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Abstract. This paper proposes an extension of the UML 2.0 profiling mecha-
nism. This extension facilitates a language designer to introduce composite 
concepts as separate conceptual and notational elements in a modelling lan-
guage. Composite concepts are compositions of existing concepts. To facilitate 
the introduction of composite concepts, the notion of stereotype is extended. 
This extension defines how a composite concept can be specified and added to 
a language’s metamodel, without modifying the existing metamodel. From the 
definition of the stereotype, rules can be derived for transforming a language 
element that represents a composite concept into a composition of language 
elements that represent the concepts that constitute the composite. Such a trans-
formation facilitates tool developers to introduce tool support for composite 
concepts, e.g., by re-using existing tools that support the constituent concepts. 
To illustrate our ideas, example definitions of stereotypes and transformations 
for composite concepts are presented. 

1   Introduction 

The profiling mechanism, as defined in the UML 2.0 Infrastructure Specification 
[10], is a lightweight metamodel extension mechanism. It allows one to specialize any 
language, provided its metamodel is defined in the MOF, by specializing existing 
concepts that are represented in the metamodel of that language. By defining profiles 
on top of a general-purpose language one can re-use tools for the general-purpose 
language to support the languages that are defined by the profiles. Furthermore, one 
can develop dedicated languages for specific stages in the design process or specific 
application domains. Hence, the profiling mechanism combines the efficiency of 
general purpose languages with the intuitive clarity of dedicated languages. 

We claim however that besides specialization, the profiling mechanism should 
support the extension of metamodels with composite concepts, i.e., concepts that are 
defined as compositions of existing concepts. In general, the introduction of compos-
ite concepts and associated language elements facilitates the task of a modeller and 
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increases the clarity of models, because frequently occurring compositions of con-
cepts can be replaced by composite concepts. In addition, the possibility of defining 
composite concepts allows one to use a general-purpose language consisting of a 
limited number of elementary and generic concepts. More complex concepts can then 
be defined as compositions of those elementary and generic concepts. The benefit of 
such an approach is that, on the one hand, it is easy to maintain consistency and tool 
support for a limited set of elementary concepts, while, on the other hand, it provides 
clarity and ease of use, because complex concepts can be defined directly and clearly. 

For example, consider the extension of the UML 2.0 action semantics with a Time-
dOperationCall, which represents the handling of an operation call, including the possi-
bility to set a maximal completion time. A timed operation call involves a number of 
elementary actions, such as CallOperationAction, AcceptCallAction, ReplyAction and Ac-
ceptTimeEventAction (see also the elaboration of this example in section 3.3). This 
means one has to be able to define which elementary actions are involved and how 
these actions are related. This is however not possible by defining a timed operation 
call as a stereotype of an existing concept using the current profiling mechanism. 

The contribution of this paper is twofold. First, we propose an extension of the 
UML 2.0 profiling mechanism with stereotypes for composite concepts. These stereo-
types should leave the existing metamodel unmodified. Second, we describe how 
rules can be derived from the stereotypes to transform a composite concept into the 
corresponding composition of (elementary) concepts. Such transformation rules can 
be used to generate tools supporting the dedicated modelling languages that use the 
composite concepts, based on existing tools for the general-purpose language. 

This paper is further structured as follows. Section 2 describes the profiling 
mechanisms and the trade-off between profiling and metamodelling. Section 3 intro-
duces stereotypes for specifying composite concepts. Section 4 explains how model 
transformation can be used to implement these stereotypes. Section 5 illustrates some 
applications of our ideas. And section 6 presents conclusions and future work. 

2   Profiling 

Profiling allows one to extend an existing language metamodel with specializations of 
metaclasses and with constraints. The purpose of such an extension is to adapt a lan-
guage for a particular application domain, development platform or design method. 
For example, one may want to support specific concepts, notation or terminology. An 
important restriction is that profiling does not allow one to modify the existing meta-
model. Profiling in UML 2.0 can be applied to any MOF-compliant metamodel. 

