

L.T. Yang et al. (Eds.): HPCC 2005, LNCS 3726, pp. 33 – 44, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Elaboration on Dynamically Re-configurable
Communication Protocols Using Key Identifiers*

Kaushalya Premadasa and Björn Landfeldt

School of Information Technologies,
The University of Sydney,

Sydney 2006 Australia
{kpremada, bjornl}@cs.usyd.edu.au

Abstract. In this paper we elaborate on our novel concept and methodology for
generating tailored communication protocols specific to an application’s re-
quirements and the operating environment for a mobile node roaming among
different access networks within the global Internet. Since the scheme that we
present employs a universal technique, it can be also deployed in small-scale
independent networks such as sensor networks to generate application-specific
lightweight transport protocols as is appropriate to its energy-constrained oper-
ating environments. Given that our proposed scheme is based on decomposing
the communication protocols of the TCP/IP protocol suite, it allows sensor net-
works implementing the proposed scheme to easily connect to the existing
Internet via a sink node consisting of a dual stack, without the loss of informa-
tion in the protocol fields during the protocol translation process. We present
preliminary experimental and analytical results that confirm and justify the fea-
sibility of our method based on a practical example applicable to the sensor
network environment.

1 Introduction

Networked and distributed computing is evolving at a tremendous rate. Both the ap-
plications and end hosts are becoming increasingly diversified and requirements on
the behaviour and functions of the underlying communication infrastructure are fol-
lowing this evolution. The glue between the applications and the infrastructure is the
communication protocol stack. In order to exploit the full potential of these diverse
applications and nodes, the stacks should be configurable.

However, the current philosophy and design of the TCP/IP protocol stack has re-
mained relatively intact for the past three decades and as a result, the individual pro-
tocols provide the same basic set of services to all applications regardless of individ-
ual needs.

In a networking environment such as wireless that grants the freedom of movement,
the characteristics of the underlying network can change dynamically as a mobile
node roams through different access networks thereby affecting the application’s
performance. As a result, we believe that the application requirements would also

* This research work is sponsored by National ICT Australia.

34 K. Premadasa and B. Landfeldt

change in order to maximize resource usage and throughput given the changed
conditions.

Therefore, considering that both the application requirements and the network char-
acteristics can change dynamically in a mobile computing environment, we need to be
able to dynamically re-configure the communication protocols to suit the new operat-
ing environment in order to achieve the optimum results for the new residing network.

A configurable stack also offers a distinct advantage for thin clients such as sensors
operating in energy-constrained wireless environments. Since the functions required
for the applications or roles of such devices are known, it is possible to streamline the
implementation of the communication stack to only implement these functions. This
has the distinct advantage that power consumption can be minimized since only nec-
essary computations have to be made. This in turn will translate to longer life span for
battery-powered devices.

In [1] we presented our novel concept and methodology for generating dynamic
communication protocols customized to an application’s requirements and the net-
work characteristics for a mobile node roaming through different access networks
within the global Internet. In this paper we elaborate on the details of our proposed
method and make the following contributions:

• We describe by way of an example how the proposed method can be also de-
ployed in energy-constrained sensor networks for generating application-specific
lightweight transport protocols due to the uniformity and universality of the pre-
sented scheme.

• We show that for our proposed scheme the computational requirement to imple-
ment sequence control functionality alone on a gateway consisting of a 32-bit In-
tel StrongARM SA-1110 processor is 217 clock cycles compared with TCP’s
1679 clock cycles, given that TCP does not allow the provision to implement
only the desired functions on need basis.

2 Related Work

The related work consists of two parts. Given that our proposed scheme is based on
decomposing the communication protocols of the TCP/IP protocol suite, in the first
part we describe previous work related to deployment of TCP/IP within sensor net-
works to enable seamless connectivity with the global Internet. In the second part we
describe the related work as applicable to dynamically generated protocols.

