UML Vs. Classical Vs. Rhapsody Statecharts:
Not All Models Are Created Equal

Michelle L. Crane and Juergen Dingel

School of Computing, Queen’s University
Kingston, Ontario, Canada
{crane,dingel }@queensu.ca

Abstract. State machines, represented by statecharts or statechart dia-
grams, are an important formalism for behavioural modelling. According
to the research literature, the most popular statechart formalisms ap-
pear to be Classical, UML, and that implemented by RHAPSODY. These
three formalisms seem to be very similar; however, there are several key
syntactic and semantic differences. These differences are enough that a
model written in one formalism could be ill-formed in another formalism.
Worse, a model from one formalism might actually be well-formed in an-
other, but be interpreted differently due to the semantic differences. This
paper summarizes the results of a comparative study of these three for-
malisms with the help of several illustrative examples. Then, we present a
classification of the differences together with a comprehensive overview.

1 Introduction

Model driven development (MDD) is a software development process that has
been gaining in popularity in recent years. MDD focuses on the models, or ab-
stractions of the software system, rather than on the final programs [20]; these
models are transformed, automatically or manually, into code. Executable mod-
els are a key component of MDD, as well as such concepts as automatic trans-
formation of models, validation of models, and standardization to enable in-
teroperability of different MDD tools (e.g., OMG’s Model Driven Architecture
initiative). Within MDD, state machines are a popular way of modelling the
behaviour of systems.

With respect to state machines, the most popular formalisms, as represented
in the research literature, are UML statechart diagrams (as specified in UML
2.0 [18]), Classical Harel statecharts (implemented in STATEMATE [9, T1]), and
a newer object-oriented version of Harel’s statecharts (implemented in RHAP-
soDY [R]). These three formalisms appear to be very similar. For instance, at
first glance, a model written in one formalism could be easily ported to one of
the other two formalisms. However, there are some subtle syntactic and seman-
tic differences between the formalisms which can lead to pitfalls. Consider, for
example, the state machines shown in Fig. [[1 The two machines are identical,
except for the notation used to represent static choice. Fig. makes use of
a junction (small filled circle); this machine is well-formed in the Classical and

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 971112 2005.
© Springer-Verlag Berlin Heidelberg 2005

98 Michelle L. Crane and Juergen Dingel

UML formalisms. Fig. shows a condition construct (circled ‘C’), which is
used by both the Classical and RHAPSODY formalisms. Ignoring the notation dif-
ference for a minute, this model is well-formed in all three formalisms. However,
the behaviour exhibited by the state machine is different for all three. When
the state machine first starts, it moves to state A, at which point the variable
x = 0. All three formalisms agree on this point. What they do not agree on is
what happens when event e occurs. In the Classical formalism, the state machine
moves to state D. In the UML formalism, the state machine moves to state B.
Finally, in the RHAPSODY formalism, the state machine moves to state C.

(a) Junction (small filled circle) (b) Conditional (circled ‘C’) used
used for static choice. Model is for static choice. Model is well-
well-formed in Classical and UML formed in Classical and RHAPSODY
formalisms formalisms

Fig. 1. Ignoring notation differences, this model is well-formed in all three for-
malisms, but is interpreted differently in all three. The classical state machine
moves to D because the priority of conflicting transitions is handled differently
(see Section B2). In UML, the junction is a static choice, i.e., the guards are
evaluated with the information available at the beginning of the entire transition.
Here, x = 0, so the state machine moves to B. In RHAPSODY, the conditional is
also a static choice, but the fact that it is enclosed in a composite state causes
it to behave as a dynamic choice (see Section B). The initial transition is a
‘microstep’; variables are evaluated at the beginning of each microstep. x = 1
when the conditional is reached and the state machine moves to C. State machine
inspired by [g]

The fact that there can be three distinct interpretations of one state machine
indicates that there is a lack of standardization between the three formalisms. It
also indicates that the task of transforming, or porting, a model from one formal-
ism to another may not be straightforward. Therefore, it is worthwhile to study
the syntactic and semantic differences between the most popular formalisms. In
this paper, we present a detailed comparison of these three formalisms, including
several illustrative examples. Our results are of interest to modellers, customers,
and tool developers because they summarize the differences between the three
most popular formalisms and thus help to avoid the pitfalls of incorrectly in-

UML Vs. Classical Vs. Rhapsody Statecharts 99

terpreted models. On the one hand, modelling and transformation tools must
correctly implement the syntax and semantics of a formalism (or more than
one, if the tool is expected to import/export models). On the other hand, the
modellers and customers who make use of models to communicate must also be
conversant in these details in order to communicate effectively.

