and a stride to each thread. Since the Jacobi program uses a static scheduling
scheme, each thread will get, as far as possible, an even amount of work. This means
that the iteration space is divided equally among the threads. Figure 4 shows how the
lowering of OpenMP affects the regions of the program in comparison to the original
ones in Figure 2. The loop boundaries of the parallel loops are assigned to the threads
at run-time.

Now the problem resides in determining the array regions accesses on a per-thread
basis. For this purpose, we instrumentthe parallel loops nests that have access to shared
arrays. Figure 3 also shows how instrumentation calls are inserted in the lowered version
of the Jacobi program. The arguments for the RegionInstrument calls include the thread
ID, procedure ID, basic block ID, array region ID, and a list of terms/variables needed,
to determine the array region boundaries.

Figure 5 shows the results after running the instrumented Jacobi program using four
threads. In this code, you can see which portion of the array UOLD is being accessed by
each of the four threads. The overlap areas among the regions indicate where the threads
share data. This information can help the programmer decide how to partition shared

A Tool to Display Array Access Patterns in OpenMP Programs 495

Fig. 3. Open64 lowering of a Jacobi OpenMP program to explicit multithreading code. Note how
the parallel region is translated to a procedure, shared variables become global variables, and the
loop bounds of the parallel loops are assigned by a run-time scheduler

Fig. 4. The array regions of the OpenMP-lowered version of Jacobi. Note the difference between
the boundaries of the regions here and the original ones

496 Oscar R. Hernandez, Chunhua Liao, and Barbara M. Chapman

Fig. 5. The different portions of the array UOLD accessed by the different threads. The overlap
area of the regions is the subregion where the threads share data. The array portions of the regions
that are accessed by one thread only can safely be privatized

arrays to maximize privatization. [15], [9] presents an example illustrating how this can
be accomplished and describes their experimental results.

5 Related Work

A variety of tools provide detailed information on the execution behavior of a sequential
or parallel program, but with different goals and approaches. VTune [6] and PAPI [2]
retrieve hardware counter information to poll or take samples to find out how the appli-
cation is executing, focusing on memory issues such as cache misses. The information
retrieved is low level and cannot be used to give a higher-level view of how OpenMP
shared arrays are accessed. On the other hand, tools such as MemSpy [10], which map
memory accesses to source code and try to understand how to adapt an application to
the current memory subsystem, do not summarize array accesses and present them in an
intuitive way to the programmer. Intel’s ThreadChecker [6] focuses on semantic prob-
lems in OpenMP to detect data races, uninitialized private data, and more, but does not
emphasize shared data accesses. MetaSim [14] and Dyninst [3] provide a framework
to extract the memory signature of programs and try to match the application to the
best hardware profile available, but they rely on simulations and explore other problems.
Our approach is based on combined static and dynamic analysis and instrumentation to
retrieve runtime information for summarizing and displaying the array regions accessed
at the thread level.

6 Conclusions and Future Work

Our extensions to the Dragon tool allow us to construct a mapping between OpenMP
threads and the regions of arrays that they access. This is accomplished by recalculating

A Tool to Display Array Access Patterns in OpenMP Programs 497

the array regions within the compiler after the OpenMP lowering has been performed, and
using the region analysis within Open64 to help strategically instrument the application.
During execution, the regions can be made precise. There are a variety of potential uses
of this information. Our Dragon tool and Open64 compiler version are robust systems
that can handle large-scale programs. Further work is needed to evaluate this new feature
of the tool on production applications.

References

1. V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in
parallelism enhancing transformations. Proceedings of the ACM SIGPLAN 1989 Conference
on Programming language design and implementation, 41–53, 1989.

2. S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A Scalable Cross-Platform
Infrastructure for Application Performance Tuning Using Hardware Counters. Proc. Super-
computing 2000 , November 2000, Dallas TX.

3. B. Buck and J.K. Hollingsworth. An API for Runtime Code Patching. Journal of Supercom-
puting Applications, 14(4):317–329, 2000.

4. Michael Burke and Ron Cytron. Interprocedural dependence analysis and parallelization.
Proceedings of the 1986 SIGPLAN symposium on Compiler contruction, 162–175, 1986.

5. Barbara Chapman, Oscar Hernandez, Lei Huang, Tien-hsiung Weng, Zhenying Liu, Laksono
Adhianto, Yi Wen. Dragon: An Open64-Based Interactive Program Analysis Tool for Large
Applications. Proceedings of the 4th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT ’03), 2003.

6. Intel Corporation products for OpenMP. Intel ThreadChecker and VTUNE
http://developer.intel.software/products/

7. Zhiyuan Li and Pen-Chung Yew. Efficient interprocedural analysis for program parallelization
and restructuring. Efficient and precise array access analysis, 24(1):65–109, 2002.

8. Zhenying Liu, Barbara Chapman, Yi Wen, Lei Huang, Tien-hsiung Weng, Oscar Hernandez.
Improving the Performance of OpenMP by Array Privatization. WOMPAT’2002, Workshop
on OpenMP Applications and Tools, 224-259, 2002.

9. Zhenying Liu, Barbara Chapman, Yi Wen, Lei Huang, Tien-hsiung Weng, Oscar Hernandez.
Analyses for the Translation of OpenMP Codes into SPMD Style with Array Privatization.
WOMPAT’2003, Workshop on OpenMP Applications and Tools, 26-41, 2003.

10. M. Martonosi, A. Gupta, T. Anderson. MemSpy: Analyzing Memory System Bottlenecks in
Programs. SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
1–12, 1992 Newport, Rhode Island.

11. The Open64 compiler Website http://open64.sourceforge.net
12. William Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM,

35(8):102–114, 1992.
13. Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures, A

Dependence-Based approach. 585–588, Academic Press, 2002
14. A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia and A. Purkayastha. A Framework

for Application Performance Modeling and Prediction. Proceedings of Supercomputing 2002,
November 2002, Baltimore.

15. B. Chapman. F. Bregier, A. Patil and A. Prabhakar. Achieving Performance under OpenMP
on ccNUMA and Software Distributed Shared Memory Systems Special Issue of Concurrency
Practice and Experience, Volume 14, Issue 8-9, September 2001.

16. OpenMP Architecture Review Board. Official OpenMP Specifications
http://www.openmp.org.

498 Oscar R. Hernandez, Chunhua Liao, and Barbara M. Chapman

17. M. Soukup. A source-to-source OpenMP compiler Master’s thesis, University of Toronto,
Toronoto, Ontario 2001.

18. J. Barth An interprocedural data flow analysis algorithm in Conference Record of the Fourth
ACM Symposium on the Principles of Programming Languages,(Los Angeles), Jan. 1977.

19. Keith D. Cooper and Ken Kennedy Efficient computation of flow insensitive interprocedural
summary information SIGPLAN Symposium on Compiler Construction 1984: 247-258

20. Paul Havlak and Ken Kennedy An Implementation of Interprocedural Bounded Regular Sec-
tion Analysis IEEE Transactions on Parallel and Distributed Systems, vol. 2, no. 3, pp. 350-
360, 1991.

21. David Callahan and Ken Kennedy Analysis of Interprocedural Side Effects in a Parallel
Programming Environment J. Parallel Distrib. Comput. 5(5): 517-550 (1988)

22. Vasanth Balasundaram and Ken Kennedy A Technique for Summarizing Data Access and Its
Use in Parallelism Enhancing Transformations PLDI June 1989: 41-53

23. R. Triolet, F. Irigoin and P. Feautrier Direct parallelization of call statements SIGPLAN
Symposium on Compiler Construction, July 1986: 176-185

A Model Analysis of a Distributed Monitoring System
Using a Multi-formalism Approach

Mauro Iacono1, Stefano Marrone1, Nicola Mazzocca1,
Francesco Moscato1, and Valeria Vittorini2

1 Seconda Università di Napoli, Dipartimento di Ingegneria dell’Informazione
Aversa (CE), Italy

{mauro.iacono,stefano.marrone,
nicola.mazzocca,francesco.moscato}@unina2.it

2 Università di Napoli Federico II
Dipartimento di Informatica e sistemistica, Napoli, Italy

vittorin@unina.it

Abstract. Automated applications for environmental monitoring are an important
aid for security and safety of buildings and for civil (domotic) and industrial use.
The relevance of such applications is sound, and ensuring a correct fulfilling of the
mission goals implies the need for performability and dependability requirements.
For reasons of cost, flexibility and efficiency, a good candidate architecture is based
on mobile agents capable of real time operation on a network of intelligent sensors,
in addition of normal monitoring tasks.
Design and tuning of these systems is a very hard task. In this paper a multi-
formalism approach based on model-checking techniques for Timed Automata
and Timed Petri Nets is presented to model a real-time-mobile-agents based mon-
itoring system. With this approach, different component of the system may be
modeled by using the most suitable modeling formalism to cope with the need for
modeling agent behaviors, real-time constraints and the load of the overall system.

1 Introduction

Monitoring Systems (MS) are in charge of surveying conditions of industrial environ-
ments as well as civil buildings. They exploit a network of sensors, connected by different
network architectures and protocols and controlled by heterogeneous computing nodes,
with event-driven reactions to gathered data in order to detect an manage with dan-
gerous conditions. The scope of these systems moved from industrial field to domotic
applications broadening the market and the quest for inexpensive and flexible systems.

The sensor network is usually devoted to service other periodical tasks in MS, and
the reaction is obtained by proper supplemental real time tasks responsible of raising
alarms, operating reconfigurations or acting on the monitored process. The nature of
the surveillance requirements usually results in the presence of different kind of sensors
(optical, thermal, pressure sensors etc.), of different kind of computing nodes (PC, micro-
controllers, PLC etc..), of different operating systems (OS) (embedded OS, real-time
OS, monolithic and micro-kernel OS), making the whole system very heterogeneous. In
addition, usually for physical and security reasons, the system is distributed through the

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 499–508, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

500 Mauro Iacono et al.

space and different kind of network (deterministic as well as stochastic) links (Ethernet,
token ring, proprietary bus for sensors, serial lines etc.) connect nodes, sensors and
actuators in the system.

The need for flexibility, reconfigurability and adaptability can be better satisfied
by approaching the design by the mobile agents [9,10] programming paradigm, which
offers a way to put the focus on the solving strategy more than on the distribution of
the architecture and is supported by a sound theoretical support for modeling system
behaviors. A mobile agents oriented approach must be conciliated with the need for
real time specifications satisfaction, then an accurate quantitative design for system
performances has to be performed, as well as formal technique must be used to ensure
that the system always works correctly and in a safe state.

Design and tuning of these systems is a very hard task since network and OS schedul-
ing behaviors have to be considered in addition to monitoring tasks and other concurrent
system tasks.

To better cope with the complexity of such systems, multi-formalism approaches are
emerging, which allow to use different formalisms to better model and analyze different
parts of a system and also to promote model reuse.

In this work we propose a methodology for real time, mobile agent oriented, hetero-
geneous systems performance design based on a multi-formalism approach. We based
our methodology on Timed Automata (TA) [1,2] and Timed Petri nets (TPN) [5] in order
to model system behavior against hard real-time constraints, accounting for operating
systems scheduling effects, network communication queuing effects and concurrency
among tasks.

Timed Automata became a standard in modeling real-time asynchronous systems
[1,2,7] but they do not offer features to model queuing effects, as needed to obtain a
full evaluation of system behavior. It is mandatory to fill this gap, because scheduling
affects system performances, and to find out a formal means for the evaluation of clock
values (see [1,2]) needed to describe the time elapsed when the automaton is in a state.
The evaluation of this values also has to consider concurrency among tasks. Formal
techniques based on Petri Nets (PN) are widely used to model concurrent and distributed
systems, and showed to be effective in many research papers as [4,3] in which they are
used to model FSM systems.

The aim of our methodology is to describe monitoring system by means of TA
where clocks values are determined by developing appropriate TPN, in order to limit
the explosion of computing time and to limit the increase in complexity for the model.
To obtain this, we structure in the analysis and design process the whole model in
layers, to each of which is associated the formalism that better suits to manage the layer
characteristics.

In the next sections we describe the general system architecture, present our modeling
approach, together with a laboratory case study.

2 System Architecture

The general architecture to which we refer for these systems may be sketched as in Fig. 1.
The architecture is composed by computing units that can be divided in two groups: sys-

A Model Analysis of a Distributed Monitoring System 501

HW Network

APPLICATIONS

MIDDLEWARE

Operating System

SENSORS ACTUATORS

Node 1

HW Network

APPLICATIONS

MIDDLEWARE

Operating System

SENSORS ACTUATORS

Node K

HW Network

APPLICATIONS

MIDDLEWARE

Operating System

Monitoring
Station 1

HW Network

APPLICATIONS

MIDDLEWARE

Operating System

Monitoring
Station N

Fig. 1. Monitoring Systems Architecture

tem nodes and monitoring stations. With reference to Fig. 1, Nodei, i ∈ 1..k are comput-
ing nodes of the system which host sensors and actuators, while
MonitoringStationsi, i ∈ 1..N are computing nodes on which supervisory user in-
terfaces and control panels run. The system to be monitored and the monitoring stations
are usually distributed and heterogeneous. Different hardware(HW), network links and
protocols (Networks), OS (Operating Systems) and software may be used in these sys-
tems. System nodes may be embedded systems (microcontrollers, PLC etc.) as well as
general purpose Personal Computers (PCs). Since the monitoring system architecture is
fully distributed, all nodes are involved in control, supervisory and monitoring tasks.

Applications running on the nodes can use distributed middleware for communica-
tions, to share or virtualize some node resources.

In addition, applications have to be executed under (soft and/or hard) real-time con-
straints. Node Operating systems and middlewares have to provide means for the appli-
cation to be compliant with such constraints in a distributed environment where tasks
are not scheduled in a fixed and periodical way. Moreover, monitoring system should
provide adaptability and reliability features, in order to face also with anomalous system
behaviors and to supply the best control and monitoring effort depending on the current
system state.

In the architecture proposed in this paper the principal middleware is a mobile agent
framework, chosen to improve the reliability and the adaptability of static monitoring
applications. Both static agents and mobile agents are active in the system. Static agents
are responsible of standard monitoring and control operations. Mobile agents are used
to scan all sensors (optical, thermal etc.) in the distributed environment. While scanning
all system sensors, mobile agents may reveal unusual system behaviors and can try
to reconfigure local control systems to deal with them. Interactions among agents are
performed if some agents need the intervention of other agents features to accomplish
their tasks. Tasks performed by agents usually have real time constraints; furthermore
agents have to compete for resources with standard monitoring and control applications.
Real time constraints and priorities for all standard task and for all agents have to be
carefully defined to avoid non correct behaviors.

502 Mauro Iacono et al.

3 Modeling Approach

The main goal of our approach is to define a methodology to support the modeling
and analysis phases of complex real-time, heterogeneous and distributed monitoring
systems shown in the previous section. The methodology we present is founded on formal
methods, and is based on a modular multi-formalism approach, in order to exploit both
performance modeling and model checking techniques advantages together. We chose
a modular approach in order to help the designer to analyze the system to be modeled
by submodels, in a divide et impera strategy and enabling submodel reuse.

The main problem in modeling this kind of system is to prove in early design phase
that real-time constraints are met in the whole system, considering all different (potential)
component interactions at different level, for example at operating system scheduling
level, at middleware level or at application level. In a simple scenario, a stand alone
monitoring software (a static agent) and a mobile agent used to avoid extraordinary
dangerous situations can be scheduled and then executed concurrently on the same node.
If the stand-alone application and the mobile agent use the same sensor, a preemption
mechanism must be designed in order to obtain in turn exclusive access to the resource. In
addition it is necessary to prove that the real time constraints stated in the specifications
are still met by each agent also when other application agents operate on the nodes and
interact with each other by communicating among nodes.

Moreover, to guarantee a correct behavior of the whole system, it is not sufficient
to guarantee that each single component mets the specified constraints but also that
the various components still met the constraints when they execute in the distributed
environment: scheduling, interactions and concurrent executions obviously modify the
response time of each component on each node; in addition, undesired deadlocks and
other incorrect behaviors that can be introduced by the interactions among different
applications and drivers must be avoided. The steps of the proposed methodology are
sketched in Fig.2.

P1 P2

P3

t1

tasks and OS

schedulng

Parameters

(measured

or estimated)

Application

Informations

and measures

tex:

task

execution

time;

TPN TA

real-time

constraints

Boundness

Non-Zenoness

Reachability

t1<a;t1:=0

t1<b;t1:=0

t1<c;t1:=0

t1<d;t1:=0

Fig. 2. Modeling Approach

- The first step is devoted to evaluate the task execution time of each agent when
interacting with other agents on a single node. This characterization is achieved by TPN
models, tuned with measured execution times for elementary actions performed by the

A Model Analysis of a Distributed Monitoring System 503

agent. In addition, OS scheduling effects are accounted in the model. TPN are used
in order to model queuing effects and priority scheduling aspects in the overall node
behavior. Even if TPN formalisms is capable of representing the whole system behavior,
interactions among nodes are non modeled by this formalism because of the state space
explosion problem which heavily affects solution of PN models ([8]).

- The second step models interactions among agents acting all over the system by TA.
This choice is a way to reduce the effects of the state space explosion using optimized
algorithms and data structures ([7]). Model checking techniques are applied to verify
properties on the whole system behavior. The properties to be evaluated for the whole
system are expressed in the Real-Time Computational Tree Logic (RTCTL). In this way
properties such as Reachability, Non-Zenoness, Bounded Response ([6]) in addition to
real-time constraints compliance can be evaluated on the whole system.

The approach needs to be improved by using the first step of this methodology
because it is very difficult to model operating system queuing effects on the tasks that
are executed on the same node by TA. Results of the first step (task execution times on
single nodes) are used to set guard transition times of TA models, together with measured
communication and migration times for agents. The final result is a validation of the
system against specifications in terms of satisfaction of the aforementioned properties.

4 Case Study

We applied the methodology described before to a security and safety control system.
The system is used to detect physical intrusions (revealed by pressure sensors) and firing
emergency in a building. On system nodes there are three different types of sensors: pres-
sure, thermal and optical (camera). These sensors are controlled by embedded systems
(that are emulated in the laboratory test-bed by low-performance PCs: Intel Pentium
processor at 166 MHz, 32 Mbyte of RAM and 100 Mbit Ethernet). These computers are
equipped with Slackware Linux based on kernel 2.4.22.

Five kinds of software agents are active in our test-bed. The first kind and the second
are constituted by static agents which respectively monitor thermal and pressure sensors
connected to the node on which they operate. The third kind is composed by static
agents which continuously move optical sensors in a predefined space. The fourth kind
is constituted by mobile agents which wander on the system monitoring all thermal
sensors looking for and reacting to dangerous situations, while the fifth and last kind
groups mobile agents which patrol the system looking for pressure anomalies to locate
intruders.

In Fig.3 an alarm condition to analyze is shown: the mobile agent monitoring the
thermal sensors (Nomad) detects an alarm condition after preempted the static agent
(ThermSW) that was monitoring the same sensor. In order to assure that no human
is present in the room before locking doors, Nomad requests the help of the mobile
agent that monitors pressure sensors (Nimrod). Nimrod moves to the Nomad node and
preempts the static pressure agent that was monitoring the pressure sensor (PressSW).
Then Nimrod sends a message to Nomad notifying if humans are present in the room or
not. Depending on Nimrod message, Nomad decides if it is possible to lock the anti-fire
door or not.

504 Mauro Iacono et al.

Thermal S Pressure SDoorLock A Thermal S Pressure SDoorLock A

Pressure S

NomadPressSW PressSW

PressSW

ThermSW

ThermSW

Nimroad

Alarm

Monitoring Pressure
Sensor Request

Thermal S Pressure SDoorLock A Thermal S Pressure SDoorLock A

Pressure S

Nomad
PressSW

PressSW

PressSW

ThermSW

ThermSW

Nimroad

Lock
Door

Room Empty

Fig. 3. Case Study Example

Fig. 4. Nimrod TA

It is necessary at design time to evaluate if this operation can be executed within in 10
secs. In addition it is necessary to prevent deadlocks and livelocks in the whole system.
For these reasons a TA model of each system component behavior is realized and all the
(sub)models are composed to build the whole system model. In Fig.4 and Fig.5 parts of
the Nimrod and Nomad TA are respectively shown (the other models are not reported for
brevity sake). In particular Fig.4 shows the part of Nimrod TA that models its behavior
when no intruders are detected (states from init to ElabDataOK models the interaction
with the sensor serial interface). Nimrod continues its normal behavior if Nomad does
not require its help (when from the state ControlOtherAgent follows the transition Data-
DoneOK) or moves to Nomad node if it needs to know if some humans are in its room
after a fire alarm detection (when from the state ControlOtherAgent follows the transi-
tion DataDoneAL). If no help is required, Nimroad continues with its normal behavior
(AddSameBahavior) moving (DoMoveOK) to the next node. If Nomad requests its help,
Nimrod changes its behavior to accomplish its new task (AddAlBehavior) and moves to
the Nomad node (DoMoveAl) to monitor pressure sensors, also preempting Pressure sta-
tic agent on the Nomad node (from ReschedAl to SReadyAl). It elaborates pressure data
and communicates the needed informations to Nomad (from ElabDataAl to WaitOk).

A Model Analysis of a Distributed Monitoring System 505

Fig. 5. Nomad TA when an alarm occurs

In the same way Fig.5 shows the parts of Nomad TA that models its behavior when a
fire alarm is detected. Differently from Nimrod, when Nomad finds an alarm condition,
it changes immediately its behavior (AddBehAl), requesting Nimrod intervention (from
WaitOther to ElabOtherData). In Fig.5 the part of Nomad TA concerning its behavior
when no human is detected by Nimrod is shown. It moves to the node interfaced with
the door locking mechanism and it locks the door (from AddLockBeh to LockDoMove).
Different real-time constraints to verify are reported in the two timed automata; in par-
ticular, the state invariantw1 <= DEAD3 in the State LockDoMove in Fig.5 represents
the design constraints that states that a decision for a lock of a door in the case of a
fire-alarm must be taken within 10 secs (where DEAD3 = 10secs). Some interesting
properties to prove on these models (once composed in the whole system model with
other TA submodels) are Reachability of a given set of states and Bounded response to
a request starting from a given state. These properties are expressed in RTCTL and the
tool KRONOS [6] is used to check the properties on the model. For example, it is useful
to assure that once Nomad has retrieved an alarm condition, no deadlocks or livelocks
or other dangerous conditions prevent Nomad to lock the door. This can be expressed in
RTCTL:

initBehavior ⇒ ∀�EndMonBeh

where "⇒ ∀�" means: from InitBehavior state every state along every execution brings
to EndMonBehstate . Another properties to prove is that once Nomad has detected a
fire-alarm, in a time less than or equal to 10 seconds It have to Lock the anti-fire doors.
This can be expressed into RTCTL in the following way:

ElabDataAl ⇒ ∀♦≤10EndMonBeh

506 Mauro Iacono et al.

Table 1. Some Experimental Results

Parameter Max val measured Deadline

on real system

DEAD1 2.17 secs 3 secs

DEAD2 4.12 secs 5 secs

DEAD3 8.1 secs 10 secs

where "⇒ ∀♦≤10" means: from ElabDataAl state same state along every execution
brings to the state EndMonBeh within 10 seconds.

In order to prove these properties, the whole TA model have to be model checked
and to accomplish this task it is necessary to : (1) tune the TA submodels; (2) compose
the TA submodels to build the whole system TA; (3) model check the system to evaluate
the needed properties. In order to accomplish the task at point (1):

- design-time (real-time) constraints are used to tune state invariant values (for ex-
ample the value of DEAD3 in Fig.5) - Values retrieved from measures on prototypical
implementation of part of software agent are used to tune some transition guard time
value (like as the value of variable i in Fig.4 that represents the time that an agent spends
to move from a node to another one) - TPN models are used to estimate the values that
depends on operating system scheduling policies and mechanism and on the presence
of other software agents on the same elaborating node (like t or p variables in Fig.4).
Fig.6 shows two parts of the TPN model for the monitoring system: on the left a TPN
submodel of Nimrod mobile agent behavior is shown, while on the left a TPN submodel
of operating system scheduler is shown; the other submodels are omitted due to the lack
of space. These submodels are composed to estimate response time of agents when they
are scheduled on the same elaborating node, Throughput is same transition are then used
to estimate some values used to tune the TA model (for example, the inverse of Nimrod
TPN treadSensor throughput is used as value for variable t of the Nimrod TA model of
Fig.4).

Points (2) and (3) are performed by submitting the (tuned)TA submodels directly to
the KRONOS toolkit.

Results from Kronos toolkit assure that all requested properties are satisfied. In
particular, the results about bounded executions (concerning deadlines of 3 and 5 seconds
respectively forDEAD1 andDEAD2 in Fig.4 and a deadline of 10 seconds forDEAD3

in Fig.5) assures that the deadlines ever met. In addition a prototypical system was built as
described at the beginning of this section and experimental results show that effectively
the system verify the needed properties : no deadlocks or livelocks are detected in the
system and all real-time constraints are met. Some experimental results concerning the
deadlines described previously are shown in Tab.1.

5 Conclusions

The presented modeling methodology, applied to the case study of a remote SCADA
system, efficiently and effectively allows to define and use multi-formalism models by

A Model Analysis of a Distributed Monitoring System 507

Fig. 6. Nimrod and Priority Scheduler TPN

composing them from heterogeneous submodels to build a model of a complex su-
pervisory system. The proposed methodology allows to use different formalism for
different problems in different levels of modeling and provides a modular approach to
system analysis, supporting reuse of submodels. As shown in the Case Study section,
(sub)models are simple and are solved independently with advantages for the evaluation
phase. Preliminary results performed on a reduced system architecture showed the ef-
fectiveness of the technique on the partial implementation. A proper model checker has
been designed and implemented in order to allow the verification of desired properties
against the system and further laboratory experiments are being pursued on the whole
architecture. Future works include the integration of the technique in a multi-formalism
modeling framework in order to automate the solution process and to evaluate the oppor-
tunity of introduction of other kind of models (including also simulative models) in the
methodology itself and to define all the composition rules to perform their integration.

508 Mauro Iacono et al.

References

1. Alur R., Courcoubetis C. and Dill D.L. "Model Checking for real-time systems". In Proc. of
the 5th Annual Symposium on Logic in Computer Science. IEEE Computer Society Press, pp.
414-425, 1990.

2. Dill D.L. "Timing Assumption and verification of finite-state concurrent systems" In Proc.
of the International Workshop on Automatic Verification Methods for Finite State Systems.
LNCS 407, pp. 197-212. Springer, 1989.

3. Wang J., Deng Y. "Incremental modeling and verification of flexible manufacturing systems".
In Journal of Intelligent Manufacturing, Vol. 10, No. 6, pages 485-502. Dec. 1999.

4. Lin M.-H. and Fu L.-C. 1999. "Modeling of Priority Queuing Service in discrete Event
System Using Hybrid Petri Nets". In Proc. IEEE International Conference on Systems, Man
and Cybernetics Vol.1.

5. Raymond M. and Alain J.-M. 1993: "Quantitative Evaluation of Discrete Event Systems:
Models, Performances and Technique"s. In Proc. 5th International Workshop on Petri Nets
and Performance Models (19-22 Oct 1993), IEEE, 2-11.

6. Daws C., Oliviero A., Tripakis S. and Yovine S. "The tool KRONOS". In Hybrid Systems III:
Verification and Control, LNCS 1066, pp.208-219. Springer, 1996.

7. Clarke E.M., Grumberg O. and Peled D.A. "Model Checking" , The MIT Press, 1999, Cam-
bridge

8. Murata T. "Petri Nets: Properties, analysis and applications" In Proceedings of IEEE, 77(4).
9. http://jade.cselt.it/

10. http://www.trl.ibm.co.jp/aglets

Performance Oriented Development and Tuning
of GRID Applications

Emilio Mancini1, Massimiliano Rak2, Roberto Torella2, and Umberto Villano1

1 Universitá del Sannio, Facoltá di Ingegneria
C.so Garibaldi 107, 82100 Benevento, Italy

{epmancini,villano}@unisannio.it
2 DII, Seconda Universitá di Napoli

via Roma 29, 81031 Aversa(CE), Italy
{massimiliano.rak,r.torella}@unina2.it

Abstract. GRID Application development is a hard task. Good applications
should correctly use large distributed systems, whose infrastructure heavily af-
fects the application performance. In this paper we propose a performance oriented
approach to GRID application development, founded on the use of a prototype
language (MetaPL) for the description of the applications and the use of a hetero-
geneous system simulation environment (HeSSE) for performance prediction. We
developed GRID simulation components for the existing simulation environment
(HeSSE) and validated them. After that we extended the MetaPL language in order
to explicitly support GRID application features and simulated a simple case study
to show how the approach works.

1 Introduction

The presence of distributed software systems is pervasive in current computing appli-
cations. In commercial and business environments, the majority of time-critical appli-
cations has moved from mainframe platforms to distributed systems. In academic and
research fields, the advances in high-speed networks and improved microprocessor per-
formance have made clusters or networks of workstations and Computational GRIDS
an appealing vehicle for cost-effective parallel computing. However, the systematic use
of distributed programming can be frustrating, especially if the final application per-
formance is more than an issue. Even if great effort has been putting in developing
methodologies and tools that could help the final programmer to develop application
independently from the underlying architecture, as happen in GRID environment, very
few results have been obtained to support prediction and evaluation of prototypal ap-
plication. In the last few years, our research group has been active in the performance
analysis and prediction field, developing HeSSE [6-7], a simulator of distributed ap-
plications executed in heterogeneous systems, and MetaPL a prototypal-base language,
based on XML, able to support many different programming paradigm. This paper
presents a simulation-based methodology, founded on HeSSE and MetaPL, that makes
it possible to predict GRID application and system performance, even when the execu-
tion environment is not available and the application is not completely developed. This

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 509–518, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

510 Emilio Mancini et al.

methodology can be used as the basis for performance-driven GRID application devel-
opment or GRID system performance tuning and design. The reminder of the paper is
structured as follow: next section will show briefly the related work on the GRID sim-
ulation. Section 3.2 will describe our simulation environment and modeling technique
and the newly developed the GRID extensions; the section will point out the simula-
tion components developed and their validation. Finally the approach will be applied
on a simple case study and then compared to the actual results obtained in the real (i.e.,
non-simulated) GRID environment, discussing the accuracy of the model used and the
effectiveness of the proposed approach. The paper ends with a section on conclusions and
future work.

2 Related Work

The performance analysis and tuning of applications, along with the optimization of
scheduling and resource allocation algorithms, are widely recognized as particularly
hard problems in Grids. Long application running times, non-repeatability of tests, not
to mention economic problems, prevent the use of real applications running on real
hardware to grade the effectiveness of alternative solutions. Most of the contributions
in literature try to predict application running times, network load and end-to-end data
transfer times by statistic models of historical data. An alternative, and probably more
manageable solution, is to resort to simulation environments that enable reproducible,
controlled and systematic evaluation of middleware, applications, and network services
for the Grid. However, none of the simulations environments currently available seems
able to provide accurate, fast and robust performance evaluations and analysis of full-
scale Grid applications and middleware. In particular, the objective of the Bricks project
[4] is to simulate alternative scheduling policies for client-server systems that provide
remote access to computing services over the Grid. Bricks makes it possible to simu-
late alternative resource allocation strategies and policies for multiple clients, multiple
servers scenarios. However, Bricks follows centralized global scheduling methodology
and hence it is not suitable for simulation of environments where there are multiple
un-coordinated schedulers. Microgrid [5] is a simulation environment that provides a
virtual grid infrastructure for the study of Grid resource management issues. In fact, it is
actually an emulator, in that actual application code is executed on a virtual Globus envi-
ronment. While on the one hand this characteristic leads to high accuracy results, on the
other it affects negatively simulation speed. In practice, most applications are executed
in Microgrid in a time longer than the one required in the actual environment, thus mak-
ing the use of the simulator not viable to perform large number of experiments. Simgrid
[6] is instead a C language-based toolkit for the simulation of application scheduling. It
supports the modeling of time-shared resources, taking into account the load which can
be described synthetically or obtained by previously-collected real traces. As Bricks,
Simgrid makes it possible to model environments where there is a single scheduling
entity, with the further constraint that the systems must be time-shared. Hence it is not
directly utilizable for simulating multiple competing users, applications, and schedulers
with different policies, as in most Grid environments, not to mention space-shared ma-
chines. Gridsim [3] is the most recent proposal, and it extends and enhances the previous

Performance Oriented Development and Tuning of GRID Applications 511

systems, providing modeling of heterogeneous time- and space-shared resources, mul-
tiple static or dynamic schedulers, definition of CPU processing power. However, it is
fairly limited as far as network and I/O devices simulation is concerned.

3 GRID Simulation with MetaPl and HeSSE

HeSSE is a simulation tool that, using a compositional modeling paradigm, allows the
user to simulate the performance behavior of a wide range of distributed systems for a
given application, under different computing and network load condition.

The compositional modeling approach allows to easily describe Distributed Hetero-
geneous Systems that are modeled by interconnecting simple components. Each compo-
nent reproduces the performance behavior of a section of the complete system at a given
level of detail. A HeSSE component is basically an object, hard-coded with the perfor-
mance behavior of a section of the whole system. More detailed, each component has
to reproduce both the functional and temporal behavior of the subsystem it represents.

In HeSSE, the functional behavior of a component is the service set that it exports to
the other components. So connected components can ask other components for services.
The temporal behavior of a component describes the time spent servicing. System mod-
eling is performed primarily at the logical architecture level. For example, physical-level
performance, such as the one resulting from a given processor architecture, is generally
modeled with simple analytical models or by integral, and not punctual behavioral sim-
ulation. In other words, the use of a processor to execute instructions is modeled as
the total time spent in the processor without considering the per-instruction behavior.
Thanks to the chosen approach, HeSSE is capable of describing easily very complex
Distributed Heterogeneous Systems at any given level of detail.

HeSSE uses traces to describe applications. A trace is a file that records all the actions
of a program relevant for simulation. For example, the trace for an MPI application is
a sequence of CPU burst and requests to the run-time environment. Each trace is the
representation of a specific execution of the parallel program.

Trace files are simulation-oriented application descriptions, usually obtained
through application instrumentation. When the application is in development state,
they can be generated using prototypal languages. In the past years we developed an
XML-based language for parallel programs description: MetaPL [10]. It is language
independent and can easily support many different programming paradigms or commu-
nication libraries. It is possible to extend the language, through Language Extensions
XML DTDS, which introduce new constructs to the language; available examples are
PVM, MPI and OpenMP language extensions. Moreover MetaPL is able to generate
HeSSE trace files through a filter mechanism.

Detailed description of the MetaPL approach to program description and trace gen-
eration is out of this paper scope and can be found in [13,12].

The application analysis process can be represented graphically as in Fig. 1. It is
subdivided in three steps: System Description, Simulation and Results Analysis. Analysis
can drive to new models and process analysis repetition.

The System Description phase includes:

512 Emilio Mancini et al.

Model Tuning

System Architecture Modeling

Application Description

Configuration file
generation

Filter

Filter

Application trace

Configuration file

Command file

Simulated run
trace

Simulation log
(Simulated) program
performance analysis

Simulation reports

XML Engine

Application tracing
or MetaPL modeling

Benchmarking and
parameter evaluation

... ...

....
....

....

....

Fig. 1. HeSSE Simulation Session

– MetaPL prototypes development (Application Description);
– system architecture model definition (System Architecture Modelling);
– evaluation of the time parameters (model tuning).

The application description step consists in the MetaPL prototype development.
Thanks to the XML prototype, it is possible to generate the trace files needed to drive the
simulation execution. Second point consists in choosing (developing, if needed) HeSSE
components useful for the simulation, and in composing them through a configuration
file; at the end of this step, we are able to reproduce the system evolution. Last step
consists in running benchmarks on the target system in order to fill the simulator and
the MetaPL description with time information.

We built a simple MetaPL extension that supports GRID specific information, similar
to the data that can be retrieved from a globus RSL file, like the number of gatekeeper
involved. GRID MetaPL commands will be used by the trace generation mechanism
to define high level behavior, like the number of parallel tasks started in the GRID
environment.

In order to simulate the GRID infrastructure (i.e. the components of a real GRID
environment) we developed a new set of HeSSE components. Following sections will
give details about the simulation models adopted.

3.1 GRID Components in HeSSE

Our aims in this paper is to predict the performance of a given application (not completely
developed) in a GRID environment in terms of the overall application response time,
the time effectively spent in execution or the time needed to be started on the GRID
environment.

Performance Oriented Development and Tuning of GRID Applications 513

Basic components in HeSSE (see [8,9]) are able to reproduce main features of com-
mon cluster systems, like ethernet and myrinet networks, operating system scheduling
and job management, process synchronization and message passing software layers. To
reproduce the full GRID environment infrastructure overhead, we need to choice a real
implementation to mimic; in the following we will focus on the globus GRID platform
solution, mainly on two components: GRAM and GIS. The first one, GRAM, manages the
application allocation on the target system. The GIS, component manages the GRID
environment security problems, mainly the user authentication. Good description of the
cited components can be found in [1].

We developed three libraries containing a number of components needed to a com-
plete simulation. These components are:

– GlobusClient: formally the user submitting single or batch jobs to the system.
– GlobusServer: this component simulate the gatekeeper in the globus environment.
– GlobusProxy: this one simulate the ability of the gatekeeper to connect to other

gatekeepers in the case that more, or different, clusters need to be used to complete
the job.

– GPAM (GRID Process Allocation Manager): the work carried out by this compo-
nent is to allocate processes on a cluster, execute them or waiting for an external
synchronization if more clusters are used. It formally simulate the GRAM section
in the globus environment.

– Barrier: it simulate the synchronization infrastructure, DUROC in globus, needed
to guarantee the contemporaneous execution of all the processes in a multi-cluster
application.

– SSL: obviously simulate the overhead due to secure communication in a GRID
environment.

Now let’s have a deeper look to how the simulation is carried out. When the simulation
starts, the GlobusClient sends a job execution request to his default GlobusServer and
waits for the results. The communication between the client and the server is secure so
the SSL component is used. When a server receive a request, verify if he has a GPAM
and if it is free or busy. From the request, the server sees if the job must be executed on
a single cluster or on multiple clusters. If the server’s GPAM is free and the job must
be executed on a single cluster, the server sends the request to his GPAM that allocate
the tasks on his cluster’s machines. If the server GPAM is busy, the server sends the
request to his GlobusProxy asking for forwarding to another server. In the case that
the job must be executed on multiple clusters, the server sends the job to his GPAM.
The GPAM allocates the tasks and waits for the Barrier synchronization. Then the server
sends the job to proxy which forward it to the other servers. When all the tasks have been
allocated, the Barrier unlock the GPAMs that start the task execution. At the completion,
each GPAM sends to his server the results that are forwarded back to the first server and
then to the client.

The autenticatio process heavily affects the system performances, iIn order to show
the kind of interactions that take place in the startup phase of the application, figure 2
exploits the message exchange in the authentication process, when two different GRID
environments are involved. Simulation environment reproduces the complete messag

514 Emilio Mancini et al.

exchange. A detailed verifying process was carried on, monitoring both real environment
and the simulation to grant that exactly the same messages are sent at any layer of the
network stack.

...

Send Client
Hello

Send Server Hello
Publ. certificates
Req certificatesVerify Certificates

Generate Keys

Send
Certificate

Send End
Exchange key

Send End
Exchange key

Server
Sync

Submit
Jobs

Send Client
Hello

Send Server Hello
Publ. certificates
Req certificatesVerify Certificates

Generate Keys

Send
Certificate

Send End
Exchange key

Send End
Exchange key

Server
Sync

Submit
Jobs

Fig. 2. Message exchange in globus autentication

3.2 Simulation Validation

To validate the correctness of the infrastructure simulation, we tried a simple test ap-
plication, the unix command True, a standard GNU application which simply terminate
with error level zero. In that way, the application execution time is almost nought and
the measured response time is all due to processes allocation through the clusters. We
launched the test application on the target environment (an SMP cluster better described
later) in many different configurations. One of the configurations was used to tune the
simulation parameters, the others were used to verify the simulation.

To emulate many GRID environment on a single cluster, we used each node as a
different GRID cluster. Varying the number of tasks allocated on the GRID allows to
show peculiarity in the allocation time. In particular, has been noted that, from two to
eight tasks, the allocation time vary linearly while there is a big gap between one and
two. This is due to the fact that all the job submission to multiple clusters are made in
parallel by the first cluster.

Figure 3 shows both the real environment and the simulation behavior, varying
the number of GRID nodes. Upper side of the figure shows the response time, while
lower side contains the percentage simulation error. Note that the behavior showed by
simulation correspond to the real system one.

4 An Example: The Gauss-Siedel Application

Aiming at clarify how proposed development approach works, we have applied it on
a single case study: development of the Gauss-Siedel method for resolving iteratively
linear equations systems. We modeled and simulated the target application. After the
analysis, we developed and ran it on the real environment. The execution results were

Performance Oriented Development and Tuning of GRID Applications 515

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8

"true.mean"
"true.mean.sim"

 0

 5
 10

 15
 20

 25
 30

 1 2 3 4 5 6 7 8

"true.mean.err"

Fig. 3. Gauss-Siedel Simulation

compared with the predicted ones. As previously pointed out the development method-
ology founds on the following steps:

Application Modeling MetaPL Description of the target application
GRID Environment Modeling Definition of one (or more) HeSSE configuration able

to reproduce the target environment(s)
Model Tuning Execution of simple application benchmark able to define the time pa-

rameters for the developed models (see [14] for further details)
Application Analysis Application Simulation on the target(s) GRID environments, in

order to understand final application performance behavior.

The Gauss-Siedel method for resolving iteratively linear equations systems calculate,
at each step, the new unknowns values using those calculated at the previous step. At
first step a set of random values is chosen. It works under the assumption that the
coefficient matrix is a dominating-diagonal one. Due to the particular method chosen,
the parallelization is very simple. In fact each task calculates only a subset of all the
unknowns and then gathers with the other tasks the rest of the unknowns vector needed
for the next step. Figure 4 shows a partial MetaPL description of the above described
application (in order to improve readability, we cut away XML tags and code section
not useful for code understanding).

In order to validate the approach, the proposed application was developed and run
on a real (even if little) GRID environment: the cluster Cygnus. This cluster is composed
of four Pentium III bi-processor nodes with 512MB of memory each and a front-end
Pentium IV Xeon with 1GB of main memory. The nodes are connected each other
through a switched 100Mbps ethernet LAN while the frontend has two ethernet cards,
one private, connected to the switch, and the other public connected to the external world.

Figure 5 shows the results of application execution in the real environment (the clus-
ter) and its simulation; figure upper side contains the response time graph, for both real
and simulated executions, while lower side contains relative percentage error between
real timings and the simulation prediction. Note that the application trend in simulated
and real environment are the same.

516 Emilio Mancini et al.

<MetaPL>
<Code>
<Task name="Gauss"> <Block>
<Command time="t1" name="readdata"/>
<Broadcast dim="1024" />
...

</Block> </Task>
<Code>
<Mapping>
<NumberOfProcesses value="6" />
<NumberOfGatekeeper value="2" />
<Gatekeeper id="1">
<Scheduler="fork">
</Gatekeeper>
</Mapping>

</MetaPL>

Fig. 4. Gauss-Siedel MetaPL description

 20

 22

 24

 26

 28

 30

 32

 34

 1 2 3 4 5 6 7 8

"gauss.globus"
"gauss.globus.sim"

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 1 2 3 4 5 6 7 8

"gauss.globus.err"

Fig. 5. Gauss-Siedel Simulation

5 Conclusions

This paper shows a performance-oriented approach to GRID application development,
founded on the adoption of a simulation environment (HeSSE) and a prototypal language
(MetaPL) for performance evaluation of the application at any step of the target software
development.

We developed GRID simulation components for the existing simulation environment,
able to reproduce the main globus components performance behavior. The proposed
components were validated on a test-bed, built upon an SMP cluster.

Then a simple application was developed in the prototypal language (MetaPL), adopt-
ing the newly developed GRID extensions, in order to drive the simulations and its
performances were predicted.

Performance Oriented Development and Tuning of GRID Applications 517

To validate the approach, we developed the application and compared the results
with the predicted ones, showing that the simulated behavior correspond to real system
evolution.

Acknowledgment

This work was partially supported by "Centro di Competenze" regione Campania. We
want to thank Raffaele Vitolo for his technical support and Rocco Aversa for his contri-
bution.

References

1. I. Foster, C. Kesselman, J. Nick, and S. Tuecke: “The physiology of the grid: An open grid
services architecture for distributed systems integration". Technical report, Open Grid Service
Infrastructure WG, Global Grid Forum, June 2002.

2. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. International J. Supercomputer Applications, 15(3), 2001.

3. Buyya, R. , Murshed, M.: “GridSim: A Toolkit for the Modeling and Simulation of Distributed
Resource Management and Scheduling for Grid Computing", The Journal of Concurrency
and Computation: Practice and Experience (CCPE), Wiley Press, May 2002.

4. Takefusa Bricks: A Performance Evaluation System for Scheduling Algorithms on the Grids.
JSPS Workshop on Applied Information Technology for Science (JWAITS 2001). 2001.01.

5. Huaxia Xia, Holly Dail, Henri Casanova and Andrew Chien, The MicroGrid: Using Emu-
lation to Predict Application Performance in Diverse Grid Network Environments, In Pro-
ceedings of the Workshop on Challenges of Large Applications in Distributed Environments
(CLADE ’04), held in conjunction with the Thirteenth IEEE International Symposium on
High-Performance Distributed Computing, Honolulu, Hawaii, June 2004 .

6. Henri Casanova and Arnaud Legrand and Loris Marchal, Scheduling Distributed Applications:
the SimGrid Simulation Framework,Proceedings of the third IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’03)

7. Aversa, R., Mazzeo, A., Mazzocca, N., Villano, U.: Developing Applications for Hetero-
geneous Computing Environments using Simulation: a Case Study. Parallel Computing 24
(1998) 741-761

8. Mazzocca N., Rak M., Villano U. 2000. “The Transition from a PVM Program Simulator
to a Heterogeneous System Simulator: The HeSSE Project". Recent Advances in Parallel
Virtual Machine and Message Passing Interface, in J. Dongarra et al. (eds.) Lecture Notes in
Computer Science, Vol. 1908, Springer-Verlag, Berlin 2000, (pp. 266-273).

9. N. Mazzocca, M.Rak, R. Torella, E. Mancini and U. Villano, The HeSSE simulation environ-
ment. Proc. ESMc’2003, 27-29 Oct. 2003, Naples, Italy, pp. 270-274.

10. Mazzocca N., Rak M., Villano U., 2001. “MetaPL: a Notation System for Parallel Program
Description and Performance Analysis" Parallel Computing Technologies, in Malyshkin. V.
(ed.), Lecture Notes in Computer Science, Vol. 2127, Springer-Verlag, Berlin 2001,(pp. 80-93)

11. Labarta, J., Girona, S., Pillet, V., Cortes T., Gregoris, L.: DiP: a Parallel Program Development
Environment. Proc. Euro-Par ’96, Lyon, France (Aug. 1996) Vol. II 665- 674

12. E. Mancini, N. Mazzocca, M. Rak, and U. Villano, Integrated Tools for Performance-Oriented
Distributed Software Development. Proc. SERP’03 Conference, Las Vegas (NE), USA, June
23-26, 2003, vol. I, pp. 88-94

518 Emilio Mancini et al.

13. N. Mazzocca, M. Rak, U. Villano, The MetaPL approach to the performance analysis of
distributed software systems. Proc. 3rd International Workshop on Software and Performance
(WOSP02), IEEE Press (2002) 142-149

14. E. Mancini, M. Rak, R. Torella, “U. Villano, Off-line Performance Prediction of Message-
Passing Applications on Cluster Systems, Lecture Notes in Computer Science, Vol. 2840,
Springer-Verlag, Berlin 2003, (pp. 45-54).

Towards a Bulk-Synchronous Distributed Shared
Memory Programming Environment for Grids

Håkan Mattsson1 and Christoph Kessler2

1 Department of Natural Science and Technology
Gotland University, Sweden

hakan.mattsson@hgo.se
2 Programming Environments Laboratory (PELAB)
Department of Information and Computer Science

Linköping University, Sweden
chrke@ida.liu.se

Abstract. The current practice in grid programming uses message passing,
which unfortunately leads to code that is difficult to understand, debug and opti-
mize. Hence, for grids to become commonly accepted, also as general-purpose par-
allel computation platforms, suitable parallel programming environments
need to be developed.
In this paper we propose an approach to realize a distributed shared memory pro-
gramming environment for computational grids called GridNestStep, by adopting
NestStep, a structured parallel programming language based on the Bulk Synchro-
nous Parallel model of parallel computation.

1 Introduction

Programming for grids [1] is currently not an easy task which is partly due to the
distributed memory view that grids provide, leaving the programmer with the burden of
handling communication between grid nodes explicitly.

Today, programming for the grid often involves using message passing, for example
MPICH-G2 [2], on top of a grid middleware (like Globus Toolkit [3]). As stated in [1]
MPICH-G2, Globus Toolkit and other tools “. . . make it possible to write Grid programs,
they do not make it easy.” Much work is still left to the programmer, such as handling
communication, synchronization, and load balancing.

In order to ease the burden of programming for a grid environment, alternative
programming models are needed. One such model is distributed shared memory, in which
the programmer sees the grid environment as a single (virtual) parallel computer with a
single (virtual) shared memory. Providing this shared view of memory would, ideally,
make programming for the grid as easy as for a usual shared memory computer, avoiding
the error-prone use of message passing. To achieve this, either the application must be
translated into a program utilizing the message passing model, or the message passing
is done within an underlying system software layer that emulates a shared memory.

Currently, the most suitable kind of applications for grids are embarrassingly par-
allel, such as parameter studies that simultaneously run multiple copies of the same se-
quential program, each with different input parameters. Another example application, al-
though in this case in a peer-to-peer computing (P2PC) environment, is theSETI@Home

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 519–526, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

520 Håkan Mattsson and Christoph Kessler

project (Search for Extraterrestrial Intelligence) [4], where workpackages, containing
data, can be downloaded and processed by voluntary participants. However, applica-
tions like parameter studies or SETI@Home can be considered being of a trivial kind
of parallelism, since the workpackages are uniformly structured, no communication is
required between the participating grid nodes, and inter-process coordination is limited
to dispatching jobs to the grid and collecting the results returned. For applications with
a less trivial structure of parallelism, generation of efficient, scalable code for grid and
peer-to-peer computing systems is still an unsolved problem.

This research aims at the development of a high-level programming environment
called GridNestStep, which will provide a distributed shared memory layer on top of a
computational grid system. Processor coordination, shared memory consistency model,
and communication structure for remote memory accesses in GridNestStep follow the
bulk-synchronousparallel (BSP) model of computation. GridNestStep will be built upon
previous work by adopting the structured parallel programming language NestStep [5,6].

2 The BSP Model and NestStep

NestStep is a parallel programming language for the Bulk Synchronous Parallel BSP
[7] model of parallel computation. Adopting a single program, multiple data (SPMD)
execution style, BSP organizes a parallel computation of a group of p processors into
supersteps that are separated by barrier synchronizations, see Figure 1.

superstep

P0 P3 P5 P6 P7 P8 P9P1 P2 P4

using local data only

global barrier

next barrier

local computation

communication phase

(message passing)

time

Fig. 1. A BSP superstep

Each superstep consists of a first phase in which a processor performs computation
on its local data and locally cached copies of remote data, and a second phase where
the processor sends requests for reading or updating remote data. After performing a
(conceptual) group-wide barrier synchronization the processor handles the messages
received during the previous superstep and proceeds into the next superstep.

Originally the BSP model defined communication in terms of explicit message pass-
ing between processors. In contrast, the BSP-based programming language NestStep

Towards a Bulk-Synchronous Distributed Shared Memory Programming Environment 521

[5,6] was designed to support software emulation of shared variables for the BSP model.
NestStep also supports nested parallelism by providing language constructs for static and
dynamic nesting of supersteps and for performing synchronization of processor subsets.
This is done by organizing processors into groups, which can be dynamically divided
and restored during the execution of a program, thus following the (nested) structure of
the supersteps.

NestStep is defined as a set of language constructs that can extend any imperative
programming language, as long as unrestricted pointers are avoided. NestStep is imple-
mented as a precompiler that translates the NestStep constructs into the basis language
with calls to a runtime system. Then the basis language compiler is used to compile
these source files and link them to the NestStep runtime library. Currently supported
languages are Java, using the Java API for TCP/IP socket communication, and C, using
MPI for communication.

In NestStep, variables, arrays and objects are either private to a process or shared be-
tween a group of processes. For shared variables, arrays and objects, NestStep guarantees
that at superstep boundaries all copies contain the same value (superstep consistency).
NestStep defines two variants of sharing:

– A replicated shared variable, array or object exists as a local copy on each proces-
sor in the group declaring it. Write accesses to the local copy are automatically
committed to all remote copies at the end of the superstep.

– A distributed shared array is partitioned between the processors in the group, and
each processor has direct access to its partition. Read accesses to remote elements
are done by prefetching in the preceding superstep’s communication phase. Remote
write accesses translate to update messages that are committed at the end of a
superstep.

In both cases, message passing for updating remote copies of shared variables and
array elements occurs only in the communication phase at the end of a superstep, which
follows the BSP model.

NestStep denotes BSP supersteps by the step and neststep statements.
step {statements} groups a set of statements to be executed as one superstep (see Fig-
ure 1), while neststep (...) {statements} partitions the current processor group into a
user-defined number of subgroups such that each subgroup executes the statements inde-
pendently from the others, as a superstep. For example, the statement
neststep(2, . . .) splits the current processor group, say G, into two separate groups
G1 and G2. After the split, the two processor groups execute their respective supersteps
independently of each other, such that changes to shared variables are only committed
within each subgroup. Finally, when the subgroups have executed their supersteps, the
parent group is restored and subgroup changes to shared variables defined in the parent
group, are committed. This supports statically and dynamically nested parallelism and
immediately maps to parallel divide-and-conquer computations.

Summarizing, thestep andneststep statements maintain two kinds of invariants
during the execution of a NestStep program:

– Superstep synchronicity: all processors of the same (active) processor group are
working on the same superstep. This implies an implicit groupwide barrier synchro-
nization at the beginning and the end of statement.

522 Håkan Mattsson and Christoph Kessler

– Superstep consistency: guarantees that, before a (nest)step statement is per-
formed, all processors belonging to the same group have the same value of their
local copies of a shared variable.

At the end of a (nest)step statement, a combine phase is carried out to combine
and commit changes made to copies of replicated shared variables and remote shared
array elements to reestablish superstep consistency. Communication between processors
in a group is structured as a tree. During the combine-phase, messages are sent from
the leaf processors towards the root of the tree. The result of the combine phase (where
several global operations such as reductions and parallel prefix can be performed on-
the-fly), is then committed to the processors of the group by sending messages in the
opposite direction.

3 Mapping the BSP Model to a Grid Environment

We propose to adapt the BSP model with the NestStep language to grid computing
environments.

As Figure 2 proposes, this could be done e.g. for NestStep-C, that is, using C/C++
with NestStep language extensions. A precompiler translates the NestStep constructs
to run-time system calls. The result is an explicitly parallel program decomposed into
supersteps. For simplicity, we consider for now only flat (non-nested) supersteps.

Cluster 1 Cluster 2 Cluster 3

Scheduler

Current superstep

divided into

workpackages

Grid platform

C program using

NestStep runtime

library

Fig. 2. Running NestStep programs on a grid system

The (virtual) BSP processors’ computations within a single superstep are embarass-
ingly parallel, which perfectly matches the constraints encountered in a grid environment.
Moreover, by superstep synchronicity, all grid processors involved will, at any time, work
on the same superstep. Hence, we can define a workpackage by the computation of a
single superstep and a set of (virtual) BSP processors to execute that superstep.

Towards a Bulk-Synchronous Distributed Shared Memory Programming Environment 523

Following the hierarchical structure of grids, we partition the computation work of
a superstep into workpackages of appropriate size. Within each superstep S we define
macro-workpackages wS

1 ,. . . , wS
P by aggregating the work (program code with input

data sets and a set of global BSP processor indices) for P disjoint processor subsets to
be allocated for execution of S, which are to be farmed out to the P grid nodes (the
clusters in Figure 2) available for the parallel computation. The sizes of these subsets
are to be chosen depending on the current load of the grid nodes (if known), otherwise
load balancing must be handled by the grid middleware. Assuming that each grid node
j gets one macro-workpackage wS

j , then wS
j can be locally decomposed into smaller

workpackages, one for each available processor of j, which are then executed locally,
thereby exploiting more fine-grained parallelism within the grid nodes.

After partitioning, the macro-workpackages are sent by a scheduler via the grid
middleware to the grid nodes, see Figure 2. The results of executing the macro-work-
packages are delivered via the scheduler to the client (NestStep) program.

As mentioned in Section 2, NestStep can define replicated shared variables. Since
the value of each of these variables must be identical on all processors of the current
group at the beginning of each superstep, this means that at the end of each superstep
the processors must communicate their locally held value of the shared variable. So, one
problem is how to realize the communication in the grid environment efficiently, and to
assure that this phase does not take an arbitrary amount of time, which could happen if
some of the processors are still busy for a while with other work before processing their
workpackage, thus delaying the entire superstep computation.

In order to combine write accesses to shared variables, and broadcast updated values
to all processors of a group at the beginning of the next superstep, we apply the same
principle of combine trees as implemented in the NestStep runtime system [5], where
the topmost level of the combine tree, including the root (client), spans the different grid
nodes and the subtree for each grid node spans cluster-local processors only. Note that
these trees are reconstructed for each superstep as the number of available processors
per cluster may change.

In the ideal case, the compiled code for the GridNestStep application program is
already available on each processor on each grid node, such that a workpackage simply
contains a reference to the current superstep and the range of (virtual) BSP processors
assigned to each grid node. Note that a physical processor may emulate several (virtual)
BSP processors if necessary.

Otherwise, we also need to ship the superstep code along with the workpackage to
the grid nodes. In grids with heterogenous processor hardware, this involves the problem
of distributing the application in different versions, compiled for the respective node.
One solution might be to precompile the application into a library of binary codes, for
the different computer architectures. However, this means we will only support a fixed
set of architectures. Another possibility is to ship ”raw” source code and compile it at
the nodes. This would be a very flexible solution, since we can use any computational
resources available at run time, but it requires a compiler along with all required libraries
at each node and adds the overhead of compilation time to the time for processing the
data. A variant of this scenario ships target-independent byte code that is compiled
by a Just-In-Time compiler at the nodes. This has the advantage that we can perform

524 Håkan Mattsson and Christoph Kessler

optimization on the code during run time. A further problem is the security aspect, i.e. the
prevention of distributing malicious code. However, at this stage we are not concerned
with this problem.

The most appealing problem is how to perform load balancing in the system. As
nodes in the grid are allocated work, we need a way to monitor the load on each of them,
in order to prohibit unbalanced work. An idea is to communicate status information to the
scheduler along with the computational results from each node. This information is then
analyzed to make load balancing decisions for the next superstep. An alternative could
be decentralized load balancing. For instance, a two-tier system with local load balancers
on each grid node involved may primarily focus on intra-cluster load balancing but allow
for inter-cluster task migration where an entire cluster runs out of local work. Cluster-
aware load balancing strategies for multi-cluster environments have been investigated
by van Nieuwpoort et al. [8], albeit for more fine-grained and non-BSP computations.

In computational grids with low reliability, as in P2PC systems, there arises the
question what should happen when a node, for some reason, becomes unavailable during
the processing of a superstep. This can be handled (precisely as in SETI@Home) by
giving out multiple copies of the same workpackage to several grid nodes and tracking
incoming results such that, especially in the case of accumulative updates to shared
variables (reductions), only one of the contributions is considered.

4 Towards a Prototype Implementation

Currently we are working on the first steps towards an implementation of GridNestStep
by adapting a single-cluster implementation of the NestStep run-time system on top of
MPI, and adding further system components (partitioner, scheduler, precompiler) needed
for a grid environment. As grid platform we will use the SweGrid hardware of the current
Swedish grid initiative [10] together with the NorduGrid middleware [11]. In this case
the scheduler resides on the client machine, too. When jobs are submitted, the Nordugrid
middleware will make sure that the receiving cluster will match the application-specific
requirements on, for example, processor type and availability, memory size, operating
system, and installed software. These requirements can be specified by the user in xRSL
(Extended Resource Specification Language) [11].

5 Application: GridModelica

GridModelica is a project aiming at creating a grid-enabled extension and implementa-
tion of the modeling language Modelica [9]. Modelica is an object-oriented, equation-
based language for modeling physical systems. From a model specification, the Modelica
compiler generates a large system of ordinary and partial differential equations that is
submitted to an iterative solver. Executing the solver corresponds to a simulation of the
system. There exist parallel algorithms for such iterative solver algorithms that have a
bulk-synchronous parallel structure and thus can be formulated as NestStep programs.

The GridModelica project builds a two-tier system for grid-based multi-domain mod-
eling and simulation, by extending the Modelica language with additional constructs for

Towards a Bulk-Synchronous Distributed Shared Memory Programming Environment 525

distributed model component libraries and grid-enabled model composition. At the sim-
ulation layer, the GridNestStep programming environment will constitute the computa-
tional platform for executing the simulation programs generated by the GridModelica
compiler.

6 Summary

Grid computing has become an area of extensive research. However, currently grid
programming is error-prone and much work is still left to the programmer. One (partial)
solution to this problem is the introduction of a distributed shared memory environment
with a simple, grid-compliant shared memory consistency model. We have proposed a
language-based approach that follows the bulk-synchronous parallel model, and sketched
how the superstep structure of BSP programs can be mapped to computational grids.

Beyond conceptual work on program transformations, communication optimization,
load balancing, and workpackage layout, several implementation aspects need further
work. We will investigate different ways for the scheduler to get and exploit status infor-
mation from the grid middleware. In the first implementation we will only be concerned
with handling of flat supersteps. However, later on we would like to investigate the pos-
sibility to express nested parallelism in GridNestStep and exploit intra-cluster locality
by mapping entire processor subgroups to the same grid node.

Acknowledgements

This work is partly supported by VINNOVA, project GridModelica.

References

1. Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, second edition, 2003.

2. Nicholas T. Karonis and Brian Toonen and Ian Foster. MPICH-G2: A Grid-Enabled Imple-
mentation of the Message Passing Interface. Journal of Parallel and Distributed Computing,
63(5):551 – 563, May 2003.

3. The Globus Alliance. http://www.globus.org
4. David P. Anderson and Jeff Cobb and Eric Korpela and Matt Lebofsky and Dan Werthimer

SETI@Home: an experiment in public-resource computing. Communications of the ACM,
45(11):56 – 61, 2002.

5. C. Kessler. Managing distributed shared arrays in a bulk-synchronous parallel programming
environment. Concurrency and Computation: Practice and Experience, 16:133 – 153, 2004.

6. C. W. Keßler. NestStep: Nested Parallelism and Virtual Shared Memory for the BSP Model.
The Journal of Supercomputing, 17(3):245 – 262, November 2000.

7. L. G. Valiant. A Bridging Model for Parallel Computation. Communications of the ACM,
33(8):103 – 111, August, 1990.

8. R. V. van Nieuwpoort, T. Kielmann and H. E. Bal. Efficient Load Balancing for Wide-Area
Divide-and-Conquer Applications., Proceedings of the Eighth ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, 2001.

526 Håkan Mattsson and Christoph Kessler

9. Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1.
Wiley-IEEE Press, 2004.

10. SweGrid. http://www.swegrid.se
11. P. Eerola et al. The NorduGrid architecture and tools. Proceedings of Computing in High

Energy and Nuclear Physics, 2003.

High-Performance Computing in Earth-
and Space-Science: An Introduction

Organizer: Peter Messmer

Tech-X Corporation
5621 Arapahoe Avenue, Suite A

Boulder, CO 80303, USA
messmer@txcorp.com

1 Introduction

The major goals of earth- and space science investigations (ESS) are the observation,
understanding, modeling and prediction of effects on earth and in space. Advanced
computing is required on all these stages: The increasing amount of data recorded by
sensors has to be processed, archived, and retrieved. In order to extract knowledge from
these observations, advanced algorithms are required to assist the scientist in filtering
this data in a multitude of ways. Finally, in order to develop predictive capabilities,
models are required that can capture all the important effects in a physical system.

Early modeling efforts were mainly driven by effects discovered in new observa-
tions. The algorithm were then developed to include the necessary physics to understand
these observations. However, the physical systems under investigation in ESS involve
typically a multitude of effects on a variety of scales. Modern algorithms therefore try
to span broader ranges of scales and capture a multitude of physical processes. This will
finally lead to predictive capabilities, one of the goals for e.g. space-weather simulations
sponsored by NASA’s Sun-Earth Connection Division.

However, the choice of the most appropriate algorithms is only the first step toward
successful large scale models. The codes have to be carefully designed to utilize the
sophisticated hardware they run on. This can be taken into account relatively easy when
designing a new code from scratch. But often large scale codes originate from legacy
single effect models. Combining these codes into multi-physics models requires the
choice of appropriate data structures to avoid excessive data transformation. And finally,
advanced tools are needed for the analysis, reduction and management of the large data
sets generated by these codes.

Goal of this mini-symposiums was to bring together physicists and computer-
scientists, presenting both computational problems faced by the ESS communities, as
well as solutions and tools from high-performance computing.

2 Applications

Over the past few decades, a multitude of algorithms have been developed to model
physical processes at various scales involved in ESS models. The assumptions underly-
ing each of these models prove useful in their particular domain and can yield important

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 527–529, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

528 Peter Messmer

scientific results. In this mini-symposium, results of several of these models were pre-
sented.

Monte-Carlo based methods are an attractive means to investigate phenomena of
a statistical nature, like diffusive processes. In order to obtain physically meaningful
results, a good sampling of the initial conditions and the configuration space is required.
The wide availability of PC-clusters enables these simulations without the extensive
costs and complications of High-Performance Computing platforms.

First principles studies are an additional field that draws a lot of attention, especially
due to the simplicity of the physical assumptions. These codes usually yield good parallel
performance via domain decomposition, allowing them to work efficiently on large scale
systems. Increasing computing performance therefore enables first principles models on
scales which were otherwise the domain of more approximative methods. An example
are fully kinetic electromagnetic models of dusty plasmas, which are usually treated
with hybrid kinetic-fluid algorithms.

Nevertheless, for most problems in ESS, first principle models are still computation-
ally too expensive. Often, all the details of the kinetic development are not required and
a fluid approximation is valid. Studies like the interaction of the solar wind with a comet
or a planet are examples where fluid or MHD models can be very helpful tools.

Finally, for a variety of problems, hybrid approaches can provide the physical fidelity
of kinetic models while keeping the speed benefit of fluid models. E.g. for reactive flows,
the chemical processes can be modeled using kinetic equations, while the motion is based
on fluid equations. The fast execution of these codes and high-performance computing
techniques allow modeling such processes faster than in real time.

3 Algorithms and Tools

While many exciting results can be generated using well established algorithms, a lot
of models are still limited by present day computing resources. E.g. particle based first
principles models are often computationally too demanding. Especially constraints for
numerical stability, like the Courant condition, prohibit large scale simulations over
extended periods of time. New algorithms, sometimes based on fundamentally new
approaches, are therefore required to relax those constraints.

Improved algorithms are the most advantageous approach to decrease the computa-
tional cost. However, these algorithms tend to be complex by themselves, and their paral-
lel implementation can add an unnecessary burden on the developers. Tools are therefore
required that simplify these implementations. This is particularly true for multi-physics
models. Most of these models were developed as standalone applications and in order
to couple them, an infrastructure is required to mediate between the quantities of the
different models. E.g. to model magnetic reconnection, it would be beneficial to model
the actual reconnection region in a fully kinetic way, whereas in the outer regions fluid
or hybrid approximations are sufficient. Another example are global climate models,
where oceanic and atmospheric models have to be coupled and quantities have to be
converted between the different codes. Providing an infrastructure for these tasks is
therefore highly desirable.

High-Performance Computing in Earth- and Space-Science: An Introduction 529

4 Conclusion

The mini-symposium on High-Performance Computing in Earth and Space-Science
brought together an exciting mix of papers from both physics and computer science. It
became clear that cooperation between these communities is important in order to fully
exploit the potential of present-day high-performance computing platforms. I hereby
wish to thank the PARA04 organizers for hosting this mini-symposium, all the referees
for reviewing the contributed papers and finally all the authors who submitted their
papers to the workshop.

Applying High Performance Computing Techniques
in Astrophysics�

Francisco Almeida1, Evencio Mediavilla2, Alex Oscoz2, and Francisco de Sande1

1 Dept. de Estadı́stica, Investigación Operativa y Computación
Univ. de La Laguna, 38271–La Laguna, Spain

{falmeida,fsande}@ull.es
2 Instituto de Astrofı́sica de Canarias (IAC), c/Vı́a Láctea s/n, 38271–La Laguna, Spain

{emg,aoscoz}@ll.iac.es

Abstract. When trying to improve the execution time of scientific applications
using parallelism, two alternatives appear as the most extended: to use explicit
message-passing or using a shared address memory space. MPI and OpenMP
are nowadays the industrial standards for each alternative. We broach the par-
allelization of an astrophysics code used to measure various properties of the
accretion disk in a black hole. Different parallel approaches have been imple-
mented: pure MPI and OpenMP versions using cyclic and block distributions, a
hybrid MPI+OpenMP parallelization and a MPI Master-Slave strategy. A broad
computational experience on a ccNUMA SGI Origin 3000 architecture is pre-
sented. From the scientific point of view, the most profitable conclusion is the
confirmation of the robustness of the technique that the original code implements.

1 Introduction

This work collects the experiences of a collaboration between researchers coming from
two different fields: astrophysics and parallel computing. We deal with different ap-
proaches to the parallelization of a scientific code that solves an important problem in
astrophysics, the detection of supermassive black holes. To accomplish it, light curves
of Quasi-stellar Object (QSO) images must be analytically modeled. The scientific aim
is to find the values that minimize the error between this theoretical model and the ob-
servational data according to a chi-square criterion. The robustness of this procedure
depends on the sampling size m. However, even for relatively small values of m, the
determination of the minimum takes a long time of execution since m5 starting points
of the grid must be considered, as will be shown later in section 2. We will show that
parallelization can reduce the total time of execution, allowing to greatly increase the
sampling and, consequently, to improve the robustness of the evaluated minimum.

The sequential code is best suited for different parallel implementations varying
from message-passing (MPI) to shared-memory (OpenMP) codes and hybrid solutions
combining both (MPI+OpenMP). One of the aims of this work is to obtain the maximum
reduction in the execution time for the original sequential code. With this goal in mind,

� This work has been partially supported by the EC (FEDER) and the Spanish MCyT (Plan
Nacional de I+D+I, TIC2002-04498-C05-05 and TIC2002-04400-C03-03).

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 530–537, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Applying High Performance Computing Techniques in Astrophysics 531

we have also to consider that the amount of time invested in code developments is a
heavy limitation for the usual non-parallel expert scientific programmers. To balance
both objectives we devise the necessary efforts comparing pure MPI and OpenMP codes
and mixed MPI+OpenMP programs also. The parallel approaches have been tested and
a broad computational experience on a ccNUMA SGI Origin 3000 will be presented.
The conclusions and the knowledge acquired with our experiments establish the basis for
future developments on similar codes. The paper has been structured as follows. Section 2
describes the astrophysics problem and the code to be parallelized. This sequential code is
slightly modified to facilitate the four parallel developments introduced in section 3. The
computational experience is presented in section 4. We conclude that, for the application
considered, no significative differences have been found among the performances of the
different parallelizations. However, the development effort of the considered versions
could be appreciable. We finalize the paper in section 5 with some concluding remarks
and future lines of work.

2 The Problem

Supermassive black holes (SMBH: objects with masses in the range 107 − 109 solar
masses) are supposed to exist in the nucleus of many if not all the galaxies. It is also
assumed that some of these objects are surrounded by a disk of material continuously
spiraling (accretion disk) towards the deep gravitational potential pit of the SMBH and
releasing huge quantities of energy giving rise to the phenomena known as quasars.

We are interested in objects of dimensions comparable to the Solar System in galaxies
very far away from the Milky Way. Objects of this size can not be directly imaged and
alternative observational methods are used to study their structure. One of these methods
is the observation of Quasistellar Object (QSO) images affected by a microlensing event
to study the unresolved structure of the accretion disk. If light from a QSO pass through
a galaxy located between the QSO and the observer it is possible that a star in the
intervening galaxy crosses the QSO light beam. Thus the gravitational field of the star can
amplify the light emission coming from the accretion disk (gravitational microlensing).
As the star is moving with respect to the QSO light beam, the amplification varies
during the crossing. The curve representing the change in luminosity of the QSO with
time (QSO light curve) depends on the position of the star and on the structure of the
accretion disk. The goal in this work is to model light curves of QSO images affected
by a microlensing event to study the unresolved structure of the accretion disk.

According to this objective we have fitted the peak of an high magnification mi-
crolensing event recently observed in one quadruple imaged quasar, Q 2237+0305. We
have modeled the light curve corresponding to an standard accretion disk [5] amplified
by a microlens crossing the image of the accretion disk. Leaving aside the physical mean-
ing of the different variables (for details see [2]), the function modeling the dependence
of the observed flux, Fν , with time, t, can be written as

Fν(t) = Aν

∫ ξmax

1

{1 +
B√
ξ
G[C(t− t0)/ξ]}

ξdξ

e(Dνξ3/4(1−1/
√

ξ)−1/4) − 1
(2.1)

where ξmax is the ratio between the outer and inner radii of the accretion disc (we will
adopt ξmax = 100). G is a function

532 Francisco Almeida et al.

G(q) =
∫ +1

−1

H(q − y)dy
√

q − y
√

1− y2
,

To speed up the computation, G has been approximated by using MATHEMATICA
(for details, see appendix in [2]).

Therefore, the goal is to estimate the values of the parameters Aν , B, C, Dν , and t0
by fitting Fν to the observational data. Specifically, to find those values of the parameters
that minimize

χ2 =
N∑
i

(F obs
i − Fν(ti))2

σi
2

(2.2)

whereN is the number of data points (F obs
i) corresponding to times ti (i = 1, ..., N) and

Fν(ti) is the theoretical function evaluated at ti.σi is the observational error associated to
each data value. To minimize χ2 we used the NAG [4] routine e04ccf. This routine [3]
only requires evaluation of the function and not of the derivatives. As the determination
of the minimum in the 5-parameters space depends on the initial conditions we needed
to consider a 5-dimensional grid of starting points. If we consider m sampling intervals
in each variable, the number of starting points in the grid is of m5. For each one of
the points of the grid we computed a local minimum. Finally, we select the absolute
minimum among them. Even for relatively small values of m, the determination of the
minimum takes a long time of execution.

Figure 1 shows the original sequential version of the code. There are five nested
loops corresponding to the traverse of the 5-dimensional grid of starting points. We
minimize the jic2 function using the e04ccf NAG function. The starting point x,
and the evaluation ofjic2(x) (fx) are supplied as input/output parameters to the NAG

1 program seq_black_hole
2 double precision t2(100), s(100), ne(100), fa(100), efa(100)
3 common/data/t2, fa, efa, length
4 double precision t, fit(5)
5 common/var/t, fit
6
7 c Data input
8 c Initialize best solution
9 do k1=1, m
10 do k2=1, m
11 do k3=1, m
12 do k4=1, m
13 do k5=1, m
14 c Initialize starting point x(1), ..., x(5)
15 call jic2(nfit,x,fx)
16 call e04ccf(nfit,x,fx,ftol,niw,w1,w2,w3,w4,w5,w6,jic2,

x monit,maxcal,ifail)
17 if (fx improves best fx) then
18 update(best (x, fx))
19 endif
20 enddo
21 enddo
22 enddo
23 enddo
24 enddo

Fig. 1. Original sequential pseudocode

Applying High Performance Computing Techniques in Astrophysics 533

function. Inside the jic2 function, the integral of formula 2.1 is computed using the
d01ajf and d01alfNAG functions. These functions are general-purpose integrators
that calculate an approximation to the integral of a function. The common blocks in
lines 3 and 5 are used to pass additional parameters from the jic2 function to these
integrators. Observe that jic2 is passed as a parameter to the minimization function
e04ccf.

3 Parallelization

The parallelization was coerced by two main constraints: to introduce the minimum
amount of changes in the original code and to preserve the use of the NAG functions.
At the beginning of our collaboration, one objective was that the kind of parallelization
to be introduced in the code should be easily understood and reproduced by other non
parallel programmers.

The only modification introduced in the original sequential version was an ad hoc
transformation of the iteration space by reducing the five nested loops in listing 1 to a
single one. This modification does not change the underlying semantics of the sequen-
tial code nor the order in which the points are evaluated. The transformation can be
easily achieved since there are no data dependencies among the different points in the
iteration domain. The reason to introduce this transformation is to ease and clarify the
parallelizations.

MPI and OpenMP pure versions can be directly obtained from that code. The MPI
parallelization is the most straightforward: after inserting in the code the initialization
and finalization MPI calls, we simply divide the single loop iteration space among the
available set of processors using a cyclic or block distribution. In the pure OpenMP
parallelization, the main difficulty is to identify the shared/private variables in the code.
Once they are located, the corresponding OpenMP parallel do pragma can be
introduced in the main loop. Variables included in common blocks deserved a particular
consideration. To avoid read/write concurrent accesses, the threadprivate pragma
was included. The mixed MPI/OpenMP version just merges both former versions. Each
MPI process expands a certain number of OpenMP threads that take in charge the
iteration chunk of the MPI process. As it will be shown in the next section, none of
the different versions present a linear speedup. This was the motivation to introduce a
MPI Master-Slave approach. This alternative has the disadvantage of requiring a higher
expertise in parallel programming and therefore it was introduced only to correct the
load imbalance of the previous versions.

4 Computational Results

This section is devoted to investigate and quantify the performance obtained with the
different parallel approaches taken. On a Sun Blade 100 Workstation running Solaris
5.0 and using the native Fortran77 Sun compiler (v. 5.0) with full optimizations the code
takes 5.89 hours and 12.45 hours for sampling intervals of size m = 4 and m = 5
respectively.

534 Francisco Almeida et al.

Table 1. Time for parallel codes, sampling intervals: m = 4

Time (secs.)

P B-MPI B-OMP C-MPI MPI-OMP MS-MPI

2 1652.34 1670.51 1674.85 1671.59 1641.94

4 923.40 930.64 951.12 847.37 821.64

8 481.81 485.69 496.05 481.89 412.44

16 256.14 257.20 256.95 255.27 211.54

32 133.00 133.97 133.87 133.70 113.74

Table 2. Time for the mixed (MPI-OpenMP) code for different combinations Threads/MPI
Processes. Sampling intervals: m = 4 The number of MPI processes is P

nTh

P

nTh 32 16 8 4 2

1 133.70 257.55 497.12 953.34 1679.17

2 137.80 262.26 481.89 847.37 1671.59

4 151.84 278.10 485.05 938.15 -

8 156.56 255.27 484.77 - -

16 139.03 256.34 - - -

32 133.88 - - - -

The target architecture for all the parallel executions has been a Silicon Graphics
Origin 3000 with 128 R14000 (600Mhz) processors. Only 32 processors were used in
the computational experiments. We restricted our executions to this architecture because
it is the only available to us with the NAG libraries installed.

Using the native MIPSpro Fortran77 compiler (v. 7.4) and the NAG Fortran Library
- Mark 19 in the SGI Origin 3000 with full optimizations the sequential running time is
0.91 hours and 2.74 hours for sampling intervals of size m = 4 and m = 5 respectively.

Table 1 shows execution time (in seconds) of the parallel codes with sampling inter-
vals of size m = 4. Labels B-MPI and C-MPI correspond to the MPI code with block
and cyclic distributions of iterations respectively. The label B-OMP corresponds to a
block distribution using OpenMP. The mixed mode code (label MPI-OMP) correspond
to the minimum times obtained for different combinations of MPI processes/OpenMP
threads (see table 2). Column labeled MS-MPI shows the time corresponding to the MPI
Master-Slave parallel version. Assuming that we do not have exclusive mode access to
the architecture, the times collected in all the cases correspond to the minimum time
from five different executions. Except for the Master-Slave version, times do not show
a significative variation among the different parallel approaches taken.

The speedups achieved reduce the sequential running time almost linearly with the
number of processors involved. In Figure 2 we observe that in both MPI and OpenMP
pure versions (C-MPI and B-OMP labels respectively), as the number of processors
increases, the growth of the speedup diminishes (the MPI and OpenMP speedup curves
appear overlapped in the figure). The reason for this behaviour is the call to the e04ccf

Applying High Performance Computing Techniques in Astrophysics 535

NAG routine inside the loop. The convergence run time for this routine is different
depending on the starting point. This fact introduces load imbalance since each iteration
may consume different run time and some processors may be overloaded. For each
processor, figure 3 shows the run time consumed in the loop in an execution with 32
processors. We observe a large variation in the time for MPI and OpenMP versions as a
consequence of the imbalance, while the Master-Slave (MS label in figure 2) code shows
almost constant time for each processor. In the case of OpenMP, we have also tried to use
dynamic scheduling strategies. Figure 4 compares the load imbalance introduced by this
scheme against the Master-Slave balanced approach. We consider that with the current
implementation of the OpenMP compiler, the overhead introduced with the dynamic
scheduling is still unaffordable.

Table 3. Time and speedup for parallel codes, sampling intervals: m = 5

Time (secs.) Speedup

P MPI OMP MPI-OMP MS MPI OMP MPI-OMP MS

2 4957.0 5085.9 4973.1 4906.4 2.0 1.9 2.0 2.0

4 2504.9 2614.5 2513.0 2455.0 3.9 3.8 3.9 4.0

8 1261.2 1372.4 1265.1 1231.5 7.8 7.2 7.8 8.0

16 640.3 755.8 642.9 619.3 15.4 13.1 15.4 15.9

32 338.1 400.1 339.2 325.4 29.2 24.7 29.1 30.3

For the mixed MPI/OpenMP parallel version, we have considered in the computa-
tional experiment different combinations between MPI processes and OpenMP threads.
Table 2 shows the running time of this parallel version. An execution with P processors
involves nTh OpenMP threads and P

nTh MPI processes. The minimum running times
appear in boldface. As it could be expected, the execution time using P MPI processes
and 1 OpenMP thread coincide with the correspondent MPI pure version. Analogously,
the same behaviour is observed with 1 MPI process and P threads with respect to the
pure OpenMP version. A regular pattern for the optimal combination of MPI processes
and OpenMP threads is not observed.

Table 3 collects the time and speedup corresponding to sampling intervals of size
m = 5. We observe no significative variations among the different versions. This effect is
due to a better load balance produced by the increment in the iteration space size. Almost
linear speedup is observed in all the cases. The lowest speedup values are obtained with
the OpenMP version, and again no significative improvement is achieved with the mixed-
mode MPI/OpenMP approach.

5 Conclusions and Future Work

We conclude a first step of cooperation in the way of applying parallel techniques to
improve performance in astrophysics codes. The scientific aim of applying high perfor-
mance computing to computationally-intensive codes in astrophysics has been success-
fully achieved. The relevance of our results do not come directly from the particular

536 Francisco Almeida et al.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

Sp
ee

du
p

Processors

Linear
B-OMP
C-MPI

MS

Fig. 2. Speedup achieved by different parallel approaches

 70

 80

 90

 100

 110

 120

 130

 140

 0 5 10 15 20 25 30 35

Ti
m

e
(s

ec
s.

)

Processors

MS
MPI

OMP

Fig. 3. Load Balance: Master-Slave, MPI and OpenMP

application chosen, but from stating that parallel computing techniques are the key to
broach large size real problems in the mentioned scientific field.

For the case of non-expert users and the kind of codes we have been dealing with, we
believe that MPI parallel versions are easier and safer. In the case of OpenMP, the proper
usage of data scope attributes for the variables involved may be a handicap for users with
non-parallel programming expertise. The higher current portability of the MPI version
is another factor to be considered.

The mixed MPI/OpenMP parallel version is more expertise-demanding. Neverthe-
less, as it has been stated by several authors [1], [6], and even for the case of a hybrid

Applying High Performance Computing Techniques in Astrophysics 537

 90

 95

 100

 105

 110

 115

 120

 125

 130

 135

 140

 0 5 10 15 20 25 30 35

Ti
m

e
(s

ec
s.

)

Processors

MS
OMP-dynamic

Fig. 4. Load Balance: Master-Slave vs. OpenMP with dynamic schedule

architecture like the SGI Origin 3000, this version does not offer any clear advantage
and it has the disadvantage that the combination of processes/threads has to be tuned.

The Master-Slave strategy appears as the most efficient when dealing with load
imbalance even in the case of simple codes. This approach provides a satisfactory solution
from the parallel programmer point of view, but it requires more parallel programming
knowledge, and therefore it is not commendable for non-expert users. OpenMP does not
provide easy solutions to broach the load imbalance situation.

From the scientific point of view, the most profitable conclusion is the confirmation
of the robustness of the method provided by the computational results.

From now on we plan to continue this fruitful collaboration by applying parallel
computing techniques to some other astrophysical challenge problems.

References

1. F. Cappello, D. Etiemble, MPI versus MPI+openMP on IBM SP for the NAS benchmarks, in:
Proceedings of Supercomputing’2000 (CD-ROM), IEEE and ACM SIGARCH, Dallas, TX,
2000, lRI.

2. L. J. Goicoechea, D. Alcalde, E. Mediavilla, J. A. Muñoz, Determination of the properties of
the central engine in microlensed QSOs, Astronomy and Astrophysics 397 (2003) 517–525.

3. J. A. Nelder, R. Mead, A simplex method for function minimization, The Computer Journal
7 (4) (1965) 308–313.

4. Numerical Algorithms Group, NAG Fortran library manual, mark 19, NAG, Oxford, UK (1999).
5. N. I. Shakura, R. A. Sunyaev, Black holes in binary systems. observational appearance, As-

tronomy and Astrophysics 24 (1973) 337–355.
6. L. Smith, M. Bull, Development of mixed mode MPI/OpenMP applications, Scientific Pro-

gramming 9 (2–3) (2001) 83–98.

Statistical Properties of Dissipative MHD Accelerators

Kaspar Arzner1, Loukas Vlahos2, Bernard Knaepen3, and Nicolas Denewet3

1 Paul Scherrer Institut
Laboratory for Astrophysics

CH-5232 Villigen PSI, Switzerland
arzner@astro.phys.ethz.ch

2 Aristotle University
Institute of Astronomy, Dept. of Physics

54006 Thessaloniki, Greece
vlahos@astro.auth.gr

3 Université Libre de Bruxelles
Mathematical Physics Dept.

CP231, Boulevard du Triomphe
1050 Bruxelles, Belgium
bknaepen@ulb.ac.be

Abstract. We use exact orbit integration to investigate particle acceleration in a
Gauss field proxy of magnetohydrodynamic (MHD) turbulence. Regions where
the electric current exceeds a critical threshold are declared to be ‘dissipative’ and
endowed with super-Dreicer electric fieldEΩ = ηj. In this environment, test parti-
cles (electrons) are traced and their acceleration to relativistic energies is studied.
As a main result we find that acceleration mostly takes place within the dissi-
pation regions, and that the momentum increments have heavy (non-Gaussian)
tails, while the waiting times between the dissipation regions are approximately
exponentially distributed with intensity proportional to the particle velocity. No
correlation between the momentum increment and the momentum itself is found.
Our numerical results suggest an acceleration scenario with ballistic transport
between independent ‘black box’ accelerators.

1 Introduction

Astrophysical high-energy particles manifest as cosmic rays or, indirectly, as radio
waves, X-rays, Gamma rays. These often occur in transients, and with distinctly non-
equilibrium energy distributions. A prominent source of sporadic radio- and X-ray
emission is the Sun during the active phase of its 11-year cycle. Among the numer-
ous mechanisms proposed for accelerating solar particles to high energies (see [1] for
an overview), stochastic ones attracted particular attention because they require generic
input data and do not rely on special geometrical assumptions. In stochastic acceleration
[2,3,4,5], particles move in random electromagnetic fields, where they become repeat-
edly deflected and, on average, accelerated. The electromagnetic fields are thought to
arise from magneto-hydrodynamic (MHD) turbulence (e.g., [6]), perhaps excited by the
broadband echo of a magnetic collapse. The turbulence may host shocks and other forms
of dissipation if critical velocities [7] or electric current densities [8,9] are exceeded. As-
sociated with dissipation are (collisional or anomalous) resistivity and non-conservative

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 538–545, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Statistical Properties of Dissipative MHD Accelerators 539

electric fields, which sustain, locally, the electric current against dissipative drag in order
to meet the global constraints. However, a detailed balance on the level of individual
charge carriers is impossible because the dissipative drag depends on particle position
and velocity, whereas the electric field is a function of position only. Thus the electric
field may compensate the bulk drag, but a (high-energy) population can be left over and
exposed to acceleration [10]. This lack of detailed balance is in the heart of dissipative
acceleration mechanisms. In plasmas, dissipation occurs at ‘ruptures’ of the magnetic
structure, and is therefore localized around critical points of the magnetic field.

The above scenario, first envisaged by Parker [11] for the solar atmosphere, has
since been explored in a large number of numerical studies [12,13,14,6,15,16,17]. On
the theoretical side, most stochastic acceleration theories [2,18,19] base on Fokker-
Planck approaches, thus transferring two-point functions of the electromagnetic fields
into drift and diffusion coefficients of particles by probing the fields along unperturbed
trajectories. Dynamical particle averages are then replaced by field ensemble averages,
neglecting the fact that real particles move in one realization of the random field. As
a result, diffusive behaviour may be predicted even if particles are trapped in a single
realization of the random field.

In order to investigate the full diversity of orbit behaviour one must resort to numerical
simulations. In the present contribution we analyze the behaviour of test particles in
resistive MHD turbulence with localized dissipation regions, with particular emphasis
on the validity of a Fokker-Planck description [20]. We use here exact orbit integration,
and thus avoid any guiding centre approximations [21,22]. The price for rigorosity
is computational cost, which makes the scheme only feasible with the aid of high-
performance computing.

2 Acceleration Environment

The MHD turbulence has been been modeled by full 3D spectral MHD simulations and
by Gauss field proxies [23,17]. We concentrate here on the latter, which is computed
from the vector potentialA(x, t) =

∑
k ak cos(k·x−ω(k)t−φk) by means of tabulated

trigonometric calls. This allows to continuously determine the fields at the exact par-
ticle position, and avoids any real-space discretization artifacts, but the computational
overhead restricts the k sum to a few 100 Fourier modes ak. They are taken from the
shell min(l−1

i)<|k|< 10−2r−1
L with rL the rms thermal ion Larmor radius and li the

outer scale of the power spectral density 〈|ak|2〉 ∝ (1 + l2xk
2
x + l2yk

2
y + l2zk

2
z)−ν . The

electromagnetic fields are then obtained from

B = ∇×A (2.1)

E = −∂tA + η(j) j , (2.2)

where μ0j = ∇ × B and η(j) = η0 θ(|j| − jc) is an anomalous resistivity switched on
above the critical current jc ∼ encs. Here, cs and n are the sound speed and number
density of the background plasma. The Gauss field A must satisfy the MHD constraints

E ·B = 0 if η(j) = 0 and E/B ∼ vA (2.3)

540 Kaspar Arzner et al.

with vA the Alfvén velocity. Equation (2.3) can be achieved in several ways. For instance,
one can use Euler potentials of which only one is time-dependent, or force A to point
along a single direction. A somewhat more flexible way, used here, is axial gaugeak ·vA

= 0 with dispersion relation ω(k) = k · vA. A constant magnetic field B0 along vA can
be included without violating Eq. (2.3), and we set |vA|2 = (B2

0 + σ2
B)/(μ0nmp) with

σB the rms magnetic fluctuations and mp the proton rest mass. In the present simulation,
vA and the background magnetic field are along the z direction. The total magnetic field
B =

√
B2

0 + σ2
B is a free parameter, which defines the scales of the particle orbits. In

order to represent coronal turbulence we choose vA ∼ 2 · 106 m/s, ν = 1.5, B ∼ 10−2T,
σB = 10−2T, B0 = 10−3T, and lx = ly = 103m, lz = 104m. The current threshold jc

is exceeded in about 7% of the total volume. Note that our choice represents strong
(σB 6 B0) and anisotropic (lz 6 lx, ly) turbulence. To embed our simulation in
the real solar atmosphere one should associate lz with the radial direction in order to
reproduce the predominant orientation of coronal filaments.

3 Particle Dynamics

3.1 Physical Scaling

Time is measured in units of the (non-relativistic) gyro period Ω−1=m/qB; velocity in
units of the speed of light; distance in units of cΩ−1. Particle momentum is measured
in units of mc; the vector potential in units of mc/q; the magnetic field in units of B;
the electric current density in units of ΩB/(μ0c), so that the dimensionless threshold
current is j′c = (m/mp)csc/v

2
A; and the electric field is measured in units of cB, so

that the dimensionless Dreicer [10] field is E′
D = (v′e/τ

′)(me/m) with v′e the electron
thermal velocity and τ ′ the electron-ion collision time. The dimensionless equations of
motion are

dx′

dt′
= v′ (3.4)

d(γv′)
dt′

= v′ ×B′ − ∂A′

∂t
+ η′(|j′|) j′ (3.5)

with γ the Lorentz factor, B′ = ∇′ ×A′, and j′ = ∇′ × B′ the electric current. The
dimensionless resistivity η′ is characterized by the resulting dissipative electric field
EΩ = η0j relative to the Dreicer field ED. We chose η′ such that EΩ/ED ∼ 104.

3.2 Particle Initial Conditions

We consider electrons as test particles. The initial positions are uniformly distributed
in space, and the velocities are from the tail v ≥ 3 vth of a maxwellian of 106 K,
which is typical for the solar corona. Coulomb collisions are neglected, which is a good
approximation once the acceleration has set on, but is not strictly correct in the beginning
of the simulation.

3.3 Numerical Implementation and Simulation Management

Equations (3.4) and (3.5) are integrated by traditional leapfrog and Runge-Kutta
schemes. The test particle code is written in FORTRAN 90/95 and compiled by the

Statistical Properties of Dissipative MHD Accelerators 541

Fig. 1. Evolution of electron kinetic momentum. Top panel: 200 sample orbits; adiabatic (a), and
accelerated (b) cases. Bottom panel: electric current density along the orbits a) and b). The critical
current density (|j| > jc) is marked by dotted line. The present simulation is an extension of the
simulation of [17]

Portland Group’s Fortran 90 compiler (pgf90). Diagnostics and visualization uses IDL
as a graphical back-end. The code is run on the MERLIN cluster of the Paul Scherrer In-
stitut, and on the ANIC-2 cluster of the Université libre de Bruxelles. The ANIC-2 cluster
has 32 single Pentium IV nodes, a total of 48 Gbyte memory, and Ethernet connections.
The MERLIN cluster consist of 56 mostly dual Athlon nodes with a total of 80 GByte
memory, operated under Linux and connected by Myrinet and Ethernet links. MERLIN
jobs are managed by the Load Sharing Facility (LSF) queueing system. Parallelization
is done on a low level only, with different (and independent) test particles assigned to
different CPU’s. MPICH/MPI is used to ensure crosstalk-free file I/O. The field data are
computed on each CPU for the actual particle position. Random numbers are needed in
the generation of the Fourier amplitudes and -phases of the electromagnetic fields, and
in the particle initial data; they are taken from the intrinsic random number generator of
pgf90.

4 Diagnostics and Results

In order to characterize the relativistic acceleration process we consider the evolution of
the kinetic momentum P′ = γv′. This quantity is directly incremented by the equation

542 Kaspar Arzner et al.

Fig. 2. Frequency distribution of the energy jumps Δγ of Fig. 1 (black line), together with a best-fit
Lévy density (gray line) with parameters α0 = 0.75, β0 = −0.26, and C0 = 0.035 (crosses). Inlets:
cuts of the likelihood surface at (α0, β0, C0). The 99% confidence level is marked boldface

Fig. 3. Left: travel times Δtn = tn+1−tn between acceleration regions versus velocity vn. Right:
energy gain Δγn = γn+1 − γn versus velocity. While Δtn scales with inverse velocity (solid
line: best-fit), there is no clear trend in the energy gain Δγn

of motion (3.5), and – ignoring quantum effects – can grow to arbitrarily large values,
so that it can serve as a diagnostics of diffusive behaviour. Alternatively we may use the
kinetic energy γ.

Statistical Properties of Dissipative MHD Accelerators 543

Fig. 4. Histogram of the quantity |vn|Δtn, together with an exponential fit (dashed)

The results of the orbit simulations are shown in Figs. 1 - 4. When initially super-
thermal (v >∼ 3vth) electrons move in the turbulent electromagnetic fields (Eqns. 2.1,
2.2), some of them may become stochastically accelerated. From a population of 600
electrons we find that 35% of the particles are accelerated, while the other 65% remain
adiabatic [22,24] during the simulation (Ωt≤ 8·105). The two cases are illustrated in Fig.
1 (top). The orbit a) conserves energy adiabatically during the whole simulation, while
the orbit b) does not. The orbits of 200 randomly chosen particles are also shown (gray)
to trace out the full population. The bottom panel of Fig. 1 shows the the electric current
density along the orbits a) and b). Time intervals where the critical current (doted line)
is exceeded correspond to visits to the dissipation regions. As can be seen, acceleration
(or deceleration) occurs predominantly within the dissipation regions. Accordingly, the
orbit b) which never enters a dissipation region remains adiabatic. As a benchmark we
have set η0 = 0 and found that no acceleration takes place at all, thus reproducing the
‘injection problem’ [25]. Smaller η′ yield smaller (than 35%) fractions of accelerated
particles.

A glance at graph a) of Fig. 1 shows that P′(t′) is poorly represented by a Brownian
motion [20] with continuous sample paths. Rather, P′ changes intermittently and in large
jumps. Indeed, if we consider the energy change Δγn = γn+1− γn across a dissipation
region, we find that its distribution P (Δγn) has heavy tails and a convex shape which
deviates from a Gaussian law (Fig. 2 black line). In order to characterize P (Δγn) we
have tried to fit it by a (skew) Lévy stable distribution PL(x). The latter is defined in
terms of its Fourier transform [26]

φL(s) = exp
{
− C|s|α

(
1 + iβ

s

|s| tan
πα

2

)}
(4.6)

with 0 < α ≤ 2, −1 ≤ β ≤ 1, and C > 0. The parameter α determines the asymptotic
decay of PL(x) ∼ x−1−α at x 6 C1/α, and β determines its skewness. The probability

544 Kaspar Arzner et al.

density function (PDF) belonging to Eq. (4.6) has the ‘stability’ property that the sum
of independent identically Lévy distributed variates is Lévy distributed as well. While
rapidly converging series expansions [26] of PL(x) are available for 1 < α ≤ 2 or
large arguments x, the evaluation of PL(x) at small arguments and α < 1 is more
involved. We use here a strategy where PL(x) is obtained from direct computation of the
Fourier inverse PL(x) = (2π)−1

∫
e−isxφL(s) ds, with the integrand split into regimes

of different approximations. At small |s|, both the exponential in φL(s) (Eq. 4.6) and
the Fourier factor e−isx are expanded; at larger |s|, φL(s) is piecewise expanded while
e−isx is retained. In both cases, the s-integration can be done analytically, and the pieces
are summed numerically. The resulting (Poisson) maximum-likelihood estimates of the
parameters (α, β, C) are α0 = 0.75, β0 = −0.26, C0 = 0.035. The predicted frequencies
are shown in Fig. 2 (gray line), and inlets represent sections of constant likelihood in
(α, β, C)-space, with the 99% confidence region enclosed by boldface line. The finding
α0 < 2 agrees with the presence of large momentum jumps.

In a next step we have investigated the waiting times Δtn = tn+1 − tn between
subsequent encounters with the dissipation regions. Simple ballistic transport between
randomly positioned dissipation regions would predict a PDF of the form f(|vn|Δtn)
with vn the particle velocity and f(x) the PDF of distances between (magnetically
connected) dissipation regions. (There is no Jacobian d(Δt)/dx since we are dealing
with discrete events.) This is in fact the case. Figure 3 (left) shows a scatter plot of
the actual velocity vn versus waiting time Δtn. Gray crosses represent all simulated
encounters with dissipation regions, including all particles and all simulated times. There
is a clear trend for Δtn to scale with v−1

n , and the black solid line represents a best fit
of the form Δtn = L/vn with L = 9 · 203 c/Ω. When a similar scatter plot of velocity
versus energy gain is created (Fig. 3 right), then no clear correlation is seen: the energy
gain is apparently independent of energy. In this sense the dissipation regions ‘erase’
the memory of the incoming particles. Returning to the waiting times, we may ask for
the shape of the function f(|vn|Δtn). This can be determined from a histogram of the
quantity |vn|Δtn (Fig. 4, solid line). The decay is roughly exponential (dashed: best-fit),
although the limited statistics does certainly not allow to exclude other forms.

5 Summary and Discussion

We have performed exact orbit integrations of electrons in a Gauss field proxy of MHD
turbulence with super-Dreicer electric fields localized in dissipation regions. It was found
that the electrons remain adiabatic (during the duration of the simulation) if no dissipa-
tion regions are encountered, and can become accelerated if such are met. The resulting
acceleration is intermittent and is not well described by a diffusion process, even if the
underlying electromagnetic fields are Gaussian. On time scales which are large compared
to the gyro time, the kinetic momentum performs a Lévy flight rather than a classical
Brownian motion. The net momentum increments in the dissipation regions are inde-
pendent of the in-going momentum, and have heavy tails which may be approximated
by a stable law of index 0.75. The waiting times between subsequent encounters with
dissipation regions are approximately exponentially distributed, P (Δt) ∼ e−vΔt/L,
indicating that the dissipation regions are randomly placed along the magnetic field

Statistical Properties of Dissipative MHD Accelerators 545

lines. This one-dimensional Poisson behaviour is most likely caused by the Gauss field
approximation, and the waiting times in true MHD turbulence are expected to behave
differently. An ongoing study is devoted to these questions, and results will be reported
elsewhere. In summary, our numerical results suggest that the acceleration process may
be modeled by a continuous-time random walk with finite or infinite mean waiting time,
and infinite variance of the momentum increments. Such models can be described in
terms of fractional versions [27,28] of the Fokker-Planck equation.

References

1. Miller, J., Cargill, P. J., Emslie, A. G., Holman, G. D. Dennis, B. R., LaRosa, T. N., Winglee,
R. M., Benka, S. G., Tsuneta, S., 1997, J. Geophys. Res, 102, 14.631

2. Karimabadi, Menyuk, C.R., Sprangle, P., & Vlahos, L. 1987, Astrophys. J., 316, 462
3. Miller J., & R. Ramaty, 1987, Solar Phys., 113, 195
4. Miller J., LaRosa, T.N., & Melrose, R. L., 1996, Astrophys. J., 461, 445
5. Miller, J., J.A., 1997, Astrophys. J., 491, 939
6. Biskamp, D., & Müller, W.C., 2000, Phys. Plasmas, 7, 4889
7. Treumann, R., and Baumjohann, W., 1997, Basic Space Plasma Physics, Imperial College

Press
8. Papadopoulos, K. 1997, in: Dynamics of the Magnetosphere, ed. Akasofu & Reidel, Dordrecht
9. Parker, E. N., 1993, Astrophys. J., 414, 389

10. Dreicer, H. 1960, Phys. Rev., 117, 329
11. Parker, E. N., 1983, Astrophys. J., 264, 635
12. Matthaeus, W.H. & Lamkin, S.L., 1986, Phys. Fluids, 29, 2513
13. Ambrosiano, J., Mattheus, W.H., Goldstein, M.L., and Plante, D., 1988, J. Geophys. Res., 93,

14.383
14. Anastasiadis, A., Vlahos, L., & Georgoulis, M. K., 1997 Astrophys. J., 489, 367
15. Dimitruk, P., Matthaeus, W.H., Seenu, N., & Brown, M.R. 2003, Astrophys. J. Lett., 597, L81
16. Moriyashu, S., Kudoh, T., Yokoyama, T., Shibata, K., 2004, Astrophys. J, 601, L107
17. Arzner, K., and Vlahos, L., 2004, Astrophys. J. Lett., 605, L69
18. Karimabadi, H. N. Omidi, & C.R. Menyuk 1990, Phys. Fluids B, 2, 606
19. Schlickeiser R. 2002, Cosmic Ray Astrophysics, Berlin, Springer
20. Gardiner C. W. 1985, Handbook of stochastic methods, Springer.
21. Littlejohn, R. G., 1982, J. Math. Phys., 23(5), 742
22. Littlejohn, R. G., 1983, J. Plasma Physics, 29, 111
23. Adler, R. J., 1981, The Geometry of Random Fields, John Wiley & Sons
24. Büchner, J., and Zelenyi, L. M, 1989, J. Geophys. Res., 94, 11.821
25. Cargill, P. J., 2001, in: Encyclopedia of Astronomy and Astrophysics – Solar flares: Particle

Acceleration Mechanisms, Nature Publ. Group, IOPP, Bristol, UK
26. Lukacs, E., 1960, Characteristic Functions, Charles Griffin, London
27. Uchaikin, V. V., 2000 Int. J. of Theoretical Physics, 39, no 8, 2087
28. Meerschaert M. M. and Benson, D. A, 2002, Phys. Rev. E, 66, 060102(R)

A Simulation Model for Forest Fires

Gino Bella1, Salvatore Filippone1, Alessandro De Maio2, and Mario Testa2

1 Università di Roma “Tor Vergata”, Rome, Italy
{bella,salvatore.filippone}@uniroma2.it

2 Numidia s.r.l., Rome, Italy

Abstract. The control of forest fires is a very important problem for many coun-
tries around the world. Proper containment and risk management depend on the
availability of reliable forecasts of the flame front propagation under the prevailing
wind conditions, taking into account the terrain features and other environmental
variables.
In this paper we discuss our initial development of the central part of an integrated
system, namely a tool to simulate the advancement of the flame front. We discuss
the pyrolisis model, the wood characteristics taken into account, and the modeling
of heat exchange phenomena; this modeling tool is derived from the well known
fluid dynamics code Kiva, originally developed for engine design applications.
Finally, we give an overview of the future directions of development for this
activity, with special attention to the models of combustion employed.

1 Introduction

Wood combustion as encountered in a forest fire is a very complex phenomenon with
many interactions.

One of the main tools employed so far in the study of fires is the use of a special
purpose wind tunnel with a combustive bed, i.e. a layer of material reproducing the
combustion characteristics of the wood mix in the area under consideration.

The simulation tool that has been developed has now reached a development status
sufficient to replicate most results from a wind tunnel experiment; this is of course the
first step towards the ability to simulate a fire in a given terrain scenario. The simulation
engine is coupled with pre and post processing tools, to provide a complete visualization
of the simulation scenario.

Our simulation tool is based on the Kiva code [1]; KIVA is a code capable of sim-
ulating chemically reacting fluid flows, originally developed in the context of engine
simulations.

2 The Wind Tunnel Fire Bed Simulation

The fire bed is a layer of combustive material with a parallelepiped shape. It is considered
to be composed of spherical particles; the material is characterized by the percentage
of cellulose, water and inert and makes up a permeable bed, with a user-specified ratio
between solid and gas components.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 546–553, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Simulation Model for Forest Fires 547

The base environment is the KIVA-3 code, originally developed at Los Alamos for
the simulation of internal combustion engines and related gas-fuel spray interactions. Its
mathematical governing equations and Numerical method are described below.

To simulate wood combustion, we had to expand the base code by integrating models
for heat exchange between gas and wood particles, and for pyrolisis.

The current simulation model is already adequate to represent undergrowth fire; in
the next development cycle we plan to introduce the model for massive solid wood
entities, i.e. trees.

2.1 The Mathematical Governing Equations

The mathematical model of KIVA-3 is the complete system of general time depen-
dent Navier-Stokes equations, coupled with chemical kinetic and spray droplet dynamic
models. The fluid motion equations are:

– Species continuity:

∂ρm

∂t
+∇ · (ρmu) = ∇ · [ρD∇(

ρm

ρ
)] + ρ̇c

m + ρ̇s
m

where ρm is the mass density of species m, ρ is the total mass density, D is the
diffusion coefficient, u is the fluid velocity, ρ̇c

m is the mass source term due to
chemistry, ρ̇s

m is an additional mass source term. By summing the previous equation
over all species we obtain the total fluid density equation:

– Total mass conservation:
∂ρ

∂t
+∇ · (ρu) = ρ̇s

– Momentum conservation:

∂(ρu)
∂t

+∇ · (ρuu) =

− 1
α2
∇p−A0∇(

2
3
ρk) +∇ · σ + Fs + ρg

where α is a dimensionless quantity used for the numerical PGS method [1], σ is
the viscous stress tensor, Fs is the rate of momentum gain per unit volume due
to interactions between gas and other phases and g is the constant specific body
force. The quantity A0 is zero in laminar calculations and unity when turbulence is
considered, k is the turbulent kinetic energy and ε its dissipation rate.

– Internal energy conservation:

∂(ρI)
∂t

+∇ · (ρIu) =

−p∇ · u + (1−A0)σ : ∇u−∇ · J + A0ρε + Q̇c + Q̇s

where I is the specific internal energy, the symbol : indicates the matrix product, J
is the heat flux vector, Q̇c is the source terms due to chemical heat release Q̇s is an
additional source term.

Furthermore, two additional transport equations are considered. These are the standard
k − ε equations for the turbulence including terms due to interaction with different
phases [1].

548 Gino Bella et al.

2.2 Numerical Method

The numerical method employed in KIVA-3 is based on a variable step implicit Euler
temporal finite difference scheme, where the timesteps are chosen using accuracy criteria.
Each time step defines a cycle divided in three phases, corresponding to a physical
splitting approach.

In the first phase the chemical kinetic equations are solved, providing most of the
source terms; the other two phases are devoted to the solution of fluid motion equations.
The spatial discretization of the equations is based on a finite volume method, called the
Arbitrary Lagrangian-Eulerian method, using a mesh in which positions of the vertices
of the cells may be arbitrarily specified functions of time. This approach allows a mixed
Lagrangian-Eulerian flow description. In the KIVA Lagrangian phase, the vertices of the
cells move with the fluid velocity and there is no convection across cell boundaries. In
this phase, the diffusion terms and the terms associated with pressure wave propagation
are implicitly solved by a modified version of the SIMPLE (Semi Implicit Method
for Pressure-Linked Equations) algorithm [2]. This algorithm, well known in the CFD
community, is an iterative procedure to compute velocity, temperature and pressure
fields. Upon convergence on pressure values, implicit solution of the diffusion terms in
the turbulence equations is approached.

After the SIMPLE solver has converged, we have an explicit convection phase,
in which the grid is adapted to the new physical condition if needed. In our fire-bed
simulation we have an advantage with respect to the standard code applications, in that
there is no rezoning, i.e. the computational mesh does not change during the simulation.
However we also have to account for the heat exchange by radiation in the first phase.

2.3 Heat Exchange Models

Heat exchange between solid wood particles and sorrounding gas in a fire simulation
happens through conduction, convection and radiation.

The heat conduction part is modeled by a fifth order polynomial expression. The con-
vection effect is biased through a number assigned to the Nusselt number; experimental
evidence shows that a value around 2 is appropriate.

The radiation heat exchange is modeled through the use of a vision factor [4]; this
in turn is computed from the solid angle under which the cell under consideration “per-
ceives” a solid body within the cell (see Fig. 1).

To limit the computational requirements we define a cutoff distance beyond which the
effect of radiation exchange is heuristically neglegible and would be only a computational
cost. The source energy is computed with the formula

Q̇(T, species) = 4σ
∑

i

piapi(T
4 − T 4

b)

where

– σ = 5.6669× 10−8 W
m2K4 is the Stefan-Boltzmann constant;

– The sum is extended over all the (gaseous) chemical species produced in the com-
bustion;

A Simulation Model for Forest Fires 549

Fig. 1. Radiation heat exchange model

– pi is the partial pressure of the i-th species;
– api is the Planck absorption coefficient for the i-th species;
– T is the local flame temperature;
– Tb is the absolute temperature of the sapce surrounding the flame.

Similarly to the cutoff distance, we introduce a cutoff temperature below which the
radiated thermal flux is zeroed. It is also possible to introduce a correction factor Fa for
the attenuation of the radiation efficiency; the attenuation is modeled with a flat region,
followed by a linearly decreasing region.

2.4 Pyrolisis Model

Due to thermal exchange, the particle temperature increases and the water in it vaporizes,
providing a source term in mass, momentum and energy equations. After vaporisation is
complete the pyrolisis process starts. For our purposes, pyrolisis corresponds to the ther-
mal decomposition of organic molecules taking place without oxidizing agents following
this chemical equation [5,6,7]:

C6H10O5− > 3.74C + 2.65H2O + 1.17CO2 + 1.08CH4

The pyrolisis rate, as well as that of the oxidation process, is modeled with an
Ahrrenius type kynetic equation for the mass gradient

dm

dt
= Ame(−

Ea
RT)

550 Gino Bella et al.

where Am is the pyrolisis reactivity and Ea is the activation energy necessary to trigger
the process. A similar model controls the char creation process; for further details see [8].
All the mass, momentum and energy contributions of this processes are considered in
the corresponding governing equations.

Fig. 2. Fire-bed discretization mesh geometry, measures in cm

3 Computational Experiments

The test case we present has been built to reproduce the experimental setting described
in [9]. The corresponding computational mesh is shown in Fig. 2; it has 27489 total
cells, containing 20000 combustive particles. The combustive material bed composed of
“Pines Ponderosa Needles” is 0.076 m thick, with a packing ratio of 0.063 and moisture
(ratio of water mass to dry mass) of 0.264. The air speed is 2.68 m/s, and the experimental
flame front speed is 0.008 m/s.

The simulation results are shown in Fig. 3 and 4, where we can see the flame front
position at two different simulated times; the flame front is identified with the isosurface
of burnt gases at a temperature of 500 K.

In Fig. 5 we show the flame front propagation speed as a function of simulated time;
the simulated propagation speed agrees nicely with the experimental result of 0.008 m/s.

The computational requirements are quite heavy; the simulation covering about 800 s
shown above has taken over 100 hours on a standard workstation equipped with an Intel
Pentium IV processor at 2.8 GHz, with 1 GB of main memory. The introduction of the
advanced solvers used in [3] has already given some benefits as detailed in Fig. 6 where
we show the time needed to simulate one second of the physical phenomenon for the old

A Simulation Model for Forest Fires 551

Fig. 3. Flame front visualization at 270 seconds

Fig. 4. Flame front visualization at 370 seconds

and new version of the code, over the first 30 time steps. As we can see, the new solvers
are more efficient as soon as the combustion starts; since the overall simulation takes
more than 20000 time steps, dominated by the combustion, the algorithmic change alone
gives almost a factor of 2 speedup. Moreover the solvers are suitable to run in parallel;

552 Gino Bella et al.

Fig. 5. Flame front velocity (calculated from the burning rate)

Fig. 6. Simulation runtime

we are currently actively working on the parallelization of the heat exchange model, to
obtain a reasonable run time for the physical cases of interest.

A Simulation Model for Forest Fires 553

4 Development Directions

The first development direction is related to the implementation of the computational
model engine; we have already started the parallelization of the code by merging the
solver modules developed for the engine application [3].

From the modeling point of view the most important issues to be tackled are:

– Modeling of trees
– Realistic terrain shapes

These are under consideration, and we plan to address them in medium term develop-
ments.

The long term vision for this project is to embed this engine into an integrated system
comprising real-time satellite data feeds and interfaces with GIS databases to provide a
flexibile tool for risk management; this is a very challenging undertaking that will require
substantial computational resources as well as a significant amount of code development.

References

1. A.A. Amsden, KIVA 3: A KIVA Program with Block Structured Mesh for Complex Geometries,
Los Alamos National Lab., Tech. Rep. LA-12503-MS, 1993.

2. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Corp., 1980.
3. S. Filippone, P. D’Ambra, and M. Colajanni. Using a Parallel Library of Sparse Linear Algebra

in a Fluid Dynamics Applications Code on Linux Clusters. In G. Joubert, A. Murli, F. Peters,
M. Vanneschi eds., Parallel Computing - Advances & Current Issues, Imperial College Press
Pub., pp. 441–448, 2002.

4. W. L. Grosshandler, RADCAL: A narrow-Band Model for Radiation Calculations in a Com-
bustion Environment, NIST techical note 1402, 1993.

5. F. Shafizadeh, The Chemistry of pyrolysis and combustion. In: R.M. Rowell (ed.) 1984 The
Chemistry of Solid Wood, Advances in Chemistry Series 207. American Chemical Society,
Washington, DC, pp 489–530.

6. A. J. Stamm, Thermal degradation of wood and cellulose. Presented at the Symp. On Degrata-
dion of Cellulose and Cellulose Derivatives, 127th National Meeting of the American Chemical
Society, Cincinnati Ohio, 1955.

7. F. Shafizadeh, Chemistry of Pyrolysis and Combustion of Wood, in Proceedings of 1981 Inter-
national Conference on Residential Solid Fuels - Environmental Impacts and Solutions, Cooper
JA, Malek Deds, Oregon Graduate Center, Beverton: pp 746–771.

8. J. Hong, Modelling of char oxidation as a function of pressure using an intrinsic Langmuir
rate equation, Tech. Rep. Brigham Young University, 2000.

9. W.R. Catchpole, E.A. Catchpole, B.W. Butler, R.C. Rothermel, G.A. Morris, D.J. Latham,
Rate of Spread of Free-Burning Fires in Woody Fuels in a Wind Tunnel USDA Forest Service,
Rocky Mountain Research Station, Intermountain Fire Sciences Laboratory, Missoula.

MHD Modeling of the Interaction
Between the Solar Wind and Solar System Objects

Andreas Ekenbäck and Mats Holmström

Swedish Institute of Space Physics (IRF)
P.O. Box 812

98134 Kiruna, Sweden
{andreas.ekenback,mats.holmstrom}@irf.se

Abstract. Magnetohydrodynamic (MHD) models of plasma can be used to
model many phenomena in the solar system. In this work we investigate the use
of a general MHD solver - the Flash code - for the simulation of the interaction
between the solar wind and solar system objects. As a test case we simulate the
three-dimensional solar wind interaction with a simplified model of a comet and
describe the modifications of the code. The simulation results are found to be
consistent with previously published ones. We investigate the performance of the
code by varying the number of processors and the number of grid cells. The code is
found to scale well. Finally we outline how to simulate the solar wind interaction
with other objects using the Flash code.

1 Introduction

The solar wind is a plasma consisting mostly of protons and electrons that are ejected
from the Sun’s corona, and streams radially outward through the solar system at speeds
of several hundred kilometers per second. Embedded into the solar wind is also the
interplanetary magnetic field. When this highly supersonic solar wind meets with solar
system objects, such as planets, comets and asteroids, an interaction region is formed.
The type of the interaction depends on the object. Around planets with a strong inter-
nal magnetic field, such as Earth, a cavity is formed, a magnetosphere, shielding the
upper atmosphere from direct interaction with the solar wind. This shielding is missing
at planets without a strong intrinsic field, e.g., at Mars. Then currents in the planet’s
ionosphere form an obstacle that diverts the solar wind flow. Objects without any sig-
nificant atmosphere, such as the Moon, are basically just physical obstacles to the flow,
and a wake is formed behind the object. Comets have a very small nucleus compared to
the size of the surrounding cloud of ions and neutrals and their interaction with the solar
wind is governed by photoionization of neutrals and charge-exchange between ions and
neutrals.

In space physics, the numerical modeling of the interaction between the solar wind
and solar system objects is an important tool in understanding the physics of the inter-
action region. The results of simulations is also important as inputs to further modeling,
e.g., to predict loss of planetary atmospheres due to the interaction.

Although self consistent particle and kinetic models best capture the actual physics,
the computational cost at present limits the number of particles and the refinement of

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 554–562, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

MHD Modeling of the Interaction Between the Solar Wind and Solar System Objects 555

grids. Since the computational cost of using a fluid model is less, more refined grids can
be used. Thus, the modeling of the interaction between the solar wind and solar system
objects is often done by using magnetohydrodynamic (MHD) fluid models.

In this work we investigate the possibility of using an existing open source application
- the Flash code [1] developed at University of Chicago - to make MHD simulations
of the interaction between the solar wind and a non-magnetized object. We model a
solar wind and a comet - in the form of a photoionization source - and outline how the
simulation model could be generalized to simulate other objects in the solar system.

2 Magnetohydrodynamics

Over small spatial volumes, the average properties of a plasma can be described using the
basic conservation laws for a fluid [2]. The plasma is however conducting, so the effects
of electric and magnetic fields and currents are added to ordinary hydrodynamics. In
the presence of a magnetic field, the added conductivity of a fluid will cause a different
behavior due to the interaction between the magnetic field and the motion; electric
currents induced in the fluid (as a result of its motion) modify the field, and at the same
time the flow of the currents in the field causes mechanical forces which modify the
motion.

2.1 MHD Equations

The MHD model used for most simulations is valid under a number of assumptions,
listed in full in [3], the fundamental ones being that the time scale of interest must be
long compared to microscopic particle motions and that the spatial scale of interest must
be large compared to the Debye length and the thermal gyroradius [2]. MHD models
have nevertheless proved adequate to describe several physical processes in the solar
system [4,5,3], including the solar wind-comet interaction [6,7].

In what follows we use the notation:

r is position
ρ is mass density
v is the velocity of the fluid
B is the magnetic field
μ0 is permeability in vacuum = 4π × 10−7 Vs/Am
p is the plasma pressure
ε is the internal energy
g is external forces such as gravity
T is the temperature of the fluid
t is elapsed time

It is common to use the MHD equations in their dimensionless, or normalized, form.
We choose to use a reference velocity v0, a reference density ρ0 and a reference length
R0. These three factors are then used to scale all quantities in the MHD equations.
Letting an overbar indicate the variables in SI units we set

r =
r̄
R0

ρ =
ρ̄

ρ0
v =

v̄
v0

556 Andreas Ekenbäck and Mats Holmström

which for the other interesting parameters leads to

t =
v0

R0
t̄ B =

B̄√
μ0ρ0v2

0

T =
T̄

v2
0

p =
p̄

ρ0v2
0

Approximating the plasma as collisionless and without resistivity we can use the equa-
tions of ideal MHD [8,2]. Using the ideal limit of the one-fluid MHD equations in
conservative form we will solve in Flash

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂ρv
∂t

+∇ · (ρvv −BB) = −∇
(
p +

B2

2

)
+ ρg (2.2)

∂ρE

∂t
+∇ ·

[
v
(
ρE + p +

B2

2

)
−B(v ·B)

]
= ρg · v (2.3)

∂B
∂t

+∇ · (vB−Bv) = 0 (2.4)

where

E =
1
2
v2 + ε +

1
2
B2

ρ

The MHD system is in the Flash code complemented by the equation of state, relating
the pressure to internal energy or temperature:

p̄ = (γ − 1) ρ̄ ε̄ p̄ =
NakB

M
ρ̄ T̄

where

γ is the adiabatic index
Na is the Avogadro number = 6.022× 1023

M is the mean atomic mass [kg]
kB is the Boltzmann constant = 1.38×10−23 J/K

3 Use of the Open Source Flash Code

The Flash code is a modular, adaptive, parallel simulation code capable of handling
general compressible flow problems in astrophysical environments. The Flash code is
written mainly in Fortran90 and uses the Message-Passing Interface (MPI) library [9]
for inter-processor communication and portability. It further uses a customized version
of the PARAMESH library [10,11] to implement a block-structured adaptive cartesian
grid, increasing resolution where it is needed.

By using the MHD module of the Flash code, we can benefit from all the testing,
development and performance tuning that has been done. Flash is also distributed with
an IDL-based visualization tool that we found very useful. What we add is the specific

MHD Modeling of the Interaction Between the Solar Wind and Solar System Objects 557

initial conditions, boundary conditions and source terms for the problem at hand. The
various examples provided with Flash facilitates the task of setting up a simulation
model.

We here explain how to add a new problem to Flash by using the solar wind-comet
interaction as an example. Where needed we also indicate how to model other possible
situations.

3.1 Creating a Problem Directory

The Flash code was written with the intention of users being able to easily add their
specific problems. The code is hence well prepared for adding a new problem; in the
source code there is a directory $FLASHHOME$/setupswhere we create a directory
comet_mhd for our problem. There are two files that must be included in a problem
setup directory:

Configwhere it is specified which of the modules in Flash that should be used. It also
lists (and sets default values to) required runtime parameters. In case we specify a
module in our Config file with several submodules, there are default ones which
are used unless we also specify the submodule.

init_block.F90 to initialize data in each of the blocks of the mesh. We give the
initial values in terms of ordinary geometrical coordinates and Flash takes care of
the mapping to blocks. The code first initializes the blocks at the lowest level of
refinement and then where needed refines the mesh and initializes the newly created
blocks. If necessary this refinement procedure is repeated until we reach a highest
level of refinement.

3.2 Boundary Conditions

To specify the boundary conditions it is possible to use some of the standard ones (“out-
flow”,”periodic” or “reflecting”) by a line for each boundary in the runtime parameter
file. By stating a boundary as “user” Flash will use a file user_bnd.F90 in the prob-
lem directory to set specified variable values there. Our solar wind inflow is modeled
by setting velocity, density, magnetic field and temperature at the left x-boundary and
setting the boundary condition at the right x-boundary as “outflow”. The simulation is
periodic in the y- and z-directions.

3.3 Alternation to Standard Algorithms

In order to add the comet source terms for the MHD equations as specified in Section 4
it was necessary to make alterations in the main file for MHD calculations. This main
file is mhd_sweep.F90 and it was copied to our problem directory. Alternations are
then made in our mhd_sweep.F90 and this one will be used instead of the standard
one. Calls to a created file comet_source_mhd.F90, that do additions to the rand
hand side of the equations (2.1) and (2.2), were inserted in mhd_sweep.F90. To
see that our non-standard file comet_source_mhd.F90 is compiled into the final
executable it is necessary to have a Makefile in our problem directory stating the
target comet_source_mhd.o and its dependencies.

558 Andreas Ekenbäck and Mats Holmström

3.4 Runtime Parameter File

The final file needed to run our comet simulation is the runtime parameter file
flash.par. It should be placed in the directory from where Flash is run. Besides as-
signing values to parameters and specifying boundary conditions, it controls the output.
Checkfiles are dumped at intervals specified in flash.par and can be used to restart
simulations from. We can also control when smaller files, to be used with the enclosed
visualization tool, containing only a desired selection of the variables are dumped.

4 A Test Case: The Solar Wind-Comet Interaction

To investigate the use of the Flash code for simulating the interaction between solar
system objects and the solar wind we choose a comet as a test problem. We model the
comet using a single fluid MHD. The setup follows Ogino et al. [6] where the comet is
modeled as a spherically symmetric source of ions. Although much more refined comet
models have been used later, e.g. by Gombosi et al. [7], we use this simpler model since
we in this work primarily are interested in the performance and correctness of the code
and our modifications.

Because of the small mass (and the resulting small gravitational forces) of the
cometary nucleus, a large amount of gas evaporates from the nucleus. The gas extends
into the solar wind and is ionized by charge-exchange processes and by photoionization
caused by solar ultraviolet radiation. In the MHD equations the interaction process is,
following Ogino et al. [6] (originally by Schmidt et al. [12]), modeled as a plasma pro-
duction centered at the cometary nucleus. We set the cometary plasma production rate

Ā(r̄) =
Q̄p e−r̄/λ̄c

4πλ̄cr̄2
(4.5)

where

Q̄p is the mass production rate of ions = 2.656×104 s−1kg
r̄ is the distance to the center of the comet [m]
λ̄c is the ionization distance = 3.03×105 m,

that controls the width of the source

for which we make the following normalizations (in order to make Ā dimensionless):

Qp =
Q̄p

ρ0v0R2
0

r =
r̄

R0
λc =

λ̄c

R0

We modify the continuity equation (2.1) to

∂ρ

∂t
+∇ · (ρv) = A(r) (4.6)

The cometary ions will also cause a modification to the momentum equation (2.1) so
that we have

∂ρv
∂t

+∇ · (ρvv −BB) = −∇
(
p +

B2

2

)
+ ρg −A(r)v (4.7)

in the same region.

MHD Modeling of the Interaction Between the Solar Wind and Solar System Objects 559

Fig. 1. Density at steadystate for our 3D simulation of a comet with parameter settings nsw = 15
cm−3, vsw = vx = 500 km/s, Bsw = Bz = 6 nT and source terms according to (4.5)-(4.7). This
steady state occured ≈ 1 second after we add the comet as a source term, and the figure shows the
density distribution 1.4 seconds after the encounter. We here show the x-z plane and thus have
the solar wind coming in from the left and its magnetic field in the upward direction. The minimal
refinement level was set to 2 and the maximal to 5, resulting in a peak of 1,024,000 in the number
of cells

We use the same normalization as in [6], using the earth radius RE = 6.37 × 106

m as R0. Other quantities are scaled with typical solar wind values: ρ0 = 2.51× 10−20

m−3kg (corresponding to a number density of the solar wind nsw of 15× 106 m−3) and
v0 = 500 km/s. The magnetic field of the solar wind is set so that B̄ = B̄z = 6 nT and
we use a solar wind temperature T̄sw = 2 × 105 K. We use an adiabatic index γ = 5/3
and include no external forces (g = 0).

5 Results for the Test Case

We here present results for the test case of the solar wind interaction with a comet, as
described in Section 4. We first present the simulation results in the physical context
and compare them with expected results and previously done simulations. Thereafter
we present how the code scales with problem size and when we increase the number of
used processors.

From a physical point of view the simulations give result in agreement with Ogino et
al. [6]. Figure 1 shows the result of a typical simulation in 3D. The characteristic weak
bow shock is seen in all simulations. As seen in Figure 2, the solar wind is decelerated
by the cometary ions and the magnetic field is draped and obtains peak values near the
comet nucleus.

The code seems to scale well for our test problem. The execution time grows almost
linearly with the problem size as seen in Figure 3. There is also profit to be made by
using more processors for a larger problem as seen to the right in Figure 3 - the deviation
from the linear speedup appears later when we increase the problem size. As expected
the speedup is sub-linear as we increase the number of processors due to increased
communication time.

560 Andreas Ekenbäck and Mats Holmström

Fig. 2. Velocity (left) and magnetic (right) field vectors for our 3D simulation of a comet for
comparison with Ogino et al. [6]. This corresponds to their Figure 3. Parameter values, length and
density scale are the same as in Figure 1

0 2 4 6 8 10 12

x 10
4

200

300

400

500

600

700

800

900

1000

Number of cells

T
ot

al
 C

P
U

 ti
m

e

1 2 4 8 16 32
0

5

10

15

20

25

30

35

S
pe

ed
−

up

Number of processors

44640* cells
110304 cells
Line of scalability

Fig. 3. Left: Execution time as function of the number of cells in the problem. To the right we
show the speedup as a function of the number of processors for two problem sizes

The mesh refinement works fine for our test problem; refinements are made in critical
regions and only there. The automatic refinement is thus much satisfactory. The code is
also capable of handling the discontinuities of our test problem. In our simulations we
start with a flowing solar wind and then insert the production of cometary ions in the
middle of our simulation box. This does not cause any problem in spite of the much lower
velocity of these ions. Both the automatic refinement mechanism and discontinuities are
shown in Figure 4 where we show a simulation at t=0.2,0.4 and 0.6 seconds. This
simulation was done in 2D so that we could have large refinements differences and still
keep simulation time reasonable.

MHD Modeling of the Interaction Between the Solar Wind and Solar System Objects 561

Fig. 4. The start of a simulation in 2D. At t=0 we add the source term A to the MHD equations as
explained in Section 4. This shows the density at t=0.2s (left), t=0.4s (middle) and t=0.6s. Note
how the mesh is refined (only) where needed. The minimal refinement level was set to 1 and the
maximal to 8, resulting in a peak number of 128,000 cells

The simulations were performed at the Seth Linux Cluster at the High Performance
Computing Center North (HPC2N) [13]. The cluster has AMD Athlon MP2000+ proces-
sors in 120 dual nodes with each CPU running at 1.667 GHz. The network has 667
Mbytes/s bandwidth and an application level latency of 1.46 μs. The network connects
the nodes in a 3-dimensional torus organized as a 4x5x6 grid. Each node is also equipped
with fast Ethernet. For all our simulations the limitation is CPU speed (and communi-
cation as we increase the number of nodes), as we do not use the full 1 GB memory of
each node.

6 Conclusions and Discussion

In this work we have shown the feasibility of using a general MHD solver for the simula-
tion of the interaction between the solar wind and solar system objects. The open source
Flash code needed small changes to specify the initial conditions, boundary conditions
and source terms to solve our selected model - the three-dimensional interaction between
the solar wind and a spherical symmetric source region, a simplified model of a comet.

We assured the correctness of our results by comparison with previously published
ones. The simulations showed that the code scales well, both as a function of problem
size, and as a function of number of computing nodes.

Thus, the Flash code seems to have the possibility of beeing used as a general tool
for the investigation of the interaction between solar system objects and the solar wind.

Some areas of future investigation is the possibility of solving multi fluid MHD
problems (e.g., H+ and O+), test particle trajectory integration in the MHD solution
field, and the way to handle planetary bodies.

Acknowledgments

The software used in this work was in part developed by the DOE-supported ASC /Al-
liance Center for Astrophysical Thermonuclear Flashes at the University of Chicago,
USA.

562 Andreas Ekenbäck and Mats Holmström

References

1. Alliances Center for Astrophysical Thermonuclear Flashes (ASCI), http://flash.uchicago.edu
2. M.G. Kivelson and C.T. Russell (editors). Introduction to Space Physics, University Press,

Cambridge, UK, 1995 ISBN 0 521 45104 4
3. E.R. Priest and A.W. Hood (editors). Advances in Solar System Magnetohydrodynamics,

University Press, Cambridge, UK, 1991 ISBN 0 521 40325 1
4. H. Matsumoto and Y. Omura (editors). Computer Space Plasma Physics, Terra Scientific

Publishing Company, Tokyo, Japan, 1993 ISBN 4 88704 111 X
5. K. Kabin, K.C. Hansen, T.I. Gombosi, M.R. Combi, T.J. Linde, D.L. DeZeeuw, C.P.T. Groth,

K.G. Powell and A.F. Nagy. Global MHD simulations of space plasma environments: he-
liosphere, comets, magnetospheres of planets and satellites Astrophysics and Space Science,
274:407-421, 2000

6. T. Ogino, R.J. Walker and M. Ashour-Abdalla. A Three-Dimensional MHD Simulation of
the Interaction of the Solar Wind With Comet Halley Journal of Geophysical Research, vol.
93, NO. A9, pages 9568-9576, September 1988

7. T.I. Gombosi, D.L. De Zeeuw, R.M. Häberli and K.G. Powell. Three-dimensional multiscale
MHD model of cometary plasma environments Journal of Geophysical Research, vol. 101,
no. A7, pages 15233-15232, July 1996

8. T. I Gombosi. Physics of the Space Environment, University Press, Cambridge, UK, 1998
ISBN 0 521 59264 X

9. The Message Passing Interface (MPI), http://www-unix.mcs.anl.gov/mpi/
10. Parallel Adaptive Mesh Refinement (PARAMESH),

http://ct.gsfc.nasa.gov/paramesh/Users manual/amr.html
11. P. MacNeice, K.M. Olson, C. Mobarry, R. deFainchtein and C. Packer. PARAMESH:

A parallel adaptive mesh refinement community toolkit Computer Physics Communications,
vol. 126, pages 330-354, 2000

12. H.U. Schmidt and R. Wegmann. Plasma flow and magnetic fields in comets Comets: Gases,
Ices, Grains and Plasma edited by L.L. Wilkening. University of Arizona Press, Tuscon, USA

13. High Performance Computing Center North, Umeå, Sweden, http://www.hpc2n.umu.se

Implementing Applications
with the Earth System Modeling Framework

Chris Hill1, Cecelia DeLuca2, V. Balaji3, Max Suarez4, Arlindo da Silva4,
William Sawyer4,7, Carlos Cruz4, Atanas Trayanov4, Leonid Zaslavsky4,

Robert Hallberg3, Byron Boville2, Anthony Craig2, Nancy Collins2, Erik Kluzek2,
John Michalakes2, David Neckels2, Earl Schwab2, Shepard Smithline2, Jon Wolfe2,

Mark Iredell6, Weiyu Yang6, Robert Jacob5, and Jay Larson5

1 Massachusetts Institute of Technology
2 National Center for Atmospheric Research
3 Geophysical Fluid Dynamics Laboratory

4 NASA Global Modeling and Assimilation Office
5 Argonne National Laboratory

6 National Center for Environmental Prediction
7 Swiss Federal Institute of Technology

sawyer@env.ethz.ch

Abstract. The Earth System Modeling Framework (ESMF) project is developing
a standard software platform for Earth system models. The standard defines a com-
ponent architecture superstructure and a support infrastructure. The superstructure
allows earth scientists to develop complex software models with numerous compo-
nents in a coordinated fashion. The infrastructure allows models to run efficiently
on high performance computers. It offers capabilities that are commonly needed
in Earth Science applications, for example, support for a broad range of discrete
grids, regridding functions, and a distributed grid class which represents the data
decomposition. We illustrate these features through a simplified finite-volume at-
mospheric model, and report the parallel performance of the underlying ESMF
components.

1 Introduction

Earth Science applications — for example those simulating the time evolution of the
atmosphere, ocean, earth crust and mantle, or climate — traditionally have been large
monolithic codes usually written by a research group at one institution. The increase in
the number of environmental aspects which are simulated, along with the access to ever
more powerful parallel computers, has led to a prodigious increase in the complexity of
these applications.

In the last decade, researchers have acknowledged the need to share software com-
ponents to overcome the software complexity. A prime example of such collaboration
is a coupled ocean-atmosphere climate model, e.g. [3]. Such a model is developed by at
least two groups, working for the most part independently of each other. It is key that
the interfaces be clearly described, so that the separate components can be connected
with a minimum of effort. Moreover, it is required that the final product runs efficiently
on parallel computers. This challenge can be eased by a software framework which

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 563–572, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

564 Chris Hill et al.

supports the various grids used by the components, transfers data (which are naturally
distributed over the parallel machine) between grids, provides common functionality
for I/O, logging, time management, and offers high-level interfaces for the interaction
between components. These features are among those offered by the Earth System Mod-
eling Framework (ESMF), a standards-based, open-source software platform for Earth
Science applications.

The architecture of ESMF has been described elsewhere, e.g., [2,7]. Thus we sum-
marize the architecture only briefly in Section 2. In Section 3, we describe the implemen-
tation of a simple atmospheric model which predates ESMF, but has been revised for
ESMF compliance. The resulting application consists of a number of ESMF components
and thus serves as a useful example for the efficacy of ESMF paradigms. Results from
performance studies are presented in Section 4. Section 5 contains a brief discussion of
our experiences implementing ESMF applications.

2 Architectural Overview

Software frameworks to ease development of complex applications are not new. There
are several in Earth Science community alone: the GFDL Flexible Modeling System [4],
the Goddard Earth Modeling System [13], the Weather Research and Forecast Model
[10], the MIT Wrapper toolkit [6], the PILGRIM communications library [12] and the
Model Coupling Toolkit [8]. ESMF unifies and standardizes these efforts, while offering
most of the functionality of the union.

ESMF consists of a superstructure and an infrastructure. The superstructure provides
a software layer encompassing user code and describes the component interconnection
through input and output data streams. The infrastructure is a standard support library
which developers can use to speed application development. It supplies functionality for
describing physical grids and fields, managing time and calendars, logging and profiling,
performing communication, regridding data, among other things. Figure 1 depicts the
architecture succinctly.

Both ESMF layers provide complete support for parallel platforms. The grids used
in the applications are distributed over a set of decomposition elements (DEs). The
associated complexity of the data distribution is hidden in the superstructure, while the
infrastructure has explicit routines operating on DEs.

2.1 Superstructure Layer

The superstructure layer offers a unifying context for the interconnection of components.
User components which abide by the layer’s standard can be inserted into other ESMF-
compliant applications. Components are split into two classes: gridded components
which perform work on a given discrete physical grid, and coupler components which
map one state to another. The latter therefore provides the connectivity or “glue” for the
former.

Central to the superstructure is the ESMF state class. This defines a container for
component data exchanges. Thus an ESMF component accepts an import state and pro-
duces an export state. The ESMF clock provides consistent notions of time between

Implementing Applications with the Earth System Modeling Framework 565

Fig. 1. The ESMF “sandwich” architecture, on left, has an upper-level (superstructure) and a
lower-level (infrastructure) layer. Arrows illustrate that the superstructure-layer code (as well as
the user code) can call the infrastructure layer. On right, examples of some of the horizontal grids
for which ESMF provides built-in regridding support

components. Thus the import/export states and clock make up the interface for a com-
ponent.

An ESMF application can be summarized by the following points:

1. The application is structured into a set of gridded and coupler components.
2. The underlying ESMF component (either gridded or coupler) offers the methods

Initialize, Run and Finalize.
3. Data transferred between components are packed into ESMF import and export

states.
4. Time information is packed into ESMF time management data structures.
5. ESMF superstructure functionality is used to instantiate the active gridded and cou-

pler components.
6. Each component’s Initialize, Run and Finalize methods are registered

with the ESMF framework in the component’s SetServices method.
7. The actual application consists only of a call to an ESMF application driver.

2.2 Infrastructure Layer

The infrastructure layer supplies functionality for tasks which are needed in a wide range
of Earth Science applications. In this sense it can be considered a software library. It
contains a number of classes which describe commonly used objects. For example, the
import and export states mentioned in Section 2.1 consist of ESMF fields, which in turn
consist of ESMF arrays and ESMF grids on which the data are defined. The grid is a
pairing of an ESMF physical grid and a distributed grid object.

The physical grid describes the discretization of continuous three-dimensional
space for Earth system models. There are a number of common physical grids sup-
ported, a subset of which is depicted in Figure 1. The physical grid class is extensible,
allowing external groups to develop further grids for new applications.

566 Chris Hill et al.

The distributed grid class represents the data structure’s decomposition into subdo-
mains — typically for parallel processing. The class holds information for halo exchange
of tiled decompositions in finite-difference, finite-volume and finite-element codes.

The regrid class allows a field F containing data on a given physical grid P and
distribution grid D to be remapped to a field F ′, physical grid P ′ and distribution D′. In
other words,Rg : (F, P,D) −→ (F ′, P ′, D′). If theP ′ �= P , the values are interpolated,
with the possibility of conserving physical quantities during the mapping. If P ′ = P ,
the mapping is a redistribution, for which optimized routines are available.

The decomposition element layout class is an abstraction for the parallel platform,
which could range from a network of workstations to a distributed cluster of shared
memory nodes. Parallelism is allowed with both threads and processes, both referred to
abstractly as persistent execution threads, or PETs.

ESMF gridded and coupling components are synchronized through a common notion
of time referred to as a clock. The time and calendar classes support a wide range
of concepts of time used in Earth Science applications. For example, some research
scenarios call for a year of 360 “days”, while others require time to be carried in rational
fractions to avoid numerical rounding and associated clock drift.

The infrastructure also defines a set of I/O classes for the storage and retrieval of
field and grid information. These support the standard formats in the community, namely
NETCDF, HDF5 and GRIB.

3 The Finite-Volume Held-Suarez Atmospheric Model

The Finite-Volume Held-Suarez (FVHS) application is a simple atmospheric model
which incorporates a finite-volume dynamical core [9] to simulate atmospheric flow and
idealized Held-Suarez Physics [5] which finds a rough approximation for the tendencies
of physical processes influencing the atmosphere.

The coupling of FV with HS — in particular with respect to their parallel execution
on supercomputers — illustrates several challenges in the development of ESMF appli-
cations, and as such serves as a case-study for the transition of existing applications to
ESMF compliance.

3.1 Creating ESMF Components

The FV and HS components were already split logically into three phases of execution:

Finite-Volume Held-Suarez
Initialize Read configuration Read configuration

Allocate internal state Allocate internal state
Read restart file Read restart file
Initialize variables Initialize variables
Initialize comm. patterns

Run Get newest input data Get newest input data
Regrid data to internal vars. Calculate tendencies
Update atmospheric state Deliver output vars.
Deliver output vars.

Finalize Save internal state Save internal state
Deallocate variables Deallocate variables

Implementing Applications with the Earth System Modeling Framework 567

The compartmentalization of the pre-ESMF code into these three areas was fortuitous
for the construction of the ESMF Initialize, Run and Finalize methods. In
the FVHS application, these are registered in the framework (Code Example 1) in the
component’s SetServices routine which is the only public access point to the com-
ponent.

Code Example 1: Registration of methods and allocation/linking of the internal state
in the FV component. The wrap variable allows access to a user defined part of the
component’s internal state. Thus, it is possible for the developer to extend and tailor the
state information for the particular application.

call ESMF_GridCompSetEntryPoint (gcFV, ESMF_SETINIT, Initialize, ESMF_SINGLEPHASE, status)
call ESMF_GridCompSetEntryPoint (gcFV, ESMF_SETRUN, Run, ESMF_SINGLEPHASE, status)
call ESMF_GridCompSetEntryPoint (gcFV, ESMF_SETFINAL, Finalize, ESMF_SINGLEPHASE, status)
allocate(dyn_internal_state, stat=status)
wrap%dyn_state => dyn_internal_state
call ESMF_UserCompSetInternalState (gcFV,’FVstate’,wrap,status)
call ESMF_GridCompGetInternalState (gcFV, GENWRAP, STATUS)

The main program is responsible for creating the gridded components, couplers and
import/export states, registering the components methods with a call to
ESMF GridCompSetServices, then initializing, running and finalizing the com-
ponent with the corresponding ESMF calls. See Code Example 2.

Code Example 2: FVHS initializations related to the FV component. The component is
created, as well as its import and export state. Two couplers are created to connect the
FV and HS components in both directions. The Initialize, Run and Finalize
services (whose entry points were described previously) are registered with the frame-
work with ESMF GridCompSetServices. Thereafter it is possible to access these
services with calls to the framework.

FV = ESMF_GridCompCreate (’FV’, layout=loFV, mtype=ESMF_ATM, configfile=cf_file, rc=rc)
impFV = ESMF_StateCreate (’FV_Imports’, ESMF_STATEIMPORT, compname=’FV dyn’, rc=rc)
expFV = ESMF_StateCreate (’FV_Exports’, ESMF_STATEEXPORT, compname=’FV dyn’, rc=rc)
ccFVxHS = ESMF_CplCompCreate (’FV to HS’, layout=loAppl, configfile=’FVxHS.rc’, rc=rc)
ccHSxFV = ESMF_CplCompCreate (’HS to FV’, layout=loAppl, configfile=’HSxFV.rc’, rc=rc)
call ESMF_GridCompSetServices (gcFV, FV_SetServices, rc)
:

call ESMF_GridCompInitialize (gcFV, impFV, expFV, clock, ESMF_SINGLEPHASE, rc)
:

call ESMF_GridCompRun (gcFV, impFV, expFV, clock, ESMF_SINGLEPHASE, rc)
:

call ESMF_GridCompFinalize(gcFV, impFV, expFV, clock, rc)

3.2 Physical Grids

Both the FV dynamical core and the HS physics employ a latitude-longitude grid. FV,
however, uses a staggered grid on which winds are defined on the boundaries between
cells, while in HS all values are defined in the cell center. ESMF provides mechanisms
for describing these and other staggerings, as well as regridding software to interpolate
values between staggered grids in a physically consistent manner. In Code Example 3,
the physical (latitude-longitude) grid for FV is defined; the distributed grid is implied
in the decompositions defined in the two dimensions countsPerDEDecomp1 and
countsPerDEDecomp2.

Code Example 3: Creation of an ESMF grid. The global dimensions of the domain,
the description of the domain, and interval sizes are specified. The grid is defined as a
latitude-longitude grid spanning the sphere, which is periodic in longitude. The decom-
position is specified by the distributions in both dimensions, countsPerDEDecomp1

568 Chris Hill et al.

and countsPerDEDecomp2. A grid staggering ESMF GridStagger D is speci-
fied for this case where wind speed values are defined on the cell’s boundaries, not in
its center. An ESMF grid is returned.
GRID%GRIDXY = ESMF_GridCreateLogRectUniform(numDims=2, counts = (/grid%im, grid%jm/), &

minGlobalCoordPerDim=(/-PI-delta1(1)/2,-PI/2-delta2(1)/2/), deltaPerDim=(/delta1,delta2/),&
layout=layout, periodic=(/ESMF_TRUE, ESMF_FALSE/), horzGridKind=ESMF_GridKind_LatLon, &
horzStagger=ESMF_GridStagger_D, horzCoordSystem=ESMF_CoordSystem_Spherical, &
countsPerDEDecomp1=imxy, countsPerDEDecomp2=jmxy, name="FVCORE horizontal grid", rc=status)

3.3 Data Decomposition and Redistribution

The FV and HS components distribute their data in fundamentally different manners.
HS operations are strictly in the vertical, and therefore it is logical to distribute the data
in both latitude and longitude. FV, on the other hand, performs a vertical integration and
contains east-west/north-south data dependencies as well. Near the poles the zonal grid
intervals become smaller, and the east-west dependencies heavily outweigh the north-
south. Thus FV distributes data in latitude and level for most calculations and in latitude
and longitude for vertical integration.

While these distributions optimize the parallel performance for the individual com-
ponents, the data must be redistributed at the component boundaries. As described in
Section 2.2, ESMF provides extensive support for regridding data. Code Example 4 illus-
trates the data redistribution: routes (communication patterns) are derived from the XY-
and YZ-decomposed fields during the initialization step. These can be applied repeatedly
to the fields.

Code Example 4: Data redistribution between XY and YZ decompositions. ESMF
fields are created for arrays in each of the two employed decompositions. ESMF routes
xy to yz and yz to xy are defined describing the communication pattern between
the two fields. These routes can be applied repeatedly when the data needs to be redis-
tributed between the fields.
fieldXY = ESMF_FieldCreate(GRID%GRIDXY, ArrayXY, horzRelloc=ESMF_CELL_CENTER, &

haloWidth=hWidth, name="field2", rc=rc)
fieldYZ = ESMF_FieldCreate(GRID%GRIDYZ, ArrayYZ, vertRelloc=ESMF_CELL_CENTER, &

haloWidth=hWidth, name="field2", rc=rc)
call ESMF_FieldRedistStore(fieldXY, fieldYZ, delayout, xy_to_yz, rc=rc)
call ESMF_FieldRedistStore(fieldYZ, fieldXY, delayout, yz_to_xy, rc=rc)
:

call ESMF_FieldRedist(fieldXY, fieldYZ, xy_to_yz, rc=rc)
call ESMF_FieldGetArray(fieldYZ, arrayYZ, rc)
:

call ESMF_FieldRedist(fieldYZ, fieldXY, yz_to_xy, rc=rc)
call ESMF_FieldGetArray(fieldXY, arrayXY, rc)

3.4 FV Subcomponents

The component structure can be recursive, that is, an ESMF component can be con-
structed from further ESMF components. Such is the case for the finite-volume dynam-
ical core, which consists of a solver for the primitive equations and an algorithm for the
advection of tracers (atmospheric constituents, e.g. water vapor or particulates, which
are carried by the winds).

The primitive equation (PE) component and the tracer advection (TA) component
are connected by couplers which are internal to FV. Just as the main FVHS program

Implementing Applications with the Earth System Modeling Framework 569

creates the FV and HS components and their couplers, the FV Initialize method
creates the PE and TA components and their couplers.

4 Performance Studies

While FVHS is not a full general circulation model (GCM), its scalability on massively
parallel computers gives a good indication of the performance which can be expected
of an ESMF-compliant GCM.

Three hour simulations were performed with the FVHS model using a time step of
30 minutes. This is sufficiently long to determine the execution time of one time step
in a longer production simulation. In Figure 2 the timings for the FV component are
given. Since the Held-Suarez Physics is a much simpler calculation than the dynamics,
FV makes up most of the overall computation.

Fig. 2. Even for a relatively low resolution, 2o ×2.5o ×32-level problem using 4-byte arithmetic,
the ESMF dynamical core component scales adequately on the HP/Compaq 3800 and SGI Origin
3800 at NASA Goddard Space Flight Center. A 3 hr. atmospheric simulation is performed, and
the scalability of the FV dynamical core component, which includes communication both in the
form of halo exchanges and transposes. A one-dimensional domain decomposition is indicated
with an ©. Additional parallelism with two (�) subdomains comes at some additional cost: the
redistribution (transpose) must be performed on several arrays for each time step. However, for
four (∗), and eight (+) subdomains, there is no additional overhead, and the code scales to roughly
100 CPUs

The results for this “small” problem indicate that the ESMF overhead for each
invocation of the Run method is scalable. However, they do not make a quantitative
statement about the magnitude of the overhead itself. Besides attaining scalability, the
goal of the ESMF implementation is naturally to retain the performance of the underlying
application.

570 Chris Hill et al.

In order to determine the introduced overhead, timings of the FV dynamical core [11]
in the existing Community Atmosphere Model (CAM) were made. This is unfortunately
not a precise comparison, since (1) the CAM grid has 26 vertical levels instead of 32 for
FVHS, and (2) calculations are performed with 8-byte arithmetic in the former instead
of the 4-byte arithmetic used in the latter. These differences are imposed by the data sets
which are used for the respective CAM and FVHS runs. Experience shows, however,
that the performance gains by the fewer level calculations is roughly compensated by
the expense of the double precision calculation. The results are illustrated in Figure 3
in fact imply that the ESMF overhead is well below the 10% allowed by the ESMF
requirements document [1].

Fig. 3. The graph on the left side illustrates the performance of the dynamical core (not ESMF-
compliant) at 2o × 2.5o × 26 levels with 8-byte arithmetic in the Community Atmosphere Model
on the SGI Origin 3800. The meaning of the symbols is identical to the corresponding SGI graph
in Figure 2. The pie chart at right indicates the breakdown of times for the components of the full
CAM, when run at 0.5o × 0.625o × 26 level resolution. The dynamical core comprises slices 1,
2, 3 and 8, and accounts for nearly half of the overall computation

5 Summary of Experiences

The components mentioned in Section 3 predate ESMF, thus the codes had to be rewrit-
ten for ESMF compliance. The fundamental design of the original software lent itself
well to the division into Initialize, Run and Finalize methods, thus the code
restructuring was kept to a minimum.

In spite of this, there were impediments to a quick implementation. First, the import
and export states of the FV dynamical core were not entirely appropriate for the Held-
Suarez component. Normally the mapping to the required FV import state and from the
HS export state would have been programmed in the couplers, but in this case it was
decided to modify the import and export states themselves, bringing them in line with
other dynamical cores. We suspect it is normal that existing software components will

Implementing Applications with the Earth System Modeling Framework 571

sometimes require revisions in the import and export states to make them general enough
for use in other ESMF applications. The ensuing development overhead unfortunately
cannot be alleviated by a software framework.

Secondly, some planned ESMF functionality needed in FVHS had not been im-
plemented when FVHS was first integrated. Thus we wrote our own temporary im-
plementations of the regrid interpolations between staggered and unstaggered grids, I/O
operations, and other utilities. These deficiencies have since been corrected by the ESMF
core team. On the other hand, the framework-specific tasks, such as the integration of
components through couplers, and creation of physical and decomposition grids, were
straightforward and took little time.

The performance of the FV component proved to be comparable to that of the original
dynamical core, indicating that the overhead an ESMF-compliant application was in this
case not significant.

Acknowledgments

The NASA ESTO program supports the development of ESMF through contracts under
NASA Cooperative Agreement Notice CAN-00-OES-01.

References

1. V. Balaji, T. Bettge, B. Boville, T. Craig, C. Cruz, A. da Silva, C. DeLuca, B. Eaton, R. Hallberg,
C. Hill, M. Iredell, R. Jacob, P. Jones, B. Kauffman, J. Larson, J. Michalakes, D. Neckels,
J. Rosinski, S. Smithline, M. Suarez, J. Wolfe, W. Yang, M. Young, L. Zaslavsky. Earth System
Modeling Framework; ESMF Requirements.
http://www.esmf.ucar.edu/esmf docs/ESMF last reqdoc/.

2. V. Balaji, B. Boville, N. Collins, T. Craig, C. Cruz, A. da Silva, C. DeLuca, R. Hallberg,
C. Hill, M. Iredell, R. Jacob, P. Jones, B. Kauffman, E. Kluzek, J. Larson, J. Michalakes,
D. Neckels, W. Sawyer, E. Schwab, S. Smithline, M. Suarez, B. Womack, W. Yang, M. Young,
L. Zaslavsky. Earth System Modeling Framework; DRAFT ESMF Architecture.
http://www.esmf.ucar.edu/esmf docs/ESMF archdoc/.

3. M. B. Blackmon, B. Boville, F. Bryan, R. Dickinson, P. Gent, J. Kiehl, R. Moritz, D. Randall,
J. Shukla, S. Solomon, G. Bonan, S. Doney, I. Fung, J. Hack, E. Hunke, and J. Hurrell. The
Community Climate System Model. BAMS, 82(11):2357–2376, 2001.

4. Geophysical Fluid Dynamics Laboratory. The Flexible Modeling System.
http://www.gfdl.noaa.gov/fms.

5. I. Held and M. Suarez. A Proposal for the Intercomparison of the Dynamical Cores of At-
mospheric General Circulation Models. BAMS, 75(10):1825–1830, 1994.

6. C. Hill, A. Adcroft, D. Jamous, and J. Marshall. A strategy for tera-scale climate modeling.
In Proc. 9th ECMWF Workshop on the Use of HPC in Meteorology. World Scientific Press,
2001.

7. C. Hill, C. DeLuca, Balaji, M. Suarez, and A. da Silva. The Architecture of the Earth System
Modeling Framework. Computing in Science & Engineering, 6(1):18–28, 2004.

8. J. Larson, R. Jacob, I. Foster, and J. Guo. The Model Coupling Toolkit. In Proc. Int’l Conf.
Computer Science, pages 185–194. Springer-Verlag, 2001. Lecture Notes in Computer Sci-
ence 2073.

572 Chris Hill et al.

9. S.-J. Lin and R. B. Rood. A ’vertically Lagrangian’ Finite-Volume Dynamical Core for Global
Models. Monthly Weather Review, 2004. Submitted for publication.

10. J. Michalakes, S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Skamarock.
Development of a next generation regional weather research and forecast model. In Proc. 9th

ECMWF Workshop on the Use of HPC in Meteorology. World Scientific Press, 2001.
11. W. Sawyer and A. Mirin. A scalable implementation of a finite-volume dynamical core in the

Community Atmosphere Model. In Proc. Parallel and Distributed Computing and Systems,
ACTA Press, 2004. Accepted for publication.

12. W. Sawyer and P. Messmer. Parallel Grid Manipulations for General Circulation Models. In
Parallel Processing and Applied Mathematics : 4th International Conference, pages 564–571.
Springer-Verlag, 2002. Lecture Notes in Computer Science 2328.

13. D. Schaffer and M. Suarez. Design and Performance Analysis of a Massively Parallel At-
mospheric General Circulation Model. J. Sci. Programming, 8:49–57, 2000.

Parallel Discrete Event Simulations of Grid-Based
Models: Asynchronous Electromagnetic Hybrid Code�

Homa Karimabadi1, Jonathan Driscoll1, Jagrut Dave1,2, Yuri Omelchenko1,
Kalyan Perumalla2, Richard Fujimoto2, and Nick Omidi1

1 SciberNet, Inc., Solana Beach, CA, 92075, USA
{homak,driscoll,yurio,omidi}@scibernet.com
2 Georgia Institute of Technology, Atlanta, GA, 30332, USA
{jagrut,kalyan,fujimoto}@cc.gatech.edu

Abstract. The traditional technique to simulate physical systems modeled by
partial differential equations is by means of a time-stepped methodology where
the state of the system is updated at regular discrete time intervals. This method
has inherent inefficiencies. Recently, we proposed [1] a new asynchronous for-
mulation based on a discrete-event-driven (as opposed to time-driven) approach,
where the state of the simulation is updated on a “need-to-be-done-only” basis.
Using a serial electrostatic implementation, we obtained more than two orders
of magnitude speedup compared with traditional techniques. Here we examine
issues related to the parallel extension of this technique and discuss several differ-
ent parallel strategies. In particular, we present in some detail a newly developed
discrete-event based parallel electromagnetic hybrid code and its performance us-
ing conservative synchronization on a cluster computer. These initial performance
results are encouraging in that they demonstrate very good parallel speedup for
large-scale simulation computations containing tens of thousands of cells, though
overheads for inter-processor communication remain a challenge for smaller com-
putations.

1 Introduction

Computer simulations of many important complex physical systems have reached a
barrier as existing techniques are ill-equipped to deal with the multi-physics, multi-
scale nature of such systems. An example is the solar wind interaction with the Earth’s
magnetosphere. This interaction leads to a highly inhomogeneous system consisting of
discontinuities and boundaries and involves coupled processes operating over spatial
and temporal scales spanning several orders of magnitude. Inclusion of such disparate
scales is beyond the scope of existing codes [2].

We have taken a new approach [1] to the simulation of such complex systems. The
conventional time-stepped grid-based Particle-In-Cell (PIC) models provide the sequen-
tial execution of synchronous (time-driven) field and particle updates. In a synchronous
simulation, the distributed field cells and particles undergo simultaneous state transitions

� Research was supported by NSF ITR grant 0325046 at SciberNet Inc. and 0326431 at Georgia
Institute of Technology. Some of the computations were performed at the San Diego Super-
computing Center.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 573–582, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

574 Homa Karimabadi et al.

at regular discrete time intervals. In contrast, we propose a new, asynchronous type of
PIC simulation based on a discrete-event-driven (as opposed to time-driven) approach,
where particle and field time updates are carried out in space on a “need-to-be-done-
only” basis. In these simulations, particle and field information “events” are queued and
continuously executed in time. The technique has some similarity to Cellular Automata
(CA) in that complex behaviors result from interaction of adjacent cells [3]. However,
unlike CA, the interactions between cells are governed by a full set of partial differential
equations rather than the simple rules as are typically used in CA. The power of this tech-
nique is in its asynchronous nature as well as elimination of unnecessary computations
in regions where there is no significant change in time. This is in contrast to CA, which
are largely based on synchronous execution (e.g. [4]); to date, asynchronous parallel
discrete event simulation of CA have only been applied to relatively simple phenomena
such as Ising spin [5]).

Using a serial electrostatic model, we have shown [1] that the discrete event tech-
nique can lead to more than two orders of magnitude speedup compared to conventional
techniques. In the following, we discuss issues associated with the extension of this
technique to parallel architectures. We then demonstrate, through a newly developed
parallel hybrid code, that parallel processing can provide an additional order of magni-
tude improvement in performance.

2 Parallel Computation Issues

Discrete Event Simulation (DES) offers substantial benefits compared to conventional
explicit time-driven simulation by reducing the amount of computation that must be
performed. However, by itself, DES is not sufficient to achieve the desired performance
and scalability. Parallel DES (PDES) can help address this issue. However, the irregular
nature of PDES computations leads to difficulties. Synchronization overhead, the number
of concurrent computations, load distribution and event processing rate impact PDES
performance significantly [6].

As in conventional (time-driven) simulations, the parallelization of asynchronous
(event-driven) continuous PIC models is realized by decomposing the global compu-
tation domain into subdomains. In each subdomain, individual cells and particles are
aggregated into containers that may be mapped to different processors. The parallel ex-
ecution of time-driven simulations is commonly achieved by copying field information
from the inner lattice cells to ghost cells of neighboring subdomains and exchanging
out-of-bounds particles between the processors at the end of each update cycle. By con-
trast, in parallel asynchronous PIC simulations both particle and field events are not
synchronized by the global clock (i.e. they do not take place at the same time intervals
throughout the simulation domain), but occur at arbitrary time intervals, introducing
synchronization problems. Unless precautions are taken, a process may receive an event
message from a neighbor with a simulation time stamp that is in its past.

In the following, we assume that the parallel simulation is composed of a collection
of Simulation Processes (SPs) that communicate by exchanging time stamped event
messages. Broadly, synchronization approaches may be classified as conservative or
optimistic. Conservative synchronization ensures that each simulation process never

Parallel Discrete Event Simulations of Grid-Based Models 575

receives an event in its past [8, 9]. Runtime performance is critically dependent on
apriori determination of an application property called lookahead (a time interval),
which is roughly dependent on the degree to which the computation can predict future
interactions with other processes without global information. On the other hand, the
optimistic approach allows a process to receive a message in its past, but uses a rollback
mechanism to recover [7]. Further discussion can be found in [10,11,12].

Another important issue concerns load balancing. As with any parallel or distributed
application, the computation must be evenly balanced across processors and interproces-
sor communication should be minimized to achieve the best performance. Often these
are conflicting goals. This is particularly challenging in PDES because of its irregular,
unpredictable nature. Load balancing can greatly affect the efficiency of synchroniza-
tion mechanisms (e.g. poor load distribution can lead to excessive rollbacks in optimistic
systems). Automated schemes that balance workload at runtime using process migration
present new challenges in this area [13,15].

Finally, it is desirable to decouple the parallel simulation engine that handles syn-
chronization and communication from the application/models. This reduces the burden
of the application developer, by not requiring an understanding of underlying PDES syn-
chronization mechanisms. We have used an extensible simulation engine that provides
multiple synchronization and event delivery mechanisms through a single interface,
named μsik [16].

3 DES Model

We have developed a general architecture for parallel discrete event modeling of grid-
based models. Details will be presented elsewhere. Here we present a simplified version
of our technique that illustrates the salient features of our model without getting bogged
down in all the details. In the following, we show results from a 1D parallel hybrid code
(light version) that we have developed and tested using μsik as the simulation engine.
This code is used to highlight unique parallel issues that are encountered in the DES
modeling of plasmas. The light version does not strictly conserve flux. However, the lack
of strict local flux conservation does not change the result significantly in the problem
of interest here.

3.1 Hybrid Algorithm

Electromagnetic hybrid algorithms with fluid electrons and kinetic ions are ideally suited
for physical phenomena that occur on ion time and spatial scales. Maxwell’s equations
are solved by neglecting the displacement current in Ampere’s law (Darwin approxi-
mation), and by explicitly assuming charge neutrality. There are several variations of
electromagnetic hybrid algorithms with fluid electrons and kinetic ions [18]. Here we
use the one-dimensional resistive formulation [19] which casts field equations in terms
of vector potential. The model problem uses the piston method where incoming plasma
moving with flow speed larger than its thermal speed is reflected off the piston located
on the rightmost boundary. This leads to the generation of a shockwave that propagates
to the left. In this example, we use a flow speed large enough to form a fast magnetosonic

576 Homa Karimabadi et al.

shock. In all the runs shown here, the plasma is injected with a velocity of 1.0 (normal-
ized to upstream Alfven speed), the background magnetic field is tilted at an angle of
30o, and the ion and electron betas are set to 0.1.

The simulation domain is divided into cells [1], and the ions are uniformly loaded into
each cell. We conducted experiments ranging from 4,096 to 65,536 cells, and initialized
each simulation to have 100 ions per cell. Each cell is modeled as an SP in μsik and the
state of each SP includes the cell’s field variables. The main tasks in the simulation are
to a) initialize fields, b) initialize particles, c) calculate the exit time of each particle,
d) sort IonQ (see below), e) push particle, f) update fields, g) recalculate exit time,
and h) reschedule. This is accomplished through a combination of priority queues and
three main classes of events. The ions are stored in either one of two priority queues as
illustrated in Fig. 1. Ions are initialized within cells in an IonQ. As ions move out of the
left most cell, new ions are injected into that cell in order to keep the flux of incoming
ions fixed at the left boundary. MoveTime is the time at which an ion is to be moved
next. The placement and removal of ions in IonQ and PendQ is controlled by comparing
their MoveTimes to the current time and lookahead. Ions with MoveTimes more than
current time + 2*lookahead have not yet been scheduled and are kept in the IonQ. A
wakeup occurs when the fields in a given cell change by more than a certain threshold
and MoveTimes of particles in the cell need to be updated. On a wakeup, only the ions
in this queue recalculate their MoveTimes. Because ions in the IonQ have not yet been
scheduled, a wakeup requires no event retractions. If an ion’s MoveTime becomes less
than current time + 2*lookahead in the future, the ion is scheduled to move, and is
removed from the IonQ and placed in the PendQ. Thus, the front of the IonQ is at least
one lookahead period ahead of the current time. This guarantees that each ion move will
be scheduled at least one lookahead period in advance. The PendQ is used to keep track
of ions that have already been scheduled to exit, but have not yet left the cell. These
particles have MoveTimes that are less than the current time. Ions in the PendQ with
MoveTimes earlier than the current time have already left the cell and must be removed
before cell values such as density and temperature are calculated.

MoveTimecurrent time

not yet scheduled

2 lookahead*

IonQ

scheduled to exit
 exited /
awaiting removal

PendQ

if MoveTime < current time +2 lookahead*

Fig. 1. At any moment, the ions in a cell are stored in one of two queues, the IonQ and the PendQ.
Both are priority queues, sorted so that the ion with the earliest exit time is at the top

Events can happen at any simulation time and are managed separately by individual
cells of the simulation. The flow of the program including functions of events and their
interaction with μsik is illustrated in Fig. 2. In this simulation, each cell handles three
different types of events.
SendIon Event: This event is first run on each cell when the simulation is initialized,

Parallel Discrete Event Simulations of Grid-Based Models 577

and is responsible for sending ions from one cell to the next. This is accomplished
by scheduling the complementary “AddIon” events for neighboring cells. The SendIon
event schedules an AddIon event corresponding to every Ion which exits within two
lookahead periods, and always schedules at least one SendIon event. In addition, the
SendIon Event checks to see if the fields have changed by some tolerance, waking up
particles in that cell if necessary. SendIon events occur frequently and as a whole are
computationally significant.
AddIon Event: This event is used to add a single ion to a cell. The ion’s new exit time is
calculated, and then it is added to the IonQ. The fields in the cell are then updated and
Notify Events are scheduled for the left and right neighbor cells to inform them of the
field change. The AddIon Event causes state changes and occurs sporadically in large
batches.
NotifyEvent: This event updates the vector potential and temperature for the two neigh-
bors.

Musik

AddIon Event

1. Remove ions which have exited
 from PendQ

2. Calculate exit time of the ion
 being added

3. Push the ion onto the IonQ

4. Update the field inside this cell
 only

5. Schedule NotifyEvent for left
 and right neighboring cells

SendIon Event
1. Remove ions which have exited
 from PendQ, replace any ions
 that have left cell 0

2. Check to see if the fields have
 changed more than the set
 tolerance, and if so, wakeup ions

3. Schedule one AddIon event for the
 ion with the earliest exit time, and
 one AddIon event for every ion
 within 2 lookahead

4. Reschedule SendIon event for self,
 one lookahead period before the
 next unscheduled ion will exit

*

Execute AddIon Event

Schedule NotifyEvents
for left & right neighbors

Execute SendIon Event

Schedule AddIon
Events for left or
right neighbors

Reschedule SendIon
 Event for this cell

Start - SendIon Event is called on each cell
 to prime the simulation loop

......

Fig. 2. Flow diagram of the parallel hybrid code

Exit Time. We take the electric and magnetic fields to be constant within a cell, with
arbitrary orientation and magnitude. In this case, a charged particle will have an equation
of motion that can be calculated analytically and has the general form R(t) = At2 +
Bt + rc sin(ωct + φ) + C, where R(t)is the position of the particle. Newton’s method
is used to solve for the exact exit time.

Lookahead. If the typical velocity of a particle is v, and a typical cell width is x, then
the time it takes for a particle to cross a cell is x/v. Lookahead must be a factor smaller
than this time so that a particle covers a small fraction of the cell width in one lookahead
period. On the other hand, if the lookahead is too small, the parallel performance will be
poor. This happens when there are few event computations during a lookahead period.
Synchronization overhead becomes larger than the computational load. We use the time
it takes for the first particle to exit a cell to set the lookahead.

578 Homa Karimabadi et al.

By

-1

1

B
tot

0

2

700 1000X

N

0

5

Bz

2

-1

event-driven

time-stepped

3200 4200
0.6

1.2

cell number

B

 /
B

to
t

to
t 0-

lo
ok

-a
he

ad

lookahead=0.07

lookahead=0.15

(a)

(b)

Fig. 3. (a) Comparison of time-stepped and event-driven simulations of a fast magnetosonic shock.
(b) The ratio of the total magnetic field from lookahead runs of 0.07 and 0.15 relative to the field
from zero lookahead run

4 Results

Figure 3(a) compares results of traditional time-stepped hybrid simulation and our event-
stepped simulation for a single processor. We have plotted the y and z (transverse)
components of the magnetic field, the total magnetic field, and the plasma density versus
x, after the shock wave has separated from the piston on the right hand side. The match
between the two simulations is remarkable as DES captures the (i) correct shock wave
speed, and (ii) details of the wavetrain associated with the shock wave. This match is
impressive considering the fact that the differences seen in Fig. 3(a) are within statistical
fluctuations associated with changes in the noise level in hybrid codes.

4.1 Effect of Lookahead

Next, we consider the effects of changing the lookahead on both the accuracy of the
results as well as the execution time. The hardware for the runs shown here was a high-
performance cluster at the Georgia Tech High Performance Computing laboratory. The
cluster has 8 nodes, each with 4 2.8 GHz Xeon processors and 4 GB of RAM. The
simulation uses 4 μsik Federates (one per processor), each with 2 Regions and 512 cells
per Region. A Region is a grouping of cells for efficient load-distribution, described in
Sect. 4.3.

Figure 3(b) shows variations in the spatial profile of Btot, with lookahead. The
zero lookahead run yields the most accurate result and is treated as a baseline. In the
hybrid algorithm, the maximum lookahead must be less than the exit time of the earliest
scheduled particle, which is approximately 0.15 for our choice of parameters. Deviations
of the profile from the baseline are less than 10%, even when the maximum lookahead
value is used.

Parallel Discrete Event Simulations of Grid-Based Models 579

Figure 4(a) shows the speedup in execution time relative to the zero lookahead run.
The important point from this figure is that even small departures from zero lookahead
lead to substantial improvements in speed. In fact, the most dramatic speedup (a factor
of 3) is achieved when lookahead is changed from 0 to 0.005. Further changes in looka-
head do improve performance, but at a much slower rate. For example, increasing the
lookahead by an order of magnitude from 0.005 to 0.05 leads to only an additional 15%
speedup.

4.2 Scaling with the Number of Processors

The 1D modeling of the shock problem in Fig. 3(a) can be easily performed with a serial
version of our code. However, our ultimate goal is to develop a 3D version of the code. As
a simple means to evaluating the parallel execution in a 3D model, we have considered
cell numbers as large as 65,536. This is sufficient to identify the key issues of parallel
execution. Figure 4(b) shows the speedup as a function of the number of processors up
to 128. The speedup is measured with respect to a sequential run. These runs were made
on a 17 node cluster, with each node having 8 550 MHz CPUs and 4 GB of RAM. The
simulation domain consisted of 8,192 cells in one case and 65,536 cells in the other.

Sp
ee

du
p

R
el

at
iv

e
to

 th
e

Se
ria

l R
un

Number of Processors
1 10 100

1

10

100

300

linear

look ahead values

Sp
ee

d
up

 re
la

tiv
e

to
 z

er
o

lo
ok

 a
he

ad

0

3

6

0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(a) (b)

Fig. 4. (a) Speedup with increased lookahead. (b) Scaling with the number of processors. The
dashed line is a linear scaling curve. Speedup for 8,192 cells is in black and 65,536 cells is in gray.
For each domain size, there are two curves - speedup considering the overall execution time and
speedup without considering communication time. The scaling is superlinear if communication
time is removed

As is evident from Fig. 4(b), the parallel speedup is good till eight processors, but
declines as more processors are added. This is due to the architecture of the cluster, which
uses a collection of 8 processor computers communicating through TCP/IP. With up to 8
processors, the entire simulation runs through shared memory, and the communication
overheads are low. However, with more than 8 processors, the overheads associated
with TCP/IP begin to offset the speed gained by using more processors. This reduces the
slope of the curve. For 8,192 cells, the speedup does not increase significantly after 32
processors. This is because of increased synchronization costs, which negate the gains
from parallel processing. Processors do not have a sufficient computational load between

580 Homa Karimabadi et al.

global synchronizations and spend a greater fraction of time waiting on other processors.
For 65,536 cells, there is enough computation between global synchronizations to obtain
good speedup up to 128 processors.

Since the overheads associated with inter-processor communication become rela-
tively smaller as the simulation size increases, we do not anticipate this effect being as
pronounced with larger, 3D simulations. In 3D simulations, each processor would have
several orders of magnitude more cells, making the relative overheads associated with
TCP/IP much less. To test the idea that poor scaling is the result of the communication
overheads, we have also plotted speedup with the communication time subtracted out in
Fig. 4(b). The speedup in this case is better than expected, and is in fact super-linear. In
other words, doubling the number of processors more than doubles the execution speed.
This is the result of a peculiar feature of DES. Execution time does not necessarily scale
linearly with the simulation size, even on one processor. This is in part due to the fact
that as the event queue becomes larger (contains more pending events), the time asso-
ciated with scheduling and retrieving each event increases. So, as the simulation gets
distributed over more and more processors, each processor is effectively dealing with
a smaller piece of the simulation, making the scaling non-linear. Memory performance
(specifically, cache performance) can also lead to super-linear speedup. By keeping the
same size problem but distributing it over more processors, the memory footprint in each
processor shrinks. The total amount of cache memory increases in proportion with the
number of processors used - with enough processors, one can, for example, fit the entire
computation into the processors’ caches. An extreme case of this is when the problem
is so large that it does not fit into the memory of a single machine, causing excessive
paging. Although both effects could be causing the super-linear scaling seen in Fig.
4(b), the data structure performance appears to be dominant. In a no-load test of μsik,
we changed the number of cells from ten to a million. The time to process a single event
increased from 6.50 to 22.15 microseconds, indicating a scaling behavior of NlogN.

Figure 5(a) shows the percentage of time spent in communication and blocking in
each case. There is a significant increase in the fraction of time spent in communication
and blocking for more than 8 processors. For 65,536 cells, the percentage settles to
around 60% for higher number of processors. However, for 8,192 cells, the percentage
keeps on increasing until 90% for 128 processors.

4.3 Load Balancing

Figure 5(b) shows the variation in execution time as a function of the number of Regions
per processor, as distributed by the Region Deal algorithm. In this scheme, the simulation
is broken into small Regions which are then “dealt” out much like a card game among
processors. These simulation runs were performed on the first cluster mentioned earlier.

The curves show a different trend for higher number of processors (4,8,16) than for
2 processors. For higher number of processors, the variation in execution time because
of the Region Deal load balancing scheme is less pronounced. The best execution times
are close to the execution time for 1 Region per processor, with variations of less than
1,000 seconds. Also, increasing the number of Regions per processor increases the
execution time in most cases. This is because of the increased synchronization overhead
that negates the benefits of the load distribution scheme. For 2 processors, having more

Parallel Discrete Event Simulations of Grid-Based Models 581

C
om

m
un

ic
at

io
n

Pe
rc

en
ta

ge

1

Number of Processors

8192 cells 65536 cells

ex
eu

ct
io

n
tim

e
/ t

o

Regions per Processor (log scale)
40101

0.0

0.2

1.4

0.4

0.6

0.8

1.0

1.2 2 processors

4 processors

8 processors

16 processors

2 4 8 16 32 64 128
0

100% (a)

(b)

Fig. 5. (a) Percentage of time spent in communication. (b) Performance of load balancing algorithm

Regions per processor leads to better load distribution and hence reduced execution time.
The execution time settles around 14,000 seconds for 16 Regions or more. In this case too,
contiguous cells are assigned to different processors and incur greater synchronization
overhead for higher number of Regions per processor.

References

1. Karimabadi, H, Driscoll, J, Omelchenko, Y.A. and N. Omidi, A New Asynchronous Method-
ology for Modeling of Physical Systems: Breaking the Curse of Courant Condition, J. Com-
putational Physics, (2005), in press.

2. Karimabadi, H. and N. Omidi. Latest Advances in Hybrid Codes and their Application to
Global Magnetospheric Simulations. in GEM, http://www-ssc.igpp.ucla.edu/gem/tutorial/
index.html) (2002).

3. Ilachinski, A., Cellular Automata, A Discrete Universe, World Scientific, 2002.
4. Smith, L., R. Beckman, et al. (1995). TRANSIMS: Transportation Analysis and Simulation

System. Proceedings of the Fifth National Conference on Transportation Planning Methods.
Seattle, Washington, Transportation Research Board.

5. Lubachevsky, B. D. (1989). Efficient Distributed Event-Driven Simulations of Multiple-Loop
Networks. Communications of the ACM 32(1): 111-123.

6. Fujimoto, R.M., Parallel and Distributed Simulation Systems. (2000): Wiley Interscience.
7. Jefferson, D., Virtual Time, ACM Transactions on Programming Languages and Systems,

(1985), 7(3):pp. 404-425.
8. Chandy, K. and J. Misra (1979). Distributed Simulation: A case study in design and verification

of distributed programs. IEEE Transactions on Software Engineering.
9. Chandy, K. and J. Misra (1981). Asynchronous distributed simulation via a sequence of

parallel computations. Communications of the ACM. 24.
10. Fujimoto, R. M. (1999), Exploiting Temporal Uncertainty in Parallel and Distributed Simu-

lations, Proceedings of the 13th Workshop on Parallel and Distributed Simulation: 46-53.
11. Rao, D. M., N. V. Thondugulam, et al. (1998). Unsynchronized Parallel Discrete Event Sim-

ulation. Proceedings of the Winter Simulation Conference: 1563-1570.
12. Rajaei, H., R. Ayani, et al. (1993). The Local Time Warp Approach to Parallel Simulation.

Proceedings of the 7th Workshop on Parallel and Distributed Simulation: 119-126.
13. Boukerche, A., and S. K. Das, Dynamic Load Balancing Strategies for Conservative Parallel

Simulations, Workshop on Parallel and Distributed Simulation, 1997.

582 Homa Karimabadi et al.

14. Carothers, C. D., and R. M. Fujimoto, “Efficient Execution of Time Warp Programs on Het-
erogeneous, NOW Platforms,” IEEE Transactions on Parallel and Distributed Systems, Vol.
11, No. 3, pp. 299-317, March 2000.

15. Gan,B. P., et al., Load balancing for conservative simulation on shared memory multiprocessor
systems, Workshop on Parallel and Distributed Simulation, 2000

16. Perumalla, K.S., μsik – A Micro-Kernel for Parallel and Distributed Simulation Systems, to
appear in the Workshop on Principles of Advanced and Distributed Simulation, May, 2005.

17. Bagrodia, R., R. Meyer, et al. (1998). Parsec: A Parallel Simulation Environment for Complex
Systems. IEEE Computer 31(10): 77-85.

18. Karimabadi, H., D. Krauss-Varban, J. Huba, and H. X. Vu, On magnetic reconnection regimes
and associated three-dimensional asymmetries: Hybrid, Hall-less hybrid, and Hall-MHD sim-
ulations, J. Geophys. Res., Vol. 109, A09205,(2004).

19. Winske, D. and N. Omidi, Hybrid codes: Methods and Applications, in Computer Space
Plasma Physics: Simulation Techniques and Software, H. Matsumoto and Y. Omura, Editors.
(1993), Terra Scientific Publishing Company. p. 103-160.

Electromagnetic Simulations of Dusty Plasmas

Peter Messmer

Tech-X Corporation
5621 Arapahoe Avenue, Suite A, Boulder, CO 80303, USA

messmer@txcorp.com

Abstract. Dusty plasmas are ionized gases containing small particles of solid
matter, occurring e.g. in space, fusion devices or plasma processing discharges.
While understanding the behavior of these plasmas is important for a variety of
applications, an analytic treatment is difficult and numerical methods are required.
Ideally, the dusty plasma would be treated kinetically, modeling each particle
individually. However, this is in general far too expensive and approximations
have to be used, like representing the electrons as fluids or treating Maxwell’s
equations in the electrostatic limit. Here we report on fully kinetic electromagnetic
simulations of dusty plasmas, using the parallel kinetic plasma simulation code
VORPAL. A brief review of the particle-in-cell (PIC) algorithm, including the
model for modeling dust grains, and first results of single dust grain simulations
are presented.

1 Introduction

Dust - plasma interactions play an important role in space plasma systems. Comets, rings
in planetary magnetospheres, exposed dusty surfaces, or the zodiacal dust cloud are all
examples where dusty plasma effects shape the size and spatial distribution of small
dust particles. Simultaneously, dust is often responsible for the composition, density
and temperature of its plasma environment. The dynamics of charged dust particles can
be surprisingly complex, fundamentally different from the well understood limits of
gravity dominated motion (vanishing charge-to-mass ratio) or the adiabatic motion of
electrons and ions.

Dust particles in plasmas are unusual charge carriers. They are many orders of mag-
nitude heavier than any other plasma particles and they can have orders of magnitude
larger (negative or positive) time-dependent charges. Dusty plasma systems are char-
acterized by new spatial and temporal scales (grain radius, average distance between
grains, dust gyro-radius and frequency, etc.), in addition to the customary scales (Debye
length, plasma frequency, etc.). Dust particles can communicate non-electromagnetic
effects (gravity, drag, radiation pressure) to the plasma, representing new free energy
sources. Their presence can influence the collective plasma behavior, altering the wave
modes and triggering new instabilities.

2 PIC Algorithm

An efficient way to model kinetic plasmas self-consistently is the well-established
particle-in-cell (PIC) algorithm [1,2], which follows the trajectories of a representa-

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 583–589, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

584 Peter Messmer

tive number of particles, so called macro-particles, in the electromagnetic field. In the
following, we briefly review this algorithm:

The relativistic motion of charged particles in an electromagnetic field is governed
by the Newton-Lorentz law

dγv

dt
=

q

m

(
E +

v

c
×B

) dx

dt
= v (2.1)

where x, v and q/m are position, velocity and charge to mass ratio of each particle,
γ = (1 − v2/c2)−1/2 and c is the speed of light. The evolution of the electric field E
and the magnetic inductivity B is determined by Maxwell’s equations,

∇ ·E =
ρ

ε0
(2.2)

∂E

∂t
= c2∇×B − j

ε0
(2.3)

∇ · B = 0 (2.4)
∂B

∂t
= −c∇× E (2.5)

where j denotes the current density and ε0 is the permittivity of free space.
To simulate a plasma, the equation of motion for the particles and Maxwell’s equa-

tions have to be solved concurrently. In the PIC algorithm, the field quantities E and B
are therefore discretized in space, allowing to use finite differences for the curl operators
in Eqs. (2.3) and (2.5). The particles, on the other hand, are located anywhere in the
computational domain.

Starting from an initial distribution of particles and fields, the system is evolved
in time. Each time-step consists of two alternating phases: In the particle push phase,
the new particle positions and velocities are determined according to Eq. (2.1). In the
following field solve phase, the fields are updated using the new particle positions.

In order to accelerate the particles in the particle push, the field quantities have to
be determined at the particle location, using e.g. linear interpolation. The actual time
integration is then done by a leap-frog scheme.

To update the fields, a variety of algorithms and approximations can be used. Very
common for dusty plasma simulations is the electrostatic approximation, which neglects
the time dependency of B. The electric field is then determined via Poisson’s equation,
Eq. (2.2), using the charge density derived from the particle positions.

For systems with fast particles, or to model the interaction with electromagnetic
waves, the time dependency ofBcannot be neglected. The full set of Maxwell’s equations
has then to be solved. The fields are coupled to the particles through the current density
term in Eq. (2.3) and the charge density term in Eq. (2.2). Different algorithms are
known to determine the current density from the particle motion. One example are
charge-conserving current deposition algorithms [3], which determine the current flux
through a cell surface from the charge carried across this surface due to the particle
motion in one time step, have the nice property that they satisfy the continuity equation,

∂ρ

∂t
= −∇ · j. (2.6)

The advantage of this algorithm is that Eq. (2.2) remains satisfied if it was satisfied
initially, as can be seen by taking the divergence of Eq. (2.3) and applying the continuity
equation,

Electromagnetic Simulations of Dusty Plasmas 585

∂

∂t
∇E = −∇ j

ε0
=

∂ρ

∂t
. (2.7)

Therefore, if an electromagnetic PIC code with charge-conserving current deposition is
started with a self-consistent solution of E and B, the evolution of the fields is entirely
determined by Eq. (2.3) and (2.5). The particle charge is only needed to determine the
current density, and no explicit solution of Poisson’s equation is required .

The field quantities are placed at different positions in space: TheE field components
are defined on the cell edges, whereas the B field components are known on the cell
surfaces. The components are staggered in a so-called Yee grid [4]. In this setup, e.g.
the Bz, Ex and Ey components reside on the same z-plane. This allows to compute the
z-componentof∇×E at the location ofBz by means of finite-differences. Analogously,
all other curl operators can be computed. Providing the current flux at locations of the
E field grid, the B and E fields can be updated by leap-frog-scheme.

All finite difference operators are time and space centered to guarantee second order
accuracy and the whole scheme requires only local information, making it very suitable
for parallel implementations. A drawback is, however, that the timestep Δt and the grid
cell spacing, Δx, Δy, Δz, are coupled via a CFL condition

cΔt ≤
(
Δx−2 + Δy−2 + Δz−2

)−1/2
(2.8)

which states that the propagation of light waves has to be resolved. This can be very
restrictive, especially if the main focus of the simulation is on the particle behavior and
the particle velocity is much smaller than the speed of light.

2.1 Parallel PIC Algorithm

The PIC algorithm per-se is inherently parallel, as the same procedures (move particles
under the influence of Newton-Lorentz force, deposit the particle charge or currents to
the field) have to be performed for a large number of particles.

In the electrostatic case, parallelization is complicated due to the solution of Poisson’s
equation, which requires global information. Highly optimized iterative methods can be
used to solve this problem efficiently. The parallelization of the electromagnetic problem
turns out to be simpler than the electrostatic case. As only local information is required
to update the fields and the particles, parallelization via domain decomposition can lead
to good speedup.

2.2 Parallel Plasma Simulation Code VORPAL

VORPAL [5] is a plasma simulation framework under development at the University
of Colorado (CU) and Tech-X Corporation. The original domain of application was
laser-plasma interaction, where its results have contributed to leading scientific pub-
lications, including a recent article in Nature [6]. Due to the flexibility built into the
code, it has grown into many additional areas, like breakdown models in microwave
guides or dusty plasmas. The VORPAL framework can currently model the interaction
of electromagnetic fields, charged particles, and charged fluids.

586 Peter Messmer

Fig. 1. Speedup figures for the VORPAL code. Left: Speedup relative to the execution time on 8
processors for an electromagnetic 3D simulation on a 200 × 100 × 100 cell grid and 5 particles
per cell. Right: Speedup relative to the execution time on 16 processors for an electrostatic 3D
simulation on a 1026×65×65 cell grid, with different preconditioner to solve Poisson’s equation:
Gauss-Seidel (Stars) and Algebraic Multigrid (diamonds). In both panels, the perfect speedup is
indicated by a dotted line. Speedup figures are taken from References [5] and [7]

The design of VORPAL originates from the understanding that both 2D and 3D
simulations will be required in the future: The shorter completion time of 2D simulations
allows rapid investigations of physical situations which can then be followed up by more
extensive simulations in 3D. The availability of large scale computing facilities, as the
6000 CPU IBM-SP at the National Energy Research Supercomputer Center as well as
low-cost Beowulf clusters, affordable to Universities, small corporations and institutes,
allows a broad range of users to benefit from this code.

VORPAL uses C++ template meta-programming in order to generate both a 2D and
a 3D code from the same code base. It was specifically designed to be a parallel hybrid
code, while capable of running as a pure particle or fluid code. All the parallelization as-
pects of the code are handled transparently. The code uses recursive coordinate bisection,
allowing for efficient load balancing even in the case of highly inhomogeneous parti-
cle distributions. Passing field, fluid and particle data between processors is efficiently
handled, using set theory techniques.

Figure 1 shows the speedup of VORPAL for both a purely electromagnetic PIC sim-
ulation and an for an electrostatic problem. In the electrostatic case, Poisson’s equation
is solved for a potential, using the parallel iterative solvers of the AZTEC library [8].

