
A Modelling and Simulation Based Approach to
Dependable System Design

Miriam Zia, Sadaf Mustafiz, Hans Vangheluwe, and Jörg Kienzle

School of Computer Science, McGill University
Montreal, Quebec, Canada

{mzia2, sadaf, hv, joerg} @cs.mcgill.ca

Abstract. Complex real-time system design needs to address dependability re-
quirements, such as safety, reliability, and security. We introduce a modelling
and simulation based approach which allows for the analysis and prediction of
dependability constraints. Dependability can be improved by making use of fault
tolerance techniques. The de-facto example in the real-time system literature of a
pump control system in a mining environment is used to demonstrate our model-
based approach. In particular, the system is modelled using the Discrete EVent
system Specification (DEVS) formalism, and then extended to incorporate fault
tolerance mechanisms. The modularity of the DEVS formalism facilitates this
extension. The simulation demonstrates that the employed fault tolerance tech-
niques are effective. That is, the system performs satisfactorily despite the pres-
ence of faults. This approach also makes it possible to make an informed choice
between different fault tolerance techniques. Performance metrics are used to
measure the reliability and safety of the system, and to evaluate the dependabil-
ity achieved by the design. In our model-based development process, modelling,
simulation and eventual deployment of the system are seamlessly integrated.

1 Introduction

Model-based approaches are used to represent the structure and behaviour of sys-
tems, which are becoming increasingly complex and involve a large number of com-
ponents and domain-specific requirements [1][2]. Dependable systems, in particular,
must satisfy a set of functional requirements, and in addition, must adhere to constraints
which ensure correct behaviour of the system. Safety, security and reliability are a few
such dependability requirements. The necessity for accomplishing these constraints has
spawned new fields of research. The most prominent area is that of fault-tolerant sys-
tems, and the introduction of fault tolerance design in the software development process
is an emerging topic.

We are interested in developing the model-based process illustrated in Fig. 1 for
designing a dependable system. The process allows us to predict the behaviour of a
specific system, and compare it to the behaviour of a fault-tolerant implementation of
the same system. This is done through a sequence of manual activities. First, from
functional requirements, a model is derived which represents the structure of a chosen
system. A fault injection mechanism is also modelled as a means to generate faulty
behaviour of the system. Simulation results indicate how the system performs in the

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 217–231, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



218 Miriam Zia et al.

Fig. 1. The Model-based Process

presence of faults, and whether it conforms to the specified requirements. Secondly,
from dependability constraints, a fault-tolerant model is created which includes tech-
niques designed to improve on the initial system. A fault-tolerant simulation model is
derived and simulated to gather performance data. This data reflects the dependability
constraints that must be satisfied by the system.

Although research has been done in formal modelling and analysis of fault toler-
ance properties [3][4], either using natural language description of models, probabilistic
models, figures of fault-trees or Markov models, we suggest using the formalism DEVS
(Discrete EVent System specification). In our case study, the initial system as well as the
fault tolerant system are translated into DEVS.

The paper is structured as follows. Section 2 presents essential background concepts
relating to the DEVS formalism and to fault tolerance. Section 3 describes the real-time
Pump Control System (PCS) chosen to demonstrate our process. We introduce its func-
tional requirements and dependability constraints and briefly discuss why modelling
and simulation is an appropriate approach, and why DEVS is an suitable modelling
formalism. Section 4 introduces the model of the PCS, and the means by which fault
injection is introduced in the system. A PCS failure situation is described in Section 5,
and a fault-tolerant model is presented that counteracts this failure. Furthermore, safety
and reliability are defined as the dependability constraints that are threatened by failure
of the PCS. In Section 6, implementation-specific and experimental simulation frame-
work details are outlined. Mathematical equations are presented to quantify the safety
and reliability of the PCS, and results of the simulations are analyzed to compare the
performance of the PCS in the two models. Finally, some general conclusions about our
model-based process are drawn in Section 7.



A Modelling and Simulation Based Approach to Dependable System Design 219

2 Background

This section introduces the modelling formalism used in the case study, the DEVS (Dis-
crete EVent system Specification) formalism and gives a brief overview of fault tolerance
and the technique we apply in our work.

2.1 The DEVS Formalism

The DEVS formalism was introduced in the late seventies by Bernard Zeigler to de-
velop a rigorous basis for the compositional modelling and simulation of discrete event
systems [5][6]. The DEVS formalism has been successfully applied to the design and
implementation of a plethora of different complex systems such as peer-to-peer net-
works [7], transportation systems [8], and complex natural systems [9]. In this section
we briefly present the DEVS formalism.