This paper is organized as follows: Section [2 briefly describes state machines
and the three formalisms. Section Bl contains a detailed comparison of syntactic
constructs and semantic concepts which differ between the three formalisms,
while a tabular summary is presented in Section Hl Section [l discusses related
work. Finally, Section [6] contains the conclusion and contributions of this work.

2 State Machines, Statecharts and Statechart Diagrams

A finite state machine (FSM) is a model of computation that “specifies the
sequence of states an object goes through during its lifetime in response to
events, together with its responses to those events” [2| Ch. 2]. FSMs are very
useful for representing reactive systems. The term ‘finite state machine’ refers
to the model of computation, but not the diagram representing it; instead, the
traditional name for a diagram representing a FSM is ‘state diagram’ or ‘state
transition diagram’.

In the late 1980’s Harel defined a “visual formalism for describing states and
transitions in a modular fashion, enabling clustering, orthogonality, and refine-
ment, and encouraging ‘zoom’ capabilities...between levels of abstraction” [5].
These new statecharts were essentially state transition diagrams with the ad-
dition of hierarchy (also known as depth), orthogonality (also known as con-
currency) and broadcast communications [5, [I4]. Other publications by Harel
and other authors quickly followed, defining a preliminary semantics for the
statecharts formalism [I0, [19]. Far from being a final product, the statecharts
formalism evolved over the years, spawning many variants. In fact, as of 1994,
there were at least 20 variants of these statecharts [22]. In 1996, Harel revisited
the formalism, modifying some of the previous semantics [6] [@]. These state-
charts are often referred to in the research literature as simply statecharts, Harel
statecharts, or classical statecharts. Because of the fact that the semantics of stat-
echarts has evolved over the years, and the fact that there are so many variants,
it is necessary to define unambiguously which statecharts we refer to. For the
purposes of this paper, the term Classical statecharts will be used to represent
Harel’s original statecharts syntax with the newest semantics, as documented
in [6, @ [I1]. Although Harel himself states that there is no official semantics for
his statecharts [9], Classical statecharts are actually implemented in I-Logix’s
STATEMATE tool, to which Harel has contributed.

The Unified Modeling Language (UML) has become the de facto industry
standard for general-purpose modelling; it can be used for “specifying, construct-
ing and documenting the artifacts of a system” [I7, Part I]. The UML is a vi-
sual modelling language; different diagram types (sub-languages) can be used to
model various parts of the system under consideration. These diagram types can

100 Michelle L. Crane and Juergen Dingel

be sub-divided into structural and behavioural views. In addition, behavioural di-
agrams can be further sub-divided into inter-object and intra-object behavioural
views. UML statechart diagrams are one diagram type that can be used to model
intra-object behaviour, i.e., how individual model elements behave. A statechart
diagram is used to represent a state machine. The syntax and semantics of UML
state machines have remained reasonably consistent throughout UML’s history,
although there are occasionally minor modifications. We concern ourselves with
the latest draft of the UML 2.0 Superstructure specification [I§].

UML statechart diagrams are an object-based variant of Classical statecharts
[18, 16, [4]. An alternative object-based variant is one to which Harel himself has
contributed: the statechart formalism implemented in I-Logix’s RHAPSODY tool.
This formalism was created after the introduction of UML 1.1. Actually, the
RHAPSODY formalism is more closely related to the UML formalism than to
its Classical ancestor. In fact, there was cooperation between the RHAPSODY
and UML development teams, resulting in cross-pollination between the two
formalisms [} 21]. For the purposes of this paper, we concern ourselves with
RHAPSODY as it is documented in [7, §].

3 Detailed Comparison

In general, all three formalisms are similar. Basically, statechartd] are directed
graphs, consisting of states and transitions between them. Transitions may have
labels of the form event[guard]/action. All three formalisms support both orthog-
onal (AND) and sequential (OR) composite states.

These basic similarities aside, there are several syntactic and semantic differ-
ences between the three formalisms. The syntactic differences concern how var-
ious syntactic constructs are represented and their well-formedness constraints,
while the semantic differences are caused by variations in basic semantic con-
cepts. These differences can be divided into three categories, based on the type
and severity of errors that they can cause when porting statecharts from one
formalism to another. Note that a particular syntactic construct or semantic
concept can result in differences in more than one category.

