
L.T. Yang et al. (Eds.): HPCC 2005, LNCS 3726, pp. 203 – 212, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Productive Duplication-Based Scheduling Algorithm
for Heterogeneous Computing Systems

Young Choon Lee and Albert Y. Zomaya

Advanced Networks Research Group, School of Information Technologies,
The University of Sydney, NSW 2006, Australia
{yclee, zomaya}@it.usyd.edu.au

Abstract. The scheduling problem has been shown to be NP-complete in gen-
eral cases, and as a consequence many heuristic algorithms account for a myr-
iad of previously proposed scheduling algorithms. Most of these algorithms are
designed for homogeneous computing systems. This paper presents a novel
scheduling algorithm for heterogeneous computing systems. The proposed
method is known as the Productive Duplication-based Heterogeneous Earliest-
Finish-Time (PDHEFT) algorithm. The PDHEFT algorithm is based on a re-
cently proposed list-scheduling heuristic known as the Heterogeneous Earliest-
Finish-Time (HEFT) algorithm which is proven to perform well with a low time
complexity. However, the major performance gain of the PDHEFT algorithm is
achieved through its distinctive duplication policy. The duplication policy is
unique in that it takes into account the communication to computation ratio
(CCR) of each task and the potential load of processors. The PDHEFT algo-
rithm performs very competitively in terms of both resulting schedules and time
complexity. In evaluating the PDHEFT algorithm a comparison is made with
another two algorithms that have performed relatively well, namely, the HEFT
and LDBS algorithms. It is shown that the proposed algorithm outperforms both
of them with a low time complexity.

1 Introduction

Task scheduling problems have been extensively studied for many years. However,
due to the NP-complete nature of the task scheduling problem in most cases [1] heu-
ristic algorithms account for a myriad of existing scheduling algorithms. Therefore,
the time complexity of a task scheduling algorithm is one of the most fundamental
factors in determining its quality. In addition to time complexity, the minimization of
the schedule length is another main objective of a task scheduling algorithm. Hereaf-
ter, scheduling and task scheduling are used interchangeably.

Heuristic based scheduling algorithms are normally the ones favored by a large
number of researchers. Three major sub categories of heuristic based scheduling are
list scheduling, clustering and task duplication. List scheduling in the heuristic based
category is preferred to other scheduling techniques. This is due to the fact that list
scheduling algorithms [2], [3], [4], [5], [6], [7], [8] tend to produce competitive solu-
tions with lower time complexity compared to those of the algorithms in the other
subcategories [9]. The two fundamental phases commonly found in list scheduling are
task prioritization and processor selection.

204 Y.C. Lee and A.Y. Zomaya

This paper proposes a duplication-based scheduling algorithm known as the Pro-
ductive Duplication-based Heterogeneous Earliest-Finish-Time (PDHEFT). It is
based on a recent list-scheduling algorithm, HEFT. The PDHEFT algorithm schedules
tasks in a task graph for heterogeneous computing systems with a distinctive duplica-
tion policy. The duplication policy is unique in that it takes the communication-to-
computation cost ratio (CCR) of each task and the potential load of processors into
consideration in order to avoid redundant duplications that might increase the sched-
ule length. Despite the adoption of an additional duplication phase the time complex-
ity of the PDHEFT algorithm still remains the same as that of the HEFT algorithm but
with better quality schedules.

The target system used in this work consists of heterogeneous processors/machines
that are fully interconnected. The inter-processor communications are assumed to per-
form with the same speed on all links without contentions. It is also assumed that a
message can be transmitted from one processor to another while a task is being exe-
cuted on the recipient processor which is possible in many systems.

The remainder of this paper is organized as follows. Section 2 introduces some
background material on scheduling problems. The proposed algorithm is described in
great detail in Section 3. In Section 4, the evaluation results are presented and ex-
plained with conclusions following in Section 5.

2 Scheduling Problem

Parallel programs, in general, can be represented by a directed acyclic graph (DAG).
A DAG, G = (V, E), consists of a set of v nodes, V, and e edges, E. A DAG is also
called a task graph or macro-dataflow graph. In general, the nodes represent tasks par-
titioned from an application and the edges represent precedence constraints. An edge
(i, j) ∈ E between task ni and task nj also represents the inter-task communication.
More specifically, the output of task ni has to be transmitted to task nj in order for task
nj to start its execution. A task with no predecessors is called an entry task, nentry,
whereas an exit task, nexit, is one that does not have any successors.

