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Efficient SIMD Numerical Interpolation 

Abstract. This paper reports the results of SIMD implementation of a number 
of interpolation algorithms on common personal computers. These methods fit a 
curve on some given input points for which a mathematical function form is not 
known. We have implemented four widely used methods using vector process-
ing capabilities embedded in Pentium processors. By using SSE (streaming 
SIMD extension) we could perform all operations on four packed single-
precision (32-bit) floating point values simultaneously. Therefore, the running 
time decreases three times or even more depending on the number of points and 
the interpolation method. We have implemented four interpolation methods us-
ing SSE technology then analyzed their speedup as a function of the number of 
points being interpolated. A comparison between characteristics of developed 
vector algorithms is also presented. 

1   Introduction 

Many interpolation algorithms for various applications have been introduced in the 
literature [6]. In general, the process of determining the value of a specific point using 
a set of given points and their corresponding values is named interpolation. In other 
words, interpolation means to fit a curve on a set of points. Interpolation on large 
number of points requires a great amount of computation power and memory space. 
Parallelism is one of the most practical approaches to increase the performance of 
different interpolation methods [3, 4, 5]. 

Since the arrival of modern microprocessors with single-instruction multiple-data 
stream (SIMD) processing extensions, little effort has been made to increase the per-
formance of time-consuming algorithms using the SIMD computational model [1, 2, 
10]. In the SIMD model, processors perform one instruction on multiple data oper-
ands instead of one operand as scalar processors do. In other words, in the SIMD 
model data operands are vectors. Therefore, to reach an appropriate speedup using the 
SIMD model we should focus on packing data elements to form data vectors. 

In this paper, we show how various interpolation methods can adapt to gain 
speedup using SIMD computational model. The fact that how these methods implic-
itly allow parallelism greatly affects the amount of speedup that can be achieved by 
vectorizing them. The discussed interpolation methods are Lagrange, Newton-
Gregory forward, Gauss forward, and B-Spline. For each of these methods, a generic 
vector algorithm is designed and then implemented in assembly and C++ (using their 
SIMD instruction sets) for Pentium processor. 
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The rest of paper is organized as follows. Section 2 introduces SIMD processing 
and available technology in current SIMD microprocessors. In Section 3, four com-
mon interpolation methods are briefly introduced. The vector algorithms for SIMD 
computation of the four interpolation methods are presented in Section 4. In Section 
5, experimental evaluation of the implemented algorithms is reported. Finally, conclu-
sions and future work in this line are suggested in Section 6. 

2   SIMD Processing 

The SIMD processing model allows performing a given operation on a set of data 
instead of a single (scalar) data. Such a computational model is now supported by 
many new processors in the form of SIMD extensions. Examples of such extensions 
are Intel’s MMX, SSE, SSE2 and SSE3 technologies [7], AMD's 3DNow! technol-
ogy [8], Motorola's AltiVec technology implemented in PowerPCs, and Sun’s VIS 
technology [12]. We can assume these units as a vector processor with different 
vector sizes.  For example 3DNow! Technology uses 8 packed 64-bit register to 
perform SIMD operations. When single precision floating-point data elements are 
used, 3DNow! extension appears as a 2-element vector processing model, while SSE 
technology using 128-bit registers can perform operations on 4 single precision float-
ing-point elements simultaneously, which means a 4-element vector processing 
model. 

We will focus our implementations on one of the most popular technologies, Intel's 
SSE technology. The packed single-precision floating-point instructions in SSE tech-
nology perform SIMD operations on packed single-precision floating-point operands. 
Each source operand contains four single-precision floating-point (32-bit) values, and 
the destination operand contains results of the parallel operation performed on corre-
sponding values of the two source operands. A SIMD operation in Pentium 4 SSE 
technology can be performed on 4 data pairs of 32-bit floating-point numbers. 

In addition to packed operations, the scalar single-precision floating-point instruc-
tions operate on the low (least significant) double words of the two source operands. 
The three most significant double words of the first source operand are passed 
through to the destination. The scalar operations are similar to the floating-point op-
erations in the sequential form. It is important to mention that the proposed algorithms 
are designed to be implemented on any processor supporting vector or SIMD opera-
tions. Consequently, all algorithms are described with a parameter k, independent of 
the implementation, which represents vector size of the vector processor and, in a 
way, indicates the level of parallelism. 

