
A New Seamless Handoff Mechanism for Wired
and Wireless Coexistence Networks

Pyung Soo Kim1, Hak Goo Lee2, and Eung Hyuk Lee1

1 Dept. of Electronics Engineering, Korea Polytechnic University,
Shihung City, 429-793, Korea

pskim@kpu.ac.kr
2 Mobile Platform Lab., Digital Media R&D Center,

Samsung Electronics Co., Ltd, Suwon City, 442-742, Korea

Abstract. This paper deals with design and implementation of seam-
less handoff mechanism between wired and wireless network adapters
for a system with both network adapters. A unique virtual adapter is
developed between different adapters and then an IP address is assigned
to the virtual adapter. As a general rule, when both network adapters
are available, the wired adapter is preferred due to its faster transmis-
sion speed than the wireless adapter. When wired communication via
the wired adapter gets disconnected while in service, the disconnection
of wired adapter is automatically detected and then wireless handoff
occurs by mapping information on the wireless adapter to the virtual
adapter. According to the proposed handoff mechanism, the session can
be continued seamlessly even when handoff between wired and wireless
network adapters occurs at lower level in a network application where
both IP address and port number are used to maintain session. To evalu-
ate the proposed handoff mechanism, actual experiments are performed
for various internet applications such as FTP, HTTP, Telnet, and then
their results are discussed.

1 Introduction

Most of today’s computers are operating on Microsoft Windows systems which
allow installations of multiple network adapters such as wired adapter and wire-
less adapter. In Windows systems, not only with different types of network
adapters, but also with same type of network adapters, when one communi-
cation medium disconnects, all sessions of internet applications that are com-
municating through the corresponding adapter get disconnected automatically
[1], [2]. It’s because, under TCP, information on an adapter is stored in TCP
control block (TCB), and once adapter disconnection is notified by TCB, TCP
automatically cuts off the corresponding sessions. In other words, disconnection
of an adapter means the IP address assigned to the adapter can no longer be
used. Thus, when a handoff occurs from one adapter to another where differ-
ent IP addresses are assigned to each network adapter, Windows systems don’t
support seamless handoff. It’s because the session must be newly made with the

L.T. Yang et al. (Eds.): HPCC 2005, LNCS 3726, pp. 14–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Seamless Handoff Mechanism 15

IP address of the new network adapter, since the IP address assigned to the
old network adapter cannot be used any more. To solve this problem, Windows
systems provide “Bridge” function that allows multiple network adapters to be
combined into one virtual adapter. However, although Bridge allows multiple
network adapters to share same IP address, it has some shortcomings. Even
with the Bridge, once a network adapter gets disconnected, the virtual adapter
notifies protocol driver about disconnection. Thus, all application sessions using
TCP/IP protocol driver automatically get disconnected. In addition, this func-
tion has too long handoff latency. It is observed via the experiment that handoff
took about 30 seconds, which results in the timeout of TCP applications under
Windows systems.

In order to solve the problems addressed above, this paper proposes a new
seamless handoff mechanism between wired (IEEE 802.3) and wireless (IEEE
802.11) network adapters for a system with both network adapters. A unique
virtual adapter is developed between different adapters and then an IP address
is assigned to the virtual adapter. As a general rule, when both network adapters
are available, the wired adapter is preferred due to its faster transmission speed
than the wireless adapter. When wired communication via the wired adapter
gets disconnected while in service, the disconnection of the wired adapter is au-
tomatically detected and then wireless handoff occurs by mapping information
on the wireless adapter to the virtual adapter. Through the proposed handoff
mechanism, since IP address does not change, the session can be continued seam-
lessly even when handoff between wired and wireless network adapters occurs at
lower level in a network application where both IP address and port number are
used to maintain session. Finally, to evaluate the proposed handoff mechanism,
actual experiments are performed for various internet applications such as FTP,
HTTP, Telnet, and then their results are discussed.

In section 2, the existing network driver system is briefly shown and its
limitations are discussed. In section 3, a new seamless handoff mechanism is
proposed for a system with both wired and wireless network adapters. In section
4, actual experiments are performed for various internet applications. Finally, in
section 5, conclusions are made.

