

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 186-200, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Representing and Applying Design Patterns:
What Is the Problem?

Hafedh Mili & Ghizlane El-Boussaidi

Laboratoire de Recherches en Technologies du Commerce Électronique (LATECE)
Faculté des Sciences, Université du Québec à Montréal

B.P 8888, succursale Centre-Ville, Montréal (Québec) H3C 3P8, Canada
{hafedh.mili, el_boussaidi.ghizlane}@uqam.ca

Abstract. Design patterns embody proven solutions to recurring design
problems. Ever since the gang of four popularized the concept, researchers have
been trying to develop methods for representing design patterns, and applying
them to modeling problems. To the best of our knowledge, none of the
approaches proposed so far represents the design problem that the pattern is
meant to solve, explicitly. An explicit representation of the problem has several
advantages, including 1) a better characterization of the problem space
addressed by the pattern—better than the textual description embodied in
pattern documentation templates, 2) a more natural representation of the
transformations embodied in the application of the pattern, and 3) a better
handle on the automatic detection and application of patterns. In this paper, we
describe the principles underlying our approach, and the current implementation
in the Eclipse Modeling Framework™.

1 Introduction

Software development may be seen as a sequence of property-preserving
transformations that are applied to a set of user requirements to produce a functional
software that satisfies a number of quality requirements [16]. Researchers have long
tried to describe those transformations precisely. However, doing so in a domain
independent way has proved elusive because of the vast amounts of both domain and
development knowledge that would be required. Design maintenance systems (see
e.g. [3]) break the process of development by transformation into, i) choosing a
transformation, which is a knowledge-intensive and complex task, but involving little
labor, and ii) applying a chosen transformation, which is labor-intensive but
knowledge poor. They, thus, focus on applying chosen transformations, and argue
that, by changing the requirements a bit, they can update the design by reapplying the
same set of transformations that were chosen for the initial requirements. To some
extent, the design patterns movement takes an orthogonal approach to design
maintenance systems : instead of focussing on small changes in the overall
requirements, they focus on localized, recurrent design problems, whose solutions
they codify [9].

Representing and Applying Design Patterns: What Is the Problem? 187

Since the publication of the gang of four book, several researchers have worked on
providing support to developers for applying design patterns, including [4], [5], [6],
[18], [1], and many more. Viewing design patterns as reusable artefacts, their usage
requires [13] :

 Recognizing opportunity : recognizing the pattern as a potential solution to
the problem at hand,

 Understanding the artefact : understanding the pattern, its structure, and the
principles underlying it, and

 Adapting the artefact: in this case, applying the pattern to the problem at
hand.

Each one of these tasks requires a particular representation of the pattern. To
recognize opportunity, we need a representation of the problem solved by the pattern
that we can match to a representation of the problem at hand. To understand the
pattern, we need a representation that is intuitive, typically mixing text with a visual
notation. The third task requires a representation of the transformation embodied in
the pattern.

The approaches that we have studied have tackled either the understanding task, or
the pattern application task (e. g. [2], [18], [17]), and sometimes both [7],[11].
Significant research in the software metrics area has addressed the opportunity
aspects, but does little for pattern understanding, or for performing the subsequent
refactoring—with a few exceptions, e.g. [19]. We know of no approach that tries to
handle all three tasks. We argue that a representation of the design problem is
required for all three tasks:

 We cannot ascertain the relevance of a design pattern to a design problem
without a formal characterization of the design problems that the pattern is
meant to solve,

 Proper understanding of the pattern requires that we understand the structure
of our software (its models) before applying the pattern, and after

 The application (instantiation) of the pattern may be expressed declaratively
as a mapping between a model of the problem and a model of the solution,
that can be implemented by a generic transformation engine.

In this paper, we describe our approach for representing and applying design
patterns. Section 2 presents the representation of the design problem, which is
illustrated using the bridge pattern. We describe the model of the solution and the
model of the transformation in section 3.We describe our EMF-based implementation
in section 4. We compare our approach to related work and discuss the issue of
assessing a pattern’s applicability in section 5. We conclude in section 6.