A DEVS model is either atomic or coupled. An atomic model describes the be-
haviour of a reactive system. A coupled model is the composition of several submodels
which can be atomic or coupled. Submodels have ports, which are connected by chan-
nels. Ports have a type: they are either input or output ports. Ports and channels allow a
model to receive and send signals (events) from and to other models. A channel must go
from an output port of some model to an input port of a different model, from an input
port in a coupled model to an input port of one of its submodels, or from an output port
of a submodel to an output port of its parent model.

An atomic model has, in addition to ports, a set of states, one of which is the initial
state, and two types of transitions between states: internal and external. Associated with
each state is a time-advance and an output.

Atomic DEVS 1

An atomic DEVS is a tuple (S,X ,Y,δint ,δext ,λ,τ) where S is a set of states, X
is a set of input events, Y is a set of output events, δint : S → S is the internal
transition function, δext : Q×X → S is the external transition function, λ : S→Y
is the output function and τ : S → �

+
0 is the time-advance function.

In this definition, Q = {(s,e) ∈ S ×�
+ | 0 ≤ e ≤ τ(s)} is called the total-state

space, for each (s,e) ∈ Q, e is called the elapsed-time.2

Informally, the operational semantics of an atomic model are as follows: the atomic
model starts in its initial state, and it will remain in any given state for as long as its
corresponding time-advance specifies or until input is received on some port. If no input
is received, when the time of the state expires, the model sends output as specified by λ
(before changing the state), and subsequently jumps to the new state as specified by δint .
On the other hand, if input is received before the time for the next internal transition
expires, then it is δext which is applied. The external transition depends on the current
state, the time elapsed since the last transition and the inputs from the input ports.

The following definition formalises the concept of coupled DEVS models3

1 For simplicity, we do not present a formalisation of the concept of “ports”.
2
�

+
0 denotes the positive reals with zero included.

3 For simplicity, this “formalisation” does not deal with ports, and it leaves out the proof of
well-definedness for coupled models.



220 Miriam Zia et al.

Coupled DEVS
A coupled DEVS named D is a tuple (X ,Y,N,M, I,Z,select) where X is a set of
input events, Y is a set of output events, N is a set of component names such that
D �∈ N, M = {Mn | n ∈ N,Mn is a DEVS model (atomic or coupled) with input set
Xn and output set Yn} is a set of DEVS submodels, I = {In | n ∈ N, In ⊆N∪{D}} is
a set of influencer sets for each component named n, Z = {Zi,n | ∀n ∈ N, i ∈ In.Zi,n :
Yi → Xn or ZD,n : X → Xn or Zi,D : Yi → Y} is a set of transfer functions from each
component i to some component n, and select : 2N → N is the select function.

Connectivity of submodels is expressed by the influencer set of each component.
Note that for a given model n, this set includes not only the external models that provide
inputs to n, but also its own internal submodels that produce its output (if n is a coupled
model.) Transfer functions represent output-to-input translations between components,
and can be thought of as channels that make the appropriate type translations. The select
function takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the parallel composition of all the
submodels. This is, each submodel in a coupled model is assumed to be an independent
process, concurrent to the rest. There is no explicit method of synchronization between
processes. Blocking does not occur except if it is explicitly modelled by the output
function of a sender, and the external transition function of a receiver. There is however
a serialization of events whenever there are two submodels that have a transition sched-
uled to be performed at the same time. Logically, the transitions are assumed to be done
in that time instant, but its implementation on a sequential computer is serialized. The
coupled model has a select function which chooses one of the models to undergo the
transition first.

2.2 Fault Tolerance

Complex computer systems are increasingly built for highly critical tasks, from mili-
tary and aerospace domains to industrial and commercials areas. They are critical in the
sense that their failures may have severe consequences ranging from loss of business
opportunities, physical damage, to more catastrophic loss, such as human lives. Systems
with such responsibilities should be highly dependable. A number of varied means of
achieving this goal have been established and should be considered jointly during hard-
ware as well as software development: fault prevention, fault removal, fault forecasting
and fault tolerance [10]. In particular, we will discuss fault tolerance in more detail in
this section.

