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Abstract. The scheduling problem has been shown to be NP-complete in gen-
eral cases, and as a consequence many heuristic algorithms account for a myr-
iad of previously proposed scheduling algorithms. Most of these algorithms are 
designed for homogeneous computing systems. This paper presents a novel 
scheduling algorithm for heterogeneous computing systems. The proposed 
method is known as the Productive Duplication-based Heterogeneous Earliest-
Finish-Time (PDHEFT) algorithm. The PDHEFT algorithm is based on a re-
cently proposed list-scheduling heuristic known as the Heterogeneous Earliest-
Finish-Time (HEFT) algorithm which is proven to perform well with a low time 
complexity. However, the major performance gain of the PDHEFT algorithm is 
achieved through its distinctive duplication policy. The duplication policy is 
unique in that it takes into account the communication to computation ratio 
(CCR) of each task and the potential load of processors. The PDHEFT algo-
rithm performs very competitively in terms of both resulting schedules and time 
complexity. In evaluating the PDHEFT algorithm a comparison is made with 
another two algorithms that have performed relatively well, namely, the HEFT 
and LDBS algorithms. It is shown that the proposed algorithm outperforms both 
of them with a low time complexity. 

1   Introduction 

Task scheduling problems have been extensively studied for many years. However, 
due to the NP-complete nature of the task scheduling problem in most cases [1] heu-
ristic algorithms account for a myriad of existing scheduling algorithms. Therefore, 
the time complexity of a task scheduling algorithm is one of the most fundamental 
factors in determining its quality. In addition to time complexity, the minimization of 
the schedule length is another main objective of a task scheduling algorithm. Hereaf-
ter, scheduling and task scheduling are used interchangeably. 

Heuristic based scheduling algorithms are normally the ones favored by a large 
number of researchers. Three major sub categories of heuristic based scheduling are 
list scheduling, clustering and task duplication. List scheduling in the heuristic based 
category is preferred to other scheduling techniques. This is due to the fact that list 
scheduling algorithms [2], [3], [4], [5], [6], [7], [8] tend to produce competitive solu-
tions with lower time complexity compared to those of the algorithms in the other 
subcategories [9]. The two fundamental phases commonly found in list scheduling are 
task prioritization and processor selection. 



204 Y.C. Lee and A.Y. Zomaya 

This paper proposes a duplication-based scheduling algorithm known as the Pro-
ductive Duplication-based Heterogeneous Earliest-Finish-Time (PDHEFT). It is 
based on a recent list-scheduling algorithm, HEFT. The PDHEFT algorithm schedules 
tasks in a task graph for heterogeneous computing systems with a distinctive duplica-
tion policy. The duplication policy is unique in that it takes the communication-to-
computation cost ratio (CCR) of each task and the potential load of processors into 
consideration in order to avoid redundant duplications that might increase the sched-
ule length. Despite the adoption of an additional duplication phase the time complex-
ity of the PDHEFT algorithm still remains the same as that of the HEFT algorithm but 
with better quality schedules. 

The target system used in this work consists of heterogeneous processors/machines 
that are fully interconnected. The inter-processor communications are assumed to per-
form with the same speed on all links without contentions. It is also assumed that a 
message can be transmitted from one processor to another while a task is being exe-
cuted on the recipient processor which is possible in many systems. 

The remainder of this paper is organized as follows. Section 2 introduces some 
background material on scheduling problems. The proposed algorithm is described in 
great detail in Section 3. In Section 4, the evaluation results are presented and ex-
plained with conclusions following in Section 5. 

2   Scheduling Problem 

Parallel programs, in general, can be represented by a directed acyclic graph (DAG). 
A DAG, G = (V, E), consists of a set of v nodes, V, and e edges, E. A DAG is also 
called a task graph or macro-dataflow graph. In general, the nodes represent tasks par-
titioned from an application and the edges represent precedence constraints. An edge 
(i, j) ∈ E between task ni and task nj also represents the inter-task communication. 
More specifically, the output of task ni has to be transmitted to task nj in order for task 
nj to start its execution. A task with no predecessors is called an entry task, nentry, 
whereas an exit task, nexit, is one that does not have any successors. 

