

Lecture Notes in Computer Science 3713
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lionel Briand Clay Williams (Eds.)

Model Driven
Engineering Languages
and Systems

8th International Conference, MoDELS 2005
Montego Bay, Jamaica, October 2-7, 2005
Proceedings

13

Volume Editors

Lionel Briand
Carleton University
Department of Systems and Computer Engineering
1125 Colonel By Drive, K1S 5B6 Ottawa, Canada
E-mail: briand@sce.carleton.ca

Clay Williams
IBM T.J. Watson Research Center
Software Quality and Testing
19 Skylane Drive, Room 2N-F07, Hawthorne, NY 10532, USA
E-mail: clay@us.ibm.com

Library of Congress Control Number: 2005932806

CR Subject Classification (1998): D.2, D.3, K.6, I.6

ISSN 0302-9743
ISBN-10 3-540-29010-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29010-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11557432 06/3142 5 4 3 2 1 0

Preface

The MoDELS (Model Driven Engineering, Languages, and Systems) conference
is a continuation of the successful series of �UML� conferences. This volume
contains the final versions of the technical papers presented at MoDELS 2005 in
Montego Bay, Jamaica, October 2–7, 2005.

The �UML� series began in 1988 at Mulhouse, France when the Unified
Modeling Language was relatively new. Since then the conferences have been
annually, with an increase in both attendance and the breadth of the work
presented at the conferences. The appearance of new research areas and topics in
prior conferences was the motivation for renaming the conference to reflect the
broader mission the conferences were enabling. Among the new areas taking their
place alongside UML and related standards, such as Model Driven Architecture
(MDA), are model refactoring, aspect oriented modeling, and model quality
control.

The call for papers for MoDELS 2005 resulted in the submission of 215
abstracts and 166 papers. Each submission was reviewed by at least 3 referees
assigned from the set of 51 Program Committee members. After several rounds of
discussion within the Program Committee, 46 papers (40 scientific papers and 6
experience papers) were selected for publication. The Program Committee also
selected a paper for the Best Paper MoDELS 2005 Award. The paper is by
Friedrich Steimann and is titled “Domain Models are Aspect Free.”

The review process was managed using the VirtualChair reviewing system,
developed by Vahid Garousi at Carleton University, Ottawa, Canada.

In addition to the presentations of the papers, the MoDELS 2005 scientific
program included 2 keynote talks, “Model Driven Development for Distributed
Real-Time and Embedded Systems”, given by Douglas C. Schmidt (Vanderbilt
University), and “Domain-Specific Modeling: No One Size Fits All” by Juha-
Pekka Tolvanen (MetaCase). The conference also included 10 workshops, 6 tu-
torials, a Doctoral Symposium, an Educators Symposium, and a Poster/Demo
Session.

We would like to thank all of the people who submitted papers and proposals
for workshops and tutorials, as well as the excellent Program Committee mem-
bers who reviewed these submissions. We also thank the invited speakers, the
other members of the conference committees, the individuals who helped with
the website and publicity, and the members of the Local Organizing Committee
who helped make the conference run smoothly and made the local arrangements.
Finally, we thank the sponsors for their generous support of MoDELS 2005.

Lionel Briand, Geri Georg, Stuart Kent, Ezra Mugisa, Clay Williams

Organization

Executive Commitee

General Chair Stuart Kent (Microsoft, UK)
Conference Co-chairs Geri Georg (Colorado State U., USA)

Ezra Mugisa (U. of the West Indies, Jamaica)
Program Chair Lionel Briand (Carleton U., Canada and Simula

Research Labs, Norway)
Experience Track Chair Clay Williams (IBM Watson Research Center,

USA)
Tutorial Chair Gianna Reggio (U. of Genoa, Italy)
Workshop Chair Jean-Michel Bruel (U. of Pau, France)
Panel Chair Siobhán Clarke (Trinity College, Ireland)
Publication Chair Vahid Garousi (Carleton U., Canada)

Organizing Team

Publicity Co-chairs João Araújo (New U. of Lisbon, Portugal)
Emanuel Grant (U. of North Dakota, USA)

Local Arrangements Chair Charmaine DeLisser (U. of Tech., Jamaica)
Doctoral Symposium Chair Jeff Gray (U. of Alabama at Birmingham, USA)
Poster Chair Felix Akinladejo (U. of Tech., Jamaica)
Tool Exhibition Chair Gunjan Mansingh (U. of the West Indies,

Jamaica)
Web Site Chair Sudipto Ghosh (Colorado State U., USA)
Registration Chair Robert France (Colorado State U., USA)
Treasurer Robert France (Colorado State U., USA)
Paper Submission Chair Vahid Garousi (Carleton U., Canada)

Program Committee

Mehmet Aksit (Netherlands)
Omar Aldawud (USA)
Ambrosio Toval Alvarez (Spain)
Erik Arisholm (Norway)
Colin Atkinson (Germany)
Thomas Baar (Switzerland)
Doo-Hwan Bae (Korea)
Antonia Bertolino (Italy)
Jean-Michel Bruel (France)
Christian Bunse (Germany)

Alessandra Cavarra (UK)
Betty H.C. Cheng (USA)
Steve Cook (UK)
Stphane Ducasse (Switzerland)
Gregor Engels (Germany)
Sudipto Ghosh (USA)
Martin Gogolla (Germany)
Hassan Gomaa (USA)
Jean Hartmann (USA)
Hong Mei (China)

VIII Organization

Heinrich Hussmann (Germany)
Ashish Jain (USA)
Jean-Marc Jézéquel (France)
Philippe Kruchten (Canada)
Yvan Labiche (Canada)
Timothy C. Lethbridge (Canada)
Jonathan I. Maletic (USA)
Tom Mens (Belgium)
Richard Mitchell (UK)
Ana Moreira (Portugal)
Pierre-Alain Muller (France)
Oscar Nierstrasz (Switzerland)
Ivan Porres (Finland)
Alexander Pretschner (Switzerland)
Kerry Raymond (Australia)
Gianna Reggio (Italy)

Jaffar-Ur Rehman (Pakistan)
Laurent Rioux (France)
Bernhard Rumpe (Germany)
Peter H. Schmitt (Germany)
Andy Schuerr (Germany)
Mark Schulte (USA)
Bran Selic (Canada)
Liu Shaoying (Japan)
Perdita Stevens (UK)
Tong Sun (USA)
Francois Terrier (France)
Jos Warmer (Netherlands)
Ben Watson (USA)
Thomas Weigert (USA)
Jon Whittle (USA)

Sponsors

ACM Special Interest Group on Software
Engineering
(www.acm.org)

IEEE Computer Society
(www.computer.org)

Corporate Donors

Microsoft Corporation
(www.microsoft.com)

IBM
(www.ibm.com)

Digicel Jamaica
(www.digiceljamaica.com)

X Organization

Pascal Dürr
James Dzidek
Marina Egea
Jo M. Fernandes
Franck Fleurey
Frédéric Fondement
Alexander Förster
Jaime Gomez
Miguel Goulão
Orla Greevy
Hans Groenniger
Nabil Hameurlain
Ulrich Hannemann
Michel Hassenforder
Jan Hendrik Hausmann
Manuel Hilty
Karsten Hoelscher
Paul Holleis
Jang-Eui Hong
Gang Huang
Johannes Jakob
Eshref Januzaj
Sang-Uk Jeon
Huzefa Kagdi
Harmen Kastenberg
Stuart Kent
Alexander Königs
Holger Krahn
Matthias Kranz

Ivan Kurtev
Yves Le Traon
Johan Lilius
Arne Lindow
Hui Liu
Moussa Lo
Marc Lohmann
Francisco Javier Lucas
Christoph Lueth
Haohai Ma
David Mak
Esperanza Marcos
Eve McGregor
Victor Nicola
Joaqun Nicolás
Erika Olimpiew
Ying Pan
Christian Peper
Jean-Marc Perronne
Luigia Petre
Andrea Polini
Raghu Reddy
Tobias Rötschke
Enrico Rukzio
Jose Saez
Belen Vela Sanchez
Stefan Sauer
Tim Schattkowsky
Martin Schindler

Markus Schmidt
Daniel Schneider
Michael Shepherd
Devon Simmonds
Jocelyn Simmonds
Bonita Simoes
Karsten Sohr
Eunjee Song
Hasan Szer
Jim Steel
Gerson Sunyé
Andrew Sutton
Bedir Tekinerdogan
Bernard Thirion
Laurent Thiry
Trung Dinh Trong
Hervé Verjus
Cristina Vigueras
Hendrik Voigt
Alan Cameron Wills
Gerald Winter
Kyoung-A Yoon
Rabih Zbib
Lu Zhang
Haiyan Zhao
Tewfik Ziadi
Paul Ziemann

Table of Contents

Keynote Address I

Model Driven Development for Distributed Real-Time and Embedded
Systems . 1
Douglas C. Schmidt

Process

Activity Diagram Patterns for Modeling Quality Constraints in
Business Processes . 2
Alexander Foerster, Gregor Engels, Tim Schattkowsky

UML4SPM: A UML2.0-Based Metamodel for Software Process
Modelling . 17
Reda Bendraou, Marie-Pierre Gervais, Xavier Blanc

Realizing Model Driven Security for Inter-organizational Workflows
with WS-CDL and UML 2.0 . 39
Michael Hafner, Ruth Breu

Product Families, Reuse

Code Generation from UML Models with Semantic Variation Points 54
Franck Chauvel, Jean-Marc Jézéquel

Composing Domain-Specific Languages for Wide-Scope Software
Engineering Applications . 69
Jacky Estublier, German Vega, Anca Daniela Ionita

Model Typing for Improving Reuse in Model-Driven Engineering 84
Jim Steel, Jean-Marc Jézéquel

State/Behavioral Modeling

UML Vs. Classical Vs. Rhapsody Statecharts: Not All Models Are
Created Equal . 97
Michelle L. Crane, Juergen Dingel

Evaluating the Effect of Composite States on the Understandability of
UML Statechart Diagrams . 113
José A. Cruz-Lemus, Marcela Genero, M. Esperanza Manso,
Mario Piattini

XII Table of Contents

Computing Refactorings of Behavior Models . 126
Alexander Pretschner, Wolfgang Prenninger

Aspects

Dynamic Secure Aspect Modeling with UML: From Models to Code 142
Jan Jürjens, Siv Hilde Houmb

Performance Analysis of UML Models Using Aspect Oriented Modeling
Techniques . 156
Hui Shen, Dorina C. Petriu

Domain Models Are Aspect Free . 171
Friedrich Steimann

Design Strategies

Representing and Applying Design Patterns: What Is the Problem? 186
Hafedh Mili, Ghizlaine El-Boussaidi

Properties of Stereotypes from the Perspective of Their Role in Designs . . 201
Miroslaw Staron, Ludwik Kuzniarz

