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Abstract. Design patterns embody proven solutions to recurring design 
problems. Ever since the gang of four popularized the concept, researchers have 
been trying to develop methods for representing design patterns, and applying 
them to modeling problems. To the best of our knowledge, none of the 
approaches proposed so far represents the design problem that the pattern is 
meant to solve, explicitly. An explicit representation of the problem has several 
advantages, including 1) a better characterization of the problem space 
addressed by the pattern—better than the textual description embodied in 
pattern documentation templates, 2) a more natural representation of the 
transformations embodied in the application of the pattern, and 3) a better 
handle on the automatic detection and application of patterns. In this paper, we 
describe the principles underlying our approach, and the current implementation 
in the Eclipse Modeling Framework™. 

1 Introduction 

Software development may be seen as a sequence of property-preserving 
transformations that are applied to a set of user requirements to produce a functional 
software that satisfies a number of quality requirements [16]. Researchers have long 
tried to describe those transformations precisely. However, doing so in a domain 
independent way has proved elusive because of the vast amounts of both domain and 
development knowledge that would be required. Design maintenance systems (see 
e.g. [3]) break the process of development by transformation into, i) choosing a 
transformation, which is a knowledge-intensive and complex task, but involving little 
labor, and ii) applying a chosen transformation, which is labor-intensive but 
knowledge poor. They, thus, focus on applying chosen transformations, and argue 
that, by changing the requirements a bit, they can update the design by reapplying the 
same set of transformations that were chosen for the initial requirements. To some 
extent, the design patterns movement takes an orthogonal approach to design 
maintenance systems : instead of focussing on small changes in the overall 
requirements, they focus on localized, recurrent design problems, whose solutions 
they codify [9]. 
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Since the publication of the gang of four book, several researchers have worked on 
providing support to developers for applying design patterns, including [4], [5], [6], 
[18], [1], and many more. Viewing design patterns as reusable artefacts, their usage 
requires [13] : 

 Recognizing opportunity : recognizing the pattern as a potential solution to 
the problem at hand, 

 Understanding the artefact : understanding the pattern, its structure, and the 
principles underlying it, and 

 Adapting the artefact: in this case, applying the pattern to the problem at 
hand. 

Each one of these tasks requires a particular representation of the pattern. To 
recognize opportunity, we need a representation of the problem solved by the pattern 
that we can match to a representation of the problem at hand. To understand the 
pattern, we need a representation that is intuitive, typically mixing text with a visual 
notation. The third task requires a representation of the transformation embodied in 
the pattern. 

The approaches that we have studied have tackled either the understanding task, or 
the pattern application task (e. g. [2], [18], [17]), and sometimes both [7],[11]. 
Significant research in the software metrics area has addressed the opportunity 
aspects, but does little for pattern understanding, or for performing the subsequent 
refactoring—with a few exceptions, e.g. [19]. We know of no approach that tries to 
handle all three tasks. We argue that a representation of the design problem is 
required for all three tasks: 

 We cannot ascertain the relevance of a design pattern to a design problem 
without a formal characterization of the design problems that the pattern is 
meant to solve, 

 Proper understanding of the pattern requires that we understand the structure 
of our software (its models) before applying the pattern, and after 

 The application (instantiation) of the pattern may be expressed declaratively 
as a mapping between a model of the problem and a model of the solution, 
that can be implemented by a generic transformation engine. 

In this paper, we describe our approach for representing and applying design 
patterns. Section 2 presents the representation of the design problem, which is 
illustrated using the bridge pattern.  We describe the model of the solution and the 
model of the transformation in section 3.We describe our EMF-based implementation 
in section 4. We compare our approach to related work and discuss the issue of 
assessing a pattern’s applicability in section 5. We conclude in section 6. 