A task is called a ready task if all of its predecessors have been completed. A level 
is associated with each task. The level of a task is defined to be: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
=

=
∈

otherwisenlevel

nnif
nlevel

j
npredimedn

entryi

i

ij

,1)}({max

,0
)(

)(_

 (1) 

where imed_pred(ni) is the set of immediate predecessor tasks of task ni. 
The weight on a task, ni denoted as wi represents the computation cost of the task. 

In addition, the computation cost of a task, ni is on a processor, pj is denoted as wi,j. 
The weight on an edge, denoted as ci,j represents the communication cost between 

two tasks, ni and nj. However, communication cost is only required when two tasks 
are assigned to different processors. In other words, the communication cost when 
they are assigned to the same processor can be ignored, i.e., 0. The average computa-

tion cost and average communication cost of a task, ni are denoted as iw and ic ,  
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respectively. The former is the average computation cost of task ni over all the  
processors in a given system. The latter is the average communication cost between 
task ni and its successor tasks.  

Three frequently used task prioritization methods are t-level, b-level and s-level. 
The t-level of a task is defined as the summation of the computation and communica-
tion costs along the longest path of the node from an entry task in the task graph. The 
task itself is excluded from the computation. In contrast, the b-level of a task is com-
puted by adding the computation and communication costs along the longest path of 
the task from an exit task in the task graph (including the task). The only distinction 
between the b-level and s-level is that the communication costs are not considered in 
the s-level. 

The CCR is a measure that indicates whether a task graph is communication inten-
sive, computation intensive or moderate. For a given task graph, it is computed by the 
average communication cost divided by the average computation cost on a target  
system. The CCR of a task ni is defined by: 
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where iS corresponds to the number of the immediate successors of task ni. 

If a set P of p processors exists for scheduling, the earliest start time and the earli-
est finish time of a task ni on a processor pj are denoted as EST(ni, pj) and EFT(ni, pj), 
respectively. The earliest start time of task ni on processor pj is defined to be which-
ever is the maximum: the earliest available time of the processor or the communica-
tion completion time of the task of its predecessors. The predecessor of a task ni from 
which the communication completes at the latest time is called the most influential 
parent (MIP) of the task denoted as MIP(ni). The communication completion time, 
also called data arrival time of task nj from task ni is denoted as CCT(ni, nj). The 
schedule length (SL), also called makespan, is defined as max{EFT(nexit)} after the 
scheduling of v tasks in a task graph G is completed. 

3   Proposed Algorithm 

3.1   Algorithm Description 

The PDHEFT algorithm uses the same fundamental operations used by the HEFT  
algorithm, such as task prioritization and processor selection. However, the major per-
formance gain of the PDHEFT algorithm is from the distinctive duplication policy it 
proposes. The decision of the duplication is made based on two factors: the CCR of a 
task and the potential load of the processors. These factors differentiate the PDHEFT 
algorithm from other duplication based scheduling algorithms. The PDHEFT  
algorithm consists of three main phases: 
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• Task Prioritization Phase – assigns priorities and levels to tasks and arranges the 
tasks in decreasing order by b-level value. 

• Processor Selection Phase – selects the processor on which the task finishes the 
earliest. 

• Duplication Phase – determines which task to be duplicated by taking into account 
the CCR of each task and the load of the processors in the target system. 

The workings of the PDHEFT algorithm are given in Fig.  1. 