The idea of incorporating means for fault tolerance in order to achieve system de-
pendability has developed considerably since the original work by von Neumann in the
mid-1950s [11], and many techniques have been established. To discuss fault tolerance
more meaningfully, a definition of correct system behaviour is needed: the specifica-
tion. As long as the system satisfies the specification, it is considered to be behaving
correctly. A failure can then be defined as an observable deviation from the system
specification. An error is that part of the system state that leads to a failure. The error
itself is caused by some defect in the system; those defects that cause observable er-
rors are called faults [12]. Fault tolerance aims at preventing failures in the presence of



A Modelling and Simulation Based Approach to Dependable System Design 221

hardware or software faults within the system. Therefore, as soon as an error has been
detected, it must be corrected to ensure that a system continues to deliver its services
and to avoid a potential failure later on in the execution.

These corrective measures need to be taken to keep the error from propagating to
other parts of the system, thus preventing further damage. Once the error is under con-
trol, error recovery is applied and a correct error-free system state is restored. There are
two basic recovery techniques [13]:

Backward error recovery replaces the erroneous system state with some previous
correct state.

Forward error recovery attempts to construct a coherent, error-free system state by
applying corrective actions to the current, erroneous state.

A popular form of forward error recovery is Triple Modular Redundancy (TMR).
TMR uses three identical copies of a unit instead of one, and an intelligent, application-
specific voting scheme which is applied to their output. In stateless cyclic systems,
where one iteration of execution does not depend on the previous run, this mechanism
allows for faults to be masked. This technique will be used in this case study to remedy
the failure scenario discussed in section 5.1.

3 Modelling and Simulation Based Design: An Example

In Modelling and Simulation Based Design, all steps in the evolution from initial re-
quirements to final system are explicitly modelled. Models at various stages of the pro-
cess are each expressed in the most appropriate formalism. Transformations themselves
are also modelled explicitly, so no knowledge is left implicit. Initially, the system is
modelled in a formalism amenable to formal analysis and verification (covering all pos-
sible behaviours). Subsequently, simulation of the model is performed. The output of
this simulation is processed by a checker, which checks it against a set of rules (derived
from the requirements). An error found during this checking indicates an error in the
design. Note that as even a large number of simulation runs may not cover all possible
behaviours of the system, no positive statements about correctness of the model may be
made. In the next phase, performance analysis is done to tune the model structure and
parameters to satisfy performance requirements. Finally, code is synthesized from the
model (if necessary), thus providing a continuous, traceable path from analysis model
to deployed system. With appropriate model compilers, the simulation knowledge of
the designer is limited to knowledge of suited formalisms (such as DEVS).

3.1 The Pump Control System Case Study

The system used to demonstrate our approach is a Pump Control System (PCS). The
PCS has often been used in the real-time systems literature. For example, Burns and
Lister used the PCS as a case study to discuss the TARDIS project [14]. We adopt the
Pump Control System problem from [14], and with some abstractions, define it as our
case study for modelling and simulation based design of a dependable system.



222 Miriam Zia et al.

The basic task of the system is to pump to the surface the water that accumulates
at the bottom of a mine shaft. The pump must be switched on when the water-sensor
detects that the water has reached a high-level depth, and must be switched off when
it detects that the level has been sufficiently reduced (low-level). In addition, the pump
functionality depends on some atmospheric readings. A methane-sensor measures the
level of methane in the environment: high levels may cause fire in the shaft if the pump
is in operation. A carbon monoxide-sensor and an air-flow sensor also monitor the
environment for critical readings (high for carbon monoxide and low for air-flow) which
cause immediate evacuation of the shaft. Critical readings produced by all atmospheric
sensors are sent to a human operator, but only critical methane readings cause the pump
to switch off. To summarize, the pump is switched ON if the water-level is high and
methane-level is not critical, and is switched OFF if the water-level is low and pump is
on; or if the pump is on and methane-level is critical. The proposed architectural system
structure for the PCS is illustrated in Fig. 2.

As all complex and critical applications, the PCS involves some important con-
straints, namely those of dependability, timing and security. This case study focuses on
the dependability requirements defined for the PCS in [14] which dictate that the system
is reliable and safe.

Reliability of the pump system is measured by the number of shifts that are lost if the
pump does not operate when it should. In order to be considered reliable, our PCS
should lose at most 1 shift in 1000.

Safety of the system is related to the probability that an explosion occurs as a result of
the pump operating despite critical methane levels. In order to be considered safe,
the probability of a possible explosion in our PCS should be less than 10−7 during
the lifetime of the system.