2 Limitations of Existing Network Driver System

There is a kernel level library released by Microsoft to allow Windows systems
to have networking capability. This library is called Network Driver Interface
Specification (NDIS) [3]. The normal NDIS is formed with miniport drivers and
protocol drivers as depicted in Fig. 1. The miniport driver is used to run network
adapters and communicate with the protocol driver. The protocol driver such
as TCP/IP or IPX/SPX/NETBIOS services obtains binding handle through a
binding process with the miniport driver. In the binding process, the protocol
driver makes bindings with all working miniport drivers. Up to the protocol
driver belongs to the operating system’s kernel level, and applications and others
belong to user level [4]. During booting sequence of Windows systems, NDIS

16 P.S. Kim, H.G. Lee, and E.H. Lee

TCP/IP Protocol Driver

802.11
Miniport
Driver

802.3
Miniport
Driver

N
D
I
S

NICNIC

Binding Binding

Fig. 1. Existing network driver system

initializes the miniport driver of registered adapter first. Then, as the protocol
driver gets initialized, it binds with each miniport driver. Binding handle acts
as a key used in transmission or reception of packets through corresponding
adapter.

It is noted that the session must be newly made with the IP address of the new
network adapter when a handoff occurs from the old network adapter to the new
network adapter, since the IP address assigned to the old network adapter cannot
be used in the new network adapter any more. Therefore, Windows systems using
the existing network driver system of Fig. 1 cannot support the seamless handoff,
because different IP addresses are assigned to each network adapter.

3 Proposed Seamless Handoff Mechanism

In order to solve the problems addressed in Section 2, this paper proposes a new
seamless handoff mechanism between wired and wireless network adapters for
a system with both network adapters.

3.1 New Network Driver System

Firstly, an intermediate driver is developed newly to modify packets sent from
protocol driver then sends them to the miniport driver, and vice versa. The
intermediate driver resides in between protocol driver and miniport driver, com-
municates with both miniport and protocol drivers as shown in Fig. 2. Note that
the intermediate driver doesn’t always exist, but exists only when it is needed
by the developer. The intermediate drive generates the virtual protocol driver
on the bottom and the virtual miniport drive on top. In other words, if we take
a look at the virtual protocol drive and miniport driver on the bottom of the
intermediate driver, then the intermediate driver works as the virtual protocol
driver; and if we take a look at the virtual miniport driver and protocol driver
on top of the intermediate driver, then the intermediate driver works as the vir-
tual miniport driver. At this point, the virtual miniport driver is recognized by

A New Seamless Handoff Mechanism 17

TCP/IP Protocol Driver

Virtual Miniport
Driver

Intermediate
Driver
Act as

Miniport

802.11
Miniport
Driver

802.3
Miniport
Driver

Virtual Protocol
Driver

Intermediate
Driver
Act as

Protocol Driver

N
D
I
S

Binding

Binding

Binding

NICNIC

Fig. 2. New network driver system

actual upper level protocol driver as just another adapter [4]. The reason why
the intermediate driver and the virtual drivers are in use is to solve some of the
problems for the seamless handoff. Firstly, when there are two network adapters,
each adapter must have different IP address, therefore, seamless communication
is compromised during handoff. Due to this reason, a virtual adapter is used,
whereas the actual protocol driver binds only with the virtual adapter to oper-
ate. This way, the layers above the protocol driver use the IP address assigned to
this virtual adapter to communicate. Secondly, the intermediate drive can filter
out data, which is sent to TCP/IP protocol driver in the event of a network
adapter’s network connection ends, to prevent session disconnection. Through
this process, layers above the protocol driver do not know what is going in the
lower level. Thirdly, use of the intermediate driver gives advantage of changing
packet routing in real-time. By selecting the optimal adapter to be used for com-
munication in accordance with the network connection status, packets can be
transmitted and received through the optimal adapter. When this is realized,
the handoff between wired and wireless network adapters can be done without
disrupting the connection.

