
Using UML 2.0 Collaborations for Compositional
Service Specification

Richard Torbjørn Sanders1, Humberto Nicolás Castejón2, Frank Alexander Kraemer2,
and Rolv Bræk2

1 SINTEF ICT, N-7465 Trondheim, Norway
richard.sanders@sintef.no

2 NTNU, Department of Telematics, N-7491 Trondheim, Norway
{humberto.castejon, kraemer, rolv.braek}@item.ntnu.no

Abstract. Collaborations and collaboration uses are features new to UML 2.0.
They possess many properties that support rapid and compositional service en-
gineering. The notion of collaboration corresponds well with the notion of a ser-
vice, and it seems promising to use them for service specification. We present an
approach where collaborations are used to specify services, and show how col-
laborations enable high level feature composition by means of collaboration uses.
We also show how service goals can be combined with behavior descriptions of
collaborations to form what we call semantic interfaces. Semantic interfaces can
be used to ensure compatibility when binding roles to classes and when compos-
ing systems from components. Various ways to compose collaboration behaviors
are outlined and illustrated with telephony services.

1 Introduction

Service development or service engineering is currently receiving considerable atten-
tion and starting to become a discipline in its own right. Driven by the belief that future
revenues will have to come from new services, a tremendous effort is being invested in
new platforms, methods and tools to enable rapid development and incremental deploy-
ment of convergent services, i.e. integrated communication, multimedia and informa-
tion services delivered transparently over a range of access and transport networks. The
Service Oriented Architecture (SOA) and Service Oriented Computing (SOC), building
on web services, are exponents of this trend in the business domain. A general challenge
for service engineering, be it business or ICT applications, is to enable services and
service components to be rapidly developed, and to be deployed and composed dynam-
ically without undesirable service interactions. This is a challenging problem largely
due to fundamental properties of services, i.e.:

– A service is a partial functionality. It can be combined with other services to pro-
vide the full functionality offered to a user.

– A service execution normally involves several collaborating components (i.e. a ser-
vice is not simply an interface to an object).

– Components can participate in several services, simultaneously or alternately.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 460–475, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Using UML 2.0 Collaborations for Compositional Service Specification 461

– Services are partially dependent on each other, on shared resources and on user
preferences.

In order to support model driven service engineering, corresponding modeling concepts
are needed. This is where UML 2.0 collaborations come in, since they possess many
properties that make them attractive for this purpose.

First of all the concept of UML collaboration corresponds closely with the concept
of a service as explained above. We actually define a service as a collaboration between
service roles played by objects that deliver functionality to the end users. Note that this
definition is quite general and covers both client-server and peer-to-peer services as
described in [1].

Secondly, UML collaboration uses provide a means to structure complex collabo-
rations and give an overview not provided by other notations, while at the same time
being precise. Collaborations have much the same simplicity and appeal as use cases,
and can be used for the much same purposes, but provide additional benefits for service
engineering, as will be presented in the following. Service specification using collabo-
rations and collaboration uses fits well with the preferred view of marketers and end-
users, while at the same time supporting the difficult engineering tasks of service and
system designers.

Thirdly, a collaboration role can be bound to several different classifiers by means
of collaboration uses. This provides the desired flexibility to bind service roles to com-
ponents, the only UML requirement being that the classifier is compatible with the type
of the role(s) bound to it. A precise definition of compatibility is left as a semantic
variation in UML 2.0, but it is clear that this should entail the observable behavior on
interfaces of a component.

This leads to a fourth motivation for collaborations – they lend themselves nicely to
the definition of so-called semantic interfaces [2]. As we shall see, a two-party collabo-
ration can define a pair of complementary semantic interfaces. Compared to traditional
syntactical interfaces known from web services, CORBA, Java and UML, semantic in-
terfaces also define the visible interface behavior and the goals of the collaboration.
This extends the notion of compatibility beyond static signature matching to include
safety and liveness properties. It also provides an efficient means to perform such com-
patibility checks at design time and even at runtime.

Finally, it may be argued that the crosscutting view of collaborations is valuable in
its own right [3]. It enables us to focus on the joint behavior of objects rather than on
each object individually and, not the least, to focus on the purposes and goals of the
joint behavior in terms of desirable global states, called service goals in [4]. A service
goal can be expressed in OCL, and is a property that identifies essential progress, thus
characterizing a desired or successful outcome of a service invocation. It can be argued
that service goals are closer to capturing and expressing the user needs than specifying
how they are achieved in terms of detailed interactions. Moreover, goal expressions
define liveness properties that must be satisfied by compatible components.