A Modeling and Simulation Based Approach to Dependable System
Design . 217
Miriam Zia, Sadaf Mustafiz, Hans Vangheluwe, Jörg Kienzle

Model Transformations

Extending Profiles with Stereotypes for Composite Concepts 232
Dick Quartel, Remco Dijkman, Marten van Sinderen

Transformation from CIM to PIM: A Feature-Oriented
Component-Based Approach . 248
Wei Zhang, Hong Mei, Haiyan Zhao, Jie Yang

Weaving Executability into Object-Oriented Meta-languages 264
Pierre-Alain Muller, Franck Fleurey, Jean-Marc Jézéquel

Keynote Address II

Domain-Specific Modeling: No One Size Fits All . 279
Juha-Pekka Tolvanen

Model Refactoring

Refactoring OCL Annotated Class Diagrams . 280
Slavǐsa Marković, Thomas Baar

Table of Contents XIII

Replicators: Transformations to Address Model Scalability 295
Jeff Gray, Yuehua Lin, Jing Zhang, Steve Nordstrom,
Aniruddha Gokhale, Sandeep Neema, Swapna Gokhale

Simplifying Transformations of OCL Constraints . 309
Martin Giese, Daniel Larsson

Quality Control

Lessons Learned from Automated Analysis of Industrial UML Class
Models (An Experience Report) . 324
Betty H.C. Cheng, Ryan Stephenson, Brian Berenbach

Reliability Prediction in Model Driven Development 339
Genáına N. Rodrigues, David S. Rosenblum, Sebastian Uchitel

Model-Based Scalability Estimation in Inception-Phase Software
Architecture . 355
Steve Masticola, Andre Bondi, Mark Hettish

MDA I

Explicit Platform Models for MDA . 367
Dennis Wagelaar, Viviane Jonckers

Integrated Model-Based Software Development, Data Access, and Data
Migration . 382
Behzad Bordbar, Dirk Draheim, Matthias Horn, Ina Schulz,
Gerald Weber

Invited Presentation I: Lessons Learned, New Directions, and Migration
Plans for Model-Driven Development of Large Scale Software Based
Systems . 397
Michael J. Marich, Haig F. Krikorian

Automation I

Concepts for Comparing Modeling Tool Architectures 398
Colin Atkinson, Thomas Kühne

Scenario Construction Tool Based on Extended UML Metamodel 414
Micha�l Śmia�lek, Jacek Bojarski, Wiktor Nowakowski, Tomasz Straszak

Invited Presentation II: Experiences in Applying Model Based System
Testing Generation . 430
Marlon Vieira

XIV Table of Contents

UML 2.0

The Impact of UML 2.0 on Existing UML 1.4 Models 431
Julie A. Street, Robert G. Pettit IV

Towards UML2 Extensions for Compact Modeling of Regular Complex
Topologies . 445
Arnaud Cuccuru, Jean-Luc Dekeyser, Philippe Marquet, Pierre Boulet

Using UML 2.0 Collaborations for Compositional Service Specification . . . 460
Richard Torbjørn Sanders, Humberto Nicolás Castejón,
Frank Alexander Kraemer, Rolv Bræk

Industrial Experience

Model-Driven Engineering in a Large Industrial Context — Motorola
Case Study . 476
Paul Baker, Shiou Loh, Frank Weil

Using a Domain-Specific Language and Custom Tools to Model a
Multi-tier Service-Oriented Application — Experiences and Challenges . . 492
Marek Vokáč, Jens M. Glattetre

Invited Presentation III: The Architects’ Workbench — Research in
the Trenches . 507
Doug Kimelman

Crosscutting Concerns

Uniform Support for Modeling Crosscutting Structure 508
Maria Tkatchenko, Gregor Kiczales

Modeling Crosscutting Services with UML Sequence Diagrams 522
Martin Deubler, Michael Meisinger, Sabine Rittmann, Ingolf Krüger

A Formal Enforcement Framework for Role-Based Access Control
Using Aspect-Oriented Programming . 537
Jaime Pavlich-Mariscal, Laurent Michel, Steven Demurjian

Modeling Strategies I

A Domain Model for System Dynamic Reconfiguration 553
D’Arcy Walsh, Francis Bordeleau, Bran Selic

Exceptional Use Cases . 568
Aaron Shui, Sadaf Mustafiz, Jörg Kienzle, Christophe Dony

Table of Contents XV

MDA II

Modeling Turnpike Frontend System: A Model-Driven Development
Framework Leveraging UML Metamodeling and Attribute-Oriented
Programming . 584
Hiroshi Wada, Junichi Suzuki

Simplifying Autonomic Enterprise Java Bean Applications Via
Model-Driven Development: A Case Study . 601
Jules White, Douglas C. Schmidt, Aniruddha Gokhale

Automation II

Automated Invariant Maintenance Via OCL Compilation 616
Kurt Stirewalt, Spencer Rugaber

SelfSync: A Dynamic Round-Trip Engineering Environment 633
Ellen Van Paesschen, Wolfgang De Meuter, Maja D’Hondt

UML for Document Modeling: Designing Document Structures for
Massive and Systematic Production of XML-based Web Contents 648
Alejandro Bia, Jaime Gómez

Modeling Strategies II

Metamodel Reuse with MOF . 661
Xavier Blanc, Franklin Ramalho, Jacques Robin

Modeling the User Interface of Multimedia Applications 676
Andreas Pleuß

An Ontology-Based Approach for Evaluating the Domain
Appropriateness and Comprehensibility Appropriateness of
Modeling Languages . 691
Giancarlo Guizzardi, Lúıs Ferreira Pires, Marten van Sinderen

Workshops, Tutorials and Panels

Workshops at the MODELS 2005 Conference . 706
Jean-Michel Bruel

Tutorials at the MODELS 2005 Conference . 715
Gianna Reggio

Panels at the MODELS 2005 Conference . 719
Siobhán Clarke

Author Index . 721

Keynote Address I:

Model Driven Development for Distributed
Real-Time and Embedded Systems

Douglas C. Schmidt

Vanderbilt University, USA
schmidt@dre.vanderbilt.edu

Abstract

Despite advances in standards-based commercial-off-the-shelf (COTS) technolo-
gies, key challenges must be addressed before COTS software can be used to
build mission-critical DRE systems effectively and productively. For example,
developers of DRE systems continue to use ad hoc means to develop, config-
ure, and deploy their applications and middleware due to the lack of formally
analyzable and verifiable building block components.

This talk will describe how Model Driven Development (MDD) techniques
and tools can be used to specify, analyze, optimize, synthesize, validate, and
deploy product-line architectures (PLAs) and standards-compliant middleware
platforms that can be customized for the needs of next-generation DRE systems.
MDD is an emerging paradigm that combines:

– Domain-specific modeling languages (DSMLs), which provide programming
notations that formalize the process of specifying application logic and qual-
ity of service (QoS)-related requirements in a PLA.

– Metamodeling, which define type systems that precisely express key char-
acteristics and constraints associated with DSMLs for PLAs in particular
application domains, such as software defined radios, avionics, vehtronics,
and process automation.

– Model transformations and synthesis techniques that automate and ensure
the consistency of software implementations with analysis information asso-
ciated with functional and QoS requirements captured by models of PLA
structure and behavior.

This talk will compare and contrast various model-based approaches (e.g.,
MIC, MDD, MDA, etc) to developing PLA-based DRE systems. It will also il-
lustrate how MDD techniques and tools have been successfully integrated with
standards-based QoS-enabled component middleware to develop PLAs that sig-
nificantly improve the quality and productivity associated with developing next-
generation mission-critical DRE systems. Concrete examples from avionics, pro-
cess control, software defined radios, and warehouse management systems will
be used to illustrate key points.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 1–1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 2-16, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Activity Diagram Patterns for Modeling Quality
Constraints in Business Processes

Alexander Foerster, Gregor Engels, Tim Schattkowsky

University of Paderborn, Germany
{alfo|engels|timschat}@uni-paderborn.de

Abstract. Quality management is an important aspect of business processes.
Organizations must implement quality requirements, e.g., according to
standards like ISO 9001. Existing approaches on business process modeling
provide no explicit means to enforce such requirements. UML Activity
Diagrams are a well recognized way of representing those business processes.
In this paper, we present an approach for enforcing quality requirements in such
business processes through the application of process quality patterns to
Activity Diagrams. These patterns are defined using a pattern description
language, being a light-weight extension of UML Activity Diagrams.
Accordingly, such patterns can be used in forward-engineering of business
processes that incorporate quality constraints right from the beginning.

Keywords: UML Activity Diagrams, Business Process, Process Quality, ISO 9001

1. Introduction

Total Quality Management (TQM) is a management concept which is an increasingly
hot issue in most organizations. Businesses have become more and more competitive
and the concentration on customer satisfaction is a key trait. Due to the increasing
competitiveness of the markets, the customers formulate high expectations on
products and services like user friendliness, reliability, security etc. The
implementation of a TQM system in an organization is one answer to this situation
since it puts the customer’s demands in the first place and incorporates profound
means of customer satisfaction.

The ISO 9001 standard [11] is one of the most popular TQM systems world-wide.
It is in itself very process oriented and includes many quality related demands on
business processes. In an organization with TQM, modeling business processes means
that the process developer has to consider the quality requirements of the TQM
system. We will present an approach how such quality requirements can be easily and
thoroughly formulated and enforced. The approach is based on deriving business
process patterns from the text of the ISO 9001 standard and applying these patterns to
existing business processes.

A pattern based approach has many advantages. Using patterns is a common
technology in software engineering. With design patterns, proven concepts and
solutions can be easily described and communicated. Their application can
significantly improve the quality of software models. Complex models can be easier

Activity Diagram Patterns for Modeling Quality Constraints in Business Processes 3

understood and handled if the included patterns are known. These are only some
advantages of the general concept of design patterns that we want to transfer to the
world of business processes.

In our approach, we make use of UML Activity Diagrams as modeling language of
choice for business processes. Therefore, the formulation of quality patterns will also
be based on UML Activity Diagrams as modeling paradigm. Since they were not
intentionally designed especially for the formulation of quality patterns, some aspects
of the quality patterns cannot be satisfactorily modeled by them, as we will show
further below. As a solution, we developed a pattern description language that is a
light-weight extension of UML Activity Diagrams.

Fig. 1 shows an abstract model of a business process. If we assume that this
process was created by the application of a quality management pattern to an original
core business process, the resulting process contains Actions that have a different
origin or belong to different aspects of the business process. Some Actions belong to
the original core business process whereas others may fulfill only technical purposes
or are part of the quality management system. These Actions are weaved together and
can interleave each other in the final business process as shown by the different
textures in Fig. 1. This means that the Actions and control flows of the original
business process and the pattern have to be mixed together. Enforcing quality
requirements with quality management patterns requires defined rules on how exactly
a pattern must be applied to an existing business process. In addition to that, the
pattern has to be a most exact formulation of the quality requirements. The
formulation of quality patterns and the pattern application process is unfortunately
neither easy nor straight-forward; we will provide an impression of that in the next
example.