2.1 Deployment of TCP/IP for Sensor Networks

Sensor networks require the ability to connect to external networks such as the Inter-
net through which activities such as monitoring and controlling can take place. De-
ploying TCP/IP directly on sensor networks would enable seamless integration of
these networks with the existing Internet. However, it had been the conventional be-
lief that TCP/IP, the de-facto standard for the wired environment is unsuitable for
the wireless sensor networks consisting of nodes of limited capabilities, since its
implementation needs a large resource requirement both in terms of code size and
memory usage.

 An Elaboration on Dynamically Re-configurable Communication Protocols 35

[2] disproved this widely accepted norm by describing two small TCP/IP imple-
mentations for micro-sensor nodes such as motes consisting of 8-bit microcontrollers,
without its implementations sacrificing any of TCP’s mechanisms such as urgent data
or congestion control. The proposed TCP/IP implementations were written independ-
ently from the Berkeley BSD TCP/IP implementation [3], since the BSD implementa-
tion was originally written for workstation-class machines and hence not catered for
the limitations of small-embedded systems. On the other hand, InterNiche NicheStack
[4] is a portable BSD-derived implementation of TCP/IP that can be deployed in a
more high-end sensor such as a gateway consisting of a 32-bit microcontroller such as
Intel’s StrongARM SA-1110 processor.

The proposed implementations of TCP/IP above for the sensor nodes have contrib-
uted to address the problem of enabling seamless connectivity of sensor networks
with the global Internet. However, because TCP does not allow the facility to selec-
tively implement functions as needed, these implementations do not allow the genera-
tion of application-tailored lightweight transport protocols for the sensor networks.
For instance, an application may desire to implement the transport functionalities of
error detection and sequence control but without the cost of retransmissions. By using
TCP, it is not possible to satisfy such a requirement.

Hence in this paper, we elaborate on the details of our proposed scheme for dy-
namically generated communication protocols that has the potential and capability to
address this important issue. Also, our scheme can be applied for any TCP/IP imple-
mentation including those proposed for the sensor networks since it is based on de-
composing the communication protocols of the TCP/IP protocol suite. Furthermore,
as a result of this latter feature, it also allows sensor networks deployed with this
scheme to easily connect to the existing Internet through a gateway, with a loss-free
mapping of the transport protocol information in the protocol translation process.

2.2 Dynamically Generated Protocols

Some architectural principles for the generation of new protocols were presented in
[5]. These included implementation optimization techniques such as Application
Level Framing and Integrated Layer Processing to reduce interlayer ordering con-
straints. The concept of a “protocol environment” was introduced in [6] consisting of
standard communication functionalities. It proposed the ability for an application to
create flexible protocol stacks using standard protocol entities thus leading to the
generation of application-tailored, extensible stacks. The Xpress Transfer Protocol
(XTP) was defined in [7] that consisted of a selective functionality feature allowing
the selection of certain functions such as checksum processing or error control on a
per packet basis.

The x-Kernel [8] provided an architecture for constructing and composing network
protocols and also simplified the process of implementing protocols in the kernel. The
notion of adaptable protocols was proposed in [9] and presented the generation of
flexible transport systems through the reuse of functional elements termed “micro-
protocols”. The DRoPS project in [10] was concerned with providing the infrastruc-
ture support for the efficient implementation, operation and re-configuration of
adaptable protocols and DRoPs based communication systems were composed of
micro-protocols.

36 K. Premadasa and B. Landfeldt

All these approaches have contributed to advance knowledge and demonstrate the
benefits of dynamically generated protocols. However, because of the complexity
involved in parsing dynamically generated headers with varying formats and compo-
sitions these approaches, unlike our proposed approach have proven too complex to
realize and be widely deployed.

3 The Proposed Concept

3.1 Concept of Generating Tailored Communication Protocols

The framework for our proposed work is a modified, five-layered OSI model consist-
ing of the Application, Transport, Network, Data Link and Physical layers.

