
L.T. Yang et al. (Eds.): HPCC 2005, LNCS 3726, pp. 265 – 270, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Distributed Search Method*

Haitao Chen, Zhenghu Gong, and Zunguo Huang

School of Computer Science, National University of Defense Technology,
Changsha, Hunan, China
nchrist@163.com

Abstract. The big challenge of constructing P2P applications is how to imple-
ment efficient distributed file searching in complex environment which implies
huge-amount users and uncontrollable nodes. FriendSearch is introduced to im-
prove the efficiency and scalability of distributed file searching. FriendSearch
introduces a new hybrid architecture in which the storage and search of raw file
is based on DHT network, but the storage and search of meta-data is based on
unstructured P2P network. FriendSearch learns interest similarity between par-
ticipating nodes and uses it to construct friend relations. The forwarding of que-
ries is limited to friend nodes with similar interests. Simulation tests show that
FriendSearch algorithm is both efficient and scalable.

1 Introduction

With the development of Internet applications in scope and depth, the role of ordinary
nodes changes from just receiving content passively from servers to acting as a sup-
plier of Internet content. P2P technology provides a new application pattern which
enables the edge nodes participate the Internet application as both clients and servers
at the same time. It offers powerful support for the construction of huge and compli-
cated distributed network application. P2P file sharing applications which allow ordi-
nary user to share files in local disk to others, have become one of the most popular
Internet applications.

The big challenge of constructing P2P application is how to implement efficient
distributed file searching in complex environment which implies decentralized and
huge-amount users, uncontrollable nodes with unbalanced computing capacity and
network connection. This paper presents a new distributed file search methods –
FriendSearch. FriendSearch constructs friend relations between nodes based on inter-
est similarity and limits query broadcast to nodes with similar interests.

2 Related Work

The current mainstream P2P file sharing applications can be divided into centralized
search model, broadcast search model, and hierarchical search model. Napster[1] is a
typical centralized search model. It can search effectively and reliably. But the

* This research is supported by the National Grand Fundamental Research 973 Program of

China under Grant No.2003CB314802, also the National High-Tech Research and Develop-
ment Plan of China under Grant No.2003AA142080.

266 H. Chen, Z. Gong, and Z. Huang

directory server is a single point of failure and performance bottleneck. Gnutella[2] is
a typical broadcast search model. The main disadvantage of broadcast model is high
bandwidth consumption which leads to bad scalability. Furthermore, the search re-
sults of this model is uncertain which means the documents existing somewhere in the
network maybe can not be located. Kazaa[3] and JXTASearch[4] are typical hierar-
chical search models. The model enhances the stability and scalability through super-
nodes. But the super-nodes are new performance bottle-neck. Also the communica-
tion between super-nodes depends on broadcast routing, which restricts scalability.

The problems of existing distributed file search systems include high bandwidth
consumption, poor search pattern, bad ranking of results and so on. According to
architecture, these projects can be partitioned into search in structured P2P network
and search in unstructured P2P network.

Many researches concentrate on search in unstructured P2P network, such as
Freenet[5], NeuroGrid[6], APPN[7], GS[8], Alpine[9] and so on. Freenet[5] can guar-
antee the anonymity of publisher, reader, and storage space supplier. The requests will
be routed to the most possible positions. Its performance is almost as good as DHT,
but it still has some uncertainty. NeuroGrid[6] abstracts the knowledge of documents
distribution from the search results and makes routing decision based on keywords
distribution of other nodes. The disadvantages of NeuroGrid are: the information
updating speed is slow; the result of query is uncertain; the size of route table is inter-
related with the number of files and the number of nodes in the network. APPN[7]
optimizes search process through the construction of associated rule. One kind of
simple associated rule is possession rule which means owning some special files. The
spending of establish rule and the choice strategy of rules are still problems which
APPN faces. GS[8] establishes shortcuts among nodes based on principle of interest
locality. The method is simple and effective, but it lacks inspection for large scale
network. Alpine [9] manages the sharing information by groups, and each member of
a group will evaluate other members’ trust degree according to the satisfaction with
their services. For this method the establishing of group depends on the user contact
out of the P2P network, also the scalability of group is limited.

Structured P2P network can finish search process in several limited hops, which
provide a good method for deterministic search. Some researches devote to realize
fuzzy searching in DHT network. PSearch[10] makes use of LSI (Latent Semantic
Indexing) to construct semantic space of files and maps the file vector space to CAN
space. PSearch only supports keywords query and is a promising method for text
search in distributed environment. Semplesh[11] presents a method of mapping the
RDF Triples to DHT in which every item of RDF Triples will be mapped to DHT
network once. There are problems for Semplesh such as low search efficiency, heavy
workload for popular item and lacking support for substring matching.