1. Compute average communication and computation costs of tasks 
2. Compute b-level values, levels and the number of tasks in each level of all tasks 
3. Sort the tasks in a scheduling list in decreasing order by b-level value 
4. while there are unscheduled tasks in the list do 
5.    Select the first unscheduled task, ni, from the list 
6.    for each processor pj in P do 
7.      Compute EFT(ni, pj) 
8.     Add EFT(ni, pj) to the processor reference list, PR in increasing order by  
finish time 
9.    endfor 
10.  Assign task ni to the processor, p* that minimizes its finish time 
11.  Remove p* from PR 
12.  if task has out-degree of two or more and the number of parallelized tasks in 
the same level of that of task ni is not greater than P then 
13.     Duplicate task ni as many as its out-degree based on duplication criteria 
14.  endif 
15.endwhile 

Fig. 1. The PDHEFT algorithm 

The time complexity of the PDHEFT algorithm is O(ep) which is identical to that 
of the HEFT algorithm. For a dense graph, the number of edges is proportional to 
O(v2). Thus, the time complexity of the PDHEFT algorithm is in O(v2p). This is far 
lower than the time complexities of the two versions of the LDBS algorithm, that are 
O(v3ep3) and O(v3ep2). 

3.2   Duplication Policy 

The duplication of a task is considered as soon as the task is scheduled for the first 
time using the processor selection procedure of the PDHEFT algorithm. 

The duplicability of the task is then checked based on its CCR and out-degree. A 
task with an out-degree of two or more is regarded as a candidate for duplication. In 
order not to increase the time complexity of the PDHEFT algorithm, duplications ap-
ply only to the task currently being scheduled. In addition, the necessary information 
for duplication is obtained during processor selection phase. 

As mentioned earlier, the duplication policy developed in this research introduces 
two distinct measures to determine if the duplication of a task is allowed. The first 
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measure is the CCR of each task in a task graph. The CCR of a task rather than the 
CCR of a task graph is used because in the PDHEFT algorithm the duplication of a 
task only concerns the task and its successor tasks, i.e. a sub-graph. It was assumed 
that the CCR of this sub-graph, therefore, is a more significant factor than the CCR of 
the task graph. This leads to the fact that there might be a noticeable difference be-
tween the CCR of a task and that of the task graph. It is to be noted that duplicating 
tasks in a ‘computation intensive’ task graph is normally impractical. 

Moreover, duplicating computation intensive tasks in a ‘communication intensive’ 
task graph may cause an increase of the output schedule. The CCR of a task is used to 
compute the allowance of the finish time of the task when duplicating. This means 
that the finish time of a task varies in a heterogeneous computing system depending 
on the processor that executes it. This allowance is an additional time that can be pro-
vided for the finish time of the task. If its finish time on the particular processor on 
which it is being duplicated is substantially larger than its minimal finish time the du-
plication of the task has a high possibility of being an unproductive. The allowance 
computation algorithm is presented in Fig. 2. 

A task is classified into four types: computation intensive, moderate, communica-
tion intensive and extremely communication intensive. This classification is con-
ducted based on the CCR of the task. The thresholds of the four types are shown in 
Fig. 2. These thresholds may need to be changed according to the target application 
model. 

if CCR of task ni < 0.5 then            /* computation intensive */ 
   Let allowance = ic  

else if CCR of task ni < 1.0 then /* moderate */ 
   Let allowance = iw  

else if CCR of task ni < 5.0 then  /* comm. intensive */ 
   Let allowance = ic  

else                                            /* extremely communication intensive */ 
   Let allowance = ic  / 2 

endif 

Fig. 2. The algorithm for computing allowance 

In addition to CCRs of tasks, the potential load of the processors in a given system 
is used to predict whether duplicating a task becomes a source of delays or interrup-
tions for the execution of remaining unscheduled tasks. 

More precisely, if there are more tasks in a level than the number of processors the 
tasks in that level are not considered for duplication. 

