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Abstract. The Feedback-Guided Dynamic Loop Scheduling (FGDLS) algorithm
[1] is a recent dynamic approach to the scheduling of a parallel loop within a
sequential outer loop. Earlier papers have analysed convergence under the assump-
tion that the workload is a positive, continuous, function of a continuous argument
(the iteration number). However, this assumption is unrealistic since it is known
that the iteration number is a discrete variable. In this paper we extend the proof of
convergence of the algorithm to the case where the iteration number is treated as
a discrete variable. We are able to establish convergence of the FGDLS algorithm
for the case when the workload is monotonically decreasing.

1 Introduction

It is widely recognised that loops are a very important source of parallelism in many
practical applications. Since a significant overhead in many parallel implementations is
represented by load imbalance, a number of algorithms have been designed to schedule
loop iterations to processors of a shared-memory machine in an optimal way (so-called
loop scheduling algorithms).

An important class of loop scheduling algorithms is based on Guided Self-
Scheduling (Polychronopoulos and Kuck [8]) or some variant of Guided Self-
Scheduling (see for example Eager and Zahorjan [4], Hummel et al. [5], Lucco [6],
Tzen and Ni [14]). These algorithms divide the loop iterations into a relatively large
number of chunks which are assigned to processors from a central queue. One of the
motivations for this approach is the assumption that each execution of a loop is indepen-
dent of any previous executions of the same loop, and therefore has to be rescheduled
‘from scratch’. Important overheads such as additional synchronisation, loss of data lo-
cality, and reductions in the efficiency of loop unrolling and pipelining can be caused
by this approach.

The class of Affinity Scheduling algorithms (Markatos and LeBlanc [7], see also
Subramanian and Eager [9] for variants of Affinity Scheduling) is an attempt to amelio-
rate some of this loss of performance. Rather than maintaining a single central queue
these algorithms are based on per-processor work queues with exchange of work
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(chunks of the loop iteration) if required. The underlying assumption of affinity schedul-
ing algorithms remains that each execution of a parallel loop is independent of previous
executions.

Feedback Guided Dynamic Loop Scheduling (FGDLS) is a relatively recent
scheduling method ([1], [2]), which deals directly with a sequence of similar or identical
parallel loops (see Figure 1). This loop structure is very important since it frequently
occurs in a number of theoretical [10], [11] and practical applications [2]. The con-
vergence of the FGDLS method has been studied in [3] and [12]. In these papers the
workload is assumed to be a continuous positive function of a continuous argument (it-
eration number). However, the approach is artificial since in reality the workload is a
positive function of the discrete argument (iteration number).

1.1 The FGDLS Algorithm

The FGDLS algorithm aims to determine an optimal schedule, across p processors
P1,P2, ...,Pp, for the sequence of parallel loops given in Figure 1. The (unknown) work-
loads of the parallel loop are assumed to be given by the values {wi, i = 1,2, ...,n} (so
that wi is the workload of the call to the routine loop body(i)). The FGDLS algo-
rithm calculates a block partitioning of the parallel (i) loop, where lt

j and ht
j are the

lower and upper bounds of the loop block assigned to Processor j on outer iteration t.
These bounds clearly should satisfy the simple equations

lt
1 = 1; ht

p = n; lt
j+1 = ht

j + 1, j = 1,2, ..., p − 1. (1)

FGDLS starts with some initial loop bounds {(l1
j ,h

1
j), j = 1,2, ..., p} that are chosen ar-

bitrarily. At the end of the outer iteration t, the new bounds {(lt+1
j ,ht+1

j ), j = 1,2, ..., p}
are calculated from the bounds {(lt

j,h
t
j), j = 1,2, ..., p} by approximately balancing

the observed execution times. Assuming that the observed execution times {Tt
j , j =

1,2, ..., p} are given by

Tt
j =

ht
j

∑
i=ltj

wi, j = 1,2, . . . , p, (2)

a piecewise constant approximation of the workload at the iteration t can be formed as