3 Modeling Dusty Plasmas

An interesting physical question is the temporal evolution of the charge on a dust grain
immersed in a two component plasma consisting of electrons and ions. Electrons and
ions stream onto the dust grain and ’stick’ to it. An uncharged dust grain will be initially
charged negatively, due to the higher thermal velocity of the electrons. The resulting
strong electric field will then pull ions to the grain, reducing the net charge. In general,
analytic solutions are only available for the steady state. This problem is usually treated

Electromagnetic Simulations of Dusty Plasmas 587

Fig. 2. 2D VORPAL simulations of dusty plasmas. Left: Dust charge per particle (stars) as a
function of ion flow speed, compared to the theoretical prediction (dotted). Right: Average dust
charge as a function of dust density

in the electrostatic limit, where the dust grain is modeled as a particle absorbing boundary
condition.

However, if the particles velocities become relativistic, the full electromagnetic treat-
ment is desirable. How can a dust grain be modeled in an electromagnetic PIC code?
As shown in Sec. 2, the only quantity that is required to update the electromagnetic
field self-consistently is the current density, which is inferred from the particle motion.
An immobile particle therefore does not contribute to the evolution of the system. If a
particle is stopped after it enters a cell effectively leads to an increase of the charge of
this cell. An extended, infinitely heavy, perfectly dielectric dust grain can therefore be
modeled as a simple particle absorbing area in the computational domain.

4 Preliminary Results

In this section, we present some preliminary results of electromagnetic dust simulations.
The dust grains are modeled as stationary, spatially extended cylindrical or spherical
particle sinks. The charge-neutral background consists of thermal electrons and protons.

4.1 Asymmetric Charging

Figure 2, left, shows the dependency of the average charge on a single dust grain as a
function of the ion flow speed. The simulation was performed in 2D, with a single dust
grain in a box of length 2×2 cm on a 100×100 cells grid. The electron temperature is 5
times the ion temperature. The initial electron Debye length is approximately 1 cm. The
theoretical results were taken from Lapenta et al.[9], considering the dimensionality of
the simulation. The simulations are in good agreement with the theoretical results.

For this simulation, no correction for the depletion of the plasma due to the absorption
by the dust grain was performed. This issue will be addressed in further kinetic studies.

4.2 Density Dependent Charging

In a second example, the average charge per dust particle as a function of dust density
was investigated. The number of dust grains was varied between 1.5 and 25 per electron

588 Peter Messmer

Fig. 3. Dust grain (light gray) in a plasma of streaming ions and thermal electrons. The ions flow
from top-left to bottom right. Downstream of the grain, a negatively charged wake forms (dark
gray), whereas a positively charged region appears upstream

Debye length. The setup geometry was identical to the previous case, but the electron
temperature was chosen to be the same as the ion temperature.

Theory [10] predicts a decrease of the average dust charge for increasing dust density.
Figure 2, right, shows this effect reproduced with 2D VORPAL simulations, roughly
following a power law. A major difference between our simulations and results published
e.g. by Young et al. [11] is that the dust grains in our case are spatially resolved, allowing
to investigate additional effects, like wake formation.

4.3 Wake Formation

A third example of our preliminary investigations is wake formation in a system of
streaming ions and a thermal electron population. Figure 3 shows the wake of a 3D
VORPAL simulation. Clearly visible is the negatively charged tail behind the single dust
grain. Also visible is a positively-charged bow in front of the dust grain.

5 Summary

In the previous paragraphs, a model for dust grains in an electromagnetic particle-in-cell
code was introduced. It was shown that a particle absorbing region in an electromagnetic
PIC code with charge conserving current deposition can act as an infinitely heavy dust

Electromagnetic Simulations of Dusty Plasmas 589

grain. This model of a dust grain requires only local information and preserves the paral-
lelism of the electromagnetic PIC algorithm. Good speedup is therefore expected. This
will allow to perform studies of spatially extended dust grains in 3D. First simulations of
single dust grains immersed in a thermal plasma were presented. The results are in good
agreement with previously published results. Future studies will focus on the mutual
influence of several dust grains, depending on their relative position. In addition, the
time dependent charging of dust grains in 3D will be investigated. All these questions
are still unresolved in dusty plasma physics [12].

References

1. Birdsall, Langdon, Plasma Physics via Computer Simulation, Adam Hilger, 1991.
2. Hockney, R.W., Eastwood, J.W., Computer Simulation using Particles, Adam Hilger, 1988.
3. Villasenor, J., Buneman, O., Comput. Phys. Commun., 69, 306, 1989.
4. Yee, K.S., Numerical solution of initial boundary value problems involving Maxwell’s equa-

tions in isotropic media, IEEE Trans. Antennas Propagat., 14, 302, 1966.
5. Nieter, C. and Cary, J.R., VORPAL: a versatile plasma simulation code, J. Comp. Phys, 196

(2), 448, 2004.
6. Geddes, C.G.R, Toth, Cs., van Tilborg, J., Eseray, E., Schroeder, C.B., Bruhwiler, D., Nieter,

C., Cary, J.R, High-quality electron beams from a laser wakefield accelerator using plasma-
channel guiding, Nature, 431, 538, 2004.

7. Messmer, P., Bruhwiler, D., An electrostatic solver for the VORPAL code, Comp. Phys. Comm.,
164, 118, 2004.

8. Tuminaro, R.S., Heroux, M., Hutchinson, S.A., Shadid, J.N.,Official Aztec Users’s Guide:
Version 2.1, Technical Report, SAND99-8801J, 1999.

9. Lapenta, G., Simulation of charging and shielding of dust particles in drifting plasmas, Phys.
o. Plasmas, 6 (5), 1442, 1999.

10. Goertz, C.K., Dusty plasmas in the solar system, Rev. Geophys, 27 (2), 271, 1989.
11. Young, B., Cravens, T.E., Armstrong, T.P., Friauf, R.J., A two-dimensional particle-in-cell

model of a dusty plasma, J. Geophys. Res., 99, 2255, 1994.
12. Tsytovich, V.N., Morfill, G.E., Thomas, H., Complex Plasmas: I. Complex Plasmas as Un-

usual State of Matter, Plasma Phys. Reports., 28 (8), 625, 2002.

Advanced Algorithms and Software Components
for Scientific Computing: An Introduction�

Organizer: Padma Raghavan

Department of Computer Science and Engineering
The Pennsylvania State University

343K IST Bldg., University Park, PA 16802, USA
raghavan@cse.psu.edu

Abstract. Scientific computing concerns the design, analysis and implementa-
tion of algorithms and software to enable computational modeling and simulation
across disciplines. Recent research in scientific computing has been spurred both
by advances in multiprocessor systems and the wider acceptance of computational
modeling as a third mode of scientific investigation, in addition in to theory and
experiment. We introduce the next six chapters on advanced algorithms and soft-
ware components for scientific computing on parallel computers. We review recent
results toward enabling the scalable solution of large-scale modeling applications.

1 Introduction

In the last decade, in addition to theory and experiment, computational modeling and
simulation has been widely embraced as the third mode of scientific investigation and
engineering design. Consequently, the associated computational challenges are being
faced by an increasingly larger group of scientists and engineers from a variety of dis-
ciplines. This in turn has motivated research in scientific computing aimed at delivering
advanced algorithms and software tools that can enable computational science and en-
gineering without specialized knowledge of numerical analysis, computer architectures,
and interoperable software components. In this chapter, we introduce some recent re-
search in advanced scientific computing to enable large-scale computational modeling
and simulation.

In Section 2, we provide an introduction to the next six chapters covering a range of
topics. The first chapter concerns algorithms and software for a scientific database for ef-
ficient function approximation in computational fluid dynamics. The next three chapters
focus on techniques for scalable, parallel sparse linear system solution. The latter is often
the computationally dominant step in simulations of models based on nonlinear partial
differential equations using an implicit or semi-implicit scheme with finite-element or
finite-difference discretizations. The final two chapters focus on advanced software en-
vironments, object-oriented and component frameworks for high-performance scientific
software development. We end with concluding remarks in Section 3.

� This work was supported in part by the National Science Foundation through grants CCF-
044345, EIA-0221916, and DMR-0205232.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 590–592, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Advanced Algorithms and Software Components for Scientific Computing 591

2 Advanced Algorithms and Software for Scientific Computing

In this section, we provide an introduction to the following six chapters which represent
emerging themes of research in scientific computing aimed at meeting the challenges of
multi-scale computational modeling on high-performance computing systems.

The first chapter by Plassmann and Veljkovic concerns parallel algorithms for a
scientific database for efficient function approximation. The problem is related to the
modeling of reacting flows with complex chemistry involving multiple scales, for exam-
ple, through high-order, Direct Numerical Simulation (DNS). The authors consider the
development of a scientific database for approximating computationally expensive func-
tions by archiving previously computed exact values. Earlier, they had demonstrated that
sequential algorithms and software for the database problem can be effective in decreas-
ing the running time of complex reacting flow simulations. Now, they consider parallel
algorithms and software based on a partitioning of the search space. Their approach
involves maintaining a global BSP tree which can be searched on each processor in a
manner analogous to the sequential algorithm. They also consider a variety of heuristics
for coordinating the distributed management of the database. They establish through ex-
periments that a hybrid of these heuristics exhibits the best performance and scalability
by successfully balancing the computational load.

The next three chapters focus on effective parallel sparse linear system solution.
Sparse linear solvers can be broadly classified as being ‘direct,’ ‘iterative,’ ‘domain de-
composition,’ or ‘multilevel/multigrid.’ Additionally, there are ‘preconditioning’
schemes which can be used with iterative solvers to accelerate their convergence. Each
class contains a large number of algorithms, and there is multiplicative growth in the
number of methods when special forms of multilevel, domain-decomposition, or direct
methods are used as preconditioners. The performance of all these methods, including
convergence, reliability, execution time, parallel efficiency, and scalability, can vary dra-
matically depending on the interactions between a specific method, the problem instance,
and the computational architecture.

The chapter by D’Ambra, Serafino, and Filippone concerns building effective pre-
conditioners using schemes from domain-decomposition. They focus on constructing
parallel Schwarz preconditioners by extending Parallel Sparse BLAS (PSBLAS), a li-
brary of routines providing basic linear algebra operations for building iterative sparse
linear system solvers on distributed-memory multiprocessors. The next two chapters are
related in the sense that they both concern using techniques from sparse direct solvers
to develop preconditioners. The chapter by Hénon, Pellegrini, Ramet, Roman and Saad
concerns using ‘blocked’ forms of incomplete factorization to develop robust precon-
ditioners. The chapter by Teranishi and Raghavan concerns parallel preconditioners
using incomplete factorizations that are ‘latency tolerant.’ i.e., preconditioners that can
achieve high-efficiency despite the relatively large latency of inter-processor commu-
nication on message passing multiprocessors and clusters. All three chapters provide
empirical results to demonstrate the efficiency of the preconditioners. These three chap-
ters are representative of an emerging trend in scientific computing where the focus is on
hybrid algorithms to provide efficient, scalable and robust sparse solvers that can meet
the demands of a range of large-scale applications.

592 Padma Raghavan

The last two chapters concern software environments for scientific computing. The
emphasis is on the design of ‘plug-and-play’ environments for software development.
In such systems, the application developer has access to the wealth of software imple-
mentations of a variety of algorithms for different key kernels common to a wide range
of simulations. This will enable developers to build software specific to their modeling
needs, with relative ease and without sacrificing performance,e by selecting from tuned
implementations of advanced algorithms.

The chapter by Heroux and Sala discusses the design of the ‘Trilinos’ system, a
two-level software structure, designed around a collection of ‘packages.’ Each package
focuses on a particular area of research, such as linear and nonlinear solvers or algebraic
preconditioners, and is usually developed by a small team of experts in a particular area
of research. Packages exist underneath the Trilinos top level, which provides a common
look-and-feel to application developers while allowing package interoperability.

The final chapter by Norris concerns software architectures for advanced scientific
computing. The Common Component Architecture (CCA) has been developed with the
goal of managing the increasing complexity of scientific software development. The
CCA attempts to provide a relatively simple component interface requirements with
a minimal performance penalty. The chapter explores some concepts and approaches
that can contribute to making CCA-based applications easier to design, implement,
and maintain. When properly designed, CCA applications can also benefit from hybrid
schemes, and adaptive method selection to enhance performance.

3 Conclusions

Recent advances in computing hardware include high-performance multiprocessors like
the BlueGene/L from IBM, commodity Beowulf clusters, and their organization into
wide-area distributed computational grids. These hold the potential for discovery and
design through computational modeling and simulation. However, the raw processing
power of the hardware cannot be utilized without the development of sophisticated
algorithms and software systems for scientific computing.

Recent decades of research in scientific computing and numerical analysis have re-
sulted in many algorithms for each of the main steps of applications based on models
described by nonlinear partial-differential equations (PDEs). The first four of following
six chapters concern techniques for developing hybrids of algorithms that were devel-
oped earlier in order improve performance or enhance scalability. The last two chapters
concern advanced software architectures where such algorithms can be implemented
with relative ease within computational modeling and simulation applications.

Although many algorithms have been developed for key computational steps in
PDE-based applications, such as sparse linear system solution, and mesh generation and
improvement, a growing consensus is that it is neither possible nor practical to predict a
priori which algorithm for a given numerical kernel performs best across applications.
We therefore anticipate an increased focus on advanced algorithms and software envi-
ronments that can be used to compose hybrids, and adaptively select methods to improve
application performance. The results in the following six chapters reflect this emerging
trend.

Extending PSBLAS
to Build Parallel Schwarz Preconditioners

Alfredo Buttari1, Pasqua D’Ambra2,
Daniela di Serafino3, and Salvatore Filippone1

1 Department of Mechanical Engineering, University of Rome “Tor Vergata"
Viale del Politecnico, I-00133, Rome, Italy

{alfredo.buttari,salvatore.filippone}@uniroma2.it
2 Institute for High-Performance Computing and Networking, CNR

Via Pietro Castellino 111, I-80131 Naples, Italy
pasqua.dambra@na.icar.cnr.it

3 Department of Mathematics, Second University of Naples
Via Vivaldi 43, I-81100 Caserta, Italy

daniela.diserafino@unina2.it

Abstract. We describe some extensions to Parallel Sparse BLAS (PSBLAS),
a library of routines providing basic Linear Algebra operations needed to build
iterative sparse linear system solvers on distributed-memory parallel computers.
We focus on the implementation of parallel Additive Schwarz preconditioners,
widely used in the solution of linear systems arising from a variety of applications.
We report a performance analysis of these PSBLAS-based preconditioners on test
cases arising from automotive engine simulations. We also make a comparison
with equivalent software from the well-known PETSc library.

1 Introduction

Effective numerical simulations in many application fields, such as Computational Fluid
Dynamics, require fast and reliable numerical software to perform Sparse Linear Algebra
computations.

The PSBLAS library was designed to provide the kernels needed to build iterative
methods for the solution of sparse linear systems on distributed-memory parallel com-
puters [10]. It includes parallel versions of most of the Sparse BLAS computational
kernels proposed in [7] and a set of auxiliary routines for the creation and management
of distributed sparse matrix structures. The library provides also application routines
implementing some sparse Krylov solvers with Jacobi and block Jacobi precondition-
ers. The library routines have been proved to be powerful and flexible in restructuring a
complex CFD code, improving the accuracy and efficiency in the solution of the sparse
linear systems and implementing the boundary data exchanges arising in the numerical
simulation process [11]. PSBLAS is based on a SPMD programming model and uses
the Basic Linear Algebra Communication Subprograms (BLACS) [6] to manage inter-
process data exchange. The library is internally written in C and Fortran 77, but provides
high-level routine interfaces in Fortran 95. Current development is devoted to extending
PSBLAS with preconditioners suitable for fluid flow problems in automotive engine

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 593–602, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

594 Alfredo Buttari et al.

modeling. A basic development guideline is to preserve as much as possible the origi-
nal PSBLAS software architecture while moving towards the new SBLAS standard [8].
In this work we focus on the extension for building Additive Schwarz precondition-
ers, widely used in the parallel iterative solution of linear systems arising from PDE
discretizations.

The paper is organized as follows. In Section 2 we give a brief description of Additive
Schwarz preconditioners. In Section 3 we discuss how the set of PSBLAS data structures
and routines has been extended to implement these preconditioners by reusing existing
PSBLAS computational routines. In Section 4 we present the results of experiments
devoted to analyze the performance of PSBLAS-based Schwarz preconditioners with
Krylov solvers on test matrices arising from automotive engine simulations; we also
show the results of comparisons with the widely used PETSc library [1]. Finally, in
Section 5, we draw some conclusions and future work.

2 An Overview of Additive Schwarz Preconditioners

Schwarz preconditioners are based on domain decomposition ideas originally introduced
in the context of variational solution of Partial Differential Equations (see [5,15]). We
focus on the algebraic formulation of Additive Schwarz preconditioners for the solution
of general sparse linear systems [2,14]; these are widely used with parallel Krylov
subspace solvers.

Given the linear system Ax = b, where A = (aij) ∈ 7n×n is a nonsingular sparse
matrix with a symmetric non-zero pattern, let G = (W,E) be the adjacency graph of
A, where W = {1, 2, . . . , n} and E = {(i, j) : aij �= 0} are the vertex set and the edge
set, respectively. Two vertices are neighbours if an edge connects them. A 0-overlap
partition of W is just an ordinary partition of the graph, i.e. a set of m disjoint nonempty
subsets W 0

i ⊂ W such that ∪m
i=1W

0
i = W . A δ-overlap partition of W with δ > 0 can

be defined recursively by considering the sets W δ
i ⊃ W δ−1

i obtained by including the
vertices that are neighbours of the vertices in W δ−1

i . Let nδ
i be the size of W δ

i and Rδ
i the

nδ
i ×n matrix formed by the row vectors eT

j of the n×n identity matrix, with j ∈ W δ
i .

For each v ∈ 7n, Rδ
i v is the vector containing the components of v corresponding to

the vertices in W δ
i , hence Rδ

i can be viewed as a restriction operator from 7n to 7nδ
i .

Likewise, the transpose matrix (Rδ
i)

T can be viewed as a prolongation operator from
7nδ

i to 7n. The Additive Schwarz (AS) preconditioner, MAS , is then defined by

M−1
AS =

m∑
i=1

(Rδ
i)

T (Aδ
i)

−1Rδ
i ,

where the nδ
i × nδ

i matrix Aδ
i = Rδ

i A(Rδ
i)

T is obtained by considering the rows and
columns of A corresponding to the vertices in W δ

i .
When δ = 0 MAS is the well-known block Jacobi preconditioner. The convergence

theory for the AS preconditioner is well developed in the case of symmetric positive
definite matrices (see [5,15] and references therein). Roughly speaking, when the AS
preconditioner is used in conjunction with a Krylov subspace method, the convergence
rapidly improves as the overlap δ increases, while it deteriorates as the number m of

Extending PSBLAS to Build Parallel Schwarz Preconditioners 595

subsets W δ
i grows. Theoretical results are available also in the case of nonsymmetric

and indefinite problems (see [4,15]).
Recently some variants of the AS preconditioner have been developed that outper-

form the classical AS for a large class of matrices, in terms of both convergence rate
and of computation and communication time on parallel distributed-memory comput-
ers [3,9,12]. In particular, the Restricted Additive Schwarz (RAS) preconditioner,MRAS ,
and the Additive Schwarz preconditioner with Harmonic extension (ASH), MASH , are
defined by

M−1
RAS =

m∑
i=1

(R̃0
i)

T (Aδ
i)

−1Rδ
i , M−1

ASH =
m∑

i=1

(Rδ
i)

T (Aδ
i)

−1R̃0
i ,

where R̃0
i is the nδ

i ×n matrix obtained by zeroing the rows of Rδ
i corresponding to the

vertices in W δ
i \W 0

i . The application of the AS preconditioner requires the solution of
m independent linear systems of the form

Aδ
i wi = Rδ

i v (1)

and then the computation of the sum

m∑
i=1

(Rδ
i)

Twi. (2)

In the RAS preconditioner Rδ
i in (2) is replaced by R̃0

i ; hence, in a parallel implementa-
tion where each processor holds the rows of A with indices in W 0

i and the corresponding
components of right-hand side and solution vectors, this sum does not require any com-
munication. Analogously, in the ASH preconditioner Rδ

i in equation (1) is replaced by
R̃0

i ; therefore, the computation of the right-hand side does not involve any data exchange
among processors.

In the applications, the exact solution of system (1) is often prohibitively expensive.
Thus, it is customary to substitute the matrix (Aδ

i)
−1 with an approximation (Kδ

i)−1,
computed by incomplete factorizations, such as ILU, or by iterative methods, such as
SSOR or Multigrid (see [5]).

3 Building and Applying AS Preconditioners in PSBLAS

We now review the basic operations involved in the Additive Schwarz preconditioners
from the point of view of parallel implementation through PSBLAS routines. We begin
by drawing a distinction between

Preconditioner Setup: the set of basic operations needed to identify W δ
i , to build Aδ

i

from A, and to compute Kδ
i from Aδ

i ;
Preconditioner Application: the set of basic operations needed to apply the restriction

operator Rδ
i to a given vector v, to compute (an approximation of) wi, by applying

(Kδ
i)−1 to the restricted vector, and, finally, to obtain sum (2).

596 Alfredo Buttari et al.

Before showing how PSBLAS has been extended to implement the Additive Schwarz
preconditioners described in Section 2, we briefly describe the main data structures
involved in the PSBLAS library. A general row-block distribution of sparse matrices is
supported by PSBLAS, with conformal distribution of dense vectors.

Sparse Matrix: Fortran 95 derived data type, called D_SPMAT, it includes all the in-
formation about the local part of a distributed sparse matrix and its storage mode,
following the Fortran 95 implementation of a sparse matrix in the sparse BLAS
standard of [7].

Communication Descriptor: Fortran 95 derived data type DESC_TYPE; it contains
a representation of the sets of indices involved in the parallel data distribution,
including the 1-overlap indices, i.e. the set W 1

i \W 0
i , that is preprocessed for the

data exchange needed in sparse matrix-vector products.

Existing PSBLAS computational routines implement the operations needed for the ap-
plication phase of AS preconditioners, provided that a representation of the δ-partition is
built and packaged into a new suitable data structure during the phase of preconditioner
setup. The next two sections are devoted to these issues.

3.1 PSBLAS Implementation of Preconditioner Application

To compute the right-hand side in (1) the restriction operator Rδ
i must be applied to a

vector v distributed among parallel processes conformally to the sparse matrixA. On each
process the action of Rδ

i corresponds to gathering the entries of v with indices belonging
to the set W δ

i \W 0
i . This is the semantics of the PSBLAS F90_PSHALO routine, which

updates the halo components of a vector, i.e. the components corresponding to the 1-
overlap indices. The same code can apply an arbitrary δ-overlap operator, if a suitable
auxiliary descriptor data structure is provided.

Likewise, the computation of sum (2) can be implemented through a suitable call to
the PSBLAS computational routine F90_PSOVRL; this routine can compute either the
sum, the average or the square root of the average of the vector entries that are replicated
in different processes according to an appropriate descriptor.

Finally, the computation of (Kδ
i)−1vδ

i , where vδ
i = Rδ

i v or vδ
i = R̃0

i v, can be
accomplished by two calls to the sparse block triangular solve routine F90_PSSPSM,
given a local (incomplete) factorization of Aδ

i .
Therefore, the functionalities needed to implement the application phase of the AS,

RAS and ASH preconditioners, in the routine F90_ASMAPPLY, are provided by ex-
isting computational PSBLAS routines, if an auxiliary descriptor DESC_DATA is built.
Thus, the main effort in implementing the preconditioners lies in the definition of a pre-
conditioner data structure and of routines for the preconditioner setup phase, as discussed
in Section 3.2.

3.2 PSBLAS Implementation of Preconditioner Setup

To implement the application of AS preconditioners we defined a data structure
PREC_DATA that includes in a single entity all the items involved in the application
of the preconditioner:

Extending PSBLAS to Build Parallel Schwarz Preconditioners 597

TYPE PREC_DATA
INTEGER :: PREC
INTEGER :: N_OVR
TYPE(D_SPMAT) :: L, U
REAL(KIND(1.D0)), POINTER :: D(:)
TYPE(DESC_TYPE) :: DESC_DATA
END TYPE PREC_DATA

Fig. 1. Preconditioner data type

– a preconditioner identifier, PREC, and the number δ of overlap layers, N_OVR;
– two sparse matrices L and U, holding the lower and upper triangular factors of Kδ

i

(the diagonal of the upper factor is stored in a separate array, D);
– the auxiliary descriptor DESC_DATA, built from the sparse matrix A, according to
N_OVR.

This data structure has the Fortran 95 definition shown in Figure 1. Note that the sparse
matrix descriptor is kept separate from the preconditioner data; with this choice the
sparse matrix operations needed to implement a Krylov solver are independent of the
choice of the preconditioner.

The algorithm to setup an instance P of the PREC_DATA structure for AS, RAS or
ASH, with overlap N_OVR, is outlined in Figure 2. By definition the submatrices A0

i

identify the vertices in W 1
i ; the relevant indices are stored into the initial communication

descriptor. Given the set W 1
i , we may request the column indices of the non-zero entries

in the rows corresponding to W 1
i \W 0

i ; these in turn identify the set W 2
i , and so on.

All the communication is performed in the steps 4.2 and 6, while the other steps are
performed locally by each process. A new auxiliary routine, F90_DCSRSETUP, has
been developed to execute the steps 1–6. To compute the triangular factors of Kδ

i (step
7), the existing PSBLAS routine F90_DCSRLU, performing an ILU(0) factorization
of Aδ

i , is currently used. The two previous routines have been wrapped into a single
PSBLAS application routine, named F90_ASMBUILD.

It would be possible to build the matrices Aδ
i while building the auxiliary descriptor

DESC_DATA. Instead, we separated the two phases, thus providing the capability to
reuse the DESC_DATA component of an already computed preconditioner; this allows
efficient handling of common application situations where we have to solve multiple
linear systems with the same structure.

4 Numerical Experiments

The PSBLAS-based Additive Schwarz preconditioners, coupled with a BiCGSTAB
Krylov solver built on the top of PSBLAS, were tested on a set of matrices from auto-
motive engine simulations.

These matrices arise from the pressure correction equation in the implicit phase of
a semi-implicit algorithm (ICED-ALE [13]) for the solution of unsteady compressible
Navier-Stokes equations, implemented in the KIVA application software, as modified

598 Alfredo Buttari et al.

1. Initialize the descriptor P%PREC_DATAby copying the matrix descriptor DESC_A.
2. Initialize the overlap level: η = 0.
3. Initialize the local vertex set, W η

i = W 0
i , based on the current descriptor.

4. While (η < N_OVR)
4.1 Increase the overlap: η = η + 1.
4.2 Build W η

i from W η−1
i , by adding the halo indices of Aη−1

i , and exchange
with other processors the column indices of the non-zero entries in the rows
corresponding to W η

i \W η−1
i .

4.3 Compute the halo indices of Aη
i and store them into P%DESC_DATA.

Endwhile
5. If (N_OVR > 0) Optimize the descriptor P%DESC_DATA and store it in its final

format.
6. Build the enlarged matrix Aδ

i , by exchanging rows with other processors.
7. Compute the triangular factors of the approximation Kδ

i of Aδ
i .

Fig. 2. Preconditioner setup algorithm

kivap1 (n = 86304, nnz = 1575568) kivap2 (n = 56904, nnz = 1028800)

Fig. 3. Sparsity patterns of the test matrices

in [11]. The test case is a simulation of a commercial direct injection diesel engine
featuring a bowl shaped piston, with a mesh containing approximately 100000 control
volumes; during the simulation mesh layers are activated/deactivated following the piston
movement. We show measurements for two matrices, kivap1 and kivap2, corresponding
to two different simulation stages. They have sizes 86304 and 56904, respectively, with
symmetric sparsity patterns and up to 19 non-zeroes per row (see Figure 3).

Numerical experiments were carried out on a Linux cluster, with 16 PCs connected
via a Fast Ethernet switch, at the Department of Mathematics of the Second University
of Naples. Each PC has a 600 MHz Pentium III processor, a memory of 256 MB and
an L2 cache of 256 KB. PSBLAS was installed on the top of the BLAS reference
implementation, BLACS 1.1 and mpich 1.2.5, using the gcc C compiler, version 2.96,
and the Intel Fortran compiler, version 7.1.

All the tests were performed using a row-block distribution of the matrices. Right-
hand side and solution vectors were distibuted conformally. The numberm of vertex sets

Extending PSBLAS to Build Parallel Schwarz Preconditioners 599

Table 1. Iteration counts of RAS-preconditioned BiCGSTAB

kivap1 kivap2
np PSBLAS PETSc PSBLAS PETSc

δ=0 δ=1 δ=2 δ=4 δ=0 δ=1 δ=2 δ=4 δ=0 δ=1 δ=2 δ=4 δ=0 δ=1 δ=2 δ=4

1 12 12 12 12 12 12 12 12 33 33 33 33 33 33 33 33
2 16 13 11 12 16 12 12 12 50 34 33 34 46 34 32 32
4 16 13 12 13 16 12 11 12 47 36 34 34 50 35 32 31
6 18 13 13 12 18 12 12 12 48 37 38 34 52 35 34 29
8 20 14 14 12 20 12 13 12 50 37 37 35 53 36 32 32

10 19 13 12 13 19 13 12 12 54 38 35 34 51 33 32 33
12 21 14 12 12 21 13 13 12 54 34 38 33 53 35 32 33
14 20 14 13 14 20 12 13 12 51 36 38 33 52 35 32 32
16 22 15 14 13 22 13 12 12 58 37 38 36 59 38 32 30

W δ
i used by the preconditioner was set equal to the number of processors; the right-hand

side and the initial approximation of the solution of each linear system were set equal
to the unit vector and the null vector, respectively. The preconditioners were applied
as right preconditioners. The BiCGSTAB iterations were stopped when the 2-norm of
the residual was reduced by a factor of 10−6 with respect to the initial residual, with a
maximum of 500 iterations.

We also compared the PSBLAS implementation of the RAS-preconditioned
BiCGSTAB solver with the corresponding implementation provided by the well-known
PETSc library [1], on the same test problems and with the same stopping criterion. The
experiments were performed using PETSc 2.1.6, compiled with gcc 2.96 and installed
on the top of mpich 1.2.5 and of the BLAS and LAPACK implementations provided
with the Linux Red Hat 7.1 distribution.

We report performance results with RAS; this was in general the most effective Ad-
ditive Schwarz variant, in accordance with the literature cited in Section 2. In Table 1 we
show the iteration counts of RAS-preconditioned BiCGSTAB for PSBLAS and PETSc
on both test problems, varying the number np of processors and the overlap δ. We see
that the number of iterations significantly decreases in passing from a 0-overlap to a
1-overlap partition, especially for kivap2, while it does not have relevant changes with
a further growth of the overlap. We note also that, for δ > 0, the number of iterations
is almost stable as the number of processes increases. This behaviour appears to be in
agreement with the sparsity pattern of the test matrices. The number of iterations of
PSBLAS is generally comparable with the one of PETSc. For kivap2, in a few cases
a difference of 5 or 6 iterations is observed, which is due to some differences in the
row-block distribution of the matrix and in the row ordering of the enlarged matrices Aδ

i

used by the two solvers.
In Figure 4 we show the execution times of the RAS-preconditioned BiCGSTAB

on the selected test cases, varying the number of processors. These times include also
the preconditioner setup times. As expected, the time usually decreases as the number
of processors increases; a slight time increase can be observed in a few cases, which
can be mainly attributed to the row-block distribution of the matrices. A more regular

600 Alfredo Buttari et al.

2 4 6 8 10 12 14 16
0

1

2

3

4

5

np

to
ta

l t
im

e
 (

se
c.

)
kivap1

N_OVR=0
N_OVR=1
N_OVR=2
N_OVR=4

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

np

to
ta

l t
im

e
 (

se
c.

)

kivap2

N_OVR=0
N_OVR=1
N_OVR=2
N_OVR=4

Fig. 4. Execution times of PSBLAS RAS-preconditioned BiCGSTAB

behaviour is expected by applying suitable graph partitioning algorithms to the initial
data distribution. For kivap1 the times are generally lower for overlap 0. Indeed, the
small decrease in the number of BiCGSTAB iterations, as the overlap grows, is not able
to balance the cost of the preconditioner setup phase. For kivap2, the reduction of the
number of iterations obtained with overlap 1 is able to compensate the setup cost, thus
leading to the smallest execution times.

Finally, in Figure 5 we compare the execution times of PSBLAS and PETSc. The
performance of the two solvers is generally comparable. PSBLAS is always faster on
a small number of processors, whereas for higher levels of overlap (2 and 4) PETSc
requires less execution time as the number of processors increases. A more detailed
analysis has shown that this behaviour is due to the smaller preconditioner setup time
of PETSc. This issue is currently under investigation, taking into account the different
choices implemented by PSBLAS and PETSc in the setup of the preconditioners.

5 Conclusions and Future Work

We presented some results of an ongoing activity devoted to updating and extending
PSBLAS, a parallel library providing basic Linear Algebra operations needed to build
iterative sparse linear system solvers on distributed-memory parallel computers. Moti-
vations for our work come from the flexibility and effectiveness shown by PSBLAS in
restructuring and parallelizing a legacy CFD code [11], still widely used in the automo-
tive engine application world, and also from the appearance of a new proposal for the
serial Sparse BLAS standard [8].

In this paper we focused on the extension of PSBLAS to implement different ver-
sions of Additive Schwarz preconditioners. On test problems from automotive engine
simulations the preconditioners showed performances comparable with those of other
well-established software. We are currently working on design and implementation is-
sues concerning the addition of a coarse-grid solution step to the basic Additive Schwarz
preconditioners, in order to build a two-level Schwarz preconditioning module.

Extending PSBLAS to Build Parallel Schwarz Preconditioners 601

2 4 6 8 10 12 14 16
0

2

4

6

8

10

np

to
ta

l
ti
m

e
 (

s
e
c
.)

PSBLAS vs PETSc − N_OVR=0

kivap1 − PSBLAS
kivap1 − PETSc
kivap2 − PSBLAS
kivap2 − PETSc

2 4 6 8 10 12 14 16
0

2

4

6

8

10

np

to
ta

l
ti
m

e
 (

s
e
c
.)

PSBLAS vs PETSc − N_OVR=1

kivap1 − PSBLAS
kivap1 − PETSc
kivap2 − PSBLAS
kivap2 − PETSc

2 4 6 8 10 12 14 16
0

2

4

6

8

10

np

to
ta

l
ti
m

e
 (

s
e
c
.)

PSBLAS vs PETSc − N_OVR=2

kivap1 − PSBLAS
kivap1 − PETSc
kivap2 − PSBLAS
kivap2 − PETSc

2 4 6 8 10 12 14 16
0

2

4

6

8

10

np

to
ta

l
ti
m

e
 (

s
e
c
.)

PSBLAS vs PETSc − N_OVR=4

kivap1 − PSBLAS
kivap1 − PETSc
kivap2 − PSBLAS
kivap2 − PETSc

Fig. 5. Comparison of execution times of the PSBLAS and PETSc

References

1. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. Curfman McInnes,
B. F. Smith, H. Zhang. PETSc Users Manual. Tech. Rep. ANL-95/11, Revision 2.1.6, Argonne
National Laboratory, August 2003.

2. X. C. Cai, Y. Saad. Overlapping Domain Decomposition Algorithms for General Sparse
Matrices. Num. Lin. Alg. with Applics., 3(3):221–237, 1996.

3. X.C. Cai, M. Sarkis. A Restricted Additive Schwarz Preconditioner for General Sparse Linear
Systems. SIAM J. Sci. Comput., 21(2):792–797, 1999.

4. X.C. Cai, O. B. Widlund. Domain Decomposition Algorithms for Indefinite Elliptic Problems.
SIAM J. Sci. Stat. Comput., 13(1):243–258, 1992.

5. T. Chan, T. Mathew. Domain Decomposition Algorithms. In A. Iserles, editor, Acta Numerica
1994, pages 61–143, 1994. Cambridge University Press.

6. J. J. Dongarra, R. C. Whaley. A User’s Guide to the BLACS v. 1.1. Lapack Working Note 94,
Tech. Rep. UT-CS-95-281, University of Tennessee, March 1995 (updated May 1997).

602 Alfredo Buttari et al.

7. I. Duff, M. Marrone, G. Radicati, C. Vittoli. Level 3 Basic Linear Algebra Subprograms for
Sparse Matrices: a User Level Interface. ACM Trans. Math. Softw., 23(3):379–401, 1997.

8. I. Duff, M. Heroux, R. Pozo. An Overview of the Sparse Basic Linear Algebra Subprograms:
the New Standard from the BLAS Technical Forum. ACM Trans. Math. Softw., 28(2):239–267,
2002.

9. E. Efstathiou, J. G. Gander. Why Restricted Additive Schwarz Converges Faster than Additive
Schwarz. BIT Numerical Mathematics, 43:945–959, 2003.

10. S. Filippone, M. Colajanni. PSBLAS: A Library for Parallel Linear Algebra Computation on
Sparse Matrices. ACM Trans. Math. Softw., 26(4):527–550, 2000.

11. S. Filippone, P. D’Ambra, M. Colajanni. Using a Parallel Library of Sparse Linear Algebra
in a Fluid Dynamics Applications Code on Linux Clusters. In G. Joubert, A. Murli, F. Peters,
M. Vanneschi, editors, Parallel Computing - Advances & Current Issues, pages 441–448,
2002. Imperial College Press.

12. A. Frommer, D. B. Szyld. An Algebraic Convergence Theory for Restricted Additive Schwarz
Methods Using Weighted Max Norms. SIAM J. Num. Anal., 39(2):463–479, 2001.

13. C. W. Hirt, A. A. Amsden, J. L. Cook. An Arbitrary Lagrangian-Eulerian Computing Method
for All Flow Speeds. J. Comp. Phys., 14:227–253, 1974.

14. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.
15. B. Smith, P. Bjorstad, W. Gropp. Domain Decomposition: Parallel Multilevel Methods for

Elliptic Partial Differential Equations. Cambridge University Press, 1996.

A Direct Orthogonal Sparse Static Methodology
for a Finite Continuation Hybrid LP Solver

Pablo Guerrero-Garcı́a and Ángel Santos-Palomo

Department of Applied Mathematics, Complejo Tecnológico
University of Málaga, Campus de Teatinos s/n

29071 Málaga, Spain
{pablito,santos}@ctima.uma.es

Abstract. A finite continuation method for solving linear programs (LPs) has
been recently put forward by K. Madsen and H. B. Nielsen which, to improve its
performance, can be thought of as a Phase-I for a non-simplex active-set method
(also known as basis-deficiency-allowing simplex variation); this avoids having
to start the simplex method from a highly degenerate square basis. An efficient
sparse implementation of this combined hybrid approach to solve LPs requires
the use of the same sparse data structure in both phases, and a way to proceed in
Phase-II when a non-square working matrix is obtained after Phase-I.
In this paper a direct sparse orthogonalization methodology based on Givens ro-
tations and a static sparsity data structure is proposed for both phases, with a
LINPACK-like downdating without resorting to hyperbolic rotations. Its sparse
implementation (recently put forward by us) is of reduced-gradient type, regular-
ization is not used in Phase-II, and occasional refactorizations can take advantage
of row orderings and parallelizability issues to decrease the computational effort.

Keywords: linear programming, sparse direct methods, orthogonalization,
Givens rotations, static sparsity structure, sparse update & downdate, non-simplex
active-set methods, basis-deficiency-allowing simplex variations, Phase-I, finite
continuation hybrid method, reduced-gradient, non-square working matrix.

1 Introduction

In this paper a two-phase hybrid method for solving linear programs (LPs) like that
described by Nielsen in [16, §5.5] is considered, the main difference being that a non-
simplex active-set method [18] (also known as a basis-deficiency-allowing simplex vari-
ation, cf. [17]) is used in Phase-II instead of the simplex method to avoid having to start
it from a highly degenerate square basis. This proposed linear programming (LP) frame-
work is briefly described in §2.

The main goal of the paper is to develop an useful sparse implementation methodol-
ogy which could be taken as the stepping stone to a robust sparse implementation of this
LP method which could take advantage of parallel architectures when refactorizations
of the working matrix have to be done, and the latter sections are devoted to describe
the sparse orthogonal factorizations used to accomplish such goal. Hence a static data
structure come into play, and after describing in §3 the original technique used in Phase-
II, the modification of this technique to be used also in Phase-I is given in §4. The key

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 603–610, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

604 Pablo Guerrero-Garcı́a and Ángel Santos-Palomo

point is that the same sparse static data structure is then used in all phases. Additional
features are included in §5.

The notation used here is as follows. Let us consider the usual unsymmetric primal-
dual pair of LPs using a non-standard notation (we have deliberately exchanged the usual
roles of b and c, x and y, n and m, and (P) and (D), in a clear resemblance with the
work of Madsen, Nielsen and Pinar [8, p. 614]):

(P) min (x) .= cT x , x ∈ Rn

s.t AT x ≥ b
(D) max L(y) .= bT y , y ∈ Rm

s.t Ay = c , y ≥ O

where A ∈ Rn×m with m ≥ n and rank(A) = n. We denote with F and G the feasible
regions of (P) and (D), respectively, and with Ak the current working set matrix formed
by a subset of the columns of the fixed matrix A. For example, the sparse structure of
the A matrix of the AFIRO problem from NETLIB is shown in the left part of figure 1,
with n = 27 and m = 51; moreover, the working set matrix A25 corresponding to the
working set B(25) in iteration 25 could be

A25
.= A(: ,B(25)) = A(: , [9 16 18 22 29 40 43 44 50 51]) (1)

where MATLAB notation has been used. We shall indicate with mk the number of
elements of the ordered basic setB(k), withN (k) .= [1: m]\B(k) and with Ak ∈ Rn×mk

and Nk ∈ Rn×(m−mk) the submatrices of A formed with the columns included in B(k)

andN (k), respectively, and mk ≤ n and rank(Ak) = mk are only required in Phase-II;
as usual, the ith column of A is denoted by ai, and consistently the matrix whose ith
row is aT

i is denoted by AT . We shall indicate with Zk ∈ Rn×(n−mk) a matrix whose
columns form a basis (not necessarily orthonormal) of the null space of AT

k . Superindex
(k) will be withheld when it is clear from context.

2 Proposed LP Framework

A two-phase hybrid method like that described by Nielsen in [16, §5.5] is considered,
where the Phase-I is based on computing —by Newton method— a minimizer of a piece-
wise quadratic, see [15]. The dual feasibility is maintained during his Phase-I, as pointed

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

nz = 102

The A matrix of AFIRO problem from NETLIB collection

0 5 10 15 20 25

0

5

10

15

20

25

nz = 19

Cholesky factor of PA(:,[9,16,18,22,29,40,43,44,50,51]) on top of that of PAATPT

Fig. 1. Sparse structures

A Direct Orthogonal Sparse Static Methodology 605

out by Nielsen [16, p. 90]; then a crossover to obtain a vertex of G is accomplished, and
finally a non-simplex active-set method is employed to obtain primal feasibility (and
hence optimality, as dual feasibility is maintained through both the crossover and the
Phase-II).

Nielsen [16, pp. 97–98] has shown that all we have to do during this Phase-I is to
device an efficient way to deal with a sequence of sparse linear system of equations
whose coefficient matrix is σIn + AkA

T
k (constant σ), which is positive definite. Once

an y ∈ G is obtained, a vertex of G has to be obtained for the Phase-II to start with.
We resort to the well-known constructive result about the existence of a basic feasible
solution for a system of linear equality constraints in nonnegative variables (cf. [12,
§3.5.4], [13, §11.4.1.5], [9, §2.1.1]), which is closely related with the first stage of the
celebrated crossover procedure of Megiddo [11]. Instead of a Gaussian-like methodol-
ogy, the constraints determined by the Phase-I are firstly rotated one after another in
the sparse static structure described in §3, and a dual ascent direction is then computed
by projecting the appropriate subvector of b onto the null space of the current working
set. A deletion or an exchange is performed accordingly in the working set, as well as a
systematic updating of y ∈ G after the usual primal min-ratio.

The crucial point to be shown here is that the final (full-column rank) working matrix
after the completion of this crossover is not restricted to be square. As an illustration,
let us consider the following crossover examples:

Example 1 [12, p. 122]: y(0) = [1; 2; 3; 4; 0; 0; 0],

[
bT

A c

]
=

⎡⎢⎢⎢⎢⎣
10 −4 −6 −2 −4 −8 −10
1 1 3 4 0 0 0 28
0 −1 −1 −2 1 0 0 −13
0 1 1 2 0 1 0 13
1 0 2 2 0 0 −1 15

⎤⎥⎥⎥⎥⎦ ,

k B(k) L(k)

0 {1, 2, 3, 4} −24.0
1 {1, 2, 4} +10.9
2 {1, 2} +98.0

Note that n = 4 but Phase-II has to be started with m2 = 2, hence if we would have
to proceed with the simplex method as in [16, §5.5], then a highly degenerate square
basis would arise. This is the reason why we prefer a basis-deficiency-allowing simplex
variation like that described at the end of this section.

Example 2 [13, pp. 475–476]: y(0) = [5; 12; 13; 1; 2; 0; 0]/2,

[
bT

A c

]
=

⎡⎢⎢⎣
10 −4 −6 −2 −4 −8 −10
1 0 0 1 0 1 −1 3
0 1 0 0 −1 2 −1 5
0 0 1 −1 1 1 −2 7

⎤⎥⎥⎦ ,

k B(k) L(k)

0 {1, 2, 3, 4, 5} −43.0
1 {1, 2, 3, 5} −33.3
2 {1, 2, 3} −32.0

In this case n = 3 and m2 = 3, so we proceed with the usual simplex method, although
we want to use the same sparse data structure as that used in Phase-I.

606 Pablo Guerrero-Garcı́a and Ángel Santos-Palomo

Example 3 [12, p. 123, Ex. 3.24a]: y(0) = [1; 2; 3; 4; 5; 0; 0],

[
bT

A c

]
=

⎡⎢⎢⎣
−1 −1 −1 −2 −2 −2 −4
1 1 0 2 1 0 1 16
0 1 1 1 2 0 5 19
1 0 1 1 1 2 2 13

⎤⎥⎥⎦ ,
k B(k) L(k)

0 {1, 2, 3, 4, 5} −24.0

In this case n = 3 and m0 = 5, but we do not have to proceed to Phase-II because
optimality has been detected during the crossover.

Example 4 [12, p. 123, Ex. 3.24b]: y(0) = [1; 2; 3; 4; 5; 0; 0],

[
bT

A c

]
=

⎡⎢⎢⎣
−1 −1 −1 −2 −2 0 −4
1 1 0 2 1 0 1 16
0 1 1 1 2 0 5 19
1 0 1 1 1 2 2 13

⎤⎥⎥⎦ ,

k B(k) L(k)

0 {1, 2, 3, 4, 5} −24.0
1 {2, 3, 4, 5, 6} −23.2
2 {2, 4, 5, 6} −22.4
3 {2, 5, 6} −19.0

The goal of this example is twofold, because it illustrates the facts that an exchange
can take place during the crossover, and that the final working set obtained after the
crossover is not necessarily a subset of that obtained after the Phase-I.

Finally, the non-simplex active-set method (cf. Santos-Palomo and Guerrero-Garcı́a
[18]) is a primal-feasibility search loop in which a violated constraint is chosen to enter
the working set, and a constraint is selected for leaving the working set only when the
normal of this entering constraint is in the range space of the current working matrix.
Note that an addition or an exchange is thus done in each iteration, whereas an exchange
would always be done in the simplex method. A preliminary check of the independence
of the constraint to be rotated next is performed to decide whether an addition or an
exchange takes place. We omit here the scheme of this Phase-II, and refer the interested
reader to [18] for additional details.

3 Original Technique Used in Phase-II

The direct orthogonal sparse methodology that we are about to describe dispenses with
an explicit orthogonal (dense) factor because of sparsity considerations. It works on top
of a sparse triangular matrix, namely the static structure of the Cholesky factor R of
AAT , and a permutation P ∈ Rn×n of the rows of A takes place a priori to improve
the sparsity of R. Denoting with Rk a Cholesky factor of AkA

T
k , a well-known result

[4] from sparse linear algebra is that Rk ⊂ R in a structural sense, namely that we have
enough memory already allocated in the static structure which has been a priori set up
whatever Ak (and consequently Rk) is.

As an illustration, the sparse structure of a (transposed) Cholesky factor RT
25 of

PA25A
T
25P

T in (1) is shown in the right part of figure 1 (big dots) on top of that of
PAAT PT (small dots). Note that when all the small dots are set to zero, a column-
echelon permuted lower trapezoidal matrix would arise if null columns were deleted;
the transpose of this matrix is what we have to maintain.

A Direct Orthogonal Sparse Static Methodology 607

Bearing the static structure previously described in mind, let us show how the im-
plementation of the Phase-II is accomplished with reduced-gradient type techniques
described by Santos-Palomo and Guerrero-Garcı́a [19], where the sparse QR factoriza-
tion of AT

k is used to maintain a sparse Cholesky factor Rk of AkA
T
k , with Ak now

being a full column rank matrix. In particular, there exists an implicitly defined (by the
staircase shape of the structure) permutation ΠT

k of the columns of AT
k such that

AT
k ΠT

k = QkRk
.= Qk

[
Ri Rd

]
, Qk, Ri ∈ Rmk×mk and Rd ∈ Rmk×(n−mk),

with Rk upper trapezoidal, Ri upper triangular and nonsingular, and Qk orthogonal.
Nevertheless, the permutation ΠT

k is not explicitly performed and Qk is avoided due to
sparsity considerations, thus the row-echelon permuted upper trapezoidal matrix RkΠk

is what we have to maintain. As an example, ΠT
k = [e1, e3, e6, e2, e4, e5, e7] in

qr

⎛⎝⎡⎣X X X X X X XX X X X X X X
X X X X X X X

⎤⎦⎞⎠
︸ ︷︷ ︸

AT
k

=

⎡⎣X X XX X X
X X X

⎤⎦
︸ ︷︷ ︸

Qk

·

⎡⎣X X X X X X XO O X X X X X
O O O O O X X

⎤⎦
︸ ︷︷ ︸

Rk·Πk

Note that a reordering of the columns of Ak has no impact in Rk, and that

ΠkAkA
T
k ΠT

k = RT
k QT

k Qk︸ ︷︷ ︸
I

Rk = RT
k Rk.

Adding and deleting rows to AT
k is allowed, which is respectively known as row

updating and downdating the factorization. Therefore, what we have done is to adapt
Saunders’ techniques for square matrices [20] to matrices with more rows than columns,
using the static data structure of George and Heath [4] but allowing a LINPACK-like row
downdating on it. A MATLAB toolbox based on this technique has been developed
and tested by Guerrero-Garcı́a and Santos-Palomo [6] in a dual non-simplex active-set
framework, and the interested reader can find the details of these row updating and
downdatingO(n2) processes in [19].

This sparse orthogonal factorization allows us to obtain a basis of each fundamental
subspace involved, because columns of RT

k form a basis of R(ΠkAk) and those of Zk

a basis of N (AT
k), with

Zk = ΠT
k

[
ZT

I

]
, where Z

.= −RT
dR−T

i .

Thus, the independence check can be done as Björck and Duff [1] did, as follows:

608 Pablo Guerrero-Garcı́a and Ángel Santos-Palomo

v ∈ R(Ak) ⇔ ∀s ∈ N (AT
k) , vT s = 0 ⇔ ZT

k v = O

v �∈ R(Ak) ⇔ ZT
k v �= O (‖ZT

k v‖ > ε)

Πkv =
[
v1

v2

]
, v1 ∈ Rmk ⇒ ZT

k v = Zv1 + v2 = −RT
dR−T

i v1 + v2

Furthermore, a basic solution of AT
k x = bB can be obtained by using some special

“seminormal equations”:

AkA
T
k x = ΠT

k RT
k RkΠkx = AkbB ⇒ RT

k (Rk(Πkx)) = Πk(AkbB),

and analogously for AkyB = c with yB
.= AT

k z but with AkA
T
k z = c

AkA
T
k z = ΠT

k RT
k RkΠkz = c ⇒ RT

k (Rk(Πkz)) = Πkc.

Note thatAkA
T
k ≥ 0 in this special seminormal equations, whereas ordinary seminormal

equations use AT
k Ak > 0; moreover, fixed precision iterative refinement will improve

the results. We do not have to write an “ad-hoc” routine for trapezoidal solves because
zero diagonals of R are temporarily set to 1 before an usual triangular solve.

The same data structure is used for the crossover, in spite of the fact that Ak has not
full-column rank in this case. Compatibility of AT

k x = bB is checked at each crossover
iteration to decide whether a deletion or an exchange is performed.

4 The Modification Used in Phase-I

The main goal was to use the same sparse static data structure in all phases, so let us
describe how we have to proceed during Phase-I. As previously noted, we have to work
in Phase-I with the Cholesky factor Rk of σIn + AkA

T
k > 0 (constant σ > 0), instead

of with the Cholesky factor Rk of AkA
T
k ≥ 0.

Our proposal relies on the fact that the Cholesky factor of σIn + AkA
T
k coincides

(barring signs) with the triangular factor of the QR factorization of [Ak,
√
σIn]T , for

RT
k Rk =

[
RT

k , Ok

]
QT

k Qk

[
Rk

Ok

]
=
[
Ak,

√
σIn

] [AT
k√

σIn

]
= σIn + AkA

T
k .

The presence of the Marquardt-like term σIn in the expression σIn + AkA
T
k to be

factorized allows us to dispense with rank requisites on Ak, and this diagonal elements
do not destroy the predicted static structure forAkA

T
k described below. Taking advantage

of this sparse Marquardt-like regularization has also been done by Guerrero-Garcı́a and
Santos-Palomo [7] in a quite different context.

The crucial point is that in Phase-I we also work on top of the static structure of the
Cholesky factor R of AAT (because this structure coincides with that of the Cholesky
factor of σIn +AAT , cf. [10, p. 105]). An initialization from R =

√
σIn in the diagonal

of the static structure is done at the start of Phase-I, thus each row of AT
k will be linearly

dependent of the rows already present in the structure, and hence a sequence of Givens
rotations has to be performed to annihilate all nonzero elements (and eventual fill-ins)

A Direct Orthogonal Sparse Static Methodology 609

of each row of AT
k . Since all rows of

√
σIn remain in the structure during Phase-I,

downdating is done as described by Santos-Palomo and Guerrero-Garcı́a [19].
Being able to use one initial ANALYSE phase is important when dealing with sparse

matrix aspects. Previous work does not take advantage of this fact [16, p. 99], and then
a dense implementation [14] based on the work of Fletcher and Powell [3] have been
shown to be useful to obtain encouraging results in several continuation algorithms. A
sparse updatable implementation of this Phase-I could also be done with the multifrontal
orthogonal dynamic approach with hyperbolic downdating recently proposed by Edlund
[2], although this would entail the use of regularization techniques in the remaining two
phases of the hybrid algorithm.

5 Additional Features

A FORTRAN implementation of the updating process (without the downdating) can
be found in the SPARSPAK package, which is currently being translated into C++ as
described by George and Liu in [5]. The availability of this SPARSPAK++ package would
imply a rapid prototyping of a low-level implementation of the sparse proposal given
here, and then meaningful comparative computational results for solving LPs could
be obtained. As pointed out by a referee, this new LP approach is condemned to face
fierce competition with professional implementations of both simplex and interior-point
methods, but being able to update/downdate a factorization on a static data structure is
crucial to become competitive in a distributed memory HPC environment.

A decrease of the computational effort when a refactorization (i.e., recomputing
factorization from scratch) has to be done (because of the accumulation of rounding
errors in its maintenance) can be accomplished by taking into account a suitable row
ordering of AT ; note that doing so every iteration would prohibitively implyO(n3) per
iteration. The key point is that the column order of Ak does not affect the density of
the Cholesky factor of σIn + AkA

T
k nor that of AkA

T
k . Our MATLAB implementation

takes advantage of this fact by using the sparse option of the qr command, which is
an executable file (originally written in C, no source code available) implementing the
updating process (without the downdating) referred to in §3. Moreover, we could also
take advantage of the parallelizability of this refactorization.

Acknowledgements

The authors gratefully acknowledge the referees for their helpful corrections and re-
marks, which have improved the quality of the paper.

References

1. Åke Björck and Iain S. Duff. A direct method for the solution of sparse linear least squares
problems. Linear Algebra Appl., 34:43–67, 1980.

2. Ove Edlund. A software package for sparse orthogonal factorization and updating. ACM
Trans. Math. Software, 28(4):448–482, December 2002.

610 Pablo Guerrero-Garcı́a and Ángel Santos-Palomo

3. Roger Fletcher and Michael J. D. Powell. On the modification of LDLT factorizations. Math.
Comp., 29:1067–1087, 1974.

4. J. Alan George and Michael T. Heath. Solution of sparse linear least squares problems using
Givens rotations. Linear Algebra Appl., 34:69–83, 1980.

5. J. Alan George and Joseph W.-H. Liu. An object-oriented approach to the design of a user
interface for a sparse matrix package. SIAM J. Matrix Anal. Applics., 20(4):953–969, 1999.

6. Pablo Guerrero-Garcı́a and Ángel Santos-Palomo. Solving a sequence of sparse compatible
systems. Technical report MA-02-03, Department of Applied Mathematics, University of
Málaga, November 2002. Submitted for publication.

7. Pablo Guerrero-Garcı́a and Ángel Santos-Palomo. A sparse orthogonal factorization technique
for certain stiff systems of linear ODEs. In J. Marı́n and V. Koncar (eds.), Industrial Simulation
Conference 2004 Proceedings, pp. 17–19, June 2004.

8. Kaj Madsen, Hans B. Nielsen and Mustafa Ç. Pinar. A new finite continuation algorithm for
linear programming. SIAM J. Optim., 6(3):600–616, August 1996.

9. István Maros. Computational Techniques of the Simplex Method. Kluwer Academic Publisher,
2003.

10. Pontus Matstoms. Sparse linear least squares problems in optimization. Comput. Optim. Ap-
plics., 7(1):89–110, 1997.

11. Nimrod Megiddo. On finding primal- and dual-optimal bases. ORSA J. Computing, 3(1):63–
65, Winter 1991.

12. Katta G. Murty. Linear Programming. John Wiley and Sons, 1983.
13. Katta G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Heldermann,

1988.
14. Hans B. Nielsen. AAFAC: A package of FORTRAN 77 subprograms for solving AT Ax = c.

Tech. report, Institute for Numerical Analysis, Technical University of Denmark, Lyngby,
Denmark, March 1990.

15. Hans B. Nielsen. Computing a minimizer of a piecewise quadratic. Tech. report, Department
of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, September
1998.

16. Hans B. Nielsen. Algorithms for linear optimization, 2nd edition. Tech. report, Department
of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, February
1999.

17. Ping-Qi Pan. A basis-deficiency-allowing variation of the simplex method for linear program-
ming. Computers Math. Applic., 36(3):33–53, August 1998.

18. Ángel Santos-Palomo and Pablo Guerrero-Garcı́a. A non-simplex active-set method for linear
programs in standard form. Stud. Inform. Control, 14(2), June 2005.

19. Ángel Santos-Palomo and Pablo Guerrero-Garcı́a. Updating and downdating an upper trape-
zoidal sparse orthogonal factorization. Accepted for publication in IMA J. Numer. Anal.

20. Michael A. Saunders. Large-scale linear programming using the Cholesky factorization. Tech.
report CS-TR-72-252, Department of Computer Science, Stanford University, Stanford, CA,
January 1972.

Applying Parallel Direct Solver Techniques
to Build Robust High Performance Preconditioners

Pascal Hénon1, François Pellegrini1, Pierre Ramet1,
Jean Roman1, and Yousef Saad2

1 ScAlApplix Project, INRIA Futurs and LaBRI UMR 5800
Université Bordeaux 1, 33405 Talence Cedex, France
{henon,pelegrin,ramet,roman}@labri.fr

2 Dept of computer Science & Eng.
University of Minnesota, 200 Union st. SE.

Minneapolis, MN 55155, USA
saad@cs.umn.edu

Abstract. The purpose of our work is to provide a method which exploits the
parallel blockwise algorithmic approach used in the framework of high perfor-
mance sparse direct solvers in order to develop robust preconditioners based on
a parallel incomplete factorization. The idea is then to define an adaptive block-
wise incomplete factorization that is much more accurate (and numerically more
robust) than the scalar incomplete factorizations commonly used to precondition
iterative solvers.

1 Introduction

Solving large sparse linear systems by iterative methods [18] has often been unsatisfac-
tory when dealing with pratical “industrial" problems. The main difficulty encountered
by such methods is their lack of robustness and, generally, the unpredictability and un-
consistency of their performance when they are used over a wide range of different
problems; some methods work quite well for certain types of problems but can fail
completely on others.

Over the past few years, direct methods have made significant progress thanks to
research studies on both the combinatorial analysis of Gaussian elimination process and
on the design of parallel block solvers optimized for high-performance computers. It is
now possible to solve real-life three-dimensional problems having in the order of several
millions equations, in a very effective way with direct solvers. These is achievable by
exploiting superscalar effects of modern processors and taking advantage of computer
architectures based on networks of SMP nodes (IBM SP, DEC-Compaq, for example)
[1,7,9,10,12]. However, direct methods will still fail to solve very large three-dimensional
problems, due to the large amount of memory needed for these cases.

Some improvments to the classical scalar incomplete factorization have been stud-
ied to reduce the gap between the two classes of methods. In the context of domain
decomposition, some algorithms that can be parallelized in an efficient way have been
investigated in [14]. In [16], the authors proposed to couple incomplete factorization
with a selective inversion to replace the triangular solutions (that are not as scalable as

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 611–619, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

612 Pascal Hénon et al.

the factorization) by scalable matrix-vector multiplications. The multifrontal method has
also been adapted for incomplete factorization with a threshold dropping in [11] or with
a fill level dropping that measures the importance of an entry in terme of its updates [2].
In [3], the authors proposed a block ILU factorization technique for block tridiagonal
matrices.

Our goal is to provide a method which exploits the parallel blockwise algorithmic
approach used in the framework of high performance sparse direct solvers in order to
develop robust parallel incomplete factorization based preconditioners [18] for iterative
solvers.

The originality of our work is to use a supernodal algorithm what allows us to drop
some blocks during the elimination process on the quotient graph. Unlike multifrontal
approaches for which parallel threshold-based ILU factorization has been studied, the
supernodal method permits to build at low cost a dense block structure for an ILU(k)
factorization with an important fill-in. Indeed, using dense block formulation is crutial
to achieved high performance computations.

The idea is then to define an adaptive blockwise incomplete factorization that is much
more accurate (and numerically more robust) than the scalar incomplete factorizations
commonly used to precondition iterative solvers. Such incomplete factorizations can
take advantage of the latest breakthroughts in sparse direct methods and can therefore
be very competitive in terms of CPU time due to the effective usage of CPU power. At
the same time this approach does not suffer from the memory limitation encountered
by direct methods. Therefore, we can expect to be able to solve systems in the order
of hundred millions of unknowns on current platforms. Another goal of this paper is to
analyze the chosen parameters that can be used to define the block sparse pattern in our
incomplete factorization.

The remainder of the paper is organized as follows: the section 2 describes the main
features of our method. We provide some experiments in section 3. At last we give some
conclusions in section 4.

2 Methodology

The driving rationale for this study is that it is easier to incorporate incomplete fac-
torization methods into direct solution software than it is to develop new incomplete
factorizations. As a starting point, we can take advantage of the algorithms and the
software components of PaStiX [10] which is a parallel high performance supernodal
direct solver for sparse symmetric positive definite systems and for sparse unsymmetric
systems with a symmetric pattern. These different components are (see Fig. 1):

1. the ordering phase, which computes a symmetric permutation of the initial matrix
such that factorization process will exhibit as much concurrency as possible while
incurring low fill-in. In this work, we use a tight coupling of the Nested Dissection
and Approximate Minimum Degree algorithms [15];

2. the block symbolic factorization phase, which determines the block data structure
of the factorized matrix associated with the partition resulting from the ordering
phase. This structure consists of several column-blocks, each of them containing a
dense diagonal block and a set of dense rectangular off-diagonal blocks [5];

Applying Parallel Direct Solver Techniques 613

3. the block repartitioning and scheduling phase, which refines the previous partition
by splitting large supernodes in order to exploit concurrency within dense block
computations in addition to the parallelism provided by the block elimination tree,
both induced by the block computations in the supernodal solver. In this phase, we
compute a mapping of the matrix blocks (that can be made by column block (1D) or
block (2D)) and a static optimized scheduling of the computational and communi-
cation tasks according to BLAS and communication time models calibrated on the
target machine. This static scheduling will drive the parallel factorization and the
backward and forward substitutions [8,10].

SopalinFax BlendScotch
block symbolic

factorization
refinement &

mapping
factorization &

solution
ordering &

amalgamation

to matrix A supernodal partition
block symbolic

matrix L
distributed block distributed factorized

block matrix L

distributed solution

graph associated
symbolic matrix L

Fig. 1. Phases for the parallel complete block factorization

Our approach consists of computing symbolically the block structure of the factors
that would have been obtained with a complete factorization, and then deciding to drop
off some blocks of this structure according to relevant criteria. This incomplete factor-
ization induced by the new sparse pattern is then used in a preconditioned GMRES or
Conjugate Gradient solver [18]. Our main goal at this point is to achieve a significant
reduction of the memory needed to store the incomplete factors while keeping enough
fill-in to make the use of BLAS3 primitives cost-effective. Naturally, we must still have
an ordering phase and a mapping and scheduling phase (this phase is modified to suit
the incomplete factorization block computation) to ensure an efficient parallel imple-
mentation of the block preconditioner computation and of the forward and backward
substitutions in the iterations. Then, we have the new processing chain given at Fig. 2.

SopalinBlendScotch
block symbolic

factorization
incomplete

factorizationamalgamation

to matrix A supernodal partition
block symbolic

matrix L
incomplete block
symbolic matrix L block matrix L

distributed solution

graph associated

scheduling

iFax

incomplete factorized
distributedincomplete distributed

mapping &

refined

ordering &

& refinement & dropping
GMRES
C.G.

Fig. 2. Phases for the parallel incomplete block factorization

The first crucial point is then to find a good initial partition that can be used in the
dropping step after the block symbolic factorization. It cannot be the initial supernodal
partition computed by the ordering phase (phase 1) because it would be too costly to
consider the diagonal blocks as dense blocks like in a complete factorization. Therefore,

614 Pascal Hénon et al.

we resort to a refined partition of this supernodal partition which will then define the
elementary column blocks of the factors. We obtain the refined partition by splitting the
column blocks issued from the supernodal partition according to a maximum blocksize
parameter. This allows more options for dropping some blocks in the preconditioner.
This blocksize parameter plays a key role in finding a good trade-off as described above.
An important result from theoretical analysis is that if we consider nested dissection
ordering based on separator theorems [13], and if we introduce some asymptotically
refined partitions, one can show that the total number of blocks computed by the block
symbolic factorization and the time to compute these blocks are quasi-linear (these quan-
tities are linear for the supernodal partition).

The second crucial point concerns the various criteria that are used to drop some
blocks from the blockwise symbolic structure induced by the refined partition. The
dropping criterion we use is based on a generalization of the level-of-fill [18] metric that
has been adapted to the elimination process on the quotient graph induced by the refined
partition.

One of the most common ways to define a preconditioning matrix M is through
Incomplete LU (ILU) factorizations. ILU factorizations are obtained from an approx-
imate Gaussian elimination. When Gaussian elimination is applied to a sparse matrix
A, a large number of nonzero elements may appear in locations originally occupied by
zero elements. These fill-ins are often small elements and may be dropped to obtain
approximate LU factorizations.

The simplest of these procedures, ILU(0) is obtained by performing the standard LU
factorization of A and dropping all fill-in elements that are generated during the process.
In other words, the L and U factors have the same pattern as the lower and upper
triangular parts of A (respectively). More accurate factorizations denoted by ILU(k) and
IC (k) have been defined which drop fill-ins according to their “levels”. Level-1 fill-ins
for example are generated from level-zero fill-ins (at most). So, for example, ILU(1)
consists of keeping all fill-ins that have level zero or one and dropping any fill-in whose
level is higher. We now provide a few details.

In level-based ILUs, originally introduced by Watts III [19], a level-of-fill is associ-
ated with every entry in the working factorsL and U . Conceptually these factors together
are the L and U parts of a certain working matrix A which initially contains the original
matrix. At the start of the procedure, every zero entry has a level-of-fill of infinity and
every nonzero entry has a level-of-fill of zero. Whenever an entry is modified by the
standard Gaussian Elimination update

aij := aij − aik ∗ akj/akk

its level-of-fill is updated by the formula

levij = min{levij , levik + levkj + 1}.

In practice, these levels are computed in a symbolic phase first and used to define the
patterns of L and U a priori. As the level-of-fill increases, the factorization becomes
more expensive but more accurate. In general, the robustness of the iterative solver
will typically improve as the level-of-fill increases. It is common practice in standard

Applying Parallel Direct Solver Techniques 615

preconditioned Krylov methods to use a very low level-of-fill , typically no greater than
2. Now it is easy to see what will be the main limitation of this approach: the level-
of-fill is based entirely on the adjacency graph of the original matrix, and its definition
implicitly assumes some form of diagonal dominance, in order for the dropped entries
to be indeed small. It cannot work for matrices that are highly indefinite for example.
There are two typical remedies, each with its own limitations. The first is to replace the
level-of-fill strategy by one that is based on numerical values. This yields the class of
ILUT algorithms [17,18]. Another is to resort to a block algorithm, i.e., one that is based
on a block form of Gaussian elimination. Block ILU methods have worked quite well
for harder problems, see for example [4,6].

In the standard block-ILU methods, the blocking of the matrix simply represents a
grouping of sets of unknowns into one single unit. The simplest situation is when A
has a natural block structure inherited from the blocking of unknowns by degrees of
freedom at each mesh-point. Extending block ILU to these standard cases is fairly easy.
It suffices to consider the quotient graph obtained from the blocking.

The situation with which we must deal is more complex because the block parti-
tioning of rows varies with the block columns. An illustration is shown in Figure 3. The
main difference between the scalar and the block formulation of the level-of-fill algo-
rithm is that, in general, a block contribution may update only a part of the block (see
figure 3(a)). As a consequence, a block is split according to its level-of-fill modification.
Nevertheless, we only allow the splitting along the row dimension in order to preserve
an acceptable blocksize (see figure 3(b)).

k

j
Ljk

Lik

k

j
Ljk

Lik
lev

lev

Fig (a) Fig (b)

lev3lev2

lev1

lev2

lev1

Aij is modified in Aij := Aij − Lik.(Ljk) lev_3 = min(lev, lev1+lev2+1)
t

lev AijAij

Fig. 3. Computation of the block level of fill-in the block elimination process

As shown in table 1, two consecutive levels-of-fill can produce a large increase of the
fill ratio in the factors (NNZA is the number of non-zeros in A, NNZL is the number
of non-zeros that would have beeen obtained with a direct factorization, and OPCL is
the number of operations required for the direct factorization).

616 Pascal Hénon et al.

Table 1. Fill rate for a 47x47x47 3D mesh (finite element, 27 connectivity)

level of fill % NNZL ×NNZA % OPCL

≤ 0 9.28 3.53 0.29

≤ 1 23.7 9.02 2.33

≤ 2 38.4 14.6 7.61

≤ 3 54.9 20.9 19.0

≤ 4 66.1 25.2 31.5

≤ 5 75.4 28.7 45.1

≤ 6 83.2 31.6 58.5

...

≤ 15 100 38.1 100

In order to choose intermediate ratios of fill between two levels, we have introduced
a second criterion to drop some blocks inside a level-of-fill. We allow the possibility to
choose a fill ratio according to the formula:

NNZprec = (1 − α).NNZA + α.NNZL

where α ∈ [0, 1] and NNZprec is the number of non-zeros in the factors for the incom-
plete factorization. To reach the exact number of non-zeros corresponding to a selected
α, we consider the blocks allowed in the fill-in pattern in two steps. If we denote by
NNZk the number of non-zeros obtained by keeping all the blocks with levels-of-fill
≤ k, then we find the first value λ such that NNZλ ≥ NNZprec. In a second step, until
we reach NNZprec, we drop the blocks, among those having a level-of-fill λ, which
undergo the fewest updates by previous eliminations.

3 Tests

In this section, we give an analysis of some first convergence and scalability results
for practical large systems. We consider two difficult problems for direct solvers (see
table 2). The AUDI matrix (symmetric) corresponds to an automotive crankshaft model
and the MHD1 is a magnetohydrodynamic problem (unsymmetric). The ratio, between
the number of non-zeros in the complete factor and the number of non-zeros in the initial
matrix A is about 31 for the AUDI test case and about 67 for the MHD1 one.

Table 2. Description of our test problems

Name Columns NNZA NNZL OPCL

AUDI 943695 39297771 1.21e+09 5.3e+12

MHD1 485597 24233141 1.62e+09 1.6e+13

Numerical experiments were run on a 28 NH2 IBM nodes (16 Power3+, 375Mhz,
1.5 Gflops, 16GB) located at CINES (Montpellier, France) with a network based on a
Colony switch. All computations are performed in double precision and all time results
are given in seconds. We use the PASTIX software with recent improvements such as
an efficient MPI/Thread implementation to compute the preconditioner. The stopping
criterion for GMRES iterations uses the relative residual norm and is set to 10−7.

Applying Parallel Direct Solver Techniques 617

Table 3 presents results for different values of the fill rate parameter α for the AUDI
problem. The blocksize (for the refined partition) is set to 8 and the results are performed
on 16 processors.

Table 3. AUDI problem with blocksize=8

α = 0.1 α = 0.2 α = 0.3

inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter.

24 429 0.71 39 293 1.30 55 279 1.64

×NNZA % OPCL tot.time ×NNZA % OPCL tot.time ×NNZA % OPCL tot.time

3.77 0.51 328.6 6.75 2.91 419.9 9.75 5.97 512.5

α = 0.4 α = 0.5 α = 0.6

inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter.

80 144 2.12 135 49 3.13 195 36 3.70

×NNZA % OPCL tot.time ×NNZA % OPCL tot.time ×NNZA % OPCL tot.time

12.84 8.32 385.3 15.92 15.63 288.4 18.99 24.10 328.2

For each run we give:

– in the first line, the time to compute the incomplete factorisation (inc.fact.), the
number of iterations (nb.iter.) and the time to perform one iteration (time/iter.);

– in the second line, the ratio between the number of non-zeros in the incomplete
factors and the number of non-zeros in the matrix A (×NNZA), the percentage of
the number of operations to compute the incomplete factorization compared with
the number of operations required for the direct factorization (% OPCL), and the
total time (tot.time).

The same results for a blocksize set to 16 can be found in table 4. Theses results
can be compared with the time required by the direct solver: on 16 processors, PASTIX
needs about 482s to solve the problem and the solution has an accuracy (relative residual
norm) about 10−15.

Table 4. AUDI problem with blocksize=16

α = 0.1 α = 0.2 α = 0.3

inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter.

11 214 0.84 19 196 1.20 40 177 1.87

×NNZA % OPCL tot.time ×NNZA % OPCL tot.time ×NNZA % OPCL tot.time

5.29 0.97 190.8 6.50 2.16 254.2 9.57 6.82 371.0

α = 0.4 α = 0.5 α = 0.6

inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter. inc.fact. nb.iter. time/iter.

62 186 2.13 77 140 2.41 130 42 3.45

×NNZA % OPCL tot.time ×NNZA % OPCL tot.time ×NNZA % OPCL tot.time

12.76 11.93 458.2 15.55 15.57 414.4 19.01 24.39 274.9

As expected, the time for the incomplete factorization and for the iterations increases
with the fill rate parameter whereas the number of iterations decreases. We can see that

618 Pascal Hénon et al.

the best result is obtained with α set to 0.1 and a blocksize set to 16. Thus, we can solve
the problem 2.5 faster than with our direct solver and with only 17.2% of NNZL (about
5.3 × NNZA). We have also report results with higher values for the blocksize (32):
block computations are more efficient but these blocksizes do not allow to drop enough
entries to be competitive.

For next results the blocksize is set to 16 and α to 0.1. With such a fill rate parameter,
the number of iterations for the MHD1 problem is small (5 iterations to reduce the
residual norm by 10−7). This problem is easier than the AUDI problem, and in that case,
the advantage of our approach will be less important compared with traditional iterative
solvers.

Table 5 shows that the run-time scalability is quite good for up to 64 processors for
both the incomplete factorization and the iteration phase. We remind that the number of
iterations is independent of the number of processors in our approach.

Table 5. Scalability results with α = 0.1 and blocksize=16

Name Number of processors

1 2 4 8 16 32 64

AUDI inc.fact. 90.9 52.5 29.2 15.7 10.6 5.9 3.3

AUDI time/iter. 10.5 5.56 3.06 1.49 0.84 0.45 0.33

MHD1 inc.fact. 48.1 26.2 15.6 9.1 5.1 3.0 2.2

MHD1 time/iter. 3.82 1.97 1.06 0.61 0.40 0.32 0.25

So on 64 processors, for a relative precision set to 10−7, the total time is 74s what is
twice faster than the 152s needed by the direct solver.

4 Conclusion

In conclusion, we have shown a methodology for bridging the gap between direct and
iterative solvers by blending the best features of both types of techniques: low memory
costs from iterative solvers and effective reordering and blocking from direct methods.
The approach taken is aimed at producing robust parallel iterative solvers that can han-
dle very large 3-D problems which arise from realistic applications. The preliminary
numerical examples shown indicate that the algorithm performs quite well for such
problems. Robustness relative to standard (non-block) preconditioners is achieved by
extracting more accurate factorizations via higher amounts of fill-in. The effective use
of hardware is enabled by a careful block-wise processing of the factorization, which
yields fast factorization and preconditioning operations. We plan on performing a wide
range of experiments on a variety of problems, in order to validate our approach and to
understand its limitations. We also plan on studying better criteria for dropping certain
blocks from the blockwise symbolic structure.

Acknowledgment

The work of the authors was supported from NSF grants INT-0003274. The work of
the last author was also supported from NSF grants ACI-0305120 and by the Minnesota
Supercomputing Institute.

Applying Parallel Direct Solver Techniques 619

References

1. P. R. Amestoy, I. S. Duff, S. Pralet, and C. Vömel. Adapting a parallel sparse direct solver to
architectures with clusters of SMPs. Parallel Computing, 29(11-12):1645–1668, 2003.

2. Y. Campbell and T.A. Davis. Incomplete LU factorization: A multifrontal approach.
http://www.cise.ufl.edu/˜davis/techreports.html

3. T.F. Chang and P.S. Vassilevski. A framework for block ILU factorizations using block-size
reduction. Math. Comput., 64, 1995.

4. A. Chapman, Y. Saad, and L. Wigton. High-order ILU preconditioners for CFD problems.
Int. J. Numer. Meth. Fluids, 33:767–788, 2000.

5. P. Charrier and J. Roman. Algorithmique et calculs de complexité pour un solveur de type
dissections emboı̂tées. Numerische Mathematik, 55:463–476, 1989.

6. E. Chow and M. A. Heroux. An object-oriented framework for block preconditioning. Techni-
cal Report umsi-95-216, Minnesota Supercomputer Institute, University of Minnesota, Min-
neapolis, MN, 1995.

7. Anshul Gupta. Recent progress in general sparse direct solvers. Lecture Notes in Computer
Science, 2073:823–840, 2001.

8. P. Hénon. Distribution des Données et Régulation Statique des Calculs et des Communications
pour la Résolution de Grands Systèmes Linéaires Creux par Méthode Directe. PhD thesis,
LaBRI, Université Bordeaux I, France, November 2001.

9. P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct Solver for
Sparse Symmetric Definite Systems. Parallel Computing, 28(2):301–321, January 2002.

10. P. Hénon, P. Ramet, and J. Roman. Efficient algorithms for direct resolution of large sparse
system on clusters of SMP nodes. In SIAM Conference on Applied Linear Algebra, Williams-
burg, Virginie, USA, July 2003.

11. G. Karypis and V. Kumar. Parallel Threshold-based ILU Factorization. Proceedings of the
IEEE/ACM SC97 Conference, 1997.

12. X. S. Li and J. W. Demmel. A scalable sparse direct solver using static pivoting. In Proceedings
of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio,
Texas, March 22-24, 1999.

13. R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM Journal of
Numerical Analysis, 16(2):346–358, April 1979.

14. M. Magolu monga Made and A. Van der Vorst. A generalized domain decomposition para-
digm for parallel incomplete LU factorization preconditionings. Future Generation Computer
Systems, Vol. 17(8):925–932, 2001.

15. F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and halo approximate
minimum degree for efficient sparse matrix ordering. Concurrency: Practice and Experience,
12:69–84, 2000.

16. P. Raghavan, K. Teranishi, and E.G. Ng. A latency tolerant hybrid sparse solver using incom-
plete Cholesky factorization. Numer. Linear Algebra, 2003.

17. Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numerical Linear Algebra with
Applications, 1:387–402, 1994.

18. Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM, 2003.
19. J. W. Watts III. A conjugate gradient truncated direct method for the iterative solution of the

reservoir simulation pressure equation. Society of Petroleum Engineers Journal, 21:345–353,
1981.

The Design of Trilinos

Michael A. Heroux and Marzio Sala

Sandia National Laboratories
{maherou,msala}@sandia.gov

Abstract. The Trilinos Project is an effort to facilitate the design, development,
integration and ongoing support of mathematical software libraries within an
object-oriented framework for the solution of large-scale, complex multi-physics
engineering and scientific problems.
Trilinos is a two-level software structure, designed around a collection of pack-
ages. Each package focuses on a particular area of research, such as linear and
nonlinear solver or algebraic preconditioners, and is usually developed by a small
team of experts in this particular area of research. Packages exist underneath the
Trilinos top level, which provides a common look-and-feel, including configura-
tion, documentation, licensing, and bug-tracking.
In this paper we present the Trilinos design and an overview of the Trilinos pack-
ages. We discuss about the package interoperability and interdependence, and the
Trilinos software engineering environment for developers. We also discuss how
Trilinos facilitates high-quality software engineering practices that are increas-
ingly required from simulation software.

1 Introduction

Trilinos [1,2], winner of an 2004 R&D 100 award, is a suite of parallel numerical solver
libraries within an object-oriented software framework for the solution of large-scale,
complex multi-physics engineering and scientific applications in a production computing
environment. The goal of the project is to facilitate the design, development, integration,
and ongoing support of mathematical software libraries.

The emphasis of Trilinos is on developing robust and scalable algorithms in a soft-
ware framework. Abstract interfaces are provided for flexible interoperability of pack-
ages while providing a full-featured set of concrete classes that implement all abstract
interfaces. Furthermore, Trilinos includes an extensive set of tools and processes that
support software engineering practices. Specifically, Trilinos provides the following:

– A suite of parallel object-oriented solver libraries for solving linear systems (using
iterative methods and providing interfaces to third-party sequential and parallel di-
rect solvers), nonlinear systems, defining incomplete factorizations, domain decom-
position and multi-level preconditioners, solving eigensystem and time-dependent
problems.

– Tools for rapid deployment of new packages.
– A scalable model for integrating new solver capabilities.
– An extensive set of software quality assurance (SQA) and software quality engi-

neering (SQE) processes and tools for developers.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 620–628, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Design of Trilinos 621

The fundamental concept in Trilinos is the package. Trilinos uses a two-level software
structure designed around collections of packages. Each package is a numerical library
(or collection of libraries) that is:

– Focused on important, state-of-the-art algorithms in its problem regime;
– Developed by a small team of domain experts;
– Self-contained, with minimal dependencies on other packages;
– Configurable, buildable, tested and documented on its own.

These packages can be distributed within Trilinos or separately. The Trilinos framework
provides a common look-and-feel that includes configuration, documentation, licensing,
and bug tracking. There are also guidelines for adding new packages to Trilinos.

Trilinos packages are primarily written in C++, but we provide some C and Fortran
user interface support. Trilinos provides an open architecture that allows easy integration
of other solver packages and we make our software available to the outside community
via the GNU Lesser General Public License (LGPL) [3].

This paper is organized as follows. Section 2 gives an overview of the Trilinos
packages. Section 3 describes the packages that can be used to define linear algebra
components (like serial and distributed matrices and vectors), that can be used by all
packages. Section 4 introduces to the NewPackage package, a jumpstart for new Trilinos
packages. Section 5outlines the difference between interoperability and interdependence
between Trilinos packages. The Trilinos software engineering environment for solver
developers is described in Section 6. Finally, Section 7 outlines the conclusions.

2 Overview of Trilinos Packages

The word “Trilinos” is Greek for “string of pearls”. It is a metaphor for the Trilinos
architecture. Packages are strung together within Trilinos like pearls on a necklace.
While each package is valuable and whole in its own right, the collection represents
even more than the sum of its parts. Trilinos began as only three packages but has
rapidly expanded. Table 1 lists the Trilinos packages with a brief description and their
availability status. At the bottom of the table is the package count in each Trilinos release.
General releases are available via automatic download. Limited releases are available
upon request. A full description of Trilinos packages is available at the Trilinos Home
Page [1].

A partial overview of what can be accomplished using Trilinos includes:

– Advanced serial dense or sparse matrices (Epetra);
– Advanced utilities for Epetra vectors and sparse matrices (EpetraExt);
– Templated distributed vectors and sparse matrices (Tpetra);
– Distributed sparse matrices (Epetra);
– Solve a linear system with preconditioned Krylov accelerators (AztecOO, Belos);
– Incomplete Factorizations (AztecOO, IFPACK);
– Multilevel preconditioners (ML);
– “Black-box” smoothed aggregation preconditioners (ML);

622 Michael A. Heroux and Marzio Sala

Table 1. Trilinos Package Descriptions and Availability

Package Description Release

3.1 (9/2003) 4 (5/2004)

3.1 3.1 4 4

General Limited General Limited

Amesos 3rd Party Direct Solver Suite X X X

Anasazi Eigensolver package X

AztecOO Linear Iterative Methods X X X X

Belos Block Linear Solvers X

Epetra Basic Linear Algebra X X X X

EpetraExt Extensions to Epetra X X X

Ifpack Algebraic Preconditioners X X X X

Jpetra Java Petra Implementation X

Kokkos Sparse Kernels X X

Komplex Complex Linear Methods X X X X

LOCA Bifurcation Analysis Tools X X X X

Meros Segregated Preconditioners X X X

ML Multi-level Preconditioners X X X X

NewPackage Working Package Prototype X X X X

NOX Nonlinear solvers X X X X

Pliris Dense direct Solvers X X

Teuchos Common Utilities X X

TSFCore Abstract Solver API X X

TSFExt Extensions to TSFCore X

Tpetra Templated Petra X

Totals 8 11 15 20

– One-level Schwarz preconditioner (overlapping domain decomposition) (AztecOO,
IFPACK);

– Two-level Schwarz preconditioner, with coarse matrix based on aggregation
(AztecOO and ML);

– Systems of nonlinear equations (NOX);
– Interface with various direct solvers, such as UMFPACK, MUMPS, SuperLU DIST

and ScaLAPACK (Amesos);
– Eigenvalue problems for sparse matrices (Anasazi);
– Complex linear systems (using equivalent real formulation) (Komplex);
– Segregated and block preconditioners (e.g., incompressible Navier-Stokes equa-

tions) (Meros);
– Light-weight interface to BLAS and LAPACK (Epetra);
– Templated interface to BLAS and LAPACK, arbitrary-precision arithmetic, para-

meters’ list, smart pointers (Teuchos);

The Design of Trilinos 623

– Definition of abstract interfaces to vectors, linear operators, and solvers (TSF, TS-
FCore, TSFExtended);

– Generation of test matrices (Triutils).

A detailed description of each package’s functionalities is beyond the scope of this
manuscript. In the next two sections, we focus our attention to the Petra object model,
and to the NewPackage package.

3 The Petra Object Model

Scalable parallel implementation of algorithms is extremely challenging. Therefore, one
of the most important features of Trilinos is its data model for global objects, called the
Petra Object Model [6]. There are three implementation of this model, but the current
production implementation is called Epetra [7]. Epetra is written for real-valued double-
precision scalar field data, and restricts itself to a stable core of the C++ language
standard. As such, Epetra is very portable and stable, and is accessible to Fortran and C
users. Epetra combines in a single package:

– Object-oriented, parallel C++ design: Epetra has facilitated rapid development of
numerous applications and solvers at Sandia because Epetra handles many of the
complicated issues of working on a parallel, distributed-memory machine. Further-
more, Epetra provides a lightweight set of abstract interfaces and a shallow copy
mode that allows existing solvers and data models to interact with Epetra without
creating redundant copies of data.

– High performance: Despite the fact that Epetra provides a very flexible data model,
performance has always been the top priority. Aztec [8] won an R&D 100 award
in 1997 and has also been the critical performance component in two Gordon Bell
finalist entries. Despite Epetra’s much more general interfaces and data structures,
for problems where Aztec and Epetra can be compared, Epetra is at least as fast and
often faster than Aztec. Epetra also uses the BLAS and LAPACK wherever possible,
resulting in excellent performance for dense operations.

– Block algorithm support for next-generation solution capabilities: The Petra Object
Model and Epetra specifically provide support for multivectors, including distributed
multivector operations. The level of support that Epetra provides for this feature is
unique among available frameworks, and is essential for supporting next-generation
applications that incorporate features such as sensitivity analysis and design opti-
mization.

– Generic parallel machine interfaces: Epetra does not depend explicitly on MPI.
Instead it has its own abstract interface for which MPI is one implementation. Ex-
perimental implementations for hybrid distributed/shared memory, PVM [9] and
UPC [10] are also available or under development.

– Parallel data redistribution: Epetra provides a distributed object (DistObject) base
class that manages global distributed objects. Not only does this base class provide
the functionality for common distributed objects like matrices and vectors, it also
supports distributed graphs, block matrices, and coloring objects. Furthermore, any
class can derive from DistObject by implementing just a few simple methods to
pack and unpack data.

624 Michael A. Heroux and Marzio Sala

– Interoperability: Application developers can use Epetra to construct and manipulate
matrices and vectors, and then pass these objects to any Trilinos solver package.
Furthermore, solver developers can develop many new algorithms relying on Epetra
classes to handle the intricacies of parallel execution. Whether directly or via abstract
interfaces, Epetra provides one of the fundamental interoperability mechanisms
across Trilinos packages.

4 NewPackage Package: Fully Functional Package Prototype

One of the most useful features of Trilinos is the NewPackage package. This simple
“Hello World" program is a full-fledged Trilinos package that illustrates:

– Portable build processes via Autoconf and Automake;
– Automatic documentation generation using Doxygen [18];
– Configuring for interaction with another package (Epetra) including the use of

M [4,19] macros to customize package options;
– Regression testing using special scripts in the package that will be automatically

executed on regression testing platforms.

In addition, Trilinos provides a NewPackage website that can be easily customized,
requiring only specific package content. This website is designed to incorporate the
reference documentation that is generated by Doxygen from the NewPackage source
code.

Using NewPackage as a starting point, developers of mathematical libraries are able
to become quickly and easily interoperable with Trilinos. It is worth noting that a package
becomes Trilinos-interoperable without sacrificing its independence. This fact has made
Trilinos attractive to a number of developers. As a result, Trilinos is growing not only by
new development projects, but also by incorporation of important, mature projects that
want to adopt modern software engineering capabilities. This is of critical importance
to applications that depend on these mature packages.

5 Package Interoperability vs. Interdependence

Trilinos provides configuration, compilation and installation facilities via GNU Auto-
conf [4] and Automake [5]. These tools make Trilinos very portable and easy to install.
The Trilinos-level build tools allow the user to specify which packages should be con-
figured and compiled via --enable-package_name arguments to the configure
command.

A fundamental difference between Trilinos and other mathematical software frame-
works is its emphasis on interoperability. Via abstract interfaces and configure-time
enabling, packages within Trilinos can interoperate with each other without being inter-
dependent. For example, the nonlinear solver package NOX needs some linear algebra
support, but it does not need to know the implementation details. Because of this, it
specifies the interface it needs. At configure time, the user can specify one or more of
three possible linear algebra implementations for NOX:

The Design of Trilinos 625

– --enable-nox-lapack: compile NOX lapack interface libraries
– --enable-nox-epetra: compile NOX epetra interface libraries
– --enable-nox-petsc: compile NOX PETSc interface libraries

Alternatively, because the NOX linear algebra interfaces are abstract, users can provide
their own implementation and build NOX completely independent from Trilinos.

Another notable example is ML [20]. ML is the multilevel preconditioning package of
Trilinos, and it can be used to define multigrid/multilevel preconditioners. ML contains
basic Krylov accelerators and a variety of smoothers (like Jacobi, Gauss-Seidel, and
polynomial smoothers), and as such it can be configured and used as a stand-alone
package. That is, ML does not depend on any other Trilinos packages. However, ML
can easily interoperate with other Trilinos packages, since light-weight conversions from
the ML proprietary format to Epetra-format (and vice-versa) exist1. For instance, ML
can:

– use the incomplete factorizations of AztecOO and IFPACK as smoothers;
– exploit the eigensolvers of Anasazi when an eigen-computation is required;
– take advantage of the Amesos interface to third-party libraries;
– use the general-purpose tools provided by Teuchos to define better interfaces.

Other packages can take advantages of ML as well: for example, an ML object can
be used to define a preconditioner for an AztecOO linear system.

For ML applications, interoperability is extremely important. Multilevel precondi-
tioners are based on a variety of components (possibly, a different aggregation scheme,
pre-smoother and post-smoother for each level, and the coarse solver), and it is often of
important to test different combinations of parameters, or add new components. To this
aim, several Trilinos packages can be used to extend ML. Even if the kernel features of
ML remain the same, independently of the available Trilinos packages, ML itself can be
less effective as a stand-alone package, as it is as part of the Trilinos project.

6 Trilinos Software Engineering Environment
for Solver Developers

Trilinos package developers enjoy a rich set of tools and well-developed processes that
support the design, development and support of their software. The following resources
are available for each package team:

– Repository (CVS): Trilinos uses CVS [11] for source control. Each package exists
both as an independent module as well as part of the larger whole.

– Issue Tracking (Bugzilla): Trilinos uses Mozilla’s Bugzilla [12] for issue tracking.
This includes the ability to search all previous bug reports and to automatically track
(via email notifications) submissions.

1 If required, ML interoperates with packages outside the Trilinos project. For example, METIS
and ParMETIS [21] can be used to define the aggregates in smoothed aggregation, or Para-
Sails [22] can be called to compute smoothers based on sparse approximate inverses.

626 Michael A. Heroux and Marzio Sala

– Communication (Mailman): Trilinos uses Mailman [3] for managing mailing lists.
There are Trilinos mailing lists as well as individual package mailing lists as follows.
Each package has low volume lists for announcements as well as a general users
mailing list. Further, each package also has developer-focused lists for developer
discussion, tracking of CVS commits, and regression test results. Finally, there is
a mailing list for the leaders of the packages, and these leaders also have monthly
teleconferences where any necessary Trilinos-level decisions are made.

In addition to the above package-specific infrastructure, the following resources are
also available to package developers:

– Debugging (Bonsai): Mozilla Bonsai [4] is a web-based GUI for CVS, allowing for
queries and easy comparison of different versions of the code. Bonsai is integrated
with the Trilinos CVS and Bugzilla databases.

– Jumpstart (NewPackage package): One of the fundamental contributions of Trilinos
is “NewPackage". This is a legitimate package within Trilinos that does “Hello
World". We discuss it in more detail below.

– Developer Documentation: Trilinos provides an extensive developers guide [15]
that provides new developers with detailed information on Trilinos resources and
processes. All Trilinos documents are available online at the main Trilinos home
page1.

– SQA/SQE support: The Advanced Scalable Computing Initiative (ASCI) program
within the Department of Energy (DOE) has strong software quality engineering
and assurance requirements. At Sandia National Laboratories this has led to the
development of 47 SQE practices that are expected of ASCI-funded projects [16].
Trilinos provides a special developers guide17 for ASCI-funded Trilinos packages.
For these packages, 32 of the SQE practices are directly addressed by Trilinos. The
remaining 15 are the responsibility of the package development team. However,
even for these 15, Trilinos provides significant support.

To summarize, the two-level design of Trilinos allows package developers to focus
on only those aspects of development that are unique to their package and still enjoy the
benefits of a mature software engineering environment.

7 Summary

Computer modeling and simulation is a credible third approach to fundamental advances
in science and engineering, along with theory and experimentation. A critical issue for
continued growth is access to both new and mature mathematical software on high per-
formance computers in a robust, production environment. Trilinos attempts to address
this issue in the following ways: Provides a rapidly growing set of unique solver capabil-
ities: Many new algorithms are being implemented using Trilinos. Trilinos provides an
attractive development environment for algorithm specialists. Provides an independent,
scalable linear algebra package: Epetra provides extensive tools for construction and
manipulation of vectors, graphs and matrices, and provides the default implementation
of abstract interfaces across all other Trilinos packages. Supports SQA/SQE require-
ments: First solver framework to provide explicitly documented processes for SQA/SQE.

The Design of Trilinos 627

An essential feature for production computing. Provides an innovative architecture for
modular, scalable growth: The Trilinos package concept and the NewPackage package
provide the framework for rapid development of new solvers, and the integration and
support of critical mature solvers. Is designed for interoperability: Designed "from the
ground up" to be compatible with existing code and data structures. Trilinos is the best
vehicle for making solver packages, whether new or existing, interoperable with each
other. Uses open source tools: Extensive use of third-party web tools for documentation,
versioning, mailing lists, and bug tracking. To the best of our knowledge, no competing
numerical libraries offer anything nearly as comprehensive.

Acknowledgments

The authors would like to acknowledge the support of the ASCI and LDRD programs
that funded development of Trilinos.

References

1. The Trilinos Home Page: http://software.sandia.gov/trilinos, 16-Feb-04.
2. Michael A. Heroux, et. al., An Overview of Trilinos. Technical Report SAND2003-2927,

Sandia National Laboratories, 2003.
3. The GNU Lesser General Public License:

http://www.gnu.org/copyleft/lesser.html, 16-Feb-04.
4. GNU Autoconf Home Page: http://www.gnu.org/software/autoconf,

16-Feb-04.
5. GNU Automake Home Page: http://www.gnu.org/software/automake,

16-Feb-04.
6. Erik Boman, Karen Devine, Robert Heaphy, Bruce Hendrickson and Michael A. Heroux.

LDRD Report: Parallel Repartitioning for Optimal Solver Performance. Technical Report
SAND2004-XXXX, Sandia

7. Epetra Home Page:
http://software.sandia.gov/trilinos/packages/epetra, 16-Feb-04.

8. Ray S. Tuminaro, Michael A. Heroux, Scott A. Hutchinson and John N. Shadid. Official Aztec
User’s Guide, Version 2.1. Technical Report SAND99-8801J, Sandia National Laboratories,
1999.

9. PVM Home Page: http://www.csm.ornl.gov/pvm, 16-Feb-04.
10. UPC Home Page: http://upc.gwu.edu/, 16-Feb-04.
11. GNU CVS Home Page: http://www.gnu.org/software/cvs, 16-Feb-04.
12. Bugzilla Home Page: http://www.bugzilla.org, 16-Feb-04.
13. GNU Mailman Home Page: http://www.gnu.org/software/mailman,

16-Feb-04.
14. The Bonsai Project Home Page:, http://www.mozilla.org/projects/bonsai,

16-Feb-04.
15. Michael A. Heroux, James M. Willenbring and Robert Heaphy, Trilinos Developers Guide,

Technical Report SAND2003-1898, Sandia National Laboratories, 2003.
16. J. Zepper, K Aragon, M. Ellis, K. Byle and D. Eaton, Sandia National Laboratories ASCI

Applications

628 Michael A. Heroux and Marzio Sala

17. Michael A. Heroux, James M. Willenbring and Robert Heaphy, Trilinos Developers Guide Part
II: ASCI Software Quality Engineering Practices, Version 1.0. Technical Report SAND2003-
1899, Sandia National Laboratories, 2003.

18. Doxygen Home Page: http://www.stack.nl/ dimitri/doxygen, 16-Feb-04.
19. GNU M4 Home Page: http://www.gnu.org/software/m4, 16-Feb-04.
20. M. Sala and J. Hu and R. Tuminaro, ML 3.0 Smoothed Aggregation User’s Guide, Technical

Report SAND2004-2195, Sandia National Laboratories, 2004.
21. G. Karypis and V. Kumar, ParMETIS: Parallel Graph Partitioning and Sparse Matrix Ordering

Library, Technical Report 97-060, Department of Computer Science, University of Minnesota,
1997.

22. E. Chow, ParaSails User’s Guide, Technical Report UCRML-MA-137863, Lawrence Liver-
more National Laboratory, 2000.

Software Architecture Issues
in Scientific Component Development

Boyana Norris

Mathematics and Computer Science Division, Argonne National Laboratory
9700 South Cass Ave., Argonne, IL 60439, USA

norris@mcs.anl.gov

Abstract. Commercial component-based software engineering practices, such
as the CORBA component model, Enterprise JavaBeans, and COM, are well-
established in the business computing community. These practices present an
approach for managing the increasing complexity of scientific software devel-
opment, which has motivated the Common Component Architecture (CCA), a
component specification targeted at high-performance scientific application de-
velopment. The CCA is an approach to component development that is minimal
in terms of the complexity of component interface requirements and imposes a
minimal performance penalty. While this lightweight specification has enabled the
development of a number of high-performance scientific components in several
domains, the software design process for developing component-based scientific
codes is not yet well defined. This fact, coupled with the fact that component-
based approaches are still new to the scientific community, may lead to an ad hoc
design process, potentially resulting in code that is harder to maintain, extend,
and test and may negatively affect performance. We explore some concepts and
approaches based on widely accepted software architecture design principles and
discuss their potential application in the development of high-performance sci-
entific component applications. We particularly emphasize those principles and
approaches that contribute to making CCA-based applications easier to design,
implement, and maintain, as well as enabling dynamic adaptivity with the goal of
maximizing performance.

1 Introduction

Component-based software engineering (CBSE) practices are well established in the
business computing community [1,2,3]. Component approaches often form the heart of
architectural software specifications. Garlan and Shaw [4] define a software architec-
ture as a specification of the overall system structure, such as “gross organization and
global control structure; protocols for communication, synchronization, and data access;
assignment of functionality to design elements, physical distribution; composition of de-
sign elements; scaling and performance; and selection among design alternatives.” This
decade-old definition largely holds today.

Recently, the emergence of a component specification targeted at high-performance
computing has led to initial experimentation with CBSE in scientific software. The
Common Component Architecture Forum [5,6] has produced a component architec-
ture specification [7] that is semantically similar to other component models, with an

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 629–636, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

630 Boyana Norris

emphasis on minimizing programming requirements and not imposing a significant per-
formance penalty as a result of using components. The CCA specification is defined by
using SIDL (Scientific Interface Definition Language), which provides language inter-
operability without sacrificing performance.

CCA employs the notion of ports, public interfaces that define points of interaction
between components. There are two types of ports: provides and uses, used to specify
functionality provided by a component, and to access functionality of other components
that provide the matching port type. To be CCA-compliant, a component must implement
the gov.cca.Component interface, which uses the method setServices to pass
a reference to a framework services handle to the component. This handle subsequently
is used for most framework interactions, such as registering uses and provides ports and
obtaining and releasing port handles from the framework. The setServicesmethod
is normally invoked by the framework after the component has been instantiated. A
CCA framework provides an implementation of the Services interface and performs
component management, including dynamic library loading, component instantiation,
and connection and disconnection of compatible ports.

In addition to the benefits of a component system for managing software complex-
ity, the CCA offers new challenges and opportunities. In the remainder of this paper, we
present some software architecture principles and approaches that build on the current
CCA specification and help better define the component design and development process,
as well as enable better dynamic adaptivity in scientific component applications. Going
beyond the software architecture specification, we briefly discuss other important as-
pects of scientific component development, including code generation, implementation,
compilation, and deployment.

2 Software Architecture Principles

In this section we examine software design approaches in the context of their applicabil-
ity to high-performance scientific component development. One of the main distinctive
features of the CCA is its minimal approach to component specification. This was partly
motivated by the need to keep component overhead very low. Another motivation is to
make the software design process more accessible to scientists who are concerned with
the human overhead of adopting an approach new to the scientific computing commu-
nity. The result is a working minimal-approach component model that has been used
successfully in diverse applications [8,9,10,11]. The CCA specification incorporates a
number of principles that Buschmann et al. [12] refer to as architecture-enabling princi-
ples, including abstraction, encapsulation, information hiding, modularization, coupling
and cohesion, and separation of interface and implementation.

While the minimal CCA approach does make scientific component development
possible, it is not a complete design methodology, as is, for example, the Booch method
[13]. Furthermore, other than the minimal requirements of the component interface and
framework-component interactions, the actual component design is not dictated by any
set of rules or formal specifications. This makes the CCA very general and flexible
but imposes a great burden on the software developer, who in many cases has no pre-
vious component- or object-oriented design experience. We believe that a number of
widely accepted software architecture principles, such as those summarized in [12,14],

Software Architecture Issues in Scientific Component Development 631

can contribute greatly to all aspects of scientific application development—from inter-
face specification to component quality-of-service support. These enabling technologies
[12] can be used as guiding design principles for the scientific component developer.
Moreover, they can enable the development of tools that automate many of the steps
in the component development life cycle, leading to shorter development cycles and to
applications that are both more robust and better performing.

Although the following software architecture principles are applicable to a wide
range of domains, we focus on their impact on high-performance components, with an
emphasis on adaptability. We briefly examine each approach and discuss an example
context of its applicability in scientific component development.

Separation of Concerns. Currently the CCA provides a basic specification for compo-
nents and does not deal directly with designing ports and components so that different or
unrelated responsibilities are separate from each other and that different roles played by a
component in different contexts are independent and separate from each other within the
component. Several domain-specific interface definition efforts are under way, such as
interfaces for structured and unstructured mesh access and manipulation, linear algebra
solvers, optimization, data redistribution, and performance monitoring. These common
interfaces ideally would be designed to ensure a clear separation of concerns. In less
general situations, however, this principle is often unknown or ignored in favor of quicker
and smaller implementation. Yet clearly separating different or unrelated responsibili-
ties is essential for achieving a flexible and reliable software architecture. For example,
performance monitoring functionality is often directly integrated in the implementation
of components, making it difficult or impossible to change the amount, type, and fre-
quency of performance data gathered. A better design is to provide ports or components
that deal specifically with performance monitoring, such as those described in [15], en-
abling the use of different or multiple monitor implementations without modifying the
implementation of the client components, as well as generating performance monitor-
ing ports automatically. Similar approaches can be used for other types of component
monitoring, such as that needed for debugging. Although in some cases the separation
of concerns is self-evident, in others it is not straightforward to arrive at a good de-
sign while maintaining a granularity that does not deteriorate the performance of the
application as a whole. For example, many scientific applications rely on a discretized
representation of the problem domain, and it would seem like a good idea to extract
the mesh management functionality into separate components. Depending on the needs
of the application, however, accessing the mesh frequently through a fine-grained port
interface may have prohibitive overhead. That is, not to say that mesh interfaces are
doomed to bad performance; rather, care must be taken in the design of the interface, as
well as the way in which it is used, in order to avoid loss of performance.

Separation of Policy and Implementation. A policy component deals with context-
sensitive decisions, such as assembly of disjoint computations as a result of selecting
parameter values. An implementation component deals only with the execution of a
fully specified algorithm, without being responsible for making context-dependent de-
cisions internally. This separation enables the implementation of multimethod solution
methods, such as the composite and adaptive linear solvers described in [16,17]. Ini-
tial implementations of our multimethod linear system solution methods were not in

632 Boyana Norris

component form (rather, they were based directly on PETSc [18]), and after implement-
ing a few adaptive strategies, adding new ones became a very complex and error-prone
task. The reason was that, in order to have nonlinear solver context information in our
heuristic implementation of the adaptive linear solution, we used (or rather, “abused”)
the PETSc nonlinear user-defined monitor routine, which is invoked automatically via a
call-back mechanism at each nonlinear iteration. Without modifying PETSc itself, this
was the best way both to have context information about the nonlinear solution, while
monitoring the performance and controlling the choice of linear solvers. While one can
define the implementation in a structured way, one is still limited by the fact that the
monitor is a single function, under which all adaptive heuristics must be implemented.
Recently we have reworked our implementation to use well-defined interfaces for per-
formance data management and adaptive linear solution heuristics. This separation of
policy (the adaptive heuristic, which selects linear solvers based on the context in the
nonlinear solver) and implementation (the actual linear solution method used, such as
GMRES) not only has lead to a simpler and cleaner design but has made it possible
to add new adaptive heuristics with a negligible effort compared to the noncomponent
version. Design experiences, such as this nonlinear PDE solution example, can lead to
guidlines or “best practices” that can assist scientists in achieving separation of policy
and implementation in different application domains.

Reflection. The Reflection architectural pattern enables the structure and behavior of
software systems to be changed dynamically [12]. Although Reflection is not directly
supported by the CCA specification, similar capabilities can be provided in some cases.
For example, for CCA components implemented with SIDL, interface information is
available in SIDL or XML format. Frameworks or automatically generated ports (which
provide access to component metainformation) can be used to provide Reflection ca-
pabilities in component software. Reflection also can be used to discover interfaces
provided by components, a particularly useful capability in adaptive algorithms where
a selection of a suitable implementation must be made among several similar com-
ponents. For example, in an adaptive linear system solution, several solution methods
implement a common interface and can thus be substituted at runtime, but knowing
more implementation-specific interface details may enable each linear solver instance to
be tuned better by using application-specific knowledge. We note, however, that while
reflection can be useful in cases such as those cited, it may negatively affect performance
if used at a very fine granularity. As with other enabling architectural patterns, one must
be careful to ensure that it is applied only at a coarse-enough granularity to minimize
the impact on performance.

While the omission of formal specifications for these and other features makes the
CCA approach general and flexible, it also increases the burden on the scientific pro-
grammer. While in theory it is possible to design and implement CCA components in
a framework-independent fashion, in practice the component developer is responsible
for ensuring that a component is written and built in such a way that it can be used in a
single framework that is usually chosen a priori1.

1 The CCA Forum has defined a number of interfaces for framework interoperability, so that
while components are written in a way that may not be portable across frameworks, interaction
between components executing in different frameworks is possible in some cases.

Software Architecture Issues in Scientific Component Development 633

3 Implementation and Deployment

Implementation and deployment of CCA components are potentially complex and time-
consuming tasks compared to the more traditional library development approaches.
Therefore, CCA Forum participants have recently begun streamlining the component
creation and build process. For example, CHASM [19] is being used to automate some of
the steps required to create language-independent components from legacy codes or from
scratch [20]. We have also recently begun automating the build process by generating
most of the scripts needed to create a build system based on GNU tools, such as automake
and autoconf [21,22]. Currently we are integrating the component generation tools based
on CHASM [19] and Babel [23] with the build automation capabilities. Other efforts
are making the code generation, build automation, and deployment support tools easy
to use, extensible, portable, and flexible. Until recently, little attention was given to
the human overhead of component design and implementation. Many of the above-
mentioned efforts aim to increase the software developers’ efficiency. Most ongoing
work focuses on the tasks of generating ports and components from existing codes,
generating code from existing interfaces, compiling, and deploying components. At this
point, however, little is available on the techniques for designing ports and components.
We believe that the architecture-enabling principles mentioned in this paper, as well as
others, can help guide the design of scientific applications. Furthermore, we hope that in
the near future, when more and more component scientific applications go through this
design and implementation process, domain-specific patterns will emerge that will lead
to the same type of improvement in the software development approaches and efficiency
that design and architectural patterns have led to in the business software development
community.

Scientific applications may need to execute in environments with different capabil-
ities and requirements. For example, in some cases it is possible and desirable to build
components as dynamic libraries that are loaded by the framework at runtime. In other
cases, the computing environment, such as a large parallel machine without a shared
file system, makes the use of dynamic libraries onerous, and one statically linked ex-
ecutable for the assembled component application is more appropriate. Being able to
support both dynamic and static linking in an application makes the build process com-
plex and error-prone, thus necessitating automation. Furthermore, support of multiple
deployment modes (e.g., source-based, RPM or other binary formats) is essential for de-
bugging, distribution, and support of multiple hardware platforms. Many of these issues
can be addressed by emerging CCA-based tools that generate the required component
meta-information, configuration, build, and execution scripts.

4 QoS-Enabled Software Architecture

As more functionally equivalent component implementations become available, the task
of selecting components and assembling them into an application with good overall per-
formance becomes complex and possibly intractable manually. Furthermore, as com-
putational requirements change during the application’s execution, the initial selection
of components may no longer ensure good overall performance. Some of the consider-
ations that influence the choice of implementation are particular to parallel codes, for

634 Boyana Norris

example, the scalability of a given algorithm. Others deal with the robustness of the
solution method, or its convergence speed (if known) for a certain class of problems.

Recent work [24,25,26] on computational quality of service (QoS) for scientific
components has defined a preliminary infrastructure for the support of performance-
driven application assembly and adaptation. The CCA enables this infrastructure to
augment the core specifications, and new tools that exploit the CCA ports mechanism for
performance data gathering and manipulations are being developed [15]. Related work
in the design and implementation of QoS support in component architectures includes
component contracts [27], QoS aggregation models [28], and QoS-enabled distributed
component computing [29,30].

5 Conclusion

We have examined a number of current challenges in handling the entire life cycle
of scientific component application development. We outlined some software architec-
ture ideas that can facilitate the software design process of scientific applications. We
discussed the need and ongoing work in automating different stages of component appli-
cation development, including code generation from language-independent interfaces,
automatic generation of components from legacy code, and automating the component
build process. We noted how some of the software architecture ideas can be used to
support adaptivity in applications, enabling computational quality-of-service support
for scientific component applications. Many of these ideas are in the early stages of
formulation and implementation and will continue to be refined and implemented as
command-line or graphical tools, components, or framework services.

Acknowledgments

Research at Argonne National Laboratory was supported in part by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of Ad-
vanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy, under
Contract W-31-109-ENG-38.We thank Matt Knepley, Lois McInnes, Paul Hovland, and
Kate Keahey of Argonne National Laboratory for many of the ideas that led to this work,
Sanjukta Bhowmick and Padma Raghavan of the Pennsylvania State University for their
ongoing contributions, and the CCA Forum for enabling this collaborative effort.

References

1. Anonymous: CORBA component model.
http://www.omg.org/technology/documents/formal/components.htm (2004)

2. Anonymous: Enterprise JavaBeans downloads and specifications.
http://java.sun.com/products/ejb/docs.html (2004)

3. Box, D.: Essential COM. Addison-Wesley Pub. Co. (1997)
4. Garlan, D., Shaw, M.: An Introduction to Software Architecture. In: Advances in Software

Engineering and Knowledge Engineering. World Scientific Publishing Company (1993)

Software Architecture Issues in Scientific Component Development 635

5. Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L. C., Parker, S.,
Smolinski, B.: Toward a common component architecture for high-performance scientific
computing. In: Proceedings of High Performance Distributed Computing. (1999) 115–124

6. Common Component Architecture Forum: CCA Forum website.
http://www.cca-forum.org (2004)

7. CCA Forum: CCA specification.
http://cca-forum.org/specification/ (2003)

8. Norris, B., Balay, S., Benson, S., Freitag, L., Hovland, P., McInnes, L., Smith, B.: Parallel
components for PDEs and optimization: Some issues and experiences. Parallel Computing
28 (12) (2002) 1811–1831

9. Lefantzi, S., Ray, J.: A component-based scientific toolkit for reacting flows. In: Proceedings
of the Second MIT Conference on Computational Fluid and Solid Mechanics, Boston, Mass.,
Elsevier Science (2003)

10. Benson, S., Krishnan, M., McInnes, L., Nieplocha, J., Sarich, J.: Using the GA and TAO
toolkits for solving large-scale optimization problems on parallel computers. Technical Report
ANL/MCS-P1084-0903, Argonne National Laboratory (2003)

11. Larson, J. W., Norris, B., Ong, E. T., Bernholdt, D. E., Drake, J. B., Elwasif, W .R., Ham, M.
W., Rasmussen, C. E., Kumfert, G., Katz, D. S., Zhou, S., DeLuca, C., Collins, N. S.: Com-
ponents, the Common Component Architecture, and the climate/weather/ocean community.
In: 84th American Meteorological Society Annual Meeting, Seattle, Washington, American
Meteorological Society (2004)

12. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley & Sons Ltd. (1996)

13. Booch, G.: Unified method for object-oriented development Version 0.8. Rational Software
Corporation (1995)

14. Medvidovic, N., Taylor, R. N.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Transactions on Software Engineering 26 (2000)

15. Shende, S., Malony, A. D., Rasmussen, C., Sottile, M.: A performance interface for
component-based applications. In: Proceedings of International Workshop on Performance
Modeling, Evaluation and Optimization, International Parallel and Distributed Processing
Symposium (2003)

16. Bhowmick, S., Raghavan, P., McInnes, L., Norris, B.: Faster PDE-based simulations using
robust composite linear solvers. Future Generation Computer Systems 20 (2004) 373–387

17. McInnes, L., Norris, B., Bhowmick, S., Raghavan, P.: Adaptive sparse linear solvers for im-
plicit CFD using Newton-Krylov algorithms. In: Proceedings of the Second MIT Conference
on Computational Fluid and Solid Mechanics, Massachusetts Institute of Technology, Boston,
USA, June 17-20, 2003

18. Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., McInnes, L., Smith, B.
F., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne
National Laboratory (2003). http://www.mcs.anl.gov/petsc.

19. Rasmussen, C. E., Lindlan, K. A., Mohr, B., Striegnitz, J.: Chasm: Static analysis and au-
tomatic code generation for improved Fortran 90 and C++ interoperability. In: 2001 LACSI
Symposium (2001)

20. Rasmussen, C. E., Sottile, M. J., Shende, S. S., Malony, A. D.: Bridging the language gap
in scientific computing: the chasm approach. Technical Report LA-UR-03-3057, Advanced
Computing Laboratory, Los Alamos National Laboratory (2003)

21. Bhowmick, S.: Private communication. Los Alamos National Laboratory (2004)
22. Wilde, T.: Private communication. Oak Ridge National Laboratory (2004)
23. Anonymous: Babel homepage. http://www.llnl.gov/CASC/components/babel.html (2004)

636 Boyana Norris

24. Trebon, N., Ray, J., Shende, S., Armstrong, R.C., Malony, A.: An approximate method for opti-
mizing HPC component applications in the presence of multiple component implementations.
Technical Report SAND2003-8760C, Sandia National Laboratories (2004) Also submitted
to 9th International Workshop on High-Level Parallel Programming Models and Supportive
Environments, held during the 18th International Parallel and Distributed Computing Sym-
posium, 2004, Santa Fe, NM, USA.

25. Hovland, P., Keahey, K., McInnes, L. C., Norris, B., Diachin, L. F., Raghavan, P.: A quality
of service approach for high-performance numerical components. In: Proceedings of Work-
shop on QoS in Component-Based Software Engineering, Software Technologies Conference,
Toulouse, France (2003)

26. Norris, B., Ray, J., Armstrong, R., McInnes, L.C., Bernholdt, D.E., Elwasif, W.R., Malony,
A.D., Shende, S.: Computational quality of service for scientific components (2004). In: Pro-
ceedings of International Symposium on Component-Based Software Engineering (CBSE7),
Edinburgh, Scotland.

27. Beugnard, A., Jézéquel, J.M., Plouzeau, N., Watkins, D.: Making components contract aware.
IEEE Computer (1999) 38–45

28. Gu, X., Nahrstedt, K.: A scalable QoS-aware service aggregation model for peer-to-peer
computing grids. In: Proceedings of High Performance Distributed Computing. (2002)

29. Loyall, J. P., Schantz, R. E., Zinky, J. A., Bakken, D. E.: Specifying and measuring quality of
service in distributed object systems. In: Proceedings of the First International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC ’98). (1998)

30. Raje, R., Bryant, B., Olson, A., Auguston, M., , Burt, C.: A quality-of-service-based frame-
work for creating distributed heterogeneous software components. Concurrency Comput:
Pract. Exper. 14 (2002) 1009–1034

Parallel Hybrid Sparse Solvers
Through Flexible Incomplete Cholesky Preconditioning�

Keita Teranishi and Padma Raghavan

Department of Computer Science and Engineering
The Pennsylvania State University

111 IST Bldg., University Park, PA 16802, USA
{teranish,raghavan}@cse.psu.edu

Abstract. We consider parallel preconditioning schemes to accelerate the conver-
gence of Conjugate Gradients (CG) for sparse linear system solution. We develop
methods for constructing and applying preconditioners on multiprocessors using
incomplete factorizations with selective inversion for improved latency-tolerance.
We provide empirical results on the efficiency, scalability and quality of our pre-
conditioners for sparse matrices from model grids and some problems from prac-
tical applications. Our results indicate that our preconditioners enable more robust
sparse linear system solution.

1 Introduction

Consider the solution of a sparse linear system Ax = b on a distributed-memory multi-
processor. When A is symmetric positive definite, preconditioned Conjugate Gradients
(CG) [5,15] can be used to solve the system. Although CG has scalable memory re-
quirements, its overall performance depends to a large extent on the scalability and
effectiveness of the preconditioner. A general purpose preconditioner can be based on
incomplete Cholesky with drop thresholds (ICT) [19] to compute L̂ such that L̂L̂T ≈ A.
ICT preconditioning is typically the method of choice on uniprocessors, but its scalable
parallel implementation poses many challenges. A major aspect concerns the latency-
tolerant application of the preconditioner at every CG iteration; we solve this problem
using ‘Selective Inversion’ (SI) [12,14,17] to replace inefficient distributed triangular
solution by effective matrix-vector multiplication. We now report on the overall perfor-
mance including parallel preconditioner construction and its application. We provide a
brief overview of our incomplete Cholesky preconditioning with SI in Section 2. We
provide some empirical results on the performance of our schemes in Section 3 followed
by the conclusions in Section 4.

2 Parallel Incomplete Cholesky with Selective Inversion (ICT-SI)

Our parallel incomplete Cholesky with SI uses many of the ideas from parallel sparse
direct solution. We start with a good fill-reducing strategy such as minimum-degree and

� This work was supported in part by the National Science Foundation through grants ACI-
0102537, EIA-0221916, and DMR-0205232.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 637–643, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

638 Keita Teranishi and Padma Raghavan

nested dissection [3,7]; the latter also helps provide a natural data partitioning for the
parallel implementations. We then compute an approximate L̂ corresponding to the true
factor L for the given ordering.

The parallel factorization and triangular solution of L̂ is guided by the traversal of
the elimination tree [9] in conjunction with supernodes [10,11]. The elimination tree
represents the data dependency between columns during factorization; a supernodal
tree is a compact version of this tree. Chains in the elimination tree represent a set of
consecutive columns of the factor with the same nonzero structure. In a supernodal tree
these chains are coalesced into a single supernode. During factorization, dense matrix
techniques can be used for columns in a supernode to improve performance through
effective cache-reuse.

Our ICT factorization is based on the left-looking variant of sparse factorization,
which has been regarded as a memory-efficient scheme compared to the multifrontal
approach [11]. During incomplete factorization some nonzero elements are dropped
based on a threshold test. Consequently, the column dependencies and the structure for
supernodes derived from the ordered coefficient matrix are no longer exact; the factor
comprises sparse columns instead of small dense submatrices. However, that structure
still enables managing the implementation of a single scheme that can (through dropping)
cover the entire range of fill-in to meet a variety of preconditioning needs.

Our parallel implementation takes advantage of individual subtrees which are rooted
at the logP level of the tree to achieve coarse-grain parallelism as shown in Figure 1 for
P = 4. Incomplete factorization associated with these subtrees proceeds independently
and in parallel in a local-phase of computations. At levels above, each supernode is
processed by multiple processors using data-parallel dense/blocked operations. At each
such, supernode with computations distributed across multiple processors, columns of
the incomplete factor are computed by a fan-in scheme with asynchronous communi-
cation. This technique allows each processor to overlap the computation of its local
elements with interprocessor communication to achieve greater efficiency.

A major performance limitation concerns the parallel application of such ICT pre-
conditioners. At each CG iteration a parallel triangular solution is required. However,
when parallel substitution is used for such triangular solution, the performance can de-
grade considerably due to the relatively large latencies of interprocessor communication.
More precisely, the triangular solution at a supernode a involves:[

La
11

La
21

] [
xa

1

]
=

[
ba

1

ba
2

]
.

The submatrices La
11 and La

21 (L̂a
11 and L̂a

21 for incomplete factor) are portions of
the factor associated with supernode a; La

11 is lower-triangular. Parallel substitution is
performed to obtain xa

1 using La
11 and ba

1; next ba
2 is updated as b2−L22x1 and used

in an ancestor supernode.
The SI scheme [12,14,17] overcomes the latency problem of substitution through

parallel matrix inversion ofLa
11 in the distributed supernodes. Thus, parallel substitution

is replaced by the sparse matrix vector multiplication x1 ← L−1
11 b1. This incurs extra

computational cost during preconditioner construction, but the improvements in applying

Parallel Hybrid Sparse Solvers 639

In incomplete factorization, these

drops.
matrices will not be dense due to

Procs 0,1 Procs 2, 3

Distributed Phase

Local PhaseProc 0 Proc 1 Proc 2 Proc 3

Procs 0, 1 ,2 ,3

(Node Parallelism)

(Tree Parallelism)

0 1 2 3

3210

Fig. 1. Parallel ICT factorization on 4 processors using a supernodal tree

the preconditioner can be substantial [14,17]. Our implementation of ICT-SI is based on
an incomplete version of the parallel direct solver DSCPACK [13].

3 Empirical Results

We now provide some preliminary results on the performance of our parallel ICT-SI.
Additionally, we include for purposes of comparison, results on the performance of
level-0 incomplete Cholesky (ICF(0)) [6], and sparse approximate inverse (Parasails) [2]
preconditioners. Our experiments were performed on a cluster with 2.4 Ghz Intel Xeon
processors and a Myrinet interconnect using parallel CG implementation in the PETSc
package [1].

We first report scaled performance when the problem size is scaled with the proces-
sors to keep the arithmetic cost of factorization fixed per processor. We used a series of
sparse matrices from model grids as shown in Table 1. Figure 2 shows the total time
for a single solution and for a sequence of ten right-hand side vectors. The number of
iterations, a measure of effectiveness of the preconditioner, is shown in the left half of
Figure 3. ICT-SI typically results in lower iterations compared to other methods, but the
cost of preconditioner construction is relatively high. We conjecture that the scheme is
more appropriate when the cost of preconditioner construction can be amortized over a
sequence of solutions for different right hand side vectors (as shown in Figure 2 for a
sequence of 10 solutions).

640 Keita Teranishi and Padma Raghavan

Table 1. Description of sparse test matrices from a model 2 dimensional finite-difference formu-
lation; K is the grid size, N is the matrix dimension, |A| is the number of nonzeroes in the matrix,
and |L| is number of nonzeroes in L where A = LLT

Processors (P) K N |A| |L|
(106) (106)

1 200 40000 0.119 1.092

2 250 62500 0.187 1.819

4 312 97344 0.291 2.976

8 392 153664 0.469 4.959

16 490 240110 0.326 3.399

32 618 386884 1.159 13.774

Table 2. Description of sparse matrices. N is the matrix dimension and |A| is the number of
nonzeroes in the matrix

Matrix N |A| Description

augustus5 134,144 645,028 Diffusion equation from 3D mesh

engine 143,571 2,424,822 Engine head, Linear tetrahedral elements

augustus7 1,060,864 9,313,876 Diffusion equation from 3D mesh

We next report on the performance of ICT-SI on three matrices from practical ap-
plications, described in Table 2. The results for these three matrices are summarized
in Table 3. These results indicate that ICT-SI constructs good quality preconditioners
that can significantly reduce the number of CG iterations. However, preconditioner con-
struction costs are still relatively large. When the preconditioner is used for a sequence
of ten solutions, ICT-SI is the best performing method for all instances. For augustus7,
the largest matrix in our collection, we show solution times for one and ten right-hand
side vectors using 4–64 processors in Figure 3. These plots indicate that ICT-SI is an
effective solver when the costs of preconditioner construction can be amortized over
several solutions.

4 Conclusions

We have developed a parallel incomplete Cholesky preconditioner (ICT-SI) which can
accommodate the full range of fill-in to meet the preconditioning needs of a variety
of applications. Preconditioner construction in ICT-SI relies largely on the techniques
derived from efficient parallel sparse direct solvers. Efficient preconditioner application
is achieved by using ‘selective inversion’ techniques. The performance of ICT-SI on the
matrices from model two-dimensional grid problems compares well with that of sparse
approximate inverse preconditioners. However, the cost of preconditioner construction
dominates the overall cost of a single solution especially on larger numbers of processors.
The preconditioners produced by ICT-SI are quite effective when systems from practical
applications are considered. We expect ICT-SI to be useful in applications that produce

Parallel Hybrid Sparse Solvers 641

Table 3. Performance of parallel preconditioners on three large sparse systems from practical
applications. the column labeled ‘Mem’ indicates memory required as multiple of of that for the
coefficient matrix. DNC indicates that the method does not converge within 2000 iterations. The
best performing instance is shown in boldface

Method Number of Processors

1 2 4 8 16

Time Its Time Its Time Its Time Its Time Its

augustus5 Matrix size: 134,144 Nonzeroes: 645,028

IC(0) 119.3 593 125.7 846 72.5 595 36.5 648 24.7 633

Parasails 28.1 306 24.4 305 18.7 305 9.2 317 5.1 306

ICT-SI 16.2 62 12.1 63 11.0 69 8.2 74 6.2 79

10 right-hand side vectors

IC(0) 698.5 5925 1018.7 8623 474.3 5924 241.6 6485 152.9 6309

Parasails 217.4 3324 196.3 3342 145.5 3340 66.92 3335 36.8 3344

ICT-SI 65.27 624 44.90 630 35.26 692 24.0 740 20.1 740

engine Matrix size: 143,571 Nonzeroes: 2,424,822

IC(0) 239.9 1626 168.5 1707 114.4 1576 99.5 1643 73.8 1699

Parasails 125.9 1036 89.8 1034 62.89 1037 44.9 1036 33.4 1036

ICT-SI 48.1 282 35.2 252 35.1 287 45.2 306 34.2 308

10 right-hand side vectors

IC(0) 2279.1 16260 1577.3 16958 1104.9 16457 901.8 16337 659.7 17014

Parasails 1166.3 11281 837.6 11329 573.1 11247 408.0 11284 288.2 11277

ICT-SI 480.1 3321 240.4 2591 179.6 2862 165.9 3047 132.4 3095

4 8 16 32 64

augustus7 Matrix size: 1,060,864 Nonzeroes: 9,313,876

IC(0) 1569.1 1508 633.0 1238 396.2 1367 193.8 1363 118.7 1377

Parasails 378.8 692 186.7 692 103.1 692 49.1 691 25.9 691

ICT-SI 473.2 145 539.9 149 372.9 157 275.5 167 135.4 194

10 right-hand side vectors

IC(0) 12652.3 15074 1307.5 15866 723.3 15875 359.7 15892 179.8 15819

Parasails 3478.8 6931 1703.6 6924 934.8 6919 585.7 6924 228.8 6911

ICT-SI 895.7 1449 802.9 1493 542.9 1591 406.5 1672 245.4 1937

ill-conditioned sparse matrices especially when the preconditioner can be re-used for a
sequence of solutions.

We are currently working to reduce the costs of preconditioner construction [16,18]
in our parallel ICT-SI scheme by using sparse approximate inversion [2,4,8] instead of
explicit inversion within supernodes.

642 Keita Teranishi and Padma Raghavan

1 2 4 8 16 32
0

1

2

3

4

5

6

7

8

9

10

Processors

S
e

c
o

n
d

s
Execution time

ICF(0)
Parasails(1)
ICT−SI(0.01)

1 2 4 8 16 32
0

10

20

30

40

50

60

70

80

90

100

Processors
S

e
c
o

n
d

s

Execution time

ICF(0)
Parasails(1)
ICT−SI(0.01)

Fig. 2. Total execution time for scaled 2-dimensional grids for a single (left) and ten (right) right-
hand side vectors

1 2 4 8 16 32
0

100

200

300

400

500

600

700

800

900

Processors

It
e

ra
ti
o

n
s

Number of iterations

ICF(0)
Parasails(1)
ICT−SI(0.01)

4 8 16 32 64
0

1000

2000

3000

4000

5000

6000

7000

Processors

S
e

c
o

n
d

s

Execution time

ICF(0)
Parasails(1)
ICT−SI(0.01)

Fig. 3. The number of iterations for convergence of CG for scaled 2-dimensional grids (left) and
the execution time for ten solutions for augustus7 (right)

Acknowledgments

We gratefully acknowledge several useful discussions with Barry Smith. We thank
Michele Benzi for providing sparse matrices from his collection. We also thank the
Mathematics and Computer Sciences Division at the Argonne National Laboratory for
allowing us to use their network of workstations.

Parallel Hybrid Sparse Solvers 643

References

1. BALAY, S., GROPP, W. D., MCINNES, L. C., AND SMITH, B. F. PETSc users manual.
Tech. Rep. ANL-95/11 - Revision 2.1.1, Argonne National Laboratories, 2002.

2. CHOW, E. Parallel implementation and practical use of sparse approximate inverse precon-
ditioners with a priori sparsity patterns. Int. J. High Perf. Comput. Apps. 15 (2001), 56–74.

3. GEORGE, A., AND LIU, J. W.-H. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

4. GROTE, M. J., AND HUCKLE, T. Parallel preconditioning with sparse approximate inverses.
SIAM J. Sci. Comput. 18, 3 (1997), 838–853.

5. HESTENES, M. R., AND STIEFEL, E. Methods of conjugate gradients for solving linear
systems. National Bureau Standard J. Res. 49 (1952), 409–436.

6. JONES, M., AND PLASSMANN, P. The efficient parallel iterative solution of large sparse
linear systems. In Graph Theory and Sparse Matrix Computations, A. George, J. R. Gilbert,
and J. W. H. Liu, Eds., vol. 56 of IMA. Springer-Verlag, 1994, pp. 229–245.

7. KARYPIS, G., AND KUMAR, V. A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. Journal of Parallel and Distributed Computing 48, 1 (1998), 71–95.

8. KOLOTILINA, L. Y., AND YEREMIN, A. Y. Factorized sparse approximate inverse precon-
ditionings. I. Theory. SIAM J. Matrix Anal. Appl. 14, 1 (1993), 45–58.

9. LIU, J. W.-H. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal.
Appl. 11, 1 (1990), 134–172.

10. LIU, J. W.-H., NG, E., AND PEYTON, B. W. On finding supernods for sparse matrix ccom-
putation. SIAM J. Matrix Anal. Appl. 14, 1 (1993), 242–252.

11. NG, E. G., AND PEYTON, B. W. Block sparse Cholesky algorithm on advanced uniprocessor
computers. SIAM J. Sci. Comput. 14 (1993), 1034–1056.

12. RAGHAVAN, P. Efficient parallel triangular solution using selective inversion. Parallel
Processing Letters 9, 1 (1998), 29–40.

13. RAGHAVAN, P. DSCPACK: Domain-separator codes for solving sparse linear systems. Tech.
Rep. CSE-02-004, Department of Computer Science and Engineering, The Pennsylvania State
University, 2002.

14. RAGHAVAN, P., TERANISHI, K., AND NG, E. G. A latency tolerant hybrid sparse solver
using incomplete Cholesky factorization. Numer. Linear Algebra Appl. 10 (2003), 541–560.

15. SAAD, Y. Iterative method for sparse linear systems, second ed. SIAM, Philadelphia, PA,
2003.

16. TERANISHI, K. Scalable Hybrid Sprase Lienar Solvers. PhD thesis, Department of Computer
Science and Engineering, The Pennsylvania State University, 2004.

17. TERANISHI, K., RAGHAVAN, P., AND NG, E. A new data-mapping scheme for latency-
tolerant distributed sparse triangular solution. In SuperComputing 2002 (2002), pp. 238–247.

18. TERANISHI, K., RAGHAVAN, P., SUN, J., AND MICHARELIS, P. A hybrid preconditioner
for sparse systems from thermo-mechanical applications. Intl. J. Numerical Methods in En-
gineering (Submitted).

19. ZLATEV, Z. Use of iterative refinement in the solution of sparse linear systems. SIAM J.
Numer. Anal. 19 (1982), 381–399.

Parallel Heuristics for an On-Line Scientific Database
for Efficient Function Approximation�

Ivana Veljkovic1 and Paul E. Plassmann2

1 Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802, USA

veljkovi@cse.psu.edu
2 The Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA 24061, USA
plassmann@vt.edu

Abstract. An effective approach for improving the efficiency of multi-scale
combustion simulations is the use of on-line scientific databases. These databases
allow for the approximation of computationally expensive functions by archiving
previously computed exact values. A sequential software implementation of these
database algorithms has proven to be extremely effective in decreasing the running
time of complex reacting flow simulations. To enable the use of this approach on
parallel computers, in this paper we introduce three heuristics for coordinating the
distributed management of the database. We compare the performance of these
heuristics on two limiting case test problems. These experiments demonstrate that
a hybrid communication strategy offers the best promise for a large-scale, parallel
implementation.

1 Introduction

With a new generation of supercomputers, such as the Earth Simulator and Blue Gene,
and the availability of commodity parallel computers, such as Beowulf clusters, the
computational power available to scientists today is immense. As a result, the physical
models that can be simulated on these computers can be extremely complex and sophis-
ticated. Nonetheless, the complete multi-scale simulation of many phenomena can still
be computationally prohibitive. For example, in combustion simulations, the inclusion
of detailed chemistry with a Computational Fluid Dynamics (CFD) simulation that ac-
curately models turbulence can be intractable. This difficulty appears because a detailed
description of the combustion chemistry usually involves tens of chemical species and
thousands of highly nonlinear chemical reactions. The numerical integration of these
systems of differential equations is often stiff with time-scales that can vary from 10−9

seconds to 1 second. Solving the conservation equations for such chemically reacting
flows, even for simple, two-dimensional laminar flows, with this kind of chemistry is
computationally expensive [1]. For more complex reacting flows, especially those in-
volving turbulence effects, calculations that involve detailed chemistry are typically so

� This work was supported by NSF grants CTS-0121573, ACI–9908057, and DGE–9987589 and
ACI-0305743.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 644–653, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Parallel Heuristics for an On-Line Scientific Database 645

complex and demanding that they often exceed computational resources of today’s most
powerful parallel computers.

One approach to address this problem involves the implementation of a specialized
database to archive and retrieve accurate approximations to repetitive expensive calcula-
tions. That is, instead of solving the equations at every point required by the simulation,
one can solve it for some significantly smaller number of points and interpolate these
solutions to obtain approximations at nearby points. This approach was originally pro-
posed by Pope for combustion simulations [2]. In his paper Pope proposed to tabulate
previously computed function values; when a new function value is required, the set of
previously computed values is searched and, if possible, the function is approximated
based on these values. A mechanism based on ellipsoids of accuracy was introduced
to estimate the error of the function approximations retrieved from the tabulation. In
this manner, the tabulation scheme attempts to keep this error within a user-specified
tolerance.

This approach also has the potential to be used in other application areas. For exam-
ple, it could be used in radiative heat transfer calculations involving non-gray radiation
models—when the radiative properties have a strong wavelength dependence. With these
models, frequent, computationally expensive evaluations of the absorption coefficient
as a function of temperature, pressure, and mass fraction of chemical species and wave-
length are required. These coefficients could be similarly archived and queried using this
database approach. Another potential application is the modeling of biological systems,
such as the interaction of viruses, antibodies and cells, via the solution of systems of
differential equation. Such systems also lead to extremely stiff equations. We are inves-
tigating the potential use of this database approach to improve the efficiency of such
calculations.

In previous work we introduced a sequential algorithm that extended Pope’s approach
in several directions [3]. First, we introduced a dynamic updating of the database based
on usage statistics to accommodate non-steady state simulations. Second, we developed
a geometric partitioning algorithm that guarantees the retrieval of a database entry if
it satisfies the error tolerance for the function approximation. These algorithms are
implemented in the software system DOLFA.

Because of the importance of the use of parallel computers to solve large-scale com-
bustion problems, it is extremely desirable to develop a parallel version of this sequential
algorithm. In previous work we proposed an a approach for distributing the function
database and introduced three communication strategies for addressing load balancing
problems in the parallel implementation [4]. In this paper we introduce a detailed for-
mulation of these three communication heuristics and present computational results for
two limiting cases that demonstrate the advantage of a proposed hybrid strategy.

The remainder of our paper is structured as follows. In Section 2we briefly review our
sequential algorithm as implemented in the software package DOLFA [3]. In Section
3 we describe the initial parallel implementation of DOLFA as presented in [4]. In
this section we also present a detailed formulation of three proposed communication
heuristics. Finally, in Section 4 experimental results are presented showing the parallel
performance of our three proposed load balancing strategies that illustrates the advantage
of a hybrid communication heuristic.

646 Ivana Veljkovic and Paul E. Plassmann

2 The Sequential Scientific Database Algorithm

The function values to be computed, stored, and approximated by the database are n-
dimensional functions of m parameters, where both n and m can be large (in the 10’s
or 100’s for typical combustion problems). We denote this function as F (θ) which can
be stored as an n-dimensional vector and where the parameters θ can be represented
by an m-dimensional vector. The sequential database algorithm works by storing these
function values when they are directly (exactly) computed. If possible, other values are
approximated using points stored in the database. In addition to the function values, the
database stores other information used to estimate the error based on an Ellipsoid Of
Accuracy (EOA) as described in [3].

To illustrate how the sequential database works, when F (θ) is to be calculated
for some new point, we first query the database to check whether this value can be
approximated with some previously calculated value. For computational combustion, the
parameter space is often know as the composite space. The composite space consists of
variables that are relevant for the simulation of a chemical reaction, such as temperature,
pressure and mass fractions of chemical species.

 {X}

X
o

p1
 {X} {Y,X}

X
Y

p1

o

o

p1

p2 {Y,X,Z}

{X} {Z,X}

X

Z

Y

p1
p2

o

o

o

Fig. 1. The generation of a BSP tree and the resulting spatial decomposition of a two-dimensional
domain from the insertion of three data points. Arrows illustrate the orientation of the cutting
planes and the ovals represent the EOAs. Figure taken from [3]

In DOLFA, the database is organized as a Binary Space Partition (BSP) tree to enable
the efficient search of the composite space. Internal nodes in the BSP tree denote planes
in the m-dimensional space. Terminal nodes (leafs) represent convex regions determined
by the cutting planes on the path from the given terminal node to the root of the BSP
tree. This construction is illustrated in Fig. 1. For each region we associate a list of
database points whose EOAs intersect the region. In addition, to avoid storing points
that are unlikely to be used for approximation again, we employ techniques based on
usage statistics that allow us to remove such points from the database.

The software system DOLFA has demonstrated significant speedups for combustion
applications. For example, the software was tested with a code that implements a detailed
chemistry mechanism in an HCCI piston engine [5]. For this application, when compared
to simulation results based only on direct integration insignificant effects on the accuracy
of the computed solution were observed.

Parallel Heuristics for an On-Line Scientific Database 647

3 The Parallel Database Algorithm

In developing a parallel version of the database, perhaps the most straightforward ap-
proach would be to use the sequential version on each processor, without any inter-
processor collaboration in building a distributed database. This approach would work;
however, it suffers from two significant drawbacks. First, this approach cannot take
advantage of direct calculations done on other processors—hence, we would expect
significant redundant function calculations. Second, the memory required to store the
database can be significant—without partitioning the database among processors, we
cannot take full advantage of the total memory available on a parallel computer. In this
section, we present parallel algorithms that address each of these issues.

The importance of addressing the first issue of redundant evaluations becomes ob-
vious if we compare typical times for function evaluation and interprocessor communi-
cation. Namely, for the HCCI combustion simulation which was considered earlier in
Section 2, one function evaluation takes 0.3 seconds (an ODE system with 40 chem-
ical species). On the other hand, on the Beowulf cluster where our experiments were
conducted the time to communicate the computed results (40 double precision values)
is approximately 2.7 microseconds. The relative difference in times is significant, and
even if we consider all the synchronization issues, it is still important to design a parallel
approach that will coordinate direct calculations between processors to minimize the
number of redundant direct calculations. Thus, our goal is to design a parallel imple-
mentation of DOLFA that minimizes the total number of direct calculations performed
on all processors. However, this minimization must be obtained while maintaining good
load balancing and while minimizing the total interprocessor communication.

The parallel algorithm consists of two main parts. First, the approach used for build-
ing the distributed (global) BSP tree and second, the heuristics developed for managing
interprocessor communication and the assignment of direct function evaluations. In next
two subsections we will discuss solutions to these two problems.

3.1 Building the Global BSP Tree

As with the sequential case, we typically have no a priori knowledge of the distribution
of queries within the search space. The global BSP tree has to be built on-line; it will be
partitioned into unique subtrees which are assigned to processors as illustrated in Fig. 2.
To achieve a well-balanced partitioning of the global BSP tree, we initially accumulate
a certain number of points in the database without constructing the BSP tree. The more
points we accumulate, the better chance that the distributed BSP tree will partition the
space in a well balanced manner, since the partitioning is based on more information
about the accessed space. On the other hand, the longer we wait before constructing the
global BSP tree, the greater the chance that we will do redundant direct calculations.

We must balance these two issues and attempt to design a strategy that will yield
sufficient information about the accessed space as early as possible. A formula based on
the average number of points in the database (total number of points divided with number
of processors) is used to determine when to build the BSP tree. After a sufficient number
of points is accumulated in this initial phase, our goal is to have enough information to
construct a BSP tree for the entire search space with reasonably balanced subtrees.

648 Ivana Veljkovic and Paul E. Plassmann

p4

T4T3T2T1

p1 p3p2

p2

p2

p1

p1

Fig. 2. On the left: an illustration of how the global BSP tree is partitioned among processors—each
processor owns a unique subtree of the global tree. On the right: an illustration of the “ping-pong”
communication between processors. Figure taken from [4]

These subtrees are computed by recursively decomposing the global search space
by introducing cutting planes that roughly equally divide the set of points in each sub-
region. The resulting subtrees (and their corresponding subregions) are then assigned
to individual processors. The choice of cutting planes is limited to coordinate planes
chosen by computing the dimension with maximum variance. As we mentioned before,
each processor owns its subtree but also has information about the portion of the search
space stored on every other processor in the environment. Therefore, the search for a
suitable point φ to use for approximation for point θ is conducted in a coordinated man-
ner between processors. More precisely, if the query point θ is submitted to processor i
but this point belongs to the subtree of processor j, processor i will be able to recognize
this fact. A simple model for the computational complexity of this initial phase of the
parallel database algorithm was developed in [4]. This is a one-time cost which is not
significant.

3.2 Managing Interprocessor Communication

Before each call to the database from the main driver application, all processors must
synchronize to be able to participate in global database operations. This synchronization
may be very costly if it is conducted often. For example, if the database is called with a
single point at a time as is done with the sequential version of DOLFA. Modifying the
DOLFA interface by allowing calls that are made with lists of query points instead of
one point at a time minimizes the synchronization overhead and enables more efficient
interprocessor communication.

Fortunately, in most combustion simulations, updates to the fluid mechanics variables
and chemical species mass fractions happen independently of one another on the mesh
subdomain assigned to each processor. More precisely, the chemical reaction at point P
at time t does not affect the chemical reaction at point Q at time t. Therefore, we can
pack the points for which we want to know function values into a list and submit it to
the database. The output is a list of function values at points given in the input list.

Based on our assumption that the function evaluation is relatively expensive, we
want to design a searching scheme that will minimize the number of direct evaluations
that must be performed. Whenever there is a possibility that another processor may be

Parallel Heuristics for an On-Line Scientific Database 649

able to approximate the function value at a given point, we would like to communicate
that query to that processor for processing. This means that, for a given query point X
submitted to processor p1, we have one of two possibilities. First, when point X belongs
to a subtree T 1 of p1 (see Fig. 2-left), we simply proceed with the sequential algorithm.
Second, the more challenging case is when the point X belongs to a subtree of some
other processor, say p2, X ∈ T 2. As p1 stores some number of points that belong to
processor p2 (for example, from the first phase of computation when BSP tree is not yet
built) p1 may still be able to approximate this query. If it cannot, the processor sends
the point to processor p2. If p2 can approximate it, it sends back the result. But, if p2
also cannot satisfy the query, the open question is to determine which processor should
conduct the direct integration.

The biggest issue to consider in answering this question is to determine the effect
on load balancing between processors. It may happen that, for a particular time step, all
the points for which we want to calculate function values belong to a small subregion of
the accessed space. This effect is common in many combustion simulations. If the load
imbalance is large, we may loose the performance advantages gained by minimizing
the number of redundant direct calculations. Thus, the answer to the question: “Should
p1 or p2 conduct the direct calculation?” proves to be a crucial part of the parallel
implementation of DOLFA.

We introduce the following notation to describe the three heuristics proposed in
this paper. We denote by L(i) the list of points submitted to processor pi. This list is
decomposed in sublistsL(i) =

⋃n
j=1 L

(i)
j whereL(i)

j is the portion of the list that belongs

to subtree Tj of processor pj , L(i)
j = L(i)

⋂
Tj . So every processor pi will have three

different types of list to deal with:

– B(i) = L(i)
i – the list of points that belong to the subtree of pi. This is the list of the

points that processor pi has to calculate.
– N (i) =

⋃
j �=i L

(i)
j – the list of points that belong to the subtrees of other processors.

This is the list of the points that processor pi will send off to other processors.
– E(i) =

⋃
j �=i L

(j)
i – the list of points that pi received from other processors since

they belong to its subtree Ti.

With C(i) we denote the list of points for which processor pi does the direct calculations.
The open question remains: “If X belongs to L(1)

2 – it was submitted to p1 for
calculation but it belongs to a subtree T2 of processor p2 – which processor will calculate
F(X)?". We compare three approaches for solving this problem as described below.

Approach 1. The owner of the subtree (p2 in the above example) does the direct integra-
tion. In this approach, processor pi does the direct calculations for all the points in
the lists B(i) and E(i), C(i) = B(i)

⋃
E(i). This approach leads to maximum retrieval

rates but introduces a significant load imbalance. Because problems in combustion
chemistry usually include turbulence and nonhomogeneous media, this approach
can result in significant load imbalance. However, as this approach should minimize
the number of direct calculations, it can be used as a benchmark determining a lower
bound for the overall number of direct calculations. This lower bound can be used
to compare with other approaches to estimate the number of redundant function
evaluations.

650 Ivana Veljkovic and Paul E. Plassmann

Approach 2. The processor to which the query was submitted (p1 in the above ex-
ample) does the direct calculations. In this approach, processor pi does the direct
calculations for all the points in the list B(i) and for some of the points in the list
N (i), where C(i) = B(i)

⋃
N̄ (i) (bar denotes a subset of the list). This approach

may mitigate the load imbalance, but it will introduce a communication overhead
as we have additional two-way communication. This communication would consist
of processor p2 letting processor p1 know that it cannot approximate F (X) and
processor p1 returning to p2 the calculated F (X) together with some other items
needed to calculate the ellipsoid of accuracy discussed in subsection 2. We describe
this communication pattern as a “ping-pong," as illustrated in the right of Fig. 2. A
problem with this approach is a significant reduction in retrieval rates. For example,
lists on processors p3 and p4 may contain points that are close to X and that could
be approximated with F (X). In approach 1, we would have only one direct calcu-
lation for F (X). In this approach, since p2 will send off point X back to original
processors to calculate it (in this case, p1, p3 and p4), we would have these three
processors redundantly calculate F (X).

Hybrid Approach. We consider a hybrid version combining the best of the two previous
approaches. In this approach, processor pi does the direct calculations for all the
points in the list B(i) and for some of the points in the lists N (i) and E(i), where
C(i) = B(i)

⋃
N̄ (i)

⋃
Ē(i) (bar denotes a subset of the list). Processor pi decides

whether to calculate F (X) for some X ∈ E(i) based on the average number of direct
retrievals in the previous iteration and additional metric parameters. In particular,
processor pi can predict how many calculations will it have in the B(i) and N (i)

list—denote this number with avgLocal. The number of direct calculations can vary
substantially in the course of computation; therefore, our prediction has to be local
and we calculate it based on the two previous iterations. Processor pi also knows the
average number of direct retrievals (over all processors) in the previous iteration—
denote it with avgDirect. Then, processor pi will do no more than avgExtra =
avgDirect− avgLocal direct calculations on the E(i) list.
For the rest of the points in the E(i) list, pi will send them back to the original
processors to calculate them, using the “ping-pong" communication model. Based
on this decision, F (X) is either computed on this processor or sent to the original
processor for evaluation.

4 Experimental Results

We have designed a test application that mimics typical combustion simulations to test the
performance of our parallel implementation. This application mimics a two-dimensional
laminar reacting flow. The model parameters are the following: the number of time steps
is 20, the mesh size is 50 × 50 and the vector size (size of query point) is 10. The user-
defined tolerance is 0.01 and it takes roughly 0.1 second to perform one direct evaluation.
Our experiments were run on a parallel Beowulf cluster with 81 AMD MP2000+ dual
processor nodes, 1 GB memory per node, and a high-speed Dolphin interconnection
network.

We ran two limiting case experiments which we refer to as Experiments 1 and 2.
For Experiment 1, each processor gets a different domain on which to calculate. Thus,

Parallel Heuristics for an On-Line Scientific Database 651

1 2
0

1000

2000

3000

4000

5000

6000

7000

8000
32 processors,CASE 1

Experiment

M
ax

 −
 M

in
 (

nu
m

be
r

of
 d

ire
ct

 c
al

cu
la

tio
ns

)

Version 1
Hybrid
Version 2
No Communication

1 2
0

1

2

3

4

5

6

7

8

9
x 10

4 32 processors,CASE 1

Experiment

O
ve

ra
l n

um
be

r
of

 d
ire

ct
 c

al
cu

la
tio

ns

Version 1
Hybrid
Version 2
No Comm

Fig. 3. Left: Difference between the maximum and minimum number of direct calculations across
the parallel environment. Load imbalance is obvious for algorithm version 1. Right: Overall
(summed over all processors) number of direct calculations across the parallel environment The
number of redundant calculations is very high for the case when we have no communication
between processors

for this case, the number of direct calculations should be roughly a linear function of
the number of processors. For Experiment 2, each processor gets the same domain.
For this case the number of direct calculations should be roughly constant function of
the number of processors. The objective is to observe how will the load balancing and
communication patterns behave in these extreme cases.

We first compared the load balancing for each of the communication heuristics
described in the preceding section. Load balancing was measured by computing the
difference between the maximum and minimum number of direct calculations across
all processors. If this relative difference is near zero, this implies that roughly every
processor conducted the same amount of work over the entire calculation (however,
there may still be load imbalance at individual time-steps).

On the left of Fig. 3, we present the results for Experiments 1 and 2 run on 32 proces-
sors. As can be seen, version 1 has the largest load imbalance while the hybrid approach
achieves the best load balance. On the right of Fig. 3 we compare the total number of
direct calculations (summed over all processors in the environment) for Experiments 1
and 2 run on 32 processors. As expected, we observe that the no-communication imple-
mentation has a significant number of redundant calculations compared to any version
of the parallel algorithm.

In the next series of simulations, we keep the load constant as we increase the number
of processors. In Fig. 4 we compare the average overhead as a function of the number
of processors used for the four strategies (version 1, hybrid approach, version 2 and
no-communication) for Experiment 1 (left) and Experiment 2 (right). The overhead is
calculated as the difference between the overall time spent performing database oper-
ations and time to do the direct calculations. For the Experiment 1, where the overall
number of direct calculations is roughly a linear function of number of processors, the
computational overhead is unacceptable for version 1 as it increases as the number of

652 Ivana Veljkovic and Paul E. Plassmann

4 8 16 32
0

50

100

150

200

250

300

350

400
EXPERIMENT 1:Average overhead time (Σ Toverh

i
)/p

Processor number

A
ve

ra
ge

 o
ve

rh
ea

d
tim

e
(s

ec
on

ds
) Hybrid case

Version 1
Version 2

4 8 16 32
0

20

40

60

80

100

120

140

160

180

200
EXPERIMENT 2: Average overhead time (Σ Toverh

i
)/p

Processor number

A
ve

ra
ge

 o
ve

rh
ea

d
tim

e
(s

ec
on

ds
)

Hybrid case
Version 1
Version 2

Fig. 4. Average time overhead as a function of number of processors for our 4 schemes. Version
1 has a prohibitive overhead

4 8 16 32
100

150

200

250

300

350

400

450

500
EXPERIMENT 1: Average execution time (Σ T

i
)/p

Processor number

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Hybrid case
Version 1
Version 2
No Comm

4 8 16 32
100

120

140

160

180

200

220

240

260

280
EXPERIMENT 2: Average execution time (Σ T

i
)/p

Processor number

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Hybrid case
Version 1
Version 2
No Comm

Fig. 5. Average execution time as a function of number of processors for our 4 schemes. Hybrid
version and version 2 exhibit scalability. However, version 1 does a better job in minimizing the
number of direct calculations

processors increase. Therefore, even though we observe on the right of Fig. 3 that version
1 minimizes the overall number of direct calculations better than any other scheme, the
load imbalance is high (Fig. 3,left) and this scheme fails to meet our goals.

However, for Experiment 2, the overhead for version 1 is roughly constant which
implies that this scheme appears to be more scalable. We expect this approach will work
well for large numbers of processors when we know that the number of direct calculations
is a slowly growing function of number of processors. Because we expect that real-time
applications will be more like the extreme situation described in Experiment 1, version
1 is in our opinion not a feasible parallel scheme. But as it has some limiting properties,
it can be used for comparison to other schemes that we design. We also notice that the
overhead is roughly constant for the hybrid approach.

In Fig. 5 we compare the average execution time as a function of the number of
processors for the four strategies with Experiment 1 shown on the left and Experiment

Parallel Heuristics for an On-Line Scientific Database 653

2 on the right. If we compare Figs. 4 and 5, we note that the overhead time is actually
dominating the running time for version 1. This effect also demonstrates that version
1 is not a practical scheme for communication for our on-line database. On the other
hand, we notice that the average execution time for version 2 and the hybrid scheme
becomes constant for Experiment 1 and almost constant for Experiment 2 as we increase
the number of processors. This suggest that these schemes should be scalable for larger
problems and numbers of processors. However, the hybrid version has an advantage over
version 2 since it performs less redundant direct calculations.

5 Conclusions

We showed in our previous work that sequential database system DOLFA can signifi-
cantly reduce the execution time for large, multi-scale simulations that involve frequent
expensive function evaluations and we introduced its parallel extension. In this paper,
we give a detailed description of the parallel algorithms that are crucial for the imple-
mentation and conduct experiments that demonstrate the performance of the proposed
schemes. Our approach is based on a partitioning of the search space and maintaining
a global BSP tree which can be searched on each processor in a manner analogous to
the sequential database algorithm. Several heuristics have been introduced which aim to
balance the computation of points which are not resolved locally. In the future work, we
plan to test our parallel implementation with an application that models reacting flow
with complex chemistry using a high-order, Direct Numerical Simulation (DNS) fluid
simulation. In addition, we plan to conduct experiments on larger numbers of processors
and further examine the scalability of these approaches.

References

1. U. Maas and S.B. Pope. Laminar flame calculations using simplified chemical kinetics based
on intrinsic low-dimensional manifolds. Twenty-Fifth Symposium (International) Combus-
tion/The Combustion Institute, pages 1349-1356, 1994.

2. S.B. Pope. Computationally efficient implementation of combustion chemistry using in situ
adaptive tabulation. Combustion Theory Modeling, Vol 1, pages 41-63, 1997.

3. I. Veljkovic, P.E. Plassmann and D.C. Haworth. A scientific on-line database for efficient
function approximation. Computational Science and Its Applications—ICCSA 2003, The
Springer Verlag Lecture Notes in Computer Science (LNCS 2667) series, Part I, pages 643–
653, 2003.

4. I. Veljkovic, P.E. Plassmann and D.C. Haworth. A parallel implementation of a scientific
on-line database for efficient function approximation. Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and Applications—PDPTA 2004,
Vol 1, pages 24-29, 2004.

5. M. Embouazza, D.C. Haworth and N. Darabiha. Implementation of detailed chemical mech-
anisms into multidimensional CFD using in situ adaptive tabulation: Application to HCCI
engines. Journal of Fuels and Lubricants 111, pages 1544-1559, 2002.

6. S.B. Pope. ISAT-CK User manual (Version 3.0). October 2000.

Software Engineering and Problem Solving
Environments for Scientific Computing:

An Introduction

Organizers: Jose C. Cunha1 and Omer F. Rana2

1 Universidade Nova de Lisboa, Portugal
jcc@di.fct.unl.pt
2 Cardiff University, UK

o.f.rana@cs.cardiff.ac.uk

As computational infrastructure becomes more powerful and complex, there is a greater
need to provide tools to support the scientific computing community to make better use
of such infrastructure. The abscence of such tools is likely to lead to users not taking full
advantage of newer functionality made available in computational infrastructure. It is
also unlikely that a user (a scientist or a systems administrator) will know the full range of
options available – or how a combination of configuration options from elements within
the infrastructure (such as compute or data servers) can be usefully specified. This issue
has two aspects: (1) allowing such functionality to be made available in tools without
requiring the user to know about the functionality – an example includes the ability to
support service discovery. In this case, the user does not really need to know where a
particular service instance resides, only that a particular type of service is available for
use within their application at a given point in time. (2) increasing the reliance of the
user on tools – an example includes the ability to automatically compose a set of services
based on the requirement outlined by a user. In this case, a user must place greater trust
in the infrastructure to deliver a particular result. This aspect has not been fully realised
within existing infrastructure, and remains an active research area. It involves both the
need to better integrate functionality made available in computational infrastructure,
but also requires a “culture change”, in the way that users perceive and make use of
computational infrastructure.

The last decade has also seen an unprecendented focus on making computational
resources sharable (parallel machines and clusters, and data repositories) across national
boundaries. Significantly, the emergence of Computational Grids in the last few years,
and the tools to support scientific users on such Grids (sometimes referred to as e-Science)
provides new opportunities for the scientific community to undertake collaborative, and
multi-disciplinary research. Often tools for supporting application scientists have been
developed to support a particular community (Astrophysics, Biosciences, etc), a common
perspective on the use of these tools and making them more generic is often missing.

On the other hand, the software engineering community in computer science often
aims to develop approaches which are more generic, and can be more widely deployable.
Research into Problem-Solving Environments (PSEs) is also an active and expanding
field, with the potential for a wide impact on how computational resources can be har-
nessed in a more effective manner. Ideally, PSEs should provide software tools and expert
assistance to a user, and serve as an easy-to-use interface to support the development and

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 654–655, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Software Engineering and Problem Solving Environments for Scientific Computing 655

deployment of scientific applications, thereby allowing the rapid prototyping of ideas,
and support for undertaking analysis on experimental data.

The aim of this minisymposium was to bring together experts who have experience
of developing (implementing and deploying) software tools to support application sci-
entists, and those who make use of these tools. A particular aim is to highlight lessons
learned – and, more importantly, identify good (and bad) approaches. The paper by Can-
nataro et al. describes different elements of a PSE, and why such elements are useful
to support. A key aspect is a focus on Grid-based PSEs. Schreiber describes the TENT
system – a PSE for use in Aerospace Engineering applications. The author describes how
new components may be integrated within the PSE, and issues that arise in this process.
The paper by Overeinder and Brazier, and by Jost et al. describe the inclusion of arti-
ficial intelligence based approaches within PSEs and the computational infrastructure.
Overeinder and Brazier report on the “AgentScape" project, which provides distributed
Operating Systems-like functionality for supporting computational services. The ele-
ments of the AgentScape system are outlined – with particular reference to the problem
solving capability of such infrastructure. Jost et al. report on an Expert System-based
approach for supporting a user in executing their application on an existing infrastructure
– based on dynamic performance data, and on the static structure of the application.

A General Architecture for Grid-Based PSE Toolkits

Mario Cannataro1, Carmela Comito2, Antonio Congiusta2, Gianluigi Folino3,
Carlo Mastroianni3, Andrea Pugliese2,3, Giandomenico Spezzano3,

Domenico Talia2, and Pierangelo Veltri1

1 Università “Magna Græcia” di Catanzaro
{cannataro,veltri}@unicz.it

2 DEIS, Università della Calabria
{apugliese,comito,congiusta,talia}@si.deis.unical.it

3 ICAR-CNR
{folino,mastroianni,spezzano}@icar.cnr.it

Abstract. A PSE Toolkit can be defined as a group of technologies within a soft-
ware architecture that can build multiple PSEs. We designed a general architecture
for the implementation of PSE toolkits on Grids. The paper presents the rationale
of the proposed architecture, its components and structure.

1 Introduction

Problem Solving Environments (PSEs) have been investigated over the past 30 years. In
the pioneering work “A system for interactive mathematics”, Culler and Fried in 1963
initiated to investigate automatic software systems for solving mathematical problems
with computers, by focusing primarily on applications issues instead of programming
issues. At that time, and later for many years, the term “applications” indicated scientific
and engineering applications that were generally solved using mathematical solvers
or scientific algorithms using vectors and matrices. More recently, PSE for industry,
commercial, and business applications are gaining popularity.

Nowadays, there is not a precise definition of what a PSE is. The following well-
known definition was given by Gallopoulos, Houstis, and Rice [7]:

“A PSE is a computer system that provides all the computational features nec-
essary to solve a target class of problems. [...] PSEs use the language of the
target class of problems.”

Moreover, they tried to specify the main components of a PSE by defining the
equation

PSE = Natural Language + Solvers + Intelligence + Software Bus

where

– Natural Language is specific for the application domain and natural for domain
experts;

– Solvers are software components that do the computational work and represent the
basic elements upon which a PSE is built;

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 656–664, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A General Architecture for Grid-Based PSE Toolkits 657

– Intelligence is useful for resource location, input assistance (with recommender
interfaces), scheduling, and analysis of results;

– Software Bus is the software infrastructure that supports the PSE and its use.

Other definitions that partially agree with the above definition have been given in
the last five years. According to Walker et al. [12],

“a PSE is a complete, integrated computing environment for composing, com-
piling, and running applications in a specific area.”

whereas Schuchardt and his co-authors defined PSEs as [11]

“problem-oriented computing environments that support the entire assortment
of scientific computational problem-solving activities ranging from problem for-
mulation to algorithm selection to simulation execution to solution visualization.
PSEs link a heterogeneous mix of resources including people, computers, data,
and information within a seamless environment to solve a problem.”

Finally, in 2003, Cunha defined a PSE as [6]

“an integrated environment for solving a class of related problems in an applica-
tion domain; easy to use by the end-user; based on state-of-the-art algorithms.
It must provide support for problem specification, resource management, exe-
cution services.”

The existence of several different definitions demonstrates that the term PSE is
perhaps too generic and not completely investigated for reaching a full consensus in the
scientific community.

The main motivation for developing PSEs is that they provide software tools and
expert assistance to the computational scientist in a user-friendly environment, thus al-
lowing for more rapid prototyping of ideas and higher research productivity. A PSE
provides users with an interface to high-performance computing resources, relieving
them from hardware/software details and letting them concentrate on applications; col-
laboration, visualization, and knowledge are the three main aspects that distinguish a
PSE from a mere interface.

As specified in the PSE definitions given above, a PSE is typically aimed at a partic-
ular computing domain. An advancement of the PSE concept is the PSE Toolkit concept.
A PSE Toolkit can be defined as a group of technologies within a software architecture
that can build multiple PSEs. A PSE Toolkit allows for building meta-applications from
preexisting modules, in order to meet the needs of specific solutions. It can support the
construction of problem solving environments on different domains allowing designers
to develop multidisciplinary PSEs.

PSEs can benefit from advancements in hardware/software solutions achieved in
parallel and distributed systems and tools. One of the most interesting models in the
area of parallel and distributed computing is the Grid. This paper presents a general
architecture for Grid-based PSE Toolkits. Section 2 describes the issues to be faced in
designing Grid-based PSE Toolkits and reviews some related work. Section 3 presents
the reference architecture, and Section 4 concludes the paper.

658 Mario Cannataro et al.

2 Grid-Based PSE Toolkits

As said before, PSEs are typically designed with a specific application domain in mind.
This approach simplifies the designer task and generally produces an environment that
is particularly tailored for a particular application class. On the other hand, this approach
does limit portability of solutions. That is, the resulting PSE cannot be generally used
in different application domains without re-designing and re-implementing most or all
of the environment. PSE portability, extensibility, and flexibility can be provided using
the PSE Toolkit model.

PSE Toolkit designers provide the most important components for building up PSEs
and a way to compose them when a specific PSE must be developed. Therefore, a PSE
Toolkit allows for developing domain-specific PSEs, thus creating meta-applications
from pre-existing modules on different domains.

PSE users, which often expect to be interfaced with a tightly integrated environment,
must have transparent access to disperse and de-coupled components and resources.
Dealing with distributed environments is another main issue in PSEs design and use.
Distributed and parallel computing systems are used for running PSEs to get high per-
formance and use distributed data, machines, or software modules.

The Grid is a high-performance infrastructure that combines parallel and distributed
computing systems. Its main goal is scalable and secure resource sharing and coordi-
nated problem solving in “dynamic, multi-institutional virtual organizations”. The role
of the Grid is fundamental, since it potentially provides an enormous amount of dispersed
hardware and software resources; such resources can be transparently accessed by a PSE
Toolkit. In Grid environments, instruments can be connected to computing, data, and
collaboration environments and all of these can be coordinated for simultaneous opera-
tion. Moreover, vast quantities of data can be received from instruments and simulations,
and catalogued, archived, and published. The Grid can thus provide a high-performance
infrastructure for running PSEs and, at the same time, a valuable source of resources
that can be integrated in PSEs and PSE Toolkits; therefore, Grid-aware PSEs can search
and use dispersed high performance computing, networking, and data resources.

Through the combination of PSE Toolkit issues and the exploitation of Grid features,
we have the possibility to design Grid-based PSE Toolkits. Some main issues to deal
with in designing a Grid-based PSE Toolkit are:

– common and domain-specific components identification;
– understanding and evaluation global properties;
– component integration;
– distribution of resources and components;
– component middleware, technology, and infrastructures;
– adaptivity and heterogeneity;
– standardization;
– efficiency.

Common components can be designed and implemented in a PSE Toolkit and they
can be used when a specific PSE must be developed. Design of application-bound com-
ponents and their interfaces must be considered in the Toolkit, but its implementation

A General Architecture for Grid-Based PSE Toolkits 659

will change depending on the PSE in which they will be included. Most of the PSE
Toolkit components are common. Specific components are:

– components that define goals, resources, actors of the application domain;
– ontology of the domain components;
– domain knowledge;
– performance history;
– the interface between the application domain and the PSE Toolkit.

Grid-based PSEs may succeed in meeting more complex applications requirements
both in terms of performance and solution complexity. They integrate heterogeneous
components into an environment that provides transparent access to distributed re-
sources, collaborative modeling and simulation, and advanced interfaces.

2.1 Related Work

In this section we give a short review of some existing Grid-based PSE Toolkits, so as
to illustrate their main characteristics and the different approaches adopted.

The WebFlow toolkit [1] is a Web-based three-tier system where high-performance
services are implemented on the Grid using the Globus toolkit [8]. WebFlow provides
a job broker to Globus, while Globus takes responsibility of actual resource allocation.
The WebFlow front-end allows specifying user’s task in the form of an Abstract Task
Descriptor (ATD). The ATD is constructed recursively and can comprise an arbitrary
number of subtasks. The lowest level, or atomic, task corresponds to the atomic operation
in the middle tier, such as instantiation of an object, or establishing interactions between
two objects through event binding. A mesh of CORBA-based servers gives the WebFlow
middle tier; one of these servers, the gatekeeper server, facilitates a secure access to the
system. The middle-tier services provide the means to control the life cycles of modules
and to establish communication channels between them. Services provided by the middle
tier include methods for submitting and controlling jobs, manipulating files, providing
access to databases and mass-storage, and querying the status of the system and users’
applications. WebFlow applications range from land management systems to quantum
simulations and gateway seamless access.

GridPort [9] is an open architecture providing a collection of services, scripts and
tools that allow developers to connect Web-based interfaces to the computational Grid
behind the scenes. The scripts and tools provide consistent interfaces between the under-
lying infrastructure and security, and are based on Grid technologies such as Globus and
standard Web technologies such as CGI and Perl. GridPort is designed so that multiple
application portals share the same installation of GridPort, and inherit connectivity to
the computational Grid that includes interactive services, data, file, and account manage-
ment, and share a single accounting and login environment. An interesting application
of GridPort is a system called Hot-Page, which provides users with a view of distributed
computing resources and allows individual machines to be examined about status, load,
etc.; moreover, users can access files and perform routine computational tasks.

The XCAT Grid Science Portal (XCAT-SP) [10] is an implementation of the NCSA
Grid Science Portal concept, that is a problem solving environment that allows scientists
to program, access and execute distributed applications using Grid resources which are

660 Mario Cannataro et al.

launched and managed by a conventional Web browser and other desktop tools. XCAT-
SP is based on the idea of an “active document” which can be thought of as a “notebook”
containing pages of text and graphics describing the structure of a particular application
and pages of parameterized, executable scripts. These scripts launch and manage an
application on the Grid, then its results are dynamically added to the document in the
form of data or links to output results and event traces. Notebooks can be “published” and
stored in web based archives for others to retrieve and modify. The XCAT Grid Science
Portal has been tested with various applications, including the distributed simulation
of chemical processes in semiconductor manufacturing and collaboratory support for
X-ray crystallographers.

The Cactus Code and Computational Toolkit [3] provides application programmers
with a high level set of APIs able to hide features such as the underlying communication
and data layers; these layers are implemented in modules that can be chosen at runtime,
using the proper available technology for each resource. Cactus core code and toolkits
are written in ANSI C, offer parallel I/O, checkpointing and recovery of simulations,
and provide users with an execution steering interface. Much of the Cactus architecture
is influenced by the vast computing requirements of its main applications, including
numerical relativity and astrophysics. These applications, which are being developed
and run by large international collaborations, require Terabyte and Teraflop resources,
and will provide an ideal test-case for developing Grid computing technologies for
simulation applications.

DataCutter [2] is an application framework providing support for developing data-
intensive applications that make use of scientific datasets in remote/archival storage
systems across a wide-area network. DataCutter uses distributed processes to carry out a
rich set of queries and application specific data transformations. DataCutter also provides
support for sub-setting very large datasets through multi-dimensional range queries.
The programming model of DataCutter is the filter-stream one, where applications are
represented by a collection of filters connected by streams, and each filter performs
some discrete function. A filter can also process multiple logically distinct portions of
the total workload. This is referred to as a unit-of-work, and provides an explicit time
when adaptation decisions may be made while an application is running.

The Knowledge Grid [5] is a software infrastructure for Parallel and Distributed
Knowledge Discovery (PDKD). The Knowledge Grid uses basic Grid services such as
communication, authentication, information, and resource management to build more
specific PDKD tools and services. Knowledge Grid services are organized into two
layers: core K-Grid layer, which is built on top of generic Grid services, and high level
K-Grid layer, which is implemented over the core layer. The core K-Grid layer comprises
services for (i) managing metadata describing data sources, data mining software, results
of computations, data and results manipulation tools, execution plans, etc.; (ii) finding
mappings between execution plans and available resources on the Grid, satisfying appli-
cation requirements. The high-level K-Grid layer comprises instead services for building
and executing PDKD computations. Such services are targeted to (i) searching, selec-
tion, extraction, transformation and delivery of data to be mined and data mining tools
and algorithms; (ii) generation of possible execution plans on the basis of application
requirements; (iii) generation and visualization of PDKD results.

A General Architecture for Grid-Based PSE Toolkits 661

Software/Hardware

Execution/Resource

Manager

Search/Discovery

System

Description

System

(Grid) Middleware

Metadata

Repository

PSE Toolkit

Component

Repository

Programming Environment

Graphical User Interface

Composition

Interface

C1

C4

C3

C2

Execution/Steering

Interface

C1

C4

C3

C2

Description

Interface

C1

…
…

C2

…
…

Fig. 1. A reference architecture of a PSE Toolkit

3 A Reference Architecture for a Grid-Based PSE Toolkit

As mentioned in the previous section, PSE portability, extensibility, and flexibility can
be provided through the use of a PSE Toolkit. In this section, we identify the main
components of a PSE Toolkit and describe how these components should interact to
implement PSEs in a distributed setting.

A minimal reference architecture of a PSE Toolkit should include:

– A Graphical User Interface;
– A Repository of usable components, including user-defined applications;
– A metadata-based Description System, possibly based on application-domain on-

tologies;
– A Metadata Repository, possibly including an ontology repository;
– A Search/Discovery System;
– An Execution/Resource Manager.

Figure 1 shows all these components and the interactions among them to compose
the architecture. In particular, the Component Repository represents a library of objects
used to build PSE applications, the Metadata Repository is a knowledge base describing
such library, whereas the remaining components are services used to search, design, and
execute PSE applications. Details of each component are now discussed.

662 Mario Cannataro et al.

Graphical User Interface. It allows for:

– The description of available components, the semi-automatic construction of the
associated metadata and their publishing. To this aim, the GUI interacts with the
Description System. These actions can be driven by the underlying ontology that
helps user in classifying components.

– The construction of applications and their debugging. For doing this, it goes through
the following steps:
1. Interaction with the Search and Discovery System for letting users pose queries

and collect results about available components potentially usable for the PSE
composition, or directly browse the metadata repository. As before, both query-
ing and browsing can be guided by ontology.

2. Design of an application through visual facilities.
3. Interactive validation and debugging of the designed application.
4. Invocation of the Execution Manager.

– The execution, dynamic steering of applications and the visualization of results. To
this end, the GUI interacts with the Execution Manager to monitor the execution
and to show the results, and it gives the user the possibility to steer the application.

– The storing of useful applications and results, annotated with domain knowledge. In
this way, applications and their associated domain knowledge can be shared among
PSE users.

In order to seamlessly integrate the facilities of external tools, the Graphical User
Interface must also allow for the direct use of their native GUIs. This capability is
fundamental, e.g., when external tools are provided through their native GUIs only, or
when their integration in the Toolkit’s GUI would result in excessive complexity.

Component Repository. The repository of usable components holds the basic ele-
ments/modules that are used to build a PSE. Examples of such components are soft-
ware tools, data files, archives, remote data sources, libraries, etc. The repository must
be able to integrate a possibly pre-existing one provided by the programming envi-
ronment used to implement the PSE Toolkit, also comprising components defined by
different languages and/or tools. The Component Repository must be able to manage
dynamic connection/disconnection of Grid resources offering components. In fact, in
this case computing nodes and network connections must be considered as components
that can be used in the implementation of a PSE. The component repository can include
complete user-defined applications that, when published in the repository, enhance the
PSE capability to solve specific problems.

Metadata Repository. The Metadata Repository stores information about components
in the Component Repository. Such information comprises component owners and
providers, access modalities, interfaces, performances (offered or required), usage his-
tory, availability and cost. For the description of component interfaces, the PSE Toolkit
provides an interface definition language (IDL) with which every component must com-
ply, in order to be usable by the Toolkit. Thus, a component provider either makes it
directly accessible with the IDL, or describes in the associated metadata how to trans-
late the invocations written using the Toolkit IDL into actions to be taken and/or into

A General Architecture for Grid-Based PSE Toolkits 663

invocations written in the native language of the component. Finally, also reusable solu-
tions, i.e. modules of applications for solving particular sub-problems, that are typical
for PSEs, can be managed and described as resources. The Metadata Repository can be
implemented by using a Domain Ontology, i.e. a conceptualization, in a standard format,
of component metadata, utilization, and relationships. Such ontology can be extended
to describe user-defined applications.

Description System. The Description System must be able to offer a clear description of
each element a PSE can be composed of; in the proposed architecture, it is based on the
Metadata Repository. An important issue to be considered for the Description System is
the use of ontologies for enriching the semantics of component descriptions. This layer
extends the metadata facilities and can provide the user with a semantic-oriented view
of resources. Basic services of the Description System are component classification
through taxonomies, component annotations, for example indicating which problem
they are useful for, and structured metadata description, for example by using standard,
searchable data. Whenever new components/applications are added to the Component
Repository, new knowledge is added to the Metadata Repository through the Description
System.

Search/Discovery System. The Search and Discovery System accesses the Metadata
Repository to search and find all the resources in the environment where the Toolkit
runs, which are available to a user for composing a PSE. While the implementation of
this system on a sequential machine is straightforward, in a parallel/distributed setting
the Search/Discovery System should be designed as a distributed service able to search
resources on a fixed set of machines. Moreover, in a Grid computing environment such a
system should be able to search over a dynamically changing heterogeneous collection of
computers. Basic services of the Search/Discovery System are: ontology-based searchof
components, that allows for searching components on the basis of belonging taxonomies
as well as specifying constraints on their functions, and the key-based search. The former
operates on a portion of the knowledge base selected through the ontology, whereas the
latter operates on the entire knowledge base.

Execution/Resource Manager. The PSE Toolkit Execution/Resource Manager is the
run-time support of generated PSEs. Its complexity depends on the components in-
volved in the PSE composition and in the hardware/software architecture used. The
Execution/Resource Manager must tackle several issues, e.g. the selection of the actual
component instances to be used, the suitable assignment of processes to heterogeneous
computing resources (scheduling), and the distributed coordination of their execution,
possibly adapting the running applications to run-time (unpredictable) changes in the
underlying hardware/software infrastructure. If a Grid computing architecture is consid-
ered, the Execution/Resource Manager, besides interaction with the software/hardware
system, has a tight connection with the Grid fabric environment and with the Grid mid-
dleware. Note that the Execution/Resource Manager is also responsible for performing
all the actions needed to activate the available components, driven by their metadata.
These actions can comprise, e.g., compiling a piece of code or a library before using
them, or launching a program onto a particular virtual machine. The execution manager

664 Mario Cannataro et al.

must have tight relationships with the run-time support of the programming languages
used for coding the components.

4 Conclusions

We have proposed a reference architecture for a Grid-based PSE Toolkit, whose main
characteristics are: (i) the existence of a knowledge base built around pre-existing com-
ponents (software and data sources); (ii) the composition of the application, conducted
through the searching and browsing of the knowledge base; and (iii) the distributed
and coordinated execution of the application on the selected distributed platform, that
can be a traditional distributed system or a Grid. A more complete description of the
architecture and of the related topics can be found in [4]. We are working to develop a
prototype version of the PSE toolkit for a Grid environment based on Globus Toolkit 3.
This will allow us also to investigate how to exploit Grid services for implementing the
PSE Toolkit functionality.

References

1. E. Akarsu, G. Fox, W. Furmanski, T. Haupt. Webflow - High-Level Programming Environment
and Visual Authoring Toolkit for High Performance Distributed Computing. Supercomput-
ing’98, Florida, November 1998.

2. M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz. DataCutter: Middleware for
Filtering Very Large Scientific Datasets on Archival Storage Systems. MASS2000, pages 119-
133. National Aeronautics and Space Administration, Mar. 2000. NASA/CP 2000-209888.

3. The cactus code website. http://www.cactuscode.org.
4. M.Cannataro, C. Comito, A. Congiusta, G.Folino, C. Mastroianni, A.Pugliese, G. Spezzano,

D. Talia, P. Veltri. Grid-based PSE Toolkits for Multidisciplinary Applications. RT-ICAR-
CS-03-10. ICAR-CNR Technical Report, October 2003.

5. M. Cannataro, D. Talia. KNOWLEDGE GRID: An Architecture for Distributed Knowledge
Discovery. Communications of the ACM, January 2003.

6. J. C. Cunha. Future Trends in Distributed Applications and PSEs. Talk held at the Euresco Con-
ference on Advanced Environments and Tools for High Performance Computing, Albufeira
(Portugal), 2003.

7. E. Gallopoulos, E. N. Houstis, J. Rice. Computer as Thinker/Doer: Problem-Solving Envi-
ronments for Computational Science. IEEE Computational Science and Engineering, vol.1,
n. 2, 1994.

8. The Globus Project. http://www.globus.org.
9. The Grid Portal Toolkit. http://gridport.npaci.edu.

10. S. Krishnan, R. Bramley, D. Gannon, M. Govindaraju, R. Indurkar, A. Slominski, B. Temko,
R. Alkire, T. Drews, E. Webb, and J. Alameda. The XCAT Science Portal. High-Performance
Computing and Networking Conference (SC), 2001.

11. K. Schuchardt, B. Didier, G. Black. Ecce - a Problem-Solving Environment’s Evolution to-
ward Grid Services and a Web Architecture. Concurrency and computation: practice and
experience, vol. 14, pages 1221-1239, 2002.

12. D. Walker, O. F. Rana, M. Li, M. S. Shields, Y. Huang. The Software Architecture of a
Distributed Problem-Solving Environment. Concurrency: Practice and Experience, vol. 12,
No. 15, pages 1455-1480, December 2000.

An Expert Assistant
for Computer Aided Parallelization

Gabriele Jost1,�, Robert Chun2, Haoqiang Jin1,
Jesus Labarta3, and Judit Gimenez3

1 NAS Division, NASA Ames Research Center
Moffett Field, CA 94035-1000, USA
{gjost,hjin}@nas.nasa.gov

2 Computer Science Department, San Jose State University
San Jose, CA 95192, USA

Robert.Chun@sjsu.edu
3 European Center for Parallelism in Barcelona

Technical University of Catalonia (CEPBA-UPC),
cr. Jordi Girona 1-3, Modul D6, 08034 – Barcelona, Spain

{jesus,judit}@cepba.upc.es

Abstract. The prototype implementation of an expert system was developed to
assist the user in the computer aided parallelization process. The system interfaces
to tools for automatic parallelization and performance analysis. By fusing static
program structure information and dynamic performance analysis data the expert
system can help the user to filter, correlate, and interpret the data gathered by the
existing tools. Sections of the code that show poor performance and require further
attention are rapidly identified and suggestions for improvements are presented
to the user. In this paper we describe the components of the expert system and
discuss its interface to the existing tools. We present a case study to demonstrate
the successful use in full scale scientific applications.

1 Introduction

When porting an application to a parallel computer architecture, the program developer
usually goes through several cycles of code transformations followed by performance
analysis to check the efficiency of parallelization. A variety of software tools have been
developed to aid the programmer in this challenging task. A parallelization tool will
usually provide static source code analysis information to determine if and how paral-
lelization is possible. A performance analysis tool provides dynamic runtime information
in order to determine the efficiency of time consuming code fragments. The programmer
must take an active role in driving the analysis tools and in interpreting and correlating
their results to make the proper code transformations to improve parallelism. For large
scientific applications, the static and dynamic analysis results are typically very complex
and their examination can pose a daunting task for the user. In this paper we describe the
coupling of two mature analysis tools by an expert system. The tools under consideration

� The author is an employee of Computer Sciences Corporation.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 665–674, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

666 Gabriele Jost et al.

are the CAPO [3] parallelization tool and the Paraver [12] performance analysis system.
The techniques described in this paper are applicable to many parallel programming
paradigms, but we will restrict our discussion to OpenMP [10] parallelization for shared
memory computer architectures.

OpenMP supports loop level parallelization in the form of compiler directives. The
program developer has to insert the directives and specify the scope of the variables.
The CAPO parallelization tool was developed to aid the programmer in this task. CAPO
automates OpenMP directive insertion into existing Fortran codes and allows user inter-
action for an efficient placement of the directives. This is achieved by use of extensive
interprocedural analysis from CAPTools [2] (now known as ParaWise) which was de-
veloped at the University of Greenwich. Dependence analysis results and other static
program structure information are stored in an application database. CAPO provides an
extensive set of browsers which allow the user to examine the information and to provide
additional information, such as values of runtime parameters. While this enables a very
precise analysis and the generation of highly efficient parallel code, it also introduces
challenges for the program developer: A full scale scientific application will usually
contain many subroutines, loops, and variables, yielding a large amount of analysis.
Since it is impossible to examine all dependences, the programmer has to make a choice
where to focus his efforts on.

Runtime performance analysis information provides means to help the user focus
his optimization efforts. The Paraver performance analysis system is being developed
and maintained at the European Center for Parallelism in Barcelona (CEPBA). Its major
components are the tracing package OMPItrace [9], a graphical user interface to exam-
ine the traces based on time line views, and an analysis module for the computation
of performance statistics. Profiling information can be displayed in form of tables or
histograms. The statistics can be correlated and mapped onto other objects, such as sub-
routines and threads of execution. Just like in the case of the static application database,
the performance trace of a large application will contain a plethora of information and
the user is faced with the challenge of its meaningful interpretation.

An expert analyst will usually go through repetitive inspections of application data
dependences and performance statistics. The novice user will often not even know where
to start and what to look for. In our approach we try to address the needs of expert as well
as novice user. The rest of the paper is structured as follows: In Section 2 we describe
the prototype implementation of our expert system. In Section 3 we present a case study
to show the usefulness of the system. In Section 4 we discuss some related work and
draw our conclusions in Section 5.

2 The Expert System Prototype Implementation

An intelligent computerized parallelization advisor was developed using an expert sys-
tem implemented in CLIPS (“C” Language Integrated Production System) [1]. By per-
forming data fusion on the static and dynamic analysis, the expert system can help the user
to filter, correlate, and interpret the data. Relevant performance indices are automatically
calculated and correlated with program structure information. The overall architecture
of our program environment is depicted in Figure 1. The application database contain-

An Expert Assistant for Computer Aided Parallelization 667

Fig. 1. Architecture of the expert system programming environment. The Parallelization Assistant
Expert System fuses program structure knowledge and performance trace information to aid
the user in narrowing down performance problems. The user can still interact directly with the
parallelization and performance analysis tools for fine tuning of the application’s performance

ing static program structure information such as dependence analysis results is gathered
during a CAPO session. The information stored in the application database is used to
generate parallelized source code. In the following we describe the steps performed by
the expert system in order to evaluate the efficiency of the generated code.

Instrumenting the Parallel Source Code for Performance Analysis: The expert sys-
tem prototype uses the Paraver OMPItrace package for instrumentation and tracing of
the application. OMPItrace generates traces containing time stamped events during the
program’s execution. Tracing of some events occurs automatically and does not require
any modification of the source code or relinking of the application with special libraries.
Examples of such events are

– entry end exit of compiler generated routines for the execution of parallelized code
segments,

– entry and exit of parallelization runtime libraries, such as the OpenMP runtime
library,

– hardware counters, if they are available.

User level subroutines have to be manually instrumented in the source code. Instrumen-
tation of all subroutines may introduce a lot of overhead. For critical code segments,
on the other hand, it is often desirable to obtain information at a finer granularity than
a subroutine call. The prototype expert system uses CAPO’s source code transforma-
tion capabilities and the program structure information from the application database to
selectively instrument the code. Only routines that are not contained within a parallel
region or a parallel loop and that contain at least one DO-loop chosen for instrumenta-
tion. In addition to this outermost serial loops are also instrumented. More details on the
automatic selective instrumentation can be found in [4].

668 Gabriele Jost et al.

Automatic Retrieval of Performance Indices: We have extended the Paraver sys-
tem by Paramedir, a non-graphical command line interface to the analysis module. The
specification of Paraver trace file views and metric calculations can be saved to reusable
configuration files. Paramedir accepts the same trace and configuration files as Paraver.
In this way the same information can be captured in both systems. Paramedir is invoked
in batch mode, providing a trace file and a configuration file which specifies the metric
calculation as input. The generated output is an ASCII file containing the calculated
statistics. This supports the programmability of performance analysis in the sense that
complex performance metrics, determined by an expert user, can be automatically com-
puted and processed. The detailed human driven analysis can thus be translated into
rules suitable for processing by an expert system. Details on Paramedir can be found
in [5]. Examples of metrics of the instrumented code segments which are automatically
calculated by the current prototype are:

– timing profiles: the percentage of time which is spent in subroutines and loops,
– sequential sections: time that the master thread spends outside of parallel regions.
– useful time: time that the applications spends running user code and not idling,

synchronizing, or other parallelization introduced overhead.
– workload balance: the coefficient of variation over the threads in the number of

instructions within useful time,
– parallelization granularity: the average duration of a parallel work sharing chunk,
– estimated parallel efficiency: the speed-up divided by the number of threads. The

execution time for a run on one thread is estimated using the useful time of all
threads of the parallel run.