2 Modeling the Design Problem

2.1 Example: The Bridge Pattern

Figure 1 illustrates a situation that warrants the bridge pattern [9]. Assume that we
want to develop a program that manipulates graphical window objects, and that we
want our program to be portable across OS platforms (MS Windows, Unix-based,

188 Hafedh Mili and Ghizlane El-Boussaidi

etc.). A typical object-oriented design idiom consists of creating a root abstract
class—call it Window—that defines abstract methods that specify the behavioral
contract that the various implementations must provide. This solution is illustrated by
the left hand-side of Figure 1. Assume now that we want to define new types of
windows, e.g. square windows, which may provide additional behaviour (new
methods) or refine existing ones (e.g. providing a more optimal implementation of
some generic behavior). The extended design is shown on the right hand-side of
Figure 1: a new subclass of Window has been created—SquareWindow—and new
implementations of SquareWindow have been defined, one for each target platform.

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

Window

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowMSWin32

+getSide() : float

SquareWindow

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowXWindow

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

Window

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowMSWin32

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowXWindow

+display() : void
+move() : void
+getLength() : float
+getWidth() : float
+getSide() : float

SquareWindowMSWin32

+display() : void
+move() : void
+getLength() : float
+getWidth() : float
+getSide() : float

SquareWindowXWindow

Fig. 1. An example problem solved by the bridge pattern.

The solution proposed by the bridge pattern consists of decoupling
implementations from abstractions by putting them in separate class hierarchies that
can evolve independently. In particular, new implementation classes are needed only
in those cases where they provide new behaviour implementations. The example of
Figure 2 shows a case where a new abstraction (SquareWindow) uses the same
implementation as its parent (Window).

Figures 1 and 2 help explain the design pattern by showing a sample problem and
the corresponding solution, i.e. a <problem, solution> instance. We would like to
abstract, from this example, and from the textual pattern documentation, a
representation of the problem solved by the bridge pattern that would support the
three reuse tasks mentioned in the introduction. The subsequent subsections describe
our representation.

Representing and Applying Design Patterns: What Is the Problem? 189

+getRadius() : float

CircularWindow

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

-window : ImpWindow
Window

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

ImpWindow

* *

+getSide() : float

SquareWindow

float getSide() {
 return getLength()

}

void getLength() {
 return window.getLength();

}

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowXWindows

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowMSWin32

Fig. 2. The solution proposed by the Bridge pattern

2.2 A Metamodel of the Design Problem

Instances of the design problem solved by the bridge pattern are analysis and design
models of applications. To describe the class of problems solved by the pattern, we
will define a problem meta-model, i.e. a model whose instances are models such as
the one in Figure 1. Figure 3 shows a first-cut metamodel.

Fig. 3. A first-cut metamodel of the problem solved by bridge.

The classes Abstraction and Implementation are meta-classes in the sense that their
instances are classes such as Window or WindowMSWin32, respectively. The
associations labeled “inherits_from” represent inheritance relationships that exist
between instances of the corresponding classes. For example, such a relationship
exists between the two abstractions SquareWindow and Window (see Figure 1).
Similarly, there is an inheritance relationship between the implementation
SquareWindowMSWin32 and the abstraction SquareWindow. Note that, for the time
being, we don’t worry about what it means to be “an abstraction” or “an
implementation”. We interpret these (meta)classes as simple tags for now; we later
discuss their semantics.

Abstraction
-sub

0..*

-sup 0..1

inherits_from

Implementation
-sub

0..*

-sup 0..1

inherits_from

inherits_from

190 Hafedh Mili and Ghizlane El-Boussaidi

A metamodel of the problem should also include a description of the operations
that are affected by the pattern. The operations of the Abstraction’s will be abstract,
and the operations of the Implementation’s will be concrete. Further, each
Implementation must implement all of the abstract operations of the Abstraction from
which it inherits. We represent this constraint as a constraint between the association
“inherits_from”, between classes, and the association “implements”, between the
corresponding operations (Figure 4).