Part of the core
business process

Part of the pattern

Part of the
technical subsystem

Fig. 1. Example behavior model including Actions that belong to different aspects of a business
process

4 Alexander Foerster, Gregor Engels, and Tim Schattkowsky

AA

BB

CC DD

BB

EE

CC GG

FF

Pattern Business process
Fig. 2. Simple example of a pattern and a business process

Fig. 2 shows two simple workflows, the left shall be regarded as the pattern; the
right shall be regarded as an excerpt of an existing business process in an
organization. Let us assume the process modeler wants to apply the pattern on the left
to the process on the right. The question is how exactly that can be done. Obviously,
there are some distinct connection points which are the similar Actions in both
processes, namely “B” and “C”. Assuming that pattern application means to build one
single united process and therefore one single united control flow from both
Activities, we have to determine if the “B”s and “C”s of both processes have to be
mapped to one single Action “B” and “C” in the resulting process. Another
conceivable possibility would be that they represent the same kind of Action but
different Action executions. If we assume “B” and “C” are the same Action
executions in both processes, we make the following observation: in the pattern
process, “C” follows “B” directly, apart from the decision node. In the business
process, there are two other Actions in the control flow between “B” and “C”. In an
effort to create a joint process out of the pattern and the existing business process,
how does the modeler know if inserting other Actions in a control flow is allowed or
forbidden by the intention of the pattern or the original process? To solve these
problems, there has to be additional information laid down in the model of the pattern.
This can be achieved by the light-weight Activity Diagram extension that we are
going to present in this paper.

The next section gives a brief overview of the related work in this area. Section 3
starts with examining the quality requirements that we want to be able to describe. We
develop general requirements on the application of quality management patterns.
After that, we transfer these general requirements to pattern application rules related
to the particular model elements of quality process patterns. In that context, we define
extensions to UML Activity Diagrams based on stereotypes that form the language to
describe quality process patterns. In section 4 we show how the use of this language
improves the way how a quality pattern can be described and applied to a concrete
business process, before section 5 closes with a conclusion and future work.

Activity Diagram Patterns for Modeling Quality Constraints in Business Processes 5

2. Related Work

The pattern concept in computer science is well known when it comes to design
patterns as presented in [9] and [10]. These design patterns are intended to describe
good practice and proven solutions for common problems in object-oriented software
design. These behaviors take place in a different context and are situated on a
different level of abstraction than the business processes and patterns here.

In recent years, investigation of the pattern approach for application to the design
of processes has begun. Especially workflows as automated processes controlled by
computerized workflow management systems have been in the focus of interest for
process patterns. Van der Aalst et al. provide an extensive coverage of workflow
patterns in [1]. Their intention is mainly to demonstrate the expressiveness and
capabilities of existing workflow management systems and their process description
languages. Unlike our approach, their process patterns cover mainly technical
concepts like all kinds of different basic and complex control flows and they are
focused on Petri-nets.

In other works, Basten and van der Aalst aim at providing a theoretical foundation
for the definition of inheritance of dynamic behavior of objects based on object life
cycles [5]. There, four different inheritance rules based on hiding and blocking of
transitions in transition systems are defined. The paper imparts a theoretical
background for a possible way of defining the semantics of behavior inheritance. It is
focused on behavior in form of object life cycles and studies inheritance in a process-
algebraic setting and in a Petri-net framework. In [2], the theoretical framework of [5]
is transferred to UML behavior models like sequence diagrams, state charts and
activity diagrams. As in [5], this paper also focuses on modeling object life cycles and
omits the particularities of business processes. However, the application of these
inheritance concepts in the context of actual scenarios, e.g. to model patterns or
quality constraints, is not clarified.

Some approaches consider the application of process patterns to software
development processes. In [6], Coplien defines a pattern language for this kind of
processes. Riehle gives the reader some advice on how to use such software process
patterns in [13]. Finally, Ambler presents a broad collection of useful patterns for
software design in [3] and [4]. However, these cover only specific aspects and usually
omit the discussion of the actual application to existing processes.

An interesting discussion about analysis patterns and business objects can be found
in [8] which claims that in the first category are patterns with a suggestive character
that just give the idea but the designer is free to tweak the pattern any way he wants
when he applies the pattern. In contrast to that, business objects are considered to
have a prescriptive character, so they cannot be easily altered by the developer.
Possible changes are based on what the writer of the business objects allows the
designer to alter. This notion of a pattern is much closer to our notion of quality
patterns since we want to be able to enforce properties of the resulting process instead
of suggesting them.

6 Alexander Foerster, Gregor Engels, and Tim Schattkowsky

3. Describing Quality Constraints with Process Patterns

Our approach is based on a visual language for describing quality process patterns
based on UML Activity Diagrams. Such Activity Diagrams are well suited to express
for example detailed process models that are ready for execution. In contrast to that,
patterns describe processes that contain merely action roles and incomplete or loose
temporal/logical relationships between Actions and high-level constraints. These are
going to be substituted by concrete process elements from the application domain
when the pattern is applied.

When modeling patterns, we want to follow the principle of least constraint; this
means to describe everything that is elementary for the pattern without risking to lay
down properties of the resulting process that are not elementary parts of the pattern.
This principle of least constraint is a necessary prerequisite to enable the highest
possible flexibility when applying the pattern.

In this section, we will show how quality requirements can be directly derived
from standards like ISO 9001 and used as a basis for the definition of quality patterns
using our pattern description language.

3.1 Deriving Patterns from Quality Requirements of the ISO 9001

A central part of a TQM system is quality control. This means that the result of a
production process has to be compared to predefined quality objectives. The textual
formulation of the requirements of quality control in the ISO 9001 standard is
composed of different parts of the standard’s text:

“The organization shall monitor and measure the characteristics of the
product to verify that product requirements have been met.” [11]

 “7.1 Planning of product realization […]
In planning product realization, the organization shall determine the

following, as appropriate:

a) quality objectives and requirements for the product;
b) the need to establish processes, documents, and provide resources

specific to the product;
c) required verification, validation, monitoring, inspection and test

activities specific to the product and the criteria for product
acceptance;

d) records needed to provide evidence that the realization processes and
resulting product meet requirements (see 4.2.4).” [11]

 “The organization shall ensure that product which does not conform to

product requirements is identified and controlled to prevent its unintended
use or delivery. […] The organization shall deal with nonconforming product
by one or more of the following ways

a) by taking action to eliminate the detected nonconformity;
[…]” [11]

Activity Diagram Patterns for Modeling Quality Constraints in Business Processes 7

This description of quality requirements is still rather informal. At first we will
state more precisely in natural language what steps have to be performed to fulfill the
requirements of the given problem:

 Quality tests have to be performed in the processes in which products for
external customers are produced.

 Quality objectives have to be defined before the production process starts.
 The quality objectives have to be communicated to the persons conducting the

production process before the production process starts. (This requirement
results partly from other parts of the ISO 9001)

 The quality of the product has to be measured and compared to the quality
objectives.

 In case that the quality objectives are not met the detected nonconformities have
to be eliminated. (This requirement results partly from other parts of the
ISO 9001)

 Quality related information has to be collected and sent to the quality
management department for statistical analysis, systemic improvements etc.
(This requirement results partly from other parts of the ISO 9001)

In our approach, such requirements are the basis for the definition of quality

patterns for processes to enforce these requirements. The application of such a pattern
to an existing business process means merging two control flow structures into one, in
other words weaving them together, leaving both processes “intact”.

It must be ensured that the original behavior is preserved. All Actions of the
pattern as well as all Actions of the business process have to be preserved when
applying the pattern, although they might coincide in the resulting process.
Furthermore, the partial order defined for Actions by both the pattern and the original
business process has to be preserved when applying the pattern. However, the actual
interleaving of Actions from the pattern and the original business process may vary.

3.2 Pattern Application and Activity Diagram Extensions

In order to explain the application of the model elements of quality patterns to an
existing business process, we will see many diagrams in this section in which we have
to distinguish between the pattern Activity Diagram and the model Activity Diagram,
which contains the applied pattern. We will depict this in the following figures by
adding the labels “Pattern:” and “Model:” to the Activity Diagrams.

Applying a pattern means that there exists a mapping between the pattern model
elements and the model elements of the resulting process in which the pattern can be
found again. We will depict this mapping using arrows with solid arrowheads. Fig. 3
shows an example of such a diagram in which Actions “A” and “B” have been
specialized by Actions “A1” and “B2” and the relative order relationship between
“A” and “B” (which we will explain further below) has become an ActivityEdge at
the model level after applying the pattern.

8 Alexander Foerster, Gregor Engels, and Tim Schattkowsky

AA BBPattern:

A1A1 B2B2Model:
Fig. 3. Mapping between Pattern Level and Model Level

An Action in an Activity Diagram is usually notated as a rounded rectangle
containing a label. Since “Action” is an abstract class in the UML 2.0 metamodel, we
assume that Actions in a business process normally refer to “CallBehaviorActions”.
The Behavior itself is not further specified. In a business process, an Action is often
something like “Send Invoice” or “Assemble Product”, which refers to a Behavior
that is complex but does not need further explanation in the context of the actual
business process. So the text that is written into the rectangle symbolizing an Action
is in fact the name of a Behavior.

When a pattern is applied, the pattern Actions are mapped to Actions of the
resulting model where the pattern can be found again expressing that the two Actions
refer to the same Behavior. There is a problem since the pattern and the model
Activity Diagram have most likely been devised by different persons with different
“Behavior” namespaces. To make a mapping possible, the process developer is
responsible for determining similar Behaviors from both namespaces, so without loss
of generality we assume that the “Behavior” namespaces are already synchronized.

AA BBPattern:

A1A1 B2B2Model: A1A1

???

NameName

B2MBP

A1MAP

NameName

B2MBP

A1MAP

Pattern Model mapping

Fig. 4. Wrong pattern/model mapping

Actions referring to the same Behavior can occur multiple times in the same
Activity Diagram. For example one Action at the pattern level is mapped to one
Action at the model level which occurs multiple times but we want to express that
only one of them is referred to in the pattern. This means that the mapping between
the pattern Actions and the model Actions as in Fig. 4 can not simply be done by
creating a relation

(Pattern Action name) (Model Action name)

but the mapping has to be done based on individual Actions.