These metrics are automatically calculated using Paramedir and are stored in a table.
They are facts for the rule based analysis of the expert system.

Information Fusion: After calculating the performance indices, the expert system
extracts program structure information from the application database. At this point the
main interest is the optimal placement of OpenMP directives. The prototype implemen-
tation retrieves the type of the instrumented code segment, such as loop or subroutine,
the loop identifier, and the type of the loop, such as being parallel or sequential.

Rule Based Analysis: The expert system uses observations to infer reasons for poor
performance. The observations are a list of facts about the calculated performance metrics
and static program analysis for the calculated code segments, such as described in the
previous paragraph. Examples are: “the subroutine takes 50% of the execution time”
or “the variation of executed instructions among the threads is high”. The metrics are
compared to empirically determined threshold values in order to determine what is high
and what is low. Conclusions are inferred through a set of rules that interpret certain
patterns as reasons for poor performance. An example would be a rule of the form:

– If: The code segment takes a large amount of time and the parallel efficiency is low
and there are large sequential sections and the granularity of the parallelization is
fine

– Then: Try to move the parallelization to an outer level
An illustration of the reasoning is given in Figure 2. The conclusions are presented

to the user either as ASCII text or via the CAPO user interface. This will be discussed
in the case study presented in Section 3.The rules are stored in a knowledge base. The

An Expert Assistant for Computer Aided Parallelization 669

Fig. 2. Example of facts and conclusions within the expert system. A set of rules is applied to the
observed facts to determine patterns of causes for poor performance

expert system employs a data driven, forward chaining approach where a conclusion is
infered given all asserted facts.

3 A Case Study

The parallelization assistant expert system was tested on several full scale scientific
applications. In order to give a flavor of its usability we present the analysis of the
PSAS Conjugate Gradient Solver. The code is a component of the Goddard EOS (Earth
Observing Systems) Data Assimilation System. It contains a nested conjugate gradient
solver implemented in Fortran 90. The code showed little speed-up on an SGI Origin
3000 when increasing the number of threads from 1 to 4. A sample trace was collected on
an SGI Origin 3000 for a run on 4 threads. Figure 3 shows three Paraver timeline views
which were used for the calculation of performance metrics. The top image shows the
time that the application spends in different subroutines. The different shadings indicate
time spent in different routines. It turned out that there were two major time consuming
routines:

– the conjugate gradient solver, indicated by the lighter shading in the timeline,
– the symmetric covariance matrix vector multiply, indicated by the darker shading

in the timeline
The middle image in Figure 3 shows the useful computation time spent within different
parallel loops. This is a thread level view, where the different shading indicate different
parallel loops. No shading indicates time outside of computations. Visual inspection
immediately shows an imbalance between the threads, with thread number 1 spending a
lot more time inside parallel computations. The reason for the imbalance can be inferred
from the view displayed in the bottom image in Figure 3. It shows a time line view

670 Gabriele Jost et al.

Fig. 3. Three Paraver timeline views for a run on 4 threads: The top image shows the time spent
in different subroutines on application level. The horizontal axis represents the time. Different
shadings indicate time in different subroutines. The middle image shows time spent in useful
computations within parallel loops on thread level, displaying a time line for each of the 4 threads.
Useful computation time is shaded, non-useful time is white. The view shows an obvious im-
balance, with the master thread spending more time in parallel computations. The bottom image
shows the number of executed instructions for each thread. Darker shading indicates a higher
number of executed instructions. This view indicates an imbalance in the computational workload
among the threads

on thread level of the number of instructions between traced events. A darker shading
indicates a higher value of the number of instructions. Comparison of the time line
views clearly shows that thread 1 executes many more instructions during the useful
time within parallel loops. A second important observation is, that a relatively large
number of instructions are executed by threads 2,3 and 4 during non-useful time. These

An Expert Assistant for Computer Aided Parallelization 671

Fig. 4. Paraver Analysis showing the number of instructions during useful computations. The
hardware counter value is mapped onto threads and parallel regions. The analysis shows a large
variation across the threads, indicating an unbalance of the computational workload

are typically instructions executed by threads when idling while waiting for work. It is
important to exclude these instructions when comparing the computational workload
among the threads. A Paraver analysis of the instructions only during useful time is
displayed in Figure 4, where the instruction counter value is correlated to the thread
numbers and the parallel loops, indicating a large variation in useful instructions among
the threads.

The reason for the imbalance is that the amount of calculations per iteration differs
greatly. By default, the iterations of a parallel loop are distributed block-wise among the
threads, which is a good strategy if the amount of work per iteration is approximately
the same. In the current case, thread number 1 ended up with all of the computationally
intensive iterations, leaving the other threads idle for a large amount of time. The OpenMP
directives provide clauses to schedule work dynamically, so that whenever a thread
finished its chunk of work, it is assigned the next chunk. This strategy should only be
used if the granularity of the work chunks is sufficiently coarse. After calculating the
performance metrics described in Section 2 the expert system was able to detect the
imbalance and its possible cause. The rule which fired for this particular case was:

672 Gabriele Jost et al.

Fig. 5. The expert system analysis can be displayed in CAPO’s Dynamic Analysis Window. Se-
lecting a particular routine or loop, the corresponding source code is highlighted in the Directives
Browser window. The Why Window displays information about the status of the parallelization
of the code, such as the scope of variables or dependences that prevent parallelization

– If: The code segment takes a large amount of time and the parallel efficiency is low
and there is a large variation in the amount of useful computation time and there is
a large variation in the number of instructions within the parallelized loops and the
granularity of the parallelization is sufficiently large

– Then: Try dynamic scheduling in order to achieve a better work load balance.
The expert system analysis output is generated as an ASCII file. The user has the

possibility to display the analysis results using the CAPO directives browser. This inte-
grates the dynamic performance analysis data with program structure information. An
example is shown in Figure 5. The user is presented with a list of time consuming loops
and subroutines. Selecting an item from the list displays the corresponding expert system
analysis and highlights the corresponding source in the directive browser window. For
the current case it helps the user to identify loops which suffer from workload imbal-
ance. The expert system analysis provides guidance through the extensive set of CAPO
browsers.

An Expert Assistant for Computer Aided Parallelization 673

4 Related Work

There are several research efforts on the way with the goal to automate performance
analysis to integrate performance analysis and parallelization. We can only name a few of
these projects. KOJAK [6] is a collaborative project of the University of Tennessee and the
Research Centre Juelich for the development of a generic automatic performance analysis
environment for parallel programs aiming at the automatic detection of performance
bottlenecks. The Paradyn Performance Consultant [8] automatically searches for a set
of performance bottlenecks. The system dynamically instruments the application in order
to collect performance traces. The URSA MINOR project [11] at Purdue University uses
program analysis information as well as performance trace data in order to guide the
user through the program optimization process. The SUIF Explorer [7,13] Parallelization
Guru developed at Stanford University uses profiling data to bring the user’s attention
to the most time consuming sections of the code. Our approach using an expert system
differs from the previous work in that we are integrating two mature tools. Our rule based
approach takes advantage of the high degree of flexibility in collecting and analyzing
information provided by the underlying tools.

5 Conclusions

We have built the prototype of an expert assistant to integrate two mature tools for
computer aided parallelization and performance analysis. The system helps the user
in navigating and interpreting the static program structure information, as well as the
accompanying dynamic run-time performance information so that more efficient opti-
mization decisions can be made. It enables the users to focus their tuning efforts on the
sections of code that will yield the largest performance gains with the least amount of
recoding.

Using the expert system approach in a case study has demonstrated how to fuse data
from the static and dynamic analysis to provide automated correlation and filtering of this
information before conveying it to the user. The first conclusion we draw is that a number
of relatively simple rules can capture the essence of the human expert’s heuristics needed
to narrow down a parallelization related performance problem. Secondly, we found it
to be very important to be able to switch to the direct usage of the tools at any point
during the analysis process. The expert system analysis rapidly guides the user to code
segments, views, and effects that require further detailed analysis with either CAPO or
Paraver. This detailed analysis will in turn often lead to the design of new rules which
can then be included in the automated process.

Acknowledgments

This work was supported by NASA contract DTTS59-99-D-00437/A61812D with
Computer Sciences Corporation/AMTI, by the NASA Faculty Fellowship Program, and
by the Spanish Ministry of Science and Technology, by the European Union FEDER
program under contract TIC2001-0995-C02-01, and by the European Center for Par-
allelism of Barcelona (CEPBA). We thank the CAPTools development team for many
helpful discussions and the continued support of our work.

674 Gabriele Jost et al.

References

1. CLIPS: A Tool for Building Expert Systems, http://www.ghg.net/clips/CLIPS.html.
2. C.S. Ierotheou, S.P. Johnson, M. Cross and P. Leggett, “Computer Aided Parallelisation Tools

(CAPTools), Conceptual Overview and Performance on the Parallelisation of Structured Mesh
Codes,” Parallel Computing, 22 (1996) 163-195.
http://www.parallelsp.com/parawise.htm.

3. H. Jin, M. Frumkin and J. Yan, "Automatic Generation of OpenMP Directives and Its Appli-
cation to Computational Fluid Dynamics Codes," Proceedings of Third International Sympo-
sium on High Performance Computing (ISHPC2000), Tokyo, Japan, October 16-18, 2000.

4. G. Jost, H. Jin, J. Labarta and J. Gimenez, “Interfacing Computer Aided Parallelization and
Performance Analysis," Proceedings of the International Conference of Computational Sci-
ence - ICCS03, Melbourne, Australia, June 2003.

5. G. Jost, J. Labarta and J. Gimenez, “Paramedir: A tool for programmable Performance
Analysis”, Proceedings of the International Conference of Computational Science - ICCS04,
Krakow, Poland, June 2004.

6. Kit for Objective Judgment and Knowledge based Detection of Performance Bottlenecks,
http://www.fz-juelich.de/zam/kojak/.

7. S. Liao, A. Diwan, R.P. Bosch, A. Ghuloum and M. Lam, “SUIF Explorer: An interactive
and Interprocedural Parallelizer,” 7th ACM SIGPLAN Symposium on Principles & Practice
of Parallel Programming, Atlanta, Georgia, (1999), 37-48.

8. B.P. Miller, M.D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K.L. Karavanic,
K. Kunchithhapdam and T. Newhall, “The Paradyn Parallel Performance Measurement Tools,”
IEEE Computer 28, 11, pp.37-47 (1995).

9. OMPItrace User’s Guide, http://www.cepba.upc.es/paraver/manual i.htm.
10. OpenMP Fortran/C Application Program Interface, http://www.openmp.org/.
11. I. Park, M. J. Voss, B. Armstrong and R. Eigenmann, “Supporting Users’ Reasoning in Per-

formance Evaluation and Tuning of Parallel Applications,” Proceedings of PDCS’2000, Las
Vegas, NV, 2000.

12. Paraver, http://www.cepba.upc.es/paraver/.
13. SUIF Compiler System. http://suif.stanford.edu/.

Scalable Middleware Environment
for Agent-Based Internet Applications

Benno J. Overeinder� and Frances M.T. Brazier

Department of Computer Science, Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{bjo,frances}@cs.vu.nl

Abstract. The AgentScape middleware is designed to support deployment of
agent-based applications on Internet-scale distributed systems. With the design
of AgentScape, three dimensions of scalability are considered: size of distributed
system, geographical distance between resources, and number of administrative
domains. This paper reports on the AgentScape design requirements and decisions,
its architecture, and its components.

1 Introduction

Agent-based Internet applications are by design autonomous, self-planning, and often
self-coordinating distributed applications. They rely on the availability of aggregated
resources and services on the Internet to perform complex tasks. However, current tech-
nology restricts developers options for large-scale deployment: there are problems with
the heterogeneity of both computational resources and services, fault tolerance, man-
agement of the distributed applications, and geographical distance with implied latency
and bandwidth limitation.

To facilitate agent-based applications, a middleware infrastructure is needed to sup-
port mobility, security, fault tolerance, distributed resource and service management,
and interaction with services. Such middleware makes it possible for agents to perform
their tasks, to communicate, to migrate, etc.; but also implements security mechanisms
to, for example, sandbox agents to prevent malicious code harm the local machine, or
vice versa, protect an agent from tampering by a malicious host.

The AgentScape middleware infrastructure is designed to this purpose. Its multi-
layered design provides minimal but sufficient support at each level. The paper presents
the AgentScape design and implementation, with a discussion on decisions made, and
concludes with future directions.

2 Scalable Multi-layered Design of Agent Middleware

A number of high-level agent concepts are first introduced to define their role in the
paper. The requirements for scalable agent middleware are then discussed, followed by
the current software architecture of the AgentScape middleware [6].

� This research is supported by the NLnet Foundation, http://www.nlnet.nl/

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 675–679, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

676 Benno J. Overeinder and Frances M.T. Brazier

2.1 Concepts

Within AgentScape, locations exist, agents are active entities, and services are external
software systems accessed by agents hosted by AgentScape middleware. Agents in
AgentScape are defined according to the weak notion of agency [7]: (i) autonomy: agents
control their own processes; (ii) social ability: ability to communicate and cooperate;
(iii) reactiveness: ability to receive information and respond; (iv) pro-activeness: ability
to take the initiative.

Agents may communicate with other agents and may access services. Agents may
migrate from one location to another location. Agents may create and delete agents;
agents can start and stop service access. All operations of agents are modulo authorization
and security precautions, e.g., an agent is allowed to start a service if it has the appropriate
credentials (ownership, authorization, access to resources, etc.).

Mechanisms are provided to make external services available to agents hosted by
AgentScape middleware. For example, external services are wrapped and presented as
Web services, using SOAP/WSDL generated dynamic interfaces.

A location is a “place” in which agents and services can reside. (see also Fig. 1).
More precisely stated, agents and services are supported by agent servers and (Web)
service gateways (respectively) which belong to a location. From the perspective of
agents, agent servers give exclusive access to the AgentScape middleware. Similarly,
service gateways provide access to services external to AgentScape.

AgentScape
middleware

AgentScape
middlewaremiddleware

AgentScape AgentScape
middleware

Mac OS X

AgentScape
middleware

Solaris

Lo
ca

tio
n

B

service

agent

W2K/XPLinux Solaris

Lo
ca

tio
n

A

Fig. 1. Conceptual model of the AgentScape middleware environment

2.2 Requirements

Successful deployment of Internet applications has to take dimensions of scale into
account [5]. Applications and systems on Internet-scale networks have to include mech-
anisms to deal with: (i) number of entities in a distributed system: agents (create, delete,
migration), resources (add and delete resources to/from distributed platform, allocate
resources), lookup service (resolve identifiers of entities to contact address, etc.); (ii)
geographical size: the distance between different resources (communication latency and
bandwidth); (iii) number of administrative domains: security mechanisms for authenti-
cation and authorization.

The design goals set in the AgentScape project are to provide efficient support for
distributed systems that scale along the dimensions outlined above. A distinction is made
between agent application level support and agent middleware mechanisms. At the agent
application level, functionality to develop and implement scalable applications must be
made available. The application programming interface must reflect this, e.g., to allow

Scalable Middleware Environment for Agent-Based Internet Applications 677

for latency hiding and mobility, or give access to scalable services in the middleware
layer. The agent middleware’s task is to implement the functionality provided by the
application programming interface and the available services. This implies, amongst
others, support for asynchronous communication mechanisms for latency hiding, include
scalable services for name resolution (lookup service), and an effective management
system that scales with the number of agents and resources.

2.3 Software Architecture

The leading principle in the design of the AgentScape middleware is to develop a minimal
but sufficient open agent platform that can be extended to incorporate new functionality
or adopt (new) standards into the platform. The multiple code base requirement, e.g.,
supporting agents and services developed in various languages, makes that language
specific solutions or mechanisms cannot be used.

This design principle resulted in a layered agent middleware, with a small middle-
ware kernel implementing basic mechanisms and high-level middleware services im-
plementing agent platform specific functionality and policies (see Fig. 2). This approach
simplifies the design of the AgentScape kernel and makes the kernel less vulnerable to
errors or improper functioning. A minimal set of middleware services are agent servers,
host managers, and location managers. The current, more extensive set includes a lookup
service and a web service gateway.

API
AgentScape component

interface of
component

AgentScape

kernel interface
AgentScape

Agent

AOS kernel

Location
Manager

Agent
Server

Host
Manager

Fig. 2. The AgentScape software architecture

Minimal Set of Services
Middleware services can interact only with the local middleware kernel. That is, all inter-
process communication between agent servers and web service gateways is exclusively
via their local middleware kernel. The kernel either directly handles the transaction (lo-
cal operation) or forwards the request messages to the destination AgentScape kernel
(remote operation).

The agent server gives an agent access to the AgentScape middleware layer (see
also Fig. 2). Multiple code base support in AgentScape is realized by providing different
agent servers per code base. For security considerations, it is important to note that an
agent is “sandboxed” by an agent server. For Java agents this is realized by the JVM, for
Python (or other interpreted scripting languages like Safe-Tcl) by the interpreter, and
for C or C++ (binary code) agents are “jailed”.

678 Benno J. Overeinder and Frances M.T. Brazier

A location manager is the coordinating entity in an AgentScape location (thus man-
aging one or more hosts in one location). The host manager manages and coordinates
activities on a host. The host manager acts as the local representative of the location
manager, but is also responsible for local (at the host) resource access and management.
The policies and mechanisms of the location and host manager infrastructure are based
on negotiation and service level agreements [4].

Additional Services
Extensibility and interoperability with other systems are realized by additional middle-
ware services. The web service gateway is a middleware service that provides controlled
(by AgentScape middleware) access to SOAP/WSDL web services. Agents can obtain
WSDL descriptions in various ways, e.g., via UDDI and can generate a stub from the
WSDL document to access a web service. However, stub generation using the Axis
WSDL2Java tool is slightly modified so that calls on the web service interface are di-
rected to the AgentScape web service gateway. If access is authorized, the web service
gateway performs the operation on the web service and routes the results transparently
back to the agent that issued the call.

3 Implementation and Experiences

A number of implementation alternatives have been tested and evaluated, and devel-
opment still evolves: the AgentScape project aims to provide both a scalable, robust
agent platform, and a research vehicle to test and evaluate new ideas. The AgentScape
middleware has been tested on different Linux distributions (Debian 3.1, Fedora Core
1, and Mandrake 9.2.1) and Microsoft Windows 2000 (service pack 4).

The current kernel is implemented in the Python programming language, allowing for
rapid prototyping. All following middleware services available in the current AgentScape
release have been implemented in Java: Java agent server, web service gateway, host
manager, and a location manager. The current lookup service, implemented in Python,
is a centralized service that basically does its job, but is not scalable and secure. A
next generation lookup service is under development: a distributed peer-to-peer lookup
service.

4 Related Work

Over the last few years, a number of agent platforms have been designed and imple-
mented. Each design has its own set of design objectives and implementation decisions.

JADE is FIPA compliant agent platform [1]. In JADE, platform and containers are
similar concepts as location and hosts in AgentScape. A JADE platform is a distributed
agent platform (location), and with one or more containers (hosts). A special front end
container listens for incoming messages from other platforms. The AgentScape location
manager fulfills a similar function. The front end container is also involved in locating
agents on other JADE platforms. In AgentScape this is a different (distributed) service.
Mobility in JADE is limited to one platform (intra-platform), whereas in AgentScape,
agents can migrate to any location.

Scalable Middleware Environment for Agent-Based Internet Applications 679

Cougaar is a Java-based agent architecture that provides a survivable base on on
which to deploy large-scale, robust distributed multi-agent systems [2]. The design goals
are scalability, robustness, security, and modularity. Cougaar is not standards’ compli-
ant, and messages are encoded using Java object serialization. The lack of standards’
compliance was in part due to Cougaar’s complex planning language, which does not
easily fit into the ACL format, and Cougaar’s research focus of a highly scalable and
robust system as opposed to interoperability.

DIET is an agent platform that addresses present limitations in terms of adaptability
and scalability [3]. It provides an environment for an open, robust, adaptive and scalable
agent ecosystem. The minimalistic “less is more” design approach of DIET is similar
to AgentScape. The platform is implemented in Java. Mobility is implemented by state
transfer only, so no code is migrated. Agents can only migrate if their classes are already
in the local classpath of the target machine. Security is not specifically addressed in
DIET.

5 Summary and Future Directions

The design rationale for scalability in AgentScape lies in the three dimensions as defined
in Section 2.2. The integrated approach to solve the scalability problem is a unique
signature of the AgentScape middleware. The small but extensible core of AgentScape
allows for interoperability with other open systems.

Future directions in the AgentScape project are a new middleware kernel developed
in Java and completion of the implementation of security model. Agent servers for binary
agents (C and C++) and Python agents are being considered. A new decentralized lookup
service based on distributed hash tables is also being developed.

References

1. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a FIPA-
compliant agent framework. Software: Practice and Experience, 31(2):103–128, 2001.

2. A. Helsinger, M. Thome, and T. Wright. Cougaar: A scalable, distributed multi-agent architec-
ture. In Proceedings of the International Conference on Systems, Man and Cybernetics (IEEE
SMC 2004), The Hague, The Netherlands, October 2004.

3. C. Hoile, F. Wang, E. Bonsma, and P. Marrow. Core specification and experiments in DIET: A
decentralised ecosystem-inspired mobile agent system. In Proceedings of the 1st International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS2002), pages 623–630,
Bologna, Italy, July 2002.

4. D.G.A. Mobach, B.J. Overeinder, O. Marin, and F.M.T. Brazier. Lease-based decentralized
resource management in open multi-agent systems. In Proceedings of the 18th International
FLAIRS Conference, Clearwater Beach, FL, May 2005.

5. B.C. Neuman. Scale in distributed systems. In T. Casavant and M. Singhal, editors, Readings in
Distributed Computing Systems, pages 463–489. IEEE Computer Society Press, Los Alamitos,
CA, 1994.

6. N.J.E. Wijngaards, B.J. Overeinder, M. van Steen, and F.M.T. Brazier. Supporting Internet-scale
multi-agent systems. Data Knowledge Engineering, 41(2–3):229–245, 2002.

7. M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge
Engineering Review, 10(2):115–152, 1995.

Automatic Generation of Wrapper Code
and Test Scripts for Problem Solving Environments

Andreas Schreiber

Deutsches Zentrum für Luft- und Raumfahrt e.V., Simulation and Software Technology
Linder Höhe, 51147 Cologne, Germany

Abstract. Problem Solving Environments are useful tools to support complex
simulation tasks in the field of engineering and research (e. g. aerospace, auto-
motive, etc.). The TENT environment represents this type of system, into which
external applications are being integrated. In this paper two software engineering
issues are addressed, which are dealing with the automation of specific tasks while
developing and extending the TENT system.
First, we will deal with the automatic generation of code for integrating new
applications into the system. This is important for reducing the effort of the manual
creation of new application components. Code generation is implemented as a
plug-in for the open source development platform Eclipse.
Second, the automatic test case generation and execution for system tests. This
feature of test generation is embedded within the TENT graphical user interface.
It records all user actions as Python scripts to be used for automatic replaying the
operations as a set using the embedded Python interpreter.

1 Introduction

In complex scientific problem solving environments (PSEs) usually lots of modules are
integrated into to the system to extend its functionality and to cover broader problem
classes [1,2]. In many PSEs this integration of new modules (e. g., new numerical
methods) is a software development task. For example, to extend a PSE with an external
application one has to develop some kind of wrapper or interface code to connects the
application to the programming and extension interfaces of the PSE.

Usually the software engineering tasks for developing software systems consist of
several phases: Analysis, design, coding, unit testing, integration testing, and system
testing. Depending on the software development process, the order and frequency of
these phases may vary, but almost all development processes have two major primary
objectives in common [3]: To avoid errors and to find undiscovered errors as early as
possible.

For extending PSEs these are the two major software engineering phases: the actual
development of the code for wrapping the new modules, and the test of the extendend
PSE. Usually the analysis and design phases are less important, because the overall
design of the PSE should be finished and the (programming) interfaces for the PSE
extension should already be specified.

For PSEs the necessity to extend it with new modules occurs relatively often. There-
fore one has got to develop some kind of wrapper code frequently. These codes are

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 680–689, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automatic Generation of Wrapper Code and Test Scripts 681

usually quite similar, but one still has to test the extended PSE and check for correct
results. To support these tasks, tools or methods can be used to automate parts of the
process. The major objectives for these supporting tools or methods are: To reduce the
effort and to minimize coding errors.

A feasible technique to accomplish these objectives is the automated generation of
code. Especially in our case the codes for wrapping new modules and scripts for running
test cases can be generated quite easily.

In the following we give a very short overview of the integration system TENT [4]
for creating domain specific problem solving environments. After that we first present
how new applications are integrated into the system using code generation, and how this
is achieved with the help of a plug-in for the development environment Eclipse [5]. The
second topic is the automatic generation of test scripts in Python [6] which are used to
test the TENT system using an embbeded Python interpreter.

2 Integration System TENT

TENT is a software integration and workflow management system that helps to build and
manage process chains for complex simulations in distributed environments. All tools
typical for scientific simulation workflows can be integrated into TENT, and controlled
from the user’s desktop using a graphical user interface (GUI, see Fig. 1). The key
features of TENT are:

– Flexible configuration, online steering, and visualization of simulations.
– Utilization of distributed computing resources such as PCs, workstations, clusters,

supercomputers, and computational grids.
– Integration of a project based data management with support for cooperative work-

ing.

Additional features are:

– Visual composition of process chains (workflows).
– Monitoring and steering of simulations from any computer on the internet.
– Easy integration of existing applications.
– Automatic and efficient data transfer between the stages in the process chain.

The TENT system has been developed as a component system using several soft-
ware technologies as Java, CORBA [7], the Globus Toolkit [8], XML, Python, and
WebDAV [9]. Fig. 2 shows the general architecture of the TENT system. See [4] for
more details.

2.1 TENT Components

Components in TENT are defined by interfaces specified in CORBA IDL (Interface De-
finition Language). All TENT components are inherited from a common base interface
which is extended with component specific methods and event interfaces. Events are the
primary means of communication between TENT components; they are defined as IDL

682 Andreas Schreiber

Fig. 1. TENT Graphical User Interface

data structures in combination with corresponding listener interfaces. Components can
be connected within workflows by connecting one component’s suitable event sender to
another component’s corresponding event listener.

To integrate new applications into TENT, one has to provide a TENT component
(wrapper) for the particular application. The implementation of a component can be
divided into the following steps:

1. Definition of the component’s interfaces by defining its IDL interfaces (inherited
from a base interface, inclusion of event listener interfaces, and definition of methods
for steps 3 and 4).

2. Implementation of the component’s interfaces (inherited from the generated
CORBA skeleton base classes) and initialization of properties and data transfer.

3. Development of application-related communication code (depends on desired func-
tionality of the component).

4. Development of necessary GUI plug-ins (depends on controllability of the compo-
nent).

5. Creation of a proper default configuration file for the component’s set of properties.

2.2 TENT-Based Problem Solving Environments

The integration framework TENT is being used to build specific problem solving envi-
ronments for solving high-level domain tasks. To get the PSE, all necessary applications
need to be integrated into TENT. The number of applications varies for each PSE, it

Automatic Generation of Wrapper Code and Test Scripts 683

GUI

System Components

Applications

N
am

e S
erver

D
ata server

Factories

C
oupling

S
cripting

Wrapper Wrapper Wrapper Wrapper

CFD CSM Visualization Filter

CORBA

Plug-In Plug-In Plug-In

Fig. 2. Architecture of the TENT system

ranges from just a few numerical codes to many dozens of codes together with analysis,
pre-/post-processing, and visualization tools.

PSEs based on the TENT framework have been created for aerodynamic studies of
civil aircrafts [10], numerical analysis of combat aircraft maneuvering [11,12], numerical
simulation of space re-entry vehicles [13,14], or constructional optimization and crash
simulation of car bodies [15].

3 Code Generation for Extending PSEs

Our goal was to obtain effective tools for extending TENT-based PSEs with new com-
ponents according to the steps described in section 2.1. The chosen approach was the
development of tools based on Eclipse in the form of plug-ins to enhance the code cre-
ation efficiency. The most important one is the plug-in for the automatic generation of
TENT component code.

3.1 What Is the Eclipse Platform?

“The Eclipse Platform is designed for anything, but nothing in particular” [16]. It is a
universal open platform for tool integration. The basic framework of Eclipse is very ex-
tensible via plug-ins (like Wizards, Editor, or Views). For example, the standard Eclipse
distribution is distributed with a set of plug-ins for Java development which makes
Eclipse a very competetive Java IDE (Integrated Development Environment).

3.2 Generating TENT Components Using Eclipse

To generate TENT components (wrapper codes), we have developed a set of Eclipse
plug-ins consisting of wizards and editor extensions. In the wizard all details for the

684 Andreas Schreiber

component are specified. The editor extension’s purpose is to add or change certain code
features in the generated (or already existing) code. Additionaly to components, the code
generation wizard can create code for TENT GUI plug-ins.

The creation of a TENT component includes the definition of the component IDL
interface and their Java implementation according to steps one and two in section 2.1. The
user defines meta data (as the name and location of the generated code) interactively
using Wizard dialogs. A dialog (see Fig. 4) provides the means to select the listener
interfaces for the events to receive. This information will be added to the component’s
IDL interface and the Java implementation code. The base for the code to generate is
specified in template files (see Fig. 3). After merging all metadata and additional code
with the templates, the result is a functional basic TENT component code for wrapping
applications. Currently, these still have to be edited manually to add non-standard code
functionalities. But this remaining work is well supported by the standard Eclipse Tasks
view. It presents a list of all places within the code which need manual change or
completion (see Fig. 4).

The tool for component code generation described here is an Eclipse Feature. An
Eclipse feature consists of more than one plug-in and can be used to extend the basic
Eclipse platform easily. Our Eclipse feature consists of two plug-ins: The first plug-in
consists of the component code generation functionality, the second contains an imple-
mentation of the Velocity template engine [17].

Metadata
(user input)

Templates

Eclipse Plug-In
and Velocity

IDL
Code

Java
Code

generates generates

Fig. 3. Generation of wrapper code using templates

3.3 Current Implementation

Velocity is used for the generation of the TENT component source code. It is a template
engine implemented in Java and can be used to generate web pages, Java code, or
any plain text based output from templates. The templates give the possibility to use
declarations, conditional statements or loops. After getting all necessary variables, the
engine interprets the template and replaces the variables inside.

The wizard for creating new components, and the dialogs that are opened from within
the Java source code editor (Fig. 4), are implemented using the Standard Widget Toolkit
(SWT) [18].

The component code generation plug-in described uses the
org.eclipse.ui.newWizards extension point. After installation the wizard can

Automatic Generation of Wrapper Code and Test Scripts 685

Fig. 4. Eclipse with generated Java code, popup menu with extensions, and dialog for adding
events

be found using New→ TENT→Wrapper Component (see Fig. 5). All available wizards
in Eclipse are accessible at this point. So creating a new TENT component with Eclipse
is similar to starting any (general) new Java project.

4 Script Generation for System Tests

4.1 System Testing

The system test is a major test phase. It tests the system as a whole. The main goal of
the system test is the verification of the overall functionality (see [19] or [20] for more
details on software tests). For a PSE that means overall testing of the base framework
together with all integrated modules.

During the system test many things need testing. Some very common tests are:

– Functional tests (including GUI tests),
– performance and stress tests,
– client/server tests,
– usability tests, and
– installation tests.

686 Andreas Schreiber

Fig. 5. Wizard for new TENT specific classes

To be effective, the system test has to be performed frequently. On the other hand,
performing these tests by humans (developers or quality assurance staff members) is
relatively expensive and slow. A more appropriate way for performing system tests is
the creation of proper test scripts, especially for the functional, performance, stress and
client/server tests. These test can then be automated and started manually or automati-
cally.

In the TENT development the system test were formerly done by a quality assurance
staff member who performed test procedures specified in written documents. The test
results were added to the document and – in case of discovered errors – in a bug tracking
system. Some GUI tests have been performed using a commercial capture/replay tool
(TestComplete [21]).

4.2 Script Based System Testing in TENT

Currently all manual tests are being replaced by automated scripted tests for performing
complex system tests. In general there are two different methods for creating test scripts:
The first method is the manual coding of these scripts. The major disadvantage of coding
them by hand is that this approach is slow and error-prone. The second method is the
automatic generation or recording of these scripts by code generators or the application
itself. This method is much faster and the scripts are error-free.

Our technique for generating test scripts is Command Journaling. Originaly, Com-
mand Journaling has been added to TENT for tracing user actions (an audit trail feature
to answer the question “What did I do?”). In Command Journaling all user actions are
logged to a journal or session file in a format that can be replayed or executed afterwards.
In TENT the actions the user is performing in the GUI are logged in a Python syntax.

Automatic Generation of Wrapper Code and Test Scripts 687

For this purpose all important Java classes of the TENT GUI are recording all actions
as Python code to a journal file, which can be used to replay the same operations by
a Python interpreter. In TENT, the generated journal script can be run in the GUI em-
bedded Python interpreter (Jython [22,23]), or non-interactively in a stand-alone Python
interpreter without the need of a GUI (which is useful for batch processing jobs).

The following Python code shows an example of a generated journal script. In this
example, the user added four components to the workflow editor, connected them by
events, set some parameters, and started a simulation run.

Command journaling, generated example script (Python syntax)
from de.dlr.tent.gui import GUI
cf = GUI.getControlFacade()
cf.addComponent("IDL:de.dlr.tent/ActionEventSender:1.0.Type*ActionEvent.Subtype*action.Instance")
cf.addComponent("IDL:de.dlr.tent/Script:1.0.Type*Script.Subtype*script.Instance")
cf.addComponent("IDL:de.dlr.tent/Polar:1.0.Type*PolarControl.Subtype*PolarControl.Instance")
cf.addComponent("IDL:de.dlr.tent/Simulation:1.0.Type*FLOWer.Subtype*AGARD.Instance")
cf.addWire("IDL:de.dlr.tent/ActionEventSender:1.0.Type*ActionEvent.Subtype*action.Instance",

"IDL:de.dlr.tent/Script:1.0.Type*Script.Subtype*script.Instance", "ActionEvent")
cf.addWire("IDL:de.dlr.tent/Script:1.0.Type*Script.Subtype*script.Instance",

"IDL:de.dlr.tent/Polar:1.0.Type*PolarControl.Subtype*PolarControl.AGARD.Instance",
"ActionEvent")

cf.addWire("IDL:de.dlr.tent/Script:1.0.Type*Script.Subtype*script.Instance",
"IDL:de.dlr.tent/Simulation:1.0.Type*FLOWer.Subtype*AGARD.Instance",
"Simulation")

cf.addWire("IDL:de.dlr.tent/Script:1.0.Type*Script.Subtype*script.Instance",
"IDL:de.dlr.tent/Simulation:1.0.Type*FLOWer.Subtype*AGARD.Instance",
"Simulation")

cf.activateAll()
cf.getComponent("IDL:de.dlr.tent/Simulation:1.0.Type*FLOWer.Subtype*AGARD.Instance").

setProperty("Executable", "/work/flower116")
cf.saveWorkflowAs("polar_with_FLOWer.wfl")
cf.getComponent("IDL:de.dlr.tent/ActionEventSender:1.0.Type*ActionEvent.Subtype*action.Instance").

fireStart(1)
cf.getComponent("IDL:de.dlr.tent/Polar:1.0.Type*PolarControl.Subtype*PolarControl.Instance").

setDoubleProperty("EndValue", 40)
cf.getComponent("IDL:de.dlr.tent/Polar:1.0.Type*PolarControl.Subtype*PolarControl.Instance").

setDoubleProperty("Increment", 2)

In practice, the TENT system tester has to perform the following steps to create and
run system test cases:

1. The tester performs all steps to test a certain functionality using the GUI. The result
is a generated journal script.

2. If necessary, the tester edits the generated script. This can be necessary for removing
unneeded commands, for adding evaluation statements to check the internal state of
TENT for errors, for generalizing file path names, or for extending the script with
further and more complex action, such as loops.

3. Optionally, the new test script may be added to a test suite.
4. The tester starts the test run by invoking the test script using either the embedded

Python interpreter of the TENT GUI or a stand-alone Python interpreter.
5. All discovered errors are reported to the bug tracking system. This is is currently

still a manual task, but the future goal is to automate this step as well, so that the
generated test script submits a new bug tracking entry in case of certain errors.

Most of these steps can also be performed using (commercial) capture/replay tools
for GUI tests. But an advantage for creating tests with the described technique is the
ability to get information about the running system from within the TENT framework.
This is prossible, because the Python interpreter can directly access all public information
within the same process. Using this internal information, one can add very sophisticated
error detection functionality to the test script.

688 Andreas Schreiber

5 Conclusions

Code generation is more and more important for repetetive and errer-prone tasks in all
kinds of software development. As we described, code generation can be a very useful
technique in scientific computing and related topics. It can streamline the process of
creating and debugging code. In our opinion, developers will be writing code generators
instead of writing “regular” code more often in the future.

In the presented solution for generating wrapper code, there is still some manual
work necessarry for specific and unforseen functionalities. But the goal is the complete
generation of wrapper code. It should be possible to integrate new methods into PSEs
simply by entering some meta information about the code or application to be added. As
a base for developing a tool for extending our integration framework TENT, the open
source platform Eclipse has been used. We think that Eclipse is a well suited development
framework for all types of GUI-based applications and tools (see also [24]).

Acknowledgements

The author would like to acknowledge the work of Thijs Metsch (BA Mannheim and
DLR) for his implementation of the first Eclipse code generation plug-in.

References

1. J. R. Rice and R. F. Boisvert, From scientific software libraries to problem-solving environ-
ments, IEEE Computational Science and Engineering, Fall, pp. 44–53, 1996.

2. S. Gallopoulos, E. Houstis, and J. R. Rice, Problem-solving environments for computational
Science, IEEE Computational Science and Engineering, Summer, pp. 11–23, 1994.

3. I. Sommerville, Software Engineering, Addison-Wesley, Harlow, UK, 5th edition, 1995.
4. A. Schreiber, The Integrated Simulation Environment TENT, Concurrency and Computation:

Practice and Experience, Volume 14, Issue 13–15, pp. 1553–1568, 2002.
5. Eclipse home page. http://www.eclipse.org
6. Python Language Website. http://www.python.org
7. CORBA home page. http://www.omg.org/corba
8. Globus Project Website. http://www.globus.org
9. J. Whitehead and M. Wiggins, WebDAV: IETF Standard for Collaborative Authoring on the

Web, In IEEE Internet Computing, Vol 2, No. 5, Sept/Oct, 1998.
10. R. Heinrich, R. Ahrem, G. Guenther, H.-P. Kersken, W. Krueger, J. Neumann, Aeroelastic

Computation Using the AMANDA Simulation Environment. In Proc. of CEAS Conference
on Multidisciplinary Design and Optimization (DGLR-Bericht 2001–05), June 25–26, 2001,
Cologne, pp. 19–30

11. Project SikMa home page. http://www.dlr.de/as/forschung/projekte/sikma
12. A. Schütte, G. Einarsson, A. Madrane, B. Schöning, W. Mönnich, and W.-R. Krüger, Numer-

ical Simulation of Manoeuvring Aircraft by Aerodynamic and Flight-Mechanic Coupling,
RTA/AVT Symposium on Reduction of Military Vehicle Aquisition Time and Cost through
Advanced Modeling and Virtual Product Simulation, Paris, 2002, RTO-MP-089, RTO/NATO
2003.

13. A. Schreiber, T. Metsch, and H.-P. Kersken, A Problem Solving Environment for Multidiscipli-
nary Coupled Simulations in Computational Grids, In Future Generation Computer Systems,
in press, 2005.

Automatic Generation of Wrapper Code and Test Scripts 689

14. R. Schäfer, A. Mack, B. Esser, A. Gülhan, Fluid-Structure Interaction on a generic Model of
a Reentry Vehicle Nosecap. In Proc. of the 5th International Congress on Thermal Stresses,
Blacksburg, Virginia 2003.

15. Project AUTO-OPT home page. http://www.auto-opt.de
16. Eclipse Platform Technical Overview, Object Technology International, Inc., February 2003.
17. Velocity Template Engine. http://jakarta.apache.org/velocity
18. Standard Widget Toolkit. http://www.eclipse.org/platform/index.html
19. R. J. Patton, Software Testing, Sams Publishing, 2000.
20. D. Graham and M. Fewster, Software Test Automation. Effective Use of Test Execution Tools,

Addison–Wesley, 1999.
21. TestComplete product home page. http://www.automatedqa.com/products/tc.asp
22. Jython home page. http://www.jython.org
23. S. Pedroni, N. Rappin, Jython Essentials, O’Reilly and Associates, 2002.
24. T. E. Williams and M. R. Erickson, Eclipse & General-Purpose Applications, Dr. Dobbs

Journal, September 2004, pp. 66–69.

Runtime Software Techniques for Enhancing
High-Performance Applications: An introduction

Masha Sosonkina

Ames Laboratory and Iowa State University
Ames IA 50010, USA

masha@scl.ameslab.gov

Preface

Parallel computing platforms advance rapidly, both in speed and in size. However, of-
ten only a fraction of the peak hardware performance is achieved by high-performance
scientific applications. The main reason is in the mismatch between the way parallel com-
putation and communication are built into applications and the processor, memory, and
interconnection architectures, which vary greatly. One way to cope with the changeabil-
ity of hardware is to start creating applications able to adapt themselves “on-the-fly”. In
accomplishing this goal, the following general questions need to be answered: How does
an application perceive the system changes? How are the adaptations initiated? What
is the nature of application adaptations? The papers in this minisymposium attempt
to answer these questions by providing either an application-centric or a system-centric
viewpoint. Given changing computational resources or a variety of computing platforms,
application performance may be enhanced by, for example, modifying the underlining
computational algorithm or by using “external” runtime tools which may aid in better
load balancing or mapping of scientific applications to parallel processors. A new dy-
namic load balancing algorithm is considered by Dixon for particle simulations. Cai
shows a way to decrease parallel overhead due to compute node duplication in parallel
linear system solution. For a parallel adaptive finite element method implemented on
clusters of SMPs, Hippold et al. investigate the interaction of cache effects, communica-
tion costs and load balancing. Argollo et al. take a system-centric approach and propose
a novel system architecture for geographically distributed clusters. This architecture is
tested for a matrix multiplication application. Sosonkina integrates an external middle-
ware tool with a parallel linear system solver to monitor its communications and to
inform about possible times to invoke adaptive mechanisms of the application.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, p. 690, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Execution of Scientific Computation
on Geographically Distributed Clusters

Eduardo Argollo1, Dolores Rexachs1, Fernando G. Tinetti2, and Emilio Luque1

1 Computer Science Department, Universitat Autònoma de Barcelona, Spain
eduardo.argollo@aomail.uab.es,

{dolores.rexachs,emilio.luque}@uab.es
2 Fac. de Informática, Inv. Asistente CICPBA, Universidad Nacional de La Plata, Argentina

fernando@info.unlp.edu.ar

Abstract. To achieve data intensive computation, the joining of geographically
distributed heterogeneous clusters of workstations through the Internet can be
an inexpensive approach. To obtain effective collaboration in such a collection of
clusters, overcoming processors and networks heterogeneity, a system architecture
was defined. This architecture and a model able to predict application performance
and to help its design is described. The matrix multiplication algorithm is used as
a benchmark and experiments are conducted over two geographically distributed
heterogeneous clusters, one in Brazil and the other in Spain. The model obtained
over 90% prediction accuracy in the experiments.

1 Introduction

For an economical approach to achieving data intensive computation, one increasing
widespread approach is the use of dedicated heterogeneous networks of workstations
(HNOW) with standard software and libraries. These clusters have become popular and
are used to solve scientific computing problems in many universities around the world.
However, the user’s needs are usually beyond the performance of these clusters.

Internet, through its evolution over recent decades, has become a real possibility to
interconnecting geographically distributed HNOWs in such a way that the joint behave as
a single entity: the collection of HNOWs (CoHNOW). Obtaining effective collaboration
of this kind of systems is not a trivial matter [1].

In a CoHNOW there are two levels of communication: an intra-cluster network level
to communicate machines locally, and an inter-cluster network level, responsible for
interconnecting the clusters. To achieve an efficient level of collaboration performance
between the clusters the use of efficient policies relating to workload distribution is
crucial. This need is increased when Internet is used, due to its unpredictable latency
and throughput, and its performance limitations.

A key concept is to evaluate the possibilities of using the CoHNOW as a single
cluster with some specific characteristics. To do this evaluation, this paper proposes a
system architecture, a system model and an application tuning methodology.

The system architecture evolved from the initial proposal of [2] in such a way that the
CoHNOW has been organized as a hierarchical Master/Worker-based collection of clus-
ters. In each communication level, pipeline strategies are implemented in such a way that

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 691–698, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

692 Eduardo Argollo et al.

communication and computation can be overlapped. For intra-cluster communications
MPI MPICH library [3] is used and to optimize the inter-cluster communication per-
formance, guarantee transparency and add reliability to Internet connections, a specific
service was introduced to the architecture: the Communication Manager.

Some of the characteristics of the multiple-cluster system (worker performance, intra
and inter network throughput) and of the algorithm (workload size and its distribution
management) were examined to obtain an analytical system model that permits the pre-
diction of the execution performance and explains its behavior over time. The proposed
methodology describes how to assess whether the collaboration makes sense and, if it
does, it then describes how to tune the application, adjusting some of the parameters,
thereby identifying the best strategies for obtaining the best performance.

In order to demonstrate and evaluate the proposed architecture, methodology and
data distribution policies in the field of scientific computation, it is necessary to select a
representative application as the benchmark program.

The matrix multiplication (MM) problem, using a blocked algorithm [4], is the
selected benchmark application because it is a highly scalable problem with an easily
manageable workload, including the possibility of granularities changes. In addiction,
the MM operation is a key component of the Linear Algebra Kernel [5] [6] used by a
wide range of scientific applications. Its execution over different-speed processors turns
out to be surprisingly difficult. Actually, its NP-completeness was proved [7].

Experiments were done in order to validate our work using two geographically dis-
tributed clusters: one located in Brazil and the other in Spain. Each cluster is a dedicated
HNOW and they are interconnected by the Internet.

The following sections present our study in further detail. Section 2 briefly describes
the system architecture. The analytical model for the system and benchmark application
is explained in section 3. In section 4, experiments description, obtained results and
details are described and results are shown. Finally, conclusions and further work are
presented in section 5.

2 System Architecture

The necessity of constantly controlling network usability and ensuring a dynamic re-
arrangement of the workload of each HNOW led us to use an extended and hierarchical
version of the Master/Worker programming paradigm (M/W) as the run-time system
model.

The proposed hierarchical organization, see Fig.1, implies there is a “main-
cluster”, from which the application execution starts, connected to the “remote clus-
ters” by the communication manager (CM). These “remote clusters”, or sub-clusters,
are organized around their sub-masters and sub-workers.

Two different strategies were developed for the two different communication levels.
Inside the local network, its low latency and high throughput permits the utilization of
standard MPI library functions. To manage the inter-cluster communication task, carried
out over a long-distance network (LDN), a specific service has been developed to be
included in each cluster: the Communication Manager (CM).

CMs isolate the local network from the public one, manage the public network
disconnections, guarantee the inter-cluster communication and maintain it continuously,

Efficient Execution of Scientific Computation on Geographically Distributed Clusters 693

Fig. 1. System architecture as a hierarchical Master/Worker CoHNOW

exploiting as much as possible the unpredictable communication link throughput and
bandwidth peaks by means of an adaptive multithreading communication scheme [8].

3 System Model

In such a heterogeneous system, the CoHNOW, it is important to determine if the col-
laboration is profitable for a certain execution. It is also desirable to have, in advance
and along the application execution, a performance estimation, including the expected
execution time. To attain these estimation goals an analytic model of the system was
developed.

The purpose of this model is to evaluate the possibilities of an efficient collaboration
on a CoHNOW, taking into consideration the characteristics and parameters of system’s
clusters, intra and inter communication links and application. When the collaboration
makes sense, the model equations predict the application execution behavior and its
performance. The model can also be used in the development of a methodology to
design and tune the application in order to obtain the best possible performance over the
available computational resources.

The system model is based in a simple computation-communication analysis that is
applied to each communication level: inside a cluster (intra-cluster) and between a pair
of clusters (inter-cluster). It is important to remark that this approach can be applied for
any amount of interconnected clusters, with any possible hierarchical M/W topology
since, in this scheme, one cluster just communicates with one other cluster.

In this section we explain the generic computation-communication analysis in both
communication levels: intra and inter-cluster. We apply this analysis to the selected
benchmark program, the matrix multiplication (MM) algorithm.

3.1 Computation-Communication Analysis

The computation-communication analysis is oriented to the evaluation of the possible
performance that can be obtained as a function of the communication network through-
put. This evaluation is done through the comparison of the amount of data needed to
be communicated for a certain workload, and the amount of operations involved in
processing this workload.

694 Eduardo Argollo et al.

For a certain workload, the “computation time” (CptTime) can be defined as the
ratio between the number of operations (Oper) and the system performance (Perf). The
communication time (CommTime) is the ratio between the volume of data communi-
cation (Comm) and the interconnection network throughput (TPut). Using the pipeline
strategy, there will be no workers’ idle time whenever “communication time” is equal-to
“computation time”, this means maximum system efficiency is achieved. We can then
conclude that the attainable system performance depends on the network throughput as
shown in Eq. 1.

CommTime = CptT ime⇒ Perf =
Oper ∗ TPut

Comm
(3.1)

The performance that can be obtained is then the minimum between the Available
System Performance (ASP) and the performance limited by the network (Perf). The
Available System Performance (ASP) can be obtained experimentally and represents
the summarization of the performance for each worker executing the algorithm locally
(without communication).

This simple analysis should be applied to the target algorithm, for each workload dis-
tribution level (intra and inter-cluster), providing the prediction of the overall execution
performance.

3.2 Intra-cluster Performance Contribution Evaluation

At the intra-cluster level, the MM blocked algorithm will be used so that the master
will divide the M x M elements matrix in blocks of B x B elements. The master sends
a pair of matrix blocks to be multiplied, receiving one result block. The amount of
communication (Comm) is then the total number of bytes of the above mentioned three
blocks, Comm=3 ∗ α ∗ B2, being (α) the floating point data size in bytes. For this
workload, the number of operations (floating point multiplications and additions) is
Oper=2B3 −B2.

Applying the same computation-communication approach of section 3.1, consider-
ing now the local area network throughput (LanTPut), the local Cluster Performance
Limit (CPL) in flops is provided by Eq. 2. This equation determines the performance
limits for the intra-cluster execution and it can be used to determine the best local block
granularity with which the best local execution performance can be obtained.

CPL =
(2B3 −B2) ∗ LanTPut

3 ∗ α ∗B2
=

(2 ∗B − 1) ∗ LanTPut

3 ∗ α
(3.2)

The Expected Cluster Performance (ECP) is then the minimum between its CPL and
the experimentally obtained Available System Performance (ASP) of the cluster.

3.3 Inter-cluster Performance Contribution Evaluation

Considering a cluster as a single element we can then analyze the inter-cluster com-
munication and the workload distribution and management between clusters in order
to determine the amount of the remote clusters performance that can be attained to the
CoHNOW.

Efficient Execution of Scientific Computation on Geographically Distributed Clusters 695

The maximum CoHNOW performance is obtained when idle time is avoided on its
clusters. To do this for the remote clusters, despite the low LDN throughput, a different
workload granularity size should be used. For some algorithms this distribution can be
improved using the data locality in a way that the granularity will have a dynamic growth
since the previous received data can be reused when joined with the recently received
data.

This improvement can be obtained for the blocked MM algorithm through a pipe-
line-based distribution of complete first-operand rows of blocks (R) and second-operand
columns of blocks (C). Each time a new row/column (R/C) pair reaches the sub-master, it
is added to the previously received rows and columns, exploiting the O(n3) computation
complexity against the O(n2) data communication complexity of the MM algorithm,
therefore increasing the computation-communication ratio.

Using the whole row by column multiplication operations, Oper=2MB2−B2, and
the result communication, Comm=α ∗B2, in the computation-communication analysis
it is possible to derive the equation that describes the Potential Contribution Perfor-
mance Limit (CoPeL) the remote cluster can provide as a function of the LDN average
throughput (LdnAvgTPut) and the matrix elements (Eq. 3).

CoPeL =
(2MB2 −B2) ∗ LdnAvgTPut

α ∗B2
=

(2 ∗M − 1) ∗ LdnAvgTPut

α
(3.3)

Then, for a remote cluster, the Expected Performance Contribution (EPC) is the
minimum value between the CoPeL and the cluster CPL.

In the inter-cluster pipeline, when a new pair P of R/C is received, Comm=2 ∗ α ∗
M ∗B, then 2*P -1 new row by column blocks multiplications operations are possible,
Oper=(2P−1)(2MB2−B2). This application property implies a constant growth in the
remote cluster performance collaboration, until the Expected Performance Collaboration
(EPC) value is reached. This moment is called stabilization point because, from this time
on, the contributed performance value will stabilize.

Substituting in Eq. 1 Comm and Oper for the inter-cluster pipeline, and deducing P,
Eq. 4 is obtained. The value of P represents the number of block rows and columns to
be sent to reach the stabilization point. Consequently the StabilizationTime, the elapsed
execution time until this stabilization point is reached, in other words the time spent to
send P rows and columns blocks, is provided by Eq. 5.

It is important to note that although the inter-cluster throughput is variable, its average
value can be easily obtained experimentally. Based on this average value the availabil-
ity and performance of the collaboration can be established and the equations can be
dynamically calculated through those parameter variations so that workload and flow
actions can be taken in order to maintain or achieve new levels of collaboration.

P =
α ∗M ∗ ContribPerf

(2 ∗M ∗B −B) ∗ LdnAvgPut
+

1
2

(3.4)

StabilizationT ime =
P ∗ Comm

LdnAvgPut
=

2 ∗ P ∗ α ∗M ∗B

LdnAvgPut
(3.5)

696 Eduardo Argollo et al.

4 Experiments

In order to check the accuracy of the developed model, experiments were executed over
the testbed CoHNOW. Some experiments results will be shown and one experiment will
be analyzed in more detail. Table 1 is presenting the obtained results for 4 significant
experiments. The experiments duration are in the range of 400 to 4,000 minutes in order
to cover the Internet variable behavior along the time. The prediction for all experiments
present over 90% precision.

The experiments were chosen with two different granularities: 100 x 100 block size
was chosen to illustrate the capability of prediction with the local area networks saturated,
while 400 x 400 block size was obtained with the use of the model equations because it
represents the smallest block on which the best execution performance is possible.

To evaluate the Internet throughput contribution, two different CM usage levels
were selected to obtain averages throughput of 10KB/sec and 50KB/sec. These averages
values were empirically evaluated after exhaustive monitoring of the network behavior.

Table 1. Prediction and real execution comparison for different experiments

Single CM Thread Multiple CM Thread

Matrix Order (M) 10,000 20,000 10,000 10,000

Block Order (B) 100 400 100 400

Expected LdnAvgTput (KB/sec) 10 10 50 50

Predicted Values

Brazil Cluster Perf (MFlops) 16.78 28.97 16.78 28.97

Spain Cluster Perf (MFlops) 16.78 58.10 16.78 58.10

Stabilization R/C (P) 34 29 7 6

Stabilization Time (min) 433 3,007 18 64

Execution Time (min) 1,106 4,117 998 409

Experiments Results

CoHNOW Performance (MFlops) 32.72 79.02 31.90 78.80

Stabilization R/C (P) 34 29 7 6

Execution Time (min) 1,145 4,482 1,038 448

Prediction Accuracy 96.4% 91.8% 96.2% 91.3%

The performance behavior along time for the 10,000 x 10,000 matrix using 400 x
400 block with 50KB/sec of expected Internet bandwidth experiment is shown in Fig.2.
For the same experiment, Fig.3 shows the real LDN link throughput along the time.

The performance attained by the remote cluster (“remote” line in Fig. 2) increases
until it reaches the stabilization point at minute 64. From this time on the cluster is
contributing with its best performance. Although at minute 130 there was an abrupt drop
of performance (a in Fig. 2) because of a 5 minutes Internet disconnection (a in Fig. 3).

This disconnection caused no penalty for the overall system performance since the
pipe was full at that time and after the reconnection all results of the disconnected period
were sent, causing a sudden peak of performance (b in Fig. 2).

Efficient Execution of Scientific Computation on Geographically Distributed Clusters 697

The model equations were also used to determine when to stop sending data to the
remote cluster (b in Fig. 3) because it has enough work data for the remaining of the
predicted execution time.

0

20

40

60

80

100

120

0 34 67 100 134 167 200 234 267 300 334 367 401 434
Time (min)

P
er

fo
rm

an
ce

 (
M

F
lo

p
s)

Remote

Local

a

b

Fig. 2. Experiment M=10000 B=400 LdnAvgTput = 50KB/s: execution performance behavior

0

10

20

30

40

50

60

70

1 34 67 100 133 166 199 232 265 298 331 364 397 430
Time (min)

T
h

ro
u

g
h

p
u

t
(K

b
yt

es
/s

ec
)

Outgoing

Incoming

a

b

Fig. 3. Experiment M=10000 B=400 LdnAvgTput = 50KB/s: communication throughput along
the time

5 Conclusions and Future Work

In order to evaluate the possibilities using a CoHNOW as a "single cluster", a system
architecture was defined including a new service, the CM that is in charge of managing
the long-distance communication and a system model was developed to predict and
tune the application execution. Experiments to validate the model predicted results were
made.

For the selected benchmark application, some experiments, with different sizes,
granularities and inter-cluster network throughputs, were made and the obtained results
had been predicted with an error less than 9%. The performance behavior for a specific
experiment was analyzed and this analysis demonstrates that the architecture support
the inter-cluster effective collaboration and that the model can be used to predict the
stabilization point and the performances behavior before and after it.

Some important future lines consist of generalizing the model to include other sci-
entific computation applications, and the selection of the optimal CoHNOW virtual
configuration for maximizing the global system performance.

698 Eduardo Argollo et al.

Acknowledgment

The authors want to thank the anonymous reviewers whose comments led to a substantial
clarification of the contribution of this paper.

References

1. Olivier Beaumont, Arnaud Legrand, and Yves Robert. The master-slave paradigm with het-
erogeneous processors. IEEE Trans. Parallel Distributed Systems, 14(9) : 897–908, 2003.

2. A. Furtado, J. Souza, A. Rebouças, D. Rexachs, E. Luque. Architectures for an Efficient Appli-
cation Execution in a Collection of HNOWS. In D. Kranzlmüller et al. editors, Proceedings of
the 9th Euro PVM/MPI 2002, Lecture Notes in Computer Science vol. 2474, pages 450–460,
2002.

3. W. Gropp, E. Lusk, N.Doss, and A. Skjellum. A high-performance, portable implementation
of the MPI message passing interface standard Scientific and Engineering Computation Series,
Parallel Computing vol 22 number 6, 789–828, 1996.

4. M. S. Lam, E. Rothberg, M. E. Wolf. The Cache Performance and Optimizations of Blocked
Algorithms. 4th Intern. Conference on Architectural Support for Programming Languages and
Operating Systems, Palo Alto CA, pp 63-74, April 1999.

5. Dongarra J., J. Du Croz, S. Hammarling, I. Duff. A set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft., 16(1):1–17, 1990.

6. Dongarra J., D. Walker. Libraries for Linear Algebra. in Sabot G. W. (Ed.), High Perfor-
mance Computing: Problem Solving with Parallel and Vector Architectures, Addison-Wesley
Publishing Company, Inc., pp. 93–134, 1995.

7. Beaumont O., F. Rastello and Y. Robert. Matrix Multiplication on Heterogeneous Platforms.
IEEE Trans. on Parallel and Distributed Systems, vol. 12, No. 10, pp. 1033-1051, October
2001.

8. E. Argollo, J. R. de Souza, D. Rexachs, and E. Luque. Efficient Execution on Long-Distance
Geographically Distributed Dedicated Clusters. In D. Kranzlmüller et al. editors, Proceedings
of the 11th Euro PVM/MPI 2004, Lecture Notes in Computer Science vol. 3241, pages 311–319,
2004.

Improving the Performance
of Large-Scale Unstructured PDE Applications

Xing Cai1,2

1 Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway
xingca@simula.no

2 Department of Informatics, University of Oslo
P.O. Box 1080 Blindern, N-0316 Oslo, Norway

Abstract. This paper investigates two types of overhead due to duplicated lo-
cal computations, which are frequently encountered in the parallel software of
overlapping domain decomposition methods. To remove the duplication-induced
overhead, we propose a parallel scheme that disjointly re-distributes the overlap-
ping mesh points among irregularly shaped subdomains. The essence is to replace
the duplicated local computations by an increased volume of the inter-processor
communication. Since the number of inter-processor messages remains the same,
the bandwidth consumption by an increased number of data values can often be
justified by the removal of a considerably larger number of floating-point opera-
tions and irregular memory accesses in unstructured applications. Obtainable gain
in the resulting parallel performance is demonstrated by numerical experiments.

1 Introduction

An important class of domain decomposition (DD) algorithms is based on the Schwarz
iterations that use overlapping subdomains; see e.g. [3,8]. These algorithms have be-
come popular choices for solving partial differential equations (PDEs) mainly due to
three reasons: (1) a simple algorithmic structure, (2) rapid numerical convergence, and
(3) straightforward applicability for parallel computers. The series of the international
DD conferences has shown, among other things, the wide spread of the overlapping
DD algorithms; see e.g. [1,6,5]. Moreover, the overlapping DD approach is well suited
for implementing parallel PDE software, especially with respect to code re-use. This
is because the involved subdomain problems are of the same type as the target PDE in
the global domain, and no special interface solvers are required. Therefore, an existing
serial PDE solver can, in principle, be re-used as the subdomain solver inside a generic
DD software framework; see [2]. Besides, the required collaboration between the sub-
domains, in the form of communication and synchronization, can be implemented as
generic libraries independent of the target PDE.

The starting point of an overlapping DD method is a set of overlapping subdomains
that decomposes the global solution domain as Ω = ∪P

s=1Ωs. Figure 1 shows such an
example of partitioning an unstructured finite element mesh, where a zone of overlap-
ping points is shared between each pair of neighboring subdomains. Roughly speaking,
each subdomain is an independent “working unit” with its own discretization task and
a subdomain solver. Collaboration between the subdomains is through the exchange

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 699–708, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

700 Xing Cai

Fig. 1. An example of an unstructured computational mesh and one possible partitioning into
several overlapping and irregularly shaped subdomains

of local solutions inside the overlapping zones. A light-weight “global administrator”
is required to iteratively improve the “patched” global solution and to synchronize the
working pace of all the subdomains. We remark that sufficient overlap between neigh-
boring subdomains is important for obtaining the rapid convergence of an overlapping
DD method; see e.g. [3,8].

The main computational tasks involved in an overlapping DD method are in the
form of linear algebra operations, most importantly, matrix-vector product, inner-pro-
duct between two vectors, and addition of vectors. These linear algebra operations are
carried out on two levels: the global level and the subdomain level. The global-level
operations are typically needed to check the global convergence of the DD method. In
particular, when the overlapping DD method is used as a preconditioner (see [3,8]), such
as to obtain more robust convergence of a global Krylov solver, global-level operations
also constitute the computational kernel of the Krylov solver. In such a setting, the
original global system Ax = b is replaced by an equivalent system BAx = Bb. For
example, an additive Schwarz preconditioner is defined as

Badd =
P∑

s=1

RT
s A−1

s Rs. (1.1)

In the above definition, A−1
s refers to a local solver within Ωs (see Section 2), while

matrices RT
s and Rs denote, respectively, the associated interpolation and restriction

operators. For more mathematical details, we refer to [3,8]. The computational kernel of
each Schwarz iteration, such as (1.1), is constituted by the subdomain-level operations
which typically find an approximate local solution on each subdomain, when a suitable
subdomain right-hand side is given.

For each overlapping mesh point that is shared between multiple host subdomains,
a global-level operation should give rise to the same value in all its host subdomains,
whereas a subdomain-level operation may compute different values in the different host
subdomains. Therefore, duplicated computations arise in the global-level operations,
provided that the parallel software is based on a straightforward re-use of existing serial

Improving the Performance of Large-Scale Unstructured PDE Applications 701

linear algebra software over all the local points on each subdomain. Removing the
duplication-induced overhead associated with parallel matrix-vector products and inner-
products thus constitutes the main theme of the remaining text. In Section 2, a distributed
data structure is explained and the associated duplicated computations are examined in
detail in Section 3. The main idea of a disjoint re-distribution of all the mesh points is
presented in Section 4, and we propose in Section 5a parallel scheme for carrying out such
a disjoint re-distribution. The issue of re-ordering the mesh points on each subdomain
is also explained. Finally, Section 6 presents numerical experiments demonstrating the
obtainable improvement of parallel performance, after the duplicated local computations
are removed from global-level parallel matrix-vector products and inner-products.

2 Distributed Data for Linear Algebra Operations

In the context of parallel overlapping DD methods, the involved linear algebra operations
use a distributed data structure. That is, all the mesh points (including the overlapping
points) in a subdomain participate in constructing the local matrix and vectors of the
subdomain. In addition to being used in the subdomain-level operations, such a dis-
tributed set of subdomain matrices and vectors is also used in global-level operations.
This is because a global matrix or vector can be collectively represented by the set of
subdomain local matrices or vectors.

A global matrix A is thus represented by a set of subdomain matrices As, 1 ≤ s ≤ P ,
where P denotes the number of subdomains and As arises from discretizing the target
PDE restricted inside Ωs. We note that some of the rows in A are duplicated among
neighboring subdomain matrices, due to the overlap between subdomains. Here, it is
important to note the so-called internal boundary of Ωs, which refers to ∂Ωs\∂Ω,
i.e., the part of ∂Ωs that borders into a neighboring subdomain (thus not on the global
boundary ∂Ω). Since a Dirichlet type boundary condition is normally applied on the
internal boundary of Ωs, the corresponding rows in As are different from those in A,
whereas the other rows in As are identical with their corresponding rows in A.

A global solution vector, say x, is distributed as the subdomain vectors xs, 1 ≤
s ≤ P . The “overlapping entries” of x are assumed to be always correctly duplicated
on all the neighboring subdomains, including on the internal boundaries. During each
Schwarz iteration, the neighboring subdomains may compute different local solutions
in the overlapping regions. The subdomains thus need to exchange values between the
neighbors and agree upon an averaged value for each overlapping point.

3 Overhead due to Duplicated Computations

Parallel execution of global-level operations can often be realizable through serial local
operations plus appropriate inter-subdomain communication. To parallelize a global-
level matrix-vector product y = Ax, we can first individually compute ys = Asxs

on each subdomain. Then, the entries of ys that correspond to the internal boundary
points on Ωs must rely on neighboring subdomains to “pass over” the correct values.
The needed communication is of the form that each pair of neighboring subdomains
exchanges an array of values.

702 Xing Cai

Regarding the parallelization of a global-level inner-product w = x · y, the strategy
is to let each subdomain first compute its contribution before being added up globally.
A naive approach is to first individually compute ws = xs · ys, by applying existing
serial inner-product software to all the points on Ωs. However, the local result ws must
be adjusted before we can add them up to produce w. More specifically, we find

w̃s = ws −
∑

k∈Ks

Ks,k − 1
Ks,k

xs,k × ys,k, (3.2)

where Ks denotes an index set containing the local indices of all the overlapping mesh
points on Ωs. Moreover, Ks,k is an integer containing the degree of overlap for an
overlapping point, i.e., the total number of subdomains in which this point is duplicated.
Finally, the desired global result can be found as w =

∑P
s=1 w̃s, through an all-to-all

collective communication.
The above strategies for parallelizing global-level operations are particularly attrac-

tive with respect to code re-use. This is because the involved subdomain-level operations
ys = Asxs and ws = xs · ys can directly re-use existing serial software, involving
all the mesh points on Ωs. However, the disadvantage of these simple strategies is the
resulting overhead due to duplicated computations. More specifically, some entries of
ys = Asxs are also computed on other subdomains. Similarly, the local computation of
ws = xs ·ys is “over-sized” and the later adjustment of form (3.2) introduces additional
overhead.

For three-dimensional finite element computations, in particular, each point in an
unstructured mesh normally has direct couplings to about 15–20 other points, meaning
that each row in A has approximately 15–20 non-zero entries. (The use of higher-
order basis functions will give rise to more non-zero entries.) The sparse matrix A
is usually stored in a compressed row format, i.e., a one-dimensional floating-point
array a entries containing row-wise all the non-zero entries, together with two one-
dimensional integer arrays i row and j col, which register the positions of the non-
zero entries. The computation of y = Ax on row i is typically implemented as

y[i] = 0.0;
for (j=i_row[i]; j<i_row[i+1]; j++)
y[i] += a_entries[j]*x[j_col[j]];

It can be observed that the memory access pattern for x is irregular and indirect, of
form x[j col[j]]. In other words, the combination of a large number of floating-
point operations and irregular memory accesses can make the computation per row
quite expensive. This motivates a strategy of removing the duplicated computation per
overlapping point by one extra data value in communication, which may be performance-
friendly for many unstructured PDE applications. We remark that the number of inter-
subdomain messages remains the same, so the increased communication volume does
not result in more latency, but only consumes more bandwidth.

4 Disjoint Re-distribution of Computational Points

The first step towards removing the duplication-induced overhead, which is described
in Section 3, is to find a disjoint re-distribution of the entries of x and y (and also rows

Improving the Performance of Large-Scale Unstructured PDE Applications 703

of A) among the subdomains. The result of enforcing such a disjoint partitioning is that,
during ys = Asxs, only a subset of the rows in As carries out the computation, so that
each entry of the global vector y is computed in exactly one subdomain. Similarly, when
computing xs · ys on Ωs, we only go through a subset of the entries in xs and ys to
obtain a “correctly-sized” ws value, which can then be used to compute w =

∑P
s=1 ws

without any extra adjustments of form (3.2).

Overlapping partitioning of a global domain

⇓ ⇓
Subdomain No.1 Subdomain No.2

⇓ ⇓

Fig. 2. A simple example of reducing the number of computational points (black-colored) in
two overlapping subdomains. The white-colored internal boundary points and the grey-colored
overlapping points do not participate in the distributed global-level computations, these points
receive computational results from the neighbor

To illustrate the main idea of the disjoint re-distribution, we show a very simple
example in Figure 2. In this example, a global domain is decomposed into two over-
lapping subdomains, with three columns of points in the overlap region. The internal
boundary points on each subdomain are marked with the white color. On the middle

704 Xing Cai

row of Figure 2, the two columns of overlapping points (those lying immediately beside
the internal boundary points) are initially treated on each subdomain as computational
points, marked with the same black color as for the interior non-overlappingpoints. After
enforcing a disjoint re-distribution, which is particularly simple for this example, some
of the overlapping points are marked with the grey color (see the two subdomains on the
bottom row of Figure 2). These grey-colored points thus become “non-computational”,
meaning that their computational values, together with values of the internal boundary
points, are to be provided by the neighboring subdomain. In other words, removal of
the duplicated computations comes at the cost of an increased communication volume.
We remark that this overhead removal technique only applies to global-level matrix-
vector products and inner-products. During each Schwarz iteration, all the points on a
subdomain have to participate in the subdomain solver.

For unstructured computational meshes, such as that depicted in the left picture
of Figure 1, devising a disjoint re-distribution scheme is non-trivial. Moreover, the re-
distribution scheme needs to fulfill at least two requirements: (1) it should be based on the
existing overlapping partitioning of the points, such that each subdomain chooses a subset
of its local points to work as computational points, and (2) the number of computational
points per subdomain should be distributed evenly. An optional requirement may be
that the re-distribution scheme can be executed in parallel, instead of having to use a
“master” processor for doing the re-distribution.

5 A Parallel Re-distribution Scheme

Before presenting a parallel re-distribution scheme, we assume that the global domain
Ω has N points and there already exists a set of P overlapping subdomains, where
Ns denotes the number of points on Ωs. Moreover, we assume that Ns = N I

s + NO
s ,

where N I
s denotes the number of interior points on Ωs, while NO

s denotes the number
of overlapping points on Ωs, including NB

s internal boundary points.

A Parallel Re-Distribution Scheme

Phase 1: Mark all the N I
s interior points on Ωs as computational points.

In addition, some of the non-internal-boundary overlapping points that lie
closest to the interior points are also marked, so that the number of initially
marked computational points on Ωs becomes approximately N/P .

A Parallel Re-Distribution Scheme (continued)

Phase 2: Use inter-subdomain communication to find out, for each over-
lapping point, the number of subdomains (denoted by C) that have initially
marked it as a computational point. If C �= 1, choose one host subdomain
out of possibly several candidates (in which the considered point does not
lie on the internal boundary). Mark thus the overlapping point as a computa-
tional point on the host subdomain, and when necessary (if C > 1), unmark
the overlapping point as non-computational on the other subdomains.

Improving the Performance of Large-Scale Unstructured PDE Applications 705

We remark that in the above parallel re-distribution scheme, the choice of the host
subdomain in Phase 2 has to be made unanimous among all the candidate host subdo-
mains. For this purpose, we use a unique global number of every overlapping point,
say g, which is agreed on all the subdomains beforehand. Let us denote by S ≥ 1 the
number of candidate host subdomains for g. In case none or more than one candidate
have initially marked point g, we can select the jth candidate host subdomain, where
e.g. j = mod(g, S) + 1. This unanimous selection algorithm has a random nature and
preserves the load balance quite satisfactorily, provided that the overlapping subdomains
are well balanced originally.

After a re-distribution, all the points onΩs receive a “label”, either as a computational
point or as a non-computational point. It is clear that all the N I

s interior points on Ωs

are computational points by default. In addition, some of the overlapping points will
also be labelled as computational points. Let us denote by NOc

s the number of these
computational overlapping points on Ωs (note we always have NOc

s ≤ NO
s −NB

s). The
re-distribution scheme aims at a disjoint partitioning of the N global points among the
subdomains, i.e.,

N =
P∑

s=1

(
N I

s + NOc
s

)
.

This labeling of the subdomain points is, in principle, sufficient for avoiding overhead
due to duplicated computations. However, if the chosen computational points are scat-
tered in the list of all the subdomain points on Ωs, we have to resort to some kind of if-
test when traversing the rows of As to compute only the desired subset of ys = Asxs.
The same if-test is also needed for traversing the desired subsets of xs and ys in as-
sociation with a parallel inner-product. In practice, this additional if-test is a serious
obstacle for achieving good computational performance. A remedy to this problem is to
re-order the points on each subdomain. More specifically, the first segment contains the
N I

s interior points, and the second segment contains theNOc
s computational overlapping

points. The third segment contains the remaining overlapping points that do not lie on
the internal boundary (such as the grey-colored points in Figure 2). Finally, the fourth
segment contains the NB

s internal boundary points.
It is clear that the disjoint re-distribution is unconditionally beneficial to the parallel

inner-products, because the number of used entries in xs and ys is reduced, while the
additional adjustment of form (3.2) is avoided. For the parallel matrix-vector products,
the “benefit” onΩs is a reduced number of the computational rows fromNs toN I

s +NOc
s ,

whereas the “loss” is an increase in the communication volume of orderNO
s −2NB

s . The
latter is because the number of incoming data values is raised from NB

s to NO
s −NOc

s ,
meanwhile the number of outgoing data values is raised from approximatelyNB

s toNOc
s .

In other words, if the additional bandwidth cost of moving NO
s − 2NB

s data values is
lower than the computational cost of NO

s −NOc
s rows in ys = Asxs, we should consider

replacing the duplicated computations by an increased communication volume.

706 Xing Cai

6 Numerical Experiments

As a set of concrete numerical experiments, we measure the wall-time consumptions of
parallel global-level matrix-vector products and an inner-products, which are associated
with the discretization of a Poisson equation on a three-dimensional unstructured mesh
using 10,375,680 tetrahedral elements and N = 1, 738, 607 mesh points. The average
number of non-zeros per row in the resulting sparse matrix A is approximately 15, and
two layers of elements are shared between neighboring subdomains. (The global mesh
is partitioned into P overlapping irregularly shaped subdomains by using the Metis
package [4] in combination with the parallel software toolbox in Diffpack [7].)

We have tested two quite different parallel platforms, where the first platform is a
Linux cluster consisting of 1 GHz Pentium III processors interconnected through a 100
Mbit/s ethernet. The second platform is an SGI Origin 3800 system using 600 MHz
R14000 processors. The Linux cluster is particularly interesting because the single-
processor computational cost per row in A is approximately the same as the bandwidth
cost of moving one data value (8 bytes), i.e., 6.4 × 10−7s. (We note that the R14000
processors are approximately 60% faster than the Pentium III processors for our un-
structured serial computations, whereas the bandwidth advantage of the Origin system
over the Linux cluster is more than ten-fold.)

Table 1. The effect of replacing duplicated computations by an increased communication volume;
measurements on a Linux cluster and an SGI Origin 3800 system

Linux cluster Origin system

w/ duplications w/o duplications w/ duplications w/o duplications

P max Ns maxNC
s Tmatvec Tinner Tmatvec Tinner Tmatvec Tinner Tmatvec Tinner

2 894605 869385 5.81e-01 4.60e-02 5.77e-01 3.28e-02 4.75e-01 3.50e-02 4.07e-01 2.87e-02

4 465695 435364 3.26e-01 2.63e-02 3.25e-01 2.05e-02 2.69e-01 1.18e-02 2.53e-01 7.06e-03

8 244205 218313 1.79e-01 1.41e-02 1.94e-01 1.06e-02 1.45e-01 6.62e-03 1.32e-01 2.09e-03

16 130156 109550 1.02e-01 1.01e-02 9.75e-02 5.79e-03 8.15e-02 3.07e-03 6.51e-02 1.11e-03

32 69713 55175 N/A N/A N/A N/A 4.09e-02 1.91e-03 3.06e-02 6.58e-04

In Table 1, we denote the wall-time consumption for each matrix-vector product
and inner-product by Tmatvec and Tinner, respectively. Moreover, NC

s = N I
s + NOc

s

denotes the number of computational points on Ωs. (The difference between maxNs

and maxNC
s indicates the amount of removable duplicated computations.) The parallel

re-distribution scheme from Section 5 has been applied to duplication removal. The
computational cost of the re-distribution itself is quite small, no more than a couple of
parallel matrix-vector products. It can be observed from Table 1 that there is always
gain in Tinner after removing the duplicated local computations. For Tmatvec, however,
the gain on the Linux cluster is smaller than that obtained on the Origin system. This is
because the Linux cluster has a much higher bandwidth cost. In one extreme case, i.e.,
P = 8 on the Linux cluster, Tmatvec has increased. The reason for not obtaining perfect

Improving the Performance of Large-Scale Unstructured PDE Applications 707

speed-ups, even after removing the duplicated computations, is mainly due to (1) the
increased bandwidth consumption and (2) a somewhat imperfect distribution of both
N I

s +NOc

s and the communication overhead among the subdomains. These factors can
be illustrated by Figure 3, where the mesh points on each subdomain are categorized
into four types as described in Sections 4 and 5.

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
x 10

4

Subdomain ID

N
um

be
r

of
 p

oi
nt

s

internal boundary points
non−computational overlapping points
computational overlapping points
interior non−overlapping points

Fig. 3. The categorization of mesh points into four types for sixteen overlapping subdomains

7 Concluding Remarks

In this paper, we have explained the origin of duplicated local computations that fre-
quently arise in parallel overlapping DD software. A disjoint re-distribution of the over-
lapping mesh points among the subdomains removes the duplications associated with
global-level parallel matrix-vector products and inner-products. Although numerical ex-
periments have already shown considerable gain in the parallel performance, more effort
is needed to improve the parallel re-distribution scheme from Section 5. It needs first and
foremost to produce an even better load balance. Secondly, we may have to “relax” the
objective of a complete removal of the duplications in parallel matrix-vector products.
That is, a certain amount of duplicated computations may be allowed, such as to limit an
acceleration of the communication volume. This means that a “compromise” may be re-
quired between reducing the duplicated computations and increasing the communication
volume.

708 Xing Cai

Acknowledgement

The work presented in this paper has been partially supported by the Norwegian Research
Council (NFR) through Programme for Supercomputing in form of a grant of computing
time.

References

1. P. E. Bjørstad, M. Espedal, and D. Keyes, editors. Domain Decomposition Methods in Sciences
and Engineering. Domain Decomposition Press, 1998. Proceedings of the 9th International
Conference on Domain Decomposition Methods.

2. X. Cai. Overlapping domain decomposition methods. In H. P. Langtangen and A. Tveito,
editors, Advanced Topics in Computational Partial Differential Equations – Numerical Methods
and Diffpack Programming, pages 57–95. Springer, 2003.

3. T. F. Chan and T. P. Mathew. Domain decomposition algorithms. In Acta Numerica 1994, pages
61–143. Cambridge University Press, 1994.

4. G. Karypis and V. Kumar. Metis: Unstructured graph partitioning and sparse matrix ordering
system. Technical report, Department of Computer Science, University of Minnesota, Min-
neapolis/St. Paul, MN, 1995.

5. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, editors. Domain
Decomposition Methods in Sciences and Engineering, volume 40 of Lecture Notes in Com-
putational Science and Engineering. Springer, 2004. Proceedings of the 15th International
Conference on Domain Decomposition Methods.

6. C.-H. Lai, P. E. Bjørstad, M. Cross, and O. Widlund, editors. Domain Decomposition Methods
in Sciences and Engineering. Domain Decomposition Press, 1999. Proceedings of the 11th
International Conference on Domain Decomposition Methods.

7. H. P. Langtangen. Computational Partial Differential Equations - Numerical Methods and Diff-
pack Programming. Texts in Computational Science and Engineering. Springer, 2nd edition,
2003.

8. B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

A Runtime Adaptive Load Balancing Algorithm
for Particle Simulations

Matthew F. Dixon�

Department of Mathematics, Imperial College, London
matthew.dixon@imperial.ac.uk

Abstract. A new dynamic load balancing algorithm is proposed for particle simu-
lations on clusters of workstations which operates at two levels; it both dynamically
defines groups of particles in which the force calculations are localised and at the
same time adaptively assigns groups to processors based on the group sizes and
runtime CPU usages. It therefore adaptively balances using both the dynamics of
the simulation and the load usage of the cluster at runtime.
The algorithm is implemented in the POOMA framework and applied to a particle-
in-cell approximation of a three dimensional elastic particle collision model.
Load balancing metrics and parallel scalability is determined on an 8 quad-
processor 833MHZ Compaq Alpha cluster connected by a gigabit ethernet.

1 Introduction

Particle simulations are widespread in scientific computing and provide a natural com-
putational approach to many equations derived from particle mechanics. particle-in-cell
methods remain one of the most common techniques used for particle simulations as
they are usually simple. However, like many other particle simulation methods, particle-
in-cell methods suffer from poor parallel scalability [8][13]. This is because the force Fi

on a particle i with position Xi is the gradient of the potential energy V (X1, . . . ,XN)
of the particle system (which is model specific)

Fi = −∇XiV (X1, . . . ,XN), U̇i =
Fi

mi
and Ẋi = Ui

depends on the position of the other particles in the system. The velocity Ui and hence
new position of each particle with mass mi is determined by the above equations of
motion.

Parallelisation of the model by assignment of either particles or physical subdomains
to different processes leads to either high interprocessor communication requirements
or irregular load balance. That is, partitioning of label space into subdomains of equal
number of particles, allocated to each processor, does not localise the data required for the
force calculations, if particles in close proximity of each other in physical space reside on
different processors. See, for example, [9][12]. Conversely, partitioning of the physical
domain into subdomains, allocated to each processor, is not necessary compatible with

� The author thanks Alvin Chua and Steven Capper for their careful proof reading and useful
comments on this article.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 709–718, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

710 Matthew F. Dixon

the distribution of the work load, namely, calculation of the particle forces. For example,
if particles cluster together inside a subdomain, no work load is distributed to the other
subdomains.

An extensive number of dynamic load balancing algorithms for parallel particle
simulations have been developed which are able to distribute particles across processors
based on their proximities to others or by their position in the domain, see for exam-
ple [2][7][8]. Each consider the main factors in designing an effective load balancing
algorithm (i) data locality (ii) granularity of balancing and (iii) the additional computa-
tion and interprocessor communication required by the algorithm, referred to hereon, as
the overhead. However, none of these approaches use runtime information such as the
processor load, performance and latency between other processors to enhance calibration
of the algorithm.

In particular, the taskfarm approach described in [8], assembles particles into tasks
and balances them by instructing processors, which have finished processing their own
tasks, to fetch tasks from the others. In theory, this approach could be improved for use
on a cluster, by allocating tasks to processors based on processor usages, thus taking
a predictive rather than reactive approach. The potential for performance improvement
using prediction is dependent on both the level of fluctuation of the usages and the
simulated particle dynamics.

Many of the dynamic load balancing schemes that have been developed can be
classified as either Scratch-and-Remap or Diffusion-based schemes [6]. The former
approach partitions workload from scratch at each stage whilst the latter achieves balance
by successive migration. The choice of scheme is dependent on the dynamics of the
simulation. A runtime adaptive algorithm would be most appropriate for a smoothly
varying but inhomogeneous particle simulation. Predictive information on the particle
clustering can then be used by a diffusion-based load balancing algorithm, to group
particles. It would also suit a shared cluster of workstations running multiple applications
at any one instance, provided that load usages remain consistent between load balancing
cycles and the overhead of rebalancing is small.

A simple and efficient approach for load assignment and rebalance event detection
based on measuring efficiency ratios of load to capacity is described in [3]. Since this
approach was not developed for particle simulations, there is no concept of balancing
at the granularity of dynamically defined groups of entities. This approach is extended,
here, to recalibrate particle to processor assignment based on both the particle positions
and runtime information. This combined approach, to the best knowledge of the author,
has not been previously designed. Different metrics for detecting load balancing events
based on the homogeneity of the distribution of the particle are considered. Finally details
of the implementation in POOMA [4] and numerical results are presented for a parallel
3D elastic particle collision model [1] running on a Compaq Alpha cluster.

2 Algorithm

Consider a single-threaded message-based Single-Processor Multiple-Data parallel
model where each processor is represented as a physical node to which numerous virtual
nodes (groups) are assigned based on its runtime capacity. Particles are then allocated to

A Runtime Adaptive Load Balancing Algorithm for Particle Simulations 711

each virtual node based on their proximity to one another. Consider first, for simplicity,
dynamic balancing of individual particles.

Single Particle Balancing

Let the set of all particles in the system be given by P := {p1, p2, · · · , pn} where n
is the total number of particles in the system. The subset of nj particles on processor
j ∈ {1, 2, · · · , Np} is Pj(t) := {pβ1 , pβ2 , · · · , pβnj

}, using the convention that roman
numerals are local indices, such that P = ∪jPj .

Assume that all particles remain equi-distributed and fixed in number, then there is
one particle per virtual node and the particles can be considered as virtual nodes. The
number of particles assigned to processor j at time ti, nj(ti), depends on n and the
weights wj(ti). Each wj(ti) is a function of the processor peak FLOP rate rj and its
usage uj(ti), normalised by the total capacity C(ti) =

∑
j Cj(ti).

Particle assignment:

The number of particles initially assigned to each processor is based on its availability
and performance.

nj(t0) =
⌈
wj(t0)n

⌉
, wj(ti) =

Cj(ti)
C(ti)

and Cj(ti) = uj(ti)rj .

After setting up the system as prescribed, it will be necessary to reassign the particles if
the usage of the processor changes.

Particle reassignment:

A processor event causes reassignment if wj(ti) − wj(ti−1) > wtol, where wtol is a
tolerance to reduce the sensitivity of the load balancing to small changes in relative
processor capacity and ti − ti−1 > Δτ the time step size used in the simulation. The
number of particles at time ti is related to the number of particles at time ti−1 by the
formula

nj(ti) =
⌈ wj(ti)
wj(ti−1)

nj(ti−1)
⌉

As such, nj(ti)−nj(ti−1) particles are relocated to or from physical node j at time step
ti. Particle relocation, however, reduces parallel scalability of the potential calculations.
This motivates the derivation of an algorithm for a courser level of granularity using
groups.

Group Load Balancing

Multiple particles p ∈ Pj can be uniquely assigned to gj groups Gαl

j (t) := {pγ1 , pγ2 ,
· · · , pγ

S
αl
j

}. Defines local subindices l,m ∈ {1, 2, · · · , gj} to α on processor j, so that

groups are uniquely labelled with the superscript over the computational domain. Let

712 Matthew F. Dixon

X(pn, ti) be the position of particle pn at time ti and R(., .) the distance between any
two particles. If particle proximities to a fictious reference particle pαl

ref are less than
a tolerance rtol = ΔX(t0), such as the initial equi-interparticle distance, for example,
then the particles are assigned to group αl.

Gαm

j (ti) := {ps ∈ Pj , ps �∈ ∪l<mGαl

j (ti)|R(X(ps, ti), X(pαl

ref , ti)) < rtol}

{pαl

ref} are initially chosen as equidistant points in the Eulerian reference frame and
once groups have been assembled are recomputed as the mean position of all the particles
in the group. In this way all Sαl

j particles in a group are thus categorised by proximity and
are defined as interacting. Non-interacting particles are also assigned to single element
groups and the load balancing algorithm then calibrates with groups and not particles.
For simplicity, it is assumed that the number of particles remain fixed in number.

In addition to defining a metric for load balancing based upon the particles distances
and the processor capacities, classification of the particle dynamics can also be used
to calibrate the algorithm. For ease of explanation, two categories are considered, (A)
weakly and (B) strongly non-equidistributed particle simulations.

Particle Group Assignment

The number of groups initially assigned to each processor j is based on its availabil-
ity and performance, and mean group size. Consider the two cases A and B of particle
classification

A: gj(t0) =
⌈

wj(t)n
μ(Sm(t0))

⌉
or B: gj(t0) =

⌈
wj(t)n

μ(S
αl
j (t0))

⌉
where the mean group size is μ(Sm(t)), m ∈ {1, 2, · · · ,M} and M =

∑
j gj , and

μ(Sαl

j) is the mean group size on physical node j.

Particle Group Reassignment

The number of groups assigned to processor j at time ti is related to the number of
groups at time ti−1 by the formula below. Consider, again, the two cases A and B, where
μ̂ := μ(Sm) and μ∗ := μ(Sαl

j)

A: gj(ti) =
⌈

μ̂(ti)wj(ti)
μ̂(ti−1)wj(ti−1)gj(ti−1)

⌉
or B: gj(ti) =

⌈
μ∗(ti)wj(ti)

μ∗(ti−1)wj(ti−1)
gj(ti−1)

⌉
For case A reassignment thus depends on the mean size of all groups or, for case B,

the mean size of the groups on processor j, depending on the distribution of the particles
at time ti.

The particle distribution is analysed every kth simulation time step and hardware
evaluation for context mapping every mth simulation time step, where k and m are
suitably chosen parameters based on the dynamics of the particles, available processor
capacity and time taken to measure the particle positions and processor state.

A Runtime Adaptive Load Balancing Algorithm for Particle Simulations 713

3 Implementation

In the POOMA framework, particle indices can be represented as a domain in label
space which is partitioned into patches (virtual nodes) by layouts, which can be easily
dynamically reconfigured. One or more patches are then allocated to a context associated
with the hardware by a context mapper. See [5] for further details.

A special purpose context mapper class has been developed which is initialised
by the master node with a set of processor capacities Ci based on a pre-defined map
for peak processor capacities whose key is each machine name in the cluster. At each
iteration of the load balancing algorithm, each client is instructed to determine the
runtime processor statistics by calling the API of the profiling tool on a separate thread.
The client then sends this data to the context mapper class on the master node which
then determines the number of patches to reallocate to each context sequentially. Finally
each client exchanges group data through the master node. This approach is liable to
cause a bottleneck at the master processor. A parallel task queue, as used in [10] would
help to alleviate this problem.

The clients also exchange particle data peer-to-peer. This is required (i) for a force
calculation or (ii) after a repartitioning event. Cross context dependencies can be further
minimised by using Guard Layers to store particles of adjacent patches, but this was not
used in testing.

Load Balancing Algorithm: Simulation Event

At every kth simulation time step τik = ti each client j performs the algorithm defined
in Figure 3.

Particles on client j are regrouped every kth time step if the total particle displace-
ments, for all local particles, is greater than a threshold tolsim. This approach to asso-
ciating a particle with a group could be improved using , for example, Voronoi cells as
described in [9]. Each client then requests a set of reference nodes for all gsum groups
{pαl

ref} and the corresponding processors where the groups are located {prβl
} defined

with a global index β. For each local group, each member particle is checked to deter-
mine whether it still belongs to the group. If it doesn’t, then it is compared against all
reference nodes. If it is associated with a remote reference node, then the particle and
the target client are added to the arrays relocateParticles and targetProcessors for
dispatch. Otherwise, the particle is reassigned to the target local group.

The client maintains an array of all local particles and the groups to which they
belong. The master maintains an array associating groups to the clients and arrays for
the size and reference particles for each group. In this way, the master is not overloaded
with particle information, but is dedicated to group balancing.

Load Balancing Algorithm: Processor Event

At every mth simulation time step τim = ti, each processor j performs the algorithm
defined in Figure 3.

The master processor first computes the weights for each client. Processing for each
client sequentially, if determines whether the change in a client weight Δwj(ti) exceeds

714 Matthew F. Dixon

1: if ||{ΔX(pn)}|| < tolsim, pn ∈ ∪lG
αl

j (ti) then
2: ReceiveFrom(prmaster, {pαl

ref}, {prβl
}, gsum)

3: for l := 1 → gj(ti) do
4: for n := 1 → Sαl

j (ti) do
5: if R(X(pγn , X(pαl

ref)) > rtol then
6: for k := 1 → gsum do
7: if R(X(pγn), X(pαk

ref)) < rtol then
8: if prβk

! = prj then
9: relocationParticles.add(pγn)

10: targetProcessors.add(prβk
)

11: else
12: Update group(Gαk

j (ti), pγn)
13: Update group(Gαl

j (ti), pγn)
14: end if
15: end if
16: end for
17: end if
18: end for
19: end for
20: SendTo(targetProcessors,relocationParticles)
21: Receive(relocationParticles)
22: for r := 1 → N{relocationParticles} do
23: for l := 1 → gj(ti) do
24: Update group(Gαl

j (ti),relocationParticles[r])
25: end for
26: end for
27: end if

Fig. 1.

a threshold tolcpu and if so calculates the group imbalance , that is the number of groups
above or below its capacity, assuming uniform group sizes. It then searches over all
unbalanced clients with a greater index to find the client whose imbalance best matches.
It then instructs the client with excess numbers of groups to send them to the target client
and the group numbers are appropriately modified. Once a client has been rebalanced,
group numbers remain fixed until the next load balancing iteration and the remaining
unbalanced clients must exchange groups amongst themselves.

Althought this approach is simple, the last clients to be processed may not be as well
balanced as those first processed. Alternating direction of processing of the client lists
may potentially improve performance. This approach also assumes, for simplicity, that
group sizes remain near uniform, either globally or per client depending on the particle
dynamics classification. Many approaches, however, also prioritise by load unit size,
see for example [8][12]; this approach could be extended to prioritise larger groups.
A further extension is to regroup in a way that keeps messages between neighbouring
clients, as suggested in [11].

A Runtime Adaptive Load Balancing Algorithm for Particle Simulations 715

1: if prj ! = prmaster then
2: Cj(ti)=GetCapacity()
3: SendTo(prmaster, Cj)
4: ReceiveFrom(prmaster, Δgj(ti), prtarget)
5: for l := 1 → Δgj(ti) do
6: relocationGroups.add(Gαl

j (ti))
7: end for
8: SendTo(prtarget, relocationGroups)
9: Receive(relocationGroups)

10: for r := 1 → N{relocationGroups} do
11: for l := 1 → gj(ti) do
12: Update groups(Gαl

j (ti),relocationGroups[r])
13: Calculate(μ(Gαl

j (ti)))
14: end for
15: end for
16: else
17: Receive({Ck(ti)})
18: for k := 1 → Np do
19: wk(ti) = Ck(ti)

n Cn(ti)

20: end for
21: for k := 1 → Np do
22: if |wk(ti)| > tolcpu then

23: Δgk(ti) =
⌈
(μ(Sm(ti))wk(ti)

μ(Sm(ti−1))wk(ti−1)
− 1)gk(ti−1)

⌉
24: sign= Δgk(t)

|Δgk(t)|
25: minj′({Δgj(ti)}j:=k+1→Np + Δgk(ti))
26: if sign< 0 then
27: for l := 1 → Δgj′(ti) do
28: relocationGroups.add(Gαl

j′ (ti))
29: end for
30: prtarget = k
31: else
32: for l := 1 → Δgj′(ti) do
33: relocationGroups.add(Gαl

i (ti))
34: end for
35: prtarget = j′

36: end if
37: SendTo(prtarget, relocationGroups)
38: gk(ti)− = sign ∗Δgj′ (ti)
39: gj′(ti) +− = sign ∗Δgj′ (ti)
40: end if
41: end for
42: end if

Fig. 2.

716 Matthew F. Dixon

0 5 10 15 20 25 30 35 40 45 50
0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

timesteps

R
at

io
 o

f r
em

ot
el

y
de

pe
nd

en
t p

ar
tic

le
s

k=10
k=5

5 10 15 20 25 30 35 40 45 50
9.5

9.6

9.7

9.8

9.9

10

10.1
x 10

−3

R
at

io
 o

f p
ar

tic
le

s
re

gr
ou

pe
d

timestep

k=5
k=10

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6
x 10

−3

timesteps

R
at

io
 o

f u
nb

al
an

ce
d

pa
rt

ic
le

s

m=1
m=5

5 10 15 20 25 30 35 40 45 50
13

14

15

16

17

18

19

timesteps

N
um

be
r

of
 g

ro
up

s
re

ba
la

nc
ed

m=1
m=5

Fig. 3. The effect of k on (top left) remote data dependencies and (top right) regrouping costs. The
effect of m on (bottom left) load imbalance and (bottom right) group rebalancing costs

4 Results

The weakly non-equidistributed particle group load balancing algorithm was tested in
a particle-in-cell method for a 3D dimensional elastic particle collision model(see [1])
using POOMA v2.4.0 and Cheetah v1.1.4, a MPI based library built on MPICH with
GNU C++ v3.1 on a gigabit ethernet cluster of 8 4 x 833 MHZ Compaq Alpha ES40s
with Quadrics interconnects running Linux and several applications at any instance. Two
sets of results are presented. The first shows the effect of the frequency of particle group-
ing and rebalancing on the data locality, imbalance and overhead. Parallel scalability is
then assessed with and without the dynamic load balancing algorithm.

The group threshold is set to be greater than the radius of influence of the particles.
Clearly, this approach requires that the forces are short range otherwise it becomes
impossible to construct groups which preserve data locality. The number of particles is
chosen to be significantly larger than the number of processors, see [13]. The parameter,
tolcpu determines the sensitivity of the load balancing algorithm to load variation. A
lower value will ensure more frequent calibration but incur more overhead. Analysis of
cpu load histories could be used to determine this parameter. Additionally,m determines
the maximum frequency that the load balancing algorithm is performed. It is set to a

A Runtime Adaptive Load Balancing Algorithm for Particle Simulations 717

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

X Processors

T
im

e(
s)

Simulation time for N thousand Particles on X Processors

10
20
40
60
80

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180
Simulation time for a Dynamically Load Balanced N thousand Particles on X Processors

X Processors

T
im

e(
s)

10
20
40
60
80

Fig. 4. A 3D elastic particle collision model without (left) and with (right) runtime adaptive load
balancing

lower value when the particles are regrouped more frequently, load variations are high
and the relative effect of load balancing overhead is small. Figure 3 shows the effect
of m on the load imbalance and the corresponding overhead of group balancing for
tolcpu = 0.15.

The parameter, tolsim sets the sensitivity of the particle regrouping. The value chosen
depends on the range of forces, the dynamics of the particles and the effect of remote
dependencies on parallel scalability. Additionally, k sets the maximum frequency of
particle regrouping and is determined by the particle dynamics. Figure 3 shows the
effect of increasing k on the ratio of remotely dependent particles and the corresponding
overhead of regrouping for tolsim = 0.1. k and m should be compatible with each other;
a low value of k results in a potentially high number of particle regrouping and there is
thus more potential for a higher frequency of group imbalances.

Parallel scalability tests were performed using 1000 time steps over a range of 10−80
thousand particles and 1− 32 processors. The load balancing algorithm was performed
every k = m = 100 time steps. The graphs in Figure 4 demonstrate that the load
balancing is much more effective as the number of particles and processors is increased.
However, with smaller numbers of particles, the opposite effect is observed because of
the overhead of the algorithm.

The greater the number of groups, the greater the granularity of the load balancing but
the greater the overhead of rebalancing. In highly latent environments, preliminary results
suggest that it is preferable to allocate fewer groups by allocating all non-interacting
particles into one group on each processor.

References

1. R.W. Hockney and J.W. Eastwood, Computer Simulation using Particles, Taylor and Francis
Inc., 1988

2. G.A. Kohring, Dynamic Load Balancing for Parallelized Particle Simulations on MIMD
Computers, Parallel Computing, Volume 21, Issue 4,pp. 683–694, 1995.

3. J. Watts and S. Taylor, A Practical Approach to Dynamic Load Balancing, IEEE Transactions
on Parallel and Distributed Systems, Volume 9, issue 3, 1998, pp. 235–248.

718 Matthew F. Dixon

4. J.C. Cummings and W. Humphrey, Parallel Particle Simulations Using the POOMA Frame-
work, Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Com-
puting, M. Heath et al. eds., SIAM 1997.

5. J.D. Oldham, POOMA Manual, A C++ Toolkit for High-Performance Parallel Scientific
Computation, http://www.codesourcery.com, 2002.

6. Z. Lan, V.E. Taylor and G. Bryan, A Novel Dynamic Load Balancing Scheme for Parallel
Systems, J. Parallel Distrib. Computing, Volume 62, 2002, pp. 1763–1781.

7. F.R. Pearce and H.M.P. Couchman, Hydra: a parallel adaptive grid code, New Astronomy,
Volume 2, 1997, pp. 411–427

8. C. Othmer and J. Schüle, Dynamic load balancing of plasma particle-in-cell simulations: The
taskfarm alternative, Computer Physics Communications, Volume 147, pp. 741–744

9. M. A. Stijnman, R. H. Bisseling and G. T. Barkema, Partitioning 3D space for parallel many-
particle simulations, Computer Physics Communications, Volume 149, Issue 3, January 2003,
pp. 121–134

10. T. Rauber, G. Rünger and C. Scholtes, Execution behavior analysis and performance pre-
diction for a shared-memory implementation of an irregular particle simulation method,
Simulation Practice and Theory, Volume 6, Issue 7, 15 November 1998, pp. 665–687

11. B. Hendrickson and K. Devine, Dynamic load balancing in computational mechanics, Com-
puter Methods in Applied Mechanics and Engineering, Volume 184, Issues 2-4, 14 April
2000, pp. 485–500

12. L. Kalé et al., NAMD: Greater Scalability for Parallel Molecular Dynamics, Journal of Com-
putational Physics, Volume 151, 1999, pp. 283–312

13. B. Di Martino et al., Parallel PIC plasma simulation through particle decomposition tech-
niques, Parallel Computing, Volume 27, 2001, pp. 295–314

Evaluating Parallel Algorithms
for Solving Sylvester-Type Matrix Equations:
Direct Transformation-Based Versus Iterative

Matrix-Sign-Function-Based Methods

Robert Granat and Bo Kågström

Department of Computing Science and HPC2N, Umeå University
SE-901 87 Umeå, Sweden

{granat,bokg}@cs.umu.se

Abstract. Recent ScaLAPACK-style implementations of the Bartels-Stewart
method and the iterative matrix-sign-function-based method for solving conti-
nuous-time Sylvester matrix equations are evaluated with respect to generality
of use, execution time and accuracy of computed results. The test problems in-
clude well-conditioned as well as ill-conditioned Sylvester equations. A method
is considered more general if it can effectively solve a larger set of problems. Ill-
conditioning is measured with respect to the separation of the two matrices in the
Sylvester operator. Experiments carried out on two different distributed memory
machines show that the parallel explicitly blocked Bartels-Stewart algorithm can
solve more general problems and delivers far more accuracy for ill-conditioned
problems. It is also up to four times faster for large enough problems on the most
balanced parallel platform (IBM SP), while the parallel iterative algorithm is al-
most always the fastest of the two on the less balanced platform (HPC2N Linux
Super Cluster).

Keywords: Sylvester matrix equation, continuous-time, Bartels–Stewart method,
explicit blocking, GEMM-based, level 3 BLAS, matrix sign function, c-stable
matrices, Newton iteration, ScaLAPACK, PSLICOT.

1 Introduction

We consider two different methods for solving the continuous-time Sylvester (SYCT)
equation

AX −XB = C, (1)

where A of size m ×m , B of size n × n and C of size m × n are arbitrary matrices
with real entries. SYCT has a unique solution X of size m × n if and only if A and
B have disjoint spectra, i.e., they have no eigenvalues in common, or equivalently the
separation sep(A,B) �= 0, where sep(A,B) = inf‖X‖F =1 ‖AX −XB‖F .

The Sylvester equation appears naturally in several applications. Examples include
block-diagonalization of a matrix in Schur form and condition estimation of eigenvalue
problems (e.g., see [13,11,15]).

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 719–729, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

720 Robert Granat and Bo Kågström

In this contribution, we experimentally compare parallel implementations of two
methods for solving SYCT on distributed memory systems. The first is based on Bartels-
Stewart method [1,15,7,8] and is reviewed in Section 2. Several papers, starting with [16],
have considered iterative methods for solving SYCT. The second parallel implementation
is an iterative method based on a Newton iteration of the matrix sign function [3,4], and
is reviewed in Section 3. In Section 4, we display and compare some computational
results of implementations of the two parallel algorithms. A discussion of the measured
execution times on two different parallel distributed memory platforms is presented in
Section 5. Finally, in Section 6, we summarize our findings and outline ongoing and
future work.

2 Explicitly Blocked Algorithms for Solving SYCT

The explicitly blocked method, implemented as the routine PGESYCTD, is based on the
Bartels-Stewart method [1]:

1. Transform A and B to upper (quasi-)triangular Schur form TA and TB , respectively,
using orthogonal similarity transformations:

QTAQ = TA, PTBP = TB.

2. Update the right hand side C of (1) with respect to the transformations done on A
and B:

C̃ = QTCP.

3. Solve the reduced (quasi-)triangular matrix equation:

TAX̃ − X̃TB = C̃.

4. Transform the solution X̃ back to the original coordinate system:

X = QX̃PT .

To carry out Step 1 we use a Hessenberg reduction directly followed by the QR-algo-
rithm. The updates in Step 2 and the back-transformation in Step 4 are carried out using
general matrix multiply and add (GEMM) operations C ← βC +αop(A)op(B), where
α and β are scalars and op(A) denotes A or its transpose AT [2,12]. We now focus on
Step 3. If the matrices A and B are in Schur form, we partition the matrices in SYCT
using the blocking factors mb and nb, respectively. This implies that mb is the row-block
size and nb is the column-block size of the matrices C and X (which overwrites C). By
defining Da = 	m/mb
 and Db = 	n/nb
, (1) can be rewritten as

AiiXij −XijBjj = Cij − (
Da∑

k=i+1

AikXkj −
j−1∑
k=1

XikBkj), (2)

where i = 1, 2, . . . , Da and j = 1, 2, . . . , Db. From (2), a serial blocked algorithm can
be formulated, see Figure 1.

Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations 721

for j=1, Db

for i=Da, 1, -1
{Solve the (i, j)th subsystem using a kernel solver}
AiiXij − XijBjj = Cij

for k=1, i − 1
{Update block column j of C}
Ckj = Ckj − AkiXij

end
for k=j + 1, Db

{Update block row i of C}
Cik = Cik + XijBjk

end
end

end

Fig. 1. Block algorithm for solving AX − XB = C, A and B in upper real Schur form

Assume that the matrices A, B and C are distributed using 2D block-cyclic mapping
across a Pr × Pc processor grid. For Steps 1, 2 and 4, we use the ScaLAPACK library
routines PDGEHRD, PDLAHQR and PDGEMM [6]. The first two routines are used in Step
1 to compute the Schur decompositions ofA and B (reduction to upper Hessenberg form
followed by the parallel QR algorithm [10,9]).PDGEMM is the parallel implementation of
the level 3 BLAS GEMM operation and is used in Steps 2 and 4 for doing the two-sided
matrix multiply updates.

To carry out Step 3 in parallel, we traverse the matrix C/X along its block diagonals
from South-West to North-East, starting in the South-West corner. To be able to compute
Xij for different values of i and j, we need Aii and Bjj to be owned by the same
process that owns Cij . We also need to have the blocks used in the updates of Cij in
the right place at the right time. This means that in general we have to communicate
for some blocks during the solves and updates. This is done “on demand”: whenever a
processor misses any block that it needs for solving a node subsystem or doing a GEMM
update, it is received from the owner in a single point-to-point communication [8]. A
brief outline of a parallel algorithm PTRSYCTD is presented in Figure 2. The (quasi-
)triangular subsystems AiiXij −XijBjj = Cij in Figure 2 are solved on the grid nodes
using the LAPACK-solver DTRSYL [2].

The explicitly blocked method is general since (in theory) it can be used to solve
any instance of SYCT as long as the spectra of A and B are disjoint. Notice that the
algorithm contains an iterative part, the reduction of A and B in upper Hessenberg form
to upper Schur form, which is the most expensive in terms of execution time [7,8]. For
further details we refer to [7,8,15].

3 Solving SYCT Using Newton Iteration
for the Matrix Sign Function

The sign function method can be used to solve SYCT if the spectra of A and −B are
contained in the open left half complex plane, i.e., A and −B are so called Hurwitz- or
c-stable [3].

722 Robert Granat and Bo Kågström

for k=1, Da + Db − 1
{Solve subsystems on current block diagonal in parallel}
if(mynode holds Cij)

if(mynode does not hold Aii and/or Bjj)
Communicate for Aii and/or Bjj

Solve for Xij in AiiXij − XijBij = Cij

Broadcast Xij to processors that need Xij for updates
elseif(mynode needs Xij)

Receive Xij

if(mynode does not hold block in A needed for updating block column j)
Communicate for requested block in A

Update block column j of C in parallel
if(mynode does not hold block in B needed for updating block row i)

Communicate for requested block in B
Update block row i of C in parallel

endif
end

Fig. 2. Parallel block algorithm for AX − XB = C, A and B in upper real Schur form

Let Z be a real p× p matrix with real eigenvalues and let

Z = S

[
J− 0
0 J+

]
S−1 (3)

denote its Jordan decomposition with J− ∈ Ck×k, J+ ∈ C(p−k)×(p−k) containing the
Jordan blocks corresponding to the eigenvalues in the open left and right half planes,
respectively. Then the matrix sign function of Z is defined as

sign(Z) = S

[
−Ik 0
0 Ip−k

]
S−1. (4)

The sign function can be computed via the Newton iteration for the equation Z2 = I
where the starting point is chosen as Z , i.e.,

Z0 = Z,
Zk+1 = (Zk + Z−1

k)/2, k = 0, 1, 2, . . . (5)

It can be proved [16] that sign(Z) = limk→∞Zk and moreover that

sign
([

A −C
0 B

])
+ Im+n = 2

[
0 X
0 I

]
, (6)

which means that under the given assumptions, SYCT can be solved by applying the
Newton iteration (5) to

Z0 =
[
A −C
0 B

]
. (7)

Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations 723

This iterative process only requires basic numerical linear algebra operations as
matrix-matrix multiplication, inversion and/or solving linear systems of equations. The
method has been parallelized and implemented as the PSLICOT [14,17] routine
psb04md. The parallel implementation uses the ScaLAPACK routines PDGETRF (LU
factorization), PDGETRS (solving linear systems of equations), PDGETRI (inversion
based on LU factorization),PDTRSM (solution of triangular systems with multiple right-
hand sides) and PDLAPIV (pivoting of a distributed matrix). We expect this iterative
method to be fast and scalable since it consists of computationally well-known and
highly parallel operations. The obvious drawback of the method is the lower degree of
generality, i.e., the fact that we cannot solve all instances of SYCT due to the restrictions
on the spectra of A and B.

The matrix sign function method can also be applied to other related problems, e.g.,
the stable generalized Lyapunov equation AT XE +ETXA = C, where A,E,X,C ∈
Rn×n and C = CT [3], and it can also be combined with iterative refinement for higher
accuracy. However, this has not been incorporated in psb04md [4]. For further details
we refer to [16,4,3,5].

4 Computational Results

In this section, we present and compare measured speed and accuracy results of
PGESYCTD and psb04md using two different parallel platforms. We solve a num-
ber of differently conditioned (regarding the separation of A and B) problems of various
sizes using different processor mesh configurations.

Our target machines are the IBM Scalable POWERparallel (SP) system and the Super
Linux Cluster at High Performance Computing Center North (HPC2N), where we utilize
up to 64 processors of each machine (see Table 4). The test problems are constructed
as follows. Consider the matrix A in the form A = Q(αDA + βMA)QT , where DA is
(quasi-)diagonal, MA is strictly upper triangular, Q is orthogonal and α and β are real
scalars. We choose MA as a random matrix with uniformly distributed elements in [-1,1]
and prescribe the eigenvalues of A by specifying the elements of DA. If the matrix B
is constructed similarly, we can construct differently conditioned problems by varying
the eigenvalues in DA and DB and choosing appropriate values of the scaling factors.
For example, the factor β is used to control the distance from normality, β‖MA‖, of the
matrix A.

A representative selection of our results for problems with m = n are shown in
Tables 1, 2, and 3. Results for problems with m �= n are not presented here but will not
lead to any different conclusions. We have chosen close to optimal block sizes for the
different parallel algorithms and parallel architectures. The upper parts of Tables 1 and
2 correspond to well-conditioned problems, and the lower parts represent moderately
to very ill-conditioned problems. We display the performance ratios qT , qX and qR,
which correspond to the execution time ratio and two accuracy ratios, the Frobenius
norms of the absolute (forward) error ‖X − X̃‖F and the absolute residual ‖R‖F =
‖C −AX̃ + X̃B‖F of the two implementations, where X and X̃ denote the exact and
computed solutions, respectively. If a ratio is larger than 1.0, psb04md shows better
results, otherwise PGESYCTD is better.

724 Robert Granat and Bo Kågström

Table 1. Speed and accuracy results on IBM SP system for the routines PGESYCTD and psb04md
solving the general equation AX−XB = C for well- and ill-conditioned problems. All problems
use the blocking factors mb = nb = 64 . In the upper part of the table, A and −B have the
eigenvalues λi = −i, i = 1, 2, . . . , m = n , and α = β = 1.0. For the lower part A and −B

have the eigenvalues: a) λAi = −i, λBi = −1000.0 · i−1, α = β = 1.0, b) λAi = −i, λBi =

−2000.0 · i−1, α = β = 1.0 , c) A and −B have the eigenvalues λi = −i, αA = αB = βA =

1.0, βB = 50.0

PGESYCTD psb04md Performance ratios
m = n sep−1 Pr × Pc Tp ‖X − X̃‖F ‖R‖F Tp ‖X − X̃‖F ‖R‖F qT qX qR

512 3.7E-3 1 × 1 60.0 4.1E-12 1.2E-9 43.8 1.1E-12 2.4E-10 1.37 3.73 0.50
512 3.8E-3 2 × 1 49.2 4.1E-12 1.2E-9 37.1 2.1E-12 9.1E-10 1.33 1.95 1.32
512 3.8E-3 2 × 2 40.4 4.3E-12 1.2E-9 33.0 1.8E-12 8.0E-10 1.22 2.39 1.50
512 3.8E-3 4 × 2 33.6 3.8E-12 1.1E-9 33.1 1.9E-12 8.0E-10 1.02 2.00 1.38

1024 2.1E-3 1 × 1 534 1.2E-11 6.6E-9 529 1.0E-10 3.3E-8 1.01 0.12 0.20
1024 2.1E-3 2 × 1 287 1.2E-11 6.5E-9 253 8.2E-12 6.8E-9 1.13 1.38 0.96
1024 2.1E-3 2 × 2 177 1.1E-11 5.4E-9 169 2.2E-11 8.9E-9 1.05 0.50 0.61
1024 2.1E-3 4 × 2 138 1.1E-11 6.6E-9 170 8.1E-12 6.8E-9 0.81 1.36 0.97
1024 2.1E-3 4 × 4 106 1.3E-11 6.7E-9 142 6.6E-12 5.5E-9 0.75 1.97 1.22
2048 1.1E-3 2 × 2 1625 3.8E-11 3.5E-8 6141 2.9E-11 4.9E-8 0.26 1.31 0.71
2048 1.1E-3 4 × 2 835 3.5E-11 3.7E-8 1031 3.5E-11 4.8E-8 0.81 1.00 0.08
2048 1.1E-3 4 × 4 446 3.3E-11 3.7E-8 658 2.1E-11 3.6E-8 0.68 1.57 1.03
2048 1.1E-3 8 × 4 359 4.0E-11 3.7E-8 670 2.5E-11 3.9E-8 0.54 1.60 0.95
2048 1.1E-3 8 × 8 302 3.5E-11 3.7E-8 588 2.5E-11 3.9E-8 0.51 1.40 0.95
3072 7.6E-4 4 × 2 3355 6.3E-11 9.7E-8 11504 5.7E-11 1.5E-7 0.29 1.11 0.65
3072 7.6E-4 4 × 4 1677 6.3E-11 1.0E-7 2473 4.9E-11 1.3E-7 0.68 1.29 0.77
3072 7.6E-4 8 × 4 1056 6.4E-11 1.0E-7 2078 1.3E-10 2.0E-7 0.51 0.49 0.50
3072 7.6E-4 8 × 8 705 6.6E-11 1.0E-7 1556 6.3E-10 6.8E-7 0.45 0.10 0.15
4096 5.9E-4 4 × 4 3788 9.5E-11 2.0E-7 11602 8.3E-11 2.7E-7 0.33 1.14 0.74
4096 5.9E-4 8 × 4 2330 9.6E-11 2.1E-7 5036 7.8E-11 2.5E-7 0.46 1.23 0.84
4096 5.9E-4 8 × 8 1365 1.0E-10 2.1E-7 3102 8.8E-11 2.7E-7 0.44 0.11 0.78
512a 0.17 1 × 1 61.7 6.1E-11 7.2E-10 33.8 1.1E-9 2.6E-7 1.8 5.5E-2 2.8E-3
512a 0.16 2 × 1 47.0 8.5E-11 6.9E-10 29.7 9.4E-10 2.2E-7 1.6 3.1E-3 3.1E-3
512a 0.15 2 × 2 36.1 8.8E-11 6.9E-10 26.8 1.2E-9 2.8E-7 1.4 7.3E-2 2.5E-3
512a 0.16 4 × 2 30.6 8.3E-11 6.7E-10 25.1 1.1E-9 2.8E-7 1.2 7.5E-2 2.4E-3
1024b 2.8 1 × 1 635 7.6E-9 4.0E-9 575 4.9E-5 2.9E-2 1.1 1.6E-4 1.4E-7
1024b 2.8 2 × 1 326 4.1E-9 3.9E-9 206 3.1E-5 1.8E-2 1.6 1.3E-4 2.2E-7
1024b 2.7 2 × 2 188 8.8E-9 3.8E-9 156 6.0E-5 3.3E-2 1.2 1.5E-4 1.2E-7
1024b 2.7 4 × 2 125 1.1E-8 3.8E-9 131 3.6E-5 2.1E-2 0.95 3.1E-4 1.8E-7
1024b 3.4 4 × 4 91 9.3E-9 3.8E-9 118 4.4E-5 2.7E-2 0.77 2.1E-4 1.4E-7
2048c mem 2 × 2 1797 8.3E-5 4.1E-8 43708 dnc dnc 0.0 0.0 0.0
2048c 4.8E4 4 × 2 892 5.8E-5 4.1E-8 1158 1.2 1343 0.77 4.8E-5 3.1E-11
2048c 5.2E4 4 × 4 446 7.2E-5 4.1E-8 708 0.86 982 0.63 8.4E-5 4.2E-11
2048c 5.4E4 8 × 4 348 5.1E-5 4.1E-8 738 0.92 1034 0.47 5.5E-5 4.0E-11
2048c 4.8E4 8 × 8 281 4.2E-5 4.1E-8 733 0.88 1003 0.38 4.8E-5 4.1E-11
3072c mem 4 × 2 3148 1.4E-5 1.1E-7 11358 2.9 5054 0.28 4.8E-6 2.2E-11
3072c 3.9E3 4 × 4 1635 1.1E-5 1.1E-7 2936 1.8 3198 0.51 6.1E-6 3.4E-11
3072c 4.7E3 8 × 4 878 7.3E-6 1.1E-7 2051 1.9 3305 0.43 3.8E-6 3.3E-11
3072c 4.8E3 8 × 8 769 8.6E-6 1.1E-7 1785 1.7 2926 0.43 5.1E-6 3.8E-11
4096c mem 4 × 4 3805 1.9E-4 2.1E-7 15435 85.9 180879 0.25 2.2E-6 1.2E-12
4096c 5.5E4 8 × 4 2066 3.3E-4 2.1E-7 41439 dnc dnc 0.0 0.0 0.0
4096c 6.5E4 8 × 8 1327 1.9E-4 2.1E-7 22487 dnc dnc 0.0 0.0 0.0

When the algorithm in psb04md converged, it did so in less than 20 iterations. We
used an upper threshold of 100 iterations. To signal that psb04md does not converge,
we use the notation dnc.

Recall that SYCT has a unique solution if and only if the A and B have disjoint
spectra, or equivalently sep(A,B) �= 0, where

sep(A,B) = inf‖X‖F =1‖AX −XB‖F = σmin(ZSYCT) = ‖Z−1
SYCT‖

−1
2 , (8)

Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations 725

Table 2. Speed and accuracy results on Super Linux Cluster seth for the routines PGESYCTD and
psb04md solving the general equation AX − XB = C for well- and ill-conditioned problems.
All problems use the blocking factors mb = nb = 32 . In the upper part of the table, A and
−B have the eigenvalues λi = −i, i = 1, 2, . . . , m = n , and α = β = 1.0. For the lower
part A and −B have the eigenvalues: a) λAi = −i, λBi = −1000.0 · i−1, α = β = 1.0,
b) λAi = −i, λBi = −2000.0 · i−1, α = β = 1.0 , c) A and −B have the eigenvalues
λi = −i, αA = αB = βA = 1.0, βB = 50.0

PGESYCTD psb04md Performance ratios

m = n sep−1 Pr × Pc Tp ‖X − X̃‖F ‖R‖F Tp ‖X − X̃‖F ‖R‖F qT qX qR
1024 2.5E-3 1 × 1 277 6.4E-12 3.5E-9 101 2.9E-12 2.4E-9 2.74 2.21 1.46
1024 2.4E-3 2 × 2 136 6.6E-12 3.5E-9 44 2.8E-12 2.3E-9 3.09 2.36 1.52
1024 2.4E-3 3 × 3 54 6.2E-12 3.5E-9 27 2.8E-12 2.3E-9 2.00 2.21 1.52
1024 2.3E-3 4 × 4 50 6.4E-12 3.6E-9 21 2.8E-12 2.3E-9 2.38 2.29 1.57
1024 2.3E-3 5 × 5 41 7.1E-12 3.6E-9 18 2.8E-12 2.3E-9 2.28 2.54 1.57
1024 2.3E-3 6 × 6 30 6.2E-12 3.6E-9 16 2.8E-12 2.3E-9 1.88 2.21 1.57
1024 2.3E-3 7 × 7 29 7.0E-12 3.6E-9 14 2.8E-9 2.3E-9 2.07 2.50 1.57
1024 2.5E-3 8 × 8 27 5.9E-12 3.4E-9 18 2.9E-12 2.4E-9 1.50 2.03 1.17
2048 1.3E-3 1 × 1 2053 2.1E-11 1.9E-8 1166 1.0E-11 1.8E-8 1.76 2.10 1.06
2048 1.2E-3 2 × 2 763 1.8E-11 1.9E-8 269 1.0E-11 1.7E-8 2.84 1.80 1.12
2048 1.2E-3 3 × 3 505 1.9E-11 2.0E-8 211 1.0E-11 1.7E-8 2.50 1.90 1.18
2048 1.2E-3 4 × 4 331 1.9E-11 1.9E-8 120 1.0E-11 1.7E-8 2.76 1.90 1.12
2048 1.2E-3 5 × 5 181 1.9E-11 2.0E-8 87 1.0E-11 1.7E-8 2.08 1.90 1.18
2048 1.2E-3 6 × 6 143 1.9E-11 2.0E-8 71 1.0E-11 1.7E-8 2.01 1.90 1.18
2048 1.2E-3 7 × 7 128 1.9E-11 2.0E-8 63 1.0E-11 1.7E-8 2.03 1.90 1.18
2048 1.3E-3 8 × 8 140 2.0E-11 2.0E-8 54 1.0E-11 1.7E-8 2.59 2.00 1.18
4096 7.0E-4 2 × 2 6514 5.2E-11 1.1E-7 3174 3.8E-11 1.3E-7 2.05 1.37 0.85
4096 7.0E-4 3 × 3 3338 5.0E-11 1.1E-7 1131 3.8E-11 1.3E-7 2.95 1.32 0.85
4096 7.0E-4 4 × 4 2912 5.0E-11 1.1E-7 909 3.8E-11 1.3E-7 3.20 1.32 0.85
4096 7.0E-4 5 × 5 1466 5.1E-11 1.1E-7 526 3.8E-11 1.3E-7 2.79 1.34 0.85
4096 7.0E-4 6 × 6 1027 5.1E-11 1.1E-7 398 3.8E-11 1.3E-7 2.58 1.34 0.85
4096 7.0E-4 7 × 7 804 5.8E-11 1.1E-7 342 3.8E-11 1.3E-7 2.35 1.53 0.85
4096 6.6E-4 8 × 8 890 5.4E-11 1.1E-7 295 3.8E-11 1.3E-7 3.02 1.42 0.85
8192 mem 4 × 4 15543 1.6E-10 7.5E-7 7425 1.5E-10 9.8E-7 2.09 1.07 0.77
8192 3.5E-4 5 × 5 10435 1.5E-10 7.2E-7 3817 1.5E-10 9.9E-7 2.73 1.00 0.73
8192 3.5E-4 6 × 6 7987 1.5E-10 6.4E-7 2740 1.5E-10 9.9E-7 2.91 1.00 0.65
8192 3.5E-4 7 × 7 6224 1.7E-10 6.5E-7 2197 1.5E-10 9.8E-7 2.83 1.13 0.66
8192 3.6E-4 8 × 8 5313 1.7E-10 6.8E-7 2247 1.5E-10 9.9E-7 2.36 1.13 0.69

1024a 9.2 1 × 1 274 4.3E-9 2.2E-9 73 2.1E-5 1.2E-2 3.75 2.0E-4 1.8E-7
1024a 8.2 2 × 2 121 6.3E-9 2.1E-9 36 1.2E-5 7.2E-3 3.36 5.3E-4 2.9E-7
1024a 5.9 3 × 3 52 4.7E-9 2.1E-9 22 2.1E-5 1.2E-2 2.36 2.2E-4 1.8E-7
1024a 7.2 4 × 4 51 3.3E-9 2.1E-9 18 3.1E-5 1.8E-2 2.83 1.1E-4 1.2E-7
1024a 4.9 5 × 5 35 5.2E-9 2.1E-9 15 3.5E-5 2.1E-2 2.33 1.5E-4 1.0E-7
1024a 6.4 6 × 6 28 5.5E-9 2.1E-9 12 1.9E-5 1.1E-2 2.33 2.9E-4 1.2E-7
1024a 9.0 7 × 7 28 6.3E-9 2.1E-9 12 1.9E-5 1.2E-2 2.33 3.3E-4 1.8E-7
1024a 4.3 8 × 8 26 4.2E-9 2.1E-9 10 1.6E-5 9.6E-3 2.60 2.6E-4 2.2E-7

2048b 5.1E4 1 × 1 2223 2.2E-5 2.3E-8 1211 0.34 389 1.84 6.5E-4 5.9E-11

2048b 4.9E4 2 × 2 859 1.7E-5 2.3E-8 284 0.36 407 3.02 4.7E-4 5.7E-11

2048b 6.4E4 3 × 3 496 3.4E-5 2.3E-8 178 0.41 474 2.79 8.3E-5 4.9E-11

2048b 5.1E4 4 × 4 356 6.3E-5 3.1E-8 132 0.36 421 2.70 1.8E-4 7.4E-11

2048b 6.6E4 5 × 5 189 4.4E-5 2.3E-8 95 0.36 428 1.99 1.2E-4 5.4E-11

2048b 6.7E4 6 × 6 152 8.5E-5 2.3E-8 77 0.34 422 1.97 2.5E-4 5.5E-11

2048b 6.7E4 7 × 7 127 3.5E-5 2.3E-8 68 0.36 412 1.87 9.7E-5 5.6E-11

2048b 6.6E4 8 × 8 145 3.1E-5 2.3E-8 58 0.35 394 2.50 8.9E-5 5.8E-11

4096b 1.3E6 2 × 2 6470 8.1E-3 1.2E-7 24008 dnc dnc 0.27 0.0 0.0

4096b 6.6E4 3 × 3 3611 2.2E-4 1.2E-7 1470 63.3 1.5E5 2.46 3.5E-6 8.0E-13

4096b 5.6E4 4 × 4 2271 1.9E-4 5.1E-6 1202 57.9 1.4E5 1.89 3.3E-6 3.6E-11

4096b 5.8E4 5 × 5 1628 2.8E-4 1.2E-7 4201 dnc dnc 0.39 0.0 0.0

4096b 6.4E4 6 × 6 1134 2.3E-4 1.2E-7 476 62.4 1.5E5 2.38 3.7E-6 8.0E-13

4096b 8.4E4 7 × 7 839 2.2E-4 1.2E-5 409 44.9 1.0E5 2.05 4.9E-6 1.2E-10

4096b 6.7E4 8 × 8 916 1.5E-4 1.2E-7 337 51.5 1.2E5 2.72 2.9E-6 1.0E-12

8192b mem 4 × 4 16538 5.6E-4 6.4E-7 7652 1.22 5.7E3 2.16 4.6E-4 1.1E-10

8192b 2.5E4 5 × 5 10532 7.5E-4 6.6E-7 4037 1.22 5.7E3 2.61 6.1E-4 1.2E-10

8192b 2.5E4 6 × 6 8388 2.7E-4 6.3E-7 3146 0.87 4.1E3 2.67 3.1E-4 1.5E-10

8192b 4.8E4 7 × 7 5623 3.5E-4 6.3E-7 2387 0.37 1.8E3 2.36 9.5E-4 3.5E-10

8192b 3.4E4 8 × 8 5365 8.8E-4 6.0E-7 2240 0.67 2.4E3 2.40 1.3E-4 2.5E-10

and ZSYCT is the mn×mn matrix representation of the Sylvester operator defined by
ZSYCT = In⊗A+BT ⊗Im. Moreover, sep(A,B) is a condition number for the SYCT
equation, but it is expensive to compute in practice (O(m3n3) operations). However,
we can compute a lower bound of sep(A,B)−1 = ‖Z−1

SY CT ‖2 in parallel, which is
based on the same technique as described in [13,11]. Since a tiny value of sep(A,B)
signals ill-conditioning for SYCT, the sep−1-estimate signals ill-conditioning when it

726 Robert Granat and Bo Kågström

Table 3. Speed and accuracy results on Super Linux Cluster seth for the routines PGESYCTD
and psb04md solving the triangular (QA = QB = I) equation AX−XB = C, A and B in real
Schur form for well-conditioned problems. All problems use the blocking factors mb = nb = 128.
A and −B have the eigenvalues λi = −i, i = 1, 2, . . . , m = n , and α = β = 1.0

PGESYCTD psb04md Performance ratios
m = n sep−1 Pr × Pc Tp ‖X − X̃‖F ‖R‖F Tp ‖X − X̃‖F ‖R‖F qT qX qR

1024 2.5E-3 1 × 1 2.6 3.2E-13 3.8E-10 94.3 3.8E-13 4.1E-10 2.7E-2 0.84 0.93
1024 2.5E-3 2 × 2 1.7 3.9E-13 5.3E-10 45.7 4.7E-13 5.5E-10 3.7E-2 0.83 0.96
1024 2.5E-3 3 × 3 1.6 3.9E-13 4.9E-10 30.3 4.7E-13 5.1E-10 5.2E-2 0.83 0.96
1024 2.5E-3 4 × 4 1.5 3.8E-13 5.2E-10 23.5 4.7E-13 5.5E-10 6.4E-2 0.81 0.95
1024 2.5E-3 5 × 5 1.4 4.0E-13 4.7E-10 22.9 4.8E-13 5.0E-10 6.1E-2 0.83 0.94
1024 2.5E-3 6 × 6 1.4 4.1E-13 4.7E-10 22.5 4.9E-13 5.0E-10 6.2E-2 0.84 0.94
1024 2.5E-3 7 × 7 1.4 4.4E-13 5.1E-10 21.1 5.0E-13 5.3E-10 6.6E-2 0.88 0.96
1024 1.1E − 3 8 × 8 1.0 3.9E-13 5.5E-10 17.0 4.5E-13 5.8E-10 5.9E-2 0.87 0.95
2048 1.3E-3 1 × 1 17.8 1.2E-12 3.1E-9 1116 1.1E-12 2.3E-9 1.6E-2 1.01 1.35
2048 1.3E-3 2 × 2 9.5 1.6E-12 4.2E-9 287 1.5E-12 3.7E-9 3.3E-2 1.07 1.14
2048 1.3E-3 3 × 3 7.9 1.6E-12 3.9E-9 166 1.5E-12 3.4E-9 4.8E-2 1.07 1.15
2048 1.3E-3 4 × 4 6.7 1.5E-12 4.0E-9 125 1.5E-12 3.5E-9 5.4E-2 1.00 1.14
2048 1.3E-3 5 × 5 5.9 1.6E-12 3.9E-9 114 1.6E-12 3.4E-9 5.2E-2 1.00 1.15
2048 1.3E-3 6 × 6 5.2 1.5E-12 3.8E-9 87.4 1.5E-12 3.2E-9 5.9E-2 1.00 1.19
2048 1.3E-3 7 × 7 5.0 1.6E-12 3.8E-9 83.8 1.6E-12 3.2E-9 6.0E-2 1.00 1.19
2048 1.3E-3 8 × 8 4.4 1.5E-12 4.1E-9 64.8 1.5E-12 3.6E-9 6.7E-2 1.00 1.14
4096 7.0E-4 1 × 1 129 4.9E-12 2.5E-8 8812 3.0E-12 1.3E-8 1.5E-2 1.63 1.92
4096 6.9E-4 2 × 2 63.4 6.1E-12 3.3E-8 2687 5.1E-12 2.6E-8 2.3E-2 1.20 1.27
4096 6.9E-4 3 × 3 45.7 6.1E-12 3.2E-8 1018 5.4E-12 2.4E-8 4.5E-2 1.13 1.33
4096 6.9E-4 4 × 4 37.1 6.2E-12 3.2E-8 701 5.3E-12 2.4E-8 5.3E-2 1.17 1.33
4096 6.9E-4 5 × 5 29.3 6.3E-12 3.1E-8 554 5.5E-12 2.3E-8 5.3E-2 1.15 1.35
4096 6.9E-4 6 × 6 25.3 6.3E-12 3.0E-8 439 5.6E-12 2.3E-8 5.8E-2 1.13 1.30
4096 6.9E-4 7 × 7 25.6 6.2E-12 3.0E-8 385 5.6E-12 2.2E-8 6.6E-2 1.10 1.36
4096 6.9E-4 8 × 8 22.3 6.2E-12 3.0E-8 326 5.5E-12 2.4E-8 6.8E-2 1.13 1.25
8192 3.5E-4 4 × 4 235 2.5E-11 2.5E-7 6003 2.0E-11 1.8E-7 3.9E-2 1.25 1.39
8192 3.5E-4 5 × 5 167 2.5E-11 2.5E-7 dnc dnc dnc 0.0 0.0 0.0
8192 3.5E-4 6 × 6 139 2.6E-11 3.5E-7 2202 2.1E-11 1.6E-7 6.3E-2 1.23 2.19
8192 3.5E-4 7 × 7 146 2.5E-11 2.5E-7 2045 2.1E-11 1.7E-7 7.1E-2 1.19 1.47
8192 3.5E-4 8 × 8 128 2.6E-11 2.5E-7 dnc dnc dnc 0.0 0.0 0.0

gets large. We expect the explicitly blocked method to handle ill-conditioned problems
better than the fully iterative, since it relies on orthogonal transformations and it has a
direct (backward stable) solution method for the reduced triangular problem. To signal
when there is not enough memory for both solving the problem and doing condition
estimation, we use the notation mem.

5 Discussion of Computational Results

The experimental results from the last section reveal the following: For triangular prob-
lems (QA = QB = I), see Table 3 which displays results from the Linux Cluster, the
parallel Bartels-Stewart based method is very much faster than the fully iterative since
it always computes the solution directly using a fixed number of arithmetic operations.

For general problems (QA �= I,QB �= I) the results differ depending on the target
machine. For the IBM SP system (see Table 1), PGESYCTD is able to compete with
the fully iterative method regarding both speed, accuracy and residual errors, for both
well- and ill-conditioned problems. For example, PGESYCTD uses only 33% (well-
conditioned case) and 25% (ill-conditioned case) of the execution time of psb04md
for m = n = 4096, Pr = 4, Pc = 4. For the ill-conditioned problems, the difference

Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations 727

Table 4. Hardware characteristics for Super Linux Cluster and IBM SP System. The parameter ta

denotes the time for performing an arithmetic operation, ts denotes the experimentally measured
startup time for message passing, tn denotes the time to transfer one byte over a single link in the
network and tm denotes the peak time to transfer one byte through the memory of a node. The
SP system has 3 times better flop/network bandwidth ratio and over 12 times better flop/memory
bandwidth ratio than the Super Linux Cluster

Hardware Super Linux Cluster IBM SP System Parameter Super Linux Cluster IBM SP System
CPU 120 × 2 Athlon MP2k+ 64 thin P2SC ta 3.0 × 10−10 sec. 2.1 × 10−9 sec.

& 1.667Ghz nodes, 120 MHz nodes, ts 3.7 × 10−6 sec. 4.0 × 10−5 sec.
Memory 1-4 Gb/node, 128 Mb/node, tn 3.0 × 10−9 sec. 6.7 × 10−9 sec.

peak 800 Gflops/sec. peak 33.6 Gflops/sec. tm 9.6 × 10−10 sec. 5.6 × 10−10 sec.
Network Wolfkit3 SCI h s i, Multistage network, ta/ts 8.1 × 10−5 5.3 × 10−5

3-dim. torus, peak 150 Mb/sec. ta/tn 0.10 0.31
peak 667 Mb/sec. ta/tm 0.31 3.8

in accuracy on the IBM SP system is remarkable: as expected, the explicitly blocked
method gives far more accuracy than the fully iterative, which sometimes did not even
converge. For the Linux-Cluster (see Table 2), psb04md is about two or three times
faster than PGESYCTD for both types of problems. This difference in speed can be
explained by the different characteristics of the machines, see Table 4. For uniprocessor
runs psb04md is faster on both machines, but when we go in parallel the superior
memory and network bandwidth of the SP system makes it possible for PGESYCTD to
scale much better than psb04md. On the less balanced Super Linux Cluster the heavy
communication in PGESYCTD becomes a bottleneck.

For the ill-conditioned problemsPGESYCTD gives the best accuracy, both regarding
the forward error ‖X − X̃‖F and the residual error ‖R‖F up to magnitudes 6 and 12,
respectively. For the well-conditioned problems, the routines in general have forward
and residual errors of the same order, even if psb04md shows slightly better forward
error (up to 63% for the largest problems on the Linux Cluster (m = n = 4096, 8192)),
and PGESYCTD shows slightly better residual error (up to 35% for the largest problems
on the Linux Cluster). We remark that the column sep−1 in Tables 1–3 are lower bounds
on the exact values.

6 Summary and Future Work

We have presented a comparison of parallel ScaLAPACK-style implementations of two
different methods for solving the continuous-time Sylvester equation (1), the Bartels-
Stewart method and the iterative matrix-sign-function-based method. The comparison
has dealt with generality, speed and accuracy.

Experiments carried out on two different distributed memory machines show that the
parallel explicitly blocked Bartels-Stewart algorithm can solve more general problems
and delivers far more accuracy for ill-conditioned problems. A method that imposes more
restrictions on the spectra on A and B in AX − XB = C is considered less general.
Ill-conditioning is measured with respect to the separation of A and B, sep(A,B),
as defined in equation (8). We remark that sep(A,B) can be much smaller than the
minimum distance between the eigenvalues of A and B. This means that we can have

728 Robert Granat and Bo Kågström

an ill-conditioned problem even if the spectra of A and B are well-separated, which
for some examples could favour the iterative matrix-sign-function-based method. The
Bartels-Stewart method is also up to four times faster for large enough problems on
the most balanced parallel platform (IBM SP), while the parallel iterative algorithm is
almost always the fastest of the two on the less balanced platform (HPC2N Linux Super
Cluster).

Ongoing work includes implementing general Bartels–Stewart solvers for related
matrix equations, e.g., the continuous-time Lyapunov equation AX + XAT = C,
C = CT and the discrete-time Sylvester equation AXBT − X = C. Our objective
is to construct a software package SCASY of ScaLAPACK-style algorithms for the
most common matrix equations, including generalized forms of the Sylvester/Lyapunov
equations.

Acknowledgements

This research was conducted using the resources of the High Performance Computing
Center North (HPC2N). Financial support has been provided by the Swedish Research
Council under grant VR 621-2001-3284 and by the Swedish Foundation for Strategic
Research under grant A3 02:128.

References

1. R.H. Bartels and G.W. Stewart Algorithm 432: Solution of the Equation AX + XB = C,
Comm. ACM, 15(9):820–826, 1972.

2. E. Anderson, Z. Bai, C. Bischof. J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-
marling, A. McKenny, S. Ostrouchov and D. Sorensen. LAPACK User’s Guide. Third Edition.
SIAM Publications, 1999.

3. P. Benner, E.S. Quintana-Orti. Solving Stable Generalized Lyapunov Equations with the
matrix sign functions, Numerical Algorithms, 20 (1), pp. 75-100, 1999.

4. P. Benner, E.S. Quitana-Orti, G. Quintana-Orti. Numerical Solution of Discrete Schur Stable
Linear Matrix Equations on Multicomputers, Parallel Alg. Appl., Vol. 17, No. 1, pp. 127-146,
2002.

5. P. Benner, E.S. Quitana-Orti, G. Quintana-Orti. Solving Stable Sylvester Equations via Ra-
tional Iterative Schemes, Preprint SFB393/04-08, TU Chemnitz, 2004.

6. S. Blackford, J. Choi, A. Clearly, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK Users’
Guide. SIAM Publications, Philadelphia, 1997.

7. R. Granat, A Parallel ScaLAPACK-style Sylvester Solver, Master Thesis, UMNAD 435/03,
Dept. Computing Science, Umeå University, Sweden, January, 2003.

8. R. Granat, B. Kågström, P. Poromaa. Parallel ScaLAPACK-style Algorithms for Solving
Continous-Time Sylvester Equations. In H. Kosch et al., Euro-Par 2003 Parallel Processing.
Lecture Notes in Computer Science, Vol. 2790, pp. 800-809, 2003.

9. G. Henry and R. Van de Geijn. Parallelizing the QR Algorithm for the Unsymmetric Algebraic
Eigenvalue Problem: Myths and Reality. SIAM J. Sci. Comput. 17:870–883, 1997.

10. G. Henry, D. Watkins, and J. Dongarra. A Parallel Implementation of the Nonsymmetric QR
Algorithm for Distributed Memory Architectures. Technical Report CS-97-352 and Lapack
Working Note 121, University of Tennessee, 1997.

Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations 729

11. N.J. Higham. Perturbation Theory and Backward Error for AX−XB = C, BIT, 33:124–136,
1993.

12. B. Kågström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-performance
model implementations and performance evaluation benchmark. ACM Trans. Math. Software,
24(3):268–302, 1998.

13. B. Kågström and P. Poromaa. Distributed and shared memory block algorithms for the tri-
angular Sylvester equation with Sep−1 estimators, SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 99–101.

14. Niconet Task II: Model Reduction, website:
www.win.tue.nl/niconet/NIC2/NICtask2.html

15. P. Poromaa. Parallel Algorithms for Triangular Sylvester Equations: Design, Scheduling and
Scalability Issues. In Kågström et al. (eds), Applied Parallel Computing. Large Scale Scien-
tific and Industrial Problems, Lecture Notes in Computer Science, Vol. 1541, pp 438–446,
Springer-Verlag, 1998.

16. J.D. Roberts. Linear model reduction and solution of the algebraic Ricatti equation by use
of the sign function, Intern. J. Control, 32:677-687, 1980. (Reprint of Technical Report No.
TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971).

17. SLICOT library in the Numerics in Control Network (NICONET), website:
www.win.tue.nl/niconet/index.html

Performance Analysis for Parallel Adaptive FEM
on SMP Clusters

Judith Hippold� and Gudula Rünger

Chemnitz University of Technology, Department of Computer Science
09107 Chemnitz, Germany

{juh,ruenger}@informatik.tu-chemnitz.de

Abstract. The parallel implementation of 3-dimensional adaptive finite element
methods (FEM) on recent clusters of SMPs has to deal with dynamic load increase
due to adaptive refinement which might result in load imbalances. Additionally, the
irregular behavior of adaptive FEM causes further impacts like varying cache ef-
fects or communication costs which make a redistribution strategy more complex.
In this paper we investigate the interaction of these effects and the performance
behavior of parallel adaptive FEM and present several performance results on
recent SMP clusters.

1 Introduction

Finite element (FE) methods are frequently used to solve problems in natural sciences
and engineering modeled by partial differential equations (PDE). FE methods discretize
the physical domain into a mesh of finite elements and approximate the unknown solu-
tion function by a set of shape functions on those elements. Adaptive mesh refinement
(AMR) has been designed to reduce computational effort and memory needs. But, es-
pecially for simulations of real-life problems with 3-dimensional, hexahedral meshes
parallel execution is still necessary to provide a satisfying solution in reasonable time.
A parallel execution of adaptive FEM on distributed memory machines, however, usu-
ally exhibits load imbalances resulting from adaptive refinements concentrated on a few
processors. Thus load redistribution is necessary but causes additional overhead and a
tradeoff between redistribution costs and load balance has to be found in order to allow
an efficient dynamic redistribution strategy. The use of a specific parallel platform further
influences the parallel execution time. In this paper we consider clusters of SMPs.

Clusters of SMPs (symmetric multiprocessors) gain more and more importance in
high performance computing because they offer large computing power for a reasonable
price. We have realized a parallel program for adaptive FEM [2] working on adap-
tively refined, hexahedral meshes and have investigated the execution on SMP cluster
architectures. First runtime experiments with parallel adaptive hexahedral FEM on SMP
clusters have shown a quite irregular behavior of parallel runtime and speedup values.
This includes constant speedup behavior despite load increase due to refinement, su-
perlinear speedups also for unbalanced load, or saturation of speedups for quite small
numbers of processors. These effects vary for different application problems and are

� Supported by DFG, SFB393 Numerical Simulation on Massively Parallel Computers

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 730–739, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Analysis for Parallel Adaptive FEM on SMP Clusters 731

further influenced when using SMP clusters and exploiting them differently for commu-
nication. Compared to single-node clusters the two-level architecture of SMP clusters
offers different communication realizations, where SMP internal communication might
be implemented more efficiently. Well-known redistribution strategies cannot capture
this irregular behavior. The goal of this paper is to investigate the irregular effects of
performance behavior caused by adaptive parallel FEM on SMP clusters and to ana-
lyze reasons for these irregular effects, which is a necessary prerequisite for dynamic
redistribution.

Possible reasons for irregular parallel execution times or speedups of adaptive meth-
ods are cache effects, non-uniform communication time on SMP clusters, and varying
load increase due to mesh refinement. In this paper we present runtime experiments for
the parallel adaptive FEM implementation on SMP clusters for different aspects of load
increase, load imbalances, and architecture specific properties. Especially we consider
cache effects for basic matrix operations intensively used in the program. Also the com-
munication behavior on SMP clusters is investigated. Results are presented for three
different cluster platforms, which show a strong influence of the specific architecture.
The runtime experiments exhibit quite diverse effects. The contribution of this paper
is to gather important influential reasons for an irregular runtime behavior. To under-
stand these reasons is important for a potential adaptive load balancing strategy on SMP
clusters.

The paper is structured as follows: Section 2 introduces the parallel adaptive FEM
implementation. Section 3 illustrates irregular runtime and speedup effects on SMP
clusters. Section 4 presents several specific runtime experiments and Section 5concludes.

2 Parallel Adaptive FEM Implementation

The parallel adaptive FEM implementation [2] is based on a sequential version [1] and
is used to solve systems of 2nd order partial differential equations, such as the Poisson
equation (1) or the Lamé system of linear elasticity (2) (see [1]).

Lu := −∇ · (A(x)∇u) + cu = f in Ω ⊂ IR3, A(x) = diag(ai)3i=1 (1)

u = u0 on ∂Ω1, ntA(x)∇u = g on ∂Ω2

−μΔu− (λ + μ) grad div u = f in Ω ⊂ IR3, u = (u(1), u(2), u(3))t (2)

u(i) = u
(i)
0 on ∂Ω

(i)
1 , t(i) = g(i) on ∂Ω

(i)
2 , i = 1, 2, 3

In the parallel version the finite elements are spread over the available processors
and the global stiffness matrix is represented in local memories by triangular element
stiffness matrices. Nodes of FEs shared between processors are duplicated and exist
in the address space of each owning processor. The different owners of duplicates cal-
culate only subtotals which have to be accumulated using communication operations
to yield the totals. For the parallel implementation a specific numerical parallelization
approach is adopted from [6,7,8] so that the processors mainly work on unaccumulated
vectors. The design of the parallel adaptive FEM implementation reduces the number
of data exchanges by separating computation phases from communication phases [3]

732 Judith Hippold and Gudula Rünger

(see also Section 4.2). The following pseudo-code illustrates the coarse structure of the
implementation:

create initial mesh;
while(convergence is not achieved) {
*** Refinement phase (REF) ***

while((there are FEs labeled by the error estimator) OR
(neighboring FEs have refinement level difference larger than 1))

refine these FEs;
*** Repartitioning phase ***

calculate a new partitioning and redistribute;
*** Assembling phase (ASS) ***

foreach(new FE) assemble the element stiffness matrix;
*** Solution phase (SOL) ***

while(convergence is not achieved)
solve the system of equations with the preconditioned
conjugate gradient method;

*** Error estimation phase (EST) ***
estimate the error per FE;

}

The program executes the five phases within the outer while-loop until the maximum
error drops below a predefined threshold value. The outer loop includes two iterative
phases: adaptive mesh refinement (REF) and solving the system of equations (SOL).
REF is performed until a valid mesh is created which means all FEs labeled for refine-
ment are subdivided and the difference of the refinement level between all neighboring
elements is less than two. SOL uses the iterative preconditioned conjugate gradient
method to solve the system of equations [6].

3 Parallel Runtime Behavior

This section investigates the parallel runtime behavior of the adaptive FEM implemen-
tation on SMP clusters. In order to capture the different effects, we perform several
runtime experiments with varying load, varying load imbalances, and different machine
utilization. As hardware platforms the three following machines are used:

XEON: a Xeon cluster with 16 nodes and two 2.0 GHz Intel Xeon processors
per node (SCI, ScaMPI [4], 512 KB L2 cache),

SB1000: a dual cluster of four Sun Blade 1000 with 750 MHz Ultra Sparc3 proces-
sors (SCI, ScaMPI [4], 8 MB L2 cache), and

JUMP: an IBM Regatta system with 41 nodes and 32 1.7 GHz Power4+ proces-
sors per node (High Performance Switch, Parallel Environment, 1.5 MB
L2 cache per 2 processors, 512 MB L3 cache per 32 processors).

Figure 1 shows speedups on XEON for ct01, solving the Lamé equation (Ω =

(0, 2) × (0, 1) × (0, 4); ∂Ω
(i)
1 = (0, 1) × (0, 1) × {0}, i = 1, 2, 3; ∂Ω

(3)
2 = (0, 2) ×

Performance Analysis for Parallel Adaptive FEM on SMP Clusters 733

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8

S
pe

ed
up

Processors

Speedup for ct01 on XEON

"ideal"
"CLU_L3"
"SMP_L3"
"CLU_L7"
"SMP_L7"
"CLU_L8"
"SMP_L8"

0

2

4

6

8

10

12

14

16

18

20

2 3 4 5 6 7

S
pe

ed
up

Processors

Speedup for layer3 on XEON

"ideal"
"CLU_L4"
"SMP_L4"
"CLU_L6"
"SMP_L6"
"CLU_L7"
"SMP_L7"

Fig. 1. Speedups for examples ct01 (left) and layer3 (right) on XEON. L denotes the differ-
ent refinement levels measured. CLU and SMP distinguish the assignment of MPI processes to
processors. The CLU version runs only one process per cluster node and the SMP version assigns
MPI processes to processors of the same cluster node rather than to different nodes

(0, 1) × {4}; g(3) = 1000 (see [1])), and layer3, a boundary layer for the convection-
diffusion equation (−εΔu + u = 1 in Ω = (0, 1)3; u = 0 for x, y, z = 0; ∂u

∂n
=

0 for x, y, z = 1 (see [1])) . The execution times are measured for different numbers
of adaptive refinement steps and program runs without repartitioning. We distinguish
the CLU and SMP process assignment strategies. CLU assigns MPI processes only to
different cluster nodes and SMP assigns MPI processes to processors of the same cluster
node rather than to different nodes.

For the example application ct01 the load concentrates on two processors. Thus
increasing the number of processors does not have effects on the parallel runtime. With
growing refinement level (L7, L8) the load for the two mainly employed processors
is increasing and slightly superlinear speedups can be observed. For this levels also a
significant difference between the different process assignment strategies emerges: the
CLU strategy achieves better results.

For the example application layer3 the imbalance of load is not as heavy as for
ct01. Even for small refinement levels (L4) good speedups can be measured up to
four processors. Larger meshes (L6, L7) create strongly superlinear speedups which
remain constant or drop only slightly when the number of processors is increasing and
is larger than four although the load for the processors develops unevenly. The CLU
process assignment strategy achieves in most cases higher speedups. These example
applications illustrate the irregular behavior of parallel runtime and speedup values for
adaptive FEM on SMP clusters.

4 Determining and Quantifying the Dependences

This section examines the impact of different hardware characteristics and algorithmic
properties on the execution time of the adaptive FEM implementation in order to deter-
mine reasons for the runtime behavior illustrated in Section 3. We present measurements
for a program solving the Lamé equation on the input meshes called M8, M64, and M512
which mainly differ in the number of initial volumes.

734 Judith Hippold and Gudula Rünger

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

T
im

e
in

 s
ec

on
ds

/1
0^

6

Average execution time for "axmebe" on XEON

Refinement level
"8 nodes"

"20 nodes"
"27 nodes"

40

41

42

43

44

45

46

47

0 1 2 3 4 5 6 7 8

T
im

e
in

 s
ec

on
ds

/1
0^

6

Refinement level

Average execution time for "axmebe" on JUMP (27)

"iteration 1"
"iteration 2"
"iteration 3"

Fig. 2. Left: Average execution times for the operation axmebe on XEON for different finite
elements (8, 20, 27 nodes per FE) and different refinement levels. Right: Average execution times
for distinct solver iterations (first, second, third iteration) on JUMP (27 nodes per FE)

4.1 Cache Behavior

When the number of finite elements grows the number of different memory accesses is
increasing and cache misses can influence performance disadvantageously. Thus super-
linear speedups are possible for parallel program runs on reduced data sets. To investigate
the cache behavior the sequential execution of operations working on large data struc-
tures is regarded on different refinement levels. These operations are axmebe, axpy,
and scalar of phase SOL.

Axmebe: The operation axmebe performs the matrix-vector multiplication y =
y + A ∗ u where A is the triangular element stiffness matrix and y and u are global
vectors. During program execution the size of A is constant and is between 2.3 KB and
26 KB depending on the finite element type. The length of the global vectors y and u
varies according to the current refinement level of the mesh and additionally depends on
the FE type. The memory requirements for the vectors in the program run used for Figure
2 is about 6.3 KB at refinement level three and 70.7 KB at refinement level eight for FEs
with 8 nodes. For elements with 27 nodes the requirement is 36.6 KB and 453.4 KB at
the corresponding levels. The global vectors are accessed irregularly because the vector
entries for the nodes of a finite element are not stored consecutively. This is due to
the shared nodes between the different elements. Figure 2 (left) illustrates the average
execution times for the operation axmebe running on finite elements with 8, 20, and 27
nodes on one processor of XEON. The execution times vary for finite elements creating
larger vectors and matrices. Although the average execution time for one vector entry
over the entire number of iterations necessary for phase SOL is calculated, drops in the
average execution time emerge for small numbers of solver iterations. This behavior can
be observed for all platforms investigated. Thus we have additionally measured distinct
solver iterations to reduce the effects of e. g. context switches: On the right of Figure 2
the average execution times for the first, second, and third solver iteration for a program
run on JUMP with 27 nodes per FE are shown.

Scalar: The operation scalar calculates the scalar product prod = x∗y of the global
vectors x and y. The average execution times to calculate one vector entry on SB1000

Performance Analysis for Parallel Adaptive FEM on SMP Clusters 735

scalar 1 scalar 2

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Refinement level

0

0.01

0.02

0.03

0.04

T
im

e
in

 s
ec

on
ds

/1
0^

6
Average time for "scalar" on SB1000 (8)

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Refinement level

axpy 1 axpy 2 axpy 3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
im

e
in

 s
ec

on
ds

/1
0^

7

Average time for "axpy" on XEON (27)

Fig. 3. Left: Average execution times for the operation scalar on different refinement levels
(SB1000, 8 nodes per FE). Right: Average execution times for the operation axpy on different
refinement levels (XEON, 27 nodes per FE)

are shown on the left of Figure 3 for different refinement levels. Scalar is performed
two times during one solver iteration which is denoted by scalar 1 and scalar 2. The
execution behavior of both scalar calls is similar but is influenced by the previously
performed operation, especially for large vectors: If an input vector of the operation
scalar has already been used as a parameter in the previous operation, scalar is faster.
Analogous to the operation axmebe the number of iterations of phase SOL has influence
on the average execution times.

Axpy: The average execution times to compute one vector entry for the operation
axpy on XEON are shown on the right of Figure 3. Axpy calculates y = alpha ∗
x + y where y and x are global vectors and alpha is a scalar. As scalar, axpy is
performed several times during one iteration of SOL and the average execution times
of the different calls depend on the data used by the previous operation and the number
of solver iterations.

SB1000 XEON JUMP
Level

axmebe scalar axpy axmebe scalar axpy axmebe scalar axpy
1 30.05 0.36 0.63 30.71 1.18 1.90 76.25 6.60 9.09
3 78.49 0.79 1.23 34.11 0.78 0.47 77.27 2.43 2.83
5 80.61 0.69 1.00 37.73 0.30 0.52 80.18 1.16 1.48
7 81.33 0.67 1.00 37.84 0.42 0.27 74.51 0.87 1.28

Fig. 4. Percentage of time for the operations axmebe, scalar, and axpy on the total, sequential
time of phase SOL using finite elements with 8 nodes

The three operations investigated show an increase in their average execution times
for large finite element meshes and high numbers of FE nodes. Especially the operation
axmebe constitutes a high proportion of the total solver runtime (see Table 4), so
increases in execution time may have influence on the total runtime of the program.

736 Judith Hippold and Gudula Rünger

0 1 2 3 4 5 6 7 8
−5

0

5

10

15

20

E
ffi

ci
en

cy
 g

ai
n

in
 %

Refinement level

SMP vs. CLU on XEON (SOL)

8 initial elements
64 initial elements

SMP

CLU

0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

E
ffi

ci
en

cy
 g

ai
n

in
 %

Refinement level

SMP vs. CLU on JUMP (SOL)

8 inital elements

SMP

CLU

0 1 2 3 4 5 6 7 8
−10

0

10

20

30

40

50

E
ffi

ci
en

cy
 g

ai
n

in
 %

Refinement level

SMP vs. CLU on SB1000 (SOL)

8 initial elements
64 initial elements

SMP

CLU

Fig. 5. Comparison of the process assignment strategies for phase SOL on the input meshes M8
and M64 on two processors of XEON, JUMP, and SB1000. Positive scale: efficiency gain of the
SMP version (two MPI processes per cluster node); negative scale: efficiency gain of the CLU
version (one MPI process per cluster node)

However, the increase on high refinement levels is small or the values even decrease on
some platforms as illustrated in Table 4. Thus the impact is not strong enough to cause
the heavy superlinear speedups shown in Section 3.

4.2 Communication Overhead

We consider the SMP and CLU process assignment strategies. If one MPI process is
assigned to one processor, MPI processes situated at the same cluster node may take
benefit from the internal SMP communication which is more efficient than network
communication in many cases [5]. However, as shown in Section 3 the CLU assignment
strategy can achieve better results than the SMP strategy, although the load is increasing.
This subsection investigates the reasons by parallel program runs on two processors of
different platforms. We use a maximum parallelism of two because there are only two
CPUs per SMP on XEON and SB1000. Thus the independent consideration of both
strategies is possible.

The parallel adaptive FEM implementation uses a special communication scheme.
This scheme gathers the data to exchange and performs a global exchange (GE) after all
local calculations are done. For the different algorithmic phases we have the following
numbers of global exchanges:

Adaptive refinement (REF): refinement iterations ∗ (2GE)
Assemble element stiffness matrices (ASS): (1GE)
Solve the system of equations (SOL): solver iterations ∗ (6GE) + (2GE)
Error estimation (EST): (2GE)

The algorithmic design decouples the number of FEs and the number of necessary com-
munication operations. Thus fast internal communication does not necessarily dominate
network communication when the load is increasing.

Figure 5 compares the two strategies for the most communication-intensive phase
SOL. On all platforms the SMP version is more efficient for low refinement levels.
With increasing data (increased refinement level or increased size of the initial mesh)
the benefit of the SMP strategy is lowered or the CLU version even dominates. Possible

Performance Analysis for Parallel Adaptive FEM on SMP Clusters 737

0 1 2 3 4 5 6 7 8
−5

0

5

10

15

20

25

E
ffi

ci
en

cy
 g

ai
n

in
 %

Refinement level

SMP vs. CLU on SB1000 (ASS)

8 initial elements
64 initial elements

SMP

CLU

0 1 2 3 4 5 6 7 8
−8

−6

−4

−2

0

2

E
ffi

ci
en

cy
 g

ai
n

in
 %

Refinement level

SMP vs. CLU on XEON (ASS)

8 initial elements
64 initial elements

SMP

CLU

Fig. 6. Comparison of the process assignment strategies for assembling the element stiffness
matrices on the input meshes M8 and M64 on two processors of SB1000 and XEON. Positive
scale: efficiency gain of the SMP version (two MPI processes per cluster node), negative scale:
efficiency gain of the CLU version (one MPI process per cluster node)

reasons are process scheduling or shared hardware components which cause additional
overhead for the SMP version.

Figure 6 illustrates the impact of the process assignment strategy for the phase as-
sembling the element stiffness matrices. During this phase only one global exchange is
performed. Compared to Figure 5the efficiency for the SMP version on SB1000 is lower.
On XEON only for small numbers of finite elements the SMP version achieves better
runtimes than the CLU assignment strategy. Due to the varying numbers of new finite
elements on the different refinement levels there are strong fluctuations in efficiency.

The total execution time comprises runtimes of algorithmic phases with high and
low communication needs and gathers the values of different refinement levels. So the
benefits and drawbacks of the different strategies are combined. On XEON and SB1000
the differences in total runtime caused by the different process assignment strategies
are approximately two percent for high refinement levels (levels 8 and 9) where on
XEON the CLU version and on SB1000 the SMP version is slightly faster. On JUMP
the SMP process assignment strategy is about 10 percent faster after 9 refinement steps
for the investigated example. Thus a platform adapted assignment of MPI processes to
processors can improve performance.

4.3 Algorithmic Properties

Subsection 4.2 has investigated the dependence between load increase and process as-
signment strategy and 4.1 has examined the dependence between load increase and cache
behavior. However, the runtime behavior shown in Section 3, especially the superlinear
speedup, cannot completely explained with these examinations. This subsection analyzes
the influence of algorithmic properties.

Figure 7 shows execution times for the different algorithmic phases per different
refinement level. On the left measurements for a sequential program run with mesh M8
on JUMP and on the right measurements for a parallel run on two processors with mesh

738 Judith Hippold and Gudula Rünger

REF ASS SOL EST
0

2

4

6

8

T
im

e
in

 s
ec

on
ds

/1
0

Execution time on JUMP (seq., M8)

REF ASS SOL EST
0

0.5

1

1.5

2

2.5

3

3.5

T
im

e
in

 s
ec

on
ds

Execution time on SB1000 (par., M64)

Fig. 7. Execution times per refinement level for the algorithmic phases REF, ASS, SOL, EST
(left: sequential execution time on JUMP with mesh M8, right: parallel execution time on two
processors of SB1000 with mesh M64)

M64 on SB1000 are shown. In general the diagrams show similar shapes for the different
platforms. The most time consuming phases for parallel and sequential execution are the
solution of the system of equations (SOL) and the adaptive mesh refinement (REF). The
execution times increase with growing mesh size except for the phases ASS and SOL:
For solving the system of equations this results from the different convergence behavior
of the preconditioned conjugate gradient method and for assembling the element stiffness
matrices this is caused by the unevenly growing number of new FEs and their element
stiffness matrices which have to be created.

Especially on XEON and JUMP the phase REF shows very high sequential execution
times compared to the parallel version. These originate from operations on lists of data
structures with non-linear complexity. The length of these lists shrinks with growing
parallelism. Thus superlinear speedups are possible if the load imbalances are not too
strong. On SB1000 this effect has not been observed for the investigated example.

5 Conclusion and Future Work

In this paper we have presented several runtime experiments to analyze the irregular
behavior of parallel execution and speedups of adaptive 3-dimensional FEM on recent
SMP clusters. The investigations have shown that superlinear speedup behavior can
occur for unbalanced load or saturation of speedup can occur for balanced load. Existing
dynamic redistributions based on the mesh structure and load imbalances cannot capture
these effects and are too expensive since a cost intensive redistribution might be applied
although the efficiency of the program is already good. The reasons for this behavior are
a conglomeration of only slight cache effects, of varying communication efficiency on
SMP nodes, and efficiency changes in the algorithm, like a faster search in list structures.
Thus the irregular effects cannot be predicted and for an efficient use of redistribution
a decision based on explicit performance data seems reasonable. The advantage is that
redistribution is only applied when necessary, and thus, redistributing is cheaper since

Performance Analysis for Parallel Adaptive FEM on SMP Clusters 739

the dynamic performance analysis is less expensive than redistribution operations. Our
analysis also suggests to exploit SMP cluster nodes in a varying mode and to adapt the
numbers of processors. Future work will realize the redistribution strategy based on a
decision component that guides the redistribution according to the performance analysis.

References

1. S. Beuchler and A. Meyer. SPC-PM3AdH v1.0, Programmer’s Manual. Technical Report
SFB393/01-08. Chemnitz University of Technology, 2001.

2. J. Hippold, A. Meyer, and G. Rünger. An Adaptive, 3-Dimensional, Hexahedral Finite Element
Implementation for Distributed Memory. In J. J. Dongarra, M. Bubak, G. D. van Albada, editor,
Proc. of Int. Conf. on Computational Science (ICCS04), LNCS 3037, pages 149–157. Springer,
Poland, Kraków, 2004.

3. J. Hippold and G. Rünger. A Data Management and Communication Layer for Adaptive,
Hexahedral FEM. In M. Danelutto, D. Laforenza, M. Vanneschi, editor, Proc. of the 10th Int.
Euro-Par Conf., LNCS 3149, pages 718–725 . Springer, Pisa, Italy, 2004.

4. http://www.scali.com
5. L. P. Huse, K. Omanga, H. Bugge, H. Ry, A. T. Haugsdal, and E. Rustad. ScaMPI - Design

and Implementation.
6. A. Meyer. A parallel preconditioned conjugate gradient method using domain decomposition

and inexact solvers on each subdomain. Computing, 45:217–234, 1990.
7. A. Meyer. Parallel Large Scale Finite Element Computations. In G. Cooperman, G. Michler,

and H. Vinck, editors, LNCIS 226, pages 91–100. Springer, 1997.
8. A. Meyer and D. Michael. A modern approach to the solution of problems of classic elasto–

plasticity on parallel computers. Numerical Linear Algebra and Application, 4(3):205–221,
1997.

Performance Tuning of Matrix Triple Products
Based on Matrix Structure

Eun-Jin Im1, Ismail Bustany2, Cleve Ashcraft3,
James W. Demmel4, and Katherine A. Yelick4

1 Kookmin University, Seoul, Korea
ejim@eecs.berkeley.edu
2 Barcelona Design Inc., USA
isk@sierra-da.com

3 Livermore Software Technology Corporation, USA
cleve@lstc.com

4 U.C. Berkeley, USA
{demmel,yelick}@eecs.berkeley.edu

Abstract. Sparse matrix computations arise in many scientific and engineering
applications, but their performance is limited by the growing gap between proces-
sor and memory speed. In this paper, we present a case study of an important sparse
matrix triple product problem that commonly arises in primal-dual optimization
method.
Instead of a generic two-phase algorithm, we devise and implement a single pass
algorithm that exploits the block diagonal structure of the matrix. Our algorithm
uses fewer floating point operations and roughly half the memory of the two-phase
algorithm. The speed-up of the one-phase scheme over the two-phase scheme is
2.04 on a 900 MHz Intel Itanium-2, 1.63 on an 1 GHz Power-4, and 1.99 on a 900
MHz Sun Ultra-3.

1 Introduction

This paper contains a case study of an important matrix triple product problem that
commonly arises in primal-dual optimization method [1]. The method is used in many
practical applications such as circuit design, optimal control, portfolio optimization, etc.,
and the matrix triple product is often a bottleneck in solving the large-scale symmetric
definite sparse matrix problems associated with primal-dual methods. The sparse matrix
patterns are particular to the particular primal-dual problem class (e.g. linear, quadratic,
etc.) and to the application domain. More formally, we address the following matrix
problem: P = A×H×AT where A is a sparse matrix and H is a block diagonal matrix
with each diagonal block of H, Hi, having a rank-1 structure, i.e. Hi = Di + ri ∗ rt

i for
a diagonal matrix Di and a column vector ri.

The matrix triple product can be treated as two generic sparse matrix products by
storing both A and its transpose and performing a full sweep through both instances.
However, this generic approach places unnecessary demand on the memory systems and
ignores the specialized structure of H. Instead, we introduce a single pass algorithm that
exploits the block diagonal structure of the matrix H. While the one-phase scheme has

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 740–746, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Tuning of Matrix Triple Products Based on Matrix Structure 741

an advantage over the two-phase scheme through exploiting the structure of matrix, the
summation of sparse matrices becomes a bottleneck. Therefore, we propose a row-based
one-phase scheme, where the summation of sparse matrices is replaced by the summation
of sparse vectors, which can be computed efficiently using a sparse accumulator. We
further improve the performance of the row-based one-phase scheme through the use of
additional helper data structures.

2 Two Implementation Schemes: One-Phase vs. Two-Phase

2.1 Two-Phase Scheme

In this generic implementation scheme, the matrix triple product is treated as two generic
sparse matrix products. That is, Q = A×H , followed by P = Q×AT . In computing the
product of two sparse matrices, the non-zero elements are stored in a column-compressed
format. Then, the multiplication is conducted in an outer and an inner loop. The outer loop
marches through the columns of the right matrix. The inner loop sweeps the columns
of the left matrix and accumulates the products of their non-zero elements with the
non-zero elements in the corresponding column of the right matrix. The summation of
sparse vectors that forms a column of the product matrix can be efficiently performed
using a sparse accumulator [2]. This generic approach places unnecessary demand on the
memory systems since the intermediate product matrix H ×AT is explicitly computed
and stored. Furthermore, it ignores the specialized structure inherent in H.

2.2 One-Phase Scheme

In this scheme, the product matrix is computed in one pass. First, the triple-product is
decomposed according to blocks of matrix H as follows :

P =
of blocks in H∑

i

(Pi = AiHiA
T
i) (2.1)

where Hi is an i-th block of H and Ai is a corresponding column block of A.
In equation-2.1, the summation of the sparse matrices with different non-zero distri-

bution is not trivial and can be time consuming. To enhance the efficiency, we propose a
row-based one-phase approach where the summation of sparse matrices is replaced by
a sparse vector accumulator that composes each row (or column) of the product matrix,
P , in order. By exploiting the structure of H , equation-2.1 may be computed as follows:

P =
of blocks in H∑

i

(AiDiA
T
i + (Airi)(Airi)T) (2.2)

From equation-2.2, the k-th row (or equivalently, column) of P , Pk∗, is computed
by the following equation:

742 Eun-Jin Im et al.

Pk∗ =
of columns in A∑

j

(A∗jdjA
T
∗j)k∗ +

of non−unit blocks in H∑
i

(B∗iB
T
∗i)k∗

=
∑

j

akjdjA
T
∗j +

∑
i

bkiB
T
∗i

=
∑

j:akj �=0

akjdjA
T
∗j +

∑
i:bki �=0

bkiB
T
∗i (2.3)

where Xi∗ is i-th row of matrix X , X∗i is i-th column of matrix X , and B∗i = Airi.
Furthermore, the computation of equation-2.3 is accelerated using the additional

compressed sparse row index structures of matrices A and B which are stored in a
compressed sparse column format. It is sufficient to construct a transpose of matrix A
without its values since only the index structure is needed for this computation.

Finally, since the product matrix P is symmetric, we only compute the upper trian-
gular part of the matrix by computing akjdjA

T
k:m,j and bkiB

T
k:m,j , instead of akjdjA

T
∗j

and bkiB
T
∗j , where Xk:m,j denotes k-th throughm-th elements of the j-th column of ma-

trix X . Accesses to elements Akj are expedited by keeping an array of indices pointing
to the next non-zero element in each column of A.

3 Performance and Modeling

We measure and compare performances of these two implementations using the five
matrix sets summarized in the figure-1. This data set is obtained from real circuit design
problems with progressively increasing sizes. The matrices grow sparser as their size
increases. In the two rightmost columns, the table compares the number of floating-
point operations and the memory requirements (dynamically allocated data size) of both
schemes. These results show that both measures are almost halved in the one-phase
scheme.

Set # of rows # of columns # of NZs # of NZs # of fop.s memory

in A in A in A in H requirement

1 8648 42750 361K 195K 1-phase 11M 11M

2-phase 24M 24M

2 14872 77406 667K 361K 1-phase 21M 20M

2-phase 45M 41M

3 21096 112150 977K 528K 1-phase 31M 29M

2-phase 66M 60M

4 39768 217030 1913K 1028K 1-phase 60M 57M

2-phase 129M 118M

5 41392 244501 1633K 963K 1-phase 31M 50M

2-phase 66M 113M

Fig. 1. Matrix sets used in the performance measurement

Performance Tuning of Matrix Triple Products Based on Matrix Structure 743

900 MHz Itanium 2 1 GHz Power 4 900 MHz Ultra 3
0

20

40

60

80

100

120

140

160

Data Set(1−5) : Processor

M
F

LO
P

S

Performance Achieved

set1:1p
set1:2p
set2:1p
set2:2p
set3:1p
set3:2p
set4:1p
set4:2p
set5:1p
set5:2p

900 MHz Itanium 2 1 GHz Power 4 900 MHz Ultra 3
0

0.5

1

1.5

2

2.5

Data Set(1−5) : Processor

sp
ee

du
p

Speedup

Set1
Set2
Set3
Set4
Set5

Fig. 2. Achieved Mflop rate and speedup The left graph shows the Mflop rate of the one-phase
(1p) and two-phase (2p) schemes for the five matrix sets on an Itanium-2, a Power-4 and an
Ultrasparc-3. The right graph shows the speedup of the one-phase scheme over the two-phase
scheme for the same matrix sets on the 3 different platforms

The graphs in figure-2 show the Mflop rates (left) and speedups (right) of the one-
phase scheme over the two-phase scheme for this data set on a 900 MHz Itanium-2, an
1 GHz Power-4, and a 900 MHz Ultrasparc-3. The speedup on the Itanium-2 is almost
2, and overall the speedup is over 1.5. The Mflop rate is lower in the one-phase scheme
in all cases. The reduction in the execution time for the one-phase scheme is attributed
to the reduced number of floating-point operations and memory accesses.

Figure-3 shows the pre-processing time on these three platforms. The pre-pro-
cessing time is shown relative to the multiplication time of the two-phase scheme for
each matrix. In the one-phase scheme, the pre-processing time is spent on

– counting the number of non-zeros in B and P to determine the amount of memory
allocation,

– computing the structure of matrix B, and
– constructing the row-major structure of A and B.

In the two-phase scheme, it is spent on

– generating At, and
– counting the number of non-zeros in Q and P .

Figure-3 shows there is an added overhead of 1.25-1.75 in the one-phase scheme over
relative to the two-phase scheme. Typically the triple matrix product is repeatedly com-
puted 100-120 times, while the pre-processing time is spent only once. Hence, this added
overhead is considered to be negligible.

We also modeled the execution of the one-phase and two-phase schemes. Figure-4
shows the measured and modeled execution time on the Itanium-2. The dominant factor
in the one-phase scheme is due to accessing A’s elements. The number of accesses is
computed as follows:

744 Eun-Jin Im et al.

900 MHz Itanium 2 1 GHz Power 4 900 MHz Ultra 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Data Set(1−5) : Processor

P
re

pr
oc

es
si

ng
 ti

m
e

/ E
xe

cu
tio

n
tim

e
of

 2
−

ph
as

e
sc

he
m

e

Normalized Preprocessing Overhead

Fig. 3. Overhead of pre-processing The overheads of the one-time pre-processing in the one-
phase and two-phase schemes are shown relative to the multiplication time of the two-phase
scheme for each matrix on three platforms

of columns in A∑
i

nnz(A∗i)∑
k=1

k +
of columns in B∑

i

nnz(B∗i)∑
k=1

k (3.4)

The dominant factor in the two-phase scheme results from the access of elements of X
in computing X × Y :

of columns in X∑
i

nnz(X∗i)nnz(Yi∗) (3.5)

This is computed for both products: Q = H ×AT and P = A×Q. The measured
execution times are between the lower and upper bounds of computed execution times
with the modeled lower and upper bounds of the memory latency.

4 Conclusion

In our prior work [3,4,5] we have demonstrated the effectiveness of using data structure
and algorithm transformations to significantly improve the performance of sparse matrix-
vector multiplication.

Performance Tuning of Matrix Triple Products Based on Matrix Structure 745

1:1p 1:2p 2:1p 2:2p 3:1p 3:2p 4:1p 4:2p 5:1p 5:2p
10

−2

10
−1

10
0

10
1

Data Set (1−5) : 1− or 2−phase Scheme

se
co

nd
s

Execution Time

Measured
Model:upper bound
Model:lower bound

Fig. 4. Modeled and Measured Execution Time The execution time of the triple-product in the
one-phase scheme is measured on a 900 MHz Itanium, and is shown with upper and lower bounds
of computed execution time based on a memory latency model. The time is measured and modeled
for the one-phase (1p) and two-phase (2p) schemes for the matrix data set in Figure-1

In this work we have examined an important sparse matrix kernel that commonly
arises in solving primal-dual optimization problems. For the given data set, the speed-up
of the one-phase scheme over the two-phase scheme is 2.04 on a 900 MHz Intel Itanium-
2, 1.63 on a 1 GHz Power-4, and 1.99 on a 900 MHz Sun Ultra-3 platform. The sparse
matrix triple product is a higher level kernel than those hitherto considered for automatic
tuning in sparse matrix operations. The use of algebraic transformations to exploit the
problem structure represents a higher level of tuning for domain-specific optimizations
that can significantly improve performance for a wide class of problems.

Acknowledgment

We thank Richard Vuduc for his insightful discussion and for collecting measurement
data on Power 4 and Ultra 3.

References

1. M.X. Goemans and D.P. Williamson. The primal-dual method for approximation algorithms
and its application to network design problems. Approximation Algorithms for NP-hard Prob-
lems, pages 144–191, PWS Publishing Co., Boston, MA, 1996.

746 Eun-Jin Im et al.

2. J.R. Gilbert, C. Moler and R. Schreiber. Sparse matrices in Matlab: Design and implementa-
tion. SIAM J. Matrix Analysis and Applications,13:333–356, 1992.

3. E. Im and K.A. Yelick. Optimizing Sparse Matrix Computations for Register Reuse in SPAR-
SITY. In Proceedings of the International Conference on Computational Science, volume
2073 of LNCS, pages 127–136, San Francisco, CA, May 2001, Springer.

4. E. Im, K.A. Yelick and R Vuduc. SPARSITY: Framework for Optimizing Sparse Matrix-
Vector Multiply. International Journal of High Performance Computing Applications,
18(1):135–158, February, 2004.

5. R. Vuduc, A. Gyulassy, J.W. Demmel and K.A. Yelick. Memory Hierarchy Optimizations and
Bounds for Sparse AT Ax. In Proceedings of the ICCS Workshop on Parallel Linear Algebra,
volume 2660 of LNCS, pages 705–714, Melbourne, Australia, June 2003, Springer.

Adapting Distributed Scientific Applications
to Run-Time Network Conditions�

Masha Sosonkina

Ames Laboratory and Iowa State University, Ames IA 50010
masha@scl.ameslab.gov

Abstract. High-performance applications place great demands on computation
and communication resources of distributed computing platforms. If the avail-
ability of resources changes dynamically, the application performance may suffer,
which is especially true for clusters. Thus, it is desirable to make an application
aware of system run-time changes and to adapt it dynamically to the new condi-
tions. We show how this may be done using a helper tool (middleware NICAN). In
our experiments, NICAN implements a packet probing technique to detect con-
tention on cluster nodes while a distributed iterative linear system solver from
the pARMS package is executing. Adapting the solver to the discovered network
conditions may result in faster iterative convergence.

1 Introduction

A typical high-performance scientific application places high demands on the computa-
tional power and communication subsystem of a distributed computing platform. It has
been recorded [12] that cluster computing environments can successfully meet these de-
mands and attain the performance comparable to supercomputers. However, because of
the possibly heterogeneous nature of clusters, such performance enhancing techniques as
load balancing or non-trivial processor mapping become of vital importance. In addition,
the resources available to the application may vary dynamically at a run-time, creating
imbalanced computation and communication. This imbalance introduces idle time on the
“fastest” processors at the communication points after each computational phase. Tak-
ing into consideration an iterative pattern of computation/communication interchange,
it could be beneficial for a distributed application to be aware of the dynamic system
conditions present on the processors it is mapped too. Dynamic system conditions could
include the load on the CPU, the amount of memory available, or the overhead associated
with network communication. There have been many tools (e.g., [5,1]) created to help
learn about the conditions present. One of the requirements for such tools is to provide
an easy-to-use interface to scientific applications, which also translates and filters the
low-level detailed system information into categories meaningful to applications. For a
scientific application, in which the goal is to model and solve a physical problem rather

� This work was supported in part by NSF under grants NSF/ACI-0000443, NSF/ACI-0305120,
and NSF/INT-0003274, in part by the Minnesota Supercomputing Institute, and in part by the
U.S. Department of Energy under Contract W-7405-ENG-82.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 747–755, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

748 Masha Sosonkina

than to investigate the computer system performance, such an interface is very impor-
tant. It also constitutes a major reason why inserting “performance recording hooks”
directly into application’s code may not be viable for a wide range of applications and
for a multitude of computing system parameters. Thus the usage of a helper middleware
is justified. When used at application’s run-time, the middleware must be light-weight
contrary to typical throughput benchmarks or operating system calls, which may heavily
compete with the application for network or system resources.

In this paper (Section 3) we outline a network probing technique that, by means of
sending carefully chosen trains of small packets, attempts to discover network contention
without exhibiting the overhead inherent to network throughput benchmarks [9]. A light-
weight technique may be used simultaneouslywith the computational stage of a scientific
application to examine the communication subsystem without hindering the application
performance. Section 2 presents a brief description of a proposed earlier framework that
enables adaptive capabilities of scientific applications during the run-time. In Section 4,
we consider a case study of determining dynamic network conditions while a parallel
linear system solution solver pARMS is executing. A short summary is provided in
Section 5.

2 Enabling Runtime Adaptivity of Applications

Network Information Conveyer and Application Notification (NICAN) is a framework
which enables adaptation functionality of distributed applications [10]. The main idea
is to decouple the process of analyzing network information from the execution of the
parallel application, while providing the application with critical network knowledge
in a timely manner. This enables non-intrusive interaction with the application and
low overhead of the communication middleware. NICAN and the application interact
according to a register and notify paradigm: the application issues a request to NICAN
specifying the parameters it is interested in, and NICAN informs the application of
the critical changes in these parameters. The application adaptation may be triggered by
NICAN when certain resource conditions are present in the system. When the distributed
application starts executing, each process starts a unique copy of NICAN as a child thread.
This implementation is particularly useful in a heterogeneous environment because there
is no requirement that the NICAN processes be homogeneous or even be running on
the same type of machine. The process of monitoring a requested network parameter is
separated from the other functions, such as notification, and is encapsulated into a module
that can be chosen depending on the network type, network software configuration, and
the type of network information requested by the application. Figure 1 depicts NICAN’s
functionality as the interaction of four major entities.

NICAN reads the resource monitoring requests using an XML interface, which
enables diverse specifications and types of the application requests. Another functionality
of NICAN is to call the adaptation functions provided when appropriate. If a particular
resource condition is never met, then the adaptation is never triggered and the application
will proceed as if NICAN had never been started. To make NICAN versatile and to
provide a wide variety of monitoring capabilities, it is driven by dynamically loaded
modules.

Adapting Distributed Scientific Applications to Run-Time Network Conditions 749

Application ProcessNICAN Interface
Uses

Module Manager Adaptation Handler
Invokes

Modifies

Module 1 ... Module n

ProvidesCreates

Controls

Fig. 1. Interaction of NICAN’s components

/* Include the NICAN header file */
#include <nican.h>
/* The handlers are declared in the global scope */
void HandlerOne(const char* data) {/* empty */};
void HandlerTwo(const char* data) {/* empty */};
/* The application’s main function */
void main() {

const char xmlFile[] = "/path/to/xmlFile";
/* Start NICAN’s monitoring */
Nican_Initialize(xmlFile,

2,
"HandlerOne", &HandlerOne,
"HandlerTwo", &HandlerTwo);

/* Application code runs while NICAN operates */
/* ... */
/* Terminate NICAN’s monitoring */
Nican_Finalize(); }

Fig. 2. A trivial example of how to use NICAN

Figure 2 demonstrates how easy it is for the application to use NICAN. First the
application must include a header file with the declarations for the NICAN interface
functions. There are two adaptation handlers specified, HandlerOne and HandlerTwo,
which for this trivial example are empty functions. The path to the XML file is specified
and passed as the first parameter to Nican Initialize. The application is informing NICAN
of two adaptation handlers. Nican Initialize will start the threads required for NICAN to
operate and return immediately, allowing it to run simultaneously with the application.
When the application is finished, or does not require the use of NICAN any longer, it
calls the Nican Finalize function, which returns after all the threads related to NICAN
have been safely terminated.

3 Packet Probing to Examine Communication Overhead

In a cluster, we can consider two types of network transmissions following the terminol-
ogy given in [2]. One type is latency bound transmission, and the other is a bandwidth
bound transmission. A latency bound transmission is one where the transmission time
required is dependent only on a one-time cost for processing any message. By using very

750 Masha Sosonkina

small messages, on the order of a few hundred bytes, the cost of processing the mes-
sage is reduced to a minimum. A bandwidth bound transmission is one where the time
required is dependent on not just a one-time cost, but also the bandwidth available (see
e.g., [9]). Typically bandwidth bound transmissions are comprised of large messages,
which cause additional overhead while those messages are queued on network interfaces
and processed. Latency bound transmissions have the attractive property that they do not
cause a significant software overhead on the protocol stack of the machine processing
the message. Thus, latency bound transmissions may be used as a means of communi-
cation subsystem performance analysis at application’s runtime. This can be done while
a distributed application performs its computational phase so as to not interfere with
the application’s communications. To better capture what conditions are present on a
neighboring node, we use a train of packets rather than only two. This allows more time
for the conditions to influence our train and is a trade-off between only two packets and
flooding the network. We can use the notion of initial gap similar to the LogP model [3]
to describe what happens to the probing packets. By introducing different types of load
on the source and sink nodes we can affect the gaps recorded at the sink in a way that
can be used to determine what type of load is present. The two metrics we will be using
are the average gaps recorded at the sink and the standard deviation of those gaps.

3.1 Example of Probing: Fast Ethernet Networks

The cluster for our experiments is a collection of nine dual-processor nodes connected
via 100Mbps Ethernet links by means of a shared hub. We send a train of packets directly
from the source to the sink and perform timing on the sink. We vary the size of the packets
across trials, but keep the number of packets constant. For each packet size we sent 100
trains of 64 packets and computed the average arrival time and the standard deviation
for the distribution of arrival times. Note that 100 trains would be too many to be used in
actual probing, as it is too close to “flooding” the network, but was used in our derivation
of the technique described in this section. The actual amount of probing will depend on
the time warranted by the computational phase of the application. We have conducted
experiments that indicate using a single train of 32 packets may be sufficient. To add an
additional load on the source and sink, we generated 30Mbps UDP network transmissions
and external 98% CPU and memory loads on a node. Although we have performed a
series of experiments to detect possible (external load, competing flow)
combinations, we present here only a few illustrative cases. For more details see [11].
In particular, Figure 3 shows the case when no adverse conditions are present on the
nodes. As packets grow larger they introduce a larger load on the network stacks. This
is clearly the case with Figure 3 depicting a distinct bend formed at the point where the
probes are 400B in size. We can approximate this point using the rate of increase for the
arrival gaps as the probes get larger. A different situation is shown in Figure 4 where
there is no pronounced bend. The “strength” of this bend can be used to help classify
what conditions may be present. The location of the bend can be determined during the
first set of probes, or by executing the proposed algorithm on a given computing system
a priori before the actual application is run. Once this point is known we can narrow the
scope of the probe sizes to reduce the impact and time required for the dynamic analysis.

In each experiment the gap introduced on the source between the packets, at the user
level, was constant with very little deviation. Therefore any deviation measured at the

Adapting Distributed Scientific Applications to Run-Time Network Conditions 751

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

G
ap

 M
ea

su
re

d
(u

s)

Probe Size (B)

Avg arrival gap
Std dev of gaps

Fig. 3. No competing CPU load or network
flows on either node

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

G
ap

 M
ea

su
re

d
(u

s)

Probe Size (B)

Avg arrival gap
Std dev of gaps

Fig. 4. No CPU load and 30 Mbps flow leaving
the source node

sink was due to an external influence on our probes. Depending on what type of influence
is placed on the source and sink we observe different amounts of deviation, which we
use as the second factor to classify the network conditions present. In particular, for a
given network type, we have constructed a decision tree (see [11]), tracing which one
may detect seven possible cases of network or CPU related load on the source and sink
nodes based on recorded deviations and average gap measurements.