ŵt
i =

Tt
j

ht
j − lt

j + 1
, lt

j ≤ i ≤ ht
j, j = 1,2, . . . , p. (3)

do sequential t = 1, nsteps
do parallel i=1,n

call loop_body(i)
end do

end do

Fig. 1. The FGDLS loop structure
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The piecewise constant workloads ŵt
i can be interpreted as the mean observed workload

per loop iteration index on the outer iteration t. It is this piecewise constant function
that is approximately equidistributed amongst the p processors to define the new loop
bounds {(lt+1

j ,ht+1
j ), j = 1,2, ..., p}:

ht+1
j

∑
i=lt+1

j

ŵt
i ≈ 1

p

n

∑
i=1

ŵt
i =

1
p

p

∑
k=1

Tt
k , j = 1,2, . . . , p. (4)

These new bounds also satisfy

lt+1
1 = 1;ht+1

p = n : lt+1
i+1 = ht+1

i + 1, i = 1,2, . . . , p − 1.

In order to find expressions for these new bounds two new functions are introduced
[13]. Firstly, the function f t gives the partial sums of the piecewise constant workloads

f t(i) =
i

∑
k=1

ŵt
k, i = 1,2, . . . ,n, (5)

( f t(i) is a piecewise linear function that approximates the cumulative workload), and,
secondly, the corresponding f t –inferior part function is given by [13]

f t
[](x) = i ⇔ f t(i) ≤ x < f t(i+ 1). (6)

Using these functions the upper bounds {ht+1
j , j = 1,2, ..., p} are given by

ht+1
0 = 0, ht+1

j = f t
[]

(
f t(ht+1

j−1)+W
)

, j = 1,2, ..., p, (7)

where W = 1
p ∑n

i=1 ŵi is the target (balanced) workload for each of the p processors.
It can be shown (see [13]) that the functions f t and f t

[] satisfy the following lemmas.

Lemma 1. If lt
j ≤ i ≤ ht

j then

f t(i) =
j−1

∑
q=1

Tt
q +

Tt
j

ht
j − lt

j + 1
(i− lt

j + 1). (8)

Lemma 2. If f t
(

ht
j−1

)
< x ≤ f t

(
ht

j

)
then

f t
[](x) = ht

j−1 +

[(
x −

j−1

∑
q=1

Tt
q

)
ht

j − lt
j + 1

Tt
j

]
, (9)

where f[ ] represents the inferior part function.

2 Convergence of the FGDLS Algorithm

In this section the convergence of the FGDLS algorithm is considered. For the fixed
workloads {wi, i = 1,2, ...,n} we can find the optimal bounds {(l∗j ,h

∗
j), j = 1,2, ..., p}

so that
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h∗
j

∑
i=l∗j

wi ≈ 1
p

n

∑
i=1

wi, j = 1,2, . . . , p, (10)

where l∗1 = 1; h∗
p = n; l∗i+1 = h∗

i + 1, i = 1,2, . . . , p − 1.
It can be shown that the optimal bounds also satisfy the equations:

h∗
0 = 0, h∗

j = f[]
(

f (h∗
j−1)+W

)
, j = 1,2, ..., p, (11)

where f (i) = ∑i
k=1 wk, i = 1,2, . . . ,n, represent the partial sums of the workloads (the

cumulative workload) and the corresponding inferior part function is given by

f[](x) = i ⇔ f (i) ≤ x < f (i+ 1).

The problem of convergence of the FGDLS algorithm can be stated as follows:

Convergence of Discrete FGDLS Algorithm: Given the fixed, strictly positive, work-
loads {wi, i = 1,2, ...,n} and the initial upper bounds {h1

j, j = 0,1, . . . , p}, find condi-
tions such that the upper bound sequences {ht

j}, t > 0 are convergent and limt→∞ ht
j =

h∗
j , j = 0,1, . . . , p.

Since ht
0 = h∗

0 = 0, and ht
p = h∗

p = n,∀ t > 0, we find that the convergence holds
trivially for the cases j = 0 and j = p. Recall that the upper bounds are integers so that
the sequence {ht

j, t = 1,2, ...} is convergent to h∗
j whenever, ∃t0 > 0 such that

ht
j = h∗

j ,∀t ≥ t0. (12)

Thus, we have to establish that the upper bounds ht
j are equal to the optimal bound h∗

j
from some index t0 onwards.