Fig. 1 provides a principal overview of service engineering using collaborations.
Our service engineering approach is both collaboration-oriented and compositional.

It is collaboration-oriented because we model services as collaborations between roles
played by distributed components, and it is compositional because we build services



462 Richard Torbjørn Sanders et al.

service b

service a

r5r4

r1 r2 r3

C1 C2 C3

01:C1 03:C302:C2

system x

service specification
using collaborations
and feature composition;
semantic interface definitions

class design 
by composing
collaboration roles
and semantic interfaces

system design 
by composing
system components (objects) 

Fig. 1. Service engineering overview

from other smaller services. We treat collaborations and collaboration roles as units of
reuse.

We consider the following composition cases:

1. Composition of two-party services and semantic interfaces from two-party collab-
orations.

2. Composition of multi-party services from two-party or n-party collaborations.
3. Class design by composing service roles and semantic interfaces.

Class design is out of the scope of this paper. Here we focus on the use of collaborations
for service specification. It is our belief that class design can become a more mechanical
process supported by tools if it takes collaborations and semantic interfaces as input.
Our experience so far indicates that this is the case [5, 6]. However, further work is still
needed to confirm this with certainty.

1.1 Structure of the Paper

In section 2 we present how service structures can be described in UML, and how ser-
vice behavior can be described. We introduce the concept of service goals, and discuss
how they can be defined in service structures and in the behavioral descriptions. We
introduce what lies in a semantic interface, and discuss compatibility between roles and
classifiers.

In section 3 we discuss the composition of two-party collaborations used for defin-
ing semantic interfaces, as well as composing multi-party services from subordinate
collaborations, and indicate directions toward class design. Finally we conclude.



Using UML 2.0 Collaborations for Compositional Service Specification 463

2 Collaborations, Goals and Semantic Interfaces

2.1 Collaboration Structure

When used for service specification, the structure of a collaboration identifies the ser-
vice roles that collaborate to provide the service, as well as their multiplicity and inter-
connections. Fig. 2 depicts a collaboration called UserCall specifying the structure
of a classical telephone call service. This collaboration diagram tells us that exactly
two roles, A and B, of type Caller and Callee respectively, are needed to provide
a UserCall service, and that a communication path between instances playing those
roles must exist.

A:Caller 1 B:Callee 1

UserCall

{def: goal : Boolean = A.VoiceCntTo(B) and B.VoiceCntTo(A)}

Fig. 2. The UserCall service specified as a collaboration with a goal expression

Specifying a service as a collaboration enables roles to be identified and described
without introducing undue bindings to implementation details. Thus a service can be
specified and understood as a behavioral component of its own, independent of systems
components that implement them.

As we shall see, the behavior of collaborations can be described at several levels of
detail. Furthermore, collaborations can themselves be used as components in collabo-
ration compositions, thus becoming units of reuse.

2.2 Collaboration Goals

The diagram in Fig. 2 also shows a goal that should be reached by the UserCall
collaboration. It is represented by an OCL predicate over properties of the two partici-
pating roles. In this case it is a simple logical addition of the role goals of A and B, to
show that A has a voice connection to B and B has a voice connection to A:

VoiceCnt(A,B) = A.VoiceCntTo(B) and B.VoiceCntTo(A)

Goal expressions like this can be made very high level, protocol independent and close
to the essential purpose of a service as seen from a user point of view. They are actually
formal requirements expressions. In this respect they are not new; the novelty lies in the
natural binding to the different service specification diagrams, such as collaborations
and sequence diagrams. Furthermore, a goal expression represents a liveness property
that should hold in actual collaboration uses and therefore constitutes part of the re-
quired compatibility of role binding. This illustrates one asset of UML collaborations:
they are natural places to express crosscutting properties of services.



464 Richard Torbjørn Sanders et al.

2.3 Collaboration Behavior

Since UML collaborations inherit from both structured classifiers and behaviored clas-
sifiers, they have a large range of expression forms at their disposal. In addition to ex-
pressing structural relationships, it is possible to express all forms of behavioral aspects
of collaborations, such as interactions, activities and state machines. The UML standard
[7] and reference book [8] focus mainly on the structural features of collaborations, and
provide few guidelines on how the behavior of a collaboration is described, nor do they
explain how collaboration behavior is related to the behavior of its constituent parts, i.e.
the roles and role classifiers.