Notation A construct may be common to all three formalisms and yet be rep-
resented with alternative notation. For example, a final state in UML is
represented as “a circle surrounding a smaller solid filled circle” [18], while
the Classical and RHAPSODY formalisms make use of a circled ‘T’. This cat-
egory is the least critical; after a simple notation translation, a model would
be compatible with the target formalism(s).

Well-Formedness Differences in this category are more important; they result
in models that are well-formed in one or two formalisms, but not in all three.
For instance, a construct may not be available in a particular formalism, or
a formalism may enforce additional or different constraints on a common

! In the interests of simplicity, we refer to the diagrams of all three formalisms as stat-
echarts and use the term state machine when referring to the model of computation.

UML Vs. Classical Vs. Rhapsody Statecharts 101

construct. A model could be checked for compatibility with simple syntax or
well-formedness checking. Translation and re-working of a model may make
it compatible with the target formalism(s); however, not all models can be
made fully compatible with all formalisms. For example, event triggers are
not permitted after pseudo-states in UML; however, it may be possible to
re-work the state machine to conform to this restriction. On the other hand,
simultaneous events cannot be handled simultaneously in UML; it may not
be possible to re-work a Classical state machine to mimic this behaviour
without using simultaneous events.

Executable Behaviour This is the most critical category of differences, and
the most insidious. A model may be well-formed in more than one formalism
and yet not behave exactly the same. This type of incompatibility would
not be found by simple syntax or well-formedness checking. In essence, an
incompatible model would ‘compile’, but its executable behaviour would be
other than expected, sometimes the opposite of the intended behaviour.

In order to more fully understand these categories and the potential problems
associated with each, we now examine several syntactic constructs and semantic
concepts in detail. We start with the semantic concepts because, in general, they
affect multiple constructs and the overall understanding of the models. Several
of the more interesting syntactic constructs are then examined.

3.1 Synchrony Hypothesis

Synchrony and Zero Time The (perfect) synchrony hypothesis [1] states that
a system must react immediately to external events and that the correspond-
ing output must occur at the same time [22]. The zero-time assumption follows
from the synchrony hypothesis and implies that transitions take zero time to
execute [16]. In general, Classical statecharts support both the synchrony hy-
pothesis and the zero-time assumption [22, [16] B

In UML, a transition may take time [16], although no assumptions are ac-
tually made, allowing for models with either zero- or fixed-execution time [18]
Sect. 13.3.30]. The RHAPSODY formalism mirrors that of UML in that a “step
does not necessarily take zero time” [8]. Therefore, with respect to the zero-
time assumption, it is theoretically possible that both the UML and RHAPSODY
formalisms adhere to the synchrony hypothesis.

Synchrony and Simultaneous Events By the synchrony hypothesis, Classi-
cal statecharts must be able to react immediately to external events. They can
do so, supported by the fact that different events may occur simultaneously,
and be acted upon simultaneously, in Classical statecharts [15]. However, nei-
ther the UML nor RHAPSODY formalisms support the synchrony hypothesis in

2 Note that Classical statecharts semantics, as implemented in STATEMATE, supports
two time models: asynchronous and synchronous. Only the asynchronous time model
supports zero-time transitions [9].

102 Michelle L. Crane and Juergen Dingel

this regard. Instead, both formalisms adhere to the concept of run-to-completion
(RTC), which means that each event is handled completely before the next event
is processed

It is thus impossible in a UML or RHAPSODY statechart for different events
to be handled simultaneouSIyE‘ For example, consider the statechart in Fig.
Assume that the state machine is currently in states A and C and that events el
and e2 occur simultaneously. If this were a Classical statechart, then both events
would be handled simultaneously (since they do not conflict) and the machine
would move to states B and D in one step. However, in the other two formalisms,
only one event can be handled at a time. Therefore, the state machine would
next move to either states A and D or B and C, depending on which event was

© o
EDHED
COIC)

Fig. 2. Statechart with potentially si- Fig. 3. Statechart with potentially
multaneous events conflicting transitions

3.2 Priorities of Conflicting Transitions

It is possible in all three formalisms to have conflicting transitions, i.e., a set of
enabled transitions that cannot all be fired due to conflict in their results. For
example, consider the statechart in Fig.[3. Assume that the machine is currently
in state B and that events el and e2 are generated. The two transitions enabled
by these events are in conflict because their effects conflict. For instance, if the
transition labelled e2 is taken, the state machine moves to state D, and the
transition labelled el cannot be taken.

