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Abstract. We develop and implement a new optimal broadcast algo-
rithm for fully connected, bidirectional, one-ported networks under a
linear communication cost model. For any number of processors p the
number of communication rounds required to broadcast N blocks of data
is �log p�− 1 + N . For data of size m, assuming that sending and receiv-
ing m data units takes time α + βm, the best running time that can be
achieved is (

√
(�log p� − 1)α +

√
βm)2, meeting the lower bound under

the assumption that the m units are sent as N blocks. This is better
than previously known (and implemented) results, which achieve this
only when p is a power of two (or other special cases), in particular, the
algorithm is (theoretically) a factor two better than the commonly used,
pipelined binary tree algorithm. The algorithm has a regular communi-
cation pattern based on simultaneous binomial-like trees, and when the
number of blocks to be broadcast is one, degenerates into a binomial
tree broadcast. Thus the same algorithm can be used for all message
sizes m. The algorithm has been incorporated into a state-of-the-art MPI
(Message Passing Interface) library. We demonstrate significant practi-
cal improvements of up to a factor 1.5 over several other, commonly used
broadcast algorithms.

1 Introduction

There has recently been renewed interest in efficient, portable and easy to im-
plement broadcast algorithms for use in Message Passing Interface (MPI) li-
braries [12], the current de facto standard for distributed memory parallel com-
puters [3,9,10,13,15]. Earlier theoretical results, typically assuming a strict, one-
ported communication model in which processors can either send or receive
messages are summarized in [5,7]. Early implementations typically assume a ho-
mogeneous, fully connected network, and were often based on straightforward
binary or binomial trees, which are inefficient for large data sizes. Better MPI
libraries (for instance [6]) take the hierarchical communication system of current
clusters of SMP nodes into account by broadcasting in a hierarchical fashion,
and use pipelined binary trees, or algorithms based on recursive halving [13,15]
that are much better as data size increases. However, these algorithms are all
(at least) a factor two off from the theoretical optimum.

A theoretically better algorithm for hypercubes (later extended to incomplete
hypercubes) was proposed by Johnsson and Ho [8,14]. Instead of pipelining the
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blocks successively through a fixed-degree tree, in this so called edge-disjoint
spanning binomial tree algorithm the root processor sends successive blocks to
its children in a round-robin fashion, each of which functions as a root in a bino-
mial tree that is edge-disjoint from the other binomial trees. Another interesting
algorithm based on so called fractional trees [10] provides for a smooth transition
from pipelined binary tree to a linear pipeline algorithm as data size increases,
and gives an improvement over both for medium data sizes. In the arguably
more realistic LogP model [1,4] an (near) optimal algorithm was given in [11],
but without implementation results. Non-pipelined broadcast algorithms in hier-
archical, clustered, heterogeneous systems were discussed in [2], which proposes
a quite general model for such systems.

In this paper we first give an algorithm for one-ported, fully connected net-
works of a pipelined broadcast algorithm that is quite similar to the algorithm
of Johnsson and Ho [8] when the number of processors is a power of two. Fully
connected networks are realized by crossbars as in the Earth Simulator, and the
assumption is a reasonable approximation for medium sized networks for high-
end clusters like Myrinet or Quadrics. Our main result extends this algorithm to
arbitrary numbers of processors. An important feature of the algorithm is that
it degenerates towards the binomial tree algorithm as the number of blocks to
be broadcast decreases. A smooth transition from short data to long data be-
havior is thus possible with one and the same algorithm. The optimal algorithm
has been implemented in a state-of-the-art MPI library [6], and we present an
experimental comparison to other, commonly used broadcast algorithms on a
32-node AMD cluster with Myrinet interconnect, showing a bandwidth increase
of more than a factor 1.5 over these algorithms.

2 Problem, Preliminaries and Previous Results

For the rest of this paper m denotes the amount of data to be broadcast, and
p the number of processors which are numbered from 0 to p − 1. Logarithms
are to the base 2, and we let n = �log p�. Without loss of generality, we as-
sume that broadcast is from processor 0 (otherwise, processor 0 and the broad-
cast root processor exchange roles). In MPI, broadcast is a collective operation
MPI Bcast(buffer,count,datatype,root,comm) to be executed by all proces-
sors in the communicator comm.

