
Embedding Covert Channels into TCP/IP

Steven J. Murdoch and Stephen Lewis

University of Cambridge, Computer Laboratory,
15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

http://www.cl.cam.ac.uk/users/{sjm217, srl32}/

Abstract. It is commonly believed that steganography within TCP/IP
is easily achieved by embedding data in header fields seemingly filled
with “random” data, such as the IP identifier, TCP initial sequence
number (ISN) or the least significant bit of the TCP timestamp. We
show that this is not the case; these fields naturally exhibit sufficient
structure and non-uniformity to be efficiently and reliably differentiated
from unmodified ciphertext. Previous work on TCP/IP steganography
does not take this into account and, by examining TCP/IP specifications
and open source implementations, we have developed tests to detect the
use of näıve embedding. Finally, we describe reversible transforms that
map block cipher output onto TCP ISNs, indistinguishable from those
generated by Linux and OpenBSD. The techniques used can be extended
to other operating systems. A message can thus be hidden so that an
attacker cannot demonstrate its existence without knowing a secret key.

1 Introduction

Steganographic covert channels based on modification of network protocol header
values are best understood by considering a scenario with three actors; in keep-
ing with the existing literature, we shall call them Alice, Bob and Walter. Alice
can make arbitrary modifications to network packets originating from a machine
within Walter’s network. She wants to leak a message to Bob, who can only
monitor packets at the egress points of this network. Alice aims to hide the mes-
sage from Walter, who can see (but not modify) any packet leaving his network.
This is analogous to a passive warden within the threat model introduced in [1].

In a practical instantiation of this problem, Alice and Bob may well be the
same person. Consider a machine to which an attacker has unrestricted access for
only a short amount of time, and which lies within a closely monitored network.
The attacker installs a keylogger on the machine, and wishes to leak passwords
to himself in such a way that the owner of the network does not observe that
anything untoward is happening. An attacker might also want to watermark all
transmissions from a particular machine; the steganography described in this
paper can be used for this purpose.

Alice can choose which layer of the protocol stack she wishes to hide her
message in. Each layer has its own characteristics, which indicate the scenarios
in which it can best be used. In [2], the potential for embedding at all layers of
the OSI model is discussed.

M. Barni et al. (Eds.): IH 2005, LNCS 3727, pp. 247–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www.cl.cam.ac.uk/users/sjm217/
http://www.cl.cam.ac.uk/users/srl32/

248 S.J. Murdoch and S. Lewis

At the bottom of the stack, in the Physical and Data-Link layers (e.g. Eth-
ernet), there is some opportunity for embedding data. However, it requires low-
level control of the hardware, which Alice may find difficult to obtain. Also, if she
chooses to signal to Bob at this layer, her messages will be stripped out if they
reach a device that connects networks at a higher layer (e.g. an IP router). This
requires Bob to be on the same LAN. An example of a steganography system
that relies on embedding at the Physical layer is described in [3].

Alice might also choose to embed data at the Presentation or Application
layers of the network stack (e.g. in Telnet or HTTP/FTP traffic). If, however,
she only has brief access to the machine from which she is leaking data, she
needs to anticipate which applications are likely to be used on it; she can then
modify them to carry her messages in the traffic they generate.

Similarly, the format of files sent over HTTP or FTP (such as JPEG or PDF)
may also be viewed as protocols in which steganographic data can be embedded.
These provide Alice with a high-bandwidth channel, but only if she is confident
of being able to modify these files without arousing suspicion.

The only remaining layers to consider in the OSI model are Network, Trans-
port and Session. TCP and IP (specified in [4] and [5]) fall within these layers,
and are common to the vast majority of Internet applications. A message em-
bedded in these protocols has the advantage that it will survive unchanged on its
journey out of Walter’s network. Here we consider only IPv4-based embedding;
IPv6-based covert channels are discussed in [6].

In this paper we study a number of previously proposed schemes for embed-
ding data within the TCP and IP protocol headers, thus creating a stegano-
graphic covert channel. We show how the use of these schemes can easily be
detected by a passive warden. The algorithms used in the generation of some
TCP/IP header fields are then looked at in detail, and our alternative method
for embedding data, Lathra, is proposed. We show that a passive warden cannot
detect the use of this method without knowledge of a secret key, subject to some
realistic constraints. Our results will also be relevant to the field of operating
system and physical device fingerprinting.

2 Threat Model

We have thus far assumed that the steganography can only be prevented by de-
tection, not by attempting to remove any hidden information. This is known as
the passive warden threat model. An active warden can modify traffic regardless
of suspicion. As is shown in [7, 8], an active warden can remove most, if not all,
TCP/IP level steganography, and lower layer steganography will already have
been removed by routing. He will, however, have difficulty removing steganog-
raphy at higher layers (e.g. in JPEG images) without damaging the carrier.