Environment Monitor

Environment Sensors

Environment Subsystem

Pump Controller

Pump Subsystem

Water Sensor

ON

OFF

Methane Request

Methane Reply

Methane Alarm

Human
Operator

Alarms
Pump

Fig. 2. The Pump Control System Logical Structure.

3.2 Why Use DEVS for the PCS?

The successful development of large-scale complex real-time systems commonly re-
lies on system-theoretic modelling approaches, such as DEVS, or object-oriented ap-
proaches such as UML Real-Time. UML-RT is an extension to UML which, in addition
to offering constructs to model relationships among components, incorporates the Real-
Time Object-Oriented Modelling constructs and is used to model the structural and be-
havioural aspects of systems. The behaviour of the system is specified in StateCharts by
the sequence of signal communication [15]. Contrary to DEVS, in StateCharts we can-
not formally specify explicit timing in the specification of models. StateCharts are also



A Modelling and Simulation Based Approach to Dependable System Design 223

based on multi-component specification and broadcast communication, and the lack
of a complete formal definition of UML-RT StateChart semantics hinders the formal
specification of structural information. Furthermore, although UML-RT offers impor-
tant capabilities for modelling real-time systems, it does not provide semantics suitable
for simulated time: it prohibits carrying out simulation studies. On the contrary, DEVS
separates models from how they may be executed; therefore simulators can be indepen-
dently developed and verified, thus increasing reusability, formal analysis, and model
validation. In addition, DEVS allows the specification of both the structural and be-
havioural aspects of a system.

The PCS is a reactive discrete-event system: the system’s state changes in reaction
to external events, such as critical environmental readings. In addition, the PCS is com-
posed of many different interacting subsystems. DEVS, being highly modularized and
defining hierarchical coupling of modules, allows for the separation of concerns and a
clean model of such a complex system. Since the aim of our approach is to improve
the design of a real-time system, we can use the powerful simulation capabilities of
DEVS to observe the faulty behaviour in the original PCS model and to predict the sys-
tem’s behaviour under different fault tolerance techniques. From the simulations one
can gather statistical data on whether or not dependability requirements are met within
the PCS, and evaluate alternative system designs. The above mentioned reasons make
DEVS an appropriate modelling formalism for the Pump Control System.

4 Modelling the PCS

4.1 Building the DEVS Model of the PCS

Each subsystem illustrated in Fig. 2 (pump, environment, communication) is modelled
as an atomic DEVS whose structure and behaviour encodes the functional requirements
of the PCS (Fig. 3). Below is the general description of the system’s model.

MethaneSensor EnvMonitor Communication PumpController

Human Controller WaterSensor

PumpmrOUT mrIN

afIN

cmIN

alarmOUT

q_recv

q_sack q_recv

q_sack

q_sendq_send

q_rack q_rack

alarm_recv alarm_sent_pc

alarm_sent_hc

alarmIN

meth_alarm

wOUT

pump_op opINAirflowSensor
afOUT

CarbonMonoxide
Sensor cmOUT

wIN

Fig. 3. The Pump Control System Modelled with the DEVS Formalism.

Methane Sensor, Carbon Monoxide Sensor, Airflow Sensor
States: Sensor may either be ‘READING’ the level of gas or flow in the environment

or ‘IDLE’ between readings.
Output: Upon transitioning from ‘READING’ to ‘IDLE’, the sensor outputs the level

of gas or flow in the environment at that time.



224 Miriam Zia et al.

Environment monitor
States: The monitor may either be processing sensor readings (‘PROCESSING’), re-

sponding to a query (‘QUERYING’) or doing nothing (‘IDLE’).
Output: Upon receiving a query from the Pump Controller through the Communica-

tion channel, the monitor responds by sending an acknowledgement which contains
a message stating the criticality of the methane level. Upon receiving critical read-
ings from the environment sensors, it outputs alarms. All messages to and from the
pump controller or to the human controller are sent through the Communication
DEVS.

Communication
States: The communication channel may either be sending alarms (‘SEND-ALARM’),

sending a query to the environment monitor (‘SEND-QUERY’) or sending a query
acknowledgement to the pump controller (‘SEND-ACK’). When it completes either
of these tasks, its state is ‘IDLE’.

Output: Upon receiving a query from the Pump Controller, it forwards this query to the
environment monitor, and once it receives the reply from the environment monitor,
it propagates it to the pump controller. When it receives critical alarms, it delivers
them to the human and pump controllers.