In the following we suggest how the behavior of a collaboration can be described
for the purpose of service specification. We first specify the main states a collaboration
goes through with a state diagram. This helps to abstract away details and focus on
the goal of the collaboration. Thereafter detailed interactions for the collaboration are
provided in the form of sequence diagrams.

Collaboration States. The states (or phases) of a collaboration may be described in a
state diagram (or activity diagram), as illustrated in Fig. 3.

sm UserCall

inviting alerting

talking
assert (goal == True)

busy

disconnecteddisconnected

Fig. 3. State machine diagram for collaboration UserCall

This state diagram describes well known situations in the progress of a basic tele-
phone call. The transitions between the states are represented by arcs, but we have cho-
sen not to define exactly what causes them. For instance the transition from alerting
to disconnected can be due to the caller hanging up, the callee not answering
before a timeout, or the network malfunctioning. Leaving such details undefined can be
desirable in a high level service specification.

But what do states of a collaboration mean? Given that a collaboration is not in-
stantiated as an object, no entity is ever in a collaboration state. Rather, a collaboration
state is a conceptual state expressing certain situations or conditions on the combined
states of the roles A and B during the collaboration, see Fig. 4. It may be considered as
a liveness property of the collaboration.

The possibility to focus on the joint behavior and goals rather than the individual
role behavior is an important asset of collaborations. The role behaviors must somehow
be aligned with each other; we indicate a way of doing so in Fig. 4. One must ensure
that the role behaviors are dual, i.e. they are fully compatible with respect to safety
properties, and that they can reach the joint collaboration states and goals and thereby



Using UML 2.0 Collaborations for Compositional Service Specification 465

satisfy liveness properties. A two-party collaboration satisfying these properties defines
a pair of semantic interfaces [2].

sm UserCall

inviting alerting

talking

assert (goal == True)

busy

disconnecteddisconnected

diallingA diallingA alertingA alertingA ringingB ringingB

talkingA talkingA talkingB talkingB

waitingA waitingA *B *B

-A -A -B -B

Fig. 4. State machine diagram for UserCall with role states and service goal expres-
sion (UML enhancement illustrating role states in collaboration states)

By describing state machines for both the collaboration and the role classifiers, a
certain amount of redundancy is added, and the question of compatibility between them
arises. This can either be considered as a problem to be avoided, or as a feature that
can be put to use. In our view validating consistency between the role behavior and the
collaboration behavior is an opportunity that should not be missed.

Interactions. Interaction diagrams are often partial descriptions that are not meant to
describe complete behavior, unlike state machine diagrams. For the purpose of service
specification interactions for a collaboration should at least focus on the successful
cases, i.e. those that lead to the achievement of service goals.

In Fig. 5 we have described interactions that lead to the achievement of the service
goal of a collaboration called Invite. The goal of this collaboration is to bring the
collaborating instances to the talking state. The goal is indicated by an adornment
in the continuation label talking.

2.4 Semantic Interfaces and Compatibility

In principle, components can participate in any service as long as they can play their part
of the service. Therefore, the specification of a service should not bind the service roles
to specific classifiers [9]. In [10] we used association classes to specify services, but they
fail to meet the requirements for flexible role binding. This is because with associations
the binding is determined by the classifiers at the association ends. Collaborations do
not have this limitation. With the help of collaboration uses, collaborations roles can be
bound to any classifiers that are compatible with the role types. This is shown in Fig. 6,
where the same classifier, UserAgent, is bound to two different roles, A and B. This is
possible as long as the UserAgent class is compatible with both collaboration roles.
Our interpretation of compatibility is that the UserAgent must have visible interface
behavior that is goal equivalent with the behavior of both roles, implying that the roles
of the collaboration can be achieved.