The central idea adopted in defining tailored communication protocols is the con-
cept that the Transport and Network layers of the proposed model can be decomposed
into separate functions. For instance, the Transport layer can be decomposed into end-
to-end flow control, sequence control, error detection, error recovery etc. Hence based
on the application’s requirements and the network characteristics, the application has
the ability to select the functions it wishes to implement from layers three and four of
this model. As a result, a communication protocol is generated tailored to the specific
needs consisting of the functional information belonging to the requested functions.

It should be noted that details relating to how an application’s requirements and
network characteristics are specified are beyond the scope of this paper considering
that this is an Application Program Interface (API) design issue.

3.2 Use of Key Identifiers to Differentiate Among Functional Information

In order to overcome the previous difficulties of parsing dynamically generated head-
ers and to efficiently recover the necessary functional information from the resulting
communication header, in [1] we introduced the concept of “Key Identifiers” that will
be used to differentiate among the functional data belonging to the various functions.
The fundamental idea that forms the basis for this concept is that each function of the
Transport and Network layers of the proposed model is assigned a unique key, a
method used since the 1940’s [11] in communication systems, most notably in Code
Division Multiple Access (CDMA) systems.

On the transmitter side, to enable the process of recovering the required functional
information efficiently, each individual functional information of the Dynamically
Re-Configured Communication Protocol header is firstly multiplied by the unique key
of the function to which it belongs and the individual results are then summed to pro-
duce the final resulting communication header that will then be transmitted along with
the Application and Data Link layer headers and the payload.

The same key used for encoding a particular functional data field is used to decode
the same at the receiver. The receiver simply multiplies the received communication
header with the key to recover the information.

It is worth noting that although one is generally accustomed to associating the use
of Keys in the context of security, in the scheme that we present the Keys are used for
the purpose none other than allowing the transmission of any combination of func-

 An Elaboration on Dynamically Re-configurable Communication Protocols 37

tional data as needed and efficient recovery of this information at a receiver. There-
fore we derive a globally standardized key space for the Transport and Network layers
of our proposed model such that each intermediate router and end-host maintains a
table, mapping functions to keys so that the required information may be extracted.

A special key identification field is also included in the complete header that is
transmitted in which each bit, relative to its position in this field, signifies whether the
functional data belonging to a particular function is present as denoted by a “1” or
conversely, the functional information is absent as denoted by a “0”.

3.3 Process of Generating Key Identifiers

The chipping sequences that are used to encode the different functional information
are the orthogonal Walsh functions. The main advantage of orthogonal codes is that
they are able to completely eliminate multi-access interference as a result of their
orthogonal property [12]. In the context of our work this translates to being able to
correctly recover particular functional information from the received communication
header, among the co-existence of many different functional data belonging to various
functions in any given combination.

4 Key Distribution Approaches

Table 1 summarizes the fields that would be encoded and left un-encoded for the
Transport and Network layers of the proposed model. The fields defined are derived
from a composite of traditional communication protocols from the TCP/IP protocol
suite.

Table 1. Summary of encoded/un-encoded fields

 Transport layer Network layer

Encoded fields

Sequence #, Acknowledgement #,
Source port #, Destination port #, Re-

ceive window, Internet checksum, Urgent
data pointer, Flag Field (RST, SYN, FIN,
ACK, URG, PSH, UNUSED, UNUSED)

Traffic class

Un-encoded
fields

Destination address,
Source address, Flow

label, Hop limit

Given that the application-specific nature of sensor networks makes use of data-
centric routing mechanisms as opposed to the Internet’s address-centric mechanisms,
only the functions applicable to transport layer will be implemented in the sensor
nodes within these networks with the exception of the gateways.

38 K. Premadasa and B. Landfeldt

There are two ways of assigning keys to fields and therefore also organizing the
header information. In approach 1, each field is assigned a unique key to encode its
functional information and in approach 2, the encoded fields from table 1 are grouped
according to their bit lengths. Therefore, we derive three groups consisting of similar
fields of 32, 16 and 8 bit lengths.

5 Mechanisms for Fast Computation

Given that computation in hardware is more efficient than in software, the multiplica-
tive functions with respective keys would be implemented in hardware at the network
layer instead of it being a full kernel implementation. Also, in order to allow fast and
efficient recovery of desired functional information, an array of multipliers would be
utilized to allow parallel multiplication of the received communication header by the
appropriate key identifiers.