Pump Controller
States: It may either be processing a water sensor reading and send-

ing an operation to the pump (‘PROCESSING-WATER’), processing a
methane alarm (‘PROCESSING-ALARM’), processing a query acknowledgement
(‘PROCESSING-ACK’), or doing nothing (‘IDLE’).

Output: Upon receiving a low-water reading, the pump controller sends an “off” mes-
sage to the pump to switch it off. If the controller receives a high-water reading, it
turns the pump to ready mode and sends a query to the environment monitor: the
controller only turns the pump on if the methane level is not critical. If an acknowl-
edgement is received stating that the methane level is high, then the controller turns
the pump off, otherwise, it turns it on. Similarly, when the controller receives a
methane alarm, it turns the pump off.

Water Sensor
States: It randomly switches between the ‘HIGH’ and ‘LOW’ states.
Output: Upon switching, the sensor outputs the state to which it is transitioning.

Human Controller
This is a passive DEVS: it does not react to any input messages and remains
constantly ‘IDLE’.

4.2 Modelling of Fault Injection in the PCS

As dependability constraints need to be met in addition to functional requirements, a
quantitative analysis method for assessing the dependability of the system must also be
modelled. For this purpose, many methods have been defined, such as reliability block
diagrams, analysis of non-deterministic state graph models, and fault simulation [10].
The latter is a universal approach combining techniques which assume a model of the
system, a set of external input/output sequences applied to it, and the possibility to inject
faults into it. Most of these techniques can be classified as fault injection techniques,



A Modelling and Simulation Based Approach to Dependable System Design 225

which consist in adding faults to a system in order to analyze the behaviour. These faults
make the system evolve towards different states which are recorded in order to assess
the dependability constraints.

Therefore, in addition to modelling the PCS, a model for fault injection must be
built. A fault injector could be described as an atomic entity on its own in the coupled
DEVS model. However, modelling faults within a specific subsystem itself more accu-
rately represents its real-world faulty behaviour. Our approach consists in provoking a
sensor break-down on a periodic basis to simulate a fault which makes the Pump Con-
trol subsystem fail. For example, a fault in the methane sensor would generate faulty
(noisy) methane readings of the environment, which would be propagated to the envi-
ronment monitor, and through the communication subsystem to the pump controller.
This wrong methane reading could possibly force the pump to shut off when it is not
supposed to, or it might fail to cause a critical alarm to be raised. The simulation re-
sults should show how the performance varies over time in the absence and presence of
faults.

We concentrate here on the consequence of the methane sensor failure on the safety
and reliability requirements of the PCS (Section 5.1). To model faulty behaviour of
a methane sensor s, we assign to it a probability p of failure. We assume Byzantine
failures, i.e. upon failing, sensors produce an erroneous result rather than no result at
all. Therefore, s fails by providing erroneous readings with probability p. In practice,
a sensor has a very low failure probability, however in this case study, the simulated
probability p is chosen to be significantly higher to induce more erroneous states and
observable failure of the system. For the methane sensor, we assume p = 0.1.

5 Modelling the Fault-Tolerant System

5.1 Failure Scenario in the PCS

Burns and Lister [14] describe four failure situations at the environment, communica-
tion and pump subsystems level for the PCS that affect the dependability. To illustrate
our approach, we consider the situation in which the environment subsystem provides
an incorrect methane reading (when asked by the pump subsystem). The case study
focuses on the role of the environment subsystem on safety and reliability, thus upper-
bounding the measure of dependability of the system by the dependability of the envi-
ronment subsystem. We assume that no mechanical failures occur in the communication
and pump subsystems and that they do not introduce erroneous state.

The environment subsystem fails in a noisy manner, i.e. it generates incorrect/noisy
output. Since we only investigate hardware faults, we assume failures originate in the
methane sensor: the subsystem provides incorrect methane readings if it receives such
incorrect values from the sensor itself. Therefore, we can generalize the failure scenario
to that of the methane sensor providing an incorrect methane reading.

Safety of the System. The safety requirement is threatened if the sensor outputs a
falsely low methane reading which causes the pump to operate despite critical con-
centrations in the environment. This introduces a threat of explosion in the mine



226 Miriam Zia et al.

shaft. However, if the sensor outputs a false reading whose criticality is in accor-
dance with the accurate reading, i.e. it is critical when the accurate reading is criti-
cal, and not critical when the accurate reading is not critical, then the system is still
considered to be safe.

Reliability of the System. The reliability requirement is threatened if the sensor out-
puts a falsely high methane reading which causes the pump to shut down despite
non-critical concentrations in the environment. This causes a loss of shift for the
pump.

