

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 69-83, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Composing Domain-Specific Languages for
Wide-Scope Software Engineering Applications

Jacky Estublier, German Vega, Anca Daniela Ionita

LSR-IMAG, 220, rue de la Chimie BP5338041 Grenoble Cedex 9, France
{jacky.estublier, german.vega, Anca.Ionita}@imag.fr

http://www-imag.fr

Abstract. Domain-Specific Languages (DSL) offer many advantages over gen-
eral languages, but their narrow scope makes them really effective only in very
focused domains, for example Product Lines. The recent Model Driven Engi-
neering (MDE) approach seeks to provide a technology to compose and com-
bine models coming from different metamodels. Adapted to DSL, it means that
it should be possible to compose “programs” written in different DSLs, which
will enable the use of the DSL approach to build applications spanning different
domains. The paper presents the Mélusine environment, where such a composi-
tion technology has been developed and experimented.

1 Introduction

Most domain engineering approaches emphasize domain modeling as an important
mechanism for the development of product families. Domain-specific modeling ad-
dresses this issue by designing languages specifically tailored to directly represent the
concepts of an application domain.

Domain-Specific Languages (DSL) [1] have several advantages over general-
purpose languages:
• They raise the level of abstraction, by proposing constructs directly related to ap-

plication domain concepts.
• They provide a notation (graphical or not) close to the practitioners’ natural way of

thinking.
• They propose specialized tools (like optimizers, analyzers, editors) that embed

much domain knowledge and thus provide better support for practitioners, which
are not necessarily professional software engineers.

• They enable the partial automation of large parts of the development process, in-
creasing productivity.
 General-purpose languages propose generic, low-level concepts, so that develop-

ing an application requires lengthy and heavy programming, but they can be used for
a very large range of applications, such that the development of high quality environ-
ments and tools becomes economically feasible.

In contrast, to be effective, a DSL must target a narrow and well-scoped domain;
given the cost of the upfront domain analysis and of the development of the environ-
ment and tools, DSLs become economically viable only if many applications are to be

mailto:}@imag.fr

70 Jacky Estublier, German Vega, and Anca Daniela Ionita

built inside the targeted domain. This compromise is the major limitation of DSL in
practice. This limitation can be overcome in two ways :
• reduce the cost of developing tools,
• develop a large number of applications in the domain.

Programming languages address the first point, generating the tools from a formal
DSL specification; Product Lines address the second point, emphasizing variations
and features. In this paper, we present an alternative and complementary approach,
based on the development of generic reusable domains which can be composed for
developing wide-scope applications. We illustrate the approach by our environment -
Mélusine - in which these solutions have been implemented and tested in real size in-
dustrial projects.

The paper is organized as follows: section 2 gives some background information
and places our approach in the context of language and MDE technologies, section 3
presents our conceptual domain approach, section 4 is devoted to the subject of do-
main composition and evolution; the paper ends with related works and conclusions.

2 Languages and Models

Domain-Specific Languages (DSL) is a technology that takes its roots in two techno-
logical domains: programming languages and models. Their strength and weaknesses
are briefly analyzed in this section, before taking a closer look at DSL.

2.1 The Language and Compiler Technology

Programming languages heavily rely on a technology based on grammars. A grammar
G is a finite set of production rules. A language L(G) is defined by induction, as the
set of sentences obtained by the reflexive and transitive closure of the derivation rela-
tionship, from an axiom. A sentence s is said to conform to the grammar G if there
exists at least one sequence of derivations, from the axiom, that produces s; s is said
to pertain to L(G).

In this sense, a grammar can be seen as the model of a programming language and
the language as the set of all possible sentences (programs) conforming to that model
(Fig.1).

The main lesson from the language domain is that grammars themselves can be
seen as sentences in a (meta) language (e.g., EBNF - Extended Backus-Naur Form),
defined by another (meta) grammar and compiled by another (meta) compiler. This
meta-compiler can automatically generate, for a given grammar, the corresponding
syntactic analyzer. For example, this is how Yacc and Lex work [2]. Yacc defines a
metamodel for algebraic grammars; since it is formally defined, the algorithms can be
proved to be correct and can also be optimized.

The success in languages can be measured by the fact that, on one side, compilers
are now trusted and efficient and, on the other side, (simple) languages can be easily
built, using meta-compilers. The major lessons are the following:
• Formal meta-grammars enable creating generators, making it easy to produce reli-

able compilers.