2.1   Profiles Package  

Figure 1 depicts the Profiles package from the Infrastructure specification [10]. A 
profile is a kind of package that extends an existing metamodel or profile. A profile 
contains stereotypes. A stereotype extends (specializes) an existing metaclass or 
stereotype. This extension is defined by a specialized association between the stereo-
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type and the extended metaclass. Through the extension each instance of the stereo-
type is associated with an instance of the metaclass that it extends. A profile applica-
tion defines which profiles have been applied to some package. 
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Created with Poseidon for UML Community Edition. Not for Commercial Use.
 

Fig. 1. The classes defined in the Profiles package. 

Figure 2 depicts an example of the definition of an EJB profile. A profile is de-
fined as a package stereotyped <<profile>>. A stereotype is denoted by the keyword 
<<stereotype>> above the stereotype name. An extension association is represented by 
a filled arrow pointing from the stereotype to the metaclass. The constraint {required} 
defines that the extension is required, which means that an instance of Bean, i.e., an 
instance of Entity or Session, must always be linked to an instance of Component. In 
general, constraints can be associated with stereotypes to specify rules and restrictions 
on their use. Just like a class, a stereotype may have properties (attributes). These 
properties extend the properties of the extended metaclass or stereotype. For example, 
attribute state of stereotype Session defines whether a session object is stateful or 
stateless. The values of stereotype properties are also referred to as tagged values. 
Package Conference illustrates how the EJB profile can be applied, which is repre-
sented by an import association stereotyped <<apply>>. Because state is a meta-
attribute of stereotype Session, its value can not be set directly by the ConferenceMan-
agement class, but can be set in a comment box that starts with the name of the stereo-
type. 

 
<< profile >>

EJB

Component

<< stereotype >>
Session

-state:StateKind

<< stereotype >>
Entity

<< stereotype >>
Bean

<< enumeration >>
StateKind

stateless
stateful

Conference

<<session>>
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<< Session >>
Conference
Management

{required}

<< apply >>

 

Created with Poseidon for UML Community Edition. Not for Commercial Use.
 

Fig. 2. Example of profiling. 
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We would like to stress that the Profiles package only provides a way to extend the 
metamodel, i.e., the abstract syntax, of some language. Language extension also in-
volves the definition of the semantics and concrete syntax for the metamodel exten-
sion. This has to be done separately. 

2.2   Profiling Versus Metamodelling 

In general, two approaches to metamodel extension can be distinguished, which are 
often referred to as ‘profiling’ and ‘metamodelling’. Profiling refers to the extension 
mechanism described in section 2.1. Metamodelling refers to the definition of meta-
models. An essential difference between both approaches is that profiling starts from 
an existing metamodel and does not modify this metamodel, whereas metamodelling 
involves the creation of a new or the modification of an existing metamodel.  

The metamodelling approach can always be used instead of profiling. Metamodel-
ling has to be used in case some of the modelling concepts that have to be represented 
by the metamodel can not be obtained as specializations of existing concepts. Fur-
thermore, if one has a stable set of modelling concepts, one may want to create a 
separate metamodel and develop dedicated tools, since this pays off by having better 
modelling and tool support. 

Instead, the profiling approach is meant to provide a lightweight extension mecha-
nism that is more easy to use by language developers and more easy to support by 
tools. This approach can only be used in case the required modelling concepts are 
specializations of existing concepts. From the MDA perspective this seems sufficient 
to facilitate the development of transformations from general models (PIMs) to more 
specific models (PSMs). However, a more expressive profiling mechanism may fa-
cilitate the MDA approach even further. In particular, we claim that an extension 
mechanism for composite concepts is useful and can be introduced while maintaining 
the lightweight character of profiling. Section 5 discusses some applications of such 
an extension mechanism for composite concepts. 

The characteristic that an existing metamodel is left unmodified has been an im-
portant motivation to propose an extension of the profiling approach. The profiling 
approach avoids that an existing metamodel is compromised, helps to shield distinct 
language extensions from each other, and facilitates re-use of tool support. One could 
argue that the same benefits can be achieved by structuring metamodels and their 
extensions properly, but this would require much more expertise from the language 
developer. Furthermore, the choice to extend the profiling mechanism should not be 
considered as a (strong) preference for stereotypes to define language extensions. In 
fact, some of the ideas underlying the definition of stereotypes for composite con-
cepts can also be used when following a metamodelling approach (see also section 
3.3).  