Safety and reliability can be improved by replication of the methane sensors and apply-
ing the TMR technique [14]. This method can also be used for the carbon monoxide
and airflow sensors.

5.2 Modelling Fault Tolerance for the PCS

We change the PCS model to integrate fault tolerance based on TMR. A coupled DEVS
containing three sets of methane sensors and a voter replace the sensor modelled in
Fig. 3. In this case, even if one methane sensor fails, the correct reading can still be de-
termined using the output of the other sensors, and a response from the voter is passed
on to the environment monitor. This approach can also be applied to the carbon monox-
ide and airflow sensors. The fault-tolerant environment subsystem is shown in Fig. 4.
In our experiment, we use two different types of voters, a maximum voter and a ma-
jority voter. The maximum voter is a PCS-specific voter in which the highest value
received from the replicated sensors is considered as accurate. The interest in the high-
est value resides in the fact that the system must be safe: if the pump is switched on
while methane levels are critical, safety is threatened. Thus, the maximum voter is an
appropriate choice for this problem. The majority voter is a well-studied voter that given
n results selects the value of the majority. In our case, if majority cannot be decided, the
voter falls back on the maximum value.

The fault injection in the sensors is modelled similarly to the PCS model. This al-
lows us to compare the behaviour of the two systems and observe how the performance
changes.

6 Simulation and Results

6.1 Performance Metrics Modelling

In the previous sections we showed how the PCS and the fault-tolerant PCS are mod-
elled using DEVS. In order to perform dependability analysis, we model the safety and
reliability as dependability metrics to be evaluated while the simulation runs. Each sim-
ulation keeps track of the total number of methane readings performed (TotalMethane-
Readings). A reading mi is associated with a safety conformance index si and a relia-
bility conformance index ri. These indices are equal to 0 if the reading causes a safety-
threatening (for si) or reliability-threatening (for ri) fault, and 1 otherwise. Then safety
of the system can be determined by ∑n

i=1 si/TotalMethaneReadings, and reliability by
∑n

i=1 ri/TotalMethaneReadings (where n is equal to TotalMethaneReadings).



A Modelling and Simulation Based Approach to Dependable System Design 227

EnvMonitor

mrIN afIN cmIN

alarmOUT q_recv q_sack

ms1

ms2

ms3

MethaneCDEVS

Methane
Voter

cm1

cm3

CarbonMonooxideCDEVS

Carbon
Monooxide
Voter

af1

af2

af3

AirflowCDEVS

Airflow
Voter

cm2

Fig. 4. Fault-tolerant Environment Subsystem of the Pump Control System

6.2 Implementation

Once the system and the constraints are modelled, they are implemented using the
PythonDEVS package [16]. This package provides a simulation engine and a class
architecture that allows hierarchical DEVS models to be easily defined. Using this
framework, each atomic and coupled DEVS described in the model of the PCS, the
fault-tolerant PCS using maximum voting, and the fault-tolerant PCS using majority
voting, can be encoded into a Python class. Python is an interpreted object-oriented pro-
gramming language, which offers high-level data types and a simple syntax. Its main
advantage for the PCS case study is that it is an ideal language for quick and simple
application development.

Each Python class representation of a DEVS has four functions defined in it: an
internal transition function, an external transition function, an output function and a
time-advance function. Next, simulation experiments are set-up to gather statistical data
which is representative of the system’s behaviour under the specified constraints. The
following summarizes the experimental framework:

– Time advances: A methane reading is generated every 2s, carbon monoxide every
6s, airflow every 5s, and water level is checked every 10s.

– Reading Interval: All environmental readings are integers in the interval [0,10].
We chose integers to avoid the errors common in voters when comparing float-
ing point numbers.

– Critical Readings: The critical concentrations are defined in the reading interval
to be 7 for methane, 5 for carbon monoxide and 3 for airflow.

– Simulation Time: Two sets of experiments are conducted. In the first set, each
model is run for a duration of 2000 simulation time units (seconds). This pro-
cess is repeated 5 times, starting from the same initial state. In the second set,
each model is run for a duration of 75000 simulation units to satisfy the law of
large numbers. As with the first set, this process is also repeated 5 times. For
each of these runs, safety and reliability results are logged and analyzed.



228 Miriam Zia et al.

Fig. 5. Safety Results for the Second Set of Simulations.

6.3 Results

Since the results of the first set of simulations are comparable, only results of the second
set are analyzed here. These results are an indicator of which voter is best suited for the
PCS with regards to system safety and reliability.