Activity Diagram Patterns for Modeling Quality Constraints in Business Processes 9

AA BBPattern:

A1A1 B2B2Model: A1A1

IDID

1372
1251
IDID

1372
1251

Pattern Model mapping

1

125 137

2

126

Fig. 5. Correct pattern/model mapping

As solution, the individual occurrences of the Actions have to be considered. The
mapping can for example be defined upon individual Action IDs. In Fig. 5 the Action
IDs are depicted as small numbers close to the upper left corner of the Action symbol.
In our example these IDs are numeric, but other representations are also possible as
long as they are unique. Now the correct mapping between pattern and model Actions
has to be made using the IDs as shown in Fig. 5.

Up to now, we have mapped Actions that refer to the exact same Behavior. Since
patterns usually describe more generic processes, the pattern Actions and the
Behaviors they refer to are also usually more generic than those at the model level.
Therefore, pattern Actions can, when the pattern is applied to a concrete business
process, be replaced by model Actions referring to a specialized Behavior or sub-
processes. Activity diagrams at the model level describe rather fixed temporal and
logical relationships between Actions. In pattern Activity Diagrams the designer of
the pattern wants to have the possibility to describe flexible relationships between
Actions in some situations and strict relationships between Actions in other situations.

AA BB

<<after>>
AA BB

Fig. 6. Presentation option for the <<after>> stereotype

In the last subsection we have pointed out that pattern workflows have to be
adapted to the actual business process when they are applied to it; especially
sometimes Actions have to be inserted into the control flow of each original Activity
Diagram. In other situations the designer might also want to express that Actions have
to directly follow each other. A normal ActivityEdge in a pattern Activity Diagram
means that Actions are tightly connected and there may no other Actions or control
flows be inserted between them. For the flexible alternative, we introduce a stereotype
of an ActivityEdge called <<after>>. This stereotype expresses a kind of
temporal/logical order relationship or in other words a control flow path, which means
that there may be other Actions in between. We also suggest a visualization option as
shown in Fig. 6. A visual interpretation of the semantics of the <<after>> stereotype
can be found in Fig. 7.

10 Alexander Foerster, Gregor Engels, and Tim Schattkowsky

AA BB CCPattern:

AA BB CCModel:

<<after>>

Fig. 7. Visualization of the semantics of the <<after>> stereotype

AA BBPattern:

<<all>>

XX

AA BB

YY AA BB

ZZ

Model:

Fig. 8. Referring to all Actions referencing the same Behavior

BBPattern: AA

Fig. 9. Presentation option for the <<all>> stereotype

As we have already seen, Actions referencing the same Behavior can occur
multiple times in a process. If all occurrences of an Action referencing the same
Behavior shall be referred to in the pattern at the same time, this can be expressed
using the stereotype <<all>> as in Fig. 8 or writing a multi-action as in Fig. 9. For
example, Action “A” of the pattern in Fig. 8 refers to all Actions “A” at the model
level as far as the application of the pattern goes, that way all execution instances of
“A” in the model have to be directly followed by Action “B”. So the model instance
shown in Fig. 8 is a correct application of the (very academic and simplified)
“pattern”.

Now we can take a look on some special cases that occur in connection with
control nodes, i.e. parallel split/parallel join and decision/merge. Fig. 10 shows
abstractly how the sequence “A” “B” (with <<after>> stereotype) could be applied
to become a parallel join (Model 3) or a parallel split (Model 4). Model 3 is a correct
specialization of the pattern since “B” still has to be executed after “A”. The fact that
the execution has to wait between “A” and “B” until the synchronization with the
other control flow takes place makes no difference for the order relationship between
“A” and “B”. Model 4 is also a correct specialization of the pattern since the fact that

Activity Diagram Patterns for Modeling Quality Constraints in Business Processes 11

another control flow is forked between “A” and “B” also makes no difference to the
fact that “B” is executed after “A”.

Fig. 11 shows how decision and merge control nodes are treated in the pattern
application process. The problem with the pattern application in Model 5 is that we
cannot guarantee that “B” is executed after “A” or even at all. But since “B” is
definitely executed in the pattern after “A”, we regard this as a wrong application.
The same is true for Model 6 where we cannot guarantee that Action “A” is executed
before “B” or at all. So neither Model 5 nor Model 6 is a correct application of the
pattern. Thus, if a conditional control flow is desired in the resulting process model
after the pattern application, there has to be a conditional construction
(split/merge/condition) in the pattern process, too.

AA

BB

AA

BB

AA BBPattern:

Model 3:

Model 4:

Fig. 10. Pattern application and parallel control flows

AA

BB

AA

BB

AA BBPattern:

Model 5:

Model 6:

Fig. 11. Pattern application and conditional constructs

12 Alexander Foerster, Gregor Engels, and Tim Schattkowsky

Parallel constructions in the pattern should generally be sustained when applying
the pattern. Parallelism in pattern processes can however be just an expression of the
fact that the order in which Actions are executed is irrelevant. According to the
UML 2.0 specification [11], no real concurrency is enforced. This means for the
application of patterns containing parallel control flows that they can potentially be
serialized when applying the pattern, if needed. Fig. 12 shows an example; both
Model 7 and Model 8 are valid instances of the pattern. Parallel control flows can also
be partly serialized as shown in Fig. 13. Note that this may become problematic if
parallel Actions have side effects that mutually affect each other.

This concludes the analysis of the modeling elements of quality pattern Activity
Diagrams. In the next section we will apply our findings to a concrete example from
the ISO 9001.

AA

CC
BB

AA BB

Pattern:

Model 7: CC

BB AAModel 8: CC

Fig. 12. Parallel constructs in the pattern being serialized

AA

CC
BB

AA BB

Pattern:

Model 9: CC

XX

YY

XX

YY

Fig. 13. Parallel constructs in the pattern partly serialized

Activity Diagram Patterns for Modeling Quality Constraints in Business Processes 13

4. Example

In the last section we made rather theoretical observations about process patterns and
their application. In section 3.1 we have already presented some excerpts from the
ISO 9001 standard’s text. We can now make use of the new stereotypes to reflect the
quality requirements stated in the standard’s text.

From the ISO excerpts we can derive the pattern “Quality control” which is shown
in Fig. 14. As the next step, we are going to apply this pattern to a concrete business
process which is in our case a production process. We chose a heavily simplified
model of an “Incremental software development” process as example of a business
process, as shown in Fig. 15.

Without the concept of path-like ActivityEdges with the <<after>> stereotype, only
one very simple way of applying the pattern to the business process would be
possible: the “Incremental software development process” as a whole could be viewed
as a specialization of the Action “Execute Production Process” of the pattern. That
would mean that the whole existing business process would become a sub-activity of
“Execute Production Process”. This is certainly a possible application of the pattern,
but it is questionable if this was intended by the ISO 9001 standard.

determine
quality objective

determine
quality objective

communicate
quality objective

communicate
quality objective

quality objective:
QM_Document

<<datastore>>
QM Database

quality objective:
QM_Document

execute
production process

execute
production process

determine
product quality

determine
product quality

compare with
quality objectives

compare with
quality objectives

eliminate
nonconformities

eliminate
nonconformities

report to
quality management

report to
quality management

nonconf_report:
QM_Document

<<datastore>>
QM Database

[comply] [else]

<<after>>

<<after>>
<<after>>

<<after>>

<<after>>

Production Worker Supervisor Quality Mgt.
Department

Fig. 14. Example pattern “Quality Control”

14 Alexander Foerster, Gregor Engels, and Tim Schattkowsky

With the new stereotypes included at many places in the processes of Fig. 14, there
open up completely new possibilities of pattern application. A comparision with the
actual process example in Fig. 15 shows a number of similarities between the concrete
business process and the pattern. Some Actions of the business process can be seen as
specialization of actions of the pattern and the control structures have distinct
similarities, too.

implement
classes

implement
classes

test classestest classes

define
module interface

define
module interface

define
class structure

define
class structure

[all classes
implemented]

[else]

Fig. 15. Concrete business process (simplified incremental software development)

implement
classes

implement
classes

test
classes

test
classes

[all classes implemented]
[else]

execute
production process

execute
production process

determine
product qualiy

determine
product qualiy

compare with
quality objectives

compare with
quality objectives

eliminate
nonconformities

eliminate
nonconformities

report to
quality management

report to
quality management

[comply]

[else]

[production
continues] [else]

Fig. 16. Similar control structures in business process (left) and pattern (right)

Activity Diagram Patterns for Modeling Quality Constraints in Business Processes 15

In both processes,

 The actual “production” takes place in a loop.
 The Action “Implement classes” is main “production” task and could therefore be

viewed as a specialization of the Action “Execute production process” of the
pattern.

 The Action “Test classes” can be seen as a specialization of “Determine product
quality” of the pattern.

Fig. 16 depicts these similarities between the pattern process and the original

business process graphically. Now, having the stereotyped ActivityEdges and the
possibility to add Actions into the control flows of both processes, we can weave both
processes much more tightly together as it would be possible without these concepts
as shown in Fig. 17.

determine
quality objective

determine
quality objective

communicate
quality objective

communicate
quality objective

quality objective:
QM_Document

<<datastore>>
QM Database

quality objective:
QM_Document

compare with
quality objectives

compare with
quality objectives

eliminate
nonconformities

eliminate
nonconformities

nonconf_report:
QM_Document

<<datastore>>
QM Database

[comply]

[else]

Production Worker Supervisor Quality Mgt.
Department

implement
classes

implement
classes

test classestest classes

define
module interface

define
module interface

define
class structure

define
class structure

[all classes implemented]

[else]

report to
qualty management

report to
qualty management

Fig. 17. More sophisticated application of the pattern

16 Alexander Foerster, Gregor Engels, and Tim Schattkowsky

5. Conclusion and Future Work

Standards like ISO 9001 can be used as a source for deriving quality patterns.
However, we have shown that Activity Diagrams cannot be applied directly to capture
such patterns. Thus, we have introduced light-weight extensions captured by
stereotypes to overcome the shortcomings on expressiveness for this particular
application. We elucidated rules and properties that have to be taken care of when
applying a quality management process pattern in general. Finally, we have
formulated an example that demonstrates the new possibilities that arise from the
application of these extensions.

Further research will include the application of our approach to other TQM
systems and an evaluation in a real word process context. Furthermore, in this paper
we have seen the concept of quality patterns rather in a forward-engineering
perspective. Forthcoming works will also be more focused on quality pattern
matching and recognition in existing business processes. Thus, we finally aim at
providing a complete formal notion for the application of quality constraints to
business processes as we did in previous work [7] for the refinement of state
machines.

6. References

[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros: Workflow
Patterns. Distributed and Parallel Databases. 14(3), pages 5-51, July 2003.

[2] W.M.P. van der Aalst: Inheritance of Dynamic Behavor in UML. In D. Moldt, editor,
Proceedings of the Second Workshop on Modelling of Objects, Components and Agents
(MOCA 2002), volume 561 of DAIMI, pages 105-120, Aarhus, Denmark, August 2002.