466 Richard Torbjørn Sanders et al.

Busy

Reply

Alert

Invite

alt

inviting

inviteeinviter

talking

alerting

disconnected

alt

Busy
ref

End

sd invite_sd

{invite_goal}

Fig. 5. Sequence diagram for collaboration Invite

A B
uc:UserCallaUA: UserAgent bUA: UserAgent

Fig. 6. Binding roles to component classes in a collaboration use

This can be put to use by defining a pair of semantic interfaces in a two-way col-
laboration like UserCall, as proposed in [2]. The semantic interfaces include goal
expressions and role behaviors for the two collaboration roles. Such role behavior can
be seen as a kind of protocol state machine specifying only the input/output behavior
visible on the interface. It can be derived from a general state machine by making a pro-
jection of its behavior on the interface in question. In the case of the UserAgent in
Fig. 6, compatibility can be checked in two steps. First we verify that the collaboration
goals of UserCall are reachable given the roles A and B. Then we check that the pro-
jected behaviors of UserAgent on each side of the connection defined by UserCall
are goal equivalent to the respective behaviors of A and B. This enables a compositional
and scalable validation approach where the most computation intensive work (making
projections and comparing behaviors) can be done at design time. When dynamically
binding roles to system components at runtime, validation need not be repeated.

The UML standard [7] says that “a collaboration is often defined in terms of roles
typed by interfaces”. Unfortunately an interface typing a role can only describe either
a provided interface, or a required interface, but not a combination. This is a limita-
tion. We want role classifiers to describe both the required and the provided interface
behavior in a single modeling unit. Typing a role by two interfaces, a required and a
provided one, is not legal in the current version of UML, nor would this result in a uni-



Using UML 2.0 Collaborations for Compositional Service Specification 467

fied interface description. Similarly, a protocol state machine attached to an interface
only constrains the sequence of operation calls to a component, and can not be used to
describe a two-way interface.

The limitations of interfaces may be overcome, however, if UML allowed describing
interface behavior in terms of state machines that model the (projected) input/output
behavior of a component on the interface, such as the Port State Machines (PoSM)
proposed by Mencl [11]. This is indeed close to the port state machines of ROOM [12],
and should be included in UML. Goal compatibility between a component and a port
state machine could then be defined in terms of behavior projection.

Given that the behavior of a collaboration role is described in a state machine dia-
gram enriched with service goals, it is relatively straightforward to validate safety and
liveness compatibility between a classifier and a semantic interface to which it is bound
[6, 13, 10], thus ascertaining goal equivalence between objects and roles.

3 Composition from Collaborations

3.1 Composition of Two-Party Services and Semantic Interfaces from
Two-Party Collaborations

With collaboration uses we can express how services can be composed from elementary
service features, as illustrated in Fig. 7.

A:Caller B:Callee

invite:Inviteinvitee inviter

talk:Talktalker talker

User Call

Fig. 7. UserCall composed of elementary features (subordinate collaboration uses)

In Fig. 7 the UserCall collaboration is decomposed into smaller features,
invite and talk, represented as collaboration uses. These are related to the distinct
states of the UserCall service (see Fig. 3) and to the sequence diagram for Invite
(see Fig. 5). To simplify the example, we have grouped the states for UserCall so
that the goal of the invite collaboration is to bring the UserCall collaboration to
the state talking, upon which the talk collaboration use takes over. However, it is
not clear from Fig. 7 what relationship there is between invite and talk, that is, if
their interactions are interleaved or if they represent a sequence.

It is of central importance to service engineering to make the sequence of goals and
the relationships between collaborations explicit. This may be done in several ways.
One possibility is showing dependencies between the subordinate collaboration uses
and/or their roles in the collaboration diagram itself. Another possibility is to utilize



468 Richard Torbjørn Sanders et al.

pre- and post-conditions. A third possibility is to use interaction overview diagrams or
activity diagrams to express goal sequences, as suggested in Fig. 8a below.

Interaction overview diagrams are a form of activity diagram, and thus the token
passing semantics of the latter apply. To express goal relationships, the following in-
terpretation of the tokens is employed: a token being passed represents that a goal is
achieved, while an input token implies that a subsequent collaboration use (i.e. a ser-
vice) is enabled. This can be exploited by mechanisms supporting the dynamic discov-
ery of service opportunities [2, 4]. Note that what happens if the goal is not achieved
is not described – the focus is on the achievement of goals. However, if the goal is not
achieved in a referenced collaboration, the goal sequence is interrupted.

invite.invite_sd
ref

talk.talk_sd
ref

sd UserCall

(a) Interaction overview

A Binvite:Invite
inviter invitee

A Btalk:Talk

invite:Inviteinviter invitee

UserCall_goals

(b) Goal sequence diagram

talker talker

Fig. 8. Overview of the subordinate collaboration uses of UserCall

With this interpretation, Fig. 8a specifies that after invite has achieved its service
goal, the subordinate collaboration use talk is enabled. Note that this relationship
applies in the context of their use, i.e. in the collaboration UserCall. It is not stated
in the specification of the subordinate collaborations Invite and Talk, which are
thus free to be used in other collaboration contexts.