In many scenarios, it may be infeasible for a warden to be active: the kind
of filtering necessary to remove TCP/IP steganography can increase network
latency, and might require a filtering router that can store large amounts of
state. The warden may also wish to avoid the users being aware that the use of
steganography is suspected.

Embedding Covert Channels into TCP/IP 249

In this paper, we assume that Alice operates in an environment with a pas-
sive warden and an unreliable network (permitting packet loss, duplication and
reordering) and requires a TCP/IP based covert channel giving

– indistinguishability: Walter (a passive warden) should be unable to detect
the presence of the data hidden in packets leaving Alice’s machine; and

– reliability: she desires some indication of whether her messages to Bob have
indeed arrived, so she can retransmit them if necessary.

3 Overview of TCP/IP Based Steganography

A common failing of existing proposals is the production of output from a dif-
ferent distribution to that which would be generated by unmodified TCP/IP
implementations. In some cases, it is even outside the relevant specifications.
For this reason, to design steganographic techniques or to detect their use, it is
necessary to be familiar with the applicable standards and the details of their
implementation. This section gives an overview of the TCP/IP standards and
related work from a steganographic encoding perspective.

The basic TCP/IP protocol suite is specified in [4] and [5]. There are ex-
tensions to it (e.g. the TCP Extensions for High Performance [9]) that specify
additional header options; these also give some scope for steganographic coding.

IP itself does not aim to provide any reliability guarantees, but rather allows
client protocols on a host to transport blocks of data (datagrams) from a source
to a destination, both specified by fixed length addresses. One noteworthy feature
of IP for our purposes is that it allows fragmentation and reassembly of long
datagrams, requiring certain extra header fields.

TCP, on the other hand, does aim to provide a reliable channel to its clients.
It has a stream oriented interface, and keeps its reliability properties even within
networks exhibiting packet loss, reordering and duplication. Its features for im-
plementing reliability and flow control give scope for steganographic coding.

The TCP/IP header can serve as a carrier for a steganographic covert channel
if a header field can take one of a set of values, each of which appears plausible
to our passive warden. The warden should not be able to distinguish whether the
header was generated by an unmodified TCP/IP stack or by a steganographic
encoding mechanism. In this section we examine which header fields have more
than one plausible value, and look at the amount of entropy available in each of
them for use by a steganographic coding scheme.

TCP/IP steganography exploits the fact that few headers are altered in tran-
sit. As mentioned above, IP packets can be fragmented, but (unless we are hiding
data in the fragmentation-related headers) no information is lost. The time-to-
live field in the IP header is decremented each time the packet passes through a
router, but the initial values used by IP stacks are well known, so this field gives
little scope for steganography.

Figure 1 illustrates the base TCP/IP headers. The fields shown in italics are
those that may be used to embed steganographic data. We now consider each of
these fields in turn, assessing their potential for use as steganographic carriers.

250 S.J. Murdoch and S. Lewis

0 3 4 7 8 15 16 18 19 23 24 31

Version IHL Type of Service Total Length
Identification Flags Fragment Offset

Time to Live Protocol Header Checksum
Source Address

Destination Address
Options Padding

IP

������
�����

...

Source Port Destination Port
Sequence Number

Acknowledgement Number
Offset Reserved Flags Window

Checksum Urgent Pointer
Options (including timestamp) Padding

TCP

�
�����
�����

Fig. 1. Basic TCP/IP header structure

Type of Service: The eight Type of Service (ToS) bits in the IP header are
used to indicate quality of service parameters to routers on a packet’s path. They
are now rarely used with their original semantics (as defined in [5]); they have
been reused in, for example, the implementation of DiffServ.

There is potential for using the bits in this field as a steganographic carrier,
as described in [2], because many networks never use them. However, this would
be easily detected by the warden in our threat model, as the field is set to zero
in almost all default operating system configurations.

IP Identification: As described in [5], the IP Identification field (IP ID) is
‘an identifying value assigned by the sender to aid in assembling the fragments
of a datagram’, and is allocated 16 bits of the IP header. Because the IP ID
is used to distinguish fragments making up one packet from fragments making
up another, the only constraints on its value are uniqueness over the length
of time that fragments of a packet might reasonably remain in a network, and
unpredictability.

IP IDs that are unique within a given time window are necessary to ensure
that fragments of different packets are not reassembled into one packet on the
receiving host. Unpredictability prevents ‘idle scanning’ [10], whereby an attacker
can portscan a host without ever sending a packet directly to it.