2 Modeling the Design Problem 

2.1 Example: The Bridge Pattern 

Figure 1 illustrates a situation that warrants the bridge pattern [9]. Assume that we 
want to develop a program that manipulates graphical window objects, and that we 
want our program to be portable across OS platforms (MS Windows, Unix-based, 



188           Hafedh Mili and Ghizlane El-Boussaidi 

etc.). A typical object-oriented design idiom consists of creating a root abstract 
class—call it Window—that defines abstract methods that specify the behavioral 
contract that the various implementations must provide. This solution is illustrated by 
the left hand-side of Figure 1. Assume now that we want to define new types of 
windows, e.g. square windows, which may provide additional behaviour (new 
methods) or refine existing ones (e.g. providing a more optimal implementation of 
some generic behavior). The extended design is shown on the right hand-side of 
Figure 1: a new subclass of Window has been created—SquareWindow—and new 
implementations of SquareWindow have been defined, one for each target platform.  
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Fig. 1. An example problem solved by the bridge pattern. 

The solution proposed by the bridge pattern consists of decoupling 
implementations from abstractions by putting them in separate class hierarchies that 
can evolve independently. In particular, new implementation classes are needed only 
in those cases where they provide new behaviour implementations. The example of 
Figure 2 shows a case where a new abstraction (SquareWindow) uses the same 
implementation as its parent (Window). 

Figures 1 and 2 help explain the design pattern by showing a sample problem and 
the corresponding solution, i.e. a <problem, solution> instance. We would like to 
abstract, from this example, and from the textual pattern documentation, a 
representation of the problem solved by the bridge pattern that would support the 
three reuse tasks mentioned in the introduction. The subsequent subsections describe 
our representation. 
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Fig. 2. The solution proposed by the Bridge pattern 

2.2 A Metamodel of the Design Problem 

Instances of the design problem solved by the bridge pattern are analysis and design 
models of applications. To describe the class of problems solved by the pattern, we 
will define a problem meta-model, i.e. a model whose instances are models such as 
the one in Figure 1. Figure 3 shows a first-cut metamodel. 

Fig. 3. A first-cut metamodel of the problem solved by bridge. 

The classes Abstraction and Implementation are meta-classes in the sense that their 
instances are classes such as Window or WindowMSWin32, respectively. The 
associations labeled  “inherits_from” represent inheritance relationships that exist 
between instances of the corresponding classes. For example, such a relationship 
exists between the two abstractions SquareWindow and Window (see Figure 1). 
Similarly, there is an inheritance relationship between the implementation  
SquareWindowMSWin32 and the abstraction SquareWindow. Note that, for the time 
being, we don’t worry about what it means to be “an abstraction” or “an 
implementation”. We interpret these (meta)classes as simple tags for now; we later 
discuss their semantics. 
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A metamodel of the problem should also include a description of the operations 
that are affected by the pattern. The operations of the Abstraction’s  will be abstract, 
and the operations of the Implementation’s will be concrete. Further, each 
Implementation must implement all of the abstract operations of the Abstraction from 
which it inherits. We represent this constraint as a constraint between the association 
“inherits_from”, between classes, and the association “implements”, between the 
corresponding operations (Figure 4). 

There is yet more to represent. We would normally need to capture return types 
and parameters of the operations that are affected by the pattern. We should also 
cover cases where Abstraction’s are not pure abstract classes, but may include some 
implementations. To keep the model simple, we will ignore parameters1 and partially 
abstract classes. 

Fig. 4. A metamodel of the problem solved by the Bridge pattern. Take two. 

2.3 The Missing Link: The Time Derivative! 

To some extent, the various design patterns aim at shielding a client program from 
changes in the functionality, the environment, or the implementation of another 
program. Design patterns either make those changes transparent, or minimize their 
maintenance impact.  

We argue that the dynamic nature of the problem to be solved is an essential part 
of the design problem, and as such, it needs to be captured explicitly. Consider the 
case of the visitor pattern. This pattern is applicable when a class hierarchy is stable, 
but the behaviours it supports (the set of methods) is not. Notice that if the set of 
behaviours is stable, but the set of types is not, plain class inheritance works just fine. 
Were we to use the same notation as in Figure 4, both situations would be 
characterized by the same metamodel, missing the essence of the problem. 