Composing Domain-Specific Languages 71

• Conformity is checked, based on the grammar.
• The semantic domain consists of logic and mathematics.

2.2 Modeling: The MDE Approach

MDE, as depicted in Fig. 1, presents many similarities to languages, except that the
meta-meta level is not a grammar definition language, like EBNF, but a model defini-
tion language, like MOF.

The first fundamental difference is that modeling focuses on the relationship be-
tween the model and the modeled system, while languages do not consider directly
the relationship between a program and reality. In fact, many definitions of model re-
fer to this relationship, a model is usually defined as “a simplification of a system
built with an intended goal in mind. The model should be able to answer questions in
place of the actual system ” [3].

It is important to notice that the Model_of relationship is also fundamental to DSL.
Indeed, some of the alleged benefits of DSL stem from the fact that there is a close,
intentionally, direct link between the program and the modeled reality in the domain.

Interestingly enough, current work in MDE has shifted its emphasis from Model_of
to Conform_to [4] and recognizes that a metamodel is “a model that defines the lan-
guage for expressing a model” [5].

Programming Language

 Grammar Language

Program

Grammar Definition

Grammar

Meta Model
(Language definition)

All possible models
(Language)

Model System

Model_Of

Conform_To
Pertains

Model_Of

Meta Meta Model
(MModel definition)

All possible MM
(MetaModeling language)

Conform_To
Pertains

Model_Of

Image_of Element

Programming Languages Model Driven Engineering
Fig. 1. MDE fundamental relationships

In contrast with programming languages, MDE makes the assumption that a single
model can have different views and that the target system is described by many dif-
ferent models, possibly in different metamodels. Therefore, instead of considering a
single source and target language, MDE considers that many source models can pro-
duce one or more new models.

72 Jacky Estublier, German Vega, and Anca Daniela Ionita

2.3 Domain-Specific Languages (DSL)

DSL can thus be seen from a programming language or from an MDE perspective.
The fundamental difference lies in the relationship between a model (a program) and
the modeled system (the meaning of the program).

2.3.1 Model Meaning and Program Semantics
Consider the following Java method (seen as a model):

int m(int c, int d) {return c*10 + d;} . (1)

Its metamodel is the definition of the Java language [6]. Java syntax is defined
through a grammar; formal semantics can be defined through denotations toward
some mathematical semantic domain. Method m is a (valid) Java program, therefore
it satisfies Conform_to for the Java specification and, as such, is perfectly defined;
however, m gives no information about its “real world” meaning. A virtual machine
(the JVM – Java Virtual Machine) recognizes the Java concepts, but ignores what the
program means. In this example, a possible meaning for m could be that it computes
the speed of an object, occuring during c time, with d initial speed. Interpretation of
10 is earth acceleration (9.81 ms2); interpretation of c is a time in seconds, etc. This
simple example shows that formal semantics (i.e., models and metamodels, per se) do
not give any information on the meaning of the modeled system.

The major difference between a program and a model is that a model makes sense
only if an interpretation is available (relationship Image_Of, Fig. 1 and Fig. 2), while
a program's formal semantics do not provide any information about what it means.

2.3.2 Metamodel and Domain Semantics
An important characteristic of DSL is that some primitive constructs of the language
have an embedded interpretation in the target domain. A DSL for our simple example
could include a primitive construct for the concept of speed with its corresponding
operators. A DSL can be seen as a language where some concepts have a predefined
interpretation, i.e., these concepts are intended to be used as Image_Of (see Fig. 2)
their corresponding entities in the target domain.

Following the programming language approach, from the metamodel, a parser is
developed, which identifies the language elements. In a DSL, these elements consti-
tute the range of an interpretation relationship; the elements in the application domain
constitute its destination. Therefore, in a DSL, the metamodel makes explicit the
model elements for which a relevant interpretation relationship should be established
toward the domain elements.

To a large extent, a DSL metamodel is a model of the application domain.
In semiotics and linguistics, semantics is defined as “the study that relates signs to

things in the world” [7]. From that point of view, the interpretation relationship can be
considered the semantics of a DSL. We will call it the domain semantics. In summary,
we can identify the following important characteristics of a DSL:
• The metamodel is a model of the domain.
• Semantics can be defined with respect to (1) a mathematical domain (formal se-

mantics) and (2) the application domain (domain semantics).