One of the most serious differences between the UML/RHAPSODY and Classi-
cal formalisms is the handling of conflicting transitions. In Classical statecharts,
the scope of a transition is the lowest OR-state neither exited nor entered by
that transition [9, [I5]. Priority is given to the transition with the highest scope.
In the case of the statechart in Fig. [, the scope of the transition labelled el

3 In UML, “event occurrences are detected, dispatched, and then processed...one at a
time” [18, Sect. 15.3.12]. In RHAPSODY, events are handled “one by one, in order” [1].

4 Tt is however, possible for the same event to be handled simultaneously in different
regions of an orthogonal composite state.

UML Vs. Classical Vs. Rhapsody Statecharts 103

is state A, while the scope of the transition labelled e2 is the state TOP. Since
priority is given to the transition with the highest scope, event €2 is handled;
therefore, the state machine moves to state D.

In UML, a “transition originating from a substate has higher priority than
a conflicting transition originating from any of its containing states” [I8, Sect.
15.3.12]. In RHAPSODY, lower level states also get priority [7]. In this case, the
transition labelled el originates from state B, which is a substate of state A, the
origin of the transition labelled e2. Since priority is given to the substates, event
el is handled; therefore, the state machine moves to state C in both UML and
RHAPSODY.

The rationale behind the different priority schemes is not well-documented,
although it has been suggested that the lowest-first priority scheme espoused by
both UML and RHAPSODY is more object-oriented. In other words, this priority
scheme allows substates to override superstates in a way that is similar to how
subclass operations/methods can override those of the superclass [§].

3.3 Order of Execution of Actions

In all three formalisms, is it possible to list multiple actions (or behaviours) on
a transition between two states, as shown in Fig. [l Assume that the state ma-
chine is in state A, x = 0, and event e occurs. In Classical statecharts, actions on
a transition are executed in parallel, rather than in sequence [9]. Therefore, at
state B, z = 1 and y = 0, because both actions were executed simultaneously. In
UML however, the behaviour expression “may be an action sequence comprising
a number of distinct actions” and “behaviors are executed in sequence following
their linear order” [I8] Sect. 15.3.14]. Similarly, in RHAPSODY, “actions are guar-
anteed to be performed in sequential order” [§]. For both UML and RHAPSODY
therefore, at state B, z =1 and y = 5.

e/x:=x+1; y:=x*5
A >‘| B

Fig. 4. Transition with a list of actions [9]

3.4 Fork and Join

Fork and join constructs are common to all three formalisms, although the no-
tation is slightly different in Classical/RHAPSODY than in UML. Published work
on the Classical and RHAPSODY formalisms show forks and joins as simply ar-
rows with either multiple sources or multiple targets. The UML specification, as
well as the RHAPSODY 6.0 tool itself [13], show separate fork and join constructs,
which break the transitions into incoming and outgoing transitions.

104 Michelle L. Crane and Juergen Dingel

In addition to the notational differences between the formalisms, there are
several well-formedness differences. For example, actions (or any labelling) are
not permitted on the outgoing transitions of a fork in RHAPSODY. Thus, the
UML statechart in Fig. [§] would be ill-formed in RHAPSODY, even with the
alternate notation taken into account.

Fig. 5. This UML fork would be ill- Fig. 6. This Classical fork would be
formed in RHAPSODY ill-formed in both UML and RHAP-
SODY

As another example, the Classical statechart in Fig. [fl would be ill-formed
in both UML and RHAPSODY. In the first place, RHAPSODY does not allow
the labelling of transitions leaving a fork. UML does allow the placement of
actions on these transitions, but not event triggers. However, there is a much
more fundamental semantic difference between the Classical and the other two
formalisms. In the Classical formalism, the fork transition would only be taken
if all three events e, el and e2 were to occur simultaneously, which is possible
since the Classical formalism allows for simultaneous events. On the other hand,
both UML and RHAPSODY adhere to the RTC assumption; therefore, only one
event can be handled at a time.