There is yet more to represent. We would normally need to capture return types
and parameters of the operations that are affected by the pattern. We should also
cover cases where Abstraction’s are not pure abstract classes, but may include some
implementations. To keep the model simple, we will ignore parameters1 and partially
abstract classes.

Fig. 4. A metamodel of the problem solved by the Bridge pattern. Take two.

2.3 The Missing Link: The Time Derivative!

To some extent, the various design patterns aim at shielding a client program from
changes in the functionality, the environment, or the implementation of another
program. Design patterns either make those changes transparent, or minimize their
maintenance impact.

We argue that the dynamic nature of the problem to be solved is an essential part
of the design problem, and as such, it needs to be captured explicitly. Consider the
case of the visitor pattern. This pattern is applicable when a class hierarchy is stable,
but the behaviours it supports (the set of methods) is not. Notice that if the set of
behaviours is stable, but the set of types is not, plain class inheritance works just fine.
Were we to use the same notation as in Figure 4, both situations would be
characterized by the same metamodel, missing the essence of the problem.

1 In our approach, what is not explicitly represented is assumed to be carried over, as is, from

problem to solution. Thus, ignoring parameters in this case, simply means that they won’t be
modified by the application of the pattern, which is true for Bridge.

Abstraction
-sub

0..*

-sup 0..1

inherits_from

Implementation
-sup

0..1

-sub

0..*

inherits_from

-sub

0..*

-sup 0..1

inherits_from

AbstractOperation ConcreteOperation

-def_class 1

-message 0..*
has-message

-imp_class 1

-method 0..*
has_method

-interface

1

-impl.

0..*

implements

{Homomorphism with has_method/has_message
}

Representing and Applying Design Patterns: What Is the Problem? 191

Accordingly, we decided to augment our problem metamodels by specifying those
aspects that change. By studying the various kinds of time changes, we were able to
reduce them all to changes in the cardinalities of some meta-level associations. For
example, both the Bridge and the Abstract factory pattern handle cases where the
number of subclasses of a given class is geared for frequent change. With visitor and
decorator, the number of operations associated with a class is geared for change.
Template method and strategy characterize cases where the number of
implementations of a given operation is geared for change. And so forth. We
represent these “time hotspots” by adding the symbol “++” to the cardinalities on the
appropriate association ends. Figure 5 shows the new metamodel of the problem
solved by Bridge. This model is saying that both the number of abstractions, and the
number of implementations per abstraction, are geared for change.

Fig. 5. A metamodel of the problem solved by Bridge, including the time hotspots.

2.4 A Language for Problem Metamodels

The previous example gave us some idea about the kinds of constructs needed by our
language. Note that concepts such as Abstraction or Implementation are not part of
the language primitives : the pattern designers (or documenters) can define any
metaclass and give it the meaning they want. However, these metaclasses must inherit
from the UML subset that is MOF compliant. Thus, while Abstraction and
Implementation are specific to the bridge pattern2, because they represent classes,
they must both be (UML) classifiers. Similarly, while AbstractOperation and
ConcreteOperation are specific to this pattern, the fact that they represent operations
means that they must inherit from the UML/MOF Operation.

We have also introduced the notion of family, which represents a set of entities of
the same type that share some characteristics, and that can be referenced or handled as

2 Actually, the notion of Abstraction and Implementation are used in several patterns, and may

be made part of a shared library of metaclasses.

Abstraction
-sub

0..*

-sup 0..1

inherits_from

Implementation
-sup

0..1

-sub

0..*

inherits_from

-sub

0..*

-sup 0..1

inherits_from

AbstractOperation ConcreteOperation

-def_class 1

-message 0..*
has-message

-imp_class 1

-method 0..*
has_method

-interface

1

-impl.

0..*

implements

{Homomorphism with has_method/has_message
}

++

++

++

192 Hafedh Mili and Ghizlane El-Boussaidi

a group. For example, we have the notion of class family that represents the set of
subclasses of a given class, or what Odell calls powertype [14]. We also have the
notion of method families that represents the set of methods that share some
characteristic (name, signature, return type, etc.). Other than these two modifications,
our metamodeling language is similar to UML’s metamodel. Our EMF™
implementation led us to make some adjustments, as we will see in section 4.