In the following section we present the initial experimental results for our proposed
concept based on the mechanisms described in this section.

6 Experimental Results

6.1 Observed Results

It is of primary concern to investigate the computational overhead in using the key
system compared with the standard way of sequentially extracting the header fields.
We have therefore conducted a hardware simulation to determine the number of clock
cycles it would take to decode a single bit that has been encoded by key lengths of 16-
bits, 8-bits and 4-bits (as used by the key distribution approaches described in section
4) at an end-host, employing an array of multipliers operating in parallel as described
in section 5.

The simulation was performed using Symphony EDA VHDL Simili, a software
package consisting of a collection of tools that enable the design, development and
verification of hardware models using VHDL, a hardware description language [13].

The experiment was conducted by encoding three bits (representing three separate
bits from three different functional information) with three different keys that are
generated using the key generation process described in section 3.5 above and then
decoding the transmitted bits in parallel at the receiver (representing an end-host).
Table 2 summarizes the results of this experiment.

Table 2. Results of the experiment

Key length (bits) Number of clock cycles to decode
each bit

16 10
8 6
4 4

 An Elaboration on Dynamically Re-configurable Communication Protocols 39

Based on the results of the experiment given in table 2 above, table 3 summarizes
the number of clock cycles it would take to decode a single functional information
field in parallel for the proposed key distribution approaches described in section 4
above.

Table 3. Summary of clock cycles to decode a single field for the proposed key distribution
approaches

 32-Bit field 16-Bit field 8-Bit field

Approach 1 32x10=320
clock cycles

16x10=160
clock cycles

8x10=80
clock cycles

Approach 2 32x4=128
clock cycles

16x6=96
clock cycles

8x4=32
clock cycles

6.2 Comparison with the Existing Method

The results of this experiment are very encouraging based on past research conducted
to determine the overhead associated with TCP/IP protocol processing. In order to
justify this conclusion, we firstly describe the past experiments that were conducted
and present the results of those investigations. These results are then later used as a
comparison point for evaluating the feasibility of our proposed method.

6.2.1 Related Work on TCP/IP Protocol Processing.
An experiment was conducted in [14] to analyze the TCP processing overhead for a
modified Berkeley implementation of Unix on a 32-bit Intel 80386 processor with a
clock speed of 16MHz and an instruction execution rate of 5 million instructions per
second (MIPS). The TCP code was modified to give a better measure of the intrinsic
costs involved. Fig.1 illustrates the methodology that was used for this analysis.

Fig. 1. Methodology used for analysis in [14]

It was discovered that for input processing at both a data sender and a data receiver

the common TCP protocol-specific processing path consisted of 154 instructions of
which 15 were either procedure entry and exit or initialization. In particular, the input
processing for a data receiver also consisted of an additional 15 instructions for se-
quencing the data and calling the buffer manager, 17 instructions for processing the
window field of a packet and 25 instructions for finding the Transmission Control
Block (TCB) for the TCP connection. It is worthwhile mentioning that the reported
instruction counts for various TCP protocol-specific tasks consisted of extracting the

40 K. Premadasa and B. Landfeldt

information from the header fields and execution of the corresponding algorithms. It
was also found that the output processing of a data receiver consisted of a total of 235
instructions to send a packet in TCP. Therefore based on these results, for a data re-
ceiver, the ratio of input to output processing instructions is given by 211:235 respec-
tively.

Although all the reported experiments conducted in [14] were on processors of a
Complex Instruction Set Computer (CISC) architecture, the authors have stated that
based on a separate study of packet processing code, they found little expansion of the
code when converted to a Reduced Instruction Set Computer (RISC) chip. They con-
cluded that this is because given the simplicity of the operations required for packet
processing, irrespective of the processor that is used the instruction set actually util-
ized is a RISC set. Given that the authors have estimated the ratio of CISC to RISC
instructions to be approximately 3:4 respectively, 211 and 235 instructions for an
80386 processor would be translated to 282 and 314 instructions respectively for a
RISC processor.