4 Case Study: Runtime Changes in Communication Overhead
of pARMS

pARMS is a parallel version of the Algebraic Recursive Multilevel Solver (ARMS)
[8] to solve a general large-scale sparse linear system Ax = b, where A is a constant
coefficient matrix, x is a vector of unknowns, and b is the solution vector. To solve such
a system iteratively, one preconditions the system of equations into a form that is easier
to solve. A commonly used (parallel) preconditioning technique, due to its simplicity,
is Additive Schwarz procedure (see, e.g, [7]). In the iteration i, i = 1, . . . ,m, given the
current solution xi, Additive Schwarz computes the residual error ri = b − Axi. Once
ri is known, δi is found by solving Aδi = ri. To obtain the next iterate xi+1, we simply
compute xi+1 = xi + δi and repeat the process until |xi+1 − xi| < ε, where ε is a
user defined quantity. The Additive Schwarz procedure was used for all the experiments
discussed here. To solve linear systems on a cluster of computers it is common to partition
the problem using a graph partitioner and assign a subdomain to each processor. Each
processor then assembles only the local equations associated with the elements assigned
to it.

Our motivation for using packet probing is to find congested links in the underlying
network of a cluster and to alert pARMS whenever its own adaptive mechanisms need to
be invoked. To achieve this goal we have developed a module for NICAN that performs
packet probing using the techniques described in Section 3. The design of MPI [4]
allows pARMS to start a unique instance of NICAN in each task, each of which sends
probes independently. Discovering network overhead on neighboring nodes has proven

752 Masha Sosonkina

useful [6] for the overall performance of pARMS. Thus, ideally, we wish to have each
node learn the conditions of the entire system.

We will demonstrate this NICAN module using a four-node pARMS computation,
with each node probing a fifth node free of any network overhead. By using the various
options provided by the module this situation is easily created using an XML file. The
4pack cluster with 32 dual Macintosh G4 nodes, located at the Scalable Computing
Laboratory in Iowa State University, has been used for the experiments. Sixteen 4pack
nodes have a single 400MHz CPU and the remaining have dual 700MHz CPUs. We used
the faster nodes with Fast Ethernet interconnection for both our probes and MPI traffic
because an implementation of NICAN packet probing module on Ethernet networks
is already available. Figure 5 illustrates how the experiment is laid out. The squares
represent the nodes used, with the label indicating the hostname of the machine. pARMS
is mapped to node0,. . .,node3; the competing flows (called Iperf traffic) are
entering node iperf dest; and the probes sent from the pARMS nodes, are sinking
into probe sink.

Fig. 5. Cluster node interaction used for the experiments

Consider the elliptic partial differential equation (PDE)

−Δu + 100
∂

∂x
(exyu) + 100

∂

∂y

(
e−xyu

)
− 1, 000u = f (4.1)

solved on a two-dimensional rectangular (regular) grid with Dirichlet boundary condi-
tions. It is discretized with a five-point centered finite-difference scheme on a nx × ny

grid, excluding boundary points. The mesh is mapped to a virtual px×py grid of proces-
sors, such that a subrectangle of rx = nx/px points in the x direction and ry = ny/py

points in the y direction are mapped to a processor. In the following experiments, the
mesh size in each processor is kept constant at rx = ry = 40. In our experiments,
four processors (px = py = 2) have been used, thus resulting in a problem of the total
size 6,400. This problem is solved by FGMRES(20) using Additive Schwarz pARMS
preconditioning with one level of overlap and four inner iterations needed to solve the
local subproblem with GMRES preconditioned with ILUT (see [7]).

Adapting Distributed Scientific Applications to Run-Time Network Conditions 753

Each MPI node will use NICAN’s packet probing module to send probing packets
to a fifth node known to be free of any network load. Then, at pARMS runtime, any
network flow detected is indicative of a load on a node involved in the computation.
The experimental procedure is outlined in Table 1. The “Phase” column represents the
different phases of the experiment an the “Conditions present” column details what
conditions were present in addition to the pARMS-related traffic. Table 1 also lists the
average times required to complete the distributed sparse matrix-vector multiplication
(called SpMxV) during each phase of this experiment (see columnsnode0,. . .,node3).
The impact of competing network traffic is evident in how the unaffected nodes spend
more time completing SpMxV. The extra time is actually accrued while they wait for
the node affected by the network flow to transmit the required interface variables. The
affected node does not perceive as long a waiting time because when it finally requests
the interface unknowns from a neighbor, that neighbor can immediately send them.
When we introduce the two network flows at the phase p2, both node0 and node2
experience less waiting time, but we can also see how much impact competing network
traffic can exert on pARMS. The average waiting time for unaffected nodes in this case
has nearly tripled compared with p0, increasing the overall solution time as a result. We
only show the times for SpMxV because that is the specific source of increased execution
time when additional network traffic is exerted upon a node in the computation. Once
we are able to detect and monitor how much waiting time is incurred by each node a
suitable adaptation can be developed to help balance the computation, and improve the
performance in spite of competing network traffic [6]. The gist of the pARMS adaptation
procedure is to increase the number of inner Additive Schwarz iterations performed
locally in the fast processors, i.e., in those processors that incur idle time the most. For
example, node1 and node3 are such processors in phase p2. The amount of increase
is determined experimentally and may be adjusted on subsequent outer iterations, such
that the pARMS execution is kept balanced. With more inner iterations, the accuracy
of the local solution becomes higher and will eventually propagate to the computation
of the overall solution in an outer (global) iteration, thus reducing the total number of
outer iterations. Figure 6, taken from [6] for the measurements on an IBM SP, shows the
validity of suggested pARMS adaptation. In particular, with the increase of the number
of inner iterations, the waiting time on all the processors becomes more balanced, while
the total solution time and the number of outer iterations decrease. Figures 7 and 8
demonstrate how the gaps recorded on the nodes are used to determine the conditions
present. In Figure 7 the bend discussed in Section 3 is clearly visible when the probes
transition from 350B to 400B. Also, because we are using only 32 probing packets the
deviation is larger than that observed in Figure 3. In Figure 8 we see the effect that the
competing flow has on the probing packets. The distinct bend is no longer present, and
by tracing through the decision tree corresponding to the given network type, we can
determine that there is a competing flow leaving the source. We only illustrate the results
for these two cases but similar plots can be constructed to show how the other conditions
are detected.

754 Masha Sosonkina

Table 1. Phases of network conditions and average times (s) for SpMxV at each phase during
pARMS execution

Phase Conditions present node0 node1 node2 node3

p0 No adverse conditions present .0313 .0330 .0331 .0398

p1 40 Mbps flow from node0 .0293 .0698 .0899 .0778

p2 40 Mbps flows from node0 and node2 .0823 .1089 .0780 .1157

p3 40 Mbps flow from node2 .0668 .0847 .0291 .0794

p4 No adverse conditions present .0293 .0319 .0474 .0379

Adapt. Outer Solution, s

yes/no Iter.

no 5,000 4,887.78

yes 432 398.67

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Processor ranks

T
im

e,
 s

ec

PDE problem: Waiting time per processor

No adaptation
Adaptation

Fig. 6. Adaptation of pARMS on a regular-grid problem

 0

 20

 40

 60

 80

 100

 200 250 300 350 400 450 500 550 600

G
ap

 M
ea

su
re

d
(u

s)

Probe Size (B)

Avg arrival gap
Std dev of gaps

Fig. 7. The probe gaps observed by node0 at
phase p0 in Table 1

 0

 20

 40

 60

 80

 100

 200 250 300 350 400 450 500 550 600

G
ap

 M
ea

su
re

d
(u

s)

Probe Size (B)

Avg arrival gap
Std dev of gaps

Fig. 8. The probe gaps observed by node0 at
phase p1 in Table 1

5 Conclusions

We have described a way to make distributed scientific applications network- and
system-aware by interacting with an easy-to-use external tool rather than by obtain-
ing and processing the low-level system information directly in the scientific code. This
approach is rather general, suiting a variety of applications and computing platforms,

Adapting Distributed Scientific Applications to Run-Time Network Conditions 755

and causes no excessive overhead. The case study has been presented in which the
NICAN middleware serves as an interface between parallel Algebraic Recursive Multi-
level Solver (pARMS) and the underlying network. We show how a light-weight packet
probing technique is used by NICAN to detect dynamically network contention. In par-
ticular, NICAN is able to detect and classify the presence of competing flows in the
nodes to which pARMS is mapped. Upon this discovery, pARMS is prompted to engage
its own adaptive mechanisms leading to a better parallel performance.

References

1. D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrishnan. System support for
bandwidth management and content adaptation in Internet applications. In Proceedings of
4th Symposium on Operating Systems Design and Implementation, pages 213–226, 2000.

2. C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M. Welcome,
and K. Yelick. An evaluation of current high-performance networks. In Proceedings of Inter-
national Parallel and Distributed Processing Symposium (IPDPS’03), 2003.

3. D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a realistic model of parallel computation. In Principles Practice of
Parallel Programming, pages 1–12, 1993.

4. Message Passing Interface Forum. MPI: A message-passing interface standard. Technical
Report Computer Science Department Technical Report CS-94-230, University of Tennessee,
Knoxville, TN, May 5 1994.

5. J. Hollingsworth and P. Keleher. Prediction and adaptation in Active Harmony. Cluster Com-
puting, 2(3):195–205, 1999.

6. D. Kulkarni and M. Sosonkina. A framework for integrating network information into dis-
tributed iterative solution of sparse linear systems. In José M. L. M. Palma, et al. editors,
High Performance Computing for Computational Science - VECPAR 2002, 5th International
Conference, Porto, Portugal, June 26-28, 2002, Selected Papers and Invited Talks, volume
2565 of Lecture Notes in Computer Science, pages 436–450. Springer, 2003.

7. Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha, PA,
2003.

8. Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for general sparse
linear systems. Technical Report Minnesota Supercomputing Institute Technical Report umsi-
99-107, University of Minnesota, 1999.

9. Q. Snell, A. Mikler, and J. Gustafson. NetPIPE: A network protocol independent performance
evaluator. In IASTED International Conference on Intelligent Information Management and
Systems, June 1996.

10. M. Sosonkina and G. Chen. Design of a tool for providing network information to distributed
applications. In Parallel Computing Technologies PACT2001, volume 2127 of Lecture Notes
in Computer Science, pages 350–358. Springer-Verlag, 2001.

11. S. Storie and M. Sosonkina. Packet probing as network load detection for scientific applica-
tions at run-time. In IPDPS 2004 proceedings, 2004. 10 pages.

12. Top 500 supercomputer sites. http://www.top500.org/.

Sparse Direct Linear Solvers: An Introduction

Organizer: Sivan Toledo

Tel-Aviv University, Israel
stoledo@tau.ac.il

Introduction

The minisymposium on sparse direct solvers included 11 talks on the state of the art
in this area. The talks covered a wide spectrum of research activities in this area. The
papers in this part of the proceedings are expanded, revised, and corrected versions of
some the papers that appeared in the CD-ROM proceedings that were distributed at the
conference. Not all the talks in the minisymposium have corresponding papers in these
proceedings.

This introduction explains the significance of the area itself. The introduction also
briefly presents, from the personal and subjective viewpoint of the organizer, the signif-
icance and contribution of the talks.

Sparse direct linear solvers solve linear systems of equations by factoring the sparse
coefficient matrix into a product of permutation, triangular, and diagonal (or block di-
agonal) matrices. It is also possible to factor sparse matrices into products that include
orthogonal matrices, such as sparse QR factorizations, but such factorizations were not
discussed in the minisymposium. Sparse direct solvers lie at the heart of many soft-
ware applications, such as finite-elements analysis software, optimization software, and
interactive computational engines line Matlab and Mathematica.

For most classes of matrices, sparse direct linear solvers scale super-linearly. That
is, the cost of solving a linear system with n unknowns grows faster than n. This has
led many to search for alternatives solvers with better scaling, mostly in the form of
iterative solvers. For many classes of problems, there are now iterative solvers that scale
better than direct solvers, and iterative solvers are now also widely deployed in software
applications. But iterative solvers have not completely displaced iterative solvers, at least
not yet. For some classes of problems, fast and reliable iterative solvers are difficult to
construct. In other cases, the size and structure of linear system that application currently
solve are such that direct solvers are simply faster. When applications must solve many
linear systems with the same coefficient matrix, the amortized cost of the factorization is
low. As a result of these factors, sparse direct solvers remain widely used, and research
on them remains active.

The talk that I think was the most important in the minisymposium was delivered by
Jennifer Scott, and was based on joint work with Nick Gould and Yifan Hu. Jennifer’s
talk, on the evaluation of sparse direct solvers for symmetric linear systems, described
a large-scale study in which she and her colleagues carefully compared several solvers.
A comprehensive, objective, and detailed comparison of existing techniques (concrete
software packages in this case) is an essential tool for both researchers working within
the field and users of the technology. But such studies are difficult to carry out, and are

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 756–757, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Sparse Direct Linear Solvers: An Introduction 757

not as exciting to conduct as research on new techniques. I am, therefore, particularly
grateful to Scott, Gould, and Hu for carrying out and publishing this important research.
The significance of this research reaches beyond direct solvers, because iterative solvers
can be included in similar studies in the future.

Two talks discussed pre-orderings for sparse direct solvers. Pre-ordering the rows
and/or columns of a sparse matrix prior to its factorization can reduce the fill in the
factors and the work required to factor them. Pre-ordering also affect the parallelism
and locality of reference in the factorization. Yngve Villanger presented algorithms that
can improve a given symmetric ordering, developed jointly with Pinar Heggernes. Yifan
Hu presented work that he has done with Jennifer Scott on column pre-ordering for
partial-pivoting unsymmetric solvers, with emphasis on generating orderings that lead
to effective parallel factorizations.

Xiaoye Li talked about modeling the performance of the parallel symbolic factor-
ization phase of SuperLU DIST, a distributed-memory partial-pivoting unsymmetric
solver. This work was conducted together with Laura Grigori.

Two talks focused on solvers for symmetric but indefinite linear systems. Stefan
Roöllin described his work with Olaf Schenk on using maximum-weight matching to
improve the performance of such solvers. Sivan Toledo gave a talk on an out-of-core
implementation of a more conventional symmetric indefinite solver; this work was done
with Omer Meshar.

Jose Herrero presented surprising results on a sparse hypermatrix Cholesky factoriza-
tion, work that he has done together with Juan Navarro. The hypermatrix representation
is a data structure for storing and operating on sparse matrices. Herrero and Navarro
showed that at least on some classes of matrices, a solver that uses a hypermatrix rep-
resentation outperforms a more conventional sparse direct solver that is based on a
supernodal partitioning of the matrix.

The last three talks in the minisymposium form some sort of a group, in that all three
gave a fairly high-level overview of one specific sparse direct solver. Anshul Gupta talked
about WSMP, a solver that can now solve both symmetric and unsymmetric linear sys-
tems and that can exploit both shared-memory and distributed-memory parallelism (in
the same run). Klaus Gaertner talked about PARDISO, which has been developed together
with Olaf Schenk. In his talk, Klaus emphasized the need to exploit application-specific
properties of matrices and gave examples from matrices arising in circuit simulations.
Florin Dobrian talked about OBLIO, an object-oriented sparse direct solver that he de-
veloped with Alex Pothen. Florin’s talk focused mainly on the software-engineering
aspects of sparse direct solvers.

Oblio: Design and Performance

Florin Dobrian and Alex Pothen�

Department of Computer Science and Center for Computational Sciences
Old Dominion University
Norfolk, VA 23529, USA

{dobrian,pothen}@cs.odu.edu

Abstract. We discuss Oblio, our library for solving sparse symmetric linear sys-
tems of equations by direct methods. The code was implemented with two goals in
mind: efficiency and flexibility. These were achieved through careful design, com-
bining good algorithmic techniques with modern software engineering. Here we
describe the major design issues and we illustrate the performance of the library.

1 Introduction

We describe the design of Oblio, a library for solving sparse symmetric linear systems of
equations by direct methods, and we illustrate its performance through results obtained
on a set of test problems.

Oblio was designed as a framework for the quick prototyping and testing of algo-
rithmic ideas [3] (see also [1,5,10,11] for recent developments in sparse direct solvers).
We needed a code that is easy to understand, maintain and modify, features that are not
traditionally characteristic of scientific computing software. We also wanted to achieve
good performance. As a consequence, we set two goals in our design: efficiency and
flexibility.

Oblio offers several options that allow the user to run various experiments. This
way one can choose the combination of algorithms, data structures and strategies that
yield the best performance for a given problem on a given computational platform. Such
experimentation is facilitated by decoupled software components with clean interfaces.
The flexibility determined by the software design is Oblio’s major strength compared to
other similar packages.

Out of the three major computational phases of a sparse direct solver, preprocessing,
factorization and triangular solve, only the last two are currently implemented in Oblio.
For preprocessing we rely on external packages.

2 Design

Factorization Types. The first major choice in Oblio is the factorization type. Generally,
the direct solution of a linear system Ax = b requires factoring a permutation of the

� This research was partially supported by U.S. NSF grant ACI-0203722, U.S. DOE grant DE-
FC02-01ER25476 and LLNL subcontract B542604.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 758–767, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Oblio: Design and Performance 759

coefficient matrix A into a product of lower and upper triangular matrices (factors) L
and U (L unit triangular). If A is symmetric then U can be further factored as DLT ,
where D is generally block diagonal, and if A is positive definite as well then we can
write A = LU = LDLT = L̃L̃T (D is purely diagonal in this case), where L̃ is lower
triangular. The latter decomposition of A is the Cholesky factorization and L̃ is the
Cholesky factor.

In Oblio we offer three types of factorizations. The first one is the Cholesky fac-
torization L̃L̃T , which does not require pivoting and therefore has a static nature. The
other two are more general LDLT factorizations. One of them is static, the other one is
dynamic.

The static LDLT factorization does not usually allow row/column swaps (dynamic
pivoting). Instead, it relies on small perturbations of the numerical entries (static pivot-
ing) [7]. Although this changes the problem, it is possible to recover solution accuracy
through iterative refinement. The static LDLT factorization can be, however, enhanced,
by allowing dynamic pivoting as long as this does not require modifications of the data
structures. In Oblio we provide the framework for both approaches.

Numerical preprocessing is generally required before a static LDLT factorization
in order to reduce the number of perturbations as well as the number of steps of iterative
refinement [4]. Since the numerical preprocessing of sparse symmetric problems is
currently an area of active research, this type of preprocessing is not yet present in
Oblio.

The dynamic LDLT factorization performs dynamic pivoting using 1×1 and 2×2
pivots and can modify the data structures. Two pivot search strategies are currently
available, one biased toward 1×1 pivots and one biased toward 2×2 pivots [2]. Note that
the dynamicLDLT factorization can also benefit from numerical preprocessing: a better
pivot order at the beginning of the factorization can reduce the number of row/column
swaps.

For positive definite matrices the best choice is the L̃L̃T factorization. For matrices
that are numerically more difficult one must choose between the two LDLT factoriza-
tions. The dynamic LDLT factorization is more expensive but also more accurate. It
should be used for those matrices that are numerically the most difficult. For less difficult
matrices the static LDLT factorization might be a better choice.

Factorization Algorithms. The second major choice in Oblio is the factorization al-
gorithm. We offer three major column based supernodal algorithms: left-looking, right-
looking and multifrontal.

These three factorization algorithms perform the same basic operations. The dif-
ferences come from the way these operations are scheduled. In addition to coefficient
matrix and factor data these algorithms also manage temporary data. For left-looking and
right-looking factorization this is required only for better data reuse, but for multifrontal
factorization temporary data are also imposed by the way the operations are scheduled.

The multifrontal algorithm generally requires more storage than the other two algo-
rithms and the difference comes from the amount of temporary data. If this is relatively
small compared to the amount of factor data then the multifrontal algorithm is a good
choice. The right-looking and multifrontal algorithms perform the basic operations at

760 Florin Dobrian and Alex Pothen

a coarser granularity than the left-looking algorithm, which increases the potential for
data reuse. The right-looking algorithm is not expected to perform well in an out-of-core
context [9].

Factor Data Structures. The third major choice in Oblio is the factor data structure (for
L̃L̃T factorization this stores L̃; for LDLT factorization this stores L and D together).
A static factorization can be implemented with a static data structure while a dynamic
factorization requires a dynamic data structure. We offer both alternatives, although a
static factorization can be implemented with a dynamic data structure as well.

The difference between the two data structures comes from the way storage is al-
located for supernodes. In a static context a supernode does not change its dimensions
and therefore a large chunk of storage can be allocated for all supernodes. In a dynamic
context a supernode can change its dimensions (due to delayed columns during pivoting)
and in this case storage needs to be allocated separately for each supernode. In order
to access the data we use the same pointer variables in both cases. This makes the data
access uniform between implementations.

The two data structures manage in-core data and therefore we refer to them as in-core
static and in-core dynamic. In addition, we offer a third, out-of-core, data structure that
extends the in-core dynamic data structure. The out-of-core data structure can store the
factor entries both internally and externally. Of course, most of the factor entries are
stored externally. Data transfers between the two storage layers are performed through
I/O operations at the granularity of a supernode. A supernode is stored in-core only when
the factorization needs to access it.

Other Features. A few other features are of interest in Oblio. By using a dynamic
data structure for the elimination forest [8] it is easy to reorder for storage optimization
and to amalgamate supernodes for faster computations. Iterative refinement is available
in order to recover solution accuracy after perturbing diagonal entries during a static
LDLT factorization or after a dynamic LDLT factorization that uses a relaxed pivoting
threshold. Oblio can also factor singular matrices and solve systems with multiple right
hand sides.

Implementation. Oblio is written in C++ and uses techniques such as dynamic memory
allocation, encapsulation, polymorphism, and templates. Dynamic memory allocation
is especially useful for temporary data. In order to minimize the coding effort we com-
bine it with encapsulation most of the time, performing memory management within
constructors and destructors. We use polymorphism in order to simplify the interaction
between different factorization algorithms and different factor data structures, and we
rely on templates in order to instantiate real and complex valued versions of the code.

Oblio is organized as a collection of data and algorithmclasses. Data classes describe
passive objects such as coefficient matrices, vectors, permutations and factors. Algorithm
classes describe active objects such as factorizations and triangular solves. The major
classes and the interactions between them are depicted in Fig. 1 (real valued only).

We discuss now the interaction between the three factorization algorithms and the
three factor data structures in more detail. Generally we would require three different
implementations for each algorithm and thus a total of nine implementations. That would
determine a significant programming effort, especially for maintaining the code. We rely

Oblio: Design and Performance 761

Permutation

FactorsReal
allocateEntry()
discardEntry()

OrderEngine
setOrderingAlgorithm()
run()

FactorEngineReal
setFactorizationType()
setFactorizationAlgorithm()
setPivotingThreshold()
run()

FactorsOutOfCoreReal
allocateEntry()
discardEntry()
createEntry()
destroyEntry()
openEntry()
closeEntry()
readEntry()
writeEntry()

FactorsStaticReal
allocateEntry()
discardEntry()

FactorsDynamicReal
allocateEntry()
discardEntry()

SolveEngineReal
setFactorizationType()
run()

VectorReal

OblioEngineReal

run()
setPivotingThreshold()

setFactorizationAlgorithm()
setFactorizationType()
setOrderingAlgorithm()

setFactorsDataType()

MatrixReal
allocate()
setColumn()
finalize()

Fig. 1. The major classes from Oblio and the interactions between them (only the real val-
ued numerical classes are shown but their complex valued counterparts are present in Oblio
as well). The factorization algorithms interact with the abstract class FactorsReal. The actual
class that describes the factors can be FactorsStaticReal, FactorsDynamicReal or
FactorsOutOfCoreReal (all three derived from FactorsReal), the selection being made
at run time

on polymorphism instead and use only three implementations, one for each algorithm.
Remember that the difference between the two in-core data structures comes from the
supernode storage allocation. But as long as we can use a common set of pointers in
order to access data, a factorization algorithm does not need to be aware of the actual
storage allocation. Therefore the factorization algorithms interact with an abstract factor
class that allows them to access factor data without being aware of the particular factor
implementation. The whole interaction takes place through abstract methods.

762 Florin Dobrian and Alex Pothen

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

problem

st
or

ag
e

ra
tio

Fig. 2. The ratio between the storage required by the multifrontal algorithm and the storage required
by the left-looking and right-looking algorithms, L̃L̃T factorization

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

problem

tim
e

ra
tio

left−looking / multifrontal
right−looking / multifrontal

Fig. 3. The ratios between the execution times of the left-looking and multifrontal algorithms, and
between the execution times of the right-looking and multifrontal algorithms, L̃L̃T factorization
(IBM Power 3 platform: 375 MHz, 16 GB)

For out-of-core factorization we make a trade-off. In addition to the basic operations
that are required by an in-core factorization, an out-of-core factorization requires I/O
operations. These can be made abstract as well but that would not necessarily be an
elegant software design solution. Another solution, requiring additional code but more

Oblio: Design and Performance 763

0 5 10 15 20 25 30 35 40 45 50

10
0

10
1

10
2

10
3

problem

st
or

ag
e

ra
tio

LDLT 1e−10 / LLT

LDLT 1e−1 / LLT

Fig. 4. The ratio between the storage required by the dynamic LDLT factorization and the storage
required by the L̃L̃T factorization, using the multifrontal algorithm, for pivoting thresholds of 1e-1
and 1e-10, respectively

0 5 10 15 20 25 30 35 40 45 50

10
0

10
1

10
2

problem

tim
e

ra
tio

LDLT 1e−10 / LLT

LDLT 1e−1 / LLT

Fig. 5. The ratio between the execution time of the dynamic LDLT factorization and the execution
time of the L̃L̃T factorization, using the multifrontal algorithm, for pivoting thresholds of 1e-1
and 1e-10, respectively (IBM Power 3 platform: 375 MHz, 16 GB)

764 Florin Dobrian and Alex Pothen

0 5 10 15 20 25 30 35 40 45 50
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

problem

er
ro

r

1e−10
1e−1

Fig. 6. The relative residual for the dynamic LDLT factorization, using the multifrontal algorithm,
for pivoting thresholds of 1e-1 and 1e-10, respectively

2 2.5 3 3.5 4 4.5 5

x 10
6

0

500

1000

1500

2000

2500

3000

problem size

tim
e

(s
)

in−core left−looking
in−core right−looking
in−core multifrontal
out−of−core multifrontal

Fig. 7. The execution time of the L̃L̃T factorization, in-core (left-looking, right-looking and mul-
tifrontal) and out-of-core (multifrontal) (Sun UltraSparc III platform: 900 MHz, 2GB). There is
only a slight increase of the out-of-core execution time because a slight increase of the problem
size determines a slight increase of the amount of explicit I/O. The non-monotonicity of the plots
is caused by the lack of smoothness in the ordering algorithm

Oblio: Design and Performance 765

elegant, is to use run time type identification. This is the solution that we adopted in
Oblio. Oblio identifies the data structure at run time and performs I/O only in the out-of-
core context. The identification of the actual data structure is done at the highest level
and thus virtually comes at no cost.

In Oblio, most of the basic arithmetic operations are efficiently implemented through
level 3 BLAS/LAPACK calls.

3 Performance

We present a reduced set of results here. More details will be available in a future paper.
We also refer the reader to [12] for a recent comparative study of sparse symmetric direct
solvers (including Oblio). In all the experiments below we use the node nested dissection
algorithm from METIS [6] as a fill reducing ordering.

As reported in [12] Oblio performs as well as other similar solvers for positive
definite problems and correctly solves indefinite problems. For the latter Oblio is not as
fast as other indefinite solvers since we have not yet optimized our indefinite kernels.
The best factorization rate observed so far is 42% of the peak rate on an IBM Power 4
platform (1.3 GHz, 5200 Mflop/s peak rate).

In-Core Results. Figures 2 through 6 illustrate in-core experiments performed with
Oblio. All problems are indefinite and represent a subset of the collection used in [12].
We used dynamic LDLT factorization and, for comparison, we used L̃L̃ factorization as
well, after replacing the original numerical entries and transforming indefinite matrices
into positive definite matrices. We used the in-core dynamic factor data structure for
the former and the in-core static factor data structure for the latter, and we employed
all three factorization algorithms. The results are obtained on an IBM Power 3 platform
(375 MHz, 16 GB), which we chose because we were particularly interested in a large
amount of internal memory.

Figure 2 shows the difference in storage requirement between the three algorithms,
in the positive definite case. The plot represents the ratio between the storage required by
the multifrontal algorithm and the storage required by the left-looking and right-looking
algorithms. This indicates how much additional storage is required by the multifrontal
algorithm. For a significant number of problems the amount of additional storage is not
large and the multifrontal algorithm is expected to perform well.

Execution time results for positive definite problems are shown in Fig. 3. The plots
represent the ratios between the times required to factor using the left-looking and multi-
frontal algorithms, and between the times required to factor using the right-looking and
multifrontal algorithms, respectively. Note that the multifrontal algorithm outperforms
the other two for many problems.

Figures 4 and 5 illustrate results for the indefinite case, using only the multifrontal
algorithm and two different pivoting thresholds, 1e-1 and 1e-10. The plots show the
increase in storage and execution time (same IBM Power 3 platform). The increase is
smaller when the pivoting threshold is smaller but a larger pivoting threshold may be
required for accurate results. Similar results can be obtained with the indefinite left-
looking and right-looking algorithms.

For indefinite problems we also report accuracy results. These are provided in Fig. 6.
The plots represent the relative residual for the two sets of experiments. For most of the

766 Florin Dobrian and Alex Pothen

problems from this set the computation is accurate enough with the relaxed pivoting
threshold (1e-10) but some problems require a larger pivoting threshold, at the cost of a
more expensive computation.

Out-of-Core Results. For the out-of-core experiments we chose a platform with a
smaller amount of internal memory: an UltraSparc III Sun Fire 280R (900 MHz, 2GB).
Since this platform has a smaller core we can easily determine differences in performance
between the in-core and the out-of-core computations.

Unfortunately, matrix collections usually provide problems of a given size, even if
some of these problems may be large. In order to run out-of-core experiments one should
be able to tune the problem size given a particular core size. Here, in order to match
the 2 GB core size we tune the order of the problem from roughly 2,000,000 to roughly
5,000,000 (this way we cross the 2GB threshold). We use model 2d finite difference
discretization grids with 5-point stencils, the grid size ranging from 1,500 to 2,200.

Figure 7 plots the execution time for the three in-core L̃L̃T factorizations (static data
structure) as well as the execution time for the out-of-core multifrontal L̃L̃T factorization.
As expected, the in-core factorizations start to perform poorly close to the 2GB threshold.
At that point the operating system begins to rely on virtual memory in order to provide
the required storage. This translates into implicit I/O (swapping), which slows down the
computation. On the other hand, the out-of-core factorization performs explicit I/O and
therefore the computation continues to be performed efficiently.

4 Conclusion

Oblio is an active project and the package continues to be developed. Our current effort
is targeted toward software design improvements and code optimizations. We also plan
several extensions of the package, mostly in order to provide more options for numeri-
cally difficult problems. A future, longer paper will address the design of Oblio in more
detail and will provide more results.

References

1. P. R. Amestoy, I. S. Duff, J. Y. L’Excellent, and J. Koster. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applica-
tions, 23(1):15–41, 2001.

2. C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric indefinite linear equation
solvers. SIAM Journal on Matrix Analysis and Applications, 20(2):513–561, 1998.

3. F. Dobrian, G. K. Kumfert, and A. Pothen. The design of sparse direct solvers using object-
oriented techniques. In H. P. Langtangen, A. M. Bruaset, and E. Quak, editors, Advances in
Software Tools in Scientific Computing, volume 50 of Lecture Notes in Computational Science
and Engineering, pages 89–131. Springer-Verlag, 2000.

4. I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse
matrix. SIAM Journal on Matrix Analysis and Applications, 22(4):973–996, 2001.

5. A. Gupta, M. Joshi, and V. Kumar. WSMP: A high-performance shared- and distributed-
memory parallel sparse linear equation solver. Technical Report RC 22038, IBM T.J. Watson
Research Center, 2001.

Oblio: Design and Performance 767

6. G. Karypis and V. Kumar. METIS: Family of multilevel partitioning algorithms.
http://www-users.cs.umn.edu/˜karypis/metis.

7. X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory sparse di-
rect solver for unsymmetric linear systems. ACM Transactions on Mathematical Software,
29(2):110–140, 2003.

8. A. Pothen and S. Toledo. Elimination structures in scientific computing. In D. Mehta and
S. Sahni, editors, Handbook on Data Structures and Applications, pages 59.1–59.29. CRC
Press, 2004.

9. E. Rothberg and R. Schreiber. Efficient methods for out-of-core sparse Cholesky factorization.
SIAM Journal on Scientific Computing, 21(1):129–144, 1999.

10. V. Rotkin and S. Toledo. The design and implementation of a new out-of-core sparse Cholesky
factorization method. ACM Transactions on Mathematical Software, 30(1):19–46, 2004.

11. O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with
PARDISO. Future Generation Computer Systems, 20(3):475–487, 2004.

12. J. A. Scott, Y. Hu, and N. I. M Gould. An evaluation of sparse direct symmetric solvers: an
introduction and preliminary findings. Numerical Analysis Internal Report 2004-1, Rutherford
Appleton Laboratory, 2004.

Performance Analysis
of Parallel Right-Looking Sparse LU Factorization

on Two Dimensional Grids of Processors

Laura Grigori1 and Xiaoye S. Li2

1 INRIA Rennes
Campus Universitaire de Beaulieu, 35042 Rennes, France

Laura.Grigori@irisa.fr
2 Lawrence Berkeley National Laboratory, MS 50F-1650

One Cyclotron Road, Berkeley, CA 94720, USA
xsli@lbl.gov

Abstract. We investigate performance characteristics for the LU factorization
of large matrices with various sparsity patterns. We consider supernodal right-
looking parallel factorization on a two dimensional grid of processors, making
use of static pivoting. We develop a performance model and we validate it using
the implementation in SuperLU DIST, the real matrices and the IBM Power3
machine at NERSC. We use this model to obtain performance bounds on parallel
computers, to perform scalability analysis and to identify performance bottlenecks.
We also discuss the role of load balance and data distribution in this approach.

1 Introduction

A valuable tool in designing a parallel algorithm is to analyze its performance character-
istics for various classes of applications and machine configurations. Very often, good
performance models reveal communication inefficiency and memory access contention
that limit the overall performance. Modeling these aspects in detail can give insights into
the performance bottlenecks and help improve the algorithm. The goal of this paper is
to analyze performance characteristics and scalability for the LU factorization of large
matrices with various sparsity patterns.

For dense matrices, the factorization algorithms have been shown to exhibit good
scalability, where the efficiency can be approximately maintained as the number of
processors increases when the memory requirements per processor are held constant [2].
For sparse matrices, however, the efficiency is much harder to predict since the sparsity
patterns vary with different applications. Several results exist in the literature [1,4,6],
which were obtained for particular classes of matrices arising from the discretization
of a physical domain. They show that factorization is not always scalable with respect
to memory use. For sparse matrices resulting from two-dimensional domains, the best
parallel algorithm lead to an increase of the memory at a rate of O(P logP) with in-
creasing P [4]. It is worth mentioning that for matrices resulting from three-dimensional
domains, the best algorithm is scalable with respect to memory size.

In this work, we develop a performance model for a sparse factorization algorithm
that is suitable for analyzing performance with arbitrary input matrix. We use a classical

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 768–777, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Analysis of Parallel Right-Looking Sparse LU Factorization 769

model to describe an ideal machine architecture in terms of processor speed, network
latency and bandwidth. Using this machine model and several input characteristics (order
of the matrix, number of nonzeros, etc), we analyze a supernodal right-looking parallel
factorization on two dimensional grids of processors, making use of static pivoting. This
analysis allows us to obtain performance upper bounds on parallel computers, to perform
scalability analysis, to identify performance bottlenecks and to discuss the role of load
balance and data distribution. More importantly, our performance model reveals the
relationship between parallel runtime and matrix sparsity, where the sparsity is measured
with respect to the underlying hardware’s characteristics. Given any combination of
application and architecture, we can obtain this sparsity measure. Then our model can
quantitatively predict not only the performance on this machine, but also what hardware
parameters to improve are most critical to improve the performance for this type of
applications. We validate our analytical model using the actual factorization algorithm
implemented in the SuperLU DIST [5] solver, the real-world matrices and the IBM
Power3 machine at NERSC. We also show that the runtime predicted by our model
is more accurate than that predicted by simply examining the workload on the critical
path, because our model takes into account both task dependency and communication
overhead.

The rest of the paper is organized as follows: Section 2 introduces a performance
analysis model for the right-looking factorization, with its scalability analysis. The ex-
perimental results validating the performance model are presented in Section 3 and
Section 4 draws the conclusions.

2 Parallel Right-Looking Sparse LU Factorization
on Two Dimensional Grids of Processors

Consider factorizing a sparse unsymmetricn×nmatrixA into the product of a unit lower
triangular matrix L and an upper triangular matrix U . We discuss a parallel execution of
this factorization on a two dimensional grid of processors. The matrix is partitioned into
N × N blocks of submatrices using unsymmetric supernodes (columns of L with the
same nonzero structure). These blocks of submatrices are further distributed among a two
dimensional gridPr×Pc ofP processors (Pr×Pc ≤ P) using a block cyclic distribution.
With this distribution, a block at position (I, J) of the matrix (0 ≤ I, J < N) will be
mapped on the process at position (ImodPr , JmodPc) of the grid. U(K, J) (L(K, J))
denotes a submatrix of U (L) at row block index K and column block index J .

The algorithm below describes a right-looking factorization and Figure 1 illustrates
the respective execution on a rectangular grid of processors. This algorithm loops over
theN supernodes. In theK-th iteration, the firstK−1 block columns ofL and block rows
of U are already computed. At this iteration, first the column of processors owning block
column K of L factors this block column L(K : N,K); second, the row of processors
owning block row K of U performs the triangular solve to compute U(K,K + 1 : N);
and third, all the processors update the trailing matrix using L(K + 1 : N,K) and
U(K,K + 1 : N). This third step requires most of the work and also exhibits most of
the parallelism in the right-looking approach.

770 Laura Grigori and Xiaoye S. Li

1 20 0

3

0 1

4

2

5

01 21 20 0

3 345

0 1

3 5

0 1 2

3 5

0 1 2

4

4

2

3 4 5

3

0

3

0

4

4 35

1 2 0

5 3

1 2 0

Distributed matrix Grid of processors

Fig. 1. Illustration of parallel right-looking factorization

for K := 1 to N do
Factorize block column L(K : N, K)
Perform triangular solves: U(K, K + 1 : N) := L(K, K)−1 × A(K,K + 1 : N)
for J := K + 1 to N with U(K, J) �= 0 do

for I := K + 1 to N with L(I,K) �= 0 do
Update trailing submatrix:
A(I, J) := A(I, J) − L(I, K) × U(K, J)

end for
end for

end for

The performance model we develop for the sparse LU factorization is close to the
performance model developed for the dense factorization algorithms in ScaLAPACK [2].
Processors have local memory and are connected by a network that provides each proces-
sor direct links with any of its 4 direct neighbors (mesh-like).

To simplify analysis and to make the model easier to understand, we make the
following assumptions:

– We use one parameter to describe the processor flop rate, denoted γ, and we ignore
communication collisions. We estimate the time for sending a message of m items
between two processors as α + mβ, where α denotes the latency and β the inverse
of the bandwidth.

– We approximate the cost of a broadcast to p processors by log p [2]. Furthermore, the
LU factorization uses a pipelined execution to overlap some of the communication
with computation, and in this case the cost of a broadcast is estimated by 2 [2].

– We assume that the computation of each supernode lies on the critical path of
execution, that is the length of the critical path is N . We also assume that the load
and the data is evenly distributed among processors. Later in Section 3, we will
provide the experimental data verifying these assumptions.

Runtime Estimation. We use the following notations to estimate the runtime to factorize
an n×nmatrix. We use ck to denote the number of off-diagonal elements in each column
of block column K of L, rk to denote the number of off-diagonal elements in each row
of block row K of U , nnz(L) to denote the number of nonzeros in the off-diagonal
blocks of L, nnz(U) to denote the number of nonzeros in the off-diagonal blocks of U .

Performance Analysis of Parallel Right-Looking Sparse LU Factorization 771

M = 2
∑n

k=1 ckrk is the total number of flops in the trailing matrix update, counting
both multiplications and additions. F = nnz(L)+M is the total number of flops in the
factorization.

With the above notations, the sequential runtime can be estimated as

Ts = nnz(L)γ + Mγ = Fγ.

We assume each processor in the column processors owning block column K gets
s ·ck/Pr elements, where s ·ck is the number of nonzeros in the block column K and Pr

is the number of processors in the column. Block row K of U is distributed in a similar
manner.The parallel runtime using a square grid of processors can be expressed as:

T (N,
√
P ×

√
P) ≈ F

P
γ + (2N +

1
2
N logP)α +

(2nnz(L) + 1
2nnz(U) logP)√
P

β

The first term represents the parallelization of the computation. The second term
represents the number of broadcasting messages. The third term represents the volume
of communication overhead.

Scalability Analysis. We now examine the scalability using a square grid of processors
of size P , where the efficiency of the right-looking algorithm is given by the following
formula:

ε(N,
√

P ×
√
P) =

Ts(N)
PT (N,

√
P ×

√
P)

(2.1)

≈
[
1 +

NP logP

F

α

γ
+

(2nnz(L) + nnz(U) logP)
√

P

F

β

γ

]−1

(2.2)

One interesting question is which of the three terms dominates efficiency (depending
on the size and the sparsity of the matrix). The preliminary remark is that, for very dense
problems (F large), the first term significantly affects the parallel efficiency.

For the other cases, we can compare the last two terms to determine which one
is dominant. That is, if we ignore the factors 2 and logP in the third term, we need to
compare

√
P α

β with nnz(L+U)
N . Assuming that the network’s latency-bandwidth product

is given (α
β), we can determine if the ratio of the latency to the flop rate (α/γ term) or

the ratio of the inverse of the bandwidth to the flop rate (β/γ term) dominates efficiency.
Overall, the following observations hold:

Case 1 For sparser problems (
√
P α

β > nnz(L+U)
N), the α/γ term dominates efficiency.

Case 2 For denser problems (
√
P α

β < nnz(L+U)
N), the β/γ term dominates efficiency.

Case 3 For problems for which nnz(L+U)
N is close to

√
P α

β , the β/γ term can be dom-
inant on smaller number of processors, and with increasing number of processors
the α/γ term can become dominant.

Note that even for Case 2, the algorithm behaviour varies during the factorization: at
the beginning of the factorization, where the matrix is generally sparser and the messages

772 Laura Grigori and Xiaoye S. Li

are shorter,α/γ term dominates the efficiency, while at the end of the factorization where
the matrix becomes denser, β/γ term dominates the efficiency.

Let us now consider matrices in Case 2. For these matrices, in order to maintain a
constant efficiency, F

nnz(L+U) must grow proportionally with
√

P . On the other hand,
for a scalable algorithm in terms of memory requirements, the memory requirement
nnz(L+U) should not grow faster than P . Thus, when we allow nnz(L+U) ∝ P , the
condition F ∝ nnz(L+U)3/2 must be satisfied, and the efficiency can be approximately
maintained constant. (In reality, even for these matrices, α/γ term as well as logP
factor will still contribute to efficiency degradation.) We note that the matrices with N
unknowns arising from discretization of Laplacian operator on three-dimensional finite
element grids fall into this category. Using nested dissection, the number of fill-ins in
such matrix is on the order of O(N4/3) while the amount of work is on the order of
O(N2). Maintaining a fixed efficiency requires that the number of processors P grows
proportionally with N4/3, the size of the factored matrix. In essence, the efficiency
for these problems can be approximately maintained if the memory requirement per
processor is constant. Note that α/γ term grows with N1/3, which also contributes to
efficiency loss.

3 Experimental Results

In this section, we compare the analytical results against experimental results obtained
on a IBM Power3 machine at NERSC, with real-world matrices. The test matrices and
their characteristics are presented in Table 1. They are ordered according to the last
column, nnz(L + U)/N , which we use as a measure of the sparsity of the matrix.

Table 1. Benchmark matrices

Matrix Order N nnz(A) nnz(L + U) F lops(F) nnz(L + U)/N

×106 ×109 ×103

af23560 23560 10440 484256 11.8 5.41 1.13

rma10 46835 6427 2374001 9.36 1.61 1.45

ecl32 51993 25827 380415 41.4 60.45 1.60

bbmat 38744 11212 1771722 35.0 25.24 3.12

inv-extr1 30412 6987 1793881 28.1 27.26 4.02

ex11 16614 2033 1096948 11.5 5.60 5.65

fidapm11 22294 3873 623554 26.5 26.80 6.84

mixingtank 29957 4609 1995041 44.7 79.57 9.69

The first goal of our experiments is to analyze the different assumptions we have
made during the development of the performance model. Consider again the efficiency
Equation (2.2) in Section 2. For the first term, we assume that the load is evenly distributed
among processors, while for the third term we assume that the data is evenly distributed

Performance Analysis of Parallel Right-Looking Sparse LU Factorization 773

among processors. Note that we also assume that the computation of each supernode
lies on the critical path of execution. Our experiments show that a two dimensional
distribution of the data on a two dimensional grid of processors leads to a balanced
distribution of the data. They also show that for almost all the matrices, the critical path
assumption is realistic [3].

However, the load balance assumption is not always valid. To assess load balance, we
consider the load F to be the number of floating point operations to factorize the matrix.
We then compute the load lying on the critical path FCP by adding at each iteration
the load of the most loaded processor in this iteration. More precisely, consider fpi

being the load of processor p at iteration i (number of flops performed by this processor
at iteration i). Then FCP =

∑N
i=1 maxP

p=1 fpi. The load balance factor is computed
as LB = FCP P

F . In other words, LB is the load of heaviest processors lying on the
critical path divided by the average load per processor. The closer this factor approaches
1, the better is the load balance. Contrary to the “usual” way, when the load balance
factor is computed as the average load divided by the maximum load among all the
processors, our computation of load balance is more precise. Note that we can also use

F
FCP

to compute a crude upper bound on the parallel speedup, which takes into account
the workload on the critical path but ignores communication cost and task dependency.
The results are presented in Table 2, in the rows denoted by LB. We observe that the
workload distribution is good for large matrices on a small number of processors. But
it can degrade quickly for some matrices such as rma10, for which load balance can
degrade by a factor of 2 when increasing the numbers of processors by a factor of 2.
Consequently, efficiency will suffer a significant degradation.

The second goal of the experiments is to show how the experimental results support
our analytical performance model developed in Section 2. For this, we use the analyt-
ical performance model to predict the speedup that each matrix should attain with an
increasing number of processors. Then we compare the predicted speedup against the
speedup obtained by SuperLU DIST. The plots in Figure 2 display these results, where
the predicted speedup for each matrix M is denoted by Mp, and the actually obtained
(measured) speedup is denoted by Mm. We also display in these plots the upper bound
obtained from the workload on the critical path, given by F

FCP
, and we denote it as

MLB.
As the plots show, the analytical performance model predicts well the performance on

a small number of processors (up to 30-40 processors), while the predicted speedup starts
to deviate above the measured speedup with an increase in the number of processors.
This is because on a smaller number of processors our model assumptions are rather
realistic, but on a larger number of processors the assumptions are deviating from reality.
That is why we see the degraded scalability. More detailed data were reported in [3].

The upper bound based only on the workload on the critical path can be loose,
since it ignores communication and task dependency. However, it often corroborates the
general trend of the speedup predicted by our analytical model. For several matrices,
such as bbmat, inv-extr1, fidapm11 and mixingtank, this upper bound is very close to
the prediction given by our analytical model (see Figure 2), implying that for those
matrices, load imbalance is a more severe problem than communication, and improving
load balance alone can greatly improve the overall performance.

774 Laura Grigori and Xiaoye S. Li

Table 2. Runtimes (in seconds) and load distribution (LB) for right-looking factorization on two
dimensional grids of processors

P=1 P = 4 P = 16 P = 32 P = 64 P = 128

af23560 time 9.95 3.95 2.36 2.30 3.17 3.38

LB 1.0 1.28 2.05 2.92 4.21 6.67

rma10 time 3.41 2.12 1.90 1.99 3.03 3.17

LB 1.0 1.66 2.75 5.62 9.13 16.07

ecl32 time 104.27 29.34 9.49 7.25 7.31 7.22

LB 1.0 1.09 1.28 1.52 1.80 2.37

bbmat time 67.37 19.50 7.61 5.64 6.05 6.50

LB 1.0 1.21 1.75 2.35 3.17 4.88

inv-extr1 time 73.13 19.08 6.46 4.72 4.95 5.29

LB 1.0 1.14 1.42 1.87 2.45 3.51

ex11 time 9.49 3.27 1.54 1.33 1.65 2.07

LB 1.0 1.27 1.90 2.58 3.53 5.32

fidapm11 time 51.99 14.21 4.84 3.57 3.47 3.81

LB 1.0 1.15 1.46 1.83 2.31 3.13

mixingtank time 119.45 33.87 9.52 6.47 5.53 5.27

LB 1.0 1.08 1.25 1.43 1.63 2.04

The third goal of the experiments is to study the actual efficiency case by case
for all the test matrices. One approach to do this is to observe how the factorization
runtime degrades as the number of processors increases for different matrices. For this
we report in Table 2 the runtime in seconds of SuperLU DIST factorization. These results
illustrate that good speedups can be obtained on a small number of processors and show
how efficiency degrades on a larger number of processors. As one would expect, the
efficiency degrades faster for problems of smaller size (number of flops smaller), and
slower for larger problems.

We now examine how the actual model parameters (sparsity, α, β and γ) affect
the performance. On the IBM Power3, the measured latency is 8.0 microseconds and
the bandwidth (1/β) for our medium size of messages is 494 MB/s [7]. The latency-
bandwidth product is α/β = 4× 103. Table 1 shows that the algorithm’s efficiency for
some matrices is clearly dominated by the α/γ term, such as af23560, rma10, ecl32
(Case 1 matrices). For the other matrices, mixingtank, fidapm11, ex11, inv-extr1, the
efficiency is significantly affected by the β/γ term (Case 2 matrices).

Matrices af23560 and ex11 have an approximately equal number of flops, and almost
similar runtimes on one processor. But efficiency degrades faster for af23560 than for
ex11. This is because the efficiency of af23560 is mostly affected by the α/γ term
(Case 1), while the efficiency of ex11 is mainly affected by the β/γ term (Case 2), and
thus its performance degrades slower than for af23560. For denser matrices which fall
into Case 2, such as mixingtank, the algorithm achieves much better efficiency even on

Performance Analysis of Parallel Right-Looking Sparse LU Factorization 775

0 20 40 60 80 100 120 140
2

4

6

8

10

12

14

16

18

20

af23560p

af23560m

af23560LB

0 20 40 60 80 100 120 140
1

2

3

4

5

6

7

8

rma10p

rma10m

rma10LB

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

ecl32p

ecl32m

ecl32LB

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

bbmatp

bbmatm

bbmatLB

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

inv−extr1p

inv−extr1m

inv−extr1LB

0 20 40 60 80 100 120 140
0

5

10

15

20

25

ex11p

ex11m

ex11LB

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

fidapm11p

fidapm11m

fidapm11LB

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

mix−tankp

mix−tankm

mix−tankLB

Fig. 2. Speedups predicted by our performance model (labeled “p”) and by the load balance
constraint (labeled “LB”), versus the measured speedups (labeled “m”)

776 Laura Grigori and Xiaoye S. Li

large number of processors. Therefore, the algorithm is more sensitive to latency than
bandwidth.

4 Conclusions

We developed a performance model for a sparse right-looking LU factorization algorithm
and validated this model using the SuperLU DIST solver, real-world matrices and the
IBM Power3 machine at NERSC.

Using this model, we first analyzed the efficiency of this algorithm with increasing
number of processors and problem size. We concluded that for matrices satisfying a
certain relation (namely F ∝ nnz(L + U)3/2) between their problem size and their
memory requirements, the algorithm is scalable with respect to memory use. This relation
is satisfied by matrices arising from the 3D model problems. For these matrices the
efficiency can be roughly maintained constant when the number of processors increases
and the memory requirement per processor is constant. But for matrices arising from the
2D model problems, the algorithm is not scalable with respect to memory use, the same
as sparse Cholesky factorization [4].

Secondly, we analyzed the efficiency of this algorithm for fixed problem size and
increasing number of processors. We observed that good speedups can be obtained on
smaller number of processors. On larger number of processors, the efficiency degrades
faster for sparser problems which are more sensitive to the latency of the network. A two
dimensional distribution of the data on a two dimensional grid of processors leads to a
balanced distribution of the data. It also leads to a balanced distribution of the load on
smaller number of processors. But the load balance is usually poor on larger number of
processors. We believe that load imbalance and insufficient amount of work (F) relative
to communication overhead are the main sources of worse efficiency on large number
of processors.

One practical use of our theoretical efficiency bound is as follows. For certain appli-
cation domain, the matrices usually exhibit a similar sparsity pattern. We can measure the
sparsity with respect to the underlying machine parameters, i.e., floating-point speed,
the network latency and bandwidth. Depending on whether they belong to Case 1 or
Case 2, we can determine the most critical hardware parameters which need to be im-
proved in order to enhance the performance for this class of application. In addition,
given several choices of machines, we can predict which hardware combination is best
for this application.

References

1. Cleve Ashcraft. The fan-both family of column-based distributed Cholesky factorization al-
gorithms. In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and
Sparse Matrix Computation, pages 159–191. Springer Verlag, 1994.

2. Jack K. Dongarra, Robert A. van de Geijn, and David W. Walker. Scalability Issues Affecting
the Design of a Dense Linear Algebra Library. Journal of Parallel and Distributed Computing,
22(3):523–537, 1994.

3. Laura Grigori and Xiaoye S. Li. Performance analysis of parallel supernodal sparse lu fac-
torization. Technical Report LBNL-54497, Lawrence Berkeley National Laboratory, Feburary
2004.

Performance Analysis of Parallel Right-Looking Sparse LU Factorization 777

4. Anshul Gupta, George Karypis, and Vipin Kumar. Highly Scalable Parallel Algorithms for
Sparse Matrix Factorization. IEEE Transactions on Parallel and Distributed Systems, 8(5):502–
520, 1997.

5. Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110–
140, June 2003.

6. Robert Schreiber. Scalability of sparse direct solvers. In Alan George, John R. Gilbert, and
Joseph W. H. Liu, editors, Graph Theory and Sparse Matrix Computation, pages 191–211.
Springer Verlag, 1994.

7. Adrian Wong. Private communication. Lawrence Berkeley National Laboratory, 2002.

A Shared- and Distributed-Memory
Parallel Sparse Direct Solver

Anshul Gupta

IBM T.J. Watson Research Center
1101 Kitchawan Road

Yorktown Heights, NY 10598, USA

1 Introduction

In this paper, we describe a parallel direct solver for general sparse systems of lin-
ear equations that has recently been included in the Watson Sparse Matrix Package
(WSMP) [7]. This solver utilizes both shared- and distributed- memory parallelism in
the same program and is designed for a hierarchical parallel computer with network-
interconnected SMP nodes. We compare the WSMP solver with two similar well known
solvers: MUMPS [2] and Super LUDist [10]. We show that the WSMP solver achieves
significantly better performance than both these solvers based on traditional algorithms
and is more numerically robust than Super LUDist. We had earlier shown [8] that
MUMPS and Super LUDist are amongst the fastest distributed-memory general sparse
solvers available.

The parallel sparse LU factorization algorithm in WSMP is based on the unsymmetric
pattern multifrontal method [3]. The task- and data-dependency graph for symmetric
multifrontal factorization is a tree. A task-dependency graph (henceforth, task-DAG) is
a directed acyclic graph in which the vertices correspond to the tasks of factoring rows or
columns or groups of rows and columns of the sparse matrix and the edges correspond to
the dependencies between the tasks. A task is ready for execution if and only if all tasks
with incoming edges to it have completed. The vertex set of a data-dependency graph
(henceforth, data-DAG) is the same as that of the task-DAG and and edge from vertex i
to a vertex j denotes that at least some of the output data of task i is required as input by
task j. In unsymmetric pattern multifrontal factorization, the task- and data-DAGs are
general directed acyclic graphs in which nodes can have multiple parents.

Hadfield [9] introduced a parallel sparse LU factorization code based on the un-
symmetric pattern multifrontal method. A significant drawback of this implementation
was that partial pivoting during factorization would change the row/column order of
the sparse matrix. Therefore, the data-DAG needed to be generated during numerical
factorization, thus introducing considerable symbolic processing overhead. We recently
introduced improved symbolic and numerical factorization algorithms for general sparse
matrices [6]. The symbolic algorithms are capable of inexpensively computing a minimal
task-dependency graph and near-minimal data-dependency graph for factoring a gen-
eral sparse matrix. These graphs, computed solely from the nonzero pattern of the sparse
matrix, are valid for any amount of pivoting induced by the numerical values during LU
factorization. With the introduction of these algorithms, the symbolic processing phase

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 778–787, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Shared- and Distributed-Memory Parallel Sparse Direct Solver 779

can be completely separated from numerical factorization and needs to be performed
only once for matrices with the same initial structure but different numerical values,
and hence, potentially different pivoting sequences during numerical factorization. A
description of the serial unsymmetric pattern multifrontal algorithm used in WSMP can
be found in [6].

2 Overview of the Parallel Sparse LU Algorithm

WSMP is designed to make the best use of the computational resources of most modern
parallel computers. These machines, typically, are either shared-memory multiproces-
sors or are clusters of nodes consisting of shared-memory multiprocessors. WSMP can
run on multiple nodes using MPI processes and each process uses threads to utilize all
the CPUs on the node.

The symbolic preprocessing step, among other things, generates a static data-DAG
that defines the communication and computation pattern of the multifrontal LU factoriza-
tion. This static information is used to generate a static mapping of the data-DAG onto the
processes. The work required to processes certain nodes could change during execution
due to pivoting. However, such changes are usually relatively small and are randomly
distributed among the processes. Therefore, they rarely pose a serious load-imbalance
problem. Dynamic load-balancing would have introduced extra communication over-
head and other complexities in the code. With these factors in mind, we chose static
load-balancing at the process level. However, multiple threads running on each process
keep their loads balanced dynamically. Each process maintains a dynamic heap of tasks
that are ready for execution. The threads dynamically pick tasks from the heap and add
more tasks as they become available. Further discussion of the SMP-parallel component
of the factorization can be found in [5].

With the exception of the root node, a typical task in WSMP’s multifrontal factoriza-
tion involves partial factorization and update of a dense rectangular frontal matrix and
distributing the updated part of the matrix among the parents of the node corresponding
to the factored frontal matrix. The root node involves full factorization of a dense square
matrix. Depending on its size and location relative to the root, a task may be mapped
onto one or multiple nodes. When mapped on a single node, a task may be performed by
a single or by multiple threads. If required, appropriate shared-memory parallel dense
linear algebra routines are employed for partial factorization and updates.

When a task is mapped onto multiple processes, the group of processes on which the
task is mapped is viewed as a virtual grid. The virtual grid can be one-dimensional or
two-dimensional, depending on the number of processes. In the current implementation,
the grids are chosen such that they are one-dimensional with multiple columns for less
than 6 processes and are two-dimensional for 6 or more processes. Moreover, the number
of process rows in all grids is always a power of 2. All grid sizes are not allowed. For
example, a 5-process grid is 1 × 5, a 6-process grid is 2 × 3, a 7-process grid is not
allowed, and an 8-process grid is 2×4. The root node is always mapped onto the largest
permissible grid with number of processes less than or equal to the total number of MPI
processes that the program is running on. As we move away from the root node in the
data-DAG and as more tasks can be executed in parallel, the process grids onto which

780 Anshul Gupta

P_0 P_2 P_4 P_0 P_2P_0 P_1 P_2 P_0 P_1

P_2

P_3

P_2

P_3

P_0

P_1

P_0

 1−dimensional grid.

P_1

U U

(c) A factorization task corresponding to

P_0 P_2

L L

P_0 P_2 P_4 P_0 P_2P_0 P_1 P_2 P_0 P_1

P_2

P_3

P_2

P_3

P_0

P_1

P_0

P_1

UpdateL

Factor U

Update

U

L

Factor

P_1 P_3 P_3

(a) A partial factor and update task mapped

P_5 P_1

(b) A partial factor and update task mapped

onto a 3−process 1−dimensional grid. onto a 6−process 2−dimensional grid.

the root node mapped onto a 3−process

(d) A factorization task corresponding to the root

node mapped onto a 6−process 2−dimensional

 grid.

Fig. 1. The four scenarios for mapping frontal matrices onto process grids

these tasks are mapped become progressively smaller. Eventually, the tasks are mapped
onto single processes.

In addition to a serial/multithreaded partial factorization kernel, four types of
message-passing parallel factorization kernels are employed for the four scenarios for
mapping frontal matrices onto process grid, as shown in Figure 1. Efficient implemen-
tation of pivoting for numerical stability is a key requirement of these kernels.

With a non-root frontal matrix mapped onto a one-dimensional grid (Figure 1(a)),
if a process can find a pivot amongs its columns, then no communication is required
for pivoting. Otherwise, a column interchange involving communication with another

A Shared- and Distributed-Memory Parallel Sparse Direct Solver 781

process is required. When a non-root frontal matrix is mapped onto a two-dimensional
grid (Figure 1(b)), then finding a pivot may require all processes in a column of the grid
to communicate to find the pivot. That is the reason why the process grids have fewer
rows than columns and the number of rows is a power of two so that fast logarithmic
time communication patterns can be used for pivot searches along columns. Further-
more, the WSMP algorithm avoids this communication at each pivot step by exchanging
data corresponding to more than one column in each communication step. The frontal
matrix corresponding to the root supernode never requires column interchanges because
this matrix is factored completely. Therefore, pivoting is always free of communication
for this matrix on a one-dimensional grid (Figure 1(c)). On a two-dimensional grid (Fig-
ure 1(d)), pivoting on the root supernode involves communication among the processes
along process columns.

Once a pivot block has been factored, it is communicated along the pivot row and the
pivot column, which are updated and are then communicated along the columns and the
rows of the grid, respectively, to update the remainder of the matrix. The computation then
moves to the next pivot block in a pipelined manner and continues until the supernode
has been factored completely or no more pivots can be found. Finally, the update matrix
is distributed among the parent supernodes for inclusion into their frontal matrices.

3 Performance Comparison

In this section, we compare the performance of WSMP with that of MUMPS [2] (version
4.3.2) and Super LUDist [10] (version 2.0) on a suite of 24 test matrices on one to eight
1.45 GHz Power4+ CPUs of an IBM p650 SMP computer. All codes were compiled in 32-
bit mode and each process had access to 2 GB of memory. The MP SHARED MEMORY
environment variable was set to yes to enable MPI to take advantage of shared memory
for passing messages. All codes were used with their default options, including their
default fill-reducing ordering. WSMP uses its own nested-dissection based ordering,
MUMPS uses a nested-dissection based ordering software called PORD [11], and Su-
per LUDist uses the approximate minimum degree algorithm [1]. All three softwares
use row prepermutation to permute large entries of the matrix to the diagonal [4]. A de-
tailed description of the various algorithms and features of these packages can be found
in [8].

Figures 2 and 3 show a comparison of the times taken by WSMP and MUMPS to
solve a single system of equation on 1, 2, 4, and 8 CPUs with medium to large general
sparse coefficient matrices. In each case, the total solution time of WSMP is considered
to be one unit and all other times are normalized with respect to this. Each bar is further
divided into a solid and an empty portion depicting the portions of the total time spent in
factorization and triangular solves. The solution phase depicted by the hollow portion of
the bars includes the iterative refinement time to reduce the residual of the backward error
to 10−15. Some bars are missing for some of the largest matrices because the program
could not complete due to insufficient memory. Figure 4 shows a similar comparison
between WSMP and Super LUDist, but contains bars corresponding to the later only.
Since MUMPS and Super LUDist are designed to work only in distributed-memory

782 Anshul Gupta

parallel mode, all three codes are run with a single thread on each process for this
comparison.

Figures 2 and 3 reveal that on a single CPU, MUMPS typically takes between 1 and
2 times the time that WSMP takes to solve a system of equations. However, WSMP
appears to be more scalable. With very few exceptions, such as lhr71c and twotone, the
bars corresponding to MUMPs tend to grow taller as the number of CPUs increases. Both
codes use similar pre-ordering algorithms, and although individually different, the fill-in
and operation count are comparable on an average on a single CPU. As the number of
CPU’s increases, the operation count in WSMP tends to increase gradually due to added
load-balancing constraints on the ordering. MUMPS’ ordering, however, is identical on
1 to 4 CPUs, but shows a marked degradation on 8 (or more) CPUs.

The comparison of WSMP with Super LUDist in Figure 4 reveals, Super LUDist is
slower by a factor ranging from 2 to 30 on a single CPU. However, it tends to achieve
higher speedups and the bars in Figure 4 tend to grow shorter as the number of CPUs
increases. This is not surprising because Super LUDist does not incur the communication
overhead of dynamic pivoting and it is always easier to obtain good speedups by a slow
serial program than by a fast one. Despite better speedups, with the exception of onetone1,
WSMP was still significantly faster than Super LUDist on up to 8 CPUs.

Figure 5 shows the speedup of WSMP on two categories of matrices—those that are
more than 90% symmetric and those that are less than 33% symmetric. The speedup pat-
terns for the nearly symmetric matrices appear quite similar, with all achieving a speedup
between 4 and 5 on 8 CPUs. However, it is more erratic for the highly unsymmetric ma-
trices. In particular, very unstructured matrices arising in optimization problems achieve
poor speedups because their task- and data-DAGs tend to have a large number of edges,
with many of them connecting distant portions of the DAGs. This increases the overheads
due to communication and load-imbalance. There does not appear to be any identifiably
best ratio of threads to processes in an 8 CPU configuration. The small variations in run
times appear to be the result of differences in fill-in and DAG structures due to different
orderings produced by a parallel nested-dissection code whose output is sensitive to the
processor configuration.

4 Concluding Remarks and Future Work

In this paper, we introduce WSMP’s shared- and distributed-memory parallel sparse
direct solver for general matrices and compare its performance with that of MUMPS and
Super LUDist for 24 test matrices on 1, 2, 4, and 8 CPUs. Out of the 96 comparisons
with MUMPS shown in Figures 2 and 3, there are only six cases where MUMPS is
faster. Similarly, Super LUDist is faster than WSMP in only two of the 96 cases. On an
average, WSMP appears to be significantly faster that both other distributed-memory
parallel solvers, which themselves are the among best such solvers available. However,
as discussed in Section 3, the parallel unsymmetric solver still needs improvement and
tuning, particularly for very unsymmetric and unstructured matrices, such as those arising
in linear programming problems.

A Shared- and Distributed-Memory Parallel Sparse Direct Solver 783

8 CPUs

1 CPU

2 CPUs

4 CPUs

Factor Solve

M : MUMPS

W : WSMP

W

6543210

M

xenon2

twotone

torso3

pre2

mil094

mixtank

nasasrb

opti_andi

invextr1

eth−3dm

ecl32

bbmat

W

M

W

M

W

M

W

M

W

M

W

M

W

M

W

M

W

M

W

M

W

M

Fig. 2. A comparison of the factor and solve time of WSMP and MUMPS for the 12 largest systems
of the test suite on 1, 2, 4, and 8 CPUs. All times are normalized with respect to the time taken by
WSMP. Furthermore, the times spent by both packages in the factorization and solve (including
iterative refinement) phases are denoted by filled and empty bars, respectively

784 Anshul Gupta

8 CPUs

1 CPU

2 CPUs

4 CPUs

Factor Solve

M : MUMPS

W : WSMP

W

M

0 1 109432

wang4

venkat50

scircuit

raefsky4

fidap011

fidapm11

lhr71c

onetone1

eth−2dp

comp2c

av41092

af23560

W

M

W

M

W

M

W

M

W

M

W

M

W

M

W

M

W

M

W

M

W

M

Fig. 3. A comparison of the factor and solve times of WSMP and MUMPS for the 12 smaller
systems of the test suite on 1, 2, 4, and 8 CPUs. All times are normalized with respect to the time
taken by WSMP. Furthermore, the times spent by both packages in the factorization and solve
(including iterative refinement) phases are denoted by filled and empty bars, respectively

A Shared- and Distributed-Memory Parallel Sparse Direct Solver 785

8 CPUs

4 CPUs

2 CPUs

1 CPU

venkat50

xenon2

NF

NF

NF

NF

SolveFactor

NF

NF

eth−2dp

comp2c

ecl32

af23560

bbmat

6 12 18 24 300

av41092

eth−3dm

fidap011

fidapm11

invextr1

lhr71c

mil094

mixtank

nasasrb

onetone1

opti−andi

pre2

raefsky4

scircuit

torso3

twotone

wang4

Fig. 4. A comparison of the time taken by Super LUDist to factor and solve 24 systems of the
test suite on 1, 2, 4, and 8 CPUs with respect to the time taken by WSMP, which is assumed to
be one unit in each case. The cases marked “NF” are those in which Super LUDist generated an
incorrect solution due to absence of partial pivoting

786 Anshul Gupta

8.53

20.8

av41092

twotone

pre2

bbmat

opti−andi

1.00.80.60.40.2

very unsym
m

etric structure
nearly sym

m
etric structure

xenon2

eth−3dm

mil094

mixtank

poiss3Db

torso3

para−8

Serial Time

1 X 1 CPUs
1 X 2 CPUs
1 X 4 CPUs
1 X 8 CPUs
2 X 4 CPUs
4 X 2 CPUs
8 X 1 CPUs

Order of bars

1.75

3.69

29.1

42.7

57.4

8.75

128.

22.0

153.

6.51

Fig. 5. WSMP factor and solve times from 1 to 8 CPUs (normalized w.r.t. single CPU time). The
8-CPU results are presented for four different configurations t × p, where t is the number of
threads and p is the number of MPI processes

References

1. Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. An approximate minimum degree
ordering algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886–905, 1996.

A Shared- and Distributed-Memory Parallel Sparse Direct Solver 787

2. Patrick R. Amestoy, Iain S. Duff, Jacko Koster, and J. Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis
and Applications, 23(1):15–41, 2001.

3. Timothy A. Davis and Iain S. Duff. An unsymmetric-pattern multifrontal method for sparse
LU factorization. SIAM Journal on Matrix Analysis and Applications, 18(1):140–158, 1997.

4. Iain S. Duff and Jacko Koster. On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM Journal on Matrix Analysis and Applications, 22(4):973–996, 2001.

5. Anshul Gupta. A high-performance GEPP-based sparse solver. In Proceedings of PARCO,
2001. http://www.cs.umn.edu/˜agupta/doc/parco-01.ps.

6. Anshul Gupta. Improved symbolic and numerical factorization algorithms for unsymmetric
sparse matrices. SIAM Journal on Matrix Analysis and Applications, 24(2):529–552, 2002.

7. Anshul Gupta. WSMP: Watson sparse matrix package (Part-II: direct solution of general
sparse systems). Technical Report RC 21888 (98472), IBM T. J. Watson Research Center,
Yorktown Heights, NY, November 20, 2000. http://www.cs.umn.edu/˜agupta/wsmp.

8. Anshul Gupta. Recent advances in direct methods for solving unsymmetric sparse systems of
linear equations. ACM Transactions on Mathematical Software, 28(3):301–324, September
2002.

9. Steven M. Hadfield. On the LU Factorization of Sequences of Identically Structured Sparse
Matrices within a Distributed Memory Environment. PhD thesis, University of Florida,
Gainsville, FL, 1994.

10. Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Transactions on Mathematical Software,
29(2):110–140, 2003.

11. Jurgen Schulze. Towards a tighter coupling of bottom-up and top-down sparse matrix ordering
methods. Bit Numerical Mathematics, 41(4):800–841, 2001.

Simple and Efficient Modifications
of Elimination Orderings

Pinar Heggernes and Yngve Villanger

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{pinar,yngvev}@ii.uib.no

Abstract. We study the problem of modifying a given elimination ordering
through local reorderings. We present new theoretical results on equivalent order-
ings, including a new characterization of such orderings. Based on these results,
we define the notion of k-optimality for an elimination ordering, and we describe
how to use this in a practical context to modify a given elimination ordering to
obtain less fill. We experiment with different values of k, and report on percentage
of fill that is actually reduced from an already good initial ordering, like Minimum
Degree.

1 Introduction

One of the most important and well studied problems related to sparse Cholesky factor-
ization is to compute elimination orderings that give as few nonzero entries as possible
in the resulting factors. In graph terminology, the problem can be equivalently modeled
through the well known Elimination Game [10,13], where the input graphG corresponds
to the nonzero structure of a given symmetric positive definite matrix A, and the output
graph G+ corresponds to the Cholesky factor of A. The set of edges that is added to
G to obtain G+ is called fill, and different output graphs with varying fill are produced
dependent on the elimination ordering in which the vertices are processed. Computing
an ordering that minimizes the number of fill edges is an NP-hard problem [15], and
hence various heuristics are proposed and widely used, like Minimum Degree, Nested
Dissection, and combinations of these.

Sometimes, after a good elimination ordering with respect to fill is computed by some
heuristic, it is desirable to do some modifications on this ordering in order to achieve
better properties for other performance measures, like storage or parallelism, without
increasing the size of fill. Elimination orderings that result in the same filled graph are
called equivalent orderings, and they can be used for this purpose [8]. In this paper, we
prove some properties of equivalent orderings, and we give a new characterization of
such orderings based on local permutations. These results are useful in practice when
one seeks to modify a given ordering in order to group subsets of vertices close to or far
from each other without changing fill.

Based on the mentioned results, we then move on to orderings that are not equivalent
to the given ordering, and we study how local permutations of consecutive vertices
in a given elimination ordering can affect the resulting fill. We define the notion of
k-optimality for an elimination ordering, based on vertex subsets of size k. We give

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 788–797, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Simple and Efficient Modifications of Elimination Orderings 789

theoretical results on k-optimality, and we conclude with an algorithm that starts with
any given ordering and makes itk-optimal for a chosenk. Finally, we implement a relaxed
variant of this algorithm to exhibit its practical potential. For an efficient implementation,
we use a data structure suitable for chordal graphs, called clique trees. Our tests show
that even when we start with a good ordering, like Minimum Degree, substantial amount
of fill can be reduced by trying to make the given ordering 3-optimal.

2 Preliminaries

A graph is denoted by G = (V,E), where V is the set of vertices with |V | = n, and
E ⊆

(
V
2

)
is the set of edges with |E| = m. When a graph G is given, we will use V (G)

and E(G) to denote the vertices and edges of G respectively. The neighbors of a vertex
v in G are denoted by the set NG(v) = {u | uv ∈ E}, and the closed neighborhood of
v is NG[v] = NG(v) ∪ {v}. For a given vertex subset A ⊆ V , G(A) denotes the graph
induced by the vertices of A in G. A is a clique if G(A) is a complete graph. A vertex
v is called simplicial if NG(v) is a clique.

A chord of a cycle is an edge connecting two non-consecutive vertices of the cycle.
A graph is chordal if it contains no induced chordless cycle of length ≥ 4. A graph
H = (V,E ∪ F) is called a triangulation of G = (V,E) if H is chordal.

An elimination ordering of G is a function α : V ↔ {1, 2, ..., n}. We will say that
α(v) is the position or number of v in α, and also use the equivalent notation α =
{v1, v2, ..., vn} meaning that α(vi) = i. For the opposite direction we use α−1(i) = vi

to find a vertex, if the number in the ordering is given and α = {v1, v2, ..., vn}. The
following algorithm simulates the production of fill in Gaussian elimination [10,13]:

Algorithm Elimination Game
Input: A graph G = (V, E) and an ordering α = {v1, ..., vn} of V .
Output: The filled graph G+

α .
G0

α = G;
for i = 1 to n do

Let F i be the set of edges necessary to make N
Gi−1

α
(vi) a clique;

Obtain Gi
α by adding the edges in F i to Gi−1

α and removing vi;
G+

α = (V, E + ∪n
i=1F

i);

We will call Gi
α the ith elimination graph. During Elimination Game, two vertices

u and v that are not yet processed become indistinguishable after step i if NGi
α
[u] =

NGi
α
[v], and they remain indistinguishable until one of them is eliminated [7]. Given G

and α, we will say that u and v are indistinguishable if u and v are indistinguishable
at step min{α(u), α(v)}, and otherwise we will say that they are distinguishable. The
edges that are added to G during this algorithm are called fill edges, and uv is an edge
in G+

α if and only if uv ∈ E or there exists a path u, x1, x2, ..., xk, v in G where
α(xi) < min{α(u), α(v)}, for 1 ≤ i ≤ k [12].

If no fill edges are added during Elimination Game,G+
α = G and α is called a perfect

elimination ordering (peo). This corresponds to repeatedly removing a simplicial vertex
until the graph becomes empty. A graph is chordal if and only if it has a peo [5]; thus
filled graphs are exactly the class of chordal graphs, and Elimination Game is a way of

790 Pinar Heggernes and Yngve Villanger

producing triangulations of a given graph. Every chordal graph has at least two non-
adjacent simplicial vertices [4], and hence any clique of size k in a chordal graph can be
ordered consecutively with numbers n−k+1, n−k+2, ..., n in a peo. An elimination
ordering is minimum if no other ordering can produce fewer fill edges. Ordering α is
a minimal elimination ordering if no proper subgraph of G+

α is a triangulation of G,
and G+

α is then called a minimal triangulation of G. While it is NP-hard to compute
minimum fill [15], minimal fill can be computed in polynomial time [12]. Minimal
fill can in general be far from minimum, however algorithms exist to make a given
elimination ordering minimal by removing edges from the filled graph [1,3,11]. For our
purposes, when modifying a given elimination ordering to reduce fill, we will always
start by making the given ordering minimal by removing the redundant edges in the
filled graph using an appropriate existing algorithm. Two elimination orderings α and β
are called equivalent if G+

α = G+
β [8]. If α is a minimal elimination ordering then every

peo β of G+
α is equivalent to α [1].

For an efficient implementation of the ideas presented in this paper, we need the
notion of clique trees defined for chordal graphs [6]. A clique tree of a chordal graph
G is a tree T , whose vertex set is the set of maximal cliques of G, that satisfies the
following property: for every vertex v in G, the set of maximal cliques containing v
induces a connected subtree of T . We will be working on a clique tree of G+

α to identify
groups of vertices that can be locally repermuted to give less fill. Clique trees can be
computed in linear time [2]. A chordal graph has at most n maximal cliques [4], and thus
a clique tree has O(n) vertices and edges. We refer to the vertices of T as tree nodes to
distinguish them from the vertices of G. Each tree node of T is thus a maximal clique
of G.

3 Equivalent Orderings

Equivalent orderings of a given ordering were studied by Liu to achieve better properties
for storage without increasing the amount of fill [8]. He used elimination tree rotations
to compute appropriate equivalent orderings. Here, we will use repeated swapping of
consecutive vertices.

Lemma 1. Given G and α, let u and v be two vertices in G satisfying α(u) = α(v) −
1 = i. Let β be the ordering that is obtained from α by swapping u and v so that
β(u) = α(v), β(v) = α(u), andβ(x) = α(x) for all vertices x �= u, v. Then G+

α = G+
β

if and only if u and v are non-adjacent in G+
α or indistinguishable in α.

Proof. (If) If u and v are non-adjacent then it follows from Lemma 3.1 of [14] that
G+

α = G+
β . Let us consider the case of indistinguishable vertices. The graph G+

α is
obtained by picking the next vertex vj in α and then making NGj−1

α
(vj) into a clique

and removing vj from Gj−1
α to obtain Gj

α, as described in Elimination Game. This
can be considered as making n different sets of vertices into cliques. For every vertex
z ∈ V \ {u, v}, its neighborhood which is made into a clique in G+

α is the same as
its neighborhood which is made into a clique in G+

β . This follows from Lemma 4 of
[12], since the same set of vertices are eliminated prior to z in both orderings. Now
we have to show that eliminating u and then v results in the exact same set of fill

Simple and Efficient Modifications of Elimination Orderings 791

edges as eliminating v and then u in the graph Gi−1
α = Gi−1

β . Vertices u and v are
indistinguishable, so NGi−1

α
[u] = NGi−1

β
[v] which is made into a clique in both cases.

Observe that NGi
α
[v] ⊆ NGi−1

α
[u] and that NGi

β
[u] ⊆ NGi−1

β
[v], thus making these

sets into cliques will not introduce any new edges. Thus G+
α = G+

β if u and v are
indistinguishable.

(Only if) We show that the same filled graph is not obtained by swappingu and vwhen
u and v are adjacent and distinguishable. Since u and v are adjacent and distinguishable
in α, then we know that NGi−1

α
[u] �= NGi−1

α
[v]. Thus there exists a vertex x ∈ NGi−1

α
[u]\

NGi−1
α

[v] or there exists a vertex y ∈ NGi−1
α

[v]\NGi−1
α

[u]. Observe also thatNGi−1
α

[u] =
NGi−1

β
[u] and that NGi−1

α
[v] = NGi−1

β
[v], since the exact same set of vertices has been

eliminated before u and v in both α and β, and thus Gi−1
α = Gi−1

β . If vertex x exists,

then it follows from Lemma 4 of [12] that edge xv ∈ G+
α and xv �∈ G+

β . If vertex y

exists, then it also follows from Lemma 4 of [12] that edge yu ∈ G+
β and yu �∈ G+

α .

Thus G+
α �= G+

β if u and v are adjacent and distinguishable.

Observe that if u and v are indistinguishable in α they are also indistinguishable in β.
Note that similar results have been shown for the degrees of such consecutive vertices u
and v [7]. Based on the above result, we give an interesting characterization of equivalent
orderings in Theorem 1, which can be used as an algorithm to modify a given ordering
and generate any desired equivalent ordering. For the proof of Theorem 1 we first need
the following lemma.

Lemma 2. Let k < n be a fixed integer and let α and β be two equivalent orderings
on G such that α−1(i) = β−1(i) for 1 ≤ i ≤ k. Let v be the vertex that satisfies
β(v) = k + 1 and α(v) = k + d, d > 1, and let u be the predecessor of v in α so that
α(u) = α(v) − 1. Obtain a new ordering σ from α by only swapping u and v. Then
G+

σ = G+
β .

Proof. Note first that since α and β coincide in the first k vertices, and v is the vertex
numbered k + 1 in β, the position of v must be larger than k + 1 in α, as stated in the
premise of the lemma. Note also for the rest of the proof that α(u) = k+d−1 > k. We
need to show that u and v are either non-adjacent in G+

α = G+
β or indistinguishable in

α, as the result then follows immediately from Lemma 1. Assume on the contrary that
uv ∈ E(G+

α) = E(G+
β) and that u and v are distinguishable in α. Thus there exists at

least a vertexx ∈ NGk+d−1
α

(u)\NGk+d−1
α

[v], or a vertex y ∈ NGk+d−1
α

(v)\NGk+d−1
α

[u].
If vertexx exists, thenx �∈ NGk+d−1

α
(v), and thusx �∈ NGk

α
(v) = NGk

β
(v). It follows that

vx �∈ E(G+
β), since v is eliminated at step k+1 and beforeu and x in β. This contradicts

our assumption that G+
α = G+

β , because vx ∈ G+
α since ux, uv ∈ E(G+

α), and u is
eliminated before v and x. If vertex y exists, then uy �∈ E(G+

α), since y �∈ NGk+d−1
α

(u),
and u is eliminated before v and y in α. Vertex v is eliminated before y and u in β, and
this gives the same contradiction as above, since uv and vy are contained in E(G+

β),
and thus uy ∈ E(G+

β).

Regarding orderings β and σ in Lemma 2, note in particular that σ−1(i) = β−1(i)
for 1 ≤ i ≤ k and σ(v) = k + d− 1. Thus β and σ coincide in the first k positions and

792 Pinar Heggernes and Yngve Villanger

v has moved one position closer to its position in β. We are now ready to present our
new characterization of equivalent orderings.

Theorem 1. Two orderings α and β on G are equivalent, i.e., G+
α = G+

β , if and only
if β can be obtained by starting from α and repeatedly swapping pairs of consecutive
non-adjacent or indistinguishable vertices.

Proof. The if part of the theorem follows directly from Lemma 1. We prove the only if
part by showing that it is always possible to make two equivalent orderings identical by
repeatedly swapping pairs of consecutive non-adjacent or indistinguishable vertices in
one of them. For this we use the following inductive approach.

Induction hypothesis: Let α and β be two equivalent orderings on G. Modify α so
that the k first vertices of α coincide with the k first vertices of β, for a k ∈ [0, n], and
the remaining n − k vertices have the same local relative order as before the change.
Then G+

α = G+
β .

Base case: When k = 0 α is unchanged and thus G+
α = G+

β .
Induction step: Given two equivalent orderings α and β on G such that the k first

vertices in α coincide with the k first vertices in β. We have to show that, in α, one of
the vertices in positions k + 1, k + 2, ..., n can be moved to position k + 1 so that the
vertex in position k+1 is the same in α and in β. We will show that this can be achieved
by repeatedly swapping pairs of consecutive non-adjacent or indistinguishable vertices
in positions k + 1, k + 2, ..., n of α. We use induction also for this purpose.

Induction hypothesis: Given two equivalent orderings α and β on G such that the k
first vertices in α coincide with the k first vertices in β. Let v be vertex number k + 1 in
β, and let α(v) = k + d, for a d ∈ [1, n− k]. Move v so that α(v) = k + d− i, for an
i ∈ [0, d− 1]. Then G+

α = G+
β .

Base case: Let i = 0, then α is unchanged and thus G+
α = G+

β .
Induction step: Given two equivalent orderings α and β on G such that the k first

vertices in α coincide with the k first vertices in β, and vertex v which is numbered k+1
in β has number k + d − i in α. It follows from Lemma 2 that v can be swapped with
its predecessor in α and thus moved to position k + d − (i + 1) in α and G+

α remains
unchanged.

We have thus proved that, the first vertex v of β which does not coincide with the
vertex in the same position of α, can be repeatedly swapped with its predecessor in α
until it reaches the same position in α as in β without changing the filled graph, and
that this can again be repeated for all vertices. By Lemma 1 all swapped vertices are
non-adjacent and indistinguishable, which completes the proof.

4 k-Optimal Elimination Orderings

In this section, we put the results of the previous section in a practical context with
the purpose of modifying a given ordering α to reduce the resulting fill. As we have
seen, swapping two consecutive non-adjacent or indistinguishable vertices of α does
not change the fill. Consequently, if we want to swap consecutive vertices to reduce fill,
these should be distinguishable and neighbors in G+

α . The reason why we only consider
vertices that appear consecutively in an elimination ordering is that it is then easy to do

Simple and Efficient Modifications of Elimination Orderings 793

a local computation to find the change in the number of fill edges, without having to
recompute the whole filled graph. This saves time for practical implementations. The
following lemma gives the change in the number of fill edges when two adjacent vertices
are swapped.

Lemma 3. GivenG andα, letuv be an edge ofG+
α such thatα(u) = α(v)−1 = i. Letβ

be the ordering that is obtained fromα by swappingu and v. Then |E(G+
α)|−|E(G+

β)| =
|NGi−1

α
(u)| − |NGi−1

α
(v)|.

Proof. Consider the elimination graphGi−1
α . Sinceuv is an edge ofG+

α , it is also an edge
ofGi−1

α . If we at step i eliminateu (which corresponds to orderingα), the set of fill edges
added incident to v by u is NGi−1

α
[u] \NGi−1

α
[v]. If on the other hand, v is eliminated at

step i (which corresponds to ordering β), the set of fill edges added adjacent to u by v is
NGi−1

α
[v]\NGi−1

α
[u]. It follows from Lemma 4 of [12] that no other fill is changed since

the set of vertices eliminated previous to every vertex z ∈ V \ {u, v} are the same for
α and β. Thus the difference is |NGi−1

α
[u]| − |NGi−1

α
[v]| = |NGi−1

α
(u)| − |NGi−1

α
(v)|.

Although uv is an edge of G+
α , it might be that u and v do not appear consecutively

in α but they appear consecutively in an equivalent ordering β. Since both α and β
result in the same filled graph G+

α , we want to be able to check all edges uv that appear
consecutively in α or in an equivalent ordering β. Indeed, we will generalize this idea
from 2 to k. Instead of only considering pairs of adjacent vertices, we will consider
cliques K of size k whose vertices appear consecutively in the given ordering α or in
an equivalent ordering β, and examine whether a local permutation of the vertices of K
can reduce the resulting fill. Note that the vertices of any k-clique in a chordal graph
can be ordered with numbers n − k + 1, n − k + 2, ..., n in a peo [13], and thus we
can always find an equivalent ordering β in which the vertices of a given k-clique are
ordered consecutively. As a consequence of the results of the previous section, β can
be computed from α by swapping pairs of consecutive non-adjacent or distinguishable
vertices. However, since K is a clique in G+

α , we will show that we are able to computeβ
more efficiently using a clique tree of G+

α , rather than this more general characterization.
Before that, we summarize the above ideas with a definition and an algorithm.

We will always start with making the given ordering α minimal by removing unnec-
essary edges from G+

α by using an appropriate algorithm for this purpose. When α is
minimal, we know that no ordering can result in a filled graph that is a proper subgraph
of G+

α . Thus reducing the number of fill edges further can only be achieved if some fill
edges are removed and some new fill edges are introduced.

Definition 1. An elimination ordering α is k-optimal on G if obtaining an equivalent
ordering β where the vertices of K appear consecutively, and then locally permuting
the vertices of K , cannot result in less fill for any k-clique K in G+

α .

Algorithm Minimal k-optimal ordering
Input: A graph G and an ordering α. (β = α;)
Output: A minimal elimination ordering β of G where |E(G+

β)| ≤ |E(G+
α)|.

repeat
Compute a minimal ordering σ such that E(G+

σ) ⊆ E(G+
β);

β = Compute-k-optimal(G, σ);
until β is minimal and k-optimal

794 Pinar Heggernes and Yngve Villanger

The call Compute-k-optimal(G, σ) returns a k-optimal ordering based on σ. Note
that computing a minimal ordering removes the unnecessary fill edges from the filled
graph, and never adds new fill edges. Computing a k-optimal ordering, however, will
both remove and add fill edges, and thus the resulting ordering after this step is not
necessarily minimal. By the definition of k-optimality, this algorithm always produces
an ordering β with less fill than that of α unless α is already minimal and k-optimal.

Simple examples exist which show that a k-optimal ordering is not necessarily (k−
1)-optimal or (k+1)-optimal. However, we suspect that when checking k-optimality, if
we also check all maximal cliques in G+

α of size less than k, then we can also guarantee
(k − 1)-optimality. Note that the number of maximal cliques in G+

α is O(n), and thus
this extra work is substantially less than the work of checking all (both maximal and
non-maximal) k-cliques that the definition requires. We leave this as an open question.

We now describe a practical implementation of a variant of the above algorithm to
exhibit the potential of the proposed ideas. Given G and σ, in order to implement the
function Compute-k-optimal(G, σ) correctly, we need to be able to do the following
subtasks for each k-clique K of G+

σ : 1. Compute every equivalent ordering where the
vertices of K are ordered consecutively. 2. Try all possible local permutations of the
vertices of K in each of these equivalent orderings. Recall however that we need not
consider k-cliques in which all vertices are pairwise indistinguishable, and we need not
consider local permutations that result in equivalent orderings. Still, the remaining work
is too much for a practical algorithm, and in the practical version we generate several
but not all equivalent orderings in which the vertices of K are ordered consecutively.
Furthermore, we only test a single local permutation ofK; one that we suspect might give
the highest fill reduction. For both of these subtasks, we use clique trees. The vertices of
every k-clique K must appear together in at least one tree node of any clique tree of G+

σ ,
and subsets of K that appear in other tree nodes will give us various local permutations
that we will try. Then using the clique tree, it is easy to compute orderings where the
vertices of K appear together and follow the chosen permutations.

Observe that every leaf in any clique tree of G+
α contains a simplicial vertex, which

can be eliminated as the first vertex in an equivalent ordering. Let us consider how we
construct equivalent orderings for a clique K . Let T be a clique tree of G+

α . A subtree
or a forest of subtrees remains when we remove every tree node in T containing K .
One equivalent ordering is now created for each remaining subtree. Let T ′ be one such
subtree, and let T ′′ be the rest of T when this subtree is removed. Let V ′ be the set of
vertices of G contained in the tree nodes of T ′ and not contained in the tree nodes of
T ′′. An equivalent ordering is now obtained by eliminating the vertices of V \ (V ′∪K),
then the vertices of K , and finally the vertices of V ′. Within each of these three sets we
eliminate the vertices in a simplicial order.

There exists at least one vertex in K which is not adjacent to any vertex in V ′. If this
was not the case, then K would be contained in the tree node of T ′ which is adjacent in
T to a tree node containing K , which is a contradiction since none of the tree nodes of
T ′ contains K . Eliminating such a vertex will make the remaining vertices of K into a
clique. We want to avoid this for two reasons. The first is that we want to obtain a new
graph, and the second is that we do not want to destroy the possibility of removing edges
in K . A simple solution to this problem is to eliminate these vertices last when K is

Simple and Efficient Modifications of Elimination Orderings 795

a

b

j

p

c

d

e

f
g

h

ik
l

m

n

o
q

A) B)

a

b

j

p

c

d

e

f
g

h

ik
l

m

n

o
q

5
4 1

236

7

Fig. 1. The solid edges are the original edges of the given graph, while the dashed edges are fill
edges resulting from the elimination process. In figure A we use the elimination ordering given by
the alphabetic ordering of the vertices, which is minimal and also a Minimum Degree ordering.
Consider the equivalent ordering {c, d, e, f, g, a, b, h, i, ..., q} and the clique {a, g}. Swapping a

and g gives us a new ordering {c, d, e, f, a, g, b, h, i, ..., q} which contains one less fill edge, as
shown in figure B. Thus the Minimum Degree ordering of A is minimal but not 2-optimal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

5

10

15

20

R
ed

uc
tio

n
pe

rc
en

ta
ge

 c
om

pa
re

d
to

 M
D

The graphs ordered by number

2−opt
3−opt
4−opt

Fig. 2. This figure only shows the reduction in percentage

eliminated. So the new order is created as follows: Eliminate the vertices of V \(V ′∪K)
in a simplicial order, then eliminate the vertices of K that are adjacent to a vertex in V ′ in
a random order, then eliminate the rest of the vertices ofK in any order. Finally eliminate
the vertices of V ′ in a simplicial order. This will give us an ordering that introduces new
fill edges, and possibly remove some.

In order to achieve good orderings, it is important to start the process with an ordering
that already produces low fill. We have tested our implementation with Minimum Degree
as the starting ordering. Minimum Degree orderings are in general neither minimal nor
k-optimal for any k > 1, although they tend to be often minimal in practice [1,11].
However, even Minimum Degree orderings that are minimal need not be 2-optimal, as
shown in Figure 1. Thus Minimum Degree is a good starting ordering for our purposes.
Table 1 and Figure 2 show the reductions in fill achieved by our implementation when
trying to make an initial Minimum Degree ordering k-optimal for k ∈ {2, 3, 4} on a
collection of sparse matrices downloaded from Matrix Market [9]. Columns 6, 8, and 10
of the table show the achieved reduction in the number of fill edges, whereas columns 7,
9, and 11 show the reduction in percentage. Figure 2 shows the reductions in percentage
only. As can be seen, the reduction is substantial in several cases. For 4 other graphs

796 Pinar Heggernes and Yngve Villanger

Table 1. We would like to remark that in order to avoid “lucky” reductions, we ran Minimum
Degree on 5 random permutations of each graph, and chose the ordering that gave the lowest fill
as the starting ordering

No Name # vertices # edges MD fill 2-opt 2-opt % 3-opt 3-opt % 4-opt 4-opt %

1 494 bus 494 586 314 3 0.96 3 0.96 3 0.96

2 ash292 292 958 1392 1 0.07 51 3.66 103 7.40

3 bcspwr03 118 179 85 1 1.18 1 1.18 1 1.18

4 bcspwr04 274 669 403 34 8.44 48 11.91 48 11.91

5 bcspwr05 443 590 375 3 0.80 4 1.07 4 1.07

6 bcsstk03 112 265 10 2 20.00 2 20.00 2 20.00

7 bcsstk05 153 1135 1197 0 0 57 4.76 57 4.76

8 bcsstk20 485 1328 412 2 0.49 2 0.49 2 0.49

9 bcsstk22 138 282 263 2 0.76 6 2.28 6 2.28

10 can 144 144 576 225 0 0 10 4.44 10 4.44

11 can 161 161 608 1551 0 0 48 3.09 48 3.09

12 can 187 187 652 1277 0 0 15 1.17 49 3.84

13 can 229 229 774 2008 0 0 8 0.40 20 1.00

14 can 256 256 1330 1913 0 0 50 2.61 51 2.67

15 can 268 268 1407 2096 0 0 42 2.00 48 2.29

16 can 292 292 1124 1143 8 0.70 24 2.10 24 2.10

17 dwt 162 162 510 638 0 0 46 7.21 98 15.36

18 dwt 193 193 1650 2367 0 0 15 0.63 15 0.63

19 dwt 198 198 602 513 62 12.09 79 15.40 79 15.40

20 dwt 209 209 767 1102 44 4.00 72 6.53 79 7.17

21 dwt 221 221 704 849 0 0 42 4.95 51 6.01

22 dwt 234 234 306 204 19 9.31 19 9.31 19 9.31

23 dwt 245 245 608 610 4 0.66 22 3.61 24 3.93

24 dwt 307 307 1108 3421 1 0.03 22 0.64 35 1.02

25 dwt 310 310 1069 1920 22 1.15 110 5.73 119 6.20

26 dwt 346 346 1443 3516 15 0.43 317 9.02 338 9.61

27 dwt 361 361 1296 3366 0 0 55 1.63 108 3.21

28 dwt 419 419 1572 3342 0 0 176 5.27 267 8.00

29 lshp 265 265 744 2185 0 0 21 0.96 21 0.96

30 lshp 406 406 1155 4074 0 0 63 1.55 70 1.72

that we tested, bcsstk04, lund a, lund b, and nos1, no reduction was achieved for these
k-values, and to save space, we omit these graphs in the table and the following figure.

We would like to stress that the goal of our numerical experiments has been to exhibit
the potential of the proposed algorithm to find good quality orderings with respect to fill.

Simple and Efficient Modifications of Elimination Orderings 797

We have not optimized the the running time of our code, thus we find it useless to give the
running time of computing a 3-optimal or a 4-optimal ordering compared to the Minimum
Degree algorithm whose code has been thoroughly optimized through the last decades.
Although computing 3-optimal and 4-optimal orderings are computationally heavy tasks
that require more time than Minimum Degree, we believe that practical implementations
using approximations are possible. This is an interesting topic for further research.

References

1. J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making filled graphs
minimal. Theor. Comput. Sci., 250:125–141, 2001.

2. J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique trees. In Sparse
Matrix Computations: Graph Theory Issues and Algorithms, pages 1–30. Springer Verlag,
1993.

3. E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In Proceedings of
WG 1997, pages 132–143. Springer Verlag, 1997. LNCS 1335.

4. G.A. Dirac. On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg, 25:71–76, 1961.
5. D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific Journal of

Math., 15:835–855, 1965.
6. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combin.

Theory Ser. B, 16:47–56, 1974.
7. J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems.

Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.
8. J. W. H. Liu. Equivalent sparse matrix reorderings by elimination tree rotations. SIAM J. Sci.

Stat. Comput., 9(3):424–444, 1988.
9. R. Boisvert, R. Pozo, K. Remington, B. Miller, and R. Lipman. NIST Matrix Market.

http://math.nist.gov/MatrixMarket/.
10. S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3:119–130, 1961.
11. B. W. Peyton. Minimal orderings revisited. SIAM J. Matrix Anal. Appl., 23(1):271–294, 2001.
12. D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination on graphs.

SIAM J. Comput., 5:146–160, 1976.
13. D. J. Rose. Triangulated graphs and the elimination process. J. Math. Anal. Appl., 32:597–609,

1970.
14. Y. Villanger. Lex M versus MCS-M. Reports in Informatics 261, University of Bergen, Nor-

way, 2004
15. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth.,

2:77–79, 1981.

Optimization of a Statically Partitioned Hypermatrix
Sparse Cholesky Factorization�

José R. Herrero and Juan J. Navarro

Computer Architecture Department, Universitat Politècnica de Catalunya
Jordi Girona 1-3, Mòdul D6, E-08034 Barcelona, Spain

{josepr,juanjo}@ac.upc.edu

Abstract. The sparse Cholesky factorization of some large matrices can require a
two dimensional partitioning of the matrix. The sparse hypermatrix storage scheme
produces a recursive 2D partitioning of a sparse matrix. The subblocks are stored
as dense matrices so BLAS3 routines can be used. However, since we are dealing
with sparse matrices some zeros may be stored in those dense blocks. The overhead
introduced by the operations on zeros can become large and considerably degrade
performance. In this paper we present an improvement to our sequential in-core
implementation of a sparse Cholesky factorization based on a hypermatrix storage
structure. We compare its performance with several codes and analyze the results.

1 Introduction

Sparse Cholesky factorization is heavily used in several application domains, includ-
ing finite-element and linear programming algorithms. It forms a substantial propor-
tion of the overall computation time incurred by those methods. Consequently, there
has been great interest in improving its performance [8,20,22]. Methods have moved
from column-oriented approaches into panel or block-oriented approaches. The former
use level 1 BLAS while the latter have level 3 BLAS as computational kernels [22].
Operations are thus performed on blocks (submatrices). In this paper we address the
optimization of the sparse Cholesky factorization of large matrices. For this purpose, we
use a Hypermatrix [10] block data structure with static block sizes.

1.1 Background

Block sizes can be chosen either statically (fixed) or dynamically. In the former case, the
matrix partition does not take into account the structure of the sparse matrix. In the latter
case, information from the elimination tree [17] is used. Columns having similar structure
are taken as a group. These column groups are called supernodes [18]. Some supernodes
may be too large to fit in cache and it is advisable to split them into panels [20,22]. In
other cases, supernodes can be too small to yield good performance. This is the case of
supernodes with just a few columns. Level 1 BLAS routines are used in this case and the
performance obtained is therefore poor. This problem can be reduced by amalgamating

� This work was supported by the Ministerio de Ciencia y Tecnologı́a of Spain and the EU FEDER
funds (TIC2001-0995-C02-01).

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 798–807, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Optimization of a Statically Partitioned Hypermatrix Sparse Cholesky Factorization 799

several supernodes into a single larger one [1]. Although, some null elements are then
both stored and used for computation, the resulting use of level 3 BLAS routines often
leads to some performance improvement.

1.2 Hypermatrix Representation of a Sparse Matrix

Sparse matrices are mostly composed of zeros but often have small dense blocks which
have traditionally been exploited in order to improve performance [8]. Our approach uses
a data structure based on a hypermatrix (HM) scheme [10,21]. The matrix is partitioned
recursively into blocks of different sizes. The HM structure consists of N levels of
submatrices. The top N-1 levels hold pointer matrices which point to the next lower level
submatrices. Only the last (bottom) level holds data matrices. Data matrices are stored
as dense matrices and operated on as such. Null pointers in pointer matrices indicate
that the corresponding submatrix does not have any non-zero elements and is therefore
unnecessary. Figure 1 shows a sparse matrix and a simple example of corresponding
hypermatrix with 2 levels of pointers.

Fig. 1. A sparse matrix and a corresponding hypermatrix

The main potential advantages of a HM structure over 1D data structures, such as
the Compact Row Wise structure, are: the ease of use of multilevel blocks to adapt
the computation to the underlying memory hierarchy; the operation on dense matrices;
and greater opportunities for exploiting parallelism. A commercial package known as
PERMAS uses the hypermatrix structure [3]. It can solve very large systems out-of-
core and can work in parallel. However, the disadvantages of the hypermatrix structure,
namely the storage of and computation on zeros, introduce a large overhead. This problem
can arise either when a fixed partitioning is used or when supernodes are amalgamated. In
[2] the authors reported that a variable size blocking was introduced to save storage and
to speed the parallel execution. In this way the HM was adapted to the sparse matrix being
factored. The results presented in this paper, however, correspond to a static partitioning
of the matrix into blocks of fixed sizes.

1.3 Machine and Matrix Characteristics

Execution took place on a 250 MHz MIPS R10000 Processor. The first level instruction
and data caches have size 32 Kbytes. There is a secondary unified instruction/data cache
with size 4 Mbytes. This processor’s theoretical peak performance is 500 Mflops.

800 José R. Herrero and Juan J. Navarro

Table 1. Matrix characteristics

Matrix Dimension NZs NZs in L Density Flops to factor

GRIDGEN1 330430 3162757 130586943 0.002 278891960665

QAP8 912 14864 193228 0.463 63764878

QAP12 3192 77784 2091706 0.410 2228094940

QAP15 6330 192405 8755465 0.436 20454297601

RMFGEN1 28077 151557 6469394 0.016 6323333044

TRIPART1 4238 80846 1147857 0.127 511884159

TRIPART2 19781 400229 5917820 0.030 2926231696

TRIPART3 38881 973881 17806642 0.023 14058214618

TRIPART4 56869 2407504 76805463 0.047 187168204525

pds1 1561 12165 37339 0.030 1850179

pds10 18612 148038 3384640 0.019 2519913926

pds20 38726 319041 10739539 0.014 13128744819

pds30 57193 463732 18216426 0.011 26262856180

pds40 76771 629851 27672127 0.009 43807548523

pds50 95936 791087 36321636 0.007 61180807800

pds60 115312 956906 46377926 0.006 81447389930

pds70 133326 1100254 54795729 0.006 100023696013

pds80 149558 1216223 64148298 0.005 125002360050

pds90 164944 1320298 70140993 0.005 138765323993

We have used several test matrices. All of them are sparse matrices corresponding to
linear programming problems. QAP matrices come from Netlib [19] while others come
from a variety of linear multicommodity network flow generators: A Patient Distribution
System (PDS) [5], with instances taken from [9]; RMFGEN [4]; GRIDGEN [16]; TRI-
PARTITE [11]. Table 1 shows the characteristics of several matrices obtained from such
linear programming problems. Matrices were ordered with METIS [14] and renumbered
by an elimination tree postorder.

2 Performance Issues

In this section we present two aspects of the work we have done to improve the per-
formance of our sparse Hypermatrix Cholesky factorization. Both of them are based on
the fact that a matrix is divided into submatrices and operations are thus performed on
blocks (submatrices).

A matrix M is divided into submatrices of arbitrary size. We call Mbri,bcj the data
submatrix in block-row bri and block-column bcj . Figure 2 shows 3 submatrices within
a matrix. The highest cost within the Cholesky factorization process comes from the
multiplication of data submatrices. In order to ease the explanation we will refer to the
three matrices involved in a product as A, B and C. For block-rows br1 and br2 (with
br1 < br2), and block-column bcj each of these blocks is A ≡Mbr2,bcj , B ≡ Mbr1,bcj

and C ≡ Mbr2,br1 . Thus, the operation performed is C = C − A × Bt, which means
that submatrices A and B are used to produce an update on submatrix C.

Optimization of a Statically Partitioned Hypermatrix Sparse Cholesky Factorization 801

br
2

br
1

bc
1

bc
2

A C

B
x

x

x

x

xx

x

x

x

x

x

Fig. 2. Blocks within a matrix

2.1 Efficient Operation on Small Matrices

Choosing a block size for data submatrices is rather difficult. When operating on dense
matrices, it is better to use large block sizes. On the other hand, the larger the block is,
the more likely it is to contain zeros. Since computation with zeros is non productive,
performance can be degraded. Thus, a trade-off between performance on dense matrices
and operations on non-zeros must be reached. In a previous paper [12], we explained
how we could reduce the block size while we improved performance. This was achieved
by the use of a specialized set of routines which operate on small matrices of fixed size.
By small matrices we mean matrices which fit in the first level cache. The basic idea
used in producing this set of routines, which we call the Small Matrix Library (SML),
is that of having dimensions and loop limits fixed at compilation time. For example, our
matrix multiplication routines mxmts fix outperform the vendor’s BLAS (version 7.3)
dgemm routine (dgemm nts) for small matrices (fig. 3a) on an R10000 processor. We
achieved similar results to outperform the ATLAS [23] dgemm routine.

a) b)

Fig. 3. a) Performance of different MxM t routines for several matrix sizes. b) Factorization of
matrix pds40: Mflops obtained by different MxM t codes within HM Cholesky. Effective Mflops
are reckoned excluding any operations on zeros

The matrix multiplication routine used affects the performance of hypermatrix
Cholesky factorization. This operation takes up most of the factorization time. We found
that when using mxmts fix, a block size of 4×32 usually produced the best performance.

802 José R. Herrero and Juan J. Navarro

In order to illustrate this, figure 3b shows results of the HM Cholesky factorization on
an R10000 for matrix pds40 [5]. The use of a fixed dimension matrix multiplication
routine speeded up our Cholesky factorization an average of 12% for our test matrix set
(table 1).

2.2 Reducing Overhead: Windows Within Data Submatrices

Let A and B be two off-diagonal submatrices in the same block-column of a matrix. At
first glance, these matrices should always be multiplied since they belong to the same
block-column. However, there are cases where it is not necessary. We are storing data
submatrices as dense while the actual contents of the submatrix are not necessarily dense.
Thus, the result of the product A × Bt can be zero. Such an operation will produce an
update into some matrix C whenever there exists at least one column for which both
matrices A and B have any non-zero element. Otherwise, if there are no such columns,
the result will be zero. Consequently, that multiplication can be bypassed.

lef
t c

olu
mn

Data Submatrix

top row

bottom row

rig
ht

co
lum

n

window

x

x

x

a)

2

3

2

1

3

1

2

1

42 3

x

x

x

x

x

x

x

x

x

x

x

k k

j

j

j

i

i

j

i

kkB

A C

b)

Fig. 4. a) A rectangular data submatrix and a window within it. b) Windows can reduce the number
of operations

In order to reduce the storage and computation of zero values, we define windows
of non-zeros within data submatrices. Figure 4a shows a window of non-zero elements
within a larger block. The window of non-zero elements is defined by its top-left and
bottom right corners. All zeros outside those limits are not used in the computations. Null
elements within the window are still stored and computed. Storage of columns to the left
of the window’s leftmost column is avoided since all their elements are null. Similarly,
we do not store columns to the right of the window’s rightmost column. However, we
do store zeros over the window’s upper row and/or underneath its bottom row whenever
these window’s boundaries are different from the data submatrix boundaries, i.e. whole
data submatrix columns are stored from the leftmost to the rightmost columns in a
window. We do this to have the same leading dimension for all data submatrices used
in the hypermatrix. Thus, we can use our specialized SML routines which work on
matrices with fixed leading dimensions. Actually, we extended our SML library with
routines which have the leading dimensions of matrices fixed, while the loop limits may
be given as parameters. Some of the routines have all loop limits fixed, while others have

Optimization of a Statically Partitioned Hypermatrix Sparse Cholesky Factorization 803

only one, or two of them fixed. Other routines have all the loop limits given as parameters.
The appropriate routine is chosen at execution time depending on the windows involved
in the operation. Thus, although zeros can be stored above or underneath a window, they
are not used for computation. Zeros can still exist within the window but, in general, the
overhead is greatly reduced.

The use of windows of non-zero elements within blocks allows for a larger default
hypermatrix block size. When blocks are quite full operations performed on them can
be rather efficient. However, in those cases where only a few non-zero elements are
present in a block, or the intersection of windows results in a small area, it is necessary
to compute only a subset of the total block (dark areas within figure 4b). When the
column-wise intersection of windows in matrices A and B is null, we can avoid the
multiplication of these two matrices.

3 Results

Figure 5 shows the results obtained with several variants of our HM Cholesky code.
In all cases the code follows a right looking scheduling with a fixed partitioning of the
hypermatrix (the elimination tree is consequently not used at all). We use a 4× 32 data
matrix size as stated in section 2.1. The first and second bars allow for the evaluation of
the usage of windows within data submatrices (in a 2D layout of such submatrices). The
usage of windows clearly improves the performance of our sparse hypermatrix Cholesky
algorithm. The second and third bars show the results of 2D and 1D data layouts and
scheduling of the data submatrices (windows are used in both cases). The former uses
upper levels in the HM with sizes 32× 32 and 512× 512. For the latter, we define only
an upper level with sizes 32× 32. A 2D data layout and scheduling of the computations
is beneficial to the efficient computation of the Cholesky factorization of large sparse
matrices.

Fig. 5. HM performance for several input matrices

804 José R. Herrero and Juan J. Navarro

Next, we present results obtained by four different sparse Cholesky factorization
codes. Figure 6 shows the results obtained with each of them for the set of matrices
introduced above. Matrix families are separated by dashed lines.

Fig. 6. Performance of several sparse Cholesky factorization codes

The first bar corresponds to a supernodal left-looking block Cholesky factorization
(SN-LL (Ng-Peyton)) [20]. It takes as input parameters the cache size and unroll factor
desired. This algorithm performs a 1D partitioning of the matrix. A supernode can be
split into panels so that each panel fits in cache. This code has been widely used in
several packages such as LIPSOL [24], PCx [7], IPM [6] or SparseM [15]. Although
the test matrices we have used are in most cases very sparse, the number of elements
per column is in some cases large enough so that a few columns fill the first level cache.
Thus, a one-dimensional partition of the input matrix produces poor results. As the
problem size gets larger, performance degrades heavily. We noticed that, in some cases,
we could improve results by specifying cache sizes multiple of the actual first level
cache. However, performance degrades in all cases for large matrices.

The second and third bars correspond to sequential versions of the supernodal left-
looking (SN-LL) and supernodal multifrontal (SN-MF) codes in the TAUCS package
(version 2.2) [13]. In these codes the matrix is represented as a set of supernodes. The
dense blocks within the supernodes are stored in a recursive data layout matching the
dense block operations. The performance obtained by these codes is quite uniform.

Finally, the fourth bar shows the performance obtained by our right looking sparse
hypermatrix Cholesky code (HM). We have used windows within data submatrices and
SML [12] routines to improve our sparse matrix application based on hypermatrices.
A fixed partitioning of the matrix has been used. We present results obtained for data
submatrix sizes 4× 32 and upper hypermatrix levels with sizes 32× 32 and 512× 512.

We have included matrix pds1 to show that for small matrices the hypermatrix
approach is usually very inefficient. This is due to the large overhead introduced by blocks

Optimization of a Statically Partitioned Hypermatrix Sparse Cholesky Factorization 805

Fig. 7. Increase in number of operations in sparse HM Cholesky (4x32 + windows)

Fig. 8. HM flops per MxMt subroutine type

which have many zeros. Figure 7 shows the percentage increase in number of flops in
sparse HM Cholesky w.r.t. the minimum (using a Compact Sparse Row storage). For large
matrices however, blocks are quite dense and the overhead is much lower. Performance
of HM Cholesky is then better than that obtained by the other algorithms tested. Note
that the hypermatrix Cholesky factorization usually improves its performance as the
problem size gets larger. There are two reasons for this. One is the better usage of the
memory hierarchy: locality is properly exploited with the two dimensional partitioning
of the matrix which is done in a recursive way using the HM structure. The other is
that since blocks tend to be larger, more operations are performed by efficient M ×M t

routines.
Figure 8 shows the percentage of multiplication operations performed by each of the

four M ×M t routines we use. We focus on matrix multiplication because it is, by far,
the most expensive operation within the Cholesky factorization.

FULL refers to the routine where all matrix dimensions are fixed. This is the most
efficient of the four routines. WIN 1DC names the routine where windows are used
for columns while WIN 1DR indicates the equivalent applied to rows. Finally, WIN 2D

806 José R. Herrero and Juan J. Navarro

denotes the case where windows are used for both columns and rows. Thus, for the latter,
no dimensions are fixed at compilation time and it becomes the least efficient of all four
routines. WIN 1DC computes matrix multiplications more efficiently than WIN 1DR
because of the constant leading dimension used for all three matrices. This is the reason
why the performance obtained for matrices in the TRIPARTITE set is better than that
obtained for matrices with similar size belonging to the PDS family. The performance
obtained for the largest matrix in our test suite, namely matrix GRIDGEN1, is less than
half of the theoretical peak for the machine used. This is basically due to the dispersion
of data in this matrix which leads to the usage of the FULL M ×M t routine less than
50% of the time. In addition, the least efficient routine WIN 2D is used to compute about
10% of the operations.

4 Future Work

The results presented here have been obtained by splitting the matrix into blocks of
fixed size for each hypermatrix level. However, we can also create the hypermatrix
structure using the information from the supernodal elimination tree. The results for
low amalgamation values are very poor and have not been presented. However, we
expect an improvement in the performance of our sparse hypermatrix Cholesky code
with different (larger) amalgamation values. In the near future we will experiment with
different amalgamation values and algorithms.

We would also like to improve our code by avoiding the operation on very small
matrices. We are currently studying the way to extend our code so that it can work
with supernodes in addition to dense matrices in the last level of the hypermatrix (data
submatrix level).

Since our approach seems promising for large matrices we want to extend it to work
out-of-core. We think that the hypermatrix scheme also provides a good platform for
exploiting the higher levels of the memory hierarchy.

Finally, we plan to use our code as the basis for a parallel implementation of the
sparse Cholesky factorization.

5 Conclusions

A two dimensional partitioning of the matrix is necessary for large sparse matrices.
The overhead introduced by storing zeros within dense data blocks in the hypermatrix
scheme can be reduced by keeping information about a dense subset (window) within
each data submatrix. Although some overhead still remains, the performance of our
sparse hypermatrix Cholesky can be up to an order of magnitude better than that of
a 1D supernodal block Cholesky (which tries to use the cache memory properly by
splitting supernodes into panels). It also outperforms sequential supernodal left-looking
and supernodal multifrontal routines based on a recursive data layout of blocks within
the supernodes. Using windows and SML routines our HM Cholesky often gets over
half of the processor’s peak performance for medium and large sparse matrices factored
sequentially in-core.

Optimization of a Statically Partitioned Hypermatrix Sparse Cholesky Factorization 807

References

1. C. Ashcraft and R. G. Grimes. The influence of relaxed supernode partitions on the multifrontal
method. ACM Trans. Math. Software, 15:291–309, 1989.

2. M. Ast, C. Barrado, J.M. Cela, R. Fischer, O. Laborda, H. Manz, and U. Schulz. Sparse
matrix structure for dynamic parallelisation efficiency. In Euro-Par 2000,LNCS1900, pages
519–526, September 2000.

3. M. Ast, R. Fischer, H. Manz, and U. Schulz. PERMAS: User’s reference manual, INTES
publication no. 450, rev.d, 1997.

4. T. Badics. RMFGEN generator., 1991. Code available from
ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf.

5. W.J. Carolan, J.E. Hill, J.L. Kennington, S. Niemi, and S.J. Wichmann. An empirical eval-
uation of the KORBX algorithms for military airlift applications. Oper. Res., 38:240–248,
1990.

6. J. Castro. A specialized interior-point algorithm for multicommodity network flows. SIAM
Journal on Optimization, 10(3):852–877, September 2000.

7. J. Czyzyk, S. Mehrotra, M. Wagner, and S. J. Wright. PCx User’s Guide (Version 1.1). Tech-
nical Report OTC 96/01, Evanston, IL 60208–3119, USA, 1997.

8. I.S. Duff. Full matrix techniques in sparse Gaussian elimination. In Numerical analysis
(Dundee,1981). Lect. Notes in Math., 912:71–84. Springer, 1982.

9. A. Frangioni. Multicommodity Min Cost Flow problems. Data available from
http://www.di.unipi.it/di/groups/optimize/Data/.

10. G.Von Fuchs, J.R. Roy, and E. Schrem. Hypermatrix solution of large sets of symmetric
positive-definite linear equations. Comp. Meth. Appl. Mech. Eng., 1:197–216, 1972.

11. A. Goldberg, J. Oldham, S. Plotkin, and C. Stein. An implementation of a combinatorial
approximation algorithm for minimum-cost multicommodity flow. In IPCO, 1998.

12. J.R. Herrero and J.J. Navarro. Improving Performance of Hypermatrix Cholesky Factorization.
In Euro-Par 2003,LNCS2790, pages 461–469. Springer, August 2003.

13. D. Irony, G. Shklarski, and S. Toledo. Parallel and fully recursive multifrontal sparse Cholesky.
In ICCS 2002,LNCS2330, pages 335–344. Springer, April 2002.

14. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. TR95-035, Dep. Comp. Sci., U. of Minnesota, Oct. 1995.

15. R. Koenker and P. Ng. SparseM: A Sparse Matrix Package for R, 2003. http://cran.r-
project.org/src/contrib/PACKAGES.html#SparseM.

16. Y. Lee and J. Orlin. GRIDGEN generator., 1991. Code available from
ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen.

17. J. H. W. Liu. The role of elimination trees in sparse factorization. SIAM Journal on Matrix
Analysis and Applications, 11(1):134–172, 1990.

18. J. W. Liu, E. G. Ng, and B. W. Peyton. On finding supernodes for sparse matrix computations.
SIAM J. Matrix Anal. Appl., 14(1):242–252, January 1993.

19. NetLib. Linear programming problems. http://www.netlib.org/lp/.
20. E.G. Ng and B.W. Peyton. Block sparse Cholesky algorithms on advanced uniprocessor

computers. SIAM J. Sci. Comput., 14(5):1034–1056, 1993.
21. A. Noor and S. Voigt. Hypermatrix scheme for the STAR–100 computer. Computers and

Structures, 5:287–296, 1975.
22. E. Rothberg. Performance of panel and block approaches to sparse Cholesky factorization on

the IPSC/860 and Paragon multicomputers. SIAM J. Sci. Comput., 17(3):699–713, 1996.
23. R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra software. In Supercom-

puting ’98, pages 211–217. IEEE Computer Society, Nov 1998.
24. Y. Zhang. Solving large–scale linear programs by interior–point methods under the MATLAB

environment. TR 96–01, Baltimore, MD 21228–5398, USA, 1996.

Maximum-Weighted Matching Strategies
and the Application to Symmetric Indefinite Systems�

Stefan Röllin1 and Olaf Schenk2

1 Integrated Systems Laboratory, Swiss Federal Institute of Technology Zurich
Gloriastrasse 35, CH-8092 Zurich, Switzerland

roellin@iis.ee.ethz.ch
http://www.iis.ee.ethz.ch

2 Department of Computer Science, University Basel
Klingelbergstrasse 50, CH-4056 Basel, Switzerland

olaf.schenk@unibas.ch
http://www.informatik.unibas.ch/personen/schenk o.html

Abstract. The problem of finding good numerical preprocessing methods for
the solution of symmetric indefinite systems is considered. Special emphasis is
put on symmetric maximum-weighted matching strategies. The aim is to permute
large elements of the matrix to diagonal blocks. Several variants for the block
sizes are examined and the accuracies of the solutions are compared. It is shown
that maximum-weighted matchings improve the accuracy of sparse direct linear
solvers. The use of a strategy called FULL CYCLES results in an accurate and
reliable factorization. Numerical experiments validate these conclusions.

1 Introduction

It is now commonly known that maximum-weighted bipartite matching algorithms [5]
– developed to place large entries on the diagonal using nonsymmetric permutations
and scalings – greatly enhance the reliability of linear solvers [1,5] for nonsymmetric
linear systems. The goal is to transform the coefficient matrix A with diagonal scaling
matrices Dr and Dc and a permutation matrix Pr so as to obtain an equivalent system
with a matrix PrDrADc that has nonzeros on the diagonal and is better scaled and
more diagonally dominant. This preprocessing has a beneficial impact on the accuracy
of the solver and it also reduces the need for partial pivoting, thereby speeding up
the factorization process. These maximum-weighted matchings are also applicable to
symmetric indefinite systems, but the symmetry of the indefinite systems is lost and
therefore, the factorization would be more expensive concerning both time and required
memory. Nevertheless, modified weighted matchings can be used for these systems. The
goal is to preserve symmetry and to define a permutation, such that the large elements
of the permuted matrix lie on diagonal blocks (not necessarily on the diagonal as for
nonsymmetric matrices). This technique based on numerical criterion was first presented
by Gilbert and Duff [4] and further extended using a structural metric by Duff and
Pralet [6].
� This work was supported by the Swiss Commission of Technology and Innovation under con-

tract number 7036.1 ENS-ES, and the Strategic Excellence Positions on Computational Science
and Engineering of the Swiss Federal Institute of Technology, Zurich.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 808–817, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Maximum-Weighted Matching Strategies 809

We will use these matchings as an additional preprocessing method for the direct
solver PARDISO [10]. This solver employs a combination of left- and right-looking
Level 3 BLAS supernode techniques including a Bunch and Kaufman pivoting strategy
restricted to a static structure of diagonal blocks corresponding to single supernodes.

2 Matching Strategies for Symmetric Indefinite Systems

We are looking for a symmetric permutation matrix P , such that the large elements of A
lie in p× p diagonal blocks of the matrix PAPT . The large elements do not necessarily
lie on the diagonal as in the nonsymmetric case. As a first step, similar algorithms [5] as
in the nonsymmetric case are used to compute the permutation matrix Pr as well as the
diagonal scaling matrices Dr and Dc, which are used later to define a symmetric scaling
matrix. The permutation corresponding to Pr can be broken up into disjoint cycles
c1, . . . , ck. The length of the cycles can be arbitrary but they sum up to the dimension of
A. These cycles are used to define a symmetric permutation: σ = (c1, . . . , ck), which
already results to the permutation matrix P , we are looking for. The matrix PAPT will
have k blocks of size |c1|, . . . , |ck| on the diagonal, if the adjacency structure of the
nodes corresponding to a cycle are extended to a clique.

In the factorization, the rows and columns corresponding to a diagonal block are
treated together. Large diagonal blocks will result in a large fill-in. A first possibility
is to keep the k blocks and to put up with the fill-in. Another strategy is to break up
long cycles of the permutation Pr to avoid large diagonal blocks. One has to distinguish
between cycles of even and odd length. It is possible to break up even cycles into cycles
of length two, without changing the weight of the matching due to the symmetry of the
matrix. For each cycle, there are two possibilities to break it up. We use a structural
metric [6] to decide which one to take. The same metric is also used for cycles of odd
length, but the situation is slightly different. Cycles of length 2k + 1 can be broken
up into k cycles of length two and one cycle of length one. There are 2k + 1 different
possibilities to do this. The resulting 2 × 2 blocks will contain the matched elements.
However, there is no guarantee that the diagonal element corresponding to the cycle of
length one will be nonzero. Another possibility is therefore, to have k − 1 cycles of
length two and one cycle of length three since there will be more freedom to choose an
appropriate pivoting sequence in this case. Again, there are 2k + 1 different ways to do
the division.

As in the nonsymmetric case, it is possible to scale the matrix such that the absolute
value of the matched elements is one and the other elements are equal or less than one in
modulus. However, the original scalings cannot be used, since they are not symmetric,
but they are used to define a symmetric scaling. The matrix PDsADsP

T will have
the desired properties if we define a symmetric diagonal scaling matrix Ds as follows:
Ds =

√
DrDc, where Dr and Dc are the diagonal matrices mentioned above.

In order to keep the fill-in small during the factorization, the matrix is reordered
further with MeTiS [9] before carrying out the factorization. The block structure we
have described before is kept in mind during this reordering step, such that the large
elements still lie in diagonal blocks. We refer to the first strategy in [10, section 4] for
more information on this topic.

810 Stefan Röllin and Olaf Schenk

35 40 45 50 55 60
Matrices

20

40

60

80

100

5 10 15 20 25 30

20

40

60

80

100

R
ow

s
co

ve
re

d
by

 b
lo

ck
s

 [
%

]

Cycles of length 1
Cycles of length 2
Cycles of length 3
Cycles of length ≥ 4

Fig. 1. Distribution of the cycle lengths for the tested matrices. Upper chart: matrices 1-30, lower
chart: matrices 31-61

In the numerical experiments in section 3, we have used 61 sparse symmetric indef-
inite matrices. These matrices are described by Gould and Scott [7] and we have chosen
the same ordering to list our results as they have. Figure 1 shows how long the cycles
for the matrices are if the cycles are not broken up. In theory, they could be arbitrarily
long. However, in practice, most of the cycles ci are of length one or two. Only a small
part of all cycles are longer than two. 40% of all matrices have only cycles of length one
and two. In [4,6], the size of the diagonal blocks has been limited to one or two for the
factorization process with MA57 [3]. Here, we extend these strategies and choose the
following block sizes:

1. Do not break up cycles of length larger than two. This will probably result in more
fill-in, but allows more choices to perform the pivoting within the diagonal blocks.
Therefore, we expect to have better accuracy. This strategy will be called FULL

CYCLES.

2. Divide blocks larger than two into blocks of size one and two, as described above.
It is possible that the block of size one contains a zero element, which can lead to
a zero pivot. However, contrary to [6], we do not permute this block to the end,
but treat it in the same way as all other blocks. We use the name 2X2/1X1 for this
choice.

3. For this possibility, an uneven cycle will be divided into blocks of size two and one
block of size three. We name it 2X2/3X3.

4. Do not apply any kind of additional preprocessing based on symmetric matching.
This strategy will be called DEFAULT.

Maximum-Weighted Matching Strategies 811

In addition, all methods can be combined with a symmetric diagonal scaling based
on Ds =

√
DrDc. Therefore, we can basically test eight strategies3. The difference

between the eight methods is how the diagonal blocks are chosen and whether the
matrix is scaled or not. In total, we have tested PARDISO with these eight different
preprocessing strategies in combination with the 61 symmetric indefinite matrices.

All eight strategies are applied before performing the numerical factorization, for
which we use the algorithm LDLT − SBK described in [10]. This means that we use
Bunch and Kaufman pivoting restricted to static data structures of diagonal supernode
blocks in PARDISO. The coefficient matrix of the LDLT factorization is perturbed
whenever numerically acceptable pivots can not be found within a diagonal supernode
block.

As stated above, it would be possible to apply the nonsymmetric permutations and
scalings directly to the symmetric matrices, but one loses the symmetry for the factoriza-
tion. Therefore, we have not tested a nonsymmetric permutation strategy. The strategy
DEFAULT, SCALED deserves a special explanation. For this strategy, we do the pre-
processing step only to compute the symmetric scaling matrix Ds and use it to scale the
symmetric matrix. As a result, the largest absolute value in the matrix is one. This has
an influence on the factorization, as we will see in the next section.

3 Numerical Experiments

For the computation of the symmetric permutation P and scaling Ds, we need to know
a nonsymmetric permutation Pr and two diagonal scaling matrices Dr and Dc. We have
used our own algorithm that is based on [8] for the numerical experiments to compute
these matrices. We have also tested the algorithm MC64 from HSL (formerly known
as Harwell Subroutine Library). The results are qualitatively the same and therefore we
will only comment on the results of our algorithm.

The numerical results were conducted in sequential mode on a COMPAQ
AlphaServer ES40 with eight GByte main memory and with four CPUs running at
667 MHz. A successful factorization does not mean that the computed solution is satis-
factory, e.g., the triangular solves could be unstable due to numerical perturbation and
thus give an inaccurate solution. With respect to this, we use two different accuracies to
decide whether the factorization and solution process is considered to be successful:

1. Standard Accuracy: a factorization is considered successful if the factorization did
not fail and the second scaled residual ‖Ax − b‖/(‖A‖‖x‖ + ‖b‖) that has been
obtained after one step of iterative refinement is smaller than 10−8.

2. High Accuracy: We say that the factorization has succeeded if the scaled residuals
‖Ax − b‖/(‖A‖‖x‖ + ‖b‖) are smaller than 10−14. Furthermore, a factorization
is considered to be successful if the residuals does not grow during the iterative
refinement step.

The aim of the high accuracy is to see which strategy results in an accurate solution
without the need of iterative refinements. Furthermore, we check whether the solution

3 Please note that we will combine all strategies with a fill-in reduction method based on MeTiS
that honors the special cycle structure.

812 Stefan Röllin and Olaf Schenk

Table 1. Number of solved matrices out of 61 for the eight different preprocessing strategies.
The columns two to four show the number of systems, which are successfully solved, if standard
accuracy or high accuracy is used

Standard Accuracy of 10−8 High Accuracy of 10−14

Iterative refinement no no yes

DEFAULT 59 41 53

DEFAULT, SCALED 59 40 49

FULL CYCLES 59 52 54

FULL CYCLES, SCALED 61 49 51

2X2/1X1 57 47 52

2X2/1X1, SCALED 61 48 53

2X2/3X3 57 48 53

2X2/3X3, SCALED 61 47 52

process is stable by testing the convergence of the iterative refinement step. We compare
the different strategies using the performance profiling system presented in [2] and
which was also used in [7] to compare sparse direct solvers. Performance profiles are
a convenient tool to compare a set of different algorithms A on a set of matrices M.
Each algorithm i ∈ A is run with each matrix j ∈ M, which gives a statistic sij . The
statistic sij might be the time for the factorization, the required memory or the norm of
the scaled residuals. We assume that the smaller sij is, the better an algorithm performs.
In case of a failure of the algorithm, we set sij = ∞. The performance profile pi(α) of
algorithm i ∈ A is defined as

pi(α) :=
|{j ∈M : sij ≤ αŝj}|

|M| ,

where ŝj := mini∈A{sij} denotes the best statistics for matrix j. In other words, in a
performance profile, the values on the y-axis indicate the fraction p(α) of all examples,
which can be solved within α times the best algorithm.

3.1 Standard Accuracy of the Scaled Residuals

From Table 1 we see that the symmetric strategies (FULL CYCLES, 2X2/1X1, 2X2/3X3)
with scaling successfully solve all matrices with an accuracy smaller than 10−8. Without
a scaling, slightly fewer systems can be solved. The memory requirements, the time
to compute the factorization, and the accuracy varies between the eight methods. We
describe the differences in the following.

Figure 2 shows the CPU time profile for the tested strategies, i.e. the time for the
numerical factorization as well as the time for the overall solution. For the sake of
clarity, we do not show the results for both 2X2/3X3 strategies, since there are only
minor differences between them and the results of the strategies 2X2/1X1. The reason is

Maximum-Weighted Matching Strategies 813

1 2 3 4 5
α

0

0.2

0.4

0.6

0.8

1

p(
α)

default (2 failed)
default, scaled (2 failed)
full cycles (2 failed)
full cycles, scaled (0 failed)
2x2/1x1 (4 failed)
2x2/1x1, scaled (0 failed)

Time for numerical factorization

1 2 3 4 5
α

0

0.2

0.4

0.6

0.8

1

p(
α)

default (2 failed)
default, scaled (2 failed)
full cycles (2 failed)
full cycles, scaled (0 failed)
2x2/1x1 (4 failed)
2x2/1x1, scaled (0 failed)

Time for matching, analyze, factorization and solve

Fig. 2. Standard accuracy performance profile for the CPU time of the numerical factorization,
and the complete solution including matching, analysis, factorization and solve

1 10 100 1000 10000
α

0

0.2

0.4

0.6

0.8

1

p(
α)

default (2 failed)
default, scaled (2 failed)
full cycles (2 failed)
full cycles, scaled (0 failed)
2x2/1x1 (4 failed)
2x2/1x1, scaled (0 failed)

Accuracy of first scaled residual

1 10 100 1000 10000
α

0

0.2

0.4

0.6

0.8

1

p(
α)

default (2 failed)
default, scaled (2 failed)
full cycles (2 failed)
full cycles, scaled (0 failed)
2x2/1x1 (4 failed)
2x2/1x1, scaled (0 failed)

Accuracy of second scaled residual

Fig. 3. Standard accuracy performance profile of the solution before and after one step of iterative
refinement. The profile shows the results for the first and second scaled residual up to α = 105

that these strategies only treat matrices differently that have odd cycles and only seven
matrices have such cycles. The results for these matrices in combination with 2X2/1X1
and 2X2/3X3 differ only very slightly except for one matrix (Matrix 11: BLOCKQP1).
The difference for this matrix is obvious, since it has almost only cycles of size three.

The default symmetric version of PARDISO appears to be the most effective solver. It
can solve all but two systems, it has the smallest factorization time and the smallest total
solution time for the complete solution. Comparing the profiles it can also be seen that
the factorization time for the FULL CYCLES methods are the slowest of all strategies.
This configuration requires the most memory since columns with different row structure
are coupled together resulting in larger fill-in during factorization. Although 2X2/1X1
uses less memory and is faster than FULL CYCLES, it is still slower than both default
strategies.

Figure 3 compares the first and second scaled residual that has been obtained after
one step of iterative refinement. Here, the benefit of the preprocessing strategies be-
comes obvious. The most accurate solution before iterative refinement is provided by
the strategy FULL CYCLES without scaling, followed closely by the other strategies.

814 Stefan Röllin and Olaf Schenk

35 40 45 50 55 60
Matrices

0.001

0.01

0.1

1

10

100

N
um

be
r

of
 p

er
tu

rb
ed

 p
iv

ot
s

[%
]

5 10 15 20 25 30

0.001

0.01

0.1

1

10

100

default
full cycles
2x2/1x1

Fig. 4. Number of perturbed pivots during factorization for the tested matrices. Note the logarithmic
scaling of the y-axis. If there is no symbol for a matrix, this means no perturbed pivots occurred
during the factorization

Interestingly, the accuracy of the strategies with a scaling is slightly worse than without
a scaling, even though the former can solve more problems. The DEFAULT strategy gives
the least accurate results. However, after one step of iterative refinement, the accuracy
of all methods is of the same order. It can be concluded that if the factorization time is of
primary concern and if one step of iterative refinement can be applied, then the strategy
DEFAULT is superior due to the fact that the accuracy of the scaled residuals is in the
same order.

3.2 High Accuracy of the Scaled Residuals

Up to now, the DEFAULT strategy of PARDISO seems to be the best choice for most of the
matrices if the accuracy of the solution is not the first criterion. However, the situation
changes if the requirements for the solution are highly tightened and high accuracy
without iterative refinement is used, as can be seen from column 3 in Table 1. No
strategy is able to solve all matrices. The strategy FULL CYCLES is the most successful
strategy. More precisely, for 52 matrices, the first scaled residual is smaller than 10−14.
The other preprocessing strategies are only slightly inferior. The results for both default
strategies are much worse: PARDISO with the DEFAULT does not meet the accuracy
requirements for 20 matrices and DEFAULT, SCALED fails for 21 matrices. That the use
of blocks is beneficial is not surprising if the number of perturbed pivots during the
factorization is considered, as depicted in Figure 4. In general, this number decreases
by using a strategy with blocks on the diagonal. Especially for those matrices which
are not successfully solved by the DEFAULT strategy, the number of perturbed pivots
will decrease significantly resulting in a high accuracy of the solution without iterative
refinement by using a FULL CYCLES or 2X2/1X1 strategy.

Maximum-Weighted Matching Strategies 815

35 40 45 50 55 60
Matrices

10
-18

10
-14

10
-10

10
-6

5 10 15 20 25 30

10
-18

10
-14

10
-10

10
-6

Sc
al

ed
 r

es
id

ua
ls

default
default, refinement
full cycles
full cycles, refinement

Fig. 5. Accuracy of the scaled residuals using DEFAULT and the FULL CYCLES strategy

The situation changes, if we look at the second scaled residuals, i.e. the residuals
after one step of iterative refinement. The corresponding results are shown in the last
column in Table 1. Although the FULL CYCLES strategy is still the best choice, there
are only minor differences regarding the number of successful solves between the pre-
processing strategies and the DEFAULT strategy. As a result, in can be concluded that
the PARDISO default strategy with one step iterative refinement provides generally high
accurate solutions and it can solve 53 out of 61 matrices with an accuracy of 10−14.

In Figure 5, a comparison of the accuracy of the first and second scaled residual for
all 61 matrices is given. This figure shows the accuracy for the DEFAULT and the FULL

CYCLES strategy before and after one step of iterative refinement. It is clearly visible
that the accuracy of the DEFAULT strategy with one step iterative refinement is a method
that produces high accurate solutions for almost all matrices.

In Figures 6 and 7, the performance profiles are given for the total CPU time with
and without one step of iterative refinement. Due to the fact that a high accurate solution
is sought, there are now more failures for all strategies. As stated before, we set the
statistic for the performance profile (e.g. the factorization time), to infinity in the case
of a failure. Therefore, the performance profiles in Figures 2, 6 and 7 are different.

The best choice is FULL CYCLES without scaling if the accuracy is important and
no iterative refinement can be made. The strategy 2X2/1X1 is only slightly worse, but
on the average requires less memory for the factorization and solves the matrices faster.
The fastest method that produces residuals with a similar accuracy is again the DEFAULT

strategy using one step of iterative refinement.

816 Stefan Röllin and Olaf Schenk

1 2 3 4 5
α

0

0.2

0.4

0.6

0.8

1

p(
α)

default (20 failed)
default, scaled (21 failed)
full cycles (9 failed)
full cycles, scaled (12 failed)
2x2/1x1 (14 failed)
2x2/1x1, scaled (13 failed)

Time for numerical factorization

1 2 3 4 5
α

0

0.2

0.4

0.6

0.8

1

p(
α)

default (20 failed)
default, scaled (21 failed)
full cycles (9 failed)
full cycles, scaled (12 failed)
2x2/1x1 (14 failed)
2x2/1x1, scaled (13 failed)

Time for matching, analyze, factorization and solve

Fig. 6. High accuracy performance profile for the CPU time of the numerical factorization, and
the time for the complete solution including matching, analysis, factorization and solve without
iterative refinement

1 2 3 4 5
α

0

0.2

0.4

0.6

0.8

1

p(
α)

default (8 failed)
default, scaled (12 failed)
full cycles (7 failed)
full cycles, scaled (10 failed)
2x2/1x1 (9 failed)
2x2/1x1, scaled (8 failed)

Time for numerical factorization

1 2 3 4 5
α

0

0.2

0.4

0.6

0.8

1

p(
α)

default (8 failed)
default, scaled (12 failed)
full cycles (7 failed)
full cycles, scaled (10 failed)
2x2/1x1 (9 failed)
2x2/1x1, scaled (8 failed)

Time for matching, analyze, factorization and solve

Fig. 7. High accuracy performance profile for the CPU time of the numerical factorization, and
the time for the complete solution including matching, analysis, factorization and solve with one
step of iterative refinement

4 Conclusion

We have investigated maximum-weighted matching strategies to improve the accuracy
for the solution of symmetric indefinite systems. We believe that the current default
option in PARDISO is a good general-purpose solver [10]. This is based on restricting
pivoting interchanges within diagonal blocks corresponding to single supernodes. The
factor LDLT is perturbed whenever numerically acceptable pivots cannot be found
within a diagonal block. The solution step is therefore performed with one step of
iterative refinement. However, iterative refinement can be a serious problem in cases
that involve a high number of solution steps. In these cases, matchings are advantageous
as they improve the accuracy of the solution without performing iterative refinement. We
have demonstrated that the matching strategies are very effective at the cost of a higher
factorization time. Among the proposed strategies, FULL CYCLES is the most accurate
one. Furthermore, our results also show that matchings strategies are more important
than scalings and that these matching strategies improve the accuracy of the solution.

Maximum-Weighted Matching Strategies 817

References

1. M. Benzi, J.C. Haws, and M. Tuma. Preconditioning highly indefinite and nonsymmetric
matrices. SIAM J. Scientific Computing, 22(4):1333–1353, 2000.

2. E. D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, 2002.

3. I. S. Duff. MA57 – a code for the solution of sparse symmetric definite and indefinite systems.
ACM Transactions on Mathematical Software, 30(2):118–144, June 2004.

4. I. S. Duff and J. R. Gilbert. Maximum-weighted matching and block pivoting for symmetric
indefinite systems. In Abstract book of Householder Symposium XV, June 17-21, 2002.

5. I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse
matrix. SIAM J. Matrix Analysis and Applications, 22(4):973–996, 2001.

6. I. S. Duff and S. Pralet. Strategies for scaling and pivoting for sparse symmetric indefinite
problems. Technical Report TR/PA/04/59, CERFACS, Toulouse, France, 2004.

7. Nicholas I. M. Gould and Jennifer A. Scott. A numerical evaluation of HSL packages for the
direct solution of large sparse, symmetric linear systems of equations. ACM Transactions on
Mathematical Software, 30(3):300 – 325, September 2004.

8. A. Gupta and L. Ying. On algorithms for finding maximum matchings in bipartite graphs.
Technical Report RC 21576 (97320), IBM T. J. Watson Research Center, Yorktown Heights,
NY, October 25, 1999.

9. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Scientific Computing, 20(1):359–392, 1998.

10. O. Schenk and K. Gärtner. On fast factorization pivoting methods for sparse symmetric indef-
inite systems. Technical Report CS-2004-004, Department of Computer Science, University
of Basel, 2004. Submitted.

An Evaluation of Sparse Direct Symmetric Solvers:
An Introduction and Preliminary Findings

Jennifer A. Scott1, Yifan Hu2, and Nicholas I.M. Gould1

1 Computational Science and Engineering Department
Rutherford Appleton Laboratory

Chilton, Oxfordshire, OX11 0QX, England, UK
{n.i.m.gould,j.a.scott}@rl.ac.uk

2 Wolfram Research, Inc., 100 Trade Center Drive
Champaign, IL61820, USA
yifanhu@wolfram.com

Abstract. In recent years a number of solvers for the direct solution of large
sparse, symmetric linear systems of equations have been developed. These in-
clude solvers that are designed for the solution of positive-definite systems as
well as those that are principally intended for solving indefinite problems. The
available choice can make it difficult for users to know which solver is the most
appropriate for their applications. In this study, we use performance profiles as a
tool for evaluating and comparing the performance of serial sparse direct solvers
on an extensive set of symmetric test problems taken from a range of practical
applications.

1 Introduction

Solving linear systems of equations lies at the heart of numerous problems in computa-
tional science and engineering. In many cases, particularly when discretizing continuous
problems, the system is large and the associated matrix A is sparse. Furthermore, for
many applications, the matrix is symmetric; sometimes, such as in finite-element appli-
cations, A is positive definite, while in other cases, including constrained optimization
and problems involving conservation laws, it is indefinite.

A direct method for solving a sparse linear system Ax = b involves the explicit
factorization of the system matrix A (or, more usually, a permutation of A) into the
product of lower and upper triangular matrices L and U . In the symmetric case, for
positive definite problems U = LT (Cholesky factorization) or, more generally, U =
DLT , where D is a block diagonal matrix with 1 × 1 and 2 × 2 blocks. Forward
elimination followed by backward substitution completes the solution process for each
given right-hand side b. Direct methods are important because of their generality and
robustness. Indeed, for the ‘tough’ linear systems arising from some applications, they
are currently the only feasible solution methods. In many other cases, direct methods are
often the method of choice because the difficulties involved in finding and computing
a good preconditioner for an iterative method can outweigh the cost of using a direct
method. Furthermore, direct methods provide an effective means of solving multiple

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 818–827, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Evaluation of Sparse Direct Symmetric Solvers 819

systems with the same A but different right-hand sides b because the factorization needs
only to be performed once.

Since the early 1990s, many new algorithms and a number of new software packages
for solving sparse symmetric systems have been developed. Because a potential user may
be bewildered by such choice, our intention to compare the serial solvers (including serial
versions of parallel solvers) on a significant set of large test examples from many different
application areas. This study is an extension of a recent comparison by Gould and Scott
[3] of sparse symmetric direct solvers in the mathematical software library HSL [7]. This
earlier study concluded that the best general-purpose HSL package for solving sparse
symmetric systems is currently MA57. Thus the only HSL direct solver included here
is MA57, but for some classes of problems, other HSL codes may be more appropriate.
For full details and results for the HSL symmetric solvers are given in [4].

The sparse solvers used in this study are listed in Table 1. The codes are discussed in
detail in the forthcoming report [5]. Some of the solvers are freely available to academics
while to use others it is necessary to purchase a licence. This information is provided in
Table 2. For each code a webpage address is also given (or, if no webpage is currently
available, an email contact is provided). Note that for non academic users, the conditions
for obtaining and using a solver varies between the different packages.

Table 1. Solvers used in our numerical experiments. A ‘&’ indicates both languages are used in
the source code; ‘F77/F90’ indicates there is a F77 version and a F90 version

Code Date/version Language Authors

BCSLIB-EXT 11.2001, v4.1 F77 The Boeing Company

MA57 01.2002, v1.0.0 F77/F90 I.S. Duff, HSL

MUMPS 11.2003, v4.3.2 F90 P.R. Amestoy, I.S. Duff,

J.-Y. L’Excellent, and J. Koster

Oblio 12.2003, v0.7 C++ F. Dobrian and A. Pothen

PARDISO 02.2004 F77 & C O. Schenk and K. Gärtner

SPOOLES 1999, v2.2 C C. Ashcraft and R. Grimes

SPRSBLKLLT 1997, v0.5 F77 E.G. Ng and B.W. Peyton

TAUCS 08.2003, v2.2 C S. Toledo

UMFPACK 04.2003, v4.1 C T. Davis

WSMP 2003, v1.9.8 F90 & C A. Gupta and M. Joshi, IBM

2 Test Environment

Our aim is to test the solvers on a wide range of problems from as many different
application areas as possible. In collecting test data we imposed only two conditions:

– The matrix must be square and of order greater than 10, 000.
– The data must be available to other users.

820 Jennifer A. Scott, Yifan Hu, and Nicholas I.M. Gould

Table 2. Academic availability of and contact details for the solvers used in our numerical exper-
iments. ∗ denotes source code is provided in the distribution

Code Free to Webpage / email contact

academics

BCSLIB-EXT × www.boeing.com/phantom/BCSLIB-EXT/index.html

MA57∗ × www.cse.clrc.ac.uk/nag/hsl

MUMPS∗ √
www.enseeiht.fr/lima/apo/MUMPS/

Oblio∗ √
dobrian@cs.odu.edu or pothen@cs.odu.edu

PARDISO
√

www.computational.unibas.ch/cs/scicomp/software/pardiso

SPOOLES∗ √
www.netlib.org/linalg/spooles/spooles.2.2.html

SPRSBLKLLT∗ √
EGNg@lbl.gov

TAUCS∗ √
www.cs.tau.ac.il/∼stoledo/taucs/

UMFPACK∗ √
www.cise.ufl.edu/research/sparse/umfpack/

WSMP
√

www-users.cs.umn.edu/∼agupta/wsmp.html

The first condition was imposed because our interest is in large problems. The second
condition was to ensure that our tests could be repeated by other users and, furthermore,
it enables other software developers to test their codes on the same set of examples
and thus to make comparisons with other solvers. Our test set comprises 88 positive-
definite problems and 61 numerically indefinite problems. Numerical experimentation
found 5 of the indefinite problems to be structurally singular and a number of others are
highly-ill-conditioned. Any matrix for which we only have the sparsity pattern avail-
able is included in the positive-definite set and appropriate numerical values generated.
Application areas represented by our test set include linear programming, structural
engineering, computational fluid dynamics, acoustics, and financial modelling. A full
list of the test problems together with a brief description of each is given in [6]. The
problems are all available from

ftp://ftp.numerical.rl.ac.uk/pub/matrices/symmetric

In this study, performance profiles are used as a means to evaluate and compare the
performance of the solvers on our set T of test problems. Let S represent the set of
solvers that we wish to compare. Suppose that a given solver i ∈ S reports a statistic
sij ≥ 0 when run on example j from the test set T , and that the smaller this statistic the
better the solver is considered to be. For example, sij might be the CPU time required
to solve problem j using solver i. For all problems j ∈ T , we want to compare the
performance of solver i with the performance of the best solver in the set S.

For j ∈ T , let ŝj = min{sij ; i ∈ S}. Then for α ≥ 1 and each i ∈ S we define

k(sij , ŝj , α) =

{
1 if sij ≤ αŝj

0 otherwise.

An Evaluation of Sparse Direct Symmetric Solvers 821

The performance profile (see [1]) of solver i is then given by the function

pi(α) =

∑
j∈T k(sij , ŝj , α)

|T | , α ≥ 1.

Thus pi(1) gives the fraction of the examples for which solver i is the most effective
(according to the statistic sij), pi(2) gives the fraction for which it is within a factor of
2 of the best, and limα−→∞ pi(α) gives the fraction for which the algorithm succeeded.

In this study, the statistics used are the CPU times required to perform the different
phases of the solver, the number of nonzero entries in the matrix factor, and the total
memory used by the solver (but in this paper, limitations on space allow us only to present
CPU timings). Since some of the solvers we are examining are specifically designed for
positive-definite problems (and may be unreliable, or even fail, on indefinite ones), we
present our findings for the positive-definite and indefinite cases separately. In our tests,
default values are used for all control parameters.

3 Preliminary Results

The numerical results were obtained on a Compaq DS20 Alpha server with a pair of EV6
CPUs; in our experiments only a single processor with 3.6 GBytes of RAM was used.
The codes were compiled with full optimisation; the vendor-supplied BLAS were used.
All CPU reported times are in seconds. A CPU limit of 2 hours was imposed for each
code on each problem; any code that had not completed after this time was recorded as
having failed. The scaled residual

‖b− Ax‖/(‖A‖‖x‖+ ‖b‖)

of each computed solution was checked before and after one step of iterative refinement;
a residual after iterative refinement greater than 0.0001 causes an error to be flagged. In
the reported tests, the input matrix A was not scaled.

3.1 Positive Definite Problems

The reliability of all the solvers in the positive-definite case was generally high. Only
problem audikw was not solved by any code, this example being one of the two largest –
it is of order roughly 950 thousand, and involves some 39 million nonzeros; the solvers
with no out-of-core facilities were not able to allocate sufficient memory while the CPU
time limit was exceeded for the remaining solvers. We present the performance profile for
the CPU time for the complete solution (that is, the CPU time for analysing, factorising
and solving for a single right-hand side) for the solvers in Figure 1, with the profiles for
the separate analyse, factorise, and solve times in Figures 2 to 4. We see that, with the
exception of SPOOLES and UMFPACK (which is primarily designed for unsymmetric
problems), there is little to choose between the solvers when comparing the complete
solution time. Many of the solvers use the nested dissection ordering from the METIS
package [8] to obtain the pivot sequence and so they record similar analyse times. The
multiple minimum degree algorithm used bySPRSBLKLLT is notably faster whileWSMP

822 Jennifer A. Scott, Yifan Hu, and Nicholas I.M. Gould

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 0.AFS.CPU − 88 positive−definite problems, u=default

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 α
 o

f b
es

t

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 1. Performance profile, p(α): CPU time (seconds) for the complete solution (positive-definite
problems)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 0.Analyse.CPU − 88 positive−definite problems, u=default

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 α
 o

f b
es

t

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 2. Performance profile, p(α): CPU time (seconds) for analyse phase (positive-definite prob-
lems)

An Evaluation of Sparse Direct Symmetric Solvers 823

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 0.Factorise.CPU − 88 positive−definite problems, u=default

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 α
 o

f b
es

t

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 3. Performance profile, p(α): CPU time (seconds) for the factorization (positive-definite
problems)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 0.Solve.CPU − 88 positive−definite problems, u=default

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 α
 o

f b
es

t

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 4. Performance profile, p(α): CPU time (seconds) for the solve phase (positive-definite
problems)

824 Jennifer A. Scott, Yifan Hu, and Nicholas I.M. Gould

computes both a minimum local fill ordering and an ordering based on recursive bisection
and selects the one that will result in the least fill-in. This extra investment pays dividends
with WSMP having the fastest factorise times. In some applications, many solves may be
required following the factorisation. The codes BCSLIB-EXT, MA57, and PARDISO
have the fastest solve times.

3.2 Indefinite Problems

We now turn to the indefinite test suite. For these problems, pivoting is needed to maintain
stability. The pivoting strategies offered by the codes are summarised in Table 3; more
details are given in [5] and the references therein. Since SPRSBLKLLT and the tested
version of TAUCS are designed only for solving definite problems, they are omitted.
We have experienced problems when using SPOOLES for some indefinite systems, and
thus results for SPOOLES are not currently included. MUMPS uses 1× 1 pivots chosen
from the diagonal and the factorization terminates if all the remaining (uneliminated)
diagonal entries are zero. Because this may mean some of our test problems are not
solved, at the authors’ suggestion, we run both the symmetric and unsymmetric versions
of MUMPS when testing indefinite examples.

Table 3. Default pivoting strategies

BCSLIB-EXT Numerical pivoting with 1 × 1 and 2 × 2 pivots.

MA57 Numerical pivoting with 1 × 1 and 2 × 2 pivots.

MUMPS Numerical pivoting with 1 × 1 pivots.

Oblio Numerical pivoting with 1 × 1 and 2 × 2 pivots.

PARDISO Supernode Bunch-Kaufmann within diagonal blocks.

SPOOLES Fast Bunch-Parlett.

UMFPACK Partial pivoting with preference for diagonal pivots.

WSMP No pivoting.

The profiles for the indefinite results are given in Figures 5to 8. The overall reliability
of the solvers in the indefinite case was not as high as for the positive-definite one, with
all the codes failing on some of the test problems. Because it does not include pivoting,
WSMP had the highest number of failures. The majority of failures for the other codes
were due to insufficient memory or the CPU time limit being exceeded or, in the case of
symmetric MUMPS, no suitable diagonal pivots (singular matrices). The main exception
was PARDISO, which had the fastest factorization times, but for two problems the
computed solutions were found to be inaccurate.

We note that v1.0.0 of MA57 uses an approximate minimum degree ordering and
computing this is significantly faster than computing the METIS ordering; this accounts
for the fast MA57 analyse times. MA57 also has the fastest solve times; the solve times
for PARDISO are slower even though it produces the sparsest factors since by default its
solve phase includes one step of iterative refinement. Overall, PARDISOwas the fastest
code on our set of indefinite problems.

An Evaluation of Sparse Direct Symmetric Solvers 825

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 1.AFS.CPU − 61 indefinite problems, scaled, u=default

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 α
 o

f b
es

t

BCSEXT−LIB (15 failed)
MA57 (10 failed)
MUMPS (14 failed)
MUMPS−unsym (7 failed)
Oblio (5 failed)
PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 5. Performance profile, p(α): CPU time (seconds) for the complete solution (indefinite
problems)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 1.Analyse.CPU − 61 indefinite problems, scaled, u=default

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 α
 o

f b
es

t

BCSEXT−LIB (15 failed)
MA57 (10 failed)
MUMPS (14 failed)
MUMPS−unsym (7 failed)
Oblio (5 failed)
PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 6. Performance profile, p(α): CPU time (seconds) for analyse phase (indefinite problems)

826 Jennifer A. Scott, Yifan Hu, and Nicholas I.M. Gould

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 1.Factorise.CPU − 61 indefinite problems, scaled, u=default

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 α
 o

f b
es

t

BCSEXT−LIB (15 failed)
MA57 (10 failed)
MUMPS (14 failed)
MUMPS−unsym (7 failed)
Oblio (5 failed)
PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 7. Performance profile, p(α): CPU time (seconds) for the factorization (indefinite problems)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 1.Solve.CPU − 61 indefinite problems, scaled, u=default

α

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 α
 o

f b
es

t

BCSEXT−LIB (15 failed)
MA57 (10 failed)
MUMPS (14 failed)
MUMPS−unsym (7 failed)
Oblio (5 failed)
PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 8. Performance profile, p(α): CPU time (seconds) for the solve phase (indefinite problems)

4 General Remarks

In this paper, we have introduced our study of sparse direct solvers for symmetric linear
systems and presented preliminary results. Full details of the study together with further

An Evaluation of Sparse Direct Symmetric Solvers 827

information on all the solvers used will be given in the forthcoming report [5]. This report
will also contain more detailed numerical results and analysis of the results. Furthermore,
since performance profiles can only provide a global view of the solvers, the full results
for all the solvers on each of the test problems will be made available in a further report
[6]. We note that our preliminary findings have already lead to modifications to a number
of the solvers (notably MA57, PARDISO, and Oblio), and to further investigations and
research into ordering and pivoting strategies.

Acknowledgements

We are grateful to all the authors of the solvers who supplied us with copies of their codes
and documentation, helped us to use their software and answered our many queries. Our
thanks also to all those who supplied test problems.

References

1. E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2), 201–213, 2002.

2. I.S. Duff, R.G. Grimes, and J.G. Lewis. Sparse matrix test problems. ACM Trans. Mathematical
Software, 15, 1–14, 1989.

3. N.I.M. Gould and J.A. Scott. A numerical evaluation of HSL packages for the direct solution
of large sparse, symmetric linear systems of equations. ACM Trans. Mathematical Software,
30, 300-325, 2004.

4. N.I.M. Gould and J.A. Scott. Complete results for a numerical evaluation of HSL pack-
ages for the direct solution of large sparse, symmetric linear systems of equations. Numer-
ical Analysis Internal Report 2003-2, Rutherford Appleton Laboratory, 2003. Available from
www.numerical.rl.ac.uk/reports/reports.shtml.

5. N.I.M. Gould, Y. Hu and J.A. Scott. A numerical evaluation of sparse direct solvers for the
solution of large, sparse, symmetric linear systems of equations. Technical Report, Rutherford
Appleton Laboratory, 2005. To appear.

6. N.I.M. Gould, Y. Hu, and J.A. Scott. Complete results for a numerical evaluation of sparse direct
solvers for the solution of large, sparse, symmetric linear systems of equations. Numerical
Snalysis Internal Report, Rutherford Appleton Laboratory, 2005. To appear.

7. HSL. A collection of Fortran codes for large-scale scientific computation, 2002. See
http://hsl.rl.ac.uk/.

8. G. Karypis and V. Kumar. METIS: A software package for partitioning unstructured graphs,
partitioning meshes and computing fill-reducing orderings of sparse matrices - version 4.0,
1998. See http://www-users.cs.umn.edu/ karypis/metis/

Treatment of Large Scientific Problems:
An Introduction

Organizers: Zahari Zlatev1 and Krassimir Georgiev2

1 National Environmental Research Institute
Frederiksborgvej 399, P. O. Box 358, DK-4000 Roskilde, Denmark
2 Institute for Parallel Processing, Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 25-A, 1113 Sofia, Bulgaria

The computers are becoming faster and faster. Their capabilities to deal with very large
data sets are steadily increasing. Problems that require a lot of computing time and rely
on the use of huge files of input data can now be treated on powerful workstations and
PCs (such problems had to be treated on powerful mainframes only 5-6 years ago).
Therefore, it is necessary to answer the following two important questions:

– Are the computers that are available at present large enough?
– Do we need bigger (here and in the remaining part of this introduction, “a bigger

computer" means a computer with larger memory discs, not a physically bigger
computer) and faster computers for the treatment of the large-scale scientific prob-
lems, which appear in different fields of science and engineering and have to be
resolved either now or in the near future?

These two questions can best be answered by using a quotation taken from a paper
“Ordering the universe: The role of mathematics" written by Arthur Jaffe ([1]):

“Although the fastest computers can execute millions of oper-
ations in one second they are always too slow. This may seem
a paradox, but the heart of the matter is: the bigger and bet-
ter computers become, the larger are the problems scientists and
engineers want to solve".

The paper of Jaffe was published in 1984. The relevance of this statement can be
illustrated by the following example. The difference between the requirements to the
air pollution problems studied in 1984 and those studied at present can be expressed by
the following figures about the sizes of the problems from this field that were solved
20 years ago and the problems treated now. At that time, i.e. in 1984, it was difficult to
handle models containing, after the discretization, more than 2048 equations. One of the
biggest problems solved at present, which can successfully be treated on large parallel
computers, contains, again after the discretization, more than 160 000 000 ordinary
differential equations. This system of ordinary differential equations had to be treated
during about 250 000 time-steps. Moreover, many scenarios with this problem had to be
handled in a comprehensive study related to future climate changes and high pollution
levels. One of the major reasons for being able to handle such huge problems, about 80
000 times larger than the problems that were solved in 1984, is the availability of much
bigger and much faster computers. There is no reason to assume that the development of

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 828–830, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Treatment of Large Scientific Problems: An Introduction 829

bigger and faster computers will not continue. Therefore, the scientists could continue
to plan the formulation and the treatment of bigger and bigger tasks, tasks which impose
strong requirements for handling bigger and bigger data sets, because the solutions
obtained in this way

– will be closer to the reality,
– will contain more details and more useful details

and

– will give reliable answers to questions which are at present open.

The main conclusion from the above short discussion can be formulated as follows.
Although there are more and more problems which can successfully be handled (without
any attempt to optimize the computational process) on workstations and PCs, it is still
necessary, when the problems are very large, to run highly optimized codes on big
modern supercomputers. The set of problems, which could be treated on workstations
and PCs will become bigger and bigger in the future, because the computer power of
the workstations and PCs will continue to be increasing. However, the requirements

– for more accuracy (i.e. the need to calculate more accurate and, thus, more reliable
results)

and

– for obtaining more detailed information

are also steadily increasing. This means that the models are continuously becoming
bigger and bigger. Of course, this is a well known, by the specialists, fact. In his paper
[1] A. Jaffe stated (about 20 years ago) that the computers will always be too slow for
the scientists that are dealing with very large applications. A. Jaffe

– was right,
– is still right

and

– will certainly continue to be right in the future.

In other words, there will always exist very advanced and very important for the
modern society scientific problems which cannot be solved on workstations or PCs
without imposing some non-physical assumptions during the development of the model.
Thus, the fastest available computers will always be needed for the successful solution
of the most important for the modern society tasks.

The exploitation of the new fast computers in the efforts to avoid non-physical as-
sumptions and, thus, to develop and run more reliable and more robust large scientific
models was the major topic of the special session on the “Treatment of Large Scien-
tific Models". In the papers, which were presented at this special session, the authors
considered

830 Zahari Zlatev and Krassimir Georgiev

– numerical methods which are both faster and more accurate,
– the use of parallel algorithms

and

– the organization of the computational process for efficient exploitation of the cache
memory of the modern computer architectures.

The special session on the “Treatment of Large Scientific Models" was organized by
Krassimir Georgiev (georgiev@parallel.bas.bg) and Zahari Zlatev (zz@dmu.dk).

Reference

1. Jaffe, A. (1984). Ordering the universe: The role of mathematics. SIAM Rev., 26: 475-488.

Towards a Parallel Multilevel Preconditioned
Maxwell Eigensolver

Peter Arbenz1, Martin Bečka1,�, Roman Geus2, and Ulrich Hetmaniuk3,�

1 Institute of Computational Science, ETH Zürich, CH-8092 Zürich
2 Paul Scherrer Institut, CH-5232 Villigen PSI

3 Sandia National Laboratories, Albuquerque, NM 87185-1110, USA��

Abstract. We report on a parallel implementation of the Jacobi–Davidson (JD) to
compute a few eigenpairs of a large real symmetric generalized matrix eigenvalue
problem

Ax = λMx, CT x = 0.

The eigenvalue problem stems from the design of cavities of particle accelerators.
It is obtained by the finite element discretization of the time-harmonic Maxwell
equation in weak form by a combination of Nédélec (edge) and Lagrange (node)
elements.
We found the Jacobi–Davidson (JD) method to be a very effective solver provided
that a good preconditioner is available for the correction equations that have to
be solved in each step of the JD iteration. The preconditioner of our choice is a
combination of a hierarchical basis preconditioner and a smoothed aggregation
AMG preconditioner. It is close to optimal regarding iteration count and scales
with regard to memory consumption.
The parallel code makes extensive use of the Trilinos software framework.

1 Introduction

Many applications in electromagnetics require the computation of some of the eigenpairs
of the curl-curl operator,

curl μ−1
r curl e(x)− k2

0 εr e(x) = 0, div e(x) = 0, x ∈ Ω, (1.1)

in a bounded simply-connected, three-dimensional domain Ω with homogeneous
boundary conditions e × n = 0 posed on the connected boundary ∂Ω. εr and μr

are the relative permittivity and permeability. Equations (1.1) are obtained from the
Maxwell equations after separation of the time and space variables and after elimination
of the magnetic field intensity. While εr and μr are complex numbers in problems from
waveguide or laser design, in simulations of accelerator cavities the materials can be

� The work of these authors has been supported by the ETH research grant TH-1/02-4 on “Large
Scale Eigenvalue Problems in Opto-Electronic Semiconductor Lasers and Accelerator Cavi-
ties”.

�� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 831–838, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

832 Peter Arbenz et al.

assumed to be loss-free, thus admitting real εr and μr, whence all eigenvalues are real.
Here, we will assume εr = μr = 1. Thus, the discretization of (1.1) by finite elements
leads to a real symmetric generalized matrix eigenvalue problem

Ax = λMx, CT x = 0, (1.2)

where A is positive semidefinite and M is positive definite. In order to avoid spurious
modes we approximate the electric field e by Nédélec (or edge) elements [12]. The La-
grange multiplier (a function) introduced to treat properly the divergence free condition
is approximated by Lagrange (or nodal) finite elements [2].

In this paper we consider a parallel eigensolver for computing a few, i.e., five to
ten of the smallest eigenvalues and corresponding eigenvectors of (1.2) as efficiently
as possible with regard to execution time and consumption of memory space. In earlier
studies [2] we found the Jacobi–Davidson algorithm [13,8] a very effective solver for
this task. We have parallelized this solver in the framework of the Trilinos parallel solver
environment [9].

In section 2 we review the symmetric Jacobi-Davidson eigensolver and the precondi-
tioner that is needed for its efficient application. In section 3 we discuss data distribution
and issues involving the use of Trilinos.

In section 4 we report on experiments that we conducted by means of problems
originating in the design of the RF cavity of the 590 MeV ring cyclotron installed at the
Paul Scherrer Institute (PSI) in Villigen, Switzerland. These experiments indicate that
the implemented solution procedure is almost optimal in that the number of iteration
steps until convergence only slightly depends on the problem size.

2 The Eigensolver

In this paper we focus on the symmetric Jacobi–Davidson algorithm (JDSYM) for solv-
ing (1.2). This algorithm is well-suited since it does not require the factorization of
the matrices A or M . In [1,3,2] we found JDSYM to be the method of choice for this
problem.

2.1 The Symmetric Jacobi–Davidson Algorithm

The Jacobi–Davidson algorithm has been introduced by Sleijpen and van der Vorst [13].
There are variants for all types of eigenvalue problems [4]. Here, we use a variant adapted
to the generalized symmetric eigenvalue problem (1.2) as described in detail in [1,8].

Here we just sketch the algorithm. Let us assume that we have already computed
q eigenvalues of (1.2) and have the corresponding eigenvectors available in the n × q
matrix Q. Of course, CT Q = 0. Let us further assume that we have available a search
space R(Vk) with Vk = [v1, . . . ,vk] with CTVk = 0 and QTMVk = 0. The JDSYM
proceeds in three steps to expand the search space by one dimension.

1. Extraction. In the extraction phase, a Ritz pair of (1.2) restricted to R(Vk) is
computed. This amounts to computing the spectral decomposition of V T

k AVk and
selecting a particular eigenpair (ρ̃, q̃) where ρ̃ = ρ(q̃) is the Ritz value in R(Vk)

Towards a Parallel Multilevel Preconditioned Maxwell Eigensolver 833

that best approximates the searched eigenvalue. Here, ρ(q̃) denotes the Rayleigh
quotient of q̃.

2. Correction. In order to improve the actual best approximation (ρ̃, q̃) a correction t
is determined that satisfies the correction equation

(I −MQ̃Q̃T)(A − ρ̃M)(I − Q̃Q̃TM)t = −r,

Q̃TMt = 0, CT t = 0, Q̃ = [Q, q̃]
(2.3)

where r = Aq̃− ρ̃M q̃ is called the residual at q̃. t can be interpreted as a Newton
correction at q̃ for solving Ax−ρ(x)Mx = 0. For efficiency reasons the correction
equation is solved only approximately by a Krylov subspace method.

3. Extension. The solution t of (2.3) is made M -orthogonal to Vk and orthogonal to
C,

t̂ = (I − VkV
T
k M)(I − Y H−1CT)t. (2.4)

After M -normalization, t̂ is appended to Vk to yield Vk+1. Notice that Y = M−1C
is a (very sparse) basis of the null space of A and thatH = Y T C is the discretization
of the Laplace operator in the nodal element space [2].

In order to limit the memory space the algorithm consumes the dimension ofVk is limited.
If dim(Vk) = jmax then the iteration is restarted meaning that the vectors v1, . . . ,vjmax

are replaced by the jmin best Ritz vectors in Vk.

2.2 Solving the Correction Equation

For the Krylov subspace method to be efficient a preconditioner is a prerequisite. Fol-
lowing Fokkema et al. [6] for solving (2.3) we use preconditioners of the form

(I −MQ̃Q̃T)K(I − Q̃Q̃TM), (2.5)

where K is a symmetric preconditioner of A− ρ̃M . For efficiency reasons we compute
K only once for a fixed shift σ such that K ≈ A− σM . We experienced best results
when σ is in the middle of the set of desired eigenvalues. However, in the experiments
of this paper we choose σ close to but below the smallest eigenvalue we desire. This
makes it possible to use the same K for all equations we are solving.

In each preconditioning step an equation of the form

(I −MQ̃Q̃T)Kc = b and Q̃TMc = 0

has to be solved. The solution c is [8, p. 92]

c = (I −K−1MQ̃(Q̃T MK−1MQ̃)−1Q̃TM)K−1b.

Briefly, the Krylov subspace method is invoked with the following arguments:

system matrix: (I −MQ̃Q̃T)(A− ρ̃M)
preconditioner: (I −K−1MQ̃(Q̃TMK−TMQ̃)−1Q̃TM)K−1

right hand side: −(I −MQ̃Q̃T)r
initial vector: 0

(2.6)

834 Peter Arbenz et al.

Both the system matrix and the preconditioner are symmetric. However, because of
the dynamic shift ρ̃ they can become indefinite. For this reason, the QMRS iterative
solver [7] is suited particularly well.

2.3 The Preconditioner

Our preconditioner K , cf. (2.5), is a combination of a hierarchical basis preconditioner
and an algebraic multigrid (AMG) preconditioner.

Since our finite element spaces consist of Nédélec and Lagrange finite elements
of degree 2 and since we are using hierarchical bases we employ the hierarchical basis
preconditioner that we used successfully in [2]. Numbering the linear before the quadratic
degrees of freedom the matrices A and M in (1.2) get a 2-by-2 block structure,

A =

[
A11 A12

A21 A22

]
, M =

[
M11 M12

M21 M22

]
.

Here, the (1, 1)-blocks correspond to the bilinear forms involving linear basis functions.
The hierarchical basis preconditioners as discussed by Bank [5] are stationary iteration
methods for solving[

K11 K12

K21 K22

](
x1

x2

)
=

(
b1

b2

)
, Kij = Aij − σMij .

that respect the 2-by-2 block structure of A and M . If the underlying stationary method
is the symmetric block Gauss–Seidel iteration then

K =

[
K11

K21 K̃22

][
K11

K̃22

]−1 [
K11 K12

K̃22

]
.

The approximation K̃22 of K22 again represents a stationary iteration method. In a
parallel environment the Jacobi iteration

K̃22 = diag(K22) (2.7)

is quite efficient and easy to implement.
For very large problems the direct solve with K11 becomes inefficient and in par-

ticular consumes far too much memory due to fill-in. In order to reduce the memory
requirements of the two-level hierarchical basis preconditioner but at the same time not
lose its optimality with respect to iteration count we replaced the direct solves by a sin-
gle V-cycle of an AMG preconditioner. This makes our preconditioner a true multilevel
preconditioner.

We found ML [11] the AMG solver of choice as it can handle unstructured sys-
tems that originate from the Maxwell equation discretized by linear Nédélec finite el-
ements. ML implements a smoothed aggregation AMG method [15] that extends the
non-smoothed aggregation approach of Reitzinger and Schöberl [10]. ML is part of
Trilinos which is discussed in the next section.

Towards a Parallel Multilevel Preconditioned Maxwell Eigensolver 835

3 Parallelization Issues

If the problems become very large then only the distribution of the data over a number of
processors (and their memory) will make their solution feasible. Therefore, an efficient
parallel implementation is prerequisite for being able to solve really large problems.

The parallelization of the algorithm requires proper data structures and data layout,
parallel direct and iterative solvers and various preconditioners. We found the Trilinos
Project [14] to be an efficient environment to develop such a complex parallel application.

3.1 Trilinos

The Trilinos Project is a huge effort to develop parallel solver algorithms and libraries
within an object-oriented software framework for the solution of large-scale, complex
multi-physics engineering and scientific applications [14,9], still leveraging the value
of established numerical libraries such as Aztec, the BLAS and LAPACK. Trilinos is
a collection of compatible software packages that support parallel linear algebra com-
putations, solution of linear and non-linear systems of equations, eigenvalue problems,
and related capabilities. Trilinos is primarily written in C++, but part of the underlying
code is implemented in C and Fortran.

Each Trilinos package is a self-contained, independent piece of software. The Trili-
nos fundamental layer, Epetra, provides a common look-and-feel and infrastructure. It
implements basic objects like distributed vectors, matrices, graphs, linear operators and
problems. It also implements abstract interfaces for Trilinos packages to interact with
each other.

In our project we employ the package AztecOO, an object-oriented interface to the
Aztec library of iterative solvers and preconditioners, and the package ML, that imple-
ments a smoothed aggregation AMG method capable of handling Maxwell equations.
Direct solvers were managed by Amesos which is the Trilinos wrapper for various linear
direct solvers.

To improve the original distribution of data the external Zoltan/ParMetis libraries
were accessed through the EpetraExt interface. Some utilities from Teuchos and TriUtils
packages were also used.

Trilinos offers effective facilities for parallel mathematical software developers. As
it is still under development, the level of integration of the various packages into Trili-
nos and the quality of their documentation varies. E.g., at this time, ML for Maxwell
equations is available only in the developer version of Trilinos.

3.2 Data Distribution

It is clear that a suitable data distribution can reduce communication expenses and
balance computational load. The gain from such a redistribution can overcome the cost
of this preprocessing step.

In the Trilinos context, distribution of matrices is by rows. A map defines which row
goes on which processor. For the redistribution with Zoltan/ParMetis, an artificial graph
G is constructed from portions of the matrices M , H , and C that contains a vertex for
each node, edge, and face of the finite element mesh that participates at the computation.

836 Peter Arbenz et al.

Notice that neither M nor H works with all degrees of freedom. The Poisson matrix
H has degrees of freedom located at vertices and on edges. The matrix M has degrees
of freedom located on edges and element faces. The matrix C relates both. ParMetis
tries to distribute the matrix such that (1) the number of nonzero elements per processor
and thus the work load is balanced and (2) the number of edge cuts is minimal. The
latter should minimize the communication overhead. In our experiments we observed
significant decreases (up to 40%) of the execution time with the redistributed data.

4 Numerical Experiments

In this section we present experiments that we conducted by means of problems origi-
nating in the design of the RF cavity of the 590 MeV ring cyclotron installed at the Paul
Scherrer Institute (PSI) in Villigen, Switzerland. The characteristics of this problem that
we indicate by cop40k is given in Table 1 where orders n and number of nonzeros
nnz of both the shifted operator A − σM and the discrete Laplacian H are listed. The
second, artificial test example is a rectangular box denoted box170k. The experiments
have been conducted on up to 16 processors of a 32 dual-node PC cluster in dedicated
mode. Each node has 2 AMD Athlon 1.4 GHz processors, 2 GB main memory, and
160 GB local disk. The nodes are connected by a Myrinet providing a communication
bandwidth of 2000 Mbit/s. The system operates with Linux 2.4.20. For our experiments
we used the developer version of Trilinos on top of MPICH 1.2.5.

Table 1. Matrix characteristics

grid nA−σM nnzA−σM nH nnzH

cop40k 231668 4811786 46288 1163834
box170k 1030518 20767052 209741 5447883

In Tables 2 and 3 timings are given for computing the 5 smallest positive eigenval-
ues and corresponding eigenvectors using JDSYM with the multilevel preconditioner
introduced earlier. We set jmin = 6 and jmax = 15. An approximate eigenpair (ρ,q) is
considered converged if the norm of the residual r = Aq− ρMq satisfies

‖ r ‖2≤ ε c(M) ‖ q ‖M ,

where c(M) approximates λ
1/2
min(M) [3]. Notice that ‖ r ‖M−1≤‖ r ‖2 /λ

1/2
min(M).

In Tables 2 and 3 the execution times t are given for various processor numbers p.
Both problems were too large to be solved on a single processor. Efficiencies E(p) are
given with respect to the performance of the run with two and six processors. Notice that
the speedup from four to six processors in Table 3 is superlinear due to memory effects.

tprec and tproj give the percentage of the time the solver spent applying the precondi-
tioner and the projector, respectively. The preconditioner in (2.6) is described in detail
in section 2.3. The projector (2.4) is applied only once per outer iteration. Solving with
H amounts to solving a Poisson equation [2]. This is done iteratively with the precon-
ditioned conjugate gradient method. A multilevel preconditioner was provided by ML

Towards a Parallel Multilevel Preconditioned Maxwell Eigensolver 837

Table 2. Results for matrix cop40k

p t [sec] E(p) tprec tproj nouter navg
inner

2 1241 1.00 38% 16% 55 19.38
4 637 0.97 37% 17% 54 19.24
6 458 0.90 39% 18% 54 19.69
8 330 0.94 39% 17% 53 19.53

10 266 0.93 39% 19% 52 19.17
12 240 0.86 41% 20% 54 19.61
14 211 0.84 42% 20% 55 19.36
16 186 0.83 44% 20% 54 19.17

Table 3. Results for matrix box170k

p t [sec] E(p) tprec tproj nouter navg
inner

4 7720 — 28% 22% 54 22.39
6 2237 1.00 39% 23% 55 22.47
8 1744 0.96 38% 23% 55 23.51

10 1505 0.89 38% 25% 56 22.54
12 1224 0.91 38% 25% 54 22.02
14 1118 0.86 39% 24% 55 23.76
16 932 0.90 38% 25% 54 22.30

applied to H . The projector consumes a high fraction of the execution time. This can be
explained by the high accuracy (residual norm reduction by a factor 1010) we required
of the solution vector in order to guarantee that it satisfies the constraints CT x = 0. The
fraction of the overall solver time of both preconditioner and projector are practically
constant or increasing very slowly.

navg
inner is the average number of inner iterations per outer iteration. The total number

of matrix-vector multiplications and applications of the preconditioner is approximately
nouter×n

avg
inner. The number of average inner iterations navg

inner is almost constant indicating
that the preconditioner does not deteriorate as p increases. In fact the only difference
among the preconditioners of different p is the number of aggregates that are formed
by ML. To reduce the number of messages aggregates are not permit to cross processor
boundaries.

5 Conclusions

In conclusion, the parallel algorithm shows a very satisfactory behavior. The efficiency of
the parallelization does not get below 83 percent for 16 processors. It slowly decreases as
the number of processors increases, but this is natural due to the growing communication-
to-computation ratio.

The accuracy of the results was satisfactory. The computed eigenvectors were M -
orthogonal and orthogonal to C to machine precision. The 2-norm of the residuals of
the computed eigenpairs were below 10−9.

838 Peter Arbenz et al.

In the next future we will incorporate the hierarchical basis preconditioner for solves
with the Poisson matrix H in the projector (2.4). Presently, we apply ML to the whole
of H . We will also experiment with more powerful approximations K̃22 of K22 than
just its diagonal, cf. (2.7). In [2] we used symmetric Gauss-Seidel instead of Jacobi
preconditioning. The Gauss-Seidel preconditioner does not parallelize well, though.

References

1. P. Arbenz and R. Geus. A comparison of solvers for large eigenvalue problems originating
from Maxwell’s equations. Numer. Linear Algebra Appl., 6(1):3–16, 1999.

2. P. Arbenz and R. Geus. Multilevel preconditioners for solving eigenvalue problems occuring
in the design of resonant cavities. To appear in “Applied Numerical Mathematics”. Paper
available from doi:10.1016/j.apnum.2004.09.026.

3. P. Arbenz, R. Geus, and S. Adam. Solving Maxwell eigenvalue problems for accelerating
cavities. Phys. Rev. ST Accel. Beams, 4:022001, 2001. Paper available from
doi:10.1103/PhysRevSTAB.4.022001.

4. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA, 2000.

5. R. E. Bank. Hierarchical bases and the finite element method. Acta Numerica, 5:1–43, 1996.
6. D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. Jacobi–Davidson style QR and QZ

algorithms for the partial reduction of matrix pencils. SIAM J. Sci. Comput., 20(1):94–125,
1998.

7. R. Freund and N. M. Nachtigal. Software for simplified Lanczos and QMR algorithms. Appl.
Numer. Math., 19:319–341, 1995.

8. R. Geus. The Jacobi–Davidson algorithm for solving large sparse symmetric eigenvalue
problems. PhD Thesis No. 14734, ETH Zürich, 2002. (Available at URL
http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14734).

9. M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,
R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, and
A. Williams. An overview of Trilinos. Technical Report SAND2003-2927, Sandia National
Laboratories, August 2003. To appear in the ACM Trans. Math. Softw.

10. S. Reitzinger and J. Schöberl. An algebraic multigrid method for finite element discretizations
with edge elements. Numer. Linear Algebra Appl., 9(3):223–238, 2002.

11. M. Sala, J. Hu, and R. S. Tuminaro. ML 3.1 Smoothed Aggregation User’s Guide. Tech.
Report SAND2004-4819, Sandia National Laboratories, September 2004.

12. P. P. Silvester and R. L. Ferrari. Finite Elements for Electrical Engineers. Cambridge Univer-
sity Press, Cambridge, 3rd edition, 1996.

13. G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi–Davidson iteration method for linear
eigenvalue problems. SIAM J. Matrix Anal. Appl., 17(2):401–425, 1996.

14. The Trilinos Project Home Page. http://software.sandia.gov/trilinos/.
15. P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggregation for

second and fourth order problems. Computing, 56(3):179–196, 1996.

On Improvement of the Volcano Search
and Optimization Strategy

Venansius Baryamureeba and John Ngubiri

Institute of Computer Science, Makerere University
P.O.Box 7062, Kampala, Uganda

{barya,ngubiri}@ics.mak.ac.ug

Abstract. The ever-increasing load on databases dictates that queries do not need
to be processed one by one. Multi-query optimization seeks to optimize queries
grouped in batches instead of one by one. Multi-query optimizers aim at identifying
inter and intra query similarities to bring up sharing of common sub-expressions
and hence saving computer resources like time, processor cycles and memory. Of
course, the searching takes some resources but so long as the saved resources are
more than those used, there is a global benefit. Since queries are random and from
different sources, similarities are not guaranteed but since they are addressed to the
same schema, it is likely. The search strategy need to be intelligent such that it con-
tinues only when there is a high probability of a sharing (hence resource saving)
opportunity. We present a search strategy that assembles the queries in an order
such that the benefits are high, that detects null sharing cases and therefore ter-
minates the similar sub-expressions’ search as well as removing sub-expressions
which already exist else where so as to reduce subsequent searching procedures
for a global advantage.

AMS Subject Classification: 68M20, 68P20, 68Q85

Keywords: Query processing, Multi-query optimization, Volcano optimizer.

1 Introduction

Databases are becoming central in the running of organizations. The load put on them is
therefore increasing. This is mostly from simultaneous, complex and close to real time
requests. Single-query optimizers such as the System R optimizer [7] express query
plans as trees and process one query at ago. They can work quite well for databases
receiving a low traffic of simple queries. As queries become complex and many, they
put a bigger load on computer resources. The need to optimize them in batches while
exploiting similarities among them becomes irresistible. In fact, it is the only feasible
way out.

Multi-query optimizers [2],[3],[8],[10] represent queries as Directed Acyclic
Graphs (DAGs). Others like in [9] use an AND-OR DAGs so as to ease extensibil-
ity. An AND-OR DAG is a DAG with two types of nodes:- the AND nodes and the OR
nodes. AND nodes have only OR nodes as children and OR nodes have only AND nodes
as children. An AND node represents a relational algebraic operation such as join ('(),
select (σ) and project(π). AND nodes are as well referred to as operational nodes. OR

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 839–846, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

840 Venansius Baryamureeba and John Ngubiri

Fig. 1. Directed Acyclic Graph

nodes represents an equivalent logical expression of the child AND node and its chil-
dren. They are as well referred to as equivalence nodes. Multi-query optimizers aim
at traversing the different query plans(AND-OR DAGs) and identify sub-expressions
(equivalent nodes) in which sharing is possible. Sharing of node outcomes saves mem-
ory, disc access and computation costs hence lowering the global resource requirements
for the execution of the queries. Though searching for sub-expressions to be shared takes
some resources (time and processor cycles). If a good search strategy is used, the savings
exceed the searching cost hence a global advantage. Generally, there are three cases with
a possibility of materialization and sharing. If W is an equivalent node of a plan, then
sharing is possible when:-

(i) Nodes produce exactly similar results. e.g s1 = σx=a(W) and s2 = σx=a(W). In
this case, only one is executed and the other one just uses the output of the executed
node.

(ii) The output of one node is an exact subset of the other(s). For example, if we have
nodes like s3 = σx≤6(W) and s4 = σx≤10(W), s4 is executed and s3 is derived
from it i.e. s3 = σx≤6(s4).

(iii) Nodes retrieve data from the same (intermediate) relation or view but on different
instances of the outermost constraint. For example, if we have s5 = σx=10(W) and
s6 = σx=15(W), then a different node s7 = σx=10∨x=15(W) is created so that the
two are derived from it i.e. s5 = σx=10(s7), and s6 = σx=15(s7).

The efficiency of the multi-query optimizer does not depend on how aggressively com-
mon sub-expressions are looked for but rather on the search strategy [9]. Given that
multi-query optimization takes place on many complex queries with many relations,
comparing sub-expressions exhaustively leads to too many comparisons hence high
comparison cost and time. Work of Kyuseok et al. [6], Kyuseok [5], Sellis and Gosh

On Improvement of the Volcano Search and Optimization Strategy 841

[10], Cosar et al.[1] as well as Park and Segar [3] are exhaustive in nature hence costly.
The searching cost may exceed the pre and post optimization resource trade off hence
leading to no global benefit.
Graefe and McKenna [2] proposed the Volcano approach to multi-query optimization.
Roy et al. [8] improved the search strategy proposed by Graefe and McKenna [2] while
Roy et al. [9] proposed improvements in the algorithm in [2]. Kroger et al. [4] observes
that the main aim of a multi-query optimizer is to come up with a plan as cost effective
as possible in a time as short as possible. This research relies on the search strategy’s
ability to quickly identify shareable nodes and detect future null sharing cases so as to
optimize the search effort and time for a global advantage.

We discuss related research in Section 2, the common sub-expressions search strategy
in Section 3, the improved algorithm in Section 4 and give concluding remarks in Section
5.

2 Related Work

2.1 The Basic Volcano Algorithm

The basic Volcano algorithm was proposed by Graefe and McKenna [2]. It uses trans-
formation rules to generate a DAG representation of the search space. For efficiency
reasons, the basic Volcano algorithm starts from the root node and expands towards the
leaves. It uses the upper bound of the node costs so as to come up with decisions whether
to continue with the plan. This is so because the exact costs can only be got from the
leaves. For any optimal sub plan got, it is materialized so that if found again, it is reused
without re-optimizing and re-computing it. This saves costs.

2.2 The Volcano SH

The Volcano SH algorithm was proposed by Roy et al [9] as an improvement to the basic
Volcano algorithm. It observes that not all sub-expressions are worth materialization.
Sub-expressions are only materialized if materializing will cause global savings. It tra-
verses the DAG bottom up and computes the cost of each equivalence node. If a node
is found to exist more than once, a decision to materialize it is made. Materialization
is only made if it will create a saving on the resources required to execute a query. If
for example an equivalence node e has execution cost = cost(e), Materialization cost
= matcost(e), reuse cost = reusecost(e), and the node is used numuses(e) times at
run time. It is materialized if

cost(e)+matcost(e)+(reusecost(e)×(numuses(e)−1)) < cost(e)×numuses(e).

This simplifies to

reusecost(e) +
matcost(e)

numuses(e)− 1
< cost(e)

[9] which is the materialization condition. Unless an equivalence node satisfies it, it is
not cost effective to materialize it and therefore, it is not chosen for materialization. The
Volcano SH starts from the leaves and advance towards the root. This makes it unable to

842 Venansius Baryamureeba and John Ngubiri

get the actual value of numuses(e) for an equivalence node e since the number of times
an equivalence node appears depends on the materialization status of the parents who, at
the moment of reaching the equivalence node, are not yet met. The algorithm therefore
uses an under estimate of numuses(e) which is numuses−(e). numuses−(e) is got
by simply counting the number of ancestors for the node in question [9]. The inputs are
the basic Volcano optimal plans. It has a strengths that it avoids blind materialization.
Materialization is only done when the algorithm is sure it will cause cost benefits.
Therefore it is more efficient than the basic Volcano. It however has weaknesses, which
include:-

(i) Poor estimation of numuses−(e): Estimating numuses−(e) for the node by
counting the ancestors is inaccurate and can lead to wrong decisions. If for ex-
ample node a is used twice to produce node b which is used thrice to produce node
c (c has two parents and c together with the parents are all used once). The number
of times a is used is 6. Using the under estimate in [9],we come up with 4. Since
the under estimate is less than the actual value, it is okay. However, assuming all
nodes were used once, then the number of times a is used is 1 yet the under estimate
remains 4. This is dangerous since the node under estimate may permit material-
ization yet the actual value refuses it.In this case for example, since a appears only
once, the decision to materialize it should not come up at all.