3 Representing the Solution and the Transformation

3.1 Representing the Solution

We used the same principles to represent the solutions produced by design patterns. In
this regard, our approach is not much different from metamodel-based representations
of design patterns, including [15], [1], [17], and [8]. Figure 6 shows a model of the
solution provided by the bridge pattern.

Fig. 6. A metamodel of the solution embodied by the bridge pattern.

The model is read as follows. We have a hierarchy of classes, representing
abstractions (RootAbstraction and Abstraction), that delegates processing to another
hierarchy of classes, representing implementations (RootImplementation and
ConcreteImplementation). Note that we need to distinguish root classes from other
classes in the tree, for both abstractions and implementations. Indeed, the root of the
implementation hierarchy is an abstract class while its descendants are concrete
classes that implement its interface. Interestingly, all of the classes of the abstraction
hierarchy are concrete classes that delegate their processing to the corresponding
methods on the implementation object.

RootAbstraction

-sub

0..*

-sup 0..1

inherits_from

RootImplementation
-interf

0..1

-impl

0..*

delegates_to

-sub

0..*

-sup 0..1

inherits_from

AbstractionOperation AbstractImplementationOperation

-imp_class 1

-method 0..*
has-method

-def_class 1

-message 0..*
has_message

-delegator

0..*

-delegatee

1

delegates_to

Abstraction

-sup1

-sub0..*

inherits_from

ConcreteImplementation

-sup1

-sub0..*

inherits_from

-imp_class

1

-method

0..*

has-method

-def_class

1

-message

0..*

has_message

ImplementationOperation

-imp_class

1

-method 0..*

has-method

-signature

1

-method1..*

implements

Representing and Applying Design Patterns: What Is the Problem? 193

Recall that, as was the case for the problem metamodel, the semantics of the
classes Abstraction and RootAbstraction are specific to the Bridge pattern, and we
are free to give them the meaning we want. Further, we don’t have to use the same
metaclasses that we used to describe the problem, since we will represent the
transformation from problem to solution, explicitly. We discuss the representation of
transformations in the next section.

The representation of solution models requires additional constructs that are not
needed for problem models. One such construct is the notion of constants or literals.
We have no need for literals in the bridge pattern, since all the operations that appear
on the solution side come from the problem. However, some design patterns introduce
methods and attributes that are supposed to appear as-is in the transformed model. For
example, the Observer/Observable pattern requires that observable objects implement
pattern-specific operations (notify(…), among others). Our representation language
accommodates the representation of literals.

3.2 Representing the Mapping from Problems to Solutions

Applying a design pattern consists of transforming an instance of the class of
problems solved by the pattern, to an instance of the class of solutions. Accordingly,
we can represent this transformation as a mapping from elements of the problem
metamodel (Figure 5) to elements of the solution metamodel (Figure 6). To apply the
transformation to a sample input model—an analysis or a design-level UML model—
we:

1) first map the problem (meta)model to the input model, to identify those
entities of the input model that match entities in the problem model, and

2) second, produce the output model by transforming those so-matched
entities (classes, associations, operations) according to the mapping, leaving
the others unchanged.

In essence, the first step identifies the entities in the input model that play the roles

described by the entities of the problem model. This step is typically referred to as
model marking, and the outcome is a marked (input) model. In the case of the bridge
pattern, we need to identify, in the input model, those classes that play the role of
Abstraction and Implementation. The so-marked classes will be transformed
according to the mapping.

Figure 7 shows a mapping metamodel, i.e. a model that represents mappings
between problem models and solution models. A <problem model,solution model>
mapping is represented by an instance of the class ModelMapping. For example, the
mapping from the bridge problem model (Figure 5) to the bridge solution model
(Figure 6) is represented by an instance of ModelMapping. An instance
<model1,model2> of ModelMapping is an aggregation of, i) mappings between their
classes (classes of model1 and classes of model2), and ii) mappings between their
associations. In turn, the mapping between two classes (an instance of
ClassMapping) is an aggregation of, i) mappings between attributes (instances of
AttributeMapping), and ii) mappings between operations (instances of
OperationMapping). And so forth.