                                                           
1 In our approach, what is not explicitly represented is assumed to be carried over, as is, from 

problem to solution. Thus, ignoring parameters in this case, simply means that they won’t be 
modified by the application of the pattern, which is true for Bridge. 
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Accordingly, we decided to augment our problem metamodels by specifying those 
aspects that change. By studying the various kinds of time changes, we were able to 
reduce them all to changes in the cardinalities of some meta-level associations. For 
example, both the Bridge and the Abstract factory pattern handle cases where the 
number of subclasses of a given class is geared for frequent change. With visitor and 
decorator, the number of operations associated with a class is geared for change. 
Template method and strategy characterize cases where the number of 
implementations of a given operation is geared for change. And so forth.  We 
represent these “time hotspots” by adding the symbol “++” to the cardinalities on the 
appropriate association ends. Figure 5 shows the new metamodel of the problem 
solved by Bridge. This model is saying that both the number of abstractions, and the 
number of implementations per abstraction, are geared for change. 

Fig. 5. A metamodel of the problem solved by Bridge, including the time hotspots. 

2.4 A Language for Problem Metamodels 

The previous example gave us some idea about the kinds of constructs needed by our 
language. Note that concepts such as Abstraction or Implementation are not part of 
the language primitives : the pattern designers (or documenters) can define any 
metaclass and give it the meaning they want. However, these metaclasses must inherit 
from the UML subset that is MOF compliant.  Thus, while Abstraction and 
Implementation are specific to the bridge pattern2, because they represent classes, 
they must both be (UML) classifiers. Similarly, while AbstractOperation and 
ConcreteOperation are specific to this pattern, the fact that they represent operations 
means that they must inherit from the UML/MOF Operation. 

We have also introduced the notion of family, which represents a set of entities of 
the same type that share some characteristics, and that can be referenced or handled as 

                                                           
2 Actually, the notion of Abstraction and Implementation are used in several patterns, and may 

be made part of a shared library of metaclasses. 
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a group. For example, we have the notion of class family that represents the set of 
subclasses of a given class, or what Odell calls powertype [14]. We also have the 
notion of method families that represents the set of methods that share some 
characteristic (name, signature, return type, etc.). Other than these two modifications, 
our metamodeling language is  similar to UML’s metamodel. Our EMF™ 
implementation led us to make some adjustments, as we will see in section 4. 

3 Representing the Solution and the Transformation 

3.1 Representing the Solution 

We used the same principles to represent the solutions produced by design patterns. In 
this regard, our approach is not much different from metamodel-based representations 
of design patterns, including [15], [1], [17], and [8]. Figure 6 shows a model of the 
solution provided by the bridge pattern. 

Fig. 6. A metamodel of the solution embodied by the bridge pattern. 

The model is read as follows. We have a hierarchy of classes, representing 
abstractions (RootAbstraction and Abstraction), that delegates processing to another 
hierarchy of classes, representing implementations (RootImplementation and 
ConcreteImplementation). Note that we need to distinguish root classes from other 
classes in the tree, for both abstractions and implementations. Indeed, the root of the 
implementation hierarchy is an abstract class while its descendants are concrete 
classes that implement its interface. Interestingly, all of the classes of the abstraction 
hierarchy are concrete classes that delegate their processing to the corresponding 
methods on the implementation object. 
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Recall that, as was the case for the problem metamodel, the semantics of the 
classes Abstraction  and RootAbstraction are specific to the Bridge pattern, and we 
are free to give them the meaning we want. Further, we don’t have to use the same 
metaclasses that we used to describe the problem, since we will represent the 
transformation from problem to solution, explicitly. We discuss the representation of 
transformations in the next section. 

The representation of solution models requires additional constructs that are not 
needed for problem models. One such construct is the notion of constants or literals. 
We have no need for literals in the bridge pattern, since all the operations that appear 
on the solution side come from the problem. However, some design patterns introduce 
methods and attributes that are supposed to appear as-is in the transformed model. For 
example, the Observer/Observable pattern requires that observable objects implement 
pattern-specific operations (notify(…), among others). Our representation language 
accommodates the representation of literals. 

3.2 Representing the Mapping from Problems to Solutions 

Applying a design pattern consists of transforming an instance of the class of 
problems solved by the pattern, to an instance of the class of solutions. Accordingly, 
we can represent this transformation as a mapping from elements of the problem 
metamodel (Figure 5) to elements of the solution metamodel (Figure 6). To apply the 
transformation to a sample input model—an analysis or a design-level UML model—
we: 

1) first map the problem (meta)model to the input model, to identify those 
entities of the input model that match entities in the problem model, and 

2) second, produce the output model by transforming those so-matched 
entities (classes, associations, operations) according to the mapping, leaving 
the others unchanged. 