3 Search Based on Friend Relations

3.1 Hybrid Architecture

This paper presents hybrid architecture- HA. HA includes file search layer and meta-
data layer, in which storage and search of raw documents are based on structure P2P
while the storage and search of metadata are based on unstructured P2P network. This

 An Efficient Distributed Search Method 267

architecture combines the advantages of deterministic search in structured P2P net-
work and the advantages of fuzzy search in the unstructured P2P network. Unstruc-
tured P2P network can express easily the complex relations among the file meta-data
and meet the users’ diverse query needs. DHT network can effective solve problems
such as file moving, file replicating and download. It also supports for the discovery
of file relations.

Each node of HA participates in two kinds of networks at the same time. The con-
struction of unstructured network relies on the DHT network. The nodes publish raw
files in DHT network. Then these raw files will establish relations according to their
metadata. At last the nodes can establish friend relations according the relating of raw
files. The relations of files and friend relations between nodes belong to the metadata
layer. Based on the friend relations between nodes, most search requests can be re-
stricted in a very limited scope.

3.2 Algorithm of Constructing Friend Relations

One key problem of FriendSearch is how to construct overlay network of friend rela-
tions based on file possession relations. The basic process of constructing friend rela-
tions includes three steps. 1) First each node collects all nodes that share same files as
friend candidates in the bottom DHT network. 2) Then it ranks these friend candidates
from high to low according the number of sharing same files. 3) At last it chooses the
first k nodes as its friend nodes. If we view friend relations as directed edge, the graph
that is make of nodes and friend relations is a directed graph with high clustering
coefficient. The total overhead of this algorithm is linear with number of nodes. But
the computation is distributed. Computing overhead of each node is only linear with
its sharing files, which is obviously an acceptable overhead. At regular intervals, the
algorithm has to run. Also the algorithm can run only when the search success rate is
low enough. Simulation tests show that friend relations between nodes are very stable,
so the algorithm needs not to run with high frequency.

3.3 Search Algorithm Based on Friend Relations

Search algorithm based on friend relations includes two steps. 1) First it makes use of
two level friend relations to search. Original query nodes will broadcast query to all
its direct friend nodes. If direct friend nodes fail, the query will be forwarded to the
friend nodes of its direct friend nodes. Most requests can receive responses in first
step. 2) Then if the friend search fails, it adopts efficient DHT-based flooding search
as supplement. The search process uses cache to improve performance.

4 Simulation Test

For fully test of FriendSearch algorithm, we adopt many groups of test data and many
test measures. We use simulation data and web log data to test the performance of
pure multi-hops friend relations in section 4.1 and section 4.2.

We evaluate the performance of search algorithm using the follow targets. Success
rate denotes the proportion of success rate of search. Search Consumption is the

268 H. Chen, Z. Gong, and Z. Huang

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Search Hops

S
ea

rc
h

S
uc

ce
ss

 R
at

e

FriendSearch

BFSFLood
NeuroGrid

0 1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

1800

Search Hops

S
ea

rc
h

C
on

su
m

pt
io

n FriendSearch

BFSFLood

NeuroGrid

 Fig. 1. Hops VS Search Success Rate Fig. 2. Hops VS Search Consumption

number of peers in the system involved in query processing for each query. A smaller
query scope increases system scalability. Query hop stands for the average delay for
reply to come back.

4.1 Simulation Test Based on Simulating Data

NeuroGrid simulator [12] is a generic P2P simulator developed by Tokyo University
of Japan. It has many configurable parameters and can implement simulation of P2P
file sharing system with good expansibility. We implement FriendSearch search algo-
rithm on the base of NeuroGrid simulator.

NeuroGrid simulator has several configuration parameters and can generate differ-
ent test data. We found that test results of FriendSearch were stable. So here we just
use typical results. Simulation tests compare FriendSearch with BFSFLood[13] and
NeuroGrid[5]. BFSFlood is an improved version of flooding algorithm, which ran-
domly chooses fixed number of neighbor nodes to forward query. Figure 1 shows that
FriendSearch gains more than 80 percent search success rate at first hop, the search
success rate enhance slowly with the searching hop increased. Figure 2 shows search
consumption augment rapidly with the search hop increased, and FriendSearch keep
the lowest rising speed.

We can draw these conclusions from the test results:

 The size of route table of FriendSearch algorithm is fixed and small. NeuroGrid
algorithm can get good performance at the cost of more than one hundred of
items in its route table, so the cost of maintenance is high.

 Search success rate of FriendSearch algorithm is very high. Especially it can get
more than 80 percent success rate just at the first hop.