A scheme for embedding data in this field is described in [11]. It uses a pseudo-
random sequence, generated by a Toral Automorphism System, to ensure that
the modified field is random. However this can be detected since IP ID fields are
not random, as shown in Section 5.1.

IP Flags: IP packets include two flags, Do Not Fragment (DF), indicating that
the packet should be discarded if it cannot be sent without fragmentation, and
More Fragments (MF) which is 0 if the packet contains the last fragment, or if a
packet has not been fragmented. In [11] the use of the DF bit for steganographic
signalling is proposed. If this is used on packets smaller than the maximum
segment size the DF flag has no effect on the packets’ behaviour. However, the
normal state of DF can be predicted from the packet’s context, so the warden
in our threat model can detect the use of this technique.

Embedding Covert Channels into TCP/IP 251

IP Fragment Offset: When IP packets are fragmented, the individual frag-
ments contain an offset field; this allows the receiving host to reconstruct the
fragments in the correct positions in its receive buffers. Information can be trans-
mitted covertly by modulating the size of the fragments originated by a host,
and thus the fragment offsets. As with the IP identification and ToS fields, this
method of steganographic encoding is easily detected. In environments where
path MTU discovery [12] is routinely used, fragmented packets are unusual.

IP Options: IP packets very rarely contain ‘options’, so their steganographic
potential is limited. In [2] the use of the IP Timestamp option is described (not
to be confused with the TCP Timestamp discussed in Section 3), but in addition
to being easily detectable, packets with this option present can travel at most
20 hops, so it is of little use in the open Internet.

TCP Sequence Number: TCP sequence numbers support the reliability fea-
tures provided by TCP (and to some extent, the flow control features). Each
octet of data transmitted over a TCP stream is assigned a sequence number. In
TCP, a connection (defined by a pair of sockets) can be reused, and hence the
host must be able to detect whether a segment is from a current or previous
incarnation of a connection.

When a connection is established, both hosts must choose an initial sequence
number (ISN). Careful design of the algorithm for generating these initial se-
quence numbers ensures that overlap in sequence number space between different
incarnations of a connection is prevented.

There are other properties required of the algorithm used for initial sequence
number generation. For a given connection, the ISNs used must be hard to
guess for those not involved in the connection [13]. To allow a connection in the
TIME WAIT state to be restarted, the sequence numbers for a given socket pair
should also be monotonically increasing.

A prototype implementation of steganography using TCP ISNs (and also the
IP ID), Covert TCP, is described in [14]. It simply replaces the chosen field with
the data to be sent, so can be detected either by observing that the field does
not meet the required overlap and uniqueness constraints, or by comparing the
data observed with statistical patterns of suspected plaintext.

A passive warden using a Support Vector Machine (SVM) is presented in [15].
It is designed to detect the use of Covert TCP within the IP ID and TCP ISN.
A SVM is a machine learning technique that is suitable for automatically iden-
tifying features which are not well understood. In the case of IP IDs and ISNs,
the algorithm for generating them is well understood and precisely described
in source code, so it is not necessary to use a machine learning technique. The
SVM can only identify simple features, so it cannot detect the complex structure
present in these fields and their interdependencies.

The design and implementation of Nushu, an improvement to Covert TCP for
Linux 2.4, is described in [16]. Nushu uses TCP ISNs for encoding information
and encrypts outgoing ISNs to hide the use of steganography, however it still
may be detected. Firstly, the output will not exhibit the structure of TCP ISNs

252 S.J. Murdoch and S. Lewis

expected from Linux. Secondly, a flaw in the use of DES for encryption allows
the recovery of statistical information on the plaintext. These techniques will be
further discussed in Section 5.3.

TCP Timestamp: The TCP timestamp option allows a host to accurately
measure the round trip time of a path, and also mitigates problems associated
with sequence number wrap-around in networks with large bandwidth × delay
products. For our purposes, it is only necessary to understand the constraints on
the values of TCP timestamps; more details about the features based on them
can be found in [9].

The timestamp option consists of two 32 bit fields, TS Value and TS Echo
Reply. The TS Value field is set based on the ‘timestamp clock’ of the sender,
and it is into this field that hidden data can be embedded. The only constraints
on the timestamp clock are that its tick frequency be between 1 Hz and 1 kHz,
and that it be strictly monotonic.

A covert channel based on modulating the least significant bit of the TCP
timestamps transmitted by a host, devcc, is described in [17]. The scheme works
by incrementing the timestamp associated with a packet (and delaying it accord-
ingly) in order to transmit a ‘1’ bit of ciphertext. The use of TCP timestamps
is not universal, but it is deployed as standard on newer versions of Linux and
other Unix-like operating systems, so the observation of timestamps from an op-
erating system which does not support them would be suspicious. As described
in Section 5.3, the distribution of values in the timestamp field is modified from
the expected one, in a detectable manner, by the use of this covert channel.