The Classical statechart in Fig. [l would be ill-formed in UML because UML
does not allow for event triggers after the join pseudo-state. In addition, the
obvious solution of simply moving the event trigger to the incoming transitions
would not work; UML does not allow for event triggers incoming to join pseudo-
states. In fact, joins are not explicitly triggered in UML; they are only used with
completion events [21], i.e., leaving the last state in each region of an orthogonal
state. Finally, the UML statechart in Fig. Bl would be ill-formed in RHAPSODY,
since RHAPSODY does not allow for any labels on transitions coming into a join.

Fig.7. This Classical join would be Fig.8. This UML join would be ill-
ill-formed in UML formed in RHAPSODY

UML Vs. Classical Vs. Rhapsody Statecharts 105

3.5 Junction

Junction constructs are common to all three formalisms, although there are some
well-formedness differences. For example, the Classical statechart in Fig. [is ill-
formed in UML. However, it is possible to make the statechart compatible by
simply moving the event trigger to the transitions coming into the junction. In
fact, each incoming transition may even have a different event trigger.

el

e2

Fig. 9. This Classical junction can be Fig.10. This Classical junction
made compatible to UML would be ill-formed in UML and
RHAPSODY

In addition, the RT'C assumption also affects the compatibility of the junction
construct. For example, the Classical statechart in Fig. [0]is ill-formed in both
UML and RHAPSODY. The transition in question will only be triggered if both
events el and e2 occur at the same time, which is possible with Classical stat-
echarts but not with UML or RHAPSODY. In addition, UML does not allow for
event triggers on transitions outgoing from a pseudo-state. Finally, RHAPSODY
does not allow for more than one outgoing transition from a junction.

3.6 Conditional

Classical and RHAPSODY statecharts support a specific conditional construct,
such as that shown in Fig. [[1l This construct simply represents a static choice,
i.e., the guards on the outgoing transitions are evaluated before the transition
is taken. The conditional construct no longer exists in UMLE but its semantics
can be mimicked with the standard junction pseudo-state, as shown in Fig. [12|.

l91] lo1
[92] l92
Fig.11. Conditional construct sup- Fig.12. UML supports the same

ported by Classical and RHAPSODY static choice by using the junction
formalisms pseudo-state

5 The conditional construct was removed from UML 1.3, since it is equivalent to a
junction [3, Sect. 3.4.3].

106 Michelle L. Crane and Juergen Dingel

3.7 Choice

UML does allow for a dynamic choice pseudo-state, which is not equivalent to
the Classical/RHAPSODY conditional construct. Consider the UML statechart in
Fig. [3. When the state machine starts, it moves to state A and x = 0. When
event e occurs, the action on the transition is executed before the guards on the
outgoing transitions are evaluated. The state machine will thus move to state C.

Although neither the Classical nor RHAPSODY formalisms support this dy-
namic choice construct, it is possible to simulate it at least in RHAPSODY. Con-
sider the RHAPSODY statechart in Fig.[T4] In this case, the fact that RHAPSODY
makes use of microsteps [§] comes into play. The default, or initial, transition
is considered a microstep. Attributes are assigned their values at the beginning
of each microstep, so the assignment = := 1 is executed as the state machine
enters the composite state. Once the conditional is reached, x = 1, so the state
machine would move to state C.

Fig.13. UML supports dynamic Fig. 14. Dynamic choice can be sim-
choice ulated in RHAPSODY

It is very important to note that even if the conditional in Fig. were re-
placed by UML’s static choice construct (junction), the state machine would
not behave identically in UML. UML does not make use of microsteps, and the
action along the transition will not be considered when the guards are evalu-
ated [21]. If this state machine were to be evaluated in UML, it would move to
state B.

3.8 More on Compound Transitions

In Classical statecharts, any composition of pseudo-states, simple transitions,
guards and labels is permitted, but these transition compositions are constrained
for practical purposes in UML state machines [16]. Therefore, there are some
Classical statecharts which cannot be easily converted to UML. Consider, for
example, the statecharts below. Fig. shows a compound transition between
two states. Both transitions are labelled with an event trigger and an action.
In the Classical formalism, the transition coming into the junction cannot be
executed without also executing the transition coming out of the junction [9].
Therefore, this compound transition is equivalent to the single transition in
Fig. which is labelled with the conjunction of two events, and a pair of
resultant actions.