We assume a fully connected, homogeneous network with one-ported, bidirec-
tional communication, and a simple, linear cost model. A processor can simulta-
neously send and receive a message, possibly from two different processors, and
the time to send m units of data is α+βm where α is the start-up latency and β
the transfer time per unit. In the absence of network conflicts this model is some-
what accurate, although current communication networks and libraries typically
exhibit a large difference in bandwidth between “short” and “long” messages.
The extended LogGP model, for instance, attempts to capture this [1], and we
discuss this problem further in Section 4. The model also does not match current
clusters of SMP nodes that have a hierarchical communication system. We cater
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for this by broadcasting hierarchically on such systems, but do not discuss this
further in this paper; see instead the companion paper [16].

2.1 Lower Bounds

In the homogeneous, linear cost model, the lower bound for broadcasting the
m data is max(αn, βm). Assuming furthermore that the m data is sent as N
blocks of m/N units, the number of rounds required is n − 1 + N , for a time of
(n − 1 + N)(α + βm/N) = (n − 1)α + (n − 1)βm/N + Nα + βm. By balancing
the terms (n− 1)βm/N and αN , the optimal number of rounds can be found as

Nopt =

√
(n − 1)βm

α

and the optimal block size as

Bopt =
√

mα

(n − 1)β
=

√
m

n − 1

√
α

β
(1)

for a total running time of

Topt(m) = (n − 1)α + 2
√

(n − 1)α
√

βm + βm = (
√

(n − 1)α +
√

βm)2 (2)

For proofs of these lower bounds, see e.g. [8,10]. Other algorithms are off from
the lower bound either by a larger latency term (e.g. linear pipeline) or a larger
transmission time (e.g. 2βm for a pipelined binary tree).

3 The Algorithm

In this section we give a high-level description of our new optimal broadcast
algorithm. The details are filled in first for the easier case where p is a power of
two, then for the general case. First, we assume that the data to be broadcast
have been divided into N blocks, and that N > n. Note that the algorithm as
presented here only achieves the n − 1 + N rounds for certain combinations of
p and N ; in some cases up to (n − N mod n − 1) extra rounds may be required
for some processors (see Subsection 3.4).

The algorithm is pipelined in the sense all processors are both sending and
receiving blocks at the same time. For sending data each processor acts as if it
is a root of a(n incomplete, when p is not a power of 2) binomial tree. Each non-
root processor has n different parents from which it receives blocks. To initiate
the broadcast, the root (processor 0) sends the first n blocks successively to
its children. The root continues in this way sending blocks successively to its
children in a round robin fashion. A sequence of n blocks is called a phase.

The non-root processors receive their first block from the parent in the bino-
mial tree rooted at processor 0. The non-roots pass this block on to their children
in this tree. After this initial fill phase, each processor now has a block, and the
broadcast goes into a steady state, in which in each round each processor (except
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the root) receives a new block from a parent, and sends a previously received
block to a child.

A more formal description of the algorithm is given in Figure 1. The buffer
containing the data being broadcast is divided into N blocks of roughly m/N
units, and the ith block is denoted buffer[i] for 0 ≤ i < N .

Root processor 0:

/* fill */
for i ← 0, n − 1 do

send(buffer[sendblock(i, 0)], next(i, 0))
/* steady state */
for i ← 1, N do

j ← (i − 1) mod n
send(buffer[sendblock(n − 1 + i, 0)], next(j, 0))

Non-root processor r:

/* fill */
i ← first(r)
recv(buffer[recvblock(i, r)], prev(i, r))
for i ← first(r) + 1, n − 1

send(buffer[sendblock(i, r)], next(i, r))
/* first block received, steady state */
for i ← 1, N

j ← (i − 1) mod n
if next(j, r) �= 0 then /* no sending to root */

send(buffer[sendblock(n − 1 + i, r)], next(j, r))
‖ /* send and receive simultaneously */
recv(buffer[recvblock(n − 1 + i, r)], prev(j, r))

Fig. 1. The optimal broadcast algorithm. For the general case where p is not a power
of two, small modifications of the fill phase and the last rounds are necessary.