Packet Order: In addition to the content of the packet, the ordering of packets
can be used to carry information, as is described in [11]. This relies on being
used on an IPSec network to recover the original order, limiting its applicability.
Since packets are seldom reordered by the transmitting host, a warden who is
close to Alice will undoubtedly notice the unusually large amount of re-ordering.

4 IP ID and TCP ISN Implementations

The passive warden considered in this paper has knowledge of both the TCP/IP
standards and particular implementations. He can check whether the values he
observes could have been generated by an unmodified operating system, or even
by the operating system he knows to be installed on the originating host.

Two fields which are commonly used to embed steganographic data are the
IP ID and TCP ISN. A sufficiently precise description of their generation can-
not be found within the public literature, so details of the implementation are
included here. Due to their construction, these fields contain some structure,
but as mentioned in Section 3, they must also be partially unpredictable. This is
achieved by having randomly generated, per-host, secrets and by the use of cryp-
tographic functions. We assume that the warden is aware of the implementation,
but does not have access to these secrets and is not able to exploit vulnerabilities
in the cryptographic primitives.

Embedding Covert Channels into TCP/IP 253

4.1 Linux

The Linux 2.0 ISN generator (shown in Figure 2) is based on RFC1948 [18].
It uses SHA-1 to hash a block of 16 32-bit words, with words 9–11 set to the
source and destination IP address and port, and the remaining 13 words filled
with a cryptographically secure, random secret, initialised on boot. Rather than
using the values defined in the SHA-1 standard for the initial state, the first 5
words of the block are used. To obtain the ISN, the second word of the hash is
selected and the current time (in microseconds) added. This achieves the goals
of RFC1948, but calculation of a SHA-1 hash is slow, and hence this algorithm
causes a significant delay in the TCP connection establishment process.

The algorithm used in Linux 2.2 (shown on the left in Figure 3) was modified
to reduce the time needed to calculate each ISN. Rather than using SHA-1, a
reduced block-size variant of MD4 was used, which reads 8 32-bit blocks per
iteration, rather than the 16 in the original, and so it also reduces the steps per
round from 16 to 8. This is used in a similar way to SHA-1 in Linux 2.0, except
it limits the reuse of random data. Since even the full size MD4 algorithm is
known to be insecure, the random data is rekeyed every 300 seconds (5 minutes)
to limit the impact of secret compromise. To avoid this resulting in repeated
ISNs, after the hash is calculated, the most significant byte is replaced with a
counter incremented on rekeying and initialised to the current time divided by
300. Finally, as with Linux 2.0, the time in microseconds is added.

Early versions of Linux 2.4 contained the same ISN generator as Linux 2.2.
It was also used (up to the hashing step) with a different secret to initialise
the per-destination counters for IP IDs on packets which may be fragmented. A
global counter was previously used, but this was vulnerable to idle scanning. In
later versions of Linux 2.4 and in Linux 2.6 the algorithm was changed slightly, as
shown on the right of Figure 3, mainly to improve performance on multiprocessor
systems. The difference from a detection perspective is that the rekey counter
is initialised to zero on boot. The use of MD4 is changed, and the same secret
is used for both ISN and IP ID generation (exploiting this for detection would
require finding a vulnerability in MD4). Packets which will not be fragmented,

Random data

Block

State

SHA-1

Sequence number

S. Port D. Port

Src IP Dst IP

Time (µs)
+

Fig. 2. Linux 2.0 ISN generator

254 S.J. Murdoch and S. Lewis

32 bits

Random data identical for IP ID and ISN

Random data different for IP ID/ISN

Linux 2.2 and Early Linux 2.4 Late Linux 2.4 and Linux 2.6

R-MD4 R-MD4

D. IPD. IP

+

D. Port
S. IP D. IP S. IP D. IP

D. PortS. PortS. Port
For ISN

For IP ID

StateState

Block Block

Initial IP ID (Linux 2.4–2.6)

Time (µs)

Sequence number

Time (s) /300 (Linux 2.2/Early Linux 2.4)
Rekey counter (Late Linux 2.4/2.6)

Fig. 3. Linux 2.2–2.6 ISN generator and Linux 2.4–2.6 IP ID generator

due to the DF bit being set, are assigned a predictable IP ID. For TCP this is
a per-socket counter initialised to the sequence number xored with a timer, for
UDP a per-socket counter initialised with a timer; for other protocols, with zero.

