
Simplifying Transformations

of OCL Constraints

Martin Giese1 and Daniel Larsson2

1 Johann Radon Institute for Computational and Applied Mathematics
Altenbergerstr. 69, A-4040 Linz, Austria

martin.giese@oeaw.ac.at
2 Chalmers University of Technology

Department of Computer Science and Engineering
S-412 96 Gothenburg, Sweden

danla@cs.chalmers.se

Abstract. With the advent of Model Driven Architecture, OCL con-
straints are no longer necessarily written by humans. They can be part
of models that emerge from a chain of transformations. They might be
the result of instantiating templates, of combining prefabricated parts,
or of more general computation. Such generated specifications will of-
ten contain redundancies that reduce their readability. In this paper,
we explore the possibilities of transforming OCL formulae to a simpler
form through the repeated application of simple rules. We discuss the
different kinds of rules that are needed, and we describe a prototypical
implementation of the approach.

1 Introduction

The Object Constraint Language (OCL) [12] is designed with human authors
and readers in mind. While some of today’s UML tools allow attaching OCL con-
straints to diagrams and checking their syntax with a parser, there is practically
no support for authoring OCL specifications. But writing good specifications
is hard, and as the software to be specified becomes larger and more complex,
designers will need tools that help them with that task.

OCL constraints might result from a transformation of a more abstract de-
scription of the system. For instance, constraints written at the analysis level
might be transformed into design level constraints by some tool. Or a specifica-
tion in some other graphical or logic-based formalism might be translated into
OCL.

While tools performing such tasks have yet to be written, we already en-
counter tool-generated constraints in connection with an extension of the ‘design
pattern’ instantiation mechanism provided by various case tools [2].3 The idea
is to let the user instantiate templates, pieces of class diagrams, which provide
implementations for various design patterns. As part of the instantiation, one
3 In the present work we employ Borland Together ControlCenter (TCC), see

http://www.borland.com/together/index.html.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 309–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www.borland.com/together/index.html


310 Martin Giese and Daniel Larsson

can generate OCL constraints that capture certain properties of the pattern.4

Due to the availability of the tool as part of the KeY system [1], we will use the
design pattern instantiation scenario in the motivating example for this paper.
See e.g. [7, 8] for other work involving tool-generated OCL constraints.

Whichever scenario we pick, the (semi-)automatically generated constraints
will often contain redundancies that make them hard to read for humans. The
topic of this paper is how OCL constraints can be simplified with the goal of
making them more readable. We will propose a rule-based method where various
simple rules get applied exhaustively.

In Sect. 2, we describe the context of this work and give a motivating ex-
ample. We show in Sect. 3 how a generated constraint can be simplified. We
then analyze the required simplification steps in Sect. 4. In Sect. 5, a prototyp-
ical implementation of our ideas within the KeY system is presented. Sect. 6
discusses related work. Finally, Sect. 7 concludes the paper with some remarks
about future work.

2 Motivation

The KeY tool [1] is a CASE tool in which formal methods are integrated with
contemporary software development techniques. Besides the usual tasks of a
CASE tool of creating UML models and creating implementations in Java, KeY
allows the developer to add formal specifications to a model in the form of OCL
constraints. One of the main goals of the KeY project is to spread the use of
formal methods in software development, and a crucial step in the use of formal
methods is the authoring of formal specifications like OCL constraints.

Unfortunately, it is not easy to write useful formal specifications. This is one
of the major obstacles in getting developers to use formal methods in software
development. One possible solution to this problem would be to, somehow, au-
tomatically generate formal specifications out of some prior information. Ideally,
we would like to go directly from an informal specification to a formal one, but
the possibilities to do so are very limited. However, an experienced developer can
often recognize parts of an informal specification as instances of certain design
patterns and, given a specific design pattern, it is possible to generate a formal
specification that expresses useful requirements associated with that pattern [2].

As software development is becoming more and more structured, using pat-
terns, frameworks, and so on, it is very natural that authoring of formal specifi-
cations also follows that line. It is a good way of re-using and taking advantage
of experienced developers’ knowledge.

4 Design patterns in the usual sense of the word [5] provide a vocabulary for com-
municating design ideas. They are relatively abstract entities, consisting of textual
descriptions of why, when, and how to use them, and the consequences of using them.
What is called “design pattern” in CASE tools like TCC is just mechanical instan-
tiation of templates. It is nevertheless useful, and it is such a template mechanism
we use as an example in this work.



