
Dynamic Secure Aspect Modeling with UML:

From Models to Code

Jan Jürjens1� and Siv Hilde Houmb2

1 Software & Systems Engineering, Dep. of Informatics, TU Munich, Germany
http://www4.in.tum.de/̃ juerjens

2 Department of Computer and Information Science,
Norwegian University of Science and Technology, Norway

siv.hilde.houmb@idi.ntnu.no

Abstract. Security engineering deals with modeling, analysis, and im-
plementation of complex security mechanisms. The dynamic nature of
such mechanisms makes it difficult to anticipate undesirable emergent
behavior. In this work, we propose an approach to develop and analyze
security-critical specifications and implementations using aspect-oriented
modeling. Since we focus on the dynamic views of a system, our work
is complementary to existing approaches to security aspects mostly con-
cerned with static views. Our approach includes a link to implementa-
tions in so far as the code which is constructed from the models can
be analyzed automatically for satisfaction of the security requirements
stated in the UML diagrams. We present tool support for our approach.

1 Introduction

Constructing security-critical systems in a sound and well-founded way poses
high challenges. To support this task, we propose an Aspect-Oriented Modeling
(AOM, see e.g. [EAK+01, EAB02, FRGG04, LB04]) approach which separates
complex security mechanisms (which implement the security aspect model) from
the core functionality of the system (the primary model) in order to allow a
security verification of the particularly security-critical parts, and also of the
composed model.

Since security requirements such as secrecy, integrity and authenticity of data
are always relative to an unpredictable adversary, they are difficult to even define
precisely, let alone to implement correctly within the development of security-
critical systems. Being able to consider security aspects already in the design
phase, before a system is actually implemented, is advantageous: Removing se-
curity flaws in the design phase saves cost and time. Thus, the goal is to develop
security-critical systems that are secure by design. Towards this goal, the security
extension UMLsec for the Unified Modeling Language (UML) has been defined

� This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project
under grant 01 IS C38. The responsibility for this article lies with the author(s).

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 142–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www4.in.tum.de/$mathaccent "707E
elax { }$juerjens

Dynamic Secure Aspect Modeling with UML: From Models to Code 143

in [Jür02, Jür04a]. It allows us to encapsulate knowledge on prudent security en-
gineering as aspects and thereby make it available to developers which may not
be specialized in security. In the current work, we present an approach which lets
one weave in the security aspects specified as UMLsec stereotypes (such as se-
crecy) as concrete security mechanisms (such as a cryptographic protocol) on the
modeling level. We demonstrate how to check whether the code which is meant
to implement the models fulfills the security requirements by security verifica-
tion with automated theorem provers (ATPs) for first-order logic. To support
our approach, a tool is available over a web-interface and as open-source which,
from control flow graphs generated from the source code and corresponding se-
curity requirements, automatically generates FOL logic formulas in the standard
TPTP notation as input to a variety of ATP’s [Jür04b].

In the next section, we give a short background on aspect-oriented modeling.
In Sect. 3, we explain how one can specify security aspects in UMLsec models
and how these are woven into the primary model using our approach. Section 4
explains our code analysis framework. Throughout the paper we demonstrate
our approach using a variant of the Internet protocol Transport Layer Security
(TLS). In Sect. 5, we report on experiences from using our approach in an in-
dustrial setting. After comparing our research with related work, we close with
a discussion and an outlook on ongoing research.

2 Aspect-Oriented Modeling (AOM)

AOM techniques allow system developers to address crosscutting objectives, such
as security requirements, separately from the core functional requirements dur-
ing system design. An aspect-oriented design model consists of a set of aspects
and a primary model. An aspect describes how a single objective is addressed
in a design, and a primary model describes how core functional requirements
are addressed. The aspects and the primary model are then composed before
implementation or code generation. This is done by weaving the aspect and the
primary model at the modeling level.

As illustrated in Fig. 1, aspect models consist of models describing the static
and dynamic views. After weaving the security aspect with the primary model,
our approach allows one to perform a security verification on the composed
model. From the composed model, the code is constructed (either manually or
by automatic generation). If one later performs changes in the code, as often
necessary in industrial development, the primary and aspect models cannot be
directly extracted from the code any more. Thus changes in the code cannot in
general be un-weaved at the model level. Therefore, our approach furthermore
allows us to directly verify the code constructed from the UML model and to
make sure that, after the necessary manual adjustments, the code is still secure.