Composing Domain-Specific Languages 73

The domain semantics identifies the model entities that are Image_of entities in the
system and defines their behavior. These entities and their relationships constitute the
structural part of the model. The interpretation relationship allows interpreting this
structure as a description of the target system structure at a given point in time. The
structural part of a model is a model of a state of the system.

Covers

Meta Model
(DomainModel)

DSL
(All Models)

Model Model_Of

Model_Of

Pertains
Conform_To

Domain

Transformed
Operates upon

Image_Of

Domain
MentalModel

Abstraction
(mental)

Model_Of
(informal)

ProgramCompiler Output

Input

System

Element
Fig. 2. The DSL Approach

The formal semantics serve essentially to specify the behavior, i.e., the operations
on the model entities that change the structure of the model. The interpretation rela-
tionship allows interpreting this model change as a system change. The behavioral
part of the model is a model of the system dynamics, i.e., it describes how the system
(is supposed to) evolve.

2.4 The Composition and Evolution Problems

The application domain evolves under market and technology pressures and, there-
fore, the domain model should evolve accordingly. Unfortunately, most tools are
based on the domain model and changes have dramatic consequences: rewrite the
compiler, editors, translators, programs (models) and so on. In practice, the cost of
such changes is so high that they are not performed. It is not easy to extend the com-
piler, nor the other associated tools, even for simple changes.

A similar scenario arises when we try to compose different domains. While the
composition can be clearly specified at the domain model level, it is not easy to spec-
ify the corresponding modifications at the compiler level. Indeed, the difficulties are
not at the meta and model levels; the problems arise at the implementation level, be-
cause there is another level of abstraction. This problem is well known and extensible
(DSL) languages and/or composition of existing DSLs [9] have been proposed. These
technologies have not been successfully deployed yet.

74 Jacky Estublier, German Vega, and Anca Daniela Ionita

3 The Mélusine Approach

Our approach to domain composition and evolution follows the underlying trend in
DSL and MDE: perform as many activities as possible at the level of the domain
model, not at the implementation level. Both DSL and MDE propose to perform not
only design, but also a part of the implementation in the problem area, since problem
concepts are directly available in the programming (modeling) language. Our proposi-
tion pushes this idea a step further: not only the language, but also the run-time archi-
tecture is based on the conceptual model of the domain and consequently, domain
composition can be performed at an abstract level, using high-level domain concepts.

Mélusine emphasizes two new requirements: (1) Reuse existing components and
tools and (2) Support different types of evolution.

3.1 Conceptual Domains

As in DSL, Mélusine relies on a metamodel, which is a domain model, and assumes
that there is an interpreter for that metamodel. A model is seen as a “program” inter-
preted by this interpreter; the dynamic part of the model specifies the behavior of enti-
ties and the structural part defines the state of the system, see section 2.3.2.

An important characteristic of most DSLs is that the metamodel encapsulates most
(if not all) the behavior of the entities in the domain. A survey of DSLs [10] has
shown that most DSLs do not provide constructs for user-defined abstractions: only
15% of the surveyed languages provide user defined types and roughly one third pro-
vide user-defined functions. This is interesting because in many DSLs, when develop-
ing a model, there is no need (and no way) to specify the behavior of the system; this
behavior is implicit in the constructs of the language. Most of the time the model
represents only the structural part of the application and simply parameterizes the
predefined behavior.

The fact a model is purely structural has important consequences:
1. It is relatively easy to fully generate, from the metamodel, a model editor and a

model does not need any programming.
2. The system behavior (how it evolves) is mainly defined by the behavior of the pre-

defined domain concepts, implemented by the domain interpreter.
3. Domains can be composed by composing their interpreters, without modifying the

existing models.

3.2 Domain-Specific Virtual Machines

A straightforward implementation of a domain interpreter is to transform each meta-
model concept into a class and the concept behavior into methods of these classes
(plus some technical classes, not discussed here). In this case, the structural part of the
model is simply transformed into instances of these classes and considered as the ini-
tial state of the interpreter. As this transformation is a bijection, there is an isomor-
phism between the model and the program state and, therefore, the program state is
also a model of the target system. Since execution is based on the domain model, the

Composing Domain-Specific Languages 75

program state evolves in accordance with the behavior of the associated domain enti-
ties (see Fig. 3). This implementation is not only straightforward - and supported by
most UML environments - but also has two important properties:
1. At any time, the state of the program is a model of the target system.
2. The interpreter is a domain virtual machine.
The former property is fundamental for DSL composition (see section 4). The latter is
important, since it gives a way to solve reuse and evolution issues. Indeed, since the
interpreter implementation is based on the domain semantics, its behavior is defined
only in terms of changes of the instances that are images of domain elements. It is a
formal execution. The execution, in this case, does not rely on lower level libraries or
languages, as is usually the case in DSL technology (Fig. 2), nor on a transformation
toward lower level “platform dependent” models, as in MDE. A very important prop-
erty of this approach is that the interpreter is independent from actual components,
tools and platforms.