194 Hafedh Mili and Ghizlane El-Boussaidi

Fig. 7. A model for representing mappings between problem models and solution models.

All of the mapping classes inherit from ElementMapping. Each mapping has a
source element, a destination element, and a description of how the source element is
transformed into the destination element (attribute “transformation” of the class
ElementMapping). The source and destination are instances of the class Element (with
grey background), which represents MOF’s ModelElement. A mapping with no
source element means an element that is added by the application of the pattern. A
mapping with no destination element means an element that is removed by the
application of the pattern.

4 Implementation

We have implemented our representation of design patterns, and the transformation
procedure in the Eclipse™ environment using the Eclipse Modeling Framework™.
EMF is a modeling framework that supports code generation and XMI-based
persistence. EMF includes a package—called ECore—that provides a simplified
implementation of MOF. Section 4.1 describes the implementation of the various
metamodels (problems, solutions, and mappings). The transformation algorithm is
described in section 4.2.

-transformation
ElementMapping

CompositeElementMapping

*

*

TypedVarMapping

ParameterMapping

TypeMapping

ModelMapping ClassMapping OperationMappingAssociationMapping

1 0..*

1 0..*

1 1

1 1

1

0..*

1

0..*

AttributeMapping

1

0..*

0..*

1

-nom : String
Element

0..* 0..1

source

0..* 0..1

destination

Representing and Applying Design Patterns: What Is the Problem? 195

4.1 Common Metamodel for Problems and Solutions

Figure 8 shows the common metamodel for representing problem models and solution
models of design patterns. Initially, we planned to represent this metamodel as an
instance of EMF’s ECore package. This model would then be instantiated to describe
problem models and solution models for specific patterns. Those models would, in
turn, be instantiated to represent specific application models. Developers, working in
the Eclipse environment with the EMF plug-in, would then load representations of
various patterns (problem models, solution models, and mappings) from secondary
storage, and apply them to the application models they are working on. However,
EMF’s built-in serialization mechanism supports the XMI serialization of only those
models that have ECore (or an extension thereof) as a metamodel. Accordingly,
instead of defining our pattern metamodel as an instance of ECore, we implemented it
using an extension of ECore classes. Figure 8 shows the metamodel, which we will
comment briefly. The ECore classes correspond closely to MOF entities (and to
UML’s meta-meta-model), and are greyed out.

First, in order to define a new metamodel, and thus, a new type of models, we have
to define a subclass of EPackage, and register the new metaclasses within this
subclass. In our case, this subclass is called ModelPackage. Figure 8 shows a class
ModelClass, that extends the ECore class, EClass. ModelClass represents all the
classes that appear within problem models or solution models. In our bridge example,
the classes Abstraction and Implementation, from the problem model, and
RootAbstraction, Abstraction, RootImplementation, and Concrete-Implementation,
from the solution model, are all instances of ModelClass.

The class ModelOperation is used to represent all kinds of operations, be they
virtual (abstract), concrete, or literal. Two boolean instance variables are used to
distinguish between the various types: «abstract » and « literal ». Note also that we
extended the ECore class EReference by our own ModelReference class in order to :
1) be able to represent inheritance relationships at the meta level (SubtypeReference),
and 2) to represent the time variability of the cardinality, i.e. the so-called time
hotspots (symbol ++ used in Figure 5).

4.2 Implementing the Transformation

We implemented model mappings in a similar fashion to problem and solution
models : by extending ECore classes. As for the transformation algorithm itself, it
takes three inputs:

1) the input model that we wish to transform, with properly marked entities
2) the mapping between the problem model and the solution model, and
3) the solution model

196 Hafedh Mili and Ghizlane El-Boussaidi

Fig. 8. Implementing the metamodel for pattern problem models and solution models in EMF.

The transformation engine uses a recursive algorithm, starting with aggregate,
maps it to an empty aggregate on the destination side, and then recursively maps its
components. For example, starting at the highest level, given the marked input model,
we first generate an empty destination model, and then transform the classes in the
input model, putting their transforms in the destination model. The same is true with
classes, where we first generate en empty class, and then map its attributes and
operations.