144 Jan Jürjens and Siv Hilde Houmb

Fig. 1. Overview of the AOM approach for dynamic security aspects

3 Introducing Dynamic Security Aspects

3.1 Specifying Security Aspects

We can only shortly recall part of the UMLsec notation here for space reasons. A
complete account can be found in [Jür02, Jür04a]. In Table 1 we give some of the
stereotypes from UMLsec and in Table 2 the associated tags and corresponding
adversary threats. The constraints connected to the stereotypes are formalized
in first-order logic and can be verified by an automated first-order logic theorem
prover, which is part of our UML analysis tool suite.

Stereotype Base Class Tags Constraints Description

Internet link Internet connection
encrypted link encrypted connection
LAN link LAN connection
secure links subsystem dependency security enforces secure

matched by links communication links
secrecy dependency assumes secrecy
secure subsystem 〈〈 call 〉〉, 〈〈 send 〉〉 respect structural interaction
dependency data security data security
critical object secret critical object
no down-flow subsystem prevents down-flow information flow
data subsystem provides secrecy basic datasec
security requirements
fair exchange package start,stop after start enforce fair

eventually reach stop exchange

Table 1. UMLsec stereotypes (excerpt)

Dynamic Secure Aspect Modeling with UML: From Models to Code 145

The general system model used here is the one that builds the foundation
for a semantics for part of UML currently in development in a project with IBM
Rational Software [BJCR05].

The primary model is a set of UML models and the dynamic aspect are
weaved in by including the stereotypes defined above.

3.2 Weaving in Dynamic Security Aspects

Aspects encapsulate properties (often non-functional ones) which crosscut a sys-
tem, and we use transformations of UML models to “weave in” dynamic security
aspects on the model level. The resulting UML models can be analyzed as to
whether they actually satisfy the desired security requirements using automated
tools [Jür05]. Secondly, one should make sure that the code constructed from
the models (either manually or by code generation) still satisfies the security
requirements shown on the model level. This is highly non-trivial, for example
because different aspects may be woven into the same system which may inter-
fere on the code level in an unforeseen way. To achieve it, one has in principle
two options: One can either again verify the generated code against the desired
security requirements, or one can prove that the code generation preserves the
security requirements fulfilled on the model level. Although the second option
would be conceptually more satisfying, a formal verification of a code generator
of industrially relevant strength seems to be infeasible for the foreseeable future.
Also, in many cases, completely automated code generation may not be practical
anyway. We therefore followed the first option and extended our UML security
analysis techniques from [Jür04b] to the code level (presently C code, while the
analysis of Java code is in development). The analysis approach now takes the
generated code and automatically verifies it against the intended security re-
quirement, which has been woven in as dynamic aspects. This is explained in
Sect. 4. This verification thus amounts to a translation validation of the weaving
and code construction process. Note that performing the analysis both at the
model and the code level is not overly redundant: the security analysis on the
model level has the advantage that problem found can be corrected earlier when
this requires less effort, and the security analysis on the code level is still nec-
essary as argued above. Also, in practice generated code is very rarely be used
without any changes, which again requires verification on the code level.

The model transformation resulting from the “weaving in” of a dynamic
security aspect p corresponds to a function fp which takes a UML specification

Tag Stereotype Type Multipl. Description

secret critical String * secret data
start fair exchange P(String) 1 start states
stop fair exchange P(String) 1 stop states

Stereotype Threatsdefault ()

Internet {delete,read,insert}
encrypted {delete}
LAN ∅

Table 2. UMLsec tags (excerpt); Threats from the default attacker

146 Jan Jürjens and Siv Hilde Houmb

S and returns a UML specification, namely the one obtained when applying p
to S. Technically, such a function can be presented by defining how it should
act on certain subsystem instances3, and by extending it to all possible UML
specifications in a compositional way. Suppose that we have a set S of subsystem
instances such that none of the subsystem instances in S is contained in any other
subsystem instance in S. Suppose that for every subsystem instance S ∈ S we
are given a subsystem instance fp(S). Then for any UML specification U , we
can define fp(U) by substituting each occurrence of a subsystem instance S ∈ S
in U by fp(S). We demonstrate this by an example.