In an independent experiment also conducted in [14] to measure the actual costs in-
volved with a Berkeley TCP running on a Sun-3/60 workstation with a 32-bit Mo-
torola 68020 processor with a clock speed of 20MHz and an instruction execution rate
of 2 MIPS it was discovered that it took 370 instructions for TCP checksum computa-
tion which is the major overhead associated with TCP processing. This figure thus
translates to 494 instructions for a RISC processor based on the above ratio of CISC
to RISC instructions.

In a similar study conducted in [15] an experiment was conducted to determine the
overhead associated with the Ultrix 4.2a implementation of TCP/IP software process-
ing. The experiment consisted of one workstation sending a message to the system
under test (where all measurements were taken) which then sends the same message
back to the originator. All measurements were taken on a DECstation 5000/200 work-
station, a 19.5 SPECint MIPS RISC machine with a clock speed of 25MHz and an
instruction execution rate of 20 MIPS.

In this experiment it was discovered that for TCP messages, protocol-specific proc-
essing (that includes operations such as setting header fields and maintaining protocol
state with the exception of checksum computations) consumes nearly half the total
processing overhead time. It was also discovered that TCP protocol-specific process-
ing in particular dominates the protocol-specific processing category consuming ap-
proximately 44% of the processing time. The TCP protocol-specific processing how-
ever did not include checksum computation in its classification.

In this experiment it was discovered that 3000 instructions were consumed for TCP
protocol-specific processing at a data receiver. Based on the ratio of RISC processor
instructions for input to output processing for a data receiver in [14], approximately
1420 instructions were thus consumed in [15] for Input processing.

6.2.2 Evaluation of the Feasibility of the Proposed Method
In order to demonstrate the viability of our proposed method we present a practical
example within the sensor network environment in conjunction with the routing pro-
tocols, in which the transport layer functionality of sequence control would be very
desirable. We confirm the feasibility of our approach by evaluating the number of
clock cycles that would be consumed to implement this functionality alone with our

 An Elaboration on Dynamically Re-configurable Communication Protocols 41

proposed method to that consumed using the traditional sequencing transport protocol
TCP that does not allow the provision to implement only the desired functions on
need basis.

There are no data available in relation to the processing times for the implementa-
tions of TCP/IP as described in section 2.1 for the sensor networks. However, given
that InterNiche NicheStack as reported above consists of a BSD-derived implementa-
tion of TCP/IP that can be deployed in a more high-end sensor such as a gateway
consisting of a 32-bit microcontroller, we therefore believe that it is fair to assume
that its implementation would be very similar to those described in section 6.2.1, and
we conduct our analysis based on this assumption.

In [16] a family of adaptive protocols called Sensor Protocols for Information via
Negotiation (SPIN) was proposed for the Network layer for disseminating informa-
tion among sensor nodes in an efficient manner. The goal of SPIN family of protocols
is to conserve energy through negotiation by firstly communicating a high-level data
descriptor called a meta-data that describes the data without transmitting all the data.
SPIN protocols employ a simple three-way handshake mechanism for negotiation
based on three types of messages: ADV, REQ and DATA. Prior to sending the DATA
message, the sensor node broadcasts an ADV message containing the meta-data.
Neighbours that are interested in the data then respond with a REQ message after
which the DATA is sent to those sensor nodes. This process is thus repeated by the
neighbour sensor nodes once they receive a copy of the interested data. Therefore, all
interested nodes within the entire sensor network would eventually receive a copy of
this data.

For a sensor network employing such a data transaction mechanism, it would be
very desirable to be able to utilize the transport layer functionality of sequence control
to allow the data receiving neighbour nodes to sequence the data, at the cost of mini-
mum overhead. Using our proposed methodology this can be very easily fulfilled by
appending to the broadcasted ADV message a dynamically generated communication
header consisting of the encoded sequence number field bootstrapped with the chosen
initial sequence number. As a result, the neighbours that respond with a REQ message
would be all aware of the initial sequence number associated with the data transaction
which is to follow. Thereafter, these nodes can use the information in the encoded
sequence number field of subsequent data packets to organize the received data in
their proper order.