The intermediate driver in accordance with this paper can be divided into
virtual miniport driver and virtual protocol driver as shown in Fig. 3. The vir-
tual miniport driver includes virtual adapter control module. The virtual adapter
control module generates a virtual adapter to control binding of an actual proto-
col driver to the virtual adapter. Furthermore, to set up each network adapter’s
property during the binding of the virtual protocol driver and a network adapter

18 P.S. Kim, H.G. Lee, and E.H. Lee

Virtual Adapter Control Module

Optimal Adapter Selection Module

Connection Status Detection Module

Physical Adapter Binding Module

Binding Handle List

802.3
Binding
Handle

802.11
Binding
Handle

Intermediate Driver

Virtual Protocol Driver

Fig. 3. Detailed diagram of the proposed driver system

at lower level, the virtual adapter control module sets all network adapters that
are bound, to wireless adapter’s link layer address. Here, under wired adapter,
packet filtering property is set to promiscuous mode, which accepts all packets,
and under wireless adapter, the property is set to direct/multicast/broadcast
modes, which are typical. Hereinafter, the virtual adapter’s link layer address
is used as the wireless adapter’s link layer address. In other words, under the
wired adapter, since promiscuous mode is set, even though the virtual adapter’s
link layer address is set as the link layer address of the wireless adapter, corre-
sponding packets can be transmitted and received. However, under the wireless
adapter, since typical mode is used, the wireless adapter’s link layer address
is just used. Therefore, to upper protocol drivers, only one virtual adapter set
with a link layer address is shown. Advantages from this are as follows. Firstly,
by using the same link layer address, there is no need for retransmission of the
address resolution protocol (ARP) packets to update ARP table in a hub [5].
Secondly, when assigning address dynamically using the dynamic host configu-
ration protocol (DHCP), link layer address is used as one of options of DHCP
protocol to identify the corresponding host. Here, by using the same link layer
address again, DHCP server recognizes host as the same host and thus the same
IP address gets assigned over and over [6]-[8]. Thirdly, when using link layer
address in IPv6 (Internet Protocol version 6) environment assign IPv6 address
through stateless auto configuration [9], [10], since the link layer address is the
same, it is possible to assign an identical address.

When upper level protocol drivers request data of an adapter, the virtual
adapter control module reports optimal adapter information selected by an
optimal adapter selection module to an upper level protocol driver. Further-
more, the virtual adapter control module sends packet through binding handle
of an optimal adapter chosen by the optimal adapter selection module. A virtual

A New Seamless Handoff Mechanism 19

protocol driver includes an optimal adapter selection module, a connection status
detection module and a network adapter binding module. The optimal adapter
selection module decides to which adapter to transmit or to receive in accor-
dance with connection information of wired and wireless network adapter which
is delivered from the connection status detection module. The connection status
detection module detects connection status information of the wired and wireless
network adapters, then provides the information to the optimal adapter selec-
tion module in real-time. The network adapter binding module generates binding
handle list through binding with all active adapters. In the binding handle list,
binding handle and status information for controlling bound network adapters
get stored.

3.2 Seamless Handoff Mechanism Using New Network Driver
System

As illustrated in Fig. 4, when a connection event occurs while all wired and
wireless network adapters are in disconnection status, the connection status de-
tection module is used to recognize which adapter is in connection status. Based
on the connection status, connection information of the corresponding adapter
that is in the binding handle list of the network adapter binding module gets up-
dated. At first, this updated information gets sent to the virtual adapter control
module in real-time; then, right away the virtual adapter control module reports
the connection status to the upper level protocol driver. After that, the optimal
adapter selection module determines whether the connected network adapter is
wired or wireless, and if it is the wired connection, then a wired adapter gets
selected and sent the information to the virtual adapter control module. If a

All Disconnected Status

Connection Event Occurred

Report Connection Status
as Upper Protocol Driver

802.3?

802.11 Connection
Event Occurred

Update Connection
Information of 802.11

Communicate with 802.3

Mapping 802.11 Information
to Virtual Adapter

Communicate with 802.11

802.3 Connection
Event Occurred

Mapping 802.3 Information
to Virtual Adapter

Communicate with 802.3

No

Yes

Fig. 4. Operation flow during connection event

20 P.S. Kim, H.G. Lee, and E.H. Lee

wireless connection event occurs during wired communication, the connection
status detection module recognizes connection of a wireless adapter, and this in-
formation updates only the connection information of the wireless adapter listed
in the binding handle list of the network adapter binding module.