(ii) Inter- query sharing and search optimization order: The order of optimization
in Volcano SH is immaterial [9]. This is because nodes in a plan are examined
indipendently. Even the estimate of numuses(e) is confined in the same plan [9].
This leads to excessive work being done. For example, in Figure 2, the roots of
the two sub DAGs are exactly similar. Volcano SH reaches each of them via the
leaves which is logically repetitive. Searching for the nodes top down, and then
move horizontally across the plans would eliminate duplicate operations leading to
similar outputs. Likewise, starting by a plan which share a lot with the rest would
eliminate more operations hence smaller search space.

2.3 The Volcano RU

The Volcano RU was also proposed by Roy et al. in [9] and seek to exploit sharing beyond
the optimal plans. If for example we have two optimal plans Q1 =(A'(B)'(C and Q2

=(A'(C)'(D, the Volcano SH algorithm would not permit sharing between Q1 and Q2

since no sub-expression is common between them. The Volcano RU however can adjust
Q1 to a locally sub optimal plan Q′ =(A'(C)'(B such that a common sub-expression
exists therefore sharing is possible.

In Volcano RU, queries are optimized one by one. For any sub-expression, the algo-
rithm establishes whether it would cause savings if reused one more time. If it would, it is
chosen for materialization for reuse in subsequent operations. Operations that follow are
done putting into consideration that previous selected nodes are materialized. Volcano
RU has a strength that it materializes beyond the optimal plans therefore more benefits
are expected. It however has the following shortfalls that:

(i) Over materialization: Not all sub-expressions that would cause benefit when
reused once actually exist in other queries in a batch. The criteria leads to over
materialization hence resource wasting.

On Improvement of the Volcano Search and Optimization Strategy 843

Fig. 2. Typical Sub-plans

(ii) Order of optimization: Though the order of optimization matters [9], the algorithm
does no attempt to establish it.

3 Popularity and Inter-query Sharing Establishment

First, we establish the extent of sharing and summerize it in a query sharing matrix.
The total number of equivalence nodes in a plan that have sharing partners in the batch
is the popularity of the query while the number of relations with at least a relational
operator, that make up a node is the node order. We chose an optimal processing order,
eliminate duplicate operations as well as detecting no sharing opportunities. First, we
create the sharing matrix and then base on it to optimize the batch.

3.1 The Greedy Search Algorithm

We get nodes from the Volcano best plans of the queries in the batch produced as in
[2]. The greedy algorithm compares nodes pairwise to establish inter and intra sharing.
M is accordingly updated. Using this approach, for a batch of n queries where the ith

query has ki nodes, we need Σalliki × (Σalliki − 1) comparisons which is too much.
We propose improvements:

1. Eliminate duplicate searches: The output of search Qi and Qj is equivalent to that
between Qj and Qi. We therefore need to compare Qi and Qj only if i ≤ j.

2. Search by node order: Sharing can only take place between nodes of the same
order. We therefore need to group nodes by order and for a node, we search within
the order.

844 Venansius Baryamureeba and John Ngubiri

3. Null sharing prediction: Since moving up the order make the nodes more specific,
if there is no sharing for nodes of order m, then there is no sharing for nodes of
order n where n > m. We therefore terminate higher nodes’ search for the query
pair.

4. Zero order tip: Relations (zero order node) are too broad to be considered for
sharing. We only use them to find if any two queries are disjoint or not. If we get a
sharing opportunity at this order, we leave M un updated and go to the next order.
If however there are no nodes sharable, then the queries are disjoint.

3.2 The Improved Greedy Search Algorithm

We now present the greedy algorithm but enhanced such that the observations above
are put into consideration in order to have a more optimal search. It outputs the sharing
matrix.

for i = 1; i ≤ n; i++
for j = i; j ≤ n; j++

ORDER = 0
repeat

nextOrderPermision = false
Si = set of nodes of order ORDER in query i
node1 = first node in Si

Sj = set of nodes of order ORDER in query j
node2 = first node in Sj

while(Si still has nodes)
while(Sj still has nodes)

if(node1 and node2 are sharable)
nextOrderPermision = true
if(ORDER = 0)

break out of the two while loops
else

increment M [i, j] and M [j, i]
mark node1 and node2

endif
endif
node2 = next(node2)

endwhile
node1 = next(node1)

endwhile
ORDER = next(ORDER)

until(nextOrderPermision = false or orders are exhausted)
endfor

endfor

4 The Optimizing Algorithm

The new algorithm inputs the DAG made up of the basic Volcano plans for each query.
The shareability information and popularities are got from M. In this algorithm plans are

On Improvement of the Volcano Search and Optimization Strategy 845

assigned focal roles in the order of their decreasing popularity, sharing for any focal plan
is done in the stable marriage preference order of less popular plans, searching starts
from a higher order and plans of Zero popularity are not assigned focal roles.

4.1 The Algorithm

S = set of plans that make up the virtual DAG in order of their popularity
focalPlan = first plan in S
repeat

establish node cost and numuses for each node for the focal plan
S* = subset of S who share at least a node with focalPlan query
candidateOrder = highest order of focalPlan
repeat

e = node in candidateOrder
if(e is marked)

repeat
traverse S* searching for marked equivalent nodes of the same order
with and sharable with e
increment numuses(e) whenever a sharable node is met

until(S* is exhausted)
if(sharable condition(e))

chose which node to materialized and add it to the materializable
set remove the rest
update the DAG for the materialized node to cater for the removed
nodes’ parents un mark the chosen node

endif
else

if(sharablecondition(e))
add e to materialization node

endif
endif

until(nodes in candidateOrder are exhausted)
focalPlan = next(focalPlan)

until(plans on non zero popularity are exhausted)

4.2 Benefits of the New Algorithm

1. Better estimation of numuses(e): The algorithm uses the exact number of times
the node exists in the focal plan and increments by one whenever a sharable node
found outside the focal plan. The nodes may actually be greater if the none focal
plan nodes are used multiple times therefore numuses−(e) ≤ numuses(e) ∀e

2. Elimination of null searches: The sharing matrix has details of the extent of sharing
for any pair of plans. if the entry for a pair is Zero, then we need not to search for
shareability between them. If the popularity of a certain query is zero, then its plan
is not involved in the search.

3. Elimination of catered for optimizations: If we have say three nodes of order five
and they are sharable, and it is decided that one has to be materialized and the rest
of the plans use it, then it is not worthwhile to process the other nodes since the
ultimate goal is to get the root of the tree. This algorithm removes the sub DAGs

846 Venansius Baryamureeba and John Ngubiri

whose output can be got from materialized nodes so that such children do not enter
the optimization process yet their output is catered for.

4. Optimal order of optimization: Since the strategy eliminates catered for sub-
DAGs, its better if it does it as early as possible so that the subsequent search space
is reduced without affecting the outcome. starting with the most popular query does
this. This saves time, Memory and processor cycles.

5 Conclusion

We have shown that by using bottom up approach at search and up - down approach
at optimization we are able to only continue searching for sharable nodes when they
exist. Still identification of a sharable node leads to the removal of all children whose
output are already catered for by the sharing. This reduces the sample space therefore
the subsequent search cost and time.

References

1. A. Cosar, E. Lim and J. Srivasta. Multiple query Optimization with depth-first branch and
bond and dynamic query ordering. International Conference on Information and Knowledge
Management, 2001.

2. G. Graefe and W.J. McKenna. Extensibility and search efficiency in the Volcano Optimizer
generator. Technical report CU-CS-91-563. University of Colorado, 1991.

3. J. Park and A. Seger. Using common sub-expressions to optimize multiple queries. Proceed-
ings of the IEEE International Conference on Data Engineering,1988.

4. J. Kroger, P. Stefan, and A.Heuer. Query optimization: On the ordering of Rules. Research
paper, Cost - and Rule based Optimization of object - oriented queries (CROQUE) Project
University of Restock and University of Hamburg - Germany, 2001.

5. Kyuseok Shim. Advanced query optimization techniques for relational database systems. PhD
dissertation, University of Maryland, 1993.

6. Kyuseok Shim, Timos.K. Sellis and Dana Nau. Improvements on a heuristic algorithm for
multiple-query Optimization. Technical report, University of Maryland, Department of Com-
puter science,1994.

7. P.G.Selinger, M.M Astrahan, D.D Chamberlin, R. A. Lorie and T.G Price: Access path se-
lection in relational database management systems. In preceeding of the ACM-SIGMOD
Conference for the Management of Data, 1979. pp 23-34.

8. Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh. Bhobe. Practical Algorithms for multi-
query Optimization. Technical Report, Indian Institute of Technology, Bombay,1998.

9. Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and Extensible algo-
rithms for Multi query optimization. Research Paper, SIGMOD International Conference on
management of data,2001.

10. Timos. K. Sellis and S. Gosh. On Multi-query Optimization Problem. IEEE Transactions on
Knowledge and Data Engineering 1990 pp. 262-266.

Aggregation-Based Multilevel Preconditioning
of Non-conforming FEM Elasticity Problems

Radim Blaheta1, Svetozar Margenov2, and Maya Neytcheva3

1 Institute of Geonics, Czech Academy of Sciences
Studentska 1768, 70800 Ostrava-Poruba, The Czech Republic

blaheta@ugn.cas.cz
2 Institute for Parallel Processing, Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 25A, 1113 Sofia, Bulgaria
margenov@parallel.bas.bg

3 Department of Information Technology, Uppsala University
Box 337, SE-75105 Uppsala, Sweden

maya@it.uu.se

Abstract. Preconditioning techniques based on various multilevel extensions of
two-level splittings of finite element (FE) spaces lead to iterative methods which
have an optimal rate of convergence and computational complexity with respect
to the number of degrees of freedom. This article deals with the construction
of algebraic two-level and multilevel preconditioning algorithms for the Lamé
equations of elasticity, which are discretized by Crouzeix-Raviart non-conforming
linear finite elements on triangles. An important point to note is that in the non-
conforming case the FE spaces corresponding to two successive levels of mesh
refinements are not nested. To handle this, a proper aggregation-based two-level
basis is considered, which enables us to fit the general framework of the two-level
preconditioners and to generalize the method to the multilevel case. The derived
estimate of the constant in the strengthened Cauchy-Bunyakowski-Schwarz (CBS)
inequality is uniform with respect to both, mesh anisotropy and Poisson ratio,
including the almost incompressible case.

1 Introduction

The target problem in this paper is the Lamé system of elasticity:

2∑
j=1

∂σij

∂xj
+ fi = 0, x ∈ Ω, i = 1, 2

u = 0, x ∈ ∂Ω

where Ω is a polygonal domain in IR2 and ∂Ω is the boundary of Ω. The stresses σij

and the strains εij are defined by the classical Hooke’s law, i.e.

σij(u) = λ

(
2∑

k=1

εkk(u)

)
δij + 2μεij(u), εij(u) =

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 847–856, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

848 Radim Blaheta, Svetozar Margenov, and Maya Neytcheva

We assume that the Lamé coefficients are piecewise constant in the domain Ω. The
unknowns of the problem are the displacements ut = (u1, u2). A generalization to
nonhomogeneous displacement boundary condition is straightforward.

The Lamé coefficients are given by λ =
νE

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
, where

E stands for the elasticity modulus, and ν ∈ (0, 1
2) is the Poisson ratio. We use the

notion almost incompressible for the case ν = 1
2 − δ (δ > 0 is a small parameter).

Note that the boundary value problem becomes ill-posed when ν = 1
2 (the material is

incompressible).
We assume that the domain Ω is discretized using triangular elements. The parti-

tioning is denoted by T� and is assumed to be obtained by regular refinement steps of
a given coarse triangulation T0.
For f ∈ (L2(Ω))2, the weak formulation of the boundary value problem reads:
find u ∈ V = {v ∈ (H1(Ω))2,v |∂Ω= 0} such that

a(u,v) = −
∫

Ω

fTvdx +
∫

ΓN

gT v ds, ∀v ∈ V . (1)

Here ΓN is that part of ∂Ω where there are active surface forces. The bilinear form
a(u,v) is of the form

a(u,v) =
∫

Ω

[λdiv(u)div(v) + 2μ
2∑

i,j=1

εij(u)εij(v)]dx (2)

=
∫

Ω

〈Cd(u), d(v)〉dx, (3)

=
∫

Ω

〈Csd(u), d(v)〉dx = as(u,v) (4)

where

C =

⎡⎢⎢⎣
λ + 2μ 0 0 λ

0 μ μ 0
0 μ μ 0
λ 0 0 λ + 2μ

⎤⎥⎥⎦ , Cs =

⎡⎢⎢⎣
λ + 2μ 0 0 λ + μ

0 μ 0 0
0 0 μ 0

λ + μ 0 0 λ + 2μ

⎤⎥⎥⎦ , (5)

d(u) =
(

∂u1

∂x1
,
∂u1

∂x2
,
∂u2

∂x1
,
∂u2

∂x2

)t

. (6)

Note that (4) holds due to homogeneous pure displacement boundary conditions as for
u, v ∈ V we have

∫
Ω

∂ui

∂xj

∂vj

∂xi
dx =

∫
Ω

∂ui

∂xi

∂vj

∂xj
dx. The matrix Cs is positive definite.

More details can be found e.g. in [3,10,11].
The variational formulation with the modified bilinear form as is next discretized us-

ing Crouzeix-Raviart non-conforming linear finite elements, i.e., the continuous
space V is replaced by a finite dimensional subspace V(�). For more details see [10,11].
Here, and in what follows, {V(k)}�

k=0 and {A(k)}�
k=0 stand for the FE spaces and

Aggregation-Based Multilevel Preconditioning 849

(a)

θ θ2

θ

1

3

3

98

7

6 1 2 5

4

III

III

(b)

Fig. 1. Regular refinement (a), and macroelement local node numbering (b)

for the stiffness matrices corresponding to the triangulations {Tk}�
k=0. Let us recall

that non-conforming FE approximations provide some attractive stability properties for
parameter-dependent problems.

2 Hierarchical Decomposition of Crouzeix-Raviart Systems

Let us consider two consecutive mesh refinements Tk and Tk+1. As already mentioned,
for Crouzeix-Raviart non-conforming linear elements, the FE spaces associated with two
consecutive mesh refinements are not nested. To enable the use of the general multilevel
scheme, we consider the so called differences and aggregates (DA) approach to construct
hierarchical two-level decomposition of the Crouzeix-Raviart systems. Such a technique
was originally introduced and analysed in [8] for scalar elliptic problems. The algorithm
is easily described on macroelement level, see Figure 1(b). Letφ1, . . . , φ9 be the standard
nodal non-conforming linear finite element basis functions on the macroelementE. Then
for the 2D elasticity we use the basis functions

φ
(1)
i = (φi, 0)t and φ

(2)
i = (0, φi)t, i = 1, . . . , 9.

The vector of the macroelement basis functions

ϕE = {Φi}18
i=1 = {φ(1)

1 , φ
(2)
1 , φ

(1)
2 , φ

(2)
2 , . . . , φ

(1)
9 , φ

(2)
9 }

can be transformed into a vector of new hierarchical basis functions

ϕ̃E = {Φ̃i}18
i=1, where Φ̃i =

∑
j

JijΦj .

by using the transformation matrix JDA = (Jij),

850 Radim Blaheta, Svetozar Margenov, and Maya Neytcheva

JDA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1
1

1 0 −1
1 0 −1

1 0 −1
1 0 −1

1 0 −1
1 0 −1

1 1 0 1
1 1 0 1

1 1 0 1
1 1 0 1

1 1 0 1
1 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we are in a position to define the splitting V (E) = {Φi}18
i=1 = Ṽ1(E)⊕ Ṽ2(E) ,

Ṽ1 (E) = span { Φ̃i}12
i=1

= span { φ
(k+1)
1 , φ

(k+1)
2 , φ

(k+1)
3 ,

φ
(k+1)
4 − φ

(k+1)
5 , φ

(k+1)
6 − φ

(k+1)
7 , φ

(k+1)
8 − φ

(k+1)
9 }1

k=0,

(7)

Ṽ2 (E) = span { Φ̃i}18
i=13

= span { φ
(k+1)
1 + φ

(k+1)
4 + φ

(k+1)
5 ,

φ
(k+1)
2 + φ

(k+1)
6 + φ

(k+1)
7 , φ

(k+1)
3 + φ

(k+1)
8 + φ

(k+1)
9 }1

k=0.

(8)

Accordingly, JDA transforms the macroelement stiffness matrix AE into a hierarchical
form ÃE = J AEJT ,

ÃE =

[
ÃE,11 ÃE,12

ÃE,21 ÃE,22

]
φ̃i ∈ Ṽ1(E)
φ̃i ∈ Ṽ2(E)

.

The corresponding global stiffness matrix

Ã(k+1) =
∑

E∈Tk+1

ÃE

can be again decomposed into 2× 2 blocks

Ã(k+1) =

[
Ã

(k+1)
11 Ã

(k+1)
12

Ã
(k+1)
21 Ã

(k+1)
22

]
, (9)

Aggregation-Based Multilevel Preconditioning 851

which are induced by the decomposition on macroelement level. The block Ã
(k+1)
11

corresponds to interior nodal unknowns with respect to the macro-elements E ∈ Tk+1

plus differences of the nodal unknowns along the sides of E ∈ Tk+1. The block Ã
(k+1)
22

corresponds to certain aggregates of nodal unknowns. The related splitting of the current
FE space reads asV(k+1) = Ṽ(k+1)

1 ⊕Ṽ(k+1)
2 . The introduced decomposition can be used

to construct two-level preconditioners. The efficiency of these preconditioners depends
(see, e.g. [12]) on the corresponding strengthened CBS constant γDA:

γDA = sup

⎧⎪⎪⎨⎪⎪⎩
〈
Ã

(k+1)
12 y2, y1

〉
√〈

Ã
(k+1)
11 y1, y1

〉√〈
Ã

(k+1)
22 y2, y2

〉 , y1 �= 0, y2 �= 0

⎫⎪⎪⎬⎪⎪⎭ .

The following result holds.

Theorem 1. Consider the problem where the Lamé coefficients are constant on the
coarse triangles E ∈ Tk , discretization by the Crouzeix-Raviart FE and the DA decom-
position of the stiffness matrix. Then for any element size and shape and for any Poisson
ratio ν ∈ (0, 1

2), there holds

γDA ≤
√

3
4
.

Proof. The constant γDA can be estimated by the maximum of the constants over the
macroelements. Let us first consider the case of a right angled reference macroelement,
see Figure 2.

12

3 8 9

5217

3

46

T

T

T

T

1

3

2

4

Fig. 2. The reference coarse grid triangle and the macroelement E

Let Ṽ1(Ê), Ṽ2(Ê), be the two-level splitting for the reference macroelement Ê.
For u ∈ Ṽ1(Ê) and v ∈ Ṽ2(Ê) denote d(r) = d(r)(u) |Tr and δ(r) = d(r)(v) |Tr ,
r = 1 · · · , 4, see the definition (6). Then it is easy to show (cf. [8]) that

d(1) + d(2) + d(3) + d(4) = 0, (10)

δ(1) = δ(2) = δ(3) = −δ(4) = δ. (11)

852 Radim Blaheta, Svetozar Margenov, and Maya Neytcheva

Hence,

aE(u, v) =
4∑

r=1

∫
Tr

〈Csd(u), d(v)〉 dx =
4∑

r=1

�〈Csd(r), δ(r)〉

= �〈Csδ, d(1) + d(2) + d(3) − d(4)〉 (12)

= −2�〈Csδ, d(4)〉 ≤ 2� | δ |Cs | d(4) |Cs

where � = area(Tk), 〈x, y〉 = xT y denotes the inner product in R4, and | d |Cs =√
〈Csd, d〉 is the norm induced by the coefficient matrix Cs. Further,

| d(4) |2Cs = | d(1) + d(2) + d(3) |2Cs ≤ 3
3∑

k=1

| d(k) |2Cs

leads to

aE(u, u) =
4∑

k=1

| d(k) |2Cs � ≥
(

1 +
1
3

)
� | d(4) |2Cs (13)

and
aE(v, v) = 4� | δ |2Cs . (14)

Thus,

aE(u, v) ≤
√

3
4

√
aE(u, u)

√
aE(v, v) . (15)

In the case of an arbitrary shaped macroelement E we can use the affine mapping
F : Ê → E for transformation of the problem to the reference macroelement, for
more details see e.g. [3]. This transformation changes the coefficient matrix Cs, but the

estimate γE ≤
√

3
4 still holds since the result (15) for the reference macroelement does

not depend on the coefficient matrix Cs.

Remark 1. The obtained new uniform estimate of the CBS constant γ is a generalization
of the earlier estimate from [14], namely

γ ≤
√

8 +
√

8
4

≈ 0.822,

which is derived in the case of a regular triangulation T0 obtained by a diagonal subdi-
vision of a square mesh.

3 Multilevel Preconditioning

The standard multiplicative two-level preconditioner, based on (9), can be written in the
form

C̃(k+1) =

[
Ã

(k+1)
11 0

Ã
(k+1)
21 Ã

(k+1)
22

][
I1 (Ã(k+1)

11)−1Ã
(k+1)
12

0 I2

]
. (16)

Aggregation-Based Multilevel Preconditioning 853

The convergence rate of the related two-level iterative method is based on the spectral
condition number estimate

κ((C̃(k+1))−1Ã(k+1)) <
1

1− γ2
DA

< 4.

The following theorem is useful for extending the two-level to multilevel preconditioners.

Theorem 2. Consider again the elasticity problem with constant Lamé coefficients on
the triangles E ∈ Tk, discretization by the Crouzeix-Raviart FE and the DA decom-
position of the stiffness matrix. Let Ã(k+1)

22 be the stiffness matrix corresponding to the

space Ṽ(k+1)
2 from the introduced DA splitting, and let A(k) be the stiffness matrix,

corresponding to the coarser triangulation Tk, equipped with the standard nodal finite
element basis. Then

Ã
(k+1)
22 = 4A(k) . (17)

The proof follows almost directly from the definitions of the hierarchical basis functions
Φ̃i with value equal to one in two nodes of one of the macroelement sides and one
opposite inner node and the corresponding coarse grid basis function with value equal to
one in one node on the same side. This result enables the recursive multilevel extension of
the considered two-level multiplicative preconditioner preserving the same estimate of
the CBS constant. In particular, the general scheme of the algebraic multilevel iteration
(AMLI) algorithm becomes straightforwardly applicable (see [6,7]).

We consider now the construction of optimal preconditioners for the coarse grid
complement systems C̃

(k+1)
11 for the blocks Ã

(k+1)
11 , see decomposition (9). We search

for optimal preconditioners in the sense that they are spectrally equivalent to the top-left
matrix block independently on mesh size, element shape and Poisson ratio. Moreover
the cost of applying the preconditioner is aimed to be proportional to the number of
degrees of freedom. Similarly to [4,5,9], we construct preconditioners on macroelement
level and assemble the local contributions to obtain C̃

(k+1)
11 .

Remark: One possible approach is first to impose a displacement decomposition or-
dering, then use a block-diagonal approximation of Ã

(k+1)
11 , and then precondition the

diagonal blocks which are elliptic. Let us assume that the multiplicative preconditioner
from [9] is applied to the diagonal blocks of Ã

(k+1)
11 . Then, for homogeneous isotropic

materials, the following simplified estimate holds

κ
(
B̃

(k+1)−1

11 Ã
(k+1)
11

)
≤ 1− ν

1− 2ν
15
8

.

The presented construction is optimal with respect to mesh size and mesh anisotropy
but is applicable for moderate values of ν ∈ (0, 1

2) only. When the material is almost

incompressible, it is better to apply a macroelement level static condensation of Ã(k+1)
11

first, which is equivalent to the elimination of all unknowns corresponding to the interior
nodes of the macroelements, see Figure 1(b). Let us assume that the triangulations T0

is constructed by diagonal subdivision of a square mesh. Let the corresponding Schur

854 Radim Blaheta, Svetozar Margenov, and Maya Neytcheva

compliment be approximated by its diagonal. Then the resulted preconditioner satisfies
the following estimate

κ
(
B̃

(k+1)−1

11 Ã
(k+1)
11

)
≤ const ≈ 8.301 · · · ,

which is uniform with respect to the Poisson ratio ν (see for more details in [14]). The
robustness of the later approach is demonstrated by the numerical tests presented in the
next section.

4 Numerical Tests

It is well known, that if low order conforming finite elements are used in the construction
of the approximation space, when the Poisson ratio ν tends to 0.5, the so called locking
phenomenon appears. Following [10,11], we use the Crouzeix-Raviart linear finite ele-
ments to get a locking-free FEM solution of the problem. Note that the straightforward
FEM discretization works well for the pure displacement problem only.

The presented numerical tests illustrate the behavior of the FEM error as well as the
optimal convergence rate of the AMLI algorithm when the size of the discrete problem is
varied and ν ∈ (0, 1/2) tends to the incompressible limit. We consider the simplest test
problem in the unit square Ω = (0, 1)2 with E = 1. The right hand side corresponds
to the following exact solution u(x, y) = [sin(πx) sin(πy), y(y − 1)x(x − 1)] . The
relative stopping criterion for the PCG iterations is

(C−1
AMLIr

Nit , rNit)/(C−1
AMLIr

0, r0) < ε2,

where ri stands for the residual at the i-th iteration step.
The relative FEM errors, given in Table 1, illustrates very well the locking-free

approximation. Here the number of refinement steps is = 4, N = 1472, and ε = 10−9.
In Table 2, the number of iterations are presented as a measure of the robustness of the
multilevel preconditioner. The optimal order locking-free convergence rate of the AMLI
algorithm is well expressed. Here β stands for the degree of the stabilization polynomial.
The value of β = 2 corresponds to the derived uniform estimate of the CBS constant,
providing the total computational cost optimality of the related PCG algorithm.

Table 1. Relative error stability for ν → 1/2

ν ‖u − uh‖[L2]2/‖f‖[L2]2 ν ‖u − uh‖[L2]2/‖f‖[L2]2

0.4 .3108249106503572 0.4999 .3771889077038727

0.49 .3695943747405575 0.49999 .3772591195613628

0.499 .3764879643773666 0.499999 .3772661419401481

Aggregation-Based Multilevel Preconditioning 855

Table 2. Iterations: ε = 10−3, β = 2

� N�ν 0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999

4 1472 13 13 12 13 13 13 13

5 6016 12 12 12 14 13 13 13

6 24320 12 12 12 12 13 13 13

7 97792 11 11 11 12 13 13 13

8 196096 11 11 11 12 12 13 13

5 Concluding Remarks

This study is strongly motivated by the expanding interest in non-conforming finite
elements, which are very useful for solving problems, where the standard conforming
elements may suffer from the so-called locking effects. The success of the Crouzeix-
Raviart and other non-conforming finite elements can be explained also by the fact that
they produce algebraic systems that are equivalent to the Schur complement system
for the Lagrange multipliers arising from the mixed finite element method for Raviart-
Thomas elements. There are also other advantages of the non-conforming Crouzeix-
Raviart finite elements, such as less density of the stiffness matrix etc. The developed
robust PCG algorithms are further applicable as efficient preconditioning operators in
the context of nonlinear elliptic problems, see [13].

The presented multilevel algorithm has some well expressed inherently parallel fea-
tures. The key point here is that the considered approximations of the coarse grid com-
plement blocks Ã11 are of either diagonal or generalized tridiagonal form. The observed
potential for parallel implementation is of a further importance for efficient solution of
large-scale real-life problems including coupled long-time models which are as a rule
nonlinear.

Acknowledgments

This work is supported in part by the Centre of Excellence BIS-21 grant ICA1-2000-
70016 and the Bulgarian NSF grant IO-01/2003.

References

1. B. Achchab, O. Axelsson, L. Laayouni, A. Souissi. Strengthened Cauchy-Bunyakowski-
Schwarz inequality for a three dimensional elasticity system, Numerical Linear Algebra with
Applications, Vol. 8(3): 191-205, 2001.

2. B. Achchab, J.F. Maitre. Estimate of the constant in two strengthened CBS inequalities for
FEM systems of 2D elasticity: Application to Multilevel methods and a posteriori error esti-
mators, Numerical Linear Algebra with Applications, Vol. 3 (2): 147-160, 1996.

3. O. Axelsson, R. Blaheta. Two simple derivations of universal bounds for the C.B.S. inequality
constant, Applications of Mathematics, Vol.49 (1): 57-72, 2004.

856 Radim Blaheta, Svetozar Margenov, and Maya Neytcheva

4. O. Axelsson, S. Margenov. On multilevel preconditioners which are optimal with respect to
both problem and discretization parameters, Computational Methods in Applied Mathematics,
Vol. 3, No. 1: 6-22, 2003.

5. O. Axelsson, A. Padiy. On the additive version of the algebraic multilevel iteration method for
anisotropic elliptic problems, SIAM Journal on Scientific Computing 20, No.5: 1807-1830,
1999.

6. O. Axelsson and P.S. Vassilevski. Algebraic Multilevel Preconditioning Methods I, Nu-
merische Mathematik, 56: 157-177, 1989.

7. O. Axelsson and P.S. Vassilevski. Algebraic Multilevel Preconditioning Methods II, SIAM
Journal on Numerical Analysis, 27: 1569-1590, 1990.

8. R. Blaheta, S. Margenov, M. Neytcheva. Uniform estimate of the constant in the strengthened
CBS inequality for anisotropic non-conforming FEM systems, Numerical Linear Algebra
with Applications, 11: 309-326,2004.

9. R. Blaheta, S. Margenov, M. Neytcheva. Robust optimal multilevel preconditioners for non-
conforming finite element systems, to appear in Numerical Linear Algebra with Applications.

10. S. Brenner and L. Scott. The mathematical theory of finite element methods, Texts in applied
mathematics, vol. 15, Springer-Verlag, 1994.

11. S. Brenner and L. Sung. Linear finite element methods for planar linear elasticity, Math.
Comp., 59: 321-338, 1992.

12. V. Eijkhout and P.S. Vassilevski. The role of the strengthened Cauchy-Bunyakowski-Schwarz
inequality in multilevel methods, SIAM Review, 33: 405-419, 1991.

13. I. Farago, J. Karatson. Numerical solution of nonlinear elliptic problems via preconditionionig
operators. Theory and applications, NOVA Science, 2002.

14. Tz. Kolev, S. Margenov. Two-level preconditioning of pure displacement non-conforming
FEM systems, Numerical Linear Algebra with Applications, 6: 533-555, 1999.

15. Tz. Kolev, S. Margenov. AMLI preconditioning of pure displacement non-conforming elas-
ticity FEM systems, Springer LNCS, 1988: 482-489, 2001.

16. S. Margenov. Upper bound of the constant in the strengthened C.B.S. inequality for FEM 2D
elasticity equations, Numer. Linear Algebra Appl., 1: 65-74, 1994.

17. S. Margenov, P.S. Vassilevski. Algebraic multilevel preconditioning of anisotropic elliptic
problems, SIAM Journal on Scientific Computing, V.15(5): 1026-1037, 1994.

Efficient Solvers
for 3-D Homogenized Elasticity Model

Ronald H.W. Hoppe and Svetozara I. Petrova

Institute of Mathematics, University of Augsburg
D-86159 Augsburg, Germany

{hoppe,petrova}@math.uni-augsburg.de

Abstract. The optimization of the macroscopic behavior of microstructured ma-
terials using microscopic quantities as design variables is a well established dis-
cipline in materials science. The paper deals with recently produced microcel-
lular biomorphic ceramics. The mechanical macromodel corresponding to these
composite materials is obtained by homogenization. The homogenized elastic-
ity tensor and its dependence on the design variables are computed numerically
involving adaptive finite element approximations of elasticity problems in the 3-
D periodicity cell. Efficient iterative solvers based on incomplete Cholesky (IC)
decomposition and algebraic multigrid method (AMG) as preconditioners of the
stiffness matrix are proposed in the application of PCG method.

1 Introduction

The production of microcellular biomorphic ceramics by biotemplating processes is a
particular area within biomimetics which has emerged as a perspective new technology
in materials science during the past decade (cf., e.g., [11]). The biological object under
consideration in this paper is naturally grown wood which is known to be highly porous
and to possess excellent mechanical properties. The wood morphologies are charac-
terized by an open porous system of tracheidal cells which provide the transportation
path for water and minerals in the living plants. The biotemplating process uses wooden
specimen to produce graphite-like carbon preforms by high temperature pyrolysis fol-
lowed by an infiltration by liquid-phase or gaseous-phase materials such as silicon (Si)
or titanium (Ti) to come up with SiC- or TiC-ceramics (see, e.g., [6] for details). An
important feature of the biotemplating process is that it preserves the high porosity of the
wooden specimen and results in a final ceramics with excellent structural-mechanical
and thermomechanical properties which can be used as heat insulators, particle filters,
catalyst carriers, automotive tools, and medical implants.

The macroscopic mechanical behavior of the microcellular biomorphic ceramics
depends on microscopic geometrical quantities such as the size of the voids and the
lengths and widths of the different layers forming the cell walls. While the size of the
voids is determined by the growth of the wood itself (early/late wood), the other quantities
can be influenced by tuning the parameters of the biotemplating process. Therefore, an
optimal structural design of the ceramics can be performed where the state equation
is given by linear elasticity and the design variables are chosen as the microstructural
geometrical quantities (cf., e.g., [8]). The objective functional depends on the mode

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 857–863, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

858 Ronald H.W. Hoppe and Svetozara I. Petrova

of loading. Since the resolution of the microstructures is cost prohibitive with respect
to computational work, the idea is to derive a homogenized macromodel featuring the
dependence on the microstructural design variables and to apply the optimization process
to the homogenized model.

2 Computation of Homogenized Elasticity Tensor

For the structural optimization of the microcellular biomorphic SiC ceramics modern
optimization techniques (see, [7]) are applied to the mechanical macromodel obtained
by the homogenization approach (cf., e.g., [3,9]).

We assume the workpiece of macroscopic length L to consist of periodically distrib-
uted constituents with a cubic periodicity cell Y of microscopic characteristic length
consisting of an interior void channel (V) surrounded by layers of silicon carbide (SiC)
and carbon (C) (cf. Fig.1).

SiC CV

Fig. 1. a) Periodicity cell Y = [0, �]3, b) Cross section of Y = V ∪ SiC ∪ C

Assuming linear elasticity and denoting by u the displacements vector, the stress
tensor σ is related to the linearized strain tensor e = 1

2 (∇u + (∇u)T) by Hooke’s
law σ = Ee, where E = E(X) = (Eijk�(X)) stands for the elasticity tensor whose
components attain different values in the regions V, SiC, and C:

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1111 E1122 E1133 E1112 E1123 E1113

E2222 E2233 E2212 E2223 E2213

E3333 E3312 E3323 E3313

E1212 E1223 E1213

E2323 E2313

SYM E1313

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.1)

Introducing x := X/L and y := X/ as the macroscopic and microscopic variables
and ε := /L as the scale parameter, homogenization based on the standard double scale
asymptotic expansion results in the homogenized elasticity tensor EH = (EH

ijk�) whose
components are given by

Efficient Solvers for 3-D Homogenized Elasticity Model 859

EH
ijk� =

1
|Y |

∫
Y

(
Eijkl(y)− Eijpq(y)

∂ξk�
p

∂yq

)
dy . (2.2)

The tensor ξ=(ξk�
p), k, l, p = 1, 2, 3, with periodic components ξk�

p ∈ H1
per(Y) has

to be computed via the solution of the elasticity problems∫
Y

(
Eijpq(y)

∂ξkl
p

∂yq

)
∂φi

∂yj
dy =

∫
Y

Eijkl(y)
∂φi

∂yj
dy (2.3)

for an arbitrary Y−periodic variational function φ ∈ H1(Y). We note that explicit
formulas for the homogenized elasticity tensor are only available in case of laminated or
checkerboard structures (cf., e.g., [2,9]). Therefore, (2.3) has to be solved numerically
which has been done by using continuous, piecewise linear finite elements with respect
to adaptively generated locally quasi-uniform and shape regular simplicial tetrahedral
partitionings of the periodicity cell Y .

3 Mesh Adaptivity by a Posteriori Error Estimation

The computation of the homogenized elasticity coefficients requires the solution of linear
elastic boundary value problems with the periodicity cellY as the computational domain.
Due to the composite character of the cell there are material interfaces where the solution
changes significantly. Hence, local refinement of the underlying finite element mesh is
strongly advised. In contrast to previous work in structural optimization (cf., e.g., [1,2])
where local refinement is done by manual remeshing, we have used an automatic grid
refinement based on a posteriori error estimator of Zienkiewicz-Zhu type [13] obtained
by local averaging of the computed stress tensor.

Using an approximation of the components of the displacements vector by continu-
ous, piecewise linear finite elements with respect to a simplicial tetrahedrization Th of
the periodicity cell Y , we denote by σ̂ the discontinuous finite element stress. A contin-
uous recovered stress σ∗ is obtained at each nodal point p by local averaging: Denoting
by Yp ⊂ Y the union of all elements K ∈ Th sharing p as a vertex, we compute

σ∗(p) =
∑

K∈Yp

ωK σ̂|K , ωK :=
|K|
|Yp|

, K ∈ Yp . (3.4)

Based on (3.4), we have chosen

η :=

(∑
K∈Th

η2
K

)1/2

, ηK := ‖σ∗ − σ̂‖0,K , K ∈ Th (3.5)

as a global estimator whose local contributions ηK are cheaply computable.
Note that such an estimator has been studied and analyzed in [10] for linear second

order elliptic boundary value problems where it was shown that η is asymptotically exact.
Moreover, general averaging techniques for low order finite element approximations of
linear elasticity problems have been considered in [5] and efficiency and reliability of
Zienkiewicz-Zhu type estimators have been established.

860 Ronald H.W. Hoppe and Svetozara I. Petrova

4 Iterative Solution Techniques

After finite element discretization of the domain Y the elasticity equation (2.3) used to
compute the effective coefficients results in the following system of linear equations

Au = f , (4.6)

where u is the vector of unknown displacements and f is the discrete right–hand side.
The stiffness matrix A is symmetric and positive definite but not an M -matrix. Two
typical orderings of the unknowns are often used in practice, namely(

u
(x)
1 , u

(y)
1 , u

(z)
1 , u

(x)
2 , u

(y)
2 , u

(z)
2 , . . . , u(x)

n , u(y)
n , u(z)

n

)
, (4.7)

referred to as a pointwise displacements ordering and(
u

(x)
1 , u

(x)
2 , . . . , u(x)

n , u
(y)
1 , u

(y)
2 , . . . , u(y)

n , u
(z)
1 , u

(z)
2 , . . . , u(z)

n

)
, (4.8)

called the separate displacements ordering. Here, u(x)
k , u

(y)
k , and u

(z)
k are the corre-

sponding x, y-, and z- displacement components.
Using (4.8), for instance, the matrixA admits the following 3×3block decomposition

A =

⎡⎢⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎦ . (4.9)

In case of isotropic materials, the diagonal blocks Ajj , j = 1, 2, 3, in (4.9) are
discrete analogs of the following anisotropic Laplacian operators

D̃1 =a
∂2

∂x2
+b

∂2

∂y2
+b

∂2

∂z2
, D̃2 =b

∂2

∂x2
+a

∂2

∂y2
+b

∂2

∂z2
, D̃3 =b

∂2

∂x2
+b

∂2

∂y2
+a

∂2

∂z2

with coefficients a = E(1−ν)/((1+ν)(1−2ν)) and b = 0.5E/(1+ν) where E is the
Young modulus and ν is the Poisson ratio of the corresponding material. This anisotropy
requires a special care to construct an efficient preconditioner for the iterative solution
method. Based on Korn’s inequality, it can be shown that A and its block diagonal part
are spectrally equivalent. The condition number of the preconditioned system depends
on the Poisson ratio ν of the materials and the constant in the Korn inequality. For the
background of the spectral equivalence approach using block diagonal displacement
decomposition preconditioners in linear elasticity problems we refer to [4]. Note that
the spectral equivalence estimate will deteriorate for ν close to 0.5 which is not the case
in our particular applications.

The PCG method is applied to solve the linear system (4.6). We propose two ap-
proaches to construct a preconditioner for A:

(i) construct a preconditioner for the global matrix A
(ii) construct a preconditioner for A of the type

M =

⎡⎢⎣M11 0 0
0 M22 0
0 0 M33

⎤⎥⎦ , (4.10)

Efficient Solvers for 3-D Homogenized Elasticity Model 861

where Mjj ∼ Ajj , j = 1, 2, 3, are “good” approximations to the diagonal blocks of
A. In case (i) we have chosen the incomplete Cholesky (IC) factorization of A with an
appropriate stopping criterion.

An efficient preconditioner for Ajj in case (ii) turns out to be a matrix Mjj corre-
sponding to a Laplacian operator (−div (c grad u)) with a fixed scale factor c. In our
case we use, for instance, c = b/2 for all three diagonal blocks. Algebraic multigrid
(AMG) method is applied as a “plug-in” solver for A (see [12] for details). This method
is a purely matrix–based version of the algebraic multilevel approach and has shown in
the last decade numerous efficient implementations in solving large sparse unstructured
linear systems of equations without any geometric background.

5 Numerical Experiments

In this section, we present some computational results concerning the microscopic prob-
lem to find the homogenized elasticity coefficients. The elasticity equation (2.3) is solved
numerically using initial decomposition of the periodic microcell Y into hexahedra and
then continuous, piecewise linear finite elements on tetrahedral shape regular meshes.
Due to the equal solutions ξ12 =ξ21, ξ23 =ξ32, and ξ13 =ξ31 one has to solve six
problems in the period Y to find ξ11 (Problem 1), ξ22 (Problem 2), ξ33 (Problem 3),
ξ12 (Problem 4), ξ23 (Problem 5), and ξ13 (Problem 6). The discretized problems have
been solved by the iterative solvers discussed in Section 4 and the mesh adaptivity has
been realized by means of a Zienkiewicz-Zhu type a posteriori error estimator [13].

Fig. 2. Cross section of Y , density = 96%, Problem 3, nt = 12395, nn = 2692

The Young modulus E (in GPa) and the Poisson ratio ν of our two materials are,
respectively, E = 10, ν = 0.22 for carbon and E = 410, ν = 0.14 for SiC. We denote
by nt the number of tetrahedra and by nn the number of nodes on the corresponding
refinement level. In Fig.2 the adaptive mesh refinement is visualized on the cross section
of the period Y . Tables 1 and 2 contain information for the computed homogenized
coefficients according to the refinement level.

Table 3 presents some convergence results for the proposed preconditioners within
PCG method. For various values of the density μ of the periodicity microstructure we re-
port the number of degrees of freedom d.o.f., the number of iterations iter, and the CPU–
time in seconds for the first 11 adaptive refinement levels. One can see from the numerical
results a better convergence of AMG–preconditioner compared to IC–factorization. We
observe an essential efficiency of AMG for a larger number of unknowns.

862 Ronald H.W. Hoppe and Svetozara I. Petrova

Table 1. Homogenized coefficients w.r.t. adaptive refinement level, μ = 19%

level EH
1111 EH

2222 EH
3333 nt/nn (Prob.1) nt/nn (Prob.2) nt/nn (Prob.3)

1 160.82 174.34 204.39 288/126 288/126 288/126

2 175.60 207.65 214.79 334/137 332/136 332/136

3 159.18 170.78 206.73 443/166 457/169 441/165

4 174.07 166.79 213.77 637/222 593/208 595/211

5 168.97 163.26 214.10 982 /297 971/292 948/287

6 146.50 147.22 208.64 1641/433 1609/431 1684/443

7 160.25 147.90 211.11 2516/624 2422/604 2427/601

8 146.80 138.09 211.82 3761/896 3915/927 3881/920

9 137.10 134.55 210.36 5134/1171 7743/1722 5092/1160

10 133.22 131.84 210.91 10839/2259 13698/2869 11078/2289

Table 2. Homogenized coefficients for late wood, density μ = 91%

level EH
1111 EH

2222 EH
3333 EH

1212 EH
2323 EH

1313

1 148.35 152.57 153.96 60.22 62.46 59.50

2 154.34 162.64 162.77 69.71 71.31 65.79

3 142.66 148.42 162.79 60.51 65.26 63.23

4 145.84 137.61 161.70 53.91 59.04 62.92

5 127.99 134.32 161.43 49.41 56.19 56.49

6 98.29 111.65 160.71 40.44 46.14 48.45

7 91.79 90.23 158.29 35.70 43.69 46.03

8 82.42 83.00 160.57 30.59 41.03 43.70

9 75.05 75.11 160.22 26.93 39.75 40.97

10 69.66 70.30 159.82 25.47 37.16 39.30

Table 3. Convergence results with IC and AMG preconditioners, density μ, Problem 1

prec. level 1 2 3 4 5 6 7 8 9 10 11

μ = 51% d.o.f. 78 90 126 225 336 579 1185 1908 3360 5598 9987

IC iter 9 8 14 23 40 66 105 150 235 269 299

CPU e-16 e-16 e-16 0.1 0.2 0.2 0.9 2.4 8.2 20.9 59.1

AMG iter 11 13 13 15 18 23 38 57 89 94 99

CPU e-16 e-16 e-16 0.2 0.3 0.5 1.5 3 7.6 14.8 23.5

μ = 84% d.o.f. 78 93 150 261 510 1047 2103 3843 6537 10485 18459

IC iter 10 11 16 21 44 78 117 171 226 273 301

CPU e-16 e-16 0.1 0.1 0.1 0.6 2.4 8.4 24.3 63.7 187.1

AMG iter 12 14 14 14 18 31 43 73 69 74 75

CPU e-16 e-16 e-16 0.2 0.4 1.1 3 7.5 15.5 25.6 33.8

Efficient Solvers for 3-D Homogenized Elasticity Model 863

Acknowledgments

This work has been partially supported by the German National Science Foundation
(DFG) under Grant No.HO877/5-3. The second author has also been supported in part
by the Bulgarian NSF under Grant I1402/2004.

References

1. M.P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a
homogenization method. Comput. Methods Appl. Mech. Eng., 71:197–224, 1988.

2. M.P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods and Applications.
Springer, Berlin-Heidelberg-New York, 2003.

3. A. Bensoussan, J. L. Lions, G. Papanicolaou. Asymptotic Analysis for Periodic Structures.
North-Holland, Elsevier Science Publishers, Amsterdam, 1978.

4. R. Blaheta. Displacement decomposition – incomplete factorization preconditioning tech-
niques for linear elasticity problems. Numer. Linear Algebra Appl., 1(2):107–128, 1994.

5. C. Carstensen and St. Funken. Averaging technique for FE-a posteriori error control in elastic-
ity. Part II: λ-independent estimates. Comput. Methods Appl. Mech. Engrg., 190:4663–4675,
2001.

6. P. Greil, T. Lifka, A. Kaindl. Biomorphic cellular silicon carbide ceramics from wood:
I. Processing and microstructure, and II. Mechanical properties. J. Europ. Cer. Soc.. 18:1961–
1973 and 1975–1983, 1998.

7. R.H.W. Hoppe and S.I. Petrova. Applications of primal-dual interior methods in structural
optimization. Comput. Methods Appl. Math., 3(1):159–176, 2003.

8. R.H.W. Hoppe and S.I. Petrova. Optimal shape design in biomimetics based on homogeniza-
tion and adaptivity. Math. Comput. Simul., 65(3):257–272, 2004.

9. V.V. Jikov, S.M. Kozlov, and O.A. Oleinik. Homogenization of Differential Operators and
Integral Functionals. Springer, 1994.

10. R. Rodriguez. Some remarks on the Zienkiewicz-Zhu estimator. Numer. Meth. PDEs, 10:625–
635, 1994.

11. M. Sarikaya and I.A. Aksay. Biomimetics: Design and Processing of Materials. AIP Series
in Polymer and Complex Materials, Woodbury (New York), 1995

12. K. Stüben. A review of algebraic multigrid. J. Comput. Appl. Math., 128:281–309, 2001.
13. O.C. Zienkiewicz and J.Z. Zhu. A simple error estimator and adaptive procedure for practical

engineering analysis. Intern. J. Numer. Methods Eng., 24:337–357, 1987.

Performance Evaluation of a Parallel Algorithm
for a Radiative Transfer Problem�

Paulo B. Vasconcelos and Filomena d’Almeida

1 Faculdade de Economia da Universidade do Porto
rua Dr. Roberto Frias s/n, 4200-464 Porto, Portugal

pjv@fep.up.pt
2 Faculdade de Engenharia da Universidade do Porto
rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

falmeida@fe.up.pt

Abstract. The numerical approximation and parallelization of an algorithm for
the solution of a radiative transfer equation modeling the emission of photons
in stellar atmospheres will be described. This is formulated in the integral form
yielding a weakly singular Fredholm integral equation defined on a Banach space.
The main objective of this work is to report on the performance of the parallel
code.

Keywords: High performance computing, Fredholm integral equation, weakly
singular kernel, projection approximation, iterative refinement, numerical meth-
ods.

AMS Subject Classification: 32A55, 45B05, 65D20, 65R20, 68W10.

1 The Integral Problem

We will consider the integral problem Tϕ = zϕ + f defined on a Banach space X =
L1 ([0, τ∗]) , where T is the integral operator

(Tx)(τ) =
∫ τ∗

0

g(|τ − τ ′|)x(τ ′)dτ ′, 0 ≤ τ ≤ τ∗, (1.1)

the kernel g being a weakly singular decreasing function on]0, τ∗] and z belonging to
the resolvent set of T .

This integral equation represents a radiative transfer problem. The emission of pho-
tons in stellar atmospheres is modeled by a strongly coupled system of nonlinear equa-
tions and equation (1.1) is a restriction of it by considering the temperature and pressure
given (see [2] and [11] for details). For this astrophysics problem the free term f , is
taken to be f(τ) = −1 if 0 ≤ τ ≤ τ∗/2, f(τ) = 0 if τ∗/2 < τ ≤ τ∗ and the kernel g
is defined by

g(τ) =
)

2
E1(τ), (1.2)

� This work was supported by CMUP. CMUP is financed by FCT under programs POCTI and
POSI from QCA III with FEDER and National funds.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 864–871, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Evaluation of a Parallel Algorithm for a Radiative Transfer Problem 865

where

E1(τ) =
∫ ∞

1

exp(−τμ)
μ

dμ, τ > 0. (1.3)

This is the first of the sequence of functions

Eν(τ) =
∫ ∞

1

exp(−τμ)
μν

dμ, τ ≥ 0, ν > 1, (1.4)

which have the following property: E
′
ν+1 = −Eν and Eν(0) =

1
ν − 1

, ν > 1 [1]. E1

has a logarithmic singularity at τ = 0.
The numerical solution is based on the projection of the integral operator onto a finite

dimensional subspace. To obtain a good accuracy it is necessary to use a large dimension
and in consequence a large algebraic linear system. The approach we use is to refine
iteratively an approximate initial solution obtained by the projection onto a subspace
of moderate (small) size. This iterative refinement is a Newton-type method where the
resolvent operator is replaced with three different approximations. In opposition to the
usual integral problems, this one leads to a band sparse discretization matrix. This fact
is taken into account by using sparse data handling and by a particular distribution of
the matrix blocks among the processors.

2 Projection and Iterative Refinement

Integral equations of this type are usually solved by discretization, for instance by projec-
tion methods, onto a finite dimensional subspace. The operator T is thus approximated
by Tn, its projection onto the finite dimensional subspace Xn spanned by n linearly
independent functions in X . In this case we will consider in Xn the basis of piecewise
constant functions on each subinterval of [0, τ∗] determined by a grid of n + 1 points
0 = τn,0 < τn,1 < . . . < τn,n = τ∗. We get

Tn(x) =
n∑

j=1

〈Tx, e∗n,j〉en,j, (2.5)

for all x ∈ X , where e∗n,j ∈ X∗ (the adjoint space of X) and

〈x, e∗n,j〉 =
1

hn,j

τn,j∫
τn,j−1

x(τ)dτ, (2.6)

hn,j = τn,j − τn,j−1.
The approximate problem

(Tn − zI)ϕn = f (2.7)

is then solved by means of an algebraic linear system of equations

(An − zI)xn = bn, (2.8)

866 Paulo B. Vasconcelos and Filomena d’Almeida

where An is a non singular matrix of dimension n. The relation between xn and ϕn is

given by ϕn =
1
z

⎛⎝ n∑
j=1

xn(j)en,j − f

⎞⎠.

In order to obtain an approximate solution ϕn with very good accuracy by this
method it may be necessary to use a very large dimensional linear system.

Alternatively we may compute an initial approximation using a linear system of small
dimension corresponding to a coarse grid on [0, τ∗] and refine it by a refinement formula
based on a Newton-type method applied to the problem formulated under the form
Tx−zx−f = 0. The Fréchet derivative of the left hand side operator is approximated by
an operatorFn built on the coarse grid set on the domain: x(k+1) = x(k)−F−1

n (Tx(k)−
zx(k)−f). The first choice for Fn is (Tn−zI), F−1

n being Rn(z) the resolvent operator
of Tn which approximates R(z) if n is large enough. F−1

n can also be replaced with
1
z
(Rn(z)T − I) or

1
z
(TRn(z)− I).

After some algebraic manipulations we can set the corresponding three refinement
schemes under the form [5,7,9]:

Scheme 1:

{
x(0) = Rn(z)f

x(k+1) = x(0) + Rn(z)(Tn − T)x(k),

Scheme 2:

⎧⎪⎨⎪⎩
x(0) =

1
z
(Rn(z)T − I)f

x(k+1) = x(0) +
1
z
Rn(z)(Tn − T)Tx(k),

Scheme 3:

⎧⎪⎨⎪⎩
x(0) =

1
z
T (Rn(z)− I)f

x(k+1) = x(0) +
1
z
TRn(z)(Tn − T)x(k).

A finer grid of m + 1 points 0 = τm,0 < τm,1 < . . . < τm,m = τ∗ is set to obtain
a projection operator Tm which is only used to replace the operator T in the schemes
above and not to solve the corresponding approximate equation (2.7) with dimension
m. The accuracy of the refined solution by the three refinement formulae is the same that
would be obtained by applying the projection method directly to this fine grid operator
(see [3]).

The convergence theorems and error bounds can be found in [4].

3 Matrix Computations

The evaluation of T cannot be done in closed form so T will be replaced with operator
Tm corresponding to the projection of T onto Xm with m 6 n. The functional basis
in Xn is {en,j}j=1,...,n and in Xm it is {em,j}j=1,...,m, and the matrices representing
the operators Tn and Tm restricted to Xn and Xm are respectively An and Am. By
observing the schemes 1, 2 and 3 we see that the restrictions of Tn to Xm and of Tm to
Xn are also needed, they will be denoted by C and D respectively.

Performance Evaluation of a Parallel Algorithm for a Radiative Transfer Problem 867

To simplify the description of the elements of the matrices we will assume that the
coarse grid is a subset of the fine grid and we denote by q the ratio m/n. For matrix D
we have

D(i, j) =
)

2hm,i

∫ τm,i

τm,i−1

∫ τ∗

0

E1 (|τ − τ ′|) en,j (τ ′) dτ ′dτ (3.9)

=
)

2hm,i

∫ τm,i

τm,i−1

∫ τn,j

τn,j−1

E1 (|τ − τ ′|) dτ ′dτ

for i = 1, ...,m and j = 1, ..., n.

D(i, j) =

=
)

2hm,i

∫ τm,i

τm,i−1

(−E2 (τn,j − τ) + E2 (τn,j−1 − τ))dτ

if τm,i−1 ≤ τm,i ≤ τn,j−1 ≤ τn,j

=
)

2hm,i

∫ τm,i

τm,i−1

(E2 (τ − τn,j)− E2 (τ − τn,j−1))dτ

if τn,j−1 ≤ τn,j ≤ τm,i−1 ≤ τm,i

=
)

2hm,i

∫ τm,i

τm,i−1

(2− E2 (τ − τn,j−1)− E2 (τn,j − τ))dτ

if τn,j−1 ≤ τm,i−1 ≤ τm,i ≤ τn,j ;

D(i, j) =
(3.10)

=
)

2hm,i
(−E3 (τn,j − τm,i) + E3 (τn,j − τm,i−1) + E3 (τn,j−1 − τm,i)

−E3 (τn,j−1 − τm,i−1))

if τm,i−1 ≤ τm,i ≤ τn,j−1 ≤ τn,j

=
)

2hm,i
(−E3 (τm,i − τn,j) + E3 (τm,i−1 − τn,j) + E3 (τm,i − τn,j−1)

−E3 (τm,i−1 − τn,j−1))

if τn,j−1 ≤ τn,j ≤ τm,i−1 ≤ τm,i

=)(1 +
1

2hm,i
(−E3 (τn,j − τm,i) + E3 (τn,j − τm,i−1)

+E3 (τm,i − τn,j−1)− E3 (τm,i−1 − τn,j−1)))

if τn,j−1 ≤ τm,i−1 ≤ τm,i ≤ τn,j .

868 Paulo B. Vasconcelos and Filomena d’Almeida

Matrix C is obtained in a similar way.
To obtain the elements of matrices Am or An we use formulae (3.9) by replacing n

with m or vice-versa and use the fact that E3(0) = 1/2:

A(i, j) =
(3.11)

=
)

2hm,i
(−E3 (τm,i − τm,j) + E3 (τm,i−1 − τm,j) + E3 (τm,i − τm,j−1)

+E3 (τm,i−1 − τm,j−1))

if i �= j

=)(1 +
1

hm,i
(−E3 (hm,i)− 1))

if i = j.
Remark (see also [2]) that

D = AmP (3.12)

where

P (k, j) =

{
1 , q × (j − 1) + 1 ≤ k ≤ q × j

0 , otherwise

and, similarly,
C = RAm (3.13)

where

R(j, k) =

{
hm,k/hn,j , q × (j − 1) + 1 ≤ k ≤ q × j

0 , otherwise
.

4 Numerical Results

The parallelization of the code corresponding to the construction of matrices An, Am,
C, D and the codes corresponding to schemes 1, 2 and 3 was done on a Beowulf machine
consisting of 22 processing nodes connected by a fast Ethernet switch (100Mbps). Each
one is a Pentium III - 550 MHz with 128 MB of RAM. There is also a front-end dual
Pentium III - 550 MHz with 512 MB of RAM. The operating system is Linux Slackware
7.0 and the software used for the communications between the nodes is MPI (Message
Passing Interface) [13].

A cyclic distribution by columns of Am allows scalability since the matrix is band.
Matrix C, n×m, is distributed by block columns and D, m×n, by block rows because
n 0 m. The coarse grid will have enough points to ensure convergence of the iterative
refinement but it will be as small as possible so that the solution of the small linear
system (2.8) can be done in all processors at a small cost in computing time.

In [6] the building of matrices C and D was done by formulae C = RAm and
D = AmP to avoid some approximate integral computations of functionE3.For parallel
processing, however, matrix D must be computed by (3.10) because that can be done in

Performance Evaluation of a Parallel Algorithm for a Radiative Transfer Problem 869

Table 1. Number of iterations and elapsed times for the three iterative schemes with different
number of processors (m = 10000, n = 1000)

nb. processors Scheme 1 Scheme 2 Scheme 3

p 43 iterations 21 iterations 21 iterations

1 3472.7 3472.4 3472.2

2 1749.4 1749.0 1748.9

4 885.0 884.4 884. 4

5 714.1 713.6 713.6

10 375.3 375.1 375.1

Table 2. Speedup and efficiency for the three iterative schemes up to 10 processors (m = 10000,
n = 1000)

nb. processors Scheme 1-3

p Sp Ep

1 1 1.00

2 1.99 0.99

4 3.93 0.98

5 4.86 0.97

10 9.26 0.93

Table 3. Number of iterations and elapsed times for the three iterative schemes with 10 and 20
processors (m = 100000, n = 5000)

nb. processors Scheme 1 Scheme 2 Scheme 3

p 48 iterations 24 iterations 24 iterations

10 32590.6 32585.8 32585.1

20 14859.7 14855.0 14854.2

parallel and on the other hand the communications involved in the product D = AmP
are avoided. The numerical tests performed were designed to answer the question of
whether it is better to compute D and C by (3.12) and (3.13) or by (3.10). The question
arises because the computation of D by (3.12) requires to many communications since
Am is distributed. This becomes more and more important as the number of processors
grows. The matrix blocks needed for C = RAm are all in the same processor so it is
better to use (3.13) instead of the integral formulation.

The iterative refinement is not well suited for parallelization because it requires too
many communications but that is not important since the most time consuming phase
of the solution of the problem is the computation of the matrices elements and that is
"embarrassingly parallel". The linear system (2.8) can be solved either by block band LU
factorization [10] or by a Krylov iterative method (usually preconditioned GMRES) [12].

Usually we are interested in very large dimensions and matrix Am does not fit in one
processor so it has to be computed in a distributed way. This fact forces the matrix-vector

870 Paulo B. Vasconcelos and Filomena d’Almeida

10
4

10
5

10
2

10
3

10
4

10
5

problem size (log)

ti
m

e
 (

lo
g

)

p=20

p=10

p=5

p=1

Fig. 1. Performance of the parallel code up to 20 processors

products in the refinement formulae to be done locally by blocks and the partial results
have to be communicated to the other processors to be added.

The numerical tests presented correspond to m = 10000, n = 1000, z = 1 and the
albedo) = 0.75. A nonuniform grid was considered in [0, τ∗] by taking 4 different
zones and a higher number of grid points at the beginning and at the middle of the interval.
The required accuracy was residual less than 10−12. We remark that for the chosen m
and n values, the approximate solution for the 10000× 10000 linear system is obtained
without solving the corresponding system but, instead, by solving a 1000× 1000 linear
system and iteratively refining its solution.

Table 1 show the times of the total solution with the computation of D done by
(3.10) for the three different refinement schemes. We can see that schemes 2 and 3 take
approximately one half of the number of iterations of scheme 1 but the elapsed times
for the three schemes are similar. Most of the time spent by the three schemes is the
computation of the matrices which is similar for all of them. That explains why, as we
can see in Table 2, the speedups and efficiencies are the same. As for the iterative part,
schemes 2 and 3 take a little less time than scheme 1 since they require less iterations,

Performance Evaluation of a Parallel Algorithm for a Radiative Transfer Problem 871

although they perform two products by Am instead of one. For all methods as the number
of processors grows the computational elapsed time decreases.

Figure 1 shows the elapsed time per node of the solution of the problem. When the
number of processors is scaled by a constant factor, the same efficiency is achieved for
equidistant problem sizes on a logarithimic scale. This is denoted as isoefficiency or
isogranularity, [8].

The times for the computation of D by formulae (3.10), for this example, is approx-
imately 31 seconds for 10 processors while with formulae (3.12) it would be approx-
imately 70 seconds. These results show that in a cluster of processors as this one, it is
useful to compute D by the integral formulae because although it requires much more
arithmetic it does not involve communications. This will be more important when the
number of processors and their processing speed grow significantly.

With this approach we were able to solve on this machine a 100000×100000 problem
based on the solution of a 5000× 5000 linear system of equations, Table 3.

References

1. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover, New York,
1960.

2. M. Ahues, F.D. d’Almeida, A. Largillier, O. Titaud and P. Vasconcelos. An L1 Refined
Projection Approximate Solution of the Radiation Transfer Equation in Stellar Atmospheres.
J. Comput. Appl. Math., 140:13–26, 2002.

3. M. Ahues, A. Largillier and B.V. Limaye. Spectral Computations with Bounded Operators.
Chapman and Hall, Boca Raton, 2001.

4. M. Ahues, A. Largillier and O. Titaud. The Roles of a Weak Singularity and the Grid Uni-
formity in the Relative Error Bounds. Numer. Funct. Anal. and Optimiz., 22:7&8 789–814,
2001.

5. M. Ahues, F.D. d’Almeida, A. Largillier, O. Titaud and P. Vasconcelos. Iterative Refinement
Schemes for an ill-Conditioned Transfer Equation in Astrophysics. Algorithms for Approxi-
mation IV, Univ. of Huddersfield, 70–77, 2002.

6. F.D. d’Almeida and P.B. Vasconcelos. A Parallel Implementation of the Atkinson Algorithm
for Solving a Fredholm Equation. Lecture Notes in Computer Science, 2565:368–376, 2003.

7. K.E. Atkinson. A Survey of Numerical Methods for the Solution of Fredholm Integral Equa-
tions of the Second Kind. Society for Industrial and Applied Mathematics, Philadelphia, PA,
1976.

8. L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

9. H. Brakhage. Uber die Numeriche Bechandlung von Integralgleichungen nach der Quadratur-
formelmethod. Numer. Math., 2:183–196, 1960.

10. J.J. Dongarra, I.S. Duff, D.C. Sorensen and H.A. van der Vorst. Numerical Linear Algebra for
High-Performance Computers. Society for Industrial and Applied Mathematics, Philadelphia,
1998.

11. B. Rutily. Multiple Scattering Theoretical and Integral Equations. Integral Methods in Science
and Engineering: Analytic and Numerical Techniques, Birkhauser, 211-231, 2004.

12. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.
13. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J.J. Dongarra. MPI: The Complete Reference.

The MIT Press, 1996.

Performance Evaluation and Design
of Hardware-Aware PDE Solvers: An Introduction

Organizers: Frank Hülsemann and Markus Kowarschik

System Simulation Group, Computer Science Department
Friedrich-Alexander-University Erlangen-Nuremberg, Germany

{Frank.Huelsemann,Markus.Kowarschik}@cs.fau.de

1 Scope

In an ideal situation, all performance optimization of computationally intensive software
would take place automatically, allowing the researchers to concentrate on the develop-
ment of more efficient algorithms (in terms of computational complexity) rather than
having to worry about performance. However, for the time being, optimizing compilers
are unable to synthesize long chains of complicated code transformations to optimize
program execution. As a consequence, the need to identify and to remove the perfor-
mance bottlenecks of computationally intensive codes remains.

As an example of a class of computationally intensive problems, this minisymposium
concentrated on the numerical solution of partial differential equations (PDEs). As with
every computer program, the run times of PDE solvers depend both on the algorithms
and on the data structures used in the implementations. In the context of numerical
PDEs, algorithms with optimal asymptotic complexity are known for certain types of
problems; e.g., multigrid methods for elliptic problems. In those cases where the optimal
algorithms are applicable, only the data structures and the implementation details offer
scope for improvement.

The objective of this minisymposium was to bring together researchers who are
developing efficient PDE algorithms and implementations as well as researchers focusing
on performance evaluation tools to predict, guide, and quantify the development of
efficient numerical software.

Hardware-efficient codes in high performance simulation must follow two funda-
mental design goals; parallelism and locality. The idea must be to use all parallel process-
ing units as efficiently as possible and, in addition, to optimize the performance on each
individual node in the parallel environment. In particular, this requires extensive tuning
for memory hierarchies, i.e., caches.

2 Outline

As was intended by the organizers, the contributions to the minisymposium cover a wide
spectrum of topics. Günther et al. discuss the application of space-filling curves in order
to design cache-efficient multilevel algorithms. Hülsemann et al. present an approach
that combines the geometric flexibility of unstructured meshes with the relatively high
processing speed of regular grid structures. The paper by Johansson et al. focuses on the

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 872–873, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Evaluation and Design of Hardware-Aware PDE Solvers 873

analysis of the memory behavior of various PDE codes through simulation. Kowarschik
et al. introduce a novel patch-adaptive and cache-aware grid processing strategy to be
employed in the context of multigrid algorithms. Quinlan’s contribution concentrates
on a software framework for the generation of optimizing preprocessors for C++ codes.
Teresco et al. discuss load balancing issues for parallel PDE solvers. Weidendorfer et al.
introduce techniques for the optimization of the cache performance of iterative solvers
that are based on hardware prefetching capabilities of the underlying architecture.

A Cache-Aware Algorithm for PDEs
on Hierarchical Data Structures

Frank Günther, Miriam Mehl, Markus Pögl, and Christoph Zenger

Institut für Informatik, TU München
Boltzmannstraße 3, 85748 Garching, Germany

{guenthef,mehl,poegl,zenger}@in.tum.de

Abstract. A big challenge in implementing up to date simulation software for
various applications is to bring together highly efficient mathematical methods
on the one hand side and an efficient usage of modern computer archtitectures
on the other hand. We concentrate on the solution of PDEs and demonstrate how
to overcome the hereby occuring quandary between cache-efficiency and mod-
ern multilevel methods on adaptive grids. Our algorithm is based on stacks, the
simplest possible and thus very cache-efficient data structures.

1 Introduction

In most implementations, competitive numerical algorithms for solving partial differen-
tial equations cause a non-negligible overhead in data access and, thus, can not exploit
the high performance of processors in a satisfying way. This is mainly caused by tree
structures used to store hierarchical data needed for methods like multi-grid and adaptive
grid refinement.

We use space-filling curves as an ordering mechanism for our grid cells and – based
on this order – to replace the tree structure by data structures which are processed linearly.
For this, we restrict to grids associated with space-trees (allowing local refinemt) and
(in a certain sense) local difference stencils. In fact, the only kind of data structures
used in our implementation is a fixed number of stacks. As stacks can be considered as
the most simple data structures used in Computer Science allowing only the two basic
operations push and pop1, data access becomes very fast – even faster than the common
access of non-hierarchical data stored in matrices – and, in particular, cache misses are
reduced considerably. Even the implementation of multi-grid cycles and/or higher order
discretizations as well as the parallelization of the whole algorithm becomes very easy
and straightforward on these data structures and doesn’t worsen the cache efficiency.

In literature, space-filling curves are a well-known device to construct efficient grid
partitionings for data parallel implementations of the numerical solution of partial differ-
ential equations [23,24,13,14,15,16,19]. It is also known that – due to locality properties
of the curves – reordering grid cells according to the numbering induced by a space-
filling curve improves cache-efficiency (see e.g. [1]). Similar benefits of reordering data
along space-filling curves can also be observed for other applications like e.g. matrix
transposition [5] or matrix multiplication [6]. We enhance this effect by constructing

1 push puts data on top of a pile and pop takes data from the top of a pile.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 874–882, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures 875

for adaptive grid
discrete curve 2. iterate1. iteratetemplate

Hilbert−curve

Peano−curve

Fig. 1. Generating templates, first iterates and discrete curve on an adaptively refined grid for
two-dimensional Hilbert- and Peano-curves

stacks for which we can even completely avoid ‘jumps’ in the adresses instead of only
reducing their probability or frequency.

2 Space-Filling Curves and Stacks

As we look for an odering mechanism for the cells of a multilevel adaptive rectangular
grid based on a space tree, we restrict our attention to a certain class of space-filling
curves2, namely recursively defined, self-similar space-filling curves with rectangular
recursive decomposition of the domain. These curves are given by a simple generating
template and a recursive refinement procedure which describes the (rotated or mirrored)
application of the generating template in sub-cells of the domain. See figure 1 for some
iterates of the two-dimensional Hilbert- and Peano-curves, which are prominent repre-
sentatives of this class of curves. As can be seen, the iterate we use in a particular part
of our domain depends on the local resolution.

Now, these iterates of the space-filling curves associated to the given grid – also
called discrete space-filling curves – and not the space-filling curve itself3 define the
processing order of grid cells. To apply an operator-matrix to the vector of unknowns,
we process the cells strictly in this order and perform all computations in a cell-oriented
way, which means that in each cell, we evaluate only those parts of the corresponding
operator that can be computed solely with the help of the cell’s own information and,
in particular, without adressing any information of neighbouring cells. This method is
standard for finite element methods (see e.g. [4]), but can be generalized for ‘local’

2 For general information on space-filling curves see [20].
3 The space-filling curve itself can be interpreted as the limit of the recursive refinement procedure

and is – in contrast to the iterates – not injective.

876 Frank Günther et al.

discrete operators, which means that for the evaluation in one grid point, only direct
neighbours are needed4.

To get more concrete, we look at a space-tree with function values located at the ver-
tices of cells in the following. To apply the common five-point-stencil for the Laplacian
operator, for example, we have to decompose the operator into four parts associated to
the four neighbouring cells of a gridpoint5:

Δhuh|i,j =

ui−1,j+ui,j−1−2ui,j

2h2 +
ui+1,j+ui,j−1−2ui,j

2h2 +
ui+1,j+ui,j+1−2ui,j

2h2 +
ui−1,j+ui,j+1−2ui,j

2h2 .

· − · − ·
| | |
1
2
− −1 − ·

| | |
· − 1

2
− ·

· − · − ·
| | |
· − −1 − 1

2

| | |
· − 1

2
− ·

· − 1
2

− ·
| | |
· − −1 − 1

2

| | |
· − · − ·

· − 1
2

− ·
| | |
1
2
− −1 − ·

| | |
· − · − ·

Of course, in each cell, we evaluate the cell-parts of the operator values for all four
vertices all at once. Thus, we have to construct stacks such that all data associated to the
respective cell-vertices lie on top of the stacks when we enter the cell during our run along
the discrete space-filling curve. We will start with a simple regular two-dimensional grid
illustrated in figure 2 and nodal data. If we follow the Peano-curve, we see that during
our run through the lower part of the domain, data points on the middle line marked by
1 to 9 are processed linearly from the left to the right, during the subsequent run through
the upper part vice versa from the right to the left. Analogously, all other grid points can
be organized on lines which are processed linearly forward and, afterwards, backward.
For the Peano-curve and a regular grid, this can be shown to hold for arbitrarily fine
grids, as well.

As these linearly processed lines work with only two possibilities of data access,
namely push (write data at the next position in the line) and pop (read data from the
actual position of the line), they correspond directly to our data stacks. We can even
integrate several lines in one stack, such that it is sufficient to have two stacks: 1Dblack

for the points on the right-hand-side of the curve and 1Dred for the points at the left-
hand-side of the curve. The behavior of a point concerning read and write operations on
stacks can be predicted in a deterministic6 way. We only have to classify the points as
‘inner points’ or ‘boundary points’ and respect the (local) progression of the curve.

4 In addition, in the case of adaptively refined grid, the cell-oriented view makes the storage of
specialized operators at the boundary of local refinements redundant as a single cell computes
its contribution to the overall operators without taking into consideration the refinement depth
of surrounding cells.

5 If we want to minimze the number of operations, this equal decomposition is of course not the
optimal choice, at least not for equidistant grids and constant coefficients.

6 In this context, deterministic means depending only on locally available informations like the
local direction of the Peano-curve.

A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures 877

1 3 4 5 6 7 8 92

Fig. 2. Example in 2D using the Peano-curve

1

2 3 4

6
789

1415
101112

13

17 18 19

16 5

Fig. 3. Example for the order of hierarchical cells defined by the discrete Peano-curve

We use the Peano-curve instead of the Hilbert-curve since in 3D the Peano-curve
guarantees the inversion of the processing order of grid points along a plane in the domain
if we switch from the domain on one side of the plane to the domain on the other side.
This property is essential for our stack concept and we could not find any Hilbert-curve
fulfilling it. There are good reasons to assume that this is not possible at all.

Up to this point, we have restricted our considerations to regular grids to explain
the general idea of our algorithm, but the whole potential of our approach shows only
when we look at adaptively refined grids and – in the general case – hierarchical data in
connection with generating systems [11]. This leads to more than one degree of freedom
per grid point and function. Even in this case, the space-filling curve defines a linear
order of cells respecting all grid levels: the cells are visited in a a top-down depth-first
process reflecting the recursive definition of the curve itself (see figure 3 for an example).

In our stack-context, we have to assure that even then predictable and linear data
access to and from stacks is possible. In particular, we have to assure that grid points of
different levels lie on the stacks in the correct order and do not “block” each other. We
could show that it is sufficient to use four colors representing four different stacks of
the same type and a second type of stack, called 0D stack. Thus, we end up with a still
fixed – and in particular independent of the grid resolution – number of eight stacks (for
details see [10]).

To be able to process data on a domain several times – as needed for each iterative
solver – without loss of efficiency, we write all points to a so called 2D- or plain-stack
as soon as they are ‘ready’. It can easily be seen that, if we process the grid cells in
opposite direction in the next iteration, the order of data within this 2D-stack enables us
to pop all grid points from this 2D-stack as soon as they are ‘touched’ for the first time.

878 Frank Günther et al.

Such, we can use the 2D-stack as input stack very efficiently. We apply this repeatedly
and, thus, change the processing direction of grid cells after each iteration.

An efficient algorithm deducted from the concepts described above passes the grid
cell-by-cell, pushes/pops data to/from stacks deterministically and automatically and will
be cache-aware by concept (not by optimization!)7 because of the fact, that using linear
stacks is a good idea in conjunction with modern processors prefetching techniques. An
additional gain of using our concept is the minimal storage cost for administrational
data. We can do completely without any pointer to neighbours and/or father- and son-
cells. Instead, we only have to store one bit for refinement informations and one bit for
geometrical information (in- or outside the computational domain) per cell.

3 Results

To point out the potential of our algorithm, we show some first results for simple examples
with the focus on the efficiency concerning storage requirements, processing time and
cache behavior. Note that up to now we work with an experimental code which is not
optimized at all yet. Thus, absolute values like computing time will be improved further
and our focus here is only on the cache behavior and the qualitative dependencies between
the number of unknowns and the performance values like computing times.

3.1 Two-Dimensional Poisson Equation

As a first test, we solve the two-dimensional Poisson equation on the unit-square and on
a two-dimensional disc with homogeneous Dirichlet boundary conditions:

� u(x) = −2π2 sin(πx) sin(πy), ∀ x = (x, y)T ∈ Ω (3.1)

u(x) = sin(πx) · sin(πy) ∀ x ∈ ∂Ω (3.2)

The exact solution of this problem is given by u(x) = sin(πx) · sin(πy). To discretize
the Laplacian operator, we use the common Finite Element stencil arising from the use
of bilinear basis functions. The resulting system of linear equations was solved by an
additive multi-grid method with bilinear interpolation and full-weighting as restriction
operator. As criterion for termination of the iteration loop we took a value of rmax =
10−5, where rmax is the maximum (in magnitude) of all corrections over all levels.

On the unit square, we used regular grids with growing resolution. On the disc, we
used different adaptive grids gained by local coarsening strategies starting from an initial
grid with 729×729 cells. To get a sufficient accuracy near the boundary, we did not allow
any coarsening of boundary cells. Tables 1 and 2 show performance values obtained on
a dual Intel XEON 2.4 GHz with 4 GB of RAM.

Note that the number of iterations until convergence is in both cases independent from
the resolution, which one would have expected for a multi-grid method. The analysis of
cache misses and cache hits on the level 2 cache gives a good hint on the high efficiency
of our method. But for a more realistic judgement of the efficieny, the very good relation

7 Algorithms wich are cache-aware by concept without detailed knowledge of the cache para-
meters are also called cache-oblivious [18,9,8].

A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures 879

Table 1. Performance values for the two-dimensional Poisson equation on the unit square solved
on a dual Intel XEON 2.4 GHz with 4 GB of RAM

resolution iterations L2 cache misses per it. rate

243 × 243 39 134,432 1.09

729 × 729 39 1,246,949 1.12

2187 × 2187 39 11,278,058 1.12

Table 2. Performance values for the two-dimensional Poisson equation on a disk solved on a dual
Intel XEON 2.4 GHz with 4 GB of RAM

variables % of full grid L2-hitrate iter cost per variable

66220 15.094% 99.28% 287 0.002088

101146 23.055% 99.26% 287 0.002031

156316 35.630% 99.24% 286 0.001967

351486 80.116% 99.11% 280 0.001822

438719 100.00% 99.16% 281 0.002030

between the number of actual cache-misses and the minimal number of necessary cache-
misses caused by the unavoidable first loading of data to the cache is more significant:

With the size s of a stack element, the number n of degrees of freedom and the size
cl of a L2 cache line on the used architecture we can guess a minimum cmmin = n·s

cl of
cache misses per iteration, which has to occur if we read each grid point once per iteration
producing s

cl cache misses per point. In fact, grid points are typically used four times in
our algorithm as well as in most FEM-algorithms. Thus, this minimum guess is assumed
to be even too low. ‘Rate’ in table 1 is defined as cmreal

cmmin
where cmreal are the L2 cache

misses per iteration simulated with calltree [25]. As this rate is nearly one in our
algorithm, we can conclude that we produce hardly no needless cache misses at all. In
addition, we get a measured L2-hit-rate of at least 99,13%, using hardware performance
counters [26] on an Intel XEON, which is a very high value for ‘real’ algorithms beyond
simple programs for testing performance of a given architecture.

In table 2, the column ‘costs per variable’ shows the amount of time needed per
variable and per iteration. These values are nearly constant. Thus, we see that we have a
linear dependency between the number of variables and the computing time, no matter if
we have a regular full grid or an adaptively refined grid. This is a remarkable result as we
can conclude from this correlation that, in our method, adaptivity doesn’t any additional
costs.

3.2 Three-Dimensional Poisson Equation

In the previous sections, we only considered the two-dimensional case. But our concepts
can be generalized in a very natural way to three or even more dimensions. Here, we
give a few preliminary results on the 3D case. The basic concepts are the same as in the

880 Frank Günther et al.

Fig. 4. Representation of the star-shaped domain with the help of adaptive grids gained by a
geometry oriented coarsening of a 243 × 243 × 243 grid

two-dimensional case, but to achieve an efficient implementation, we introduced some
changes and/or enhancements in the concrete realization [17].

The first – and obvious – change is that we need 3D in- and output stacks and 2D, 1D
and 0D stacks during our run through the space tree instead of 1D and 0D stacks only.
In addition, we use 8 colors for the 0D, 12 colors for the 1D stacks, and 6 colors for the
2D stacks. Another interesting aspect in 3D is that we replace the direct refinement of a
cell by the introduction of 27 sub-cells by a dimension recursive refinement: A cell is cut
into three “plates” in a first step, each of these plates is cut into three “bars”, and, finally,
each bar into three “cubes”. This reduces the number of different cases dramatically and
can even be generalized to arbitrary dimensions, too.

We solve the three-dimensional Poisson equation

�u((x)) = 1 (3.3)

on a star-shaped domain (see figure 4) with homogeneous boundary conditions. The
Laplace operator is discretized by the common Finite Difference stencil and – analogu-
ously to the 2D case – we use an additive multi-grid method with trilinear interpolation
and full-weighting as restriction operator. The termination criterion was |rmax| ≤ 10−5.

Table 3 shows performance values obtained on a dual Intel XEON 2.4 GHz with
4 GB of RAM for adaptively refined grids. As can be seen, all important performance
properties like multi-grid performance and cache efficiency carry over from the 2D case.
The rate between the number of real cache misses and the minimal number of expected
cache misses was measured for a different example (poisson equation in a sphere) and
stays also in the range of 1.10. Thus, even in 3D, the essential part of the cache misses
is really necessary and cannot be avoided by any algorithm.

A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures 881

Table 3. Performance values for the three-dimensional Poisson equation on a star-shaped domain
solved on a dual Intel XEON 2.4 GHz with 4 GB of RAM

max. resolution variables storage req. L2-hit-rate iter cost per variable

81 × 81 × 81 18,752 0.7MB 99.99% 96 0.0998

243 × 243 × 243 508,528 9MB 99.99% 103 0.0459

729 × 729 × 729 13,775,328 230MB 99.98% 103 0.0448

4 Conclusion

In this paper we presented a method combining important mathematical features for the
numerical solution of partial differential equations – adaptivity, multi-grid, geometri-
cal flexibility – with a very cache-efficient way of data organization tailored to modern
computer architectures and suitable for general discretized systems of partial differential
equations (yet to be implemented). The parallelization of the method follows step by
step the approach of Zumbusch [23] who has already used successfully space-filling
curves for the parallelization of PDE-solvers. The generalization to systems of PDEs is
also straightforward. With an experimental version of our programs we already solved
the non-stationaray Navier-Stokes equations in two dimensions, but the work is still in
progress and shall be published in the near future. The same holds for detailed perfor-
mance results for various computer architectures.

References

1. M.J. Aftosmis, M.J. Berger, and G. Adomavivius. A Parallel Multilevel Method for adaptively
Refined Cartesian Grids with Embedded Boundaries. AIAA Paper, 2000.

2. R.A. Brualdi and B.L. Shader. On sign-nonsingular matrices and the conversion of the per-
manent into the determinant. In P. Gritzmann and B. Sturmfels, editors. Applied Geometry
and Discrete Mathematics, The Victor Klee Festschrift, pages 117-134, Providence, RI, 1991.
American Mathematical Society.

3. F.A. Bornemann. An adaptive multilevel approach to parabolic equations III: 2D error esti-
mation and multilevel preconditioning. IMPACT Computational Science and Engeneering,
4:1-45, 1992.

4. Braess. Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics. Cam-
bridge University Press, 2001.

5. S. Chatterjee and S. Sen. Chache-Efficient Matrix Transposition. In Proceedings of HPCA-6,
pages 195–205, Toulouse, France, January 2000.

6. S. Chatterjee, A.R. Lebeck, P.K. Patnala, and M. Thottethodi. Recursive array layouts and
fast parallel matrix multiplication. In Proceedings of Eleventh Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 222-231, Saint-Malo, France, 1999.

7. W. Clarke. Key-based parallel adaptive refinement for FEM. Bachelor thesis, Australian Na-
tional Univ., Dept. of Engineering, 1996.

8. E.D. Demaine. Cache-Oblivious Algorithms and Data Structures. In Lecture Notes from the
EEF Summer School on Massive Data Sets, Lecture Notes in Computer Science, BRICS,
University of Aarhus, Denmark, June 27-July 1, 2002, to appear.

882 Frank Günther et al.

9. M. Frigo, C.E. Leierson, H. Prokop, and S. Ramchandran. Cache-oblivious algorithms. In
Proceedings of the 40th Annual Sympoisium on Foundations of Computer Science, pages
285-297, New York, October 1999.

10. F. Günther. Eine cache-optimale Implementierung der Finite-Elemente-Methode. Doctoral
thesis, Institut für Informatik, TU München, 2004.

11. M. Griebel. Multilevelverfahren als Iterationsmethoden über Erzeugendensystemen. Habili-
tationsschrift, TU München, 1993.

12. M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der
Moleküldynamik. Numerik, Algorithmen, Parallelisierung, Anwendungen, Springer, Berlin,
Heidelberg, 2004.

13. M. Griebel and G.W. Zumbusch. Parallel multigrid in an adaptive PDE solver based on hashing
and space-filling curves. Parallel Computing, 25:827-843, 1999.

14. M. Griebel and G. Zumbusch. Hash based adaptive parallel multilevel methods with space-
filling curves. In H. Rollnik and D. Wolf, editors, NIC Series, 9:479-492, Germany, 2002.
Forschungszentrum Jülich.

15. J.T. Oden, A. Para, and Y. Feng. Domain decomposition for adaptive hp finite element methods.
In D.E. Keyes and J. Xu, editors, Domain decomposition methods in scientific and engineering
computing, proceedings of the 7th int. conf. on domain decomposition, vol. 180 of Contemp.
Math., pages 203-214, 1994, Pennsylvania State Universitiy.

16. A.K. Patra, J. Long, A. Laszloff. Efficient Parallel Adaptive Finite Element Methods Using
Self-Scheduling Data and Computations. HiPC, pages 359-363, 1999.

17. M. Pögl. Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für große Prob-
leme. Doctoral thesis, Institut für Informatik, TU München, 2004.

18. H. Prokop. Cache-Oblivious Algorithms. Master Thesis, Massachusetts Institute of Technol-
ogy, 1999.

19. S. Roberts, S. Klyanasundaram, M. Cardew-Hall, and W. Clarke. A key based parallel adaptive
refinement technique for finite element methods. In B.J. Noye, M.D. Teubner, and A.W. Gill,
editors, Proc. Computational Techniques and Applications: CTAC ’97, pages 577-584, World
Scientific, Singapore, 1998.

20. H. Sagan. Space-Filling Curves. Springer-Verlag, New York, 1994.
21. R.J. Stevens, A.F. Lehar, and F.H. Preston. Manipulation and Presentation of Multidimensional

Image Data Using the Peano Scan. IEEE Trans. Pattern An. and Machine Intelligence, Vol
PAMI-5, pages 520-526, 1983.

22. L. Velho, J. de Miranda Gomes. Digital Halftoning with Space-Filling Curves. Computer
Graphics, 25:81-90, 1991.

23. G.W. Zumbusch. Adaptive Parallel Multilevel Methods for Partial Differential Equations.
Habilitationsschrift, Universität Bonn, 2001.

24. G.W. Zumbusch. On the quality of space-filling curve induced partitions. Z. Angew. Math.
Mech., 81:25-28, 2001. Suppl. 1, also as report SFB 256, University Bonn, no. 674, 2000.

25. J. Weidendorfer, M. Kowarschik, and C. Trinitis. A Tool Suite for Simulation Based Analysis
of Memory Access Behavior, Proceedings of the 2004 International Conference on Compu-
tational Science, Krakow, Poland, June 2004, vol. 3038, Lecture Notes in Computer Science
(LNCS), Springer.

26. http://user.it.uu.se/ mikpe/linux/perfctr/

Constructing Flexible, Yet Run Time Efficient
PDE Solvers�

Frank Hülsemann and Benjamin Bergen

System Simulation Group, Computer Science Department
Friedrich-Alexander-University Erlangen-Nuremberg, Germany

{frank.huelsemann,ben.bergen}@cs.fau.de

Abstract. Amongst other properties, PDE solvers for large scale problems
should be flexible, as they are time consuming to write, and obviously run time
efficient. We report on the experiences with a regularity centred approach for
grid based PDE software that aims to combine geometric flexibility with run time
efficiency. An unstructured coarse grid that describes the problem geometry is
repeatedly subdivided in a regular fashion to yield a hierarchy of grids on which
the approximation is sought. By construction, the grid hierarchy is well suited
for multilevel methods. The gain in run time performance that results from the
exploitation of the patch wise regularity of the refined grids over standard imple-
mentations will be illustrated.

1 Introduction

Two desirable properties of PDE solvers, flexibility and run time efficiency, are often
seen as difficult to combine. In this article we discuss the optimisation potential for
the implementation that is inherent to sparse linear system solvers on regularly refined,
unstructured grids which commonly arise in geometric multigrid methods. Although the
developed techniques apply to any two or higher dimensional problem, we concentrate
on two and three spatial dimensions. The run time behaviour of a PDE solver for a given
problem size and a given hardware platform depends on the algorithmic complexity of
the solution method employed and on its implementation. Therefore, in order to be fast,
an efficient PDE solver will have to combine an optimal algorithm with an appropriate
implementation. For our discussion, we concentrate on geometric multigrid methods
as solvers, which are known to be of optimal linear algorithmic complexity for certain
second order, elliptic boundary value problems [4], [7].

The type of flexibility that we are interested in concerns the use of unstructured grids.
In this work, we do not consider other, undoubtedly desirable, aspects of solver flexibility
such as the availability of different approximation schemes, for example higher order
basis functions or staggered grids to name but two, nor do we cover adaptive methods.

Our main concern is to improve the floating point performance of geometric multigrid
methods on unstructured grids. For this purpose, it suffices to consider cases for which
(standard) geometric multigrid methods are applicable. Hence we do not consider the

� This work has been supported by a KONWIHR grant of the Bavarian High Performance Com-
puting Initiative.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 883–892, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

884 Frank Hülsemann and Benjamin Bergen

question of how to construct robust multigrid schemes on unstructured grids with high
aspect ratios or for problems with strongly varying coefficients.

The article is structured as follows. First, we give reasons why repeated refine-
ment is a common approach in the implementation of geometric multigrid methods on
unstructured grids. Then, in Sect. 3, we identify the different types of regularity in the
discretisation that can be exploited. After that, we present the data structures that capture
the regular properties in Sect. 4. Section 5 accesses the cost of the data synchronisa-
tion that are inherent to our approach. Following on, we present performance data from
numerical experiments before we conclude the paper.

2 Geometric Multigrid on Unstructured Grids

The common approach to generating the hierarchy of nested approximation spaces
needed for standard geometric multigrid on unstructured grids consists in carrying out
several steps of repeated regular refinement. The reason for the popularity of this ap-
proach lies in the complexity and difficulty of any alternative. Coarsening a given un-
structured grid so that the resulting approximation spaces are nested is often simply
impossible. Hence, one would have to work on non-nested spaces. Multigrid methods
for such a setting are much more complicated than those for their nested counterparts.
In summary, although it is possible to construct geometric multigrid methods on hierar-
chies of repeatedly coarsened unstructured grids, this option is rarely chosen in practice.
Hence we turn our attention to the standard approach of repeated refinement.

The basic assumption underlying this strategy is that the spatial resolution of the un-
structured input grid is not high enough in any section of the grid (anywhere) to yield a
sufficiently accurate solution. In such a case, some global refinement is indeed necessary.
While this assumption excludes the cases in which the geometry is so complex that the
resolution of the domain geometry is already sufficient for the accuracy requirements,
it still includes various challenging applications that require large scale computations.
Applications with high accuracy requirements on comparatively simple domains arise
for example in the simulation of plasma in particle accelerators, density functional com-
putations in molecular dynamics and the simulation of wave propagation in high energy
ultra sound.

3 Identifying Regularity on Globally Unstructured Grids

We illustrate the main concepts of our approach using a simplified problem domain that
arose in an electromagnetic field problem. Consider the setting in Fig. 1. For ease of
presentation, we assume a Poisson problem

−� u = f on Ω

u = 0 on ∂Ω.

on the problem domain Ω. The extension of the implementation techniques to other
settings is straightforward.

Constructing Flexible, Yet Run Time Efficient PDE Solvers 885

a)

c)

b)

I)

II)

III)

Fig. 1. Non-destructive testing example, from left to right: I) the problem domain with a) the coil
that generates a magnetic field, b) air surrounding the coil and c) the material to be tested. The
material parameters (magnetic permeability) of the three different components differ from each
other but are assumed to be constant within each component (homogeneous materials). II) the
coarse, unstructured grid that represents the problem geometry and III) the grid after two global
regular subdivision steps

For the representation of the discrete operator on the grid in Fig. 1 II), it is appropriate
to employ sparse matrix storage schemes. For a description of various sparse matrix
formats and their implementation see [1], for example. Returning to the example, we
note that the grid consists of different cell geometries (triangles and quadrilaterals), the
number of neighbours is not constant for all vertices and the material parameters vary.
However, the situation on the grid in Fig. 1 III) is different. Within each cell of the
unstructured input grid the repeated refinement has resulted in regular patches. In the
interior of each coarse grid cell the grid is regular and the material parameter is constant.
This implies that one stencil suffices to represent the discrete operator inside such a
regular region1. Put differently, if the stiffness matrix was set up for the refined grid,
then, assuming an appropriate numbering of the unknowns, the row entries belonging
to each patch would display a banded structure with constant matrix coefficients. From
this observation it is clear that once the patches contain sufficiently many points it will
not be desirable to ever set up a sparse matrix representation of the discrete operator.
The unstructured and hybrid nature of the coarse input grid shows itself in the fine grid
representation of the discrete operator at the vertices and at the points on the edges of the
coarse grid. The vertices of the input grid have to be treated in a standard, unstructured
manner, because there is no regularity to be exploited at these points. In two spatial
dimensions, the fine grid points that resulted from the refinement of an edge of the input
grid share a common stencil. The stencil shape and the stencil entries can vary from
edge to edge, depending on the geometric shapes of the cells that share the edge, but
along one edge, both shape and entries are constant. In three spatial dimensions, this

1 In the description of the grid structure, we use the terms (regular) patch and region interchange-
ably.

886 Frank Hülsemann and Benjamin Bergen

observation holds for the faces whereas the (points on the) edges have to be treated in
an unstructured way.

In summary, within each patch in Fig. 1 III) we have

– a constant stencil shape (banded matrix structure) for the discrete operator,
– constant material parameters and therefore
– constant stencil entries.

Next we will describe the data structures that we propose to exploit the regular
structure of the operator within each patch to improve the floating point performance
of the geometric multigrid implementation on unstructured input grids and give parallel
performance results on different architectures. Further descriptions of the approach can
be found in [2], [3], [5].

4 Data Structures for Patch Wise Regularity

As pointed out before, a general sparse matrix storage format is not suitable for the
adequate representation of the patch wise structure of the discrete operator on a highly
refined grid.

The main idea of our approach is to turn operations on the refined, globally un-
structured grid into a collection of operations on block structured parts where possible
and resort to unstructured operations only where necessary. As described above, in two
spatial dimensions only the vertices of the input grid require inherently unstructured
operations, while each edge and each computational cell of the input grid constitute
a block structured region. For the remainder of the paper, we concentrate on the case
where in each block structured part, the stencil shape and the stencil entries are constant,
but the shape and the entries can of course differ between parts. The storage scheme is
illustrated in Fig. 2. Each block structured region provides storage for the unknowns and
the discrete operators in its interior. In addition to the memory for the degrees of freedom
of one problem variable, the regular region also provides buffers for information from
neighbouring objects, which can be other regular regions or unstructured regions and
points. When applying a discrete operator to a variable, this rim of buffers eliminates
the need to treat the unknowns close to the boundary, where the stencil extends into
neighbouring objects, any different from those in the inside. In other words, the number
of points to which a constant stencil can be applied in the same manner is maximised.

We mentioned before that in the regular regions, the discrete operator can be ex-
pressed by stencils with constant shape. In some cases, the entries of the stencil are also
constant over the object. Inside such a region, the representation of the operator can be
reduced to one single stencil. Both properties, constant stencil shape and constant stencil
entries, help to improve the performance of operations involving the discrete operator.
The scale of the improvement depends on the computer architecture.

First, we turn to the constant shape property. On general unstructured grids, the dis-
crete operator is usually stored in one of the many sparse matrix formats. If one uses
such general formats in operations such as the matrix-vector product or a Gauß-Seidel
iteration, one usually has to resort to indirect indexing to access the required entries
in the vector. Being able to represent the discrete operator in the regular regions by

Constructing Flexible, Yet Run Time Efficient PDE Solvers 887

Fig. 2. Data layout for stencil based operations: Assuming a vertex based discretisation with
Dirichlet boundary conditions on the top grid, the unknowns are stored in three different mem-
ory segments to allow stencil operations. Full circles indicate unknowns, hollow circles indicate
buffered values from neighbouring objects (ghost cells)

stencils with fixed shapes, we can express the memory access pattern for the operation
explicity through index arithmetic and thus enable the compiler, or indeed hardware
mechanisms like prefetch units, to analyse and optimise the memory accesses better. In
the sparse matrix case, the memory access pattern is known at run time, in our setting
it is known at compile time, at least for a significant subset of all points. The size of
this subset will be discussed in the section on data synchronisation costs. On the Hitachi
SR8000 supercomputer at the Leibniz computing centre in Munich, this change from
indirect indexing to index arithmetic improves the MFLOP/s performance of a Gauß-
Seidel iteration on a single processor from around 50 MFLOP/s for a CRS (compressed
row storage) implementation to 300 MFLOP/s for the stencil based computation. These
values were obtained with a 27 point finite element discretisation inside a refined hexa-
hedron on a processor with a theoretical peak performance of 1500 MFLOP/s. On this
high memory bandwidth architecture, the explicit knowledge about the structure of the
operations results in a six-fold performance improvement. Many cache based architec-
tures do not offer such a high bandwidth to main memory. Given that a new stencil has
to be fetched for each unknown, the memory traffic to access the stencil values slows
down the computations on these machines. As an example for such machines, we con-
sider an Intel Pentium 4 processor with 2.4 GHz clock speed, 533 MHz (effective) front
side bus and dual channel memory access. Our CRS based Gauß-Seidel iteration runs at
190 MFLOP/s on a machine with a theoretical peak performance of 4800 MFLOP/s2.
With the fixed stencil shape implementation, we observe a performance between 470
and 490 MFLOP/s, depending on the problem size, which is 2.5 times more than for the

2 The results on the PC architecture were obtained with the version 3.3.3 of the GNU compiler
collection.

888 Frank Hülsemann and Benjamin Bergen

standard unstructured one. In all cases, the problem size did not fit into the caches on
the machines.

In the case of constant stencil entries for an element, the advantage of the structured
implementation is even clearer. Instead of fetching 27 stencil values from memory for
each unknown, the same stencil is applied to all unknowns in the element. This obvi-
ously reduces the amount of memory traffic significantly. On the Hitachi SR8000, such
a constant coefficient Gauß-Seidel iteration achieves 884 (out of 1500) MFLOP/s on a
hexahedron with 1993 unknowns. Compared to the standard unstructured implementa-
tion, this amounts to a speed up factor of 17.5. Again, on the commodity architecture
Pentium 4, the improvement is less impressive. For a problem of the same size, the
constant coefficient iteration runs at 1045 MFLOP/s, which is 5.5 times faster than its
unstructured counterpart.

These numbers make it clear that exploiting the substructure does improve the run
time performance inside the regular regions. However, in general, the global grid con-
sists of more than one regular block, which introduces the need for data synchronisation
between these blocks. In the next section, we consider the computational cost of the com-
munication between blocks and indicate how many levels of refinement are necessary
for the proposed data structures to pay off.

5 Cost of Data Synchronisation

In the previous section it has been shown that the run time performance inside the regular
regions improves when the structure of the computations is taken into account. However,
when comparing the performance of a structured implementation with its unstructured
counterpart, one also has to take the computational cost for the data synchronisation into
account. The computations inside a block can take place once the current boundary values
have been stored in the rim buffers. These boundary values have to be collected from the
neighbouring grid objects. For a hexahedron, this means that it has to receive the current
values from its six neighbouring faces, its 12 edges and eight corners. Furthermore, after
the values of the unknowns inside the hexahedron have been updated, the neighbouring
objects have to be informed about the changes, which results again in data exchange
operations.

It is reasonable to assume that the time requirements for the data synchronisation
within one process are linearly proportional to the number of values that have to be copied
back and forth. Consequently, we consider the ratio between the number of points inside
a hexahedra, for which the computations can be carried out in the optimised manner
described above, and the number of points on the hexahedra boundary, which have to be
exchanged. Only when the computations inside the regular region take sufficiently longer
than the communication of the boundary values can the performance on the proposed
data structures be higher than on the standard unstructured ones. In Table 1 we give the
numbers for the different point classes for a repeatedly refined hexahedron and the ratio
of the regular points (Nr) over all points (N). The refinement rule consists in subdividing
a cube into eight sub-cubes of equal volume. The refinement level 0 corresponds to the
initial cube, level l, l ≥ 1 is the result of subdividing all cubes in level l − 1 according
to the rule above.

Constructing Flexible, Yet Run Time Efficient PDE Solvers 889

Table 1. Point numbers in a refined hexahedron (cube): l denotes the refinement level, Nr the
number of points in the inside of a refined cube, N the total number of points in the cube including
the boundary and r = Nr/N the ratio between regular points and all points

l Nr N r

0 0 8 0

1 1 27 0.037

2 27 125 0.216

3 343 729 0.471

4 3375 4913 0.687

5 29791 35937 0.829

6 250047 274625 0.911

7 2048383 2146689 0.954

8 16581375 16974593 0.977

We introduce some notation in order to estimate the overall performance on one
cube with the communication taken into account. We assume that all N points can be
updated with the same number of floating point operations, denoted by f . If the standard,
unstructured implementation is employed to update the boundary points, we observe a
floating point performance of Pcrs MFLOP/s on these N −Nr = (1 − r) ∗N points.
In the regular region, comprising Nr points, the computations are carried out with Preg

MFLOP/s. The value s = Preg/Pcrs is the speed up factor in the observed floating point
performance. It turns out to be useful to express the communication time in terms of
floating point operations that could have been performed in the same time. By m we
denote the number of floating point operations that can be carried out at an execution
speed of Preg MFLOP/s in the same period of time that it takes to copy one point value
to or away from the cube. In total, there are (1 − r)N points on the boundary and for
simplicity we assume that the number of values to be copied from the hexahedra to
its neighbours is also (1 − r)N , which is an upper bound on the actual number. Thus
we arrive at 2(1− r)N copy operations, each one taking m/Preg seconds, resulting in

a communication time tsyn of tsyn = 2(1−r)N×m
Preg

seconds. The overall floating point
performance is now computed by dividing the number of floating point operationsN×f
by the time it takes to perform the computations. The overall time ttotal is given by

ttotal = treg + tcrs + tsyn

=
Nrf

Preg
+

(1− r)Nf

Pcrs
+

2(1− r)Nm

Preg

=
rNf

Preg
+

s(1− r)Nf

Preg
+

2(1− r)Nf m
f

Preg

=

(
r + s(1− r) + 2m

f (1− r)
)
Nf

Preg

890 Frank Hülsemann and Benjamin Bergen

Hence we obtain for the overall performance Ptotal:

Ptotal =
Nf

ttotal
=

1
r + s(1− r) + 2m

f (1− r)
Preg

=
1

1 +
(
(s− 1) + 2m

f

)
(1− r)

Preg

Even when ignoring the communication (m=0), the expression for Ptotal shows that
with r → 1, the denominator tends to one and the overall performance approaches the
performance of the structured implementation. However, for a given level of refinement,
it depends on the observed values for s and m whether the structured implementation is
faster than the unstructured one. In the next section, we illustrate that we do achieve an
acceleration.

6 Numerical Results

The stencil based representation of the discrete operator together with the block wise
storage scheme for the unknown variables on the grid can be employed in all iterative
solution algorithms for the equivalent linear system, that involve the application of
an operator to a variable, more commonly known as matrix-vector product. We are
particularly interested in geometric multigrid methods due to their optimal asymptotic
complexity. Therefore we have chosen the refinement rule for our implementation in
such a way that the resulting grids are nested.

Our main concern in this section is the floating point performance of the resulting
program. As a consequence, we choose a test problem for which a standard multigrid
algorithm is appropriate. Given that multigrid methods require computations on different
levels, not only the finest one, they present a harder test case than single level Krylov
methods for instance, that only involve operator applications on the finest and for our
data structures most favourable level.

Our test case is a three dimensional Poisson problem with Dirichlet boundary con-
ditions on L-shaped domains. The input grid is refined seven times for the scale up
experiment and six times for the speed up computations. The meshsize in the different
grids for the scale up experiment is constant. The domain is extended in one direc-
tion by the necessary number of equally refined unit cubes in order to fill the available
processors.

The algorithmic components of the full multigrid method (FMG) are essentially
standard: We employ a row-wise red-black Gauss-Seidel smoother, which updates the
unknowns in a row in a red-black ordering thus breaking the data dependencies between
two neighbouring points in a lexicographic numbering, and combine it with full weight-
ing and trilinear interpolation. On each level in the multigrid hierarchy we perform two
V(2,2) cycles before prolongating the obtained approximation to the next refinement
level. Trilinear finite elements result in a 27 point stencil in the interior of the domain.

The results in Fig. 3, see also [6], underline that the proposed regularity oriented
data structures result in a program that shows both good scale up and good speed up
behaviour. Please note that the solution time for the largest problem involving more

Constructing Flexible, Yet Run Time Efficient PDE Solvers 891

CPU Dof Time

×106 in (s)

64 1179,48 44

128 2359,74 44

256 4719,47 44

512 9438,94 45

550 10139,49 48

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Processes

linear
observed

(b)

Fig. 3. Parallel performance results in 3D: (a) Scalability experiments using a Poisson problem
with Dirichlet boundary conditions. Each partition in the scalability experiments consists of nine
cubes, each of which is regularly subdivided seven times. The timing results given refer to the wall
clock time for the solution of the linear system using a full multigrid solver. (b) Speedup results
for the same Poisson problem. The problem domain consisted of 128 cubes, each of which was
subdivided six times. The problem domain was distributed to 2, 4, 8, 16, 32 and 64 processes

than 1010 unknowns is less than 50 seconds, on 550 processors. But this demonstrates
that efficient hierarchical algorithms, in this case full multigrid, in combination with
“hardware-aware" (or: architecture-friendly) data structures are capable of dealing with
large scale problems in an acceptable amount of time. Due to the memory requirements
of the matrix storage, it would not have been possible to treat a problem of that size even
on the whole machine with a sparse matrix based scheme.

At the end of this section, we come back to the question of whether this imple-
mentation is actually faster than an unstructured one. Profiling results indicate that the
processes in the scale up experiment spend slightly more than 30% in the Gauß-Seidel
routine for the regular regions inside the cubes. The speed up factor for this routine is
roughly 14 (more than 700 MFLOP/s vs. less than 50 MFLOP/s). In other words, if only
this one routine was implemented in a standard, unstructured manner, the run time of the
single routine would be more than four times the run time for the whole, structured pro-
gram. On this architecture, our proposed approach is successful in reducing the overall
solution time.

7 Conclusion

In this article, we have shown that repeatedly refined, unstructured grids, as they com-
monly arise in geometric multigrid methods, result in different regular features in the
discretisation. We have presented data structures that capture these regularities and we
have illustrated that operations on these data structures achieve a higher floating point
performance than their commonly used unstructured counterparts. The impact of nec-
essary data synchronisation on the overall performance was considered. By providing
performance data from numerical experiments we have demonstrated that the proposed

892 Frank Hülsemann and Benjamin Bergen

data structures are well suited for large scale, parallel computations with efficient indi-
vidual processes.

References

1. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd ed., SIAM, Philadelphia, 1994,

2. B. Bergen and F. Hülsemann. Hierarchical hybrid grids: A framework for efficient multigrid on
high performance architectures. Technical Report 03-5, Lehrstuhl für Informatik 10, Universität
Erlangen-Nürnberg, 2003

3. B. Bergen and F. Hülsemann. Hierarchical hybrid grids: data structures and core algorithms
for multigrid. Numerical Linear Algebra with Applications, 11 (2004), pp. 279–291

4. A. Brandt. Multi–level adaptive solutions to boundary–value problems. Math. Comp., 31
(1977), pp. 333–390.

5. F. Hülsemann, B. Bergen, and U. Rüde. Hierarchical hybrid grids as basis for parallel numerical
solution of PDE. In H. Kosch, L. Böszörményi and H. Hellwagner (eds.) Euro-Par 2003 Parallel
Processing, Lecture Notes in Computer Science Vol. 2790, Springer, Berlin, 2003, pp. 840–843

6. F. Hülsemann, S. Meinlschmidt, B. Bergen, G. Greiner, and U. Rüde. gridlib – A parallel, object-
oriented framework for hierarchical-hybrid grid structures in technical simulation and scientific
visualization. In High Performance Computing in Science and Engineering, Munich 2004.
Transactions of the Second Joint HLRB and KONWIHR Result and Reviewing Workshop,
Springer, Berlin, 2004, pp. 37–50

7. U. Trottenberg, C.W. Oosterlee, and A. Schüller. Multigrid. Academic Press, London, 2000

Analyzing Advanced PDE Solvers Through Simulation

Henrik Johansson, Dan Wallin, and Sverker Holmgren

Department of Information Technology, Uppsala University
Box 337, S-751 05 Uppsala, Sweden

{henrik.johansson,dan.wallin,sverker.holmgren}@it.uu.se

Abstract. By simulating a real computer it is possible to gain a detailed knowl-
edge of the cache memory utilization of an application, e.g., a partial differential
equation (PDE) solver. Using this knowledge, we can discover regions with intri-
cate cache memory performance. Furthermore, this information makes it possible
to identify performance bottlenecks.
In this paper, we employ full system simulation of a shared memory computer to
perform a case study of three different PDE solver kernels with respect to cache
memory performance. The kernels implement state-of-the-art solution algorithms
for complex application problems and the simulations are performed for data sets
of realistic size. We discovered interesting properties in the solvers, which can
help us to improve their performance in the future.

1 Introduction

The performance of PDE solvers depends on many computer architecture properties. The
ability to efficiently use cache memory is one such property. To analyze cache behavior,
hardware counters can be used to gather rudimentary data like cache hit rate. However,
such experiments can not identify the reason for a cache miss. By software simulation
of a computer, it is possible to derive, e.g., the type of a cache miss and the amount of
address and data traffic. A further advantage is that the simulated computer can be a
fictitious system.

In this paper, we present a case study of the cache memory behavior of three PDE
solvers. The solvers are based on modern, efficient algorithms, and the settings and
working sets are carefully chosen to represent realistic application problems. The study
is based on full-system simulations of a shared memory multiprocessor, where the base-
line computer model is set up to correspond to a commercially available system, the
SunFire 6800 server. However, using a simulator, the model can easily be modified to
resemble alternative design choices.

We perform simulations where both the cache size and the cache line size is varied,
as two simulation case studies. Many other parameters can be varied as well, but the
chosen parameters show some typical properties of the studied PDE solvers.

We begin this paper with a general discussion of simulation, coupled with a descrip-
tion of our simulation platform (section two). Next, we present the PDE solvers used for
the simulations (section three). The fourth section holds the results of the simulations,
divided into two case studies. Finally, our conclusions are presented in section five.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 893–900, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

894 Henrik Johansson, Dan Wallin, and Sverker Holmgren

2 Related Work

Early work in full system simulation was performed at Stanford University and resulted
in the SimOS simulator [2]. The SimOS was, among others, used to study the memory
usage of commericial workloads [3], data locality on CC-NUMA systems [4] and to
characterize and optimize an auto-parallelizing compiler [5]. However, the work on
SimOS was discontinued in 1998.

Most recent work in the field is based on the Simics full system simulator [1]. Simics
has been used in a large number of publications. These include an examination of the
memory system behavior for Java-based middleware [6] and a comparision of memory
system behavior in java and non-java commercial workloads [7].

The work presented above is primarily concerned with hardware. In the papers real
applications are simulated with the goal of improving the underlying hardware. Our
paper uses the opposite approach, it uses simulation in an effort to improve the software.

3 Simulation Techniques

There are several ways to analyze algorithms on complex high performance computer
systems, e.g., a high-end server. One alternative is to perform measurements on the actual
physical machine, either using hardware or software. Another alternative is to develop
analytical or statistical models of the system. Finally, there is simulation.

Simulation has several advantages over the other methods. First, the characteristics
of the simulated computer can be set almost arbitrary. Second, the simulated machine is
observable and controllable at all times. Third, a simulation is deterministic; it is always
possible to replicate the results obtained from the simulation. Fourth, a high degree of
automation is possible.

The ability to change parameters in the area of interest gives a researcher great
flexibility. Looking at cache memory, we can easily change cache line size, cache size,
replacement policy, associativity and use sub-blocked or unblocked caches. We can also
determine which information to collect. In this case it can, e.g., be the number of memory
accesses, cache miss rates, cache miss type and the amount of data or address traffic.

There are also a few drawbacks inherent in simulation. It is in practice impossible to
build a simulator that mimics the exact behavior of the target computer in every possible
situation. This might lead to some differences between the collected information and the
performanceof the real computer. However, comparisons between the individual simula-
tions are valid since they all encounter the same discrepancies. Estimating execution time
is difficult based on simulation and it is highly implementation dependent on the band-
width assumptions for the memory hierarchy and the bandwidth of coherence broadcast
and data switches. The complexity of an “exact” simulation is thus overwhelming, and
performance and implementation issues make approximations necessary.

The experiments are carried out using execution-driven simulation in the Simics
full-system simulator [1]. Simics can simulate computer architectures at the level of
individual instructions. The target computer runs unmodified programs and even a com-
plete operating system. Usually an operating system is booted inside Simics and pro-
grams, benchmarks and tests are run on this operating system in a normal fashion. Simics

Analyzing Advanced PDE Solvers Through Simulation 895

collects detailed statistics about the target computer and the software it runs. The user
determines what information to collect, and how to do it. For example, the user can
initially collect a wide range of data about the cache memory system as a whole. Later,
in order to isolate a certain behavior, it is possible to restrict the collection to a small
region of the code.

The modeled system implements a snoop-based invalidation MOSI cache coherence
protocol [8]. We set up the baseline cache hierarchy to resemble a SunFire 6800 server
with 16 processors. The server uses UltraSPARC III processors, each equipped with two
levels of caches. The processors have two separate first level caches, a 4-way associative
32 KB instruction cache and a 4-way associative 64 KB data cache. The second level
cache is a shared 2-way associative cache of 8 MB and the cache line size is 64 B.

4 The PDE Solvers

The kernels studied represent three types of PDE solvers, used for compressible flow
computations in computational fluid dynamics (CFD), radar cross-section computations
in computational electro-magnetics (CEM) and chemical reaction rate computations in
quantum dynamics (QD). The properties of the kernels differ with respect to the amount
of computations performed per memory access, memory access patterns and the amount
of communication and its patterns.

The CFD kernel implements the advanced algorithm described by Jameson and
Caughey for solving the compressible Euler equations on a 3D structured grid using a
Gauss-Seidel-Newton technique combined with multi-grid acceleration [9]. The imple-
mentation is described in detail by Nordén [10]. The data is highly structured. The total
work is dominated by local computations needed to update each cell. These computations
are quite involved, but their parallelization is trivial. Each of the threads computes the
updates for a slice of each grid in the multi-grid scheme. The amount of communication
is small and the threads only communicate pair-wise.

The CEM kernel is part of an industrial solver for determining the radar cross sec-
tion of an object [11]. The solver utilizes an unstructured grid in three dimensions in
combination with a finite element discretization. The resulting large system of equations
is solved with a version of the conjugate gradient method. In each conjugate gradient
iteration, the dominating operation is a matrix-vector multiplication with the very sparse
and unstructured coefficient matrix. Here, the parallelization is performed such that each
thread computes a block of entries in the result vector. The effect is that the data vector
is accessed in a seemingly random way. However, the memory access pattern does not
change between the iterations.

The QD kernel is derived from an application where the dynamics of chemical reac-
tions is studied using a quantum mechanical model with three degrees of freedom [12].
The solver utilizes a pseudo-spectral discretization in the two first dimensions and a fi-
nite difference scheme in the third direction. In time, an explicit ODE-solver is used. For
computing the derivatives in the pseudo-spectral discretization, a standard convolution
technique involving 2D fast Fourier transforms (FFTs) is applied. The parallelization
is performed such that the FFTs in the x-y dimensions are performed in parallel and
locally [13]. The communication within the kernel is concentrated to a transpose opera-

896 Henrik Johansson, Dan Wallin, and Sverker Holmgren

tion, which involves heavy all-to-all communication between the threads. However, the
communication pattern is constant between the iterations in the time loop.

5 Results

We will now present two case studies performed on the PDE solvers. In the first study
we simulate the solvers with different sizes of the cache memory, varied between
512 KB and 16 MB. The cache line size is held constant at 64 B. This gives a good
overview of the different characteristics exhibited by the solvers. In the second study,
we fix the cache memory size and vary the cache line size between 32 B and 1024 B.
These simulations provide us with detailed knowledge of the cache memory utilization
for each of the three solvers. The case studies should be seen as possible studies to
perform in a simulated environment. Other interesting studies could for example be to
vary the cache associativity or the replacement policy [14,15].

We only perform a small number of iterative steps for each PDE kernel since the
access pattern is regular within each iteration. Before starting the measurements, each
solver completes a full iteration to warm-up the caches. The CFD problem has a grid
size of 32×32×32 elements using four multi-grid levels. The CEM problem represents
a modeled generic aircraft with a problem coefficient matrix of about 175,000×175,000
elements; a little more than 300,000 of these are non-zero. The QD problem size is
256×256×20, i.e. a 256×256 2D FFT in the x-y plane followed by a FDM with 20
grid points in the z-direction. The wall clock time needed to perform the the simulations
ranged from six up to twelve hours.

The cache misses are categorized into five different cache miss types according to
Eggers and Jeremiassen [16]. Cold cache misses occur when data is accessed for the
first time. Acapacity cache miss is encountered when the cache memory is full. We
also treat conflict misses, when data is mapped to an already occupied location in the
cache, as capacity misses. When shared data is modified, it can result in a true sharing
miss when another processor later needs the modified data. A false sharing cache miss
results when a cache line is invalidated in order to maintain coherency, but no data was
actually shared. Updates are not cache misses, but the messages generated in order to
invalidate a shared cache line. An update can result in a sharing miss. The data traffic
is a measurement of the number of bytes transferred on the interconnect, while the term
address traffic represents the number of snoops the caches have to perform. All results
presented are from the second level cache.

5.1 Case Study 1: Varying the Cache Size

The CFD-problem has the lowest miss rate of all the kernels. There is a relatively large
amount of capacity misses when the cache size is small. This is expected, as the problem
sizes for all of the applications are chosen to represent realistic work loads. There is a
drop in the miss rate at a cache size of 1 MB. The drop corresponds to that all of the data
used to interpolate the solution to the finest grid fits in the cache.

The CEM solver has a higher miss rate than the other applications. The miss rate
decreases rapidly with larger cache sizes, especially between 2 MB and 4 MB. This

Analyzing Advanced PDE Solvers Through Simulation 897

indicates that the vector used in the matrix-vector multiplication now fits into the cache.
The large drop in miss rate between 8 MB and 16 MB tells us that cache now is large
enough to hold all the data. Some of the capacity misses become true sharing misses
when the size is increased.

The QD-solver has a miss rate in-between the two other solvers. The miss rate is stable
and constant until the whole problem fits into the cache. Most of the capacity misses have
then been transformed into true sharing misses because of the classification scheme; the
classification of capacity misses take precedence over the true sharing misses.

The distribution of the different miss types varies between the three solvers. All of
the solvers have a lot of capacity misses when the cache size is small. The capacity
misses tend to disappear when the cache size is large enough to hold the full problem.
The CFD-kernel exhibits large percentage of false sharing misses. The CEM-solver is
dominated by true sharing misses, while the QD-solver has equal quantities of upgrades
and true sharing misses for large cache sizes. For all solvers, both data and address traffic
follow the general trends seen in the miss rate.

5.2 Case Study 2: Varying the Cache Line Size

The CFD kernel performs most of the computations locally within each cell in the
grid, leading to a low overall miss ratio. The data causing the true sharing misses and
the upgrades exhibit good spatial locality. However, the true and false sharing misses
decrease more slowly since they cannot be reduced below a certain level. The reduction
in address traffic is proportional to the decrease in miss ratio. The decrease in cache miss
ratio is influenced by a remarkable property: the false sharing misses are reduced when
the line size is increased. The behavior of false sharing is normally the opposite; false
sharing misses increase with larger line size. Data shared over processor boundaries are
always, but incorrectly, invalidated. If a shorter cache line is used, less invalidated data
will be brought into the local cache after a cache miss and accordingly, a larger number
of accesses is required to bring all the requested data to the cache [14]. It is probable
that this property can be exploited to improve the cache memory utilization.

The CEM kernel has a large problem size, causing a high miss ratio for small cache
line sizes. Capacity misses are common and can be avoided using a large cache line size.
The true sharing misses and the upgrades are also reduced with a larger cache line size,
but at a slower rate since the data vector is being irregular accessed. False sharing is never
a problem in this application. Both the data and address traffic exhibit nice properties
for large cache lines because of the rapid decrease in the miss ratio with increased line
size.

The QD kernel is heavily dominated by two miss types, capacity misses and upgrades,
which both decrease with enlarged cache line size. The large number of upgrades is
caused by the all-to-all communication pattern during the transpose operation where
every element is modified after being read. This should result in an equal number of true
sharing misses and upgrades, but the kernel problem size is very large and replacements
take place before the true sharing misses occur. Therefore, a roughly equal amount of
capacity misses and upgrades are recorded. The data traffic increases rather slowly for
cache lines below 512 B. The address traffic shows the opposite behavior and decreases
rapidly until the 256 B cache line size is reached, where it levels out.

898 Henrik Johansson, Dan Wallin, and Sverker Holmgren

(a) CFDm (b) CFDt

(c) CEMm (d) CEMt

(e) QDm (f) QDt

Fig. 1. Influence of cache size on cache misses, address and data traffic. The miss ratio in percent
is indicated in the cache miss figures. The address and data traffic are normalized relative to the
8 MB configuration

6 Conclusion

We have shown that full system simulation of PDE solvers with realistic problem sizes
is possible. By using simulation, we can obtain important information about the run time
behavior of the solvers. The information is difficult to collect using traditional methods
such as hardware counters. Simulation also allows us to run the solvers on non existing
computer systems and configurations.

Our three PDE-solvers were found to have vastly different cache memory character-
istics. The collected data in combination with a good knowledge of the algorithms made
it possible to understand the behavior of each solver in great detail. We are certain that
this Understanding will make it easier to find ways to better utilize the cache memory.

Analyzing Advanced PDE Solvers Through Simulation 899

(a) CFDm (b) CFDt

(c) CEMm (d) CEMt

(e) QDm (f) QDt

Fig. 2. Influence of cache line size on cache misses, address and data traffic. The miss ratio in
percent is indicated in the cache miss figures. The address and data traffic are normalized relative
to the 64 B configuration

References

1. P. S. Magnusson et al, Simics: A Full System Simulation Platform, IEEE Computer, Vol. 35,
No. 2, pp. 50-58, 2002.

2. M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod,Using the SimOS Machine Simulator
to Study Complex Computer Systems, ACM TOMACS Special Issue on Computer Simula-
tion,1997.

3. L. A. Barroso, K. Gharachorloo and E. Bugnion, Memory System Characterization of Com-
mercial Workloads, In Proceedings of the 25th International Symposium on Computer Ar-
chitecture, June 1998.

4. B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, Operating System Support for Improv-
ing Data Locality on CC-NUMA Compute servers, In ASPLOS VII, Cambridge, MA, 1996.

900 Henrik Johansson, Dan Wallin, and Sverker Holmgren

5. E. Bugnion, J. M. Anderson and M. Rosenblum, Using SimOS to characterize and optimize
auto-parallelized SUIF applications, First SUIF Compiler Workshop, Stanford University,
Jan. 11-13, 1996.

6. M. Karlsson, K. Moore, E. Hagersten, and D. Wood,Memory System Behavior of Java-Based
Middleware, n Proceedings of the Ninth International Symposium on High Performance
Computer Architecture (HPCA-9), Anaheim, California, USA, February 2003.

7. M. Marden, S. Lu, K. Lai, M. Lipasti, Comparison of Memory System Behavior in Java
and Non-Java Commercial Workloads, In the proceedings of the Computer Architecture
Evaluation using Commercial Workloads (CAECW-02), February 2, 2002.

8. J. Hennessy and D Patterson, Computer Architechture, A Quantitative Approach, Morgan
Kaufmann.

9. A. Jameson and D. A. Caughey, How Many Steps are Required to Solve the Euler Equations
of Steady Compressible Flow: In Search of a Fast Solution Algorithm, AIAA 2001-2673,
15th AIAA Computational Fluid Dynamics Conference, June 11-14, 2001, Anaheim, CA.

10. M. Nordén, M. Silva, S. Holmgren, M. Thuné and R. Wait, Implementation Issues for
High Performance CFD, Proceedings of International Information Technology Conference,
Colombo, 2002.

11. F. Edelvik, Hybrid Solvers for the Maxwell Equations in Time-Domain, PhD thesis, Dep. of
Information Technology, Uppsala University, 2002.

12. Å. Petersson, H. Karlsson and S. Holmgren, Predissociation of the Ar-12 van der Waals
Molecule, a 3D Study Performed Using Parallel Computers, Submitted to Journal of Physical
Chemistry, 2002.

13. D. Wallin, Performance of a High-Accuracy PDE Solver on a Self-Optimizing NUMA
Architecture, Master’s thesis, Dep. of Information Technology, Uppsala University, 2001.

14. H. Johansson, An Analysis of Three Different PDE-Solvers With Respect to Cache
Performance, Master’s thesis, Dep. of Information Technology, Uppsala University, 2003.

15. D. Wallin, H. Johansson and S. Holmgren, Cache Memory Behavior of Advanced PDE
Solvers, Parallel Computing: Software Technology, Algorithms, Architectures and Appli-
cations 13, Proceedings of the International Conference ParCo2003, pp. 475-482,Dresden,
Germany, 2003.

16. S. J. Eggers and T. E. Jeremiassen, Eliminating False Sharing, Proceedings of International
Conference on Parallel Processing, pp. 377-381, 1991.

Towards Cache-Optimized Multigrid
Using Patch-Adaptive Relaxation

Markus Kowarschik, Iris Christadler, and Ulrich Rüde

System Simulation Group, Computer Science Department
Friedrich-Alexander-University Erlangen-Nuremberg, Germany

{Markus.Kowarschik,Iris.Christadler,Ulrich.Ruede}@cs.fau.de

Abstract. Most of today’s computer architectures employ fast, yet relatively
small cache memories in order to mitigate the effects of the constantly widening
gap between CPU speed and main memory performance. Efficient execution of
numerically intensive programs can only be expected if these hierarchical memory
designs are respected. Our work targets the optimization of the cache performance
of multigrid codes. The research efforts we will present in this paper first cover
transformations that may be automized and then focus on fundamental algorith-
mic modifications which require careful mathematical analysis. We will present
experimental results for the latter.

1 Introduction

In order to mitigate the effects of the constantly widening gap between CPU speed and
main memory performance, today’s computer architectures typically employ hierarchi-
cal memory designs involving several layers of fast, yet rather small cache memories
(caches) [6]. Caches contain copies of frequently used data.

However, efficient code execution can only be expected if the codes respect the
structure of the underlying memory subsystem. Unfortunately, current optimizing com-
pilers are not able to synthesize chains of complicated cache-based code transformations.
Hence, they rarely deliver the performance expected by the users and much of the tedious
and error-prone work concerning the tuning of the memory efficiency is thus left to the
software developer [3,8].

The research we will present in this paper focuses on the optimization of the data
cache performance of multigrid methods which have been shown to be among the fastest
numerical solution methods for large sparse linear systems arising from the discretization
of elliptic partial differential equations (PDEs) [14]. In particular, we will concentrate
on the optimization of the smoother which is typically the most time-consuming part of
a multigrid implementation [7,15]. The smoother is employed in order to eliminate the
highly oscillating components of the error on the corresponding grid levels. Conversely,
the coarse-grid correction is responsible for the reduction of the slowly oscillating error
frequencies.

Our techniques can be divided into two categories. On the one hand, we will briefly
address “compiler-oriented” cache optimization approaches which do not modify the
results of the numerical computations and may therefore be fully automized using a

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 901–910, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

902 Markus Kowarschik, Iris Christadler, and Ulrich Rüde

compiler or a source code restructuring tool; e.g., ROSE [11]. On the other hand, we
will describe a more fundamental approach which is derived from the theory of the fully
adaptive multigrid method [13] and based on a patch-adaptive processing strategy. This
novel algorithm requires careful mathematical analysis and is therefore a long way from
being automatically introduced by a compiler [7].

See [3,8,9] for comprehensive surveys on memory hierarchy optimizations. In partic-
ular, cache performance optimizations for computations on structured grids have further
been presented in [7,12,15]. For the case of unstructured grids, we particularly refer to
[2].

Our paper is structured as follows. Compiler-oriented cache-based transformations
will be reviewed briefly in Section 2. Section 3 contains the description of the adaptive
relaxation schemes. Afterwards, experimental results will be demonstrated in Section 4.
In Section 5, we will draw some final conclusions.

2 Compiler-Oriented Data Locality Optimizations

2.1 Data Layout Optimizations

Data layout optimizations aim at enhancing code performanceby improving the arrange-
ment of the data in address space [7]. On the one hand, such techniques are applied to
change the mapping of array data to the cache frames, thereby reducing the number of
cache conflict misses and avoiding cache thrashing [3]. This is commonly achieved by a
layout transformation called array padding which introduces additional array elements
that are never referenced in order to modify the relative distances of array entries in
address space [12].

On the other hand, data layout optimizations can be applied to increase spatial local-
ity. In particular, they can be introduced in order to enhance the reuse of cache blocks
once they have been loaded into cache. Since cache blocks contain several data items
that are arranged next to each other in address space it is reasonable to aggregate those
data items which are likely to be referenced within a short period of time. This technique
is called array merging [6].

For a detailed discussion of data layout optimizations for multigrid codes, we again
refer to [7,15].

2.2 Data Access Optimizations

Data access optimizations are code transformations which change the order in which
iterations in a loop nest are executed. These transformations strive to improve both
spatial and temporal locality. Moreover, they can also expose parallelism and make loop
iterations vectorizable.

Classical loop transformations cover loop fusion as well as loop blocking (tiling),
amongst others [1]. Loop fusion refers to a transformation which takes two adjacent
loops that have the same iteration space traversal and combines their bodies into a
single loop, thereby enhancing temporal locality. Furthermore, fusing two loops results
in a single loop which contains more instructions in its body and thus offers increased
instruction-level parallelism. Finally, only one loop is executed, thus reducing the total
loop overhead by a factor of 0.5 [8].

Towards Cache-Optimized Multigrid Using Patch-Adaptive Relaxation 903

Loop blocking refers to a loop transformation which increases the depth of a loop
nest with depth d by adding additional loops. The depth of the resulting loop nest will be
anything from d+1 to 2d. Loop blocking is primarily used to improve temporal locality
by enhancing the reuse of data in cache and reducing the number of cache capacity
misses. Tiling a single loop replaces it by a pair of loops. The inner loop of the new loop
nest traverses a block (tile) of the original iteration space with the same increment as
the original loop. The outer loop traverses the original iteration space with an increment
equal to the size of the block which is traversed by the inner loop. Thus, the outer loop
feeds blocks of the whole iteration space to the inner loop which then executes them
step by step [8].

As is the case for data layout transformations, a comprehensive overview of data
access optimizations for multigrid codes can be found in [7,15]. See [2] for blocking
approaches for unstructured grids.

3 Enhancing Data Locality Through Adaptive Relaxation

3.1 Overview: Fully Adaptive Multigrid

Our novel patch-adaptive multigrid scheme is derived from the theory of the fully adap-
tive multigrid method. The latter combines two different kinds of adaptivity into a single
algorithmic framework [13]. Firstly, adaptive mesh refinement is taken into account in
order to reduce the number of degrees of freedom and, as a consequence, the compu-
tational work as well as the memory consumption of the implementation. Secondly,
the fully adaptive multigrid method employs the principle of adaptive relaxation [13].
With this update strategy, computational work can be focused on where it can efficiently
improve the quality of the numerical approximation.

In this paper, we will concentrate on the principle of adaptive relaxation only and
demonstrate how it can be exploited to enhance cache efficiency. For the sake of simplic-
ity, we will restrict the following presentation of the algorithms to a single grid level and
thus omit all level indices. However, due to the uniform reduction of the algebraic error,
this scheme reveals its full potential when used as a smoother in a multilevel structure
[13].

3.2 Preliminaries

We consider the system

Ax = b , A = (ai,j)1≤i,j≤n , (3.1)

of linear equations and assume that the matrixA is sparse and symmetric positive definite.
As a common example, standard second-order finite difference discretizations of the
negative Laplacian yield such matrices. The exact solution of (3.1) shall be denoted as
x∗.

We assume that x stands for an approximation to x∗. The scaled residual r̄ corre-
sponding to x is then defined as r̄ := D−1(b−Ax), where D denotes the diagonal part
of A. With ei representing the i-th unit vector, the components θi, of the scaled residual
r̄ are given by θi := eT

i r̄, 1 ≤ i ≤ n.

904 Markus Kowarschik, Iris Christadler, and Ulrich Rüde

An elementary relaxation step for equation i of the linear system (3.1), which updates
the approximation x and yields the new approximation x′, is given by x′ = x + θiei,
and the Gauss-Seidel update scheme [5] can be written as follows:

x
(k+1)
i = a−1

i,i

⎛⎝bi −
∑
j<i

ai,jx
(k+1)
j −

∑
j>i

ai,jx
(k)
j

⎞⎠ = x
(k)
i + θi .

Here, θi represents the current scaled residual of equation i; i.e., the scaled residual of
equation i immediately before this elementary update operation. As a consequence of
this elementary relaxation step, the i-th component of r̄ vanishes.

The motivation of the development of the adaptive relaxation method is based on the
following relation, which states how the algebraic error x∗−x is reduced by performing
a single elementary relaxation step:

||x∗ − x||2A − ||x∗ − x′||2A = ai,iθ
2
i , (3.2)

see [13]. As usual, ||v||A stands for the energy norm of v.
Equation (3.2) implies that, with every elementary relaxation step, the approximation

is either improved (if θi �= 0) or remains unchanged (if θi = 0). Note that, since A is
positive definite, all diagonal entries ai,i of A are positive. Hence, it is the positive
definiteness of A which guarantees that the solution x will never become “worse” by
applying elementary relaxation operations.

Equation (3.2) further represents the mathematical justification for the selection of the
(numerically) most efficient equation update order. It states that the fastest error reduction
is obtained by relaxing those equations i whose scaled residuals θi have relatively large
absolute values. This is particularly exploited in the method of Gauss-Southwell where
always the equation i with the largest value |ai,iθi| is selected for the next elementary
relaxation step. Yet, if no suitable update strategy is used, this algorithm will be rather
inefficient since determining the equation whose residual has the largest absolute value
is as expensive as relaxing each equation once [13].

This observation motivates the principle of the adaptive relaxation method which is
based on an active set of equation indices and can be interpreted as an algorithmically
efficient approximation to the method of Gauss-Southwell. For a concise description of
the operations on the active set and the method of adaptive relaxation, it is convenient
to introduce the set of connections of grid node i, 1 ≤ i ≤ n, as

Conn(i) := {j; 1 ≤ j ≤ n, j �= i, aj,i �= 0} .

Intuitively, the set Conn(i) contains the indices of those unknownsuj that directly depend
on ui, except for ui itself. Note that, due to the symmetry of A, these are exactly the
unknowns uj , j �= i, that ui directly depends on.

Before we can provide an algorithmic formulation of the adaptive relaxation
method, it is further necessary to introduce the strictly active set S(θ, x) of equation
indices:

S(θ, x) := {i; 1 ≤ i ≤ n, |θi| > θ} .

Hence, the set S(θ, x) contains the indices i of all equations whose current scaled
residuals θi have absolute values greater than the prescribed threshold θ > 0. Possible
alternatives of this definition are discussed in [13].

Towards Cache-Optimized Multigrid Using Patch-Adaptive Relaxation 905

Finally, an active set S̃(θ, x) is a superset of the strictly active set S(θ, x):

S(θ, x) ⊆ S̃(θ, x) ⊆ {i; 1 ≤ i ≤ n} .

Note that S̃(θ, x) may also contain indices of equations whose scaled residuals have rela-
tively small absolute values. The idea behind the introduction of such an extended active
set is that it can be maintained efficiently. This is exploited by the adaptive relaxation
algorithms that we will present next.

3.3 Point-Based Adaptive Relaxation

The core of the sequential (Gauss-Seidel-type) adaptive relaxation method1 is presented
in Algorithm 1. Note that it is essential to initialize the active set S̃ appropriately. Unless
problem-specific information is known a priori, S̃ is initialized with all indices i, 1 ≤
i ≤ n.

Algorithm 1 Sequential adaptive relaxation

Require: tolerance θ > 0, initial guess x, initial active set S̃ ⊆ {i; 1 ≤ i ≤ n}
1: while S̃ �= ∅ do
2: Pick i ∈ S̃ {Nondeterministic choice}
3: S̃ ← S̃ \ {i}
4: if |θi| > θ then
5: x ← x + θiei {Elementary relaxation step}
6: S̃ ← S̃ ∪ Conn(i)
7: end if
8: end while

Ensure: S = ∅ {The strictly active set S is empty}

The algorithm proceeds as follows. Elementary relaxation steps are performed until
the active set S̃ is empty, which implies that none of the absolute values of the scaled
residuals θi exceeds the given tolerance θ anymore. In Steps 2 and 3, an equation index
i ∈ S̃ is selected and removed from S̃. Only if the absolute value of the corresponding
scaled residual θi is larger than θ (Step 4), equation i will be relaxed. The relaxation of
equation i implies that all scaled residuals θj , j ∈ Conn(i), are changed, and it must
therefore be checked subsequently if their absolute values |θj | now exceed the tolerance
θ. Hence, if equation i is relaxed (Step 5), the indices j ∈ Conn(i) will be put into the
active set S̃ (Step 6), unless they are already contained in S̃.

As was mentioned above, the full advantage of the adaptive relaxation scheme be-
comes evident as soon as it is introduced into a multigrid structure. The idea is to employ
this method as a smoother in a multigrid setting, where it is not necessary to completely
eliminate the errors on the finer grids. Instead, it is enough to smooth the algebraic errors
such that reasonably accurate corrections can be computed efficiently on the respective
coarser grids [14].

1 A simultaneous (Jacobi-type) adaptive relaxation scheme is also discussed in [13].

906 Markus Kowarschik, Iris Christadler, and Ulrich Rüde

The application of the adaptive relaxation method in the multigrid context corre-
sponds to the approach of local relaxation. The principle of local relaxation states that
the robustness of multigrid algorithms can be improved significantly by performing ad-
ditional relaxation steps in the vicinity of singularities or perturbations from boundary
conditions, for example. The purpose of these additional elementary relaxation steps
is to enforce a sufficiently smooth error such that the subsequent coarse-grid correc-
tion performs well. We refer to [13] for further details and especially to the references
provided therein.

At this point, we eventually have everything in place to introduce our novel patch-
adaptive relaxation scheme which can be considered cache-aware by construction.

3.4 Cache-Optimized Patch-Based Adaptive Relaxation

A patch can be interpreted as a frame (window) that specifies a region of a computa-
tional grid. For ease of presentation, we only consider non-overlapping patches. Our
sequential patch-based adaptive relaxation scheme parallels the point-oriented version
from Section 3.3. This implies that, when introduced into a multigrid structure, it also
follows the aforementioned principle of local relaxation and, in general, behaves in a
more robust fashion than standard multigrid algorithms.

In the case of patch-adaptive relaxation, however, the active set S̃ does not contain
the indices of individual equations (i.e., the indices of individual grid nodes). Instead, S̃
contains the indices of patches. The set of all patches is denoted as P . Since the number
of patches is usually much smaller than the number of unknowns, the granularity of the
adaptive relaxation scheme and, in addition, the overhead of maintaining the active set
during the iteration are both reduced significantly.

Furthermore, the patch-adaptive relaxation is characterized by its inherent data lo-
cality. Consequently, it leads to a high utilization of the cache and therefore to fast code
execution. This is accomplished through the use of appropriately sized patches as well
as through the repeated relaxation of a patch once it has been loaded into cache. It has
been demonstrated that, once an appropriately sized patch has been loaded into the cache
and updated for the first time, the costs of subsequently relaxing it a few more times are
relatively low [10]. See [7] for details.

The core of the sequential patch-adaptive relaxation scheme is presented in Algo-
rithm 22. Upon termination, the strictly active set S is empty and, therefore, each scaled
residual θi is less or equal than the prescribed threshold θ, 1 ≤ i ≤ n. In Step 4, r̄P is
used to represent the scaled residual corresponding to patch P (i.e., to the nodes covered
by P) and ||r̄P ||∞ denotes its maximum norm.

Relaxing a patch (Step 5) means performing Gauss-Seidel steps on its nodes until
each of its own scaled residuals θi has fallen below the (reduced) tolerance θ − δ. As
a consequence, after a patch P has been relaxed any of its neighbor patches P ′ will
only be inserted into the active set if the absolute values of the scaled residuals of P ′

have been increased “significantly”. This allows for the application of sophisticated
activation strategies in Step 6, which aim at avoiding unnecessary patch relaxations. A

2 As is the case for the point-based method, a simultaneous version of the patch-based scheme
is also conceivable.

Towards Cache-Optimized Multigrid Using Patch-Adaptive Relaxation 907

Algorithm 2 Sequential patch-adaptive relaxation

Require: tolerance θ > 0, tolerance decrement δ = δ(θ), 0 < δ < θ, initial guess x,
initial active set S̃ ⊆ P

1: while S̃ �= ∅ do
2: Pick P ∈ S̃ {Nondeterministic choice}
3: S̃ ← S̃ \ {P}
4: if ||r̄P ||∞ > θ − δ then
5: relax(P)
6: activateNeighbors(P)
7: end if
8: end while

Ensure: S = ∅ {The strictly active set S is empty}

comprehensive discussion of such strategies is beyond the scope of this paper. Instead,
we again point to [7].

4 Experimental Results

Performance results that demonstrate the effectiveness of our data layout transformations
as well as our data access transformations have extensively been studied in [15] for the 2D
case and in [7] for the 3D case. Therefore, this section will concentrate on the efficiency
of the patch-adaptive multigrid scheme.

4.1 Model Problem

We define an L-shaped domain Ω := {(x, y) ∈ (−0.5, 0.5)2; x < 0 or y > 0} ⊂ R2

and introduce 2D polar coordinates (r, ϕ), r ≥ 0, 0 ≤ ϕ ≤ 2π, as usual; i.e., we have
x = r cosϕ and y = r sinϕ. We consider the Dirichlet boundary value problem

−Δu = 0 in Ω , (4.3)

u(r, ϕ) = sin
(

2
3
ϕ

)
r

2
3 on ∂Ω . (4.4)

It is straightforward to verify that the analytical solution of (4.3), (4.4) is given by
u(r, ϕ) := sin(2

3ϕ)r2/3 and that we have u ∈ C2(Ω) ∩ C0(Ω̄), but u /∈ C1(Ω̄). This
singular behavior of u results from the fact that the first derivatives of u are not bounded
in r = 0, cf. [4].

Figure 1 shows a plot of u using a grid with a mesh width of 64−1. In the following,
we will demonstrate how this model problem can be solved efficiently using our patch-
adaptive multigrid scheme.

4.2 Numerical Tests

We have employed a hierarchy of nine regular grids with a finest grid of mesh width of
1024−1. Standard coarsening has been used. The Laplacian has been discretized anew

908 Markus Kowarschik, Iris Christadler, and Ulrich Rüde

Fig. 1. Analytical solution of the model problem

on each level using bilinear basis functions on the quadrilateral finite elements. This
discretization approach leads to constant 9-pont stencils on each grid level.

We have determined the total numbers of elementary relaxations steps per grid level
for a multigrid V(0,4)-cycle involving a red-black Gauss-Seidel (RBGS) smoother. Ad-
ditionally, we have determined the corresponding numbers for the patch-adaptive multi-
grid scheme. The patch-adaptive relaxation scheme from Section 3.4 has been applied
to smooth the errors on the five finest levels, using a patch size of approximately 32×32
nodes. On the four coarser levels, a standard red-black Gauss-Seidel smoother has been
employed. This is because it is only reasonable to apply the patch-adaptive scheme if
the number of unknowns on the corresponding level is large enough such that it pays off
to implement a smoother based on an active set strategy.

The results of the comparison are summarized in Table 2. They clearly emphasize
the numerical efficiency of the multigrid method involving our patch-adaptive smoother.
It is obvious that the patch-adaptive multigrid algorithm requires far less computational
work than the standard one, even when counting all necessary residual calculations in
addition to the actual number of elementary relaxation steps, cf. again Algorithm 2 from
Section 3.4. This is due to the fact that numerical schemes based on adaptive relaxation
generally represent good candidates for solving such problems that exhibit singularities
[13]. Their applicability to “smoother” problems, however, is subject to future research.

Moreover, the RBGS-based multigrid method exhibits an average residual reduction
factor of 0.22 per V-cycle3. Therefore, we have prescribed the tolerance θ := 0.22
for the patch-adaptive smoother on each respective grid level, including the finest one
which is typically considered solely for convergence rate measurements. The tolerance
decrement δ has been chosen empirically as δ := 0.2θ. The patch-adaptive multigrid
scheme has actually exhibited a significantly better residual reduction factor of 0.063.
This observation again emphasizes the enhanced numerical efficiency of the patch-
adaptive scheme, cf. Section 3.3.

3 This means that we have divided the maximum norms of the scaled residuals on the finest grid
level before and after each V-cycle.

Towards Cache-Optimized Multigrid Using Patch-Adaptive Relaxation 909

RBGS-based MG Patch-adapt. MG Patch-adapt. MG

�residual comp.

Level �unknowns �elem. rel. steps �elem. rel. steps +�elem. rel. steps

0 5 20 20 20

1 33 132 132 132

2 161 644 644 644

3 705 2 820 2 820 2 820

4 2 945 11 780 54 932 57 877

5 12 033 48 132 44 672 56 705

6 48 641 194 564 44 672 93 313

7 195 585 782 340 48 640 244 225

8 784 385 3 137 540 56 832 841 217

Total 1 044 493 4 177 972 253 364 1 296 953

Fig. 2. Comparison of standard and patch-adaptive multigrid methods

A detailed analysis of the behavior of the patch-adaptive multigrid scheme reveals
that, on the coarsest level on which the patch-adaptive smoother is used, more elementary
relaxation steps are performed than in the case of the standard smoother. However, this
additional work pays off on the finer levels, where only those patches in the vicinity
of the singularity at r = 0 are relaxed more intensively. We again refer to [7] for a
comprehensive discussion.

Preliminary performance experiments have indicated the improved cache efficiency
of the patch-adaptive relaxation scheme. However, the development of highly tuned
implementations which exhibit high floating-point performance (in terms of MFLOPS
rates) is still in progress.

5 Conclusions

The continued improvements in processor performance are generally placing increas-
ing pressure on the memory hierarchy. Therefore, we have developed and examined
optimization techniques in order to enhance the data locality exhibited by grid-based
numerical computations, particularly the time-consuming smoothers in multigrid algo-
rithms.

We have presented a promising approach towards the design of novel, inherently
cache-aware algorithms and, so far, we have demonstrated its enhanced numerical ro-
bustness. The development of highly tuned hardware-aware implementations, however,
is the focus of ongoing and future work.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan Kauf-
mann, 2001.

910 Markus Kowarschik, Iris Christadler, and Ulrich Rüde

2. C.C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß. Cache Optimization for Structured
and Unstructured Grid Multigrid. Electronic Transactions on Numerical Analysis, 10:21–40,
2000.

3. S. Goedecker and A. Hoisie. Performance Optimization of Numerically Intensive Codes.
SIAM, 2001.

4. W. Hackbusch. Elliptic Differential Equations — Theory and Numerical Treatment, volume 18
of Springer Series in Computational Mathematics. Springer, 1992.

5. W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations, volume 95 of Applied
Mathematical Sciences. Springer, 1993.

6. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, 3. edition, 2003.

7. M. Kowarschik. Data Locality Optimizations for Iterative Numerical Algorithms and Cellu-
lar Automata on Hierarchical Memory Architectures. PhD thesis, Lehrstuhl für Informatik 10
(Systemsimulation), Institut für Informatik, Universität Erlangen-Nürnberg, Erlangen, Ger-
many, July 2004. SCS Publishing House.

8. M. Kowarschik and C. Weiß. An Overview of Cache Optimization Techniques and Cache-
Aware Numerical Algorithms. In U. Meyer, P. Sanders, and J. Sibeyn, editors, Algorithms
for Memory Hierarchies — Advanced Lectures, volume 2625 of Lecture Notes in Computer
Science, pages 213–232. Springer, 2003.

9. D. Loshin. Efficient Memory Programming. McGraw-Hill, 1998.
10. H. Lötzbeyer and U. Rüde. Patch-Adaptive Multilevel Iteration. BIT, 37(3):739–758, 1997.
11. D. Quinlan, M. Schordan, B. Miller, and M. Kowarschik. Parallel Object-Oriented Framework

Optimization. Concurrency and Computation: Practice and Experience, 16(2–3):293–302,
2004. Special Issue: Compilers for Parallel Computers.

12. G. Rivera and C.-W. Tseng. Tiling Optimizations for 3D Scientific Computations. In Proc. of
the ACM/IEEE Supercomputing Conf., Dallas, Texas, USA, 2000.

13. U. Rüde. Mathematical and Computational Techniques for Multilevel Adaptive Methods,
volume 13 of Frontiers in Applied Mathematics. SIAM, 1993.

14. U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.
15. C. Weiß. Data Locality Optimizations for Multigrid Methods on Structured Grids. PhD thesis,

Lehrstuhl für Rechnertechnik und Rechnerorganisation, Institut für Informatik, Technische
Universität München, Munich, Germany, December 2001.

Hierarchical Partitioning and Dynamic Load Balancing
for Scientific Computation

James D. Teresco1, Jamal Faik2, and Joseph E. Flaherty2

1 Department of Computer Science, Williams College
Williamstown, MA 01267 USA

terescoj@cs.williams.edu
2 Department of Computer Science, Rensselaer Polytechnic Institute

Troy, NY 12180, USA
{faikj,flaherje}@cs.rpi.edu

Abstract. Cluster and grid computing has made hierarchical and heterogeneous
computing systems increasingly common as target environments for large-scale
scientific computation. A cluster may consist of a network of multiprocessors.
A grid computation may involve communication across slow interfaces. Mod-
ern supercomputers are often large clusters with hierarchical network structures.
For maximum efficiency, software must adapt to the computing environment. We
focus on partitioning and dynamic load balancing, in particular on hierarchical
procedures implemented within the Zoltan Toolkit, guided by DRUM, the Dy-
namic Resource Utilization Model. Here, different balancing procedures are used
in different parts of the domain. Preliminary results show that hierarchical parti-
tionings are competitive with the best traditional methods on a small hierarchical
cluster.

Introduction

Modern three dimensional scientific computations must execute in parallel to achieve ac-
ceptable performance. Target parallel environments range from clusters of workstations
to the largest tightly-coupled supercomputers. Hierarchical and heterogeneous systems
are increasingly common as symmetric multiprocessing (SMP) nodes are combined to
form the relatively small clusters found in many institutions as well as many of today’s
most powerful supercomputers. Network hierarchies arise as grid technologies make
Internet execution more likely and modern supercomputers are built using hierarchical
interconnection networks. MPI implementations may exhibit very different performance
characteristics depending on the underlying network and message passing implemen-
tation (e.g., [32]). Software efficiency may be improved using optimizations based on
system characteristics and domain knowledge. Some have accounted for clusters of
SMPs by using a hybrid programming model, with message passing for inter-node com-
munication and multithreading for intra-node communication (e.g., [1,27]), with varying
degress of success, but always with an increased burden on programmers to program
both levels of parallelization.

Our focus has been on resource-aware partitioning and dynamic load balancing,
achieved by adjusting target partition sizes or the choice of a dynamic load-balancing

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 911–920, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

912 James D. Teresco, Jamal Faik, and Joseph E. Flaherty

procedure or its parameters, or by using a combination of load-balancing procedures. We
retain the flat message passing programming model. For hierarchical and heterogeneous
systems, different choices of load balancing procedures may be appropriate in different
parts of the parallel environment. There are tradeoffs in execution time and partition
quality (e.g., surface indices, interprocess connectivity, strictness of load balance) [35]
and some may be more important than others in some circumstances. For example,
consider a cluster of SMP nodes connected by Ethernet. A more costly graph partitioning
can be done to partition among the nodes, to minimize communication across the slow
network interface, possibly at the expense of some computational imbalance. Then, a
fast geometric algorithm can be used to partition independently within each node.

1 Partitioning and Dynamic Load Balancing

An effective partitioning or dynamic load balancing procedure maximizes efficiency by
minimizing processor idle time and interprocessor communication. While some appli-
cations can use a static partitioning throughout a computation, others, such as adap-
tive finite element methods, have dynamic workloads that necessitate dynamic load
balancing during the computation. Partitioning and dynamic load balancing can be
performed using recursive bisection methods [2,29,31,38], space-filling curve (SFC)
partitioning [7,23,24,25,37] and graph partitioning (including spectral [26,29], multi-
level [6,18,20,36], and diffusive methods [8,19,22]). Each algorithm has characteristics
and requirements that make it appropriate for certain applications; see [4,35] for exam-
ples and [33] for an overview of available methods.

callbacks invoked by Zoltan

Create Zoltan object

continue computation
migrate application data

Application Zoltan

Zoltan_Create()

Zoltan_Set_Param()

Zoltan_LB_Partition()

return migration arrays
partition
call application callbacks

Zoltan balancer

Set parameters

Invoke balancing

Fig. 1. Interaction between Zoltan and applications

The Zoltan Parallel Data Services Toolkit [9,11] provides dynamic load balancing
and related capabilities to a wide range of dynamic, unstructured and/or adaptive appli-
cations. Using Zoltan, application developers can switch partitioners simply by changing

Hierarchical Partitioning and Dynamic Load Balancing for Scientific Computation 913

a run-time parameter, facilitating comparisons of the partitioners’ effect on the appli-
cations. Zoltan has a simple interface, and its design is “data-structure neutral.” That
is, Zoltan does not require applications to construct or use specific data structures. It
operates on generic “objects” that are specified by calls to application-provided callback
functions. These callbacks are simple functions that return to Zoltan information such as
the lists of objects to be partitioned, coordinates of objects, and topological connectivity
of objects. Figure 1 illustrates the interaction between Zoltan and an application.

We focus here on the hierarchical balancing procedures we have implemented within
Zoltan, where different procedures are used in different parts of the computing environ-
ment.

2 Hierarchical Balancing

Consider four different 16-way partitionings of a 1,103,018-elementmesh used in a sim-
ulation of blood flow in a human aorta [30]. Here, the geometric method recursive inertial
bisection (RIB) [28] and/or the multilevel graph partitioner in ParMetis [20] are used for
partitioning. Only two partition quality factors are considered: computational balance,
and two surface index measures, although other factors [5] should be considered. The
global surface index (GSI) measures the overall percentage of mesh faces inter-partition
boundaries, and the maximum local surface index (MLSI) measures the maximum per-
centage of any one partition’s faces that are on a partition boundary. The surface indices
are essentially normalized edge cuts when considering mesh connectivity in terms of a
graph. Partitioning using RIB achieves an excellent computational balance, with parti-
tions differing by no more than one element, and medium-quality surface indices with

CPU
0 1

CPU CPU
15

CPU
14...

Memory Memory

CPU

Network

CPU

Memory Memory

CPU

Memory

CPU

Node 0 Node 15Node 1 Node 14

...

(a) (b)

CPU
1

CPUCPUCPU
7

Network

...0
CPU

0
CPU

1 6
CPU

7

Memory

CPU
6...

Node 0 Node 1

Memory

CPU1 CPU3CPU2CPU0 CPU2

Network

CPU1 CPU3

Memory

CPU0

Memory

Node 0 Node 3

...

(c) (d)

Fig. 2. Examples of parallel computing environments with 16 processors: (a) a 16-way SMP
workstation; (b) a 16-node computer with all uniprocessor nodes, connected by a network; (c)
two 8-way SMP workstations connected by a network; and (d) four 4-way SMP workstations
connected by a network

914 James D. Teresco, Jamal Faik, and Joseph E. Flaherty

MLSI = 1.77 and GSI = 0.61. This would be useful when the primary concern is
a good computational balance, as in a shared-memory environment (Figure 2b). Using
only ParMetis achieves excellent surface index values, MLSI = 0.40 and GSI = 0.20,
but at the expense of a large computational imbalance, where partition sizes range from
49,389 to 89,302 regions. For a computation running on a network of workstations
(NOW) (Figure 2b), it may be worth accepting the significant load imbalance to achieve
the smaller communication volume.

For hierarchical systems, a hybrid partitioning may be desirable. Consider the two
SMP configurations connected by a slow network as shown in Figure 2c,d. In the two
8-way node configuration (Figure 2c), ParMetis is used to divide the computation be-
tween the two SMP nodes, resulting in partitions of 532,063 and 570,955 regions, with
MLSI = 0.06 and GSI = 0.03. Within each SMP, the mesh is partitioned eight ways
using RIB, producing partitions within each SMP balanced to within one element, and
with overall MLSI = 1.88 and GSI = 0.56. Since communication across the slow
network is minimized, this is an appropriate partitioning for this environment. A similar
strategy for the four 4-way SMP configuration (Figure 2d) results in a ParMetis partition-
ing across the four SMP nodes with 265,897, 272,976, 291,207 and 272,938 elements
and MLSI = 0.23 and GSI = 0.07. Within each SMP, partitions are again balanced to
within one element, with overall MLSI = 1.32 and GSI = 0.32. We first presented an
example of this type of hybrid partition in [32], although the partitions presented therein
were not generated by a fully automatic procedure.

Zoltan’s hierarchical balancing automates the creation of such partitions. It can be
used directly by an application or be guided by the tree representation of the computa-
tional environment created and maintained by the Dynamic Resource Utilization Model
(DRUM) [10,13,34]. DRUM is a software system that supports automatic resource-
aware partitioning and dynamic load balancing for heterogeneous, non-dedicated, and
hierarchical computing environments. DRUM dynamically models the computing en-
vironment using a tree structure that encapsulates the capabilities and performance of
communication and processing resources. The tree is populated with performance data
obtained from a priori benchmarks and dynamic monitoring agents that run concurrently
with the application. It is then used to guide partition-weighted and hierarchical parti-
tioning and dynamic load balancing. Partition-weighted balancing is discussed further
in [13]. DRUM’s graphical configuration program (Figure 3) may be used to facilitate the
specification of hierarchical balancing parameters at each network and multiprocessing
node.

The hierarchical balancing implementation utilizes a lightweight “intermediate hi-
erarchical balancing structure” (IHBS) and a set of callback functions. This permits an
automated and efficient hierarchical balancing which can use any of the procedures avail-
able within Zoltan without modification and in any combination. Hierarchical balancing
is invoked by an application in the same way as other Zoltan procedures. A hierarchi-
cal balancing step begins by building an IHBS using these callbacks. The IHBS is an
augmented version of the distributed graph structure that Zoltan builds to make use of
the ParMetis [21] and Jostle [36] libraries. The hierarchical balancing procedure then
provides its own callback functions to allow existing Zoltan procedures to be used to
query and update the IHBS at each level of a hierarchical balancing. After all levels

Hierarchical Partitioning and Dynamic Load Balancing for Scientific Computation 915

Fig. 3. DRUM’s graphical configuration program being used to edit a description of the “Bullpen
Cluster” at Williams College. This program may be used to specify hierarchical balancing para-
meters for Zoltan

of the hierarchical balancing have been completed, Zoltan’s usual migration arrays are
constructed and returned to the application. Thus, only lightweight objects are migrated
internally between levels, not the (larger and more costly) application data. Figure 4
shows the interaction between Zoltan and an application when hierarchical balancing is
used.

3 Examples

We have tested our procedures using a software package called LOCO [16], which
implements a parallel adaptive discontinuous Galerkin [3] solution of the compressible
Euler equations. We consider the “perforated shock tube” problem, which models the
three-dimensional unsteady compressible flow in a cylinder containing a cylindrical
vent [14]. This problem was motivated by flow studies in perforated muzzle brakes for
large calibre guns [12]. The initial mesh contains 69,572 tetrahedral elements. For these
experiments, we stop the computation after 4 adaptive steps, when the mesh contains
254,510 elements.

Preliminary results are show that hierarchical partitioning can be competitive with
the best results from a graph partitioner alone. We use two eight-processor computing
environments: one with four Sun Enterprise 220R servers, each with two 450MHz Sparc
UltraII processors, the other with two Sun Enterprise 420R servers, each with four

916 James D. Teresco, Jamal Faik, and Joseph E. Flaherty

split MPI_Comm

Zoltan_Create()
Zoltan_Set_Param()
Zoltan_LB_Partition()

Zoltan balancer

Zoltan

call HIER callbacks
partition
return mig. arrays

Create Zoltan object

Application Zoltan

Zoltan_Create()

Zoltan_Set_Param()

Zoltan_LB_Partition()

Zoltan HIER balancer

Set parameters

Invoke balancing

callbacks invoked by Zoltan

continue computation
migrate application data

callbacks on IHBS

set parameters
create Zoltan objects

call application callbacks

at
 e

ac
h

le
ve

l

invoke balancing

(build initial IHBS)

return migration arrays

update IHBS

Fig. 4. Interaction between Zoltan and applications when hierarchical balancing is used

CPU0 CPU2CPU1 CPU3CPU0

Network

CPU2CPU1 CPU3

Node 0 Node 3

Each SMP independently
computes 4−way RIB partitioning

MemoryMemory

8 processes compute one
2−way ParMetis partitioning

Fig. 5. Hierarchical balancing algorithm selection for two 4-way SMP nodes connected by a
network

450MHz Sparc UltraII processors. The nodes are dedicated to computation and do not
perform file service. In both cases, inter-node communication is across fast (100 Mbit)
Ethernet. A comparison of running times for the perforated shock tube in these computing
environments for all combinations of traditional and hierarchical procedures shows that
while ParMetis multilevel graph partitioning alone often achieves the fastest computation
times, there is some benefit to using hierarchical load balancing where ParMetis is used
for inter-node partitioning and inertial recursive bisection is used within each node. For
example, in the four-node environment (Figure 5), the computation time following the
fourth adaptive step is 571.7 seconds for the hierarchical procedure with ParMetis and
RIB, compared with 574.9 seconds for ParMetis alone, 702.7 seconds for Hilbert SFC
partitioning alone, 1508.2 seconds for recursive coordinate bisection alone, and 822.9
seconds for RIB alone. It is higher for other hierarchical combinations of methods.

4 Discussion

We have demonstrated the ability to use the hierarchical balancing implemented within
Zoltan as both an initial partitioning and a dynamic load balancing procedure for a
realistic adaptive computation. While a traditional multilevel graph partitioning is often
the most effective for this application and this computing environment, the results to

Hierarchical Partitioning and Dynamic Load Balancing for Scientific Computation 917

date demonstrate the potential benefits of hierarchical procedures. In cases where the
top-level multilevel graph partitioner achieves a decomposition without introducing load
imbalance, it provides the fastest time-to-solution in our studies to this point (though
only slightly faster than the multilevel graph partitioner alone is used). When imbalance
is introduced by the multilevel graph partitioners, using hierarchical balancing to achieve
strict balance within an SMP is beneficial.

Studies are underway that utilize hierarchical balancing on larger clusters, on other
architectures, and with a wider variety of applications. We expect that hierarchical bal-
ancing will be most beneficial when the extreme hierarchies found in grid environments
are considered. Significant benefits will depend on an MPI implementation that can pro-
vide a very efficient intra-node communication. This is not the case in the MPICH [17]
implementation used on the cluster in our experiments. Here, all communication needs
to go through a network layer (MPICH’s p4 device), even if two processes are exe-
cuting on the same SMP node. We are eager to run experiments of clusters built from
other types of SMP nodes and on computational grids, and specifically those with MPI
implementations that do provide appropriate intra-node communication optimizations.

Enhancements to the hierarchical balancing procedures will focus on usability and
efficiency. Further enhancements to DRUM’s machine model and graphical configura-
tion tool will facilitate and automate the selection of hierarchical procedures. Efficiency
may be improved by avoiding unnecessary updates to the intermediate structure, partic-
ularly at the lowest level partitioning step. Maintaining the intermediate structure across
subsequent rebalancing steps would reduce startup costs, but is complex for adaptive
problems. It would also be beneficial to avoid building redundant structures, such as
when ParMetis is used at the highest level of a hierarchical balancing, however this
would require some modification of individual Zoltan methods, which we have been
careful to avoid thus far.

The IHBS itself has potential benefits outside of hierarchical balancing. It could be
used to allow incremental enhancements and post-processing “smoothing” [15] on a
decomposition before Zoltan returns its migration arrays to the application. The IHBS
could also be used to compute multiple “candidate” decompositions with various algo-
rithms and parameters, allowing Zoltan or the application to compute statistics about
each and only accept and use the one deemed best.

Partitioning is only one factor that may be considered for an effective resource-aware
computation. Ordering of computation and of communication, data replication to avoid
communication across slow interfaces, and use of multithreading are other resource-
aware enhancements that may be used. DRUM’s machine model currently includes
some information that may be useful for these other types of optimizations, and it will
be augmented to include information to support others.

Acknowledgments

The authors were supported in part by Sandia contract PO15162 and the Computer
Science Research Institute at Sandia National Laboratories. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

918 James D. Teresco, Jamal Faik, and Joseph E. Flaherty

The authors would like to thank Erik Boman, Karen Devine, and Bruce Hendrickson
(Sandia National Laboratories, Albuquerque, USA) for their valuable input on the design
of Zoltan’s hierarchical balancing procedures.

Students Jin Chang (Rensselaer), Laura Effinger-Dean (Williams College), Luis Ger-
vasio (Rensselaer), and Arjun Sharma (Williams College) have contributed to the devel-
opment of DRUM.

We would like to thank the reviewers of this article for their helpful comments and
suggestions.

References

1. S. B. Baden and S. J. Fink. A programming methodology for dual-tier multicomputers. IEEE
Transactions on Software Engineering, 26(3):212–216, 2000.

2. M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on multi-
processors. IEEE Trans. Computers, 36:570–580, 1987.

3. R. Biswas, K. D. Devine, and J. E. Flaherty. Parallel, adaptive finite element methods for
conservation laws. Appl. Numer. Math., 14:255–283, 1994.

4. E. Boman, K. Devine, R. Heaphy, B. Hendrickson, M. Heroux, and R. Preis. LDRD report:
Parallel repartitioning for optimal solver performance. Technical Report SAND2004–0365,
Sandia National Laboratories, Albuquerque, NM, February 2004.

5. C. L. Bottasso, J. E. Flaherty, C. Özturan, M. S. Shephard, B. K. Szymanski, J. D. Teresco,
and L. H. Ziantz. The quality of partitions produced by an iterative load balancer. In B. K.
Szymanski and B. Sinharoy, editors, Proc. Third Workshop on Languages, Compilers, and
Runtime Systems, pages 265–277, Troy, 1996.

6. T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization". In Proc. 6th
SIAM Conf. Parallel Processing for Scientific Computing, pages 445–452. SIAM, 1993.

7. P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco. Dynamic oc-
tree load balancing using space-filling curves. Technical Report CS-03-01, Williams College
Department of Computer Science, 2003.

8. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Parallel
Distrib. Comput., 7:279–301, 1989.

9. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan data management
services for parallel dynamic applications. Computing in Science and Engineering, 4(2):90–
97, 2002.

10. K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco, J. Faik, J. E.
Flaherty, and L. G. Gervasio. New challenges in dynamic load balancing. Appl. Numer. Math.,
52(2–3):133–152, 2005.

11. K. D. Devine, B. A. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Zoltan: A Dynamic
Load Balancing Library for Parallel Applications; User’s Guide. Sandia National Laborato-
ries, Albuquerque, NM, 1999. Tech. Report SAND99-1377. Open-source software distributed
at http://www.cs.sandia.gov/Zoltan.

12. R. E. Dillon Jr. A parametric study of perforated muzzle brakes. ARDC Tech. Report ARLCB-
TR-84015, Benét Weapons Laboratory, Watervliet, 1984.

13. J. Faik, J. D. Teresco, K. D. Devine, J. E. Flaherty, and L. G. Gervasio. A model for resource-
aware load balancing on heterogeneous clusters. Technical Report CS-05-01, Williams Col-
lege Department of Computer Science, 2005. Submitted to Transactions on Parallel and Dis-
tributed Systems.

Hierarchical Partitioning and Dynamic Load Balancing for Scientific Computation 919

14. J. E. Flaherty, R. M. Loy, M. S. Shephard, M. L. Simone, B. K. Szymanski, J. D. Teresco, and
L. H. Ziantz. Distributed octree data structures and local refinement method for the parallel so-
lution of three-dimensional conservation laws. In M. Bern, J. Flaherty, and M. Luskin, editors,
Grid Generation and Adaptive Algorithms, volume 113 of The IMA Volumes in Mathematics
and its Applications, pages 113–134, Minneapolis, 1999. Institute for Mathematics and its
Applications, Springer.

15. J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H.
Ziantz. Adaptive local refinement with octree load-balancing for the parallel solution of three-
dimensional conservation laws. J. Parallel Distrib. Comput., 47:139–152, 1997.

16. J. E. Flaherty, R. M. Loy, M. S. Shephard, and J. D. Teresco. Software for the parallel adaptive
solution of conservation laws by discontinuous Galerkin methods. In B. Cockburn, G. Kar-
niadakis, and S.-W. Shu, editors, Discontinous Galerkin Methods Theory, Computation and
Applications, volume 11 of Lecture Notes in Compuational Science and Engineering, pages
113–124, Berlin, 2000. Springer.

17. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation
of the MPI message passing interface standard. Parallel Computing, 22(6):789–828, Sept.
1996.

18. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Proc. Su-
percomputing ’95, 1995.

19. Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm. Preprint DL-P-95-011,
Daresbury Laboratory, Warrington, WA4 4AD, UK, 1995.

20. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Scien. Comput., 20(1), 1999.

21. G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs.
SIAM Review, 41(2):278–300, 1999.

22. E. Leiss and H. Reddy. Distributed load balancing: design and performance analysis. W. M.
Kuck Research Computation Laboratory, 5:205–270, 1989.

23. W. F. Mitchell. Refinement tree based partitioning for adaptive grids. In Proc. Seventh SIAM
Conf. on Parallel Processing for Scientific Computing, pages 587–592. SIAM, 1995.

24. A. Patra and J. T. Oden. Problem decomposition for adaptive hp finite element methods.
Comp. Sys. Engng., 6(2):97–109, 1995.

25. J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured workloads
with spacefilling curves. IEEE Trans. on Parallel and Distributed Systems, 7(3):288–300,
1996.

26. A. Pothen, H. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Mat. Anal. Appl., 11(3):430–452, 1990.

27. R. Rabenseifner and G. Wellein. Comparision of parallel programming models on clusters of
SMP nodes. In H. Bock, E. Kostina, H. Phu, and R. Rannacher, editors, Proc. Intl. Conf. on
High Performance Scientific Computing, pages 409–426, Hanoi, 2004. Springer.

28. M. S. Shephard, J. E. Flaherty, H. L. de Cougny, C. Özturan, C. L. Bottasso, and M. W. Beall.
Parallel automated adaptive procedures for unstructured meshes. In Parallel Comput. in CFD,
number R-807, pages 6.1–6.49. Agard, Neuilly-Sur-Seine, 1995.

29. H. D. Simon. Partitioning of unstructured problems for parallel processing. Comp. Sys. Engng.,
2:135–148, 1991.

30. C. A. Taylor, T. J. R. Hugues, and C. K. Zarins. Finite element modeling of blood flow in
arteries. Comput. Methods Appl. Mech. Engrg., 158(1–2):155–196, 1998.

31. V. E. Taylor and B. Nour-Omid. A study of the factorization fill-in for a parallel implementation
of the finite element method. Int. J. Numer. Meth. Engng., 37:3809–3823, 1994.

32. J. D. Teresco, M. W. Beall, J. E. Flaherty, and M. S. Shephard. A hierarchical partition model
for adaptive finite element computation. Comput. Methods Appl. Mech. Engrg., 184:269–285,
2000.

920 James D. Teresco, Jamal Faik, and Joseph E. Flaherty

33. J. D. Teresco, K. D. Devine, and J. E. Flaherty. Numerical Solution of Partial Differential
Equations on Parallel Computers, chapter Partitioning and Dynamic Load Balancing for the
Numerical Solution of Partial Differential Equations. Springer-Verlag, 2005.

34. J. D. Teresco, J. Faik, and J. E. Flaherty. Resource-aware scientific computation on a hetero-
geneous cluster. Computing in Science & Engineering, 7(2):40–50, 2005.

35. J. D. Teresco and L. P. Ungar. A comparison of Zoltan dynamic load balancers for adap-
tive computation. Technical Report CS-03-02, Williams College Department of Computer
Science, 2003. Presented at COMPLAS ’03.

36. C. Walshaw and M. Cross. Parallel Optimisation Algorithms for Multilevel Mesh Partitioning.
Parallel Comput., 26(12):1635–1660, 2000.

37. M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm. In Proc. Super-
computing ’93, pages 12–21. IEEE Computer Society, 1993.

38. R. Williams. Performance of dynamic load balancing algorithms for unstructured mesh cal-
culations. Concurrency, 3:457–481, October 1991.

Cache Optimizations for Iterative Numerical Codes
Aware of Hardware Prefetching

Josef Weidendorfer and Carsten Trinitis

Technische Universität München, Germany
{weidendo,trinitic}@cs.tum.edu

Abstract. Cache optimizations use code transformations to increase the local-
ity of memory accesses and use prefetching techniques to hide latency. For best
performance, hardware prefetching units of processors should be complemented
with software prefetch instructions. A cache simulation enhanced with a hard-
ware prefetcher is presented to run code for a 3D multigrid solver. Thus, cache
misses not predicted can be handled via insertion of prefetch instructions. Addi-
tionally, Interleaved Block Prefetching (IBPF), is presented. Measurements show
its potential.

1 Introduction

Cache optimizations typically include code transformations to increase the locality of
memory accesses: standard strategies are loop blocking and relayouting of data struc-
tures, e.g. splitting or joining of arrays and padding [12]. An orthogonal approach is to
enable for latency hiding by introducing prefetching techniques; i.e., by ensuring that
any data is loaded early enough before it is actually used. Software prefetching enables
this by inserting cache load instructions into the program code. However, the use of
such instructions consumes both decoding bandwidth and hardware resources for the
handling of outstanding loads. Because of this and the added complexity of manually
inserting prefetch instructions, modern processors like Intel Pentium 4, Pentium-M [10]
or AMD Athlon, are equipped with hardware prefetch units which predict future memory
accesses in order to load data into cache in advance.

Both prefetch approaches can be combined. Usually, there will be parts of code where
hardware prefetching is doing a fine job, and parts where manual insertion of prefetch
instructions is needed. The two cases can be distinguished by doing measurements
with hardware performance counters. To this end, we use the Intel Pentium-M processor
hardware, which has performance counters measuring the effect of its hardware prefetch
unit [10]. This approach has some drawbacks: the actual prefetch algorithm implemented
inside the processor is unknown, and thus, manual insertions of prefetch instructions will
be specific to one processor. Therefore, additional measurements are done by simulating
a known hardware prefetch algorithm. By choosing a simple stream detection, we are
sure that program code where this prefetch algorithm is working fine, is also running
fine with any existing hardware prefetcher. Additionally, we can compare results with
and without hardware prefetching.

There is however a case where prefetching alone can not help: When performance
of a code section is limited by available bandwidth to main memory, prefetching can

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 921–927, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

922 Josef Weidendorfer and Carsten Trinitis

not do any better. The first step to improve this situation is to use loop blocking [12]:
instead of going multiple times over a large block of data not fitting into the cache, we
split up this block into smaller ones fitting into the cache, and go multiple times over
each small block before handling the next one. Thus, only in the first run over a small
block has to fetch data from main memory. Still, this first run exhibits the bandwidth
limitation. But as further runs on the small block do not use main memory bandwidth at
all, this time can be used to prefetch the next block. Of course, the block size needs to
be corrected in a way that two blocks fit into cache. We call this technique Interleaved
Block Prefetching.

For this study, a 3D multigrid solver is used as application. The code is well known,
and various standard cache optimizations were applied [11]. The main motivation for
this work is the fact that standard cache optimizations do not work as well as expected
on newer processors [17]. On the one hand, hardware prefetchers seem to help in the
non-optimized case, on the other hand, they sometimes seem to work against manual
cache optimizations: e.g. blocking with small loop intervals, especially in 3D, leads to
a lot of unneeded activity from a hardware prefetcher with stream detection.

In the next chapter, some related work is presented. Afterwards, we give a survey of
the cache simulator used and the hardware prefetch extension we added. We show mea-
surements for our multigrid solver, using statistical sampling with hardware performance
counters, and the simulator without and with hardware prefetching. Finally, for a simple
example we introduce interleaved block prefetching and give some real measurements.
Since adding interleaved block prefetching to the multigrid solver is currently work in
progress, results will be given in a subsequent publication.

2 Related Work

Regarding hardware prefetchers, [3] gives a good overview of well known algorithms.
Advanced algorithms are presented in [1]. Still, in hardware manuals of processors like
Pentium-4 [10], there is only a vague description of the prefetch algorithm used.

Simulation is often used to get more details on the runtime behavior of applications
or for research and development of processors [16],[9]. For memory access behavior
and cache optimization, it is usually enough to simulate the cache hierarchy only like
in MemSpy [14] or SIGMA [7]. The advantage of simulation is the possibility to get
more useful metrics than plain hit/miss counts like reuse distances [4] or temporal/spatial
locality [2].

For real measurements, we choose statistical sampling under Linux with OProfile
[13]. With instrumentation, we would get exact values, e.g. using Adaptor [5], a Fortran
source instrumentation tool, or DynaProf [8]. The latter uses DynInst [6] to instrument
the running executable with low overhead. All these tools allow to use the hardware
performance counters available on a processor.

3 Simulation of a Simple Hardware Prefetcher

Our cache simulator is derived from the cache simulator Cachegrind, part of the Valgrind
runtime instrumentation framework [15], and thus, it can run unmodified executables.

Cache Optimizations for Iterative Numerical Codes Aware of Hardware Prefetching 923

We describe the simulator with its on-the-fly call-graph generation together with our
visualization tool KCachegrind in more detail in [18]. With a conversion script, the
latter is also able to visualize the sampling data from OProfile.

The implemented hardware prefetch algorithm gets active on L1 misses: for every
4KB memory page, it checks for sequential loads of cache lines, either upwards or
downwards. When three consecutive lines are loaded, it assumes a streaming behavior
and triggers prefetching of the cache line which is 5 lines in advance. As the simulator
has no way to do timings, we simply assume this line to be loaded immediately. Although
this design is arguable, it fulfills our requirement that every sensible hardware prefetcher
should at least detect the same streaming as our prefetcher. The simulation will show
code regions where simple hardware prefetchers probably have problems, i.e. where
prefetching techniques are worthwhile.

The following results have been measured for a cache-optimized Fortran implemen-
tation of multigrid V(2,2) cycles, involving variable 7-point stencils on a regular 3D grid
with 1293 nodes. Compared to the standard version, the simulated as well as real mea-
surement show little more than half the number of L2 misses / L2 lines read in. As only
2 smoothing iterations can be blocked with the given multigrid cycle, this shows that the
blocking works quite well. In search for further improvement using prefetching, Table
1 shows the number of simulated L2 misses, first column with hardware prefetching
switched off, second column with hardware prefetching switched on (i.e. only misses
that are not catched by the prefetcher), and third column the number of prefetch actions
issued. For real measurements, the Pentium-M can count L2 lines read in because of L2
misses alone, as shown in column 4, lines read in because of a request from the hardware
prefetcher only in column 5. The last column shows the number of prefetch requests
issued by the hardware. All numbers are given in millons of events (mega events). The
first line gives a summary for the whole run, the next 2 lines splitted up by top functions:
RB4W is the red-black gauss-seidel smoother, doing the main work, and RESTR is the
restriction step in the multigrid cycle.

Simulation results show that the function RESTR is hardware-prefetcher friendly,
as L2 misses go down by a large amount when the prefetcher is switched on in the
simulation. In contrast, for the first function, RB4W, our simulated prefetcher does not
seem to work. Looking at actual hardware, the prefetcher in the Pentium-M works better
than the simulated one: it reduces the numbers of L2 misses (col. 4) even more than our
one (col.2), especially it is doing a better job in RB4W. This shows that our simulation
can show the same trend as will be seen in real hardware regarding friendliness to stream
prefetching.

4 Interleaved Block Prefetching

Pure block prefetching means prefetching multiple sequential cache lines before actually
using them afterwards. In contrast, interleaved block prefetching (IBPF) prefetches a
block to be used in the future interleaved with computation on the previous block. One
has to be careful to not introduce conflicts between the current and the next block.

Interleaved block prefetching is best used with the standard loop blocking cache
optimization. When a program has to work multiple times on a huge array not fitting

924 Josef Weidendorfer and Carsten Trinitis

Table 1. Measurements for the multigrid code [MEv]

Simulated Real

L2 Misses Pref. L2 Lines In Pref.

Pf. Off Pf. On Requests due to Misses due to Pref. Requests

Summary 361 277 110 241 130 373

RB4W 233 226 - 201 47 270

RESTR 108 37 - 28 76 92

Time

Memory Bandwidth (MB)

torig

Legend: L2 Miss L2 Hit

Blocking

t
blocking

Time

L2
Cache
Size

Address Address

L2
Bandwidth

(L2B)

Fig. 1. The blocking transformation

into cache, data has to be loaded every time from main memory. When data dependencies
of the algorithm allow to reorder work on array elements such that the multiple passes can
be done consecutively on smaller parts of the array, blocking is possible. This improves
temporal locality of memory accesses, i.e. accesses to the same data happen near to each
other. By using block sizes that fit into cache (usually L2), this means that only for the
first run over a small block, data has to be fetched from main memory. Fig. 1 depicts
this scenario on a 1-dimensional array. The time tblocking is substantially less than torig:
with blocking, the second iteration of each block can be done with L2 bandwidth L2B
instead of memory bandwidth MB, and thus gets a speedup of MB

L2B , i.e.

tblocking = torig ∗ (
1
2

+
L2B

2 ∗MB
).

As further runs on the small block do not use main memory bandwidth at all, this
time can be used to prefetch the next block. This needs block size corrected in a way
that two blocks fit into cache. For an inner block, we assume it to be already in the
cache when work on it begins. When there are N runs over this block, we can interleave
prefetching of the next block with computation over these N iterations. For the multigrid
code,N = 2, i.e. the resulting pressure on memory bandwidth is almost cut in half. Fig. 2
shows this scenario. If we suppose that the needed bandwidth for prefetching is not near
the memory bandwidth limit, almost all the time we can work with the L2 bandwidth

Cache Optimizations for Iterative Numerical Codes Aware of Hardware Prefetching 925

L2B, depending on the relation of the first block size to the whole array size as shown
in the figure. Note that for the first block, memory pressure will be even higher than
before because in addition to the first block, half of the second block is prefetched
simultaneously.

Address

t
block−pref

Prefetching

Block

t
blocking

L2
Cache

Address

Size

Time Time

Legend: L2 Miss L2 Hit Software Prefetching

Fig. 2. The interleaved block prefetching transformation

In the following, a 1-dimensional streaming micro benchmark is used: it runs multiple
times over an 8 MB-sized array of floating point values of double precision, doing
one load and 1 or 2 FLOPS per element (running sums). Table 2 gives results with
1-dimensional blocking for different numbers of N . With pure blocking, N = 1 make
no sense, as data is not reused. Still, block prefetching, which is the same as normal
prefetching in this case, obviously helps. Again, these results were measured on a 1.4
GHz Pentium-M with DDR-266 memory, i.e. a maximum memory bandwidth of 2.1
MB/s. The benchmark was compiled to use x87 instructions only (no MMX or SSE).

For each benchmark and N , we show the runtime in seconds, and the achieved (netto)
bandwidth from main memory. The netto bandwidth is calculated from the runtime and
the known amount of data loaded. A brutto bandwidth that gives the bandwidth needed
from memory to L2, can be calculated from memory read burst transactions, measured
by a performance counter: the benchmark only loads data, and cache line loads are
translated to burst requests. The brutto bandwidth is always between 50 and 100 MB/s
higher than the netto bandwidth in this benchmark, and therefore not shown in the table.

Measurement shows that runtimes without IBPF can slow down by up to 46 percent
compared to runtimes with IBPF (N = 2, 1 Flop/Load). To see the effect on the number
of L2 lines read in on the one hand because of misses, and on the other hand because of
hardware prefetch requests, we show these numbers for the first benchmark. Obviously,
the prefetching virtually switches off the hardware prefetching.

One has to note that interleaving prefetching with regular computation can increase
instruction overhead: in the micro benchmark, an additional loop nesting level had to be
introduced for inserting one prefetch instruction each time N ∗ 8 floating point elements
are summed up: with a cache line size of 64 bytes, 8 double-precision values fit into

926 Josef Weidendorfer and Carsten Trinitis

Table 2. Results of a micro benchmark

Without Pref. With IBPF

N 1 2 3 10 1 2 3 10

1 Flop/Load

Runtime [s] 5.52 3.92 3.45 2.73 4.89 2.67 2.50 2.44

MFlop/s 194 274 311 393 220 402 430 440

Netto [GB/s] 1.48 1.04 0.79 0.30 1.68 1.53 1.09 0.34

Lines In b/o Misses [MEv.] 4.2 2.1 1.4 0.4 134 67 45 13

Lines In b/o Pref. [MEv.] 130 65 44 13 0.45 0.54 0.27 0.15

2 Flops/Load

Runtime [s] 7.20 5.24 4.81 3.23 6.86 4.29 3.60 2.84

MFlop/s 298 410 446 665 313 501 597 756

Netto [GB/s] 1.14 0.78 0.57 0.25 1.19 0.95 0.76 0.29

one cache line, and with blocking of N iterations, the prefetching stream advances
with 1/N of the computation stream. In more complex cases or with other CPUs, the
instruction increase can cancel the benefit of interleaved block prefetching. To reduce
this effect, future ISAs (instruction set architectures) should introduce block prefetching
instructions, minimizing the additional instruction overhead.

5 Conclusion and Future Work

In this paper, we have shown the usefulness of introducing a simple hardware prefetch
algorithm into a cache simulator. By comparing a simulation with hardware prefetching
switched off with the simulation of the same program run, but prefetching switched on,
one can see the positions in the code where insertion of software prefetching instructions
is useful. We extend this result by presenting the block prefetching technique which is
able to lower the pressure on memory bandwidth.

Still, for simulation with hardware prefetching to be really worthful, visualization
possibilities have to be enhanced: even source annotation can not differentiate between
iterations of the same loop body, as only sums are given. But it appears useful to be able
to distinguish at least the first few iterations of a loop, as it is expected that prefetch
characteristics change here. Thus, more detailed context separation of profile data is
needed. The interleaved block prefetching technique has to be integrated into real world
applications like our multigrid solver.

References

1. M. Bekerman, S. Jourdan, R. Romen, G. Kirshenboim, L. Rappoport, A. Yoaz, and U. Weiser.
Correlated Load-Address Predictors. In Proceedings of the 26th International Symposium on
Computer Architecture, pages 54–63, May 1999.

Cache Optimizations for Iterative Numerical Codes Aware of Hardware Prefetching 927

2. E. Berg and E. Hagersten. SIP: Performance Tuning through Source Code Interdependence. In
Proceedings of the 8th International Euro-Par Conference (Euro-Par 2002), pages 177–186,
Paderborn, Germany, August 2002.

3. Stefan G. Berg. Cache prefetching. Technical Report UW-CSE 02-02-04, University of Wash-
ington, Februar 2002.

4. K. Beyls and E.H. D’Hollander. Platform-Independent Cache Optimization by Pinpointing
Low-Locality Reuse. In Proceedings of International Conference on Computational Science,
volume 3, pages 463–470, June 2004.

5. T. Brandes. Adaptor. homepage. http://www.scai.fraunhofer.de/291.0.html.
6. B. Buck and J.K. Hollingsworth. An API for Runtime Code Patching. The International

Journal of High Performance Computing Applications, 14:317–329, 2000.
7. L. DeRose, K. Ekanadham, J. K. Hollingsworth, and S. Sbaraglia. SIGMA: A Simulator

Infrastructure to Guide Memory Analysis. In Proceedings of SC 2002, Baltimore, MD, No-
vember 2002.

8. Dynaprof Homepage. http://www.cs.utk.edu/ mucci/dynaprof.
9. H. C. Hsiao and C. T. King. MICA: A Memory and Interconnect Simulation Environment for

Cache-based Architectures. In Proceedings of the 33rd IEEE Annual Simulation Symposium
(SS 2000), pages 317–325, April 2000.

10. Intel Corporation. IA-32 Intel Architecture: Software Developers Manual.
11. M. Kowarschik, U. Rüde, N. Thürey, and C. Weiß. Performance Optimization of 3D Multigrid

on Hierarchical Memory Architectures. In Proc. of the 6th Int. Conf. on Applied Parallel
Computing (PARA 2002), volume 2367 of Lecture Notes in Computer Science, pages 307–
316, Espoo, Finland, June 2002. Springer.

12. M. Kowarschik and C. Weiß. An Overview of Cache Optimization Techniques and Cache-
Aware Numerical Algorithms. In U. Meyer, P. Sanders, and J. Sibeyn, editors, Algorithms
for Memory Hierarchies — Advanced Lectures, volume 2625 of Lecture Notes in Computer
Science, pages 213–232. Springer, March 2003.

13. J. Levon. OProfile, a system-wide profiler for Linux systems. Homepage:
http://oprofile.sourceforge.net.

14. M. Martonosi, A. Gupta, and T. E. Anderson. Memspy: Analyzing memory system bottlenecks
in programs. In Measurement and Modeling of Computer Systems, pages 1–12, 1992.