Notice that the same <problem --> solution> mapping may be applied to several
entities in the input model. In the bridge pattern, for example, the mapping

0..1

ModelParameter

classAttributes

classOperations

modelClasses ModelPackage

ModelAttribute

litteral : boolean

ModelOperation

abstract : boolean
litteral : boolean
variationType : VariationType

ModelClass

isModelSuperType(someModelClass : ModelClass)

ModelReference

enableExtension : boolean

EPackage

EClass

EClassifier

EOperation

EReference

containment : boolean

EParameter

EAttribute

1..*

0..*

classReferences

0..*

0..*operationParam
eters

0..*
implements

0..1

ETypedElement

ordered : boolean = true
unique : boolean = true
lowerBound : int
upperBound : int = 1

EStructuralFeature

TypeParameter

eType

specializes

eOpposite
0..1

eReferenceType
0..1

1

«enumeration»
VariationType

- isNotVariationPoint : 0
- isSateDepenedent : 1
- hasDifferentAlgorithms : 2
- otherVariationType : 3

ClassFamily

ImplementReference SubtypeReference

Representing and Applying Design Patterns: What Is the Problem? 197

<Implementation --> ConcreteImplementation> will be applied to all the classes in the
input model that have been marked by the Implementation tag.

5 Discussion

5.1 Related Work

Ever since the publication of the GOF patterns, the representation and application of
design patterns has received a lot of attention. Several approaches have been
proposed, depending, in part, on the way design patterns are used. In the so-called
top-down approach [6], developers instantiate a design pattern by specifying its
components, as in [15] [6] [5] [1] [11] [8]; Budinsky et al.’s work on code generation
by pattern instantiation may be seen as a special case [4]. The bottom-up approach
consists of identifying perfect instances (hits) or imperfect ones (near hits) of specific
design patterns, as in [5] [1], [10]. A hybrid approach attempts to re-engineer existing
models to make them conform to a specific design pattern, as in [2] [5] [18]. Clearly,
each one of these three usages has its own representational requirements.

Those approaches that set out to provide an explicit representation of design
patterns were limited to the structural aspects (object model). Some approaches used
meta-models to represent design patterns, while others simply offered a set of models,
with no concern for a common, pattern-specific metamodel. In either case, the
representation focused on the description of the solution : what the instantiated pattern
will look like. This was the case for most of the top-down, forward-engineering
approaches, which used design patterns as design templates that needed to be
instantiated. However, we know of no approach that attempted to represent the
problem; the work of Budinsky et al. may be the exception that confirms the rule [4]:
the problem was described using natural language, according to the GOF pattern
documentation template [9], but that description didn’t lend itself to formal
processing. To the best of our knowledge, our work is the only one that attempts to
represent the problem explicitly. Such a representation enables us to formally
characterize those situations where the pattern is appropriate. Such a representation
would also enable us to specify the transformations that are embodied in the pattern.
The time variability aspect—what we called time hotspots—is also unique to our
approach, and we consider it to be a central aspect of the design problem solved by
the design pattern.

With regard to the transformations, only those approaches that focussed on re-
engineering existing models with patterns did provide an explicit representation for
the transformation [2],[18],[19]. However, in such cases, the structure of the pattern
itself is not explicit: it is embodied in the transformation. In our case, both the
structure of the pattern, and the transformation embodied in its application, are
represented explicitly. Further, the transformation is specified declaratively, making it
possible to develop a generic, pattern-independent transformation engine (see section
4.2) that takes a marked input model, a pattern mapping model, and a pattern solution
model, and produces a properly transformed output model.

198 Hafedh Mili and Ghizlane El-Boussaidi

5.2 Problem Model Semantics and Marking

In our current implementation, the entities that belong to problem models or solution
models (e.g. Abstraction, Implementation) have no proper semantics. The only
semantic constraints are inherent in their type (whether the entities represent a class or
an operation) or in the relationships they have to other entities within a given problem
(or solution) model. For example, if we look at the bridge problem model, we only
know that Abstraction’s have AbstractOperation’s, and that Implementation’s have
ConcreteOperations, but we don’t know what either concept means, beyond the fact
that Abstraction and Implementation are classes, and AbstractOperation and
ConcreteOperations are operations.