UML Vs. Classical Vs. Rhapsody Statecharts 107

(a) Compound Transition (b) Conjunction of Events

Fig. 15. Sample compound transition from Classical statecharts and its equiva-
lent single transition (with conjunction of events) [J]

Neither of these equivalent state machines would be well-formed in UML.
On the one hand, the state machine in Fig. cannot be interpreted because
UML does not allow for the conjunction of events. On the other hand, the state
machine in Fig. [I5(a)| also cannot be interpreted because UML does not allow
for triggers on transitions leaving a pseudo-state [I8] Sect. 15.3.14].

4 Comparison Summary

Table [l summarizes the findings of the previous section, as well as results for
some other syntactic constructs. The left-hand columns of the table summarize
the syntactic and semantic differences. UML 2.0 is used as the baseline, with
Classical and RHAPSODY both being compared to it. The right-hand columns
indicate in which potential problem categories each construct and concept fall:

— The notation category indicates differences which can be easily managed,
i.e., a model in one formalism can be easily ported to the other formalisms
with a simple notation translation.

— Differences in the well-formedness category are more serious. Sometimes it
will be possible to modify a model to make it compatible to another formal-
ism, e.g., the UML statechart in Fig. [[2 represents the Classical/ RHAPSODY
statechart in Fig. [[1l Unfortunately, not all models can be made compatible,
e.g., the Classical statechart in Fig. [l cannot be translated into an equivalent
UML statechart.

— Finally, differences in execution behaviour are the most serious of all. This
is not because they imply a model cannot be ported to another formalism,
but because a model designed with constructs/concepts from this category
can be well-formed in more than one formalism and yet behave differently in
each. The statecharts in Fig. [[lare prime examples of this particular pitfall.

Obviously, problems caused by well-formedness differences can also cause
problems in execution behaviour. For example, a UML statechart with deferred
eventsﬁ would be ill-formed in the other two formalisms. However, if the deferred

5 Normally, when an event occurs, it either matches the event trigger on some transi-
tion and is handled, or it does not match any trigger and is ignored. However, the
use of deferred events allows the state machine to recognize certain events (which
do not trigger transitions) and postpone responding to them.

108

Michelle L. Crane and Juergen Dingel

Table 1. Summary of differences between Classical, UML and RHAPSODY stat-
echart formalisms. Left-hand columns summarize syntactic and semantic differ-
ences. Right-hand columns indicate the severity of problems caused by these

differences
Construct/Concept |[UML|Class.|RHAP.|Note| [Notation|Well-Form.|Behaviour
Syntax
States
entry/exit actions) ©® 1 v
do-activity [) © © 2 v
deferred events () ® v
Pseudo-states
initial [[[3
final [) [[) 4 v
fork ([O) O] 5 v v
join [) O] O] 5 v v
shallow history [] O] ® 6 v
deep history) ® ® 6 v
junction (static) [) [) © 7 v v
conditional (static) | ® + + 8 v v
choice (dynamic) () ® ® v
Transitions
event trigger [© 9 v
action (behaviour) () O] () 1 v
completion () @ 10
Semantics
simultaneous events | ® + ® 11 v v
simultaneous actions| ® + & 12 v
priority [] O) [) 13 v

1 Multiple actions are permitted on a transition (or as entry/exit actions) in all formalisms; see
Section B:3] for how execution of these actions differs.

2 Classical and RHAPSODY offer a ‘static reaction’ construct, which may also have triggers and
guards. In addition, Classical statecharts allow multiple (potentially simultaneous) static reac-
tions for a particular state [L1l Sect. 6.1.1].

3 Called ‘default’ [9].

4 Called ‘termination connector’; symbol is a circled “T” [11, [7].

5 Notation is slightly different. See Section [3.4l

6 UML allows history in orthogonal states. RHAPSODY does not support shallow history.

7 Not used for static choice in RHAPSODY. See Section B-5]

8 Equivalent to junction; removed from UML [3] Sect. 3.4.3]. See Section [3:6

9 Classical allows conjunction and negation of triggers [23], as well as disjunction. UML does
not permit conjunction or negation [23| [16]. RHAPSODY does not support conjunction [7] or
disjunction [12], or presumably, negation.

10 Completion events and transitions are not mentioned in Classical or RHAPSODY statecharts;
although null transitions are permitted.