Simplifying Transformations of OCL Constraints 311

How can we obtain a formal specification for a design pattern? The problem
is that in order to write a useful specification we need some information that is
not available until the pattern gets instantiated, i.e. applied to a concrete design.
Until then we do not know:

– The name space of the modeled domain, i.e. we do not know the names of the
classes, fields, methods, associations, etc. in the design to which the pattern
is being applied.

– How the developer will modify the structure of the pattern, i.e. adding or
removing classes, fields, methods, associations, etc.

– What flavor of the pattern the developer will use. By flavor we here mean
that different instances of a specific design pattern can have different re-
quirements associated with it regarding some details.

2.1 Example of Constraint Generation

Let us look at a concrete example to make this more clear. The intention of the
Observer design pattern (taken from [5]), that is shown in Fig. 1, is to “define
a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically.” This pattern
is useful when one needs to maintain consistency between related objects, but
one does not want to achieve this by making the classes tightly coupled.

In modern CASE tools such as TCC, one can perform machine-assisted ap-
plication of design patterns. The user then has to supply a mapping from the
name space of the pattern to the name space of the modeled domain. Optionally,
the user may choose to modify the structure of the pattern. In the KeY tool, the
user can also choose what flavor of the pattern he wants to use. In the context of
the Observer pattern we can, for instance, find the following “flavor component”:

– Should the observers be allowed to observe more than one subject? In other
words, what should be the multiplicity of the subject association-end: 0..1
or 0..*? In some situations, observers need information from more than one
source, and then it might be a good idea to let them observe more than
one subject. For example, a spreadsheet may depend on more than one data
source.

An instance of the Observer pattern is shown in Fig. 2. This example is
from the design of a system that handles statistical data. The statistics can be
viewed graphically, both as a pie chart and as a bar chart. We can see that what
is called ConcreteSubject in the pattern is here called Statistics, the role-
name statistics corresponds to the role-name subject in the pattern, and so
on. We can also see that we here have two concrete observers (PieChart and
BarChart) in contrast to the single one in the pattern (ConcreteObserver), so
the original structure of the pattern has been slightly modified.

What flavor of the pattern would be useful for this particular instance? Let
us assume that the GUI observers only need information from one Statistics
object, i.e. the subject association-end has multiplicity 0..1.



312 Martin Giese and Daniel Larsson

subject

0..*

observers

Subject

+attach(o:Observer):void
+detach(o:Observer):void
+notify():void

Observer

+update():void

ConcreteSubject

-state:SubjectState

+getState():SubjectState
+setState(s:SubjectState):void

ConcreteObserver

-state:ObserverState

+update():void

notify():

for all o in observers

o.update()

Fig. 1. The Observer pattern

Now, if we are going to write a formal specification for this design pattern,
we need information that we do not obtain until the pattern is instantiated. A
possible solution is to use schemas, as suggested in [2]. For each design pattern
we want to specify, we design a schema from which we can generate formal
specifications when the pattern is applied. A schema for (part of) the Observer
pattern might look like this:

schema numOfSubjects(String flavor)
ocl: context Observer inv:

if flavor = ’one’
then self.subject->size() <= 1
else true

endif

Here we have a parameterized version of one of the “flavor components”, namely
whether the subject association-end should have multiplicity 0..1 or 0..*. The
keyword schema, the name of the schema, optional flavor parameters, and the
keyword ocl: are followed by the actual OCL constraint containing the flavor
parameters. But there is a problem with this schema. There is no inheritance
mechanism in the semantics of OCL, and this means that a formal specification
will be generated for the abstract class Observer but not for the concrete ob-



Simplifying Transformations of OCL Constraints 313

0..*

observers

statistics

statistics

Subject

+attach(o:Observer):void
+detach(o:Observer):void
+notify():void

Observer

+update():void

BarChart

+update():void

Statistics

-a:int
-b:int
-c:int

+setStatistics(a:int,b:int,c:int):void
+getStatistics():int[]

PieChart

+update():void

Fig. 2. An instance of the Observer pattern

server objects PieChart and BarChart. Writing a schema for ConcreteObserver
instead, so that a specification is generated for each concrete observer in the
model, does not solve the problem in general. If the developer introduces a hier-
archy of observers including abstract super classes for subsets of the observers,
then we have the same problem again. However, we can address the problem
directly in our schema:

schema numOfSubjects(String flavor)
ocl: Observer.allSubtypes()->

forAll(s | s.allInstances()->
forAll(i |

if flavor = ’one’
then i.subject->size() <= 1
else true

endif))