We consider the data secrecy aspect in the situation of communication over
untrusted networks, as specified in Fig. 2. In the subsystem, the Sender object
is supposed to accept a value in the variable d as an argument of the operation
send and send it over the 〈〈 encrypted 〉〉 Internet link to the Receiver object, which
delivers the value as a return value of the operation receive. According to the
stereotype 〈〈 critical 〉〉 and the associated tag {secrecy}, the subsystem is supposed
to preserve the secrecy of the variable d.

A well-known implementation of this aspect is to encrypt the traffic over
the untrusted link using a key exchange protocol. As an example, we consider
a simplified variant of the handshake protocol of the Internet protocol TLS in
Fig. 4. The notation for the cryptographic algorithms is defined in Fig. 3.

The goal of the protocol is to let a sender send a secret over an un-
trusted communication link to a receiver in a way that provides secrecy, by
using symmetric session keys.4 The sender S initiates the protocol by sending
the message request(N, KS,SignK−1

S
(S :: KS)) to the receiver R. If the condition

[snd(ExtK′(cS))=K′] holds, where K ′ and cS are the second and third arguments
of the message received earlier (that is, if the key KS contained in the signa-
ture matches the one transmitted in the clear), R sends the return message
return

({SignK−1
R

(K :: N′)}K′ ,SignK−1
CA

(R :: KR)
)

back to S (where N′ is the first
argument of the message received earlier). Then if the condition

[fst(ExtKCA
(cR))=R ∧ snd(ExtK′′(DecK−1

S
(ck)))=N]

holds, where cR and ck are the two arguments of the message received by
the sender, and K′′ ::= snd(ExtKCA

(cR)) (that is, the certificate is actually for
R and the correct nonce is returned), S sends transmit({d}k) to R, where
k ::= fst(ExtK′′(DecK−1

S
(ck))). If any of the checks fail, the respective protocol

participant stops the execution of the protocol.
Note that the receiver sends two return messages - the first matches the

return trigger at the sender, the other is the return message for the receive
message with which the receiver object was called by the receiving application
at the receiver node.
3 Although one could also define this on the type level, we prefer to remain on the

instance level, since having access to instances gives us more fine-grained control.
4 Note that in this simplified example, which should mainly demonstrate the idea of

dynamic security aspect weaving, authentication is out of scope of our considerations.

Dynamic Secure Aspect Modeling with UML: From Models to Code 147

send(d)

/transmit(d)

s:
Wait Send

receive()
/return(d’)

transmit(d’)r:
Wait Received

«Interface»

send(d:Data)

R:Receiver

send(d:Data)

«Interface»
receiving

receive():Data

transmit(d’:Data)
receive():Data

«send»S:Sender

sending

{secrecy={d}}
«critical»

Receivercomp

Sendernode Receivernode

Sendercomp

S:Sender R:Receiver

«LAN»«LAN»

«Internet»

«send»

«secrecy»

receive():Data

Channel «data security»

send(d:Data)

{adversary=default}

Fig. 2. Aspect weaving example: sender and receiver

• :: (concatenation)
• head() and tail() (head and tail of a concatenation)
• { } (encryption)
• Dec () (decryption)
• Sign () (signing)
• Ext () (extracting from signature)

Fig. 3. Abstract Crypto Operations

To weave in this aspect p in a formal way, we consider the set S of subsystems
derived from the subsystem in Fig. 2 by renaming: This means, we substitute
any message, data, state, subsystem instance, node, or component name n by
a name m at each occurrence, in a way such that name clashes are avoided.
Then fp maps any subsystem instance S ∈ S to the subsystem instance derived
from that given in Fig. 4 by the same renaming. This gives us a presentation of

148 Jan Jürjens and Siv Hilde Houmb

«send»

«call»
receive():Data
transmit(e:Data)
request():Exp

send(d:Data)

s:
r:

R:Receiver

sending
«Interface»

receiving
«Interface»

Received

WaitTrm

Send

Request

«critical»
«critical»