A task is called a ready task if all of its predecessors have been completed. A level
is associated with each task. The level of a task is defined to be:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
=

=
∈

otherwisenlevel

nnif
nlevel

j
npredimedn

entryi

i

ij

,1)}({max

,0
)(

)(_

 (1)

where imed_pred(ni) is the set of immediate predecessor tasks of task ni.
The weight on a task, ni denoted as wi represents the computation cost of the task.

In addition, the computation cost of a task, ni is on a processor, pj is denoted as wi,j.
The weight on an edge, denoted as ci,j represents the communication cost between

two tasks, ni and nj. However, communication cost is only required when two tasks
are assigned to different processors. In other words, the communication cost when
they are assigned to the same processor can be ignored, i.e., 0. The average computa-

tion cost and average communication cost of a task, ni are denoted as iw and ic ,

 A Productive Duplication-Based Scheduling Algorithm 205

respectively. The former is the average computation cost of task ni over all the
processors in a given system. The latter is the average communication cost between
task ni and its successor tasks.

Three frequently used task prioritization methods are t-level, b-level and s-level.
The t-level of a task is defined as the summation of the computation and communica-
tion costs along the longest path of the node from an entry task in the task graph. The
task itself is excluded from the computation. In contrast, the b-level of a task is com-
puted by adding the computation and communication costs along the longest path of
the task from an exit task in the task graph (including the task). The only distinction
between the b-level and s-level is that the communication costs are not considered in
the s-level.

The CCR is a measure that indicates whether a task graph is communication inten-
sive, computation intensive or moderate. For a given task graph, it is computed by the
average communication cost divided by the average computation cost on a target
system. The CCR of a task ni is defined by:

i
i

nsuccimedn ji

i w
S

c
nCCR ij /)(

)(_ ,∑ ∈=

(2)

where iS corresponds to the number of the immediate successors of task ni.

If a set P of p processors exists for scheduling, the earliest start time and the earli-
est finish time of a task ni on a processor pj are denoted as EST(ni, pj) and EFT(ni, pj),
respectively. The earliest start time of task ni on processor pj is defined to be which-
ever is the maximum: the earliest available time of the processor or the communica-
tion completion time of the task of its predecessors. The predecessor of a task ni from
which the communication completes at the latest time is called the most influential
parent (MIP) of the task denoted as MIP(ni). The communication completion time,
also called data arrival time of task nj from task ni is denoted as CCT(ni, nj). The
schedule length (SL), also called makespan, is defined as max{EFT(nexit)} after the
scheduling of v tasks in a task graph G is completed.

3 Proposed Algorithm

3.1 Algorithm Description

The PDHEFT algorithm uses the same fundamental operations used by the HEFT
algorithm, such as task prioritization and processor selection. However, the major per-
formance gain of the PDHEFT algorithm is from the distinctive duplication policy it
proposes. The decision of the duplication is made based on two factors: the CCR of a
task and the potential load of the processors. These factors differentiate the PDHEFT
algorithm from other duplication based scheduling algorithms. The PDHEFT
algorithm consists of three main phases:

206 Y.C. Lee and A.Y. Zomaya

• Task Prioritization Phase – assigns priorities and levels to tasks and arranges the
tasks in decreasing order by b-level value.

• Processor Selection Phase – selects the processor on which the task finishes the
earliest.

• Duplication Phase – determines which task to be duplicated by taking into account
the CCR of each task and the load of the processors in the target system.

The workings of the PDHEFT algorithm are given in Fig. 1.

1. Compute average communication and computation costs of tasks
2. Compute b-level values, levels and the number of tasks in each level of all tasks
3. Sort the tasks in a scheduling list in decreasing order by b-level value
4. while there are unscheduled tasks in the list do
5. Select the first unscheduled task, ni, from the list
6. for each processor pj in P do
7. Compute EFT(ni, pj)
8. Add EFT(ni, pj) to the processor reference list, PR in increasing order by
finish time
9. endfor
10. Assign task ni to the processor, p* that minimizes its finish time
11. Remove p* from PR
12. if task has out-degree of two or more and the number of parallelized tasks in
the same level of that of task ni is not greater than P then
13. Duplicate task ni as many as its out-degree based on duplication criteria
14. endif
15.endwhile

Fig. 1. The PDHEFT algorithm

The time complexity of the PDHEFT algorithm is O(ep) which is identical to that
of the HEFT algorithm. For a dense graph, the number of edges is proportional to
O(v2). Thus, the time complexity of the PDHEFT algorithm is in O(v2p). This is far
lower than the time complexities of the two versions of the LDBS algorithm, that are
O(v3ep3) and O(v3ep2).