A minor diagrammatic enhancement to UML, which is to include an illustration of
the situation with respect to the involved collaborations (see Fig. 8b), seems attractive.
This is what we have called a goal sequence diagram [10]. The second rectangle in
Fig. 8b illustrates how the roles of Invite and Talk are bound in the context of
UserCall. They are statically bound in the UserCall collaboration of Fig. 7, and
simply referred to in Fig. 8b. Goal sequence diagrams do not change the semantics of
UML, and what is illustrated in Fig. 8b corresponds to what is expressed in Fig. 8a. Goal
sequence diagrams illustrate the evolution of the collaboration structure. For instance,
two shades of coloring are employed for the referenced collaboration uses: black color
(e.g. for talk) illustrates that the collaboration use is active, while grey color (e.g.
for invite) is for preceding collaboration uses that do not have to exist any longer.
For the simple example in Fig. 8 the added value of the goal sequence diagram is not
striking; Fig. 10 is perhaps a more convincing case.

Illustrating situations has been also suggested by Diethelm & al. [14]; they use
communication diagrams to illustrate use cases and to illustrate do-actions in states.



Using UML 2.0 Collaborations for Compositional Service Specification 469

Two-party collaborations can be composed to form semantic interfaces, which de-
fine role behavior and goals of a pair of complementary roles. Limiting such collabora-
tions to a pair of roles is chosen to simplify the validation approach, which is based on
validation of object behavior projections and goals over a binary association, as men-
tioned previously. It also simplifies composition, as components can be composed of
composite states that correspond to the semantic interfaces [15].

This restriction does not hinder multi-party services to be defined; they can be com-
posed from two-party collaborations with semantic interfaces, as well as from subordi-
nate multi-party collaborations, as shown below. However, this complicates the valida-
tion and composition process, as several interfaces have to be validated or composed,
and the relationships between the interfaces must be known. Goal sequence diagrams
seem to be promising when it comes to composition, as illustrated in the next section.

3.2 Composition of Multi-party Services

An example that illustrates the potential of composing collaborations from subordinate
collaborations is found in Fig. 9, where the UserCall service with the call transfer
feature is described.

A B

C

orig_t:Talk

talker talker
:Hold

holdee holder

inq_i:Invite

invitee

inviter

res:Talk

talker

talker

UserCallWithTransfer

:Transfer

controlleroriginal party

third party

orig_i:Invite

inviteeinviter

inq_t:Talk

talker

talker

Fig. 9. The collaboration UserCallWithTransfer

Fig. 9 demonstrates how subordinate collaborations such as Invite and Talk
may be reused in new settings, due to the flexible role binding of collaboration uses.
Such reuse is a very attractive aspect of collaborations, and can help to give an intuitive
understanding of a complex situation, as illustrated here. Call transfer is a classical
challenge for service designers to understand and describe succinctly. From Fig. 9 it
is apparent that several call invitations are involved. However, the precise ordering of
the subordinate collaboration uses can not be understood from Fig. 9 alone. A goal



470 Richard Torbjørn Sanders et al.

sequence diagram for the UserCallWithTransfer service, as suggested in Fig.
10a, is one possibility of describing this.

Fig. 10a describes the ordering of collaboration uses required for the overall service
goal of the transfer feature to be achieved. The goal sequence diagram combined with
the collaboration diagram of the service (see Fig. 9) provides a compact and fairly
intuitive description of a complex service. It has been common practice among telecom
service engineers to make informal sketches to the same effect as an aid in service
design. UML collaborations provide an opportunity to formalize and better support
this practice. The goal sequence demonstrates how UML promotes reuse of units of
behavior in the form of collaboration uses, and documents the evolution of the static
structure depicted in the collaboration diagram. One particularly interesting aspect of
the goal sequence diagram in Fig. 10a is that it shows situations in which a role, e.g.
B, is simultaneously playing two or more sub-roles, e.g. holder and inviter in the
fourth step of the sequence. Note that the simplicity of collaboration structures may
be deceiving. Call transfer may look simple in Fig. 9, but when fully elaborated the
underlying sequences and role behaviors can be quite complex.