 
In essence, the first step identifies the entities in the input model that play the roles 

described by the entities of the problem model. This step is typically referred to as 
model marking, and the outcome is a marked (input) model. In the case of the bridge 
pattern, we need to identify, in the input model, those classes that play the role of 
Abstraction and Implementation. The so-marked classes will be transformed 
according to the mapping. 

Figure 7 shows a mapping metamodel, i.e. a model that represents mappings 
between problem models and solution models. A <problem model,solution model> 
mapping is represented by an instance of the class ModelMapping. For example, the 
mapping from the bridge problem model (Figure 5) to the bridge solution model 
(Figure 6) is represented by an instance of ModelMapping. An instance 
<model1,model2> of ModelMapping is an aggregation of, i) mappings between their 
classes (classes of model1 and classes of model2), and ii) mappings between their 
associations.  In turn, the mapping between two classes (an instance of 
ClassMapping) is an aggregation of, i) mappings between attributes (instances of 
AttributeMapping), and ii) mappings between operations (instances of 
OperationMapping).  And so forth. 
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Fig. 7. A model for representing mappings between problem models and solution models. 

All of the mapping classes inherit from ElementMapping. Each mapping has a 
source element, a destination element, and a description of how the source element is 
transformed into the destination element (attribute “transformation” of the class 
ElementMapping). The source and destination are instances of the class Element (with 
grey background), which represents MOF’s ModelElement. A mapping with no 
source element means an element that is added by the application of the pattern. A 
mapping with no destination element means an element that is removed by the 
application of the pattern. 

4 Implementation 

We have implemented our representation of design patterns, and the transformation 
procedure in the Eclipse™ environment using the Eclipse Modeling Framework™. 
EMF is a modeling framework that supports code generation and XMI-based 
persistence. EMF includes a package—called ECore—that provides a simplified 
implementation of MOF. Section 4.1 describes the implementation of the various 
metamodels (problems, solutions, and mappings). The transformation algorithm is 
described in section 4.2. 
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4.1 Common Metamodel for Problems and Solutions 

Figure 8 shows the common metamodel for representing problem models and solution 
models of design patterns. Initially, we planned to represent this metamodel as an 
instance of EMF’s ECore package. This model would then be instantiated to describe 
problem models and solution models for specific patterns. Those models would, in 
turn, be instantiated to represent specific application models. Developers, working in 
the Eclipse environment with the EMF plug-in, would then load representations of 
various patterns (problem models, solution models, and mappings) from secondary 
storage, and apply them to the application models they are working on. However, 
EMF’s built-in serialization mechanism supports the XMI serialization of only those 
models that have ECore (or an extension thereof) as a metamodel. Accordingly, 
instead of defining our pattern metamodel as an instance of ECore, we implemented it 
using an extension of ECore classes. Figure 8 shows the metamodel, which we will 
comment briefly. The ECore classes correspond closely to MOF entities (and to 
UML’s meta-meta-model), and are greyed out. 

First, in order to define a new metamodel, and thus, a new type of models, we have 
to define a subclass of EPackage, and register the new metaclasses within this 
subclass. In our case, this subclass is called ModelPackage. Figure 8 shows a class 
ModelClass, that extends the ECore class, EClass. ModelClass represents all the 
classes that appear within problem models or solution models. In our bridge example, 
the classes Abstraction and Implementation, from the problem model, and 
RootAbstraction, Abstraction, RootImplementation, and Concrete-Implementation, 
from the solution model, are all instances of ModelClass. 

The class ModelOperation is used to represent all kinds of operations, be they 
virtual (abstract), concrete, or literal. Two boolean instance variables are used to 
distinguish between the various types: «abstract » and « literal ». Note also that we 
extended the ECore class EReference by our own ModelReference class in order to : 
1) be able to represent inheritance relationships at the meta level (SubtypeReference), 
and 2) to represent the time variability of the cardinality, i.e. the so-called time 
hotspots (symbol ++ used in Figure 5). 