[3] S. W. Ambler: Process Patterns - Building Large-Scale Systems Using Object
Technology. SIGS Books/Cambridge University Press, Cambridge 1998.

[4] S. W. Ambler: More Process Patterns - Delivering Large-Scale Systems Using Object
Technology. SIGS Books/Cambridge University Press, Cambridge 1999.

[5] T. Basten, W.M.P. van der Aalst: Inheritance of Behavior. Journal of Logic and Algebraic
Programming, 47(2):47-145, 2001.

[6] J. Coplien: A Generative Development-Process Pattern Language. In Coplien & Schmidt
1995, pp. 183-238, 1995.

[7] J. Ebert, G. Engels: Specialization of Object Life Cycle Definitions. Fachberichte
Informatik Nr. 19/95, Universität Koblenz-Landau, 1997.

[8] M. Fowler: Analysis Patterns. Addison Wesley, Menlo Park, California, 1997.
[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns, Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading, Massachusetts, 1995.
[10] D. Gross and E.S.K. Yu: From Non-Functional Requirements to Design through Patterns.

Requirements Engineering, 6(1):18-36, 2001.
[11] ISO 9001:2001: Quality Management Systems – Requirements. ISO International

Organization for Standardization. 2001.
[12] Object Management Group, The: UML 2.0 Superstructure, 2005. Version 2.0.

http://www.omg.org/cgi-bin/doc?ptc/2004-10-02. Last visited: 03-23-05.
[13] D. Riehle, H. Zullighoven: Understanding and Using Patterns. Software Development.

Theory and Practice of Object Systems. 2(1):3-13, 1996.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 17-38, 2005.
 Springer-Verlag Berlin Heidelberg 2005

UML4SPM: A UML2.0-Based Metamodel for Software
Process Modelling1

Reda Bendraou1, Marie-Pierre Gervais1,2, and Xavier Blanc1

1 Laboratoire d'Informatique de Paris 6 (LIP6), 2 University Paris X
LIP6 - 8 rue du Capitaine Scott - F75015 PARIS

{Reda.Bendraou, Marie-Pierre.Gervais, Xavier.Blanc}@lip6.fr

Abstract. In the context of Model Driven Development, models play a central
role. Since models can nowadays be executed, they are used not only for
description but also for production [32][30][24]. In the field of software process
modelling, the current version of the OMG SPEM standard (ver1.1) has not yet
reached the level required for the specification of executable models. The
purpose of SPEM1.1 was limited at providing process descriptions to be read
by humans and to be supported by tools, but not to be executed. Therefore, the
OMG issued a new RFP in order to improve SPEM1.1 [35]. Since we intend to
participate in the next major revision of SPEM, namely SPEM2.0, in this work,
we: 1) compare SPEM1.1 both with primary process model elements (i.e.
Activity, Product, Role,…) and with basic requirements that any Process
Modelling Language should support (i.e. expressiveness, understandability,
executability,…); 2) identify its major limitations and advantages and 3)
propose a new UML2.0-based metamodel for software process modelling
named: UML4SPM. It extends a subset of UML2.0 concepts - with no impact
on the standard - in order to fit software process modelling.

Key words: MDD, Software Process Modelling, Process Modelling
Languages, SP Metamodel.

1 Introduction

The Model Driven Development (MDD) vision comes with a set of recommendations
in order to manage the complexity of software development. The main one is to
promote an approach where extensive models are created before source code is
written. A primary example of MDD is the OMG’s (Object Management Group)
Model Driven Architecture (MDA) approach [23]. The MDA promotes model
engineering rather than object engineering in order to ease code production in a cost-
effective manner. It pushes beyond the original bounds of the Unified Modelling
Language (UML) by providing open specifications that support the formal modelling
of most aspects of the software life cycle. Currently, MDA provides a growing family
of standards that now includes the UML v2.0 (UML 2.0 Superstructure adopted,
UML2.0 Infrastructure in finalization) [37], the Meta Object Facility (MOF v1.4, v2.0

1 This work is supported in part by the IST European project "ModelWare" (contract no 511731).

18 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

in finalization) [26] and the Software Process Engineering Metamodel (SPEM v1.1,
RFP for SPEM2.0) [34] [35] which is devoted to software development process
specifications.
As software development process is the backbone of the software development
lifecycle, software development processes and software engineering standards have
gained more and more importance in the software industry. Actually, it has been
wildly accepted that, the quality of any software product cannot be ensured simply by
inspecting the product itself or by performing the traditional verification and
validation approach (V&V) [2] [11], but relates to both, the production process that is
carried out and to actors involved in this production process [27]. Therefore, software
companies recognized the need of capturing processes they follow for building
software, good practices and their know-how in a standard way. The term Software
Process Modelling is used to describe the production of models of defined software
development processes. A Process Model is an abstract description of an actual or
proposed process. It represents selected process elements that are considered
important to the purpose of the model and can be executed by a human or a machine
[6]. Process models are described with Process Modelling Languages (PMLs). A
Process Modelling Language (PML) is defined in terms of a notation, a syntax and
semantics, often suitable for computational processing. Process modelling is a very
diverse and complex area. Requirements for PMLs in order to support modelling and
executing of software processes are both functional (e.g. expressiveness, abstraction,
executability…) and non functional (e.g., commercial support) [5].
In this paper, we focus on PML and more precisely, on SPEM. Thus, as a first step of
this work, we present primary requirements identified in [7] [16] that any PML should
support which are: Formality, Expressiveness, Understandability, Abstraction,
Executability, Modularization, Analyzability, Reflection, and Multiple conceptual
perspectives. Then, we evaluate these requirements in respect with SPEM1.1. This
helped us to identify its major limitations and advantages.
As a second stage, we show how to improve the current metamodel of SPEM1.1. This
is done by: 1) introducing basic concepts (e.g. Activity, Product, Role…) that
process modelling languages should provide as defined in [4] [10] [21]; 2) Discussing
how a subset of UML2.0 concepts and those we introduce provide these process
model elements and how they can be used for modelling software processes.

The paper is organized as follows: Section 2 introduces basic concepts in the field of
software engineering and lists requirements that should be supported by PMLs.
Section 3 gives a brief description of the main concepts of SPEM1.1 and presents its
limitations according to requirements highlighted in Section 2. In Section 4, we
present our metamodel for software process engineering, named: UML4SPEM. It
extends a subset of UML2.0 concepts by adding some features and elements related to
software development processes in an MDA context. Then, we compare our
metamodel to primary process model elements and to PMLs requirements. We then
show how it overcomes major SPEM1.1 limitations. Execution of process models is
out of the scope of this paper. Section 5 presents related work and Section 6
introduces perspectives of this work.

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 19

2 Software Engineering

In this section, we give a brief reminder of basic concepts in the area of Software
Engineering. Then, we present primary elements of Process Models as well as
requirements that PMLs should support.

2.1 Definitions

As introduced by Humphrey [15], "Software Engineering refers to the disciplined
application of engineering, scientific, and mathematical principles and methods to the
economical production of quality software". Here, the term quality refers to the
degree to which a product meets its user's needs. While "The Software Engineering
Process is the total set of software engineering activities needed to transform user’s
requirements into software". This process may include, as appropriate activities of:
requirement specifications, design, implementation, verification, installation,
operational support, and documentation. Process Models (PMs) are precisely seen as
a "representation of a networked sequence of these activities, objects,
transformations, and events that embody strategies for accomplishing software
evolution" [14]. Advantage of process models is that they are built in some known
modelling language, namely: Process Modelling Languages (PMLs). This allows the
process model to be validated against a known set of rules and makes it easier to edit
and to maintain. This also facilitates collaborative work between different teams and
subcontractors (offshore). A PML should offer a sufficient set of concepts i.e., a
vocabulary that covers the real-word software production process. In the following we
introduce them.

2.2 Primary Process Model Elements

In [4] [5] [10] and [21] a set of software process model elements has been identified.
They establish that any PLM should be able to express six primary process elements2.
We give here an essential summary of each element:
 Activity: A concurrent process step, operating on artifacts and coupled to a

human or a production tool. It can be at different levels i.e., activities can be
decomposed.
 Product: Software artifact inputs or outputs of activities.
 Role: Defines rights and responsibilities of the human involved in the software

activity.
 Human: Human are process agents who may be organized in teams. It has skills

and authority and can fulfil a set of roles.
 Tool: Relates to any tool used by the software process, may be batch (i.e.

compilers, links, parsers…) or interactive (i.e. textual editors, graphical CASE
tools…).
 Evolution Support: Support for static or dynamic variability of the process

model. This means that most previous lifecycle phases must be repeatable "on the fly"
(during process execution). As a consequence of this, the PML must offer at least
support for the evolution of the process model. This support has to be ensured

2 For brevity reasons, we prefer redirect the reader into papers referenced above

20 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

technically (i.e. reflection or interpretation) and conceptually (by a defined
metamodel) [7].

As a process model consists of a set of these process elements together with
additional constraints controlling how they may be interrelated, a PML has to provide
language features to model these basic elements as well as their interrelationships.
This is considered as the first requirement of a PML i.e., Expressiveness (cf.
definition below).

2.3 Basic PMLs Requirements

PMLs have to support some well-known requirements which are very similar to those
of programming languages [28]. In [7] and [16] essential ones are introduced in the
context of PMLs. They are:
 Formality: The syntax and semantics of a PML may be defined formally, i.e.

precisely, or informally, i.e. intuitively. Formal PMLs support, for example, reasoning
about developed models, analyzing of the precisely defined properties of a model, or
transforming models in a consistent manner.
 Understandability: It dependents on the possible process model's users. Users

with a computer science background will find easier to understand a model written in
a PML that resembles a programming language. Those with other backgrounds may
prefer graphic representations based on familiar metaphors.
 Expressiveness: Indicates whether all aspects of a process model may be directly

modelled by language features of the PML or have, for example, to be expressed by
means of additional comments.
 Abstraction and Modularization: The PML may offer modelling-in-the-large

concepts, such as Abstraction and Modularization, to structure a process model into
sub-models connected by certain relationships. Abstraction concepts may support the
definition of more general, abstract
sub-models which are customized within a concrete process model. In addition, a
PML may offer the possibility of distinguishing between generic and specific process
models.
 Executability: The PML may support the definition of operational models. These

are executable.
 Analyzability: The PML may support the definition of descriptive models, e.g.

predicate logic expressions. Such models are easily analyzable.
 Reflection: The PML may directly support the evolution of process models. In

this case there are parameterization, dynamic binding, persistency and versioning
issues to be addressed.
 Multiple conceptual perspectives/views: The PML may support the definition

of views of certain perspectives of a process model. This implies mechanisms to
integrate different views of a process model into an overall process model.
PMLs can be evaluated according to these requirements. However, some desired
requirements are in conflict and so it is not possible to address all of them within one
PML [1] [29]. Thus, fundamentally different PMLs and notations may be needed to
cover such diversity in scope.