There are limits to what goal sequence diagrams are capable of expressing. For
instance, it is not possible to describe goal dependencies among overlapping collabo-
rations. This is the case, for example, of a log-on collaboration that requires a user
authentication as part of its operation. It is desirable to model log-on and authen-
ticate as separate collaborations to achieve reuse, and allow log-on to be com-
bined with alternative authentication patterns. However, we cannot express with goal se-
quence diagrams that authenticate is enabled when log-on achieves a sub-goal,
and that authenticate must achieve its goal before further progress in log-on
is possible. An alternative notation, Use Case Maps [16], has been shown to have the
necessary expressive power [5].

3.3 Towards Class Design

The specification of service functionality in collaborations is beneficial beyond the
specification phase and can have direct influence on the design of classes and state
machines. Analyzing the collaborations and the goal sequences tells us which roles a
class must play over time, which requests for roles can arrive in which situations and
which connections must be established to reach the goals of the implemented services.
Modeling service specifications can help class design, as we now shall see.

Fig. 10b illustrates the coarse structure of a class Participant that implements
all three roles A, B and C of UserCallWithTransfer. The sub-rolesinvitee and
inviter are implemented as separate state machines, since call requests can arrive at
any time. When a call request from another component is received, invitee creates
a new instance of the state machine callsession to handle the request. The sub-
roles talk, hold and transfer can be implemented by composite states inside
callsession, as these roles are played alternately. The figure also illustrates the
connections between the state machines of the components and how they evolve as the
service progresses towards the achievement of its goal.

To complete class design one must consider all collaboration roles bound to the
class. The Participant class, for example, may take part in several collabora-



Using UML 2.0 Collaborations for Compositional Service Specification 471

UserCallWithTransfer_goals

B:Participant

callsession
[talk]

inviteeinviter

A:Participant

callsession
[talk]

inviteeinviter

talk

B:Participant

callsession
[holder]

inviteeinviter

A:Participant

callsession
[holdee]

inviteeinviter

hold

B:Participant

callsession
[holder]

inviteeinviter

A:Participant

callsession
[holdee]

inviteeinviter

C:Participant

inviteeinviter

hold

B:Participant

callsession
[holder]

inviteeinviter

A:Participant

callsession
[holdee]

inviteeinviter

C:Participant

callsession
[talker]

inviteeinviter

hold

callsession
[talker]

talk

B:Participant

callsession
[controler]

inviteeinviter

A:Participant

callsession
[orig.party]

inviteeinviter

C:Participant

callsession
[third party]

inviteeinviter

hold

B:Participant

inviteeinviter

A:Participant

callsession
[talker]

inviteeinviter

C:Participant

callsession
[talker]

inviteeinviter

(a) Goal sequence diagram (b) Illustrated component structure

transfer

talk

invite

A Borig_i:Invite
invitee inviter

A B

C

inq_t:Talk

talker

talker

:Transfer
controller

original party

third party

A B

C

:Transfer
controlleroriginal party

third party

:Holdholdee holder

inq_t:Talk

talker

talker

A B

C inq_t:Talk

talker

talker

:Hold
holdee holder

inq_i:Inviteinvitee

inviter

A B

C

inq_i:Inviteinvitee

inviter

:Hold
holdee holder

A B:Hold
holdee holder

orig_t:Talk
talker talker

B:Participant

inviteeinviter

A:Participant

inviteeinviter
invite

A Borig_t:Talk
talker talker

orig_i:Inviteinvitee inviter

Fig. 10. Goal sequence for UserCallWithTransfer with related component
structure



472 Richard Torbjørn Sanders et al.

tions other than UserCallWithTransfer, as it is shown in Fig. 11. In that case
Participant must be compatible with the four roles ua, A, B and ub, and class
design must take this into account.

PeerToPeerCall

t1:Caller
Terminal

Ca1:
Participant

Ca2:
Participant

t2:Callee
Terminal

:UserCall
WithTransfer

:termCall:initCall

A Bta ua tbub

Fig. 11. Service composed of elementary services

4 Discussion

4.1 Related Work

The understanding that services involve collaboration between distributed components
is not new; indeed, this was recognized since the early days of telecommunications.
In terms of modeling the interaction of collaborations, various dialects of interaction
diagrams existed prior to the first standardization of the ITU-T MSC language [17] in
1994. A slightly different approach was taken in the use cases of OOSE [18], where
interactions were described textually. However, interactions alone do not really cover
the structural aspects of the roles and the flexible binding of roles to classifiers.