4.2 OpenBSD

The algorithm used for ISN generation in OpenBSD was introduced in Decem-
ber 2000; Figure 4 shows its operation. It is initialised by keying a block cipher
with 1024 bits of random data and setting the most significant bit of the gener-
ated ISNs to be zero. It is rekeyed every 2 hours, or every 30,000 connections,
whichever is sooner. On rekeying, the MSB of the generated ISNs is toggled: this
prevents collisions between ISNs generated in adjacent rekey intervals. When a
new TCP connection is made, the ISN is generated as follows:

Random data
15 bits

15 bits

1024 bits

0

32 bits

Rekey counter mod 2

Counter

Block cipher

RC4 pseudorandom

Key

Sequence number

Fig. 4. OpenBSD ISN generator

Embedding Covert Channels into TCP/IP 255

– The MSB set to either ‘1’ or ‘0’, depending on whether the operating system
is in an ‘odd’ or ‘even’ rekey interval.

– The next 15 bits are set to the output of a custom block cipher run in counter
mode; the counter is updated each time an ISN is generated.

– The next bit is always zero.
– The final 15 bits are generated by an RC4 based pseudorandom number

generator (PRNG).

The result of running the block cipher in counter mode is that a different
pseudorandom sequence is defined in each rekey interval. The 15-bit values in
this sequence are then inserted into the ISNs, followed by a zero bit: this ensures
that no two ISNs within a given rekey interval are closer together than 215 octets.
The scheme thus satisfies all of the constraints described in Section 3 apart from
per socket pair monotonicity.

The IP ID algorithm in OpenBSD uses a linear congruential generator, de-
scribed in [19], rekeyed every 3 minutes (or after 30,000 IDs have been generated,
whichever is sooner). It uses the same MSB-toggling mechanism as the sequence
number generator to prevent collisions between rekey intervals.

5 Detection of TCP/IP Steganography

As described above, each operating system exhibits well defined characteristics
in generated TCP/IP fields. These can be used to identify any anomalies that
may indicate the use of steganography. We have therefore defined a suite of
tests which may be applied to network traces and used to identify whether the
results are consistent with known operating systems (and in particular, with the
operating system believed to be installed on the source host). However these are
not intended as acceptance tests for proposed steganographic schemes.

5.1 IP ID Characteristics

1. Sequential Global IP ID. Some operating systems, particularly older ones
(e.g. Linux <2.4), use a global counter for the IP ID. If connections to dif-
ferent hosts have sequentially increasing IP IDs then it is likely that this
strategy is in use.

2. Sequential Per-host IP ID. Others (e.g. Linux ≥2.4) use a per-host counter
for packets which may be fragmented. The warden can test whether connec-
tions to different hosts use apparently unrelated IP IDs, but connections to
the same host have a sequentially increasing IP ID.

3. IP ID MSB Toggle. OpenBSD toggles the most significant bit of the IP ID
every rekey interval (3 minutes or 30,000 IP IDs), so the MSB is examined
to check if it matches this pattern.

4. IP ID Permutation. Within a rekey interval, the OpenBSD IP ID is non-
repeating; the presence of any duplicates eliminates the possibility that this
strategy is in use.

256 S.J. Murdoch and S. Lewis

5.2 TCP ISN Characteristics

5. Rekey Timer. In Linux 2.2 (and early 2.4) the most significant byte of
the ISN is initialised to the current time since the epoch, divided by 300.
The system time in microseconds is then added. The rekey timer can be
recovered by subtracting the host time, in microseconds, from each ISN and
verifying that the top byte increases by one every 5 minutes. This requires
a clock synchronised to 8 seconds accuracy (223/1,000,000), which seems a
reasonable assumption, since many systems use NTP synchronisation. The
host time can even be queried directly, for example by using the daytime
service, or indirectly, by observing patterns in the ISNs.

6. Rekey Counter. In Linux 2.6 (and late 2.4) the MSB of the ISN is set to
the time since system startup (in seconds) divided by 300. The system time
in microseconds is added, as before, and hence the rekey counter can be
recovered using the same method as in Test 5.

7. Zero bit 15. All ISNs generated by OpenBSD will have bit 15 cleared.
8. ISN MSB Toggle. As with the IP ID, OpenBSD toggles the MSB of the

generated ISN every rekey interval (2 hours or 30,000 IP IDs).
9. ISN Permutation. Bits 16 to 30 within OpenBSD ISNs are non-repeating

within a rekey interval.
10. Full TCP Collisions. In Linux 2.0–2.6, and other RFC1948 inspired sys-

tems, the hash used for ISN generation is based on the socket pair, so colli-
sions may be encountered. For Linux 2.0 there is no rekeying, so all 32 bits
will be identical (subject to clock skew), after subtracting the time. This test
and the following one can also be used to estimate clock skew between Alice
and the warden and hence identify the physical device without the use of
TCP timestamps [20].