{secrecy={d}}
S:Sender

transmit(E)

send(d)

receive()

WaitReq

Wait

receive():Datasend(d:Data)

K′′ ::=snd(ExtKCA
(cR))

k ::= fst(ExtK′′(Dec
K−1

S
(ck)))

/return
�
{Sign

K−1
R

(K ::N′)}K′ ,Sign
K−1

CA
(R ::KR) �

/request(N, KS,Sign
K−1

S
(S ::KS)) [snd(ExtK′(cS)) = K′]

/return(E)

return(ck, cR)

request(N′, K′, cS)

[fst(ExtKCA
(cR)) = R∧

snd(ExtK′′(Dec
K−1

S
(ck))) = N]

/transmit({d}k)

K−1
S ,KS,KCA :Keys

K−1
R ,KR :Keys

{fresh={k }}

Fig. 4. Aspect weaving example: secure channel

fp from which the definition of fp on any UML specification can be derived as
indicated above.

One can do the weaving by defining the transformation explained above using
the model transformation framework BOTL developed at our group [BM03]. The
overall tool-suite supporting our aspect-oriented modeling approach is given in
Fig. 5. The tool-flow proceeds as follows. The developer creates a primary UML
model and stores it in the XMI file format. The static checker checks that the
security aspects formulated in the static views of the model are consistent. The
dynamic checker weaves in the security aspects with the dynamic model. One
can then verify the resulting UML model against the security requirements using
the analysis engine (an automated theorem prover for first-order logic). One then
constructs the code and also verify it against the security requirements using the
theorem prover. The error analyzer uses the information received from the static
and dynamic checkers to produce a text report for the developer describing
the problems found, and a modified UML model, where the errors found are
visualized.

4 Analyzing the Code

We define the translation of security protocol implementations to first-order logic
formulas which allows automated analysis of the source code using automated
first-order logic theorem provers. The source code is extracted as a control flow

Dynamic Secure Aspect Modeling with UML: From Models to Code 149

UML Editor
(UML 1.5 / XMI 1.2 - compliant)

e.g. Poseidon 1.6

UML Model
(UML 1.5 /
XMI 1.2)

Analysis engine
MDR

JMI

Model
and

Desired
properties

Result

Text Report

Static Checker

Dynamic Checker

Analysis Suite

Modified
UML
Model

Error Analyzer

“uses"

data flow

Fig. 5. UML verification framework: usage

graph using the aiCall tool [Abs04]. It is compiled to first-order logic axioms
giving an abstract interpretation of the system behavior suitable for security
analysis following the well-known Dolev-Yao adversary model [DY83]. The idea is
that an adversary can read messages sent over the network and collect them in his
knowledge set. He can merge and extract messages in the knowledge set and can
delete or insert messages on the communication links. The security requirements
are formalized with respect to this adversary model. For example, a data value
remains secret from the adversary if it never appears in the knowledge set of
the adversary. As with similar approaches such as [SFWW03], our approach
works especially well with nicely structured code. For example, we apply an
automated transformation which abstracts from pointers before applying our
security analysis.

We explain the transformation from the control flow graph generated from
the C program to first-order logic, which is given as input to the automated

150 Jan Jürjens and Siv Hilde Houmb

theorem prover. For space restrictions, we restrict our explanation to the analysis
for secrecy of data. The idea here is to use a predicate knows which defines
a bound on the knowledge an adversary may obtain by reading, deleting and
inserting messages on vulnerable communication lines (such as the Internet) in
interaction with the protocol participants. Precisely, knows(E) means that the
adversary may get to know E during the execution of the protocol. For any data
value s supposed to remain confidential, one thus has to check whether one can
derive knows(s).

From a logical point of view, this means that one considers a term algebra
generated from ground data such as variables, keys, nonces and other data using
symbolic operations including the ones in Fig. 3. In that term algebra, one defines
the equations DecK−1({E}K) = E and ExtK(SignK−1(E)) = E (for all E ∈ Exp
and K ∈ Keys) and the usual laws regarding concatenation, head(), and tail().
This abstract information is automatically generated from the concrete source
code.