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 21

In the next section, we evaluate if the SPEM1.1 standard deals with these
requirements as well as with primary process model elements.

3 SPEM 1.1

3.1 SPEM1.1 Presentation

SPEM introduces common concepts and modelling structure to construct models of
software development processes [34]. SPEM1.1 uses some basic modelling concepts
from UML1.4 to describe rules, constraints, vocabulary, and notation to be used in
defining process models [38]. Thus SPEM1.1 meta-model is defined as an extension
of a subset of UML1.4, expressed in the SPEM_Foundation package. The
SPEM_Extensions package which extends the SPEM_Foundation package, adds the
constructs and semantics required for software process engineering. It owns five
packages; each package addresses a specific concern of the software process
definition.
The building block of the SPEM metamodel is the Process Structure package (figure
1). It defines the main structural elements from which a process description may be
constructed. In the following, we compare them with primary process model
elements.

3.2 Comparison of SPEM1.1 with Primary Process Model Elements

 Activity: In SPEM1.1, an Activity is the main subclass of WorkDefinition. It
describes a piece of work performed by one ProcessRole and may consist of atomic
elements called Steps.
 Product: A WorkProduct in SPEM is anything produced, consumed, or modified

by a process.

Figure 1. The process Structure package, the core of SPEM1.1 metamodel for process
definitions.

Classifier
(from Core)

Parameter
(from Core)

ActivityParameter
hasWorkPerArtifact : Boolean

WorkDefinition
/ performer : ProcessPerformer
/ parentWork : WorkDefinition0..*

0..*

+subWork

0..*

+parentWork
0..*

ProcessPerformer
/ work : WorkDefinition

0..* 1

+work

0..*
{ordered}

+performer

1

Operation
(from Core)

ActionState
(from Activi tyGraphs)

ModelElement
(from Core)

Step
Activity

/ assistant : ProcessRole
/ step : Step

0..*1

+step

0..*

+activity

1 ProcessRole

0..*

0..*

+assistant 0..*

+activity
0..*

WorkProduct
isDeliverable : Boolean
/ kind : WorkProductKind
/ responsibleRole : ProcessRole

0..*

0..1

+workProduct0..*

+responsibleRole

0..1

WorkProductKind

0..*

1

0..*

+kind 1

22 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

It describes one class of artifacts produced in a process and has a WorkProductKind
that describes a category of artifact, such as Text Document, UML Model,
Executable, Code Library, and so on.
 Role: in SPEM, a ProcessRole is a subclass of ProcessPerformer and defines

responsibilities and roles over specific WorkProducts and Activities.

Whether SPEM1.1 defines the notion of ProcessRole (Role), it does not provide the
one of Human who can undertake this Role. Moreover, concepts equivalent to Tool
and Evolution Support are not provided by the standard. In SPEM1.1, software
processes are described in static models and there is no support for their evolution
during execution-time.
Table 1 summarizes correspondences between primary process model elements and
those offered by SPEM1.1. It shows that Human, Tool and Evolution Support
notions are lacking in SPEM1.1.

Basic process model elements SPEM1.1
Activity WorkDefintion /Activity
Product WorkProduct
Role ProcessRole
Human -
Tool -
Evolution -

Table 1. Comparison between primary process elements and SPEM1.1 elements.

3.3 Evaluation of SPEM1.1 Towards Basic PMLs Requirements

In this section, SPEM1.1 is evaluated with respect to requirements on process
modelling languages.
 Formality: As SPEM1.1 extends a sub set of UML1.4, discussing the formality

i.e., syntax and semantics of SPEM1.1 partly comes to discuss the formality of UML
1.4 which is a very large debate. The UML semantics is described using a metamodel
that is presented in terms of three views: the abstract syntax, well-formedness rules,
and modelling element semantics. The abstract syntax is expressed using a subset of
UML static modelling notations and well-formedness rules are expressed in the
Object Constraint Language (OCL). The semantics of modelling elements are
described in natural language, which may not be sufficiently precise. This may cause
disagreements, multiple interpretations and confusion over the precise meaning of a
construct [9]. In SPEM1.1, an example of this lack of semantic is the semantic given
to the Step element: "An Activity may consist of atomic elements called: Steps" [34].
This is the only reference to Step in the specification, which is obviously insufficient.
A Step inherits from UML1.4 ActionState. "An action state represents the execution
of an atomic action, typically the invocation of an operation" [38]. But, UML1.4 does
not explicitly specify, neither parameters of the invocation action (i.e., name and
value) nor their types as it is done with Actions in UML2.0. Then, mapping this
element to an executable or analyzable format would be impossible and useless. Let's
also consider the concept of ProcessPerformer. The standard defines the

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 23

ProcessPerformer as a performer for a set of WorkDefinitions. It also states that
ProcessPerformer represents abstractly the “whole process” or one of its components.
Definitively, we can clearly note that this definition is confusing. One obvious
question would be: what is the practical use of a ProcessPerformer? Is it used as a
container for WorkDefinitions or as a role, responsible for specific activities? In the
latter case, what is the difference with the ProcessRole concept? We believe that a
container of WorkDefinitions and roles are totally two separate concepts that should
be expressed separately.
 Understandability: SPEM1.1 uses UML notation. This is considered as an

advantage as UML has attractive features: it is standard, graphical, intuitive, and easy
to be understood. Besides, a wide community of software developers is familiar with
UML and uses a UML case tool environment. UML being so popular and widely
used, SPEM has an important competitive advantage compared to any specialized
PML [8].
 Expressiveness: In this point, we address expressiveness of SPEM1.1 concepts

to model software processes and not UML1.4 expressiveness. We have seen in
section 3.2., that SPEM1.1 doesn't provide concepts like Human, Tool or Evolution
support. In the following, we present other limitations related to the expressiveness
criterion:
a) In SPEM1.1, a WorkProduct inherits from the UML1.4 Classifier and is used as a
parameter into or from Activities (WorkDefinition in general). Nevertheless, we can’t
know which Steps of the Activity are going to act on WorkProducts nor responsible
roles of these Steps. We think that it would be useful to affect WorkProducts to Steps
rather than to Activities for more exhaustive process automation. Also, we believe that
we have to provide designers with the possibility to specify and to personalize their
own WorkProducts in order to be domain or method specific. The WorkProduct class
has some fixed properties such as name, isDeliverable, or kind and it is not possible to
add more properties for the WorkProduct. Indeed, with the appearance of the MDA,
some specific WorkProducts emerge. Examples are models, model transformation
rules and so on. These WorkProducts have different properties each, which can't be
resumed by a name and a boolean that indicates either it is a deliverable or not as it is
in SPEM1.1.
b) During software development process, depending on some results, developers
would need to interact and to impose choices about activities to be executed. Human
interactions are lacking by SPEM1.1.
c) Finally, project managers would also like to have some additional features on
process definitions in order to monitor and to capture process metrics during
execution-time. Examples of these features could be duration time of an activity, its
priority and its thrown exceptions. The current specification does not provide any of
those facilities.
 Abstraction: As the OMG has chosen an OO approach for modelling software

processes [34], SPEM1.1. provides Abstraction thanks to the Generalization/
Specialization mechanism. Indeed, a process model defined by SPEM1.1 can be
customized using the inheritance i.e., specialization mechanism in order to fit specific
domains or user's requirements. Thus, in the specialized process model, we can add
new attributes to new classes that inherit basic ones as well as new references. This

24 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

allows taking advantage of existing process models while adapting them to an
appropriate domain.
 Modularization: One of the major lacks of SPEM1.1 is ProcessComponent

compositions. A ProcessComponent is a chunk of process description that is
internally consistent and may be reused with other ProcessComponents to assemble a
complete process. However, developers who want to combine two or more
ProcessComponents in order to get one coherent process, have to carry out a
unification procedure. Indeed, to combine for instance two ProcessComponents P1
and P2, at least the output WorkProducts from P1 must be unified i.e., made identical
with the inputs to P2. Other elements may possibly be unified in addition, such as
ProcessRoles. Composition of ProcessComponents can be fully automated only if
they originate from a common family so that the unification is obviously capable of
being automated. Otherwise, the unification would involve human intervention that
normally would consist of some re-writing of the elements, and possibly associated
elements, to be unified. This could be manageable in case of the combination of two
simple ProcessComponents. However in case of complex ProcessComponents, it
becomes increasingly difficult. When outsourcing and offshore appear as a new way
working for companies, it is important to address this lack.
 Executability: Nowadays, companies are looking for how to extensively

automate all parts participating in software production, among them the development
process itself. However, SPEM1.1 provides as actions of a development activity, the
concept of Step, which only represents the name of the action that developer has to
perform (e.g., Step x: Check model consistency). This could help for process
description but it is so far of its execution. We agree that execution of process models
is outside the scope of SPEM1.1. However, we hardly believe that it should provide
concepts that enable the specification of executable action semantics within process
models. UML2.0 offers this possibility thanks to the Actions packages. It gives
precise execution semantics to actions, by defining their effect as well as their typed
inputs and outputs. This may help in mapping them into executable actions in some
well-known OO languages such as Java or C++ [8].
 Analyzability: SPEM1.1 is defined as a MOF metamodel, based on a subset of

UML. This is considered as an advantage as MOF definitions are machine
processable. Specifically, the MOF standard dictates how MOF models and instances
of MOF models may be rendered in XML format (schemas and XML documents,
respectively), and how interfaces to repositories for models can be derived from MOF
definitions of the languages in which those models are expressed [20] [19]. This helps
in manipulating SPEM1.1 models i.e., creation, suppression or modification, in
checking their conformance to the SPEM1.1 metamodel and in analyzing them from
different process perspectives (e.g. to get ProcessRole for the Activity: x, or Steps
owned by the Activity: y, how many WorkProducts are used by the WorkDefinition: z,
and so on).
 Reflection: Reflection is about whether SPEM1.1 supports process models

evolution (static or dynamic) or not. In fact, SPEM1.1 doesn't provide mechanisms
for dynamic evolution of process models. Static evolution is offered by manipulating
process models outside execution-time.
 Multiple conceptual perspectives/views: Another considerable advantage for

SPEM is that is defined both as a metamodel and as a UML profile, which allows

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 25

SPEM modelers to use the UML as a concrete notation. Thus, SPEM both defines
modelling capacities dedicated to the software process domain, and gains the benefit
of the expressiveness of UML. For example, Use Case modelling, which is sometimes
used for modelling processes, is not defined as a specific SPEM facility, but can be
inherited from UML. Other UML diagrams i.e., Class, Package, Sequence, State chart
and Activity diagrams can be used by SPEM1.1 with some restrictions. For instance,
SPEM1.1 allows the use of UML Sequence diagrams to illustrate interaction patterns
among SPEM model element instances with the restriction that only stick arrowheads
should be used [34]. Table 2 summarizes the result of the evaluation of SPEM1.1 with
respect to basic PML requirements.