15. N. Nethercote and J. Seward. Valgrind: A Program Supervision Framework. In Proceedings
of the Third Workshop on Runtime Verification (RV’03), Boulder, Colorado, USA, July 2003.
Available at http://developer.kde.org/˜sewardj.

16. V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton. An Evaluation of Memory Consistency
Models for Shared-Memory Systems with ILP Processors. In Proceedings of the Seventh In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, pages 12–23, October 1996.

17. N. Thürey. Cache Optimizations for Multigrid in 3D. Lehrstuhl für Informatik 10 (System-
simulation), Institut für Informatik, University of Erlangen-Nuremberg, Germany, June 2002.
Studienarbeit.

18. J. Weidendorfer, M. Kowarschik, and C. Trinitis. A Tool Suite for Simulation Based Analysis
of Memory Access Behavior. In Proceedings of International Conference on Computational
Science, volume 3, pages 455–462, June 2004.

Computationally Expensive Methods in Statistics:
An Introduction

Organizer: Wolfgang M. Hartmann

SAS Institute, Inc., Cary NC, USA

Assuming a twodimensional data set with N observations (rows) and n variables
(columns) there are two types of large scale data which require intensive computational
work:

1. N >> n: traditional statistical methods: many points in low or medium dimensional
space; many observations but moderate number of variables; traditional ANOVA,
L2, L1, and L∞ regression; discriminance analysis etc. applications in traditional
data mining.

2. N << n: newer statistical methods: few points in very high dimensional space;
few observations N but many variables n; curse of dimensionality; applications in
Chemometrics (spectra), microarray expression data (few chips but many genes);
text mining and search engines (few terms in many documents).

In this minisymposium we were trying to concentrate on the second form of data, few
points in highdimensional space, where new analysis methods are being developed.

Wolfgang Hartmann, SAS Institute Inc., Cary NC, opened the session with an in-
troduction clarifying the difference between dimension reduction and variable selection
methods in statistical analyses. A definition of the dimension reduction and variable
selection problem in statistics is formulated which is based on work of McCabe (1984).
A number of commonly known exploratory and predictive modeling methods in statis-
tics and machine learning (data mining) are classified either as dimension reduction or
variable selection methods.

Paul Somerville from the University of Central Florida in his presentation on Step-
down FDR Procedures for Large Numbers of Hypotheses introduced some new devel-
opments for a method of multiple comparisons in data with a large number of variables
as with microarray data. In such large applications stepwise methods are used for com-
putational efficiency but may suffer either from a number of false hypotheses or in a
loss of statistical power. This work is still in progress and the talk highlighted some of
the statistical problems with the authors stepwise approach compared to others already
available. The new procedure seems to result in a reduced number of false rejections
with a negligible reduction in power when the expected number of false hypotheses is
small.

Ulrich Mansmann, then from the University of Heidelberg, Department of Medical
Biometry and Informatics, now at the University of Munich, proceeded with his talk on
Reproducible Statistical Analysis in Microarray Profiling Studies. It is well known that
for more complicate statistical modeling published results are not easily reproducable.
Due to the complexity of the algorithms, the size of the data sets, and the limitations of
the medium printed paper it is usually not possible to report all the minutiae of the data

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 928–930, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Computationally Expensive Methods in Statistics: An Introduction 929

processing and statistical computations. Microarrays are a recent biotechnology that of-
fer the hope of improved cancer classification, providing clinicians with the information
to choose the most appropriate form of treatment. But, reproducing published results
in this domain is harder than it may seem. For example, Tibshirani and Efron (2002)
report: "We reanalysed the breast cancer data from van’t Veer et al. (2002). ... Even with
some help of the authors, we were unable to exactly reproduce this analysis.". To achieve
reproducible calculations and to offer an extensible computational framework the tool
of a compendium (Sawitzki , 1999; Leisch, 2002; Gentleman and Temple Lang, 2004;
Sawitzki, 2002) is discussed. A compendium is a document that bundles primary data,
processing methods (computational code), derived data, and statistical output with the
textual documentation and conclusions. Ulrich’s talk presents examples, discusses the
problems hidden in the published analyses and demonstrates a strategy to improve the sit-
uation which is based on the vignette technology available from the R and Bioconductor
projects (Ihaka and Gentleman, 1996; Gentleman and Carey, 2002).

Frank Bretz, then at the University of Hannover, now at Novartis Pharmaceuticals
in Basel, Switzerland, presented some work with P. Westfall, Texas Tech University, on
the computationally difficult problem of applying multiple comparisons to the analysis
of microarray data. Algorithms for multiple comparisons usually require the highdimen-
sional quadrature of multivariate normal or t distribution.

Analytic formulas were developed for various types of power and error rates of
some closed testing procedures. The formulas involve non-convex regions that may be
integrated with high, pre-specified accuracy using available software. The non-convex
regions are represented as a union of hyper-rectangles. These regions are transformed to
the unit hypercube, then summed, to create an expression for power that is the integral of
a function defined on the unit hypercube. This function is then evaluated using existing
quasi-Monte Carlo methods that are known for their accuracy. Applications include
individual, average, complete, and minimal power, for closed pairwise comparisons
(max T-based), as well as fixed sequence and non-pairwise comparisons.

Thomas Ragg, co-founder of quantiom bioinformatics GmbH,
http://www.quantiom.de, of a small but growing company which "develops cus-
tomized Analysis Strategies and specialized software solutions for bioanalytical ques-
tions and offers the necessary consulting, support, training, and service" concluded the
session with a talk on Normalization, variable ranking and model selection for high-
dimensional genomic data - Design and Implementation of automated analysis strategies
which outlined the procedure for analyzing microarray data as it is commonly encoun-
tered by his team. Some crucial problems in building models based on empirical genomic
data are

– normalization within experiments and between experiments to make them compa-
rable

– filtering of irrelevant variables to reduce the complexity of the search space
– selection of appropriate subset of features (e.g. genes)
– model training based on the available data, where the model complexity needs to be

balanced against the training error
– model selection based on a fitness criterion (e.g. model evidence)

930 Wolfgang M. Hartmann

– evaluation of the strategy and appropriate presentation of results

The analysis strategy was demonstrated for oligo microarray data and showed the benefits
of the quantiom software implementation (in Java) with its modular design principle.

For references see the contributions.

Dimension Reduction vs. Variable Selection

Wolfgang M. Hartmann

SAS Institute, Inc., Cary NC, USA

Abstract. The paper clarifies the difference between dimension reduction and
variable selection methods in statistics and data mining. Traditional and recent
modeling methods are listed and a typical approach to variable selection is men-
tioned. In addition, the need for and types of cross validation in modeling is
sketched.

1 Introduction

The purpose of the paper is an approach to highlight the difference between methods
of variable selection (VS) and dimension reduction (DR) in statistics and to show some
basic features of the most common methods. Both types of methods originally submerged
in computational statistics and are now more and more used and developed in the area
of data mining, sometimes called as machine learning. It is first necessary to explain
some of the terms used in later parts of this paper.

The machine learning literature differs between two essential types of analysis:

Unsupervised Learning also called exploratory analysis methods: The analysis data
set consists only of one set of variables X for which N measurements (observations,
cases) are available. A modeling method is used to find similarities and significant
differences either

– among the variables in X
– or among the observations in X.

Supervised Learning also called as predictive modeling: The analysis data set con-
sists of two sets of variables, a set of response (dependent) variables Y and a set
of predictor (independent) variables X. A method of linear or nonlinear parametric
modeling or a method of nonparametric modeling is used that establishes a relation-
ship among the values of the X variables and allows to predicts the values of the Y
variables with sufficient precision.

Here we will mostly deal with parametric modeling.

2 Difference Between DR and VS

The following notation outlines the difference between DR and VS and is based on work
of McCabe (1984, [21]):

1. Given an N × n matrix X as training data.
2. Usually X is column centered around mean (sometimes a covariance matrix) or

even scaled (sometimes a correlation matrix).

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 931–938, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

932 Wolfgang M. Hartmann

3. Find n× k, k 0 n, transformation matrix Ak

V = XAk, usually s.t. AT
k Ak = Ik

4. For dimension reduction Ak is dense.
5. For variable selection: Ak = perm([Ik : 0k×(n−k)]T) where perm(A) is row

permuted n× k matrix.

This definition does not refer to the criterion for the selection of Ak and therefore
covers both, supervised and unsupervised methods, of a wide range. It also does not
specify the criterion used for selecting k, the number of dimensions or selected variables.
Therefore, methods for DR and VS are of a very wide range.

From that follows that we understand variable selection as a discrete process (sparse
notation) whereas dimension reduction is a continuous process (dense notation). There-
fore, DR shows the grouping of variables, variables with low impact have smaller weights
than those with large impact. On the other hand VR picks usually only one represen-
tative from each cluster of similar variables and does not refer to variables which may
be very similar to those picked but with only slightly smaller impact. To find the highly
correlated variables of those variables picked with VS usually postprocessing of the data
is needed. As an implication of the discrete selection process of VS we can expect rather
high variance in bootstrap and cross validation, compared to a much lower variance for
the more continuous DR. That again has an impact on choosing the methods used for
tuning hyper parameters of the model.

3 Overview on Methods for VS and DR

In the following we try to list the most common methods for VS and DR and refer to
software found in the free statistical software R (see [26]) the authors own interactive
matrix language CMAT (Hartmann, [15]) and in SAS/STAT (statistics)([29]), SAS/IML
(interactive matrix language), and SAS/EM (enterprise miner). Of course, many other
software packages like SPSS and S-PLUS are available that cover most the listed meth-
ods.

3.1 Methods for Dimension Reduction

The purpose is findingp0 n components/factors/clusters which are (linear or nonlinear)
functions of then variables which describe the essential features of the data in some sense
(maximizing explained variance, de-noise data in some sense, sufficient for prediction).

1. Exploratory Modeling (Unsupervised Learning):
(a) (Kernel) Dense Principal Components and Factor Analysis, e.g. see Harman

(1976, [14]) and Mulaik (1972, [23])
– functions prcomp and princomp and the kernlab package in R
– functions eig, nlkpca, factor, and sem in CMAT
– functions eigval, eigvec, and eigen in SAS/IML and PROCs PRIN-

COMP, FACTOR, and CALIS in SAS/STAT

Dimension Reduction vs. Variable Selection 933

(b) Singular Value Decomposition and Correspondence Analysis, e.g. see Gifi
(1981, [11]) and Greenacre (1984, [12])

– function svd and functions corresp, mca, and CoCoAn in R
– functionssvd, gsvd, arpack, and svdtrip in CMAT; correspondence

analysis currently not in CMAT
– function svd in SAS/IML and PROC CORRESP in SAS/STAT

(c) Multidimensional Scaling, e.g. see Carroll & Arabie (1998, [6]),
– function smdscale in R
– currently not in CMAT
– PROC MDS in SAS/STAT

(d) Methods of fuzzy variable clustering, e.g. see Kaufman & Rousseeuw (1990,
[17])

– function cluster, hclust, mclust, cclust in R
– functions cluster and emclus in CMAT
– PROCs ACECLUS, CLUSTER, and MODECLUS in SAS/STAT

2. Predictive Modeling (Supervised Learning):
(a) (Kernel) Partial least-squares, e.g. see Wold (1966, [38]), Rosipal & Trejo (2001,

[28])
– package plspcr and gpls in R
– functions pls and nlkpls in CMAT
– PROC PLS in SAS/STAT (kernel PLS currently not in SAS)

(b) Sliced inverse regression (SIR) and principal Hessian directions (pHd), e.g. see
Weisberg, 2002, [35])

– function sir in R
– function sir in CMAT
– currently not in SAS

(c) Neural Networks (Ripley, 1994, [27]) and Support Vector Machines (Vapnik,
1995, [37]; Schoelkopf & Smola, 2000, [30])

– function nnet, and function svm in e1071 package and the kernlab
package in R

– function svm in CMAT
– SAS PROCs SVM, NEURAL, and DMNEURL in SAS/EM

3.2 Methods for Variable Selection

The purpose is finding a subset of p 0 n variables from the original data which describe
the essential features of the data in some sense (maximizing explained variance, de-noise
data in some sense, sufficient for prediction).

1. Exploratory Modeling (Unsupervised Learning):
(a) Coloring a correlation matrix
(b) Sparse Principal Components (SPCA) (Zou & Hastie, 2004, [41])

– not in R
– function spca in CMAT
– not in SAS

(c) Principal Variables (McCabe, 1984, [21])
(d) Methods of discrete variable clustering

934 Wolfgang M. Hartmann

i. using common cluster methods with the transposed data matrix, e.g. see
Kaufman & Rousseeuw (1990, [17])

ii. using hybrids of factor analysis and rotation to sparse factor patterns e.g.
see Harman (1976, [14]) or Anderberg (1973, [1])

– not in R
– function varclus in CMAT
– SAS PROC VARCLUS

iii. K Median Clustering (Mangasarian & Wild, 2004, [20])

2. Predictive Modeling (Supervised Learning):

(a) Type III analyses of many statistical modeling methods
(b) Subset selection in (generalized linear) regression (Miller, 2002, [22]) : specif-

ically stepwise (linear, logistic) regression

– function step, glm, leaps in R
– functions lrforw, reg, glim, glmixd in CMAT
– PROCs REG, MIXED, LOGISTIC, PHREG, and GENMOD in SAS/STAT

and PROC DMINE in SAS/EM

(c) Recursive Partitioning and Regression Trees (CART, CHAID) see Breiman et.al
(1984, [4])

– package tree and functions rpart, knntree in R
– function split in CMAT
– PROCs SPLIT, DMSPLIT, and ARBOR in SAS/EM

(d) Step-up and step-down Multivariate Testing, e.g. see Benjamini & Hochberg
(1995, [2]) Somerville & Bretz (2001, [32]) Somerville (2004, [31])

– function multcomp and multtest in Bioconductor package in R
– function multtest in CMAT
– PROC MULTTEST ins SAS/STAT

(e) Garotte by Breiman (1993, [5])

– currently not in R
– function garotte in CMAT
– currently not in SAS

(f) (Univariate) Soft Thresholding (UST) by Chen, Donoho, & Saunders (1999,
[7]), Tibshirani, Hastie, Narasimhan, & Chu (2002, [34])

(g) Lasso by Tibshirani (1996, [33]) and Osborne, Presnell, & Turlach (2000, [24])
and LARS by Efron, Hastie, Johnstone, & Tibshirani (2002, [9])

– functions lars and lasso in R
– function lars in CMAT
– currently not in SAS

(h) Elastic Net by Zou and Hastie (2003, [40])

– currently not in R
– function lars in CMAT
– currently not in SAS

(i) Sparse L1 SV Regession (Bi, Bennett, Embrechts, Breneman, & Song,
2002, [3])

Dimension Reduction vs. Variable Selection 935

– currently not in R
– function svm in CMAT
– currently not in SAS

(j) Sparse L1 SV Classification (Fung & Mangasarian, 2003, [10])
– currently not in R
– function svm in CMAT
– PROC SVM in SAS/EM

(k) SVM Feature Selection by Guyon et.al. (2002, [13]), Weston et.al. (2000, [36])
– currently not in R
– function svm in CMAT
– PROC SVM in SAS/EM

(l) Feature Selection using Genetic Algorithms, e.g. see Yang & Honavar (1997,
[39])

– functions gap, rgenoud, and gafit in R
– function nlp in CMAT
– currently not in SAS

(m) Bayesian methods of variable selection
– naiveBayes in e1071 package and the BsMD package in R
– currently not in CMAT
– currently not in SAS

Note, even though some of the software has the same name in CMAT and SAS, the
implementations are usually very different. For example, the algorithms for variable
clustering in CMAT are not necessarily based on a covariance or correlation matrix
(which is for n 0 N sometimes difficult to store) as with the PROC VARCLUS in
SAS/STAT.

3.3 Example: Variable Selection with SV Regression

Illustrating the five-step variable selection algorithm by Bi, Bennett, Embrecht, Brene-
man, & Song (2001, [3]):

1. Attach a small set of random generated gauge variables (columns) to data set which
have approximately zero correlation with response y.

2. Outer iteration performs Bootstrap aggregation (Bagging): using bootstrap samples
for training data and average about results (reducing the variance, makes results
more stable especially w.r.t. local optima of internal pattern search)

3. Pattern search cycle for hyper parameters of linear SV regression, regularization C
and tube parameter ε is performed and best solution is selected for nearly optimal
values of (C, ε).

4. The pattern search is based on K fold cross validation result. This CV cycle requires
to optimize K LPs (linear support vector machine problems) for specific values of
(C, ε).

5. Based on the former four steps, a small set of variables is selected. Using the small
set of variables the last two steps of pattern search with cross validation is now
performed for nonlinear kernel. That means, in addition to regularization C and
tube parameter ε the pattern search now includes additional kernel parameters.

936 Wolfgang M. Hartmann

4 Cross Validation (CV)

The machine learning literature refers to three types of data sets that are useful for
modeling:

Training Data: This data set contains N observations with n variables. For predictive
modeling the latter can be predictor or response variables. This data set is being
used to build the model.

Validation Data: This data set contains Nval observations at the same n variables as
the training set is using. It may be used as a second data set at the modeling process
to measure the goodness-of-fit of the model and to determine the termination of the
modeling process. Using a validation data set is similar to cross validation and can
increase the generalizability of the model and to reduce the possibility of overfiting.
That means the resulting model will also perform well with other than the training
data.

Test Data: This data set contains Ntest observations and is usually not available at the
modeling process. Even for predictive modeling it must not contain the response
variables, but must contain all the predictive variables as the training data set. After
a parameteric model was established using training and perhaps validation data, the
model could be applied to the test data. In predictive modeling that means using the
model to compute the expected values of response variables (scoring).

The purpose of cross validation is to:

1. Increase generalizeability of model estimates: model does not only fit one single
sample, it also fits other samples of the same population well.

2. Prevent overfitting: too many parameters, some describing data noise specific for
the sample used in training.

This is achieved by evaluating the model on data which do not belong to data used for
training the model.

Block CV: in K-fold block CV there are K training runs: block of N/K observations is
left out from model training; but the remaining N −N/K observations are scored;
e.g. left out for K=10 and N=100: i=1,...,10; i=11,...,20; i=21,...,30;... (biased for
sorted data)

Split CV: in K-fold split CV there are K training runs: "successive groups of widely
separated observations are held out as the test set", e.g. left out for K=10: i=1,11,
21,...; i=2,12,22,...; i=3,13,23,...

Random CV: in K-fold random CV there are K training runs: in each run N/K ran-
domly selected observations are left out from model training; observations are se-
lected from remaining pool, i.e. after K training runs each observation is left out
exactly once;

Loo CV: in each of N training runs one observation is left out from the training data
set: the remaining N − 1 observations are used for parm estimation, but the left out
observation is scored (here is K = N). This is related to the well known Jackknife
in statistics.

Dimension Reduction vs. Variable Selection 937

Test Set Validation: the model is trained (parameters estimated) based on training data;
model is evaluated on test data set; assumes that there are two large enough data
sets.

Random Validation: inside a loop of multiple training runs: the input data set is divided
randomly in training and validation data set. The model estimates are computed with
the training set and the fit is evaluated on the validation data set. The best model is
selected based on the fit with the validation data sets. (If not done "balanced", the
result can be biased, i.e. some observations are scored more than others)

A number of functions in CMAT, likepls andsvm offer options for cross validation.
Usually, Loo is computationally the most expensive method since it needs the large
number of N estimations. But using an estimation method that exploits good starting
values the difference in computer time compared to 10-fold cross validation can be
surprisingly small. An advantage of Loo is that it can be used for sensitivity analysis
and the detection of model outliers:

1. During the N leave-one-out runs, the model fit can be evaluated at the remaining
N − 1 observations of the training set.

2. If the training model fit improves significantly when leaving out observation Xi, it
indicates that observation Xi is a "model misfit", a model outlier.

References

1. Anderberg, M.R. (1973), Cluster Analysis for Applications, New York: Academic Press, Inc.
2. Benjamini, Y. & Hochberg, Y. (1995), “Controlling the false discovery rate: a practical and

powerful approach to multiple testing”, J. R. Statist. Soc., Ser. B, 289-300.
3. Bi, J., Bennett, K., Embrechts, M., Breneman, C. & Song, M. (2002), “Dimensionality Re-

duction via Sparse Support Vector Machines”, Journal of Machine Learning Research 1 1-48.
4. Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984), Classification and Regression

Trees, Wadsworth.
5. Breiman, L. (1993), “Better subset selection using the non-negative garotte”; Technical Report,

Univ. of California, Berkeley.
6. Carroll, J.D. & Arabie, P. (1998), Multidimensional scaling, in M.H. Birnbaum (Ed.), Hand-

book of Perception and Cognition: Measurement, Judgment and Decision Making, p. 179-250,
San Diego, CA: Academic Press.

7. Chen, S.S., Donoho, D.L., & Saunders, M. (1999), “Atomic decomposition by basis pursuit”,
SIAM Journal on Scientific Computing, 20, 33-61.

8. Donoho, D., Johnstone, I., & Tibshirani, R. (1995), “Wavelet shrinkage: asymptotia? (with
discussion)”; J. R. Statist. Soc., Ser. B, 57, 301-337.

9. Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2002), “Least Angle Regression”, The
Annals of Statistics, 32, 407-499.

10. Fung, G. & Mangasarian, O.L. (2003), “A Feature Selection Newton Method for Support
Vector Machine Classification”, Computational Optimization and Aplications, 1-18.

11. Gifi, A. (1981), Nonlinear Multivariate Analysis, Dep. of Data Theory, Univ. of Leiden.
12. Greenacre, M.J. (1988), Theory and Applications of Correspondence Analysis, London: Aca-

demic Press.
13. Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. (2002), "Gene Selection for cancer classifi-

cation using support vector machines"; Machine Learning, 46, 389-422.

938 Wolfgang M. Hartmann

14. Harman, H.H. (1976), Modern Factor Analysis, Chicago: University of Chicago Press.
15. Hartmann, W. (1995), CMAT Users Manual, see http://www.cmat.pair.com/cmat
16. Joachims, T. (1999), "Making large-scale SVM learning practical", in B. Schölkopf, C.J.C.

Burges, and A.J. Smola (eds), Advances in Kernel Methods: Support Vector Learning, Cam-
bridge: MIT Press.

17. Kaufman, L. & Rousseeuw, P. (1990), Finding Groups in Data: An Introduction to Cluster
Analysis, New York: Wiley.

18. Li, K.C. (1991), “Sliced inverse regression for dimension reduction”; JASA, 86, 316-342.
19. Li, K.C. (1992), “On principal Hessian directions for data visualization and dimension reduc-

tion”; JASA, 87, 1025-1034.
20. Mangasarian, O.L. & Wild, E.W. (2004), “Feature Selection in k-Median Clustering”, Tech-

nical Report 04-01, Data Mining Institute, Madison: University of Wisconsin.
21. McCabe, G.P. (1984), “Principal variables”; Technometrics, 26, 139-144.
22. Miller, A. (2002), Subset Selection in Regression, CRC Press, Chapman & Hall.
23. Mulaik, S.A. (1972), The Foundations of Factor Analysis, New York: Mc Graw Hill.
24. Osborne, M.R., Presnell, B., & Turlach, B.A. (2000), “On the LASSO and its Dual”, JCGS,

9, 319-337.
25. Osborne, M.R., Presnell, B., & Turlach, B.A. (2000), “A new approach to variable selection

in least squares problems”, IMA Journal of Numerical Analysis, 20, 389-404.
26. R Language and packages see: http://www.r-project.org/ and

http://cran.r-project.org/
27. Ripley, B,D. (1996), Pattern Recognition and Neural Networks, Cambridge: Cambridge Uni-

versity Press.
28. Rosipal, R. & Trejo, L.J. (2001), “Kernel partial least squares regression in reproducing kernel

Hilbert space”, Journal of Machine Learning Research, 2, 97-123.
29. SAS/STAT User’s Guide, (1990), Version 6, Second Printing, SAS Institute Inc., Cary, NC.
30. Schölkopf, B. & Smola, A.J. (2002), Learning with Kernels, Cambridge MA and London:

MIT Press.
31. Somerville, P.N. (2004), “Step-down FDR Procedures for large numbers of hypotheses”, this

volume.
32. Somerville, P.N. & Bretz, F. (2001), “FORTRAN 90 and SAS-IML programs for computation

of critical values for multiple testing and simultaneous confidence intervals”, Journal of
Statistical Software.

33. Tibshirani, R. (1996), “Regression shrinkage and selection via the Lasso”, J. R. Statist. Soc.,
Ser. B, 58, 267-288.

34. Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. (2002), “Diagnosis of multiple cancer
types by shrunken centroids of gene expression”; Proceeding of the National Academy of
Sciences, 99, 6567-6572.

35. Weisberg, S. (2002), “Dimension reduction regression with R”, JSS, 7.
36. Weston, J., Mukherje, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2000), “Feature

Selection for SVMs”, Neural Information Processing Systems, 13, 668-674.
37. Vapnik, V.N. (1995), The Nature of Statistical Learning, New York: Springer.
38. Wold, H. (1966), “Estimation of principal components and related models by iterative least

squares”, Multivariate Analysis, New York: Academic Press.
39. Yang, J. & Honavar, V. (1997), “Feature selection using a genetic algorithm”, Technical

Report, Iowa State University.
40. Zou, H., & Hastie, T. (2003), “Regression shrinkage and selection via the elastic net, with

applications to micro arrays”, Technical Report, Stanford University.
41. Zou, H., Hastie, T. & Tibshirani, R. (2004), “Sparse principal component analysis”, Technical

Report, Stanford University.

Reproducible Statistical Analysis
in Microarray Profiling Studies

Ulrich Mansmann1, Markus Ruschhaupt2, and Wolfgang Huber2

1 University of Heidelberg, Department for Medical Biometry and Informatics
INF 305, 69120 Heidelberg, Germany

mansmann@imbi.uni-heidelberg.de
2 German Cancer Research Center, Division of Molecular Genome Analysis

INF 580, 69120 Heidelberg, Germany

Abstract. Reproducibility of calculations is a longstanding issue within the sta-
tistical community. Due to the complexity of the algorithms, the size of the data
sets, and the limitations of the medium printed paper it is usually not possible to
report all the minutiae of the data processing and statistical computations. Like
the critical assessment of a mathematical proof it should be possible to check the
software behind a complex data analysis. To achieve reproducible calculations
and to offer an extensible computational framework the tool of a compendium is
discussed.

1 Introduction

Microarray technology allows simultaneous measurement of thousands of transcripts
within a homogeneous sample of cells [1]. It is of interest to relate these expression
profiles to clinical phenotypes to improve the diagnosis of diseases and prognosis for
individual patients [2]. A number of publications presented clinically promising results
by combining this new kind of biological data with specifically designed algorithmic
approaches. A selection out of these papers will be discussed [3,4,5,6] with respect to
different aspects of reproducibility.

The most evident aspect of reproducibility is that of reproducing a calculation on the
same data. Reproducing published results in the domain of microarray profiling studies
is harder than it may seem. As example we look at a study of van ’t Veer et al. [3] which
was reanalysed by Tibshirani and Efron [7]. Both state in their paper: We re-analyzed
the breast cancer data from van ’t Veer et al. ... Even with some help of the authors, we
were unable to exactly reproduce this analysis.

We do not know any example where classification results gained with one microarray
technology and a special algorithm were reproduced using an alternative microarray
platform and algorithm. Papers with diverging results on profiles for the prognosis of
tumour recurrence for breast cancer patients are [3,4]. How does this observation relate
to the idea of a common underlying disease process? Should profiles have something
common which are developed for the same disease? Is it of significance if they do not?

The confounding of algorithmic problems with biotechnology and biology creates
a gordic knot. The paper applies the tool of a compendium as interactive strategy to
settle the algorithmic backbone of a profiling study and to derive reproducible results

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 939–948, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

940 Ulrich Mansmann, Markus Ruschhaupt, and Wolfgang Huber

with a state-of-the-art methodology. A compendium is a document that bundles primary
data, processing methods (computational code), derived data, and statistical output with
the textual documentation and conclusions. It is interactive in the sense that it allows
to modify the processing options, plug in new data, or insert further algorithms and
visualisations.

2 Examples and Questions

2.1 Example 1

Van ’t Veer et al. [3] classify breast cancer patients after curative resection with respect
to the risk of tumour recurrence. The study includes 78 patients. Forty four patients had a
good prognosis and did not suffer from a recurrence during the first 5 years after resection.
Thirty four patients had a bad prognosis and experienced a recurrence during the first 5
years after resection. Agilent microarray technology was used to quantify the transcripts
probed by 24,881 oligonucleotides. Additional prognostic factors like tumour grade,
ER status, PR status, tumour size, patient age, angioinvasion were also documented.
The authors were interested to develop a classifier based on the gene expression and
to compare the relevance of the genomic signature to the prognostic value of standard
clinical predictors. They used to following algorithm to establish the signature which
contains 70 genes:

1. Starting with 24,881 genes, filtering on fold-change and a p-value criterion reduced
the number of relevant genes to 4,936.

2. Based on an absolute correlation of at least 0.3 between gene expression and group
indicator (0,1) a further reduction on 231 genes

3. Calculation of the 231 dimensional centroid vector for the 44 good prognosis cases.
4. Correlation of each case with this centroid is calculated, cut-off of 0.38 is chosen to

exactly misclassify 3 with poor prognosis
5. Case is classified to good prognosis if correlation calculated for some number n

of genes (1 ≤ n ≤ 231) with the centroid vector is ≥ 0.38, otherwise the case is
classified to the bad prognosis group.

6. Starting with the top 5, 10, 15,. . . genes, classification procedure is carried out with
leave-one-out cross-validation, to pick the optimal number of genes → 70

Based on this algorithm van ’t Veer et al. achieved a correct classification for 26 of
44 patients without recurrence and for 31 of 34 with recurrence. Tibshirani and Efron
[7] tried to reproduce this results and report: Even with some help of the authors, we
were unable to exactly reproduce this analysis. In fact, the differences between both
calculations were not dramatic. But, the example shows that algorithmic reproducibility
is not a trivial issue and may have subjective elements. The algorithm is quite popular
and is also used in [5] and other papers.

The van ’t Veer examples rises the following questions: Why was a heuristic classi-
fication algorithm chosen and not a standard algorithm from machine learning? Are its
computational aspects well understood? How important is the choise of the parameters
for correct classification? Is the result easy to interpret? What justifies the popularity of
the algorithm? Is the leave-one-out CV strategy appropriate? What is the effect of other
CV strategies on the classification result?

Reproducible Statistical Analysis in Microarray Profiling Studies 941

2.2 Example 2

Huang et al. [4] investigated primary tumour samples from 52 patients with breast
tumours and 1-3 positive lymph nodes. 18 patients had a recurrence within three years
after surgery, and 34 patients did not. The authors concluded that they could predict
tumour recurrence with misclassification rates of 2/34 and 3/18, respectively.

The authors presented a tree classifier with split decisions based on an a posteriori
distribution over all possible splits. A description is available in the form of a technical
report on the webpage of one of the authors. Due to ambiguities we did not succeed
in translating the statistical ideas into software with which we could reproduce the
analysis. More importantly, there is no official software version of the algorithm. The
authors perform two dimension reduction steps before they apply the Bayesian tree
classifier. First, the 12,625 probe sets on the HGU95Av2 Affymetrix GeneChips are
reduced to 7,030 by excluding probe sets with a maximum intensities below 29 and a
low variatiability across the samples. The second reduction creates 496 metagenes out
of the 7,030 probe sets by performing k-means clustering and using the first principal
component of each cluster as expression measure for the metagene.

As in example 1 this study is concerned with the prognosis of tumour recurrence of
breast cancer patients after curative resection of the tumour. The authors state that they
could not find any of the 70 genes used in the classifier of van ’t Veer et al. in any of the
metagenes which come up in the Bayesian tree classifier.

The Huang example rises the following questions: Why is it impossible for us to
reproduce the good classification result? Why is the classification based on the idiosyn-
cratic method so good? The preprocessing is not part of the CV loop, which influence
may this have on the misclassification rate? How is it possible to disentangle computa-
tion, technology, and biology? Can we find a link between the Huang and van ’t Veer
classifiers?

3 The Compendium

Publications on microarray profiling studies often present one new microarray data set
and one new classification method. Is it necessary to develop an idiosyncratic classifica-
tion approach for each specific data set? Which classification result could be achieved
with standard approaches? What loss in accuracy has to be traded for a rise in inter-
pretability? How can I use new data to validate former results? If validation creates
discrepancies how is it possible to assess the contribution made by algorithmic aspects:
error in implementation or no success with validation? Do I have sufficient instructions
and details to reproduce the method under validation in an exact way? How dependent
is the classification result on the method used? What can be learned from a published
profiling study for future projects? To answer these and other questions we introduce
the compendium of computational diagnostic tools (CCDT)

3.1 Compendium for Computational Diagnostic Tools – CCDT

The compendium is an interactive document that calculates the misclassification rate
(MCR) for different classification methods. The validation strategy is fixed but may be

942 Ulrich Mansmann, Markus Ruschhaupt, and Wolfgang Huber

modified by setting specific parameters. Therefore, an outer and an inner cross-validation
is mandatory: the inner CV tunes the algorithm specific parameters (including also
parameters for the preprocessing) and the outer CV to estimate the misclassification
rate. We see the preprocessing as part of the classification algorithm. The CV strategy
is sketched in figure 1.

Fig. 1. The cross-validation stategy (CV - cross validation, MCR - missclassification rate)

Things that can be changed easily are: Classification methods, preprocessing steps,
parameters for classification method and validation, and data set.

The compendium allows to combine guidelines with software, and to embed good
statistical analysis in a text which is accessible for medical or biological researchers.
It is a document that bundles primary data, processing methods (computational code),
derived data, and statistical output with the textual documentation and conclusions it.
Especially it contains specific tools to represent results. The inclusion of an implemented
classification method is via a wrapper. Writing a wrapper function for new classification
algorithms is simple. So far, five classification approaches are already implemented:
Shrunken centroids (PAM) [18], support vector machines (SVM) [19], random forest
[20], general partial least squares, and penalized logistic regression [21]. The com-
pendium can be found as a package for the statistical language R at

http://www.biometrie.uni-heidelberg.de/technical_reports.

The compendium does not implement new algorithms but offers a framework to apply
existing implementations of classification algorithms in a correct way.

3.2 Static Versus Interactive Approaches

The answer to questions like: Which classification result could be archived with standard
approaches? or What loss in accuracy has to be traded for a rise in interpretability? is
generally given in a paper which compares N different classification algorithms (C) and

Reproducible Statistical Analysis in Microarray Profiling Studies 943

M pre-processing (P) strategies on K different data sets (D). The N x M x K performance
measures are tabulated and discussed. Dudoit et al. [12] published such a study which
is extended by Lee et al. [13]. It is difficult to use their results for guidance because they
certainly do not implement all algorithms of interest, the pre-processing strategies may
change, and the data will become irrelevant when a new generation of microarrays is
introduced. Therefore, it may be wise to replace the static by an interactive approach by
offering the machinery which allows the researcher herself to perform such a study on
the algorithms and pre-processing strategies of interest together with relevant data.

The compendium offers different levels of interactivity. It can be used to produce
a textual output comparable with the static approach. On an intermediate level one
interacts with the compendium by specifying parameters and data sets. For example, one
could change the kernel of a support vector machine by simply changing the parameter
poss.pars:

> poss.pars = c(list(cost = cost.range, kernel = "linear"),poss.k)

This is the level of sensitivity analyses or of comparing the performance of implemented
algorithms on different data sets. The advanced level of interaction consists in intro-
ducing new ideas like new classification algorithms or new tools for the presentation
of the results. Writing wrapper functions for new classification methods is simple. The
following example shows a wrapper for diagonal discriminant analysis. The essential
part is the specific definition of the predict.function by user specific needs and ideas:

> DLDA.wrap = function(x, y, pool = 1, ...) {
+ require(sma)
+ predict.function = function(testmatrix) {
+ res = stat.diag.da(ls = x, as.numeric(y), testmatrix,
+ pool = pool)$pred
+ return(levels(y)[res])
+ }
+ return(list(predict = predict.function, info = list()))
+ }

3.3 Sweave

Sweave [24] is a specific approach for generation of a dynamic report. We use Sweave
as the technology for the compendium. It mixes S (R) and LATEX in a sequence of code
and documentation chunks in a Rnw file. It uses S (R) for all tangling and weaving steps
and hence has a very fine control over the S (R) output. Options can be set either globally
to modify the default behaviour or separately for each code chunk to control how the
output of the code chunks is inserted into the LATEX file.

The working principle of Sweave is sketched in figure 2 and demonstrated in the
following example. The parts between <<...>>= ...@ describe the code chunks
which will be evaluated by S (R) and whose results will be woven if required into the
output (again a LATEX of postscript document) or only available for later evaluation steps.
The paragraphs between the code chunks will be processed as LATEX code for the output
document.

944 Ulrich Mansmann, Markus Ruschhaupt, and Wolfgang Huber

Fig. 2. The working principle of Sweave

To obtain normalized expression measures from the microarray data, Huang et al.
used Affymetrix’ Microarray Suite (MAS) Version 5 software.Additionally, they trans-
formed the data to the logarithmic scale. Here, we use the function \Rfunction{mas5}
in the \Rpackage{affy} library. \Robject{eset} is an object of classexprSet, which
comprises the normalized expression values as well as the tumour sample data. All the
following analyses are based on this object.

%%normalizing the affy batches
<<normalizing,eval=FALSE>>=
Huang.RE <- mas5(affy.batch.RE)
exprs(Huang.RE) <- log2(exprs(Huang.RE))
@
So we have the following expression set for our further analysis
<<show1>>=
Huang.RE
@

The Sweave output of this part is presented in figure 3.

4 Results

The application of the compendium to data of microarray profiling study provides tools
to answer crucial questions on the assessment of a new classification algorithm. A few
aspects will be discussed.

A new classification algorithm can be implemented by writing the specific wrap-
per function which is an easy exercise. Misclassification results can be calculated and
compared to the results of a set of competing algorithms. The compendium presents
classification results on the basis of the confusion matrix and individual classification.
Individual classification based on a specific pre-processing strategy and classification
algorithm can be presented for the whole sample graphically. figure 4 shows a vote plot
which presents for each subject the percentage of correct classification in the determined

Reproducible Statistical Analysis in Microarray Profiling Studies 945

Fig. 3. Sweave output of example

Fig. 4. Vote plot for classification result using: reanalysis of the Huang et al. data [4]

number of CV loops. The first 34 patients belong to the group with no tumour recurrence.
The remaining 14 patients suffered a relapse.

A table giving a synopsis of all individual misclassifications can also be produced.
Figure 5 shows all subjects who are misclassified by at least one of the classification
strategies under consideration in the data of Huang et al. [4]. The individuals are ordered
with respect to the number of classification strategies which lead to misclassification.
Other presentations of the comparison are possible, for example a scatter plot to contrast
individual MCRs between the new and the standard approaches. This idea can also be

946 Ulrich Mansmann, Markus Ruschhaupt, and Wolfgang Huber

Fig. 5. Reanalysis of Huang et al. data (RF - random forest, PAM - shrunken centroids, logReg -
penealized logistic regression, SVM - support vector machine, M - using metagenes)

implemented on the advanced level of interaction by writing the code for the respective
figure.

The Huang strategy misclassifies two of the 34 patients with good prognosis and three
of the 18 patients with bad prognosis. The standard algorithms give results on correct
classification below 80%. Why is it impossible for us to reproduce the good classification
result with standard algorithms? No implementation for the Bayesian classification tree
(BCT) is available and thus no direct comparison is possible. The algorithm of the
BCT is not available and its description in a technical report does not give explicit
advise for its implementation into software. Therefore, we tried a sensitivity analysis
by using the intermediate interaction with the compendium. First, we excluded the the
preproceeing form the inner CV loop, because the original paper [4] does not take care
on the adjustment of the MCR for the pre-processing strategy. This did not improve
classification quality in the expected way. Second, we reduced the data set to the two-
hundred most discriminating genes which introduces a huge selection bias. Only this
way we could come up with 6-7 misclassifications which is still worse as the results in
the original paper. Can we trust the original result? Our analysis reminds us to be quite
critical to the original claims.

Huang et al. [4] state that the genes found to be crucial for the classification are
different from the genes found as crucial by van ’t Veer et al. [3]. What is the reason
for the missing link between the Huang and van ’t Veer classifiers? How is it possible
to disentangling computation, technology, and biology? The compendium takes care
on the computational part. Additionally, the BCT and the van ’t Veer classifier need
to be implemented and wrapper functions for both classification algorithms have to be
written. Both wrapper and the respective pre-processing strategies will be applied to
both data sets. For each data set correlation between the genes used in the classifiers
can be calculated and visualised by a checkerboard figure. The checkerboard for genes

Reproducible Statistical Analysis in Microarray Profiling Studies 947

of both classifiers on the same data set allows to identify genes with similar expression
behaviour and to study common biological aspects behind both classifiers. Comparing
the checkerboards between both data sets gives hints on sample differences between both
studies and discrepancies introduced by the different microarray technologies used.

5 Discussion

The literature on the induction of prognostic profiles from microarray studies is a
methodological wasteland. Ambroise and McLachlan [9] describe the unthorough use
of cross-validation in a number of high-profile published microarray studies. Tibshirani
and Efron [7] report the difficulty in reproducing a published analysis. Huang et al. [4]
present results with the potential to revolutionize clinical practice in breast cancer treat-
ment but use an ideosyncratic statistical method which is fairly complex and neither easy
to implement nor to obtain as software. A series of papers published in Nature [3], NEJM
[6], [17], and The Lancet [4], [5] base their impressive results on classification methods
which were developed ad-hoc for the problem at hand. The global picture looks like:
the MCRs reported are of questionable clinical relevance, reanalysis of a paper does
not support the strong claims they made, results are not reproducible with respect to
computation, validation, or biology.

This situation has several implications: 1) It is nearly impossible to assess the value
of the presented studies in terms of statistical quality and clinical impact. 2) Scientists
looking for guidance to design similar studies are left puzzled by the plethora of methods.
3) It is left unclear how much potential there is for follow-up studies to incrementally
improve on the results.

References

1. Microarray special. Statistical Science, 18:1-117, 2003.
2. Simon R., Rademacher M.D., Dobbin K., McShane L.M.: Pitfalls in the use of DNA mi-

croarray data for diagnostic and prognostic classification. J Nat. Cancer Inst., 95: 14-18,
2003.

3. van ’t Veer L., Dai H., van de Vijver M.J., He Y.D., Hart A.A.M., Mao M., Petersen H.L.,
van de Kooy K., Marton M.J., Witteveen A.T., Schreiber G.J., Kerkhoven R.M., Roberts C.,
Linsley P.S., Bernards R. and Friend S.H.: Gene expression profiling predicts clinical outcome
of breast cancer. Nature, 415:530-536, 2002.

4. Huang E., Cheng S.H., Dressman H., Pittman J., Tsou M.H., Horng C.F., Bild A., Iversen
E.S., Liao M., Chen C.M., West M., Nevins J.R. and Huang A.T.: Gene expression predictors
of breast cancer outcomes. The Lancet, 361:1590-1596, 2003.

5. Chang J., Wooten E., Tsimelzon A., Hilsenbeck S., Gutierrez C, Elledge R., Mohsin S., Os-
borne K., Chamness G., Allred C., O’Connell P.: Gene expression profiling for the prediction
of therapeutic response to docetaxel in patients with breast cancer. The Lancet, 362:362-369,
2003.

6. Bullinger L., Döhner K., Bair E., Fröhling S., Schlenk R.F., Tibshirani R., Döhner H., Pollack
J.R.: Use of Gene-Expression Profiling to Identify Prognostic Subclasses in Adult Acute
Myeloid Leukemia. NEJM, 350:1605-1616, 2004.

7. Tibshirani R.J., Efron B.: Pre-validation and inference in microarrays. Statistical Applications
in Genetics and Molecular Biology, 1:1, 2002.

948 Ulrich Mansmann, Markus Ruschhaupt, and Wolfgang Huber

8. Breiman L.: Statistical Modelling: The Two Cultures. Statistical Science, 16:199-231, 2001.
9. Ambroise C., McLachlan G.J.: Selection bias in gene extraction on the basis of microarray

gene-expression data. Proc Natl Acad Sci, 99:6562-6566, 2002.
10. Brenton J.D., Caldas C.: Predictive cancer genomics - what do we need? The Lancet, 362:340-

341, 2003.
11. Leisch F., Rossini A.J.: Reproducible statistical research. Chance, 16:41-46, 2003.
12. Dudoit S., Fridlyand J., Speed T.P.: Comparison of Discrimination Methods for the Classifica-

tion of Tumors Using Gene Expression Data. Journal of the American Statistical Association,
97:77-87, 2002.

13. Lee J.W., Korea University, Department of statistics, personal communication.
14. Ihaka R., Gentleman R.: R: A language for data analysis and graphics. Journal of Computa-

tional and Graphical Statistics, 5:299-314, 1996.
15. Gentleman R., Carey V.: Bioconductor. R News, 2(1):11-16, 2002.
16. Leisch F.: Dynamic generation of statistical reports using literate data analysis. Compstat

2002 - Proceedings in Computational Statistics, 575-580, 2002.
17. van de Vijver M.J., He Y.D., van ’t Veer L.J. et al.: A gene-expression signature as a predictor

of survival in breast cancer. N Engl J Med, 347:1999-2009, 2002.
18. Tibshirani R., Hastie T., Narasimhan B., Chu G.: Class prediction by nearest shrunken cen-

troids, with application to DNA microarrays. Statistical Science, 18:104-117, 2003.
19. Vapnik V.: The Nature of Statistical Learning Theory. Springer, New York (1999)
20. Breiman L.: Random Forests. Machine Learning Journal, 45:5-32, 2001.
21. Eilers P.H., Boer J.M., Van Ommen G.J., Van Houwelingen H.C.: Classification of Microar-

ray Data with Penalized Logistic Regression. Proceedings of SPIE volume 4266:progress in
biomedical optics and imaging, 2:187-198, 2001.

22. Carey V.J.: Literate Statistical Programming: Concepts and Tools. Chance, 14:46-50, 2001.
23. Sawitzki, G.: Keeping Statistics Alive in Documents. Computational Statistics, 17:65-88,

2002.
24. Leisch, F.: Dynamic generation of statistical reports using literate data analysis. Compstat

2002 - Proceedings in Computational Statistics, 575-580, 2002.

Step-Down FDR Procedures
for Large Numbers of Hypotheses

Paul N. Somerville

Emeritus Professor of Statistics
University of Central Florida
2805 N. Hwy. A1A, Unit 502

Indialantic, FL 32903
somervil@pegasus.cc.ucf.edu

Abstract. Somerville (2004b) developed FDR step-down procedures which
were particularly appropriate for cases where the number of false hypotheses
was small. The test statistics were assumed to have a multivariate-t distribution
with common correlation. MCV’s (minimum critical values) were chosen so that
8 unique critical values resulted. Tables were given for numbers of hypotheses
m, ranging from 50 to 10,000, for ρ = 0., 0.5, and ν = 15,∞. In this paper we
extend the results, using MCV’s resulting in 31 critical values. Tables are given
for the same values of m, for ρ = 0, 0.1, 0.5 and ν = 15,∞. Interpolation rules
are given for m, ρ and ν. Use of larger numbers of critical values increase both the
power and the number of hypotheses falsely rejected. When the expected number
of false hypotheses is small, use of the procedures of this paper results in a reduced
number of false rejections with a negligible reduction in power.

1 Introduction

There are many situations where a researcher is interested in the outcome of a family of
tests. An example is the case where m experimental drugs are compared to a standard
with respect to an outcome. Tests can be made of the m null hypotheses of no effect,
each at a level α. This would be testing at a per comparison error rate (PCER) of α. For
m > 1, the probability of rejecting some null hypothesis when it was true would be larger
than α. To protect from such situations arising from multiplicity, a standard procedure
has been to use a family-wise error rate (FWER). In this case, the family-wise error rate
would be the probability of rejecting at least one null hypothesis when in fact they are
all true. A common single-step method to achieve the family-wise error rate is to use the
Bonferroni procedure, discussed by R. A. Fisher (1935). Other single step procedures
include those of Scheffe (1953) for testing several linear combinations, Tukey (1953)
for pair-wise comparisons and Dunnett (1955) for comparisons with a control.

Multi-step (step-wise) FWER procedures have been developed which are more pow-
erful than single-step procedures. One of the first was introduced by Naik (1975). Others
include step-up and step-down procedures developed for comparisons with a control by
Dunnett and Tamhane (1991, 1992).

More recently multi-step procedures which control the “false discovery rate" FDR
(expected proportion of “false discoveries" or Type I errors) say q have been proposed.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 949–956, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

950 Paul N. Somerville

One motivation was the under-utilization of FWER procedures because of their perceived
lack of “power". Benjamini and Hochberg (1995) presented a step-up procedure, valid for
independent test statistics. Benjamini and Liu (1999a) presented a step-down procedure
valid under the same conditions. Troendle (2000) developed both step-up and step-
down procedures which asymptotically control the FDR when the test statistics have
a multivariate-t distribution. Benjamini and Liu (1999b) and Benjamini and Yekutieli
(1999) gave distribution free FDR procedures. Benjamini and Yekutieli (2001) showed
that the procedure of Benjamini and Hochberg (1995) was also valid when the p-values
were “positively dependent". Benjamini, Krieger and Yekutieli (2001) developed a two
stage step-up procedure. Sarkar (2002) has made important contributions.

Somerville (2004b), using least favorable configurations, developed both step-up
and step-down procedures which are valid for dependent or independent hypotheses.
All calculations assume the test statistics have a joint multivariate-t distribution and a
common correlation coefficient ρ. The concept of “Minimum Critical Value" (MCV)
was introduced. When the MCV (see section 2.) is equal to 0 the step-down procedure is
the same as that of Troendle (2000). Studies comparing powers of various procedures by
Horne and Dunnett (2003) and Somerville (2003) have shown the methods of Troendle
(2000) and Somerville (2004b) to be among the most powerful.

FDR procedures, while controlling the expected number of “false positives", have
also been criticized for not controlling the actual number or proportion. van der Laan,
Dudoit and Pollard (2004) generalize FWER procedures, introducing gFWER which
controls u, the number of Type I errors. They also introduce PFP to control γ, the
proportion of “false positives".

In this paper we introduce step-down FDR procedures which use large MCV’s (Min-
imum Critical Values). These procedures not only control the expected FDR, but also
result in values of P [u ≤ 2] which compare with those achieved by Korn et al and
van der Laan et al when the number of false hypotheses is small, or where finding a
small number of false hypotheses is a satisfactory outcome. Six tables of critical values
dm−30 to dm are given for 50 ≤ m ≤ 10, 000. Instead of using MCV = dm−30, and
31 “unique" critical values, the tables may be “truncated" by elimination of the smallest
values. Reducing the number of “unique" critical values, reduces the probability of “a
or fewer" false positives, where the value of a is arbitrary.

2 Minimum Critical Values

Assuming a multivariate-t distribution of the test statistics with a common correlation
coefficient ρ, Somerville (2003) observed that, in most situations, the smallest of the
calculated FDR critical values was less than the commonly used critical value of tα,ν for
comparing two means, where tα,ν is the value of student’s t with type I error of α and
ν degrees of freedom. In many situations it was negative, and when the number of tests
was large, one or more of the critical values could be negatively infinite. This situation
would certainly be unappealing to most users, and motivated the concept of “minimum
critical value" (MCV). The “minimum critical value" is defined to be the smallest critical
value, which, when exceeded or equaled, would result in an hypothesis rejection. The
“minimum critical value" may be more or less arbitrarily chosen. If the calculated value

Step-Down FDR Procedures for Large Numbers of Hypotheses 951

for di is smaller than the chosen MCV, it is replaced by the MCV value, and di+1, di+2,
are sequentially calculated, where di ≤ dj when i ≤ j.

Somerville (2003, 2004a,b) made many calculations finding convincing empirical
evidence, especially for large values of m, that if nF were the actual number of false
hypotheses, that there was an inverse relationship between nF and the value of the MCV
which maximized the “power" of the FDR procedure. That is, if nF were large, the
MCV for maximum power of the procedure should be small and for small values of nF

, the MCV should be large. In particular, Somerville observed that, for the values of m
studied, choosing the value of MCV such that the number of “unique" critical values
was equal to nF resulted in “powers" near the maximum. An approximately equivalent
result could be obtained by automatically “truncating" the step-down FDR process after
nF steps. It may be noted (Somerville (2003, 2004b)) that if the MCV is equal to the
corresponding critical value for the single-step test, all the critical values of the FDR
procedure are equal.

3 Tables for the FDR Step-Down Procedure
when the Number of False Hypotheses Is Small

Tables 2, 3 and 4 give step-down FDR critical values for m ranging from 50 to 10,000
when ν = 15 or ∞, q = .05 for the procedure, and ρ = 0, .1 and .5 respectively, when
the hypotheses are one-sided. For each combination of m, ρ and ν. MCV was chosen as
the smallest value such that d1 = d2 = . . . = dm−30 = MCV results in the FDR less
than or equal to q. There are thus, for each m in each table, exactly 31 “unique" critical
values, a more or less arbitrarily chosen “small" value.

There may be error in the third decimal place in the tables. Critical values for m not
included in the tables can be obtained by interpolation (or extrapolation if m < 50, 000
(say)). Each critical value di in a table is approximately linear in ln(m). Critical values
for 15 < ν < ∞ can be obtained by linear interpolation in 1/ν. Critical values for
0 < ρ < .5, can be approximated using quadratic interpolation. It is worth noting that
as ρ → 1, all critical values are equal to zq (or tq), the value of the normal (or t) variate
which is exceeded q of the time.

4 Calculation of Critical Values and Powers

Fortran 90 programs SEQDN and SEQUP can sequentially calculate the critical values
d2 to dm for step-down and step-up FDR, respectively, for arbitrary values of m, q, ρ,
and ν. N (105, 106 or 107) random normal multivariate vectors of size m were used to
obtain each critical value.

Fortran 90 programs FDRPWRDN and FDRPWRUP calculate powers, E(Q),
P [u ≤ 1, 2, . . . , 7], and P [γ ≤ .05, .10, .15] where u and γ are the number and propor-
tion of false discoveries respectively. Inputs are m, ρ, ν,Δ, nF and a set of m critical
values. Δ is the common standardized mean of the test statistics corresponding to the nF

false hypotheses. N random normal multivariate vectors of size m are used. Three kinds
of power are always calculated: per pair, all pairs and any pair (see Horn and Dunnett

952 Paul N. Somerville

(2004)), and also E(Q). The probability of rejecting at least one of the false hypotheses
is called any pairs power. The probability of rejecting all false hypotheses is called all
pairs power. Considering a specific hypothesis, the probability of its rejection is called
the per pairs power. Since our calculations assume all the test statistics corresponding
to the F hypotheses have the same location parameter, the per pair power is identical to
the average power.

5 Example

Korn, Troendle, McShane and Simon (2003) recently proposed two new procedures
which control, with specified confidence, the actual number of false discoveries, and
the actual proportion of false discoveries, respectively. They applied their procedures to
analyze a microarray dataset consisting of measurements on approximately 9000 genes
in paired tumor specimens, collected both before and after chemotherapy on 20 breast
cancer patients. Their study, after elimination of cases of missing data included 8029
genes for analysis. The object was to simultaneously test the null hypotheses that the
mean pre and post chemotherapy expression of genes was the same. Their Procedure A
identified 28 genes where u, the number of false discoveries, was ≤ 2, with confidence
.05. Procedure B identified the same 28 genes where γ, the false discovery proportion,
was ≤ .10 with approximate confidence .95.

Table 1. Table A: Number of genes identified by procedures, (m = 8029, q = 0.05). Table B:
Minimum values of P [u ≤ 2] (m = 8029, q = .05, ν = 3.464). Rough approximate value of
nF at minimum in parentheses

Table A Table B

ν = ∞ ν = 15
MCV ρ = .0 ρ = .1 ρ = .5 ρ = .0

dm−7 20 21 29 24

dm−11 23 23 33 27

dm−15 24 24 35 29

dm−19 27 27 38 31

dm−23 28 29 40 33

dm−27 29 29 > 50 33

dm−30 29 33 > 50 36

ν = ∞ ν = 15
MCV ρ = .0 ρ = .1 ρ = .5 ρ = .0

dm−7 .99(40) .96(70) .95(50) .90(50)

dm−11 .98(50) .94(70) .93(55) .90(50)

dm−15 .96(70) .91(70) .92(55) .89(80)

dm−19 .92(80) .88(70) .91(60) .89(80)

dm−23 .88(80) .85(70) .91(60) .88(90)

dm−27 .83(80) .82(80) .90(60) .88(90)

dm−30 .78(90) .78(90) .87(70) .88(100)

The tables 2, 3 and 4 were used to test the same hypotheses, “truncating" each table
to utilize exactly 8, 12, 16, 20, 24, 28 and 31 “unique" critical values (“truncating" to
exactly 12 “unique" critical values would mean setting MCV equal to dm−11, and setting
di = MCV for i < m − 11.). Assuming 15 degrees of freedom for each of the 8029
tests, the corresponding FDR step-down critical values were obtained using the Fortran
program SEQDN. Table 1A indicates the number of genes identified by the procedures.

Table 1B illustrates the control of the number of false positives, respectively for m =
8029. The graph P [u ≤ 2] vs. nF is (shallow) bowl shaped. The value in parentheses is
a very rough estimate of the value of nF for the minimum.

Step-Down FDR Procedures for Large Numbers of Hypotheses 953

Table 2. Step-down FDR Critical Values (31 “unique") for ρ = 0 and q = 0.05 (the first columns
should be read as di where i = m, m − 1, . . . , m − 30, . . . , 1)

T able C(ρ = 0, ν = 15, q = 0.05) T able D(ρ = 0, ν = ∞, q = 0.05)
m 50 100 250 500 1000 2500 5000 10000

m 3.632 3.928 4.306 4.579 4.842 5.177 5.420 5.656

m−1 3.332 3.647 4.045 4.332 4.614 4.962 5.214 5.464

m−2 3.140 3.467 3.876 4.173 4.458 4.822 5.081 5.340

m−3 2.999 3.335 3.753 4.054 4.345 4.710 4.976 5.225

m−4 2.885 3.231 3.656 3.961 4.254 4.630 4.899 5.150

m−5 2.789 3.141 3.573 3.884 4.182 4.560 4.827 5.100

m−6 2.705 3.065 3.503 3.816 4.066 4.444 4.723 4.979

m−7 2.630 2.999 3.443 3.760 4.066 4.444 4.723 4.979

m−8 2.561 2.937 3.389 3.705 4.013 4.392 4.672 4.941

m−9 2.499 2.885 3.338 3.660 3.967 4.357 4.631 4.912

m−10 2.441 2.835 3.293 3.617 3.929 4.306 4.585 4.847

m−11 2.383 2.787 3.249 3.577 3.886 4.283 4.567 4.834

m−12 2.333 2.743 3.213 3.543 3.855 4.244 4.527 4.803

m−13 2.282 2.702 3.176 3.504 3.824 4.220 4.488 4.774

m−14 2.233 2.666 3.144 3.474 3.784 4.182 4.459 4.746

m−15 2.187 2.627 3.111 3.446 3.759 3.153 4.441 4.735

m−16 2.141 2.591 3.081 3.416 3.731 4.124 4.426 4.677

m−17 2.079 2.559 3.051 3.388 3.704 4.113 4.394 4.677

m−18 2.052 2.526 3.025 3.362 3.679 4.078 4.359 4.645

m−19 2.010 2.495 3.000 3.338 3.669 4.063 4.346 4.625

m−20 1.969 2.464 3.973 3.315 3.636 4.025 4.329 4.602

m−21 1.926 2.436 2.949 3.292 3.605 4.024 4.303 4.577

m−22 1.884 2.406 2.926 3.272 3.592 3.994 4.279 4.567

m−23 1.842 2.380 2.905 3.250 3.570 3.980 4.249 4.532

m−24 1.801 2.352 2.883 3.227 3.554 3.952 4.238 4.532

m−25 1.759 2.328 2.861 3.207 3.538 3.937 4.221 4.507

m−26 1.716 2.302 2.839 3.192 3.513 3.925 4.203 4.494

m−27 1.670 2.275 2.822 3.169 3.493 3.890 4.185 4.457

m−28 1.625 2.249 2.797 3.152 3.465 3.875 4.185 4.445

m−29 1.625 2.243 2.790 3.138 3.454 3.842 4.136 4.408

m−30 1.464 2.152 2.712 3.062 3.385 3.784 4.065 4.343

.

1 1.464 2.152 2.712 3.062 3.385 3.784 4.065 4.343
ln(m) 3.912 4.605 5.521 6.215 6.908 7.824 8.517 9.210

m 50 100 250 500 1000 2500 5000 10000

m 3.083 3.283 3.533 3.713 3.884 4.102 4.259 4.412

m−1 2.867 3.081 3.346 3.537 3.714 3.938 4.103 4.266

m−2 2.731 2.958 3.234 3.426 3.613 3.842 4.009 4.172

m−3 2.629 2.865 3.150 3.349 3.538 3.772 3.940 4.106

m−4 2.545 2.791 3.084 3.286 3.477 3.713 3.887 4.054

m−5 2.474 2.729 3.027 3.234 3.428 3.672 3.842 4.011

m−6 2.412 2.676 2.980 3.190 3.387 3.635 3.804 3.974

m−7 2.354 2.626 2.938 3.150 3.350 3.596 3.771 3.941

m−8 2.302 2.585 2.899 3.116 3.317 3.566 3.742 3.915

m−9 2.254 2.543 2.865 3.084 3.286 3.543 3.717 3.887

m−10 2.207 2.507 2.835 3.054 3.260 3.511 3.694 3.865

m−11 2.165 2.470 2.806 3.029 3.235 3.488 3.669 3.842

m−12 2.122 2.440 2.777 3.003 3.213 3.468 3.655 3.824

m−13 2.082 2.407 2.753 2.980 3.190 3.448 3.633 3.803

m−14 2.044 2.379 2.730 2.960 3.169 3.428 3.613 3.788

m−15 2.006 2.352 2.705 2.937 3.151 3.411 3.602 3.773

m−16 1.969 2.324 2.684 2.919 3.133 3.399 3.582 3.757

m−17 1.932 2.300 2.666 2.901 3.117 3.376 3.566 3.743

m−18 1.897 2.274 2.644 2.881 3.099 3.365 3.557 3.728

m−19 1.861 2.251 2.625 2.867 3.084 3.354 3.537 3.719

m−20 1.826 2.223 2.609 2.849 3.069 3.334 3.526 3.704

m−21 1.791 2.206 2.590 2.833 3.055 3.323 3.516 3.693

m−22 1.755 2.181 2.573 2.821 3.041 3.308 3.502 3.685

m−23 1.720 2.160 2.557 2.804 3.029 3.308 3.484 3.672

m−24 1.685 2.138 2.541 2.792 3.016 3.282 3.484 3.660

m−25 1.648 2.121 2.531 2.780 3.003 3.275 3.469 3.654

m−26 1.621 2.098 2.509 2.764 2.994 3.269 3.455 3.644

m−27 1.549 2.066 2.490 2.746 2.976 3.249 3.443 3.628

m−28 1.549 2.066 2.490 2.746 2.969 3.249 3.443 3.628

m−29 1.549 2.066 2.490 2.746 2.969 3.249 3.443 3.628

m−30 1.397 1.991 2.437 2.700 2.935 3.212 3.408 3.594

.

1 1.397 1.991 2.437 2.700 2.935 3.212 3.408 3.594
ln(m) 3.912 4.605 5.521 6.215 6.908 7.824 8.517 9.210

6 Summary and Conclusion

Step-down FDR procedures have been developed for the case where there are many
hypotheses. The procedures are particularly appropriate when relatively few hypotheses
are false, or where obtaining a limited number of “discoveries" is satisfactory. For 50 ≤
m ≤ 10, 000 and q = .05, tables of critical values of the test statistics are presented for
ρ = 0, .1 and .5 when ν = ∞, or ν = 15. There are 31 “unique" tabulated critical
values, but the tables may be “truncated". Setting MCV equal to dm results in a single
unique critical value and a single step procedure. This choice yields the largest P [u ≤ a]
where a is arbitrary. Choosing the appropriate value for MCV is an attempt to balance
the conflicting goals of rejecting all false hypotheses and not rejecting those hypotheses
which are true. Empirical results suggest that “powers" are maximized when the MCV
is chosen so that the number of “unique" critical values is equal to nF (of course almost
always unknown).

Some additional observations and conclusions are:

1. i) P [u ≤ a] decreases as the number of unique critical values used increases. Thus
the number of critical values can be chosen so as to control P [u ≤ a].

954 Paul N. Somerville

Table 3. Step-down FDR Critical Values (31 “unique") for ρ = 0.1 and q = 0.05 (the first
columns should be read as di where i = m, m − 1, . . . , m − 30, . . . , 1)

T able E(ρ = 0.1, ν = 15, q = 0.05) T able F (ρ = 0.1, ν = ∞, q = 0.05)
m 50 100 250 500 1000 2500 5000 10000

m 3.580 3.860 4.217 4.474 4.719 5.033 5.260 5.479

m−1 3.295 3.597 3.975 4.245 4.505 4.831 5.074 5.296

m−2 3.113 3.427 3.816 4.097 4.364 4.703 4.947 5.171

m−3 2.987 3.300 3.701 3.985 4.261 4.597 4.848 5.092

m−4 2.867 3.201 3.608 3.899 4.176 4.536 4.777 5.018

m−5 2.774 3.115 3.530 3.825 4.107 4.459 4.711 4.957

m−6 2.693 3.041 3.465 3.764 4.050 4.406 4.662 4.900

m−7 2.619 2.980 3.405 3.706 3.997 4.355 4.597 4.853

m−8 2.552 2.918 3.356 3.658 3.934 4.302 4.581 4.822

m−9 2.491 2.868 3.306 3.612 3.906 4.276 4.522 4.778

m−10 2.434 2.820 3.264 3.572 3.851 4.223 4.507 4.742

m−11 2.379 2.773 3.220 3.535 3.834 4.202 4.451 4.722

m−12 2.328 2.730 3.186 3.502 3.796 4.159 4.428 4.691

m−13 2.279 2.691 3.150 3.466 3.759 4.144 4.395 4.650

m−14 2.231 2.655 3.119 3.434 3.742 4.102 4.395 4.623

m−15 2.186 2.617 3.086 3.406 3.708 4.066 4.350 4.623

m−16 2.141 2.583 3.058 3.380 3.679 4.054 4.333 4.573

m−17 2.098 2.549 3.028 3.350 3.648 4.054 4.299 4.556

m−18 2.054 2.519 3.003 3.330 3.641 4.001 4.281 4.545

m−19 2.010 2.486 2.980 3.307 3.601 3.986 4.253 4.545

m−20 1.973 2.456 2.952 3.278 3.601 3.958 4.237 4.495

m−21 1.929 2.432 2.929 3.260 3.563 3.958 4.213 4.484

m−22 1.888 2.400 2.908 3.238 3.538 3.919 4.213 4.440

m−23 1.847 2.375 2.884 3.218 3.527 3.913 4.188 4.439

m−24 1.807 2.346 2.863 3.195 3.501 3.889 4.162 4.419

m−25 1.765 2.324 2.841 3.176 3.494 3.865 4.136 4.419

m−26 1.720 2.297 2.820 3.156 3.457 3.853 4.124 4.396

m−27 1.682 2.269 2.801 3.135 3.439 3.833 4.101 4.355

m−28 1.634 2.244 2.776 3.116 3.425 3.806 4.094 4.350

m−29 1.622 2.229 2.760 3.099 3.425 3.780 4.046 4.307

m−30 1.453 2.133 2.681 3.020 3.325 3.708 3.978 4.240

.

1 1.453 2.133 2.681 3.020 3.325 3.708 3.978 4.240
ln(m) 3.912 4.605 5.521 6.215 6.908 7.824 8.517 9.210

m 50 100 250 500 1000 2500 5000 10000

m 3.070 3.268 3.516 3.693 3.864 4.081 4.235 4.386

m−1 2.858 3.072 3.335 3.522 3.700 3.924 4.086 4.242

m−2 2.724 2.949 3.224 3.416 3.599 3.829 3.995 4.153

m−3 2.623 2.859 3.141 3.339 3.526 3.759 3.929 4.091

m−4 2.542 2.786 3.076 3.277 3.468 3.704 3.880 4.041

m−5 2.471 2.725 3.021 3.226 3.420 3.660 3.832 3.999

m−6 2.409 2.670 2.974 3.181 3.377 3.621 3.795 3.963

m−7 2.352 2.623 2.932 3.142 3.343 3.588 3.763 3.932

m−8 2.300 2.580 2.895 3.107 3.309 3.558 3.735 3.907

m−9 2.253 2.541 2.862 3.077 3.280 3.531 3.708 3.876

m−10 2.207 2.503 2.829 3.049 3.255 3.503 3.685 3.858

m−11 2.164 2.469 2.801 3.023 3.227 3.481 3.662 3.834

m−12 2.122 2.437 2.774 2.998 3.205 3.461 3.643 3.817

m−13 2.084 2.407 2.749 2.975 3.185 3.442 3.625 3.797

m−14 2.045 2.377 2.725 2.954 3.161 3.424 3.609 3.778

m−15 2.008 2.350 2.703 2.934 3.147 3.403 3.586 3.766

m−16 1.970 2.324 2.681 2.914 3.127 3.389 3.572 3.749

m−17 1.937 2.298 2.661 2.896 3.110 3.372 3.560 3.735

m−18 1.899 2.274 2.641 2.878 3.096 3.359 3.542 3.720

m−19 1.866 2.250 2.623 2.862 3.078 3.343 3.533 3.710

m−20 1.830 2.226 2.605 2.845 3.064 3.331 3.513 3.698

m−21 1.795 2.204 2.587 2.831 3.052 3.313 3.506 3.680

m−22 1.760 2.182 2.572 2.813 3.033 3.309 3.491 3.672

m−23 1.727 2.161 2.555 2.803 3.025 3.289 3.488 3.663

m−24 1.691 2.138 2.539 2.786 3.008 3.278 3.464 3.652

m−25 1.654 2.121 2.523 2.773 2.997 3.269 3.459 3.639

m−26 1.622 2.099 2.510 2.760 2.985 3.259 3.449 3.630

m−27 1.574 2.074 2.492 2.747 2.969 3.243 3.439 3.623

m−28 1.544 2.059 2.480 2.734 2.969 3.239 3.426 3.607

m−29 1.544 2.059 2.480 2.733 2.956 3.233 3.424 3.593

m−30 1.388 1.978 2.420 2.681 2.912 3.187 3.381 3.568

.

1 1.388 1.978 2.420 2.681 2.912 3.187 3.381 3.568
ln(m) 3.912 4.605 5.521 6.215 6.908 7.824 8.517 9.210

2. ii) The number of hypotheses rejected increases with the number of “unique" critical
values used in the step-down procedure. The probability of false rejection also
increases.

3. iii) For sufficiently large nF , as nF increases P [u ≤ 2] increases and approaches 1.
4. iv) The tables have been calculated under the assumption that the test statistics have

a joint multivariate-t distribution with common correlation coefficient ρ. However,
the critical values tabulated for the test statistic can be converted to critical p-values.
These converted p-values may be useful for cases where the joint distribution of the
test statistics is other than multivariate-t or that any individual test is one- two sided.

5. v) Use of the step-down FDR procedure of this paper is an alternative to procedure
A of Korn et al and the generalized procedure of van der Laan, Dudoit and Pollard.

6. vi) Underestimating ρ results in the identification of fewer false hypotheses.
7. vii) Use of tables 2, 3 and 4 can make using step-down FDR procedures simple and

easily manageable, though requiring some normality and correlation assumptions.
The procedures control the FDR, and the number of false positives can be controlled
by “truncation" choice. Critical values for parameters not given by the tables can be
obtained using the Fortran program SEQDN.

Step-Down FDR Procedures for Large Numbers of Hypotheses 955

Table 4. Step-down FDR Critical Values (31 “unique") for ρ = 0.5 and q = 0.05 (the first
columns should be read as di where i = m, m − 1, . . . , m − 30, . . . , 1)

T able G(ρ = 0.5, ν = 15, q = 0.05) T able H(ρ = 0.5, ν = ∞, q = 0.05)
m 50 100 250 500 1000 2500 5000 10000

m 3.243 3.452 3.711 3.896 4.067 4.294 4.455 4.608

m−1 3.039 3.266 3.545 3.738 3.929 4.155 4.322 4.483

m−2 2.902 3.144 3.432 3.634 3.826 4.057 4.242 4.409

m−3 2.798 3.048 3.349 3.558 3.750 3.990 4.164 4.328

m−4 2.713 2.974 3.284 3.497 3.693 3.943 4.118 4.303

m−5 2.641 2.909 3.223 3.444 3.648 3.905 4.076 4.255

m−6 2.575 2.853 3.179 3.397 3.607 3.865 4.038 4.191

m−7 2.514 2.805 3.129 3.358 3.563 3.812 4.004 4.161

m−8 2.460 2.755 3.096 3.314 3.528 3.786 3.972 4.133

m−9 2.410 2.717 3.056 3.289 3.494 3.758 3.944 4.106

m−10 2.362 2.678 3.026 3.256 3.468 3.732 3.918 4.080

m−11 2.316 2.642 2.989 3.233 3.444 3.709 3.894 4.056

m−12 2.274 2.606 2.963 3.199 3.420 3.690 3.873 4.033

m−13 2.232 2.571 2.937 3.181 3.397 3.670 3.853 4.011

m−14 2.189 2.543 2.913 3.145 3.375 3.642 3.835 3.991

m−15 2.152 2.514 2.878 3.131 3.354 3.623 3.819 3.972

m−16 2.111 2.478 2.864 3.103 3.333 3.605 3.803 3.954

m−17 2.077 2.452 2.836 3.095 3.313 3.588 3.789 3.938

m−18 2.058 2.428 2.815 3.064 3.293 3.571 3.777 3.923

m−19 1.995 2.395 2.797 3.045 3.274 3.555 3.760 3.909

m−20 1.967 2.369 2.769 3.026 3.256 3.539 3.749 3.896

m−21 1.924 2.352 2.755 3.019 3.238 3.523 3.729 3.884

m−22 1.884 2.323 2.738 2.991 3.221 3.507 3.717 3.873

m−23 1.849 2.296 2.710 2.973 3.205 3.491 3.695 3.842

m−24 1.811 2.269 2.695 2.957 3.190 3.474 3.676 3.816

m−25 1.770 2.250 2.671 2.936 3.175 3.458 3.659 3.794

m−26 1.726 2.221 2.655 2.915 3.160 3.440 3.644 3.776

m−27 1.685 2.192 2.634 2.901 3.145 3.421 3.626 3.763

m−28 1.639 2.162 2.606 2.872 3.130 3.401 3.611 3.754

m−29 1.585 2.132 2.578 2.857 3.115 3.380 3.573 3.750

m−30 1.396 2.015 2.486 2.762 3.003 3.305 3.499 3.689

.

1 1.396 2.015 2.486 2.762 3.003 3.305 3.499 3.689
ln(m) 3.912 4.605 5.521 6.215 6.908 7.824 8.517 9.210

m 50 100 250 500 1000 2500 5000 10000

m 2.883 3.047 3.252 3.393 3.528 3.696 3.816 3.943

m−1 2.714 2.894 3.113 3.272 3.416 3.599 3.717 3.848

m−2 2.605 2.798 3.025 3.183 3.332 3.522 3.647 3.777

m−3 2.522 2.724 2.962 3.119 3.272 3.463 3.599 3.725

m−4 2.454 2.665 2.905 3.073 3.228 3.418 3.558 3.686

m−5 2.394 2.612 2.866 3.036 3.189 3.383 3.527 3.657

m−6 2.340 2.566 2.823 3.003 3.155 3.356 3.497 3.629

m−7 2.291 2.525 2.792 2.967 3.127 3.332 3.472 3.606

m−8 2.249 2.489 2.759 2.938 3.103 3.306 3.448 3.584

m−9 2.205 2.456 2.729 2.912 3.080 3.283 3.426 3.564

m−10 2.164 2.424 2.704 2.887 3.058 3.261 3.406 3.546

m−11 2.129 2.394 2.676 2.864 3.037 3.241 3.388 3.528

m−12 2.093 2.367 2.655 2.843 3.017 3.223 3.370 3.512

m−13 2.059 2.338 2.635 2.823 2.999 3.206 3.354 3.497

m−14 2.022 2.313 2.610 2.804 2.981 3.190 3.339 3.483

m−15 1.990 2.290 2.594 2.786 2.964 3.175 3.325 3.469

m−16 1.959 2.262 2.576 2.769 2.948 3.162 3.312 3.457

m−17 1.925 2.243 2.553 2.753 2.932 3.149 3.300 3.445

m−18 1.891 2.218 2.539 2.738 2.917 3.136 3.288 3.433

m−19 1.864 2.205 2.523 2.723 2.903 3.124 3.276 3.422

m−20 1.831 2.175 2.499 2.708 2.889 3.113 3.265 3.411

m−21 1.800 2.154 2.491 2.694 2.876 3.101 3.254 3.400

m−22 1.767 2.136 2.469 2.679 2.863 3.090 3.243 3.390

m−23 1.734 2.113 2.460 2.665 2.851 3.078 3.232 3.379

m−24 1.697 2.092 2.442 2.650 2.838 3.066 3.221 3.368

m−25 1.670 2.071 2.419 2.635 2.826 3.054 3.209 3.357

m−26 1.630 2.053 2.411 2.620 2.814 3.041 3.197 3.346

m−27 1.594 2.029 2.390 2.603 2.803 3.027 3.184 3.334

m−28 1.554 2.004 2.375 2.586 2.782 3.013 3.170 3.322

m−29 1.512 1.997 2.356 2.569 2.767 2.997 3.154 3.308

m−30 1.335 1.879 2.278 2.505 2.703 2.936 3.096 3.245

.

1 1.335 1.879 2.278 2.505 2.703 2.936 3.096 3.245
ln(m) 3.912 4.605 5.521 6.215 6.908 7.824 8.517 9.210

References

1. Benjamini Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. J.R. Statist. Soc. B, 289-300.

2. Benjamini, Y., Liu, W. (1999). A step-down multiple hypotheses testing procedure that con-
trols the false discovery rate under independence. JSPI, 163-170.

3. Benjamini, Y., Liu, W. (2001). A distribution-free multiple-test procedure that controls the
false discovery rate. Manuscript available from FDR Website of Y. Benjamini.

4. Benjamini, Y., Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics 29, 1165-1188.

5. Benjamini, Y., Krieger, A., and Yekutieli, D. (2001). Two stage linear step up FDR controlling
procedure. Manuscript available from FDR Website of Y. Benjamini.

6. Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments
with a control. J. Amer. Statist. Assoc. , 60, 1096-1121.

7. Dunnett, C. W.,and Tamhane, A. C. (1991). Step-down multiple tests for comparing treatments
with a control in unbalanced one-way layouts. Statistics in Medicine, 10, 939-947.

8. Dunnett, C. W.,and Tamhane, A. C. (1992). A step-up multiple test procedure. J. Amer. Statist.
Assoc. 87, 162-170.

9. Horn, M., Dunnett, C. W. (2004). Power and sample size comparisons of stepwise FWE
and FDR controlling test procedures in the normal many-one case. Recent Developments in

956 Paul N. Somerville

Multiple Comparison, edited by Y. Benjamini, S. Sarkar and F. Bretz. IMS Lecture Notes
Monograph Series. 48 - 64.

10. Korn, Edward L., Troendle, James F., McShane, Lisa M. and Simon, Richard (2003). Control-
ling the number of false discoveries: Application to high-dimensional genomic data. Journal
of Statistical Planning and Inference 124 issue 2,379 - 398.

11. Naik, U. D. (1975). Some selection rules for comparing p processes with a standard. Commun.
Statist., Ser. A , 4 , 519-535.

12. Sarkar, S.K. (2002). Some results on false discovery rate in stepwise multiple testing, Annals
of Statistics 30, 239-257.

13. Scheffe H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika
40, 87-104.

14. Somerville, Paul N. (2003). “Optimum" FDR procedures and MCV values. Technical report
TR-03-01 Department of Statistics, University of Central Florida.

15. Somerville, Paul N. (2004a) A step-down procedures for large numbers of hypotheses. Paper
presented at the annual meetings of the Florida Chapter of the ASA.

16. Somerville, Paul N. (2004b). FDR step-down and step-up procedures for the correlated case.
Recent Developments in Multiple Comparison, edited by Y. Benjamini, S. Sarkar and F. Bretz.
IMS Lecture Notes Monograph Series. 100 -118.

17. Tukey, J. W. (1953). The problem of multiple comparisons. Department of Statistics, Princeton
University.

18. van der Laan, Mark J., Dudoit, Sandrine and Pollard, Katherine S. (2004). Multiple testing.
Part II. Step-down procedures for control of the generalized family-wise error rate. Statistical
Applications in Genetics and Molecular Biology: Vol. 3: No. 1, Article 13.

Applying Security Engineering to Build Security
Countermeasures: An Introduction

Organizers: Tai-hoonn Kim1 and Ho-yeol Kwon2

1 San-7, Geoyeo-Dong, Songpa-Gu, Seoul, Korea
taihoon@empal.com

2 Gangwon University, 192-1, Hyoja2-Dong
Chunchon, Kangwon-Do, 200-701, Korea

kwh@object.cau.ac.kr

Abstract. The general systems of today are composed of a number of components
such as servers and clients, protocols, services, and so on. Systems connected to
network have become more complex and wide, but the researches for the systems
are focused on the ’performance’ or ’efficiency’. While most of the attention
in system security has been focused on encryption technology and protocols for
securing the data transaction, it is critical to note that a weakness (or security hole)
in any one of the components may comprise whole system. Security engineering
is needed for reducing security holes may be included in the software. Therefore,
more security-related researches are needed to reduce security weakness may be
included in the software. This paper introduces some methods for reducing the
threat to the system by applying security engineering, and proposes a method for
building security countermeasure.

1 Introduction

Many products, systems, and services are needed and used to protect information. The
focus of security engineering has expanded from one primarily concerned with safe-
guarding classified government data to broader applications including financial transac-
tions, contractual agreements, personal information, and the Internet. These trends have
elevated the importance of security engineering [1]. There are many security related
standards, methods and approaches, and their common objective is to assure the security
of IT system or software products. ISO/IEC TR 15504, the Software Process Improve-
ment Capability Determination (SPICE), provides a framework for the assessment of
software processes, and it has some considerations for security although they are rel-
atively poor to others. For example, the considerations for security related to software
development and developer are lacked. Considerations for security are expressed well
in some evaluation criteria such as ISO/IEC 21827, the Systems Security Engineering
Capability Maturity Model (SSE-CMM), and ISO/IEC 15408, Common Criteria (CC)
[2][3][4][5][6]. It is essential that not only the customer’s requirements for software
functionality should be satisfied but also the security requirements imposed on the soft-
ware development should be effectively analyzed and implemented in contributing to
the security objectives of customer’s requirements. Unless suitable requirements are es-
tablished at the start of the software development process, the resulting end product,

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 957–963, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

958 Tai-hoonn Kim and Ho-yeol Kwon

however well engineered, may not meet the objectives of its anticipated consumers. The
IT products like as firewall, IDS (Intrusion Detection System) and VPN (Virtual Private
Network) are made to perform special functions related to security, and used to supply
security characteristics. But the method using these products may be not the perfect
solution. Therefore, when making some kinds of software products, security-related
requirements must be considered.

2 A Summary of Security Engineering

Security engineering is focused on the security requirements for implementing security
in software or related systems. In fact, the scope of security engineering is very wide
and encompasses:

– the security engineering activities for a secure software or a trusted system address-
ing the complete lifecycle of: concept definition, analysis of customer’s require-
ments, high level design and low level design, development, integration, installation
and generation, operation, maintenance end de-commissioning,

– requirements for product developers, secure systems developers and integrators,
organizations that develop software and provide computer security services and
computer security engineering,

– applies to all types and sizes of security engineering organizations from commercial
to government and the academe.

The security engineering should not be practiced in isolation from other engineering
disciplines. Maybe the security engineering promotes such integration, taking the view
that security is pervasive across all engineering disciplines (e.g., systems, software and
hardware) and defining components of the model to address such concerns. The main
interest of customers and suppliers may be not improvement of the development of
security characteristics but performance and functionality. If developers consider some
security-related aspects of software developed, maybe the price or fee of software more
expensive. But if they think about that a security hole can compromise whole system,
some cost-up will be appropriate.

3 Application of Security Engineering

A wide variety of organizations can apply security engineering to their work such as the
development of computer programs, software and middleware of applications programs
or the security policy of organizations. Therefore, appropriate approaches, methods and
practices are needed for product developers, service providers, system integrators and
system administrators even though they are not security specialists. Some of these orga-
nizations deal with high-level issues (e.g., ones dealing with operational use or system
architecture), others focus on low-level issues (e.g., mechanism selection or design), and
some do both. The security engineering may be applied to all kinds of organizations.
Use of the security engineering principle should not imply that one focus is better than
another is or that any of these uses are required. An organization’s business focus need

Applying Security Engineering to Build Security Countermeasures: An Introduction 959

not be biased by use of the security engineering. Based on the focus of the organization,
some, but not all, of approaches or methods of security engineering may be applied very
well. In fact, generally, it is true that some of approaches or methods of security engineer-
ing can be applied to increase assurance level of software. Next examples illustrate ways
in which the security engineering may be applied to software, systems, facilities devel-
opment and operation by a variety of different organizations. Security service provider
may use security engineering to measure the capability of an organization that performs
risk assessments. During software or system development or integration, one would need
to assess the organization with regard to its ability to determine and analyze security
vulnerabilities and assess the operational impacts. In the operational case, one would
need to assess the organization with regard to its ability to monitor the security posture
of the system, identify and analyze security vulnerabilities, and assess the operational
impacts. Countermeasure Developers may use security engineering to address determin-
ing and analyzing security vulnerabilities, assessing operational impacts, and providing
input and guidance to other groups involved (such as a software group). Software or
product developers may use security engineering to gain an understanding of the cus-
tomer’s security needs and append security requirements to the customer’s requirements.
Interaction with the customer is required to ascertain them. In the case of a product, the
customer is generic as the product is developed a priori independent of a specific cus-
tomer. When this is the case, the product-marketing group or another group can be used
as the hypothetical customer, if one is required. The main objective of application of
security engineering is to provide assurance about the software or system to customer,
and the assurance level of a software or system may be the critical factor has influence
on deciding purchase. Therefore, the meaning of the application of security engineering
to the software is the application of some assurance methods to the software develop-
ment lifecycle phases. Assurance methods are classified in Fig.1 [7]. Depending on the
type of assurance method, the assurance gained is based on the aspect assessed and the
lifecycle phase. Assurance approaches yield different assurance due to the deliverable
(IT component or service) aspect examined. Some approaches examine different phases
of the deliverable lifecycle while others examine the processes that produce the deliv-
erable (indirect examination of the deliverable). Assurance approaches include facility,
development, analysis, testing, flaw remediation, operational, warranties, personnel, etc.
These assurance approaches can be further broken down; for example, testing assurance
approach includes general testing and strict conformance testing assurance methods.

4 Applying Security Engineering to Build Countermeasures

In general, threat agents’ primary goals may fall into three categories: unauthorized ac-
cess, unauthorized modification or destruction of important information, and denial of
authorized access. Security countermeasures are implemented to prevent threat agents
from successfully achieving these goals. Security countermeasures should be consid-
ered with consideration of applicable threats and security solutions deployed to support
appropriate security services and objectives. Subsequently, proposed security solutions
may be evaluated to determine if residual vulnerabilities exist, and a managed approach
to mitigating risks may be proposed. Countermeasures must be considered and designed

960 Tai-hoonn Kim and Ho-yeol Kwon

Fig. 1. Categorization of existing assurance methods

from the starting point of some IT system design or software development processes. The
countermeasure or a group of countermeasures selected by designers or administrators
may cover all the possibility of threats. But a problem exits in this situation. How and
who can guarantee that the countermeasure is believable? Security engineering may be
used to solve this problem. In fact, the processes for building of security countermea-
sures may not fixed because the circumstances of each IT system may be different. We
propose a method for building security countermeasures as below.

4.1 Threats Identification

A ’threat’ is an undesirable event, which may be characterized in terms of a threat agent
(or attacker), a presumed attack method, a motivation of attack, an identification of
the information or systems under attack, and so on. Threat agents come from various
backgrounds and have a wide range of financial resources at their disposal. Typically
Threat agents are thought of as having malicious intent. However, in the context of
system and information security and protection, it is also important to consider the
threat posed by those without malicious intent. Threat agents may be Nation States,
Hackers, Terrorists or Cyber terrorists, Organized Crime, Other Criminal Elements,
International Press, Industrial Competitors, Disgruntled Employees, and so on. Most
attacks maybe aim at getting inside of information system, and individual motivations of
attacks to "get inside" are many and varied. Persons who have malicious intent and wish
to achieve commercial, military, or personal gain are known as hackers (or cracker). At
the opposite end of the spectrum are persons who compromise the network accidentally.
Hackers range from the inexperienced Script Kiddy to the highly technical expert.

Applying Security Engineering to Build Security Countermeasures: An Introduction 961

4.2 Determination of Robustness Strategy
The robustness strategy is intended for application in the development of a security
solution. An integral part of the process is determining the recommended strength and
degree of assurance for proposed security services and mechanisms that become part of
the solution set. The strength and assurance features provide the basis for the selection of
the proposed mechanisms and a means of evaluating the products that implement those
mechanisms. Robustness strategy should be applied to all components of a solution,
both products and systems, to determine the robustness of configured systems and their
component parts. It applies to commercial off-the-shelf (COTS), government off-the-
shelf (GOTS), and hybrid solutions. The process is to be used by security requirements
developers, decision makers, information systems security engineers, customers, and
others involved in the solution life cycle. Clearly, if a solution component is modified, or
threat levels or the value of information changes, risk must be reassessed with respect to
the new configuration. Various risk factors, such as the degree of damage that would be
suffered if the security policy were violated, threat environment, and so on, will be used
to guide determination of an appropriate strength and an associated level of assurance
for each mechanism. Specifically, the value of the information to be protected and the
perceived threat environment are used to obtain guidance on the recommended strength
of mechanism level (SML) and evaluation assurance level (EAL).

4.3 Consideration of Strength of Mechanisms
SML (Strength of Mechanism Levels) are focusing on specific security services. There
are a number of security mechanisms that may be appropriate for providing some se-
curity services. To provide adequate information security countermeasures, selection
of the desired (or sufficient) mechanisms by considering particular situation is needed.
An effective security solution will result only from the proper application of security
engineering skills to specific operational and threat situations. The strategy does offer
a methodology for structuring a more detailed analysis. The security services itemized
in these tables have several supporting services that may result in recommendations for
inclusion of additional security mechanisms and techniques.

4.4 Selection of Security Services
In general, primary security services are divided five areas: access control, confidential-
ity, integrity, availability, and non-repudiation. But in practice, none of these security
services is isolated from or independent of the other services. Each service interacts
with and depends on the others. For example, access control is of limited value unless
preceded by some type of authorization process. One cannot protect information and
information systems from unauthorized entities if one cannot determine whether that
entity one is communicating with is authorized. In actual implementations, lines be-
tween the security services also are blurred by the use of mechanisms that support more
than one service.

4.5 Application of Security Technologies
An overview of technical security countermeasures would not be complete without at
least a high-level description of the widely used technologies underlying those counter-
measures. Next items are some examples of security technologies.

962 Tai-hoonn Kim and Ho-yeol Kwon

– Application Layer Guard, Application Program Interface (API),
– Common Data Security Architecture (CDSA),
– Internet Protocol Security (IPSec), Internet Key Exchange (IKE) Protocol,
– Hardware Tokens, PKI, SSL, S/MIME, SOCKS,
– Intrusion and Penetration Detection.

4.6 Determination of Assurance Level

The discussion of the need to view strength of mechanisms from an overall system se-
curity solution perspective is also relevant to level of assurance. While an underlying
methodology is offered by a number of ways, a real solution (or security product) can
only be deemed effective after a detailed review and analysis that consider the specific
operational conditions and threat situations and the system context for the solution. As-
surance is the measure of confidence in the ability of the security features and architecture
of an automated information system to appropriately mediate access and enforce the se-
curity policy. Evaluation is the traditional method ensures the confidence. Therefore,
there are many evaluation methods and criteria exist. In these days, many evaluation
criteria such as ITSEC are replaced by the Common Criteria. The Common Criteria
provide assurance through active investigation. Such investigation is an evaluation of
the actual product or system to determine its actual security properties. The Common
Criteria philosophy assumes that greater assurance results come from greater evaluation
efforts in terms of scope, depth, and rigor.

5 Conclusions and Future Work

As mentioned earlier, security should be considered at the starting point of all the de-
velopment processes. Making an additional remark, security should be implemented
and applied to the IT system or software products by using the security engineering.
This paper introduces some methods for reducing the threat to the system by applying
security engineering, and proposes a method for building security countermeasure. But
this method we proposed can’t cover all the cases. Therefore, more detailed research is
needed. And the research for generalizing these processes may be proceeded, too.

References

1. ISO. ISO/IEC 21827 Information technology - Systems Security Engineering Capability
Maturity Model (SSE-CMM)

2. ISO. ISO/IEC TR 15504-2:1998 Information technology - Software process assessment - Part
2: A reference model for processes and process capability

3. ISO. ISO/IEC TR 15504-5:1998 Information technology - Software process assessment - Part
5: An assessment model and indicator guidance

4. ISO. ISO/IEC 15408-1:1999 Information technology - Security techniques - Evaluation cri-
teria for IT security - Part 1: Introduction and general model

5. ISO. ISO/IEC 15408-2:1999 Information technology - Security techniques - Evaluation cri-
teria for IT security - Part 2: Security functional requirements

Applying Security Engineering to Build Security Countermeasures: An Introduction 963

6. ISO. ISO/IEC 15408-3:1999 Information technology - Security techniques - Evaluation cri-
teria for IT security - Part 3: Security assurance requirements

7. Tai-Hoon, Kim: Approaches and Methods of Security Engineering, ICCMSE 2004
8. Tai-Hoon Kim, Byung-Gyu No, Dong-chun Lee: Threat Description for the PP by Using the

Concept of the Assets Protected by TOE, ICCS 2003, LNCS 2660, Part 4, pp. 605-613
9. Tai-hoon Kim, Tae-seung Lee, Kyu-min Cho, Koung-goo Lee: The Comparison Between The

Level of Process Model and The Evaluation Assurance Level. The Journal of The Information
Assurance, Vol.2, No.2, KIAS (2002)

10. Tai-hoon Kim, Yune-gie Sung, Kyu-min Cho, Sang-ho Kim, Byung-gyu No: A Study on The
Efficiency Elevation Method of IT Security System Evaluation via Process Improvement, The
Journal of The Information Assurance, Vol.3, No.1, KIAS (2003)

11. Tai-hoon Kim, Tae-seung Lee, Min-chul Kim, Sun-mi Kim: Relationship Between Assurance
Class of CC and Product Development Process, The 6th Conference on Software Engineering
Technology, SETC (2003)

12. Ho-Jun Shin, Haeng-Kon Kim, Tai-Hoon Kim, Sang-Ho Kim: A study on the Requirement
Analysis for Lifecycle based on Common Criteria, Proceedings of The 30th KISS Spring
Conference, KISS (2003)

13. Tai-Hoon Kim, Byung-Gyu No, Dong-chun Lee: Threat Description for the PP by Using the
Concept of the Assets Protected by TOE, ICCS 2003, LNCS 2660, Part 4, pp. 605-613

14. Haeng-Kon Kim, Tai-Hoon Kim, Jae-sung Kim: Reliability Assurance in Development
Process for TOE on the Common Criteria, 1st ACIS International Conference on SERA

CC-SEMS: A CC Based Information System
Security Evaluation Management System

Young-whan Bang, Yeun-hee Kang, and Gang-soo Lee

Hannam University, Dept. of Computer Science
Daejon, 306-791, Korea

{bangyh@se,dusi82@se,gslee@eve}.hannam.ac.kr

Abstract. Project of Common Criteria (CC) based evaluations of an IT secu-
rity product/system takes so much cost and time that effective evaluation project
management is strongly required. We present a CC based security evaluation man-
agement system (CC-SEMS) that is useful for evaluation facilities and developers
of IT security product. Evaluation activity program, evaluation plan, XML-DTD
of deliverable, management object, and evaluation DB are proposed as distinct
approaches of CC-SEMS.

1 Introduction

Various types of information security products have been developed, evaluated and
certified since middle of 1980’s under various evaluation criteria/manual such as TCSEC
[1], ITSEC/ITSEM [2,3], CTCPEC [4] and CC/CEM [5,6]. CC (Common Criteria),
pronounced as ISO/IEC 15408, is an integrated evaluation criteria of the others.

Most evaluations of product (i.e., Target of Evaluation: TOE), are completed within
an optimum evaluation period and few hundreds of thousand dollars from starting. Oth-
ers, of a more complex nature, can take much longer and more expensive depending on
the target Evaluation Assurance Level (EAL) and Security Target (ST) that is a secu-
rity requirement specification. Additionally, the elapsed time and cost for the security
evaluation process is not only dependence on the availability of the correct developer
documentation(or deliverable), but also the nature and complexity of the software, and
whether any re-use can be made of work performed from previous evaluations of the
same TOE [7].

An evaluation manual such as ITSEM and CEM is overall guidance of evaluation
[3,6,7]. An evaluator in an evaluation facility should refer the manuals. ITSEM is a high-
level evaluation manual for ITSEC. ITSEM have only one Evaluation Activity Program
(EAP). We need 7 kinds of EAP per each EAL. CEM has two problems. First, it is so
abstract and high-level evaluation guide that it is un-useful for evaluators. In fact, CEM
is merely a re-editing document of CC by context of “evaluator actions” statements in
CC. Second, it is not providing guidance for EAL 5 through 7, nor for evaluations using
other assurance packages. Thus we need a practical evaluation guidance, automation of
evaluation activity, and a management system of evaluation projects.

Guidance for accreditation and operation of evaluation facilities or test laborato-
ries has been internationally or domestically standardized such as EN45001, ISO/IEC
17025, NIST Handbook 150, 150-20, CCEVS SP # 1, SP # 4, Canada’s PALCAN,

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 964–973, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

CC-SEMS: A CC Based Information System Security Evaluation Management System 965

United Kingdom’s UK-SP2. Those cover, however, merely accreditation and operation
of evaluation facilities. A detailed and practical evaluation guidance such as evaluation
project program and management, that is useful to evaluators in evaluation facilities, is
strongly required.

An evaluation facility should operate an efficient CC Security Evaluation Manage-
ment System (CC-SEMS) on their evaluation environment for the purpose of coopera-
tive and concurrent managing the evaluation resource (e.g., evaluator, tool, deliverable,
and criteria). CC-SEMS is integrated application principles of project management [8],
workflow management [9], process management [10] and web service technologies [11].

Fig.1 presents architecture of CC-SEMS. Note that EAP template, Evaluation Plan
and XML-DTD of deliverables, those are included in the preparation time, should be
prepared before a start of evaluation. The right part of Fig.1 (i.e., management of Man-
agement Object and control engine) is operated in the evaluation time. In the next section,
we present EAP template, Evaluation Plan and XML/DTD of deliverables in preparation
time of CC-SEMS. Section 3 presents management object, Evaluation DB and control
engine in evaluation time. Finally, we implement, analyze and conclude in Section 4.

XML/DTD

CC

Evaluation

Plan

Evaluator

EDB

Workflow

Engine

Mgmt. Of Mgmt

Object(MO)

Make

Reference

Derived templates

cooperation

request service

input

Preparation time Evaluation time

Programmed by

CC-SEMS

TOE Developer

EAP1

EAP7

deliverables
$

MICROSOFT

CORPORATION

CCIMB

Fig. 1. Architecture of CC-SEMS

2 Preparation Time of CC-SEMS

A preparation time refers an activity of preparation of evaluation. Evaluation Plan and
deliverable should be written by an evaluation project manager and developer, respec-
tively.

2.1 Evaluation Activity Programs Templates and Evaluation Plan

Evaluation Activity Programs(EAP) Templates: Dependency list is defined for each
functional and assurance components in CC. Dependencies among “functional compo-
nents” arise when a component is not self-sufficient and relies upon the functionality of,
or interaction with, another component for its own proper functioning.

966 Young-whan Bang, Yeun-hee Kang, and Gang-soo Lee

Additionally, dependencies among assurance components arise when a component
is not self-sufficient, and relies upon the presence of another component. Recall that
assurance class, component, evaluator action and “developer action and content and
presentation of evidence” correspond to activity, sub-activity, action and “work unit” in
an evaluation project, respectively [6].

We regard dependence relations between assurance components as precedence re-
lationship between evaluation sub-activities in context of evaluation project. We drive
EAP templates, i.e., EAP1 through EAP7, which correspond to EAL1 through EAL7,
from dependency relationship among assurance components. Note that the word “tem-
plate” means what is independent to a TOE and an evaluation environment. Templates
are only derived from CC. EAP is defined as follows:

S# = 1; // stage number
 Temp = Original; // Temp is a copy of Original (i.e., list of dependency relation defined in EALi).
 For each component COM in Temp that don't have 'in-going' dependency relation,

do
 Draw the COM as an AN on stage P of EAP; // AN is an activity node.
 Delete COM's "out-going" dependent relations from Temp;

end-do
repeat

for each component COM in Temp that don't have 'in-going' dependent relation,
 do

 Draw the COM as an AN in stage Q of EAP;
Delete the COM's "out-going" dependent relations from Temp;
Draw arcs from AN in P to AN in Q by using Original;

end-do
 P = Q; S# = S# + 1;
until (there is no more relation in Original.)
if(A has an arc to B) and (B has an arc to C) and (A has an arc to C),
then delete arc that is from A to C. // A, B, C are AN in EAP. If there is 'transitive relationship'

 in EAP, then delete them for the purpose of simplification.

Fig. 2. Evaluation activity program generation algorithm

EAP = (AN, ARC, STG)

• AN is a set of activity nodes. AN has three attributes such as component name,
deliverable name and assignment. (e.g., duration, cost, developer, tool). An AN
presents an evaluation activity and necessary deliverables of an assurance component
(see Table 1), as well as assignment of resource such as duration, cost, developer
and tool. Note that assignment is empty in template of EAP. Assignment attribute,
especially, is used for the purpose of evaluation project management.

• ARC is a set of arcs from an AN to another AN in other stage. An ARC presents
precedence relationships between two ANs. ANs in a stage can be concurrently
processed alone with the project management.

• STG is a set of stages. A pass from stage1 to final stage is total ordering of AN.

CC-SEMS: A CC Based Information System Security Evaluation Management System 967

• EAP is produced by means of an “EAP generation algorithm” as shows in Fig.2.
The algorithm generates a total ordering from partial orderings. An EAP template
is presented by an activity network or Gantt-chart. Fig.3 shows an activity network
presentation of an EAP3 template.

ACM_CAP.3

CMR.3

5

ACM_SCP.1

CMR.3

2

AVA_SOF.1

VAR.2

4

ADV_HLD.2

HDR.2

6

ATE_DPT.1

TSR.3

2

AVA_VLA.1

VAR.2

4

AGD_ADM.1

GDR.1

3 ATE_IND.2

TSR.3

2

ADO_IGS.1

DOR.1

2

AGD_USR.1

GDR.1

5

ATE_COV.2

TSR.3

2

AVA_MSU.1

VAR.2

3

ATE_FUN.1

FSR.1

6

ADO_DEL.1

DOR.2

3

ADV_FSP.2

FSR.1

5

stage1 stage2 stage3 stage4 stage5

ADV_RCR.1

FSR.1,HDR.2

2

ALC_DVS.1

ALR.1

4

(Note: Numerical values are basic values that will be changed according to evaluation
environment)

Fig. 3. An activity network presentation of EAP3 template and an EP

Evaluation Plan (EP): An EP is realization, customization or instantiation of one of
EAP templates. An evaluation project manager shell plan his evaluation project by using
EAP template and scheduling algorithm of resources such as time, stakeholder, tool and
cost.

Fig.3 present an EP for EAL3 of some TOE. Note that assignment attribute val-
ues are filled in template. In Fig.3, the value can be interpreted as evaluation duration
(weeks or months), cost ($), evaluator identifier, tool id., and so on. Numerical values(i.e.
weeks/month, cost) in EAP are basic evaluation duration(week, month) or cost, that de-
rived from CC and CEM. If evaluation environment is changed, the values in the EAP
are also changed by the same ratio. An EP presented by a Gantt chart as shows in Fig.4.
An EP can be scheduled by the following policies:

• Multi-stage waterfall type scheduling : It is simple and un-optimal. An EP of Fig.3
takes 24 weeks by means of this policy.

968 Young-whan Bang, Yeun-hee Kang, and Gang-soo Lee

ALC_DVS.1

ACM_CAP.3

ACM_SCP.1

ADV_RCR.1

ADV_FSP.2

ADV_HLD.2

AGD_ADM.1

AGD_USR.1

ATE_COV.2

ATE_FUN.1

AVA_SOF.1

ATE_DPT.1

AVA_VLA.1

AVE_IND.2

ADO_IGS.1

AVA_MSU.1

ADO_DEL.1
3

6

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4

5

2

5

6

5

2

4

2

2

2

2

3

3

Fig. 4. Optimal scheduling of EP of EAP3

• Optimal scheduling : In Fig.4, the critical evaluation activity path is ADV RC
R.1→ ADV FSP.2 → ADV HLD.2→ AVA SOF.1. Total evaluation duration is 17
weeks. If we want to shortening the evaluation duration, we must be shorten the
duration of the evaluation activities on the critical path.

2.2 Deliverables

Necessary content of deliverables: Deliverables are produced by developer of TOE
and consumed by evaluator. Deliverables that are presented by a document or source
code is image of development process and a product. It is important to note that a TOE
includes not only development process, but a product itself. We derive a list and a content
of deliverables for each AN in EAP1 through EAP7 templates by using “deliverable
generation algorithm”. The algorithm has two phases - derivation and refinement of
necessary contents.

1. Derivation of necessary contents: Necessary contents in deliverable (or document)
for evaluation of assurance component can be derived from “developer action ele-
ments” and “content and presentation of evidence elements” in assurance compo-
nents. Each class, family and component in CC assurance requirement is mapped
to title, chapter and section of a deliverables, respectively.

2. Refinement of necessary contents: If a document is derived from an assurance class,
and then 13 documents are needed. Thus we need 91(13×7) types, in maximum,
of documents. Those are redundant and too short or too long document. Thus we
should not only minimize the amount of deliverables (or document), but also assure
the consistency among documents. The more redundant documents are, the less
consistent among documents might be.

CC-SEMS: A CC Based Information System Security Evaluation Management System 969

We can reduce volumes of documents by using the following rules:

• CC conformance rule: A specific document includes a minimal content and presen-
tation of evidence elements that specified in CC

• Subset rule: A document for upper EAL includes those of lower EAL’s.
• Merge Rule: Two or more documents for assurance classes that are small or redun-

dant, may be merged into one document.
• Minimal Rule: Two or more documents for assurance classes, which contents are

the same, may be merged into one document.

Table 1. List of deliverables

Deliverables(documents) EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7
Corresponding

assurance
class-family

Security target report (STR) ASE
Configuration management

Report (CMR)
CMR.1 CMR.2 CMR.3 CMR.4 CMR.5 ACM

Delivery and operation report
(DOR)

DOR.1 DOR.4 ADO

Functional Specification (FSR) FSR.2 FSR.4
ADV_FSP,
ADV_RCR

High-level design specification
(HDR)

HDR.1 HDR.3 HDR.4 HDR.5
ADV_HLD,
ADV_RCR

Implementation report (IMR) IMR.1 IMR.2 IMR.3 IMR.4
ADV_IMP,
ADV_RCR

Structural specification (INR) INR.1 INR.2 INR.3
ADV_INT,
ADV_RCR

Low-level design specification
(LDR)

LDR.1 LDR.2 LDR.3 LDR.4
ADV_LLD,
ADV_RCR

Security policy sped (SPR) SPR.1 SPR.3 ADV_SPM
Guidance document (GDR) AGD

Lifecycle support report (ALR) ALR.1 ALR.2 ALR.3 ALR.4 ALR.5 ALC
Test report (TSR) TSR.1 TSR.2 TSR.4 TSR.5 TSR.6 ATE

Vulnerability analysis report
(VAR)

VAR.1 VAR.2 VAR.3 VAR.4 AVA

CMR.6

DOR.2 DOR.3

FSR.1 FSR.3

HDR.2

SPR.2
GDR.1

STR.1

TSR.3

VAR.5

We can reduce numbers of deliverables to 51 (from 91) by using the rules as shown in
Table 1. Our approach is more useful and practical than FAA’s Data Item Description[13].

XML-DTD for Deliverables: Content and structure (or schema) of deliverables are
defined by XML-DTD. XML-DTD is regarded as syntax of deliverable. Each section or
paragraph of a deliverable is presented by tag in XML. XML-DTD has many advantages
in web based evaluation environment as follows:

• Standardization of structure of deliverable
• Automatic syntax and consistency checking by using XML processors
• Automatic handling of deliverables by XML based application

A producer (i.e., developer or sponsor) of deliverable, firstly, downloads a XML-
DTD file of a deliverable from an evaluation web server of CC-SEMS. Then, he makes
a XML file by using the loaded file and his own content; finally, he submits the XML
file to an evaluation web server of CC-SEMS. In the server, a XML processor, firstly,
will checks syntax and consistency of the submitted XML formed deliverables. Then, a

970 Young-whan Bang, Yeun-hee Kang, and Gang-soo Lee

<!ELEMENT CMR (CMR_1_eva_num, CMR_2_intro, CMR_3_conf_item, CMR_R_CMS, CMR_5_CMP, CMR_6_reference)>
<!ELEMENT CMR_1_eva_num (CMR_1_1_identity)>
 <!ELEMENT CMR_1_1_identity (#PCDATA)>
 <!ELEMENT CMR_2_intro (CMR_2_1_identity, CMR_2_2_concept)>
 <!ELEMENT CMR_2_1_identity (CMR_2_1_1_ProductID, CMR_2_1_2_ProductName, CMR_2_1_3_DocID,
 CMR_2_1_4_DocName, CMR_2_1_5_PubNo)>
 <!ELEMENT CMR_2_1_1_ProductID (#PCDATA)>
 <!ELEMENT CMR_2_1_2_ProductName (#PCDATA)>
 <!ELEMENT CMR_2_1_3_DocID (#PCDATA)>
 <!ELEMENT CMR_2_1_4_DocName (#PCDATA)>
 <!ELEMENT CMR_2_1_5_PubNo (#PCDATA)>

 --- omitted below ----

Fig. 5. XML-DTD of Configuration Management Report (CMR.4) for EAL4

part (i.e., chapter tag or section tag) of deliverable is allocated to a scheduled evaluation
activity by CC-SEMS. We define XML-DTDs for deliverables listed in Table 1. Fig.5
presents one of XML-DTD.

3 Evaluation Time of CC-SEMS

3.1 Management Object (MO)

MO, that is resource or target of management, is defined as follows:

MO = (STKE, DELI, TOOL, TIME, COST, CRIT), where,

• STKE is stakeholder or interested party of CC-SEMS. TOE produce, evaluation
participant and evaluation users are subtypes of STKE [12]: TOE producer is a
sponsor, developer or consultant. Evaluation participant is a evaluator, certifier and
validator. Note that certifier and validator are working in a certification/validation
body. CC evaluator an evaluator, approver or accredit or who is working in an
evaluation facilities. Finally, evaluation user is a consumer or product vendor.

• DELI is deliverables or documents. Subtypes of DELI are input (i.e., an image of
TOE), process (temporal doc.) and output (results doc.).

• TOOL is a given evaluation tool such as tester program.
• TIME is a given evaluation time duration (e.g., 10 months).
• COST is a given evaluation cost (e.g., 1 million dollars).
• CRIT is evaluation criteria such as CC or PP(Protection Profile) or ST. Note that

PP or ST can be regarded as evaluation criteria.

CC-SEMS: A CC Based Information System Security Evaluation Management System 971

Real file

PLAN

STKE

TIME

COST

reference

usage

access evaluation

Real plan

file

Real file

CRIT

TOOL

DELI

CC/CEM

Fig. 6. A Schema of EDB

3.2 WorkFlow Engine (WFE)

MO is controlled by the WFE or manager by way of a project plan. Inputs of WFE
are EDB, an EP, and MO (e.g., evaluators, deliverables). WFE allocates or deallocates
deliverables to evaluator, controls access to deliverables, conforms some work to eval-
uator, and so on. Outputs of WFE are control signal/message to evaluator or developer
by means of online or offline.

3.3 Evaluation DB (EDB)

EDB is used for storing state of MO of an evaluation project. EDB Schema, that is a
logical structure of EDB, is entities of MO and relations among the entities as shows in
Fig.6. A state of MO means a state of evaluation project, in other word, current value
(snap shot) of an EDB that has MO’s attribute value. A state is transited to other state
when an event (e.g., ‘testing is finished’) is occurred on evaluation time.

Thus, processing activities of a state of MO are: identify, measurement and monitor-
ing the MO’s attributes values; store and update EDB by means of manual or automatic.
Tables, a data structure for entity and relation in EDB, are organized as below (Italic
word is primary key, underline word is foreign key).

• Entity tables and attributes: PLAN(plan id, proj id, proj information, link to real
plan file), STKE(stke id, type, name, address, major, cost, etc.), DELI(deli id, type,
name, content, link to real file, etc.), TOOL(tool id, type, cost, function, location,
link to real file, etc.), COST(account id, amount, allocated, etc.), TIME(time id,
etc.), CRIT(link to real CC/CEM, etc.).

• Relation tables and attributes: access(stke id, deli id, access id, access type, ac-
cess log, etc.), access type = (creation, update, read, approve, etc.),usage
(stke id, tool id, usage id, usage type, usage log, etc.), usage type = (using, up-
date), reference(stke id, crit id, refe id, ref log, etc.), evaluation (crit id,
del id, eval id, tool id, etc.).

4 Implementation, Analysis and Conclusion

Prototype version of CC-SEMS has been implemented by using Windows, JBuilder 9.0,
MySQL 3.23.38 and PHP v.0.6. Currently we are developing upper version. CC-SEMS is

972 Young-whan Bang, Yeun-hee Kang, and Gang-soo Lee

Fig. 7. Some screen shots of CC-SEMS (Korean version)

consisted of EDB server, application server, client and web server. Note that XML-DTD
files of deliverables are uploaded on the web server.

We have developed a Security Target(ST) of CC-SEMS because CC-SEMS is also
an IT security product. Recall that ST is a requirement specification in context of security
function and assurance [14,15]. Fig.7 presents Korean version of CC-SEMS.

CC-SEMS is not only an integrated approach from project management, groupware,
workflow management, documentation engineering, XML and web technologies, but
also has following distinct and useful approaches:

• Necessary content of deliverables, that derived from “developer action elements” and
“content and presentation of evidence elements” in CC, and some rules for reducing
volumes of deliverables are expected to be useful at CC evaluation schemes.

• XML-DTD of all sort of deliverables are useful for applying Web services in security
evaluation.

• Seven EWP templates, derived from dependency relations in components of CC,
are useful for developing an Evaluation Plan for evaluation project scheduling in
evaluation facilities.

• Management object and evaluation DB schema are useful for modeling and devel-
oping any other evaluation management systems.

The authors can not find yet any other similar approach or system to CC-SEMS in
CC evaluation community. The system is ongoing development project. Thus we will
formalize our approaches and upgrade the system by using actual data and problems that
are occurred in real application of the system.

Acknowledgement

This work was supported by a grant No. R12-2003-004-01001-0 from KOSEF.

CC-SEMS: A CC Based Information System Security Evaluation Management System 973

References

1. DoD. Trusted Computer System Evaluation Criteria (TCSEC), Dec. 1985.
2. European Communication, “Information Security Evaluation Criteria (ITSEC)”, Ver. 1.2,

June 1991.
3. European Community, Information Technology Security Evaluation Criteria (ITSEM), Ver

1.0, 1993.
4. Canadian System Security Centre, , “The Canadian Trusted Computer Product Evaluation

Criteria (CTCPEC)”, Ver.3e, Jan. 1993.
5. CC, Common Criteria for Information Technology Security Evaluation, CCIMB-2004-03,

Version 2.2, Jan. 2004.
6. Common Methodology for Information Technology Security Evaluation (CEM), CCIMB-

2004-01-04, Version 2.2, Jan. 2004.
7. Common Criteria for Information Technology Security Evaluation, User Guide, Oct. 1999.
8. W. Royce, Software project management - A Unified Framework, AW, 1998.
9. P. Lawrence (ed.), Workflow handbook - 1997, John Wiley & Sons, 1997.

10. A. Fuggetta and A. Wolf (ed.). Software Process, John Wiley & Sons, 1996.
11. G. Alonso, et al., Web services - Concept, Architectures and Applications, Springer, 2004.
12. R. Priet-Diaz, The CC Evaluation Process - Process Explanation, Shortcomings, and Re-

search Opportunities, Commonwealth Information Security Center Technical Report CISC-
TR-2002-003, James Madison University, Dec. 2002.

13. Data Item Description, Federal Aviation Administration, www.faa.gov/aio/cuiefsci/PP-
library/index.htm.

14. ISO/IEC PDTR 15446, Guide for the production of PP and ST, Draft, Apr 2000.
15. NIAP, CC Toolbox Reference Manual, Version 6.0, 2000.

A Secure Migration Mechanism of Mobile Agents
Under Mobile Agent Environments

Dongwon Jeong1, Young-Gab Kim2, Young-Shil Kim3,
Lee-Sub Lee4, Soo-Hyun Park5, and Doo-Kwon Baik2

1 Dept. of Informatics & Statistics, Kunsan National University
San 68, Miryong-dong, Gunsan, Jeolabuk-do, 573-701, Korea

djeong@kunsan.ac.kr
2 Department of Computer Science and Engineering , Korea University

Anam-dong 5-ga, Seongbuk-gu, 136-701, Seoul, Korea
{ygkim,baik}@software.korea.ac.kr

3 Division of Computer Science & Information, Daelim College
Bisan-dong DongAn-ku Anayang-si Kyounggi-do, 431-715 Korea

pewkys@daelim.ac.kr
4 Dept. of Computer Engineering, Kumoh National Institute of Technology

188, Shinpyung-dong, Gumi, Gyeongbuk
eesub@kumoh.ac.kr

5 School of Business IT, Kookmin University
861-1, Jeongreung-dong, Sungbuk-ku, SEOUL, 136-701, Korea

shpark21@kookmin.ac.kr

Abstract. Although mobile agent paradigm provides many advantages for dis-
tributed computing, several security issues of the mobile agent paradigm remain
as the most import difficulty that should be solved to increase its application. One
of the most important mobile agent security issues is that mobile agents securely
transfer from a host to other hosts. Until now, many mobile agent systems have
been developed, but those systems do not support mechanisms to provide for se-
cure transmission of mobile agents or have several problems. This paper proposes
an integrity mechanism that mobile agents can migrate to other hosts securely.
This mechanism is independent on specific security frameworks, so it can be used
easily under various mobile agent environments.

1 Introduction

Mobile agent paradigm has been evolved from transitional client/server paradigm[1,2]
and it has many advantages such as mobility, autonomy, intelligence, adaptability, coop-
eration, etc [3]. Especially, the mobility is the most remarkable property of the mobile
agent paradigm. Thus, the security issue of mobile agents and mobile agent systems is
recognized as one the most important problems.

The security issues of the mobile agent paradigm are classified into two key is-
sues generally- mobile agent security and mobile agent system security. The security
issues of mobile agent systems are related with managing of mobile agent system re-
source, protecting from malicious agents or malicious hosts, and so on. The mobile agent

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 974–982, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Secure Migration Mechanism of Mobile Agents Under Mobile Agent Environments 975

security services are confidentiality, integrity, authentication, access control, and non-
repudiation. Until now, many mobile agent systems have been developed [5,6,7,8,9,10].
These systems provide various security policies and mechanisms to address the issues
above.

Mobile agents have mobility. In other words, the mobile agents migrate from a host to
other hosts. If a mobile agent can be altered and be a malicious agent when its migration
to other hosts, many hosts can be attacked easily. Therefore, the most important security
issue is to safely transfer mobile agents from a host to others.

Many mobile agent systems have been tried to solve the aforementioned security
issues, but most mobile agent systems provide no mechanism to securely migrate mobile
agents to other hosts. Several mobile agent systems support mechanisms to address this
issue by a secure transfer protocol. In fact, the secure transfer protocol is different from
radical integrity mechanism. In addition, they depend on specific security frameworks,
so it causes compatibility problem between the frameworks.

In this paper, we propose an integrity checking mechanism to migrate mobile agent
to other hosts securely. The proposed mechanism is based on the bundle authentication
mechanism in the OSGi [4]. We devised this mechanism extending the OSGi to be
suitable for mobile agent system environments.

The proposed mechanism is independent on existing security frameworks. It also
was designed to increase usability. Therefore, this mechanism is lightweight less than
other security frameworks and can be used as an integrity secure component.

2 Related Work

This section introduces key security issues of mobile agent paradigm and describes the
security policies of the existing mobile agent systems.

2.1 Security Issues in Mobile Agent Paradigm

This section describes security issues of the mobile agent paradigm. The security issues
can be classified into two groups- mobile agent security and mobile agent system security.
The mobile agent security is to protect mobile agents from attacks of other malicious
objects, and the mobile agent system security is to protect mobile agent systems from
attacks of other objects. The objects may be mobile agents or mobile agent systems.

Table 1 shows the security issues, i.e., attack types of mobile agent paradigm [11].
As shown in Table 1, there are many attack types against mobile agent systems or

mobile agents. In case of mobile agent security, confidentiality, integrity, authentication,
access control, and non-repudiation should be basically supported to secure mobile
agents from illegal attacks described above.

Mobile agents have several properties- intelligence, autonomy, adaptability, etc. Es-
pecially, mobile agents have mobility, and it mobility is the most remarkable property of
mobile agent paradigm. Therefore, the integrity issue, secure migration for the mobile
agents, is considered as one of the most important security issues. If anonymous mobile
agent is illegally alerted while migration, it causes many serious problems. As a result,
the integrity of mobile agents should be guarantee preferentially under the mobile agent
environments.

976 Dongwon Jeong et al.

Table 1. Attack Types in Mobile Agent and System

Attacker Target Attack type

- Camouflage

Mobile Agent Mobile Agent System - Paralysis of mobile agent systems

- Illegal access to resources or services

- Camouflage

Mobile Agent Mobile Agent - Interfering with other mobile agents

- Denial of receipt or transmission

- Degeneration of mobile agents

- Camouflage

Mobile Agent System Mobile Agent - Tapping status or code of MA

- Altering code or status of MA

- Camouflage

Mobile Agent System Mobile Agent System - Illegal accessing services or data

- Illegal message copy or response

2.2 Security Policy of Mobile Agent Systems

This section introduces security policies of existing mobile agent systems. Table 2 shows
a summary of the security policies supported by the mobile agent systems- Aglet [5],
Voyager [6], Concordia [7], Agent Tcl [8], Ajanta [9], and SOMA [10].

Almost all the mobile agent systems provide secure mechanisms for hosts. On the
other hands, in case of mobile agent security, only several systems such as SOMA and
Ajanta support the security mechanisms for mobile agents.

As shown in table 2, SOMA and Ajanta provide mechanisms for securing agent sta-
tus and gathered data respectively. Especially, Ajanta uses the PKI, one of the security
frameworks, so a certificate authority is required for authentication between hosts. It
makes authentication process slow, and it also causes heavy mobile agent systems. It
causes compatibility problem between various mobile agent systems because of depen-
dency on specific security frameworks.

This paper focuses on the integrity issue. In other words, the goal of this paper is to
develop a mechanism that secures both of status and data of agents and is independent
on specific security frameworks.

3 Preconditions and Overall Process

This section predefines several constraints and overall process of the proposed integrity
checking mechanism.

3.1 Preconditions

The integrity mechanism proposed in this paper has several preconditions. We already
referred that this paper focuses on the integrity issue for mobile agents, so it is necessary
for these preconditions to be defined. The summary of these preconditions is as follows:

A Secure Migration Mechanism of Mobile Agents Under Mobile Agent Environments 977

Table 2. Security Policies of Mobile Agent Systems

System MAS security MA security

Aglet - Access control based on proxy object N/A

- Trusted and untrusted

Voyager - Extending Java security manager N/A

Concordia - Access control based on by security manager N/A

- The security manager depend on users’ identity

Agent Tcl - Access control depending on its security policy N/A

- Anonymous and authenticated

Ajanta - Access control by the mechanism based - Securing agent status

on proxy

SOMA - Roll-based access control based on hierarchical - Integrity of

security policy data gathered

All hosts in the enclosed environments safe from any of threats. Mutual authenti-
cation between all hosts is accomplished in the initial of mobile agent systems. The
hosts authenticated can trust mutually. The authenticated hosts never alter mobile agents
migrated from other hosts. Mobile agents have an itinerary that is planned in advance.

As aforementioned, there are many security issues for the mobile agent paradigm,
but this paper focuses on the integrity for secure migration of agents. Thus, basic pre-
conditions are required to describe the proposed integrity mechanism.

First, we suppose that the security of mobile agent systems, i.e., security of hosts
is guaranteed. This means that all hosts free from any threats and do not altered by
malicious other objects. We suppose that all hosts are reliable. Thus, all mobile agents
secure from the hosts that they migrate to and stay in.

The mobile agents have mobility. Hence, they have an itinerary that they will visit.
Various itinerary distribution policies are possible. In this paper, we suppose all mobile
agents have an itinerary including all addresses of the hosts.

3.2 Overall Process of the Integrity Checking Mechanism

The proposed integrity mechanism consists of two main steps- mutual authentication
step and secure migration step. The first step is to authenticate mutually between mobile
agent systems, hosts. The second step is that mobile agents migrate to and work on other
hosts.

Figure 1 depicts the overall process of the proposed integrity checking mechanism. At
the first step in this figure, all hosts are authenticated mutually. The given function, h2h()
means the mutual authentication is accomplished each other over all hosts. Therefore, if
the number of all hosts is N, the whole mutual authentication operation is accomplished
as many as a from N=1 to (N-1) N , i.e., N*(N-1)/2. As a result, the number of one-way
authentication operations is Factorial [N-1], i.e., (N-1)!.

978 Dongwon Jeong et al.

This paper focuses on the integrity mechanism not the mutual authentication. Thus,
this paper defined a simple authentication mechanism and implemented uses using the
HmacSHA1 algorithm provided by SUN.

After the mutual authentication, a closed environment is organized. Then, an
itinerary is prepared, and then a mobile agent migrates to the hosts with the itinerary.
The itinerary may include a subset or all of the hosts in the closed environment.

Fig. 1. Main Process of the Integrity Checking Mechanism

4 Integrity Checking Mechanism

This section describes the integrity checking mechanism proposed in this paper.

4.1 Mutual Authentication Phase

Suppose that anonymous host, H1 sends a mobile agent to H2 for examining computer
viruses. Before sending the mobile agent to H2, H1 is willing to check whether H2 is
reliable. If H1 sends the mobile agent without reliability examination and H2 is not
reliable, then the mobile agent may be changed by H2.

This paper focuses on the secure transfer of mobile agents not the mutual authentica-
tion between hosts. However, a mutual authentication is basically required for realizing
the secure migration of mobile agents. Thus, this paper designs and uses a simple authen-
tication mechanism. The mutual authentication mechanism is shown in the following
figure.

Figure 2 shows the mutual authentication process between two hosts in detail. Host
H1 generates a nonce, NH1 using a symmetric key. The generated nonce, NH1 is en-
crypted with the symmetric key, KH1 H2. The encrypted nonce, ˜NH1 is transferred to

A Secure Migration Mechanism of Mobile Agents Under Mobile Agent Environments 979

Host H2. H2 decrypts ˜NH1 generated by H1 with KH1 H2. H2 generates a nonce, NH2.
Then, H2 encrypts the new nonce and NH1 together, and send the result to H1 again. H1
decrypts the result and compares the original NH1 and NH1 from H2. If the nonce from
H2, NH1 is different from the original nonce, this mutual authentication is cleaned up.
If not, H1 encrypts the nonce NH2 and sends to H2 again. H2 also compares the original
nonce and the nonce from H1.

When the mutual authentication between them is completed, a shared secret key
is generated. Both of hosts create the shared secret key with a same hash function
respectively. The shared secret key and two nonce values are used for encryption and
decryption of a mobile agent.

Fig. 2. Mutual Authentication Process between Hosts

The process described above is accomplished iteratively until all hosts authenticate
each other. Thus, the mutual authentication operation is required as many as a from N=1
to (N-1) N where the number of all hosts is N.

4.2 Secure Mobile Agent Migration Phase

This section describes the integrity mechanism, the most crucial part of this paper. As
above-mentioned, the objective of this integrity mechanism is to allow mobile agents to
securely migrate to other hosts. This mechanism uses the shared secret key generated
and nonce values generated from the mutual authentication process. Figure 3 shows the
integrity mechanism between hosts in detail.

980 Dongwon Jeong et al.

Fig. 3. Secure Migration of Mobile Agents in the Integrity Checking Mechanism

In this figure, the MAC is generated by the encrypt hash function, named HMAC
function. This paper uses the HmacSHA1 algorithm provided by SUN. We implemented
the proposed mechanism using the hash function. The generated MAC is appended to
the signed JAR file and the JAR file is sent to Host B. In other words, the agent on Host
A migrates to Host B.

Host B receives the JAR file. Host B also generates a MAC using the same hash
function with Host A. Host B gives the shared secret key and the nonce values to the
hash function. A MAC is generated through this process. Host B compares the generated
MAC with the MAC in the receiving JAR file that is generated on Host A. If the agent
was not changed by anonymous malicious object while transmitting, both of the MACs
are same. If the JAR file is changed, the original MAC is different from the final MAC.

The sequential processing steps of this mechanism in figure 3 is as follows:
(1)Generating a signed JAR file including the agent to be migrated to Host B. In this

step, the manifest file of the original JAR is used as an input of the hash function. The
hash function encrypts the manifest file with the shared secret key and two nonce values
through the mutual authentication. A MAC is generated as the result of the encryption

(2)Transferring the JAR file (Migration of the agent). The final JAR file on Host A
is sent to Host B. It means the agent migrates from Host A to Host B.

(3)Generating a MAC on Host B. Host B generates a MAC. Host B also uses the
same hash function, shared secret key, two nonce values, and the manifest file within the
JAR file from Host A is used an input.

(4)Comparing of two MACs. The MAC of Host B is compared with the MAC
generated and sent on Host A.

A Secure Migration Mechanism of Mobile Agents Under Mobile Agent Environments 981

4.3 Comparison

This section describes the comparison result of the proposed integrity mechanism and
the existing mobile agent systems. Table 3 shows the summary of comparison result.

Table 3. Qualitative Comparison

Comparative Item SOMA Ajanta Proposed Mechanism

Independency N/A N/A Support

Size of MA encrypted Large Large Small

Encryption speed Slow Slow Fast

Transmission speed Slow Slow Fast

Compatibility Low Low High

Application Low Low High

The goal of this paper is to an integrity mechanism for secure migration. Until
now, many several mobile agent systems have been developed, but most mobile agent
systems do not provide such an integrity mechanism. In case of several mobile agent
systems supporting it, they depend on the specific security frameworks. For example,
Ajanta is based on the PKI, so its size is large and also requires a certain authenticating
organization.

The proposed integrity mechanism does not dependent on the existing security frame-
works. Therefore, it is light-weighted and can be integrated into other security architec-
ture. The existing mobile agent systems encrypt the entire agent. It makes the encryption
speed slow, and it causes the decrease of migration speed. However, the propose mecha-
nism encrypt the manifest file not the whole. Therefore, this integrity mechanism solves
the issues above.

5 Conclusion

In this paper, we proposed an integrity mechanism for secure migration of mobile agents.
The mechanism has two key stages- mutual authentication and secure migration. This
paper focuses on the secure migration, i.e., the mechanism to provide mobile agents’ in-
tegrity for their transferring. Hence, we used a simple mutual authentication mechanism
to authenticate between hosts.

The goal of this paper is to provide an integrity mechanism for secure migration
of mobile agents. To achieve this goal, this paper extended the bundle authentication
mechanism in OSGi. The OSGi bundle authentication mechanism is based on the PKI.
It has several problems as referred in the section 4.3.

The integrity mechanism proposed in this paper is based on MAC. Also we used
the only manifest file not the whole file in aspect of encryption operation. As a result,
it has several advantages. The first is that it makes the transmission speed of the agents
increase. The second is that the encrypt operation is rapid. Finally, this mechanism does
not depend on any other security frameworks. Therefore, the mobile agent systems using

982 Dongwon Jeong et al.

this mechanism become light-weighted. In addition, we can integrate this mechanism
into other security architectures easily.

References

1. D.B. Lange and M. Oshima, “Programming and deploying Java mobile agents with aglets,"
Addison-wesley, 1998.

2. M.M. Karnik and A.R. Tripathi, “Design Issues in Mobile Agent Programming Systems,"
IEEE Concurrency, pp.52-61, July 1998.

3. D.B. Lange and M. Oshima, “Seven Good Reasons for Mobile Agents," Communications of
the ACM, vol. 42, no 3, March 1999.

4. OGSi, http://www.osgi.org/
5. G. Karjoth, D.B. Lange, and M. Oshima, “A Security Model for Aglets." Lecture Notes in

Computer Science, vol. LNCS 1419, pp.188-205, 1998.
6. Voyager, http://www.recursionsw.com/products/voyager
7. T. Walsho, No. Pariorek, and D. Wong, “Security and Reliability in Corcordia," The 31st

Annual Hawaii International Conference on System Sciences, Hawaii, 1998.
8. R.S. Gray and et al., “Agent: Security in a multiple-language, mobile-agent system," Lecture

Notes in Computer Science, vol. LNCS 1419, 1998.
9. N. Karnik, A. Tripathi, “Security in the Ajanta Mobile Agent System," Software- Practice

and Experience, January 2001.
10. A. Corradi, R. Montanari, and C. Stefanelli, “Mobile Agents Integrity in Ecommerce Ap-

plications," Proceedings of the 19th IEEE ICDCS’99, Austin, Texas, May 1999. T.A. Jones,
“Writing a good paper," IEEE Trans. on General Writing, vol. 1, no. 2, pp.1-10, May 2002.

11. W. Jansen and T. Karygiannis, “Mobile Agent Security," NIST, Special Publication 800-19,
August 1999.

A Flexible Privilege Management Scheme
for Role Graph Model

Yuna Jung1 and Eenjun Hwang2,�

1 The Graduate School of Information and Communication, Ajou University
Suwon, Korea, 442-749

serazade@ajou.ac.kr
2 Department of Electronics and Computer Engineering, Korea University

Seoul, Korea, 136-701
Tel: +82-2-3290-3256

ehwang04@korea.ac.kr

Abstract. Since the role-based access control was introduced in the early 1970s,
it has been considered as one of the promising access control methods. The role
graph model was suggested as a reference model for the role-based access control.
However, its privilege management is too strict to be applied to various applica-
tions. In this paper, therefore, we propose a flexible privilege management scheme
based on the refinement of privileges in the role graph model, and show its effec-
tiveness through several scenarios. We expect that this scheme will make the role
graph model more powerful and applicable.

1 Introduction

The Role-based Access Control (RBAC) model [1] has emerged since 1990s as a promis-
ing approach for managing and enforcing security in a huge and complex system. The
essential idea of RBAC is that privileges are associated with roles, and users can have
privileges by being assigned to appropriate roles. The role is a major component in
constructing a role-based access control model. In RBAC model, system administrators
can create roles, grant privileges to those roles, and then assign users to the roles on
the basis of their specific job responsibility and organization policy. During this step,
role-privilege relationships are defined, which makes it very simple to assign users to
the defined roles. Without RBAC, it would be difficult to determine what privileges
have been authorized to which users. Generally, assigning users to roles requires less
technical skill than assigning privileges to roles. Besides, role-based approach is more
realistic than user-based approach since the structure of access right is based on roles
in most organizations. Due to this property, RBAC has become the most popular access
control model. RBAC model has evolved from RBAC0 to RBAC3. As a fundamental
stage, RBAC0 incorporated the minimal requirements of RBAC system. RBAC1 added
role hierarchies into RBAC0, while RBAC2 added constraints to RBAC0. RBAC3

combinedRBAC1 and RBAC2. The role graph model, which was introduced by Nyan-
chama and Osborn, is a reference model for role-based access control, and provides a

� Corresponding Author.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 983–991, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

984 Yuna Jung and Eenjun Hwang

way of visualizing interactions among roles. In 1996, algorithms for manipulating role
graphs were also implemented by them [3]. These algorithms allow roles and privileges
to be created, deleted, and altered. They have improved the role graph model and pro-
vided a basis for implementing and maintaining RBAC.

So far, most researches have focused on the role engineering, such as constructing
and maintaining role hierarchy, assigning users to roles, and so on. However, in RBAC
model, privilege changes are more frequent than role changes. Objects of a privilege are
continuously created, deleted, and modified. Even more, privileges are also changing
dynamically. However, in spite of the importance of privilege management, existing
management are too simple and strict. Therefore, it is necessary to improve the privilege
engineering to make RBAC model more practical. In this paper, we propose a privilege
refinement scheme to achieve such privilege engineering.

The rest of the paper is organized as follows. In Section 2, we first give a brief in-
troduction to the role graph model and then introduce how to handle privilege conflicts
in the existing role graph model. In Section 3, we propose a scheme to extend the role
graph model through refining privileges. Then, in Section 4, we conclude the paper and
discuss some of future works.

2 Role Graph Model

The role graph model consists of three distinct entities; privileges, roles, and users. A
privilege denotes an access authorization for an object and is described by two elements.
One of them is a set of objects such as system resources or data, and the other is an
operation for the objects. A role is a named set of privileges and is represented by a
role name and a set of privileges. Role-role relationships are based on subset relation
between roles and are represented by is-junior relationship on the role hierarchy [4].
A user is the subject of access control models, and wants to access system objects. To
efficiently manage a number of users who should have the same authorization, the role
graph model defines a group for a set of users. This is very similar to the user group in
the UNIX operating system.

The role graph is, in essence, an acyclic, directed graph in which a node represents a
role in the system, and an edge represents a is-junior relationship [2]. Every role graph
has one MaxRole and one MinRole. The MaxRole is a common senior of all the roles
in the role graph. According to the is-junior relationship, it has all the privileges of the
roles in the role graph. The MinRole is a common junior of all the roles in the role graph
and represents the minimum set of privileges available to all the roles. According to the
is-junior relationship, privileges of the MinRole are inherited to all the roles in the graph.
However, MaxRole and MinRole need not necessarily be assigned to any user, because it
could exist as a conceptual role. In the role graph model, senior roles have all privileges
of their junior roles. Therefore, actual privileges of one role consist of two types: its own
privileges called direct privileges, and the privileges inherited from its juniors. A set of
actual privileges of a role is called as its effective privilege. In Fig. 1 and Fig. 2, pis in
the bracket represent direct privileges of a role.

2.1 Handling Privilege-Privilege Conflicts on the Role Graph Model
To apply the role-based access control model to real applications, we should handle
conflicts of interest efficiently [5]. Negligent manipulation of such conflicts might cause

A Flexible Privilege Management Scheme for Role Graph Model 985

serious security threat. For example, in a complex environment where the actions of an
ill-intentioned user can cause harmful damages, granting a user certain combination of
privileges that could be a threat should be prevented.

Due to such threat, it is very important in the role graph model to deal with conflicts
of interest. Nyanchama and Osborn [3] discussed conflicts of interest on the role graph
model in 1997. First, they defined five different kinds of conflicts, which could arise
in the role graph model; user-user/group-group/user-group conflict, role-role conflict,
privilege-privilege conflict, user-role assignment conflict, and role-privilege assignment
conflict. Then, they suggested algorithms for preventing two kinds of conflicts, role-role
conflict and privilege-privilege conflict. A role-role conflict means that a user/group has
two roles that should not appear together. A privilege-privilege conflict means that a role
has two privileges that should not appear together.

To manipulate privilege-privilege conflicts, they defined P-Conflicts, a set of pairs of
conflicting privileges. Then, they ensured that no role (except for MaxRole) could have
two privileges that were defined as a conflicting pair in the P-Conflicts. For the integrity,
P-Conflicts must be referred whenever a system administrator performs maintenance
operations of the role graph model such as adding a privilege to an existing role, creating
a new role, or inserting an edge between roles. If such an operation would cause a
conflicting pair in the effective privilege set of any role, then that operation is aborted.

2.2 Motivation
Strict privilege manipulation of current role graph model might cause serious problems.
First of all, the role graph could be very complex since privileges and roles are created
and modified even though the modification is trivial. Moreover, such modification can
be rejected if a conflict occurs. However, usually, a actual conflicting portion of the most
conflicting pairs is partial. Nevertheless, the existing role graph model strictly aborts
all modifications that caused a conflict. Such handling obstructs the RBAC model from
being practical. Let’s examine two cases to see how to manipulate privileges in the
current role graph model.

Fig.1 (a) shows the case where a new object is added to the object set of p2. Here,
we assume that L2 and L4 roles can access new object of p2, but L3 cannot. In this
case, we should create a new role, which contains a set of expanded objects of p2,
and should cut edges between L2 and S2, and between L4 and S2. That is, we might
create a new role graph whenever privileges are modified. Actually, privileges can be
changed dynamically in the real environment. Also, role objects are changed frequently.
Summarizing the situation, a role graph is continuously changed, and that makes a role
graph more complex.

Fig.1 (b) shows the case where a conflict arises between p11 and p14, when a new
privilege p14 is inserted into L4. In the current role graph model, insertion operation is
aborted by a conflict even though the conflicting part between p11 and p14 is very small.
Consequently, such simple and strict handling of privilege conflicts is not practical at
all.

3 Managing Privileges on the Role Graph Model

With strict privilege handling, it is very difficult to apply the role graph model to various
applications. To relieve the situation, conflict handling method should be modified in

986 Yuna Jung and Eenjun Hwang

VP1 {p
9
,p

10
} VP2 {p

11
}

L1 {p
3
,p

4
} L2 {p

4
,p

5
} L3 {p

5
,p

6
} L4 {p

7
,p

8
}

S1 {p
1
} S2 {p

2
}

?

MinRole

MaxRole

VP1 {p9,p10} VP2 {p
11
}

L1 {p3,p4} L2 {p4,p5} L3 {p
5
,p

6
} L4 {p7,p8}

S1 {p
1
} S2 {p

2
}

 {p
14
}

MinRole

MaxRole

 {p
new

}

S2 {p
2

}
new

+
+

Fig. 1. (a) Adding a new object to privilege p2, (b) Inserting a new privilege into role L4

such a way to give flexibility. In this paper, we propose a flexible privilege management
scheme using privilege refinement on the role graph model.

3.1 Privilege Refinement Scheme

When a privilege-privilege conflict arises due to some privilege change, the operation is
abandoned in the current role graph model. In this paper, we are improving the privilege
conflict management by refining privileges. For the privilege refinement, a pair of two
conflicting privileges in P-Conflicts are divided into two groups. One of them contains
those conflicting pairs only and the other group contains all the remaining pairs. Then,
the latter group can exist in a role graph without any trouble. For the flexibility of privi-
lege management, we modified the role graph model as follows. With several exceptions
related to privilege refinement, we stick to the definition of the current role graph model.

A set O = {o1, . . . , ov} is a set of objects such as system resources or data that
users want to access. Xi = {xi|xi : object of pi, xi ∈ O} is a set of objects belonging
to pi, and each element of xi is an element of O. Another set P = {P1, . . . , Pn} is a set
of all privileges on a role graph, and P is the same as effective privilege of MaxRole. A
privilege pi is represented by a pair (Xi,m), where Xi is a set of objects and m is the
operation. E = {e1, e2, e3, . . . , el} is a set of edges connecting one role to another, and
each edge represents the is-junior relationship between two roles. We can say that role
ra is-junior to rb, iff ra.rpset ⊂ rb.rpset. An edge el = (ra, rb) is represented by an
ordered pair (ra, rb), where the first element ra is-junior to rb and second element rb

is-senior to ra. A set of roles R = {r1, r2, r3, . . . , rm} is a set of all roles in a role graph,
where rj = (rname, rpset) is a named set of privileges. Here, rname is the name of
the role and rpset represents a set of privileges of the role. rpset, the effective privilege
of the role, is union of direct privilege of the role and inherited privilege from all juniors
of the role.

(Definition 1) A role graph G = {R,E} is an acyclic graph, where R is a set of
roles and E is a set of edges between roles. G has one MaxRole and one MinRole. A
privilege pn can be refined into two privileges pn′ and pn′′ by separating its objects,
where pn′ = (Xi′,m), Xi′ = {xi′|xi′: a subset of xi, xi ∈ O} and pn′′ = (Xi′′,m),

A Flexible Privilege Management Scheme for Role Graph Model 987

Xi′′ = {xi′′|xi′′ = xi − xi′, xi ∈ O}.

There are two kinds of privilege-privilege conflicts. One is full privilege-privilege
conflict, and other is partial privilege-privilege conflict. Full privilege-privilege conflict
cannot be fragmented, and should be handled strictly. (pa, pb, full) represents the full
privilege-privilege conflict between pa and pb. On the other hand, partial privilege-
privilege conflict can be fragmented into problematic part and the rest. (pa, pb, partial)
represents the partial privilege-privilege conflict. Except for conflicting part of (pa, pb),
the rest part can exist in the role graph. Each partial privilege-privilege conflict is clas-
sified again into four types as follows.

A partial conflict pair is to be separated into four subsets, (pa′, pb′), (pa′, pb′′), (pa′′,
pb′), and (pa′′, pb′′). Here, pa′ is a problematic part of pa, which bring on a conflict
between pa and pb, and pb′ is a problematic part of pb. First of all, we fragment a privi-
lege into problematic part and the rest, and make four combinations using four privilege
pieces (Each privilege is divided into two parts). In the table of a fragmented conflict
pair, possibility for inserting is represented as O (approval) or X (disapproval). After all,
we can insert an authorized portion of a partial conflicting privilege even if the portion
is just partial. However, it is in fact impossible to insert (pa′, pb′) because both pa′ and
pb′ are just problematic parts that caused the conflict. Therefore, we use three subset of
a conflict pair except for (pa′, pb′). Here, a security administrator defines pa′ and pb′
directly. If the problematic part is on both sides, pa and pa, only pa′′ and pb′′ can coexist
in a role graph. If the problematic part is on one side, pa or pb, then either (pa, pb′′) or
(pa′′, pb), can exist by separating a problematic privilege. When (pa′, pb′′) and (pa′′,
pb′′) are marked as O (approval), (pa, pb′′) can be accepted. On the other side, (pa′′,
pb′) and (pa′′, pb′′) are marked as O (approval), (pa′′, pb) can be accepted. As you see,
we can improve flexibility of privilege insertion using the partial insertion of conflicting
privilege.

(Definition 2)P−Conflict = {(pa, pb, full), (pc, pd, partial), . . . , (pi, pj , partial)}
is a set of pairs of conflicting privileges, and is composed of full privilege-privilege
conflict pairs and partial privilege-privilege conflict pairs.

3.2 Flexible Privilege Management Using the Privilege Refinement

As we mentioned, existing privilege management ignores the real situation. Therefore, in
this paper, we propose more bendable handling of privileges using privilege refinement.
In Fig.2 (a) and (b), we show how we improve the privilege management in the role
graph using the privilege refinement.

988 Yuna Jung and Eenjun Hwang

VP1 {p
9
,p

10
} VP2 {p

11
}

L1 {p
3
,p

4
} L2 {p

4
,p

5
} L3 {p

5
,p

6
} L4 {p

7
,p

8
}

S1 {p
1
} S2 {p

2
}

 ?? {p
2 }

MinRole

MaxRole

VP1 {p9,p10} VP2 {p
11
}

L1 {p3,p4} L2 {p4,p5} L3 {p
5
,p

6
} L4 {p7,p8}

S1 {p
1
} S2 {p

2
}

 ?? {p
14

}

MinRole

MaxRole

Fig. 2. (a) Privilege refinement for Fig.1 (a), (b) Privilege refinement for Fig.1 (b)

4 Scenario

In this section, we will consider four scenarios where our proposed scheme can support
flexible insertion. To make the situation clearer, we use the role graph in Fig. 1. as a
sample role graph. In addition, we assume the following P-Conflicts.
P-Conflicts = {(P10,P11,full), (P6,P12,partial), (P4,P13,partial), (P1,P14,partial)}

4.1 Scenario 1: Handling a Full Privilege Conflict

Let’s add p10 to VP2 as a direct privilege of VP2. However, p10 and p11 are fully
conflicting each other. In case of the full conflict, there is no space for compromise
because each object of two privileges collides against the other. Therefore, we manage
such case with a strict method used in the existing role graph model, so the operation is
denied. This process is shown in Fig. 3.

VP1 {p
9
,p

10
} VP2 {p

11
}

L1 {p3,p4} L2 {p4,p5} L3 {p
5
,p

6
} L4 {p7,p8}

S1 {p
1
} S2 {p

2
}

 {p
10
}

MinRole

MaxRole

Fig. 3. Handling a full privilege conflicts

A Flexible Privilege Management Scheme for Role Graph Model 989

4.2 Scenario 2: Modifying an Inserted Privilege

Let’s assume that we try to add p12 to L3. However,p12 is conflicting with p11 at effective
privilege of VP2. Fortunately, the conflict is a partial conflict (You can find out a type
of the conflict from its notation). In case of partial conflict, we can insert a part of p12

by separating the problematic part from the privilege. We assume that a table of conflict
refinement is as follows. Authorized forms are (p6′, p12′′) and (p6′′, p12′′). It means that
(p6 , p12′′) do not cause a trouble, so the conflict pair should be modified into (p6 , p12′′)
to be inserted to a role graph. Therefore, p12′′ is inserted instead of p12. This process is
shown in Fig. 4.

Fig. 4. An example of modifying an inserted privilege

4.3 Scenario 3: Modifying an Existing Direct Privilege

We want to add p13 to L2, but p13 is conflicting with p4, an existing privilege of L2.
However, we can insert a part of conflicting privilege because this conflict is partial.
Let’s assume that a table of conflict refinement is as follows. According to this, p4′′ and
p13 can coexist without any conflict, because (p4′′, p13′) and (p4′′, p13′′) are marked
with O. Therefore, p4′′ replaces p4 as a direct privilege of L2, and then p13 is inserted.
This process is shown in Fig. 5.

4.4 Scenario 4: Modifying an Existing Inherited Privilege

Let’s suppose that we want to add p14 to VP1. As you know, however, p14 is conflicting
with p1, an existing privilege of VP1. We can insert a part of the conflicting privilege

990 Yuna Jung and Eenjun Hwang

VP1 {p
9
,p

10
} VP2 {p

11
}

L1 {p3,p4} L2 {p4,p5} L3 {p
5
,p

6
} L4 {p7,p8}

S1 {p
1
} S2 {p

2
}

MinRole

MaxRole

 {p
13
}

p4 ¡fi¡fl

Fig. 5. An example of modifying an existing directed privilege

VP1 {p
9
,p

10
} VP2 {p

11
}

L1 {p3,p4} L2 {p4,p5} L3 {p
5
,p

6
} L4 {p7,p8}

S1 {p
1
} S2 {p

2
}

MinRole

MaxRole
 {p

14
}

p1 ¡fi¡fl

Fig. 6. An example of modifying an existing inherited privilege

because this conflict is partial. However, p1 is an inherited privilege from S1. If a table
of conflict refinement is as follows, authorized form is (p1′′, p14), because (p1′′, p14′)
and (p1′′, p14′′) are approved. Therefore, we should change a conflicting pair, (p1, p14),

A Flexible Privilege Management Scheme for Role Graph Model 991

into a non-conflicting pair, (p1′′, p14). Therefore, p1′′ replaces p1 as a direct privilege
of S1, and then p14 can be inserted into VP1. This process is shown in Fig. 6.

5 Conclusion

Since the role-based access control model was introduced in the early 1990s, it has been
applied to various security systems as a promising access control method. However,
its privilege conflict management is too strict to be adapted to real applications. In
this paper, we proposed a more flexible handling scheme for privilege conflicts using
privilege refinement, and examined various cases to show its effectiveness.

Acknowledgements

This research has been supported by University IT Research Center Project. We would
like to thank Prof. Hongjin Yeh for his valuable comments.

References

1. R.S. Sandhu, "Role-Based Access Control", IEEE Computer, pp. 38-47, Feb., (1996).
2. Nyanchama, M., Osborn, S. L., Access rights administration in role-based security systems.

In Proc. of the IFIP Working Group 11.3, Working Conference on Database Security, Elsevier
North-Holland, Amsterdam, The Netherlands, (1994).

3. Nyanchama, M., Osborn, S. L., The Role Graph Model and Conflict of Interest, ACM transac-
tions on Information and System Security, Vol. 2, No. 1, Feb. (1999).

4. R.S. Sandhu et.al, Role Hierarchies and Constraints for Lattice-based access controls, In Proc.
of the Conf. On Computer Security, springer-Verlag, New York, (1996).

5. Simon R., Zurko M. E., Separation of duty in role based access control environments, In Proc.
of the 10th IEEE Computer Society Press, Los Alamitos, CA, (1997).

6. Matunda Nyanchama and Sylvia Osborn, "Access rights administration in role-based access
control revisited", In Proceedings of the IEIP Working Group 11.3 Working Conference on
Database Security,Amsterdam, The Netherlands,(1994).

7. Matunda Nyanchama and Sylvia Osborn, "The Role Graph Model and Conflict of Interest",
ACM Transactions on Information and System Security, Vol.2, No.1, pp. 3-33, Feb., (1999).

The System Modeling for Detections
of New Malicious Codes

EunYoung Kim, CheolHo Lee, HyungGeun Oh, and JinSeok Lee

National Security Research Institute
62-1 Hwa-am-dong, Yu-seong-gu

Daejeon, 305-718, Republic of Korea
{eykim,chlee,hgoh,jinslee}@etri.re.kr

Abstract. During the last several years, Malicious code have become increasingly
more sophisticated. At the same time, the Internet’s growing popularity and the
steady adoption of broadband technologies have allowed malicious codes to spread
quickly. However, traditional anti-malicious codes detections’s method is pattern
matching. Pattern matching’s method just can detect within the narrow limits of
known malicious codes. That is, in the past, pattern matching method was able to
ship new pattern for most malicious codes before they could achieve widespread
distribution. If malicious code software vendors could not provide new pattern,
nobody can not detect new malicious code. Accordingly, users were hacked by
somebody hacker. In this article, we suggest the new malicious code detection
algorithm and the system modelings without malicious pattern DB.

Keywords: Malicious Code, Realtime monitoring.

1 Introduction

As the popularity of Internet and computer increases continuously along with the fast
development of IT, the number of computer crimes increases dramatically. Specially ma-
licious codes take advantage of various security holes of computer systems, and these
codes are easily and widely distributed through the Internet. These malicious codes
threaten core infrastructures of a country because the number of information hacking
incidents at colleges, research institutes, and governmental organizations increases annu-
ally, and so do damage costs. In addition, hacking techniques and malicious development
techniques continue to advance, but the malicious code detection techniques cannot catch
up with the advance of hacking techniques.

Statistics of computer incidents between 2002 and 2003 in Korea are shown in
[Fig. 1]. These statistical data is published by CERTCC-KR in Korea [1]. The occurrences
of malicious code hacking grew rapidly after 2001, and they continue to grow every year.
Because the number of hacking incidents increases, system administrators encourage
users to install personal firewall in their PC.

Personal firewall is bundled with other security products, such as ZoneAlarm, Blac-
kICE, Tiny and so on, and some firewall is available freely to users. Therefore when
some data is going to be transmitted from a PC without the knowledge of its user, a
personal firewall can check data transmission and may block the transmission. Even

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 992–999, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The System Modeling for Detections of New Malicious Codes 993

y = 11.01e1.1276x

y = 20.021e0.4372x

0

50

100

150

200

250

300

350

2001 2002 2003

Macro

Trojan Horse

Boot/File Virus

Worm

Script

Etc

Trjoan’s Trend Line

Worm’s Trend Line

Fig. 1. The Number of Hacking Incidents in South Korea

though personal firewall can detect hacking activities that use network transmissions,
they may not be able to detect hacking activities that use malicious codes.

In this article, I would like to suggest a malicious code detection system which
consisted of three modules. Three modules are real time System monitoring module,
process profiling module and malicious code detection module. hence, The first chapter
describes related work which various malicious code’s detection method. The second
chapter presents the architecture of suggested malicious code detection system. The third
chapter, we describe experimental setting and experimental results. and last chapter, we
summarize our conclusions and further research issues in section 4th.

2 Related Work

This chapter describes various the malicious code detection methods. There are four
kinds of methods: Pattern Matching, Heuristic Method, Policy-based behavior Blocking
Method and Expert-based behavior blocking Method [8].

Traditional pattern matching based anti-virus or anti-malicious software detects ma-
licious code by searching for tens of thousands of digital patterns in all scanned files,
disks and network status. Each Pattern is a short sequence of bytes extracted from the
body of a specific virus strain. If a given pattern is found, the content is reported as in-
fected. However, anti-virus patterns are based on known sequences of bytes from known
infections, this technique often fails to detect new virus.

On the contrary to pattern matching technique, heuristic anti-virus technology detects
infections by scrutinizing a program’s overall structure, its computer instructions and
other data contained in the file. The heuristic scanner then makes an assessment of the
likelihood that the generally suspicious logic rather than looking for specific patterns.

Behavior blocking software integrates with the operating system of a host computer
and monitors program behavior in real-time for malicious actions. The Behavior blocking
software then blocks potentially malicious action before they have a chance to affect the
system. Monitored behaviors can include:

994 EunYoung Kim et al.

– Attempts to open, view, delete, and/or modify files
– Attempts to format disk drives and other unrecoverable disk operations
– Modifications to the logic of executable files, scripts of macros
– Modification of critical system settings, such ac start-IP settings
– Scripting of e-mail and instant messaging clients to send executable content
– Initiation of network communications

If the behavior blocker detects that a program a initiating would-be malicious behav-
iors ac it runs, it can block these behaviors in real-time the offending software. This gives
it a fundamental advantage over such established anti-virus detection techniques such
as pattern or heuristics. Existing behavior blocking systems can be split into tow cate-
gories: policy-based blocking systems and expert-based blocking systems. Policy-based
systems allow the administrator to specify an explicit blocking policy stating which be-
haviors are allowed and which are blocked, Each time a program makes a request to the
operating system, the behavior blocker intercepts the request, consults its policy data-
base and either allows the request to proceed, or blocks the request entirely. policy-based
behavior blocking system for Java might provide the following options[Table 1]:

Table 1. Policy-based behavior blocking System

Operation description Block Request

Allows applets to open files Yes

Allows applets to delete files Yes

Allows applets to initiate network connections No

Allows applets to access files in the system directory No

In contrast to policy-based systems, expert-based systems employ a more opaque
method of operation. In these systems, human experts have analyzed entire classes of
malicious code and then designed their behavior blocking systems to recognize and
block suspicious behaviors. Under some circumstances a would-be dangerous behavior
is allowed, and under others, it is blocked. For example, a behavior blocking expert may
know the 80% of malicious code first attempts to modify the startup area of the registry
before accessing system files. So he can design his behavior blocking system to only
block a program’s access to system files after first seeing it modify the startup area of
the registry. Such a rule is less likely to block legitimate programs and generate false
alarms, yet still blocks a high percentage of threats. While a policy-based system might
offer an option to “block access to system files” the expert-based system would offer
the option to “lock virus-like behavior”. Clearly, with such a system, the administrator
must take a leap of faith that the experts that built the system have chosen their blocking
criteria wisely.

3 The Architecture of Malicious Code’s Detection System

The malicious code detection system proposed in this paper consists of three modules,
realtime system monitoring module, process profiling module and malicious code de-
tection module[Fig. 2]. The Real-Time System Monitoring module, processes’ log data

The System Modeling for Detections of New Malicious Codes 995

Realtime
System
Monitors
Module

Process Profiler
Module

Malicious Detector Module

User Interface Module

Malicious

Detection
Policy

Process Profile Log

Process Tables

Process
Filtering
Module

Fig. 2. The Malicious Code’s Detection System

Process
Profiler
Module

Process
Monitoring
Function

Registry
Monitoring
Function

Network
Monitoring
Function

Realtime
System

Monitoring
Module

P ·M
output

R ·M
output

N ·M
output

System Data

Fig. 3. Real Time System Monitoring Module’s Architecture

are transmitted to the process profiling module. The process profiling module re-creates
process log data per process. The process profiling module lists information data that
is transmitted through process monitoring and network monitoring. Therefore we can
monitor user systems if this process profiling works. The malicious code detection mod-
ule detects malicious activities using the malicious code detection policies. The results
of a malicious code detection process and a realtime system monitoring process are in-
formed to a user through user GUI(Graphic User Interface). I will describe each module
in detail in the following sections.

The realtime system monitoring module is composed of three submodules: the
process monitoring module, the registry monitoring module and the network monitoring
module[Fig. 3]. The process monitoring module collects various kinds of information
about processes that are executed in user area. The registry monitoring module monitors
registry information that all processes approaches. The registry monitoring module is
implemented using a registry hooking driver. The network monitoring module gathers
network state information, such as which IP addresses and ports are connected. The

996 EunYoung Kim et al.

Table 2. Output data of the realtime system monitoring module

Process monitoring Registry monitoring Network monitoring

Output
Data

– Process list and ID
– Process Thread

number
– Process create time
– CPU Utility time of

process and Total CPU
Utility time

– Process DLL list

– Registry path
– Registry request type
– Registry access time
– Registry access result

– Source Address and
Port

– Destination Address
and Port

– Port connection state

network monitoring module gets information of network using LSP(Layered Service
Protocol). Output data of the realtime system monitoring module is as follows[Table 2].

The process profiling module records profiles of each process based on the logs
that are created by the realtime system monitoring module [9]. The process profiling
algorithm is as follows. First, compose by queue and store each process’ realtime system
monitoring data. Because our realtime system monitoring has three monitoring modules,
three queues are created for each process. Second, process monitoring information is
stored sequentially at each queue in the order of occurrence in the system log. This
time work to be process profiling executes depending on each event occurrence smallest
time[Fig. 4].

ProfilingSelectT ime = Min(T imeFMData, T imeRMData, T imeNMData)
(3.1)

We do this process profiling task so that we can monitor system states and actions
of each process. If the module detects detection policies of malicious codes, detection
is possible to known malicious codes as well as unknown malicious codes. In addition,
we find unknown malicious actions using malicious code profiles.

Our proposed system detects malicious codes in the malicious code detection module
using information in a table that is created by the process profiling module. If some
process does malicious actions, the module changes the state of relevant process as
’Normal Status → Monitoring Status’. If a process with ’Monitoring Status’ continues
malicious actions and the score of the process exceeds a dangerous point, the state of
the process is changed to ’Critical Status’.

However, if the process with ’Monitoring Status’ did not do suspicious actions, the
process profiling module does not record profiles of the process. State cycles of a process
are as follows[Fig. 5].

Malicious code detection module on the basis of malicious action of process ma-
licious code through 3 steps status change of process detection. These reason is false-
positive decrease expectation of malicious code detection system. The malicious code
detection engine can detect and remove malicious codes according to process status. Ac-
tual hacking simulation of the our proposed malicious code detection system has been
done.

The System Modeling for Detections of New Malicious Codes 997

FMData 1

SampleProcess2

Profiling

FMData 2
FMData 3
FMData 4
FMData 5

FMData n
...

RMData 1
RMData 2
RMData 3
RMData 4
RMData 5

RMData n
...

SampleProcess1

FMData 1
FMData 2
FMData 3
FMData 4
FMData 5

FMData n
...

RMData 1
RMData 2
RMData 3
RMData 4
RMData 5

RMData n
...

NMData 1
NMData 2
NMData 3
NMData 4
NMData 5

NMData n
...

SampleProcess2

FMData 1
FMData 2
FMData 3
FMData 4
FMData 5

FMData n

...

RMData 1
RMData 2
RMData 3
RMData 4
RMData 5

RMData n

...

NMData 1
NMData 2
NMData 3
NMData 4
NMData 5

NMData n

...

SampleProcess n

……………….

File

Monitoring
Data

Registry

Monitoring
Data

Network

Monitoring
Data

…...
Min(timeFMDatan ,

timeRMDatan ,timeNMDatan)

timeFMData2Min(timeFMData2 ,
timeRMData2 ,timeNMData2)

timeNMData1Min(timeFMData2 ,
timeRMData2 ,timeNMData1)

timeRMData1Min(timeFMData2 ,
time

RMData1
,time

NMData1
)

time
FMData1

Min(time
FMData1

,
timeRMData1 ,timeNMData1)

Process
Profiling

Select
time

Time

…...
Min(timeFMDatan ,

timeRMDatan ,timeNMDatan)

timeFMData2Min(timeFMData2 ,
timeRMData2 ,timeNMData2)

timeNMData1Min(timeFMData2 ,
timeRMData2 ,timeNMData1)

timeRMData1Min(timeFMData2 ,
time

RMData1
,time

NMData1
)

time
FMData1

Min(time
FMData1

,
timeRMData1 ,timeNMData1)

Process
Profiling

Select
time

Time

FMData 1

FMData 1
RMData 1

FMData 1
RMData 1
NMData 1

FMData 2
RMData 1
NMData 1

NMData 1
NMData 2
NMData 3
NMData 4
NMData 5

NMData n
...

Fig. 4. Process Profiling Algorithm

Normal
Status

Monitoring
Status

Critical
Status

(1)

(2)

(3)

(4)

(5)

Fig. 5. Process Status Change

4 Experiments

We have implemented a simulated system. In the simulated, the malicious codes that are
used in the experiments are malicious codes. Malicious Codes can be classified into two
main groups: know Trojan Horses and our developed malicious codes. Malicious Code
data were gathered from 200 trojan horse in the Internet. A more elaborate example is
Netbus, Schoolbus, Back Orifice in know trojan horse. and then developed malicious
codes’s character are similar to the know trojan horses.

We construct the simulated system environment on Windows 2000 Professional ma-
chines(CPU Pentium 1.4GHz, 256MB Memory) which consist of attacking and victim.
Attacking system operated the role of hacker[Fig. 6].

998 EunYoung Kim et al.

Table 3. Process status change condition

State
Number

State Change Condition

1

1. When is process monitoring
(a) In case file name that is registered by malicious code conforms
(b) In case refer DLL reference that is used in malicious code
(c) In case agree with specification information and malicious code database

that can get in process monitoring
2. When is registry monitoring

(a) In case approach specification registry that approach in malicious code
3. When is network monitoring

(a) In case connect specification port that use in malicious code
(b) Although specification port that use in malicious code is not, case that port

and admitted program that is admitted by user is used normal program

2 When is seceded in ’Monitoring Status’ condition

3 State Number 1 ’Monitoring Status’ reconsideration condition satisfaction

4 When is seceded in ’Critical Status’ condition

5 1. Process of in case is disappeared
2. When is exited by user

Fig. 6. Experiments architecture

The following results were obtained. We experiment on trojan horse with suggested
malicious code detection system, got the result 93% detection [3]. It was found from the
result that our suggested malicious code detection system could detect the new malicious
code without malicious code pattern DB. These results lead us to the conclusion that
new malicious codes can detect malicious detection policy [2].

The System Modeling for Detections of New Malicious Codes 999

5 Conclusions and Future Directions

In this paper, we have presented the malicious code detection system concentration in
real time system monitoring. From what has been discussed above, we can conclude
that our suggested malicious code detection system can detect the new malicious code
without malicious code pattern DB. As it turned out we got the 93% detection rate. Also,a
continuous examination of the mechanism of new malicious code detection algorithm
would strengthen this proposition. A further direction of this study will be to provide
more efficient detection policy using Machine Learning.

References

1. Korea CERT Coordination Center http://www.krcert.or.kr/
2. H.Han, X.L. Lu, J.Lu, C.Bo, R.L.Yong. Data mining aided signature discovery in network-

based intrusion detection system. ACM SIGOPS Operating Systems Review, Volume 36 Issue
4, October 2002.

3. PC Flank Experts. The Best Tools to neutralize Trojan horses.
http://www.pcflank.com/art17d.htm/. PC Flank Experts team, USA.

4. G.McGraw, G.Morrisett. Attacking Malicious Code. A Report to the Infosec Research Council,
2000.

5. M.Roesch. Lightweight intrusion detection for networks. USENIX In prodcedings of the Thir-
teenth Systems Administration Conference, Seattle, WA, USA, 1999.

6. M.Schmall. Heuristic Techniques in AV Solutions: An Overview.
http://online.securityfocus.com/infocus/1542. SecurityFocus, February, 2002.

7. M.Schmall. Building an Anti-Virus engine. http://online.securityfocus.com/infocus/1552. Se-
curityFocus, February, 2002.

8. C.Nachenberg. Behavior Blocking: The Next Step in Anti-Virus Protection.
http://online.securityfocus.com/infocus/1557. SecurityFocus, March, 2002.

9. T.F.Lunt. Automated Audit Trail Analysis and Intrusion Detection: A Survey. 11th National
Computer Security Conference, Oct, 1998.

Information Hiding Method Using CDMA on Wave Files

Young-Shil Kim1, Sang Yun Park1, Suk-Hee Wang1, and Seung Lee2

1 Division of Computer Science & Information, Daelim College
526-7, Bisan-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-715, Korea

{pewkys,sypark,shwang}@daelim.ac.kr
2 Dept. of Automatic System Engineering, Daelim College

526-7, Bisan-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-715, Korea
slee@daelim.ac.kr

Abstract. Although many information hiding paradigm provides many advan-
tages for protect important information, we try to introduce new method in con-
cealing thing. One of these is Steganography Many efforts have been made to
encrypt data as well as to hide data. Most users wish not to lose the data that
they want to hide. The steganography is one of methods that users can hide data.
Some steganography softwares use audio data among multimedia data. However,
the commercialized audio steganography softwares have disadvantages that the
existence of hidden messages can be easily recognized visually and only certain-
sized data can be hidden. To solve these problems, this study suggested, designed
and implemented the Dynamic Message Embedding (DME) algorithm. Also, to
improve the security level of the secret message, the file encryption algorithm
has been applied. Through the DME algorithm and the file encryption algorithm,
StegoWaveK system that performs audio steganography was designed and imple-
mented. Then, the suggested system and the commercialized audio steganography
system were compared and analyzed on some criteria.

Keywords: Steganography, Information Hiding, CDMA, Stego-Data, Cover-
Data, Wave file

1 Introduction

As computers and communication systems are rapidly developing, several methods have
been introduced to keep the data safely. The basic method is encoding and the other
method is data hiding techniques. The most typical application technique to hide data is
the steganography and watermarking. The steganography is a technique that unautho-
rized users from finding out hidden data by hiding data in a variety of media that of text,
image, moving image, and audio. Although an attacker might find secret messages that
were encoded and hidden, generally the attacker needs to decode the message, which
means higher security level of the message. Also, users tend to compress the secret data
before hiding because the required data size is decided depending on the size of the
secret data. Here, the data to cover the secret data is called “Cover-data”, and the data to
be hidden through the steganography method is called “Stego-data”. While image-based
steganography is more often used and developed than other steganography methods,
audio-based steganography is also actively researched. In the audio steganography, data

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1000–1008, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Information Hiding Method Using CDMA on Wave Files 1001

is generally hidden where the listener actually does not listen to. Therefore, listeners
are not aware that data is actually hidden. Besides, since the Stego-data size is almost
similar to the Cover-data size, most listeners cannot tell the difference.

For not only authentication and copy right but also concealing files containing the
important information, many methods are appeared. We proposed the methods that hide
the information on Wave files. This method extracts the information not by using original
file. Thus we discriminate the file including the information and the file not including
the information. Main method used on Wave files is low bit encoding, but we propose
the new method using by CDMA.

CDMA(Code Division Multiple Access) is a digital spread-spectrum modulation
technique used mainly with personal communications devices such as mobile phones.
CDMA digitizes the conversation and tags it with a special frequency code. The data
is then scattered across the frequency band in a pseudo random pattern. The receiving
device is instructed to decipher only the data corresponding to a particular code to
reconstruct the signal.

In order to protect the signal, the code used is pseudo-random. It appears random, but
is actually deterministic, so that the receiver can reconstruct the code for synchronous
detection. This pseudo-random code is also called pseudo-noise (PN). We used 8-bit PN
code. We compared two methods, CDMA method and StegoWaveK, thus we know that
the proposed method has similar to performance of StegoWaveK.

2 StegoWaveK

StegoWaveK model where a message is hidden using the sine accumulation function
has been designed and implemented. The commercialized audio steganography software
hides the secret message by one bit in the 16 bit lowbit allowing attackers to visually filter
the hidden message and lowering capacity. To solve this problem, the Dynamic Message
Embedding (DME) module has been designed and implemented for StegoWaveK model
(the suggested audio steganography model). The DME module analyzes the number
of bits hidden in every 16 bits of the cover data and the locations within Cover-data
characteristics by analyzing characteristics of the Cover-data and the secret message to
select the most suitable embedding function and hide the secret message.

Following Fig. 1 shows the flow of the StegoWaveK audio steganography model
consisting of compression, encoding, and insertion of the secret message into the Cover-
data. Users can select encoding.

In the Dynamic Message Embedding (DME) module, the secret message is inserted
into a certain critical value, not the lowbit as long as characteristics of the Cover-data
are maintained. For the critical value, features of the Cover-data and the secrete message
are analyzed and processed. Also, the most suitable algorithm is selected to insert the
secret message from the algorithm that hides one bit and the algorithm that improves
capacity by the sine curve form

In the pre-processing, the sound volume of the Cover-data that is a wave file is
analyzed and distribution of the sound volume of the wave file is studied. Then, referring
to the ratio with the next secret message, the critical value to hide the secret message is
decided. After the location to hide the secrete message is decided, the message embedding

1002 Young-Shil Kim et al.

Cover-data
Data Chunk Read Encrypted Secret Message

Encryption

Secret Message

Loseless Compression

Stego-data

DME
(Dynamic Message Embedding)

Fig. 1. Flowchart of StegoWaveK Model

Compressed Encrypted
Message

Extraction of
Processing Unit

Message
Embedding

Clear for
Processing Unit

Cover-data

End Stego-dataIs finished of
Message hiding?No Yes

Fig. 2. Message Embedding FlowChart

Stego-data

Data Extraction

Composition of
Message

Decompression
and Decryption

of Message

Cover-data
+

Original Message
All Hidden Data
is Extracted ?No Yes

Fig. 3. Message Extracting FlowChart

algorithm is decided. Fig. 2 and Fig. 3 show actual procedures to hide and extract the
secret message.

Basically, Fmt chunk (the header of the wave file) size is 18 bytes. Last 2 bytes
of these 18 bytes describe the size of extension information. However, if extension
information is not included, remaining 16 bytes is designed as Fmt chunk. Actually,
in most cases, Fmt chunk is designed to be 16 bytes. In the commercialized audio
steganography software, only the wave file with the data chunk identifier in 4 bytes from
the 37th byte (the location defined assuming that Fmt chunk of the wave file is 16 bytes)
is recognized as a wave file. In other words, the commercialized audio steganography
software does not recognize 18 byte wave files. Especially, when MP3 music files are
converted into wave files, mostly they have 18 byte or 14 byte Fmt chunk, which is not
supported by the commercialized audio steganography software. To solve this problem,
the Chunk Unit Read (CUR) module processing according to the chunk of the wave file
has been designed. In the CUR module, data characteristics are not judged by reading

Information Hiding Method Using CDMA on Wave Files 1003

fixed location values, but instead, the wave file is processed according to the chunk.
Therefore, not only the wave file with 18 byte Fmt chunk (the basic format) but also
wave files with 16 byte and 14 byte Fmt chucks can be used as the Cover-data

3 CDMA Method and CDStego

This section introduces CDMA method used on information hiding, in comparison with
StegoWaveK [9].

Fig. 4 shows the case where the spreading signal is demodulated by a different
spreading code from the sender’s. If the spreading signal is demodulated by a different
spreading code having the value of ‘01101001010’, or if it is not demodulated in time,
the receiver can not decode the information data exactly. Therefore, the receiver has to
know the exact spreading code and the time to recover the original information data in
CDMA.

Spreading
Signal

Spreading
Signal in
Receiving Side

Receiving
Data

Fig. 4. The case where the spreading is demodulated by a different spreading code from the sender’s

Spreading codes similar to white noises has no relevance to information data. Be-
cause spreading codes have random values and can be generated infinitely, it is next to
impossible for eavesdroppers to guess the spreading codes.

Fig. 5 and Fig. 6 shows a rule and an example for generating spreading codes re-
spectively. This rule is called as Orthogonal Variable Spreading Factor(OVSF) code.

Cch,1,0 = (1)
[Cch,2,0] = [Cch,1,0 Cch,1,0] = (1, 1)
[Cch,2,1] = [Cch,1,0 -Cch,1,0] = (1,-1)
[Cch,2 (n+1),0] = [Cch,2 (n),0 Cch,2 (n),0]
[Cch,2 (n+1),1] = [Cch,2 (n),0 -Cch,2 (n),0]
[Cch,2 (n+1),2] = [Cch,2 (n),1 Cch,2 (n),1]
[Cch,2 (n+1),3] = [Cch,2 (n),1 -Cch,2 (n),1], etc.

Fig. 5. Rule for generating spreading codes

Let us look at CDMA more closely. A CDMA encoder Zi,m can be represented by
the multiplication of the ith data bit di and the mth CDMA code cm as shown below.
After receiving the encoded bit of Zi,m without interferences, a receiver can decode the
original data bit di through the equation as shown below.

1004 Young-Shil Kim et al.

Cch,8,0=(1, 1, 1, 1, 1, 1, 1, 1)

Cch,8,1=(1,1,1,1,-1,-1,-1,-1)

Cch,8,2=(1,1,-1,-1,1,1,-1,-1)

Cch,8,3=(1,1,-1,-1,-1,-1,1,1)

Cch,8,4=(1,-1,1,-1,1,-1,1,-1)

Cch,8,5=(1,-1,1,-1,-1,1,-1,1)

Cch,8,6=(1,-1,-1,1,1,-1,-1,1)

Cch,8,7=(1,-1,-1,1,-1,1,1,-1)

Cch,4,0=(1, 1, 1, 1)

Cch,4,1=(1, 1,-1,-1)

Cch,4,2=(1,-1, 1,-1)

Cch,4,3=(1,-1,-1, 1)

Cch,2,0=(1, 1)

Cch,2,1=(1,-1)

Cch,1,0=(1)

Fig. 6. Example for generating spreading codes

When N senders transmit data simultaneously without interferences, A Mixed
CDMA encoder Z∗

i,m can be represented as shown below. As the same case of the single
sender’s example, receivers can decode the original data bit di through the equation.

The interfaces of the encoding process consist of five steps including the additional
step 4, but the interface of the decoding process has not been changed in comparison
with the previous case.

The interface for the step 4 has a checkbox option which describes whether the
CDMA encoding function has been selected or not. It also has radio buttons which
describe the size of a Pseudo-random Number(PN) code. There are three types of PN
code like 8 bits, 16 bits, and 32 bits. We will now examine the encoding process more
closely. When the size of data is 8 bits, 8 bits PN code can be generated as follows by
using the generation rule.

When the 8 bit data have the value of ‘10110010’, if the value of ‘0’ is represented
as ‘-1’, the data can be expressed as (1,-1,1,1,-1,-1,1,-1). Then, the data can be encoded
by the 8 bit PN code as shown above. Detailed encoding process is shown in Fig. 7.

Hidden Message (bit stream)

8 bits PN code (7) Processing Result

=X

+

Mapping(bit stream)

Fig. 7. CDMA encoding process when the number of the PN codes is 7

If we sum up the above result along the column, the calculation can be expressed as
(0, 4,-4, 0, 4, 0, 0, 4), and then it would be stored to the memory as a bit stream. The
calculation consists of eight numbers, and each number of the calculation ranges from
-4 to 4. But, If all the same numbers in the column are 1 or -1 respectively, each number
of the calculation can range from -8 to 8. Each number actually is one of the nine values
as (-8, -6, -4, -2, 0, 2, 4, 6, 8), because the PN code consists of symmetrical 1 or -1 as

Information Hiding Method Using CDMA on Wave Files 1005

shown above. Since the size of the required memory is 4 bits to express the nine values,
the total size of the required memory is 32 bits (8 bits × 4 bits) to encode 8 bits data by
the 8 bits PN code.

Four bits memory can include fifteen kinds of numbers. However, since the memory
for the calculation only includes nine kinds of numbers, the memory for the other seven
kinds of numbers becomes useless. To improve efficiency of the memory, if the last code
of the above PN codes does not be used, each number of the calculation is one of the
eight values as (-7, -5, -3, -1, 1, 3, 5, 7). Since the size of the required memory is 3 bits
to express the eight values, the total size of the required memory is 24 bits (8 bits × 3
bits). And, if we apply only seven PN codes to the above example, the calculation can
be expressed as (1, 3,-5, 1, 3, 1, 1, 3).

For example, when the number of the PN codes is 7, the total size of the required
memory is 48 bits (8 bits× 3 bits× 2 times) to encode 8 bits data because the remaining
1 bit is encoded at the second time. In the case of processing 8 bits data, the total size of
the memory encoded by the seven PN codes is bigger than the total size of the memory
encoded by the eight PN codes.

However, in the case of processing 56 bits data, firstly, when the number of the PN
codes is 8, the total size of the required memory is 224 bits (8 bits × 4 bits × 7 times).
Secondly, when the number of the PN codes is 7, the total size of the required memory
is 192 bits (8 bits × 3 bits × 8 times). Therefore, the total size of the memory encoded
by the seven PN codes is smaller than the total size of the memory encoded by the eight
PN codes.

In the decoding process, the PN codes can be generated in the same way as shown
in Fig. 5 and Fig. 6. Let us decode the fifth bit from the received bit stream shown in
Fig. 7.

The bit stream is divided into 3 bits fragments as shown in Fig. 8. Each fragment
is mapped with a value in the mapping table. After mapping, the received bit stream is
represented as (1,3,-5,1,3,1,1,3). As shown below, we multiply the mapped values by
the fifth PN code expressed as (1,-1,1,-1,1,-1,1,-1) along the column. And then, we can
get the numbers as (1,-3,-5,-1,3,-1,1,-3).

Let us sum up the numbers as (1,-3,-5,-1,3,-1,1,-3). The sum of the numbers is -8 as
shown below.

The sum having the value of -8 is divided by 8 because the size of the PN code is
8. And we can get the fifth original bit, 0 corresponding to -1. Fig. 8 shows the CDMA
decoding process when the number of the PN codes is 7.

We define required classes and functions for CDMA as shown below.

• CBitData class : This class provides functions for the conversion between bit
and byte to process the modulation between an original data and a spreading
bit stream. This class is similar to the existing CBitByteData class.

• EncodeSize and DecodeSize functions : These functions provides operations
for calculating the size of the result data in the encoding/decoding process.

• EncodeCDMA, DecodeCDMA functions : These functions provides opera-
tions for encoding to CDMA or decoding from CDMA.

1006 Young-Shil Kim et al.

Stego-data (bit stream)

X Mapping
(bit stream)

8bits PN code (

7)

+ / 8
Hidden Message (bit stream)

Fig. 8. CDMA decoding process when the number of the PN codes is 7

Fig. 9. Waveform Comparison of Cover-data and applied Audio Steganography WAVE Files

4 Performance Evaluation of CDStego

In this section, StegoWaveK that has been implemented by VC++. Net is compared with
Invisible Secretes 2002 (hereinafter to be referred to as “CS I”) and Steganos Security
Suite 4 (hereinafter to be referred to as “CS II”) that have been commercialized and in
use now. According to [7], in steganography analysis, visual, audible, structural, and
statistical techniques are used. Therefore, the comparison and the analysis in this study
were based on criteria of the Human Visible System (HVS), Human Auditory System
(HAS), Statistical Analysis (SA), and Audio Measurement (AM). Since the HAS can be
relatively subjective, audio measurement analysis was added to more objectively analyze
and compare the Stego-data and the Cover-data. For comparison and analysis data, the
song of Yun Do Hyen’s Dolgo was used. In experiments with other genre music, similar
results were gained.

According to the waveform analysis result of the Stego-data created by Invisible
Secrets 2002 CDStego, and StegoWaveK using an audio editor, CoolEdit 2000, it is hard
to visually tell the difference due to HVS characteristics. Fig. 9 shows waveform of the
Stego-data captured by CoolEdit 2000.

As showed in Fig. 9, it is extremely difficult to tell whether data is hidden or not
only by visually checking waveform.

To analyze and compare the suggested system with the existing system on criteria of
the Human Auditory System (HAS), 13 messages with different sizes and 4 wave files

Information Hiding Method Using CDMA on Wave Files 1007

Fig. 10. Result of WAVE Listening Test

Fig. 11. Comparison of SNR(dB) between Cover-data and Stego-data

were selected as Cover-data. We played the Stego-data where the message is hidden
through CS I and CS II using lowbit encoding and the Stego-data where the message is
hidden through StegoWaveK system and CDStego to 100 students. Although it could be
subjective, most students could not tell the difference between the Cover-data and the
Stego-data. Following Fig. 10 shows the experiment result.

Audio measurement and analysis includes frequency response, gain or loss, har-
monic distortion, intermodulation distortion, noise level, phase response, and transient
response. These parameters include the signal level or phase and the frequency. For
example, the Signal to Noise Ratio (SNR) is a level measurement method represented
by dB or ratio. In [4, 5], the quality of the Stego-data where the message is hidden was
measured using SNR. SNR represents ratios of relative values [1, 2].

The following graph shows SNRs between the cover data and the Stego-data created
by the CS I, the CS II, CDStego, and StegoWaveK. The SNR of the Stego-data created by
the suggested system is not significantly different from that of the Stego-data created by
the CS I. However, the SNR of the Stego-data created by the CS II is relatively different
from that of the Stego-data created by the suggested system.

In the following, the Cover-data and the Stego-data have been analyzed by the Per-
ceptual Evaluation of Speech Quality (PESQ). It is difficult to completely trust the result
of the automated sound measurement such as PESQ, but the result has enough reliability
to be used in various kinds of related tests [6].

1008 Young-Shil Kim et al.

5 Conclusion

The audio steganography that hides data uses the wave file as Cover-data; the Cover-
data has the same size as the size of the Stego-data file in the suggested system; and
most listeners and users do not tell any difference in the sound quality. Therefore, they
cannot recognize that data is hidden in Stego-data. Also, none of the HVS system or the
HAS system can analyze the wavelength that had been analyzed through a simple audio
editing tool in an intuitive way. Therefore, it can be useful to send secret data.

The commercialized steganography software uses only certain types of wave files
as the Cover-data. As one bit of the secret message is inserted into the Lowbit of the
Cover-data, the cover data can be easily filtered. Also, as one bit is inserted to hide the
secrete message, the Cover-data size increases.

CDStego model suggested in this study has been specially designed to conceal data
more safely, and improve problems of existing commercial audio steganography soft-
wares. Thus CDStego has similar property to StegoWaveK [9] and more large size of
hidden message.

While data is only visually hidden through characteristics of the file in Windows O/S,
CDStego model hides data in the audio data that is often used. Although the hidden data
does not exist in the computer any longer, the user can extract data whenever he/she wants
without any loss of the hidden data. Therefore, CDStego and StegoWaveK model can
be useful to hide important design drawings, program files, and confidential documents.

More studies shall be performed relating to migration to the embedded system in
the future. By introducing new methods suggested in [8], or by using loss-free compres-
sion programs such as TIFF with high performance, it would be possible to improve
performance of CDStego.

References

1. S.K. Pal, P.K. Saxena, S.K. Muttoo, “The Future of Audio Steganography”, STEG’02, July
11-12, 2002.

2. http://www-ccrma.stanford.edu/CCRMA/Courses/422/projects/WaveFormat
3. Fabien A.P. Petitcolas, Ross J. Anderson, and Markys G.Kuhn, “Information Hiding - A Sur-

vey”, Proceedings of the IEEE, special issue on protection of multimedia content, 87(7):1062-
1078, July 1999.

4. Stefan Katzenbeisser and Fabien A.P.Petitcolas “Information hiding techniques for steganog-
raphy and digital watermarking”, Artech House Publishers, 2000.

5. J.D.Gordy and L.T.Bruton, “Performance Evaluation of Digital Audio Watermarking Algo-
rithms.”, IEEE MWSCAS 2000.

6. Djimitri Wiggert, “Codes for Error Control and Synchronization”, Artech House Inc, 1988.
7. Peter Wayner, “Disappearing cryptography Information Hiding : Steganography & Water-

marking”, second edition, chapter 17, Morgan Kauffman, 2002.
8. Ira S. Moskowitz, Garth E. Longdon, and LiWu Chang, “A New p aradigm Hidden Steganog-

raphy”, New Security Paradigms workshop 2000, September, 19th 21st, 2000, Cork Ireland.
9. Y.S. Kim at el, “Information Hiding System StrgoWaveK for Improving Capacity”, The 2003

Internationbal Symposium on Parallel and Distributed Processing and Applications.

Efficient Key Distribution Protocol
for Electronic Commerce in Mobile Communications�

Jin Kwak1, Soohyun Oh2, and Dongho Won1

1 Information and Communications Security Lab.
School of Information and Communication Engineering

Sunkyunkwan University
300 Choencheon-Dong, Jangan-Gu, Suwon, Gyeonggi-Do, 440-746, Korea

{jkwak,dhwon}@dosan.skku.ac.kr
2 Division of Computer Science

Hoseo University, Asan, Chuncheongnam-Do, 336-795, Korea
shoh@office.hoseo.ac.kr

Abstract. Recently, the development of mobile communication technology, the
mobile terminal users are increasing. In the mobile environment, the security
service is very important to provide secure mobile communication, such as mobile
electronic-commerce. The security of information is significant to provide secure
electronic commerce in mobile communications. Therefore, the security services
must be provided in a mobile communication environment. However, the mobile
communication environment has some disadvantages, because it has low capacity
of power, low performance of CPU and limited memory, etc. In this paper, we
propose an efficient key distribution protocol for mobile communications.

1 Introduction

As the development of mobile communication technology, the mobile terminal users
are increasing. In result, Internet services and applications for mobile terminals are in-
creasing rapidly. In order to provide these services and applications over the mobile
communications, the security services are very important to provide secure mobile com-
munication. Therefore, the security services such as confidentiality, authentication, in-
tegrity, and non-repudiation are must be provided in mobile communication environment
same as the wired Internet.

However, mobile communication environment has some disadvantages, because it
has low capacity of power, low performance of CPU and limited memory, etc. The
security technology for secure mobile communication is applicable to the ubiquitous
computing domain in the near future. The one of the famous protocols are provided
[1,2,3,4,6,7,10,11,12,13], however proposed previous protocols has some weaknesses
for active attacks.

Therefore, in this paper, we consider the active attacks, and then propose the efficient
key distribution protocol in mobile environment which is secure against active attacks.

� This work was supported by the University IT Research Center Project by the MIC(Ministry
of Information and Communication) Republic of Korea.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1009–1016, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1010 Jin Kwak, Soohyun Oh, and Dongho Won

The goal of this paper is introduce the simple and efficient key distribution method, but
it secure against active attacks. Then we propose an efficient key distribution protocol
for electronic commerce in mobile communications(M-Commerce).

This paper is organized as follows, first we will describe the security requirements of
the mobile communication environment, and then we propose efficient key distribution
protocol for M-Commerce. Next, we analyze the securities and properties of the proposed
protocol comparison with existing protocols. Finally, we will make a conclusion.

2 Security Requirements Primer

For secure communication in the mobile environment, the mobile key distribution pro-
tocol have to satisfied with the below requirements [6].

– n-pass: The protocol that needs n number of passes to compute the session key from
one party’s point of view. The less n-pass is providing efficiency.

– mutual entity authentication: One party is assured, through the acquisition of cor-
roborative evidence, the identity of a second party involved in a protocol, and that
the second party has actually participated in the key agreement protocol.