Several papers [1,2,3,4,8,15] discuss the principles of and problems associated 
with metamodelling and profiling in more detail. 
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3   Specification of Composite Concepts 

A concept represents some system property that is considered essential in the devel-
opment of (software) systems. Concepts form the building blocks for constructing 
models. A model consists of one or more concept instances, representing the system 
properties that are conceived by the developer and considered relevant in relation to 
the purpose of the model in the development process. 

An elementary concept represents an elementary system property, and forms the 
smallest unit for constructing models. We define a composite concept as a composi-
tion of concept instances, where a concept can be an elementary or a composite con-
cept. We define a structure concept as a composition of concepts (rather than concept 
instances). The difference between a structure concept and a composite concept is 
that, if we want to use a structure concept in a model, we still have to decide on what 
instances of its constituents we want to use and how we want to associate them. Con-
sequently, a structure concept represents a set of composite concepts, i.e., one for 
each possible composition of instances of the structure concept. 

Composite and structure concepts are commonly used during a development proc-
ess, either explicitly or implicitly. Examples are compositions, patterns or groupings 
of model elements; e.g., a transaction that consists of multiple related operation calls 
is an example of a composite concept, and the StructuredActivityNode in UML’s activi-
ties that represents a group of activity nodes and edges is an example of a structure 
concept. 

3.1   Representing Composite and Structure Concepts 

We represent a composite or structure concept as a class that is related to its constitu-
ents by composite aggregations. For example, figures 3(i) and 3(ii) depict metamod-
els representing the structure concepts ATask and BTask, respectively, which consist of 
the elementary concepts Action and Flow. 
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Fig. 3. Composite concepts. 

One may be tempted to interpret the metamodel of figure 3(i) at an instance level, 
such that it represents: a task consisting of two actions that are related by a flow. 
However, the metamodel of figure 3(i) can only be interpreted at type level, such that 
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it represents: a task consisting of two actions and a flow between (any) two actions. 
The difference between both interpretations becomes clearer in case of the metamodel 
of figure 3(ii), which represents: a task consisting of three actions and two flows, but 
does not define which actions are related by a flow. Also the metamodel of figure 3(i) 
does, strictly speaking, not define which actions are related by a flow.  

We conclude that a composite aggregation between a structure concept and a con-
stituent concept can be used to represent that an instance of the structure concept 
contains instances of the constituent concept, where the number of instances is deter-
mined by the multiplicity constraint. In addition, associations can be defined between 
the constituent concepts, but these associations represent associations at type level 
and can not be used to define associations between instances of the constituent con-
cepts. Consequently, this way of specifying a structure concept does not allow one to 
define how the constituents of a composite concept are related at instance level. 

To represent the instances that a composite concept consists of as well as their as-
sociations, we use the notion of instantiation. An instantiation represents a particular 
instance, but at a higher meta-level than the instance itself2. This allows one to define 
a composite concept as a composition of instantiations, which define the instances 
that should be created upon instantiation of the composite instance. 

To represent instantiation, we use the UML metaclass InstanceSpecification, as de-
fined in [10]. An InstanceSpecification represents an instance in a modelled system. 
Instances of any classifier can be specified, so not only instances of a class but also of 
an association. Furthermore, values can be specified for the structural features of the 
instance. Figure 3(iii) depicts the definition of composite concept Messaging, which 
consists of an instance of a Send action, a Receive action and a Flow, where Send and 
Receive are defined as specialized actions. An instance specification is expressed 
using the same notation as its classifier, with the classifier name replaced by the con-
catenation of the instance name (if any), a colon symbol and the classifier name. Con-
straints can be added, e.g., to specify that the contents of the message in the anony-
mous instances :Send and :Receive must be equal to the message specified in Messag-
ing.  