In the following we analyse the convergence of the FGDLS scheduling algorithm
for the case when the workloads are monotonically decreasing; we assume that the
workloads satisfy the inequalities

w1 ≥ w2 ≥ ... ≥ wn. (13)

We prove by induction that Equation (12) holds whenever Equation (13) is sat-
isfied. Firstly we show that the sequence of bounds {ht

1}, t > 0, is convergent to h∗
1.

Inductively, we assume that the sequences {ht
1},t > 0, {ht

2}, t > 0, ..., {ht
j}, t > 0 are

convergent (to h∗
1, h∗

2, . . . , h∗
j , respectively) and prove that the sequence {ht

j+1},t > 0 is
convergent to h∗

j+1.

2.1 The Convergence of {ht
1},t > 0.

Recall that the upper bound ht+1
j satisfies the equation ht+1

j = f t
[]

(
f t (ht+1

j−1)+W
)

. Since,

ht
0 = 0 and f t(0) = 0 we find that the upper bound ht+1

1 satisfies

ht+1
1 = f t

[]

(
f t(ht+1

0 )+W
)

= f t
[]

(
W

)
= ht

j−1 +

[(
W −

j−1

∑
q=1

Tt
q

)
ht

j − lt
j + 1

Tt
j

]
, (14)

where j is the index that satisfies f t (ht
j−1) < W ≤ f t (ht

j). Some simple properties of
the bounds {ht

1, t = 1,2, ...} are given in following lemma.



Convergence of the Discrete FGDLS Algorithm 237

Lemma 3. The upper bounds {ht
1, t = 1,2, ...} satisfy the following inequalities:

1.
f t(ht

j−1) < W ≤ f t(ht
j) ⇒ ht

j−1 < ht+1
1 ≤ ht

j. (15)

If the workloads decrease then

2.
ht+1

1 = ht
1 ⇒ ht+1

1 = ht
1 = h∗

1. (16)

3.
ht

1 ≤ h∗
1 ⇒ ht

1 ≤ ht+1
1 (17)

4.
ht

1 ≥ h∗
1 ⇒ ht

1 ≥ ht+1
1 (18)

Proof. From (14) we know that ht+1
1 satisfies

f t (ht+1
1 ) ≤ W < f t (ht+1

1 + 1), (19)

and from (11) h∗
1 satisfies

f (h∗
1) ≤ W < f (h∗

1 + 1).

1. When f t(ht
j−1) <W ≤ f t (ht

j) the definition of ht+1
1 , together with Equations (19) and

(15), directly gives
ht

j−1 ≤ ht+1
1 ≤ ht

j.

2. When ht+1
1 = ht

1 we have, from Equation (19), that

f t(ht+1
1 ) ≤ W < f t (ht+1

1 + 1) ⇒ f t (ht
1) ≤ W < f t(ht

1 + 1) ⇒ (20)

f (ht
1) ≤ W < f (ht

1)+ ŵt
ht

1+1 ⇒ f (ht
1) ≤ W < f (ht

1)+
∑

ht
2

i=lt2
wi

ht
2 − lt

2 + 1
. (21)

Since, the workloads are monotonically decreasing we find that

∑
ht

2
i=lt2

wi

ht
2 − lt

2 + 1
≤

∑
ht

2
i=lt2

wht
1+1

ht
2 − lt

2 + 1
= wht

1+1,

and thus
f (ht

1) ≤ W < f (ht
1)+ wht

1+1 = f (ht
1 + 1),

which implies that
ht

1 = h∗
1.

3. If ht
1 ≤ h∗

1 it follows that f t(ht
1) = f (ht

1) ≤ f (h∗
1) ≤ W . If f t (ht

1) = W then f t (ht
1) =

W < f t(ht
1 + 1) and thus ht+1

1 = ht
1. When f t(ht

1) < W , let j be the index such that
f t(ht

j−1) < W ≤ f t(ht
j), then ht

1 ≤ ht
j−1. Thus we find ht

1 ≤ ht
j−1 ≤ ht+1

1 .
4. The case ht

1 ≥ h∗
1 is similar to case 3. ♠

Equations (17, 18) establish that the upper bounds {ht
1, t > 0} behave monotoni-

cally. For example, when the upper bound ht
1 is less than, or equal to, the upper bound

h∗
1, we find that the new upper bound ht+1

1 is greater than, or equal to, ht
1.
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Lemma 4. If the workloads {wi, i = 1,2, ...,n} are monotonically decreasing then the

sequence

{
h

∑h
i=1 wi

, h = 1,2, ...,n

}
is monotonically increasing.