As can be seen each processor receives N blocks of data. That indeed N
different blocks are received and sent is determined by the recvblock(i, r) and
sendblock(i, r) functions which specify the block to be received and sent in round
i for processor r. In the next subsections we describe how to compute these
functions. The functions next and prev determine the communication pattern.
In each phase the same pattern is used, and the n parent and child processors
of processor r are next(j, r) and prev(j, r) for j = 0, . . . n − 1. The parent of
processor r for the fill phase is first(r), and the first round for processor r is
likewise first(r). With these provisions we have:

Theorem 1. In the fully-connected, one-ported, bidirectional, linear cost com-
munication model, N blocks of data can be broadcast in n−1+N rounds reaching
the optimal running time (2).
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The algorithm is further simplified by the following observations. First, the
block to send in round i is obviously

sendblock(i, r) = recvblock(i, next(i, r))

so it will suffice to determine a suitable recvblock function. Actually, we can
determine the recvblock function such that for any processor r �= 0 it holds that

{recvblock(0, r), recvblock(1, r), . . . , recvblock(n − 1, r)} = {0, 1, . . . , n − 1}

that is the recvblock for a phase consisting of rounds 0, . . . n−1 is a permutation
of {0, . . . , n − 1}. For such functions we can, with slight modifications for the
last phase, take for i ≥ n

recvblock(i, r) = recvblock(i mod n, r) + n(�i/n� − 1 + δfirst(r)(i mod n))

where δj(i) = 1 if i = j and 0 otherwise. Thus in rounds i + n, i + 2n, i +
3n, . . . for 0 ≤ i < n, processor r receives blocks recvblock(i, r), recvblock(i, r) +
n, recvblock(i, r)+2n, . . . (plus n if i = first(r)). We call such a recvblock function
a full block schedule. The broadcast algorithm is correct if the full block schedule
fulfills the conditions that either

recvblock(i, r) ∈ {recvblock(j, prev(i, r)) | 0 ≤ j < i} (3)

or

recvblock(i, r) = recvblock(first(prev(i, r)), prev(i, r)) (4)

for 0 ≤ i < n, i.e. the block that processor r receives in round i from processor
prev(i, r) has been received by that processor in a previous round.

When N = 1 the algorithm degenerates into an ordinary binomial tree broad-
cast, that is optimal for small m. The number of blocks N can be chosen freely,
e.g. to minimize the broadcast time under the linear cost model, or, which is
relevant for some systems, to limit communication buffer space.

3.1 Powers of Two Number of Processors

For the case where p is a power of two, the communication pattern and block
schedule is quite simple. For j = 0, . . . n − 1 processor r receives a block from
processor prev(j, r) = (r − 2j) mod p and sends a block to processor next(j, r) =
(r + 2j) mod p, that is the distance to the previous and next processor doubles
in each round.

The root sends n successive blocks to processors 1, 2, 4, . . . , 2j , . . . 2n−1 for
j = 0, . . . n − 1 with this pattern. The subtree of child processor r = 2j consists
of the processors (r + 2k) mod p, k = j + 1, . . . , n − 1. Processors 2j, . . . 2j+1 − 1
together form group j, since these processors will all receive their first block
in round j. The group start of group j is 2j , and the group size is likewise
2j. Note that first(r) = j for all processors in group j. Figure 2 shows the
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group: 0 1 2 3
proc r: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
schedule: 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

Fig. 2. First block schedule for p = 16

blocks received in rounds 0 to 3 for p = 16. We call the sequence of first blocks
received by the processors the first block schedule, i.e. schedule[r] is the first
block that processor r will receive (in round first(r)). It is easy to compute the
schedule array: assume schedule[i] computed for groups 0, 1, . . . , j − 1, that is
for 1 ≤ i < 2j; then set schedule[2j ] = j, and schedule[2j + i] = schedule[i]
for i = 1, . . . , 2j − 1 (incidentally this sequence is a palindrome). We need the
following property of the schedule array.