Now we quantify over all subtypes of Observer, and for each subtype we
quantify over all instances of that subtype. This means that in essence we will
get an invariant for each subtype. (The property allSubtypes is not pre-defined
in OCL but can be expressed with the help of other operations. We just use it
here to make the constraint more readable.) Here is the result of applying the
Observer pattern to the model in Fig. 2 and using the schema above to generate
a specification for the pattern instance:



314 Martin Giese and Daniel Larsson

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i |

if ’one’ = ’one’
then i.statistics->size() <= 1
else true
endif))

Observer in the pattern is mapped onto Observer (could have another name) in
the model, the subject association in the pattern is mapped onto statistics,
and the parameter flavor is bound to the string literal ’one’. As one can see,
there is a potential for simplification here. Since we now have a concrete design,
it should be possible to evaluate the expression Observer.allSubtypes(). It
should also be possible to evaluate the if-then-else construct now that the flavor
parameter is bound to a concrete value.

In general, when we write OCL constraint schemas for design patterns, they
will be parameterized. We will have explicit parameters of the schema for dif-
ferent flavors of the pattern. The elements from the pattern’s name space can
also be viewed as formal parameters, since they have to be bound to concrete
elements from the modeled domain. Moreover, we have to take into account pos-
sible structural modifications of the pattern. As we saw in the example, all this
will lead to generated specifications containing redundant information. They be-
come hard to read, hard to understand. The generated specifications need to be
simplified.

3 Example

We shall now see how the previous example may be simplified through the appli-
cation of several small simplification steps. The first step would be to recognize
that ’one’ = ’one’ is always true, and may therefore be replaced by true:

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | if true

then i.statistics->size() <= 1
else true
endif))

Next, an if-then-else construct with a condition known to be true may be replaced
by its then-branch:

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | i.statistics->size() <= 1))

A further simplification becomes possible if we take information about the model
into account, namely the subtypes of Observer in this particular instance of the
pattern. In Fig. 2, there are only two subtypes, so we can simplify the constraint
as follows:



Simplifying Transformations of OCL Constraints 315

Set{PieChart,BarChart}->
forAll(s | s.allInstances()->
forAll(i | i.statistics->size() <= 1))

The outer forAll application now ranges over a finite set of which we know all
elements. We can therefore transform it into a conjunction:

PieChart.allInstances()->forAll(i | i.statistics->size() <= 1)
and BarChart.allInstances()->forAll(i | i.statistics->size() <= 1)

Finally, a property that should hold for all instances of a class is usually stated
as an invariant. One could therefore split up this constraint and add an invariant
to both of the observer classes:

context PieChart inv: statistics->size() <= 1
context BarChar inv: statistics->size() <= 1

These constraints are certainly much simpler and more natural than the original
general form from the schema. On the other hand, the meaning is guaranteed to
be the same, as none of the small transformations changed it.

As a second example, let us assume that flavor was bound to many. We
then get the constraint

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | if ’many’ = ’one’

then i.statistics->size() <= 1
else true
endif))

The strings ’many’ and ’one’ are different, so the condition can be simplified
to false:

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | if false

then i.statistics->size() <= 1
else true
endif))

In this case, only the else-branch needs to be kept:

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | true))

A forAll expression with body true always evaluates to true, so we can simplify
this to

Observer.allSubtypes()->
forAll(s | true)



316 Martin Giese and Daniel Larsson

and finally to

true

In this case, the constraint gets simplified away completely, as it does not
say anything about the case where flavor is not ’one’.

Another example of a step-wise simplification is given in [2]. There, OCL
constraints from an instantiation of the Composite pattern are simplified in a
similar way as was presented here.

4 Analysis

The previous section shows how OCL constraints can be simplified considerably
through the repeated application of small, simple rules. All rules require only
local transformation of the constraint, no global analysis is needed. This suggests
implementing our simplification using a kind of rewriting rule engine. Such a rule
engine repeatedly tries to apply transformation rules on subexpressions of the
input until no more rules are applicable. This is a well-known principle and
our work can profit from the extensive research on term rewriting systems (see
e.g. [4]).

In this section, we are going to have a closer look at the different kinds of
rules that are needed to simplify OCL constraints.