Domain VM
(Interpreter) Element

state

Operates upon
(unspecified)

Covers

Meta Model
(DomainModel)

DSL
(All Models)

Model Model_Of

Model_Of

Pertains
Conform_To

Domain

Transformed Image_Of

Domain
Mental Model

Abstraction
(mental)

Model_Of
(informal)

System

Fig. 3. Domain modeling and Mélusine

3.3 Virtual Machine Implementation

Formal execution means the execution only changes the state of abstract entities (Java
objects) but, most often, such a change “means” that its “image” in the system (either
software or physical) must change its state accordingly. Conversely, if the state of the
system changes, the model should be updated accordingly. In other words, formal in-
terpretation is not sufficient, abstract actions should be mapped to actual software
components, devices and so on.

In order to reuse existing software artifacts, Mélusine supports a bottom-up ap-
proach, defining the concepts of role and tool [11]. A role is an abstract interface for a
class of tools. A tool is any piece of software, (a COTS, a legacy application, a com-
ponent, a library, a physical device and so on), local or distant, that can play a role
(directly or through a wrapper).

The Mapping expresses the relationship between a state change in a model entity (a
Java object) and the correspondent change for its image in the “real” system (a tool
executing an action, a device activations) and so on. Conversely, the mapping changes
the model entity state to keep them synchronized with changes in the “real” system.

76 Jacky Estublier, German Vega, and Anca Daniela Ionita

Our requirement is to keep the interpreter independent from mapping. For this pur-
pose, mapping is performed in the Mélusine environment by transparently translating
it into aspects, in the AOP (Aspect Oriented Programming) sense. This is easy to do,
because the formal interpretation directly changes the state of the model entities; it is
enough to capture the methods that change the (Java) model entities and to call the
corresponding mapping. Our AOP machine [12] inserts byte code in the interpreter, to
execute the aspect in accordance with the mapping specification (Fig. 4).

Conceptual
 Domain

 Model mapping

Implementation
 Domain
 Implementation
 Abstractions
 Common
 Implementation

Common
Domain
Abstractions

Application
Specific

Conform_to

Domain Model
(Meta Model)

Transformed

Abstract execution

AOP Machine

Mapping

Tools

 Model
Transformed

Operates_Upon
(Is part of)

Roles

Model_ofModel_of

Domain VM

System

state

Domain

Fig. 4. Conceptual domain and implementation

In our solution:
• the interpreter and the models are independent from any specific implementation,
• the mapping is defined at a high level, between the model and roles (abstract tools),
• actual tools implement abstract services (roles) and can be changed at any time.

Our domain-layered architecture emphasizes the reuse of tools, models and inter-
preters and enables each actor (analyst, designer, implementer, administrator) to work
with tools and concepts at its level of abstraction.

Reusing a domain model implies being able to combine it with other domains in
order to cope with wider scope applications (see section 4 about domain composition)
and to adapt it to specific requirements (see section 5 about domain evolution).

4 Domain Composition

Our approach to domain composition is built on the insight that composition is easily
expressed at the conceptual level (see section 2.4), and that most of the reuse benefits
can be achieved if one can use the existing domains and their models without modify-
ing them.

Domain composition (section 4.1) consists of defining concepts and relationships
that are valid for all the applications in the new composite domain. The new behavior

Composing Domain-Specific Languages 77

is implemented in the composition virtual machine (section 4.2) by synchronizing its
execution with the corresponding sub-domain interpreters. Then the domain models
can be easily composed (section 4.3).

4.1 Domain Model Composition

The composition is initially defined at the conceptual level, by identifying relation-
ships that must be established between existing domains and potentially new concepts
and behavior, specific to the composition (see the upper part of Fig. 5).