– secret key agreement: To protect transaction data between the client and the server,
secret key generated by the information both entities.

– key authentication: One party is assured that no other party aside from a specifically
identified second party could possibly compute the shared secret key.

– key freshness: A key used to compute a shared secret value is updated after the
execution of a new exchange protocol.

– user anonymity: It is the state of being unidentifiable within a set of subjects. It is
the confidentiality of the user identity within the communication.

– non-repudiation: It is prevents an entity from denying previous actions, such as send
or received data. When dispute arise due to an entity denying that certain actions
were taken, a means to resolve the situation is necessary. It is a necessary security
requirement in electronic commerce application.

3 Proposal Protocol

In this section, we propose key distribution method for secure M-Commerce. It is secure
against some active attacks(see details 4.1), also it can provide efficiencies(see details
4.2). The proposal protocol consists of the registration and key distribution phases, and
the notations are shown below.

[Notations and Definitions]

– i : it is an entity, the server or the client
– p : a prime defining the Galois field GF (p)
– q : a prime factor of p− 1
– g : a primitive element of the q-order in Zp

– Pi : entity i’s public key, Pi = gSi mod p

Efficient Key Distribution Protocol for Electronic Commerce 1011

– Si : entity i’s secret key
– ri : random number selected by entity i
– SIGi : signature of the entity i
– IDi : identification information of the entity i
– meta-IDC : temporary ID of the client
– PINC : personal identification number of the client
– h() : hash function
– A ‖ B : concatenation A and B

[Registrations]

When the client starts communication using the mobile device, he needs registration
process to the server(e.g. the shopping mall or mobile station). Fig.1. shows the process
of the registration in the proposed protocol.

Client Server

X1 SS {X1} , rS1 RZP
*∈

X2

h(h(meta-ID'C))
h(h(meta-ID'C)) ? = h(h(meta-IDC))

X1 = PS { h(PINC) IDC }

SC {X2}

meta-ID'C ? = meta-IDC

meta-ID'C = h {h(PIN)C IDC r S1}

X2 = PC { meta-IDC rS1 }

meta-IDC = h { h(PINC) IDC r S1 }

||

|| ||

||||

||

Client Server

X1 SS {X1} , rS1 RZP
*∈

X2

h(h(meta-ID'C))
h(h(meta-ID'C)) ? = h(h(meta-IDC))

X1 = PS { h(PINC) IDC }

SC {X2}

meta-ID'C ? = meta-IDC

meta-ID'C = h {h(PIN)C IDC r S1}

X2 = PC { meta-IDC rS1 }

meta-IDC = h { h(PINC) IDC r S1 }

Client Server

X1 SS {X1} , rS1 RZP
*∈

X2

h(h(meta-ID'C))
h(h(meta-ID'C)) ? = h(h(meta-IDC))

X1 = PS { h(PINC) IDC }

SC {X2}

meta-ID'C ? = meta-IDC

meta-ID'C = h {h(PIN)C IDC r S1}

X2 = PC { meta-IDC rS1 }

meta-IDC = h { h(PINC) IDC r S1 }

||||

|||| ||||

||||||||

||||

Fig. 1. Registration phase

1. The client selects PINC , and computes X1 using own IDC and h(PINC).

X1 = Ps{h(PINc) ‖ IDc}

2. The server decrypts received X1 using his secret key SS , and select random num-
ber rS1. The server computes temporary meta-IDC and X2 after stores rS1 and
h(PINC), then he sends X2 to the client.

X2 = Pc{meta− IDc ‖ rs1}

3. When the client received X2, he decrypts it using his secret key SC . Then he com-
putes temporary meta-ID′

C using the server’s random number rS1. If it equals to
received meta-IDC , the client sends hashed value to the server.

meta− ID′
c

?= meta− IDc

1012 Jin Kwak, Soohyun Oh, and Dongho Won

4. The server checks hashed meta-ID′
C equals to hashed meta-IDC generated by the

server.
h(h(meta− ID′

c))
?= h(h(meta− IDc))

[Key Distribution]

In the previous protocols, the client authenticates the server, but the server cannot authen-
ticate the client(one-way authentication). Therefore, the mutual entity authentication is
needed to secure mobile communication [8]. The operation of the propose protocol is
as follows. Fig.2 shows the key distribution process of the propose protocol for secure
mobile communication.

Client Server

C1 = SIGC { rC meta-IDC } Q1
Drs {Q1} , rS RZP

*

SKS = h (E h(PINc)(C1) C 2)

rC RZP
*∈

Q1 = Ers { C1 meta-IDC }

C2 = SIGS { rS IDS }

Q2 = Ers1(C2)
Q2 , h(h(SKS))

Drs1 {Q2}

SKC = h (E h(PINc) (C1) C 2)

h(h(SKC) ? = h(h(SKS))

1
1

2

2

||

||

||

||

Client Server

C1 = SIGC { rC meta-IDC } Q1
Drs {Q1} , rS RZP

*

SKS = h (E h(PINc)(C1) C 2)

rC RZP
*∈

Q1 = Ers { C1 meta-IDC }

C2 = SIGS { rS IDS }

Q2 = Ers1(C2)
Q2 , h(h(SKS))

Drs1 {Q2}

SKC = h (E h(PINc) (C1) C 2)

h(h(SKC) ? = h(h(SKS))

1
1

2

2

||||

||||

||||

||||

Fig. 2. Key Distribution phase

1. The client selects random number rC , and computes C1 with his signature. Then he
computes Q1 and sends it to the server.

Q1 = Ers1{C1 ‖ meta− IDc}

2. The server decrypts receivedQ1 and select random number rS2. The server computes
C2, Q2, and generates session key SKS. Then he sends Q2 and hashed value of
session key SKS.

Q2 = Ers1(C2)

SKs = h{Eh(PINc)(C1) ‖ C2}
3. The client decryptsQ2, and computes session keySKC. Then he checks the received

hashed SKS equals to hashed SKC computed by the server.

SKc = h{Eh(PINc)(C1) ‖ C2}

h(h(SKc))
?= h(h(SKs))

Efficient Key Distribution Protocol for Electronic Commerce 1013

4 Analysis

In this section, we analyze the securities and properties of the proposed protocol. Pro-
posed protocol is based on the difficulty of the discrete logarithm problem, therefore an
attacker computes the session key using public information, which is the equivalent to
solve the difficulty of the discrete logarithm based problem. For analysis of the securi-
ties, we considered some active attack models [9].

[Securities]

Definition 1. Active Impersonation:
An adversary enters a session with a legitimate entity, impersonates another entity, and
finally computes a session key between entities.

Any adversary who does not know the secret information of each entity, and mas-
querades as an other entity, participates in the protocol and successfully shares a session
key with the valid entity. The proposed protocol uses the hash value and secret informa-
tion, therefore, an attack is impossible since the adversary should not know the secret
key of each entity, and randomly selected rS2 to compute the valid session key.

Definition 2. Forward Secrecy:
The secrecy of the previous session keys established by a legitimate entity is compro-
mised. A distinction is sometimes made between the scenario in which a single entity’s
secret key is compromised(half forward secrecy), and the scenario in which the secret
key of both entities are compromised(full forward secrecy).

If the secret key of the client is exposed and the adversary obtains this, the adversary
cannot compute the previous session key. The adversary should obtain the hash value
h(PINC) and randomly selected rS2 in order to compute the session key, therefore the
attack is impossible. In contrast, if the secret key of the server is exposed, the adversary
cannot compute the previous session key. The adversary should obtain the hash value
h(PINC) and randomly selected rS2 in order to compute the session key, therefore the
attack is impossible.

The attacker should get secret key of each entity, in order to compute the previous
session key, and since it is equivalent to difficulty of the passive attacker because an
adversary does not know the hash value h(PINC) and randomly selected rS2, therefore
the attack is impossible. Accordingly, the proposed protocol satisfies the full forward
secrecy since the session key is secure even if the old secret key of each entity is exposed.

Definition 3. Key-Compromise Impersonation:
Suppose the secret key of an entity is disclosed. Clearly an adversary that knows this value
can now impersonate an entity, since it is precisely this value that identifies the entity.
In some circumstances, it maybe desirable that this loss does not enable the adversary
to impersonate the other entity, and share a key with the entity as the legitimate user.

In the proposed protocol, an adversary cannot masquerade as a client to the server
or viceversa, even if the secret key of the client is exposed because an adversary cannot

1014 Jin Kwak, Soohyun Oh, and Dongho Won

know the h(PINC) and rS2. Therefore, an adversary cannot masquerade as a valid
client even if he obtains the secret key.

Definition 4. Known Key Secrecy:
A protocol should still achieve its goal in the face of an adversary who learns some other
session keys. A protocol is said to provide a known key security if this condition is satisfied.

Since the proposed protocol uses a random value rS2 chosen by the server and rC

chosen by the client for each session in order to compute a session key, it cannot give
any advantage in obtaining the session key of the current session, even if the previous
transmission information are exposed. Therefore, the difficulty of a known key passive
attack is the same as the passive attacker who has no information on a previous session. It
is also impossible for a known key impersonation attack, because an adversary cannot go
directly or participate in the session. The adversary cannot masquerade as the server or
the client using the transformation information of the current session, the transformation
information of the previous session, or to set the session key.

[Properties]

We analyze the efficiency of the proposed protocol, and compare it with the existing
protocol. Concerning the efficiency analysis of the proposed protocol, we will consider
the properties security requirements(see details 2.) [5,9]. Table 1. shows the character-
istics of the proposed protocol in comparison with the existing protocol.

The proposed protocol is a 2-pass protocol same as previous protocol. The previous
BCY [1] does not provide an entity authentication, and PACS [10] provides a one-
way entity authentication. On the other hand, the proposed protocol provides mutual
entity authentication since the server and the client generates session key using secret
information belongs to the client and the server.

When the computes session key, proposed protocol provide implicit key authenti-
cation to the client, and provide explicit key authentication to the server. It is same as
PACS protocol, but BCY provides explicit key authentication to each other.

The proposed protocol provides mutual key freshness, since they compute session
key with random values chosen by each other. In addition, BCY and PACS provides
one-way user anonymity, but proposed protocol provides mutual anonymity. The pro-
posed protocol also provides mutual non-repudiation service since using other party’s
signatures when they compute the session key.

5 Conclusion

In this paper, we proposed secure and efficient key distribution protocol in mobile en-
vironment, which is secure against active attacks such as active impersonation, forward
secrecy, key-compromise impersonation, and known key secrecy. Furthermore, the pro-
posed protocol can provide mutual entity authentication, key authentication, mutual key
freshness, user anonymity, and non-repudiation. As a result, the proposed protocol will

Efficient Key Distribution Protocol for Electronic Commerce 1015

Table 1. Properties of proposed protocol in comparison with previous protocol

properties BCY PACS proposed protodcol

n-pass 2 2 2

entity authentication × one-way mutual

key authentication user : explicit user : implicit user : implicit

server : explicit server : explicit server : explicit

key freshness × × mutual

user anonymity one-way one-way mutual

non-repudiation × one-way mutual

be useful to electronic commerce using mobile terminals. Furthermore, the proposed
protocol will be useful to ubiquitous computing environments, because the proposed
protocol is simple but secure. The proposed protocol can be implemented efficiently,
and provides the additional properties of security and efficiency which have been scru-
tinized in this paper.

References

1. M.J. Beller, L.F. Chang, and Y. Yacobi. Security for Personal Communication Service: Public-
key vs. Private key approaches. Proceedings of Third IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications–PIMRC’92, pages 26–31, 1992.

2. M.J. Beller, L.F. Chang, and Y. Yacobi. Privacy and authentication on a portable communi-
cations system. IEEE Journal on Selected Areas in Communications, 11(6):821–829, 1993.

3. M.J. Beller and Y. Yacobi. Fully-fledged two-way public key authentication and key agreement
for low-cost terminals. IEE Electronics Letters, 29(11):999–1001, 1993.

4. U. Carlsen. Optimal Privacy and Authentication on a Portable Communications System. ACM
Operating Systems Review, 28(3):16–23, 1994.

5. J. S. Go and K. J. Kim. Wireless authentication Protocols Preserving User Anonymity. Pro-
ceedings of SCIS 2001, 2(1):159–164, 2001.

6. G. Horn, K. M. Martin and C. J. Mitchell. Authentication protocols for mobile network
environment value-added services. IEEE Transactions on Vehicular Technology, 51:383–392,
2002.

7. K. H. Lee and S. J. Moon. AKA Protocols for Mobile Communications. Australasian Con-
ference in Information Security and Privacy–ACISP 2000, number 1841 in Lecture Note in
Computer Science Number, pages 400–411, 2000.

8. K. Nyberg and R. A. Rueppel. Message recovery for signature scheme based on the disscrete
logarithm problem. Advacne in Cryptography–EUROCRYPT’94, number 950 in Lecture Note
in Computer Science Number, pages 182–193, 1995.

9. S. H. Oh, J. Kwak, S. W. Lee, and D. H. Won. Security Analysis and Applications of Standard
key Agreement Protocols. Computational Science and Its Applications–ICCSA 2003, number
2668 in Lecture Note in Computer Science Number, part 2, pages 191–200, 2003.

10. PACS. PACS(Personal Access Communications System) Air Interface Standard. J-STD-014,
1995.

1016 Jin Kwak, Soohyun Oh, and Dongho Won

11. V. Varadharajan, and Y. Mu. On the Design of Security Protocols for Mobile Communications.
Australasian Conference in Information Security and Privacy–ACISP’96, pages 134–145,
1996.

12. Y. Zheng. An Authentication and Security Protocol for Mobile Computing. Proceedings of
IFIP, pages 249–257, 1996.

13. Y. Zheng. Digital Signcryption or How to Achive Cost(Signature and Encryption) <<
Cost(Signature) + Cost(Encryption). Advacne in Cryptography–CRYPTO’97, number 1294
in Lecture Note in Computer Science Number, pages 165–179, 1997.

A Framework for Modeling Organization Structure
in Role Engineering�

HyungHyo Lee1, YoungLok Lee2, and BongNam Noh2

1 Div. of Info. and Electronic Commerce Wonkwang Univ., Iksan, 570-749, Korea
hlee@wonkwang.ac.kr

2 Dept. of Computer Science Chonnam National Univ., Gwangju, 500-757, Korea
{yrlee,bongnam}@chonnam.ac.kr

Abstract. RBAC model is renowned as a security model for corporate environ-
ment, since its components, especially role hierarchy, are suitable for modeling
an organization structure. But the functional role hierarchy constructed through
the existing role engineering approaches does not reflect an organization struc-
ture, because they do not take the structural characteristics of the organization into
account. Also, it has been observed that the unconditional permission inheritance
property in functional role hierarchy may breach a least privilege security principle
and make it impossible to define separation of duty requirements on roles that have
a common senior role. In this paper, we propose a role engineering methodology
considering organizational roles as well as functional roles to provide a practi-
cal RBAC model for corporate environment. We also elaborate the characteristics
of organizational roles relatively neglected in the previous work, and compare
them with those of functional roles. And models for associating organizational
and functional roles and those role hierarchies (unified vs. separate) are proposed
and the advantages and shortcomings of those models are given.

1 Introduction

Role-based Access Control (RBAC) is now widely accepted as an alternative to the
traditional access control models, such as MAC and DAC. The basic idea of associating
a set of privileges or permissions with a named role and assigning that role to users is well
established and is deployed several commercial computer systems and applications [6].

While the concepts of a role and a role hierarchy are central to many RBAC models,
most of the research on RBAC has focused on the representation, administration and
activation of roles, assuming that roles and role hierarchy are already determined [8].
Recently, a number of researches have been conducted to develop a methodology for
extracting the main components of RBAC model such as roles and role hierarchy from
organization’s business processes and documents [3, 4, 7, 8]. Role engineeringfor RBAC
is the process of defining roles, permissions, role hierarchies, constraints and assigning
the permissions to the roles [9]. It is the first step to implement RBAC system and also
a crucial component of security engineering. After conducting researches on role engi-
neering, researchers experienced that there exist different role classes such as functional,

� This paper was supported by Wonkwang University in 2004.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1017–1024, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1018 HyungHyo Lee, YoungLok Lee, and BongNam Noh

organizational, hierarchical etc., and suggested that those roles are needed for modeling
a given organization’s security policy completely. But, little research clearly explains
how those hierarchies are interrelated and proposes a role engineering methodology em-
ploying more than one role class. Most of the researches dealt with the processes for
deriving only functional roles.

RBAC model is renowned as a security model for corporate environment, since its
components, especially role hierarchy, are suitable for modeling an organization struc-
ture. But the functional role hierarchy constructed through the existing role engineering
approaches does not reflect an organization structure, because they do not take the struc-
tural characteristics of the organization into account. Also, it has been observed that the
unconditional permission inheritance property in functional role hierarchy may breach
a least privilege security principle and make it impossible to define separation of duty
requirements on roles that have a common senior role. Researchers found that elements
of an organization structure such as departments and teams inherently provide a impor-
tant means for deriving functions (i.e., permissions) and a natural interface for managing
user-to-role assignment task for security administrator. For example, departments Per-
sonnel and Accounting have their own functionalities, and organizational roles Personnel
Manager and Accounting Director are authorized in the context of their departments’
tasks. In addition, it is natural for security administrator to assign a user to organizational
role, i.e., Personnel Manager rather than to several functional roles, such as Personnel
Information Management and Personal Rating Information Management, which are the
job functions of the Personnel Manager role. Unlike functional role hierarchy, a senior
role in organizational role hierarchy need not inherit the permissions of its junior roles,
since the inheritance scope of organizational role hierarchy is typically bound to their
structural elements.

In this paper, we propose a role engineering methodology considering organizational
roles as well as functional roles to provide a practical RBAC model for corporate environ-
ment. We also elaborate the characteristics of organizational roles relatively neglected
in the previous work, and compare them with those of functional roles. And models for
associating organizational and functional roles and those role hierarchies (unified vs.
separate) are proposed and the advantages and shortcomings of those models are given.
The rest of this paper is organized as follows: Section 2 describes the related work.
Section 3 describes the methodology of modeling RBAC with organization structure
from two viewpoints. And finally this paper concludes with analyzing the framework
suggested with conventional framework and describing the further work.

2 Related Works

In [6], the RBAC framework is extended to include the notion of role hierarchies. The
model allows the occupants of superior roles to inherit all the positive access rights of
their inferiors, and conversely ensures that the occupants of inferior positions inherit
any prohibitions that apply to their superiors. However, the authors observed that in
some situations inheritance of access rights down the organizational hierarchy may be
undesirable. They outline two possible ways of avoiding this. First, they use some other

A Framework for Modeling Organization Structure in Role Engineering 1019

ordering than the organizational hierarchy to define the role hierarchy. Second, they
define subsidiary (“private") roles outside the hierarchy.

In [7], the authors used a generalization (is-a relationship) hierarchy based on pro-
fessional competencies for the analysis of role hierarchies. On the other hand [8] used
a generalization hierarchy based on an organization’s functional hierarchy. In [4], they
outlined the control principles which are applied in many large organizations and their
impact on inherited access rights, and came to the conclusion that the interaction of
control principles and role hierarchies could have undesirable consequences for access
control. They pointed out that the generalization hierarchy is not the only one that could
be validly used for a role hierarchy. That paper was limited mainly to pointing out the
problems.

In [4], they describe the work in progress with a process-oriented approach for
role-finding to implement Role-Based Security Administration. They pointed out that
there are a few authorizations which do not belong to functional roles. To overcome
that problem, they have agreed on a few nonfunctional role-classes to be introduced to
the RBAC concept. The roles are organized within different role classes. Role classes
defined at Siemens ICN are functional, organizational, basic, hierarchical, and special
roles.

3 A Framework for Modeling Organization Structure

As earlier researches show, functional roles alone can not model the authorization char-
acteristics of an organization and does not provide an intuitive mapping between an
organizational structure and role hierarchies.

In this section, we propose two different approaches to solve those problems. The
first one is a unified role hierarchy approach. In this methodology, functional sub-role
hierarchies and organizational sub-role hierarchy are interconnected and formed into a
unified role hierarchy. The other approach is based on separate role hierarchy. In the
methodology, rather than combining functional and organizational roles, two separate
role hierarchies are modeled and managed: the functional role hierarchy is constructed
in terms of permission inheritance for efficient permission management while the orga-
nization role hierarchy is modeled to reflect the organization structure.

3.1 Unified Role Hierarchy Approach

We briefly describe the notion of sub-role and sub-role hierarchy, key characteristics of
the unified role hierarchy approach. They provide the functional (i.e., job function) and
organizational (i.e., job position) authorization features through inter-related sub-role
hierarchies. The detailed components and features of the model are in [5].

3.1.1 Roles and Sub-roles. A role is a job function in the organization that describes the
authority and responsibility conferred on a user assigned to the role [6]. Administrators
can create roles according to the job functions performed in their organizations. This
is very intuitive and efficient approach except unconditional permission inheritance. In
RBAC models, a senior role inherits the permissions of all its junior roles. This property

1020 HyungHyo Lee, YoungLok Lee, and BongNam Noh

may breach the least privilege principle, one of the main security principles RBAC
models support [3].

In order to address this drawback, we divide a role into a number of sub-roles based
on the characteristics of job functions and the degree of inheritance. Figure 1 shows a
proposed sub-role concept compared with an original or macro role.

Fig. 1. Sub-role concept for corporate environment

3.1.2 Permission Inheritance in Sub-role Hierarchies. There are two kinds of sub-
role hierarchies: horizontal and vertical. Horizontal sub-role hierarchy (i.e., job position
plane) is a partially ordered relation between sub-roles which are divided from the
same macro role, and only unconditional permission inheritance exists between sub-
roles. Vertical sub-role hierarchy (i.e., job function plane) is a partially ordered relation
between sub-roles in the same sub-role category (i.e., CC, DC, RI, PR sub-roles) but
in different macro roles, and both unconditional and restricted inheritance exit in it.
Sub-roles in RI category need to specify the sub-roles to which their permissions should
be inherited. Only the specified sub-roles in RI hierarchy can inherit the permissions of
their junior sub-roles.

In Figure 2, even if sub-role ri3 belongs to General Manager role, a senior role to
Manager role, the permissions of rj3 are not inherited to ri3.

Fig. 2. Example of sub-role hierarchies

A Framework for Modeling Organization Structure in Role Engineering 1021

Figure 3 shows an example of an organization’s structure and its corresponding
sub-role hierarchies. A sub-role hierarchy in the same horizontal plane represents a job
position role in the organization unit such as the Project Leader of Project Team 1.
And, a sub-role hierarchy in the same vertical plane such as CC, DC, PI, PR is analyzed
and constructed from the perspective of permission inheritance. As we can see, vertical
planes in (b) correspond to organization units in (a). Users are assigned to private sub-
roles since the private sub-role inherits all permission of its junior roles. Despite of
its complex structure of sub-role hierarchies, sub-role hierarchy approach provides a
role engineering approach for analyzing functional and organizational roles and their
relationships to security administrators.

Fig. 3. Example of an organizational structure and its sub-role hierarchies

3.2 Separate Role Hierarchy Approach

In this section, we briefly review the shortcomings of the traditional role engineering
process, in which a discrepancy between the role hierarchy and organization structure
usually exists. Also, we propose another role engineering approach, in which role engi-
neer constructs organizational and functional role hierarchies separately and associates
each of roles in the hierarchies according to the organization’s regulation.

3.2.1 Discrepancy Between Role Hierarchy and Organization Structure. Every or-
ganization has its own organization structure which consists of units such as departments,
sections, or divisions etc. Furthermore, in each unit of the organization, there are job
positions such as a General Manager, an Assistant General Manager, to perform their
own tasks and responsibilities. Therefore, the organization’s structure provides important
authorization information to security analyzers in role engineering process.

But in most traditional role engineering process, since role engineer focuses on ef-
ficient permission management through permission inheritance characteristic, the con-
structed role hierarchy usually has different structure with that of the organization. With

1022 HyungHyo Lee, YoungLok Lee, and BongNam Noh

the role hierarchy which is inconsistent with the organization’s structure, it is not easy
for security administrator to perform security management tasks and reflect the change
of security policy. In addition, considering a user assignment (UA) task of RBAC model
is usually performed by employees of personnel department, the discrepancy between
the role hierarchy and the organization’s structure makes UA tasks complicated and error
prone.

Fig. 4. Example of traditional role hierarchy

Figure 4 shows a typical role hierarchy which models two different properties of a
single hierarchy; the permission inheritance feature and the organization structure. As
a result, there is no clear distinction between the two concepts and then makes security
management tasks difficult and unmanageable. For example, the structure like (i.e., the
hierarchy among PE1, QE1, E1 roles) rarely can be found in real enterprise environment,
since it is not common for an organization unit which has two different senior units. That
kind of structure stems from the purpose of efficient permission management. In Figure
4, the permissions common to PE1 and QE1 are extracted and assigned to a new virtual
role, E1, for efficient permission management. As mentioned earlier, it is desirable for
personnel employees to perform user assignment tasks with the role hierarchy of which
structure is as close as organization structure.

Furthermore, let us assume that roles PE1 and QE1 are mutually exclusive. In order
to meet the separation of duty principle, the role PL1 can not be a common senior to both
PE1 and QE1. While keeping the organization structure and satisfying the separation
of duty principle, a role engineer need to add private roles of PE1 and QE1 (i.e. PE1’
and AE1’, respectively), which prevents conflicting permissions from inherited to their
senior role. The resulting role hierarchy has more complex and different form than the
original one.

All those problems are caused by different types of information, i.e. organization
structure and permission inheritance, are mingled with a single role hierarchy without
analyzing their own characteristics.

3.2.2 Separate Organizational Role Hierarchy and Functional Role Hierarchy. In
the second role engineering approach, in order to solve the problems mentioned in 3.2.1,

A Framework for Modeling Organization Structure in Role Engineering 1023

we use both organizational role hierarchy and functional role hierarchy. The organiza-
tional role hierarchy provides intuitive information on how the organization’s units are
related and which job positions exist and how they are inter-related etc., to non-security
experts including employees in the personnel department. But the functional role hi-
erarchy is constructed by role engineers through an analysis of permissions from the
viewpoint of efficient permission management regardless of the organization’s structure
and the job positions.

The major advantage of this approach is an independent and transparent manage-
ment of each structure. A personnel employee assigns a user (i.e. a new employee or
a transferred employee) to a specific job position without the detailed knowledge of
functional role hierarchies. A role engineer analyzes authorization information based
on the organization’s regulations and constructs the organizational role hierarchy. And
then, he/she maps each job position to its corresponding organizational roles.

Figure 5 shows examples of organizational and functional role hierarchies. Com-
paring Figure 5 (a) with Figure 4 (a), no virtual role (i.e. E1, E2) is in organizational
role hierarchy. Also, mutually exclusive roles (i.e. PE1 and QE1, PE2 and QE2) have
the common senior roles in the organizational role hierarchy, but the conflicting permis-
sions are prohibited from being inherited to senior roles (i.e. by assigning the conflicting
permissions between PE1 and QE1 to roles r2 and r3 respectively in functional role
hierarchies, roles PE1 and QE1 have the common senior role, PL1, in the organizational
role hierarchy).

Fig. 5. Example of organizational and function role hierarchies

4 Conclusions and Future Work

Role engineering in RBAC system analysis and design phase means the process of
defining roles, permissions, role hierarchies, constraints and assigning the permissions
to the roles. It is the first step to implement RBAC system and also a crucial component
of security engineering.

In this paper, we suggest two different approaches of role engineering methodol-
ogy; unified and separate role hierarchy approaches. In the unified role engineering

1024 HyungHyo Lee, YoungLok Lee, and BongNam Noh

approach, roles are divided into sub-roles and a number of sub-role hierarchies are con-
structed based on the job functions and positions. After then, each sub-role hierarchies
are interconnected to form a single hierarchy of the organization. Despite of its com-
plex structure, the resulting role hierarchy provides an integrated view of role-based
authorization structure.

On the contrary, in the separate role hierarchy approach, organizational and func-
tional role hierarchies are constructed independently, and mapping roles between two
hierarchies is performed. This enables role engineers to define the role hierarchy focus-
ing on the efficient permission management and personnel employees to perform user
assignment tasks transparent to the details of functional role hierarchies.

Our future work is to develop detailed processes for constructing unified role hier-
archy, organizational and functional role hierarchies. In addition, the administration of
each role hierarchy is another important research topic.

References

1. Ezedin Barka and Ravi Sandhu, “Framework for Role-Based Delegation Models," Proceed-
ings of 23rd National Information Systems Security Conference, pp.101-114, Baltimore, Oct.
16-19, 2000.

2. Virgil Gligor, Serban Gavrila and David Ferraiolo, “On the Formal Definition of Separa-tion-
of-Duty Policies and Their Composition," Proceedings of the IEEE Symposium on Se-curity
and Privacy, pp.172-183, May 3-6, 1998.

3. Jonathan D. Moffett, “Control Principles and Role Hierarchies," 3rd ACM Workshop on Role
Based access Control (RBAC). George Mason University, Fairfax, Virginia, USA. 1998.

4. Haio Roecle, Gerhard Schimpf, Rupert Weidinger, “Process-oriented approach for role-finding
to implement role-based security administration in a large industrial organization," Proceedings
of the fifth ACM workshop on Role-based access control, Germany, pp103-110, 2000.

5. HyungHyo Lee, YoungLok Lee, BongNam Noh, “A New Role-Based Delegation Model Us-
ing Sub-Role Hierarchies", International Symposium on Computer and Information Sci-ences
(ISCIS 2003) LNCS 2869 pp.811-818, 2003.

6. Ravi Sandhu, Edward Coyne, Hal Feinstein and Charles Youman, “Role-based ac-cess control
model," IEEE Computer, Volume 29, pp.38-47, Feb, 1996.

7. Lupu, E.C. and M.S. Sloman. “Reconciling Role-Based Management and Role-Based Ac-cess
Control," in 2nd ACM Workshop on Role-Based Access Control. 1997.

8. Awischus, R. “Role Based Access Control with the Security Administration Manager," in 2nd
ACM Workshop on Role-Based Access Control. 1997.

9. Gustaf Neumann, Mark Strembeck, “A Scenario-driven Role Engineering Process for Func-
tional RBAC Roles," in SACMAT’02, pp.33-42, 2002.

An Efficient Pointer Protection Scheme
to Defend Buffer Overflow Attacks

Yongsu Park2 and Yookun Cho1

1 Department of Computer Science and Engineering, Seoul National University
San 56-1 Shilim-Dong Gwanak-Ku, Seoul 151-742, Korea

cho@ssrnet.snu.ac.kr
2 The College of Information and Communications, Hanyang University

17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
yspark@ssrnet.snu.ac.kr

Abstract. We present a new efficient pointer protection method to defend buffer
overflow attacks. It uses a simple watermark to protect the pointer: during deref-
erencing the pointer variable, a watermark is also written/updated and before
referencing the pointer variable, it verifies consistency of the watermark. If the
pointer’s watermark does not exist or was damaged, our scheme regards this as an
intrusion and stops the execution. The proposed scheme has the following strong
points. First, unlike other randomization methods, our scheme has no possibility
of malfunction caused by the execution of arbitrary instructions. Second, we con-
ducted various experiments on prototype implementation, which showed that our
scheme is as secure as the previous randomization schemes. Third, experimental
results showed that the performance degradation is not high. Forth, unlike other
randomization schemes, our scheme can support attack profiling.

Keywords: system security, buffer overflow, randomization

1 Introduction

In spite of countless methods designed to cope with buffer overflow vulnerabilities,
new attacks are continuously appeared such as format string attacks, heap overflows,
or multiple free errors. Up till now, buffer overflows are still major cause of exploited
vulnerability.

In order to address this problem, new approaches have been recently developed: code
randomization, address randomization, and pointer randomization. Among them, code
randomization and address randomization have demerits such as significant performance
degradation or partial coverage of defense. PointGuard [3] that was appeared in USENIX
Security 2003 uses pointer encryption/decryption to provide both efficiency and wide
defense coverage together. However, the shortcoming is that when there exists an attack,
PointGuard should execute arbitrary instructions, which causes possible malfunction of
the privileged process.

In this paper, we present a new efficient pointer protection method to defend buffer
overflow attacks. It uses a simple watermark to protect the pointer: during dereferencing
the pointer variable, a watermark is also written/updated and before referencing the
pointer variable, it verifies consistency of the watermark. If the pointer’s watermark

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1025–1030, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1026 Yongsu Park and Yookun Cho

does not exist or was damaged, our scheme regards this as an intrusion and terminates
the execution.

The proposed scheme has the following strong points. First, unlike other randomiza-
tion schemes such as RISE [1], [6], and PointerGuard [3], our scheme has no possibility
of malfunction caused by the execution of arbitrary instructions. Second, we conducted
various experiments on prototype implementation, which showed that our scheme is as
secure as the previous randomization schemes. Third, experimental results showed that
the performance degradation is not high. Forth, unlike other randomization schemes,
our scheme can support attack profiling.

Our scheme can be viewed as an approach to increase trustworthiness as well as to
enhance security of the systems to be protected. The rest of this paper is organized as
follows. In Section 2 we describe the previous work. In Section 3, we explain PointGuard
and our method. In Sections 4 and 5, we analyze performance and security of our scheme.
Finally, we offer some conclusions in Section 6.

2 Related Work

To defend buffer overflow attacks, there have been many research activities such as
imposing run-time type checking [5,8] or enhancing the conventional programming lan-
guages [9]. As mentioned in Introduction, in spite of these methods new attacks are
continuously appeared and buffer overflows are still major cause of exploited vulner-
ability. In this section, we deal with recently proposed approach which is so called
“randomization”.

To the best of our knowledge, the first randomization scheme is ASLR (Address
Space Layout Randomization) provided by the PAX project [11]. It randomly assigns
the address of each memory object such as program code or data. Since the most at-
tacks overflow a specific memory region to overwrite the adjacent memory objects, it
seems that ASLR works effectively. Moreover, the execution overhead is very low (only
10∼18% slower). Bhatkar et al. [2] enhanced this concept and made a new implemen-
tation to cover wider range of defense. However, ASLR and [2] cannot defend GOT
(Global Object Table) attack or function pointer attacks as will be shown in Section 4.
Moreover, they suffer from address fragmentation.

Another approach is to randomize the instruction codes. [1,6] encrypts each instruc-
tion code in the program and when it is to be fetched, it is decrypted and then executed.
This approach relies on the CPU emulator, which results in significant performance
degradation.

Cowan presented the StackGuard that checks the integrity of activation records in
the stack [4]. It is very efficient such that its performance degradation can be negligible.
However, its coverage of defense is relatively narrow: it can only defend against the
stack-related attacks.

To the best of our knowledge, the recently proposed PointerGuard [3] has both wide
coverage of defense and efficiency together. We explain PointGuard and discuss its
demerits in Sections 3 and 4.

An Efficient Pointer Protection Scheme to Defend Buffer Overflow Attacks 1027

3 Proposed Method

In Section 3.1, we explain PointGuard [3] and address some demerits. Then, we describe
our method that relies on watermarking in Section 3.2.

3.1 PointGuard

PointGuard exploits the property that buffer overflow attacks modify function/data
pointers. It operates as follows:

1. Initialization: first, symmetric key K is initialized as a random value, which is
obtained by reading /dev/urandom. Then, K is stored in the protected page in
the memory space.

2. Dereference of the pointer: whenever the pointer value P is required to be ini-
tialized or modified, P is encrypted with K and then the result is stored in the
memory.

3. Reference of the pointer: after reading the encrypted value from the memory, it is
deciphered by using K . Then, decrypted pointer value can be used.

The main idea of PointGuard is that by defending only the symmetric keyK , attackers
cannot guess all the pointer values. Moreover, illegally modified pointer values become
meaningless since the decrypted addresses would have arbitrary values.

Pointer access occurs frequently so efficiency is very important. This is why authors
use a single xor operation to implement encryption/decryption of the pointer.

Implementation of the PointGuard algorithm can be performed by the one of the
following three ways [3]. First, the source code of the target process can be modified
to support PointGuard. Second, we can modify the compiler to insert pointer encryp-
tion/decryption. Third, loader can be modified. Authors of [3] modified the gcc compiler
to implement prototype version of PointGuard.

3.2 Proposed Scheme

One of the demerits of instruction/pointer randomization methods is that in the case
of the attack arbitrary codes are executed. Considering that randomization methods are
mainly applied to the privileged processes, execution of arbitrary codes could result in a
serious disaster such as breaking important configuration files or causing system crashes.

The main idea of the proposed scheme is that we insert a watermark for each pointer
to detect the modification of either the pointer or watermark before the reference.

1. Initialization: first, symmetric keys K1 and K2 are initialized as random values,
which are from /dev/urandom. Then, they are stored in the protected page in the
memory space.

2. Dereference of the pointer: whenever the pointer value P is required to be initial-
ized or modified, P is encrypted by K1 and then the result is stored in the memory.
By another key K2, P is encrypted and this value is inserted in the address P .

1028 Yongsu Park and Yookun Cho

Address:

Memory

EK1(P) EK2(P) Data
P P+1

P E

K1

P E

K2

Fig. 1. Dereference of the pointer

Address:

Memory

EK1(P) EK2(P) Data
P P+1

P D

K1

P D

K2
?

Fig. 2. Reference of the pointer

3. Reference of the pointer: after reading the encrypted value from the memory, it is
deciphered by using K1 to produce P . Then, the watermark in the address of P is
decrypted by using K2. If this value is identical to P , then, decrypted pointer value
(= P) can be safely used. Otherwise, the target process should be terminated.

As in PointGuard, we use a xor operation to encrypt/decrypt the pointer since per-
formance degradation should be minimized. In this case, P ⊕K1, P ⊕K2 are stored in
the memory with respect to P . If an attacker A reads these values, he can xor them to
obtain K1⊕K2. If A replaces them with C′ and C′⊕K1⊕K2, he successfully forges
the above check routine.

However, this attack is unlikely to occur since P ⊕K2 is stored in the address P . If
A knows P ⊕K2, this means that he already knows P . Since we assume that K1 and K2

cannot be revealed (as in PointGuard), A is unable to know the value P by the property
of the xor operation.

Another shortcoming of PointGuard is that it cannot protect all the pointers. More
specifically, pointers invisible in the source code cannot be protected. Among them,
we think that the most important pointers to be protected are frame pointer and return
address in the stack since numerous buffer overflow attacks modify them. By inserting
the watermark and the checking routine for them, defence coverage of the proposed
scheme would be significantly extended.

4 Security Analysis

As mentioned in Section 3, the proposed scheme can be implemented by the one of
the following three ways: source code modification, compiler modification, and loader
modification. To simplify the implementation, we chose the first approach. We used
C language and modified all the pointers in the source code to perform encryption /
decryption and to check the watermarks.

An Efficient Pointer Protection Scheme to Defend Buffer Overflow Attacks 1029

To protect frame pointer/return address, we used modified gcc that has xor random
canary method of StackGuard [4]. Although the algorithm is different, xor random canary
method has the same object as that of our scheme for protecting frame pointer/return
address in the stack.

Test programs consist of Straw man vulnerability overflowing example in Section
6 of [4] (overflowing function pointer), examples of Phrack 49 (typical buffer overflow
and small buffer overflow) [10], and examples in Omega project (GOT attack) [7]. For
all the tests, the programs were safely terminated and we were unable to find any success
of attack in the proposed scheme.

Table 1 shows comparison of various buffer overflow defences. Compared schemes
are PointGuard [3], PAX/ASLR [2], StackGuard [4], Bochs [6], and RISE [1].

Table 1. Comparison of buffer overflow defences

Methods Execution of Defence against various attacks

arbitrary codes Stack Smashing Attacks Function Pointer Attacks

PAX/ASLR [2] Yes Yes/No Yes/No

StackGuard [4] No Yes No

PointGuard [3] Yes No Yes

RISE [1] Yes Yes/No Yes/No

Bochs [6] Yes Yes/No Yes/No

Proposed Scheme No Yes Yes

5 Performance Analysis

To evaluate the performance of the proposed scheme, we conducted the following three
tests:

1. Read: repeat referencing the pointers in the pointer arrays.
2. Write: dereference the pointers by storing values in the pointer arrays.
3. Read/Write: repeat the job that reads a pointer value and then stores it in the another

place.

Table 2 contains the performance results. Experimental environments are as follows:
CPU, RAM, OS, and compiler are Intel P4/Xeon 1.8 GHz, 512 MBytes, Linux 2.6.4-
1, and gcc 3.3.3, respectively. For each trial, we measured the elapsed time for 107

operations of the pointers. This table shows that our scheme is about 1.5∼2 times slower
for each pointer access. We think that performance degradation would be much less if we
implement our scheme in the AST/RTL level of gcc, as in the experiment of PointGuard.

6 Conclusion

In this paper we presented a new efficient pointer protection method to defend buffer
overflow attacks. It uses a simple watermark to protect the pointer: during dereferenc-
ing the pointer variable, a watermark is also written/updated and before referencing

1030 Yongsu Park and Yookun Cho

Table 2. Comparison of elapsed time (in seconds)

Test Unmodified source code Proposed scheme

Read 17.9 34.1

Write 25.6 42.6

Read/Write 28.9 46.3

the pointer variable, it verifies consistency of the watermark. If the pointer’s water-
mark does not exist or was damaged, our scheme regards this as an intrusion and stops
the execution. The proposed scheme has the following strong points. First, unlike other
randomization methods, our scheme has no possibility of malfunction caused by the exe-
cution of arbitrary instructions. Second, we conducted various experiments on prototype
implementation, which showed that our scheme is as secure as the previous random-
ization schemes. Third, experimental results showed that the performance degradation
is not high. Forth, unlike other randomization schemes, our scheme can support attack
profiling. Our scheme can be viewed as an approach to increase trustworthiness as well
as to enhance security of the systems to be protected.

References

1. Gabiela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer, Darko Stefanovic,
and Dino Dai Zovi. Randomized Instruction Set Emulation to Disrupt Binary Code Injection
Attacks. In 10th ACM Conference on Computer and Communication Security, pages 281–289,
October 2003.

2. Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address Obfuscation: an Efficient Ap-
proach to Combat a Broad Range of Memory Error Exploits. In 12th USENIX Security Sym-
posium, pages 105–120, August 2003.

3. Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointGuard: Protecting Point-
ers From Buffer Overflow Vulnerabilities. In 12th USENIX Security Symposium, pages 91–
104, August 2003.

4. Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, and Steve Beattie.
StackGuard: Automatic Adaptive Detection and Prevention of Buffer-overflow Attacks. In
7th USENIX Security Symposium, pages 63–78, January 1998.

5. Richard Jones and Paul Kelly. Bounds Checking for C. avaliable at http://www-
ala.doc.ic.ac.u/˜phjk/BoundsChecking.html, July 1995.

6. Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering Code-Injection
Attacks With Instruction-Set Randomization. In 10th ACM Conference on Computer and
Communication Security, pages 272–280, October 2003.

7. Lamagra. Project OMEGA. avaliable at http://ouah.kernsh.org/omega1lam.txt.
8. Greg McGary. Bounds Checking for C and C++ Using Bounded Pointers. avaliable at

http://gcc.gnu.org/projects/bp/main.html, 2000.
9. George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-Safe Retrofitting of

Legacy Code. In 29th ACM Symposium on Principles of Programming Languates (POPL02),
2002.

10. Aleph One. Smasing The Stack For Fun And Profit. Phrack 49, File 14 of 16, 1996.
11. PaX team. The PaX Project. avaliable at http://pageexec.virtualave.net, 2001.

Parallel Hierarchical Radiosity:
The PIT Approach

Fabrizio Baiardi, Paolo Mori, and Laura Ricci

Dipartimento di Informatica, Universitá di Pisa
Via F.Buonarroti, 56125 - Pisa, Italy

{ricci,baiardi,mori}@di.unipi.it

Abstract. Radiosity is a method to compute the global illumination of a scene.
To reduce its complexity, hierarchical radiosity decomposes the scene into a hier-
archy of patches and computes the light exchanged between patches at different
levels, according to their distance and/or to the amount of light they emit. A dis-
tributed memory implementation of this method has been developed through PIT,
a problem independent library that supports hierarchical applications on distrib-
uted memory architectures. PIT functions exploit a distributed version of the tree
representing the hierarchical decomposition.

1 Introduction

Radiosity [5] defines the global illumination of a scene by decomposing objects into
sets of patches and by computing the forms factor of each pair of patches, i.e. the
fraction of the light they exchange. To reduce the overall complexity, a hierarchical
approach exploits hierarchical patches and it computes the light exchanged between
two patches at distinct levels, according to their distance and/or to the amount of light
they emit. One of the problems posed by a parallel implementation of this method is
the irregular and dynamic distribution of the patches in the scene. Furthermore, the
computational loads of the patches may be very different because the light exchange
is computed at distinct levels. This paper evaluates a parallel version of a hierarchical
radiosity method developed through PIT [3,1,2], a problem independent programming
library to support the development of irregular hierarchical applications on distributed
memory architectures. Its key assumption is that both the sequential application and the
parallel one can be built around a tree that represents the distribution of elements in the
domain. The definition of element is problem dependant and it constitutes the elementary
component of the considered problem. As an example, in the case of radiosity, an element
is one patch, while in the case of the Barnes-Hut method it is a body. The interactions
among elements are computed by applying proper operators to this tree. In the parallel
version, the tree is mapped into the local memories of the processing nodes, pnodes.
A new data type, the Parallel Irregular Tree, describes this mapping and it defines the
operations to access information mapped onto other pnodes, to insert new nodes into the
tree and to balance the computational load. To focus on the adoption of PIT to develop
hierarchical radiosity on a distributed memory architecture, we have considered scenes
in flatland, i.e. a bi-dimensional world. Sect. 2 describes the main functions of PIT .
The sequential hierarchical approach to radiosity in flatland is revised in Sect. 3. Sect.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1031–1040, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1032 Fabrizio Baiardi, Paolo Mori, and Laura Ricci

4 describes the parallelization of the method by PIT. Experimental results are discussed
in Sect. 5.

2 The PIT Library

Parallel Irregular Tree, PIT, is a library addressed to the parallelization of irregular
problems on distributed memory architectures. This library adopts a hierarchical method
to solve irregular problems, and it is based upon the assumption that both the sequential
and the parallel versions of a hierarchical method may be structured in terms of operations
on a hierarchical tree, Htree. The Htree represents both the subdomains resulting from
the hierarchical domain decomposition and the relation among them and any element
they include. Any hierarchical method, to solve irregular problems, iteratively visits
the Htree and it updates the properties of its elements. For each hnode hn, the method
updates the properties of element(hn), the element paired with hn, after collecting
the neighbors of element(hn). The operations to update the properties of an element
depend upon the nature of the problem to be solved, target problem, and are denoted
target problem operators, or simply operators. A goal of PIT is to preserve the code
of these operators but, while in a sequential application the Htree is recorded in just
one memory, in a distributed memory architecture the HTree is distributed across the
local memories of all the pnodes. The functions of PIT support the application of these
operators in spite of the mapping onto distinct memories. They are defined in terms of
the Parallel Hierarchical Tree, PITree, the distributed version of the Htree. A PITree
P (H) is a tuple 〈h0, .., hnp−1,mht〉, where np is the number of pnodes, that describes
the mapping of a Htree H . Any hi is the private Htree of Pi, the i-th pnode, i.e. the
subset of all and only the hnodes of H that represent domains or elements mapped
into the local memory of Pi. mht, instead, is the mappingHtree that represents the
hierarchical relations among h0, .., hnp−1. mht includes the root R of H and all the
hnodes on the paths from R to the root of any hj . Each hnode of mht corresponds to
a hnode hp of a private Htree hj and it records j, the identifier of the pnode where
hp has been mapped. mht is the minimal amount of information to be replicated in all
the pnodes to enable the PIT functions to determine where any hnode of H has been
mapped.

In the following, we focus on the functions of PIT used to define the parallel version
of hierarchical radiosity methods. PIT is fully described in [3], together with the algo-
rithm to map the Htree onto the pnodes. PITree Creation is the function that partitions
the initial set of elements among the pnodes and builds the PITree, i.e. both the private
and the mapping Htrees. This function returns to each pnode a reference to the root
of its private Htree. Then, this reference is trasmitted to the PIT functions that support
the application of the target problem operators. To reduce the communication among
the pnodes, the strategy to partition the elements takes into account the locality prop-
erty. Since PIT is independent of the target problem and, in particular, of the element
properties, the user has to define both a structure to record these properties and three
functions, include el, decompose el, remove el, to handle the elements. These functions
are exploited by PITree Creation to properly partition the elements.

Each pnode Pi applies the target problem operators to each hnode in its private Htree
hi, in a SPMD style. However, hi does not include all the elements the operator requires,

Parallel Hierarchical Radiosity: The PIT Approach 1033

because some neighbours of a hnode hn of hi, the remote neighbours of hn, may have
been mapped onto distinct pnodes. PITree Completion is the PIT function that collects all
the elements required by an operator and creates, for each private Htree hi, the essential
Htree ehi. ehi is the union of hi with all the remote neighbours of any element in hi. In
general case, PITree Completion is invoked before the execution of each target problem
operator so that the same operator of the sequential version of the application can be
correctly applied to ehi ∩ hi. The parameters of this function are the root of the private
Htree and a user defined function stencil to compute the neighborhood stencil, i.e. the
set of neighbors of each element. The stencil function depends upon the target problem
operator so that distinct operators of the same problems may have distinct neighborhood
stencils. To reduce the communication overhead, PITree Completion implements a fault
prevention strategy [1], where each pnode Pk determines, through the neighborhood
stencil, which of its elements are required by Ph, ∀h �= k and sends these elements to
Ph without an explicit request from Ph to Pk. PITree Balance updates the mapping of
the PITree onto the pnodes to balance the computational load, and it is invoked anytime
the distribution of the elements in the domain is updated. Hence, in the simplest case,
it is invoked after the execution of each operator. Its input parameters are a reference
to the roots of the private Htrees and a threshold to prevent the recovery of very low
unbalances. It returns a reference to the root of the updated private Htree.

3 Hierarchical Radiosity in Flatland

Hierarchical radiosity has been introduced to compute the heat transfer between surfaces
in [9]. It has been applied in computer graphics to compute the global illumination of
unoccluded environments in a scene in [6] and to compute the illumination of scenes with
occlusions in [4]. Hierarchical radiosity [7] discretizes the objects of the scene through
small elements, denoted as patches, whose brightness is assumed to be constant. The
radiosity Bi of a patch pi depends upon those of all the other patches pj according to
the equation:

BiAi = EiAi + ρi

∑n−1
j=0 BjAjFj,i

where Ai is the area of pi, Ei is its emissivity, i.e. the light emitted by pi, ρi is its
reflectance, and Fj,i is the percentage of light leaving the patch pj that reaches pi. Fi,j

is the form factor between pj and pi.
In flatland [8,10], the bidimensional world we consider, a scene is a set of polygons.

Each polygon is decomposed into a set of segments, each with two sides. Only one side
interacts with the other polygons, because the other one is internal to the polygon. Let
us consider a pair of segments Si and Sj . A popular and efficient formula for the form
factor Fi,j is the the string rule [9] defined in terms of the strings stretched from the
endpoints of Si to the corresponding endpoints of Sj , i.e. the uncrossed strings, and
those that links up the opposite endpoints, i.e. the crossed strings. Fi,j is proportional to
the difference between the lengths of the crossed strings and that of the uncrossed ones.
If some parts of Si and Sj are not mutually visible, the strings are “stretched” around
the obstruction so that the string rule can consider an arbitrary number of occluding
segments.

1034 Fabrizio Baiardi, Paolo Mori, and Laura Ricci

Hierarchical radiosity recursively partitions each segment into a hierarchy of patches
and it computes the interactions among patches so that a segment interacts with the
other ones at distinct levels. Approximated interactions are computed among low level
patches, while accurate interactions are computed among high level ones. An interaction
list paired with each patch pi records the interacting patches of the other segments. By
pairing each element of this list with the list of the related occlusions, we produce the
visibility list that includes the information to compute the radiosity of the corresponding
patch.

Hierarchical radiosity computes a sequence of approximations starting from a do-
main that includes all the segments of the polygons in the scene. The algorithm computes
the visibility list of each segment and it sets the initial radiosity of each segment to its
emissivity. Then, an iterative procedure computes the global radiosity of each segment.
Each iteration applies the functions Gather, PushPull and RefineLink. For each segment
Si, Gather collects the light emitted by the other segments that reaches Si, according
to the current decomposition. The function is recursively applied to Si and to any patch
produced by the decomposition of Si and it applies the string rule to compute the light
contributions received by any patch in the visibility list. For each segment Si, PushPull
redistributes among the patches of Si the light contributions received at all the levels
of the hierarchy as computed by Gather. PushPull includes two steps. The Push step
pushes the radiosity of all the patches of Si down into the hierarchy, from the root patch
that represent the segment Si to the leaf ones. The radiosity of a patch pi is updated
by the current value of the radiosity of the patch pi belongs to. The Pull step pulls the
radiosity of each patch of Si up in the hierarchy, from the leaf patches to the root one.
The radiosity of pi is the weighted average of those of all the subpatches of pi. PushPull
computes the overall radiosity of the scene as well and the method terminates if the
difference between the current value and the one at the previous iteration is smaller than
a user defined threshold. RefineLink partitions a patch pi because its interactions have to
be computed with a better accuracy, i.e. because its radiosity is larger than a predefined
threshold. The partition is defined according to the geometric properties of pi. RefineLink
updates the visibility lists of pi and of each patch pj in the interaction list of pi.

4 Parallelizing Hierarchical Radiosity: The PIT Approach

In general, radiosity methods represents distinct objects of the domain by distinct trees,
where the nodes of the tree represent the patches. In our approach, instead, a single Htree
represents the whole domain and it includes all the objects. The hnodes represent the
spaces that include the patches. Fig. 1 shows the Htree and the domain it represents.

The scene includes two segments, S0 and S1, partitioned into patches. The white
hnodes of the HTree represent the spaces of the domain, while the black ones represent the
elements, i.e. the patches. A node corresponding to a patch stores the patch properties, i.e.
the coordinates of the segment, its orientation with respect to the polygon that includes
it, the emissivity, the reflection and the current radiosity.

The initial domain is partitioned until each space includes one element only. For
instance, the segment S1 of Fig. 1 has been partitioned into two segments, p0 and p1, at
level l = 1, because the smallest space that includes it, that is the space that represents

Parallel Hierarchical Radiosity: The PIT Approach 1035

S 0 S 1

p0

S 0

p
2

p
3

p
4

p3

p4
p2

p1

p8

p7

p6

p5
p1

p5 p6

p0

p7 p8

p9

p10

p11

p9 p10 p11

0P

P1

l=1

l=2

l=3

Fig. 1. Domain decomposition and PITree

the whole domain, also includes the segment S0. This agrees with the philosophy of
this method that partitions a segment Si before the computation if another segment
Sj belongs to the smallest space including Si. In this case, Si and Sj are close in the
domain, and they will be decomposed anyway by the refinement function to compute
their interactions. Fig. 1 shows a simple domain decomposition and the related PITree.

Fig. 2 describes the parallel version of the hierarchical radiosity method developed
through the PIT library by inserting the proper PIT functions into the sequential code.
The first PIT function invoked by the parallel code is PITree creation that, starting from
the initial set of elements of the domain, creates the PITree and returns to each pnode a
reference to its private HTree. As an example, in Fig. 1 the segment S0 and all its patches
have been mapped onto the pnode P0, while S1 and all its patches have been mapped
ontoP1. Before the first iteration, PITree completion gathers the information to compute
the visibility list of each segment. In this case, the neighborhood stencil of a segment Si,
i.e. vis stencil, includes all the spaces that are visible from the external side of Si. Since
the radiosity of a patch pi depends upon those of other patches in the scene, some of
the patches that pnode Pa needs to compute the radiosity of pi may have been mapped
onto another pnode Pb a �= b, PITree completion is applied before each operator that
requires the remote neighbours of a patch. Gather and PushPull compute the radiosity
of a local patch in terms of that of local and of remote ones, while RefineLink requires
local values only. However, if a patch and all the subpatches it has been recursively
partitioned into are mapped onto the same pnode, also PushPull requires local values
only. The patches that Gather needs to compute the contributions to the radiosity of
pi are a function of the visibility list of pi. This list includes the references to all the
patches that interact with pi and to all those that occlude these interactions. To collect
the remote neighbors Gather requires, the fault prevention strategy can be applied. In
the parallel version of the method the two steps of PushPull are implemented by two
distinct procedures, Push and Pull. The neighborhood stencil of PushPull is very simple
because, in the Push step, the stencil of pi includes only the patches including pi. In the
Pull step the stencil of pi includes any patch resulting from the decomposition of pi .
Furthermore, both procedures are implemented through a breadth first visit of the tree.
The adoption of an anticipated visit is not convenient because the execution of the Push

1036 Fabrizio Baiardi, Paolo Mori, and Laura Ricci

step and/or the Pull one on the objects whose patches are not mapped onto the same
pnode strongly serializes the overall computation.

hierarchical radiosity method(element list *scene) {
pht root = PITree creation(scene, include el, decompose el, remove el);

PITree completion(vis stencil, all levels);

Visib list determ H(pht root);

while (not end) {
PITree completion(interaction list, all levels);

Gather(pht root)

for level from L min to L max

PITree completion(push stencil, level);

Push(pht root, level)

for level from L max to L min

PITree completion(pull stencil, level);

Pull(pht root, level)

end = RefineLink H(pht root);

pht root = PITree balance(pht root); }}

Fig. 2. Hierarchical Radiosity PIT Parallel Code

RefineLink inserts into the HTree a new hnode for each new patch of the scene.
Since the new patches created by a pnode Pi partition the patches already mapped onto
Pi, they are mapped onto Pi as well. This is coherent with the adopted methodology
because, if the PIT strategy maps a space A onto a pnode Pi, then maps onto Pi all the
subspaces of A before the other spaces of the domain. To determine the computational
load of each element, we observe that most of the computation is devoted to compute
the form factors. Hence, l(pi), the load of a patch pi, can be estimated in terms of the
number of interactions executed by pi that is proportional to the size of the visibility
list of pi. RefineLink updates the load of the pnodes, because it partitions the existing
patches and the new patches generate new interactions. The partitioning of pi affects
both the visibility list of pi and that of any patch pj that interacts with pi. This decreases
l(pi) , because the interaction with pj has been removed from its visibility list, and
it increases l(pj), because the interaction with pi has been replaced by those with the
subpatches of pi. Moreover, new elements, i.e. the subpatches of pi, have been added
to the domain . The initial load of these elements depend upon the visibility list they
inherit from pi. PITree balance is invoked after RefineLink to recover any unbalance in
the computational load.

5 Experimental Results

To evaluate both the effectiveness and the performances of the PIT approach, this section
presents some experimental results of the PIT parallel version of the hierarchical radiosity

Parallel Hierarchical Radiosity: The PIT Approach 1037

method. The first scene we consider is very simple and it is shown in Fig. 3. Initially it
includes 224 segments that compose 48 polygons.

Fig. 3. Test scene: 224 segments

After 5 iterations only of the method, the total number of patches of the scene is
about 3500% of the initial one. Fig. 4 shows the subdomain assigned to pnode 0 after 5
iterations in an the case of an execution on 10 pnodes.

Fig. 4. Subdomain of pnode 0 after 5 iterations

The hierarchical decomposition of the domain is highly irregular, because some
segments, or part of it, have been decomposed more deeply than others. We recall that
this decomposition depends upon both the geometrical features of the scene and the
exchange of light among the segments.

The first parallel architecture we consider in our experiments is a cluster of 10
workstations. Each workstation is a PC with an Intel Pentium II CPU (266 MHz) and
256 Mbyte of local memory and the interconnection network is a switched 100Mbit Fast
Ethernet.

1038 Fabrizio Baiardi, Paolo Mori, and Laura Ricci

20

22

24

26

28

30

0 20 40 60 80 100

tim
e

(s
ec

)

threshold

Fig. 5. Completion time with alternative load balancing thresholds

The first set of experimental results concerns the importance of the load balancing to
achieve a good efficiency. Fig. 5shows the completion time of 30 iterations of hierarchical
radiosity when applied to the scene of Fig. 3 for different values of the load balance
threshold. We can notice that the lowest completion time is achieved by adopting a
balance threshold of 20%. In this case, the largest unbalance that is tolerated by the
parallel application is 20% of the average load of the pnodes. Moreover, the figure
shows that, by adopting a load balance threshold of 100%, the completion time is 116%
of the optimal one. Hence, considerable performance improvements can be achieved
by updating the data mapping at run time to recover load unbalances. Moreover, this
also confirms the effectiveness of the PIT approach. The next set of experimental results
evaluates the performance of the parallel implementation. Fig. 6 shows the efficiency of
the hierarchical radiosity method for a variable number of pnodes. The scene considered
in this experiment is that of Fig. 3, and 30 iterations have been executed.

0

20

40

60

80

100

2 4 6 8 10

ef
fic

ie
nc

y(
%

)

number of p-nodes

Fig. 6. Efficiency for the Hierarchical Radiosity: 224 segments

The figure shows that, even on 10 pnodes, our implementation achieves an efficiency
close to 60%. The efficiency improves for a lower number of pnodes. For instance, it
is about 80% in the case of 4 pnodes. A simple way to increase the efficiency is by
considering larger scenes. Fig. 7 shows the other scene considered in our experiments
that includes 896 segments that defines 192 polygons.

Parallel Hierarchical Radiosity: The PIT Approach 1039

Fig. 7. Test scene: 896 segments

50

55

60

65

70

75

80

85

90

95

100

2 4 6 8 10

ef
fic

ie
nc

y
(%

)

number of p-nodes

50

55

60

65

70

75

80

85

90

95

100

2 4 8 10 16 32

ef
fic

ie
nc

y
(%

)

number of p-nodes

Fig. 8. Efficiency for Hierarchical Radiosity: 896 segments

Fig.8 shows the performance of the PIT hierarchical radiosity method, on two archi-
tectures. The left size of the figure shows the experiments executed on the architecture
previously described and resulting in an efficiency larger than 80%, on 10 pnodes. Such
a good efficiency is mostly due to the high locality of the scene. In fact, the large number
of polygons of the scene results in a large number of occlusions among segments. In
turns, this implies that each segment mainly interacts with close segments. The mapping
strategy of PIT exploits at best this locality to minimize the communication overhead.

We have also considered an IBM Linux Cluster including 64 nodes, each with 2 Intel
Pentium III (1.133 GHz) and 1Gbyte of local memory. The interconnection network is
a Miricom LAN “C" Version. The right side of Fig. 8 shows the performance on this
architecture. These results confirm the previous ones because the efficiency is larger than
70% even on 32 pnodes.

References

1. F. Baiardi, S. Chiti, P. Mori, and L. Ricci. Parallelization of irregular problems based on
hierarchical domain representation. Proceedings of HPCN 2000: Lecture Notes in Computer
Science, 1823:71–80, May 2000.

1040 Fabrizio Baiardi, Paolo Mori, and Laura Ricci

2. F. Baiardi, S. Chiti, P. Mori, and L. Ricci. Integrating load balancing and locality in the
parallelization of irregular problems. Future Generation Computer Systems: Elsevier Science,
17:969–975, June 2001.

3. F. Baiardi, P. Mori, and L. Ricci. Pit: A library for the parallelization of irregular problems.
Proceedings of the 6th International Conference on Applied Parallel Computing (PARA 2002):
Lecture Notes in Computer Science, 2367:185–194, 2002.

4. M.F. Cohen and D.P. Greenberg. The hemi-cube: a radiosity approach for complex environ-
ment. Computer Graphics, 19(3):31–40, 1985.

5. C.Puech F.X.Sillion. Radiosity and Global Illumination. Kaufmann Publ., 1994.
6. C.M. Goral, K.E. Torrance, D.P. Greenberg, and B. Battaill. Modelling the interaction of light

between diffuse surfaces. Computer Graphics, 18(3):213–222, 1984.
7. P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierarchical radiosity algorithm. Computer

Graphics, 25(4):197–206, 1991.
8. P.S. Heckbert. Radiosity in flatland. Eurographics 92, 11(3):181–192, 1992.
9. H.C. Hottel. Radiant heat transmission, chapter 4. McGraw Hill, 1954.

10. R. Orti, S. Riviére, F. Durand, and C. Puech. Radiosity for dynamic scenes in flatland with
the visibility complex. Computer Graphics Forum, 15(3):237–248, 1996.

Optimizing Locationing of Multiple Masters
for Master-Worker Grid Applications

Cyril Banino

Norwegian University of Science and Technology (NTNU)
Department of Computer and Information Science (IDI)

Sem Sælandsvei 7-9 NO-7491 Trondheim, Norway
Cyril.Banino@idi.ntnu.no

Abstract. The problem of allocating a large number of independent tasks to a
heterogeneous computing platform is considered. A non oriented graph is used
to model a Grid, where resources can have different speeds of computation and
communication. We claim that the use of multiple masters is necessary to achieve
good performance on large-scale platforms. The problem considered is to find the
most profitable master locations in order to optimize the platform throughput.

1 Introduction

A recent trend in high performance computing is to deploy computing platforms that
span over large networks in order to harness geographically distributed computing re-
sources. The aim is often to provide computing power to applications at unprecedented
scale. Good candidates for such environments are Master-Worker applications, com-
posed of a large number of computational tasks independent from each other, i.e. where
no inter-task communications take place, and where the tasks can be computed in any
order. Many applications have been and can be implemented under the Master-Worker
paradigm. They include: Processing of large measurement data sets like the SETI@home
project [1], biological sequence comparisons [2], or also distributed problems organized
by companies like Entropia [3].

The Master-Worker paradigm consists in the execution of independent tasks by a
set of processors, called workers, under the supervision of a particular processor, the
master. The master holds all the tasks initially, and sends them out to the workers over
a network. Workers compute their tasks, and send the results of the computation back
to the master. This scheduling problem is well recognized, and several studies [4,5]
have recently revisited the Master-Worker paradigm for clusters and Grids. Following
previous studies [4,5], the performance measure adopted in this paper is the steady-state
throughput of the platform, i.e. the number of tasks computed per time unit.

This work does not directly address the dynamically changing nature of large-scale
computing platforms. Although this is an important consideration, this paper nonetheless
suggests a simple but mandatory departure from traditional implementations: The need
to deploy several masters to efficiently utilize currently emerging large-scale platforms.

Multiple masters are needed since the centralization of the tasks in one single place,
not only makes the system more vulnerable to failures [6], but also clearly limits the

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1041–1050, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1042 Cyril Banino

scalability of the system. In this paper, we propose to circumvent the master bottleneck
by introducing multiple masters. The problem becomes to determine how many masters
should be used, and where should these masters be located on the platform graph in order
to achieve better performance. As a consequence, a discrete network location problem
arises, and this paper contributes insights on the problem difficulty within static settings.
Static knowledge cannot be underestimated, as after all, a dynamic context may often be
viewed as a succession of static contexts. This work hence provides an important first
step for efficient deployments of large Master-Worker applications on computational
Grids.

Growing the number of control resources to unblock the serial bottleneck has been
successful in many different domains: Multi-mastering is employed to allow simultane-
ous bus transfers between peripherals within a single system, multi-server architectures
are used for massively multi-player network games, replication in Data Grid environ-
ments ensure efficient access to widely distributed data [7]. Closely related to our work
is the hierarchical Master-Worker implementation proposed by Aida et al. [8] where
a supervisor controls multiple processor sets, each of which is composed of a master
and several workers. The supervisor achieves load balancing by migrating tasks among
masters. However, the work of Aida et al. does not take in consideration the topology of
the platform, an essential aspect for large-scale Grids that we address in this paper.

To the best of our knowledge, Shao et al. [5] were the first to consider resource
selection problems within the steady-state Master-Worker scheduling framework. The
authors aim at selecting performance-efficient hosts for both the master and worker
nodes. For that end, an exhaustive search is performed, consisting in solving n network-
flow problems, where n is the number of processors composing the platform. Then
the configuration that achieved the highest throughput is selected. Unfortunately, this
approach is not applicable with several masters. There are indeed

(
n
p

)
possible master

locations sets, where p is the number of masters to be located on the platform. For
this reason, we cannot simply compute the best scheduling strategy for each set, and
then select the best result. As an example, for n = 50 and p = 10, a problem that
is not large, the resulting number of possibilities is 10, 272, 278, 170. Clearly, even
for moderate values of n and p, such enumeration is not realistic, and we need more
advanced techniques. We introduce a cost model to establish and operate masters on
the platform graph. Given a general interconnection graph, we consider the problem of
selecting a master locations set that optimizes the throughput of the platform within a
budget constraint B. We term such problem the B-COVER problem.

The rest of this paper is organized as follows: Related work is exposed in Sec-
tion 2. Our model of computation and communication is introduced in Section 3. The
B-COVER problem is formally stated and shown to be NP-hard in Section 4. We give a
simple heuristic in Section 5, and present our experimental results in Section 6. Finally,
conclusions and future work are discussed in Section 7. The extended version of this
paper [9] introduces another discrete location problem, whose goal is to utilize all the
computing resources of the platform at minimal cost. Possible extensions of our model,
as well as a wide set of simulation results are also presented in [9].

Optimizing Locationing of Multiple Masters for Master-Worker Grid Applications 1043

2 Related Problems

The B-COVER problem is related to the Facility Location class of problems [10,11]. A
classic facility location problem is a spatial resource allocation problem in which one
or more service facilities have to be located to serve a geographically distributed set of
population demands according to some objective function. The term facility is used in its
broadest sense, as it is meant to include entities such as air and maritime ports, factories,
warehouses, schools, hospitals, subway stations, satellites, etc [10]. In our case, we can
assimilate the facilities to the master processors, the service to the input files, and the
set of demands to the computing power of the worker processors. Of particular interest
because close in spirit to the B-COVER problem, are the Maximal Covering Location
Problem [12] that addresses planning situations which have an upper limit P on the
facilities to be located, and the Fixed Charge Location Problem [10] that introduces
capacities as well as costs constraints on the facilities to be located.

However, the B-COVER problem slightly differs from traditional facility location
problems since the tasks allocated to workers produce some results that must be gathered
at master location sites. In fact, the B-COVER problem can be expressed as a Supply
Chain Management problem [13]. A supply chain can be defined as a network of facilities
that manufactures finished products, and distributes these products to customers. Supply
chain management involves deciding (i) where to produce, what to produce, and how
much to produce at each site, and (ii) where to locate plants and distribution centers [13].
In our case, we can assimilate the manufactured products to output files and the plants to
worker processors. The master processors will play two roles: Supply raw material (i.e.
input files) to the plants, and then collect and distribute the final products to the user.

3 Multiple Master Model

Our model builds on the model presented by Banino et. al [14], but differs in that we
here separate the link bandwidths from the communication times between processors,
as well as by differentiating input files from output files. We also introduce a model for
the master locations selection.

The target architectural framework is represented by a graph G = (V,E) as illus-
trated in Fig. 1. Each vertex Pi ∈ V represents a computing resource of weight wi,
meaning that processor Pi requires wi units of time to process one task. Each edge ei,j :
Pi → Pj represents a communicating resource having a bandwidth equal to γi,j , which
limits the amount of data that can be transfered on link ei,j per time unit in both direction.

The target application tasks are modeled as requiring some input data file of size βI ,
and producing some output data file of size βO . It takes ci,j time units to transfer one
input file from processor Pi to a neighbor processor Pj , and c′i,j time units to transfer
one output file from Pi to Pj . The communication times ci,j and cj,i can possibly be
different, due to, say different I/O hardware device of processors Pi and Pj . This holds
also for c′i,j and c′j,i. Computations and communications are supposed to be atomic, i.e
these operations, once initiated, cannot be preempted.

All wi are assumed to be positive rational numbers since they represent the processor
computing times. We disallow wi = 0 since it would permit processor Pi to perform

1044 Cyril Banino

P6P5

P2

P1

P3 P4

e1,2

P7

e3,4

e4,7

e6,7

e2,6
e3,6

e2,5

e1,3

e1,4

Fig. 1. Grid graph. Vertices and edges stand for processors and communication links

an infinite number of tasks, but we allow wi = +∞; then, Pi has no computing power,
but can still forward tasks to other processors (e.g. to model a switch). Similarly, we
assume that all ci,j and c′i,j are positive rational numbers since they correspond to the
communication times between two processors.

The full overlap, single-port model [14] is adopted, in order to represent the operation
mode of the processors. Under this model, a processor can simultaneously receive data
from one of its neighbors, perform some (independent) computation, and send data to
one of its neighbors. At any given time-step, a given processor may open only two
connections, one in emission and one in reception. Stating the communication model
more precisely: If Pi sends an input file to Pj at time-step t, then: Pj cannot start
executing the associated task, or forwarding this input file before time-step t + ci,j ; Pj

cannot initiate a new receive operation before time-step t+ci,j (but, it can perform a send
operation and independent computation).Pi cannot initiate another send operation before
time-step t+ ci,j (but, it can perform a receive operation and independent computation).
This model holds also for the communication of output files.

Finally, let Jm ⊆ V denote the index set of the processors susceptible to be chosen
as a master, and for each processor Pi ∈ Jm, let xi ∈ {0, 1} be the decision variable
to place a master at location Pi, i.e. xi = 1 if Pi is chosen as a master, and xi = 0
otherwise. Let fi be the fixed cost of establishing a master at location Pi, and ti be the
per task cost of operating a master at location Pi. All fi and ti are assumed to be positive
constants since, from a practical viewpoint, it is rather absurd to have negative costs for
establishing master locations.

4 The B-COVER Problem

4.1 Mathematical Formulation of B-COVER

To formally define the B-COVER problem, let n(i) denote the index set of the neighbors
of processor Pi. During one time unit, αi is the fraction of time spent by Pi computing,
si,j and s′i,j are the fractions of time spent by Pi sending input and output files to its
neighbor Pj ∈ n(i), ri,j and r′i,j are the fractions of time spent by Pi receiving input
and output files from its neighbor Pj ∈ n(i). Defined on a platform graph G, a math-
ematical formulation of the B-COVER problem can be stated by the following integer
linear program, whose objective is to maximize the throughputntask(G) of the platform

Optimizing Locationing of Multiple Masters for Master-Worker Grid Applications 1045

graph G.

Maximize
ntask(G) =

i∈V

αi

wi
,

Subject to

(1) ∀i, 0 ≤ αi ≤ 1

(2) ∀i,∀j ∈ n(i), 0 ≤ si,j ≤ 1

(3) ∀i,∀j ∈ n(i), 0 ≤ s′i,j ≤ 1

(4) ∀i,∀j ∈ n(i), 0 ≤ ri,j ≤ 1

(5) ∀i,∀j ∈ n(i), 0 ≤ r′i,j ≤ 1

(6) ∀i ∈ Jm, xi ∈ {0, 1}
(7) ∀i,∀j ∈ n(i), si,j = rj,i

(8) ∀i,∀j ∈ n(i), s′i,j = r′j,i

(9) ∀i,
j∈n(i)

(si,j + s′i,j) ≤ 1

(10) ∀i ∈ Jm, xi +
j∈n(i)

s′i,j ≤ 1

(11) ∀i,
j∈n(i)

(ri,j + r′i,j) ≤ 1

(12) ∀i ∈ Jm, xi +
j∈n(i)

ri,j ≤ 1

(13) ∀ei,j ∈ E,
si,j

ci,j
+

ri,j

cj,i
βI+

s′i,j

c′i,j
+

r′
i,j

c′j,i
βO ≤ γi,j

(14) ∀i /∈ Jm, gi = 0

(15) ∀i ∈ Jm, 0 ≤ gi ≤ 1
wi

+ μi × xi

(16) ∀i /∈ Jm, g′
i = 0

(17) ∀i ∈ Jm, 0 ≤ g′
i ≤ 1

wi
+ μ′

i × xi

(18) ∀i, gi +
j∈n(i)

ri,j

cj,i
=

αi

wi
+

j∈n(i)

si,j

ci,j

(19) ∀i, g′
i +

j∈n(i)

s′i,j
c′i,j

=
αi

wi
+

j∈n(i)

r′i,j
c′j,i

(20)
i∈Jm

(fixi + tigi) ≤ B

• Equations (1), (2), (3), (4) and (5) specify that all the activity variables must belong
to the interval [0, 1], as they correspond to the fraction of activity during one time unit.

• Equation (6) specifies candidate locations for establishing the masters.
• Equations (7) and (8) ensure communication consistency: The time spent by Pi to

send input (output) files to Pj should be equal to the time spent by Pj to receive these
input (output) files from Pi.

• Equation (9) ensures that send operations to neighbors of Pi are sequential.
• Equation (10) enforces that masters do not send output files to other processors.
• Equation (11) ensures that receive operations to neighbors of Pi are sequential.
•Equation (12) enforces that masters do not receive input files from other processors.
• Equation (13) ensures that link bandwidths cannot be exceeded. This constraint is

due to our hypothesis that the same link ei,j may be used in both directions simultane-
ously.

• Equations (14) and (15) specify that only the masters can generate input files to
be allocated on the Grid. Let gi be the number of input files generated by Pi per time
unit. In practice gi will be limited by the number of tasks that Pi can process per time
unit (i.e. 1

wi
) plus the maximum number of input files μi that Pi can communicate to

its neighbors per time unit. Under the base model, μi is bounded by the inverse of
the smallest communication time ci,j of the neighbors of Pi. We hence have μi =

1
min{ci,j |j∈n(i)} .

• Equations (16) and (17) specify that only masters can collect output files generated
on the Grid. Let g′i be the number of output files collected by Pi per time unit, and μ′

i

1046 Cyril Banino

be the maximum number of output files that Pi can receive from its neighbors per time
unit. We hence have μ′

i = 1

min{c′j,i|j∈n(i)} .

• Equations (18) and (19) stand for conservation laws. For every processor Pi, the
number of input files generated, plus the number of input files received, should be equal
to the number of input files processed, plus the number of input files sent (equation (18)).
Similarly, for every processor Pi, the number of output files collected, plus the number
of output files sent, should be equal to the number of input files processed, plus the
number of output files received (equation (19)).

It is important to understand that equations (18) and (19) really apply to the steady-
state. Consider an initialization phase during which some input files are forwarded to
processors, but no computation is performed. Then some computation take place, and
some output files are produced. At the end of this initialization phase, we enter the
steady-state: During each time-period in steady-state, each processor can send/receive
data, and simultaneously perform some computation.

Equations (7), (8), (18) and (19) ensure that there are as many input files produced
as output files consumed. Indeed, by combining these four equations, we can obtain the
following equation:

∑
i∈Jm

gi =
∑

i∈Jm
g′i

• Equation (20) ensures that the costs generated by establishing (fi) and operating
(ti) the chosen master locations do not exceed the budget constraint B.

• Finally, the objective function is the number of tasks computed within one unit of
time, i.e. the platform throughput

∑
i∈V

αi

wi
.

4.2 Complexity of B-COVER

Theorem 1. B-COVER is NP-hard.

Proof. We reduce the MAXIMUM KNAPSACK (MK) problem [15] to the B-COVER
problem.

MAXIMUM KNAPSACK

INSTANCE: Finite set U , for each u ∈ U a size s(u) ∈ Z+ and a value

v(u) ∈ Z+, a positive integer B ∈ Z+.

SOLUTION: A subset U ′ ⊆ U such that
u∈U′

s(u) ≤ B.

MEASURE: Total weight of the chosen elements, i.e.
u∈U′

v(u).

Let us construct an instance of the B-COVER problem as follows:

• Create a set V containing |U | processors.
• Create a bijective function f : V �−→ U .
• ∀Pi ∈ V, wi = 1

v(f(Pi))
.

• ∀Pi ∈ V, fi = s(f(Pi)).
• ∀Pi ∈ V, ti = 0.
• E = ∅ and Jm = V .

The graph of the B-COVER instance is edgeless (E = ∅), meaning that no tasks
can be communicated among processors. Consequently, tasks can only be computed at

Optimizing Locationing of Multiple Masters for Master-Worker Grid Applications 1047

the location where they are generated. A solution of the B-COVER instance consists
in determining a subset V ′ ⊆ V such that

∑
Pi∈V ′ fi ≤ B in order to maximize the

platform throughput, i.e.
∑

Pi∈V ′
1

wi
. Thus, a solution of the B-COVER problem instance

provides a solution of the MK one. This proves that B-COVER is at least as difficult as
MK. Since MK is NP-hard [15] and since the transformation is done in polynomial time,
B-COVER is also NP-hard. ��

5 Heuristic Based on LP-Relaxation

LP-relaxations, i.e. relaxing the integer constraints of an integer linear program, have
considerable interest since they provide the basis both for various heuristics and for
the determination of bounds for the most successful integer linear programs [11]. If we
replace equation (6) by the following equation: ∀i ∈ Jm, 0 ≤ xi ≤ 1, we obtain a
linear program in rational numbers, that can be solved in polynomial time. Solving the
relaxed linear program associated to B-COVER, will give the upper bound of the optimal
platform throughput reachable without exceeding the budget constraint. This bound will
be our benchmark for testing and comparing our heuristic. It is important to notice that
(i) this bound might not be achievable by any discrete solutions and (ii) this bound might
not be tight.

Our heuristic for solving the B-COVER problem consists in solving the relaxed
linear program in the first place, and then select in a greedy fashion the vertices Pi

that have the highest gi values without exceeding the budget constraint. We then obtain
a set M ⊆ Jm of master locations, and we replace equation (6) by the following
equations: ∀i ∈ M, xi = 1 and ∀i ∈ Jm\M, xi = 0. We then deal with a new linear
program, equivalent to the one proposed in [14], which can be solved in polynomial
time. The solution of the linear program gives rational values for all the variables,
which means that we obtain a description of the resource activities during one time
unit. The way to construct a schedule (i.e. where an integer number of input/output
files are communicated, as well as an integer number of tasks is executed) out of the
former description is shown in [14]. In this paper, our main focus is to determine optimal
master locations. Reconstructing the associated schedules is therefore not relevant in our
context.

6 Simulations

To verify our theoretical finding, a software simulator has been developed [9]. The in-
puts of the simulator are the number of vertices and edges in the graph and a probability
function for the communication and the computation costs. Because input and output
operations are symmetric, we let βO = 0, i.e. tasks do not produce output files. Conse-
quently, the masters initially hold input files, and only distributed them to the workers.
We also have enforced that ∀i,∀j ∈ n(i), ci,j = cj,i, i.e. communication times are
equal between two neighbor processors, and we fixed γi,j = ci,j and βI = 1. We hence
retrieve the model proposed by Banino et al. in [14]. For the sake of generality, we let
Jm = V , i.e. any vertex can be chosen as a master. We let the fixed cost fi to establish

1048 Cyril Banino

master locations be equal to 1, and the per task cost ti for operating a master be equal
to 0. In other words, there are no differences in term of cost among the different po-
tential master locations, and the influent factor for choosing master locations becomes
the platform heterogeneity. We hence retrieve the model proposed by Shao et al. in [5].
As a consequence, the objective of the B-COVER problem becomes to maximize the
platform throughput when using at most B masters. The problem becomes then similar
to the Maximal Covering Location Problem [12] also known to be NP-hard.

The aim of these arbitrary decisions is (i) to keep the number of parameters as low as
possible, while maintaining the problem complexity and (ii) to follow previous models
proposed in the literature. Nevertheless, we expect our heuristic to perform better in
presence of more heterogeneity, e.g. with different communicating times for ci,j and
c′i,j , as well as heterogeneous cost distributions, since the problem will become more
specific.

Several random connected graph based on these parameters have been generated.
For each graph, the throughput of our heuristic is computed, and compared to the upper
bound. The following results are averaged values on 1000 random graph, each composed
of 20 vertices and 39 edges. In the following simulation depicted in Fig. 2, the probability
functions for the integer computation costs follow a uniform distribution on the interval
[200, 400], while the integer communication costs follow a uniform distribution on (i)
the interval [100, 200]: The average computation to communication ratio (C/C) is then
equal to 2, (ii) the interval [40, 80]: C/C is then equal to 5, and (iii) on the interval [20, 40]:
C/C is then equal to 10.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5

P
l
a
t
f
o
r
m

U
t
i
l
i
z
a
t
i
o
n

Number of Masters used

B-COVER for B in [0,5],#graphs=1000, #nodes=20

C/C=10

C/C=5

C/C=2

Fig. 2. Average platform utilization for the B-COVER problem. Square curves correspond to
the upper bound, while triangle curves correspond to our heuristic

An important choice for the decision maker is deciding what level of expenditure
(i.e. how many masters should be used) can be justified by the resultant throughput [12].
In our experiments for instance, 6, 3, and 2 masters would be appropriate when the C/C
are equal to 2, 5 and 10 respectively.

Optimizing Locationing of Multiple Masters for Master-Worker Grid Applications 1049

7 Conclusion and Future Work

The problem of allocating a large number of independent, equal-sized tasks to a Grid
composed of a heterogeneous collection of computing resources was considered. This
paper suggests a simple but mandatory departure from traditional implementations:
The need to deploy several masters to efficiently utilize currently emerging large-scale
platforms. A cost model for establishing and operating master locations was provided,
and the problem became to find the most profitable locations for the masters in order to
optimize the platform throughput without violating a budget constraint.

On one hand, we derived pessimistic theoretical results, by showing that the B-
COVER problem is NP-hard. On the other hand, we proposed a simple heuristic that
achieves very good performance on a wide range of simulations. This heuristic can be
embedded within a multi-round dynamic approach that could cope with, and respond to
variations in computation speeds or network bandwidths. Similarly to the hierarchical
Master-Worker approach [8], before each round a supervisor could decide how many
masters should be used, where to place them and how many tasks each master will
produce for the current round.

We also showed that the B-COVER problem presents tight connections with well-
known problems from the Operation Research field. Facility Location and Supply Chain
Management problems have been the subject of a wealth of research, and we believe
that models and solutions to these problems can be adapted for Grid computing. Of
particular interest are facility location models under uncertainty (i.e. under dynamic
conditions), and facility location models with facility failures [13]. Resource failures
and variations in resource availability are very likely to occur on these new emerging
large-scale platforms, especially when the overall processing time is large.

This work can be extended in the following directions. First, we need approximate
solutions of the B-COVER problem. Although our simple heuristic achieves very good
performance on a wide range of simulations, there are no guarantees on how far the
heuristic is from the optimal solution. Second, the B-COVER problem might be easier
to solve (i.e. in polynomial time) on tree-shape platforms, as this is the case for the
Maximal Covering Location Problem [16]. Finally, enabling the use of several masters
transparently is a challenging task, but mandatory in order to promote the distributed
computing technology. The work of Chen [6] is a step in this direction.

Acknowledgments

The author would like to thank his PhD advisor Anne C. Elster for her comments and
suggestions, which greatly improved the final version of the paper. This research was
supported by the Department of Computer and Information Science (IDI), at the Nor-
wegian University of Science and Technology (NTNU).

References

1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home: An Exper-
iment in Public-Resource Computing. Communications of the ACM 45 (2002) 56–61

1050 Cyril Banino

2. Sittig, D.F., Foulser, D., Carriero, N., McCorkle, G., Miller, P.L.: A Parallel Computing
Approach to Genetic Sequence Comparison: The Master Worker Paradigm with Interworker
Communication. Computers and Biomedical Research 24 (1991) 152–169

3. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: Architecture and Performance of an
Enterprise Desktop Grid System. Journal of Parallel and Distributed Computing 63 (2003)
597

4. Beaumont, O., Legrand, A., Robert, Y.: The Master-Slave Paradigm with Heterogeneous
Processors. IEEE Trans. on Parallel and Distr. Sys. 14 (2003) 897–908

5. Shao, G., Berman, F., Wolski, R.: Master/slave Computing on the Grid. In: Proceedings of
the 9th Heterogeneous Computing Workshop, IEEE Computer Society (2000) 3

6. Chen, I.: A Practical Approach to Fault-Tolerant Master/Worker in Condor. Master’s thesis,
Dept. of Computer Science, Univ. of California at San Diego (2002)

7. Lamehamedi, H., Szymanski, B.: Data Replication Strategies in Grid Environments. In: Proc.
Of the Fifth International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP’02) (2002)

8. Aida, K., Natsume, W., Futakata, Y.: Distributed Computing with Hierarchical Master-worker
Paradigm for Parallel Branch and Bound Algorithm. In: Proceedings of the 3rd International
Symposium on Cluster Computing and the Grid, Tokyo, Japan (2003)

9. Banino, C.: Optimizing Locationing of Multiple Masters for Master-Worker Grid Applica-
tions: A Thorough Study. Tech. Report 09/04, Dept. of Computer and Info. Science, NTNU
(2004) URL: http://www.idi.ntnu.no/∼banino.

10. Current, J., Daskin, M., Schilling, D.: Discrete Network Location Models. In Drezner, Z.,
Hamacher, H., eds.: Facility Location Theory: Applications and Methods. Springer-Verlag,
Berlin (2002)

11. Krarup, J., Pruzan, P.: The Simple Plant Location Problem: Survey and Synthesis. European
Journal of Operations Research 12 (1983) 36–81

12. Church, R.L., ReVelle, C.S.: The Maximal Covering Location Problem. Papers of the Regional
Science Association 32 (1974) 101–118

13. Daskin, M. S., Snyder, L.V., Berter, R.T.: Facility Location in Supply Chain Design. In
Langevin, A., Riopel, D., eds.: Logistics Systems: Design and Optimization. Kluwer (2005)
(forthcoming).

14. Banino, C., Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Robert, Y.: Scheduling Strate-
gies for Master-Slave Tasking on Heterogeneous Processor Platforms. IEEE Trans. Parallel
Distributed Systems 15 (2004) 319–330

15. Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P., Kann, V.:
Complexity and Approximation: Combinatorial Optimization Problems and Their Approx-
imability Properties. Springer-Verlag New York, Inc. (1999)

16. Megiddo, N., Zemel, E., Hakimi, S.L.: The Maximum Coverage Location Problem. SIAM
Journal on Algebraic and Discrete Methods 4 (1983) 253–261

An OGSA-Based Bank Service
for Grid Accounting Systems�

Erik Elmroth1, Peter Gardfjäll1, Olle Mulmo2, and Thomas Sandholm2

1 Dept. of Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth,peterg}@cs.umu.se

2 Dept. of Numerical Analysis and Computer Science and PDC, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

{mulmo,sandholm}@pdc.kth.se

Abstract. This contribution presents the design and implementation of a bank
service, constituting a key component in a recently developed Grid accounting
system. The Grid accounting system maintains a Grid-wide view of the resources
consumed by members of a virtual organization (VO). The bank is designed as
an online service, managing the accounts of VO projects. Each service request is
transparently intercepted by the accounting system, which acquires a reservation
on a portion of the project’s bank account prior to servicing the request. Upon
service completion, the account is charged for the consumed resources. We present
the overall bank design and technical details of its major components, as well as
some illustrative examples of relevant service interactions. The system, which has
been implemented using the Globus Toolkit, is based on state-of-the-art Web and
Grid services technology and complies with the Open Grid Services Architecture
(OGSA).

Keywords: Grid accounting, allocation enforcement, OGSA, SweGrid.

1 Introduction

This contribution presents the design and implementation of a bank service, constituting
a key component in the SweGrid Accounting System (SGAS) [10] – a recently developed
Grid accounting system, initially targeted for use in SweGrid [15]. A Grid accounting
system maintains a Grid-wide view of the resources consumed by members of a virtual
organization (VO) [6]. The information gathered by the system can serve several useful
purposes, such as to allow enforcement of project quotas.

The bank is designed as an online service, handling accounts that contain the resource
allocations of Grid projects. Each service request (job submission) is transparently inter-
cepted by the accounting system, which acquires a reservation on a portion of the project
account prior to job execution (cf. credit card reservations). Upon job completion, the
project account is charged for the consumed resources and the reservation is released.
The decentralized nature of Grids, assuming the absence of any central point of control,
adds complexity to the problem. The problem is further complicated by the distributed

� This work was funded by The Swedish Research Council (VR) under contracts 343-2003-953
and 343-2003-954 and The Faculty of Science and Engineering, Umeå Univ.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1051–1060, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1052 Erik Elmroth et al.

resource administration in Grids, i.e., the requirement that resource owners at all times
retain local control over their resources.

The rest of this paper is outlined as follows. Section 2 gives a brief introduction to the
accounting issues addressed, the SweGrid environment, the concept of Grid services, and
an overview of the accounting system in which the bank is a key component. The bank
design is described in Section 3, including a presentation of the services constituting the
bank and their relationships. Some implementation details, including a fine-grained and
customizable authorization framework, are summarized in Section 4. Finally, Section 5
concludes the paper.

2 Background

The accounting system is primarily targeted towards allocation enforcement in SweGrid
[15], although it has been designed to allow simple integration into different Grid en-
vironments. SweGrid is a Swedish national Grid, initially including 6 geographically
distributed Linux clusters with a total of 600 CPUs dedicated for Grid usage 24 hours a
day.

The computer time of SweGrid is controlled by the Swedish National Allocations
Committee (SNAC) [12], which issues computer time, measured in node hours per
month, to research projects. Node hours are assigned to projects based on their scientific
merits and resource requirements, after a peer-reviewed application process. The ac-
counting system must provide coordinated enforcement of these quotas across all sites.
That is, the whole allocation may be consumed at one cluster or in parts at any number
of clusters.

The design considerations for the bank service is closely related to those of the
accounting system as a whole. The design is based on the assumption that a user can be
a member of several VOs and participate in one or more projects within each VO. Each
project’s resource allocation is kept in an account, which is handled by the bank.

The information maintained by the accounting system can, e.g., form the basis for
direct economic compensation, usage quota enforcement, tracking of user jobs, resource
usage evaluation, and dynamic priority assignment of user requests based on previous
resource usage.

The system performs soft real-time allocation enforcement. The enforcement is real-
time in that resources can deny access at the time of job submission, e.g., if the allocation
has been used up, and soft in that the level of enforcement strictness is subject to local
policies.

2.1 Accounting System Overview

Figure 1 presents the main entities and interactions of SGAS. Entity interactions are
illustrated in a scenario where a job is submitted to a computer cluster, although it could
be generalized to cover a generic service request to an arbitrary Grid resource.

Each VO has an associated Bank service to manage the resource allocations of
the VO research projects. The Bank is primarily responsible for maintaining a consis-
tent view of the resources consumed by each research project, and enables coordinated

An OGSA-Based Bank Service for Grid Accounting Systems 1053

Fig. 1. Interactions among accounting system entities (shaded) during job submission

quota enforcement across the Grid sites. From a scalability perspective, a single bank
per VO might seem restrictive. However, it should be stressed that the Bank service is
not confined to a single site. It could be implemented as a virtual resource, composed of
several distributed services, to achieve load-balancing and scalability. The Job Account
Reservation Manager (JARM) is the (single) point of integration between SGAS and
the underlying Grid environment. On each Grid resource, a JARM intercepts incoming
service requests, performs account reservations prior to resource usage and charges the
requester’s account after resource usage. A Log and Usage Tracking Service (LUTS) col-
lects and publishes Usage Records [8], holding detailed information about the resources
consumed by particular service interactions.

In a typical scenario, the user, or an entity acting on behalf of the user, such as a
broker, sends a job request to a resource that has been selected to execute the job. During
the job request process, mutual authentication is performed and the user’s credentials
are delegated to the resource (1). The job request, which includes the identity of the
project account, is intercepted by the resource’s JARM (2), which contacts the VO Bank
to acquire a time-limited reservation on a portion of the project allocation (3). Such an
account reservation is referred to as a hold. If a hold can be granted, the JARM forwards
the job request to a local resource manager (4) that runs the job and gathers information
about the resources consumed by the job. At job completion, the JARM collects the
usage information (5), charges the project account utilizing the hold (6), and records
the usage information in a Usage Record which is logged in a LUTS (7). Any residual
amount of the hold is released. Notably, a user can query both the Bank and the LUTS,
e.g., for various account and job information.

2.2 The Grid Service Concept

The implementation of the accounting system, including its bank component, is based on
the concept of Grid services as defined by the Open Grid Services Architecture (OGSA)
[5]. OGSA extends the concept of Web services [17] by introducing a class of transient

1054 Erik Elmroth et al.

(bounded lifetime) and stateful (maintain state between invocations) Web services. Web
services represent an XML-based distributed computing technology that is independent
of platform, operating system and programming language. Web services are ideal for
loosely coupled systems where interoperability is a primary concern.

The transient nature of Grid services makes them suitable for representing not only
physical resources but also more lightweight entities/activities, such as a video confer-
ence session, a data transfer, or in this case, different parts of a Grid accounting system.

All services expose service data, a dynamic set of XML-encapsulated information
about service metadata and local service state. Grid services provide operations for
querying (service introspection) and updating service data.

The Open Grid Services Infrastructure (OGSI) [16] defines a core set of composable
interfaces which are used for constructing Grid services. The bank component presented
in Section 3 makes use of the OGSI interfaces for, e.g., service creation, lifetime manage-
ment, and service introspection. The interfaces are defined in Web Services Description
Language (WSDL) [18] portTypes and specify the operations as well as the service data
exposed by each service.

3 Bank Design

The Bank component of SGAS has been designed with generality and flexibility in
mind. Specifically, the bank does not assume any particular type of resources, and as
such it can be integrated into any Grid environment. For example, all bank transactions
are performed using Grid credits – an abstract, unit-less currency that can be used to
charge for arbitrary resource usage. Prior to charging an account, a resource may apply
any transformation function to map different kinds of resource usage into Grid credits.

Since SweGrid resources are currently homogeneous and node-hours is the only
resource type being accounted for, the resource-to-Grid credits mapping is trivial. In the
general case of a heterogeneous Grid environment, different types of resource usage as
well as differing resource characteristics need to be considered. For example, storage
utilization could be accounted for as well, and faster processors might be more expensive.
In case dedicated allocations need to be maintained for different types of resources,
separate accounts may be provided for each resource type.

The bank is also neutral with respect to policies. Policy decisions are left to users,
resource managers and allocation authorities. The bank provides the flexibility to ac-
commodate such policies, as well as means of enforcing them. For example, policies
dictated by the allocation authority or the resource might allow a job to run even though
the project allocation has been used up. However, if project quotas are not strictly en-
forced by a resource, the user can still decide only to perform safe withdrawals that do
not exceed the project allocation.

The SGAS bank is composed of three tightly integrated Grid services (Bank,
Account, Hold), whose relationships are illustrated in Figure 2.

Bank Service. The Bank service is responsible for creating as well as locating
Accounts. The Bank service implements the factory pattern as provided by OGSI.

An OGSA-Based Bank Service for Grid Accounting Systems 1055

Administrator

Account holder

<<interface>>

 Hold

<<interface>>

 Account

<<interface>>

 Bank

<<interface>>

 OGSI:Factory

<<interface>>

ServiceAuthorizationManagement

<<interface>>

OGSI:GridService

<<«uses»>>

<<«uses»>>

<<«creates»>>

<<«creates»>>

<<administers>>

<<uses>>

Fig. 2. Bank interface relationships

This allows the Bank to create new Account service instances. Clients can also query
the Bank to obtain a list of the Accounts they are authorized to use.

Account Service. An Account service manages the resource allocation of a research
project. A project member can request a hold on the Account, effectively reserving a
portion of the project allocation for a bounded period of time. A successful hold request
results in the creation of a Hold service, acting as a lock on the reserved account quota.
We refer to the Account service that created a Hold service as the parent account of
that hold. Account services publish transaction history and account state, which can
be queried by authorized Account members.

The set of authorized Bank and Account users, as well as their individual access
permissions, is dynamic and can be modified at run-time by setting an authorization
policy, defined using XML. To this end, the Bank and Account interfaces extend the
ServiceAuthorizationManagement (SAM) [10] service interface. SAM allows autho-
rization policies to be associated with a service. The authorization policy could, e.g.,
contain an access control list associating a set of authorized Account members with
their individual privileges. SAM is customizable, in that it allows different back-end
authorization engines, also referred to as Policy Decision Points (PDP), to be configured
with the service. Note that there is nothing Bank-specific about SAM; it can be used by
any service requiring fine-grained management of authorization policies.

Hold Service. A Hold service represents a time-limited reservation on a portion of
the parent account’s allocation. Holds are usually acquired prior to job submission
and committed after job completion to charge their parent account for the resources
consumed by the job. Hold services are created with an initial lifetime and can be

1056 Erik Elmroth et al.

destroyed either explicitly or through expired lifetime. Hold expiry is controlled using
the lifetime management facilities provided by OGSI. On commit or destruction, the
Hold service is destroyed and any residual amount is returned to the parent account. In
the case of destruction, the entire reservation is released. On commit, a specified portion
of the Hold, corresponding to the actual resource usage, is withdrawn from the parent
account, and a transaction entry is recorded in the transaction log.

Service Interfaces. The operations exposed by the bank services are presented in Table
1. Note that the service interfaces extend OGSI interfaces, which are used for such
purposes as lifetime management, service creation and service introspection. The Bank
and Account services provide batch commit operations (commitHolds), which allow
resources to perform asynchronous commits of sets of Hold services in a single service
invocation. The benefit of this approach is twofold, the perceived resource response time
decreases, allowing higher job throughput during periods of high load, and the bank
request load is reduced, improving overall system scalability. Table 2 gives an overview
of the service data exposed by the bank services. Note that the service data set of each
service also contains the service data of extended OGSI interfaces. Furthermore, note
that since Bank and Account extend the SAM interface, these services also expose
the servicePolicy service data element. Only authorized service clients are allowed to
query the service data.

Table 1. The operations exposed by the SGAS bank interfaces

portType Operation Description

SAM setPolicy Set an authorization policy to be associated
with service.

Bank getAccounts Get all accounts that caller is authorized to
use.

commitHolds Batch commit of several Holds (created by
any account in Bank).

Account requestHold Creates an account Hold if enough funds
are available.

addAllocation Add a (potentially negative) amount to the
account allocation.

commitHolds Batch commit of several Holds (created by
this account).

Hold commit Withdraws a specified amount of the hold
from the parent account.

Service Interactions. The Bank allows privileged users to create new Account ser-
vices. During the lifetime of an Account, its set of members and their access rights can
be modified by associating a new authorization policy with the Account, through the
setPolicy operation. The project’s resource allocation can be updated by an administrator
by issuing a call to the addAllocation operation of the Account.

An OGSA-Based Bank Service for Grid Accounting Systems 1057

Table 2. The service data exposed by the SGAS bank interfaces

portType serviceData Description

SAM servicePolicy The authorization policy associated with the
service.

Bank none -

Account accountData The account state: total allocation, reserved
funds and spent funds.

transactionLog Publishes all transaction log entries.

Hold holdData The reserved amount and the identity of the
parent account.

Resource Bank Account

getAccounts()

requestHold()

Hold
createService()

requestHold()
createService()

Hold

requestTerminationAfter()

commit()

termination
time

Fig. 3. Hold creation and usage

Figure 3 illustrates typical interactions between a resource and anAccount service.
A job is submitted by a user to a resource, which invokes the getAccounts operation on
the Bank to get the user Account (unless it is specified in the job request). The
resource requests a Hold on the Account, prior to job execution. The request includes
an initial Hold expiry time. The expiry time can be reset at any time using the lifetime
management operations provided by OGSI. A resource may choose to extend the Hold
lifetime, e.g., due to a long batch queue. The commit operation is invoked by the resource
after job completion to charge the Hold’s parent account for the consumed resources.
If the Hold is destroyed, either explicitly or through expired lifetime, the Hold amount
is returned to the parent Account.

4 Bank Implementation

Interoperability is a primary concern in Grid computing. Thus, rather than implementing
our own middleware with ad-hoc protocols and communication primitives, we leverage

1058 Erik Elmroth et al.

the latest Grid standardization efforts and toolkits. Current Grid standardization focuses
on Web service technologies in general and OGSA in particular.

Globus Toolkit. Our implementation is based on the Globus Toolkit (GT) [11] open-
source Java reference implementation of the OGSI specification, implemented on top of
the Axis SOAP engine [19]. GT provides a container framework to host Grid services
and a set of tools and implementations of core OGSI interfaces, allowing developers to
build and deploy custom Grid services.

By basing our solution on GT we conform to the latest standard specifications,
thereby achieving desirable interoperability. Furthermore, composing our solution of
toolkit primitives cuts down development time.

GT also provides a security framework orthogonal to application code, which in-
cludes mutual authentication, message encryption and message signing. These security
primitives are based on the WS-SecureConversation [9], XML-Signature [3] and XML-
Encryption [7] standards.

Service Implementations. All bank services are implemented using operation provi-
ders, which offer a delegation-based implementation approach where services are defined
in terms of operation providers, each implementing part of the service functionality.
Operation providers facilitate implementation reuse as well as a development model
based on composition of primitives. For example, a service can be given the capabilities
of the SAM interface simply by configuring the SAM operation provider with the service.

In order to guarantee recoverability, all services are checkpointed to a back-end
database that runs embedded in the GT container. Our implementation uses Xindice [2],
an open-source native XML database that conforms to the standards developed by the
XML:DB group [21].

In the event of a server crash the state of all services needs to be recovered from
secondary storage on server restart. The recovery is performed by means of GT service
loaders. Besides enabling state checkpointing and recovery, the database solution further
allows users to pose non-trivial queries against bank information, such as the transaction
log, by exposing database content as service data, and embedding database query expres-
sions in service data queries. The GT query evaluator framework allows us to redirect
those service data queries to the back-end database, effectively exposing a database view
through the service data framework. For example, an Accountmember can run XPath
[20] queries against the transaction log to obtain specific transaction information. The
XPath query approach further avoids the inconvenience of defining a query language by
means of different interface operations.

Authorization Framework. The GT framework provides a declarative security in-
frastructure through the use of security deployment descriptors. Authentication method
as well as handling of delegated credentials can be specified on a per-operation basis.
The available framework for authorization, on the other hand, only allows authorization
to be specified on a per-service basis.

As the current all-or-nothing access to a service is too coarse for our purposes, we
have developed a fine-grained authorization framework [10]. Through the SAM inter-

An OGSA-Based Bank Service for Grid Accounting Systems 1059

face, an authorization policy and an authorization engine (a PDP) can be associated with a
service. The SAM design is highly flexible and customizable since it allows different au-
thorization back-ends, using different policy languages, to be configured with a service.
The current implementation uses a default authorization back-end based on the eXtensi-
ble Access Control Markup Language (XACML) [1]. Specifically, Sun’s XACML PDP
implementation [14] is used as the underlying authorization engine. However, success-
ful experiments have been carried out using other authorization engines as well. Using
XACML we have also included an overdraft policy, allowing an administrator to set an
upper limit on acceptable account overdraft.

GT uses different handlers that intercept a SOAP [13] request before reaching the
target service. To incorporate our authorization framework we provide an authorization
handler that delegates the authorization decision to the target service’s PDP, if one is
available.

The authorization framework is orthogonal to the service implementation. That is, the
service implementation is not affected by customization or replacement of the security
implementation.

5 Concluding Remarks

We have presented the design and implementation of a bank service for use in a recently
developed Grid accounting system. The bank, as well as the accounting system as a
whole, is designed to be general and customizable, allowing non-intrusive integration
into different Grid environments. The system, which is standards-based and leverages
state-of-the-art Web and Grid services technology, offers user-transparent enforcement
of project allocations while providing fine-grained end-to-end security.

Our planned future work includes a transition towards the Web Services Resource
Framework (WSRF) [4]. Other areas that are subject to further investigation include
more flexible handling of project allocations and measures of improving scalability.

Acknowledgments

We acknowledge Lennart Johnsson, Royal Institute of Technology and Bo Kågström,
Umeå University, for fruitful discussions and constructive comments. We would also
like to thank Martin Folkman, Uppsala University, for his work on developing an SGAS
administration tool. We are also grateful for the constructive comments in the feedback
from the refereeing process.

References

1. A. Anderson, A. Nadalin, B. Parducci, D. Engovatov, H. Lockhart, M. Kudo, P. Humenn,
S. Godik, S.Anderson, S. Crocker, and T. Moses. eXtensible Access Control Markup Language
(XACML) Version 1.0, OASIS, 2003.

2. Apache Xindice, 2004. http://xml.apache.org/xindice/.
3. M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon. XML-Signature Syntax and Process-

ing, W3C, 2002.

1060 Erik Elmroth et al.

4. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S. Tuecke,
and W. Vambenepe. The WS-Resource Framework: Version 1.0, 2004.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

5. I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. 2002.
http://www.globus.org/research/papers/ogsa.pdf.

6. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of High Performance Computing Applications,
15(3):200 – 222, 2001.

7. T. Imamura, B. Dillaway, and E. Simon. XML Encryption Syntax and Processing, W3C,
2002.

8. S. Jackson and R. Lepro. Usage Record – XML Format, Global Grid Forum, 2003.
9. G. Della-Libera, B. Dixon, P. Garg, and S. Hada. Web Services Secure Conversation (WS-

SecureConversation), Microsoft, IBM, VeriSign, RSA Security, 2002.
10. T. Sandholm, P. Gardfjäll, E. Elmroth, L. Johnsson, and O. Mulmo. An OGSA-Based Ac-

counting System for Allocation Enforcement Across HPC Centers. Proceedings of the 2nd
International Conference on Service Oriented Computing (ICSOC’04), ACM, New York,
USA, November 15-19, 2004 (to appear).

11. T. Sandholm and J. Gawor. Globus Toolkit 3: A Grid Service Container Framework, 2003.
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/gt3 core.pdf.

12. SNAC - Swedish National Allocations Committee, 2004. http://www.snac.vr.se/.
13. SOAP Specifications, 2004. http://www.w3.org/TR/soap/.
14. Sun’s XACML Implementation, Sun Microsystems, 2004.

http://sunxacml.sourceforge.net/.
15. SweGrid, 2004. http://www.swegrid.se/.
16. S. Tuecke, K. Czajkowski, J. Frey, S. Graham, C. Kesselman, T. Maquire, T. Sandholm,

D. Snelling, and P. Vanderbilt. Open Grid Services Infrastructure: Version 1.0, Global Grid
Forum, 2003.

17. Web Services, 2004. http://www.w3.org/2002/ws/.
18. Web Services Description Language (WSDL), 2004. http://www.w3.org/TR/wsdl.
19. WebServices – AXIS, 2004. http://ws.apache.org/axis/.
20. XML Path Language (XPath), 2004. http://www.w3.org/TR/xpath.
21. XML:DB Initiative, 2004. http://xmldb-org.sourceforge.net/.

A Grid Resource Broker
Supporting Advance Reservations

and Benchmark-Based Resource Selection�

Erik Elmroth and Johan Tordsson

Dept. of Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth,tordsson}@cs.umu.se

Abstract. This contribution presents algorithms, methods, and software for a
Grid resource manager, responsible for resource brokering and scheduling in
early production Grids. The broker selects computing resources based on ac-
tual job requirements and a number of criteria identifying the available resources,
with the aim to minimize the total time to delivery for the individual applica-
tion. The total time to delivery includes the time for program execution, batch
queue waiting, input/output data transfer, and executable staging. Main features
of the resource manager include advance reservations, resource selection based
on computer benchmark results and network performance predictions, and a basic
adaptation facility.

Keywords: Resource broker, scheduling, production Grid, benchmark-based re-
source selection, advance reservations, adaptation, Globus toolkit.

1 Introduction

The task of a Grid resource broker and scheduler is to dynamically identify and character-
ize the available resources, and to select and allocate the most appropriate resources for a
given job. The resources are typically heterogeneous, locally administered, and accessi-
ble under different local access policies. The broker operates without global control, and
its decisions are entirely based on the information provided by individual resources and
information services with aggregated resource information. In addition to information
about what resources are available, each resource may provide static information about
architecture type, memory configuration, CPU clock frequency, operating system, local
scheduling system, various policy issues, etc, and dynamic information such as current
load and batch queue status. For more information on typical requirements for a good
resource broker, see [3].

A reservation capability is vital for enabling co-allocation of resources in highly uti-
lized Grids. This feature also provides a guaranteed alternative to predicting batch queue
waiting times. For general discussions about resource reservations (and co-allocations),
see, e.g., [5,8]. A reservation feature naturally depends on the reservation support pro-
vided by local schedulers [12] and the use of advance reservations also have implications
on the utilization of each local resource [21].
� This work was funded by The Swedish Research Council (VR) under contract 343-2003-953

and The Faculty of Science and Engineering, Umeå University.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1061–1070, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1062 Erik Elmroth and Johan Tordsson

The performance differences between Grid resources and the fact that their rel-
ative performance characteristics may vary for different types of applications makes
resource selection difficult, see, e.g., [9,16,19,20]. Our approach to handle this is to use
a benchmark-based procedure for resource selection. Based on the user’s identification
of relevant benchmarks and an estimated execution time on some specified resource,
the broker estimates the execution time for all resources of interest. This requires that a
relevant set of benchmark results are available from the resources’ information systems.

As most Grid resources still are available without performance and queue time guar-
antees, the adaptation feature provided by our resource broker is useful. It allows a user
to request that the broker after an initial job submission strives to re-direct the job to
another resource, likely to give a shorter total time to delivery.

A resource broker and scheduler is fundamental in any large-scale Grid-environment
for scientific applications. Our software is mainly targeted for the NorduGrid and Swe-
Grid infrastructures. These are both Globus-based production environments for 24 hour
per day Grid usage.

The outline of the paper is as follows. Section 2 gives a brief introduction to the
NorduGrid software and the general resource brokering problem. The main algorithms
and techniques of our resource broker are presented in Section 3, including, e.g., support
for making advance resource reservations and to select resources based on estimates of
the total time to delivery. The latter feature builds on benchmark-based execution time
estimates and network performance predictions. Minor extensions to the NorduGrid user
interface are presented in Section 4. Sections 5 and 6 present some concluding remarks
and acknowledgments, respectively, followed by a list of references.

2 Background and Motivation

Our development of resource brokering algorithms and prototype implementations are
mainly focused on the infrastructure and usage scenarios typical for NorduGrid [13]
and SweGrid [23]. The main Grid middleware used is the NorduGrid software [6]. The
Grid resources are typically Linux-based clusters (so, in the rest of this paper, the word
cluster is often used instead of the more general term Grid resource). NorduGrid includes
over 40 clusters of varying size, most of them located in the Nordic countries. SweGrid
currently includes six clusters, each with 100 Pentium 4 processors.

2.1 The NorduGrid Software

The NorduGrid middleware is based on standard protocols and software such as OpenL-
dap [14], OpenSSL [15] and Globus Toolkit version 2 [7,10]. The latter is not used in full,
as some Globus components such as the GRAM (with the gatekeeper and jobmanager
components) are replaced by custom made components [6].

NorduGrid makes use of the Grid Security Infrastructure (GSI) in Globus Toolkit 2.
GSI specifies a public key infrastructure, and SSL (TLS) for authenticated and private
communication. GSI also specifies short-term user-proxy certificates, signed by either
the user or by another proxy. The proxy allows the user to access various remote re-
sources without (re)typing passwords and to delegate authority. An extension of a subset

A Grid Resource Broker Supporting Advance Reservations 1063

of the Globus resource specification language (RSL) [17] is used to specify resource
requirements and necessary job execution information.

The NorduGrid user interface consists of command line tools for managing jobs.
Users can submit jobs, monitor the execution of their jobs and cancel jobs. The resource
broker is part of the the job submission tool, ngsub. Other tools allows, e.g., the user to
retrieve output from jobs, get a peak preview of job output and remove job output files
from a remote resource. Communication with remote resources is handled by a simple
GridFTP client module.

Each Grid resource runs one instance of the NorduGrid GridFTP server. When
submitting a job, the user invokes the broker which uploads an RSL job submission
request to the GridFTP server. The GridFTP server specifies plugins for custom handling
of FTP protocol messages. NorduGrid makes use of these for Grid access to the local
file systems of the resources, to manage Grid access control lists, and most important,
for Grid job management.

Each resource also runs a Grid manager that manages the Grid jobs through the
various phases of their execution. The Grid manager periodically searches for recently
submitted jobs. For each new job, the RSL job description is analyzed, and any required
input files are staged to the resource using GridFTP. The job description is translated
into the language of the local scheduler, and the job is submitted to the batch system.
Upon job completion, the Grid manager stages the output files to the locations specified
in the job description.

2.2 The Resource Brokering Problem

In general, we can identify two major classes of Grid resource brokers, namely cen-
tralized and distributed brokers. A centralized broker manages and schedules all jobs
submitted to the Grid, while a distributed broker typically handles jobs submitted by
a single user only. Centralized brokers are, at least in theory, able to produce optimal
schedules as they have full knowledge of the jobs and resources, but such a broker can
easily become a performance bottleneck and a single point of failure. Moreover, they
turn a Grid environment more into a single virtual computer than into a dynamic in-
frastructure for flexible resource sharing. A distributed broker architecture, on the other
hand, scales well and makes the Grid more fault-tolerant, but the partial information
available to each instance of the broker complicates the scheduling decisions. A hybrid
type is the hierarchical broker architecture, in which distributed brokers are scheduled
by centralized brokers, attempting to combine the best of two worlds. Grid systems uti-
lizing a centralized broker include, e.g., EDG [18] and Condor [11]. Distributed brokers
are implemented by, e.g., AppLeS [2] and NetSolve [4]. For further discussions on a
similar classification of brokers, see, e.g., [1].

In the following we focus on algorithms and software for a distributed resource
broker. Such a broker typically seeks to fulfill the user’s resource requests by selecting
the resources that best suit the user’s application. Selecting the most suitable resources
often means identifying the resources that provide the shortest Total Time to Delivery
(TTD) for the job. TTD is the total time from the user’s job submission to the time
when the output files are stored where requested. This includes the time required for
transferring input files and executable to the resource, the waiting time, e.g., in a batch

1064 Erik Elmroth and Johan Tordsson

queue, the actual execution time, and the time to transfer the output files to the requested
location(s).

In order to manage this task, the broker needs to identify what resources are available
to the user, to characterize the resources, to estimate all parts of the TTD, etc. Other
requests the user may put on the broker is to make advance resource reservations, e.g.,
at a specific time, or to not only submit the job but also to adapt to possible changes in
resource load and possibly perform job migration.

3 Resource Brokering Algorithms

Our main brokering algorithm performs a series of tasks, e.g., it processes the RSL spec-
ifications of job requests, identifies and characterizes the resources available, estimates
the total time to delivery for each resource of interest, makes advance reservation of
resources, performs the actual job submission. Figure 1 presents a high-level outline of
the algorithm.

Input: RSL-specification(s) of one or more job requests.
Action: Select and submit jobs to the most appropriate resources.
Output: none.

1. Process RSL specification and create a list of all individual job requests.
2. Contact GIIS server(s) to obtain a list of available clusters.
3. Contact each resource’s GRIS for static and dynamic resource information (hardware and

software characteristics, current queue and load, etc).
4. For each job:

(a) Select the cluster to which the job will be submitted:
i. Filter out clusters that do not fulfill the requirements on memory, disk space, archi-

tecture etc, and clusters that the user is not authorized to use.
ii. Estimate TTD for each remaining resource (see Section 3.2).

If requested, resource reservation is performed during this process.
iii. Select the cluster with the shortest predicted TTD.

(b) Submit the job to the selected resource.
(c) Release any reservations made to non-selected clusters.

Fig. 1. Brokering algorithm overview

The input RSL specification(s) contains one or more job requests including infor-
mation about the job to run (e.g., executable, input/output files, arguments), actual job
requirements (e.g., amount of memory needed, architecture requirement, computer time
required, requests for advance reservations), and optionally, job characteristics that can
be used to make improved resource selection (e.g., listing of benchmarks with relevant
performance characteristics).

In Step 1, the user’s request is processed and separated into individual jobs. In
Step 2, the broker identifies what resources that are available by contacting one or
more Grid Index Information Services. The specific characteristics of the resources
found are identified in Step 3, by contacting the Grid Resource Information Service on

A Grid Resource Broker Supporting Advance Reservations 1065

each individual resource. The actual brokering process is mainly performed in Step 4,
where resources are evaluated, selected, and optionally reserved in advance for each job.
Finally, the jobs are actually submitted and any non-utilized reservations are released. In
the following presentation, we focus on the more intricate issues of performing advance
reservations and on how to determine an estimate (prediction) of the total time to delivery.

Notably, this algorithm does not reorder the individual job requests (when multiple
jobs are submitted in a single invocation). This can possibly be done in order to reduce
the average batch queue waiting time, at least by submitting shorter jobs before longer
ones given that they require the same number of CPUs. In the general case, factors such
as local scheduling algorithms and competing Grid brokers make the advantage of job
reordering less obvious.

3.1 Advance Resource Reservations

The advanced reservation feature makes it possible to obtain a guaranteed start time in
advance. A guaranteed start time brings two advantages. It makes it possible to coordinate
the job with other activities, and resource selection can be improved as the resource
comparison is based on a guaranteed start time rather than on an estimate.

The reservation protocol developed supports two operations: requesting a reservation
and releasing a reservation. A reservation request contains the start time and the requested
length of the reservation, the requested number of CPUs, and optionally, an account to be
charged for the job. Upon receiving a reservation request from the broker, the GridFTP
server adds the user’s local identity to the request, information unknown to the broker
but required by the local scheduler. Then, the GridFTP server invokes a script to request
a reservation from the local scheduler. If the scheduler accepts the request and creates
the reservation, the GridFTP server sends a unique identifier and the start time of the
reservation to the broker. If no reservation could be created, a message indicating failure
is returned to the broker. The GridFTP server saves the reservation identifier and a copy
of the user’s proxy for every successful reservation, enabling subsequent identification
of the user who made the reservation.

For releasing a reservation, the broker uploads a release message containing the
reservation identifier and the GridFTP server confirms that the reservation is released.

Job Submission with a Reservation. Upon a successful reservation, the broker adds
the received reservation identifier to the RSL job description before submitting the job
to the resource.

Before the job is submitted to the local scheduler, the Grid manager analyzes the job
description and detects the reservation identifier. The Grid manager inspects the saved
proxy files and their associated reservation identifiers to ensure that the reservation exists.
Furthermore, the Grid manager compares the proxy used to submit the job with the one
used to make the reservation, ensuring that no user can submit jobs to another user’s
reservation by spoofing the reservation id. The job is not submitted to the local scheduler
unless the specified reservation exists and was created by the user submitting the Grid
job.

When the job finishes executing on the resource, the Grid manager may remove
the reservation, allowing the user to run only the requested job. Alternatively, resources

1066 Erik Elmroth and Johan Tordsson

may allow the user to submit more jobs to the reservation once the first has finished. The
configuration of the Grid manager determines the policy to be used.

The advance resource reservation feature requires a reservation capability in the
local scheduler. The current implementation supports the Maui scheduler [22], although
any local scheduler may be used. Support for other schedulers can easily be added by
adapting the scripts interacting with the local scheduler (see, e.g., [12]).

3.2 Estimating the Total Time to Delivery

The estimation of the total time to delivery (TTD), from the user’s job submission to the
final delivery of output files to requested storage requires that the time to perform the
following operations is estimated:

1. Stage in: transfer of input files and executable to the resource,
2. Waiting, e.g., waiting in batch queue and for operation 1 to complete,
3. Execution, and,
4. Stage out: transfer of output files to requested location.

Notably, the waiting time is here defined as the maximum of the time for stage in and
all other waiting times before the job actually can start to execute. The estimated TTD
is given as the sum of estimated times for operations 2, 3, and 4. Sometimes, the time
for stage out cannot be estimated, due to lack of information about output file sizes. In
these cases that part is simply omitted from the TTD used for comparisons. Below, we
summarize how we make these estimates.

Benchmark-Based Time Predictions. The execution time estimate needs to be based
both on the performance of the resource and the characteristics of the applications.
This issue is made slightly more intricate by the fact that the relative performance
difference between different computing resources typically varies with the character of
the application. In order to circumvent this problem, we give the user the opportunity
to specify one or more benchmarks with performance characteristics similar to those of
the application. This information is given together with an execution time estimate on a
resource with a specified benchmark result. Based on this information and benchmark
results for each individual resource, we make execution time estimates for all resources
of interest. In doing this, we assume linear scaling of the application in relation to the
benchmark, i.e., a resource with a benchmark result a factor k better is assumed to
execute the application a factor k faster.

We remark that a good execution time estimate serves two purposes. First, a sufficient
but short estimated execution time may lead to an earlier job start, due to standard batch
system scheduling algorithms. Second, a good estimate is more likely not to be too short,
and hence reduces the risk for job preemption by the local scheduler.

The user can specify k benchmarks as triples {bi, ri, ti}, i = 1, . . . , k, where bi

is the benchmark name, ri is the benchmark result on a system where the application
requires the time ti. The broker matches these specifications with the benchmark results
provided by each cluster. For each requested benchmark that is available at the resource,
an execution time for the application is predicted.

A Grid Resource Broker Supporting Advance Reservations 1067

If the cluster does not provide a result for a requested benchmark, the corresponding
time estimate is taken to be a penalty factor c times the longest execution time estimated
from other benchmarks for that cluster. The penalty factor can be configured by the user.
As a default value, c = 1.25 is used.

When comparing the performance of different clusters during the resource selection
procedure, one part of the TTD estimate for each resource is given from this procedure.
The value used is the average execution time estimate of the k estimates obtained from
different benchmarks. At job submission, after the selection procedure, an execution
time must be included in the request sent to the resource. In order to reduce the risk for
scheduler preemption, this execution time is chosen as the maximum of the k estimates
calculated.

Network Performance Predictions. The time estimation for the stage in and stage
out procedures are based on the actual (known) sizes of input files and the executable
file, user-provided estimates for the sizes of the output files, and network bandwidth
predictions.

The network bandwidth predictions are performed using the Network Weather Ser-
vice (NWS) [24]. NWS combines periodic bandwidth measurements with statistical
methods to make short-term predictions about the available bandwidth.

3.3 Job Queue Adaptation

Information gathered about the state of a Grid is necessarily old. Network load and
batch queue sizes may change rapidly, new resources may appear and others become
unavailable. The load predictions used by the broker as a basis for resource selection
will become out-of-date. Nevertheless, more recent information will always be available
as Grid resources periodically advertise their state. With this in mind, the broker can
keep searching for better resources once the initial job submission is done. If a new
resource that is likely to result in a earlier job completion time is found (taking into
account all components of TTD, including file restaging), the broker migrates the job
to the new resource. This procedure is repeated until the job starts to execute on the
currently selected resource.

4 User Interface Extensions

We have extended the standard NorduGrid user interface with some new options and
added some new attributes to the NorduGrid RSL, making the new features available to
users.

Benchmarks and Advance Resource Reservations. In order to make use of the feature
of benchmark-based execution time prediction, the user must provide relevant bench-
mark information as described by the following example. Assume that the user knows that
the performance of the application my app is well characterized by the NAS benchmarks
LU, BT and CG. For each of these benchmarks, the user needs to specify a benchmark
result and an expected execution time on a system corresponding to that benchmark

1068 Erik Elmroth and Johan Tordsson

result. Notably, the expected execution time must be given for each benchmark, as the
benchmark results may be from different reference computers. This is specified using
the new RSL attribute benchmarks.

Figure 2 illustrates how the user specifies that the application requires 65 minutes on
a cluster where the results for the NAS LU and BT benchmarks class C are 250 and 200,
respectively. The estimated execution time is 50 minutes on an (apparently different)
cluster where the CG benchmark result is 90.

&(executable = my_app)(stdin = my_app.in)
(stdout = my_app.out)(benchmarks = (nas-lu-c 250:65)
(nas-bt-c 200:65)(nas-cg-c 90:50))

Fig. 2. Sample RSL request including benchmark-based execution time predictions

Network Transfers. In the example in Figure 3, the job involves transfer of large
input and output files. The broker will determine the actual sizes of the input files
when estimating the transfer time for these. The new, optional, RSL attribute
outputfilessizes allows the user to provide an estimate of the size of the job
output. As shown in the figure, the user need not include all output files in the
outputfilessizes relation. Estimated file sizes can specified in bytes or with
any of the suffixes kB, MB or GB. The NorduGrid middleware uses the inputfiles
and outputfiles attributes as a replacement for file stage in and
file stage out from the RSL specification.

&(executable = my_program)(arguments = params input)
(stdout = logfile)

(inputfiles = (params gsiftp://host1/file1)
(input http://host2/file2))

(outputfiles = (results gsiftp://host3/my_program.results)
(data gsiftp://host3/my_program.data)
(logfile gsiftp://host4/my_program.log))

(outputfilessizes = (results 230MB)
(data 5GB))

Fig. 3. Sample RSL request with specifications required to estimate file transfer times

Command Line Options. In addition to the RSL extension, the broker supports some
new command line options. The option-A is used to request the broker to perform queue
adaptation. The reservation feature is invoked using the option-R. The option-S is used
to build a pipeline between jobs, so that output from one job is used as input to the next.

5 Concluding Remarks

The resource broker presented is developed with focus on the NorduGrid software and
the NorduGrid and SweGrid production environments. It includes support for making ad-
vance resource reservations and selects resources based on benchmark-based execution

A Grid Resource Broker Supporting Advance Reservations 1069

time estimates and network performance predictions. The broker is a built-in component
of the user’s submission software, and is hence a user-owned broker acting with no need
for global control, entirely basing its decisions on the dynamic information provided by
the resources.

Acknowledgments

We acknowledge Åke Sandgren, High Performance Computing Center North (HPC2N),
Umeå, Sweden, for technical support. We are also grateful for the constructive comments
in the feedback from the refereeing process.

References

1. C. Anglano, T. Ferrari, F. Giacomini, F. Prelz, and M. Sgaravatto. WP01 report on current
technology. http://server11.infn.it/workload-grid/docs/DataGrid-01-TED-0102-1 0.pdf.

2. F. Berman and R. Wolski. The AppLeS project: A status report. In N. Koike, editor, Proceed-
ings of the 8th NEC Research Symposium, 1997.

3. J. Brooke and D. Fellows. Draft discussion document for GPA-WG – Abstraction of functions
for resource brokers. http://grid.lbl.gov/GPA/GGF7 rbdraft.pdf.

4. H. Casanova and J. Dongarra. Netsolve: A network server for solving computational science
problems. Int. J. Supercomput. Appl., 11(3):212–223, 1997.

5. K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. SNAP: A protocol for
negotiating service level agreements and coordinating resource management in distributed
systems. In Feitelson D.G. et al., editors, Job Scheduling Strategies for Parallel Processing,
volume 2537 of Lecture Notes in Computer Science, pages 153–183, Berlin, 2002. Springer-
Verlag.

6. P. Eerola, B. Kónya, O. Smirnova, T. Ekelöf, M. Ellert, J.R. Hansen, J.L. Nielsen,
A. Wäänänen, A. Konstantinov, J. Herrala, M. Tuisku, T. Myklebust, F. Ould-Saada, and
B. Vinter. The NorduGrid production Grid infrastructure, status and plans. In Proc. 4th Inter-
national Workshop on Grid Computing, pages 158–165. IEEE CS Press, 2003.

7. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Int. J. Super-
comput. Appl., 11(2):115–128, 1997.

8. I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy. A distributed resource
management architecture that supports advance reservations and co-allocation. In 7th Inter-
national Workshop on Quality of Service, pages 27–36, Washington - Brussels - Tokyo, 1999.
IEEE.

9. I. Foster, J.M. Schopf, and L. Yang. Conservative scheduling: Using predicted variance to
improve scheduling decisions in dynamic environments. In Proceedings of the ACM/IEEE
SC2003: International Conference for High Performance Computing and Communications,
2003.

10. Globus. http://www.globus.org.
11. M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In Proceedings

of the 8th International Conference of Distributed Computing Systems, pages 104–111, June
1988.

12. J. MacLaren. Advance reservations state of the art.
http://www.fz-juelich.de/zam/RD/coop/ggf/graap/sched-graap-2.0.html.

13. NorduGrid. http://www.nordugrid.org.
14. OpenLDAP. http://www.openldap.org.

1070 Erik Elmroth and Johan Tordsson

15. OpenSSL. http://www.openssl.org.
16. K. Ranganathan and I. Foster. Simulation studies of computation and data scheduling algo-

rithms for data Grids. Journal of Grid Computing, 1(1):53–62, 2003.
17. The Globus Resource Specification Language RSL v1.0.

http://www-fp.globus.org/gram/rsl spec1.html.
18. M. Ruda, C. Anglano, S. Barale, L. Gaido, A.Guarise, S. Lusso, A. Werbrouck, S. Beco,

F. Pacini, A. Terracina, A. Maraschini, S. Cavalieri, S. Monforte, F. Donno, A, Ghiselli,
F. Giacomini, E. Ronchieri, D. Kouril, A. Krenek, L. Matyska, M. Mulac, J. Popisil, Z. Salvet,
J. Sitera, J.Visek, M. Vocu, M. Mezzadri, F. Prelz, M. Sgaravatto, and M. Verlato. Integrating
Grid tools to build a computing resource broker: activities of datagrid WP1. In CHEP’01
computing in high energy and nuclear physics.

19. W. Smith, I. Foster, and V. Taylor. Predicting application run times using historical informa-
tion. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, volume 1459 of Lecture Notes in Computer Science, Berlin, 1999. Springer-
Verlag.

20. W. Smith, I. Foster, and V. Taylor. Using run-time predictions to estimate queue wait times
and improve scheduler performance. In Dror G. Feitelson and Larry Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, volume 1459 of Lecture Notes in Computer
Science, pages 202–219, Berlin, 1999. Springer-Verlag.

21. W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations. In 14th Interna-
tional Parallel and Distributed Processing Symposium, pages 127–132, Washington - Brussels
- Tokyo, 2000. IEEE.

22. Supercluster.org. Center for HPC Cluster Resource Management.
http://www.supercluster.org.

23. Swegrid. http://www.swegrid.se.
24. Rich Wolski. Dynamically forecasting network performance using the network weather ser-

vice. Journal of Cluster computing, 1(1):119–132, 1998.

The Dragon Graph: A New Interconnection Network
for High Speed Computing

Jywe-Fei Fang

St.John’s and St.Mary’s Institute of Technology, Taipei 251, Taiwan, R.O.C.

Abstract. A new interconnection network called the Dragon graph, is proposed.
A Dragon graph is a variation of the hypercube and the cube-connected-cycle
with constant degree four. The Dragon graph gains many advantages. It has a
smaller diameter and cost than the comparable cube-connected-cycle. It is node-
symmetric and edge-symmetric. A routing algorithm and a broadcasting algorithm
are proposed in this paper.

1 Introduction

The aim of studying interconnection networks and their combinatorial properties is to
find good topologies for massively parallel computing. Ideally, attributes of a good topol-
ogy include the diameter, cost, communication and symmetry [4]. The diameter is
the maximum distance of each pair of nodes in a graph. So, we can use it to measure
the maximum communication delay. The degree can be used to measure the hardware
complexity of each processor. Usually, an interconnection network with a small degree
implies potentially a large diameter. It appears that there is a tradeoff between the de-
grees and diameters of interconnection networks. Thus, there is a commonly used metric,
called cost, which is the product of diameter and degree.

It is widely recognized that interprocessor communication is one of the most im-
portant issues for interconnection networks because the communication problem is the
key issue to many parallel algorithms [1]. Routing and broadcasting are two prim-
itive communication problems. The former is to send a message from a source to a
destination node and the latter is to distribute the same message from a source node
to all other nodes. They appear in applications such as matrix operations (e.g., matrix
multiplication, factorization, inversion, transposition), database operation (e.g. polling,
master-slave operation) and transitive closure algorithms [4].

An interconnection network is node-symmetric if and only if for any two nodes U
andV , there exists an automorphism of the network that mapsU toV . An interconnection
network is edge-symmetric if and only if for any two edges e and g, there exists an
automorphism of the network that maps e to g. An interconnection network with node-
symmetry and edge-symmetry implies that it can be implemented regularly.

In recent years, among many interconnection networks, the hypercube has been the
focus of many researchers due to its structural regularity, potential for the parallel com-
putation of various algorithms, and the high degree of fault tolerance capabilities [8].
However, the hypercube has a practical limitation. Each processor of the n-dimensional
hypercube is connected to n other processors. Consequently, the hypercube is unfea-
sible for practical implementation of massively computing because its large fanout

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1071–1078, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1072 Jywe-Fei Fang

logarithmically proportional to the number of processors. To overcome the disadvantage
of the hypercube, some variations of hypercube with constant degree such as cube-
connected cycles, butterfly networks, debruijn networks, shuffle exchange
graphs have been proposed [4].

The cube-connected cycle has received considerable attention [7]. Researchers have
devoted themselves to various issues of cube-connected cycles. Meliksetian and Chen
devised an optimal routing algorithm for the cube-connected cycle and derived the the
exact diameter [6]. Kuo and Fuchs proposed two reconfigurable architectures of cube-
connected cycles, which are capable of tolerating classes of multiple failures [3]. Chen
and Lau presented a new layout of the cube-connected cycle which uses less than half
the area of the Preparata-Vuillemin layout [2,7]. On the other hand, various variations
of the cube-connected cycle have been proposed. Lo and Chen proposed a generalized
cube-connected cycle called k-ccc to enhance the extensibility [5]. Sebastian et al. pro-
posed the folded cube-connected cycle, another variation of the cube-connected cycles,
to improve the diameter. However, the both topologies are neither node-symmetric nor
edge-symmetric. Thus, to lay out them is potentially complex. In this paper, the Dragon
graph, a new variation of the cube-connected cycle, with constant degree(degree four) is
proposed. It gains many advantages. For example, It is both node-symmetric and edge-
symmetric. Thus, it is potential to be implemented regularly. We derive the topological
properties such as diameter and cost of the Dragon graph. To compare with the corre-
sponding cube-connected cycle, it has a smaller diameter and cost. We also propose a
routing algorithm and a broadcasting algorithm for the Dragon graph.

The rest of this paper is organized as follows. In Section 2, the structure of the
Dragon graph is described. We also present some notations and background that will be
used throughout this paper. In Section 3, we propose a routing algorithm for the Dragon
graph. In Section 4, a broadcasting scheme of the Dragon graph is introduced. Some
topological properties of the Dragon graph are discussed in Section 5. Finally, in Section
6, we give some concluding remarks.

2 Notation and Backgrounds

Let H(n) denote an n-dimensional hypercube comprising of 2n nodes. H(n) is con-
structed by numbering the nodes from 0 to 2n− 1 and linking each pair of nodes whose
addresses differ by exactly one bit position. A link is assigned a link number i if it
connects two nodes whose addresses are different at exactly the ith bit position (starting
with the least significant bit as bit 0).

The n-dimensional cube-connected-cycle denoted by CCC(n) is derived from the
n-dimensional binary hypercube by replacing each node of the hypercube with a cycle
of n nodes. Each node of CCC(n) is labelled by a pair (w, i), where w is the label of
the node in the hypercube which corresponds to the cycle and i is the position of the
node within the cycle. Two nodes (w, i) and (w′, i′) of CCC(n) are connected by an
edge if and only if either

(1) w = w′ and i ≡ (i + 1) mod n.
(2) i = i′ and w differs from w′ by exactly the ith bit.
An edge of the first type(second type) is called cycle(hypercube) edge. It is easy

to see that CCC(n) is not edge-symmetric because cycle edges and hypercube edges
play different roles in the network. In Figure. 1, the structure of CCC(3) is displayed.

The Dragon Graph: A New Interconnection Network for High Speed Computing 1073

(000,1)

(000,2)

(000,3)
(001,3)

(001,1)

(001,2)

Fig. 1. The structure of CCC(3)

00f f00

0f0

10r

1f0

f01

0f1

f11
11f

01f
1f1

f10

00f f00

0f0

10r

1f0

f01

0f1

f11
11f

01f
1f1

f10

Fig. 2. The structure of DG(3), where the dash line and dash node show the hypercube that is the
DG(3) derived from

The n-dimensional Dragon graph denoted by DG(n) is derived from the CCC(n)
by merging each pair of nodes which is connected with each other by the hyper-
cube edge in CCC(n). Each node U of DG(n) is labelled by a string of n symbols
un−1un−2 . . . ui . . . u1u0 over set 0, 1, f , where f is to label the hypercube edge in the
corresponding CCC(n). For example, a pair of nodes (000,3) and (001,3) of CCC(3)
will be merged to a node 00f of DG(3). It is easy to see that f exists exactly once in
each node address of DG(n). In Figure. 2, the structure of DG(3) is shown..

Definition 1. Let U = un−1un−2 . . . ui . . . u1u0, where ui is f , be a node in DG(n).
The flag bit of U , denoted by flag(U), is defined as i .

Two nodes of the DG(n), U with flag bit i and V with flag bit j are connected by
an edge if and only if both

(1) j ≡ i + 1 mod n or j ≡ i− 1 mod n, and
(2) each bit except the ith bit and the jth bit of U and V is common.
For example, 0f0 is connected to f00, f10, 00f and 01f . f00 is connected to 00f ,

10f , 0f0 and 1f0. In fact, each node of Dragon graph is connected to four neighbors,
(r,1) neighbor,(r,0) neighbor, (l,0) neighbor and (l,1) neighbor.

1074 Jywe-Fei Fang

Definition 2. The (r,1)((r,0)) neighbor of a node U = un−1un−2 . . . ui . . . u1u0 with
flag bit i can be derived by shifting the flag bit to bit i− 1 mod n(that is, ui−1 mod n is
replaced by symbol f)and complementing ui with symbol 1(0).

Definition 3. The (l,1),((l,0)) neighbor of a node U = un−1un−2 . . . ui . . . u1u0 with
flag bit i can be derived by shifting the flag bit to bit i + 1 mod n(that is, u(i+1) mod n

is replaced by symbol f)and complementing ui with symbol 1(0).
For example, (r,1) neighbor,(r,0) neighbor, (l,1) neighbor and (l,0) neighbor of

0100f is f1001, f1000, 010f1 and 010f0.

Definition 4. The binary sequence of node U = un−1un−2 . . . u1u0 with flag bit i,
denoted by Binseq(U),is defined as un−1un−2 . . . ui+1ui−1 . . . u1u0.

For example, Binseq(10f1) is 101. If nodes are with the same binary sequence,
They are called in the common binary sequence class. For Example, f010, 0f10, 01f0,
010f are in the common binary sequence class 010.

Definition 5. In a common binary sequence class, compare the nodes by their flag bit
position, the node with higher(lower) flag bit position, is called the senior(junior).

For example, f010 and 0f10 are the seniors of 01f0, and 010f is the junior of 01f0.

Definition 6. Specifically, U = un−1un−2 . . . u1u0 with flag bit i is called as the ith
element of the common binary sequence class un−1un−2 . . . ui+1ui−1 . . . u1u0.

By the structure of a Dragon graph and the above definition, we have the following
proposition.

Proposition 1. In a common binary sequence class, the ith element is connected to the
(i− 1)th element.

For example, in the common binary sequence 1101 of DG(5), each pair neighbors
of f1101, 1f101, 11f01, 110f1, 1101f are connected.

Definition 7. Let U = un−1un−2 . . . u1u0 and V = vn−1vn−2 . . . v1v0 be two nodes
in DG(n). The ith bit is referred as an active bit if and only if both of ui and vi are not
flag bit and ui �= vi.

3 Routing Algorithm

Given a source node and a destination node of an interconnection network. The routing
problem is to find a path such that a message can be transmitted from the source node to
the destination node. To present the idea of this algorithm, suppose that source node and
destination node are f0000 and 1101f . First,if there exists any active bit, it is required
to "eliminate" these active bits, that is, to find a path from source node to an intermediate
node with no active bit between this node and destination node. For example, shifting
the flag bit rightward and "eliminate" the active bit, a path can be derived as f0000,
1f000, 11f00, 110f0. Likewise, shifting the flag bit leftward and "eliminate" the active
bit, a path can be derived as f0000, 1000f , 100f0, 10f10, 1f010. There is a choice
between rightward and leftward. The shorter one is selected. Second, it is required to
shift the flag bit to the "right" position, that is, to find a path from the intermediate node
to the destination node. For example, from the intermediate node 110f0, shifting the
flag bit rightward, a path can be derived as 110f0 and 1101f . Likewise, shifting the flag

The Dragon Graph: A New Interconnection Network for High Speed Computing 1075

bit leftward, a path can be derived as 110f0, 11f10, 1f010, f1010 and 1101f . There is
also a choice between rightward and leftward. The shorter one is selected, too. Clearly,
this routing algorithm can rout a message from source node to destination node.

We propose the routing algorithm formally as follows. Suppose that the routing
message is included by the address of destination node D = dn−1dn−2 . . . d1d0.

Algorithm 1. Routing algorithm of DG(n)
Step 1. When a node V = vn−1vn−2 . . . v1v0 with flag bit i, receives the message

included by the node address of destination D = dn−1dn−2 d1d0 with the flag bit j,
Step 1, starting with the bit i, to find the nearest active bits betweenV andD rightward

and leftward, respectively.
performs by the following conditions:
1) : If there exists any active bit and i �= j,
if the rightward is nearer than the leftward, rout the message to the (l, di) neighbor.

Otherwise, rout the message to the (r, di) neighbor.
2) : If there exists any active bit and i = j,
if the rightward is nearer than the leftward, rout the message to the (l, 0) neighbor.

Otherwise, rout the message to the (r, 0) neighbor.
3) : If there exists no active bit and and i �= j,
if (j > i and j − i < [n/2]) or (j < i and i− j ≥ [n/2]), rout the message to the

(l, di) neighbor. Otherwise, rout the message to the (r, di) neighbor.
4) : If there exists no active bit and and i = j, then V = D, terminates the route.

4 Broadcasting Algorithm

Broadcasting on an interconnection network can be realized based on a broadcasting tree
that is a spanning tree rooted at the source node. In this section, we introduce a broad-
casting algorithm for Dragon graphs by building a broadcasting tree. Since DG(n)
is node-symmetric, the same broadcasting algorithm can be applied to each node of
DG(n). Without loss of generality, suppose that the source node is r00 . . . 0. This algo-
rithm comprises two phases.

Phase 1, to build a primitive tree.
Initialization: The broadcasting tree has one node r00 . . . 0 as root.
While the flag bit of a leaf node is not 0, appending its (r,0) neighbor and (r,1)

neighbor as left child and right child, respectively. In Figure 3, the primitive tree of
DG(4) is shown.

To build the primitive tree is very simple. However, the tree does not include each
node of the whole Dragon graph. In the Phase 2, the remainder will be appended. Observe
that each node and its left child are in the same binary sequence. Thus, the juniors of a
node will be its descendants in the primitive tree. Recall that according to the Proposition
1, in a common binary sequence class, the ith element is connected to the (i − 1)th
element.

Phase 2, appending phase. If a node is right child, append its seniors in a linear array
one by one to the primitive tree.

In Figure 4, the broadcasting tree of DG(4) is shown.

1076 Jywe-Fei Fang

f000

0f00

001f 010f000f

00f0

011f

01f0

1f00

101f 110f100f

10f0

111f

11f0

f000

0f00

001f 010f000f

00f0

011f

01f0

1f00

101f 110f100f

10f0

111f

11f0

Fig. 3. The primitive tree of DG(4)

f000

0f00
1f00

001f
010f

11f010f0

000f 100f

00f0

111f110f101f011f

01f0

0f01

f001

00f1

0f11

f011

01f1

1f01

f101

10f1

1f11

f111

11f1

Fig. 4. The broadcasting tree of DG(4)

Table 1. Symmetric properties of some constant degree hypercubic networks

Networks Node symmetry Edge symmetry

Shuffle exchange None None

Debruijn network None None

Butterfly network None None

CCC Yes None

Dragon graph Yes Yes

5 Properties of Dragon Graphs

Since CCC(n) is node-symmetric, clearly, DG(n) is node-symmetric, too. Further-
more, because only the cycle edges of CCC(n) are reserved in DG(n), DG(n) is also
edge-symmetric. In Table 1, we show the symmetric properties of some constant degree
hypercubic networks [2]. Clearly, The Dragon graph is superior to the other intercon-
nection networks in symmetric properties.

The distance between two nodes of an interconnection network is defined as the
length of their shortest path. The diameter of an interconnection network is defined as
the maximal distance between each pair of nodes.

By using Algorithm 1, each node can route a message to any other node within
n − 1 + (n − 1)/2 hops (n − 1 hops for "eliminating" the active bit and (n − 2)/2

The Dragon Graph: A New Interconnection Network for High Speed Computing 1077

Table 2. The degrees, diameters and costs of DG(n) and CCC(n)

DG(n) CCC(n)

n degree diameter cost n degree diameter cost

3 4 3 12 3 3 7 21

4 4 4 16 4 3 9 27

5 4 5 20 5 3 12 36

6 4 7 28 6 3 14 42

7 4 8 32 7 3 17 51

8 4 10 40 8 3 19 57

9 4 11 44 9 3 22 66

10 4 13 52 10 3 24 72

11 4 14 56 11 3 27 81

12 4 16 64 12 3 29 87

13 4 17 68 13 3 32 96

14 4 19 76 14 3 34 102

15 4 20 80 15 3 37 111

16 4 22 88 16 3 39 117

17 4 23 92 17 3 42 126

18 4 25 100 18 3 44 132

19 4 26 104 19 3 47 141

20 4 28 112 20 3 49 147

hops for shifting the flag bit to the "right" position) in DG(n) for n is an even number.
Likewise, each node can route a message to any other node within n − 1 + (n − 3)/2
hops (n− 1 hops for "eliminating" the active bit and (n− 3)/2 hops for shifting the flag
bit to the "right" position) in DG(n) for n is an odd number. In Table 2, we summarize
the degrees, diameters and costs of an DG(n) and an CCC(n). The diameters and costs
of a DG(n) are smaller than the comparable CCC(n).

6 Conclusions

In this paper, the Dragon graph, a new variation of the hypercube and the cube-
connected-cycle with constant degree(four) has been proposed. The Dragon graph gains
many advantages. It is with a smaller diameter and cost than the comparable cube-
connected-cycles. It is node-symmetric and edge- symmetric. In this paper, we also
proposed a routing algorithm which is not complex, thus it can be applied to practi-
cal implementation. By building a broadcasting tree, we have presented a broadcasting
algorithm which is also potential to be implemented.

1078 Jywe-Fei Fang

Acknowledgements

The author would like to thank reviews for their valuable comments and suggestions.
This work was supported in part by the National Science Council of the Republic of
China under the contract number: NSC92-2213-E-129-010.

References

1. S. G. Akl,The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989.
2. G. Chen and F. C. M. Lau, “Tighter layouts of the cube-connected cycles,“ IEEE Trans. Parallel

and Distributed Systems, vol. 11, pp. 182-191, 2000.
3. S. Y. Kuo and W. K. Fuchs, “Reconfigurable cube-connected cycles architectures,“ Journal of

Parallel and Distributed Computing, vol. 9, pp. 1-10, 1990.
4. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,Trees, Hyper-

cubes, California, Mogran Kaufmann, 1992.
5. H. Y. Lo and J. D. Chen, “A routing algorithm and generalization for cube-connected cycles,“

IEICE Trans. Information Systems, vol. E80-D, pp. 829-836, 1997.
6. D. S. Meliksetian and C. Y. R. Chen, “Optimal routing algorithm and the diameter of the

cube-connected cycles,“ IEEE Trans. Parallel and Distributed Systems, vol. 4, pp. 1172-1178,
1993.

7. F. P. Preparata and J. Vuillemin, “The cube-connected cycles: A versatile network for parallel
computations,“ Commun. ACM, vol. 25, pp. 300-309, 1981.

8. Y. Saad and M. H. Schultz, “Topological properties of hypercubes,“ IEEE Trans. Computers,
vol. 37, pp. 867-872, 1988.

9. M. P. Sebastian, P. S. N. Rao and L. Jenkins, “Properties and performance of folded cube-
connected cycles,“ Journal of Systems Architecture, vol. 44, pp. 359-374, 1998.

Speeding up Parallel Graph Coloring

Assefaw H. Gebremedhin1,�, Fredrik Manne2, and Tom Woods2

1 Computer Science Dept., Old Dominion University
Norfolk, VA 23529-0162, USA
assefaw@cs.odu.edu

2 University of Bergen, N-5020 Bergen, Norway
{Fredrik.Manne,tomw}@ii.uib.no

Abstract. This paper presents new efficient parallel algorithms for finding ap-
proximate solutions to graph coloring problems. We consider an existing shared
memory parallel graph coloring algorithm and suggest several enhancements both
in terms of ordering the vertices so as to minimize cache misses, and performing
vertex-to-processor assignments based on graph partitioning instead of random
allocation.
We report experimental results that demonstrate the performance of our algorithms
on an IBM Regatta supercomputer when up to 12 processors are used. Our imple-
mentations use OpenMP for parallelization and Metis for graph partitioning. The
experiments show that we get up to a 70 % reduction in runtime compared to the
previous algorithm.

1 Introduction

A graph coloring asks for an assignment of as few colors (or positive integers) as possible
to the verticesV of a graph G = (V,E) so that no two adjacent vertices receive the same
color. This is often a crucial stage in the development of efficient, parallel algorithms
for many scientific and engineering applications, see [8] and the references therein for
examples. As a graph coloring is often needed to perform some later task concurrently,
it is natural to consider performing the coloring itself in parallel. In the current paper,
we consider how to parallelize fast and greedy coloring algorithms where vertices are
colored one at a time and each vertex is assigned the smallest possible color.

Several papers have appeared in the literature over the last couple of years dealing
with this issue [5,7,8,11]. We consider the algorithm in [8] and show how its performance
can be enhanced both by paying attention to its sequential memory access pattern, and
by employing graph partitioning to assign vertices to processors.

The rest of the paper is organized as follows: In Section 2 we present relevant back-
ground information on parallel graph coloring, in Section 3 we motivate our methods,
in Section 4 we report on experimental results, before we conclude in Section 5.

2 Parallel Graph Coloring

The problem of finding a legal coloring using the minimum number of colors is known to
be NP-hard for general graphs [6]. Moreover, it is a difficult problem to approximate [3].

� Supported by the U.S. National Science Foundation grant ACI 0203722

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1079–1088, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1080 Assefaw H. Gebremedhin, Fredrik Manne, and Tom Woods

However, in practice greedy sequential coloring heuristics have been found to be quite
effective [2].

Previous efforts in designing fast efficient parallel graph coloring algorithms have
been centered around various ways of computing an independent set in parallel. This
research direction was initiated by Luby’s algorithm for computing a maximal indepen-
dent set in parallel [10,15]. The first algorithms proposed along this line enforce that one
makes exactly one choice for the color of any vertex (i.e. no backtracking). To achieve
this, while coloring a vertex v, the colors of already colored neighbors of v must be
known, and none of the uncolored neighbors of v can be colored at the same time as
v. The work of Jones and Plassmann [12], Gjertsen et al. [9], and Allwright et al. [1]
follow this approach.

All of these algorithms are based on the distributed memory model where the vertices
of a graph are partitioned into the same number of components as there are processors.
Each component including information about its inter- and intra-processor edges is
assigned to and colored by one processor.

To overcome the restriction that two adjacent vertices on different processors cannot
be colored at the same time, Johansson [11] proposed a parallel algorithm where each
processor is assigned exactly one vertex. The vertices are then colored simultaneously
by randomly choosing a color from the interval [1, Δ + 1], where Δ is the maximum
vertex degree in the graph. This may lead to an inconsistent coloring, and hence one may
have to repeat the process recursively for the vertices that did not obtain legal colors.
This algorithm was further investigated by Finocchi et al. [5] who performed extensive
sequential simulations both of this algorithm and a variant where the upper-bound on
the range of legal colors is initially set to be smaller than Δ + 1 and then increases only
when needed.

Gebremedhin and Manne [8] developed a parallel graph coloring algorithm suitable
for shared memory computers. Here it is assumed that the number of processors p is
substantially less than the number of vertices n and each processor is assigned n/p
vertices. Each processor colors its vertices sequentially, at each step assigning a vertex
the smallest color not used by any of its neighbors (both on and off-processor). An
inconsistent coloring arises only when a pair of adjacent vertices that reside on different
processors are colored simultaneously. Inconsistencies are then detected in a subsequent
phase and resolved in a final sequential phase. Figure 1 outlines this scheme as presented
in [8]. This algorithm was later extended to various coloring problems in numerical
optimization including distance-2 (d2) coloring, a case in which a vertex v is required
to receive a color distinct from the colors of vertices within distance 2 edges from v [7].
This shared memory approach is the only algorithm that we know of that has been shown
through parallel implementations to actually give lower running time as more processors
are applied. In the current work we look at various ways in which this algorithm can be
enhanced to run even faster.

In [8] it is shown that the expected number of conflicts in most cases is small and
the resulting running time is bounded by O(Δn/p). Although Phase 0 states that the
vertices be randomly distributed among the processors, practical experiments showed
that the best running time was obtained by keeping the original ordering of the vertices
of the graph.

Speeding up Parallel Graph Coloring 1081

GM-Algorithm(G = (V, E))
Phase 0 : Partition

Randomly partition V into p equal blocks V1, . . . , Vp. Processor Pi is
responsible for coloring the vertices in block Vi.

Phase 1 : Pseudo-color
for i = 1 to p do in parallel

for each v ∈ Vi do
assign a legal color to v, paying attention
to already colored vertices (both on and off-processor).

Phase 2 : Detect conflicts
for i = 1 to p do in parallel

for each v ∈ Vi do
if ∃(v, w) ∈ E s.t. color(v) = color(w) and v ≤ w

Li ← Li ∪ {v}
Phase 3 : Resolve conflicts

Color the vertices in the conflict list L = ∪Li sequentially.

Fig. 1. The GM-algorithm as presented in [8]

3 Speeding up the Algorithm

In the following we describe the various enhancements we have considered in order
to speed up the GM-algorithm. Sections 3.1 and 3.2 deal with issues related to the
partitioning of the graph onto the processors and the subsequent internal ordering, while
Section 3.3 deals with algorithmic issues.

In a parallel application the graph is usually already distributed among the processors
in a reasonable way. This also includes distinguishing between interior and boundary
vertices since the communication volume typically grows as a function of the number
of boundary vertices while the amount of computation grows as a function of the total
number of vertices assigned to a processor. This is true both for shared and distributed
memory parallel computers. Thus it is not unreasonable to make the initial assumption
that the graph is already partitioned in a reasonable way, with the vertices on each
processor classified as either interior or boundary, and with an internal ordering of the
vertices such that traversing the graph should be efficient.

3.1 Sequential Optimization

It is a well known fact that sequential optimization can in many cases yield speedups
comparable to those obtained by parallelization. The main objective here is to make the
code more cache friendly by reusing data elements already in the cache.

The GM-algorithm uses a compressed adjacency list representation of a graph. Each
vertex has a pointer into this list that shows where its neighbors are located. The actual
color values are stored in a separate vertex-indexed array.

When accessing the list of neighbors of a vertex, the information will be in consec-
utive memory locations. However, accessing the colors of neighboring vertices might
lead to sporadic memory access patterns with ensuing cache misses. This is particularly
true if the neighbors are scattered rather than being clustered.

1082 Assefaw H. Gebremedhin, Fredrik Manne, and Tom Woods

In light of this, if the vertex set is randomly permuted as was suggested in Phase
0 of the GM-algorithm, one would expect the neighbors of a vertex to be randomly
distributed throughout the set and thus cause a large number of cache misses. This could
be one explanation why this scheme performed worse than keeping the natural order of
the vertices.

To reduce the number of cache misses, one would order the vertices in such a way
that the neighbors of each vertex span as few cache lines as possible. One way this can be
solved approximately is by employing a bandwidth or envelope size reducing ordering
on the graph such as the reverse Cuthill-McKee ordering [4]. For an adjacency matrix
representation this would have the effect of clustering the non-zero elements close to the
diagonal.

3.2 Graph Partitioning

There exist several graph partitioning packages that can be used for partitioning the
vertices of a graph into a predefined number of components in such a way that the
number of vertices in each component is nearly the same and the number of cross-edges
(edges with endpoints in different components) is as small as possible. In a parallel
application this can be used to partition the graph into the same number of components
as there are processors and then assign one component to each processor.

Graph partitioning is also exploited in the parallel coloring algorithms presented
in [12] and [9] where one takes advantage of the fact that boundary vertices (vertices
incident on inter-processor edges) are the only vertices that call for communication,
and interior vertices (vertices incident only on intra-processor edges) can be colored
concurrently.

The use of graph-partitioning software can help lower the run-time of the GM-
algorithm in three different ways.

i) Cross-processor memory accesses. In Phase 1 and 2 of the GM-algorithm, part of
the run-time associated with the coloring of a vertex v can be divided into two separate
parts: the time required to obtain the color of an adjacent on-processor vertex, and the time
required to obtain the color of an adjacent off-processor vertex. For most architectures,
the latter will be larger since it most likely involves accessing memory that is associated
with another processor. For this reason, one would like to maximize the number of
neighbors of v that are allocated to the same processor as v itself. Thus an assignment
of the vertices to processors that keeps the number of cross-edges low will also reduce
the time spent on off-processor memory accesses.

ii) Number of conflicts. In the context of the GM-algorithm, minimizing the number
of cross-edges also reduces the number of conflicts since cross-edges are the only edges
that can give rise to conflicts. This is because vertices in the same component will be
colored (sequentially) by the same processor. Reducing the number of conflicts will
subsequently reduce the time needed by Phase 3 of the algorithm. In fact, the bound
of O(δp) on the number of expected conflicts shown in [8] can easily be improved to
O(δpm′/m). Here, δ̄ is the average vertex degree, m′ is the number of cross-edges, and
m is the total number of edges in the graph.

iii) Vertices that need to be checked for conflicts. As we have already seen, any
conflict that arises in Phase 1 of the GM-algorithm will involve at least one boundary

Speeding up Parallel Graph Coloring 1083

vertex. Thus by distinguishing between interior and boundary vertices, it is possible
to avoid checking the interior vertices for conflicts in Phase 2. This should save up to
half the processing time spent on the interior vertices. Although reducing the number
of boundary vertices is not the main objective of graph-partitioning software, we expect
this number to correlate with the number of cross-edges.

Finally we note that in the case where a d2-coloring is desired, any conflict will
still include at least one boundary vertex. This is because the d2-neighbors of an interior
vertex v will either be in the same component as v or a boundary vertex of some adjacent
component. Thus even in this case it is sufficient to check the boundary vertices to detect
all possible conflicts. For distance-k coloring, k > 2 this is no longer true as the distance
relationship then stretches further into each component.

3.3 Conflict Reduction

In [7] it was shown that for dense graphs the number of conflicts could become sufficiently
high that the final sequential conflict resolution step starts to dominate the overall run-
time. Also for dense graphs the effect of graph partitioning is less pronounced.

One solution for reducing the number of conflicts suggested in [11] is to assign a
vertex a random color from the interval [1, Δ + 1]. However, with this scheme one is
very likely to end up using close to Δ + 1 colors while the actual number of colors
needed is much smaller.

To reduce the number of colors used, one would like each processor to choose a
small legal color when coloring a vertex. If each processor always chooses the lowest
possible color, the number of conflicts is likely to increase. This is particularly true during
the early steps of the coloring process where there are relatively few forbidden colors.
Thus one would like different processors to choose different low-numbered colors. In
the following paragraphs we describe two solutions that have been suggested to this
problem. Both are based on randomization.

Gebremedhin et al. [7] suggested that one use a geometrically distributed random
variable to determine which of the available legal colors to use. This was implemented
by processing the available legal colors in increasing order, each time choosing a color
with probability q. The process terminates as soon as a successful color choice is made.
The disadvantages of this method is that it requires some fine-tuning of the parameter q
and for small values of q, one might need to generate a large number of random numbers
for each vertex. We note that the latter shortcoming can be alleviated by an inverse
transformation method to simulate the required random variable and hence require only
one random number generation [16].

Finocchi et al. [5] recently suggested the “Trivially Hungarian” (TH) method where
the color of a vertex v is initially restricted to be chosen from the range [1, r], where
r = deg(v)/s, deg(v) is the degree of v, and s is an a priori determined shrink factor of
the algorithm. Only when there are no legal colors in the given range can the bound r be
increased to 1 + min{c, deg(v)}, where c is the largest color used in the neighborhood
of v. Again, this algorithm requires that a suitable value of s be found. The TH-method
has not previously been implemented in an actual working parallel code.

1084 Assefaw H. Gebremedhin, Fredrik Manne, and Tom Woods

Table 1. Structural properties of graphs (left) and run-times for d1 and d2 coloring using various
vertex orderings (right)

Name |V | |E| density Δ δ̄ Natural Random RCM

mrng4 7,533,224 14,991,280 5.3 × 10−7 4 3.98 3.6/17.2 10.5/73.9 2.5/10.4

auto 448,695 3,314,611 3.3 × 10−5 37 14.77 0.5/8.0 0.8/12.1 0.4/5.0

4 Experiments

In the following we report on experiments performed on an IBM p690 Regatta super-
computer using up to 12 Power4 1.3 Ghz processors. Our objective is to show how the
various strategies described in Section 3 can be used to speed up the GM-algorithm. The
algorithms have been implemented in Fortran 90 and parallelized using OpenMP. Metis
[14] was used for graph partitioning.

4.1 Vertex Ordering

Here we present experimental results that demonstrate the effect of vertex ordering on
the practical run-time of the coloring algorithms.

Due to space limitations, we only provide results for two representative graphs from
our testbed, both of which are from finite element methods [13]. The left part of Table 1
lists relevant structural properties of these graphs. The column labeled density shows
the quantity 2|E|

|V |×(|V |−1) . The column marked Δ gives the maximum vertex degree

while column δ̄ gives the average vertex degree in the graph. In the right part of Table
1, the columns labeled Natural, Random, and RCM show the time (in seconds) used
by a sequential greedy coloring algorithm when the vertices are visited in their natural
order, in a random order, and in the reverse Cuthill-McKee order, respectively. For each
ordering, run-times for a d1-coloring and a d2-coloring are provided.

Table 1 shows that a random vertex ordering destroys any available locality and
hence increases the running time by a factor of nearly three for d1-coloring and by a
factor of four for d2-coloring. The RCM ordering reduces the running time by 31% and
20% for the d1-coloring and by 40% and 37% for the d2-coloring.

4.2 Vertex to Processor Mapping

Figure 2 shows the parallel running times of our algorithms for d1-coloring as the number
of processors is increased from 2 to 12. A substantial speedup was observed in going
from one to two processors even if the parallel algorithm performs nearly twice as many
operations as the sequential algorithm. (We believe this is due to access to more cache
when using more than one processor.) We do not show this as it would disrupt the figures.

The line labeled Original refers to the basic GM-algorithm as described in Section 2
run on the graph with the vertices in their natural order and partitioned into contiguous
blocks of equal size (block-partition). The line labeled RCM corresponds to an RCM
ordering of the vertices prior to a block-partition. The line RCM+Metis shows the case
where the vertices are ordered using RCM and the graph partitioned using Metis. Finally

Speeding up Parallel Graph Coloring 1085

RCM+Metis+Local shows when both RCM and Metis are used and the interior vertices
are not checked for inconsistencies. It should be noted that Metis only specifies to which
partition a particular vertex should belong, it does not alter the relative order among the
vertices within a particular partition.

In Figure 2, for a fixed number of processors, the decrease in running time relative to
the basic algorithm ranges from 63% to 75% with a mean of 68%. Although not reported,
we have also made experiments using only Metis, which gave similar results to the ones
obtained using only RCM. In all cases, the number of conflicts was observed to be
consistently low and did not influence the overall running time. As expected, we also
observed that for a fixed number of processors, the number of conflicts decreased with
the number of boundary vertices (and cross-edges). Moreover, the numbers of colors
used remains close to that used by the sequential greedy algorithm.

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Processors

T
im

e
(I

n
se

co
nd

s)

2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Processors

T
im

e
(I

n
se

co
nd

s)

Original
RCM
RCM+Metis
RCM+Metis+Local

Fig. 2. d1-coloring of the graphs mrng4 (left) and auto (right)

To help further explain the decrease in running time we also present Figure 3 which
shows the percentage of boundary vertices while using the original, RCM, and Metis
ordering. Applying Metis to the RCM ordered graph has little effect as Metis is fairly
insensitive to the original ordering.

Note that RCM ordering improves locality but not as much as Metis does. Thus since
applying either only RCM or only Metis gives approximately the same running times,
the gain obtained by the Metis ordering where there are fewer cross-processor memory
accesses and a smaller set of boundary vertices seems to be compensated for by the more
efficient memory access pattern given by the RCM ordering.

As is evident from Figure 3 the percentage of boundary vertices increases as the
number of processors increases. But at the same time the number of interior vertices
handled by each processor decreases. Thus one might suspect that the obtained speedup
is mainly due to each processor spending less and less time on the interior vertices. This
would be similar to the algorithm by Gjertsen et al. [9]. To see that this is not the case,
note that already when using four processors more than 80 % of the vertices of both
graphs are on the boundary but the speedup still continues.

1086 Assefaw H. Gebremedhin, Fredrik Manne, and Tom Woods

2 4 6 8 10 12
0

20

40

60

80

100

Processors

P
er

ce
nt

ag
e

of
 b

ou
nd

ar
y

ve
rt

ic
es

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

Processors

P
er

ce
nt

ag
e

of
 b

ou
nd

ar
y

ve
rt

ic
es

Original

RCM

Metis

Fig. 3. Percentage of boundary vertices for graphs auto (left) and mrng4 (right)

In Gjertsen et al. [9] the interior and boundary vertices are colored separately. We
found that in our setting it is advantageous to store and color the interior and boundary
vertices interleaved. We believe that this is due to external memory references being
evened out in time and thus avoiding communication congestion.

4.3 Randomization

In the experiments in the previous section, the number of conflicts that had to be resolved
was small enough that the final sequential phase did not influence the overall running
time. In this section we report on experiments where this is not the case. Specifically
we test how the randomized conflict reduction schemes described in Section 3.3 can be
applied to improve the running time.

For these experiments we report results obtained on a random graph (d2-random)
with 30,000 vertices, 8,999,700 edges, a maximum vertex degree of 699, and an average
vertex degree of 600. This graph was chosen such that the original parallel d2-coloring
algorithm would give a large number of conflicts. We have also performed experiments
using graphs tailored toward d1-coloring. These gave results (omitted for space consid-
erations) similar to those reported here.

For the randomized algorithms we performed similar experiments as those discussed
in Section 4.2. However, these did not yield any significant improvements in the running
times over the original algorithm but kept the results fairly stable. The reason for this
is that irrespective of the chosen ordering technique, almost all the vertices were on the
boundary. Hence the experiments shown here are based on the basic algorithm with the
vertices in their natural order.

The main parameter that must be determined for the TH-algorithm is the shrinking
factor s. In [5] a value between four and six is suggested for d1-coloring. Our configu-
ration differs from theirs in that we rely on a shared memory model while they assume
a distributed memory model. Also, they apply the algorithm recursively to the vertices
that do not receive a legal color after the first round while our approach is to recolor
illegally colored vertices in a sequential phase.

Speeding up Parallel Graph Coloring 1087

0 20 40 60 80
2.8

2.85

2.9

2.95

3
x 10

4

 s

C
ol

or
s

p=2

p=4

p=8

0 20 40 60 80
0

2000

4000

6000

8000

10000

C
on

fli
ct

s

 s
0 20 40 60 80

0

50

100

150

200

T
im

e
(in

 s
ec

on
ds

)

 s

Fig. 4. The TH-algorithm run on the d2-random graph

Figure 4 shows the performance of the TH-algorithm for a d2-coloring of the graph
d2-random using different values of s. The leftmost figure shows the number of colors
used, the middle figure shows the number of conflicts, and the rightmost figure depicts
the time used. As is evident from Figure 4, the shrinking factor in the TH-algorithm is
critical for its performance. If it is set too small, the algorithm can use more than double
the number of colors used by the sequential greedy algorithm. On the other hand, if the
shrinking factor is set too large, the number of conflicts, and consequently, the running
time increases. The interval for the shrinking factor that produces the best values, both
in terms of the number of colors used and run-time, is fairly small. Interestingly, in our
experiments we found that the best results are obtained if the shrinking factor is set in
such a way that the number of initial available colors is equal or almost equal to the
number of colors used by the sequential greedy algorithm. We note that for practical
purposes this might be difficult to estimate a priori.

In order to compare the TH algorithm with the GMP-algorithm [7], we ran the GMP-
algorithm on the d2-random graph using various values for the parameter q. Due to space
limitations we do not show these numbers here but we observed that the optimal value of
q in terms of speed seems to decrease as the number of processors increases. In terms of
best possible running times, the TH and the GMP-algorithm have fairly similar values,
but obtaining these requires fine tuning of the algorithms.

5 Conclusion

One open interesting question is: Given a partition, how should one order the vertices
within each component to minimize cache misses both locally and between processors?

Even though the randomized methods seem to be promising in terms of handling
dense graphs, more work remains to be done to determine how these need to be tailored
for specific applications. It would also be of interest to know how these techniques could
be applied in a distributed memory setting.

References

1. J. ALLWRIGHT, R. BORDAWEKAR, P. D. CODDINGTON, K. DINCER, AND C. MARTIN, A
comparison of parallel graph coloring algorithms, NPAC technical report SCCS-666, North-
east Parallel Architectures Center at Syracuse University, 1994.

2. T. F. COLEMAN AND J. J. MORE, Estimation of sparse Jacobian matrices and graph coloring
problems, SIAM J. Numer. Anal., 1 (1983), pp. 187–209.

1088 Assefaw H. Gebremedhin, Fredrik Manne, and Tom Woods

3. P. CRESCENZI AND V. KANN, A compendium of NP optimization problems.
http://www.nada.kth.se/˜viggo/wwwcompendium/.

4. E. CUTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric matrices, in
proceedings of ACM NAT. Conf., 1969, pp. 157–172.

5. I. FINOCCHI, A. PANCONESI, AND R. SILVESTRI, Experimental analysis of simple, distrib-
uted vertex coloring algorithms, in Proc. 13th ACM-SIAM symposium on Discrete Algo-
rithms (SODA 02), 2002.

6. M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, Freeman, 1979.
7. A. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN, Parallel distance-k coloring algo-

rithms for numerical optimization, in proceedings of Euro-Par 2002, vol. 2400, Lecture Notes
in Computer Science, Springer, 2002, pp. 912–921.

8. A. H. GEBREMEDHIN AND F. MANNE, Scalable parallel graph coloring algorithms, Con-
currency: Practice and Experience, 12 (2000), pp. 1131–1146.

9. R. K. GJERTSEN JR., M. T. JONES, AND P. PLASSMANN, Parallel heuristics for improved,
balanced graph colorings, J. Par. Dist. Comput., 37 (1996), pp. 171–186.

10. A. GRAMA, A. GUPTA, G. KARYPIS, AND V. KUMAR, Introduction to Parallel Computing,
2ed, Addison Wesley, 2003.

11. Ö. JOHANSSON, Simple distributed δ + 1-coloring of graphs, Inf. Proc. Letters, 70 (1999),
pp. 229–232.

12. M. T. JONES AND P. PLASSMAN, A parallel graph coloring heuristic, SIAM J. Sci. Comput.,
(1993), pp. 654–669.

13. G. KARYPIS. Private communications.
14. G. KARYPIS AND V. KUMAR, Multilevel k-way partitioning scheme for irregular graphs, J.

Par. Dist. Comp., 48 (1998), pp. 96–129.
15. M. LUBY, A simple parallel algorithm for the maximal independent set problem, SIAM J.

Comput., (1986), pp. 1036–1053.
16. S. M. ROSS, Introduction to Probability Models, 7ed, Academic Press, 2000.

On the Efficient Generation of Taylor Expansions
for DAE Solutions by Automatic Differentiation�

Andreas Griewank1 and Andrea Walther2

1 Department of Mathematics, Humboldt-Universität Berlin, Germany
griewank@mathematik.hu-berlin.de

2 Institute of Scientific Computing, Technische Universität Dresden, Germany
awalther@math.tu-dresden.de

Abstract. Under certain conditions the signature method suggested by Pantiledes
and Pryce facilitates the local expansion of DAE solutions by Taylor polynomials
of arbitrary order. The successive calculation of Taylor coefficients involves the
solution of nonlinear algebraic equations by some variant of the Gauss-Newton
method. Hence, one needs to evaluate certain Jacobians and several right hand
sides. Without advocating a particular solver we discuss how this information
can be efficiently obtained using ADOL-C or similar automatic differentiation
packages.

1 Introduction

The differential algebraic systems in question are specified by a vector function

F (t,y) ≡ F (t,y1,y2, . . . ,yn) with

F : IR1+m ≡ IR× IR1+m1 × IR1+m2 × · · · × IR1+mn �→ IRn .

Here, t denotes the independent “time” variable, n is the dimension of the state space
and the yj are (1 + mj)-dimensional vectors whose rth component yj,r represents the
rth derivative of the state space component yj ≡ yj,0. However, this relation is really
of no importance as far as the pure automatic differentiation task is concerned.

In principle, F can be an arbitrary algebraic mapping from IR1+m to IRn but for
our purposes it should be defined by an evaluation procedure in a high level computer
language like Fortran or C. Then, the technique of automatic differentiation (AD) of-
fers an opportunity to provide derivative information of any order for the given code
segment by applying the chain rule systematically to statements of computer programs.
For that purpose, the code is decomposed into a typically very long sequence of sim-
ple evaluations, e.g. additions, multiplications, and calls to elementary functions such
as sin(x) or exp(x). The derivatives with respect to the arguments of these operations
can be easily calculated. Exploiting the chain rule yields the derivatives of the whole
sequence of statements with respect to the input variables. Depending on the starting
point of this methodology—either at the beginning or at the end of the chain of com-
putational steps—one distinguishes between the forward mode and the reverse mode

� This work was supported by the DFG research center MATHEON, Mathematics for Key Tech-
nologies in Berlin, and DFG grant WA 1607/2-1.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1089–1098, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1090 Andreas Griewank and Andrea Walther

of AD. Using the forward mode, one computes the required derivatives together with
the function evaluation in one sweep. Applying the reverse mode of AD, the derivative
values are propagated during a backward sweep. Hence after a function evaluation, one
starts computing the derivatives of the dependents with respect to the last intermediate
values and traverses backwards through the evaluation process until the independents
are reached. A comprehensive exposition of these techniques of AD can be found in [7].

For many DAEs the computational graph related to the code segment to evaluate
F (t,y) will be of quite manageable size, but still we will try to keep the number of
sweeps through it as low as possible. Moreover, we will try to amortize the overhead of
each sweep by performing reasonably intense calculations for each graph vertex, which
represents an intermediate quantity in the evaluation of the algebraic function F (t,y).

The structure of the paper is the following. In Section 2 we discuss the efficient
computation of first and higher-order derivatives using automatic differentiation. The
structural analysis required for the signature method suggested by Pantelides [9] and
Pryce [10,11] is the subject of Section 3. New drivers of the AD-tool ADOL-C [8] are
presented for the first time in Section 4. They are tailored especially for the use in the
DAE context. Preliminary numerical results illustrating the effort to compute higher-
order derivatives are discussed in Section 5. Section 6 contains some conclusions and
an outlook.

2 Computing First and Higher Order Derivatives

Throughout the paper we assume that the time t has been shifted so that its current value
is simply t = 0. Then we obtain for any analytic path

y(t) =
r̄∑

r=0

y(r)tr

a corresponding value path

F (t,y(t)) =
r̄∑

r=0

trF̂r(0,y(0),y(1), . . . ,y(r)) +O(tr̄+1)

The coefficient functions F̂r : IR1+m∗r �→ IRn are analytic provided this is true for F as
we assume for simplicity. To compute the desired higher-order information, we will first
examine the derivative computation for intrinsic function. For a given Taylor polynomial

x(t) = x0 + x1t + x2t
2 + · · ·+ xr̄−1t

r̄ ∈ IRn

a naive implementation to compute higher-order derivatives could be based on “sym-
bolic” differentiation. This approach would yield for a general smooth v(t) = ϕ(x(t))
the derivative expressions

On the Efficient Generation of Taylor Expansions for DAE Solutions 1091

v0 = ϕ(x0)
v1 = ϕ1(x0)x1

v2 = ϕ2(x0)x1 x1 + ϕ1(x0)x2

v3 = ϕ3(x0)x1 x1 x1 + 2ϕ2(x0)x1 x2 + ϕ1(x0)x3

v4 = ϕ4(x0)x1 x1 x1 x1 + 3ϕ3(x0)x1 x1 x2

+ϕ2(x0) (x2 x2 + 2 x1 x3) + ϕ1(x0)x4

v5 = . . .

Hence, the overall complexity grows rapidly in the highest degree r̄ of the Taylor poly-
nomial. To avoid these prohibitively expensive calculations the standard higher-order
forward sweep of automatic differentiation is based on Taylor arithmetic [2] yielding
an effort that grows like r̄2 times the cost of evaluating F (t,y). This is quite obvious
for arithmetic operations as shown below. For a general elemental function ϕ, one finds
also a recursion with quadratic complexity by interpreting ϕ as solution of a linear ODE.
The following table illustrates the resulting computation of the Taylor coefficients for a
simple multiplication and the exponential function:

v(t) = Recurrence for k = 1 . . . r̄ − 1 OPS MOVES

x(t) ∗ y(t) vk =
k∑

j=0

xjyk−j ∼ r̄2 3 r̄

exp(x(t)) kvk =
k∑

j=1

jvk−jxj ∼ r̄2 2 r̄

Similar formulas can be found for all intrinsic functions. This fact permit the computation
of higher-order derivatives for the vector functionF (t,Y) as composition of elementary
components. The AD-tool ADOL-C [8] uses the Taylor arithmetic as described above
to provide an efficient calculation of higher-order derivatives. Furthermore, the AD-
tools FADBAD [1] and CppAD [4] use the same approach to compute higher-order
information.

In ODE and DAE solving, the coefficients y(r) are generated in increasing order
using successive values of the residuals F̂r. For that purpose, we have to compose the
input coefficients of the vectors

y(r) = [y(r)
1 ,y(r)

2 , . . . ,y(r)
n]

from the values yj,s obtained so far. This simple application of the chain rule is the only
extra procedure we have to attach to our AD software to facilitate the calculation of the
desired Taylor coefficients. Specifically, using ADOL-C we must set

y
(r)
j,s = yj,r+s/s!

because the computations performed by ADOL-C are based on the unscaled Taylor
coefficients.

If the F̂s for s ≤ r are reevaluated from scratch every time this requires r sweeps
and thus a computational effort of order r3 times the cost of evaluating the underlying

1092 Andreas Griewank and Andrea Walther

algebraic mapping F (t,y). As observed in [7, Section 10] there are at least two ways in
which this effort can be reduced to being quadratic in r. The first option is to store and
retrieve the partial Taylor polynomials of all intermediate quantities that occur during
the evaluation of F . This has been done in the Fortran package ATOMFT [5] for the
solution of ODEs by the Taylor series method.

The second possibility is to exploit the property that Fr is linear in all y(s) with
s > r/2 so that in fact

Fr(0,y(0),y(1), . . . ,y(r))

= Fr(0,y(0), . . . ,y(s−1), 0, . . . 0) +
r∑

k=s

Ak−s(0,y(0), . . . ,y(k−s))y(s)

Here the As(0,y(0), . . . ,y(k−s)) ∈ IRn×n for s ≤ r are the Taylor coefficients of
the Jacobian path J(0,y(t)). They can also be evaluated by standard AD methods and
are needed anyway if one wishes to compute sensitivities of the Taylor coefficients
with respect to the basis point y0 in an implicit Taylor method. In contrast to the save
and restore option, exploiting the linearity reduces the number of sweeps through the
computational graph essentially to the logarithm of the maximal order r̄.

3 Structural Analysis in Terms of the Jacobian J

The structural analysis used by Pantelides [9] has become part of professional simu-
lation software [3,6] and has been applied successfully to a wide variety of systems.
Nevertheless, it has to be mentioned, that Pantelides’ algorithm applied to DAEs of
index 1 may perform an arbitrarily high number of iterations and differentiations [12].
This behaviour is due to the fact that the structural index of the DAE may exceed the
index of the DAE and that the differentiation needed by Pantelides’ algorithm relate to
the structural index. However, the present paper focuses on the derivative computation.
Therefore, these possibly difficulties are just a side note for computing the consisted
point. They might be overcome in the future by a better suited determination method for
the nonnegative shifts mentioned below.

In the structural analysis used by Pantelides [9] and Pryce [10,11], the elements σij

of the signature matrix Σ are defined by

σij =
{

max{r | yj,r occurs in Fi}
−∞ if no component of yj occurs in Fi

,

where Fi denotes the ith component function of F . Here, “yj,r occurs in Fi” means that
the value of the latter depends nontrivially on the former, which leads to its occurrence
in a symbolic expression for Fi. The signature matrix is used to determine vectors
c = (ci)n

i=1 and d = (dj)n
j=1 of nonnegative shifts. It is shown in [10] that if a solution

Y∗ = (y∗1,0, . . . , y
∗
1,d1

, . . . , y∗n,0, . . . , y
∗
n,dn

)

of the equations

On the Efficient Generation of Taylor Expansions for DAE Solutions 1093

F
(0)
1 , F

(1)
1 , . . . , F

(c1)
1

...

F
(0)
n , F

(1)
n , . . . , F

(cn)
n

⎫⎪⎪⎬⎪⎪⎭ = 0

exists and the system Jacobian J with

Jij =

⎧⎨⎩
∂Fi

∂yj,dj−ci

if yj,dj−ci occurs in Fi

0 otherwise

is nonsingular at the solution, then Y∗ is a consistent point of the DAE at time t. The
required derivative information for constructing J can be obtained by a single reverse
sweep in vector mode to evaluate the rectangular Jacobian

J(0,y) ≡ [J1(0,y), J2(0,y), . . . , Jn(0,y)] ∈ IRn×m with

Jj(0,y) ≡ ∂F (0,y)
∂yj

∈ IRn×(1+mj) .

Irrespective of the size of m, the operations count for this will be about n times that of
evaluating F (t,y) by itself.

To compute a solution Y∗ one has to solve a sequence of underdetermined systems
of nonlinear equations. For that purpose, one needs the corresponding Jacobian. This
matrix is given by a part of the system Jacobian and can be evaluated using again either
standard higher-order automatic differentiation or the more efficient variants discussed
above. However, the initialization of the input Taylor coefficients is considerably easy
since one simply has to choose the corresponding unit vectors.

Once a consistent point at time t = 0 is computed, one may for example apply
an explicit Taylor method to integrate the DAE. For that purpose, only one solve of a
linear system with the system Jacobian J as linear operator is required for each order of
the Taylor method. Hence, one performs one LU-factorization of J . Subsequently, one
only has to evaluate higher-order derivatives occurring in the right-hand sides. For this
purpose, the technique explained in the preceding section can be used.

4 Implementation Details

For simplicity we have assumed that the DAE system has been written in autonomous
form, but an explicit time dependence could certainly be accounted for too. Although
variations are possible we suggest that the problem be specified by an evaluation code
of the following form

void sys_eval(int n, adouble** y, adouble* F)

using the active variable type adouble provided by ADOL-C. Here y[j][k] represents
yj,k, i.e. the k-th derivative of the j-th variable with k ≤ mj . In other words, the calling
program must have allocated n adouble pointers y[j] for j = 0, . . . , n− 1 where each
of them is itself a vector of mj + 1 =: m[j] adoubles. On exit the components F[i] for
i = 0, . . . , n− 1 contain the function components Fi in Pryce notation.

1094 Andreas Griewank and Andrea Walther

Provided the code sys eval does not contain any branches it must be called only
once before the actual DAE solving begins. Before the call, y and F must be allocated
and y initialized by a loop of the form

int tag = 1;
trace_on(tag)

y = new adouble*[n]; F = new adouble[n];
for(j=0; j<n; j++)
{ y[j] = new adouble[m[j]];

for (i=0; i<m[j]; i++)
y[j][i]<<=yp[j][i];

}
sys_eval(n, y, F)
for(j=0; j<n; j++)

F[j] >>= Fp[j]
trace_off()

Here, yp[j][i] is an array of double values at which sys eval can be sensibly called.
The loop after the call to sys eval determines the dependent variables in ADOL-C
terminology, where Fp[j] is like yp[j][i] of type double. Now the DAE system has been
taped. If the function evaluation contain branches, the generated tape can be reused as
long as the control does not change. If the control flow changes, the return values of the
drivers for computing the desired derivatives indicate that the tape is no longer valid and
a retaping has to be performed. Hence, by monitoring the corresponding return values
the correctness of the derivative information can be ensured while keeping the effort for
the taping as low as possible.

Once, the tape is generated, function and derivative evaluations are performed
for example by the routines zos forward partx(..), fos forward partx(..),
hos forward partx(..), and jacobian partx(..) that are problem independent.
For example the call

zos_forward_partx(tag,n,n,m,yp,Fp)

will yield as output the system values Fp[j] for arbitrary inputs yp[j][i] and the array m
describing the partition of yp. Here, zos forward stands for zero-order scalar forward
mode, since no derivatives are required.

Now suppose we have allocated and assigned values to a three dimensional tensor
yt[j][i][r] for j < n, i < m[j], r ≤ b. Mathematically, this is interpreted as the family of
Taylor expansions

y[j][i] ≡
b∑

r=0

yt[j][i][r] tr .

For ADOL-C, the values y[j][i][r] are completely independent but for use in the integration
method proposed by Pryce they must be given values that are consistent in that

yt [j][i][r] = yj,i+r/r! .

Here the yj,i+r = y
(i+r)
i are the already known or guessed solution values and deriva-

tives. All derivatives of higher-order should be set to zero. Now the call

On the Efficient Generation of Taylor Expansions for DAE Solutions 1095

fos_forward_partx(tag,n,n,m,yt,Ft)

yields the Taylor coefficients Ft[j][r] for r < 2, where fos forward stands for first-order
scalar forward mode and the call

hos_forward_partx(tag,n,n,m,b,yt,Ft)

yields the Taylor coefficients Ft[j][r] for r ≤ b of the resulting expansion

F[i] ≡
b∑

r=0

Ft[i][r] tr.

In other words, the derivative (r!) Ft[j][r] corresponds exactly to the value Fj,r needed
for the approach described in [10,11] by Pryce, except for the scaling by r! that has to
be done by the user.

For computing the system Jacobian that is also required by the method of Pryce and
similar integration methods, ADOL-C provides also a special driver. For using it one
must allocate the array jac[i][j][k] for i < n, j < n, k ≤ mj . In order to obtain the values

jac[i][j][k] ≡ ∂Fi/∂yj,k

of this Jacobian, the user has to call the new Jacobian driver

jacobian_partx(tag,n,m,n,xp,jac).

of ADOL-C. The presented new driver of ADOL-C are available in the current version
1.9.0 and have been incorporated into a software-prototype in order to test the calcula-
tion of higher order derivatives for the integration of high-index DAEs. The achieved
numerical results are presented in the next section.

5 Numerical Example

We implemented a very simple version of the algorithm given in [10] to illustrate the
capabilities of ADOL-C to provide the required higher-order derivatives. Furthermore,
the resulting code may form one possibility to verify the run-time saving that can be
achieved using the improvements stated in Section 2.

As test example, we choose a model of two pendula from [10], where theλ component
of the first one controls the length of the second one. This system with index 5 is described
by the DAE

F1 = x′′ + xλ = 0 F4 = u′′ + uκ = 0
F2 = y′′ + yλ− g = 0 F5 = v′′ + vλ− g = 0
F3 = x2 + y2 − L = 0 F6 = u2 + v2 − (L + cλ)2 = 0

and has four degrees of freedom. For the numerical tests presented below, we use the
gravity constant g = 1, the length L = 1 of the first pendulum, c = 0.1 and simulate
the behaviour of both pendula for the time interval [0, 40]. This choice of T ensures that
we simulate the pendula for a period where they do not show chaotic behaviour, which

1096 Andreas Griewank and Andrea Walther

Fig. 1. Index 5 two-pendulum problem, numerical results

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30

se
co

nd
s

order

Run-time develpoment

h = 0.0025

h = 0.005

h = 0.01

Fig. 2. Index 5 two-pendulum problem, run-times

is the case for T ≥ 50, cf. [10]. The values (x0, y0) = (u0, v0) = (1, 0) and (x′
0, y

′
0) =

(u′
0, v

′
0) = (0, 1) serve as initial point. In order to judge the influence of the derivative

calculation on the run-time, we consider three discretizations based on the step size
h = 0.0025, 0.005, 0.01 which results in the time step numbers 16 000, 8 000 and 4 000
respectively. In addition we use explicit Taylor methods of order 5, 10, 15, 20, 25, 30 for
the integration of the DAE.