One way of capturing the semantics of these entities is to provide membership
predicates for them that test a subset of the properties that are typically represented in
input models, either directly—stored properties, such as the scope of a feature
(instance versus class)—or implicitly –computed, such as the number of associated
entities of a particular type. For example, we would define AbstractOperation as an
operation that is, well, abstract, which is a property that is captured by the EMF
metamodel—the class EOperation has such an attribute. Similary, Abstraction can be
defined as a class whose methods are all abstract. Clearly, such a definition is useful
in many patterns, and may be included in a library of such (meta)modeling concepts
that are shared between several patterns. Pattern writers and documenters would have
the option of using such concepts as is, extending them, or composing them—through
mutiple inheritance.

We considered many languages for expressing membership predicates, including
OCL, the early drafts of the (upcoming?) QVT standard (Query, View,
Transformation), and a number of object-rule languages (e.g. JESS, ILOG JRules,
OPSJ). We chose object-rule languages (and JRules in particular), because of their
expressive power and because of the availability of mature, high performance tools
for interpreting rules on Java objects. The following two rules, used to illustrate the
syntax, show two ways of identifying abstract classes. We assume in this case that the
class Abstraction is stored in a static member of our metaclass ModelClass, with the
name ABSTRACTION.

rule mark_abstract_classes {
when {
 ?aClass: EClass (isAbstract());
} then {
 modify ?aClass {tag = ModelClass.ABSTRACTION;}

}
}
rule mark_abstract_classes_from_operations {
when {
 ?aClass: EClass();

not EOperation(isConcrete()) in ?aClass.getEOperations();
} then {

modify ?aClass {tag = ModelClass.ABSTRACTION;}
}

}

Representing and Applying Design Patterns: What Is the Problem? 199

The first rule uses a simple test : the result of (actual) boolean method “boolean
isAbstract()” on EClass. The second rule matches any EClass (any class in an input
model) such that none of its operations are concrete3, and marks it as an abstract class.
Thanks to rule chaining, we could have tags that depend on complex patterns being
built up incrementally, starting with simpler patterns. In fact, the entire problem
model itself can be written as one (or several alternate) rule(s) that use pre-assigned
tags [12].

 There remains one aspect that membership predicates cannot capture: the probable
evolution scenarios of the input model, which would make a design pattern a
desirable alternative. This information is dynamic and will not be implicit in the input
object model, which provides only a snapshot of the target application at the present
time. There are two possible strategies for capturing this information. First, we make
it a property that designers or analysts will have to enter before they can submit their
models for marking. Experienced analysts and designers, with some knowledge of the
application domain (e.g. a product line) will know this information but, conceivably,
our tool can prompt analysts or designers for potential “time hotspots”—themselves
following specific patterns. Second, we can look at consecutive versions of the same
software to determine which parts have evolved and how, and use that information to
identify the time hotspots. This second approach requires no judgement, but will only
work for long-lived software whose source code, throughout several versions, is
available.

6 Conclusion

Our work deals with providing developers with a repository of reusable model-based
artifacts, and with the tools needed to assist them in using those artifacts. Developing
with reuse involves three main tasks, 1) evaluating the opportunity of using an artifact
for the problem at hand, 2) understanding that artifact, and 3) integrating the
artifact—typically through model transformation—in the system at hand [13]. In this
paper, we dealt specifically with the issue of representing and applying/enacting
design patterns. Our approach relies on an explicit and precise description of the
design problem solved by a given pattern. This description, provided in the form of a
meta-model, supports the three reuse tasks.