3   Interpolation Methods 

In this paper, we consider four well-known interpolation methods: Lagrange, Newton-
Gregory forward, Gauss forward and B-Spline. Lagrange interpolation is one of the 
most appropriate methods to be executed on a vector processor. Moreover, the  
 



simplicity of sequential implementations makes this method be used in many  
interpolation applications. Lagrange interpolation, for a set of given points 
( , ), 0 1,m mx y m N≤ ≤ − in point x is carried out as 
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where )(xLm is called Lagrange polynomial [6], and is given by: 
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It requires a long computation time to carry out the above computation in sequen-
tial form. Hence, this interpolation method is usually implemented on a number of 
parallel systems with different topologies, such as the k-ary n-cube [3]. 

Newton-Gregory forward method is based on a difference table. The table contains 
elements as [6] 
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 and the computation for equally spaced input points can be realized as 
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where h is the difference between x values.  
Similarly, Gauss forward method uses a difference table; indeed, it operates on dif-

ferent path in the difference table. The Gauss forward interpolation for given points 

( , ), / 2 ( 1) / 2,m mx y N m N− ≤ ≤ +  can be formulated as [6] 
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B-Spline is probably one of the most important methods in surface fitting applica-

tions. It has many applications especially in computer graphics and image processing. 
B-Spline interpolation is carried out as follows [8]: 
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By applying boundary and smoothness conditions in all points, parameters f, g, h, 

and k can be obtained as: 
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while D is the result of a tri-diagonal equations system, and iii xxl −= +1 . 
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4   Implemented Algorithms 

To achieve the highest speedup, one can try to use vector operations for the interpola-
tion process as much as possible. Using vector computing independent operations on 
different data elements in a k-element vector, a speedup of k is expected. Some other 
factors on SSE technology also help us to make our algorithm gain a speedup of more 
than k due to fewer accesses to memory hierarchy, faster data fetching from internal 
cache, and better use of pipelining. Obviously, for the methods with low data depend-
encies between different steps, better speedup can be obtained.  

For any of the four methods, a well optimized vector algorithm running on a gen-
eral vector processor is designed and implemented using Pentium 4’s SSE instruction 
set. In what follows, we briefly explain the implementation of Lagrange, Newton-
Gregory forward, Gauss, and B-Spline interpolation techniques. Next section reports 
experimental results for the performance evaluation of implemented algorithms.  

For Lagrange interpolation, first, the common dividend in all Lagrange factors, 
Li(x), is computed. Each factor can be derived by dividing this common dividend with 
(x - xi). Next, for each factor the divisor is calculated. After computing Lagrange 
factors, the final value is calculated using Eq. (2). All operations involved in these 
steps can effectively exploit SIMD operations in SSE; thus, a noticeable speedup is 
expected. 

The proposed algorithm for B-Spline interpolation is based on solving tri-diagonal 
equations system associated with D values. The method is based on simultaneous 
substitution in Gauss-Jordan method solving a system of equations [9]. More detailed, 
in the first iteration, values of l and m are initialized in a completely parallel manner. 

In the second iteration, values for b' and d' are the results of elimination of 1−ix from 

i-th equation which are computed for all k values. In the last iteration back-

substitution is performed to obtain ix values. log(k) operations are necessary to elimi-

nate or back-substitute k elements. Therefore, we may expect a speedup of k / log(k), 
which is 2 for SSE technology with k = 4 (4/log(4) = 2). Figure 1 shows a pseudo 
code of the vector algorithm for B-Spline method. 
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Fig. 1. Pseudo code for B-Spline method 

For Newton-Gregory forward method, we begin with the computation of the dif-

ference table. Then, each if∆  value is multiplied by 
⎟⎟
⎠

⎞
⎜⎜
⎝
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i

s  and added to S, and the sum 

of calculated terms is computed. Adopting the same technique, we can realize the 
Gauss forward method as well. 

Both methods, Newton-Gregory and Gauss, use a sequential summation procedure 
to carry out f(x). Therefore, the parallelism is exposed only in computing the  
difference table. Because of great data dependency between successive steps in these 
methods, very high speedup cannot be expected. 
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5   Performance Analysis 

As the Intel’s SSE technology is the most common SIMD extension used in today's 
personal computers, we implemented the presented algorithms on Intel’s Pentium 4 
processor using single precision floating point. Thus, an approximate performance 
gain of 4 is expected. The speedup is computed with two different reference imple-
mentations: the SIMD C++ and assembly codes, and their equivalent sequential (non-
SIMD) codes. We analyze the performance of implemented methods by speedup 
curves as a function of the number of points being interpolated. 