3.2   Extended Profiles Package 

Figure 4 depicts an Extended Profiles package that supports the extension of meta-
models with stereotypes for composite concepts. A composite concept is defined 
using the metaclasses CompositeStereotype, ConstituentClass(End), ConstituentAssocia-
tion(End), ClassInstantiation and AssociationInstantiation. A CompositeStereotype represents 
the composite concept and inherits from Stereotype to define that it extends an existing 
metaclass or stereotype. A ConstituentClass represents a composite aggregation be-
tween a composite stereotype and an instantiation of one of its constituent classes. An 
instantiation is defined as a kind of InstanceSpecification. Similarly a ConstituentAssocia-
tion represents a composite aggregation between a composite stereotype and an instan-
tiation of one of its constituent associations. A ConstituentAssociation is related to the 
class instantiations that it will associate. 

                                                           
2 In Merriam-Webster Online, instantiate is defined as “to represent (an abstraction) by a con-

crete instance”. 
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The package defines how stereotypes can be defined, but does not enforce one to 
define how these stereotypes can be used in relation to existing metaclasses and 
stereotypes. However, both in case of a ‘regular’ stereotype and in case of a compos-
ite stereotype this is no issue, since a stereotype is defined as an extension of an exist-
ing metaclass, thereby ‘inheriting’ via the extended metaclass the associations that are 
defined between this metaclass and other metaclasses. 
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Created with Poseidon for UML Community Edition. Not for Commercial Use.
 

Fig. 4. The classes defined in the Extended Profiles package. 

Hence, by extending an existing metaclass, a composite stereotype defines its pos-
sible associations with other existing metaclasses implicitly. The possible associations 
of the stereotype’s constituents and these metaclasses are however not defined in this 
way. We call these associations the context relations of a stereotype. The context 
relations define how associations between the composite stereotype and other meta-
classes must be replaced by associations between the composite’s constituents and 
other meta-classes. We note, however, that associations between a composite’s con-
stituents and other meta-classes can only exist in the model, after the composite con-
cept is replaced by its constituents. Otherwise, an inconsistent model may be the 
result. We represent context relations as OCL constraints. Since context relations 
represent changes to a model, we define the OCL constraints as constraints on opera-
tions that define these changes. 

a:Action :Flow m:Messaging b:Action
+outgoing

+source
:Flow

+incoming

+target +source
+outgoing +incoming

+target

a:Action :Flow b:Action
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:Send :Flow :Receive
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+source
+incoming

+target

(ii)

(i)

 
Fig 5. Example object models. 
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For example, consider the object model in figure 5(i). The context relations be-
tween the constituents of messaging task m and actions a and b are not defined by the 
definition of Messaging in figure 3(iii). We define the following context relations. 
Each association that relates an incoming flow to an instance of Messaging, must relate 
that incoming flow to the Send action of that instance instead. Each association that 
relates an instance of Messaging to an outgoing flow, must relate the flow to the Re-
ceive action of that instance instead. In addition, if a messaging concept instance is 
defined as part of a process or task, its constituents must be added to this process or 
task instead. Figure 5(ii) depicts the object model that results from replacing object m 
by the corresponding composition of elementary concept instances. We express the 
context relation regarding incoming flows in OCL as follows, where operation proc-
essContextRelations is assumed to implement the context relations when replacing a 
Messaging object by its constituents: 

context Messaging::processContextRelations() 
  post initial_actions: 
    let incomingflows = self.incoming in 
      self.Send.incoming->includesAll(incomingflows)  and 
      incomingflows->forAll(f|f.target = self.Send) 

3.3   Example: Operation Call with Time-Out 

As an example we consider the definition of composite concept TimedOperationCall, as 
introduced in section 1. The activity diagram in figure 6 defines the behaviour of a 
timed operation call. For brevity, information aspects are not considered, which could 
be modelled through input and output pins.  

When a timed operation call is invoked, actions CallOperationAction and Ac-
ceptTimeEventAction are enabled. CallOperationAction represents the transmission of an 
operation call request to the target object. The receipt of this request is represented by 
AcceptCallAction, which enables the actual handling of the operation call. ReplyAction 
represents the returning of the operation result, for which it uses return information 
produced by the AcceptCallAction. Action AcceptTimeEventAction represents the occur-
rence of a timeout after some time has expired. In this case an exception is generated 
through RaiseExceptionAction, which may interrupt the action sequence CallOperationAc-
tion, AcceptCallAction and ReplyAction. 