The set of predicates defined to hold for a given program is defined as fol-
lows. For each publicly known expression E, the statement knows(E) is derived.
To model the fact that the adversary may enlarge his set of knowledge by con-
structing new expressions from the ones he knows, including the use of crypto-
graphic operations, formulas are generated which axiomatize these operations.

We now define how a control flow graph generated from a C program
gives rise to a logical formula characterizing the interaction between the
adversary and the protocol participants. We observe that the graph can
be transformed to consist of transitions of the form trans(state, inpattern,
condition, action, truestate), where inpattern is empty and condition equals true
where they are not needed, and where action is a logical expression of the form
localvar = value resp. outpattern in case of a local assignment resp. output com-
mand (and leaving it empty if not needed). If needed, there may be additionally
another transition corresponding to the negation of the given condition, where
we safely abstract from the negated condition (for logical reasons beyond this
exposition).

Now assume that the source code gives rise to a transition TR1 =
trans(s1, i1, c1, a1, t1) such that there is a second transition TR2 =
trans(s2, i2, c2, a2, t2) where s2 = t1. If there is no such transition TR2,
we define TR2 = trans(t1, [], true, [], t1) to simplify our presentation, where
[] is the empty input or output pattern. Suppose that c1 is of the form
cond(arg1, . . . , argn). For i1, we define ī1 = knows(i1) in case i1 is non-
empty and otherwise ī1 = true. For a1, we define ā1 = a1 in case a1
is of the form localvar = value and ā1 = knows(outpattern) in case a1 =
outpattern (and ā1 = true in case a1 is empty). Then for TR1 we define the
following predicate:

PRED(TR1)≡ ī1&c1 ⇒ā1&PRED(TR2) (1)

The formula formalizes the fact that, if the adversary knows an expression he
can assign to the variable i1 such that the condition c1 holds, then this implies

Dynamic Secure Aspect Modeling with UML: From Models to Code 151

void TLS_Client (char* secret)

{ char Resp_1 [MSG_MAXLEN];

char Resp_2 [MSG_MAXLEN];

// allocate and prepare buffers

memset (Resp1, 0x00, MSG_MAXLEN);

memset (Resp2, 0x00, MSG_MAXLEN);

// C->S: Init

send (n, k_c, sign(conc(c, k_c), inv(k_c)));

// S->C: Receive Server’s respond

recv (Resp_1, Resp_2);

// Check Guards

if ((memcmp(fst(ext(Resp_2, k_ca)), s, MSG_MAXLEN) == 0) &&

(memcmp(snd(ext(dec(Resp_1, inv(k_c)),

snd(ext(Resp_2, k_ca)))), n, MSG_MAXLEN) == 0))

{ // C->S: Send Secret

send (symenc(secret, fst(ext(dec(Resp_1,

inv(k_c)), snd(ext(Resp_2, k_ca)))))); }}

Fig. 6. Fragment of abstracted client code

that ā1 will hold according to the protocol, which means that either the equation
localvar = value holds in case of an assignment, or the adversary gets to know
outpattern, in case it is send out in a1. Also then the predicate for the succeeding
transition TR2 will hold.

To construct the recursive definition above, we assume that the control flow
graph is finite and cycle-free. As usual in static code analysis, loops are unfolded
over a number of iterations provided by the user. The predicates PRED(TR) for
all such transitions TR are then joined together using logical conjunctions and
closed by forall-quantification over all free variables contained.

Figure 6 gives a simplified C implementation of the client side of the TLS
variant considered earlier. From this, the control flow graph is generated auto-
matically. Although the complete graph cannot be shown here, we show as an
example a fragment of the client side in Fig. 7. The main part of the transfor-
mation of the client to the e-SETHEO input format TPTP is given in Fig. 8.
We use the TPTP notation for the first-order logic formulas [SS01], which is
the input notation for many automated theorem provers including the one we
use (e-SETHEO [SW00]). Here & means logical conjunction and ![E1, E2] forall-
quantification over E1, E2. The protocol itself is expressed by a for-all quantifi-
cation over the variables which store the message arguments received.

Given this translation of the C code to first-order logic, one can now check
using the automated theorem prover that the code constructed from the UMLsec
aspect model still satisfies the desired security requirements. For example, if the
prover can derive knows(secret) from the formulas generated by the protocol, the
adversary may potentially get to know secret. Details on how to perform this
analysis given the first-order logic formula are explained in [Jür05].