Lemma 1. Any segment of size 2j of the first block schedule for p a power of
two contains exactly j + 1 different blocks.

The proof is by induction on j.
Using the first block schedule we can compute a full block schedule recvblock

as follows. In round n (the first round after the fill phase) processor r re-
ceives a block from processor r′ = (r − 1) mod p; this can only be the block
that processor r′ received in its first round first(r′), so take recvblock(0, r) =
schedule[r′]. For 0 < i < first(r) we take recvblock(i, r) to be the unique block
in schedule[prev(i, r)−2i+1, prev(i, r)] which is not in schedule[prev(i, r)+1, r]
and is not schedule[r]. These two adjacent segments together have size 2i+1, and
by Lemma 1 contain exactly i + 2 different blocks, one of which is schedule[r]
and another i of which have already been used for recvblock(i−1, r), recvblock(i−
2, r), . . . , recvblock(0, r). The first block received by processor r is schedule[r] so
recvblock(first(r), r) = schedule[r]. Finally, for i > first(r) take recvblock(i, r) to
be the unique block in the interval schedule[prev(i, r) − 2i−1 + 1, prev(i, r)].
By construction either recvblock(i, r) ∈ {recvblock(j, prev(i, r)) | j < i} or
recvblock(i, r) = recvblock(first(prev(i, r)), prev(i, r)). We have argued for the fol-
lowing proposition.

Proposition 1. When p is a power of two the full block schedule constructed
above is correct (and unique).

The full block constructed above furthermore has the property that for all
processors in group j

{recvblock(0, r), recvblock(1, r), . . . , recvblock(j, r)} = {0, 1, . . . , j} (5)

and recvblock(j, r) = j for the first processor r = 2j in group j.
Without further proof we note that it is possible using the bit pattern of the

processor numbering to compute for each processor r each block recvblock(i, r)
of the full block schedule in O(log p) bit operations (and no extra space), for a
total of O(log2 p) operations per processor. This may be acceptable for a practical
implementation where Bopt and Nopt are considerable.
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3.2 Arbitrary Number of Processors

When p is not a power of two, the uniqueness of the first block schedule as guar-
anteed by Lemma 1 no longer holds (the segment of size 4 starting at processor
8 for the first block schedule for p = 22 in Figure 3 has 4 > 3 different blocks).
This is one obstacle for generalizing the construction to arbitrary number of
processors, and solving this is the main contribution of this paper.

group: 0 1 2 3 4
proc r: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
schedule: 0 1 2 0 1 3 0 1 2 0 4 0 1 2 0 1 3 0 1 2 0

group: 0 1 2 3 4
proc r: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
block 0 0 1 2 0 1 3 0 1 2 0 4 0 1 2 0 1 3 0 1 2

2 1 0 1 2 0 1 3 0 1 2 2 4 0 1 2 0 1 3 0 1
1 2 2 0 1 2 2 2 3 3 3 1 2 4 4 4 2 2 2 3 3
3 3 3 3 3 3 0 1 2 0 1 3 3 3 3 3 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 0 1 2 0 1 3 0 1 2 0

Fig. 3. First (top) and full block schedules (bottom) for p = 22. The part of the full
block schedule corresponding to the first block schedule is shown in bold.

The communication pattern must satisfy for each j that the total size of
groups 0, 1, . . . , j −1 plus the root processor must be at least the size of group j,
so that all processors in group j can receive their first block in round j. Likewise,
the size of the last group n − 1 must be at least the size of groups 0, 1, . . . , n − 2
for the processors of the last group to deliver a block to all previous processors
in round n − 1. To achieve this we define for 0 ≤ j < n

groupsize(j, p) =
{

groupsize(j, �p/2�) if j < �log p� − 1
�p/2� if j = �log p� − 1

and

groupstart(j, p) = 1 +
j−1∑

i=0

groupsize(j, p)

Figure 3 illustrates the definition with p = 22: groupsize(0) = 1, groupsize(1) =
1, groupsize(2) = 3, groupsize(3) = 5, groupsize(4) = 11. It obviously holds
that both groupsize(j, p) ≤ 2j and groupstart(j, p) ≤ 2j. For p a power of two
groupsize(j, p) = 2j, so the definition subsumes the power of two case.