 

CallOperationAction AcceptCallAction

AcceptTimeEventAction

RaiseExceptionAction

ReplyAction

 
Fig. 6. Activity diagram of a TimedOperationCall. 

Figure 7 depicts the metamodel definition of a timed operation call as a composite 
stereotype. The keywords <<composite>> and <<instantiate>> denote a composite stereo-
type and an instantiation, respectively. A line between two instantiations denotes the 
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instantiation of an association between those instantiations. For clarity, a single Con-
stituent association between TimedOperationCall and a grey box is used to represent all 
ConstituentClass and ConstituentAssociation associations between TimedOperationCall and 
the instantiations in the box. 

Stereotype TimedOperationCall has been defined as an extension of metaclass Struc-
turedActivityNode to define the way in which it can be composed with other metaclasses 
in the action semantics. Since an StructuredActivityNode is a kind of ActivityNode, it can 
be connected to other ActivityNodes via ActivityEdges. The context relations for Time-
dOperationCall are the following. An association that relates an incoming ActivityEdge to 
the TimedOperationCall must relate that ActivityEdge to the ForkNode that is labelled initial 
instead. An association that relates an outgoing ActivityEdge to the TimedOperationCall 
must relate that outgoing ActivityEdge to the MergeNode that is labelled final instead. 
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Created with Poseidon for UML Community Edition. Not for Commercial Use.
 

Fig. 7. Stereotype definition of composite concept TimedOperationCall. 

Metamodelling. The composite concept of timed operation call can also be defined 
using metamodelling. We indicate two possible approaches to do this: a constructive 
and a constraint-oriented approach. In both approaches a TimedOperationCall is defined 
as a specialization of a StructuredActivityNode. Both approaches differ however in the 
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way the composition is defined. The constructive approach defines the composition 
explicitly in terms of its constituents. This approach resembles the approach followed 
in section 3.3. The constraint-oriented approach defines the composition by adding 
OCL constraints to the composite concept, which define the constituents of the com-
position implicitly. We expect this approach is much more difficult to apply and un-
derstand than the constructive approach. 

4   Transformation of Composite Concepts 

In order to use design techniques that are defined on elementary concepts, such as 
simulation, analysis and validation, we have to transform each stereotype into the 
concept or concepts that it consists of. In this way, existing tools can largely be re-
used and the need for tool modification is minimized. Section 5 presents an example 
of how tool support can be extended through model transformation. 

In this section we focus on the transformation of composite stereotypes. The trans-
formation of ‘regular’ stereotypes as defined by the UML 2.0 Profile package is 
rather straightforward. Regular stereotypes can be transformed directly to the meta-
classes they extend. We note, however, that in this transformation any specialized 
design information added by the stereotype is lost. It depends on the particular design 
technique whether this loss of information is acceptable and existing tools can be 
reused. 

4.1   Transformation Rules 

A composite stereotype completely defines how an instance of the corresponding 
composite concept is composed of instances of existing concepts and associations. In 
addition, context relations (see section 3.2) define how this composition is embedded 
in a model that contains the composite concept, i.e., how the constituent concept 
instances and associations are related to other concept instances in the model. This 
means that the definition of a composite concept, including its context relations, pro-
vide all the information that is required to define rules for transforming its instances 
to existing concept instances and associations. In principle, these rules can be derived 
automatically. The following transformation steps are distinguished: 

1. creation of the constituent concept instances. For each instance of Constituent-
Class, create an instance of the metaclass defined by the instantiation. In addi-
tion, each ConstituentClass may define the instance name and attribute values; 

2. creation of associations between concept instances. For each instance of Con-
stituentAssociation, create an instance of the meta-association defined by the in-
stantiation. Relate this instance to the classes to which the ConstituentAssociation 
is related via ConstituentClassEnd. 

3. replacement of associations between the composite concept instance and other 
concept instances in the model by associations between the constituent concept 
instances as created in step 1 and the other concept instances. This replacement 
is defined by the context relations associated with the composite stereotype. 