4.2 Simulation Test Based on Web Log

Web log data and P2P access data are similar at some ways and they both obey some
same laws. Collecting the web log data is much easier than P2P data, so many re-
searches [7] [8] adopt web log data as test data of P2P search research.

 An Efficient Distributed Search Method 269

We adopt three groups of wildly-used web log data to test FriendSearch algorithm.

 Boston [14] is the web log data of Boston University which contains 558261
records, 538 nodes and 9431 files.

 Berkeley [14] is the web log data of Berkeley University which contains
1703836 records, 5222 nodes and 116642 files.

 Boeing [14] is the web log data of Boeing Corporation which contains 4421526
records, 28895 nodes and 254240 files.

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Search Hops

S
ea

rc
h

S
uc

ce
ss

 R
at

e

Boston FriendSearch

Boston BFSFLood

Berkeley FriendSearch

Berkeley BFSFlood

Boeing FriendSearch

Boeing BFSFlood

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

Search Hops

S
ea

rc
h

C
on

su
m

pt
io

n

Boston FriendSearch

Boston BFSFLood

Berkeley FriendSearch

Berkeley BFSFlood

Boeing FriendSearch

Boeing BFSFlood

 Fig. 3. Search Success Rate Fig. 4. Search Consumption

These three groups of web log data respectively represent access case of different
scale networks. The test method is similarly with the method in [7]. The test results
are shown in figure 3 and figure 4. We can draw these conclusions from the test
results:

 Three groups of test results of FriendSearch algorithm are similar, which
shows FriendSearch algorithm’s stability.

 Simple friend relations construction can guarantee very high search success
rate. Search success rates of FriendSearch algorithm in three groups of test
data are very high, especially the searching success rate can exceeds 75 per-
cent at the first hop.

 Search consumption of FriendSearch is low and the search efficiency of
FriendSearch algorithm is high.

5 Conclusions

This paper researches on distributed file search in complex environment and presents
a new method of search sharing files. FriendSearch constructs friend relations be-
tween nodes based on search interests and sharing files. The search requests firstly are
forwarded to friend nodes. Only failed requests will continue to broadcast in DHT
flooding pattern.

Simulation tests show that FriendSearch algorithm is efficient and stable. Friend-
Search brings the performance to within an order of magnitude of improvement com-
pared with classical algorithms such as BFSFlood[13], NeuroGrid[6] and so on. The

270 H. Chen, Z. Gong, and Z. Huang

future researches include: 1) more effective algorithm of constructing friend relations.
For example it can take file rarity into count. 2) Adding semantic description on
friend relations to improve the expansibility of system.

References

1. Napster. www.napster.com. 2005.
2. Gnutella. www.gnutella.com. 2005.
3. Kazaa. www.kazaa.com. 2005.
4. JxtaSearch. http://search.jxta.org/. 2005.
5. Clarke, I., Sandberg, O., Wiley, B. and Hong T. W. Freenet: A Distributed Anonymous In-

formation Storage and Retrieval System. In Proc of the Workshop on Design Issues in
Anonymity and Unobservability, Ed. Federrath H., Berkeley, CA, July 2000.

6. Joseph, S.R.H. NeuroGrid: Semantically Routing Queries in Peer-to-Peer Networks. Inter-
national Workshop on Peer-to-Peer Computing, Pisa (2002).

7. Edith Cohen, Amos Fiat, Haim Kaplan. Associative Search in Peer to Peer Networks: Har-
nessing Latent Semantics. In Proc of INFOCOM 2003.

8. Kunwadee Sripanidkulchai, Bruce Maggs, Hui Zhang. Efficient Content Location Using
Interest-Based Locality in Peer-to-Peer Systems, In Proc of INFOCOM 2003.

9. Alpine. http://www.cubicmetercrystal.com/alpine/. 2005.
10. Chunqiang Tang, Zhichen Xu, Sandhya Dwarkada. Peer-to-Peer Information Retrieval Us-

ing Self-Organizing Semantic Over-lay Networks. In Proc of SIGCOM 2003.
11. Semplesh. http://www.plesh.net/. 2005.
12. Sam Joseph, An Extendible Open Source P2P Simulator. P2P Journal. 2003.
13. V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A Local Search Mechanism for

Peer-to-Peer Networks. In Proc of CIKM, 2002.
14. webtraces. http://www.web-caching.com /traces-logs.html.

	Introduction
	Related Work
	Search Based on Friend Relations
	Hybrid Architecture
	Algorithm of Constructing Friend Relations
	Search Algorithm Based on Friend Relations

	Simulation Test
	Simulation Test Based on Simulating Data
	Simulation Test Based on Web Log

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