4.1 Primitive Types

The most fundamental primitive type in OCL is of course the Boolean type.
For this, general logic simplification steps are needed, like for instance rewriting
false and e to false, true and e to e, etc. One can give this kind of rules
for all logical connectives, including the if-then-else construct. The rule that
simplifies e=e to true also belongs to this category.5

A more difficult question is how to handle the other data types built into
OCL. For instance, one surely wants to have simplification rules that rewrite
2+3 to 5. Simplifying 0+x to x is also useful. But should one have rules ca-
pable of simplifying (x+y)*(x+y) - (x-y)*(x-y) to 4*x*y? It is known from
computer algebra research that the simplification of algebraic expressions is a
complicated affair. We think that it depends very much on the application field
whether an OCL simplifier should be able to handle this kind of problem. If
one thinks of design pattern instantiation, then it seems unlikely that algebraic
simplification would be useful. We limit ourselves to evaluation of concrete ex-
pressions and simple laws on neutral elements, units, etc., until we come across
an application that makes more powerful simplification necessary. This holds for
all the primitive data types of OCL, i.e. integers, reals, and strings.

5 We have so far ignored the difficulties of handling undefined using an appropriate
three-valued semantics.



Simplifying Transformations of OCL Constraints 317

4.2 Collection Types

In Sect. 3 we saw an example of how a forAll expression over a finite set can
be rewritten to a conjunction. Many interesting simplifications are possible for
collections. Here are some examples:

– Operations with finite sets can be simplified: Set{a,b}->exists(x|p(x))
can be written as p(a) or p(b).

– Some operations can be completely evaluated for concrete sets. For instance,
Set{1,2,3}->sum() can be simplified to 6.

– Operations where the other parameters have a simple form can often by
simplified: s->forall(x|true) can be rewritten to true and, if s is a Bag,
s->collect(x|x) can be reduced to s.

– Special cases can be detected for some operations. For instance, one might
rewrite s->including(o)->includes(o) to true.

As is the case for primitive types, no finite set of simplification rules can cover all
cases. One should therefore pick a basic supply and extend it when applications
make it necessary.

An common property of the collection operators in OCL is that they can all
be expressed using the iterate construct. We can reduce the number of needed
simplification rules for the various collection operators by translating them to an
iterate expression and providing simplification rules only for that. For instance,
the previously mentioned expression

Set{a,b}->exists(x | p(x))

can be written as

Set{a,b}->iterate(x ; acc:Boolean = false | acc or p(x) )

The iteration over the finite set can then be unrolled to

(false or p(a)) or p(b)

which is in turn simplified to

p(a) or p(b)

It turns out that most of the simplifications one might think of for forAll,
exists, collect, etc., can actually be handled in this way. If one has m simpli-
fication rules for n operators, one can effectively replace m · n rules by m + n.

The drawback of this approach is what happens when the expression cannot
be simplified further after translation to the iterate form: in that case, the
latter form is certainly harder to read than the original. Our current solution
to this problem is to provide a number of rules for the inverse transformation,
i.e. to transform iterate expressions of certain forms to forAll, exists, etc.
These rules are applied as a final step after all other simplifications. In other
words, simplification proceeds in two phases. In the first phase, everything is
translated to the iterate form and simplified as much as possible. In the second
phase, remaining iterate expressions are translated back to the various simpler
operators.



318 Martin Giese and Daniel Larsson

This approach leads to an interesting theoretical question, namely which
properties the rule sets for the two phases should have to make the overall
behaviour equivalent to that of a single phase with m · n rules.

4.3 Model Dependent Simplifications

The previously discussed simplification rules are not very specific to OCL. They
would make sense in any formal language that provides the same data types. A
peculiarity of OCL is that OCL constraints are always attached to UML dia-
grams. They cannot occur in isolation. Accordingly, we can identify simplification
rules that depend on the model.

For instance, some of the properties (operations) defined by OCL refer to
the operations and attributes available for a type, rather than to a state of the
modeled system.6 If the concrete model is known, these can often be evalu-
ated. For instance, in our example, PieChart.supertypes() can be simplified
to Set{Observer}. In contrast to the simplifications proposed in the previous
sections, this requires knowledge of the model. Similarly, expressions involving
the attributes, operations, etc., properties defined for OclType will usually
be simplifiable once the model is known.

The use of information from the UML model is not limited to ‘meta’-proper-
ties: another possibility might be to use the multiplicities of associations. For
instance, if the association assoc has a multiplicity of n, then o.assoc->size()
can be simplified to n.