242           Dick Quartel, Remco Dijkman, and Marten van Sinderen 

4.2   YATL 

We use the transformation language YATL [9] to define transformations, because 
tool support exists for this language and because it is compliant to the MOF. YATL 
makes extensive use of the Object Constraint Language (OCL) [11], a language that 
can be used to describe constraints on how concepts can be used. It can also be used 
to query a design to verify that a constraint holds on that design or to yield a particu-
lar set of concept instances as indicated by the query. Here, we assume the reader is 
familiar with the basic properties of OCL. 

A YATL transformation has a name and consists of a set of transformation rules. 
These rules are performed in the order in which they are invoked by the rule that is 
declared the start rule. Each rule has a name, it optionally has a match part and it has a 
body part. The match part identifies a MOF Class by its name and optionally defines an 
OCL expression over that concept. The body part of the rule is evaluated over each 
instance that is selected in the match part. For each execution of the body part self 
takes the value of one of these instances.  

The body part contains a sequence of statements that must be performed. A let 
statement, let <name>: <classifier name>;, declares a variable by the given name of the 
type given by the classifier name. An assignment statement, <expr1> := <expr2>, assigns 
the value of <expr2> to <expr1>. A track statement is used to store and recall a temporary 
relation between two concept instances. track(<ci1>, <relation name>, <ci2>) stores a rela-
tion between the concept instances <ci1> and <ci2> in the relation identified by <relation 
name>. The relation must be functional, such that each <ci1> can be assigned to at most 
one other concept instance. track(<ci1>, <relation name>, null) returns the concept instance 
that is related to concept instance <ci1> by the relation identified by <relation name>. A 
tracking relation is visible in each rule in an entire transformation. A new statement, 
new <class name>, creates a new instance of the Class by the specified name.  

YATL transformations can be structured by defining them in the context of name-
spaces. A namespace identifies the Packages that contain the Classes that are the source 
and the target of the transformation, respectively. 

4.3   Example Transformation 

As an example we have defined a YATL transformation for composite concept Mes-
saging in figure 3(iii), which transforms a source model into a target model, such that 
each instance of Messaging in the source model is replaced by its corresponding com-
position of elementary concept instances in the target model. We assume that the 
metamodel of figure 3(iii) has been defined in a package named messagingpackage. 
Furthermore, for convenience, directed composite aggregations have been used. 

The following excerpt describes the main transformation rule, which consists of 
the sequential invocation of 9 other rules. The first 7 rules basically define the copy-
ing of concept instances from the source model to the target model, excluding in-
stances from the composite Messaging concept. For brevity, we don’t illustrate these 
rules here, but the complete transformation can be obtained from [16]. 
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rule main (){ 
  pureaction2pureaction(); 
  sendaction2sendaction(); 
  receiveaction2receiveaction(); 
  taskaction2taskaction(); 
  flowrelation2flowrelation(); 
  taskcontainment2taskcontainment(); 
  process2process(); 
  messaging2basic(); 
  messagingassociations2basicassociations(); 
} 

Rule messaging2basic defines the creation of the constituent concept instances and 
the associations between them. This corresponds to steps 1 and 2 from section 4.1. 

rule messaging2basic match messagingpackage::Messaging (){ 
  let dstsend: messagingpackage::Send; 
  let dstreceive: messagingpackage::Receive; 
  let dstflow: messagingpackage::Flow; 
  dstsend := new messagingpackage::Send; 
  dstreceive := new messagingpackage::Receive; 
  dstflow := new messagingpackage::Flow; 
  dstsend.m := self.m; 
  dstsend.outgoing := dstsend.outgoing->including(dstflow); 
  dstreceive.m := self.m; 
  dstreceive.incoming := dstreceive.incoming->including(dstflow); 
  dstflow.source := dstsend; 
  dstflow.target := dstreceive; 
  track(self, tmessage2send, dstsend); 
  track(self, tmessage2receive, dstreceive); 
  track(self, tmessage2flow, dstflow); 
} 