C om position
M odel

D om ain
C om position

Annotates

C om position
V M

Synchronization (AO P)

Interpreted B y

A nnotates

D om ain M odel

A pplication
M odel

D om ain V M

Trans-
formed

C onform s to

Interpreted B y

R eferences
R eferences

C onform s to

D om ain M odel

Application
M odel

D om ain V M

Trans-
form ed

C onform s to

Interpreted B y

M apping

Fig. 5. Conceptual Domain Composition

Because domain models are designed independently, they often contain similar
concepts, defined in different ways, since each domain corresponds to a specific con-
cern and outlines the characteristics relevant for this concern only. Two types of rela-
tionships can then be established between concepts present in two different domain
models: associations (in the UML sense) and correspondences, relating similar or
overlapping concepts [13]. For example, Fig. 6 shows some of the new relationships
defined for the composition of the Process and Resource domains. The association
Project/Resource models the resources assigned to the project, while Activ-
ity/Human indicates the person in charge of an activity; they are usually class asso-
ciations that capture some emerging behavior of the composition. The relationships
Process/Project and Task/Activity are correspondences between overlapping con-
cepts in different domains, in the sense that they can be considered as different as-
pects of a single unified concept in the composed domain. The example illustrates an
important property: domain composition may involve more than two domains. The
human resources assigned to an activity must be selected from the available resources
of the project; this is a constraint that covers the three composed domains.

A crucial point to highlight is that conceptual composition defines the metamodel
of the composed domain. This new metamodel comprises the concepts and associa-
tions existing in the sub-domains, the added relationships and, eventually, new emerg-

78 Jacky Estublier, German Vega, and Anca Daniela Ionita

ing concepts. As for any other domain, an interpreter must be implemented for this
new metamodel and appropriate models must be developed for the new composed
domain (section 4.3).

Fig. 6. Conceptual Composition

4.2 Composing Virtual Machine

To foster reuse of existing domains, the interpreter of the composed domain must be
implemented by composing the sub-domain virtual machines, as schematically pre-
sented in the lower part of Fig. 5.

It turns out that it is necessary to implement the new relationships and behavior
without changing the existing interpreters. The intention is to synchronize the execu-
tion of several independent virtual machines (sub-domain interpreters). Note that the
new virtual machine is allowed to explicitly reference existing classes and associa-
tions in the sub-domain interpreters, but not the other way around.

To implement this synchronization, AOP technology is used again, defining as-
pects that capture the methods representing significant events in the sub-domain in-
terpreters and calling the appropriate methods in the composition domain interpreter,
that implements the behavior of the new classes and relationships. This approach may
look low level, but this is not the case because, as pointed out in section 3.2, the state
of the virtual machine is a model of the target system and the captured events are
meaningful in the new conceptual model.

To illustrate this claim, the sample of program presented below shows the syn-
chronization between Process and Resource domains (this is the real, complete code,
extracted from an operational document management application). The new behavior
to be implemented is assigning a human to be responsible for a particular activity. The
aspect assignActivity captures, in the process virtual machine, the signals represent-
ing that an activity has become ready; the aspect calls the composite virtual machine
(class ActivityAssignationManager) that itself calls the resource virtual machine to
display a list of humans playing the associated role and changes the responsible.

import apel.motor.model.*;
aspect assignActivity(int newState) of Activity {
 when newState == Activity.READY;

Composing Domain-Specific Languages 79

 body(JAVA) {
 activityAssignationMaager.assignActivity(instance);
 }
}
public class ActivityAssignationManager {
 public ActivityAssignationManager () {

 resource = Domains.getRoot("resourceEngine");
 }
 public Vector getPotentialHumans(String roleName) {
 Role theRole = resource.getRole(roleName);

 return resource.getHumanIds(theRole);
 }
 public void assignActivity (Activity activity) {
 String user = showAssignDialog(activity.getName(),
 getPotentialHumans(activity.getRole()));
 return activity.setResponsible(user);
 }

}
The classes in the composition virtual machine are similar to other domains, they

capture abstract concepts of the composition and, as shown in Fig. 4, may require a
mapping to lower level software, components, devices and so on, just as for other
domains, see section 3.3.

Composing virtual machines is not necessarily easy, but not too complex either,
because each interpreter is a direct implementation of the corresponding domain con-
cept and therefore, the composition is performed at the conceptual level of the com-
posite domain. This is much easier than trying to change the existing interpreters or to
implement a new one. In our experience, a typical composition interpreter is very
tiny; for instance, in the document management application, the composition inter-
preter is about 15% (in LOC) of all composed domain virtual machines.