The interesting issue here is how to organize the implementation of such
simplifications. An implementation that uses a rule engine with a fixed set of
syntactic rewrite rules would have to generate a considerable number of rules
from the model. For instance, there would be a rule for each of the OclType
properties for each class in the model. Even worse, simplification rules that
involve two types, for instance for expressions involving oclIsKindOf, might
need one rule for every pair of classes, so the rule set would grow quadratically
in the size of the model. At the same time, most of these rules would not be
needed for any particular simplification.

To avoid this waste of resources, a practical solution requires a rule engine
that can obtain information from the model to determine the applicability and
result of some of the rules. This is the approach we have chosen, using the rule
engine’s ‘meta constructs’ as described in the next section.

We have not yet discussed the final step in Sect. 3, where a single constraint
is split up and distributed among the invariants of several classes. This could
be done as a post-processing step, but we chose to incorporate it into our rule
based mechanism. The simplification rules are not applied on raw constraints,
but on lists of constraints with contexts. This allows us to formulate rules that
add constraints to different classes.
6 In other words, these properties return information about the state of the meta-

model. Up to OCL 1.5, these were predefined on the type OclType. In OCL 2.0, they
were removed to avoid inconsistencies between OCL and the UML metamodel. Our
discussion is based on the properties as defined in OCL 1.5.



Simplifying Transformations of OCL Constraints 319

5 Implementation

We have implemented a prototype of a rule-based OCL simplifier and integrated
it with the pattern-instantiation mechanism in KeY. It is now possible in KeY
to generate OCL specifications for instances of certain design patterns, with
the help of schemas, and then to use the simplifier to simplify the generated
specifications. To parse the OCL expressions that need to be simplified, we use
a parser and typechecker that has been developed at Chalmers University and
is described in [9]. When implementing the OCL simplifier, we used the fact
that we already had a rule-engine available: the theorem prover in the KeY tool.
This theorem prover is based on taclets [3], which are a kind of generalized term
rewriting rules that can be used to describe the rules of a logic calculus.

5.1 Taclets

Although the taclet concept was designed with theorem proving in mind, the
design is so general that it is possible to use taclets for other purposes as well.
After a few extensions of the implementation of the KeY taclet engine, we were
able to use taclets to perform OCL simplification.7 A rewrite taclet for OCL
simplification can, for instance, look like this:

find(#e and true) replacewith(#e)

Here, #e is a schema variable, i.e. it stands for an arbitrary expression. This taclet
is applicable to an OCL expression exp if the find-part of the taclet matches exp
(i.e. if we can instantiate the schema variable so that exp and the find-part
become identical). If we apply the taclet to exp, then exp will be replaced by the
instantiated replacewith-part of the taclet. The schema variables used in a taclet
must first be declared, meaning that they are given a type. In this way we can
ensure that taclets are only applicable to expressions with matching types. New
rules can easily be defined in a text file, using the notation above, and are then
parsed into the KeY system. Our approach is to write a set of simplification rules,
in the form of taclets, and then apply them to the generated OCL specifications.

Each OCL taclet contains a find-expression and a replacewith-expression,
both consisting of OCL syntax extended with schema variables, meta constructs,
and the substitution operator. Meta constructs are references to procedures that
transform a given OCL expression into another one when a taclet is being ap-
plied. They are only allowed to appear in the replacewith-part and are used to
extract information from the UML model, e.g. the subtyping hierarchy of classes.
Most taclets do not need any meta constructs. The meaning of the substitution
operator will be explained in the context of an example below. Here are some
examples of taclets needed for OCL simplification:

7 There exists a number of model transformation languages within the MDA frame-
work, and one of them could probably have been used to express the OCL simpli-
fication. However, when our project started no tool support was available for these
languages, and we therefore went for the taclet solution.



320 Martin Giese and Daniel Larsson

equals {find(#e = #e) replacewith(true)}

and_false {find(#e and false) replacewith(false)}

if_true {find(if true then #e1 else #e2 endif)
replacewith(#e1)}

In the examples, all schema variables are prefixed with a ‘#’ sign to distinguish
them from the keywords in the syntax. It should be pointed out that in the
current implementation, one cannot use proper OCL syntax in the taclets like
in the examples. A special, taclet-tailored syntax has to be used instead. This is
due to the difficulties in integrating the parser for the taclet language with an
OCL parser. Of course, this technicality will be visible only to the author of the
simplification rules, and not to the user of the simplifier.