The duplication algorithm is shown in Fig. 3. The Duplicate function is called 
if a task satisfies the second measure of the PDHEFT’s duplication policy; that is, the 
function is called if the number of tasks in the same level as that of the task is no 
greater than the number of processors. 
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1. Duplicate( ) 
2. Compute the allowance of task ni 
3. while task ni, is not duplicated as many as the number of its out-degree and there 
are unchecked processors  do 
4.    Select pj from PR 
5.    Let allowedftime = EFT(ni, p*) + allowance 
6.    if EFT(ni, pj) < allowedftime then 
7.       Duplicate task ni on  pj 
8.    endif 
9.  endwhile 
10.end 

Fig. 3. The duplication algorithm of the PDHEFT algorithm 

4   Performance Results and Comparison 

The comparative evaluation of the PDHEFT algorithm is presented in this section. 
Comparisons have been conducted between two previously proposed scheduling algo-
rithms, HEFT and LDBS [10], and the PDHEFT algorithm. The two former are cho-
sen because they have been shown to deliver competitive output schedules. In addi-
tion, their target system configurations are the same as those used for the PDHEFT 
algorithm. 

The two performance metrics used for comparison are the normalized schedule 
length (NSL) and time complexity. Typically, the schedule length of a task graph 
generated by a scheduling algorithm is used as the main performance measure of the 
algorithm. The normalized schedule length is defined as: 

 
(3) 

4.1   Test Parameters 

The proposed algorithm and the two previously proposed algorithms, HEFT and 
LDBS are extensively experimented with various types of both randomly generated 
and well-known application task graphs. The three well-known parallel applications 
used for our experiments are the Laplace equation solver [11], the LU-decomposition 
[12] and Fast Fourier Transformation [13]. The numbers of random and well-known 
application task graphs are 1566 and 270, respectively. The common parameters used 
to populate the variations of the task graphs are: 

• 9 different CCRs of 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0 and 10.0, 
• 3 different processor heterogeneity values of 100, 200 and random. 

The processor heterogeneity value of 100 is defined to be the percentage of the 
speed difference between the fastest processor and the slowest processor in a given 
system. 
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4.2   Performance Results with Random Task Graphs 

The test results obtained from the random task graphs are presented in two different 
categories. The first category is as shown in Fig. 4 where comparisons between the 
three algorithms are conducted with various graph sizes on a computing system con-
sisting of 20 heterogeneous processors. In the second category, an increasing number 
of processors are used as shown in Fig. 5. 

Although the tests for each category are carried out with nine different CCRs as 
mentioned in Section 4.1, three significant test results are presented. As shown in 
Figs. 4 and 5, they are CCRs of 0.1, 1.0 and 10.0.  

4.2.1   Comparisons with Various Graph Sizes 
It is clearly shown in Fig. 4 that the PDHEFT algorithm delivers quite competitive 
schedule lengths irrespective of different graph sizes and CCRs. The schedule lengths 
obtained from communication intensive and moderate task graphs shown in Figs. 4a 
and 4b indicate that the PDHEFT algorithm best suits task graphs consisting of fine-
grain tasks with large communication costs. This is also true for the LDBS algorithm. 
However, its performance drops noticeably with computation intensive task graphs as 
shown in Fig. 4c. The main reason for this is because LDBS does not take CCR into 
account. It is observed that many of the duplications tend not to contribute to shorten-
ing schedule lengths when scheduling computation intensive task graphs. The 
PDHEFT algorithm, however, overcomes this drastic degradation by restricting re-
dundant duplications. It, therefore, tends to give shorter schedule lengths for computa-
tion intensive task graphs compared to those generated by LDBS. 
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Fig. 4. Average NSL of DAGs with (a) CCR = 10/1, (b) CCR = 1/1 and (c) CCR = 1/10 under 
the PDHEFT, HEFT and LDBS algorithms with respect to graph size 