In [14] it was discovered that it took 15 instructions for sequencing the data and
calling the buffer manager that translates to 20 RISC processor instructions, based on
the ratio of CISC to RISC instructions reported above. Therefore based on the ratio of
RISC processor instructions for the sequence control functionality to that of input
processing for a data receiver in [14], approximately 101 instructions are thus con-
sumed in [15] for the same sequence control functionality.

Table 4 provides a summary of the instruction counts for various tasks as reported
above and calculates the number of clock cycles it takes to execute these instructions
on a gateway to a collection of motes consisting of a 32-bit Intel StrongARM RISC
SA-1110 processor with a clock speed of 206 MHz and an instruction execution rate
of 235 MIPS [17]. In this analysis we make the assumption that the instruction count
for TCP checksum computation based on a RISC processor in [14] is similar for the
same in [15].

42 K. Premadasa and B. Landfeldt

Table 4. Summary of instruction counts for various tasks and the associated clock cycles for
their execution

 Instruction count

as per [15]
Number of clock cycles as per

StrongARM SA-1110 processor
Sequencing data 101 89
Input processing
at data receiver 1420 1245

TCP checksum
computation 494 434

In Table 5 and in fig.2 we therefore provide a comparison of the number of clock
cycles it takes on the StrongARM SA-1110 processor to implement the sequence
control functionality alone with our proposed methodology to that of the traditional
sequencing transport protocol TCP that does not allow the facility to implement only
the desired functions on need basis. In TCP it is also not possible to disable certain
functionality by simply setting a particular header field to zero since for most fields
zero is a valid value.

For the results of table 5 below, it should be noted that in the case of our proposed
method based on both key distribution approaches, during the time spent to decode
the sequence number field, up to an additional 12 and 14 encoded functional fields
can also be decoded in parallel at a node for key distribution approaches 2 and 1 re-
spectively. Also, the value of 89 clock cycles for sequencing the data actually com-
prises of the cycles consumed for both extracting the information from the header
field and execution of the corresponding algorithm associated with the sequence con-
trol function. Therefore, the total cycles consumed for implementing the sequence
control functionality using our method would be theoretically less for both key distri-
bution approaches than the calculated values if the cycles consumed for extracting the
functional information from the header field had been subtracted.

Table 5. Comparison of clock cycles for sequencing of data for our proposed method against
TCP

Number of clk cy-
cles for our method:
key distribution ap-

proach 2

Number of clk cycles
for our method: key

distribution approach
1

Number of clk
cycles for TCP

Decoding sequence
number field 128 320

Sequencing data 89 89

Input processing
at data receiver 1245

TCP checksum
computation

434

TOTAL 217 409 1679

From the results of fig.2 below it can be clearly seen that the number of clock cy-
cles consumed for sequencing of data using our method based on key distribution

 An Elaboration on Dynamically Re-configurable Communication Protocols 43

approach 2 and approach 1 are 1462 and 1270 cycles respectively less than that for
the case of TCP. Also key distribution approach 2 consumes only about half the num-
ber of clock cycles compared to key distribution approach 1. Therefore through this
simple but practical example we have demonstrated the feasibility and viability of our
proposed method for tailoring communication protocols for the sensor network envi-
ronment for which energy conservation is of utmost importance.

Fig. 2. Comparison of clock cycles for sequencing of data for our proposed method against
TCP

7 Conclusions and Future Work

In this paper we have elaborated on the details of our novel method based on the well-
known CDMA technique for dynamically generating communication protocols cus-
tomized to an application’s requirements and the network characteristics within the
wireless environment. The advantages of being able to dynamically generate commu-
nication protocols based on a specification have been made clear, with its benefits
extending to a spectrum of wireless devices with varying processing capabilities such
as sensor nodes and portable laptops.