4.2 Implementing the Transformation 

We implemented model mappings in a similar fashion to problem and solution 
models : by extending ECore classes. As for the transformation algorithm itself, it 
takes three inputs: 

1) the input model that we wish to transform, with properly marked entities 
2) the mapping between the problem model and the solution model, and 
3) the solution model 
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Fig. 8. Implementing the metamodel for pattern problem models and solution models in EMF. 

The transformation engine uses a recursive algorithm, starting with aggregate, 
maps it to an empty aggregate on the destination side, and then recursively maps its 
components. For example, starting at the highest level, given the marked input model, 
we first generate an empty destination model, and then transform the classes in the 
input model, putting their transforms in the destination model. The same is true with 
classes, where we first generate en empty class, and then map its attributes and 
operations.  

Notice that the same <problem --> solution> mapping may be applied to several 
entities in the input model. In the bridge pattern, for example, the mapping 
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<Implementation --> ConcreteImplementation> will be applied to all the classes in the 
input model that have been marked by the Implementation tag.  

5 Discussion 

5.1 Related Work 

Ever since the publication of the GOF patterns, the representation and application of 
design patterns has received a lot of attention. Several approaches have been 
proposed, depending, in part, on the way design patterns are used. In the so-called 
top-down approach [6], developers instantiate a design pattern by specifying its 
components, as in [15] [6] [5] [1] [11] [8]; Budinsky et al.’s work on code generation 
by pattern instantiation may be seen as a special case [4]. The bottom-up approach 
consists of identifying perfect instances (hits) or imperfect ones (near hits) of specific 
design patterns, as in [5] [1], [10]. A hybrid approach attempts to re-engineer existing 
models to make them conform to a specific design pattern, as in [2] [5] [18]. Clearly, 
each one of these three usages has its own representational requirements. 

Those approaches that set out to provide an explicit representation of design 
patterns were limited to the structural aspects (object model). Some approaches used 
meta-models to represent design patterns, while others simply offered a set of models, 
with no concern for a common, pattern-specific metamodel. In either case, the 
representation focused on the description of the solution : what the instantiated pattern 
will look like. This was the case for most of the top-down, forward-engineering 
approaches, which used design patterns as design templates that needed to be 
instantiated. However, we know of no approach that attempted to represent the 
problem; the work of Budinsky et al. may be the exception that confirms the rule [4]: 
the problem was described using natural language, according to the GOF pattern 
documentation template [9], but that description didn’t lend itself to formal 
processing. To the best of our knowledge, our work is the only one that attempts to 
represent the problem explicitly. Such a representation enables us to formally 
characterize those situations where the pattern is appropriate. Such a representation 
would also enable us to specify the transformations that are embodied in the pattern. 
The time variability aspect—what we called time hotspots—is also unique to our 
approach, and we consider it to be a central aspect of the design problem solved by 
the design pattern.  

With regard to the transformations, only those approaches that focussed on re-
engineering existing models with patterns did provide an explicit  representation for  
the transformation [2],[18],[19]. However, in such cases, the structure of the pattern 
itself is not explicit: it is embodied in the transformation. In our case, both the 
structure of the pattern, and the transformation embodied in its application, are 
represented explicitly. Further, the transformation is specified declaratively, making it 
possible to develop a generic, pattern-independent transformation engine (see section 
4.2) that takes a marked input model, a pattern mapping model, and a pattern solution 
model, and produces a properly transformed output model. 
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5.2 Problem Model Semantics and Marking 

In our current implementation, the entities that belong to problem models or solution 
models (e.g. Abstraction, Implementation) have no proper semantics. The only 
semantic constraints are inherent in their type (whether the entities represent a class or 
an operation) or in the relationships they have to other entities within a given problem 
(or solution) model. For example, if we look at the bridge problem model, we only 
know that Abstraction’s have AbstractOperation’s, and that Implementation’s have 
ConcreteOperations, but we don’t know what either concept means, beyond the fact 
that Abstraction and Implementation are classes, and AbstractOperation and 
ConcreteOperations are operations. 