3.2 Duplication Policy

The duplication of a task is considered as soon as the task is scheduled for the first
time using the processor selection procedure of the PDHEFT algorithm.

The duplicability of the task is then checked based on its CCR and out-degree. A
task with an out-degree of two or more is regarded as a candidate for duplication. In
order not to increase the time complexity of the PDHEFT algorithm, duplications ap-
ply only to the task currently being scheduled. In addition, the necessary information
for duplication is obtained during processor selection phase.

As mentioned earlier, the duplication policy developed in this research introduces
two distinct measures to determine if the duplication of a task is allowed. The first

 A Productive Duplication-Based Scheduling Algorithm 207

measure is the CCR of each task in a task graph. The CCR of a task rather than the
CCR of a task graph is used because in the PDHEFT algorithm the duplication of a
task only concerns the task and its successor tasks, i.e. a sub-graph. It was assumed
that the CCR of this sub-graph, therefore, is a more significant factor than the CCR of
the task graph. This leads to the fact that there might be a noticeable difference be-
tween the CCR of a task and that of the task graph. It is to be noted that duplicating
tasks in a ‘computation intensive’ task graph is normally impractical.

Moreover, duplicating computation intensive tasks in a ‘communication intensive’
task graph may cause an increase of the output schedule. The CCR of a task is used to
compute the allowance of the finish time of the task when duplicating. This means
that the finish time of a task varies in a heterogeneous computing system depending
on the processor that executes it. This allowance is an additional time that can be pro-
vided for the finish time of the task. If its finish time on the particular processor on
which it is being duplicated is substantially larger than its minimal finish time the du-
plication of the task has a high possibility of being an unproductive. The allowance
computation algorithm is presented in Fig. 2.

A task is classified into four types: computation intensive, moderate, communica-
tion intensive and extremely communication intensive. This classification is con-
ducted based on the CCR of the task. The thresholds of the four types are shown in
Fig. 2. These thresholds may need to be changed according to the target application
model.

if CCR of task ni < 0.5 then /* computation intensive */
 Let allowance = ic

else if CCR of task ni < 1.0 then /* moderate */
 Let allowance = iw

else if CCR of task ni < 5.0 then /* comm. intensive */
 Let allowance = ic

else /* extremely communication intensive */
 Let allowance = ic / 2

endif

Fig. 2. The algorithm for computing allowance

In addition to CCRs of tasks, the potential load of the processors in a given system
is used to predict whether duplicating a task becomes a source of delays or interrup-
tions for the execution of remaining unscheduled tasks.

More precisely, if there are more tasks in a level than the number of processors the
tasks in that level are not considered for duplication.

The duplication algorithm is shown in Fig. 3. The Duplicate function is called
if a task satisfies the second measure of the PDHEFT’s duplication policy; that is, the
function is called if the number of tasks in the same level as that of the task is no
greater than the number of processors.

208 Y.C. Lee and A.Y. Zomaya

1. Duplicate()
2. Compute the allowance of task ni
3. while task ni, is not duplicated as many as the number of its out-degree and there
are unchecked processors do
4. Select pj from PR
5. Let allowedftime = EFT(ni, p*) + allowance
6. if EFT(ni, pj) < allowedftime then
7. Duplicate task ni on pj
8. endif
9. endwhile
10.end

Fig. 3. The duplication algorithm of the PDHEFT algorithm

4 Performance Results and Comparison

The comparative evaluation of the PDHEFT algorithm is presented in this section.
Comparisons have been conducted between two previously proposed scheduling algo-
rithms, HEFT and LDBS [10], and the PDHEFT algorithm. The two former are cho-
sen because they have been shown to deliver competitive output schedules. In addi-
tion, their target system configurations are the same as those used for the PDHEFT
algorithm.

The two performance metrics used for comparison are the normalized schedule
length (NSL) and time complexity. Typically, the schedule length of a task graph
generated by a scheduling algorithm is used as the main performance measure of the
algorithm. The normalized schedule length is defined as:

(3)

4.1 Test Parameters

The proposed algorithm and the two previously proposed algorithms, HEFT and
LDBS are extensively experimented with various types of both randomly generated
and well-known application task graphs. The three well-known parallel applications
used for our experiments are the Laplace equation solver [11], the LU-decomposition
[12] and Fast Fourier Transformation [13]. The numbers of random and well-known
application task graphs are 1566 and 270, respectively. The common parameters used
to populate the variations of the task graphs are:

• 9 different CCRs of 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0 and 10.0,
• 3 different processor heterogeneity values of 100, 200 and random.

The processor heterogeneity value of 100 is defined to be the percentage of the
speed difference between the fastest processor and the slowest processor in a given
system.