11 See Section 311

12 See Section [Z31

13 See Section 321

Legend for Left-Hand Columns
Symbol Description

supported, with little or no difference from UML 2.0
supported, with considerable difference from UML 2.0
definitely not supported (direct evidence)

presumably not supported (indirect evidence)

not supported by UML, but supported by other formalism(s)

+O|®|CO|®

UML Vs. Classical Vs. Rhapsody Statecharts 109

events were simply removed, the state machine would not behave as expected.
In this case, the execution behaviour problem would not be indicated in Table [T}
since the well-formedness problem itself alerts modellers of the mismatch and
thus encourages them to ensure that a ported model is well-formed and behaves
as expected. Instead, the behavioural problems indicated in Table[l are in addi-
tion to any notational or well-formedness problems for that construct/concept,
and not caused by them.

Not only does this table present a comprehensive summary of the differences
between the three formalisms, but it also brings to light several facts, such as:

— RHAPSODY is much syntactically and semantically closer to UML than to
its Classical ancestor, especially with respect to behavioural semantics. This
means that models can be more easily ported between UML and RHAPSODY
than between either of these formalisms and Classical statecharts.

— UML is the only formalism that allows for dynamic choice.

— Many of the well-formedness and execution behaviour differences are indi-
rectly caused by the fact that UML and RHAPSODY do not support simul-
taneous events or actions, e.g., with respect to do-activities, forks, joins,
junctions, and event triggers.

— Although the priority scheme between the Classical and UML/Rhapsody
formalisms is inverted, it does not cause any notation or well-formedness
problems with the syntactic constructs. In other words, the fact that a model
would behave differently due to the opposite priority schemes would not be
found by a syntax or well-formedness checker.

5 Related Work

The UML 2.0 Semantics Project is an international collaboration including IBM
(Canada, Germany, Israel), Queen’s University (Canada), the Technical Univer-
sity of Munich (Germany), and the Technical University of Braunschweig (Ger-
many). The purpose of this project is to define a formal semantics of UML 2.0.
Under the auspices of this project, we have initiated an effort to survey, catego-
rize and compare semantic approaches for formalizing state machine behaviour.
In order to critique these approaches, we needed a detailed understanding of the
syntax and intended semantics of state machines. During our literature review, it
became apparent that Classical, UML and RHAPSODY statecharts could not be
considered equivalent, even though at first glance, they appear almost identical.

Unfortunately, although there is much research relating to these formalisms,
there is no definitive comparison between them. The most detailed comparison is
a bulleted list in an older UML specification [16], Sect. 2.12.5.4], which is not even
included in the new UML 2.0 specification. Other sources offer one- or two-line
high-level comparisons between Classical and UML statecharts, without going
into great detail. The bulk of the research presented in this paper is thus a result
of detailed inspection of the UML specification [I8], as well as key documents
relating to the Classical [5], 6] O] 11] and RuAapsoDpy [7, [§] formalisms.

110 Michelle L. Crane and Juergen Dingel

It should be noted that there are several other statechart-like formalisms
linked to specific tools, such as RoseRT, AnyStates, LabVIEW, SmartState, etc.
We have not considered these latter formalisms for two reasons: 1) many of these
tool-specific formalisms claim to support UML and thus could be considered a
subset of the UML formalism; and 2) these tools are not very well represented
in the research literature.

6 Conclusion

There are currently three popular formalisms for modelling state machines: UML
statechart diagrams, Classical statecharts and RHAPSODY statecharts. Modellers
may adhere to MDD without being restricted to one particular formalism. In gen-
eral, the similarities between Classical statecharts, UML statechart diagrams,
and the statecharts implemented by the RHAPSODY tool are enough to imply
to the non-expert that a state machine modelled in one formalism can be inter-
preted in the other formalisms. Unfortunately, this is not necessarily the case;
there are enough syntactic and semantic differences between the formalisms to
cause problems when sharing models.

Some problems are caused by simple notation differences and can be solved
with a translation. Some problems cause well-formedness issues; occasionally,
these problems can be solved with translation or re-working of the model. Oc-
casionally, these problems cannot be solved, but at least their presence can be
identified by syntax or well-formedness checks. Finally, some problems cannot
be identified by such checks; these are the most insidious problems and result in
well-formed models which behave differently in different formalisms.

The results of this research are of interest to modellers, tool developers, and
end users of statecharts and statechart diagrams for the following reasons:

— Modellers should be aware of how their models will be interpreted in different
formalisms. This is especially important with respect to execution behaviour
issues, where a modeller might be expecting a different behaviour than that
exhibited by a model. In the same vein, statecharts can be used as a commu-
nication medium between modellers and their customers, or end users. Users
may interpret these models differently, based on an alternate formalism with
which they are familiar. Indeed, the users may not even be aware that their
interpretation is different, leading to a modeller/customer disconnect, which
may not be noticed.