Now we can define the next and prev functions analogously to (and subsum-
ing) the powers-of-two case:

next(j, r) = (r + groupstart(j, p)) mod p

prev(j, r) = (r − groupstart(j, p)) mod p
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This communication pattern leads to an exception for the fill phase of the al-
gorithm as formalized in Figure 1. It may happen that next(j, r) = groupstart(j+
1, p) = r′ and prev(first(r′), r′) = 0 �= next(j, r). Such a send has no correspond-
ing recv, and shall not be performed. For an example consider the full block
schedule of Figure 3. Here processor 1 would attempt to send to processor 3 in
fill round 2; processor 3, however, will become active in round 3 and receive from
root 0.

3.3 Computing the Block Schedule

A greedy algorithm almost suffices for computing the full block schedule for the
non-powers of two case. For each processor r the construction is as follows.

1. Construct the first block schedule schedule as described in Subsection 3.1:
set schedule[groupstart(j, p)] = j, and schedule[groupstart(j, p) + i] =
schedule[i] for i = 1, . . . , groupstart(j, p) − 1.

2. Scan the first block schedule in descending order i = r−1, r−2, . . .0. Record
in block[j] the first block schedule[i] different from block[j − 1], block[j −
2], . . .block[0], and in found[j] the index i at which block[j] was found.

3. If prev(j, r) < found[j] either
– if block[j] > block[j − 1] then swap the two blocks,
– else mark block[j] as unseen,

and continue scanning in Step 2.
4. Set block[first(r)] = schedule[r]
5. Find the remainder blocks by scanning the first block schedule in the order

i = p − 1, p − 2, . . . r + 1, and swap as in Step 3.

For each r take
recvblock(i, r) = block[i]

with block as computed above.
To see that the full block schedule thus constructed satisfies the correctness

conditions (3) and (5) we need the following version of Lemma 1.

Lemma 2. Any segment of size
∑j

i=0 groupstart(i, p) of the first block schedule
contains at least j + 1 different blocks.

Again the proof is by induction on j, but is omitted due to limited space.
When prev(j, r) ≥ found[j] the next block[j] is within the segment already

scanned by processor prev(j, r), and taking this block as recvblock(j, r) is there-
fore correct. The violation prev(j, r) < found[j] means that the block that has
been found for processor r for round j has possibly not been seen by processor
prev(j, r). To ensure correctness we could simply mark the block as unseen and
continue scanning; Lemma 2 guarantees that a non-violating block can be found
that has been seen by processor prev(j, r) before round j. However, since we
must also guarantee Condition (5), large numbered blocks (in particular block
j for processors in group j) cannot be postponed till rounds after first(r). The
two alternatives for handling the violation suffice (as per this proof sketch) for
the main theorem to hold.
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Theorem 2. For any number of processors p the full block schedule constructed
above is correct. The full block schedule can be constructed in O(p log p) steps.

Since the whole first block schedule has to be scanned for each r, the con-
struction above takes O(p) steps per processor and O(p2) steps for constructing
the full schedule. It is relatively easy to reduce the time to O(p log p) steps for the
full block schedule. The idea is to maintain for each possible block 0 ≤ b < n a
set of processors that have not yet included b as one of its found blocks block[i].
Scanning the first block schedule as above, each new processor is inserted into
the block set for all blocks, and for each b = schedule[r] all processors now in
the set for block b are ejected and the condition of Step 3 is checked for each.
Two scans of the schedule array are necessary, and since each r is in at most n
queues the O(p log p) time bound follows.

Neither is, of course, useful for on-line construction at each broadcast op-
eration, so instead the block schedule must be constructed in advance. For an
MPI implementation of the broadcast algorithm this is not a problem because
collective operations can only be executed by processors belonging to the same
communication domain (communicator in MPI terminology), which must have
been set up prior to the MPI Bcast(...) call. The full block schedule can be con-
structed at communicator construction time and cached with the communicator
for use in later broadcast operations. With a small trick to cater for the general
case where the broadcast is not necessarily from root processor 0, it is possible
to store the full block schedule in a distributed fashion with only O(log p) space
per processor.