 A Productive Duplication-Based Scheduling Algorithm 209

4.2 Performance Results with Random Task Graphs

The test results obtained from the random task graphs are presented in two different
categories. The first category is as shown in Fig. 4 where comparisons between the
three algorithms are conducted with various graph sizes on a computing system con-
sisting of 20 heterogeneous processors. In the second category, an increasing number
of processors are used as shown in Fig. 5.

Although the tests for each category are carried out with nine different CCRs as
mentioned in Section 4.1, three significant test results are presented. As shown in
Figs. 4 and 5, they are CCRs of 0.1, 1.0 and 10.0.

4.2.1 Comparisons with Various Graph Sizes
It is clearly shown in Fig. 4 that the PDHEFT algorithm delivers quite competitive
schedule lengths irrespective of different graph sizes and CCRs. The schedule lengths
obtained from communication intensive and moderate task graphs shown in Figs. 4a
and 4b indicate that the PDHEFT algorithm best suits task graphs consisting of fine-
grain tasks with large communication costs. This is also true for the LDBS algorithm.
However, its performance drops noticeably with computation intensive task graphs as
shown in Fig. 4c. The main reason for this is because LDBS does not take CCR into
account. It is observed that many of the duplications tend not to contribute to shorten-
ing schedule lengths when scheduling computation intensive task graphs. The
PDHEFT algorithm, however, overcomes this drastic degradation by restricting re-
dundant duplications. It, therefore, tends to give shorter schedule lengths for computa-
tion intensive task graphs compared to those generated by LDBS.

0.60

0.80

1.00

1.20

1.40

20 30 40 50 60 70 80 90 100

Number of tasks

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

20 30 40 50 60 70 80 90 100

Number of tasks

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

20 30 40 50 60 70 80 90 100

Number of tasks

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

Fig. 4. Average NSL of DAGs with (a) CCR = 10/1, (b) CCR = 1/1 and (c) CCR = 1/10 under
the PDHEFT, HEFT and LDBS algorithms with respect to graph size

The average schedule length of the PDHEFT algorithm computed based on the first
test set shown in Fig. 4 is 11% on average and 23% at best smaller than that of the
HEFT algorithm. It is observed that the LDBS algorithm delivers 6% smaller average
schedule length than that of the PDHEFT algorithm for communication intensive and
moderate task graphs. However, the PDHEFT generates an average schedule length
that is 4% on average, 24% at best and 20% for computation intensive task graphs
smaller than that of the LDBS algorithm.

210 Y.C. Lee and A.Y. Zomaya

4.2.2 Increasing Number of Processors
The test results shown in Fig. 5 are obtained from the second test set, 1323 task
graphs. The patterns that were found in Fig. 4 are re-confirmed in Fig. 5. First, the
PDHEFT algorithm performs very reliably regardless of the different characteristics
of task graphs. Second, as shown in Fig. 5a the LDBS algorithm tends to deliver
longer schedule lengths than that of the PDHEFT algorithm when the processors in a
given system are overloaded even though task graphs are communication intensive.

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

Fig. 5. Average NSL of DAGs with (a) CCR = 10/1, (b) CCR = 1/1 and (c) CCR = 1/10 under
the PDHEFT, HEFT and LDBS algorithms with respect to increasing number of processors

Finally, the duplication for computation intensive task graphs does not improve the
performance of the LDBS algorithm in terms of schedule length. The average sched-
ule length of the HEFT algorithm for computation intensive task graphs as shown in
Fig. 5c also proves that the LDBS algorithm performs some redundant duplications.
With the second test set, the PDHEFT algorithm overall outperforms the HEFT and
LDBS algorithms. The average schedule length of the PDHEFT algorithm is 8% on
average and 18% at best smaller than that of the HEFT algorithm. The average sched-
ule length of the LDBS algorithm is 2% on average longer than that of the PDHEFT
algorithm.

4.3 Performance Results with Well-Known Application Task Graphs

The performance results of the PDHEFT algorithm obtained from the experiments
conducted with a wide range of different task graphs of the three well-known applica-
tions once again confirm its better practicability over the other two algorithms. As
shown in Fig. 6 the PDHEFT algorithm achieves a consistent performance irrespec-
tive of various types of task graphs.