Collaborative designs such as protocols have traditionally been specified by state
diagrams, using combinations of informal descriptions and formal models, e.g. using
SDL [19] or similar ([20, 21, 12]). But while state diagrams describe complete object
behavior, the overall goals and the joint behavior tend to be blurred.

The concept of role was already introduced in the end of the 70’s in the context of
data modeling [22] and emerged again in the object-oriented literature. Using roles for
functional modeling of collaborations was of primary concern in the OORAM method-
ology [23], and was one of the inputs influencing the UML work on collaborations in
OMG. Within teleservice engineering it has been a long-standing convention to describe
telephone services using role names like A and B. In [9] we classified different uses of
the role concept, and pointed out that UML 1.x was too restrictive, since a Classifier-
Role could bind to only one class, so they were not independent concepts that could be
re-used in different classes.

Rössler & al. [3] suggested collaboration based design with a tighter integration
between interaction and state diagram models, and created a specific language, CoSDL,
to define collaborations [24]. CoSDL was aligned to SDL-96. Floch [6] also proposed
a notation for collaboration structure diagrams, where components were designed in
SDL-2000 [19].



Using UML 2.0 Collaborations for Compositional Service Specification 473

With UML 2.0, it is now possible to model collaborations in a standardized lan-
guage, increasingly supported by tools. Modeling collaborating services with UML 2.0
collaborations has earlier been suggested by Haugen and Møller-Pedersen [25]. They
pointed out that there might be limitations in binding collaboration uses to classifier
parts; these issues must be clarified, and binding to parts should preferably be sup-
ported. In the FUJABA approach described in [26], so-called coordination patterns are
used for similar purposes as our semantic interfaces. They use a model checker to pro-
vide incremental verification based on the coordination patterns.

4.2 Further Work

A number of issues presented in this article need to be clarified and researched, and
experiments in real projects must be undertaken before all problems are solved. We are
currently applying these techniques on several practical service engineering cases in-
cluding access control services, call control, and mobile information services. Compat-
ibility rules between role classifiers and the objects and classes bound by collaboration
uses is a semantic variation point in UML. The research on semantic interfaces [2] is
a promising starting point for compatibility checking between complementary roles.
Additional work on validating compatibility between roles and class designs, with tool
support for composition, is being undertaken.

An experimental tool suite is currently being developed as part of the Teleservice
Lab at the department of Telematics at NTNU, based on the Eclipse platform. The EU
funded project Semantic Interfaces for Mobile Services, SIMS, to commence in 2006,
will develop tool support for designing and validating collaborations, taking existing
prototypes [27] as a starting point and validating the approach among industrial users.

5 Conclusion

This article has suggested ways of exploiting UML 2.0 for service engineering, and has
discussed opportunities and limitations that lie in the current standard [7] in that respect.
Our conclusion is that UML 2.0 collaborations seem to be a very useful expression
form, as it allows one to define pieces of collaborating role behavior that can be bound
to role players in a very flexible way.

Useful validation opportunities arise once criteria for role compatibility have been
defined. Collaborations can be used to define semantic interfaces, which in turn can
be used for compatibility checks and to support composition. We have argued for the
inclusion of port state machines in UML as a more general description of semantic
interface behavior than the existing protocol state machine mechanisms that have been
defined in UML 2.0.

Furthermore we have suggested how minor notational enhancements can be intro-
duced to represent collaboration situations in order to support high level feature com-
position; this is more of a tool issue than a language issue, but has methodological
implications that are important. Finally, we have demonstrated how collaboration uses
provide means to define complex multi-party services on a high level.



474 Richard Torbjørn Sanders et al.

In contrast to the common practice of modeling complete service sequences involv-
ing all participating roles, our approach encourages decomposition into interface behav-
iors represented as two-way collaborations. The result is smaller and more reusable in-
terface behaviors that can be validated separately, thereby addressing compositionality
and scalability. The disadvantage is that behavior composition needs special attention,
e.g. using goal sequences as elaborated in [5].