Finally, rule messagingassociations2basicassociations() implements the context 
relations for Messaging. This corresponds to step 3 from section 4.1. The following 
code excerpt describes part of the rule, which defines that any incoming flow of a 
Messaging instance must be an incoming flow for its constituent Send instance. In 
addition, if a messaging concept instance is defined as part of a process or task, its 
constituents must be added to this process or task. 

rule messagingassociations2basicassociation match  
    messagingpackage::Messaging (){ 
  --if messaging is part of process p, its constituents are part of p 
  let dstsend: messagingpackage::Send; 
  let dstreceive: messagingpackage::Receive; 
  let dstflow: messagingpackage::Flow; 
  dstsend := track(self, tmessage2send, null); 
  dstreceive := track(self, tmessage2receive, null); 
  dstflow := track(self, tmessage2flow, null);   
  foreach p: messagingpackage::Process in  
      Process.allInstances()->select(p| p.task->includes(self)) do { 
    let dstp: messagingpackage::Process; 
    dstp := track(p, tprocess2process, null); 
    dstp.task := dstp.task->including(dstsend); 
    dstp.task := dstp.task->including(dstreceive); 
  } 
  --if messaging is part of a task t, its constituents are part of t 
  foreach t: messagingpackage::Task in  
      Task.allInstances()->select(t| t.action->includes(self)) do { 
    let dstt: messagingpackage::Task; 
    dstt := track(t, ttask2task, null); 
    dstt.action := dstt.action->including(dstsend); 
    dstt.action := dstt.action->including(dstreceive); 
    dstt.flow := dstt.flow->including(dstflow); 
  } 
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  --if messaging has an incoming flow f, its send action has f 
  foreach f: messagingpackage::Flow in self.incoming do { 
    let dstsend: messagingpackage::Send; 
    dstsend := track(self, tmessage2send, null); 
    let inflow: messagingpackage::Flow; 
    inflow := new messagingpackage::Flow; 
    inflow.target := dstsend; 
    dstsend.incoming := dstsend.incoming->including(inflow); 
    let srcsourceaction: messagingpackage::Action; 
    srcsourceaction := f.source; 
    if (f.source.oclIsTypeOf(messagingpackage::Messaging)) then 
      let dstsourcemessage: messagingpackage::Messaging; 
      dstsourcemessage :=  
        track(srcsourcemessage, tmessage2receive, null); 
      inflow.source := dstsourcemessage; 
      dstsourcemessage.outgoing :=  
        dstsourcemessage.outgoing->including(inflow) 
    else 
      let dstsourceaction: messagingpackage::Action; 
      dstsourceaction:=track(srcsourceaction, taction2action, null); 
      inflow.source := dstsourceaction; 
      dstsourceaction.outgoing := 
        dstsourceaction.outgoing->including(inflow) 
    endif; 
  } 

5   Example Applications of the Extended Profiles Package  

This section further motivates and illustrates the use of the Extended Profiles package 
by presenting two possible applications: (i) relating modelling languages and (ii) 
structuring modelling languages. 

Relating modelling languages. In earlier work [5], we presented an approach to 
relate different viewpoints and viewpoint models via a basic viewpoint (see Figure 8). 
A conceptual model represents the set of concepts that is used in a particular view-
point and forms the basis for modelling languages that are used to express models 
(views) of a system as conceived from this viewpoint. The approach is based on the 
assumption that the concepts from each viewpoint can be considered as extensions of 
a common set of basic, i.e., elementary and generic, modelling concepts, as repre-
sented by the basic viewpoint. Two types of extensions are considered: (i) a view-
point concept is a specialization of a basic viewpoint concept, or (ii) a viewpoint 
concept is a composition of (possibly specialized) basic concepts. These assumptions 
allow one to map different models from the same or different viewpoints onto basic 
viewpoint models. In this way, relationships between different viewpoint models, 
e.g.,  refinement and consistency relationships,  can be analysed within the scope of  a  

 
Conceptual model

 Viewpoint 1
Conceptual model

 Viewpoint 2
Conceptual model

 Viewpoint 3

Conceptual model
 Basic viewpoint  

Fig. 8. Relating viewpoints via a basic viewpoint. 
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single conceptual model and by using the same set of analysis tools. By defining 
viewpoints as extensions (profiles) of a basic viewpoint, the Extended Profiles pack-
age provides a technique to implement the approach described above. 