Note, that the LDBS algorithm with a large number of processors tends to outper-
form both the PDHEFT and HEFT algorithms. This in fact indicates the impractica-
bility of the LDBS algorithm. More specifically, when there are relatively more tasks
in a task graph than the number of processors in a given system, which is quite normal
in practice, the LDBS algorithm tends to generate a longer schedule length compared
to that of the PDHEFT and HEFT algorithms. Moreover, the performance of the
LDBS algorithm drops noticeably when a task graph contains a number of levels on
each of which many tasks have the same or similar upward rank as shown in Fig. 6b,

 A Productive Duplication-Based Scheduling Algorithm 211

CCR = 5/1 CCR = 1/1 CCR = 1/5

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of Processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of Processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of Processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

(a)

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of Processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of Processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of Processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

(b)

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of Processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of Processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

0.60

0.80

1.00

1.20

1.40

3 5 10 15 20 30 50

Number of Processors

A
ve

ra
g

e
N

S
L

PDHEFT

HEFT

LDBS

(c)

Fig. 6. Average NSL of Well-known Application DAGs (a) Laplace (b) LU (c) FFT

the performance results with the LU task graphs. This shortcoming occurs because the
LDBS algorithm tries to duplicate even though the load of the processors is high. This
leads to the necessity of predicting the load of the processors that is one of the main
characteristics of PDHEFT’s duplication policy.

5 Conclusion

In this paper, a new duplication based scheduling algorithm, called the PDHEFT algo-
rithm was presented, for heterogeneous computing systems. The algorithm is based on
a previously proposed and well-known algorithm, called the HEFT algorithm. A
number of intensive experiments with various test configurations have been con-
ducted. Based on the test results, the PDHEFT algorithm showed its practicability and

212 Y.C. Lee and A.Y. Zomaya

mostly outperformed existing algorithms including HEFT and LDBS. Because of its
robust duplication policy, it delivers competitive schedule lengths regardless of the
characteristics of task graphs and the processor configuration in a given system. The
robust duplication policy is achieved by taking two very influential factors of the
scheduling process into account. They are the CCR of a given task graph and the load
of the processors in a given system. In addition to the high quality of the output
schedules the low time complexity of the proposed method should be highly
attractive.

Acknowledgements

Professor Albert Y. Zomaya’s work is supported by an Australian Research Council
grant no. DP0452884.

References

1. Garey, M.R. and Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Co. (1979) 238–239.

2. Topcuoglu, H., Hariri, S. and Wu, M.: Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing. IEEE TPDS. V. 13. No. 3. (2002) 260-274.

3. Radulescu, A. and Gemund. A.J.C.: Fast and effective task scheduling in heterogeneous
systems. Proc.HCW (2000) 229-238.

4. Radulescu, A. and Gemund, A.J.C.: On the complexity of list scheduling algorithms for
distributed memory systems. Proc. 13th ACM Int’l Con. Supercomputing. (1999) 68–75.

5. Radulescu, A. and Gemund, A.J.C.: FLB: Fast Load Balancing for distributed-memory
machines. Proc. ICPP. (1999) 534–541.

6. Sih, G.C. and Lee, E.A.: A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures. IEEE TPDS. V. 4. No. 2. (1993)
175–187.

7. Kruatrachue, A. and Lewis, T.G.: Grain Size Determination for Parallel Processing. IEEE
Software. (1988) 23–32.

8. Hwang, J.J., Chow, Y.C., Anger, F.D. and Lee, C.Y.: Scheduling Precedence Graphs in
Systems with Interprocessor Communication Times. SIAM J. Computing. V. 18. No. 2.
(1989) 244–257.

9. Kwok, Y.K. and Ahmad, I.: Benchmarking the Task Graph Scheduling Algorithms. Proc.
First Merged Int’l Parallel Symp./Symp. Parallel and Distributed Processing Conf. (1998)
531–537.

10. Dogan, A. and Ozguner, R.: LDBS: A Duplication Based Scheduling Algorithm for Het-
erogeneous Computing Systems. Proc. ICPP. (2002) 352–359.

11. Wu, M.-Y. and Gajski, D.D.: Hypertool: A Programming Aid for Message-Passing Sys-
tems. IEEE TPDS. V. 1. No. 3. (1990) 330-343.

12. Lord, R.E., Kowalik, J.S., and Kumar, S.P.: Solving Linear Algebraic Equations on an
MIMD Computer. J. ACM. V. 30. No. 1. (1983) 103-117.

13. Cormen, T.H., Leiserson, C.E., and Rivest, R.L.: Introduction to Algorithms. MIT Press.
(1990).

	Introduction
	Scheduling Problem
	Proposed Algorithm
	Algorithm Description
	Duplication Policy

	Performance Results and Comparison
	Test Parameters
	Performance Results with Random Task Graphs
	Performance Results with Well-Known Application Task Graphs

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