Fig. 6. Reliability Results for the Second Set of Simulations.

Safety. In the initial model, the average failure to satisfy the safety requirement is
2.32%, which is considerably high for a system in which failures are catastrophic
in nature. In the fault-tolerant model using the maximum voter, the average safety
rises to 99.99% (Fig. 5). It can be concluded that TMR with maximum voting re-
duces the occurrence of safety-threatening failures. However, there is a notable
trade-off between safety and reliability here. This is not surprising as the choice of
maximum voter was made to emphasize the safety requirement in such a critical
system.

Reliability. In the initial model, the average failure to satisfy the reliability requirement
is 10.09%, which is proportional to the probability that was associated with the



A Modelling and Simulation Based Approach to Dependable System Design 229

methane sensor DEVS of 10% failure. In the implementation with the maximum
voter, the reliability percentage falls even lower (Fig. 6). This is explained by the
fact that the maximum voter always picks the highest value to output, be it accurate
or false. For example, a case where the actual reading is 2, but the false reading
received is 8, then 8 is voted to be the correct reading. This approach advocates
safety of the system at the cost of reduced reliability of the sensors. In order to attain
a fair balance between the safety and reliability requirements, the use of a majority
voter is advised. The majority voter implementation results in an average reliability
of 98.3%, but a slight decrease in the safety can be seen in Fig. 5. However, this
is clearly a solid improvement on the original model and on the maximum voter,
while still preserving safety.

6.4 Validation of Results

Over the years, a lot of work has been done on estimating software reliability based on
probabilistic models. To compare our simulation-based approach to an analytic one, we
perform a probabilistic assessment of the reliability based on the fault-tolerant model
that uses majority voting and on the same assumptions as those used for our simulation.
We assume that a methane sensor produces an integer reading r ∈ [0,10]. The sensor
either works correctly, or fails with a probability p by outputting a random reading
uniformly distributed between 0 and 10.

As discussed previously, reliability fails when a falsely critical reading is sent to
the environment monitor although the actual reading is non-critical. There are three
cases that lead to a wrong decision by the voter, and can be considered separately. The
total probability of the voter failing to decide on the correct output is then equal to the
probability that the correct reading is non-critical (which is 7/11) multiplied by the sum
of the probabilities corresponding to the cases listed below:

– one sensor outputs a correct reading, two sensors output equal, critical and false
reading: 3∗ (1− p)∗ (p ∗4/11)∗ (p ∗1/11)

– all three sensors output wrong readings, but at least two are equal, critical and false
reading: p3 ∗ ((4/11)(1/11)+ 2(7/11)(4/11)(1/11))

– all three sensors output wrong distinct readings, and at least one is critical: p3∗(1−
7/11 ∗ 6/11 ∗5/11)∗ (10/11 ∗9/11)

Since we assume that p = 0.1 for the methane sensor, this leads to a majority voter
failure probability of 0.0061, or a reliability of 99.39%. The results of our simulation
indicated a reliability of 98.3%, clearly comparable to the results derived from the ana-
lytic model.

This probabilistic assessment leads to exact and precise results, but in cases where
the problem is non-linear, the equations may become very complex and impossible to
solve. On the other hand, the approach presented in this paper is especially effective for
complex systems for which deriving mathematical models is not feasible. One might
argue that this approach requires extensive work in designing and encoding the models,
and in analyzing the simulation results. However, models are easily derived from the
requirements and logical structure of the system. Furthermore, the choice of modelling



230 Miriam Zia et al.

formalism and programming language make for a modular implementation, and if tools
are available which automatically generate the applications, the process can be speedy.
Lastly, simulation results are simple to analyze as they are derived from such simple
equations as those described in Section 6.1. Mathematical models do not have these
advantages. However, probabilistic models can be useful as a validation method for
modelling and simulation based approaches as well as provide solutions to rare-event
cases.

7 Conclusion

In most complex systems today, it is crucial to guarantee that the dependability require-
ments are successfully achieved. Methods should be provided which can accurately
assess what level of dependability has been attained by a system. In this paper, we have
presented a modelling and simulation-based development process targeted towards de-
pendable systems, and have demonstrated it through an application to the safety-critical
Pump Control System.