152 Jan Jürjens and Siv Hilde Houmb

Fig. 7. Control graph for client

input_formula(protocol,axiom,(

![Resp_1, Resp_2] : (((knows(conc(n, conc(k_c,sign(conc(c,conc(k_c,eol)),inv(k_c)))))

& ((knows(Resp_1) & knows(Resp_2)

& equal(fst(ext(Resp_2,k_ca)),s)

& equal(snd(ext(dec(Resp_1,inv(k_c)),snd(ext(Resp_2,k_ca)))),n))

=> knows(enc(secret,fst(ext(dec(Resp_1,inv(k_c)),snd(ext(Resp_2,k_ca)))))))))).

Fig. 8. Core protocol axiom for client

5 Industrial Application

We are currently applying our method in an industrial project with a major
German company. The goal is the correct development of a security-critical bio-
metric authentication system which is supposed to control access to a protected
resource. Because the correct design of such cryptographic protocols and the cor-
rect use within the surrounding system is very difficult, our method was chosen
to support the development of the biometric authentication system. Our ap-
proach has already been applied at the specification level [Jür05] where several

Dynamic Secure Aspect Modeling with UML: From Models to Code 153

severe security flaws had been found. We are currently applying the approach
presented here to the source-code level for a prototypical implementation we
constructed from the specification. The security analaysis results achieved so
far are obtained with the automated theorem prover within less than a minute
computing time on an AMD Athlon processor with 1533 MHz. tact frequency
and 1024 MB RAM.

6 Related Work

In [FKGS04, FRGG04], aspect models are used to describe crosscutting solutions
that address quality or non-functional concerns on the model level. A rigorous
technique for specifying pattern solutions in UML is described. It is explained
how to identify and compose multiple concerns, such as security and fault tol-
erance, and how to identify and solve conflicts between competing concerns.
[GS04] proposes an approach which models application requirements and de-
signs separately from security requirements and designs in the UML notation.
Security requirements are captured in security use cases and encapsulated in
security objects separately from the application requirements and objects. One
of the benefits of aspect-oriented approaches is reuse of models or patterns and
code. [EAK+01] discusses an approach to enhance reuse of code for requirements
such as synchronization and scheduling. The authors present a formal design
methodology to model the system’s concerns based on aspect-orientation. As-
pects of AOP are discussed more generally in [EAB02]. [LB04] focuses on the
importance of subsystem (pattern) reusability. They propose an Aspect-Oriented
Development Framework (AODF) where functional behaviors are encapsulated
in each component and connector, while non-functional requirements are tuned
separately. To support the modularity of non-functional requirements, they de-
vise Aspectual Composition Rules (ACR) and Aspectual Collaborative Com-
position Rules (ACCR). Related to the source-code analysis side of our work,
[MSRM04] addresses the problem of concept location using an advanced infor-
mation retrieval method, Latent Semantic, that supports software maintenance
and reverse engineering of source code.

Note that although dynamic aspects have been one major focus of aspect-
oriented approaches in general, in the case of security, most approaches so far
have not concentrated on an integrated approach for weaving in dynamic security
aspects at the design level and for constructing and analyzing the code.

7 Conclusion

We explained how to develop and analyze specifications and implementations
wrt. dynamic security aspects using aspect-oriented modeling. The approach
separates complex security mechanisms from the core functionality to allow a
security analysis and verification of the particularly security-critical parts and
also of the composed model. Being able to consider security aspects already
in the design phase (before a system is actually implemented) is advantageous,

154 Jan Jürjens and Siv Hilde Houmb

since removing security flaws in the design phase saves cost and time. In practice
usually at least part of the code construction is still done manually and is thus
again prone to security flaws. We therefore extended our approach to be able to
check whether code obtained in the end actually fulfills the security requirements,
using an automated security analysis with first-order logic theorem provers.

Experiences from the industrial application project mentioned in
Sect. 5 indicate that our approach is quite suited to increase the security of
systems developed in practice (exemplified also by the number of security flaws
found and removed so far).