4.3 Model Composition

The composite domain has its own metamodel, meaning that we may need to develop
new models conforming to this metamodel. These models can refer to existing sub-
domains models and can make the links between them explicit. For example, for the
document management composite domain presented in section 4.2, the data circulat-
ing in the data flows defined in a process model should be associated with actual
product definitions in the product data management domain; more specifically, the
entity called doc in the process model is the document specifProjectX in the Product
domain. This information is captured by the composite model and is interpreted by
the composition virtual machine (see the code of class ActivityAssignationManager
in the previous section).

There is an important point to highlight: the existing models have not changed at
all, but a new model was defined that relates the existing sub-domain models. The ex-
perience shows that this is very easy to do and allows models to be reused. Since the
domain itself evolves, its model has to incorporate the novelties introduced in the real
domain.

80 Jacky Estublier, German Vega, and Anca Daniela Ionita

4.4 Domain Evolution

Some variations in the domain can be expressed without having to change the domain
model. A feature captures optional domain behavior; they are implemented in the
same way as mappings, by capturing domain behavior and adding/substituting it with
the actual feature behavior. In this way, the domain model, the interpreter and models
are totally unchanged. For example, the Process domain has trace, mail_notification
and persistent features. They can be selected or not for each application in the do-
main.

Extensions are new concepts, added to the domain and linked by associations with
the domain model concepts. These concepts, with their semantics, behavior and im-
plementation, make sense only in connection with the domain model.

This is in contrast with domain composition, where each domain is independent
and makes sense by itself. Nevertheless, the technology we use to define and imple-
ment extensions is the same as for domain composition [14].

5 Related Work

The idea of extending or specializing a language by modifying its interpreter has been
actively studied in the context of Meta Object Protocols [15] and reflective program-
ming languages. In this context, the formal domain interpreter can be seen as the meta
level, the actual tools and components as the base level and the mapping as the causal
link between the two. An important difference in our approach is that the meta level is
directly related to the domain (domain semantics) and not (only) to the formal seman-
tics. Another difference is that we develop the two levels separately, in order to be
able to evolve them independently, and we use AOP to keep them synchronized.

More generally, our approach is based on the idea that a domain presents two inter-
faces: when used in the development of a particular application, only the model editor
is visible, the domain model and its interpreter are hidden. When composed or ex-
tended, the conceptual model is exposed like a white box. In this regard, our work can
be related to the idea of open implementations [16][17] and more particularly to the
ideas of open design programming languages [18]. The domain-specific virtual ma-
chine can also be related to the idea of a UML virtual machine [19]. The difference is
that, instead of implementing a low-level UML action language, we implement the
behavior of the high-level domain concepts.

Composing modeling languages by composing their corresponding metamodels is
also considered in [20], but the approach is limited to the generation of the model edi-
tor and does not consider the domain behavior and run-time environment. Fritsch and
Renz [21] present a meta-level architecture for the development of product lines
based on several related DSLs, similarly Barry et Al. [22] present an example of
composition of Process and Product Data Management software, by composing
metamodels. Although very similar to our approach, both are limited to a particular
domain. We have generalized the approach and have applied it systematically in very
different domains.

The problem of metamodel evolution and adaptation and its impact on the corre-
sponding interpreters has been stated in [23] and an approach for metamodel evolu-

Composing Domain-Specific Languages 81

tion based on a transformation language is presented in [24]. These approaches are
based on the idea of refactoring the metamodel and automating the impact on the ex-
isting models and interpreters. Our approach is based on the idea of modularly defin-
ing the metamodel and reusing the existing models and interpreters. The two ap-
proaches complement each other very well.

Another solution other than DSL would be to use a general modeling language,
such as UML 2.0 [5], that offers support for:
• Evolution, with the possibility to introduce variability (through templates, power-

types for creating metamodels and semantic variation points like model annota-
tions) and extensions (with inheritance, stereotypes, constraints and tagged values);

• Reuse, with patterns, stereotyped packages like model libraries or frameworks and
the facility to merge packages (models), by introducing a generalization for classi-
fiers with the same name;

• Domain-specific concepts, with profiles, that allow for the definition of stereotypes
grouping property extensions.
UML was not adopted, because defining a DSL is simpler than defining a profile.