5.2 Collections

In order to simplify OCL expressions, one has to have a way of dealing with OCL
collections. The constructors for OCL collections (Set{...}, etc.) can enumerate
any number of elements, i.e. they can be viewed as operators having a variable
arity. Now, operators with variable arity are not very easy to handle in an ef-
ficient way when one wants to apply rules to them. Our solution to this is to
represent collection literals in structures that resemble the list in functional pro-
gramming languages. These structures are built using two constructors: insert
that takes two arguments—the “first” element in the collection and the rest of
the collection—and empty that represents the empty collection.

To be more precise, we have two collection constructors for each collection
type: insert_set and empty_set, insert_bag and empty_bag, and so on. In
that way we do not lose the type information. Using these collection constructors,
it is easy to perform various operations on OCL collections. Instead of having
to deal with variable arity, we use induction when designing our simplification
rules: we have one base case rule for the empty collection, and one induction step
rule, just as one defines functions operating on lists in functional programming
languages. As an example for this representation, Set{a, b, c} becomes

insert_set(a, insert_set(b, insert_set(c, empty_set)))

We can now define taclets to transform a universal quantification over a concrete,
finite set to a conjunction. In other words, we want to transform an expression
like

insert_set(a, insert_set(b, insert_set(c, empty_set)))
->forAll(x | e(x))

to

e(a) and e(b) and e(c)



Simplifying Transformations of OCL Constraints 321

Below we see the two taclets needed to perform this transformation, one rule for
the base case and one for the induction step:8

forAll2Conjunction_base {
find(empty_set->forAll(#x | #exp))
replacewith(true)}

forAll2Conjunction_step {
find(insert_set(#head, #tail)->forAll(#x | #exp))
replacewith({#x #head}#exp and #tail->forAll(#x | #exp))}

Here we can see the syntax for substitution, {x e}exp, which causes all free
occurrences of x in exp to be replaced with e once the taclet is applied.

5.3 Type Inference

Another thing we must handle in our implementation is a certain degree of type
inference. The type of an OCL expression is in most cases given directly by the
top operator of the expression, but in some cases one has to infer the type of
the expression from the types of its subexpressions. For example, the type of an
expression with forAll() as top operator is always Boolean, while the type of
the expression if b then e1 else e2 endif is the least common supertype of
the types of e1 and e2. One way to implement a type system that handles this
kind of type inference would be to design a general type inference algorithm,
e.g. using unification, like the ones found in functional programming languages
like ML and Haskell. However, combining such an algorithm with subtyping is a
delicate matter. Moreover, there are relatively few, builtin OCL operations that
need special treatment, and their number is fixed. Instead of using a general
type inference algorithm, we have therefore chosen to hard-code the necessary
inference directly in the representation of these OCL operations.

5.4 Status of Implementation

In order to perform OCL simplification using taclets we have extended the im-
plementation of the KeY tool so that we can now, for instance, perform the
simplification steps described in Sect. 3, and also what is needed for the problem
described in [2]. We can perform basic simplifications, like x and true to x, but
also more advanced tasks like extracting information from the model using meta
constructs. We can also handle bound variables and express the substitution of
such variables, which is needed to handle forAll, iterate, etc. Moreover, we
have extended the pretty-printing module of KeY so that the simplified OCL
expression can be displayed in proper OCL syntax. What remains to be done is
to complete our set of taclets. So far we have only written simplification taclets
for a few design pattern schemas.
8 As mentioned in Sect. 4.2, this simplification would actually be performed via the
iterate representation. To make our presentation simpler, we here give rules that
simplify forAll-expressions directly.



322 Martin Giese and Daniel Larsson

Since it is possible to use the prover of the KeY system “stand-alone”, without
the CASE tool component, we expect to be able to produce a stand-alone version
of our OCL simplifier as well.

6 Related Work

The idea to attach schematic OCL constraints to design patterns was first dis-
cussed in [2]. The need for simplification was recognized there, but not sys-
tematically investigated. This is done in the present paper, together with an
implementation approach.

The authors have explored the idea of applying partial evaluation [10] tech-
niques to simplification, but the approach turned out to be rather unfruitful, as
discussed in Sect. 6 of [6].