One way of capturing the semantics of these entities is to provide membership 
predicates for them that test a subset of the properties that are typically represented in 
input models, either directly—stored properties, such as the scope of a feature 
(instance versus class)—or implicitly –computed, such as the number of associated 
entities of a particular type. For example, we would define AbstractOperation as an 
operation that is, well, abstract, which is a property that is captured by the EMF 
metamodel—the class EOperation has such an attribute. Similary,  Abstraction can be 
defined as a class whose methods are all abstract. Clearly, such a definition is useful 
in many patterns, and may be included in a library of such (meta)modeling concepts 
that are shared between several patterns. Pattern writers and documenters would have 
the option of using such concepts as is, extending them, or composing them—through 
mutiple inheritance. 

We considered many languages for expressing membership predicates, including 
OCL, the early drafts of the (upcoming?) QVT standard (Query, View, 
Transformation), and a number of object-rule languages (e.g. JESS, ILOG JRules, 
OPSJ). We chose object-rule languages (and JRules in particular), because of their 
expressive power and because of the availability of mature, high performance tools 
for interpreting rules on Java objects. The following two rules, used to illustrate the 
syntax, show two ways of identifying abstract classes. We assume in this case that the 
class Abstraction is stored in a static member of our metaclass ModelClass, with the 
name ABSTRACTION. 

rule mark_abstract_classes { 
when { 
 ?aClass: EClass (isAbstract()); 
} then { 
 modify ?aClass {tag = ModelClass.ABSTRACTION;} 

} 
} 
rule mark_abstract_classes_from_operations { 
when { 
 ?aClass: EClass(); 

not EOperation(isConcrete()) in ?aClass.getEOperations(); 
} then { 

modify ?aClass {tag = ModelClass.ABSTRACTION;} 
} 

} 
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The first rule uses a simple test : the result of (actual) boolean method “boolean 
isAbstract()” on EClass.  The second rule matches any EClass (any class in an input 
model) such that none of its operations are concrete3, and marks it as an abstract class. 
Thanks to rule chaining, we could have tags that depend on complex patterns being 
built up incrementally, starting with simpler patterns. In fact, the entire problem 
model itself can be written as one (or several alternate) rule(s) that use pre-assigned 
tags [12]. 

 There remains one aspect that membership predicates cannot capture: the probable 
evolution scenarios of the input model, which would make a design pattern a 
desirable alternative. This information is dynamic and will not be implicit in the input 
object model, which provides only a snapshot of the target application at the present 
time. There are two possible strategies for capturing this information. First, we make 
it a property that designers or analysts will have to enter before they can submit their 
models for marking. Experienced analysts and designers, with some knowledge of the 
application domain (e.g. a product line) will know this information but, conceivably, 
our tool can prompt analysts or designers for potential “time hotspots”—themselves 
following specific patterns. Second, we can look at consecutive versions of the same 
software to determine which parts have evolved and how, and use that information to 
identify the time hotspots. This second approach requires no judgement, but will only 
work for long-lived software whose source code, throughout several versions, is 
available. 

6 Conclusion 

Our work deals with providing developers with a repository of reusable model-based 
artifacts, and with the tools needed to assist them in using those artifacts. Developing 
with reuse involves three main tasks, 1) evaluating the opportunity of using an artifact 
for the problem at hand, 2) understanding that artifact, and 3) integrating the 
artifact—typically through model transformation—in the system at hand [13]. In this 
paper, we dealt specifically with the issue of representing and applying/enacting 
design patterns. Our approach relies on an explicit and precise description of the 
design problem solved by a given pattern. This description, provided in the form of a 
meta-model, supports the three reuse tasks. 

Our approach is generic and consistent with model-driven engineering. 
Recognizing the opportunity for reusing a design artifact—design pattern in this 
case—remains a big challenge, similar to model marking in the context of MDA. One 
reason is that design problems come from non-functional requirements, which are 
usually not explicitly represented (or representable with available notations) in 
software models. To some extent, design patterns are point solutions, or 
implementations, for a general design requirement: provide model resilience through 
functional requirements change. Specifically, each design pattern addresses the 
general design requirement for a specific functional pattern, which can be 
characterized as the combination of a static structure, and an evolution pattern. To this 

                                                           
3 There is no such method on org.eclipse.emf.ecore.EOperation. This is shown for illustration 

purposes only. 
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extent, we believe that our representation of design problems, which captures both the 
static structure of a functional pattern, and its evolution patterns, is a step in the right 
direction. 
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