A profile, even if extending only a metamodel subset, requires conformity with the
huge UML semantics and checking this conformity is not entirely supported by exist-
ing tools. From the point of view of code generation, model transformation often
needs supplementary marking models [25] and restriction to UML subsets. Executa-
ble UML [26] goes forward, by creating an UML profile and adding actions for a de-
tailed definition of the behavior, such as to be executed. Models for different subject
matters are woven together by an executable UML compiler that, unlike Mélusine,
keeps all the burden of general languages. Apart from making the composition at the
meta level, between small DSLs, the flexibility added by our approach also comes
from its layered architecture, which separates the models from their implementation
tools and allows domain extensibility.

A possible solution for directly manipulating the domain concepts is expected to
be given by future tools, for example, based on MOF [27], allowing users to define
entirely new languages via metamodels. In the meantime, the Eclipse Modeling
Framework (EMF) seems to be closer to our needs, proposing Ecore meta-metamodel,
similar to MOF and expressing models as XML schemas, UML class diagrams or an-
nonated Java [28]. EMF provides all the facilities and extensibility of Eclipse and also
offers a number of tools to support automatic editor generation and round-trip engi-
neering, while still leaving the user the possibility to write code that remains outside
models.

6 Conclusion

Our work is based on a simple idea: DSL is a good engineering approach, but it is
limited by its narrow scope; so, composing DSLs would permit implementing wide-
scope applications, while retaining the strong points of DSLs. Unfortunately, this
simple idea is far from trivial if one seeks a solution answering the question: how is it
possible to compose DSLs, but still reuse existing components and tools and support
different types of evolution.

82 Jacky Estublier, German Vega, and Anca Daniela Ionita

We have spent a number of years answering this question, implementing (re-
implementing) solutions, and validating them in real scale industrial applications. The
lesson we have learned is that no single technology or technical approach alone can
solve these issues. Indeed, our approach puts together ideas coming from DSL, MDE,
programming languages, AOP and component technologies.

AOP, as well as components, are implementation techniques, not engineering ap-
proaches. Nevertheless, AOP is our corner stone implementation solution, because it
allows both reuse and evolution.

Our approach is typical of MDE, but, in contrast with the main stream, our tech-
nology allows for the composition of independent models and metamodels by defin-
ing relationships among their concepts. This composition technology is a practical
and high-level way to compose DSLs, defining a new, extended DSL, that can be fur-
ther composed itself. Furthermore, as this approach uses formal interpretation and
AOP techniques, it is possible to reuse the existing domains (interpreters, models and
so on) without changing them. Finally, the introduction of features and extensions at
the conceptual level and the explicit mappings and roles at the implementation level,
provide large evolution capabilities.

Composing DSLs in the general case is very difficult, but it becomes a practical
and promising software engineering approach when supported by a methodology and
a specific environment, like Mélusine, providing high-level modeling, generation,
evolution and reuse.

Acknowledgements: The work of Anca Daniela Ionita is supported by a Marie

Curie Intra-European Fellowship, within the 6th European Community Framework
Programme.

References

1. D. S. Wile., Supporting the DSL Spectrum, Journal of Computing and Information Technol-
ogy, CIT 9, 2001 (4) 263-287

3. Levine, John R., Tony Mason and Doug Brown [1992]. Lex & Yacc. O’Reilly & Associ-
ates, Inc. Sebastopol, California

3. Bézivin, J., Gerbé O., "Towards a Precise Definition of the OMG/MDA Framework",
ASE'01, Novembre 2001

4. Favre J.M., "Towards a Basic Theory to Model Model Driven Engineering", 3rd Workshop
in Software Model Engineering, WiSME 2004, http://www-adele.imag.fr/~jmfavre

5. OMG, “UML 2.0 Superstructure Specification”, August 2003
6. Gosling J., Joy B., & Steele G., The Java Language Specification, Addison Wesley, 1997
7. J.F. Sowa, Ontology, Metadata, and Semiotics, in B. Ganter & G. W. Mineau, eds., Concep-

tual Structures: Logical, Linguistic, and Computational Issues, Lecture Notes in AI #1867,
Springer-Verlag, Berlin, 2000, pp. 55-81

8. R.A. Falbo, G. Guizzardi, K.C. Duarte, An ontological approach to domain engineering,
Proc. of the 14thInt. Conf. on Software Eng. and Knowledge Eng., Ischia, Italy, 2002,
ISBN:1-58113-556-4, pp. 351 – 358