Our approach is generic and consistent with model-driven engineering.
Recognizing the opportunity for reusing a design artifact—design pattern in this
case—remains a big challenge, similar to model marking in the context of MDA. One
reason is that design problems come from non-functional requirements, which are
usually not explicitly represented (or representable with available notations) in
software models. To some extent, design patterns are point solutions, or
implementations, for a general design requirement: provide model resilience through
functional requirements change. Specifically, each design pattern addresses the
general design requirement for a specific functional pattern, which can be
characterized as the combination of a static structure, and an evolution pattern. To this

3 There is no such method on org.eclipse.emf.ecore.EOperation. This is shown for illustration

purposes only.

200 Hafedh Mili and Ghizlane El-Boussaidi

extent, we believe that our representation of design problems, which captures both the
static structure of a functional pattern, and its evolution patterns, is a step in the right
direction.

References

1. Albin-Amiot, H., Guéhéneuc, Y.G.: Meta-modeling Design Patterns: application to pattern
detection and code synthesis. Proceedings of ECOOP Workshop on Automating OO
Software Development Methods, 2001.

2. Alencar, P.S.C., Cowan, D.D., Dong, J., Lucena, C.J.P.: A transformational Process-Based
Formal Approach to Object-Oriented Design. Formal Methods Europe FME’97, 1997.

3. Baxter, I.: Design Maintenance Systems. Communications of the ACM, vol. 35, no. 4,
(1992) 73-89.

4. Budinsky, F.J., Finnie, M.A., Vlissides, J.M., Yu, P.S.: Automatic Code Generation from
Design Patterns. IBM Systems Journal, vol. 35, n° 2, (1996) 151-171.

5. Eden, A.H., Gil, J., Hirshfeld, Y., Yehudai A.: Towards a mathematical foundation for
design patterns. Technical report, dep. of information technology, Uppsala University,
1999.

6. Florijn, G., Meijers, M., van-Winsen, P.: Tool support for object-oriented patterns. Lecture
Notes in Computer Science, vol. 1241, (1997) 472-495.

7. Fontoura, M., Lucena, C.: Extending UML to Improve the Representation of Design
Patterns. Journal of OO Programming, vol. 13, n° 11 (2001).

8. France, R., Kim, D.k., Ghosh, S., Song, E.: A UML-Based Pattern Specification
Technique, IEEE Trans. on Software Engineering, vol. 30, n° 3, (2004) 193- 206.

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995).

10. Guéhéneuc, Y-G., Sahraoui, H.: des signatures numériques pour améliorer la recherche
structurelle de patrons. Proceedings of Langages et Modèles à Objets 2005, Berne, Suisse,
(2005).

11. Maplesden, D., Hosking, J., Grundy, J.: Design Pattern Modelling and Instantiation using
DPML. Proceedings of 14th International Conference on Technology of OO Languages
and Systems (2002).

12. Mili, H., El-Boussaidi, G.: Design patterns : recognizing opportunity through rule-based
semantic marking. LATECE Technical report, LAT-2005-12 (2005).

13. Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse-Based Software Engineering: Techniques,
Organization, and Control. John Wiley & Sons, (2002) ISBN 0-471-39819-5.

14. Odell, J.: Power Types. Journal of Object-Oriented Programming (JOOP), (1994).
15. Pagel, B-U., Winter, M.: Towards Pattern-Based Tools. Proc. of EuropLop (1996).
16. Partsch, H., Steinbruggen, R.: Program Transformation Systems. Computing Surveys, vol.

15, no. 3, (1983) 199-236.
17. Sanada, Y., Adams, R.: Representing Design Patterns and Frameworks in UML, Towards

a Comprehensive Approach. Journal of Object Technology, vol. 1, n° 2, (2002)143-154.
18. Sunyé, G., Le Guennec, A., Jézéquel, J.M.: Design pattern application in UML. Proc. of

the 14th Object Oriented Programming European Conference, (2000) 44-62.
19. Tahvildari, L., Kontogiannis, K.: Improving Design Quality Using Meta-Pattern

Transformations: A Metric-Based Approach. The Journal of Software Maintenance and
Evolution: Research and Practice, John Wiley Publishers, Volume 16, Issue 4-5, (2004)
331-361.

	Introduction
	Modeling the Design Problem
	Representing the Solution and the Transformation
	Implementation
	Discussion
	Conclusion
	References