The feasibility and viability of the proposed method have been proven with initial
experimental work and through comparison of these results to those obtained from
past studies carried out to discover the cost of TCP/IP protocol processing overheads.

We are currently working on a header compression technique for the proposed
scheme. As continuing work, we will be working toward a full system implementa-
tion of the proposed concept for the sensor networks.

References

1. Premadasa, K., Landfeldt, B.: Dynamically Re-Configurable Communication Protocols us-
ing Key Identifiers. In: to be published in the proceedings of ACM/IEEE 2nd conference on
MobiQuitous 2005, San Diego, California, USA (July 2005)

2. Dunkels, A.: Full TCP/IP for 8-bit architectures. In: Poc. 1st conference on MOBISYS’03
(May 2003)

3. McKusick, M.K., Bostic, K., Karels, M.J., Quarterman, J.S.: The Design and Implementa-
tion of the 4.4 BSD Operating System. Addison Wesley, United States of America (1996)

44 K. Premadasa and B. Landfeldt

4. InterNiche Technologies Inc NicheStack portable TCP/IP stack:
www.iniche.com/products/tcpip.htm

5. Clark, D.D., Tennenhouse, D.L.: Architectural Considerations for a new Generation of
Protocols. In: ACM SIGCOMM Computer Communications Review, Vol. 20, No.4 (Au-
gust 1990) 200-208

6. Tschudin, C.: Flexible Protocol Stacks. In: ACM SIGCOMM Computer Communications
Review, Vol. 21, No.4 (August 1991) 197-205

7. Strayer, W.T., Dempsey, B.J., Weaver, A.C.: XTP: The Xpress Transfer Protocol. Addison
Wesley, United States of America (1992)

8. Hutchinson, N.C., Peterson, L.L.: The x-Kernel: An architecture for Implementing Net-
work Protocols. IEEE Transactions on Software Engineering, Vol. 17, No.1 (January
1991) 64-76

9. Zitterbart, M., Stiller, B., Tantawy, A.: A Model for Flexible High-Performance Commu-
nication Subsystems. In: IEEE Journal on Selected Areas in Communications, Vol. 11,
No.4 (May 1993) 507-518

10. Fish, R.S., Graham, J.M., Loader, R.J.: DRoPS: Kernel Support for Runtime Adaptable
Protocols. In: Proc. 24th Euromicro conference ‘98, Vol.2, Vasteras, Sweden (1998) 1029-
1036

11. Scholtz,: The Evolution of Spread-Spectrum Multiple Access Communications. In: Code
Division Multiple Access Communications. Glisic, S.G., Leppanen, P.A. (eds.): Kluwer
Academic Publishers (1995)

12. Rhee Y.M.: CDMA Cellular Mobile Communications & Network Security. Prentice Hall
Inc., United States of America (1998)

13. Symphony EDA. URL: http://www.symphonyeda.com
14. Clark, D., Jacobson, V., Romkey, J., Salwen, H.: An Analysis of TCP Processing Over-

head. In: IEEE Communications Magazine, 50th Anniversary Commemorative Issue (May
2002) 94-101

15. Kay, J., Pasquale, J.: Profiling and Reducing Processing Overheads in TCP/IP. In:
IEEE/ACM Transactions on Networking, Vol. 4, No.6 (December 1996) 817-828

16. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive Protocols for Information Dis-
semination in Wireless Sensor Networks. In.: Proc. ACM Mobicom ’99, Seattle, Washing-
ton, USA (1999) 174-185

17. Intel StrongARM SA-1110 Datasheet. URL:
www.intel.com/design/strong/datashts/278241.htm

	Introduction
	Related Work
	Deployment of TCP/IP for Sensor Networks
	Dynamically Generated Protocols

	The Proposed Concept
	Concept of Generating Tailored Communication Protocols
	Use of Key Identifiers to Differentiate Among Functional Information
	Process of Generating Key Identifiers

	Key Distribution Approaches
	Mechanisms for Fast Computation
	Experimental Results
	Observed Results
	Comparison with the Existing Method

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