Proof. The difference between two consecutive terms of the sequence is given by:

h + 1

∑h+1
i=1 wi

− h

∑h
i=1 wi

=
(h + 1)∑h

i=1 wi − h∑h+1
i=1 wi

(∑h
i=1 wi)(∑h+1

i=1 wi)
= (22)

=
(h + 1)∑h

i=1 wi − h∑h
i=1 wi − h wh+1

(∑h
i=1 wi)(∑h+1

i=1 wi)
=

∑h
i=1 wi − h wh+1

(∑h
i=1 wi) (∑h+1

i=1 wi)
. (23)

Since the workloads are monotonically decreasing we find that

h

∑
i=1

wi − h ·wh+1 ≥ 0

and therefore
h + 1

∑h+1
i=1 wi

− h

∑h
i=1 wi

≥ 0.

Thus the sequence increases. ♠
Theorem 1. If the workloads {wi, i = 1,2, ...,n} decrease then the upper bounds
{ht

1, t > 0} converge to h∗
1.

Proof. Two cases are analysed in the following.

– Case 1. ht
1 ≤ h∗

1, ∀t > 0.
Equation (17) gives that ht

1 ≤ ht+1
1 , ∀t > 0. Thus the sequence of bounds {ht

1, t > 0}
increases and is bounded above by h∗

1, and therefore it converges.
– Case 2. ∃t0 > 0, such that ht0

1 ≥ h∗
1.

By induction, we prove that ht
1 ≥ h∗

1,∀t ≥ t0. Let us suppose that this holds for t
so that the upper bound ht

1 satisfy ht
1 ≥ h∗

1. Since ht
1 ≥ h∗

1 we find f t(ht
0) = 0 <

W ≤ f t(ht
1), therefore the index j from Equation (23) is 0. Equation (23) can be

re-written as:

ht+1
1 =

[
W

ht
1

∑
ht

1
i=1 wi

]
. (24)

Since, the sequence

{
h

∑h
i=1 wi

, h = 1,2, ...,n

}
increases and ht

1 ≥ h∗
1, we find that

ht
1

∑
ht

1
i=1 wi

≥ h∗
1

∑
h∗

1
i=1 wi

⇒ ht+1
1 =

[
W

ht
1

∑
ht

1
i=1 wi

]
≥

[
W

h∗
1

∑
h∗

1
i=1 wi

]
.

Since ∑
h∗

1
i=1 wi ≤ W , we find that W

∑
h∗

1
i=1 wi

≥ 1 and therefore ht+1
1 ≥ h∗

1. Therefore,

ht
1 ≥ h∗

1,∀t ≥ t0 holds.
From Equation (18) we find that ht

1 ≥ ht+1
1 , ∀t ≥ t0. Hence, the sequence of upper

bounds {ht
1, t > 0} is monotonically decreasing and is bounded below by h∗

1 so that
it converges.
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In both of the above cases we find that the sequence {ht
1, t > 0} converges. There-

fore, we find that there exists an index t0 > 0 such that the sequence is constant ht
1 =

ht+1
1 , ∀t > t0. Finally, we apply Equation (16) to obtain that ht

1 = h∗
1, ∀t > t0. ♠

2.2 The Induction Step

In this subsection we present the induction step which proves that if the sequences
{ht

k, t > 0} are convergent to h∗
k for k = 1,2, ..., j − 1 then the sequence {ht

j, t > 0}
is convergent to h∗

j . Given that the sequences {ht
k, t > 0} are convergent we know that

∃t0 > 0 such that
ht

k = h∗
k, ∀t ≥ t0, k = 1,2, ..., j − 1. (25)

Thus, for t ≥ t0 the upper bound satisfies

ht+1
j = f t

[]

(
f t(ht+1

j−1)+W
)

= f t
[]
(

f t(ht
j−1)+W

)
= f t

[]
(

f (h∗
j−1)+W

)
. (26)

Let u( j) be the index such that

f t (ht
u( j)−1) < f (h∗

j−1)+W ≤ f t (ht
u( j)).