If a connection event of a wireless adapter occurs while all others are in dis-
connection status, the connection information obtained by the connection status
detection module updates the connection status information of the corresponding
adapter listed in the binding handle list of the network adapter binding module.
Upon the updated information, the optimal adapter control module selects the
wireless adapter as the optimal adapter. And then, the virtual adapter control
module maps the information on the wireless adapter into a virtual adapter.
Then, communication gets performed via the wireless adapter. If a wired con-
nection event occurs during wireless communication, the information detected
by the connection status detection module gets updated into the binding handle
list and based on the updated information, the optimal adapter changes from the
wireless to the wired by the optimal adapter selection module. Furthermore, the
wired adapter’s information gets mapped on to the virtual adapter. And at last,
communication gets performed via the wired adapter. According to Fig. 5, when
a disconnection event occurs during the wired communication, the connection
status detection module determines whether the disconnected adapter is wired
or wireless. If the adapter is the wired adapter, the corresponding adapter’s con-
nection status information gets updated to the binding handle list of the network
adapter binding module. Then, the wireless adapter becomes the optimal adapter
via the optimal adapter selection module, and the wireless adapter information
gets mapped to the virtual adapter. Then, communication gets performed via
the wireless adapter. If the disconnected adapter is not wired, the current con-
nection status of the wired adapter must be verified. Upon the verification, if
the wired adapter is still in connection, then communication is performed via
the wired adapter. However, if the wired adapter is in disconnected status, the
status gets reported to the upper level protocol driver, and the wired adapter’s
information gets mapped on to the virtual adapter.

Communicate with 802.3

Disconnection
Event Occurred

802.3?

Mapping 802.11 Information
to Virtual Adapter

Communicate with 802.11 Communicate with 802.3

Report Disconnection Status
to Upper Protocol Driver

Mapping 802.3 Information
to Virtual Adapter

NO

YES

802.3
Connection Status?

CONNECT

DISCONNECT

Fig. 5. Operation flow during disconnection event

A New Seamless Handoff Mechanism 21

4 Experiments and Results

To evaluate the proposed handoff mechanism, actual experiments are performed
for various internet applications. The intermediate driver is realized on a portable
PC using the driver development kit(DDK) [4] provided by Microsoft. The ap-
plications used in the experiment are FTP, HTTP, and Telnet. FTP supports
large payload size and generates many packets for specific time in order to trans-
mit large data, fast. HTTP’s payload size and packet amount vary in accordance
with amount of data each requested homepage provides. And for Telent, payload
size and amount are relatively small since it supports interactive communication
in text form.

In the experiment, the handoff latency is measured as follows. Firstly, a wired-
to-wireless handoff occurs when wireless adapter takes over network connection
as wired adapter loses the connection. And then, after mapping various informa-
tion on the wireless adapter onto the virtual adapter, time it takes to transmit
the first data packet has been measured. A wireless-to-wired handoff occurs when
wired adapter connection is available during the wireless networking. And then,
after mapping various information on the wired adapter onto the virtual adapter,
time it takes to transmit the first data packet has been measured. Tick counter
provided by Windows systems at kernel level is used as timer. Timing resolution
per a tick of this tick counter is equivalent to approximately 16.3 msec. When
testing each application, during data downloading FTP generated a handoff. For
the case with HTTP, when downloading data linked to a homepage, handoff la-
tency is measured during transmission of data via HTTP protocol. And for the
case with Telnet, shell script to execute commands is made to run since packets
can only be generated while sending or receiving commands through a terminal
in Telnet.

Experimental results are shown in Fig. 6 and Table 1. Upon analyzing re-
sults, following two conclusions can be drawn. Firstly, wired-to-wireless handoff

0

10

20

30

40

50

60

70

80

90

100

110

Experimental Number

H
an

d
of

f
T

im
e

(T
ic

k
)