— Similarly, models might be shared between modellers, or ported from one
modelling environment to another. If the participants are not aware of the
potential problems of notation, well-formedness and execution behaviour,
these models cannot be shared or ported accurately.

— Finally, tool developers should also be aware of these differences and po-
tential problems in order to gear their tools to particular formalisms. Tool
developers may also offer import/export capabilities; our work indicates the
parts of a model that must be translated or otherwise modified. In addition,

UML Vs. Classical Vs. Rhapsody Statecharts 111

the development of syntax and well-formedness checkers can benefit from
knowledge of these differences.

Future work on this particular topic includes adding in the formalisms sup-

ported by tools such as RoseRT, AnyStates, LabVIEW, SmartState, etc. Another
possible avenue is to investigate the possibility of creating automatic or guided
translations between the different formalisms.

Acknowledgements

We would like to acknowledge the invaluable assistance of Bran Selic from IBM
Rational Software Canada. This research is supported by the Natural Sciences
and Engineering Research Council of Canada and the IBM Centers for Advanced
Studies.

References

1]
2]
3]

[4]

[5]

(6]

[7]

8]

[9]

[10]

G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
design, semantics, implementation. Science of Comp. Prog., 19:87-152, 1992.

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

B.P. Douglass. Real Time UML. Object Technology Series. Addison-Wesley, third
edition, 2004.

M. Gogolla and F. Parisi-Presicce. State diagrams in UML: A formal semantics us-
ing graph transformations. In Proc. Workshop on Precise Semantics for Modelling
Techniques, pages 55-72. Technische Universitdt Miinchen, TUM-19803, 1998.

D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231-274, 1987.

D. Harel. Some thoughts on statecharts, 13 years later. In Proceedings of the 9th
International Conference on Computer Aided Verification (CAV’97), LNCS 1254,
pages 226—231. Springer, 1997.

D. Harel and E. Gery. Executable object modeling with statecharts. Computer,
30(7):31-42, 1997.

D. Harel and H. Kugler. The RHAPSODY semantics of statecharts (on, on the
executable core of the UML) (preliminary version). In SoftSpez Final Report,
LNCS 3147, pages 325-354. Springer, 2004.

D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293-333, 1996.

D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the formal semantics of
statecharts. In Proc. of the 2nd IEEE Symposium on Logic in Computer Science,
pages 54—64. Computer Society Press of the IEEE, 1987.

D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: the STATE-
MATE Approach. McGraw-Hill, 1998.

I-Logix. Rhapsody 6.0 User Guide.

I-Logix. Tutorial for Rhapsody in J (Release 4.1 MR2), 2003.

G. Liittgen, M. von der Beeck, and R. Cleaveland. A compositional approach to
statecharts semantics. In Proc.8th ACM SIGSOFT Int’ll Symposium on Founda-
tions of Software Engineering, pages 120-129. ACM Press, 2000.

112

[15]
[16]
[17]
18]

[19]

[20]

[21]
[22]

Michelle L. Crane and Juergen Dingel

E. Mikk. Semantics and Verification of Statecharts. PhD thesis, Christian-
Albrechts University of Kiel, 2000. Bericht Nr. 2011.

OMG. OMG Unified Modeling Language specification. Adopted Formal Specifi-
cation formal/03-03-01, Object Management Group, 2003. Version 1.5.

OMG. UML 2.0 infrastructure specification. Technical Report ptc/03-09-15,
Object Management Group, 2004.

OMG. UML 2.0 superstructure specification. Technical Report ptc/04-10-02,
Object Management Group, 2004.

A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In
Proc. Int’l Conf. on Theoretical Aspects of Computer Software, LNCS 526, pages
244-264. Springer, 1991.

B. Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19—
25, 2003.

Bran Selic. Personal Communication, March 2005.

M. von der Beeck. A comparison of statecharts variants. In Formal Techniques
in Real-Time and Fault-Tolerant Systems, LNCS 863, pages 128-148. Springer,
1994.

[23] M. von der Beeck. A structured operational semantics for UML-statecharts. Soft-

ware and Systems Modeling, 1(2):130-141, 2002.

	Introduction
	State Machines, Statecharts and Statechart Diagrams
	Detailed Comparison
	Comparison Summary
	Related Work
	Conclusion