7 Conclusion

We presented an approach to perform OCL simplification through repeated ap-
plication of simple rules. Simplification of OCL constraints is often needed when
the constraints have been automatically generated by instantiation of templates,
by combination of constraint fragments, or by some other technique. On a higher
level, we think that tool support for the generation of formal specifications is an
important step on the way to make formal methods more accessible to software
developers. In this paper we concentrated on how to simplify OCL constraints
generated in the context of design pattern instantiation, i.e. constraints express-
ing requirements associated with the patterns.

We identified various kinds of rules that are needed for OCL simplification
and pointed out differences to usual term rewriting systems. We also compared
template instantiation and simplification of OCL constraints to program spe-
cialization.

Moreover, we implemented a prototype of an OCL simplifier by re-using the
rule application mechanism of the theorem prover in the KeY tool. We described
some of the technical issues that need to be solved in such an implementation.

An important body of future work will be to add simplification rules for the
various operators and data types built into OCL. In connection with this, we will
need to evaluate our approach in some significant case studies. The well-studied
theory of rewrite systems [4] can be applied to show termination, uniqueness of
simplification results, etc. The presence of variable binding operators (forAll,
iterate, etc.) also makes the work on higher-order rewriting [11] relevant in
this context.

An interesting direction for future research is to perform simplification under
side conditions. For instance, one might have information that is separate from
an OCL constraint, but lets one decide which branch of an if-then-else construct
needs to be kept. This would be useful for the work presented in [7].



Simplifying Transformations of OCL Constraints 323

We believe that future software engineering tools will in an increasing degree
generate models and OCL constraints, in addition to today’s manual authoring.
Simplifying these specifications for improved readability will be indispensable.

Acknowledgment

The authors are thankful to Philipp Rümmer for his useful comments on a draft
of this paper.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin
Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Stef-
fen Schlager, and Peter H. Schmitt. The KeY tool. Software and Systems Model-
ing, 4(1), 2005.

[2] Thomas Baar, Reiner Hähnle, Theo Sattler, and Peter H. Schmitt. Entwurfs-
mustergesteuerte Erzeugung von OCL-Constraints. In K. Mehlhorn and G. Snelt-
ing, editors, Informatik 2000, 30. Jahrestagung der Gesellschaft für Infomatik,
pages 389–404. Springer, September 2000.

[3] Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle, Andreas Roth,
Philipp Rümmer, and Steffen Schlager. Taclets: A new paradigm for constructing
interactive theorem provers. Revista de la Real Academia de Ciencias Exactas,
F́ısicas y Naturales, Serie A: Matemáticas (RACSAM), 98(1):17–53, 2004. Special
Issue on Symbolic Computation in Logic and Artificial Intelligence.

[4] Nachum Dershowitz and David A. Plaisted. Rewriting. In Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 9,
pages 535–610. Elsevier Science, 2001.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] Martin Giese, Reiner Hähnle, and Daniel Larsson. Rule-based simplification of
OCL constraints. In Octavian Patrascoiu et al., editor, Workshop on OCL and
Model Driven Engineering at UML2004, Lisbon, pages 84–98, 2004.

[7] Martin Giese and Rogardt Heldal. From informal to formal specifications in UML.
In Thomas Baar, Alfred Strohmeier, Ana Moreira, and Stephen J. Mellor, editors,
Proc. of UML2004, Lisbon, volume 3273 of LNCS, pages 197–211. Springer, 2004.

[8] Reiner Hähnle, Kristofer Johannisson, and Aarne Ranta. An authoring tool for
informal and formal requirements specifications. In Ralf-Detlef Kutsche and Her-
bert Weber, editors, Fundamental Approaches to Software Engineering (FASE),
Part of Joint European Conferences on Theory and Practice of Software, ETAPS,
Grenoble, volume 2306 of LNCS, pages 233–248. Springer, 2002.

[9] Kristofer Johannisson. Disambiguating implicit constructions in OCL. In Work-
shop on OCL and Model Driven Engineering at UML2004, Lisbon, 2004.

[10] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

[11] Tobias Nipkow and Christian Prehofer. Higher-order rewriting and equational
reasoning. In W. Bibel and P. Schmitt, editors, Automated Deduction — A Basis
for Applications. Volume I: Foundations, volume 8 of Applied Logic Series, pages
399–430. Kluwer, 1998.

[12] J. Warmer and A. Kleppe. The Object Constraint Language. Object Technology.
Addison-Wesley, second edition, 2003.


	Introduction
	Motivation
	Example
	Analysis
	Implementation
	Related Work
	Conclusion