Basic PML
Requirements SPEM1.1

Formality -Lacks of a precise semantic of some elements
(Step, ProcessPerformer…).

-Lacks of some process model elements (Human,
Tool and Evolution Support);

-WorkProducts are used as parameters of Activities
and not of Steps(useless for process automation)

-Impossibility of defining explicit WorkProducts
properties;
-Lacks of human interactions and decision points;

Expressiveness

-Lacks of some features on process elements in
order to capture process metrics, exceptions.

Understandability -Good. Uses UML as a notation
Abstraction -Good. As an OO PML, SPEM1.1 offers

Generalization/Specialization mechanism to deal
with Abstraction.

Modularization -Lacks of ProcessComponent compositions. Need
of a Unification mechanism.

Executability -Major Lack. SPEM1.1 models are not executable.
It was outside the scope of the specification.

Analyzability -Good. Possibility to manipulate process models
and to analyze them thanks to MOF repositories.

Reflection -Lack
Multiple conceptual
perspectives/views

-Good. Thanks to the possibility of using UML
diagrams as SPEM1.1 is a UML profile.

Table 2. Evaluation of SPEM1.1 with respect to basic requirements of PMLs.

As we can notice, SPEM1.1 suffers from several lacks at different levels of PML
requirements. Principal ones are: Formality, Expressiveness, Modularization,
Executability and Reflection, whereas it has serious advantages in Understandability,
Abstraction, Analyzability and Multiple conceptual perspectives/views.

In the next section we introduce our solution and show how it overcomes these lacks.

26 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

4 UML4SPM: A UML2.0-Based Metamodel for Software
Process Modelling

As intent to overcome SPEM1.1 limitations, our proposition for modelling software
processes comes in form of a MOF-compliant metamodel named: UML4SPM. It
takes advantages of the expressiveness of UML2.0 by extending a subset of its
elements suitable for process modelling. By adopting UML2.0 as a basis of our
metamodel, we will take advantage of:
o The expressiveness of the new UML2.0 for modelling executable action

semantics within activities and in orchestring them;
o The fact that UML is currently the most widely used modeling language in the

industry;
o Tool supports and facilities;
o Notations and diagrams offered by the standard ;
o Easier adoption by UML and SPEM1.1modelers;

4.1 Metamodel Presentation

As in SPEM1.1, UML4SPM comes in form of package hierarchies. The outermost
level contains two packages: the SPEM_Foundation package and the
SPEM_Extensions package (see figure 2).

The SPEM_Foundation package contains all UML2.0 packages required as a basis for
defining software process models. Main ones relate to Activities, Actions, Behavior
and Kernel packages. The SPEM_Extensions package holds packages that extend
UML2.0 and add the constructs and semantics required for software process
modelling i.e., the ProcessStructure package and the WorkProducts package. Figure 3
point out how concepts of both packages are interconnected. It gives a global
overview of UML4SPM Lighted boxes of the figure represent UML2.0 classes.
Shaded boxes represent those we specified and that inherit UML2.0 classes. We start
the description of the metamodel by SPEM_Extensions packages.

Process Structure Package
The ProcessStructure package is the core of UML4SPM. Its main class is the Process
class (figure 3). A Process inherits form UML2.0 BehavioredClassifier. A
BehavioredClassifier is a Classifier that has Behavior specifications defined in its
namespace. One of these may specify the classifier's behavior itself which will be
invoked when an instance of the BehavioredClassifier is created. One advantage is
that the Process's behavior can be represented by state machines; this adds more
control on the Process lifecycle. Another advantage, being a Classifier, a Process can
be categorized and can own (encapsulate) other Classifiers such as WorkProducts as
well as ActivityPerformer on these WorkProducts. A Process has a name and is
governed by a Lifecycle. It is composed of SoftwareActivities, which extends the
UML2.0 Activity. A Process may be defined by a meta-process thanks to the
metaProcAssoc association. A SoftwareActivity may be an Activity or a Phase
depending on the value of the Kind attribute.

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 27

Figure 2. UML4SPM Package hierarchies

As mentioned previously, we need to have some features within activity descriptions
that help in monitoring and in getting metrics on development processes. Thus, we
define a new property named weigh within SoftwareActivity.
It represents its importance in the development process (e.g. collecting user's
requirements = 30%) and a TimeLimit class linked to the SoftwareActivity class with
the starts at, ends at associations and witch represents time estimations defined by the
team. Based on these metrics, project managers may affect more time and resources to
Activities having a high weight. A SoftwareActivity contains Actions. An Action takes
a set of inputs and converts them into a set of outputs, though either or both sets may
be empty. Input to, respectively, output from, an Action is a typed element. It
represents the Pin of the Action. A Pin is typed by a Classifier. A SoftwareActivity has
one or more ActivityPerformer who are in charge of the SoftwareActivity and more
particularly of Actions owned by it. An ActivityPerformer can be a ResponsibleRole
or a SoftwareTool (i.e. compilers, model transformation engines…). A Respon-
sibleRole describes the rights and responsibilities of the Human who will be in charge
of the Activity. A Human may be an agent or a team; it has a name, a skill(s) and an

SPEM_Extensions

ProcessStructure
<<metamodel>>

WorkProducts
<<metamodel>>

<<import>>

SPEM_Foundation

<<merge>>

BasicActivities
<<metamodel>>

Communications
<<metamodel>>

CompleteActions
<<metamodel>>

IntermediateActions
<<metamodel>>

Kernel
<<metamodel>>

BasicBehaviors
<<metamodel>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

CompleteActivities
<<metamodel>>CompleteStructuredActivities

<<metamodel>>

ExtraStructuredA
ctivities

<<metamodel>>

IntermediateActivities
<<metamodel>>

StructuredActivities
<<metamodel>>

FundamentalActivities
<<metamodel>>

<<import>>

<<merge>>

<<merge>>

<<merge>>

<<import>>

<<merge>>

<<merge>>

BasicActions

<<import>>

<<import>>

<<import>>

<<merge>>

<<merge>>

28 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

authority. Actions consume and produce WorkProducts. The relation between an
Action and WorkProducts it handles is made through the fact that WorkProducts are
Classifiers and Inputs and Outputs of an Action have a type which is specified by a
Classifier too. This would allow Actions to manipulate WorkProducts as easily as
calling a method while passing it parameters in usual OO programming languages.

WorkProducts Package
A WorkProduct is the specification of a physical piece of information that is
produced, consumed, or modified by a software process. In UML4SPM, we decide to
add a new property to the WorkProduct class, the resourceIdentifier property (figure
4). It represents a unique identifier of the WorkProduct and helps in its localization.
Then, during process executions, it should be up to a naming service to resolve the
identifier in order to locate the WorkProduct. WorkProduct is specified as a concrete
class. It may have Properties defined by a name and a value. This adds more
flexibility (see figure 4). Thus, developers could specify new WorkProducts with
specific properties depending on their needs. The modification of a WorkProduct may
affect one or more WorkProducts. This property is defined thanks to the impacts
association.

Pin
(from BasicActions)

Classifier
(from Kernel)

SoftwareActivityKind
Phase : String
Activity : String

<<enumeration>>

BehavioredClassifier
(from BasicBehaviors)

Behavior
(f rom BasicBehav iors)

*0..1
+ownedBehavior

*

{subsets ownedMember}+context

0..1

0..1
0..1

0..1

+classifierBehavior
0..1

{subsets ownedBehavior}

SoftwareTool
name : String
isBatch : Boolean = true

Human
name : String
authority : String
skill : String

Interaction

ResponsibleRole
responsability : String
Rights : String

0..*

1..*

+agent 0..*

+Role 1..*1
+involves

1

TimeLimit

SoftwareActivity
Kind : SoftwareActivityKind
weight : String

0..1
+endsAt

0..1 0..1
+startAt

0..1

Lifecycle
<<reference>> / governed...
LifecycleKind : String

Process

0..n

1
+processActivity

0..n
{ordered}

1

1
+gouvernedLifecycle

1

1

1

+defineProcess 1
metaProcAssoc

+metaprocess

1

TypedElement
(from Kernel)

Classifier
(from Kernel)

1

+type

1

Property
propertyName : String
value : String

WorkProduct

isDeliverable : Boolean
resourceIdentifier : String

(from WorkProducts)

0..n +property0..n

0..n
+impacts

0..n

ActivityPerformer

0..*

0..1

+workProduct
0..*

+ActivityPerformer

0..1

Activity
(f rom IntermediateActiv it ies)

0..*

0..*

+performer
0..*

+activity

0..*

InputPin
(f rom BasicActions)

OutputPin
(f rom BasicActions)

ActivityNode
(from IntermediateActivities)

0..1

*

+activity
0..1{filters owner}

+node *
{filters ownedElement}

Action

effect : String

*

1

+inputPin*
{filters input}

+action

1

{filters owner}

*

1

+output
*

{ordered, union
subsets ownedElement}

+action

1

{filters owner}

0..1

0..*

0..1

+action
0..*

{ordered filters node}

Figure 3. A global overview of UML4SPM

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 29

Figure 4. The WorkProducts package

Additional Actions
As pointed out earlier, a software development process can’t be fully automated.
Developer involvements are necessary during development phases. Considering this
need of human interactions, we add the concept of Interaction. An Interaction is an
Action. It involves a ResponsibleRole and is associated with a Guide in order to help
ResponsibleRole in taking decisions and guides its design choices (see above figure
3). Finally, having in mind that processes may need some tool facilities during
execution-time, we decide to extend the Actions model. The CallToolServiceAction is
a CallAction (see figure 5). It has InputPins which represent the arguments of the call
and OutputPins as call results. We make the assumption that a ToolService has a
name and a set of typed parameters. One constrain on the CallToolServiceAction,
would be that CallToolServiceAction arguments fits to ToolService parameters (in
number and type). The model of the tool (list of services, parameters of services,
binding mode…) is outside the scope of this work [3].

Figure 5. The CallToolServiceAction

4.2 Comparison of UML4SPM with Respect to Basic Process Model Elements

Table 3 compares UML4SPM elements with basic process model elements introduced
in Section 2. The concept of Tool (SoftwareTool) which will be in charge of

WorkProduct

isDeliverable : Boolean
localisationUri : String

0..n

+impacts

0..n

Property
propertyName : String
value : String

0..n
+property
0..n

Classifier
(from Kernel)

OutputPin
(from BasicActivities)

CallAction*

+result

*

{ordered,
subsets output}

InvocationAction
ValueSpecification

(from Kernel)
*

+argument

*

{ordered,
subsets input}

ToolService
name : String

CallToolServiceAction
isSynchronous : Boolean = false

30 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

performing activities as well as Human that may undertake roles within the software
process can now be expressed in process models.