FTP HTTP TELNET 802.11->802.3

Fig. 6. Handoff Latency for Each Applications

22 P.S. Kim, H.G. Lee, and E.H. Lee

Table 1. Mean value of handover latency

Handoff Direction FTP HTTP Telnet
802.3 → 802.11 664msec 653msec 315msec
802.3 ← 802.11 25msec 25msec 25msec

latency takes as many as 10 times more than wireless-to-wired handoff latency,
Secondly, a packet’s payload size increases, or when packet amount per a unit
time increases, handoff latency also increases. The first case is believed to happen
because since 802.11 MAC protocol lacks reliability compare to 802.3 MAC pro-
tocol, some overhead had been added to 802.11 MAC protocol to overcome what
it lacks [11], [12]. And the second case is believed to happen because packet size is
large in different layers in accordance with Windows systems’ internal scheduling
rule; and in order to process many packets simultaneously, resource gets assigned
to operations other than handoff. However, it is peculiar that a wireless-to-wired
handoff remains constant regardless of the upper level application types. The
reason for such behavior is believed to be happen because since reliability is al-
ways guaranteed for the wired adapter, and thus the impact the actual miniport
driver, which drives the wired adapter, has on the actual throughput is insignif-
icant since the driver is simple. Thus an analogy can be drawn here that the
impact that the aforementioned overhead that 802.11 MAC protocol possesses is
greater than that of resource sharing during a wired-to-wireless handoff. There-
fore, the result, that nearly no impact is put on handoff even when packets are
large, and resources being taken away to other layers due to the large number
of packets, has been measured.

5 Conclusions

In this paper, the new seamless handoff mechanism between wired and wireless
network adapters has been proposed for a system with both network adapters.
The unique virtual adapter is developed between different adapters and then
an IP address is assigned to the virtual adapter. As a general rule, when both
network adapters are available, the wired adapter is preferred due to its faster
transmission speed than wireless adapter. When wired communication via the
wired adapter gets disconnected while in service, the disconnection of wired
adapter is automatically detected and then wireless handoff occurs by mapping
information on the wireless adapter to the virtual adapter. Through the proposed
handoff mechanism, the session can be continued seamlessly even when handoff
between wired and wireless network adapters occurs at lower level in a network
application where both IP address and port number are used to maintain session.
In order to evaluate the proposed handoff mechanism, actual experiments are
performed for various internet applications such as FTP, HTTP, Telnet, and
then their results are discussed.

In this paper, only the impacts of applications that are using TCP on handoff
have been experiments. In the future, impacts that applications using transport

A New Seamless Handoff Mechanism 23

layer other than TCP have on handoff will be analyzed, and intermediate driver
that efficiently corresponds to the impacts will be developed. Furthermore, the
reasons for difference in amount of time it takes to handoff from a wired adapter
to a wireless adapter in accordance with the characteristics of an application will
be more carefully dealt with, and plan to design and develop an intermediate
driver that gets less impacts from an application.

References

1. Forouzan, B. A.: TCP/IP Protocol Suite. McGraw-Hill (1999)
2. Wright, G. R. and Stevens, W. R.: TCP/IP Illustrated Volume 2. Addison-Wesley

(1995)
3. Windows Network Data and Packet Filtering [Online], Available :

http://www.ndis.com (2002)
4. Microsoft: Driver Development Kit Help Documentation. Microsoft Corporation,

Redmond, WA (2002)
5. Stevens, W. R.: TCP/IP Illustrated Volume 1. Addison-Wesley (1994)
6. Droms, R.: Automated configuration of TCP/IP with DHCP, IEEE Internet Com-

puting, 3 (1999) 45–53
7. Sun Microsystems, Dynamic Host Configuration Protocol (Whitepaper), (2000)

6–10
8. Park, S.H., Lee, M.H., Kim, P.S., Kim, Y.K.: Enhanced mechanism for address

configuration in wireless Internet. IEICE Trans. Commun. E87-B (2004) 3777–
3780

9. Thomson, S., Narten, T: IPv6 stateless address autoconfiguration, IETF RFC 2462
(1998)

10. Droms, R.: Deploying IPv6, IEEE Internet Computing, 5 (2001) 79–81
11. Gast, M. S.: 802.11 Wireless Networks. O’Reilly (2002)
12. ISO/ICE.: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications. ANSI/IEEE Std 802.11 (1999)

	Introduction
	Limitations of Existing Network Driver System
	Proposed Seamless Handoff Mechanism
	New Network Driver System
	Seamless Handoff Mechanism Using New Network Driver System

	Experiments and Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