3.4 The Last Phase

To achieve the claimed n − 1 + N number of rounds for broadcasting N blocks,
modifications to the full block schedule for the last phase are necessary. Using
the full block schedule defined in Section 3, after n−1+N rounds each processor
has received N different blocks. Some of these may, however, be larger than N
(that is, recvblock(i, r) ≥ N for some rounds i belonging to the phase from N −1
to n−1+N), and processors for which this happens will miss some blocks < N .
To repair this situation, a mapping of the blocks ≥ N to blocks < N has to be
found such that after n−1+N rounds all processors have received all N blocks.
In the rounds of the last phase where the root would have sent a block b > N ,
the block onto which b is mapped is sent (again) instead. In cases where such a
mapping does not exist, the communication pattern for the last phase must also
be changed. We do not describe this here.

4 Performance

The optimal broadcast algorithm has been implemented and incorporated into
NEC’s state-of-the-art MPI implementations [6]. We compare this implementa-
tion to implementations in the same framework of a simple binomial tree al-
gorithm, a pipelined binary tree algorithm, and a recently developed algorithm
based on recursive halving of the data [15].
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Fig. 4. Bandwidth of 4 different broadcast algorithms for fixed number of processors
p = 22 (left) and p = 30 (right) with data size m up to 64MBytes
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√
α/β factor of

equation (1)

Experiments have been performed on a 32-node, dual-processor AMD cluster
with Myrinet interconnect. We consider only the homogeneous, non-SMP case
here, that is the case where only one processor per node is active.

Figure 4 compares the four algorithms for fixed number of processors p = 22
and p = 30 and data size m from 0 to 64MBytes. For large data sizes the new op-
timal broadcast algorithm is more than a factor 1.5 faster than both the pipelined
binary tree and the halving algorithm. To cater for the fact that communication
bandwidth is not independent of the message size, we have, instead of using the
simple, linear cost model, modeled the communication time as a piecewise linear
function t(m) = α1 + mβ1 for 0 ≤ m < γ1, t(m) = α2 + mβ2 for γ1 ≤ m < γ2,
. . . , t(m) = αk + mβk for γk−1 ≤ m < ∞ with k = 4 pieces for our cluster.
Finding the optimum block size in this model is not much more complicated or
expensive than in the linear cost model (case analysis). Figure 5 contrasts the
behavior of the algorithm under the piecewise linear cost model to the behavior
under the linear model with four different values for the factor

√
α/β that de-

termines the optimum block size in equation (1). A smooth bandwidth increase
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Fig. 6. Running time of the optimal broadcast algorithm for p = 2, . . . , 30 proces-
sors and fixed message sizes m = 32KBytes, 256KBytes, 2MBytes, 16MBytes (left). For
comparison the running time for the binomial tree algorithm is given for m = 256Kbytes
and m = 16MBytes (right).

can be achieved with the piecewise linear model which is not possible with a
fixed, linear model.

Finally, Figure 6 shows the scaling behavior of the optimal algorithm with
four fixed data sizes and varying numbers of processors. For reference, the results
are compared to the binomial tree algorithm. Already beyond 3 processors the
broadcast time for m > 32KBytes is independent of the number of processors.

5 Conclusion

We gave a new, optimal broadcast algorithm for fully connected networks for
arbitrary number of processors that broadcasts N blocks over p processors in
�log p� − 1 + N communication rounds. On a 32-node Myrinet PC-cluster the
algorithm is clearly superior to other widely used broadcast algorithms, and gives
close to the expected factor of two bandwidth improvement over a pipelined
binary tree algorithm.

The algorithm relies on off-line construction of a communication schedule,
which can be both space and time consuming. We would therefore like to be able
to compute for any p and each r the recvblock(·, r) and sendblock(·, r) functions
fast and space efficiently as is possible for the case where p is a power of two.
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