11. Partial TCP Collisions. For Linux 2.2–2.6 it would be expected that col-
lisions within a rekey period will have the same least significant 24 bits
(subject to clock skew), after subtracting the time.

5.3 Explicit Steganography Detection

12. Nushu Cryptography. As covered in Section 3, Nushu encrypts data before
including it in the ISN field. This will result in a distribution unlike that
normally generated by Linux and so will be detected by the other TCP tests.
However due to a flaw in the way that encryption is used, Nushu also exhibits
characteristics of its own which may be exploited. The encryption operates by
DES encrypting the IV (source port⊕destination port ‖ source IP address⊕
destination IP address) with a shared key, then xoring the first 32 bits of the
resulting keystream with the hidden data. When IV collisions occur, the ISNs
can be xored to remove the key-stream; the result is the xor of two plaintexts.
If these plaintexts are the same, as is the case when data is not being sent,
the result would be zero, and in other cases redundancy in encoding would
be apparent.

Embedding Covert Channels into TCP/IP 257

13. TCP Timestamp. The scheme used in devcc, described in [17], can be de-
tected using the methods outlined in [21]. If a low bandwidth TCP connec-
tion is being used to leak information, a randomness test can be applied to
the least significant bits of the timestamps in the TCP packets. If “too much”
randomness is detected in the LSBs, it can be deduced that a steganographic
covert channel is in use.

For a high bandwidth TCP connection (where segment transmission
rate � timestamp update rate), a warden can merely calculate the ratio
of the number of distinct timestamp values seen to the difference between
the start and end timestamp values. If the covert channel described in [17]
is in use, this ratio will be close to 0.75; if not, it will be very close to 1.

14. Other Anomalies. Features which would indicate the use of steganography
include: unusual flags (e.g. DF when not expected, ToS set), excessive frag-
mentation, use of IP options, non-zero padding, unexpected TCP options
(e.g. timestamps from operating systems which do not generate them) and
excessive re-ordering.

5.4 Accuracy

Table 1 shows which tests detect which operating systems/steganographic tech-
niques. All of these tests (except Test 13) are based directly on the original im-
plementations, and make no assumptions about the probabilistic effects. Hence,
they will not suffer from false negatives. False positives are possible, so in this
section we consider the number of packets required to avoid these.

IP ID. Test 1 will reach an error probability of 1/216 after only 2 packets, as
will Test 2 for 2 fragmentable packets directed to the same host within a rekey
interval. Due to the prevalence of path MTU discovery, fragmentable packets are

Table 1. Expected results of tests on unmodified operating systems and TCP/IP
steganography systems. A matching test is indicated by ‘•’. The last three columns
are tests for the presence of steganography, the others test for the absence. Nushu and
devcc were written for early Linux 2.4 and are assumed to share the characteristics
of all fields which are not explicitly modified. Covert TCP creates all fields itself. Our
improved TCP/IP steganography scheme, Lathra, is described in Section 6.

Software Tests
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Linux 2.0 • •
Linux 2.2 • • •

Early Linux 2.4 • • •
Late Linux 2.4/2.6 • • •

OpenBSD • • • • •
Covert TCP

Nushu • •
devcc • • • • •

Lathra/Linux • • •
Lathra/OpenBSD • • • • •

258 S.J. Murdoch and S. Lewis

rare, however this test will still be effective in the normal case where sockets are
used to send several packets, due to the per-socket IP ID counters used in TCP
and UDP. The probability of error in Test 3 halves with every packet after the
first one is observed. From the ‘birthday paradox’, after around 181 packets a
collision would be expected which would match Test 4.

TCP ISN. Test 5 needs one packet to achieve a 1/28 error probability; Test 6
needs 2 packets to get the same. Test 7 halves the error probability with every
SYN packet, as does Test 8 after the first packet. As with the equivalent IP ID
check, Test 9 needs around 181 SYN packets within a rekey interval. Tests 10
and 11 depend on the randomness of the source port selection, but on a heavily
loaded machine, our experiments show these collisions occur approximately every
1,000 SYN packets for a fixed destination port.

Steganography. Test 12 also depends on port selection randomness, but our
experiments show collisions every 1,000 SYN packets (even with random des-
tination ports). Test 13 relies on observation of consecutive TCP timestamps:
if n timestamps are seen without discontinuity, the probability that the devcc
scheme is in use is 1/2n−1. The accuracy of Test 14 depends on the steganography
being used, but for näıve implementations only one packet is needed.