The computed results for the two pendula are illustrated by Fig. 1, where the first
one shows obviously a periodic behaviour. Since the length of the second one varies in
dependence on the first pendulum one can observe for the second one a non-periodic
solution which results eventually in a chaotic behaviour. However, for the chosen combi-
nations of step size and integration order the computed solutions are identical for the first
pendulum and close or at least comparable for the second one. This fact was acceptable
for us since the influence of the derivative order on the computing time was the main
subject.

The simulations were computed using a Red Hat Linux system, with an AMD Athlon
XP 1666 Mhz processor and 512 MB RAM. The required computing times for the
different step sizes and integration orders are illustrated by Fig. 2. Here, for one specific
step size the computational efforts varies mainly due to the integration order of the
explicit Taylor method. The predicted nonlinear behaviour can be observed very clearly

On the Efficient Generation of Taylor Expansions for DAE Solutions 1097

for the step size h = 0.0025. For the larger time steps, i.e. h = 0.01 and h = 0.005, the
derivative calculation is dominated by the linear algebra cost. Therefore, Fig. 2 shows
only a slight nonlinear influence of the integration order on the run-time. Nevertheless,
the numerical experiment confirms that the effort for computing higher-order derivatives
increases only moderately when using the AD-tool ADOL-C. This is in accordance to
the theoretical results sketched in Section 2.

6 Conclusion and Outlook

This paper discusses the computation of higher-order derivatives using automatic differ-
entiation in the context of high index DAEs. For that purpose, the standard higher-order
forward sweep of automatic differentiation based on Taylor arithmetic is discussed as
well as two possible improvements that are valuable for very high order derivatives.
This methodology is embedded in the structural analysis for high-index DAEs. One case
study presents numerical results achieved with the AD-tool ADOL-C that confirm the
theoretical complexity of computing higher-order derivatives.

Certainly, the implementation of the improvements for the generation of Taylor
expansions presented in this paper forms one specific future challenge. This may include
also a possibly thread-based parallelization. Here one can exploit the coarse-grained
nature of Taylor computations that differ significantly from the situation when computing
first-order derivatives using AD. An additional task is to ease the use of existing AD-tools
for the usage in connection with the structural approach to integrate high-index DAEs.
For that purpose, we presented a description of new drivers provided by ADOL-C 1.9.0
that take into account the special structure of a given DAE system where in addition to
the values of the variables also the values of specific derivatives of the variables enter
the evaluation of the system function.

References

1. C. Bendtsen and O. Stauning: FADBAD, a flexible C++ package for automatic differentiation.
Department of Mathematical Modelling, Technical University of Denmark, 1996.

2. R. Brent and H. Kung: Fast algorithms for manipulating formal power series. Journal of the
Association for Computing Machinery 25, 581–595, 1978.

3. F. Cellier and H. Elmquist: Automated formula manipulation supports object-oriented
continuous-system modelling. IEEE Control System Magazine 13, 28–38, 1993.

4. http://www.seanet.com/∼bradbell/CppAD/
5. Y.F. Chang and G. Corliss: Solving ordinary differential equations using Taylor series. ACM

Trans. Math. Software 8, 114–144, 1982.
6. W. Feehery and P. Barton: Dynamic optimization with state variable path constraints. Comput.

Chem. Engrg. 22, 1241–1256, 1998.
7. A. Griewank: Evaluating Derivatives, Principles and Techniques of Algorithmic Differentia-

tion, Frontiers in Appl. Math. 19, SIAM, Phil., 2000.
8. A. Griewank, D. Juedes, and J. Utke: ADOL-C: A package for the automatic differentiation

of algorithms written in C/C++. TOMS 22, 131–167, 1996.
9. C.C. Pantelides: The consistent initialization of differential-algebraic systems. SIAM J. Sci.

Statist. Comput. 9, 213–231, 1988.

1098 Andreas Griewank and Andrea Walther

10. J. Pryce: Solving high-index DAEs by Taylor series. Numer. Algorithms 19, 195–211, 1998.
11. J. Pryce: A simple structural analysis method for DAEs. BIT 41, 364–394, 2001.
12. G. Reißig, W. Martinson, and P. Barton: Differential-algebraic equations of index 1 may have

an arbitrarily high structural index. SIAM J. Sci. Comput. 21, 1987–1990, 2000.

Edge-Disjoint Hamiltonian Cycles
of WK-Recursive Networks

Chien-Hung Huang1, Jywe-Fei Fang2, and Chin-Yang Yang3

1 National Formosa University , Yun-Lin 632, Taiwan, R.O.C.
2 St.John’s and St.Mary’s Institute of Technology, Taipei 251, Taiwan, R.O.C.

3 National Taiwan University Hospital, Taipei 100, Taiwan, R.O.C.

Abstract. In this paper, we show that there exist n edge-disjoint Hamiltonian
cycles in the WK-Recursive networks with amplitude 2n + 1. By the aid of these
edge-disjoint Hamiltonian cycles, nearly optimal all-to-all broadcasting commu-
nication on all-port WK-Recursive networks can be derived.

1 Introduction

In massively parallel MIMD systems, the topology plays a crucial role in issues such as
communication performance, hardware cost, potentialities for efficient applications and
fault tolerance capabilities. A topology named WK-Recursivenetwork has been pro-
posed by Vecchia and Sanges under CAPRI (Concurrent Architecture and Programming
environment for highly Integrated systems) project supported by the Strategic Program
on Parallel Computing of the National Research Council of Italy [1]. The topology has
many attractive properties, such as high degree of regularity, symmetry and efficient
communication. Particularly, for any specified number of degree, it can be expanded
to arbitrary size level without reconfiguring the links. WK-Recursive networks have
received considerable attention. Researchers have devoted themselves to various issues
of WK-Recursive networks such as broadcasting algorithms [2], topological properties
[6], substructure allocation [5] and communication analysis [4]. d’Acierno et al. built a
neural network on the WK-Recursive network, which gained considerable performance
enhancement [15]. In recent years, Fang et al. have proposed a novel broadcasting scheme
for the WK-Recursive network, which requires only constant data included in each mes-
sage and constant time to determine the neighbors to forward the message [12]. Fu has
discussed the Hamiltonian-connected property of the WK-Recursive network [13].
Wu et al. have proposed a generalized and efficient allocation scheme to the Recur-
sively Decomposable Interconnection Networks, which is including the WK-Recursive
network [14].

A graphG is said to beHamiltonian-decomposable if its edge set can be partitioned
into edge-disjoint Hamiltonian cycles. Thus, some communication problems, such as
many-to-many broadcasting and many-to-many scattering in all port model, can be
nearly optimally solved [8]. In fact, many researchers have studied this issue of various
topologies [9, 10]. To the best of our knowledge, there exists no article addressing this
issue of WK-Recursive networks. In this paper, we show that WK-Recursive networks
with amplitude 2n + 1 are Hamiltonian-decomposable.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1099–1104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1100 Chien-Hung Huang, Jywe-Fei Fang, and Chin-Yang Yang

2 Notations and Background

A complete graph with n nodes, denoted by Kn, is a graph in which every two distinct
nodes are adjacent. A WK-Recursive network with amplitude W and level L, denoted
by WK(W , L), can be recursively constructed as: WK(W , 1) is a KW in which each
node has one free link and W − 1 links that are used for connecting to other nodes.
Clearly, WK(W , 1) has W nodes and W free links. WK(W , C) consists of W copies
of WK(W , C − 1) as supernodes and the W supernodes are connected as a KW , where
2 ≤ C ≤ L. By induction, it is easy to see that WK(W , L) has WL nodes and W free
links. Consequently, for any specified number of degree W , WK-Recursive networks can
be expanded to arbitrary level L without reconfiguring the links. In Fig. 1, the structures
of WK(5, 1) and WK(5, 2) are shown.

00

01

03 02

04

20

23 22

21
24

30

33
32

31 34

10

13 12

11
14

40

43

42

41

44

(b) WK(5,2)

0

1

3
2

4

(a) WK(5,1)

Fig. 1. The structures of WK(5, 1) and WK(5, 2)

The following addressing scheme for WK(W , L) is described in [7]. After fixing
an origin and an orientation (clockwise or counterclockwise), within each WK(W , 1)
subnetwork, a node is labeled with an index digit d1 from 0 to W − 1. Similarly, within
each WK(W , C) subnetwork, a WK(W , C−1) subnetwork is labeled with an index dC

from 0 to W −1, where 2 ≤ C ≤ L. Hence, each node of WK(W , L) is labeled with an
unique address dLdL−1. . . d2d1 as illustrated in Figure. 1. Likewise, A subnetwork of

Edge-Disjoint Hamiltonian Cycles of WK-Recursive Networks 1101

WK(W , L) can be represented by a string of L symbols over set {0,1,...,W − 1}*{*},
where * is a "don’t care" symbol. That is, each WK(W , C) subnetwork of WK(W , L)
can be denoted by dLdL−1 . . . dC+1(∗)C , where (∗)(C) represents C consecutive *’s.
For example, in WK(5, 3), 0** is the subnetwork {0d2d1|0 ≤ d2 ≤ 4 and 0 ≤ d1 ≤ 4}.

For a subnetwork
dLdL−1 . . . dC+1(∗)C in WK(W , L),

a node with address dLdL−1 . . . dC+1(dC)C is called a corner node of dLdL−1 . . .
dC+1(∗)C . For example, in WK(5, 3), 000, 011, 022, 033 and 044 are corner nodes
of 0**. Specifically, the node dLdL−1 . . . dC+1(dC)C is called the dC − corner of
dLdL−1 . . . dC+1(∗)C . For example, in WK(5, 3), 022 is called 2-corner of 0**. In this
paper, a link within a WK(W , 1) subnetwork is called an inner-cluster link.

Definition 1. The inner-cluster links of node dLdL−1 . . . d2d1 are defined as (dLdL−1

. . . d2d1, dLdL−1 . . . d2h), where 0 ≤ h ≤ W − 1 and d1 �= h.
For example, in WK(5, 3), (002, 000), (002, 001), (002, 003) and (002, 004) are

inner-cluster links of node 002. Clearly, each node has W − 1 inner-cluster links in
WK(W , L). A link connecting two WK(W , C) subnetworks, where 1 ≤ C ≤ L− 1, is
called an inter-cluster link and specifically a C-level link.

Definition 2. the C level inter-cluster link of node dLdL−1 . . . dC+1(dC)C , where
dC+1 �= dC , is defined as (dLdL−1 . . . dC+1(dC)C , dLdL−1 . . . dC(dC+1)C).

For example, in WK(5, 3), (022, 200) is a 2-level link and (012, 021) is a 1-level
link. Note that each node except the corner nodes (dL)L, where 0 ≤ dL ≤ W − 1,
has exactly one inter-cluster link in WK(W , L). Each corner node (dL)L of WK(W ,
L) has no inter-cluster link but a free link. In this paper, the outline graph of WK(W ,
L) is to take each WK(W , 1) subnetwork as a supernode. Since WK(W , L) can be
constructed recursively, we have the following proposition. Proposition 1. The outline
graph of WK(W , L) is WK(W , L− 1).

3 The Results

In this section, we show how to partition the edge set of WK(2n+1,L) into n edge-disjoint
Hamiltonian cycles. First, we show that the result is true for L = 1. According to the
definition, WK(2n+1, 1) isK2n+1. It is well-known that K2n+1 can be decomposed into
n Hamiltonian cycles[9]. Let these 2n+ 1 nodes of K2n+1 be labeled as v0, v1,K, v2n.
Hi, where 0 ≤ i ≤ n− 1, is defined as follows:

v2n, vi, vi+1, vi−1, vi+2, vi−2, . . . , vn+i−1, vn+i+1, vn+i, v2n

All subscripts except 2n are positive and expressed modulo 2n. Hi, where 0 ≤ i ≤
n−1, is a Hamiltonian cycle of K2n+1 and these n Hamiltonian cycles are edge-disjoint
[9]. Thus we can state the following lemma.

Lemma 1. The edge set of K2n+1 can be partitioned into n edge-disjoint Hamiltonian
cycles. HPi, where 0 ≤ i ≤ n− 1 , is defined as follows:

vi, v2n, vn+i, vn+i+1, vn+i−1, . . . , vi−2, vi+2, vi−1, vi+1 (for i is even)
vn+i, v2n, vi, vi+1, vi−1, vi+2, vi−2, . . . , vn+i−1, vn+i+1 (for i is odd)
All subscripts except 2n are positive and expressed modulo 2n. Clearly, HPi, where

0 ≤ i ≤ n−1, is a Hamiltonian path of K2n+1 and these n Hamiltonian paths are edge-

1102 Chien-Hung Huang, Jywe-Fei Fang, and Chin-Yang Yang

disjoint. Moreover, each source node and destination node ofHPi, where 0 ≤ i ≤ n−1 ,
are disjoint each other. The source node and destination node ofHPi are (v0, v1), (v2, v3),
(v4, v5),. . .,(v2m, v2m+1) for i= 2, 4, 6,. . ., 2m, where 2m ≤ n−1. The source node and
destination node of HPi are (vn+1, vn+2), (vn+3, vn+4), (vn+5, vn+6),. . .,(vn+2m+1,
vn+2m+2) for i = 1, 3, 5,. . ., 2m + 1, where 2m + 1 ≤ n− 1 and all subscripts except
2n are positive and expressed modulo 2n. Now we show that there exist n edge-disjoint
Hamiltonian cycles in the WK-Recursive networks with amplitude 2n + 1.

Theorem 2. WK(2n + 1, L) contains n edge-disjoint Hamiltonian cycles.

Proof. We will prove the theorem by induction on L. For L =1, WK(2n + 1, 1) is
K2n+1. According to Lemma 1, the result is true for L = 1. Hypothesis: Assume that
WK(2n + 1, k) contains n edge-disjoint Hamiltonian cycles. Induction Step: Because
the outline graph of WK(2n+ 1, k + 1) is WK(2n+ 1, k). By hypothesis, WK(2n+ 1,
k) contains n edge-disjoint Hamiltonian cycles. Let HC(k, i), where 1 ≤ i ≤ n, be n
edge-disjoint Hamiltonian cycles in the outline graph of WK(2n + 1, k + 1). Clearly,
each WK(2n + 1,1) subnetwork Vj*, where 0 ≤ j ≤ (2n + 1)k − 1, is incident to
exactly two edges in HC(k, i). That is, for each WK(2n + 1,1) subnetwork Vj*, there
are exactly two nodes whose inter-cluster links are contained in HC(k, i). We label
these two nodes as vj,i and vj,i+1 (vj,n+i and vj,n+i+1) for each i is even(odd), where
1 ≤ i ≤ n and the second subscripts except 2n are all positive and expressed modulo 2n.
In each WK(2n+1,1) subnetwork Vj*, the node which is not incident to an inter-cluster
link in all HC(k, i) is labeled as vj,2n. For each WK(2n+ 1,1) subnetwork Vj*, where
0 ≤ j ≤ (2n + 1)k − 1 and 1 ≤ i ≤ n, we define HPj,i as follows:

vj,i, vj,2n, vj,n+i, vj,n+i+1, vj,n+i−1, . . .,vj,i−2, vj,i+2, vj,i−1, vj,i+1 (for i is even)
vj,n+i, vj,2n, vj,i, vj,i+1, vj,i−1, vj,i+2, vj,i−2, . . ., vj,n+i−1, vj,n+i+1 (for i is odd)
The second subscripts except 2n are all positive and expressed modulo 2n. Clearly,

HPj,i is a Hamiltonian path of WK(2n+1,1) subnetwork Vj* and these n Hamiltonian
paths are edge-disjoint. For each 0 ≤ i ≤ n − 1, let HC(k + 1, i) = HC(k, i) *
HP0,i * HP1,i * K * HPN−2,i * HPN−1,i , where N = (2n+1)k. HC(k+1, i)
is a Hamiltonian cycle of WK(2n+ 1, k + 1) and these n Hamiltonian cycles are edge-
disjoint. This extends the induction and completes the proof. �

For example, edges of WK(5, 2) can be partitioned into Hamiltonian cycles as fol-
lows. First, according to Lemma 1, WK(5, 1) can be partitioned into Hamiltonian cycles
as shown in Figure. 2(a). Note that the outline graph of WK(5, 2) is WK(5, 1). If each
WK(5, 1) subnetwork is regarded as a supernode, the inter-cluster links of WK(5, 2) can
be partitioned into two edge-disjoint Hamiltonian cycles. Clearly, K5 is node symmet-
ric. Thus, we can label the nodes of each WK(5, 1) subnetwork according to proof of
Theorem 2. Consequently, edges of WK(5, 2) can be partitioned into two edge-disjoint
Hamiltonian cycles as illustrated in Figure. 2(b).

4 Conclusions

In this paper, we have shown that WK-Recursive networks with amplitude 2n + 1 con-
tains n edge-disjoint Hamiltonian cycles. By the aid of these edge-disjoint Hamiltonian
cycles, nearly optimal all-to-all broadcasting communication on all-port WK-Recursive

Edge-Disjoint Hamiltonian Cycles of WK-Recursive Networks 1103

v0,1

v0,0
v0,2

v0,3

v2,0

v2,3
v2,4

v2,2v2,1

v3,2

v3,4

v3,1

v3,3
v3,0

v1,3

v1,1
v1,0

v1,2

v4,1

v4,2

v4,3

v4,0

v4,4

(b) WK(5,2)

(a) WK(5,1)

0

1

3

2

4

v1,4

v0,4

v0,1

v0,0
v0,2

v0,3

v2,0

v2,3
v2,4

v2,2v2,1

v3,2

v3,4

v3,1

v3,3
v3,0

v1,3

v1,1
v1,0

v1,2

v4,1

v4,2

v4,3

v4,0

v4,4

(b) WK(5,2)

(a) WK(5,1)

0

1

3

2

4

(a) WK(5,1)

0

1

3

2

4

0

1

3

2

4

v1,4

v0,4

Fig. 2. Hamiltonian decomposition of WK(5, 2)

networks can be derived. However, the issue of one-port WK-Recursive networks is still
open.

This work was supported in part by the National Science Council of the Republic of
China under the contract number: NSC92-2213-E-129-010.

References

1. G. D. Vecchia and C. Sanges, “A recursively scalable network VLSI implementation,“ Future
Generat. Comput. Syst. vol. 4, pp. 235-243, 1988.

2. G. D. Vecchia and C. Sanges, “An optimal broadcasting technique for WK-Recursive topolo-
gies,“ Future Generat. Comput. Syst. vol. 5, pp. 353-357, 1989/1990.

3. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,Trees, Hyper-
cubes, California: Mogran Kaufmann, 1992.

4. R. Fernandes, “Recursive interconnection networks for multicomputer networks,“ Proceed.
Int. Conf. Parallel Process., vol. 1, pp. 76-79, 1992.

5. R. Fernandes and A. Kanevsky, “Substructure allocation in recursive interconnection net-
works,“ Proceed. Int. Conf. Parallel Process., vol. 1, pp. 315-318, 1993.

6. A. I. Mahdaly, H. T. Mouftah, N. N. Hanna, “Topological properties of WK-recursive net-
works," Proceed. Second IEEE Workshop on Future Trends of Distributed Computing Systems,
pp. 374-380, 1990.

7. G. D. Vecchia and C. Sanges, “Recursively scalable network for message passing architec-
ture," Proceed. Int. Conf. Parallel Processing and Applications, vol. 1, pp. 33-40, May 1987.

8. S. L. Johnsson and C. T. Ho, “Optimum broadcasting and personalized communication in
hypercubes," IEEE Transaction on Computers, vol. 38, pp. 1249-1268,1989.

1104 Chien-Hung Huang, Jywe-Fei Fang, and Chin-Yang Yang

9. G. Chartrand and O. R. Oellermann, Applied and Algorithmic Graph Theory, McGraw-
Hill,1993.

10. D. Barth and A. Raspaud, “Two edge-disjoint Hamiltonian cycles in the butterfly graph,"
Inform. Process. Lett., vol. 51, pp. 175-179,1994.

11. J. C. Bermond, O. Favaron and M. Maheo, “Hamiltonian decomposition of Cayley graphs of
degree four," J. Combin. Theory, vol. 46, pp. 142-153, 1989.

12. J. F. Fang, G. J. Lai, Y. C. Liu and S. T. Fang, “A novel broadcasting scheme for WK-Recursive
networks," Proceed. IEEE Pacific RIM Conference on Communications, Computers, and
Signal Processing, pp. 1028-1031, 2003.

13. J. S. Fu, “Hamiltonian-connectedness of the WK-recursive network," Proceed. Int. Conf.
Symposium on Parallel Architectures, Algorithms and Networks, pp.569-574, 2004.

14. F. Wu and C. C. Hsu, “A generalized processor allocation scheme for recursively decompos-
able interconnection networks," IEICE Transactions on Information and Systems, vol. E85-D,
pp. 694-713, 2002.

15. A. d’Acierno, R. Del Balio, G. De Pietro and R. Vaccaro, “A parallel simulation of fully
connected neural networks on a WK-recursive topology," Proceed. IEEE International Joint
Conference on Neural Networks, pp. 1850-1854, 1991.

Simulation-Based Analysis
of Parallel Runge-Kutta Solvers

Matthias Korch and Thomas Rauber

University of Bayreuth, Department of Mathematics, Physics, and Computer Science
{matthias.korch,rauber}@uni-bayreuth.de

Abstract. We use simulation-based analysis to compare and investigate differ-
ent shared-memory implementations of parallel and sequential embedded Runge-
Kutta solvers for systems of ordinary differential equations. The results of the
analysis help to provide a better understanding of the locality and scalability be-
havior of the implementations and can be used as a starting point for further
optimizations.

1 Introduction

The modeling of many scientific and engineering problems leads to systems of ordinary
differential equations (ODEs). The numerical solution of such problems requires large
amounts of computational resources, particularly if the ODE system is large or the
evaluation of the right-hand-side function is expensive. We aim at the development
of new, fast realizations of parallel ODE solvers that efficiently exploit the memory
hierarchy of current microprocessors. We start with an analysis of existing parallel
and sequential methods that assists in the detection of scalability bounds and further
sources of performance degradation. The paper considers the simulation-based analysis
of embedded Runge-Kutta (RK) methods. In particular, we study locality optimizations
for general embedded RK methods based on program transformations similar to [11],
and locality optimization and parallelization using pipelining to exploit the characteristic
access structure of an important class of ODEs resulting from the spatial discretization
of partial differential equations (PDEs) [6]. In contrast to [6], the parallel realizations
are based on a multi-threaded realization using Pthreads.

Investigations on real computer systems—as presented in [6,11]—show that there are
several limitations when performing a software analysis on real systems. For example,
only a limited number of hardware events is measurable as provided by the manufacturer
of the system, the execution of the program to be analyzed may be disturbed by other user
processes competing for shared resources, and the measurement itself may influence its
outcome if additional code needs to be inserted into the program or if the program has
to be interrupted in order to read the state of the machine. Additional experiments using
simulators can help overcome these problems. Particularly promising are instruction-
set-level simulators which enable full-system simulation of real parallel architectures
and provide a wide range of instrumentation facilities. We use Simics [9] for analyzing
the locality behavior and scalability properties of several sequential and parallel multi-
threaded versions of embedded RK solvers. Simics has already been used successfully

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1105–1114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1106 Matthias Korch and Thomas Rauber

to investigate the cache memory behavior of PDE solvers [13]. We present experiments
performed on a simulated SPARC V9 ISA, and compare our results with experiments
performed on a real Sun Fire server. As examples we use two sparse ODE systems
resulting from applying the method of lines to time-dependent PDEs.

The rest of the paper is organized as follows: Section 2 describes the ODE solution
methods considered. Section 3 shows the ODE test set used, and Section 4 gives an
overview of the different implementations. Section 5 presents simulation experiments
and provides a comparison with runtime tests on a real system. Section 6 discusses
related work, and Section 7 concludes the paper.

2 Solution of Initial Value Problems
Using Embedded Runge-Kutta Methods

In this paper, we consider the solution of initial value problems (IVPs)

y′(t) = f(t,y(t)) , y(t0) = y0 , y : IR → IRn , f : IR×IRn → IRn , (2.1)

of systems of ODEs. Such systems can be solved efficiently by explicit RK methods
with stepsize control using embedded solutions. An embedded RK method with s stages
uses the stage vectors v1, . . . ,vs to compute two new approximations ηκ+1 and η̂κ+1

from the two previous approximationsηκ and η̂κ. This is represented by the computation
scheme

vl = f (xκ + clhκ , ηκ + hκ

l−1∑
i=1

alivi) , l = 1, . . . , s ,

ηκ+1 = ηκ + hκ

s∑
l=1

blvl , η̂κ+1 = ηκ + hκ

s∑
l=1

b̂lvl .

(2.2)

The coefficients aij , ci, bi, and b̂i are determined by the RK method used. A straight-
forward implementation of (2.2) leads to the program shown in Fig. 1. It contains a
non-tightly nested loop structure consisting of a loop over the stage vector computation
with the computation of the argument vector w as inner loop and the loop over vector
components as innermost loop. Because the function evaluations of the right-hand-side
function f may access all components of w, two barriers must be used in the data-
parallel implementation to ensure that the computation of w has been finished before f
is evaluated and that w is not modified before the function evaluation is complete.

3 ODE Test Set

Our first test problem is the two-dimensional Brusselator equation (BRUSS2D)

∂u

∂t
= 1 + u2v − 4.4u + α

(
∂2u

∂x2
+

∂2u

∂y2

)
,

∂v

∂t
= 3.4u− u2v + α

(
∂2v

∂x2
+

∂2v

∂y2

)
(3.3)

Simulation-Based Analysis of Parallel Runge-Kutta Solvers 1107

// compute the stage vectors v1, . . . , vs

for (j = first; j ≤ last; j++) v1[j] = fj(x + c1h, η);
for (i = 2; i ≤ s; i++)
{

barrier();
for (j = first; j ≤ last; j++) w[j] = ai1v1[j];
for (l = 2; l < i; l++)

for (j = first; j ≤ last; j++) w[j] += ailvl[j];
for (j = first; j ≤ last; j++) w[j] = hw[j] + η[j];
barrier();
for (j = first; j ≤ last; j++) vi[j] = fj(x + cih, w);

}

// compute u = ηκ+1 − ηκ and t = η̂κ+1 − ηκ+1 (using b̃ = b̂ − b)

for (j = first; j ≤ last; j++) { u[j] = b1v1[j]; t[j] = b̃1v1[j]; }
for (i = 2; i ≤ s; i++)

for (j = first; j ≤ last; j++) { t[j] += b̃ivi[j]; u[j] += bivi[j]; }

use t to perform error control and stepsize selection
use u to update ηκ+1 if step is accepted

Fig. 1. Program fragment of one time step of parallel implementation (A)

where the unknown functions u and v represent the concentrations of two substances
in the domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 [4]. A Neumann boundary condition ∂u/∂η =
0, ∂v/∂η = 0, and the initial conditions u(x, y, 0) = 0.5 + y, v(x, y, 0) = 1 + 5x are
used. A standard five-point-star discretization of the spatial derivatives on a uniform
N × N grid leads to a sparse ODE system of dimension n = 2N2 for the discretized
solution {Uij}i,j=1,...,N and {Vij}i,j=1,...,N

dUij

dt
= 1 + U2

ijVij − 4.4Uij + α(N−1)2

× (Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j) ,
dVij

dt
= 3.4Uij − U2

ijVij + α(N−1)2

× (Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j) ,

(3.4)

where a constant number of components of the argument vector are accessed in each
evaluation of the right-hand-side function. This is a non-stiff system for α = 2 · 10−4

and small values of N .
The second problem considered is the Medical Akzo Nobel problem (MEDAKZO)

[8]. This problem originates from the penetration of radio-labeled antibodies into a tissue
that has been infected by a tumor. It consist of two PDEs

∂u

∂t
=

∂2u

∂x2
− kuv ,

∂v

∂t
= −kuv . (3.5)

Semi-discretization leads to an ODE system of the form

1108 Matthias Korch and Thomas Rauber

y′(t) = f(t,y) , y(0) = g , y ∈ IR2N , where

f2j−1 = αj
y2j+1 − y2j−3

Δζ
+ βj

y2j−3 − 2y2j−1 + y2j+1

(Δζ)2
− k y2j−1y2j ,

f2j = −k y2jy2j−1 .

(3.6)

As the Brusselator equation, this ODE system is sparse, i.e., the function evaluations
only access a small, constant number of components of the argument vector. A detailed
derivation of (3.6) together with initial and boundary conditions can be found in [8].

For the investigation of the locality behavior, the system size and the number of
stages of the RK method should be as large as possible such that not all memory locations
accessed during one time step can be stored in the cache and a good locality behavior is
profitable. Therefore, we use the grid size N = 250 (resulting in 125000 components)
together with DOPRI5(4) (7 stages) for BRUSS2D, and N = 15000 (resulting in 30000
components) together with DOPRI8(7) (13 stages) in the experiments with MEDAKZO.
Refining the mesh size to increase the system size, however, also increases the degree of
stiffness of the problems. Therefore, RK methods of lower order would be more suitable
for a practical numerical solution. However, a high number of stages is required for the
creation of large working sets (cf. Section 5) since the only alternative is to increase the
system size and thus to reduce the mesh size even further.

4 Overview of the Implementations

To develop efficient parallel implementations of embedded RK solvers, we derive sev-
eral different implementation variants by applying modifications to the loop structure
and taking the special dependences of particular ODE systems into account. The mod-
ifications of the loop structure increase the locality and allow a better utilization of the
memory hierarchy. On shared-memory machines a higher locality usually increases the
scalability since the memory operations issued by the processors can be satisfied from
one of the local caches more often, and the traffic on the system interconnect is reduced.
Additionally, the loop transformations may enable more efficient synchronization. The
implementations investigated include general implementations that can be used with
arbitrary ODEs, and pipelining implementations which are specialized in sparse ODE
systems with a limited access distance of the function evaluations.

General Implementations. The general implementations have been derived starting from
the straightforward implementation (A) (Fig. 1) by applying loop transformation tech-
niques such as loop interchange and loop fusion. Further, the data structures have been
adapted to the modified loop structure. As a result, these transformations lead to different
working spaces of the loops and thus change the locality behavior of the implementa-
tions. All general implementations have in common that the function evaluations of the
right-hand-side function may access all components of the argument vector. Therefore,
the parallelization of all general implementations is performed similarly to implemen-
tation (A) by inserting appropriate barriers at every stage to ensure that all components
of the argument vector w are available before the function evaluation starts (Fig. 1).

Simulation-Based Analysis of Parallel Runge-Kutta Solvers 1109

256 1K 4K 16K 64K 256K 1M
10

6

10
7

10
8

10
9

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s

1
2
4
8
16

(a) Cache line size 32 bytes

16K 64K 256K 1M 4M 16M 64M
10

3

10
4

10
5

10
6

10
7

10
8

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s

1
2
4
8
16

(b) Cache line size 1024 bytes

Fig. 2. Effect of different associativities on implementation (D) for BRUSS2D

Pipelining. The fact that for sparse ODE systems the function evaluations access only a
small number of argument vector components within a bounded access distance enables
us to perform a blockwise diagonal sweep across the stages rather than processing
the stages successively [6]. Consequently, the working space of these implementations
decreases to Θ(s2b), where b is the blocksize (e.g., b = 2N for BRUSS2D, b ≥ 2 for
MEDAKZO). In contrast, the working space of the general implementations consists of
Θ(sn) vector components with n = 2N2 for BRUSS2D and n = 2N for MEDAKZO.
The parallelization of the pipelining implementations can be performed using mutex
variables to synchronize neighboring processors when they are finalizing their pipelines.
But, using a modified data distribution, it is possible to reduce the synchronization
overhead such that only one barrier is required at each time step.

5 Experimental Results

To investigate the influence of different cache parameters on the locality behavior, we
simulate a one-level unified cache and vary its parameters, i.e., the number of cache lines,
the line size, and the associativity. In these experiments, starting at t = 0, we execute two
time steps to warm-up the cache, and then measure the number of cache misses which
occur during the execution of three further time steps. The results of the simulation are
verified by runtime experiments on a real Sun Fire 6800 machine, where we measure
the execution times of the implementations and investigate the cache behavior using
hardware performance counters.

Influence of Associativity and Line Size. Figure 2 shows the number of cache misses of
one general implementation as a function of cache size for different associativities for
two different line sizes when solving the BRUSS2D problem. As expected, the number
of cache misses of our implementations can be reduced by increasing the associativity
of the cache. This particularly holds for caches with large cache lines. However, if
the cache is sufficiently large (the exact size depends on the line size used) increasing

1110 Matthias Korch and Thomas Rauber

256 1K 4K 16K 64K 256K 1M 4M 16M 64M
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s

8 bytes/line
16 bytes/line
32 bytes/line
64 bytes/line
128 bytes/line
256 bytes/line
512 bytes/line
1024 bytes/line

(a) Implementation (A)

256 1K 4K 16K 64K 256K 1M 4M 16M 64M
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s

8 bytes/line
16 bytes/line
32 bytes/line
64 bytes/line
128 bytes/line
256 bytes/line
512 bytes/line
1024 bytes/line

(b) Implementation (D)

256 1K 4K 16K 64K 256K 1M 4M 16M 64M
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s

8 bytes/line
16 bytes/line
32 bytes/line
64 bytes/line
128 bytes/line
256 bytes/line
512 bytes/line
1024 bytes/line

(c) Implementation (Dblock)

256 1K 4K 16K 64K 256K 1M 4M 16M 64M
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s

8 bytes/line
16 bytes/line
32 bytes/line
64 bytes/line
128 bytes/line
256 bytes/line
512 bytes/line
1024 bytes/line

(d) Implementation (PipeD)

Fig. 3. Locality behavior for BRUSS2D for varying cache sizes and cache line sizes using one
processor with a 16-way set-associative cache

the associativity to more than two ways improves the number of cache misses only
insignificantly.

The influence of the cache line size can be observed from diagrams as those shown in
Fig. 3, where for the different implementations the number of cache misses as a function
of cache size is displayed for varying line sizes. All of our implementations profit from
large line sizes. Actually, we observed the lowest number of cache misses for the largest
line size we used (1024 bytes). The reason is that the implementations spend the main
part of their execution time in processing vectors, i.e., consecutive memory regions, and
can therefore take greater advantage of spatial locality if the line size is increased.

Working Sets. Figure 3 can also be used to identify the working sets [2] of the im-
plementations, i.e., cache sizes where critical portions of an implementation’s data set
start fitting into the cache. The working sets correspond to the points of inflection of
the curve representing the number of cache misses as a function of cache size and are
best characterized by simulating a fully associative cache using a line size of one word.

Simulation-Based Analysis of Parallel Runge-Kutta Solvers 1111

However, in our simulations we use a setup more close to practical systems, i.e., we use
a 16-way set-associative cache, and line sizes between 8 bytes and 1024 bytes.

The most significant working set of all implementations is found between 8 and
16 MB for BRUSS2D and between 2 and 4 MB for MEDAKZO. This working set cor-
responds to the data accessed in one time step and is therefore independent of the loop
structure used to compute the time steps. In addition, depending on the implementation,
one or two other working sets can be identified. The first starts at about 1 to 4 KB. Its
exact size depends on the problem, the implementation, and the cache line size used.
This working set is characterized by a very smooth change of the number of cache misses
resulting from the fact that the bounds of one loop, which occurs in all implementations,
depend on the index of another loop. The pipelining implementations such as (PipeD)
show another significant working set. Again, the exact size of this working set depends
on the line size. For BRUSS2D, this working set starts between 128 KB and 512 KB. It
results from the data accessed in the outer loop executed at every time step. The iterations
of this loop, which runs over the elements of the ODE system, correspond to pipelining
steps of the blockwise diagonal sweep across the stages.

Comparison of the Implementations. Figure 4 shows a comparison of the number of
cache misses of several embedded RK implementations. Comparing the two general
implementations (A) and (D), we observe that (D) usually attains a lower number of cache
misses than (A) if the cache size exceeds a certain size (e.g., 4–16 KB). The improved
locality behavior of (D) is the result of several loop transformations (e.g., interchange
and fusion) aiming at the frequent re-use of the results of the function evaluations [11].
These transformations replace the characteristic working set of (A) by a new working
set which is slightly larger, but if it starts fitting into the cache, it decreases the number
of cache misses further than the working set of the non-tightly nested loop structure of
(A).

Our motivation to implement (Dblock) was to use blocking (also called tiling) to
combine the good properties of (A) and (D). Our simulations show that this approach
can lead to a good locality behavior for large as well as small caches. For example,
the simulation of the sequential solution of MEDAKZO (Fig. 4(c)) and the simulation
of the parallel solution of BRUSS2D (Fig. 4(b)) show a cache miss number close to
(A) for cache sizes up to 16 KB where (A) leads to fewer cache misses than (D). If the
cache size is larger than 16 KB, the number of cache misses of (Dblock) is close to (D)
and significantly lower than the number of cache misses of (A). But implementation
(Dblock) is not always successful in reducing the cache misses. For example, it cannot
reach the low number of cache misses of (D) in the simulation of the sequential solution of
BRUSS2D (Fig. 4(a)). In the simulation of the parallel solution of MEDAKZO, (Dblock)
even generates a higher number of cache misses than (A) (Fig. 4(d)).

The pipelining implementation (PipeD) exploits the special access structure of the
two problems by performing a blockwise diagonal sweep across the stages, i.e., the
outer loop of the computational kernel of this implementation runs across the system
dimension, and at every iteration of this loop (called a pipelining step) only a small
part of the overall data set required to compute one time step is accessed. Therefore,
this implementation shows a very low number of cache misses compared to the other

1112 Matthias Korch and Thomas Rauber

4K 16K 64K 256K 1M 4M 16M
10

3

10
4

10
5

10
6

10
7

10
8

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s

(A)
(D)
(Dblock)
(PipeD)

(a) BRUSS2D on one processor

4K 16K 64K 256K 1M 4M 16M
10

3

10
4

10
5

10
6

10
7

10
8

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s

(A)
(D)
(Dblock)
(PipeD)

(b) BRUSS2D on eight processors

4K 16K 64K 256K 1M 4M
10

3

10
4

10
5

10
6

10
7

10
8

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s

(A)
(D)
(Dblock)
(PipeD)

(c) MEDAKZO on one processor

4K 16K 64K 256K 1M 4M
10

3

10
4

10
5

10
6

10
7

10
8

Cache size (bytes)

T
ot

al
 n

um
be

r
of

 c
ac

he
 m

is
se

s
(A)
(D)
(Dblock)
(PipeD)

(d) MEDAKZO on eight processors

Fig. 4. Comparison of the locality behavior of different implementations on different numbers of
processors (line size 256 bytes)

implementations in most of our experiments if the cache size is large enough to hold the
working set of one pipelining step.

Real System. To verify the results of our simulations, we have performed experiments
on a real Sun Fire 6800 where we investigate the runtimes (Tab. 1) and the locality
behavior (Tab. 2). The cache hierarchy of the real Sun Fire consists of a 64 KB 4-way
set-associative data cache (DC) and a 32 KB 4-way set associative instruction cache (IC)
on the first level, and an 8 MB 2-way set associative unified ‘enhanced cache’ (EC) on
the second level.

In these experiments, where we use the intergration intervals [0, 0.5] for BRUSS2D
and [0, 10−4] for MEDAKZO, the runtime is often closely related to the number of
cache misses. Thus the order of the implementations w.r.t the runtime is often the same
as the order w.r.t. the number of cache misses. But it is also very important how the
functional units of the processors can be exploited. Therefore, (A) can outperform the
other implementations in the experiments using MEDAKZO on one processor even
though it shows a worse locality.

Simulation-Based Analysis of Parallel Runge-Kutta Solvers 1113

Since the large L2 cache can store a large part of the data accessed during one time
step, the order of the implementations w.r.t. the number of cache misses is sometimes
different compared with our simulations. E.g., using BRUSS2D with N = 250, imple-
mentation (A) attains a lower number of cache misses than (D) and (Dblock). But if we
use N = 750, thus increasing the data set of one time step, (D) and (Dblock) show less
cache misses than (A). (Dblock) usually attains at least a similar number of cache misses
as (D), but often the number of cache misses is significantly lower than that of (D). In
all our experiments, (Dblock) obtains a lower execution time than (D). (PipeD) shows
the best locality behavior in most of our experiments. Therefore, only (A) can obtain a
better runtime than (PipeD) in some experiments, because the compiler can exploit the
simpler source code structure of (A) to produce more efficient machine code.

Table 1. Execution time (in seconds) on a real
Sun Fire 6800

Problem BRUSS2D MEDAKZO

N = 250 N = 750 N = 15000

Processors 1 8 1 8 1 8

(A) 4.65 0.61 651.3 48.4 134.0 25.9

(D) 4.92 0.63 530.5 49.3 143.2 24.5

(Dblock) 4.79 0.62 517.0 48.8 137.0 23.8

(PipeD) 4.74 0.62 382.6 45.4 136.5 21.3

Table 2. Number of cache misses (in thou-
sands) on a real Sun Fire 6800

Problem BRUSS2D MEDAKZO

N = 250 N = 750 N = 15000

Cache DC EC DC EC DC EC

(A) 981 785 53562 32062 120 98

(D) 1303 1156 26477 25013 69 76

(Dblock) 1192 1244 26542 20389 30 36

(PipeD) 254 650 4138 6424 21 85

6 Related Work

Loop transformations to improve the locality of scientific computations have been in-
vestigated by several authors. For example, [10] proposes computation regrouping to
increase temporal locality, and [12] suggests the use of Cache Miss Equations (CMEs)
to guide tiling and padding transformations. [7] gives an overview of different cache op-
timization techniques. There exist several alternative simulation environments suitable
for investigating program locality, e.g., full-system simulators as SimpleScalar [1] and
SimOS [5], and specialized cache simulators such as Dinero IV [3].

7 Conclusions

Simulation-based analysis enables us to investigate many interesting features of ODE
solvers and other applications. Our experiments show that locality has a large influence
on the execution speed of embedded RK implementations, particularly when executed
in parallel. But other factors also influence the execution speed, such as synchronization
and the utilization of functional units.

Which implementation performs best for a given problem depends on many factors,
e.g., the system dimension, the access structure of the function evaluations, the particular
memory hierarchy of the target system, and the optimizing capabilities of the compiler.
If the access structure of the function evaluations enables the use of the pipelining
computation scheme, it can be used to break down the working set of the outermost loop

1114 Matthias Korch and Thomas Rauber

to fit into the cache. Otherwise, if a general implementation is required, we recommend
using implementation (D) since its most significant working set reduces the number of
cache misses further than the most significant working set of (A), and most modern
microprocessors are equipped with L1 data caches of 64 KB or larger which usually can
store the working set of (D). (Dblock) can run faster than (D) in many cases, but requires
tuning of the blocksize.

References

1. T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer system
modeling. Computer, 35(2):59–67, February 2002.

2. P. J. Denning. The working set model for program behavior. Communications of the ACM,
11(5):323–333, May 1968.

3. J. Edler and M. D. Hill. Dinero IV: Trace-driven uniprocessor cache simulator.
http://www.cs.wisc.edu/˜markhill/DineroIV/.

4. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer, Berlin, 2nd edition, 2000.

5. S. A. Herrod. Using Complete Machine Simulation to Understand Computer System Behavior.
PhD thesis, Stanford University, February 1998.

6. M. Korch and T. Rauber. Scalable parallel RK solvers for ODEs derived by the method of
lines. In Euro-Par 2003. Parallel Processing (LNCS 2790), pages 830–839. Springer, August
2003.

7. M. Kowarschik and C. Weiß. An overview of cache optimization techniques and cache-aware
numerical algorithms. In Proceedings of the GI-Dagstuhl Forschungsseminar: Algorithms for
Memory Hierarchies. Springer (LNCS 2625), 2003.

8. W. M. Lioen and J. J. B. de Swart. Test Set for Initial Value Problem Solvers, Release 2.1.
CWI, Amsterdam, The Netherlands, September 1999.

9. P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg, J. Högberg, F.
Larsson, A. Moestedt, and B. Werner. Simics: A full system simulation platform. Computer,
35(2):50–58, February 2002.

10. V. S. Pingali, S. A. McKee, W. C. Hsieh, and J. B. Carter. Restructuring computations for
temporal data cache locality. International Journal of Parallel Programming, 31(4):306–338,
August 2003.

11. T. Rauber and G. Rünger. Optimizing locality for ODE solvers. In Proceedings of the 15th
ACM International Conference on Supercomputing, pages 123–132. ACM Press, 2001.

12. X. Vera, N. Bermudo, J. Llosa, and A. Gonzalez. A fast and accurate framework to analyze
and optimize cache memory behavior. ACM Transactions on Programming Languages and
Systems (TOPLAS), 26(2):263–300, March 2004.

13. D. Wallin, H. Johansson, and S. Holmgren. Cache memory behavior of advanced PDE solvers.
Technical Report 2003-044, Department of Information Technology, Uppsala University,
August 2003.

A Novel Task Scheduling Algorithm
for Distributed Heterogeneous Computing Systems

Guan-Joe Lai

Department of Computer and Information Science
National Tai-Chung Teachers College, Taichung, Taiwan, R.O.C.

gjlai@mail.ntctc.edu.tw

Abstract. This paper proposes a novel task scheduling algorithm to exploit the
potential of parallel processing, allowing for system heterogeneity in distributed
heterogeneous computing environments. Its goal is to achieve maximizing paral-
lelization and minimizing communication. Due to that the algorithm avoids from
the max-min anomaly in the parallelization problem and exploits schedule holes, it
could produce better schedules than those obtained by existing algorithms. Exper-
imental results are presented to verify the preceding claims. Three comparative al-
gorithms are applied to demonstrate the proposed algorithm’s effectiveness. As the
system’s heterogeneity increases, the performance improvement of the proposed
algorithm becomes more outstanding than that of others. Therefore, the proposed
scheduling algorithm may be used in designing efficient parallel environments
for those situations where the system heterogeneity is the system performance
bottleneck.

1 Introduction

This study proposes a novel task scheduling algorithm for distributed heterogeneous
computing environments. A distributed heterogeneous computing system generally
consists of a heterogeneous suite of machines, i.e., workstations or PCs. Although
distributed heterogeneous computing systems offer significant advantages for high-
performance computing, the effective use of heterogeneous resources still remains a
major challenge. For effective utilization of diverse resources, an application could be
partitioned into a set of tasks presented by an edge-weighted directed acyclic graph,
such that each task could be scheduled to the best-suited machine to minimize the total
completion time. Many heuristics have focused on solving the NP-complete problem [3]
of efficiently scheduling tasks to heterogeneous computing systems, e.g., the general-
ized Dynamic Level Scheduling (DLS) algorithm [4], the Heterogeneous Earliest Finish
Time (HEFT) [8] algorithm, the Critical Path on a Processor (CROP) [8] technique,
the Iso-Level Heterogeneous Allocation (ILHA) algorithm [2], and the Partial Comple-
tion Time (PCT) algorithm [11]. However, most of these algorithms simply focus on
computational aspects, so that the communication may become the system bottleneck
as the computational power increases, particularly while executing applications with
huge communication requirements. These strategies may perform poorly in distributed
heterogeneous computing systems, owing to the heterogeneity of computational power
and that of communication mechanisms.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1115–1122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1116 Guan-Joe Lai

A list-scheduling based algorithm, called the Dominant Tasks Scheduling (DTS)
algorithm, is proposed here to exploit the potential of parallel processing, allowing for
system heterogeneity and network bandwidth. In general, the list-scheduling approach
assigns priorities to tasks and then allocates these tasks to machines in the order of their
priorities to minimize a predefined cost function [18]. Most of them examine a ready
task for scheduling only after all parents of the task have been scheduled. However,
the operation of scheduling some ready tasks should not affect the strict reduction of
the earliest starting time of the tasks in the critical path; otherwise, it may extend the
overall parallel scheduling length. This situation is the so-called max-min anomaly in the
parallelization problem [1]. Exploiting schedule holes [13] is another important issue in
the scheduling problem. The schedule holes arise primarily because a task is scheduled
after some other tasks with higher scheduling priorities, but could be scheduled before
these tasks without affecting their earliest starting times. The DTS algorithm avoids from
the max-min anomaly by taking account of the partial global scheduling information
[15,16], and exploits schedule holes at each scheduling step. Therefore, it could produce
better schedules than those obtained by existing algorithms.

2 Dominant Tasks Scheduling Algorithm

Before introducing the proposed algorithm, related terminology is presented. A parallel
program is presented as a directed acyclic graph (DAG). The DAG is defined as G =
(N , E, W , C), where N is the set of tasks, E is the set of communication edges, W
is the set of task computation volumes, and C is the set of communication volumes.
The value of wi ∈ W is the computation volume for ni ∈ N . The value of cij ∈ C
is the communication volume occurring along eij ∈ E. Suppose that a distributed
heterogeneous computing system is presented as M = (P , Q, A, B), where P is the
set of heterogeneous processor elements, Q is the set of communication channels, A
= {αi|i = 1, . . . , |P |} is the set of execution rates, and B = {βij |i = 1, . . . , |P |, j =
1, . . . , |P |} is the set of transfer rates for the communication channels.

Let p(ni) ∈ P be the processor element to which ni is allocated, α(p(ni)) ∈ A
be the execution rate for p(ni), and then wi × α(p(ni)) be the computation cost when
the task ni is allocated to p(ni). When ni is allocated to p(ni) and nj is allocated to
p(nj), let β(p(ni), (p(nj)) ∈ B be the transfer rate from p(ni) to p(nj), and then
cij × β(p(ni), (p(nj)) be the communication cost from ni to nj . Let est(ni) be the
earliest starting time when ni can start execution, and then the earliest completion time
of ni is defined as ect(ni) = est(ni) + wi × α(p(ni)). The least-completion time of
nj ∈ succ(ni), lct(ni) = max(cij × β(p(ni), (p(nj)) + wj × α(p(nj)) + lct(nj)) is
the least execution time from this node to the sink node, where succ(ni) is the set of
immediate successors of ni.

Given a DAG and a system as described above, the scheduling problem is to ob-
tain the minimal-length, non-preemptive schedule of the task graph in the distributed
heterogeneous computing systems. To prevent the max-min anomaly, the DTS algo-
rithm reduces monotonically the intermediate scheduled length at each scheduling step
to achieve a shorter final schedule length. The proposed algorithm identifies the dom-
inant task in scheduling progress. A dominant task belongs in the critical path which

A Novel Task Scheduling Algorithm 1117

dominates the partial scheduled length during the scheduling process. Therefore, the
DTS algorithm could take advantage of the partial global information to monotonically
reduce the scheduled length. In each scheduling step, the DTS algorithm finds out two
ready candidates: the dominant task, ndt, and the task, nMaxPriority , with maximal
scheduling priority. The dominant task is with the maximal value of

est(ndt) + w(ndt)× α(p(ndt)) + lct(ndt);

and, the scheduling priority function is max(lct(ndt)−est(ndt)−w(ndt)×α(p(ndt))).
Then, the DTS algorithm schedules nMaxPriority to minimize est(nMaxPriority) under
the limitation of preventing est(ndt) from being delayed.

In order to exploit schedule holes, the DTS algorithm also finds out the task, nsh,
which could be scheduled on p(nMaxPriority) before nMaxPriority , when the follow-
ing conditions are satisfied: ready(p(nMaxPriority)) ≤ est(nsh), and ect(nsh) ≤
est(nMaxPriority).

The DTS algorithm first finds the lct for each task, and then proceeds to deal with the
set of ready tasks. When the set of ready tasks is not empty, the DTS finds out ndt and
nMaxPriority . If ndt is nMaxPriority , then DTS sets ndt to be the candidate. If ndt is
not nMaxPriority , then DTS checks whether ndt and nMaxPriority would be scheduled
into the same processor element or not. If they are scheduled into the same processor
element, then DTS tries to avoid from delaying the earliest starting time of ndt. If they
are not scheduled into the same processor element, then DTS sets nMaxPriority to be the
candidate. When the candidate is found, DTS tries to find out the schedule hole before the
candidate in the same processor element. If the schedule hole exists, then DTS sets nsh

to be the candidate. Finally, DTS schedules the candidate to its corresponding processor
element, and updates the ready set. The DTS algorithm is listed as follows.

1. Algorithm DTS
2. Input: A system M=(P,Q,A,B); a DAG=(N,E,W,C).
3. Output: A schedule with minimal parallel completion time.
4. Finding lct for each node.
5. Finding the ready nodes.
6. While the set of ready nodes is not empty
7. Finding ndt and nMaxPriority .
8. If ndt = nMaxPriority then
9. candidate = ndt

10. else
11. If p(ndt) = p(nMaxPriority) then
12. If scheduling nMaxPriority would delay est(ndt) then
13. Exiting while loop, and finding the next node with maximal

scheduling priority.
14. else
15. candidate = nMaxPriority .
16. end if
17. else
18. candidate = nMaxPriority .
19. end if

1118 Guan-Joe Lai

20. end if
21. For candidate, finding the task, nsh.
22. If nsh exists then candidate = nsh.
23. Scheduling candidate to its corresponding processor element.
24. Updating the set of ready nodes.
25. end while

In order to provide constant measures of the scheduling performance, the perfor-
mance bound of the DTS algorithm is analyzed to evaluate the accuracy of the heuris-
tic solution. According to a previous theorem [6], the performance bound of the DTS
scheduling algorithm ensures its performance within a factor of two times of the optimum
for general directed acyclic task graphs, as shown in the following theorem.

Theorem 1. For any DAG, G=(N , E, W , C) to be scheduled on a system M=(P , Q,
A, B), the schedule length, ω, obtained by DTS always satisfies

ω ≤
(

2− 1
|P |

)
ωopt + c, (2.1)

where ωopt is the length of the optimal schedule, and c is a constant value.

Proof. The time in (0, ω) could be partitioned into two sets S1 and S2. S1 is defined as
the set of all points of times for which all processor elements are executing some tasks,
and S2 is defined as the set of all points of time for which at least one processor element
is idle. If S2 is empty, all processor elements complete their last assignment at ω and no
idle interval can be found within (0, ω). The schedule is indeed optimal and, thus, the
theorem holds. Therefore, we assume that S2 is non-empty. Moreover, we also assume
that S2 is the disjoint union of q open intervals as below: S2 = (Il1, Ir1) ∪ (Il2, Ir2)
∪ . . .∪ (Ilq , Irq), where Il1 < Ir1 < Il2 < Ir2 < . . . < Ilq < Irq. Without loss of
generality, we claim that a chain of tasks (i.e., X : n1 → n2 → . . . → nx) could be
found after applying DTS algorithm, such that the chain of tasks satisfies the following
three cases.

(a) st(nx) ≤ Il1.
(b) st(nx) ∈ S2, i.e., ∃ an integer h, h ≤ q, s.t. Ilh < st(nx) < Irh.
(c) st(nx) ∈ S1 but st(nx) > Il1, i.e., ∃ an integer h, h ≤ q − 1, s.t. Irh ≤ st(nx) ≤

Il,h+1 or Ir,q ≤ st(nx),

wherenx denotes the task that finishes in the DTS schedule at timeω, and st(nx) denotes
the stating time scheduled by DTS for nx.

If the task nx is the entry task, the first possibility occurs; then the task nx by itself
constitutes a chain that satisfies our claim.

If the task nx is not the entry task, the second and third possibilities may occur. In
the scheduling process, there always is some task ng, such that there exists a resource
contention relationship with nx; otherwise, DTS could advance the earliest starting time
of the candidate, as shown in the above-described algorithm steps.

A Novel Task Scheduling Algorithm 1119

Then there always exists a h which satisfies (b) or (c). The cycle can be repeated
by considering the above-mentioned three possibilities until the starting time of the last
added task satisfies (a).

Finally, according to the theorem in [6], the performance bound of the DTS schedul-
ing algorithm ensures its performance within a factor of two times of the optimum for
general directed acyclic task graphs.

3 Experimental Results

Experimental results are presented to verify the preceding theoretical claims. Three algo-
rithms (i.e., DLS [4], HEFT [8] and CROP [8]) are applied to comparatively demonstrate
the proposed algorithm’s effectiveness. The scheduling performance of these algorithms
is compared in different communication/computation ratios (CCRs). In order to evaluate
these algorithms, six practical parallel applications are applied, including the fork tree,
the join tree, the fork-join, the FFT, the Gaussian elimination, and the LU decomposition.
The experimental results show the superiority of the DTS algorithm.

80000

180000

280000

380000

480000

1 2 4 8 16 32 PE #

S
c
h
e
d
u
le

d
le

n
g
th

DTS

HEFT

CPOP

DLS

Fig. 1. Average scheduled lengths in six parallel applications

As the number of processor elements increases, the average scheduled lengths gen-
erated by the DTS, HEFT and CPOP decrease in the six parallel applications, as shown
in Fig. 1. However, the average scheduled length generated by DLS does not decrease
gradually, when the number of processor elements is larger than eight. It is due to that
the DLS algorithm doesn’t take the strictly reduction problem into consideration.

When the communication/computation ratio is set to 0.05, 0.1, or 1, the average
scheduled lengths generated by the DTS, HEFT, CPOP and DLS in the six applications
are respectively shown in Fig. 2. When CCR=0.05, the average scheduled lengths gener-
ated by the DTS and HEFT are similar, except that the DTS outperforms HEFT in terms
of the schedule lengths in the FFT application, as shown in Fig. 2(a). When CCR=0.1,
the average scheduled lengths generated by the DTS and HEFT are also similar; how-
ever, the HEFT outperforms the DTS in terms of the schedule lengths in the Fork-Join
application, as shown in Fig. 2(b). As the communication/computation ratio increases to
one, the DTS outperforms the HEFT in the bulk of applications, as shown in Fig. 2(c).

The variance of β indicates the heterogeneity of communication mechanisms, and
the variance of α indicates the heterogeneity of computation power. As the value of

1120 Guan-Joe Lai

0

200000

400000

600000

800000

1000000

FFT G.E. LU Fork Join F.J.

S
c
h
e
d
u
le

d
le

n
g
th

DTS

HEFT

CPOP

DLS

(a) CCR=0.05

0

100000

200000

300000

400000

500000

FFT G.E. LU Fork Join F.J.

S
c
h
e
d
u
le

d
le

n
g
th

DTS

HEFT

CPOP

DLS

(b) CCR=0.1

0

10000

20000

30000

40000

50000

60000

FFT G.E. LU Fork Join F.J.

S
c
h
e
d
u
le

d
le

n
g
th

DTS

HEFT

CPOP

DLS

(c) CCR=1

Fig. 2. Average scheduled lengths in different CCRs

0

30000

60000

90000

120000

2 4 8 16 32 PE#

S
c
h
e
d
u
le

d
le

n
g
th

DTS HEFT CPOP DLS

(a) variance of â is 10

0

30000

60000

90000

120000

2 4 8 16 32 PE#

S
c
h
e
d
u
le

d
le

n
g
th

DTS HEFT CPOP DLS

(b) variance of â is 100

0

30000

60000

90000

120000

2 4 8 16 32 PE#

S
c
h
e
d
u
le

d
le

n
g
th

DTS HEFT CPOP DLS

(c) variance of â is 200

Fig. 3. Average scheduled lengths in different variances of β

the variance of β (or α) increases, the heterogeneity of communication mechanisms (or
computation power) becomes obvious, and vice versa. In Fig. 3(a)-(c), the scales of the
Y-axis are fixed from 0 to 120000. As the variance of β increases, the average scheduled
lengths generated by four algorithms also increase, as shown in Fig. 3. Actually, we
have shown the theoretical proof that the scheduling performance is affected by the
heterogeneity of computational power and that of communication mechanisms in our
previous work [5]; and Fig. 3 manifests it. [5] shows that the bounding margins of the
scheduling performance are affected by the heterogeneity of computational power and

A Novel Task Scheduling Algorithm 1121

0

5000

10000

15000

20000

25000

30000

2 4 8 16 32 PE#

S
c
h
e
d
u
le

d
le

n
g
th

DTS HEFT CPOP DLS

(a) variance of á is 10

0

50000

100000

150000

200000

250000

300000

2 4 8 16 32 PE#

S
c
h
e
d
u
le

d
le

n
g
th

DTS HEFT CPOP DLS

(b) variance of á is 100

0

100000

200000

300000

400000

500000

2 4 8 16 32 PE#

S
c
h
e
d
u
le

d
le

n
g
th

DTS HEFT CPOP DLS

(c) variance of á is 200

Fig. 4. Average scheduled lengths in different variances of α

that of communication mechanisms. As either heterogeneity increases, the spread of
performance bounds also increases.

Because the scheduled length generated by DLS is over the upperbound of the Y-axis
as the variance of β is 200, we ignore the exceeded part. From Fig. 3, we could observe
that as the system heterogeneity increases, the performance improvement of the DTS
algorithm becomes more stable than that of others. The similar situations could also be
observed in Fig. 4.

4 Conclusions

In this paper, we present a novel task scheduling algorithm, DTS, for distributed het-
erogeneous computing systems. The DTS algorithm could take advantage of the partial
global information to monotonically reduce the scheduled length, and to exploit schedule
holes in each scheduling step. The performance of the DTS algorithm is demonstrated
by evaluating six practical application benchmarks. Experimental results show the su-
periority of our proposed algorithm over those presented in previous literature, and that
the scheduling performance is affected by the heterogeneity of computational power,
the heterogeneity of communication mechanisms and the program structure of applica-
tions. As the system heterogeneity increases, the performance improvement of the DTS
algorithm becomes more stable than that of others. Therefore, the proposed scheduling
algorithm may be used in designing efficient parallel environments for those situations
where the system heterogeneity is the system performance bottleneck.

Acknowledgements

This work was sponsored in part by the National Science Council of the Republic of
China under the contract number: NSC92-2213-E-018-002.

1122 Guan-Joe Lai

References

1. B. Kruatrachue and T. G. Lewis. Grain Size Determination for Parallel Processing. IEEE
Software, 23–32, 1988.

2. B. Olivier, B. Vincent and R. Yves. The Iso-Level Scheduling Heuristic for Heterogeneous
Processors. Proc. Of 10th Euromicro Workshop on Parallel, Distributed and Network-based
Processing, 2002.

3. E. G. Coffman and P. J. Denning, Eds. Operating Systems Theory, Englewood Cliffs,
NJ:Prentice-Hall, 1973.

4. G.C. Shih and E.A. Lee. A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures. IEEE Trans. on Parallel and Distributed
Systems, 4(2):175–187, 1993.

5. Guan-Joe Lai. Scheduling Communication-Aware Tasks on Distributed Heterogeneous Com-
puting Systems. International Journal of Embedded Systems, accepted to be appeared, 2004.

6. Guan-Joe Lai. Performance Analysis of Communication-Aware Task Scheduling Algorithms
for Heterogeneous Computing. IEEE Proceedings of the 2003 Pacific Rim Conference on
Communications, Computers and Signal Processing, 788–791, August 2003.

7. H. El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto arbitrary target ma-
chines. Journal of Parallel Distribution Computing, 9(2):138–153, June 1990.

8. H. Topcuoglu, S. Hariri, and M.Y. Wu. Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing. IEEE Trans. on Parallel and Distributed Systems,
13(3):260–274, March 2002.

9. I. Ahmad and Y. Kwok. On Parallelizing the Multiprocessor Scheduling. IEEE Trans. on
Parallel and Distributed Systems, 10(4):414–432, Apr. 1999.

10. M.A. Palis, J.-C. Liou, and D.S.L. Wei. Task Clustering and Scheduling for Distributed Mem-
ory Parallel Architectures. IEEE Trans. on Parallel and Distributed Systems, 7(1):46–55, Jan.
1996.

11. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic mapping
of a class of independent tasks onto heterogeneous computing systems. Journal of Parallel
Distribution Computing, 59(2):107–121, Nov. 1999.

12. R. Andrei and J.C. Arjan. Low-Cost Task Scheduling for Distributed-Memory Machines.
IEEE Trans. on Parallel and Distributed Systems, 13(6), June 2002.

13. S. Selvakumar and C. Siva Ram Murthy. Scheduling Precedence Constrained Task Graphs
with Non-Negligible Intertask Communication onto Multiprocessors. IEEE Trans. on Parallel
and Distributed Systems, 5(3):328–336, 1994.

14. T. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson,
M.D. Theys, B. Yao, D. Hengsen, and R.F. Freund. A Comparison Study of Static Mapping
Heuristics for a Classes of Meta-Tasks on Heterogeneous Computing Systems. 1999 Proc.
Heterogeneous Computing Workshop, 15–29, 1999.

15. T. Yang and A. Gerasoulis. DSC: Scheduling Parallel Tasks on an Unbounded Number of
Processors. IEEE Trans. on Parallel and Distributed Systems, 5(9):951–967, Sep. 1994.

16. Y. Kwok and I. Ahmad. Dynamic Critical-Path Scheduling: An Effective Technique for Allo-
cating Task Graphs onto Multi-Processors. IEEE Trans. on Parallel and Distributed Systems,
7(5):506–521, May 1996.

17. Y. Kwok and I. Ahmad. Static Scheduling Algorithms for Allocating Directed Task Graphs
to Multiprocessors. IEEE Trans. on Parallel and Distributed Systems, 31(4):406–471, Dec.
1999.

18. Y. Kwok and I. Ahmad. Static Scheduling Algorithms for Allocating Directed Task Graphs.
ACM Computing Surveys, 31(4):406–471, Dec. 1999.

Study of Load Balancing Strategies for Finite Element
Computations on Heterogeneous Clusters

Kalyani Munasinghe1 and Richard Wait2

1 Dept. of Computer Science, University of Ruhuna, Sri Lanka
kalyani@cc.ruh.ac.lk

2 Dept. of Scientific Computing, Uppsala University, Sweden
richard@it.uu.se

Abstract. We study strategies for redistributing the load in an adaptive finite ele-
ment computation performed on a cluster of workstations. The cluster is assumed
to be a heterogeneous, multi-user computing environment. The performance of a
particular processor depends on both static factors, such as the processor hardware
and dynamic factors, such as the system load and the work of other users.
On a network, it is assumed that all processors are connected, but the topology
of the finite element sub-domains can be interpreted as a processor topology and
hence for each processor, it is possible to define set of neighbours. In finite element
analysis, the quantity of computation on a processor is proportional to the size of
the sub-domain plus some contribution from the neighbours. We consider schemes
that modify the sub-domains by, in general, moving data to adjacent processors.
The numerical experiments show the efficiency of the approach.

1 Introduction

The price-performance ratio of networks of workstations (NOWs) give better system
architectures for parallel processing applications. Several projects have been initiated to
deliver parallel supercomputing power by connecting large number of dedicated work-
stations. In addition, shared cluster networks of workstations also provide an attractive
environment for parallel applications.

Increasing availability of low cost computers and networks has generated increased
interest in the use of distributed systems as a parallel computational resource with which
to solve large applications. Even though the demand for computing power is large, many
existing systems are underutilized and a large amount of computing capacity remains
unused. At any instant, on a particular network only a few servers may be working at
capacity, most of the systems will not. Therefore many computing cycles that could be
utilised to fulfill the increasing computational demand are unused. The search for ways
to do more work with available resources by handling dynamically changing workloads
is the main aim of our work.

Scheduling parallel applications on shared environments is different from schedul-
ing in dedicated environments. The scheduling strategies of the dedicated environment
depends on exclusively accessible identical processing elements. Scheduling in a shared
environment is more challenging as the actual computing power available for parallel
applications is dynamically changing. Some of the reasons are that the speed of machines

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1123–1130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1124 Kalyani Munasinghe and Richard Wait

are different, machines may fail and primary users generate workload which should be
processed without interference by additional parallel computations.

In cluster environment, it is possible to get both high performance and high through-
put if resources are allocated and managed efficiently. One of the problems in achieving
high performance in clusters is that resources cannot be controlled by the individual
program. Usually, networks, computers and disks are shared by among competing ap-
plications. When parallel programs execute in this type of an environment, these pro-
grams compete for resources with other programs and has to face resource fluctuation
during execution. It is necessary to adapt these types of applications to changing system
environment, in order to achieve high performance. As the distributed resources cannot
be controlled by a single global scheduler, it is necessary to schedule the applications
by the application developer. It is also necessary to take into account both application
specific and dynamic system information in developing a schedule. Several factors such
as type of resources allocated, machine performance can be considered. In this work,
we examine how to adapt parallel applications in CPU sharing on workstation networks
and clusters to achieve goals such as minimizing execution time.

For some irregular grid applications, the computational structure of the problem
changes from one computational phase to another. For example, in an adaptive mesh,
areas of the original graph are refined in order to model the problem accurately. This
can lead to a highly localized load imbalance in subdomain sizes. Alternatively, load
imbalance may arise due to variation of computational resources. For example in a
shared network of workstations, computing power available for parallel applications is
dynamically changing. The reasons may be that the speed of machines are different or
there are other users on some part of the cluster, possibility with higher priority. The
partitioning has to be altered to get a balanced load. We propose an algorithm which
reduces the load imbalance by local adjustments of current loads to reduce the load spike
as quickly as possible and to achieve a load balance. It is assumed that the connections
for data transfers between the processors are determined by the data locality but data
movement should be kept as low as possible. The load balance is adjusted in general
by migrating data to adjacent processors with modifications to the connectivity where
necessary.

On a homogeneous cluster of dedicated processors (e.g. Beowulf [3]) with a fixed
problem size, the partition may be uniform and static.

2 Background

2.1 Some Definitions

Let p be the number of processors. The processor graph is represented by a graph (V,E)
with |V | = p vertices and |E| edges. Two vertices i and j form an edge if processors i
and j share a boundary of the partitioning. Hence the processor graph is defined by the
topology of the data subdomains. As the edges of the processor graph are defined by the
partitioning of the domain, when the partition changes the graph topology may change.
Each vertex i is associated with a scalar li, which represents the load on the processor i.

Study of Load Balancing Strategies for Finite Element Computations 1125

The total load is

L =
p∑

i=1

li (2.1)

The average load per processor is

l̄ =
1
p
L (2.2)

and we can define the vector, b, of load imbalances as

bi = li − l̄ (2.3)

This definition is based on the assumption that in order to achieve a perfect balanced
computation, all the loads should be equal. If however the processor environments are
heterogeneous and corresponding to each processor there is a load index αi which can
be computed using current system and/or processor information, then the ideal load l̃i
is defined as

l̃i = αi
1∑
j αj

L (2.4)

Load difference from the ideal load can be defined as

di = li − l̃i (2.5)

A processor is therefore overloaded if di > 0. These simple definitions assume that
the computation can be broken down into a large number of small tasks each of which can
be performed on any processor for the same computational cost. This is not necessarily
true as for example in a finite element computation, the cost of the computation might
depend on the number of edges between subdomains in addition to the cost proportional
to the size of the subdomains. So the total distributed computational cost is not necessarily
equal after any redistribution of the data.

In order to reduce any unnecessary data fragmentation, data will in general only
be moved between contiguous subdomains. It is assumed that any processor is equally
accessible from all other processors.

3 Existing Approaches

Some work [7] assume that the processors involved are continuously lightly loaded,
but commonly the load on a workstation varies in an unpredictable manner. Weissman
[11] worked on the problem adapting data parallel applications in a shared dynamic
environment of workstation clusters. They have developed an analytical frame work to
compare different adaptation strategies.

There are algorithms exist for scheduling parallel tasks. The Distributed Self
Scheduling (DSS) [8] technique uses a combination of static and dynamic schedul-
ing. During the initial static scheduling phase, p chunks of work are assigned to the p
processors in the system. The first processor to finish executing its tasks from the static
scheduling phase designates itself as the centralized processor and it stores the informa-
tion about which tasks are yet to be executed, which processors are idle and dynamically
distributes the tasks to the processors as they become idle.

1126 Kalyani Munasinghe and Richard Wait

Alessandro [4] introduced a method to obtain load balancing through data assignment
on a heterogeneous cluster of workstations. This method is based on modified manager-
workers model and achieves workload balancing by maximizing the useful CPU time
for all the processes involved.

Dynamic load balancing scheme for distributed systems [6] considers the hetero-
geneity of processors by generating a relative performance weight for each processor.
When distributing the workload among processors, the load is balanced proportional to
these weights.

Many methods proposed in the literature to solve the load balancing problem are
applicable to adaptive mesh computation. One of the earliest schemes was an iterative
diffusion algorithm [5]. At each iteration, new load is calculated by combining the
original load and the load of neighbouring processors. The advantage of this approach
is, it requires local communication only, but the problem is its slow convergence. Horton
[12] proposed a multilevel diffusion method by recursively bisecting a graph into two
subgraphs and the balancing of the load of two subgraphs. This method assumes that the
graph can be recursively bisected into two connected graphs. An alternative multilevel
diffusion scheme [13] described. Walshaw [14] implemented a parallel partitioner and
a direct diffusion partitioner that is based on the diffusion solver [15]. Several scratch-
remap [9] and diffusion based [10] adaptive partitioning techniques have also been
proposed.

These different approaches are suitable for different system environments and dif-
ferent computational environments. In our approach, we try to identify sharp increases
of load and to reduce them quickly as possible without necessarily achieving a perfect
load balance.

4 Repartitioning with Minimum Data Movement

In this section, we describe our proposed approach. It operates on the processor graph
which describes the interconnection of the subdomains of a mesh that has been partitioned
and distributed among the processors.

A processor is highly overloaded if the load difference is excessive

di > cli(for some constant c < 1)

and a partition is balanced if no processor is overloaded.
We assume that an overloaded node initiates the load balancing operation whenever

it detects that it is overloaded. One of the important features of our approach is to capture
the need for the processor load to adapt very quickly to external factors.

4.1 Proposed Approach

Define:
W :={nodes with zero load}=∅
Define:
H={overloaded nodes}
H0={highly overloaded nodes}

Study of Load Balancing Strategies for Finite Element Computations 1127

– For each overloaded node, define its under loaded neighbours and a list of its under
loaded neighbours of neighbours, so

for each m ∈ H, Nm={under loaded neighbours of m}

The algorithm is explained in detail in the box below.

For each m ∈ H
For each k ∈ Nm

NN k={under loaded neighbours of k}\N
If NN k �= ∅

Wk={nodes to be removed}⊂ {NN k ∪ {k}}
If Wk �= ∅

Redistribute load from Wk among neighbours

Modify Nm by removing nodes in Wk and adding neighbours
as appropriate
W := W ∪Wk

endif
endif

endfor
For each m ∈ H

∀ i ∈ Nm move li − l̃i from m to its neighbour i by diffusion
endfor
For each m ∈ H0

Assign set Wm ⊂ W of empty nodes to m

Assign load l̃i − li from node m to i ∈ Wm by repartitioning remaining
part of lm into s + 1 “unequal” parts.

endfor

5 Experimental Results

The experiments were performed on the problem of using the finite element method
on an unstructured grid. Here we assumed that the computation is element based so
that the load to be redistributed can be considered as repartitioning of the elements into
subdomains. A test grid created using FEMLAB [2] was used in the experiments. The
figure 1 shows the test grid used in the tests.

Our proposed algorithm was implemented on 8 Sun workstations connected by a 100
Mb/s Ethernet. All Suns share a common file server and all files are equally accessible
from each host due to the implemented Network File System. MPI was the communi-
cation library and gcc was the C compiler used. In this work, we used a simple load
sensor which used Unix commands to collect the system information. The load sensor
calculated the work load of each machine. Here we used a combination of processor
speed and the work load of each machine as a load index (i.e. speed/work load). The
figure 2 explains the speed of the machines and the figure 3 represents the work load of
each machine collected by the load sensor and the figure 4 describes the load index used
in the experiments.

1128 Kalyani Munasinghe and Richard Wait

Fig. 1. Test Grid

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8

P
ro

ce
ss

or
 S

pe
ed

Processor Number

Speed

Fig. 2. Speed of processors

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 1 2 3 4 5 6 7 8

P
ro

ce
ss

or
 W

or
k

Lo
ad

Processor Number

Work Load

Fig. 3. Work load of processors

We ran the test without applying the load balancing approach and 3 iterations with
the load balancing approach. The table 1 describes the advantage of the load balancing

Study of Load Balancing Strategies for Finite Element Computations 1129

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 13500

 14000

 14500

 1 2 3 4 5 6 7 8

Lo
ad

 In
de

x

Processor Number

Load Index

Fig. 4. Load Index for each processor

Initial Load
Iteration1
Iteration2
Iteration3

1 2 3 4 5 6 7 8
300

350

400

450

500

550

600

650

700

750

800

Processor Number

Lo
ad

Reduction of Spike

Fig. 5. Load Distribution in each Iteration

Table 1. Running Times in milliseconds

Without Load Balance With Load Balance

16.7276

iteration 1 2.41231

iteration 2 2.21345

iteration 3 2.16542

approach and the figure 5 shows how the computational work load is distributed in each
iteration.

We also tested how the performance vary, when the load index varies. Table 2 gives
a comparison of the timing.

1130 Kalyani Munasinghe and Richard Wait

Table 2. Different Load Index

Load Index Run time in milliseconds

Processor speed x (1/work load) 2.41483

1/work load 5.6781

Available CPU 6.2142

Processor speed 11.2134

6 Conclusions

In this paper, we have presented an approach to reduce sharp increases of load as quickly
as possible. The experimental results show a performance improvement with the ap-
proach. According to the experimental results, we can see that the load index also plays
an important role. Our future work will focus on including more heterogeneous machines
and large real data sets into our experiments.

References

1. http://www.-cse.ucsd.edu/users/breman/apples.html/.
2. http://www.comsol.com.
3. http://www.beowulf.org/.
4. Alessandro Bevilacqua, A dynamic load balancing method on a heterogeneous cluster of

workstations, Informatica 23 (1999), no. 1, 49–56.
5. G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, Parallel and

Distributed Computing 7 (1989), 279–301.
6. Zhilling Lan and Valerie E. Taylor, Dynamic load balancing of SAMR applications on dis-

tributed systems, Scientific Programming 10 (2002), 319–328, no. 21.
7. C. K. Lee and M. Hamdi, Parallel image processing application on a network of distributed

workstations, Parallel Computing 26 (1995), 137–160.
8. J. Lin and V. A. Saletore, Self scheduling on distributed memory machines, Supercomputing

(1993), 814–823.
9. L. Oliker and R. Biswas, Plum: Parallel load balancing for adaptive structured meshes,

Parallel and Distributed Computing 52 (1998), no. 2, 150–177.
10. Kirk Schloegel, George Karypis, and Vipin Kumar, Multilevel diffusion schemes for reparti-

tioning of adaptive meshes, Journal of Parallel and Distributed Computing 47 (1997), no. 2,
109–124.

11. Jon B. Weissman, Predicting the Cost and Benefit of Adapting Data Parallel Applications in
Clusters, Parallel and Distributed Computing (2002), 62, 1248–1271.

12. G. Horton, A multilevel diffusion method for dynamic load balancing, Parallel Computing
(1993), 9, 209–218.

13. Kirk Schloegel and George Karypis and Vipin Kumar, Multilevel Diffusion Schemes for
Repartitioning of Adaptive Meshes, Journal of Parallel and Distributed Computing (1997),
47, 2, 109–124.

14. C. Walshaw and M. Cross and M. G. Everett, Parallel Dynamic Graph Partitioning for Adaptive
Unstructured Meshes, Journal of Parallel and Distributed Computing (1997), 47, 2, 102–108.

15. Y. F. Hu and R. J. Blake, An improved diffusion algorithm for dynamic load balancing, Parallel
Computing (1999), 25, 4, 417–444.

Parallel Algorithms for the Determination of Lyapunov
Characteristics of Large Nonlinear Dynamical Systems

Günter Radons1, Gudula Rünger2, Michael Schwind2, and Hong-liu Yang1

1 Institute of Physics, Technical University Chemnitz, 09111 Chemnitz, Germany
{radons,hya}@physik.tu-chemnitz.de

2 Department of Computer Science, Technical University Chemnitz, 09111 Chemnitz, Germany
{ruenger,schwi}@informatik.tu-chemnitz.de

Abstract. Lyapunov vectors and exponents are of great importance for under-
standing the dynamics of many-particle systems. We present results of perfor-
mance tests on different processor architectures of several parallel implementa-
tions for the calculation of all Lyapunov characteristics. For the most time con-
suming reorthogonalization steps, which have to be combined with molecular
dynamics simulations, we tested different parallel versions of the Gram-Schmidt
algorithm and of QR-decomposition. The latter gave the best results with respect
to runtime and stability. For large systems the blockwise parallel Gram-Schmidt
algorithm yields comparable runtime results.

1 Introduction

The Lyapunov characteristics of many-particle systems consisting of Lyapunov expo-
nents and vectors found much interest recently [1,2]. Especially the dynamics of Lya-
punov vectors which may show collective wave-like behavior, provides a challenge for
current research [3,4,5,6,7,8,9,10,11]. In this paper we therefore consider means for
effectively calculating the full spectrum of Lyapunov exponents and associated Lya-
punov vectors for high-dimensional, continuous time nonlinear dynamical systems. The
standard method of [12] is employed to calculate these quantities for our many-particle
(N = 100 − 1000) Lennard-Jones system in d dimensions. A system of 2dN × 2dN
linear and 2dN nonlinear ordinary differential equations has to be integrated simulta-
neously in order to obtain the dynamics of 2dN offset vectors in tangent space and the
reference trajectory in phase space, respectively.

For the calculation of the Lyapunov exponents and vectors the offset vectors have to
be reorthogonalized periodically using either Gram-Schmidt orthogonalization or QR
decomposition. To obtain scientifically useful results one needs particle numbers in the
above range and long integration times for the calculation of certain long time averages.
This enforces the use of parallel implementations of the corresponding algorithms. It
turns out that the repeated reorthogonalization is the most time consuming part of the
algorithm. The algorithmic challenge for the parallelization lies on one hand on the
parallel implementation of the reorthogonalization algorithm itself. On the other hand
the results of the latter have to be fed back to the molecular dynamics integration routine,
providing new initial conditions for the next reorthogonalization step, and so on. This
alternation between reorthogonalization and molecular dynamics integration requires in

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1131–1140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1132 Günter Radons et al.

addition an optimal balancing of computation and communication on distributed memory
machines or cluster of SMPs.

As parallel reorthogonalization procedure we have realized and tested several parallel
versions of Gram-Schmidt orthogonalization and of QR factorization based on block-
wise Householder reflection. The parallel version of classical Gram-Schmidt (CGS)
orthogonalization is enriched by a reorthogonalization test which avoids a loss of or-
thogonality by dynamically using iterated CGS. All parallel procedures are based on a
2-dimensional logical processor grid and a corresponding block-cyclic data distribution
of the matrix of offset vectors. Row-cyclic and column-cyclic distributions are included
due to parameterized block sizes, which can be chosen appropriately. Special care was
also taken to offer a modular structure and the possibility for including efficient se-
quential basic operations, like from BLAS, in order to efficiently exploit the processor
or node architecture. For comparison we consider the standard library routine for QR
factorization from ScaLAPACK.

The interface between the parallel reorthogonalization and the integration procedure
guarantees an invariant data distribution, which may require an automatic redistribution,
so that different parallel orthogonalizations can be used within the integration process
to adapt the parallel efficiency to the specific hardware properties. Performance tests
are performed on a Beowulf cluster, a cluster of dual Xeon nodes, and an IBM Re-
gatta p690+. Our emphasis is on a flexible combination of parallel reorthogonalization
procedures and molecular dynamics integration that allows an easy restructuring of the
parallel program. The goal is to exploit the characteristics of processors or nodes and
of the interconnections network of the parallel hardware effectively by choosing an ef-
ficient combination of basic routines and parallel orthogonalization algorithm, so that
computation of Lyapunov spectra and Lyapunov vectors can be performed in the most
efficient way in order to be able to simulate very large problems.

The rest of the paper is organized as follows. Section 2 presents the physical problem
of determining Lyapunov characteristics. Section 3describes the parallel implementation
of orthogonalization algorithms. Section 4 presents corresponding runtime results on
different parallel machines and Section 5 concludes.

2 Determining Lyapunov Characteristics

The equations of motion for a many-body system may always be written as a set of first
order differential equations Γ̇ (t) = F (Γ (t)) where Γ is a vector in the D-dimensional
phase space. The tangent space dynamics describing infinitesimal perturbations around
a reference trajectory Γ (t) is given by

δΓ̇ = M(Γ (t)) · δΓ (2.1)

with the Jacobian M = dF
dΓ . The time averaged expansion or contraction rates of δΓ (t)

are given by the Lyapunov exponents. For a D−dimensional dynamical system there
exist in total D Lyapunov exponents for D different directions in tangent space. The
orientation vectors of these directions are the Lyapunov vectors e(α)(t), α = 1,· · · ,D.

In practice the Lyapunov vectors (LVs) e(α)(t) and Lyapunov exponents λ(α)(LEs)
are obtained by the so-called standard method consisting of repeated Gram-Schmidt

Parallel Algorithms for the Determination of Lyapunov Characteristics 1133

orthogonalization of an evolving set of D perturbation vectors δΓ (t) [12]. The time evo-
lution of a matrix E(t) composed of the D perturbation vectors is written as E(ti+1) =
L · E(ti) where L is the propagator of δΓ . The computation of LEs and LVs can be
presented as:

Algorithm 1 Computation of all the LEs and LVs of a dynamical system

Initialize E0 as a D ×D identity matrix
Initialize LE vector as a zero D-dimensional vector
for i = 1 to m iterations

Ei = Li ·Ei−1 integration by MD simulation
Ei = Qi ·Ri compute the QR factorization of Ei

LE vector = LE vector + log(diag(|Ri|))
for j = 1 to D

LVj =j-th row of Qi

end
Ei = Qi

end
LE vector = LE vector/m iterations

3 Parallel Realization

The entire parallel algorithm consists of integration steps which are periodically inter-
rupted in order to apply a reorthogonalization of the offset matrix. Both parallel parts
are based on the distribution of the matrix which differ according to efficiency needs.
A natural data distribution in the integration parts is a column-block cyclic distribution.
However in the orthogonalization part a different distribution may lead to the fastest al-
gorithm so that a redistribution of data is needed when combining both parts. The redis-
tribution of data is performed appropriately by an interface routine. The communication
overhead of the redistribution can outbalance the advantage of a faster orthogonalization
and a suboptimal orthogonalization can lead to the best parallel overall runtime.

3.1 Parallel Orthogonalization Algorithms

As described, orthogonalization plays an important role in the interplay with the mole-
cular dynamics simulation. To efficiently perform reorthogonalization in such a context
we have implemented and compared several parallel algorithms for the Gram-Schmidt-
orthogonalization and for the QR-decomposition. The basis for the parallel algorithms is
a two dimensional block cyclic data distribution and a logical two-dimensional proces-
sor grid. The parameters for the blocksize and the number of processors in each matrix
dimension can be chosen according to the needs for the algorithms. For the use within the
program for the determination of Lyapunov characteristics the following three parallel
Gram-Schmidt versions and two QR decompositions have been implemented.

1134 Günter Radons et al.

– The Parallel-Classical-Gram-Schmidt-Algorithm (PCGS) is a parallel imple-
mentation of the Classical-Gram-Schmidt-Algorithm (CGS) [13]. Due to the struc-
ture of the Gram-Schmidt algorithm and the distribution of the matrix the R-Matrix
is available in transposed form which is distributed on the processor grid. The PCGS-
Algorithm may have the disadvantage that the calculated Q-Matrix is not always
orthogonal for matrices with high condition numbers [14].

– The Iterated-Parallel-Classical-Gram-Schmidt-Algorithm (PICGS) has a simi-
lar structure as PCGS but includes an iterative reorthogonalization which avoids the
disadvantage of PCGS. The need for a repeated orthogonalization is determined by
a test described in [15].

– The Parallel-Blockwise-Classical-Gram-Schmidt-Algorithm (PBCGS) is a
block version of the CGS-Algorithm (Algorithm 2.4 in [16]) which uses highly
optimized cache efficient matrix-matrix operations (BLAS [17,18] Level 3 kernels).

– The Parallel-QR-Algorithm (PQR) is a parallel implementation of the QR-Al-
gorithm with Householder-Reflectors. The parallel implementation consists of two
steps. First the R-Matrix and the Householder-Reflectors are calculated. In the sec-
ond step the Q-Matrix is constructed.

– The Parallel-Blockwise-QR-Algorithm (PBQR) is a parallel QR-Algorithm with
Householder Reflectors [19,20,21] which computes column blocks instead of single
columns. Like in the PQR-Algorithm the R-Matrix is calculated before the matrix
Q is calculated in the second step. For the blocking the WY -Representation for
products of Householder-Vectors in [21] is used, which allows the use of cache effi-
cient matrix-matrix operations. A description of the optimizations of the algorithm
is given in Section 3.3.

The parallel algorithms are mainly derived from the sequential algorithms by sub-
stituting the building blocks (vector-, matrix-vector-, or matrix-matrix operations) by
parallel equivalents which work over the block cyclic-distribution on the logical proces-
sor grid. All parallel programs are designed in an SPMD programming style and use the
Message-Passing-Interface (MPI) Standard for communication [23]. The Gram-Schmidt
algorithms construct the R-Matrix column by column. The decision to apply a second
orthogonalization step in the PICGS-Algorithm is done in one processor column of the
processor grid and then it is broadcasted within the processor rows. The difference be-
tween our algorithm and the ScaLAPACK-Routine PDGEQRF lies in the fact that our
algorithm caches some calculations in the first stage to use them in the second, which is
not done in ScaLAPACK [24].

3.2 Interface to Orthogonalization Routines

To include the parallel orthogonalization modules into the entire program we have devel-
oped a generic interface routine which calls the different orthogonalization algorithms.
The routine is able to redistribute the input matrix to a data distribution format needed
by the integration part of the program. The data distribution format differs in the lengths
of blocksizes and the number of processors in each matrix dimension. The distribution
in the orthogonalization part is adapted to use the underlying hardware platform as ef-
ficiently as possible. As input data this routine requires the matrix to be orthogonalized

Parallel Algorithms for the Determination of Lyapunov Characteristics 1135

and a number of parameters which describe the distribution of the input matrix and the
distribution needed for the calculation. This routine outputs the orthogonalized matrix
and on request the R-Matrix or the diagonal elements of the R-Matrix.

3.3 Optimizations for the PBQR-Algorithm

As mentioned above the PBQR-Algorithm uses the WY-Representation for products
of Householder Matrices described in [21], which has the form I − V TV T . V is a
trapezoidal matrix with 1 in its diagonal. T is an upper triangular matrix. The block
representation is used both for computing the R- and Q-matrix. Thus in contrast to
ScaLAPACK implementation we avoid a second computation of the T -matrix and store
the T -Matrix for the computation of the Q-matrix.

A straightforward parallelization of the Block-QR-Algorithm (like PBQR) with dis-
tributed BLAS-Operations (e.g. PBLAS) would result in a load imbalance because of
idle times for some processors. When one column of the two dimensional processor
grid computes the block of Householder-Reflectors with Level 2 Blas operations, the
processors in the other processor-columns wait for the result of this computation before
they can update the remaining matrix.

As optimization the computation we have realized a more flexible computation
scheme on the logical processor grid which makes an overlapping of communication
and computation possible. A similar scheme has been presented in [25] for a ring of
processors. The more flexible implementation requires a non-blocking broadcast opera-
tion, which is not available in the MPI-Standard. While the JUMP-architecture provides
an MPE Ibcast, we have implemented non-blocking broadcast operations on the two
other architectures by using nonblocking send-receives.

4 Performance Results

The left column of Figure 1 shows the runtime plots for the entire molecular dynamics
simulation on the three architectures listed in Table 1. The PBQR algorithm outperforms
the Gram-Schmidt versions on the CLIC and XEON cluster and has a similar runtime on
the JUMP architecture. The moderate increase in runtime of the PICGS indicates a good
condition of the matrix of offset vectors. The PQR-algorithm gives the best performance
on the CLIC-architecture for the column-block-cyclic distribution which is used by the
integration-part.

The speedup of the program is mainly limited by the orthogonalization routine which
can be seen from the right column of Figure 1. Here the percentage of runtime used by
the orthogonalization part increases with higher numbers of processors. Due to the fact
that the molecular dynamics part scales fine with higher numbers of processors the
total runtime decreases even if the runtime of the orthogonalization algorithm does not
decrease or even increases slightly.

Test runs with redistribution show that the overhead of redistributing the input- and
output-matrices limits the advantage of the optimal processor grid for small matrices
and small numbers of processor. Figure 2 shows a comparison of parallel runtimes for
distributions on different processor grids: a column-block-cyclic distribution where all

1136 Günter Radons et al.

Table 1. Systems used for runtime measurements

Name Processor Communication BLAS

CLIC Pentium III @800MHz LAM-MPI over Ethernet libgoto for PIII [22]

XEON dual Xeon @2GHz Scali over SCI libgoto for PIV [22]

JUMP 32x Power4+ @1.7GHz 1 Node Shmem MPI essl

processors form one row of the form (1×P), a row-block-cyclic distribution where all
processors are in one column of the form (P ×1), and a block-cyclic distribution in both
dimension of size P1×P1 = P . The distributions 1×P and P × 1 are not optimal and
are outperformed by the square processor grid layout.

An analysis of our algorithms in terms of block sizes for the block-cyclic distribution
demonstrates that the PCGS-algorithm has a minimum runtime for a column blocksize
of one. The blocked algorithms PBCGS and PBQR show a behavior similar to that of
Figure 3 which shows the runtimes on the XEON-Cluster for a 1200 × 1200 matrix
on a 4 × 4 processor-grid. This figure shows a high runtime increase for small column
blocksizes. The runtime of these two algorithms is not very sensitive with respect to a
change of the row blocksize. The optimal column-blocksize for the block-algorithms
decreases with an increasing number of processor-grid-columns when the number of the
processors in the row is held constant.

Figure 4 compares the runtime of the different QR-Algorithms with Householder-
Reflectors with the ScaLAPACK-Implementation consisting of one call to PDGEQRF
(computing the R-Matrix) and PDORGQR (forming the Q-matrix). The measurement
was done with 16 processors in the grid configurations (1×16), (2×8), (4×4), (8×2)
and (16×1). In Figure 4only the best runtime measured for a specific matrix dimension is
plotted. The Figure 4 shows that our algorithms are comparable in runtime on the CLIC-
Architecture and outperform the ScaLAPACK implementation on theJUMP- and XEON-
Clusters by a maximum of up to 35 and 46 percent. The best runtimes have been measured
with the PBQR with the optimization described in Subsection 3.3 (PBQR2 in Figure 4).

5 Conclusion

We have developed and tested several parallel implementations for the calculation of
all Lyapunov characteristics, vectors and exponents, of large dynamical systems. The
latter are of great importance for an understanding of the dynamics of many-particle
systems. It turned out that in the interplay between molecular dynamics (MD) integra-
tion and repeated reorthogonalization the latter is the critical factor, which for large
systems delimits overall performance. Among the five tested reorthogonalization algo-
rithms the Parallel-Blockwise -QR Algorithm based on Householder reflectors (PBQR)
gave the best results with respect to runtime and stability. They also use most effec-
tively the column-cyclic data distribution generated naturally by the MD-algorithm. For
large systems the blockwise parallel Gram-Schmidt algorithm yields comparable re-
sults. With such an implementation the investigation of Lyapunov instabilities in 2- and
3-dimensional systems with several hundred particles becomes possible.

Parallel Algorithms for the Determination of Lyapunov Characteristics 1137

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

ru
nt

im
e

[s
]

number of processors

 CLIC 600x600

PCGS
PICGS

PBCGS
PQR

PBQR

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

pe
rc

en
t

number of processors

 CLIC 600x600

PCGS
PICGS

PBCGS
PQR

PBQR

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0 2 4 6 8 10 12 14 16

ru
nt

im
e

[s
]

number of processors

 XEON 600x600

PCGS
PICGS

PBCGS
PQR

PBQR

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16

pe
rc

en
t

number of processors

 XEON 600x600

PCGS
PICGS

PBCGS
PQR

PBQR

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0 2 4 6 8 10 12 14 16

ru
nt

im
e

[s
]

number of processors

 JUMP 600x600

PCGS
PICGS

PBCGS
PQR

PBQR

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16

pe
rc

en
t

number of processors

 JUMP 600x600

PCGS
PICGS

PBCGS
PQR

PBQR

Fig. 1. Parallel runtime per iteration step of the molecular dynamics simulation including re-
orthogonalization (left column) for the CLIC, XEON, and JUMP systems (from the top). The
right column shows the corresponding percentages of runtime used for the orthogonalization part
alone. The measurements are made on the architectures listed in Table 1. The experiments have
been performed with a 600×600 matrix of offset vectors per run. The orthogonalization algorithm
works without redistribution

Acknowledgment

We thank the National Supercomputer Centre John von Neumann-Institute for Comput-
ing (NIC) in Jülich, Germany, for providing access to the Jump Cluster. We gratefully
acknowledge financial support from the DFG within Sonderforschungsbereich 393 Par-
allele Numerische Simulation für Physik und Kontinuumsmechanik.

1138 Günter Radons et al.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

ru
nt

im
e

[s
]

number of processors

row-block-cyclic distribution
column-block-cyclic distribution

block-cyclic with redistribution
block-cyclic-distribution

Fig. 2. Runtime for a single orthogonalization for
the PBCGS-algorithm on CLIC for a3000×3000

matrix

0
20

40
60

80

0
20

40
60

80
0.2

0.4

0.6

0.8

1

1.2

row blocksize

 XEON PBQR 1200x1200 4x4

column blocksize

ru
nt

im
e

[s
]

Fig. 3. Runtime on the XEON-Cluster for a 4×
4 processor grid with a total of 16 processors
for the PBQR-algorithm

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000

ru
nt

im
e

[s
]

matrix dimension (m=n)

 CLIC

 PQR
 PBQR

 PBQR2
 ScaLapack

A

 0.01

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000

ru
nt

im
e

[s
]

matrix dimension (m=n)

 JUMP

 PQR
 PBQR

 PBQR2
 ScaLapack

B

 0.01

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500 3000

ru
nt

im
e

[s
]

matrix dimension (m=n)

 XEON

 PQR
 PBQR

 PBQR2
 ScaLapack

C

Fig. 4. Parallel runtime of the QR-Algorithms with Householder-Reflectors in isolation without
the simulation- and redistribution-part for the block-cyclic distribution shown in dependency of
the matrix dimension. The measurement was done with random square-matrices on 16 processors.
The ScaLAPACK algorithm consists of a call to PDGEQRF and PDORGQR

Parallel Algorithms for the Determination of Lyapunov Characteristics 1139

References

1. P. Gaspard, Chaos, Scattering, and Statistical Mechanics (Cambridge University Press, Cam-
bridge, 1998).

2. J.P. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge
University Press, Cambridge, 1999).

3. H.A. Posch and R. Hirschl, "Simulation of Billiards and of Hard-Body Fluids", in Hard Ball
Systems and the Lorenz Gas, edited by D. Szasz, Encyclopedia of the mathematical sciences
101, p. 269, (Springer, Berlin, 2000).

4. C. Forster, R. Hirschl, H.A. Posch and Wm.G. Hoover, Physics D 187, 294 (2004).
5. H.A. Posch and Ch. Forster, Lyapunov Instability of Fluids, in Collective Dynamics of Non-

linear and Disordered Systems, p.301, Eds. G. Radons, W. Just, and P. Häussler (Springer,
Berlin, 2004).

6. J.-P. Eckmann and O. Gat, J. Stat. Phys 98, 775 (2000).
7. S. McNamara and M. Mareschal, Phys. Rev. E 64, 051103 (2001). M. Mareschal and S.

McNamara, Physics D 187, 311 (2004).
8. A. de Wijn and H. van Beijeren, Goldstone modes in Lyapunov spectra of hard sphere systems,

nlin.CD/0312051.
9. T. Taniguchi and G.P. Morriss, Phys. Rev. E 65, 056202 (2002); ibid, 68, 026218 (2003).

10. H. L. Yang and G. Radons, Lyapunov instability of Lennard Jones fluids, nlin.CD/0404027.
11. G. Radons and H. L. Yang, Static and Dynamic Correlations in Many-Particle Lyapunov

Vectors, nlin.CD/0404028.
12. G. Benettin, L. Galgani and J. M. Strelcyn, Phys. Rev. A 14, 2338 (1976).
13. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer, 2002.
14. Å. Björck, Numerics of Gram-Schmidt Orthogonalization, Linear Algebra Appl., 197–

198:297–316, 1994.
15. Luc Girand, Julien Langou and Miroslav Rozlǒznı́k, On the round-off error analysis

of the Gram-Schmidt algorithm with reorthogonalization, www.cerfacs.fr/algor/reports/
2002/TR PA 02 33.pdf.

16. D. Vanderstraeten, An accurate parallel block Gram-Schmidt algorithm without reorthogo-
nalization, Numer. Linear Algebra Appl., 7(4):219–236, 2000.

17. J. Dongarra, J. Du Croz, I. Duff, S. Hammarling and Richard J. Hanson, An Extended Set of
Fortran Basic Linear Algebra Subroutines, ACM Trans. Math. Soft., 14 (1):1-17, March 1988.

18. J. Dongarra, J. Du Croz, I. Duff and S. Hammarling, A set of Level 3 Basic Linear Algebra
Subprograms, ACM Trans. Math. Soft., 16(1):1-17, March 1990.

19. Gene H. Golub and Charles F. Van Loan, Matrix Computations, Johns Hopkins University
Press, 1996.

20. C. H. Bischof and C. Van Loan, The WY Representation for Products of Householder Matrices,
SIAM Journal on Scientific and Statistical Computing, 8:s2–s13, 1987.

21. Schreiber and C. Van Loan, A Storage Efficient WY Representation for Products of House-
holder Transformations, SIAM Journal on Scientific and Statistical Computing, 10:53–57,
1989.

22. K. Goto and R. van de Geijn, On Reducing TLB Misses in Matrix Multiplication, FLAME
Working Note #9, The University of Texas at Austin, Department of Computer Sciences,
Technical Report TR-2002-55, Nov. 2002.

23. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Technical
Report UT-CS-94-230, 1994.

1140 Günter Radons et al.

24. L. S. Blackford, et al., ScaLAPACK Users’ Guide, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1997.

25. K. Dackland, E. Elmroth, and B. Kågström, A Ring-Oriented Approach for Block Matrix
Factorizations on Shared and Distributed Memory Architectures, Proceedings of the Sixth
SIAM Conference on Parallel Processing for Scientific Computing, 330–338, Norfolk, 1993.
SIAM Publications.

Online Task Scheduling on Heterogeneous Clusters:
An Experimental Study

Einar M.R. Rosenvinge, Anne C. Elster, and Cyril Banino

Norwegian University of Science and Technology (NTNU)
Department of Computer and Information Science (IDI)

einarmr@tihlde.org, {elster,banino}@idi.ntnu.no

Abstract. This paper considers effcient task scheduling methods for applications
on heterogeneous clusters. The Master/Worker paradigm is used, where the in-
dependent tasks are maintained by a master node which hands out batches of a
variable amount of tasks to requesting worker nodes. The Monitor strategy is in-
troduced and compared to other strategies suggested in the literature. Our online
strategy is especially suitable for heterogeneous clusters with dynamic loads.

1 Introduction

In today’s international high-performance computing arena, there is a clear trend from
traditional supercomputers towards cluster and Grid computing solutions. This is mainly
motivated by the fact that clusters typically can be constructed at a cost that is mod-
est compared to the cost for traditional supercomputers that have equivalent comput-
ing power. The operation, use and performance characteristics of such clusters are,
however, significantly different from those of traditional supercomputers. For instance,
clusters typically have a much slower communication medium between nodes (e.g. a
high-latency, low-bandwidth interface such as Ethernet or the faster Myrinet.)

Clusters also give rise to some challenges not typically found on traditional super-
computers. A cluster may be a heterogeneous environment, meaning that its nodes may
have different performance characteristics. Also, if the nodes composing a cluster are
not dedicated, the cluster will be a dynamic environment, because its nodes may have a
non-negligible background processing load. These challenges imply that one needs an
adequate scheduling strategy to get good performance on a cluster.

Our work aims at developing effective scheduling strategies for clusters for the class
of applications that fall into the Master/Worker paradigm. These applications can be
divided into a large number of independent work units, or tasks. There is no inter-task
communication, so the tasks can be computed in any order. Finally, the tasks are atomic,
i.e. their computation cannot be preempted. Many applications can be parallelized in
such a way, including matrix multiplication, Gaussian elimination, image processing
applications such as ray-tracing [1] and Monte Carlo simulations [2].

The rest of this paper is organized as follows: The test-case application and the test-
bed cluster are described in Section 2. In Section 3, previous scheduling strategies, as
well as our scheduling strategy, are presented. Section 4exposes implementation-specific
issues, and Section 5 discusses empirical results from our work. Finally, conclusions and
suggestions for future work are provided in Section 6.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1141–1150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1142 Einar M.R. Rosenvinge, Anne C. Elster, and Cyril Banino

2 Framework

2.1 Test-Case Application: Matched Filtering
The test-case application used in this study is an image filtering application, known as
matched filtering [3]. This application has been developed by O. C. Eidheim, a PhD
student at IDI/NTNU, who was looking for speed improvements, giving us great access
to a developer of the application.

The matched filtering application is used in medical imaging in order to detect blood
vessels in Computer Tomography (CT) images. A CT image is a cross-section of the
human body. By using this application to detect blood vessels in multiple adjacent CT

images, one is able to construct a 3D representation of the blood vessels in the human
body.

The input to the application is a grayscale image, see Fig. 1 (a), which is filtered
through an image correlation step. The correlation kernel that is used is a Gaussian
hill, which is rotated in all directions and scaled to several sizes. For more detailed
information about this filtering technique, see [3]. The noise in the input image, makes
the blood vessel identification quite challenging. After filtering, see Fig. 1 (b), the noise
has been removed and blood vessels are now identifiable.

(a) (b)

Fig. 1. Image before filtering (a), and after filtering (b). CT image courtesy of Interventional Center,
Rikshospitalet, Oslo, Norway

Since the input image can be divided into tasks corresponding to different parts
(lines, columns, blocks), each node can process one or more tasks, and thus produce the
corresponding parts of the output image, this application parallelizes easily in a homoge-
neous and static environment. However, in a heterogeneous and/or dynamic environment
provided by most of today’s clusters, parallelizing this application efficiently is more
complicated.

2.2 Test-Bed Platform: Athlon-Based Cluster

ClustIS is a fairly homogeneous cluster composed of 38 nodes, with AMD Athlon XP/MP

CPUs at clock frequencies of 1.4 to 1.66 GHz with 0.5 to 2 GB of RAM. A few of the nodes

Online Task Scheduling on Heterogeneous Clusters: An Experimental Study 1143

are dual-CPU nodes. The nodes are connected through 100Mbit switched Ethernet. The
operating system is Linux, the MPI implementation is MPICH 1.2.5.2, and the queuing
system is OpenPBS.

On ClustIS, data storage is provided by one node, Story, which provides home
directories through NFS. Consequently, all disk I/O from the nodes will go through this
slow Ethernet interface. One solution could be to use local disk I/O instead. However, the
scattering of input data and gathering of output data would add to the total application
execution time, so regardless, input and output data would have to travel through the
network.

Nevertheless, we were able to demonstrate some I/O parallelism on this cluster. In
fact, we got more or less linear speedup when reading data concurrently from up to
8 processes. This indicates that having the worker nodes read their part of the data
themselves will be faster than having the master scatter and gather data to/from workers.
Writing data in parallel also gave a significant speedup compared to centralized writing,
but the speedup was not quite as linear. See [4] for details.

3 Scheduling Master/Worker Applications

On a cluster, each processor might have very different performance characteristics (het-
erogeneity), as well as varying background workloads (dynamism). To a certain degree,
heterogeneity can be handled through the job scheduler, by requesting processors with
a certain CPU frequency. Such functionality, however, is not available with many job
scheduling systems.

Dynamism, however, cannot be handled through a job scheduler. The background
processing load of the processors is unknown before the computation starts, and might
vary throughout the computation. This must therefore be handled by the scheduling
strategy used.

3.1 Previous Scheduling Strategies

All popular scheduling strategies give out batches of tasks to workers, but since the
workers might have different and possibly varying processing speeds, giving only one
batch to each worker might lead to non-equal finish times for the workers. To compensate
for this, some strategies give batches to workers in several rounds. In the following, N
denotes the total number of tasks, p denotes the number of workers (processors), and R
denotes the number of remaining unassigned tasks on the master at a given time.

The Static Chunking (SC) strategy [1] assigns one batch of N/p tasks to each worker.
At the other end of the spectrum is the Self Scheduling (SS) strategy [1], where tasks are
handed out one by one. The Fixed-Size Chunking (FSC) strategy uses batches of tasks of
one fixed size, and it is possible to approximate the optimal batch size [5]. The Guided
Self Scheduling (GSS) strategy [6] gives each worker batches of size R/p. GSS thus uses
exponentially decreasing batch sizes. The Trapezoid Self-Scheduling (TSS) strategy [7]
also uses decreasing batch sizes, but the batch sizes decrease linearly from a first size f
to a last size l. They advocate the use of f = N/(2p) and l = 1. The Factoring (Fac.)
and Weighted Factoring (WF) strategies also use decreasing batch sizes. At each time

1144 Einar M.R. Rosenvinge, Anne C. Elster, and Cyril Banino

step, half of the remaining tasks are given out. The WF strategy works by assigning a
weight to each processor corresponding to the computing speed of the processor before
the computation starts, and allocates tasks based on these weights in every round [1,8].

3.2 The Monitor Strategy

The Monitor strategy is fairly similar to Weighted Factoring (WF), which assigns tasks to
workers in a weighted fashion for each round, where each worker has a static weight. For
WF, this weight has to be computed in advance, before the actual computations start,
which is a disadvantage in a dynamic environment. The Monitor strategy, however,
performs such benchmarking online throughout the computation and thus uses dynamic
weights, which also allows for good performance in a truly dynamic environment. The
strategy uses an initialization phase and several batch computation phases.

During the initialization phase, workers request tasks from the master which are
handed out one by one. Workers measure the time it takes to compute their respective
task, and report these timings to the master when they request another task. When all
workers have reported their task computation times, the initialization phase is done.

Formally, let xi be the number of tasks that worker wi will be given in the current
batch computation phase, and yi be the number of uncomputed tasks queued by worker
wi. Let ti denote the time taken to process one task, and Ti denote the time taken for
worker wi to finish the current phase. Recall that R denotes the number of unassigned
tasks held by the master, and p denotes the number of workers. In a batch computation
phase, the master starts by solving the following system of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1) ∀i ∈ [0, p〉, Ti = (yi + xi)× ti

(2) ∀i ∈ [1, p〉, Ti = Ti−1

(3)
p−1∑
i=0

xi = R/2

In a given phase, workerwi receivexi tasks that are added to the yi uncomputed tasks
already stored in its local task queue. It will hence finish its execution of the current phase
at time Ti = (yi + xi) × ti (equation 1). For the total execution time to be minimized,
all workers must finish their computations simultaneously, hence ∀i ∈ [1, p〉, Ti = Ti−1

(equation 2). This condition has been proved in the context of Divisible Load Theory [9].
The sum of all xi is equal to R/2, meaning that R/2 tasks are allocated during the
current phase (equation 3). It has been found experimentally [8] that handing out half of
the remaining tasks in each round gives good performance.

Throughout the computation, workers periodically (i.e. every r computed tasks)
report their task computation times ti and the number of uncomputed tasks yi waiting
in their local task queues to the master. Hence the master is continuously monitoring
the worker states. Consequently, after the first batch computation phase, there is no
need for another initialization phase, since the master has up-to-date knowledge of the
performance of the workers. Note that the parameter r must be tuned for the application
and cluster in use. As soon as a worker is done with its local tasks, a request is sent to
the master, which then enters the next computation phase. A new system of equations is
solved with the last up-to-date values of Ti and yi.

Online Task Scheduling on Heterogeneous Clusters: An Experimental Study 1145

Throughout the computation, yi has a great significance. Suppose that at phase k,
worker wi has no external load, and can thus supply a large amount of computing
power to our application. The master will then delegate a large number of tasks to wi.
Suppose now that during phase k, wi receives a large external load, slowing down its
task execution rate. At the end of phase k worker wi will still have a lot of uncomputed
tasks. The master has up-to-date knowledge of this, and allocates only a few (or no) new
tasks to wi in phase k + 1.

Note that if some workers are slowed down drastically the above system of equations
may yield negative xi values. Since the Monitor strategy does not consider withdrawing
tasks from workers, the corresponding equations are removed, and the linear system is
solved once more, distributing hence tasks among the remaining workers. This process
is repeated until the solution yields no negative xi values.

The task computation time ti reported by worker wi will typically be the mean value
of its η last computation times. Having η = 1 might give a non-optimal allocation, since
the timing can vary a lot in a dynamic environment. At the other end of the spectrum, a
too high value for η conceals changes in processing speeds, which is also non-optimal.
The parameter η needs to be adjusted for the individual application and/or environment.

Fig. 2 shows the allocated batch sizes for the scheduling strategies described in Sec-
tion 3.1 as well as the Monitor strategy, when the processors report the task computation
times shown in Fig. 3. Note that for the Monitor strategy, we assume yi = 0 at the be-
ginning of every phase, meaning that all the processors have computed all their assigned
tasks from the previous phase.

Strategy Batch sizes

SC 128 128 128 128

SS 1 . . .

GSS 128 96 72 54 40 30 23 17 13 9 7 5 4 3 2 2 1 1 1 1 1 1 1

TSS 64 60 56 52 48 44 40 36 32 28 24 20 8

Fac. 64 64 64 64 32 32 32 32 16 16 16 16 8 8 8 8 4 4 4 4

2 2 2 2 1 1 1 1 1 1 1 1

WF 180 32 20 24 90 16 10 12 45 8 5 6 22 4 3 3 11 2 1 2

6 1 0 1 3 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0

Monitor 1 1 1 1 1 1 1 1 177 32 20 23 73 27 12 14 11 23 13 16

4 7 14 6 6 3 3 4 4 1 1 1 0 2 1 1 1 2 1 1

Fig. 2. Batch sizes for various sched. strat. with N = 512 tasks and p = 4 workers

4 Implementation

4.1 Data Staging

In order to improve I/O parallelism, the worker nodes read the necessary input data from
the NFS disk themselves, much like the data staging technique presented in [10]. The

1146 Einar M.R. Rosenvinge, Anne C. Elster, and Cyril Banino

Processor Task computation times at time steps

1 2 3 4 5 6 7 8 9

1 0.10 0.15 1.01 0.90 0.28 0.29 0.99 0.90 0.89

2 0.56 0.40 0.50 0.48 0.52 0.53 0.47 0.49 0.50

3 0.89 0.90 0.89 0.24 0.67 0.88 0.60 0.66 0.63

4 0.75 0.76 0.74 0.50 0.45 0.70 0.69 0.63 0.62

Fig. 3. Examples of task computation times for 4 processors at 9 time steps throughout a compu-
tation. Note that for WF, the times at step 1 are used as weights

master receives short requests from workers, and answer these requests with a short
message containing only a pointer to the input data to be fetched, thus circumventing
the master bottleneck.

However, because our test-case application has such a high computation to I/O ratio,
our experiments showed that data staging did not have a great performance impact for
this application [4]. Data staging is nevertheless a valuable technique for applications
whose computation to I/O ratio is lower.

4.2 Multithreaded Processes

In order to avoid processor idleness, we decided to implement a multithreaded approach.
Every worker process is composed of three threads: a main thread for communicating
with the master, a thread for reading input data from disk, and a thread for computing
output data. The main thread requests tasks and buffers them in a task queue until the
number of tasks buffered is above a user defined threshold φ. It then goes to sleep and
wakes up when the number of tasks in the queue is below φ. The goal of the main thread
is to keep φ tasks queued at all times. The input reader thread will fetch tasks from the
task queue, and, if the queue is empty, sleep while waiting for a task. Once the task queue
is non-empty, the input reader thread will read and store input data, then add pointers to
the data locations in the input data queue. And this, until the number of input data units
in the queue is above φ. It then goes to sleep, and wakes up when the number of input
data units in the queue is below φ. The procedure is then repeated. The computer thread
works in much the same way as the input reader thread. See [4] for details.

The threshold φ regulates how soon the workers will request tasks from the master.
Intuitively, φ = 1 might be non-optimal, since the task computer thread might become
idle while the main thread is waiting for the master to allocate a task. Note that since
each worker has two queues of size φ, it buffers 2φ tasks.

The master process is also multi-threaded, with one thread continuously probing
for, receiving and sending messages to/from workers using MPI, one thread executing
the scheduling strategy in use, and one worker thread computing tasks on the master
processor. The MPI thread terminates as soon as all tasks have been allocated, but until
that point, it consumes quite a lot of CPU time that could have been used by the worker
thread. This means that for the worker thread on the master, a high φ value is optimal,
since the workers will request tasks quickly and the MPI thread will terminate early. This

Online Task Scheduling on Heterogeneous Clusters: An Experimental Study 1147

is a side effect of our non-optimal master architecture, since the MPI thread consumes
unnecessary CPU power. One possible optimization would be to merge the thread for
communicating through MPI and the thread for executing the scheduling strategy, but
this would lead to non-modular code. Another possible optimization would be to use
two threads calling MPI, one for receiving and one for sending, but this is impossible
with the non-thread-safe MPICH library we had at our disposal. For more on this side
effect, see [4].

5 Empirical Results and Analysis

The implemented scheduling strategies were compared for different values of φ on our
dedicated cluster which is a static environment [4]. Our goal was to find the best schedul-
ing strategy combined with the optimal parameters φ, ηand r for the test-case application
running on the test-bed cluster. Note that for the Monitor strategy, we experimentally
found r = 4 and η = 20 to be optimal values for our application and cluster [4], and these
values have been used in the following experiments. The results from our experiments
are shown in Fig. 4; for more experiments, see [4].

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

643216831

to
ta

l a
pp

lic
at

io
n

ru
nn

in
g

tim
e

(s
ec

on
ds

)

φ

Fac.
GSS

Monitor
SC
SS

TSS
WF

Fig. 4. Comparison of sched. strategies with increasing φ values, static environment

These experiments were conducted using 8 nodes, and an image of size 2048×2048
pixels decomposed into 1024 blocks, each block corresponding to a task. One interesting
finding is that the Static Chunking strategy performs linearly better when using a larger
φ value. When φ increases, the workers request new tasks earlier, hence causing the
termination of the master MPI thread earlier. This frees resources for the worker thread

1148 Einar M.R. Rosenvinge, Anne C. Elster, and Cyril Banino

on the master, and thus makes it process tasks faster. One might argue that the MPI thread
on the master should have been terminated early regardless of φ since SC only uses one
round of allocation, but in order to be fair, we kept the same master implementation
for all the scheduling strategies. Consequently, all scheduling strategies must take into
account the worker thread on the master which is very slow compared to the dedicated
workers. Therefore, SC is a bad choice in a heterogeneous environment, while it is good
in a homogeneous environment, as shown when φ = 64.

The SS, Fac., WF and Monitor strategies are all quite similar. The reason why we get
better results with φ = 32 than with φ = 3 is the same as for the SC case. The master MPI

thread is stopped earlier, and we have one faster worker for the rest of the computation.
With φ > 32, the Monitor strategy performs very badly. One possible explanation for
this is that during the initialization phase, the master computing thread is very slow, and
will be given a small amount of tasks, less than φ. Consequently, the master computing
thread will constantly request more tasks. As a result, the scheduling thread will solve a
lot of unnecessary systems of equations further slowing down the computing thread.

Nevertheless, it should be noted that using very high φ values prevents good load
balancing, since in order to allocate tasks when the workers need them (or slightly before,
to avoid idle time), φ must be kept relatively low.

It is quite surprising that the Self-Scheduling strategy, which has the highest amount
of communication of all strategies, is among the very fastest scheduling strategies. A
possible explanation is that our multi-threaded implementation is able to hide the com-
munication delays, and because our application has a high computation to I/O ratio. How-
ever, our environment is relatively homogeneous and static, and we expect the Monitor
strategy to outperform SS in a strongly heterogeneous and dynamic environment.

Fig. 5 shows speedup results. Note that using e.g. 2 processors means using the
master with its separate worker thread and 1 dedicated worker. With a 512×512-pixel
image, the speedup drops significantly when using more than 4 processors. This is due to
using a suboptimal task size for this relatively small image size [4]. For the larger image
sizes, the speedup increases when adding more processors. Intuitively, this comes from
the fact that the relatively slow worker thread of the master processor plays a smaller role
when adding more processors. With a sufficiently large image and 8 or more processors,
we have a close to linear speedup.

6 Conclusions and Future Work

A novel online scheduling strategy has been designed and implemented. The Monitor
strategy was experimentally compared to implementations of six other popular schedul-
ing strategies found in the literature. Experiments show that the Monitor strategy per-
forms excellently compared to these strategies, and should be especially well suited for
dynamic environments.

The monitor strategy implementation involved multi-threading and data staging, two
techniques that decrease processor idle time and increase master utilization. Our test-
case application, the matched filtering algorithm, has a very high computation to I/O

ratio, and consequently data staging is probably unnecessary for this application. Exper-
imental tests on our cluster show, however, that data staging is a valuable technique for

Online Task Scheduling on Heterogeneous Clusters: An Experimental Study 1149

 0

 2

 4

 6

 8

 10

 12

 14

 16

16842

S
pe

ed
up

Number of processors

Ideal
Image size 512x512

Image size 1024x1024
Image size 2048x2048

Fig. 5. The speedup of the application

applications whose computation to I/O ratio is lower. The multi-threaded implementation
of the worker processes, using task queuing mechanisms, is able to hide communication
delays and keep the workers processing data continuously. The excellent performance
of both the Self-Scheduling and the Monitor strategy substantiate this.

This work could be extended in the following directions. First, running more exper-
iments on other clusters which provide more heterogeneity and more dynamism would
enable to measure the potential of the Monitor strategy.

Second, the Monitor strategy has three user-specifiable parameters, r, η and φ. A
way to determine the optimal values of these parameters online would be desirable. It
might be that an optimal solution in heterogeneous environment necessitate different
values of these parameters for different workers.

Then, the optimal task size used in this study has been found experimentally, but it
would be desirable to determine it online: Two procedures for doing this are discussed
in [4].

Finally, a thread-safe MPI library would enable us to implement the master process
differently [4], which would increase the performance.

References

1. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: A method for scheduling parallel loops.
Comm. of the ACM 35 (1992) 90–101

2. Basney, J., Raman, R., Livny, M.: High Throughput Monte Carlo. In: Proceedings of the Ninth
SIAM Conference on Parallel Processing for Scientific Computing. (1999)

3. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels
in retinal images using two-dimensional matched filters. IEEE Trans. on Med. Imaging 8
(1989) 263–269

1150 Einar M.R. Rosenvinge, Anne C. Elster, and Cyril Banino

4. Rosenvinge, E.M.R.: Online Task Scheduling On Heterogeneous Clusters: An Experi-
mental Study. Master’s thesis, NTNU (2004) http://www.idi.ntnu.no/˜elster/
students/ms-theses/rosenvinge-msthesis.pdf.

5. Kruskal, C.P., Weiss, A.: Allocating independent subtasks on parallel processors. IEEE Trans.
on Software Eng. 11 (1985) 1001–1016

6. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: A practical scheduling scheme
for parallel supercomputers. IEEE Trans. on Comp. 36 (1987) 1425–1439

7. Tzen, T.H., Ni, L.M.: Dynamic loop scheduling for shared-memory multiprocessors. In: Proc.
of the 1991 Int’l Conference on Parallel Processing, IEEE Computer Society (1991) II247–
II250

8. Hummel, S.F., Schmidt, J., Uma, R.N., Wein, J.: Load-sharing in heterogeneous systems
via weighted factoring. In: Proceedings of the eighth annual ACM symposium on Parallel
algorithms and architectures, ACM Press (1996) 318–328

9. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads in Parallel
and Distributed Systems. Computer Society (1996)

10. Elwasif, W., Plank, J.S., Wolski, R.: Data staging effects in wide area task farming applications.
In: IEEE Int’l Symposium on Cluster Computing and the Grid, Brisbane, Australia (2001)
122–129

A Parallel Method for Large Sparse Generalized
Eigenvalue Problems by OmniRPC

in a Grid Environment

Tetsuya Sakurai1,3, Kentaro Hayakawa2, Mitsuhisa Sato1, and Daisuke Takahashi1

1 Department of Computer Science
University of Tsukuba, Tsukuba 305-8573, Japan

{sakurai,msato,daisuke}@cs.tsukuba.ac.jp
2 Doctoral Program of Systems and Information Engineering

University of Tsukuba, Tsukuba 305-8573, Japan
hayakawa@nalab.cs.tsukuba.ac.jp

3 Core Research for Evolutional Science and Technology (CREST)

Abstract. In this paper we present a parallel method for finding several eigen-
values and eigenvectors of a generalized eigenvalue problem Ax = λBx, where
A and B are large sparse matrices. A moment-based method by which to find
all of the eigenvalues that lie inside a given domain is used. In this method, a
small matrix pencil that has only the desired eigenvalues is derived by solving
large sparse systems of linear equations constructed from A and B. Since these
equations can be solved independently, we solve them on remote hosts in paral-
lel. This approach is suitable for master-worker programming models. We have
implemented and tested the proposed method in a grid environment using a grid
RPC (remote procedure call) system called OmniRPC. The performance of the
method on PC clusters that were used over a wide-area network was evaluated.

1 Introduction

The generalized eigenvalue problem

Ax = λBx,

where A and B are n×n real or complex matrices, arises in many scientific applications.
In such applications the matrix is often large and sparse, and we may need to find a
number of the eigenvalues that have some special property and their corresponding
invariant subspaces.

Several methods for such eigenvalue problems are building sequences of subspaces
that contain the desired eigenvectors. Krylov subspace based techniques are powerful
tools for large-scale eigenvalue problems [1,2,9,10]. The relations among Krylov sub-
space methods, moment-matching approach and Padé approximation are shown in [2].

In this paper, we present a parallel method for finding several eigenvalues and eigen-
vectors of a generalized eigenvalue problem. A moment-based method to find all of
the eigenvalues that lie inside a given domain is used. In this method, a small matrix
pencil that has only the desired eigenvalues is derived by solving large sparse linear
equations constructed from A and B. Because these equations can be solved indepen-
dently, we solve them on remote hosts in parallel. In this approach, we do not need to

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1151–1158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1152 Tetsuya Sakurai et al.

exchange data between remote hosts. Therefore, the presented method is suitable for
master-worker programming models. Moreover, the method has a good load balancing
property.

We have implemented and tested our method in a grid environment using a grid RPC
(remote procedure call) system called OmniRPC [8,13]. OmniRPC is a grid RPC system
that allows seamless parallel programming in both cluster and grid environments and
supports remote hosts with "ssh", as well as a grid environment with Globus.

The performance of the presented method on PC clusters used over a wide-area
network was evaluated. As a test problem, we used the matrices that arise in the calcu-
lation of the electronic state of molecular hydrogen. The results show that the method is
efficient in a grid environment.

2 A Moment-Based Method

Let A,B ∈ Cn×n, and let λ1, . . . , λd (d ≤ n) be finite eigenvalues of the matrix pencil
A− λB. The pencil A− λB is referred to as regular if det(A− λB) is not identically
zero for λ ∈ C.

For nonzero vectors u,v ∈ Cn, we define

f(z) := uH(zB −A)−1v.

The function f(z) is analytic when zB −A is nonsingular.
Suppose that m distinct eigenvalues λ1, . . . , λm are located inside a positively ori-

ented closed Jordan curve Γ . We consider the problem of finding all of the poles of f(z)
inside Γ . Define the complex moments

μk :=
1

2πi

∫
Γ

(z − γ)kf(z)dz, k = 0, 1, . . . , (2.1)

where γ is located inside Γ . Let the m ×m Hankel matrices Hm and H<
m be Hm :=

[μi+j−2]mi,j=1 and H<
m := [μi+j−1]mi,j=1. Then we have the following theorem ([12]).

Theorem 1. Let the pencil A − λB be regular. Then the eigenvalues of the pencil
H<

m − λHm are given by λ1 − γ, . . . , λm − γ.

Therefore, we can obtain the eigenvalues λ1, . . . , λm by solving the generalized
eigenvalue problem H<

mx′ = λHmx′, where x′ ∈ Cm. If we find an appropriate Γ that
includes a small number of eigenvalues, then the derived eigenproblem is small.

This approach is based on the root finding method for an analytic function proposed
in [6]. This method finds all of the zeros that lie in a circle using numerical integration.
Error analyses for the eigenvalues of the pencil H<

m − λHm of which elements are
obtained by numerical integration are presented in [7] and [11].

Let sk be

sk :=
1

2πi

∫
Γ

(z − γ)k(zB −A)−1vdz, k = 0, 1, . . . , (2.2)

and let q1, . . . , qm be eigenvectors corresponding to the eigenvalues λ1, . . . , λm. From
the results of [7] and [12], we have the following result.

A Parallel Method for Large Sparse Generalized Eigenvalue Problems 1153

Theorem 2. Let Wm be an m×m matrix such that

H<
mWm = diag(ζ1, . . . , ζm)HmWm,

where ζj = λj − γ, j = 1, . . . ,m. Then

[q1, . . . , qm] = [s0, . . . , sm−1]Wm. (2.3)

Let ν1, . . . , νm be residues of ζ1, . . . , ζm. Then

μk =
m∑

j=1

νjζ
k
j , k = 0, 1, (2.4)

It follows from (2.4) that

(μ0, . . . , μm−1) = (ν1, . . . , νm)Vm,

where Vm is the m×m Vandermonde matrix Vm := [ζj−1
i]mi,j=1.

Since the column vectors of V −1
m are given by the eigenvectors of the matrix pencil

H<
m − λHm ([7]), the residues νj can be evaluated by

(ν1, . . . , νm) = (μ0, . . . , μm−1)V −1
m = (μ0, . . . , μm−1)Wm. (2.5)

We next consider the case in which Γ is given by a circle and the integration is
evaluated via a trapezoidal rule on the circle. Let γ and ρ be the center and the radius,
respectively, of the given circle. Let N be a positive integer, and let

ωj := γ + ρe
2πi
N (j+1/2), j = 0, 1, . . . , N − 1.

By approximating the integral of equation (2.1) via the N -point trapezoidal rule, we
obtain the following approximations for μk:

μk ≈ μ̂k :=
1
N

N−1∑
j=0

(ωj − γ)k+1f(ωj), k = 0, 1, . . . (2.6)

Let the m×m Hankel matrices Ĥm and Ĥ<
m be Ĥm := [μ̂i+j−2]mi,j=1 and Ĥ<

m :=
[μ̂i+j−1]mi,j=1. Let ζ̂1, . . . , ζ̂m be the eigenvalues of the matrix pencil Ĥ<

m − λĤm. We

regard λ̂j = γ + ζ̂j , 1 ≤ j ≤ m as the approximations for λ1, . . . , λm.
Let Ŵm be the matrix of which column vectors are eigenvectors of Ĥ<

m−λĤm. The
approximate vectors q̂1, . . . , q̂m for the eigenvectors q1, . . . , qm are obtained by

[q̂1, . . . , q̂m] = [ŝ0, . . . , ŝm−1]Ŵm, (2.7)

where
yj = (ωjB −A)−1v, j = 0, 1, . . . , N − 1,

and

ŝk :=
1
N

N−1∑
j=0

(ωj − γ)k+1yj , k = 0, 1, (2.8)

We then obtain the following algorithm:

1154 Tetsuya Sakurai et al.

Algorithm:
Input: u,v ∈ Cn, N , m, γ, ρ
Output: λ̂1, . . . , λ̂m, q̂1, . . . , q̂m

1. Set ωj ← γ + ρ exp(2πi(j + 1/2)/N), j = 0, . . . , N − 1
2. Solve (ωjB −A)yj = v for yj , j = 0, . . . , N − 1
3. Set f(ωj) ← uHyj , j = 0, . . . , N − 1
4. Compute μ̂k, k = 0, . . . , 2m− 1 by (2.6)
5. Compute the eigenvalues ζ̂1, . . . , ζ̂m of the pencil Ĥ<

m − λĤm

6. Compute q̂1, . . . , q̂m by (2.7)
7. Set λ̂j ← γ + ζ̂j , j = 1, . . . ,m

In practical use, the exact number of eigenvalues in the circle is not given in advance.
The criteria to find appropriate m were discussed in [3,6] for the Hankel matrices. If we
take m larger than the exact number of eigenvalues, then the set of eigenvalues of the
matrix pencil Ĥ<

m − λĤm includes approximations of the eigenvalues in Γ .

3 Parallel Implementation on OmniRPC

In this section we describe a parallel implementation of the algorithm. To evaluate the
value of f(z) at z = ωj , j = 0, . . . , N − 1, we solve the systems of linear equations

(ωjB −A)yj = v, j = 0, 1, . . . , N − 1. (3.9)

When the matrices A and B are large and sparse, the computational costs to solve
the linear systems (3.9) are dominant in the algorithm. Since these linear systems are
independent, we solve them on remote hosts in parallel.

We have implemented the algorithm in a grid RPC system called OmniRPC. Om-
niRPC efficiently supports typical master-worker parallel grid applications such as para-
metric execution programs. The user can define an initialization procedure in the remote
executable to send and store data automatically in advance of actual remote procedure
calls in OmniRPC_Module_Init.

OmniRPC_Call is a simple client programming interface for calling remote func-
tions. When OmniRPC_Callmakes a remote procedure call, the call is allocated to an
appropriate remote host. The programmer can use asynchronous remote procedure calls
by

OmniRPCCallAsync.

The procedure to solve N systems in Step 2 of the presented algorithm is performed
by OmniRPC_Call_Async in the source code. Since A, B and v are common in
each system of linear equations, we only need to send these data at the first time to each
host. To solve another equation on a remote host, a scalar parameter ωj is sent. If we do
not need eigenvectors, the scalar value f(ωj) is returned from a remote host after the
procedure in Step 3 is performed. Otherwise, yj is returned in addition.

We can easily extend the method for the case that several circular regions are given.
Suppose that Nc circles are given. Then we solve N ×Nc systems of linear equations

(ω(k)
j B −A)y(k)

j = v, j = 0, . . . , N − 1, k = 1, . . . , Nc,

A Parallel Method for Large Sparse Generalized Eigenvalue Problems 1155

where ω
(k)
j , j = 0, . . . , N − 1 are points on the kth circle.

Now we consider the efficiency loss caused by the communication of the matrix data
to the remote host. Let α be the ratio of the time to send matrix data to a remote host
and the total time to solve all systems of linear equations. We assume that matrix data
are sent to each remote host one after another, and the computation starts after receiving
matrix data. We also assume that load imbalance does not occur in the computation.
Then from a simple observation, we have the following estimation of the speedup:

Sp ≈ np

/(
1− α +

α

2
np(np + 1)

)
,

where np is the number of remote hosts.

4 Numerical Examples

In this section, we present numerical examples of the proposed method. The algorithm
was implemented in OmniRPC on a Linux operating system. Computation was per-
formed with double precision arithmetic in FORTRAN.

The remote hosts were Intel Xeon computers with a clock speed of 2.4 GHz, and the
local host was an Intel Celeron computer with a clock speed of 2.4 GHz and 100Base-T
Ethernet. The local host and the remote hosts were connected over a wide-area network.

To evaluate the speed of execution for the parallel algorithm, the elapsed wall-clock
time (in seconds) was observed. The time for loading input matrices into a memory of
the local host and the time required to start up all OmniRPC processes were not included.

When A and B are real matrices, the relation f(z) = f(z) holds. Thus we evaluated
N/2 function values f(ω0), . . . , f(ωN/2−1), and set the remaining function values using

f(ωN−1−j) = f(ωj).

The elements of u and v were distributed randomly on the interval [0, 1] by a random
number generator, and they were calculated on the remote hosts.

Example 1. The matrices were

A = In, B =

5 −4 1

−4 6 −4 1

1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1

1 −4 6 −4

1 −4 5

,

where In is the n× n identity matrix, and n = 2000000.

The exact eigenvalues are given by

λ∗
j =

1

16 cos4
(

jπ
2(n+1)

) , j = 1, 2, . . . , n.

1156 Tetsuya Sakurai et al.

The linear systems were solved by a direct solver for a band matrix. The interval
[2, 2.005] was covered by 100 circles with radius ρ = 2.5×10−5. The number of points
on the circle was N = 32. The size of the Hankel matrices was m = 10, and we
selected eigenvalues in each circle if the corresponding residue satisfies |νj | ≥ 10−8.
368 eigenvalues in the interval were obtained.

The resulting eigenvalues and their errors were as follows:

j λj |λj − λ∗
j |

1 2.000012164733324 6.22E-15

2 2.000025723848086 6.22E-15

3 2.000039283082696 1.15E-14
...

...
...

368 2.004996418973247 8.88E-16

In Table 1, the wall-clock times in seconds, the speedup, and Sp are shown. In this
example, we set α = 0.0052 from the results of the test program. The speedup was 7.66
with 10 remote processors, and we can see that Sp is a good estimation of the speedup.

Table 1. Wall-clock times in seconds, speedup and Sp in Example 1

Number of nodes Time (sec) Speedup Sp

1 1149 1.00 1.00

2 583 1.97 1.98

4 304 3.78 3.82

6 214 5.37 5.43

8 174 6.60 6.76

10 150 7.66 7.80

Example 2. The test matrices were derived from the finite element method for a molecu-
lar electronic state described in [4]. Both A and B were real symmetric, and n = 12173.
The number of nonzero elements was 509901.

We computed 15 eigenvalues and corresponding eigenvectors in 8 circles. The circles
were located at γ = −6.2,−5.8,−5.6,−3.4,−3.0,−2.8,−2.6,−2.0 with radius ρ =
0.1. The parameters were chosen as N = 32 and m = 10.

Since the matrixωjB−Awith complexωj is complex symmetric, the COCG method
[14] with incomplete Cholesky decomposition was used to solve the linear equations.
The stopping criterion for the relative residual was 10−12.

In Table 2, the wall-clock times in seconds, the speedup, and Sp with α = 0.0045
are shown. The speedup was similar to Example 1. While the computational time to
solve the systems of linear equations were different for each ωj , Sp was still a good

A Parallel Method for Large Sparse Generalized Eigenvalue Problems 1157

Table 2. Wall-clock times in seconds, speedup and Sp in Example 2

Number of nodes Time (sec) Speedup Sp

1 199 1.00 1.00

2 103 1.93 1.98

4 53 3.75 3.84

6 38 5.24 5.50

8 29 6.86 6.91

10 26 7.65 8.04

estimation of the speedup. The reason that the speedup was slightly smaller than Sp was
load imbalance.

If we give more circles or linear systems require more computational time then α
becomes smaller. In such case, the speedup will increase.

5 Conclusions

In this paper we presented a parallel algorithm to find eigenvalues and eigenvectors of
generalized eigenvalue problems using a moment-based method. In this approach, we
do not need to exchange data between remote hosts. Therefore, the presented method is
suitable for master-worker programming models.

We have implemented and tested the proposed method in a grid environment using
a grid RPC system called OmniRPC. The remote procedures have large granularity, and
the method has a good load balancing property.

The computation with explicit moments is often numerically unstable. Thus it is
important to find appropriate parameters about circular regions. In some cases, a rough
estimation of distribution of eigenvalues is given in advance by physical properties or
some approximate methods. For example, eigenvalues appeared in computation of mole-
cular orbitals are approximated by fragmented molecular orbitals [5]. The estimation of
suitable parameters will be the subject of our future study.

Acknowledgements

This work was partially supported by CREST, Japan Science and Technology Agency
(JST), and Grant-in-Aid for Scientific Research No. 15560049 from the Ministry of
Education, Culture, Sports Science and Technology of Japan.

1158 Tetsuya Sakurai et al.

References

1. W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenproblem,
Quarterly of Appl. Math., 9:17–29, 1951.

2. Z. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical
systems, Appl. Numer. Math., 43:9–44, 2002.

3. G. H. Golub, P. Milanfar and J. Varah, A stable numerical method for inverting shape from
moments, SIAM J. Sci. Comp., 21(4):1222–1243, 1999.

4. S. Hyodo, Meso-scale fusion: A method for molecular electronic state calculation in inho-
mogeneous materials, Proc. the 15th Toyota Conference, Mikkabi, 2001, in Special issue of
J. Comput. Appl. Math., 149:101–118, 2002.

5. Yuichi Inadomi, Tatsuya Nakano, Kazuo Kitaura and Umpei Nagashima, Definition of mole-
cular orbitals in fragment molecular orbital method, Chemical Physics Letters, 364:139–143,
2002.

6. P. Kravanja, T. Sakurai and M. Van Barel, On locating clusters of zeros of analytic functions,
BIT, 39:646–682, 1999.

7. P. Kravanja, T. Sakurai, H. Sugiura and M. Van Barel, A perturbation result for general-
ized eigenvalue problems and its application to error estimation in a quadrature method for
computing zeros of analytic functions, J. Comput. Appl. Math., 161:339–347, 2003.

8. OmniRPC: http://www.omni.hpcc.jp/OmniRPC.
9. A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems II: matrix pairs,

Linear Algevr. Appl., 197:283–295, 1984.
10. Y. Saad, Iterative Methods for Large Eigenvalue Problems, Manchester University Press,

Manchester, 1992.
11. T. Sakurai, P. Kravanja, H. Sugiura and M. Van Barel, An error analysis of two related quadra-

ture methods for computing zeros of analytic functions, J. Comput. Appl. Math., 152:467–480,
2003.

12. T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems, J.
Comput. Appl. Math., 159:119–128, 2003.

13. M. Sato, T. Boku and D. Takahashi, OmniRPC: a Grid RPC System for parallel programming
in cluster and grid environment, Proc. CCGrid 2003, 206–213, 2003.

14. H. A. van der Vorst, J. B. M. Melissen, A Petrov-Galerkin type method for solving Ax = b,
where A is a symmetric complex matrix, IEEE Trans. on Magnetics, 26(2):706–708, 1990.

An Implementation of Parallel 3-D FFT Using Short
Vector SIMD Instructions on Clusters of PCs

Daisuke Takahashi, Taisuke Boku, and Mitsuhisa Sato

Graduate School of Systems and Information Engineering, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

{daisuke,taisuke,msato}@cs.tsukuba.ac.jp

Abstract. In this paper, we propose an implementation of a parallel three-di-
mensional fast Fourier transform (FFT) using short vector SIMD instructions
on clusters of PCs. We vectorized FFT kernels using Intel’s Streaming SIMD
Extensions 2 (SSE2) instructions. We show that a combination of the vectorization
and block three-dimensional FFT algorithm improves performance effectively.
Performance results of three-dimensional FFTs on a dual Xeon 2.8 GHz PC SMP
cluster are reported. We successfully achieved performance of over 5 GFLOPS on
a 16-node dual Xeon 2.8 GHz PC SMP cluster.

1 Introduction

The fast Fourier transform (FFT) [1] is an algorithm widely used today in science and
engineering. Parallel three-dimensional FFT algorithms on distributed-memory parallel
computers have been well studied [2,3,4,5,6].

Today, many processors have short vector SIMD instructions, e.g., Intel’s
SSE/SSE2/SSE3, AMD’s 3DNow!, and Motorola’s AltiVec. These instructions provide
substantial speedup for digital signal processing applications. Efficient FFT implemen-
tations with short vector SIMD instructions have also been well studied [7,8,9,10,11,12].

Many FFT algorithms work well when the data sets fit into a cache. When a problem
size exceeds the cache size, however, the performance of these FFT algorithms decreases
dramatically. The key issue of the design for large FFTs is to minimize the number of
cache misses.

Thus, both vectorization and high cache utilization are particularly important for
achieving high performance on processors that have short vector SIMD instructions.

In this paper, we propose an implementation of a parallel three-dimensional FFT
using short vector SIMD instructions on clusters of PCs.

Our proposed parallel three-dimensional FFT algorithm is based on the multicolumn
FFT algorithm [13,14]. Conventional three-dimensional FFT algorithms require three
multicolumn FFTs and three data transpositions. The three transpose steps typically are
the chief bottlenecks in cache-based processors.

Some previous three-dimensional FFT algorithms [14,15] separate the multicolumn
FFTs from the transpositions.

Taking the opposite approach, we combine the multicolumn FFTs and transpositions
to reduce the number of cache misses, and we modify the conventional three-dimensional

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1159–1167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1160 Daisuke Takahashi, Taisuke Boku, and Mitsuhisa Sato

FFT algorithm to reuse data in the cache memory. We use the block three-dimensional
FFT algorithm to implement the parallel three-dimensional FFT algorithm.

We have implemented the parallel block three-dimensional FFT algorithm on a 16-
node dual Xeon PC SMP cluster, and in this paper we report the performance results.

Section 2 describes vectorization of FFT kernels. Section 3 describes a block three-
dimensional FFT algorithm used for problems that exceed the cache size. Section 4 gives
a parallel block three-dimensional FFT algorithm. Section 5 describes the in-cache FFT
algorithm used for problems that fit into a data cache. Section 6 gives performance
results. In section 7, we provide some concluding remarks.

2 Vectorization of FFT Kernels

Streaming SIMD Extensions 2 (SSE2) were introduced into the IA-32 architecture in the
Pentium 4 and Intel Xeon processors [16]. These extensions were designed to enhance
the performance of IA-32 processors.

The most direct way to use the SSE2 instructions is to inline the assembly language
instructions into source code. However, this can be time-consuming and tedious, and
assembly language inline programming is not supported on all compilers. Instead, In-
tel provides easy implementation through the use of API extension sets referred to as
intrinsics [17].

We used the SSE2 intrinsics to access SIMD hardware. An example of complex
multiplication using the SSE2 intrinsics is shown in Fig. 1.

The m128d data type in Fig. 1 is supported by the SSE2 intrinsics. The m128d
data type holds two packed double-precision floating-point values. In the complex mul-
tiplication, the m128d data type is used as a double-precision complex data type.

The inline function ZMUL in Fig. 1 can be used to multiply two double-precision
complex values. To add two double-precision complex values, we can use the intrinsic
function mm add pd in Fig. 1.

To vectorize FFT kernels, the SSE2 intrinsics and the inline function ZMUL can be
used. An example of a vectorized radix-2 FFT kernel using the SSE2 intrinsics is shown
in Fig. 2.

3 A Block Three-Dimensional FFT Algorithm

The three-dimensional discrete Fourier transform (DFT) is given by

y(k1, k2, k3) =
n1−1∑
j1=0

n2−1∑
j2=0

n3−1∑
j3=0

x(j1, j2, j3)ωj3k3
n3

ωj2k2
n2

ωj1k1
n1

, (3.1)

where ωnr = e−2πi/nr (1 ≤ r ≤ 3) and i =
√
−1.

The three-dimensional FFT based on the multicolumn FFT algorithm is as follows:

Step 1: Transpose

x1(j3, j1, j2) = x(j1, j2, j3).

An Implementation of Parallel 3-D FFT Using Short Vector SIMD Instructions 1161

#include <emmintrin.h>

__m128d ZMUL(__m128d a, __m128d b);

static __inline __m128d ZMUL(__m128d a, __m128d b)
{

__m128d ar, ai;

ar = _mm_unpacklo_pd(a, a); /* ar = [a.r a.r] */
ar = _mm_mul_pd(ar, b); /* ar = [a.r*b.r a.r*b.i] */
ai = _mm_unpackhi_pd(a, a); /* ai = [a.i a.i] */
ai = _mm_xor_pd(ai, _mm_set_sd(-0.0)); /* ai = [-a.i a.i] */
b = _mm_shuffle_pd(b, b, 1); /* b = [b.i b.r] */
ai = _mm_mul_pd(ai, b); /* ai = [-a.i*b.i a.i*b.r] */

return _mm_add_pd(ar, ai); /* [a.r*b.r-a.i*b.i a.r*b.i+a.i*b.r] */
}

Fig. 1. An example of double-precision complex multiplication using SSE2 intrinsics

Step 2: n1n2 individual n3-point multicolumn FFTs

x2(k3, j1, j2) =
n3−1∑
j3=0

x1(j3, j1, j2)ωj3k3
n3

.

Step 3: Transpose

x3(j2, j1, k3) = x2(k3, j1, j2).
Step 4: n1n3 individual n2-point multicolumn FFTs

x4(k2, j1, k3) =
n2−1∑
j2=0

x3(j2, j1, k3)ωj2k2
n2

.

Step 5: Transpose

x5(j1, k2, k3) = x4(k2, j1, k3).
Step 6: n2n3 individual n1-point multicolumn FFTs

y(k1, k2, k3) =
n1−1∑
j1=0

x5(j1, k2, k3)ωj1k1
n1

.

The distinctive features of the three-dimensional FFT can be summarized as:

– Three multicolumn FFTs are performed in steps 2, 4 and 6. Each column FFT is
small enough to fit into the data cache.

– The three-dimensional FFT has the three transpose steps, which typically are the
chief bottlenecks in cache-based processors.

We combine the multicolumn FFTs and transpositions in order to reduce the number
of cache misses, and we modify the conventional three-dimensional FFT algorithm to
reuse data in the cache memory. As in the conventional three-dimensional FFT above,
it is assumed in the following that n = n1n2n3 and that nb is the block size. We assume
that each processor has a multilevel cache memory. A block three-dimensional FFT
algorithm [6] can be stated as follows.

1162 Daisuke Takahashi, Taisuke Boku, and Mitsuhisa Sato

#include <emmintrin.h>

__m128d ZMUL(__m128d a, __m128d b);

void fft_vec(double *a, double *b, double *w, int m, int l)
{

int i, i0, i1, i2, i3, j;
__m128d t0, t1, w0;

for (j = 0; j < l; j++) {
w0 = _mm_load_pd(&w[j << 1]);
for (i = 0; i < m; i++) {

i0 = (i << 1) + (j * m << 1); i1 = i0 + (m * l << 1);
i2 = (i << 1) + (j * m << 2); i3 = i2 + (m << 1);
t0 = _mm_load_pd(&a[i0]); t1 = _mm_load_pd(&a[i1]);
_mm_store_pd(&b[i2], _mm_add_pd(t0, t1));
_mm_store_pd(&b[i3], ZMUL(w0, _mm_sub_pd(t0, t1)));

}
}

}

Fig. 2. An example of a vectorized radix-2 FFT kernel using SSE2 intrinsics

1. Consider the data in main memory as an n1 × n2 × n3 complex matrix. Fetch and
transpose the data nb rows at a time into an n3 × nb matrix. The n3 × nb array fits
into the L2 cache.

2. For each nb column, perform nb individual n3-point multicolumn FFTs on the
n3 × nb array in the L2 cache. Each column FFT also fits into the L1 data cache.

3. Transpose each of the resulting n3 × nb matrices, and return the resulting nb rows
to the same locations in the main memory from which they were fetched.

4. Fetch and transpose the data nb rows at a time into an n2 × nb matrix.
5. For each nb column, perform nb individual n2-point multicolumn FFTs on the

n2 × nb array in the L2 cache.
6. Transpose each of the resulting n2 × nb matrices, and return the resulting nb rows

to the same locations in the main memory from which they were fetched.
7. Perform n2n3 individual n1-point multicolumn FFTs on the n1 × n2 × n3 array.

We note that this algorithm is a three-pass algorithm. Fig. 3 gives the Fortran program
for this block three-dimensional FFT algorithm. Here, the arrays YWORK and ZWORK
are the work array. The parameters NB and NP are the blocking parameter and padding
parameter, respectively.

4 Parallel Block Three-Dimensional FFT Algorithm

Let N = N1 × N2 × N3. On a distributed-memory parallel computer which has P
processors, the three-dimensional array x(N1, N2, N3) is distributed along the first
dimension, N1. If N1 is divisible by P , each processor has distributed data of size N/P .
We introduce the notation N̂r ≡ Nr/P and we denote the corresponding index as Ĵr,
which indicates that the data along Jr are distributed across all P processors. Here, we
use the subscript r to indicate that this index belongs to dimension r. The distributed array
is represented as x̂(N̂1, N2, N3). At processor m, the local index Ĵr(m) corresponds

An Implementation of Parallel 3-D FFT Using Short Vector SIMD Instructions 1163

COMPLEX*16 X(N1,N2,N3) DO K=1,N3
COMPLEX*16 YWORK(N2+NP,NB),ZWORK(N3+NP,NB) DO II=1,N1,NB
DO J=1,N2 DO JJ=1,N2,NB

DO II=1,N1,NB DO I=II,MIN0(II+NB-1,N1)
DO KK=1,N3,NB DO J=JJ,MIN0(JJ+NB-1,N2)

DO I=II,MIN0(II+NB-1,N1) YWORK(J,I-II+1)=X(I,J,K)
DO K=KK,MIN0(KK+NB-1,N3) END DO

ZWORK(K,I-II+1)=X(I,J,K) END DO
END DO END DO

END DO DO I=II,MIN0(II+NB-1,N1)
END DO CALL IN_CACHE_FFT(YWORK(1,I-II+1),N2)
DO I=II,MIN0(II+NB-1,N1) END DO

CALL IN_CACHE_FFT(ZWORK(1,I-II+1),N3) DO J=1,N2
END DO DO I=II,MIN0(II+NB-1,N1)
DO K=1,N3 X(I,J,K)=YWORK(J,I-II+1)

DO I=II,MIN0(II+NB-1,N1) END DO
X(I,J,K)=ZWORK(K,I-II+1) END DO

END DO END DO
END DO DO J=1,N2

END DO CALL IN_CACHE_FFT(X(1,J,K),N1)
END DO END DO

END DO

Fig. 3. A block three-dimensional FFT algorithm

to the global index as the cyclic distribution:

Jr = Ĵr(m)× P + m, 0 ≤ m ≤ P − 1, 1 ≤ r ≤ 3. (4.2)

To illustrate the all-to-all communication it is convenient to decompose Ni into two
dimensions, Ñi and Pi, where Ñi ≡ Ni/Pi. Although Pi is the same as P , we are using
the subscript i to indicate that this index belongs to dimension i.

Starting with the initial data x̂(N̂1, N2, N3), the parallel three-dimensional FFT can
be performed according to the following steps:

Step 1: Transpose

x̂1(J3, Ĵ1, J2) = x̂(Ĵ1, J2, J3).
Step 2: (N1/P) ·N2 individual N3-point multicolumn FFTs

x̂2(K3, Ĵ1, J2) =
N3−1∑
J3=0

x̂1(J3, Ĵ1, J2)ωJ3K3
N3

.

Step 3: Rearrangement

x̂3(Ĵ1, J2, K̃3, P3) = x̂2(P3, K̃3, Ĵ1, J2)
≡ x̂2(K3, Ĵ1, J2).

Step 4: All-to-all communication

x̂4(J̃1, J2, K̂3, P1) = x̂3(Ĵ1, J2, K̃3, P3).
Step 5: Rearrangement

x̂5(J2, J̃1, K̂3, P1) = x̂4(J̃1, J2, K̂3, P1).
Step 6: N1 · (N3/P) individual N2-point multicolumn FFTs

x̂6(K2, J̃1, K̂3, P1) =
N2−1∑
J2=0

x̂5(J2, J̃1, K̂3, P1)ωJ2K2
N2

.

1164 Daisuke Takahashi, Taisuke Boku, and Mitsuhisa Sato

Step 7: Rearrangement

x̂7(J1, K2, K̂3) ≡ x̂7(P1, J̃1, K2, K̂3)
= x̂6(K2, J̃1, K̂3, P1).

Step 8: N2 · (N3/P) individual N1-point multicolumn FFTs

ŷ(K1, K2, K̂3) =
N1−1∑
J1=0

x̂7(J1, K2, K̂3)ωJ1K1
N1

.

The distinctive features of the parallel three-dimensional FFT algorithm can be sum-
marized as:

– The parallel three-dimensional FFT is accompanied with a local transpose (data
rearrangement).

– N2/3/P individual N1/3-point multicolumn FFTs are performed in steps 2, 6 and
8 for the case of N1 = N2 = N3 = N1/3.

– The all-to-all communication occurs just once.

If both of N1 and N3 are divisible by P , the workload on each processor is also
uniform.

Although the input data x̂(N̂1, N2, N3) is distributed along the first dimension N1,
the output data ŷ(N1, N2, N̂3) is distributed along the third dimensionN3. If we assume
that the input data and output data are both the same distribution, an additional one all-
to-all communication step is needed.

5 In-cache FFT Algorithm

We use the radix-2, 4 and 8 Stockham autosort algorithm [18] for in-cache FFT.
Although the Stockham autosort algorithm requires a scratch array the same size

as the input data array, it is unnecessary the digit-reverse permutation. If the Stockham
autosort algorithm is used for the individual FFTs, the additional scratch requirement
for performing the individual FFTs is O(N1/3) (where N = N1 ×N2 ×N3) at most.

The higher radices are more efficient in terms of both memory and floating-point op-
erations. A high ratio of floating-point instructions to memory operations is particularly
important in a cache-based processor. In view of the high ratio of floating-point instruc-
tions to memory operations, the radix-8 FFT is more advantageous than the radix-4 FFT.
A power-of-two FFT (except for 2-point FFT) can be performed by a combination of
radix-8 and radix-4 steps containing at most two radix-4 steps. That is, the power-of-two
FFTs can be performed as a length n = 2p = 4q8r (p ≥ 2, 0 ≤ q ≤ 2, r ≥ 0).

6 Performance Results

To evaluate the implemented parallel three-dimensional FFT, named FFTE1 (version
3.2), we compared its performance against that of the FFTW library (version 2.1.5) [15],

1 http://www.ffte.jp

An Implementation of Parallel 3-D FFT Using Short Vector SIMD Instructions 1165

Table 1. Performance of parallel three-dimensional FFTs on dual Xeon PC SMP cluster

P
N1×N2×N3

FFTE 3.2 (SSE2) FFTE 3.2 (x87) FFTW 2.1.5

(Nodes×CPUs) Time MFLOPS Time MFLOPS Time MFLOPS

1×1 28×28×28 7.68317 262.04 8.33619 241.51 12.86992 156.43

1×2 28×28×28 4.29060 469.23 4.38417 459.21 10.77560 186.84

2×1 28×28×29 6.31334 664.36 6.76740 619.78 16.21513 258.67

2×2 28×28×29 5.40536 775.95 5.58136 751.48 11.89469 352.62

4×1 28×29×29 7.91637 1102.04 8.31000 1049.84 17.43453 500.40

4×2 28×29×29 6.61002 1319.84 6.75353 1291.79 13.59440 641.75

8×1 29×29×29 8.80932 2056.84 9.38208 1931.28 17.98921 1007.24

8×2 29×29×29 7.21630 2510.90 7.48793 2419.81 13.78780 1314.16

16×1 29×29×210 9.35400 4017.64 10.28623 3653.52 18.42153 2040.06

16×2 29×29×210 7.45187 5043.16 8.02600 4682.40 14.56551 2580.13

which is known as one of the fastest FFT libraries for many processors. Although the
latest FFTW (version 3.0.1) supports
SSE/SSE2/3DNow!/AltiVec (new in version 3.0), MPI parallel transforms are still only
available in 2.1.5.

We averaged the elapsed times obtained from 10 executions of complex forward
FFTs. The parallel FFTs were performed on double-precision complex data, and the
table for twiddle factors was prepared in advance. We used transposed order output to
reduce the all-to-all communication step for the parallel block three-dimensional FFT
and the FFTW.

A 16-node dual Xeon PC SMP cluster (Prestonia 2.8 GHz, 12 K uops L1 instruction
cache, 8 KB L1 data cache, 512 KB L2 cache, 2 GB DDR-SDRAM main memory per
node, Linux 2.4.20smp) was used. The nodes on the PC SMP cluster are interconnected
through a Myrinet-2000 switch.

MPICH-SCore [19] was used as a communication library. We used an intranode MPI
library for the PC SMP cluster.

The Intel C++ Compiler (icc, version 7.0) and the Intel Fortran Compiler (ifc,
version 7.0) were used on the dual Intel Xeon PC cluster. For the FFTE (SSE2), the com-
piler options used were specified as “icc -O3 -xW -fno-alias” and “ifc -O3
-xW -fno-alias.” For the FFTE (x87), the compiler options used were specified as
“ifc -O3 -fno-alias.” For the FFTW, the compiler options used were specified
as “icc -O3 -xW” and “ifc -O3 -xW.”

Table 1 compares the FFTE (SSE2 and x87) and the FFTW in terms of their run
times and MFLOPS. The first column of the table indicates the number of processors. The
second column gives the problem size. The next six columns contain the average elapsed
time in seconds and the average execution performance in MFLOPS. The MFLOPS
values are each based on 5N log2 N for a transform of size N = 2m.

Table 2 shows the results of the all-to-all communication timings on the dual Xeon
PC SMP cluster. The first column of the table indicates the number of processors. The

1166 Daisuke Takahashi, Taisuke Boku, and Mitsuhisa Sato

Table 2. All-to-all communication performance on dual Xeon PC SMP cluster

P N1×N2×N3 Time MB/sec

1×2 28×28×28 0.73685 91.08

2×1 28×28×29 1.44647 92.79

2×2 28×28×29 1.38669 72.59

4×1 28×29×29 2.36666 85.07

4×2 28×29×29 2.28441 51.41

8×1 29×29×29 3.05918 76.78

8×2 29×29×29 2.85692 44.04

16×1 29×29×210 3.37355 74.60

16×2 29×29×210 3.11048 41.80

second column gives the problem size. The next two columns contain the average elapsed
time in seconds and the average bandwidth in MB/sec.

In Tables 1 and 2, we can clearly see that all-to-all communication overhead con-
tributes significantly to the execution time. For this reason, the difference in performance
between the implemented parallel three-dimensional FFT and the FFTW decreases ac-
cording to increasing the number of processors.

For N = 29×29×210 and P = 16×2, FFTE (SSE2) runs about 1.95 times faster
than the FFTW, as shown in Table 1.

The performance of the implemented parallel three-dimensional FFT remains at a
high level, even for the larger problem size, because of cache blocking. Moreover, our
implementation of the parallel three-dimensional FFT exploits the SSE2 instructions.
These are two reasons why the implemented parallel three-dimensional FFT is the most
advantageous with the dual Xeon PC SMP cluster.

These results clearly indicate that the implemented FFT is superior to the FFTW.
We note that on a 16-node dual Xeon 2.8 GHz PC SMP cluster, over 5 GFLOPS was

realized with size N = 29 × 29 × 210 in the FFTE, as shown in Table 1.

7 Conclusion

In this paper, we proposed the implementation of the parallel three-dimensional FFT
using short vector SIMD instructions on clusters of PCs. We vectorized FFT kernels
using the SSE2 instructions, and parallelized the block three-dimensional FFT.

The performance of the implemented parallel three-dimensional FFT remains at a
high level, even for a larger problem size, because of cache blocking.

These results demonstrate that the implemented FFT utilizes cache memory effec-
tively. We succeeded in obtaining a performance of over 5 GFLOPS on a 16-node dual
Xeon 2.8 GHz PC SMP cluster. These performance results demonstrate that the proposed
parallel block three-dimensional FFT algorithm utilizes cache memory effectively.

An Implementation of Parallel 3-D FFT Using Short Vector SIMD Instructions 1167

References

1. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series.
Math. Comput. 19 (1965) 297–301

2. Brass, A., Pawley, G.S.: Two and three dimensional FFTs on highly parallel computers.
Parallel Computing 3 (1986) 167–184

3. Agarwal, R.C., Gustavson, F.G., Zubair, M.: An efficient parallel algorithm for the 3-D FFT
NAS parallel benchmark. In: Proceedings of the Scalable High-Performance Computing Con-
ference. (1994) 129–133

4. Hegland, M.: Real and complex fast Fourier transforms on the Fujitsu VPP 500. Parallel
Computing 22 (1996) 539–553

5. Calvin, C.: Implementation of parallel FFT algorithms on distributed memory machines with
a minimum overhead of communication. Parallel Computing 22 (1996) 1255–1279

6. Takahashi, D.: Efficient implementation of parallel three-dimensional FFT on clusters of PCs.
Computer Physics Communications 152 (2003) 144–150

7. Nadehara, K., Miyazaki, T., Kuroda, I.: Radix-4 FFT implementation using SIMD multimedia
instructions. In: Proc. 1999 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’99). Volume 4. (1999) 2131–2134

8. Franchetti, F., Karner, H., Kral, S., Ueberhuber, C.W.: Architecture independent short vec-
tor FFTs. In: Proc. 2001 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2001). Volume 2. (2001) 1109–1112

9. Rodriguez V, P.: A radix-2 FFT algorithm for modern single instruction multiple data (SIMD)
architectures. In: Proc. 2002 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2002). Volume 3. (2002) 3220–3223

10. Kral, S., Franchetti, F., Lorenz, J., Ueberhuber, C.W.: SIMD vectorization of straight line
FFT code. In: Proc. 9th International Euro-Par Conference (Euro-Par 2003). Volume 2790 of
Lecture Notes in Computer Science., Springer-Verlag (2003) 251–260

11. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. In: Proc. IEEE. Vol-
ume 93. (2005) 216–231

12. Franchetti, F., Kral, S., Lorenz, J., Ueberhuber, C.W.: Efficient utilization of SIMD extensions.
In: Proc. IEEE. Volume 93. (2005) 409–425

13. Bailey, D.H.: FFTs in external or hierarchical memory. The Journal of Supercomputing 4
(1990) 23–35

14. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM Press,
Philadelphia, PA (1992)

15. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT. In: Proc.
1998 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
98). (1998) 1381–1384

16. Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic
Architecture. (2004)

17. Intel Corporation: Intel C++ Compiler for Linux Systems User’s Guide. (2004)
18. Swarztrauber, P.N.: FFT algorithms for vector computers. Parallel Computing 1 (1984) 45–63
19. Sumimoto, S., Tezuka, H., Hori, A., Harada, H., Takahashi, T., Ishikawa, Y.: High performance

communication using a commodity network for cluster systems. In: Proc. Ninth International
Symposium on High Performance Distributed Computing (HPDC-9). (2000) 139–146

Other Para’04 Contributed Talks

The contributed talks below can be found in the following report:

• J. Dongarra, K. Madsen and J. Waśniewski (Eds.)
� Complementary proceedings of the Para’04 Workshop on State-of-the-Art in

Scientific Computing, Lyngby, Denmark, June, 2004.
� IMM-Technical report-2005-09.
� Informatics and Mathematical Modelling, Technical University of Denmark,

DK-2800 Lyngby, Denmark.
� URL: http://www2.imm.dtu.dk/pubdb/views/publication details.php?id=3927

• Masking Latency with Data Driven Program Variants by Scott B. Baden.

• Dynamic Code Generation and Component Composition in C++ for Optimising
Scientific Codes at Run-time by Olav Beckmann and Paul H J Kelly.

• Communication Strategies for Parallel Cooperative Ant Colony Optimization
on Clusters and Grids by Siegfried Benkner, Karl F. Doerner, Richard F. Hartl,
Guenter Kiechle and Maria Lucka.

• Fully Self Organized Public Key Management for Mobile Ad Hoc Network by
Daeseon Choi, Seunghun Jin, and Hyunsoo Yoon.

• Predicting Protein-Protein Interactions in Parallel by Yoojin Chung,
Sang-Young Cho and Chul-Hwan Kim

• On the Parallelization of the Lattice-Boltzmann Method by Salvatore Filippone,
Nicola Rossi, Gino Bella and Stefano Ubertini.

• Parallel and Distributed Techniques for Extracting Large Ontologies as a Re-
source in a Grid Environment by Andrew Flahive, Mehul Bhatt, Carlo Wouters,
Wenny Rahayu, David Taniar, and Tharam Dillon.

• Adaptive Fuzzy Active Queue Management by Mahdi Jalili-Kharaajoo, Moham-
madreza Sadri and Farzad Habibipour Roudsari.

• Inversion and Division Architecture in Elliptic Curve Cryptography over
GF (2n) by Jun-Cheol Jeon, Kyo-Min Ku, and Kee-Young Yoo.

• Efficient On-the-fly Detection of First Races in Nested Parallel Programs by
Keum-Sook Ha, Yong-Kee Jun, and Kee-Young Yoo.

• New Architecture for Inversion and Division over GF(2m) by Kyeoung Ju Ha,
Kyo Min Ku, and Kee Young Yoo.

• Solving Linear Systems on Cluster Computers with High Accuracy by Car-
los Amaral Hölbig, Paulo Sérgio Morandi Jr., Bernardo Frederes Krämer Alcalde,
Tiarajú Asmuz Diverio, and Dalcidio Moraes Claudio.

• Finite Fields Multiplier based on Cellular by Automata by Hyun-Sung Kim, and
Il-Soo Jeon.

• Efficient Systolic Architecture for Modular Multiplication over GF(2m) by
Hyun-Sung Kim and Sung-Woon Lee.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 1168–1169, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Other Para’04 Contributed Talks 1169

• Analyzing the Safety Problem in Securitay Systems using SPR Tool by Il-Gon
Kim, Jin-Young Choi, Peter D. Zegzhda, Maxim O. Kalinin, Dmitry P. Zegzhda,
In-Hye Kang, Pil-Yong Kang and Wan S. Yi.

• A CBD-based SSL Component Model by Young-Gab Kim, Lee-Sub Lee, Dong-
won Jeong, Young-Shil Kim, and Doo-Kwon Baik.

• Exponentiation over GF(2m) For Public Key Crypto System using Cellular
Automata by Kyo Min Ku, Kyeoung Ju Ha, and Kee Young Yoo.

• Area Efficient Multiplier based on LFSR Architecture by Jin-Ho Lee and Hyun-
Sung Kim.

• Efficient Authentication and Key Agreement for Client-Server Environment
by Sung-Woon Lee, Hyun-Sung Kim, and Kee-Young Yoo.

• New Efficient Digit-Serial Systolic AB2 Multiplier & Divider in GF (2m) by
Won-Ho Lee and Kee-Young Yoo.

• Parallel Co-Processor for Ultra-fast Line Drawing by Pere Marès, Antonio B.
Martı́nez and Joan Aranda.

• The Design Patterns of Performance-Decision Factors in High-Speed NIDS by
Jongwoon Park, Keewan Hong, Kiyoong Hong, Dongkyoo Kim, and Bongnam No.

• Scalable Race Visualization for Debugging Message-Passing Programs by Mi-
Young Park, So-Hee Park, Su-Yun Bae, and Yong-Kee Jun.

• Hierarchical Structures for Multi-Resolution Visualization of AMR Data by
Sanghun Park.

• The Development of Domain Specific Languages From Scientific Libraries by
Daniel Quinlan.

• A method to Derive the Cache Performance of Irregular Applications on ma-
chines with Direct Mapped Caches by Carsten Scholtes.

• Interfacing C++ member functions with C libraries by Kurt Vanmechelen and
Jan Broeckhove.

• Compilation Techniques for a Chip-Multiprocessor with Two Execution
Modes by Chao-Chin Wu.

• Explicit Formulas and Library of Images of Electromagnetic Fields for
Anisotropic Materials by Valery Yakhno, Tatyana Yakhno and Mustafa Kasap.

Author Index

Achenie, Luke E.K. 53, 57
Aliaga, José 444
Almeida, Francisco 444, 530
Alvarez, José A. 161
an Mey, Dieter 433
Andrade, Henrique 217
Arbenz, Peter 831
Argollo, Eduardo 691
Arzner, Kaspar 538
Ashcraft, Cleve 740
Aversa, Rocco 442

Baden, Scott B. 206
Bad́ıa, José M. 267, 444
Bai, Zhaojun 266, 276, 286, 323, 364
Baiardi, Fabrizio 1031
Baik, Doo-Kwon 974
Balaji, V. 563
Balle, Susanne M. 207
Bang, Young-whan 964
Banino, Cyril 1041, 1141
Baravykaitė, Milda 305
Barnes, David J. 228
Barrachina, Sergio 444
Baryamureeba, Venansius 839
Bečka, Martin 831
Belevičius, Rimantas 305
Bella, Gino 546
Benner, Peter 267
Bergen, Benjamin 883
Berz, Martin 65
Bientinesi, Paolo 376, 385
Bindel, David S. 286
Bischof, Christian 433
Bishop, John 207
Blaheta, Radim 847
Blanco, Vicente 444
Blömeling, Frank 296
Bojańczyk, Adam W. 374, 423
Boku, Taisuke 1159
Boville, Byron 563
Brazier, Frances M.T. 675
Brent, Richard P. 1
Bustany, Ismail 740
Buttari, Alfredo 593

Cabrera, Sergio 142
Cai, Xiao-Chuan 313
Cai, Xing 699
Cannataro, Mario 656
Casado, Leocadio G. 161
Casola, Valentina 454
Castillo, Maŕıa 444
Ceberio, Martine 75
Chapman, Barbara M. 490
Chinchalkar, Shirish 395
Cho, Yookun 1025
Christadler, Iris 901
Chun, Robert 665
Čiegis, Raimondas 305
Coleman, Thomas F. 395
Collins, Nancy 563
Comito, Carmela 656
Congiusta, Antonio 656
Costa, Antônio C.R. 83, 102, 179
Costa, Fábia A. 83
Cottenceau, Bertrand 93
Craig, Anthony 563
Cruz, Carlos 563
Cunha, Jose C. 654

d’Almeida, Filomena 864
D’Ambra, Pasqua 593
da Silva, Arlindo 563
Dave, Jagrut 573
de Aguiar, Marilton S. 83
Delanoue, Nicolas 93
DeLuca, Cecelia 563
De Maio, Alessandro 546
Demmel, James W. 286, 740
Denewet, Nicolas 538
De Rose, César A.F. 83
de Sande, Francisco 444, 530
di Flora, Cristiano 464
Di Martino, Beniamino 442
Dimuro, Graçaliz P. 83, 102, 179
di Serafino, Daniela 593
Dixon, Matthew F. 709
Dobrian, Florin 758
Dorta, U. 444
Dózsa, Gábor 472

1172 Author Index

Drakenberg, N. Peter 237
Driscoll, Jonathan 573

Edalat, Abbas 112
Ekenbäck, Andreas 554
Elmroth, Erik 404, 1051, 1061
Elster, Anne C. 1141

Faik, Jamal 911
Fang, Jywe-Fei 1071, 1099
Ficco, Massimo 464
Filippone, Salvatore 546, 593
Flaherty, Joseph E. 911
Folino, Gianluigi 656
Fujimoto, Richard 573

Gao, Weiguo 364
Garćıa, Inmaculada 161
Gardfjäll, Peter 1051
Gebremedhin, Assefaw H. 1079
Georgiev, Krassimir 828
Geus, Roman 831
Gimenez, Judit 665
Ginzburg, Lev 75
González, Juan R. 481
Gould, Nicholas I.M. 818
Granat, Robert 719
Griewank, Andreas 1089
Grigori, Laura 768
Guerrero-Garćıa, Pablo 603
Gunnels, John A. 247, 256, 376
Günther, Frank 874
Gupta, Anshul 778
Gustavson, Fred G. 11, 225, 247,
256, 376
Gwaltney, C. Ryan 122

Hallberg, Robert 563
Hartmann, Wolfgang M. 928, 931
Hayakawa, Kentaro 1151
Heggernes, Pinar 788
Hénon, Pascal 611
Henry, Greg M. 256, 376
Hernandez, Oscar R. 490
Heroux, Michael A. 620
Herrero, José R. 798
Hetmaniuk, Ulrich 831
Hill, Chris 563
Hippold, Judith 730
Holmgren, Sverker 893

Holmström, Mats 554
Hopkins, Tim R. 228
Hoppe, Ronald H.W. 857
Hu, Yifan 818
Huang, Chien-Hung 1099
Huber, Wolfgang 939
Hülsemann, Frank 872, 883
Husbands, Parry 364
Hwang, Eenjun 983
Hwang, Feng-Nan 313

Iacono, Mauro 499
Idriss, Ismail I. 132
Im, Eun-Jin 740
Iredell, Mark 563

Jacob, Robert 563
Jang, Ho-Jong 333
Jaulin, Luc 93
Jeong, Dongwon 974
Jin, Haoqiang 665
Joffrain, Thierry 413
Johansson, Henrik 893
Jost, Gabriele 665
Jung, Yuna 983

Kacsuk, Péter 472
K̊agström, Bo 21, 719
Kang, Yeun-hee 964
Karimabadi, Homa 573
Kessler, Christoph 519
Kim, EunYoung 992
Kim, Tai-hoonn 957
Kim, Young-Gab 974
Kim, Young-Shil 974, 1000
Kluzek, Erik 563
Knaepen, Bernard 538
Kolos, Sergey 385
Korch, Matthias 1105
Korvink, Jan G. 349
Kosheleva, Olga 142
Kowarschik, Markus 872, 901
Kreinovich, Vladik 53, 75, 83, 189
Krymsky, Victor G. 151
Kwak, Jin 1009
Kwon, Ho-yeol 957

Labarta, Jesus 665
LaFrance-Linden, David 207
Lai, Guan-Joe 1115

Author Index 1173

Larson, Jay 563
Lee, CheolHo 992
Lee, Gang-soo 964
Lee, HyungHyo 1017
Lee, JinSeok 992
Lee, Kyusoon 423
Lee, Lee-Sub 974
Lee, Lie-Quan 364
Lee, Seung 1000
Lee, YoungLok 1017
León, Coromoto 481
Li, Ren-Cang 266, 323
Li, Xiaoye S. 364, 768
Liao, Ben-Shan 276
Liao, Chunhua 490
Longpré, Luc 189
Luque, Emilio 691

Ma, Sangback 333
Madsen, Kaj 53
Makino, Kyoko 65
Mancini, Emilio 509
Manne, Fredrik 1079
Mansfield, Peter 395
Mansmann, Ulrich 939
Margenov, Svetozar 847
Marrone, Stefano 499
Mart́ınez, José A. 161
Mastroianni, Carlo 656
Mattsson, H̊akan 519
Mayo, Rafael 267, 444
Mazzeo, Antonino 454
Mazzocca, Nicola 454, 499
Mediavilla, Evencio 530
Meer, Klaus 169
Mehl, Miriam 874
Messmer, Peter 527, 583
Michalakes, John 563
Mori, Paolo 1031
Moscato, Francesco 499
Mulmo, Olle 1051
Munasinghe, Kalyani 1123
Myers, Margaret 376

Navarro, Juan J. 798
Neckels, David 563
Németh, Csaba 472
Neytcheva, Maya 847
Ng, Esmond G. 364
Ngubiri, John 839

Noh, BongNam 1017
Norris, Boyana 629

Oh, HyungGeun 992
Oh, Soohyun 1009
Omelchenko, Yuri 573
Omidi, Nick 573
Oscoz, Alex 530
Ostrovsky, Gennadi M. 57
Overeinder, Benno J. 675

Park, Sang Yun 1000
Park, Soo-Hyun 974
Park, Yongsu 1025
Pattinson, Dirk 112
Pellegrini, François 611
Perumalla, Kalyan 573
Petrova, Svetozara I. 857
Plassmann, Paul E. 644
Pögl, Markus 874
Pothen, Alex 758
Pugliese, Andrea 656

Quintana, Enrique S. 444
Quintana, Gregorio 444
Quintana-Ort́ı, Enrique S. 267, 376, 413

Radons, Günter 1131
Raghavan, Padma 590, 637
Rak, Massimiliano 509
Ramet, Pierre 611
Rana, Omer F. 654
Rauber, Thomas 1105
Reid, John K. 33
Reiser, Renata H.S. 179
Rexachs, Dolores 691
Ricci, Laura 1031
Rifkin, Howard 207
Rixen, Daniel J. 342
Rodŕıguez, Casiano 444, 481
Röllin, Stefan 808
Roman, Jean 611
Rosenvinge, Einar M.R. 1141
Rüde, Ulrich 901
Rudnyi, Evgenii B. 349
Ruhe, Axel 357
Rünger, Gudula 730, 1131
Ruschhaupt, Markus 939
Russo, Stefano 464

Saad, Yousef 611

1174 Author Index

Sakurai, Tetsuya 1151
Sala, Marzio 620
Sandholm, Thomas 1051
Santos-Palomo, Ángel 603
Sato, Mitsuhisa 1151, 1159
Sawyer, William 563
Schenk, Olaf 808
Schreiber, Andreas 680
Schwab, Earl 563
Schwind, Michael 1131
Scott, Jennifer A. 818
Silva, Rafael K.S. 83
Skelander, Rikard 404
Smithline, Shepard 563
Somerville, Paul N. 949
Sosonkina, Masha 690, 747
Spezzano, Giandomenico 656
Spiegel, Alexander 433
Stadtherr, Mark A. 122
Starks, Scott A. 189
Suarez, Max 563
Sussman, Alan 217

Takahashi, Daisuke 1151, 1159
Talia, Domenico 656
Teranishi, Keita 637
Teresco, James D. 911
Testa, Mario 546
Tinetti, Fernando G. 691
Toledo, Sivan 756
Tordsson, Johan 1061
Torella, Roberto 509
Trayanov, Atanas 563
Trinitis, Carsten 921

Usevitch, Brian 142

van de Geijn, Robert A. 256, 376,
385, 413
Vasconcelos, Paulo B. 864
Veljkovic, Ivana 644
Veltri, Pierangelo 656
Venticinque, Salvatore 454
Vidal, Edward Jr. 142
Villanger, Yngve 788
Villano, Umberto 509
Vittorini, Valeria 499
Vlahos, Loukas 538
Voss, Heinrich 296

Wait, Richard 1123
Wallin, Dan 893
Walther, Andrea 1089
Wang, Suk-Hee 1000
Waśniewski, Jerzy 225
Weidendorfer, Josef 921
Wolfe, Jon 563
Won, Dongho 1009
Woods, Tom 1079

Xiang, Gang 189

Yang, Chao 364
Yang, Chin-Yang 1099
Yang, Hong-liu 1131
Yang, Laurence Tianruo 442
Yang, Weiyu 563
Yelick, Katherine A. 740

Zaslavsky, Leonid 563
Zenger, Christoph 874
Žilinskas, Antanas 197
Žilinskas, Julius 197
Zlatev, Zahari 43, 828

	Frontmatter
	Invited Talks
	Fast and Reliable Random Number Generators for Scientific Computing
	New Generalized Data Structures for Matrices Lead to a Variety of High Performance Dense Linear Algebra Algorithms
	Management of Deep Memory Hierarchies -- Recursive Blocked Algorithms and Hybrid Data Structures for Dense Matrix Computations
	Fortran Is Getting More and More Powerful
	Large-Scale Computations with the Unified Danish Eulerian Model

	Minisymposia
	Interval Methods
	Interval Methods: An Introduction
	A Chemical Engineering Challenge Problem That Can Benefit from Interval Methods
	Performance of Taylor Model Methods for Validated Integration of ODEs
	On the Use of Intervals in Scientific Computing: What Is the Best Transition from Linear to Quadratic Approximation?
	<Literal>HPC-ICTM</Literal>: The Interval Categorizer Tessellation-Based Model for High Performance Computing
	Counting the Number of Connected Components of a Set and Its Application to Robotics
	Interval-Based Markov Decision Processes for Regulating Interactions Between Two Agents in Multi-agent Systems
	A Domain Theoretic Account of Euler's Method for Solving Initial Value Problems
	Reliable Computation of Equilibrium States and Bifurcations in Nonlinear Dynamics
	A Verification Method for Solutions of Linear Programming Problems
	Compressing 3D Measurement Data Under Interval Uncertainty
	Computing Interval Bounds for Statistical Characteristics Under Expert-Provided Bounds on Probability Density Functions
	Interval Parallel Global Optimization with Charm++
	On the Approximation of Interval Functions
	The Distributed Interval Geometric Machine Model
	New Algorithms for Statistical Analysis of Interval Data
	On Efficiency of Tightening Bounds in Interval Global Optimization

	Trends in Large Scale Computing
	Trends in Large Scale Computing: An Introduction
	Ygdrasil: Aggregator Network Toolkit for Large Scale Systems and the Grid
	Enabling Coupled Scientific Simulations on the Grid

	High Performance Linear Algebra Algoritms
	High Performance Linear Algebra Algorithms: An Introduction
	Applying Software Testing Metrics to Lapack
	A Matrix-Type for Performance--Portability
	A New Array Format for Symmetric and Triangular Matrices
	A Family of High-Performance Matrix Multiplication Algorithms

	Substructuring, Dimension Reduction and Applications
	Substructuring, Dimension Reduction and Applications: An Introduction
	Parallel Algorithms for Balanced Truncation Model Reduction of Sparse Systems
	Towards an Optimal Substructuring Method for Model Reduction
	Model Reduction for RF MEMS Simulation
	A Model-Order Reduction Technique for Low Rank Rational Perturbations of Linear Eigenproblems
	Parallel Global Optimization of Foundation Schemes in Civil Engineering
	A Combined Linear and Nonlinear Preconditioning Technique for Incompressible Navier-Stokes Equations
	Structure-Preserving Model Reduction
	A Comparison of Parallel Preconditioners for the Sparse Generalized Eigenvalue Problems by Rayleigh-Quotient Minimization
	Theoretical Relations Between Domain Decomposition and Dynamic Substructuring
	Model Order Reduction for Large Scale Engineering Models Developed in ANSYS
	Rational Krylov for Large Nonlinear Eigenproblems
	Algebraic Sub-structuring for Electromagnetic Applications

	Parallel Processing in Science and Engineering
	Parallel Processing in Science and Engineering: An Introduction
	Rapid Development of High-Performance Linear Algebra Libraries
	Automatic Derivation of Linear Algebra Algorithms with Application to Control Theory
	Cluster Computing for Financial Engineering
	Semi-automatic Generation of Grid Computing Interfaces for Numerical Software Libraries
	Rapid Development of High-Performance Out-of-Core Solvers
	ALPS: A Software Framework for Parallel Space-Time Adaptive Processing
	Hybrid Parallelization of CFD Applications with Dynamic Thread Balancing

	Distributed Computing: Tools, Paradigms and Infrastructures
	Distributed Computing: Tools, Paradigms and Infrastructures. An Introduction
	Parallelization of GSL: Performance of Case Studies
	Design of Policy-Based Security Mechanisms in a Distributed Web Services Architecture
	Supporting Location-Aware Distributed Applications on Mobile Devices
	Grid Application Development on the Basis of Web Portal Technology
	A Distributed Divide and Conquer Skeleton
	A Tool to Display Array Access Patterns in OpenMP Programs
	A Model Analysis of a Distributed Monitoring System Using a Multi-formalism Approach
	Performance Oriented Development and Tuning of GRID Applications
	Towards a Bulk-Synchronous Distributed Shared Memory Programming Environment for Grids

	HPC in Earth and Space Science
	High-Performance Computing in Earth- and Space-Science: An Introduction
	Applying High Performance Computing Techniques in Astrophysics
	Statistical Properties of Dissipative MHD Accelerators
	A Simulation Model for Forest Fires
	MHD Modeling of the Interaction Between the Solar Wind and Solar System Objects
	Implementing Applications with the Earth System Modeling Framework
	Parallel Discrete Event Simulations of Grid-Based Models: Asynchronous Electromagnetic Hybrid Code
	Electromagnetic Simulations of Dusty Plasmas

	Advanced Algoritms and Software Components for Scientific Computing
	Advanced Algorithms and Software Components for Scientific Computing: An Introduction
	Extending PSBLAS to Build Parallel Schwarz Preconditioners
	A Direct Orthogonal Sparse Static Methodology for a Finite Continuation Hybrid LP Solver
	Applying Parallel Direct Solver Techniques to Build Robust High Performance Preconditioners
	The Design of Trilinos
	Software Architecture Issues in Scientific Component Development
	Parallel Hybrid Sparse Solvers Through Flexible Incomplete Cholesky Preconditioning
	Parallel Heuristics for an On-Line Scientific Database for Efficient Function Approximation

	Software Engineering and Problem Solving Environments for Scientific Computing
	Software Engineering and Problem Solving Environments for Scientific Computing: An Introduction
	A General Architecture for Grid-Based PSE Toolkits
	An Expert Assistant for Computer Aided Parallelization
	Scalable Middleware Environment for Agent-Based Internet Applications
	Automatic Generation of Wrapper Code and Test Scripts for Problem Solving Environments

	Runtime Software Techniques for Enabling High-Performance Applications
	Runtime Software Techniques for Enhancing High-Performance Applications: An introduction
	Efficient Execution of Scientific Computation on Geographically Distributed Clusters
	Improving the Performance of Large-Scale Unstructured PDE Applications
	A Runtime Adaptive Load Balancing Algorithm for Particle Simulations
	Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations: Direct Transformation-Based Versus Iterative Matrix-Sign-Function-Based Methods
	Performance Analysis for Parallel Adaptive FEM on SMP Clusters
	Performance Tuning of Matrix Triple Products Based on Matrix Structure
	Adapting Distributed Scientific Applications to Run-Time Network Conditions

	Sparse Direct Linear Solvers
	Sparse Direct Linear Solvers: An Introduction
	Oblio: Design and Performance
	Performance Analysis of Parallel Right-Looking Sparse LU Factorization on Two Dimensional Grids of Processors
	A Shared- and Distributed-Memory Parallel Sparse Direct Solver
	Simple and Efficient Modifications of Elimination Orderings
	Optimization of a Statically Partitioned Hypermatrix Sparse Cholesky Factorization
	Maximum-Weighted Matching Strategies and the Application to Symmetric Indefinite Systems
	An Evaluation of Sparse Direct Symmetric Solvers: An Introduction and Preliminary Findings

	Treatment of Large Scale Models
	Treatment of Large Scientific Problems: An Introduction
	Towards a Parallel Multilevel Preconditioned Maxwell Eigensolver
	On Improvement of the Volcano Search and Optimization Strategy
	Aggregation-Based Multilevel Preconditioning of Non-conforming FEM Elasticity Problems
	Efficient Solvers for 3-D Homogenized Elasticity Model
	Performance Evaluation of a Parallel Algorithm for a Radiative Transfer Problem

	Performance Evaluation and Design of Hardware-Aware PDE Solvers
	Performance Evaluation and Design of Hardware-Aware PDE Solvers: An Introduction
	A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures
	Constructing Flexible, Yet Run Time Efficient PDE Solvers
	Analyzing Advanced PDE Solvers Through Simulation
	Towards Cache-Optimized Multigrid Using Patch-Adaptive Relaxation
	Hierarchical Partitioning and Dynamic Load Balancing for Scientific Computation
	Cache Optimizations for Iterative Numerical Codes Aware of Hardware Prefetching

	Computationally Expensive Methods in Statistics
	Computationally Expensive Methods in Statistics: An Introduction
	Dimension Reduction vs. Variable Selection
	Reproducible Statistical Analysis in Microarray Profiling Studies
	Step-Down FDR Procedures for Large Numbers of Hypotheses

	Approaches or Methods of Security Engineering (AMSE)
	Applying Security Engineering to Build Security Countermeasures: An Introduction
	CC-SEMS: A CC Based Information System Security Evaluation Management System
	A Secure Migration Mechanism of Mobile Agents Under Mobile Agent Environments
	A Flexible Privilege Management Scheme for Role Graph Model
	The System Modeling for Detections of New Malicious Codes
	Information Hiding Method Using CDMA on Wave Files
	Efficient Key Distribution Protocol for Electronic Commerce in Mobile Communications
	A Framework for Modeling Organization Structure in Role Engineering
	An Efficient Pointer Protection Scheme to Defend Buffer Overflow Attacks

	Contributed Talks
	I Contributed Talks in this Volume
	Parallel Hierarchical Radiosity: The PIT Approach
	Optimizing Locationing of Multiple Masters for Master-Worker Grid Applications
	An OGSA-Based Bank Service for Grid Accounting Systems
	A Grid Resource Broker Supporting Advance Reservations and Benchmark-Based Resource Selection
	The Dragon Graph: A New Interconnection Network for High Speed Computing
	Speeding up Parallel Graph Coloring
	On the Efficient Generation of Taylor Expansions for DAE Solutions by Automatic Differentiation
	Edge-Disjoint Hamiltonian Cycles of WK-Recursive Networks
	Simulation-Based Analysis of Parallel Runge-Kutta Solvers
	A Novel Task Scheduling Algorithm for Distributed Heterogeneous Computing Systems
	Study of Load Balancing Strategies for Finite Element Computations on Heterogeneous Clusters
	Parallel Algorithms for the Determination of Lyapunov Characteristics of Large Nonlinear Dynamical Systems
	Online Task Scheduling on Heterogeneous Clusters: An Experimental Study
	A Parallel Method for Large Sparse Generalized Eigenvalue Problems by OmniRPC in a Grid Environment
	An Implementation of Parallel 3-D FFT Using Short Vector SIMD Instructions on Clusters of PCs

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