References

[1] Bræk, R., Floch, J.: ICT convergence: Modeling issues. In: Proc. of the 4th Int. SDL and
MSC (SAM) Workshop, Ottawa, Canada, LNCS 3319, Springer (2004)

[2] Sanders, R.T., Bræk, R., von Bochmann, G., Amyot, D.: Service discovery and component
reuse with semantic interfaces. In: Proc. of the 12th Int. SDL Forum, Grimstad, Norway,
LNCS 3530, Springer (2005)

[3] Rößler, F., Geppert, B., Gotzhein, R.: Collaboration-based design of SDL systems. In:
Proc. of the 10th Int. SDL Forum, Copenhagen, Denmark, LNCS 2078, Springer (2001)

[4] Sanders, R.T., Bræk, R.: Discovering service opportunities by evaluating service goals. In:
Proc. of the 10th EUNICE and IFIP Workshop on Advances in Fixed and Mobile Networks,
Tampere, Finland (2004)

[5] Castejón, H.N.: Synthesizing state-machine behaviour from UML collaborations and Use
Case Maps. In: Proc. of the 12th Int. SDL Forum, Norway, LNCS 3530, Springer (2005)

[6] Floch, J.: Towards Plug-and-Play Services: Design and Validation using Roles. PhD thesis,
Dep. of Telematics, Norwegain Univ. Sci. and Tech., Trondheim, Norway (2003)

[7] Object Management Group: UML 2.0 Superstructure Specification. (2004)
[8] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-

ual. 2nd edn. Addison-Wesley (2004)
[9] Bræk, R.: Using roles with types and objects for service development. In: IFIP 5th Int.

Conf. on Intelligence in Networks (SMARTNET), Pathumthani, Thailand, Kluwer (1999)
[10] Sanders, R.T., Bræk, R.: Modeling peer-to-peer service goals in UML. In: Proc. of the 2nd

Int. Conf. on Soft. Eng. and Formal Methods (SEFM’04), IEEE Computer Society (2004)
[11] Mencl, V.: Specifying component behavior with port state machines. Electr. Notes Theor.

Comput. Sci. 101 (2004) 129–153
[12] Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. John Wiley &

Sons (1994)
[13] Floch, J., Bræk, R.: A compositional approach to service validation. In: Proc. of the 12th

Int. SDL Forum, Grimstad, Norway, LNCS 3530, Springer (2005)
[14] Diethelm, I., Geiger, L., Maier, T., Zündorf, A.: Turning collaboration diagram strips into

storycharts. In: Workshop on Scenarios and state machines: models, algorithms, and tools;
ICSE’02, Orlando, Florida, USA. (2002)

[15] Floch, J., Bræk, R.: Using SDL for modeling behavior composition. In: Proc. of the 11th
Int. SDL Forum, Stuttgart, Germany, LNCS 2708, Springer (2003)

[16] ITU-T Draft Recommendation Z.152: URN - Use Case Maps notation (UCM). (2004)
[17] ITU-T Recommendation Z.120: Message Sequence Charts (MSC). (2004)
[18] Jacobson, I., Christerson, M., Jonsson, P., Øvergaard, G.: Object-Oriented Software Engi-

neering: A Case Driven Approach. Addison-Wesley (1992)
[19] ITU-T Recommendation Z.100: Specification and Description Language (SDL). (2002)
[20] International Organization for Standardization (ISO): Estelle: a formal description tech-

nique based on an extended state transition model. ISO9074. (1989)



Using UML 2.0 Collaborations for Compositional Service Specification 475

[21] Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8
(1987) 231–274

[22] Bachman, C.W., Daya, M.: The role concept in data models. In: Proc. of the 3rd Int.
Conference on Very Large Data Bases, Tokyo, Japan, IEEE Computer Society (1977)

[23] Reenskaug, T., Wold, P., Lehne, O.A.: Working with Objects: The OOram Software Engi-
neering Method. Prentice Hall (1996)

[24] Rößler, F., Geppert, B., Gotzhein, R.: CoSDL: An experimental language for collaboration
specification. In: Proc. of the 3rd Int. SDL and MSC (SAM) Workshop, Aberystwyth, UK,
LNCS 2599, Springer (2002)

[25] Haugen, Ø., Møller-Pedersen, B.: The fine arts of service modeling. Technical report,
Internal report. ARTS (2003) http://www.pats.no/projects/ARTS/arts.html.

[26] Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental design and formal verifi-
cation with UML/RT in the FUJABA real-time tool suite. In: Proc. of the Int. Workshop
on Specification and Vaildation of UML models for Real Time and embedded Systems
(SVERTS), associated with UML2004, Lisbon, Portugal (2004)

[27] Alsnes, R.: Role validation tool. Master’s thesis, NTNU (2004)


	Introduction 
	Collaborations, Goals and Semantic Interfaces
	Composition from Collaborations
	Discussion
	Conclusion