Then the upper bounds {ht
1, t = 1,2, ...} satisfy

ht+1
1 = ht

u( j)−1 +

⎡
⎢⎢⎣
(

f (h∗
j−1)+W − f (ht

u( j)−1)
) ht

u( j) − lt
u( j) + 1

∑
ht

u( j)
i=ltu( j)

wi

⎤
⎥⎥⎦ . (27)

Lemma 5. The upper bounds {ht
j, t = 1,2, ...} satisfy:

1.
f t(ht

u( j)−1) < f (h∗
j−1)+W ≤ f t(ht

u( j)) ⇒ ht
u( j)−1 < ht+1

j ≤ ht
u( j). (28)

If the workloads decrease then

2.
ht+1

j = ht
j ⇒ ht+1

j = ht
j = h∗

j . (29)

3.
ht

j ≤ h∗
j ⇒ ht

j ≤ ht+1
j . (30)

4.
ht

j ≥ h∗
j ⇒ ht

j ≥ ht+1
j . (31)

Proof. The proof is similar to the proof of Lemma 3.
Thus, we find the same monotonic behaviour for the upper bounds {ht

j, t > 0} as
for {ht

1, t > 0}.

Lemma 6. If the workloads {w1,w2, ...,wn} decrease then the sequence⎧
⎨
⎩

h − h∗
j−1

∑h
i=h∗

j−1+1 wi
, h = h∗

j−1 + 1, ...,n

⎫
⎬
⎭ is monotonically increasing.
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Proof. The result follows directly by applying Lemma 4 for the workloads {wj, j =
h∗

j−1 + 1, ...,n}.

Theorem 2. If the workloads {wi, i = 1,2, ...,n} decrease monotonically then the se-
quence of upper bounds {ht

j, t > 0} converges to h∗
j .

Proof. We again analyse two cases.

– Case 1. ht
j ≤ h∗

j , ∀t > t0.

Based on Equation (30) we find ht
1 ≤ ht+1

1 , ∀t > t0, which means that the sequence
of bounds {ht

j, t > 0} is monotonically increasing and is bounded above by h∗
j , and

therefore it converges.
– Case 2. ∃t1 ≥ t0 such that ht1

j ≥ h∗
j .

By induction we prove that ht
1 ≥ h∗

j , ∀t ≥ t1. Let us suppose that this holds for t so
that ht

j ≥ h∗
j . Since ht

j ≥ h∗
j we find

f t(ht
j−1) = f (h∗

j−1) ≤ f (h∗
j−1)+W ≤ f t(ht

j),

therefore the index u( j) is j so that two terms in Equation (27) reduce. Equation
(27) becomes

ht+1
j = ht

j−1 +

⎡
⎢⎣W

ht
j − lt

j + 1

∑
ht

j

i=ltj
wi

⎤
⎥⎦ . (32)

Since, the sequence

{
h

∑h
i=h∗

j−1+1
wi

, h = h∗
j−1 + 1, ...,n

}
is monotonically increasing

and ht
j ≥ h∗

j we find that

ht
j − lt

j + 1

∑
ht

j

i=ltj
wi

=
ht

j − ht
j−1

∑
ht

j

i=ht
j−1+1 wi

≥
h∗

j − h∗
j−1

∑
h∗

j

i=h∗
j−1+1 wi

⇒

ht+1
j = ht

j−1 +

⎡
⎢⎣W

ht
j − ht

j−1

∑
ht

j

i=ht
j−1+1 wi

⎤
⎥⎦ ≥ h∗

j−1 +

⎡
⎢⎣W

h∗
j − h∗

j−1

∑
h∗

j
i=h∗

j−1+1 wi

⎤
⎥⎦ .