A continuity was maintained throughout the development process. We started from
requirements, mapped these to a DEVS model, extended the model to consider the
dependability constraints, defined performance metrics, implemented the model using
the PythonDEVS framework, and performed simulations whose results reflected the
safety and reliability of the system. DEVS is deemed the most appropriate formalism
for modelling both the system under study and the fault tolerance techniques. This,
as discrete-event models are clearly at the right abstraction level, and because of the
compositionality of the DEVS formalism. Fault tolerance, more specifically TMR, was
used as a means to achieve dependability. In this approach, two types of voters were
used, and the simulation results were inspected to decide which voter best satisfied the
dependability requirement. The results indicated that this outlined method improved the
dependability levels of the example system.

We have shown how models can be useful for designing dependable systems: a
model can be extended to address possible failures and to incorporate fault tolerance
techniques that overcome them. This approach allows us to predict behaviour and esti-
mate system dependability, and it enables an informed decision on which fault tolerance
technique to apply. If such a step is taken during the analysis and design phase of any
project, development cost is reduced as an optimal system is built right the first time,
while fault tolerance is addressed earlier on in the development cycle, and simulation
results emulate the expected behaviour of the dependable system.

We plan to further investigate a generic process for the analysis and design of de-
pendable systems. Furthermore, we will use the fault-tolerant models to synthesize the
final application.

References

[1] Gray, J., Rossi, M., Tolvanen, J.P., eds.: Domain-Specific Modeling with Visual Languages.
Volume 15 of Journal of Visual Languages & Computing. Elsevier Science Publishers
(2004)



A Modelling and Simulation Based Approach to Dependable System Design 231

[2] Vangheluwe, H., de Lara, J.: Domain-specific modelling for analysis and design of traf-
fic networks. In Ingalls, R., Rossetti, M., Smith, J., Peters, B., eds.: Winter Simulation
Conference, IEEE Computer Society (2004)

[3] Pfeifer, H., von Henke, F.W.: Formal modelling and analysis of fault tolerance properties
in the time-triggered architecture. In: 5th Symposium on Formal Methods for Automation
and Safety in Railway and Automotive Systems. (2004)

[4] Boue, J., Arlat, J., Crouzet, Y., Petillon, P.: Verification of fault tolerance by means of fault
injection into VHDL simulation models. In: Contrat Esprit DeVa Project. (1996)

[5] Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic Press
(1984)

[6] Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation, Second Edi-
tion. Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic
Press (2000)

[7] Cheon, S., Seo, C., Park, S., Zeigler, B.: Design and implementation of distributed DEVS
simulation in a peer to peer network system. In: 2004 Advanced Simulation Technologies
Conference, Design, Analysis, and Simulation of Distributed Systems Symposium 2004
(2004)

[8] Chi, S., Lee, J.: DEVS-based modeling and simulation for intelligent transportation sys-
tems. In Sarjoughian, H.S., Cellier, F.E., eds.: Discrete event modeling and simulation:
A tapestry of systems and AI-based theories and methodologies. Springer-Verlag (2001)
215–227

[9] Filippi, J., Chiari, F., Bisgambiglia, P.: Using jDEVS for the modeling and simulation
of natural complex systems. In: SCS AIS 2002 Conference on Simulation in Industry.
Volume 1. (2002)

[10] Geffroy, J.C., Motet, G.: Design of Dependable Computing Systems. Kluwer Academic
Publishers (2002)

[11] von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreli-
able components. In Shannon, C.E., McCarthy, J., eds.: Annals of Math Studies. Princeton
University Press (1956) 43–98

[12] Laprie, J.C.: Dependable computing and fault tolerance : Concepts and terminology. In
Meyer, J.F., Morgan, D.E., eds.: 15th FTCS. (1985)

[13] Lee, P.A., Anderson, T.: Fault tolerance - principles and practice. In: Dependable Comput-
ing and Fault-Tolerant Systems. 2nd edn. Springer Verlag (1990)

[14] Burns, A., Lister, A.: An architectural framework for timely and reliable distributed in-
formation systems (TARDIS): Description and case study. Technical report, University of
York (1990)

[15] Huang, D., Sarjoughian, H.: Software and simulation modeling for real-time software-
intensive system. In: Proceedings of the 8th IEEE International Symposium on DS-RT.
(2004)

[16] Bolduc, J.S., Vangheluwe, H.L.: The modelling and simulation package pythonDEVS for
classical hierarchical DEVS. Technical report, McGill University (2001)


	Introduction
	Background
	Modelling and Simulation Based Design: An Example
	Modelling the PCS
	Modelling the Fault-Tolerant System
	Simulation and Results
	Conclusion