The average schedule length of the PDHEFT algorithm computed based on the first 
test set shown in Fig. 4 is 11% on average and 23% at best smaller than that of the 
HEFT algorithm. It is observed that the LDBS algorithm delivers 6% smaller average 
schedule length than that of the PDHEFT algorithm for communication intensive and 
moderate task graphs. However, the PDHEFT generates an average schedule length 
that is 4% on average, 24% at best and 20% for computation intensive task graphs 
smaller than that of the LDBS algorithm. 
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4.2.2   Increasing Number of Processors 
The test results shown in Fig. 5 are obtained from the second test set, 1323 task 
graphs. The patterns that were found in Fig. 4 are re-confirmed in Fig. 5. First, the 
PDHEFT algorithm performs very reliably regardless of the different characteristics 
of task graphs. Second, as shown in Fig. 5a the LDBS algorithm tends to deliver 
longer schedule lengths than that of the PDHEFT algorithm when the processors in a 
given system are overloaded even though task graphs are communication intensive. 
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Fig. 5. Average NSL of DAGs with (a) CCR = 10/1, (b) CCR = 1/1 and (c) CCR = 1/10 under 
the PDHEFT, HEFT and LDBS algorithms with respect to increasing number of processors 

Finally, the duplication for computation intensive task graphs does not improve the 
performance of the LDBS algorithm in terms of schedule length. The average sched-
ule length of the HEFT algorithm for computation intensive task graphs as shown in 
Fig. 5c also proves that the LDBS algorithm performs some redundant duplications. 
With the second test set, the PDHEFT algorithm overall outperforms the HEFT and 
LDBS algorithms. The average schedule length of the PDHEFT algorithm is 8% on 
average and 18% at best smaller than that of the HEFT algorithm. The average sched-
ule length of the LDBS algorithm is 2% on average longer than that of the PDHEFT 
algorithm. 

4.3   Performance Results with Well-Known Application Task Graphs 

The performance results of the PDHEFT algorithm obtained from the experiments 
conducted with a wide range of different task graphs of the three well-known applica-
tions once again confirm its better practicability over the other two algorithms. As 
shown in Fig. 6 the PDHEFT algorithm achieves a consistent performance irrespec-
tive of various types of task graphs. 

Note, that the LDBS algorithm with a large number of processors tends to outper-
form both the PDHEFT and HEFT algorithms. This in fact indicates the impractica-
bility of the LDBS algorithm. More specifically, when there are relatively more tasks 
in a task graph than the number of processors in a given system, which is quite normal 
in practice, the LDBS algorithm tends to generate a longer schedule length compared 
to that of the PDHEFT and HEFT algorithms. Moreover, the performance of the 
LDBS algorithm drops noticeably when a task graph contains a number of levels on 
each of which many tasks have the same or similar upward rank as shown in Fig. 6b, 
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CCR = 5/1 CCR = 1/1 CCR = 1/5 
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Fig. 6. Average NSL of Well-known Application DAGs (a) Laplace (b) LU (c) FFT 

the performance results with the LU task graphs. This shortcoming occurs because the 
LDBS algorithm tries to duplicate even though the load of the processors is high. This 
leads to the necessity of predicting the load of the processors that is one of the main 
characteristics of PDHEFT’s duplication policy. 

5   Conclusion 

In this paper, a new duplication based scheduling algorithm, called the PDHEFT algo-
rithm was presented, for heterogeneous computing systems. The algorithm is based on 
a previously proposed and well-known algorithm, called the HEFT algorithm. A 
number of intensive experiments with various test configurations have been con-
ducted. Based on the test results, the PDHEFT algorithm showed its practicability and 
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mostly outperformed existing algorithms including HEFT and LDBS. Because of its 
robust duplication policy, it delivers competitive schedule lengths regardless of the 
characteristics of task graphs and the processor configuration in a given system. The 
robust duplication policy is achieved by taking two very influential factors of the 
scheduling process into account. They are the CCR of a given task graph and the load 
of the processors in a given system. In addition to the high quality of the output 
schedules the low time complexity of the proposed method should be highly  
attractive. 
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