Structuring modelling languages. Another application of the Extended Profiles 
package is to structure and extend existing modelling languages, using the profiling 
mechanism. Using the Extended Profiles package we can structure a language into a 
small set of basic, i.e., elementary and generic, concepts and sets of composite (and 
specialized) concepts as extensions of those concepts. Having a small set of basic 
concepts helps to keep a language clear and consistent, while the definition of com-
posite concepts helps us to increase the language’s suitability and ease of use for 
some application domain. Although the existing profiling mechanism already helps us 
to structure a language in this way, the addition of composite stereotypes extends our 
possibilities. 

An interesting case for this approach is UML, which consists of different lan-
guages supporting different modelling viewpoints. As is shown in [6], these lan-
guages can be divided into two main categories: structural languages (for class and 
component diagrams) and behavioural languages (for use case, collaboration, state, 
activity and sequence diagrams). Furthermore, it is shown that for each of these cate-
gories a basic conceptual model can be defined.  

We also applied this structure to our behaviour modelling language ISDL [12, 13]. 
This language has originally been based on a small set of basic concepts [14]. To 
facilitate a designer in modelling frequently used compositions of ISDL concepts, we 
are currently introducing shorthand notations to express composite concepts more 
conveniently. Since each composite concept can be transformed into the basic con-
cepts, we are able to reuse tools that we developed for the basic concepts to support 
the extended concepts. For example, in this way we have been able to reuse the ISDL 
simulator for ISDL models that contain instances of composite concepts. The same 
holds for our technique to assess the conformance between two ISDL models [16]. 

6   Conclusions 

The use of the UML’s 2.0 profiling mechanism allows one to combine the efficiency 
of general purpose languages with the intuitive clarity and ease of use of dedicated 
languages. Since the profiling mechanism leaves the language metamodel unmodified 
and introduces stereotypes as extensions of existing metamodel elements, modelling 
tool support can be reused. This benefit of profiling can be exploited further by al-
lowing one to specify stereotypes for composite concepts, representing (frequently 
used) compositions of existing concepts. An extension of the UML’s Profiles package 
is presented that supports the specification of composite stereotypes. 

At the time of writing, we are not aware of other work that proposes metamodel 
extension mechanisms for composite concepts, particularly based on the UML profil-
ing mechanism. However, many contributions can be found in literature on classifica-
tions of metamodel extension mechanisms and approaches, and on guidelines to use 
and interpret stereotypes [1,2,3,4,8,15]. This paper is orthogonal to this work and 



246           Dick Quartel, Remco Dijkman, and Marten van Sinderen 

makes a further contribution by extending the use of stereotypes in a general way. 
The notion of composite stereotype we introduce can be seen as a restrictive kind of 
stereotype as described in [4]. Furthermore, this notion is used for type classification 
as described in [3], since it is meant to introduce new language elements. Although 
general metamodelling techniques can be used to support the introduction and appli-
cation of composite concepts, we have extended the UML 2.0 Profiles package be-
cause it does not allow a language developer to modify an existing metamodel. But, 
in principle, this restriction can also be obtained through, or actually is, a restrictive 
form of metamodelling. 

We believe that tool support for the specification of composite stereotypes as de-
scribed in this paper can be developed rather easily. In addition, we have illustrated 
how transformation rules can be derived systematically from the specification of a 
composite stereotype to transform a composite concept instance to the composition of 
the constituent concept instances it represents. Such a transformation can be used to 
implement the composite concept using existing tool support. 

A question that remains to be resolved is the expressive power of the proposed Ex-
tended Profiles package compared to metamodelling. To answer this question, the 
ideas presented in this paper should be applied to multiple cases from different appli-
cation areas. In particular, attention should be paid to the systematic definition of the 
context relationships of a composite stereotype. This future work should lead to a 
precise set of rules for specifying stereotypes and deriving transformations, which 
should guarantee both the consistent use of stereotypes by language developers as 
well as the correct implementation of tool support. 
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