Based on ∑
h∗

j
i=h∗

j−1+1 wi ≤ W we have that W

∑
h∗

j
i=h∗

j−1+1
wi

≥ 1 so that ht+1
j ≥ h∗

j−1 +

[
h∗

j − h∗
j−1

]
= h∗

j . Therefore, ht
j ≥ h∗

j ,∀t ≥ t1.

Based on Equation (18) we find that ht
j ≥ ht+1

j , ∀t ≥ t0. Hence, the sequence of
upper bounds {ht

j, t > 0} decreases and is bounded below by h∗
j so that it converges.

Equation (29) finally gives that the upper bounds are constant, ht
1 = h∗

1, ∀t > t2. ♠
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In conclusion we have proved that

– The sequence {ht
1, t > 0} converges to h∗

1.
– If the sequences {ht

k, t > 0} converge to h∗
k for all k < j then the sequence {ht

j, t >
0} converges to h∗

j .

Therefore the sequences of upper bounds {ht
j, t > 0} converge to h∗

j for all j=1,2, ..., p.
One might reasonably expect also to prove the convergence of the FGDLS algorithm

in the case when the workload is monotonically increasing. Unfortunately, it has not
been possible to establish convergence in this case and moreover we give a counter
example that demonstrates convergence to a periodic solution in this case.

2.3 Numerical Results

In this section some numerical results are presented to illustrate the convergence of the
FGDLS algorithm. Firstly, the workloads {wi = 1001 − i, i = 1, ...,1000} are consid-
ered. Note that the workload decreases so that the FGDLS algorithm converges. The ini-
tial upper bounds are h1 = (250, 500, 750, 1000) with the corresponding lower bounds
are l1 = (1,251, 501, 751). The sequence of upper bounds {ht

j, j = 1,2,3,4} for the
first 5 iterations is given below.

t=1 250 500 750 1000
t=2 142 298 497 1000
t=3 134 292 498 1000
t=4 133 291 497 1000
t=5 133 291 497 1000

The corresponding execution times Tt
j = ∑

ht
j

i=ltj
(1000 − i), j = 1,2,3,4, are given by

t=1 218,625 156,125 93,625 31,125
t=2 131,847 121,602 119,798 126,253
t=3 124,955 124,267 124,527 125,751
t=4 124,089 124,425 124,733 126,253
t=5 124,089 124,425 124,733 126,253

and are displayed in Figure 2. In this case convergence is achieved in only 5 steps.
Secondly, we investigate the case when the workloads {wi = i, i = 1,2, ...,1000}

are monotonically increasing. The initial upper bounds are h1 = (250, 500, 750, 1000)
with corresponding lower bounds l1 = (1,251, 501, 751) The sequence of upper
bounds {ht

j, j = 1,2,3,4} for the first 6 iterations are

t=1 250 500 750 1000
t=2 499 699 856 1000
t=3 499 705 864 1000
t=4 499 706 865 1000
t=5 499 705 864 1000
t=6 499 706 865 1000
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Fig. 2. The Running Times for the Workloads wi = 1001− i, i = 1, ...,1000

Fig. 3. The Running Times for the Workloads wi = i, i = 1, ...,1000
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and the corresponding execution times Tt
j = ∑

ht
j

i=ltj
i, j = 1,2,3,4, are given by

t=1 31,375 93,875 156,375 218,875
t=2 124,750 119,900 122,146 133,704
t=3 124,750 124,115 124,815 126,820
t=4 124,750 124,821 124,974 125,955
t=5 124,750 124,115 124,815 126,820
t=6 124,750 124,821 124,974 125,955

and are displayed in Figure 3. In this case the convergence is not achieved since the
second and third upper bounds ht

2,h
t
3 are periodic. Although the algorithm does not

strictly converge, one can see that an acceptable load balance is achieved.

3 Conclusions

This paper has developed a convergence study for the FGDLS algorithm under the re-
alistic assumption that the workloads {wi, i = 1,2, ...,n} are discrete. The convergence
of the algorithm has been established in the case when the workloads are monotonically
decreasing. Two numerical examples are presented; one demonstrates convergence in
the case of a monotonically decreasing workload, the second illustrates failure to con-
verge in the case of a monotonically increasing workload.
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