6 Detection-Resistant TCP Steganography Schemes

Our aim in this section is to develop a robust scheme, Lathra, using the TCP
ISNs generated by OpenBSD and Linux as a steganographic carrier. We achieve
this by following the implementation of the real ISN generators, so OpenBSD
and Linux are discussed as separate cases. This discussion only considers the
content of the steganographic channel, but to be protected from timing attacks,
care must also be taken to ensure that the generation algorithms have the same
response time as the original implementations.

6.1 OpenBSD

The MSB of our output must exactly mimic the output of the real OpenBSD
TCP stack: it must toggle every 2 hours (or 30,000 connections). The next 15
bits, when extracted in turn from each ISN generated within a rekey interval,
must resemble a pseudorandom sequence.

The functions in Figure 5 encode (and decode) the integer n as a permutation
of the sequence (0, 1, 2, . . . , m), with x-times redundancy (i.e. Bob only needs to
receive one in x ISNs transmitted by Alice). In order to remove patterns in our
permutation, Alice must choose a key, K, for each rekey interval, and transmit
it to Bob in, for example, the least significant 15 bits of the first ISN.

These functions allow us to encode the 16 MSBs of the ISN. The 17th bit must
be zero, and we encode data into the remaining 15 bits using a block cipher. The
output of the cipher is analogous to the PRNG in the genuine implementation.
We xor a hash of other header fields with the input data to give freshness. If this
yields the same value more than once, we skip that packet.

Embedding Covert Channels into TCP/IP 259

Permutation-Code(m, n, x)
1 base ← m
2 output symbols ← (0, 1, 2, . . . , m)
3 while n �= 0
4 do index ← n mod base
5 n ← �n/base�
6 for i ← 0 to x − 1
7 do output Encipher(output symbols[index] + i × m,K)
8 output symbols ← output symbols \ output symbols[index]
9 base ← base − 1

Permutation-Decode(m,x)
1 base ← m
2 multiplicand = 1
3 input symbols ← (0, 1, 2, . . . , m)
4 n ← 0
5 while input symbol
6 do symbol ← Decipher(symbol,K)
7 symbol ← symbol mod m
8 if seen symbol
9 then skip

10 n ← n + Index-Of(symbol in input symbols) × multiplicand
11 input symbols ← input symbols \ symbol
12 multiplicand ← multiplicand × base
13 base ← base − 1
14 return n

Fig. 5. OpenBSD permutation coding and decoding functions

6.2 Linux

Simply encoding our data within the least significant 24 bits of the ISN could
be detected by the warden, because he can detect the absence of a uniform
distribution after subtraction of the time. Our generated ISN thus needs to have
the carry into the top byte set correctly. We must add one to the top byte of
our generated ISN if, and only if, the value that we place into the the bottom
24 bits (our encrypted data) is strictly less than the least significant 24 bits of
the time.

To ensure reliability, Alice can check if she receives an ACK for each ISN and
resend if not, then use a standard reliability protocol, for example that used in
Nushu, to reassemble the data. So that the data cannot be differentiated from
random numbers, it must be encrypted. To achieve freshness, while allowing
each packet to be decrypted independently, the plaintext is xored with a hash of
other header fields (not including the IP ID, which is derived from the ISN), then
encrypted with a variable length block cipher. Half of the space of plaintexts is
reserved specifically to avoid duplications in the space of ciphertext (if the same
data is to be sent, and the hash of other header fields is the same, one of these
dummy values is encoded and transmitted). Due the the RFC1948 based design,

260 S.J. Murdoch and S. Lewis

if Alice encounters a packet with the same source and destination IP address
and port as one already used, within a rekey interval, it must be skipped.

7 Conclusion

In this paper, we have provided an overview of the opportunities for using
TCP/IP header fields as a carrier for a steganographic covert channel. A detailed
description of the ISN and IP ID generation schemes in Linux and OpenBSD
was presented, and a number of previously proposed schemes for TCP/IP-based
steganography were described.

We have shown that a passive warden can detect use of these schemes because
the modified headers that they produce can easily be distinguished from those
generated by a genuine TCP/IP stack.

Finally, we have outlined two schemes for encoding data with ISNs generated
by OpenBSD and Linux. Both schemes generate ISNs that are almost indistin-
guishable from those generated by a genuine TCP stack, except by wardens with
knowledge of a shared secret key or who can exploit vulnerabilities in the under-
lying cryptography used in Lathra and the original ISN generation algorithms.
In particular, for the Lathra/Linux case we assume that the warden cannot tell
that two adjacent sequence numbers could not have been generated by an in-
stance of MD4 with the same partial input. In Lathra/OpenBSD we make a
similar assumption about the counter mode output of the block cipher and the
use of RC4.

Acknowledgements. Thanks are due to Joanna Rutkowska, George Danezis,
Richard Clayton and Markus Kuhn for their helpful contributions.