The system used to perform our performance analysis had the following  
configuration: 

CPU:  Intel Pentium 4 Mobile Processor at 1.8 GHz 
Main memory: 512 MB of DDR (266 MHz) RAM 
Cache memory: 512KB L2 Cache 
Operating system: Microsoft Windows XP Professional Edition 
Compiler: Microsoft Visual Studio .NET 2003 
 
To compute the speedup for a given number of interpolated points, execution time 

of the SIMD code is divided by the execution time of equivalent sequential code. 
Figure 2 shows the speedup for Lagrange interpolation method. It is predictable 

that speedup grows as the number of input points increases because the effect of se-
quential parts of the program in the total running time decreases. The sequential parts 
of the code consist of loop control codes, initialization codes, and some serial arith-
metic operations which have a high data dependency in different steps.   

There are also fluctuations in the graph with peaks on multiple of 4, the vector 
length in SSE extension. This effect is common in register-register vector computing 
architecture [11]. When the number of interpolated points is not a multiple of 4, op-
erations on the last data block has less speedup than previous data blocks; therefore, 
the total speedup will be reduced. By increasing the number of interpolated points, 
operations on the last data block get less portion of total execution time and fluctua-
tions will diminish. Performing Lagrange interpolation on more than 50 single-
precision floating point numbers will cause the result to loose the precision. That is 
because of large number of factors in Eq. (2). Hence, the graph of Lagrange interpola-
tion is drawn only up to 50 points. 

Note that in Newton and Gauss methods, as shown in Figure 3 and Figure 4, the 
ripple in the speedup curves is negligible in contrast with Lagrange method. The rea-
son is the varying size of the difference table during computation. The table size can 
be multiple of 4 in the first step but not in following three steps. Consequently, the 
initial table size does not result in visible extra instruction execution and a speedup 
drop. 

In many applications it is required to carry out the value of interpolated curve in 
several points. In this case, a parallel algorithm is designed based on Newton-Gregory 
forward and Gauss forward methods to interpolate at k points simultaneously. In this 
implementation a higher amount of speedup is gained which is presented in Figure 5. 
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Fig. 2. Speedup of Lagrange method 
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Fig. 3. Speedup of Newton-Gregory forward method 

For B-Spline, as it was discussed in previous section, a speedup of about 2 is  
obtained. Similar to Lagrange method, fluctuations are completely visible in B-Spline 
method because of its noticeable extra process for the points. The interesting behavior 
shown in the figure 6 is the better performance achieved by the C++ code with respect 
to the assembly code. This is due to the low-performance code generated by the  
complier for sequential C++ code. 
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Fig. 4. Speedup of Gauss forward method 

Multi Point Interpolation
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Fig. 5. Speedup of Gauss and Newton-Gregory forward methods on interpolating multi points 

Finally, a comparison between the gained speedup of different methods is pre-
sented in Table 1. As it is shown in the table, Lagrange and B-Spline interpolation 
algorithms achieved the highest and the lowest speedup respectively.  

Table 1. Speedup of four interpolation algorithms for 40 input points 

 Lagrange Newton forward Gauss forward B-Spline 
Assembly Implemen-
tation 

4.44 3.17 3.24 1.56 

C++ Implementation 4.16 2.21 2.23 1.81 
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Fig. 6. Speedup of B-Spline method 

6   Conclusion 

We designed and implemented SIMD codes for four interpolation methods, namely 
Lagrange, Newton-Gregory forward, Gauss forward, and B-Spline, using Intel’s SSE 
extension in Pentium 4 processors. Our performance analysis showed a noticeable 
speedup achieved for each case, ranging from 1.5 to 4.5. 

Results showed that Lagrange method can achieve a high performance when exe-
cuted in SIMD mode. In the case of interpolating multiple points, Newton-Gregory 
forward and Gauss forward methods also exhibit a good speedup. The completely 
dependent operations in B-Spline method make it very difficult to run in a parallel 
way. 

The use of other SIMD extensions and comparing their effectiveness, for imple-
menting interpolation techniques can be considered as future work in this line. Also, 
studying other interpolation techniques and implementing them using SIMD opera-
tions is also another potential future work. 
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