Since we focus on the dynamic views of a system, our work is complementary
to existing approaches mostly concerned with static views. For future work, it
would therefore be very interesting to try to integrate these approaches with the
one proposed here. Note that although we concentrate on security aspects in this
paper, which pose specific challenges (such as the correct use of cryptographic
operations), our approach can be generalized to other non-functional aspects
such as dependability by using a suitable extension of UML (see e.g. [Jür03]).

Acknowledgements Assistance from Mark Yampolskiy on the material for the
example in this paper is very gratefully acknowledged.

References

[Abs04] AbsInt. aicall. http://www.aicall.de/, 2004.
[BJCR05] M. Broy, J. Jürjens, V. Cengarle, and B. Rumpe. Towards a system model

for UML. Technical report, TU Munich, 2005.
[BM03] P. Braun and F. Marschall. The BOTL tool.

http://www4.in.tum.de/̃ marschal/botl/index.htm, 2003.
[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans-

actions on Information Theory, IT-29(2):198–208, 1983.
[EAB02] T. Elrad, O. Aldawud, and A. Bader. Aspect-oriented modeling: Bridging the

gap between implementation and design. In Don S. Batory, Charles Consel,
and Walid Taha, editors, GPCE, volume 2487 of Lecture Notes in Computer
Science, pages 189–201. Springer, 2002.

[EAK+01] T. Elrad, M. Aksit, G. Kiczales, K.J. Lieberherr, and H. Ossher. Discussing
aspects of AOP. Commun. ACM, 44(10):33–38, 2001.

[FKGS04] R.B. France, D. Kim, S. Ghosh, and E. Song. A UML-based pattern speci-
fication technique. IEEE Trans. Software Eng., 30(3):193–206, 2004.

[FRGG04] R.B. France, I. Ray, G. Georg, and S. Ghosh. Aspect-oriented approach to
early design modelling. IEE Proceedings - Software, 151(4):173–186, 2004.

[GS04] H. Gomaa and M.E. Shin. Modeling complex systems by separating applica-
tion and security concerns. In ICECCS, pages 19–28. IEEE Computer Society,
2004.

[Jür02] J. Jürjens. UMLsec: Extending UML for secure systems development. In
J.-M. Jézéquel, H. Hußmann, and S. Cook, editors, UML 2002 – The Unified
Modeling Language, volume 2460 of LNCS, pages 412–425. Springer, 2002.

[Jür03] J. Jürjens. Developing safety-critical systems with UML. In P. Stevens, editor,
The Unified Modeling Language (UML 2003), volume 2863 of LNCS, pages
360–372. Springer, 2003.

Dynamic Secure Aspect Modeling with UML: From Models to Code 155

[Jür04a] J. Jürjens. Secure Systems Development with UML. Springer, 2004.
[Jür04b] J. Jürjens. Security analysis tool (webinterface and download), 2004.

http://www4.in.tum.de/csduml/interface.
[Jür05] J. Jürjens. Sound methods and effective tools for model-based security engi-

neering with UML. In 27th International Conference on Software Engineering
(ICSE 2005). IEEE Computer Society, 2005.

[LB04] J.-S. Lee and D.-H. Bae. An aspect-oriented framework for developing
component-based software with the collaboration-based architectural style.
Information & Software Technology, 46(2):81–97, 2004.

[MSRM04] A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maletic. An information
retrieval approach to concept location in source code. In WCRE, pages 214–
223. IEEE Computer Society, 2004.

[SFWW03] J. Schumann, B. Fischer, M.W. Whalen, and J. Whittle. Certification
support for automatically generated programs. In HICSS, page 337, 2003.

[SS01] G. Sutcliffe and C. Suttner. The TPTP problem library for automated theo-
rem proving, 2001. Available at http://www.tptp.org.

[SW00] G. Stenz and A. Wolf. E-SETHEO: An automated3 theorem prover. In
R. Dyckhoff, editor, TABLEAUX 2000, volume 1847 of LNCS, pages 436–
440. Springer, 2000.

http://www4.in.tum.de/csduml/interface
http://www.tptp.org

	Introduction
	Aspect-Oriented Modeling (AOM)
	Introducing Dynamic Security Aspects
	Analyzing the Code
	Industrial Application
	Related Work
	Conclusion