References

1. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In Chaum,
D., ed.: Crypto ’83. Advances in Cryptography, Plenum Press (1983) 51–67

2. Handel, T., Sandford, M.: Hiding data in the OSI network model. In Anderson,
R., ed.: Information Hiding. Volume 1174 of Lecture Notes in Computer Science.,
Springer-Verlag (1996) 23–38

3. Szczypiorski, K.: HICCUPS: Hidden communication system for corrupted net-
works. In: International Multi-Conference on Advanced Computer Systems. (2003)
31–40 http://krzysiek.tele.pw.edu.pl/pdf/acs2003-hiccups.pdf.

4. Postel, J.: STD7: Transmission control protocol. IETF (1981)
5. Postel, J.: STD5: Internet protocol. IETF (1981)
6. Lucena, N.B., Lewandowski, G., Chapin, S.J.: Covert channels in IPv6. In: 5th

Privacy Enhancing Technologies Workshop. (2005)
7. Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating steganography in Inter-

net traffic with active wardens. In Petitcolas, F., ed.: Information Hiding. Volume
2578 of Lecture Notes in Computer Science., Springer-Verlag (2002) 18–35

8. Handley, M., Paxson, V., Kreibich, C.: Network intrusion detection: Evasion, traf-
fic normalization, and end-to-end protocol semantics. In: 10th Usenix Security
Symposium. (2001)

http://krzysiek.tele.pw.edu.pl/pdf/acs2003-hiccups.pdf

Embedding Covert Channels into TCP/IP 261

9. Jacobson, V., Braden, R., Borman, D.: RFC1323: TCP extensions for high perfor-
mance. IETF (1992)

10. Fyodor: Idle scanning and related IPID games (2001) http://www.insecure.org/-
nmap/idlescan.html.

11. Ahsan, K., Kundur, D.: Practical data hiding in TCP/IP. In: ACM Workshop on
Multimedia and Security. (2002) http://ee.tamu.edu/~deepa/pdf/acm02.pdf.

12. Mogul, J., Deering, S.: RFC1191: Path MTU discovery. IETF (1990)
13. Bellovin, S.M.: Security problems in the TCP/IP protocol suite. Computer Com-

munication Review 19 (1989) 32–48
14. Rowland, C.H.: Covert channels in the TCP/IP protocol suite. First Monday 2

(1997) http://www.firstmonday.org/issues/issue2_5/rowland/.
15. Sohn, T., Seo, J., Moon, J.: A study on the covert channel detection of TCP/IP

header using support vector machine. In Perner, P., Qing, S., Gollmann, D., Zhou,
J., eds.: Information and Communications Security. Volume 2836 of Lecture Notes
in Computer Science., Springer-Verlag (2003) 313–324

16. Rutkowska, J.: The implementation of passive covert channels in the Linux ker-
nel. In: Chaos Communication Congress, Chaos Computer Club e.V. (2004)
http://www.ccc.de/congress/2004/fahrplan/event/176.en.html .

17. Giffin, J., Greenstadt, R., Litwack, P., Tibbetts, R.: Covert messaging in TCP. In
Dingledine, R., Syverson, P., eds.: Privacy Enhancing Technologies. Volume 2482
of Lecture Notes in Computer Science., Springer-Verlag (2002) 194–208

18. Bellovin, S.: RFC1948: Defending against sequence number attacks. IETF (1996)
19. de Raadt, T., Hallqvist, N., Grabowski, A., D. Keromytis, A., Provos, N.: Cryp-

tography in OpenBSD: An overview. In: USENIX Annual Technical Conference
(FREENIX Track). (1999) 93–102

20. Kohno, T., Broido, A., claffy, k.: Remote Physical Device Fingerprinting. In: 2005
IEEE Symposium on Security and Privacy, Oakland, California, IEEE CS (2005)
211–225

21. Hintz, A.: Covert channels in TCP and IP headers. Presentation at DEFCON 10
(2002) http://guh.nu/projects/cc/.

http://www.insecure.org/nmap/idlescan.html
http://www.insecure.org/nmap/idlescan.html
http://ee.tamu.edu/~deepa/pdf/acm02.pdf
http://www.firstmonday.org/issues/issue2_5/rowland/
http://www.ccc.de/congress/2004/fahrplan/event/176.en.html
http://guh.nu/projects/cc/

	Introduction
	Threat Model
	Overview of TCP/IP Based Steganography
	IPID and TCP ISN Implementations
	Linux
	OpenBSD

	Detection of TCP/IP Steganography
	IPID Characteristics
	TCP ISN Characteristics
	Explicit Steganography Detection
	Accuracy

	Detection-Resistant TCP Steganography Schemes
	OpenBSD
	Linux

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