9. R. Prieto-Diaz, Domain Analysis: An Introduction, Software Engineering Notes, Vol. 15,
No. 2, April 1990

10. S. Thibault, “Langages Dédiés : Conception, Implémentation et Application”, Ph.D. Thesis
Université de Rennes1, 1998

http://www.amazon.com/exec/obidos/ASIN/1565920007/none01

Composing Domain-Specific Languages 83

11. T. Le-Anh, J. Villalobos, J. Estublier. Multi-level Composition for Software Federations. In
Proceedings of the 6th European Joint Conferences on Theory and Practice of Software
(ETAPS 2003) Workshop on Software Composition, April 2003

12. F. Duclos, J. Estublier, R. Sanlaville “Separation of Concerns and The Extended Object
Machine.” Submitted to Journal Advise. http://www-adele.imag.fr/Les.Publications/BD/
ADVICE2004Est.html

13. J. Estublier, A.D. Ionita, Extending UML for Model Composition, Australian Software En-
gineering Conference, 29 March – 1 April, Brisbane, Australia

14. J. Estublier, J. Villalobos, T. Le-Ahn, S. Sanlaville, G. Vega. An Approach and Framework
for Extensible Process Support System. . In Proceedings of the 9th European Workshop on
Software Process Technology (EWSPT 2003), September 2003

15. G. Kiczales, J. des Rivières, D. Bobrow. The Art of the Metaobject Protocol. MIT Press,
Cambridge Massachusetts, 5th Printing 1999

16. G. Kiczales. Beyond the black box: Open Implementation, IEEE Software, Vol. 13 Issue 1,
January 1996

17. C. Maeda, A. Lee, G. Murphy, G. Kizales. Open Implementation Analysis and Design,
ACM SIGSOFT Software Engineering Notes, Vol. 22 Issue 3, May 1997

18. P. Steyaert. Open Design of Object Oriented Languages. PhD thesis, Vrije Universiteit
Brussel, 1994.

19. D. Riehle, S. Fraleigh, D. Bucka-Lassen, N. Omorogbe. The Architecture of a UML virtual
machine, Proceedings of the 16th ACM SIGPLAN Conference on Object oriented program-
ming, systems, languages, and applications OOPSLA 2001, Tampa Bay, USA, October
2001

20. G. Karsai, M. Maroti, A. Ledeczi, J. Gray, J. Sztipanovits. Composition and Cloning in
Modeling and Meta-Modeling, IEEE Transactions on Control System Technology, Vol. 12
No. 2, March 2004

21. C. Fritsch, B. Renz. Four Mechanisms for Adaptable Systems A Meta-level Approach to
Building a Software Product Line. Proceedings of the 3rd International Software Product
Lines Conference, SPLC 2004, Boston, USA, August 2004

22. A. Barry, N. Baker, J.-M. Le Goff, R. McClatchey, J.-P. Vialle. Meta-Data based design of
Workflow Systems. Proceedings of Workshop on Meta-data and Active Object Model pat-
tern mining, OOPSLA 1998, Vancouver, Canada. October 1998

23. J. Zhang, J. Gray. A generative approach to model interpreter evolution. Proceedings of
Workshop on Domain Specific Modeling, OOPSLA 2004, Vancouver, Canada. October
2004

24. J. Sprinkle, G. Karsai. A Domain-Specific Visual Language For Domain Model Evolution.
Journal of Visual Languages and Computing, vol. 15, no. 2, April 2004.

25. S. Mellor, K. Scott, A. Uhl, D. Weise. MDA Distilled: Principles of Model-driven Architec-
ture, Addison-Wesley, 2004

26. S. Mellor, M. Balcer. Executable UML: A Foundation for Model Driven Architecture. Ad-
dison-Wesley, 2002

27. OMG, "Meta Object Facility (MOF) 2.0 Core Specification", October 2003
28. F. Budinsky, D. Steingerg, E. Merks, R. Ellersick, T. Grose, “Eclipse Modeling Frame-

work”, Addison Wesley, 200

http://www-adele.imag.fr/Les.Publications/BD/ ADVICE2004Est.html
http://www-adele.imag.fr/Les.Publications/BD/ ADVICE2004Est.html

	1 Introduction
	2 Languages and Models
	3 The Mélusine Approach
	4 Domain Composition
	5 Related Work
	6 Conclusion
	References