Table 3. Comparison of primary process elements with UML4SPM

4.3 Evaluation of UML4SPM Towards Primary PMLs Requirements

In this section, we only address requirements that were lacking by SPEM1.1. As a
first stage, we particularly focus on Expressiveness, Modularization, Executability
and Formality. Reflection will be addressed in a further work. Requirements for
Understandability, Abstraction, Analyzability and Multiple conceptual
perspectives/views are taking into account since UML4SPM, as SPEM1.1, is UML
based (cf. Section 3.3).
 Expressiveness: In SPEM1.1 the ability to orchestrate process Activities and

Steps was ensured thanks to the Precedes dependency. Kinds of precedence were:
start-start, finish-start or finish-finish. UML2.0 Activities offer three mechanisms for
the orchestration of Activities as well as Actions owned by these Activities:
- The CallBehaviorAction overcomes Activity orchestration limitations. It is a
callAction that invokes a behavior directly rather than invoking a behavioral feature
that, in turn, results in the invocation of that behavior. Activity being a Behavior,
therefore, an Activity could be invocated while passing typed parameters to be treated
by Actions owned by the Activity. This adds more flexibility for Activity
orchestrations (figure 6).
- Object flow connects object nodes. It expresses the fact that the output of an action
could be used like an input of another one.
- Control flow: In the absence of an explicit object flow between actions, a control
flow indicates an ordering constraint between a predecessor action and a successor
action. It explicitly connects Actions to indicate that the target action cannot start until
the source action finishes.
- Concerning flexibility, decision points are not taken into account by SPEM1.1.
UML2.0 offers the possibility to specify decision points thanks to DecisionNodes. A
Decision Node is a Control Node that chooses between outgoing flows in order to
invoke the appropriate behavior. Guards are fixed on those flows to drive behavior
invocations. In order to express concurrency as well as synchronization, UML2.0
defines respectively, ForkNode and JoinNode. A ForkNode splits a flow into multiple
concurrent flows while a JoinNode synchronizes them.

Basic Process
model Elements UML4SPM

Activity SoftwareActivity with Kind attribute=
Activity

Product WorkProduct
(Model/Guide/Library/Documentation)

Role ResponsibleRole
Human Human
Tool SoftwareTool
Evolution
support

Only static evolution. Dynamic
evolution as further work

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 31

Figure 6. The CallBehaviorAction for Activity orchestrations

- The UML2.0 Activity metamodel defines seven levels with increasing
expressiveness: FundamentalActivities, BasicActivities, IntermediateActivities,
CompleteActivities, StructuredActivities, CompleteStructured-Activities, and
ExtraStructuredActivities. The fundamental level defines activities as containing
nodes, which includes actions. The second level i.e. IntermediateActivities provides
the way to specify concurrency and synchronization through ControlNodes
(ForkNode, JoinNode).

This would allow activities to be launched concurrently or for an activity before
starting, to wait for other activity completions. The StructuredActivities level supports
modelling of traditional structured programming constructs, such as loops and
conditionals, as an addition to the basic non-structured activity sequencing.
- In UML2.0 Activity metamodel, another facility is offered to process modelers. It is
about how to support exception handling during Action executions. This is ensured
within the (“ExtraStructuredActivities”) level. As in programming languages, an
Action can be handled by exception handlers.
- Finally, the lack of some process model elements (tool, human), of human
interaction, of explicit WorkProduct and features for process metrics was addressed
while defining UML4SPM (see Section 4.1).
 Modularization: When SPEM1.1 offers process component compositions

through unification procedure, UML2.0 provides a more powerful way to deal with
that.
Let’s have two Process Components PC1 and PC2 (see figure 7). PC1 is in charge to
realize a UML class diagram. PC2 has to transform a UML Class Diagram to a
Relational Database Diagram. These two processes were specified separately, so
WorkProducts and roles might have different names. If a process modeler decides to

OutputPin
(from BasicActivities)

CallAction

*

+result

*

{ordered,
subsets output}

Behavior
(from BasicBehaviors)

CallBehaviorAction

isSynchronous : Boolean = true

1

*

+behavior 1

*

InvocationAction

Operation
(from Kernel)

CallOperationAction

isSynchronous : Boolean = true
*

1

*

+operation 1

Action
(from BasicActivities)

Activity
(from BasicBehaviors)

ValueSpecification
(from Kernel)

0..1

1

0..1

+target

1
{subsets input}

*
+argument

*

{ordered,
subsets input}

32 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

compose these two process components, he will have to unify output-WorkProducts
from PC1(i.e., ClassD) in order to be in conformity with inputs-WorkProducts of
PC2(i.e., UmlCD). Likewise, he has to explicitly link activities from PC2 within PC1.
Because of these limitations, unification procedure can’t be automated.

PC1: Class Diagram Process Component

PC2: Class DiagramToRDBTransformation Process Component

Figure 7. Two SPEM1.1 process components

Considering that a UML2.0 Activity can define an internally consistent process,
Activities can be seen as a Process Components. The UML2.0 CallBehaviorAction
allows to Activities to be interconnected in a practical way. The advantage of this
construct is that Activity behaviors are invoked as it is done for methods in classical
programming languages. Making this way, modelers don’t have to carry out the
unification of PC1 outputs with PC2 inputs. In Java for instance, parameters of a
method call can have another name in the operation signature. CallBehaviorAction
being a CallAction, casting of parameters is done implicitly when activities are

identify Objects :
Step

identify class objects : Step

designer : ProcessRole

.... : Step

Model :
WorkProduct

Note: [Output
parameter]

ClassDiag :
ActivityParameter

type

ClassDiagramPC :
ProcessComponent

Class Diagram Elaboration :
Activity

parameter

step

step

step

assistant

ownedElement

ownedElement

ownedElement

ownedElement

Class Diagram To RDB transformation : Activity

UML Model : WorkProduct

load Src & Tgt Metamodels : Step
load model : Step

Note: [input
parameter]

UmlCD :
ActivityParameter

type

Transformation designer :
ProcessRole

parameter

step
step

assistant

.... : Step

step

cdTOrdbPC :
ProcessComponent

ownedElement

ownedElement

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 33

invoked thanks to the abstraction given by InputPins and OutputPins concepts. The
previous example is used in order to demonstrate how CallBehaviorAction allows
process component compositions see figure 8.Shaded boxes of the figure represent the
“class diagram realization” Activity. In the figure we can see how output of an Action
(i.e., a ClassDiagram) can be used as an input of CallBehaviorAction. The lighted
boxes of the figure represent “ClassDiagram-ToRDBTransformation” Activity. The
two activities are interconnected thanks to ActivityParameterNode and no unification
procedure is needed. Then, process component compositions (Activities composition
in this case) can be automated. They can even be specified at execution-time. This
offers more flexibility and spares many efforts to process modelers.

Figure 8. Activity interconnections thanks to CallBehaviorAction.

 Executability: In UML2.0, the intent of Activity construct has changed fairly
radically from UML1.x. Activities are not only used to model processes, they also
now have some features necessary to support the automation of these processes [36].
Comparing the UML2.0 Activity and Action constructs with those of SPEM1.1
WorkDefinition (more particularly the Activity) and Step respectively, we found some
significant variations. While an activity Step in SPEM1.1 is just defined by a name
(e.g. Check for model consistency), UML2.0 offers the possibility to specify inputs of
the Action, its effect on these inputs and the outputs resulting of the action execution.
We illustrate this in an example in figure 9. CallOperationAction is an Action that
transmits an operation call request to the target object, where it may cause the
invocation of associated behavior. As additional features, CallOperationAction

ClassDiagramElaboration : Activity

ntify Objects : Action

identify object classes : Action

.... : Action

CallModelTransformationActivity :
CallBehaviorAction

ClassDiagram :
OutputPin

CD : Model

ClassDiagramToRDBTra
nsformation : Activity

 : ActivityParameterNode

 : Parameter
CD_UML :

InputPin

output

type

parameter

type
type

Load SRC & TRG
metamodels : Action

Load source
Model : Action

.. : Action

behavior

action

action

action

action

node

action

action

action

34 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

specifies the operation to be invoked by the action execution as well as the target
object to which the request is sent. Besides, UML2.0 offers four Actions packages
(BasicActions, IntermediateActions, Structured Actions and CompleteActions) in
order to express most semantic of executable actions that we can find in programming
languages (CallAction, LinkAction, CreateObjectAction, StructuralFeatureAction,
ValueSepcification-Action and so on). Thus, the specification of software process
models with executable action semantics is rendered possible. By the same way, the
rigorous semantics given to Actions within the new UML2.0 standard tends to be
more precise than previous versions of UML. Indeed, the Activity and Action
constructs in UML2.0 are more sophisticated than Activity and Step in SPEM1.1 This
facility makes possible the automation of mapping software process models towards
programming languages or workflow formalisms in order to execute them. Some
works was already done as intent to formalize Activities within UML2.0 [13] [36].
Furthermore, the OMG issues a new RFP (Request For Proposal) named: Executable
UML Foundation [33]. The objective of this RFP is the definition of a
computationally complete and compact subset of UML 2.0 to be known as
“Executable UML Foundation”, along with a full specification of the execution
semantics of this subset. “Computationally complete” means that the subset shall be
sufficiently expressive to allow definition of models that can be executed on a
computer either through interpretation or as equivalent computer programs generated
from the models through some kind of automated transfor-mations. We believe that
all these efforts will reduce the lack of Formality in SPEM1.1.

Figure 9. Instance of CallOperationAction

Table 4 summarizes the result of comparing UML4SPM with basic PML
requirements. As we can notice, our metamodel overcomes major SPEM1.1 lacks
requirements of Understan-dability, Abstraction, Analyzability and Multiple
conceptual perspectives/views are fulfilled as UML4SPM is UML based.

IncClassDiagram : InputPin

ConsClassDiagram : OutputPin

Class Diagram Realization : Activity

UML Class Diagram : Model
+ isUMLCompliant : Boolean = tr...
+ uriParentModel : String = null

typed

typed

CallClassDConsistencyOp : CallOperationAction

composedOf

CheckModelConsistency : Operation

output

input
operation

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 35

Table 4. Comparison of UML4SPM with PML requirements and with SPEM1.1 lacks

5 Related Work

In this Section, we only deal with existing approaches that extend the UML meta-
model for software process modelling. Taxonomy of recent PMLs is given in [39]. In
PROMENADE [12], a UML metamodel is extended to allow modeling of both the
static and the dynamic aspects of software processes. The static aspect of software
processes is given by means of a conceptual model. It defines the elements that
participate in a software PMs and which extend UML ones. The dynamic aspect of
software processes consists of the way in which model is enacted (e.g. the ordering of
tasks). PROMENADE introduced both proactive control-flow (e.g., enactment of
some actions according to pre-establish plan) and reactive control-flow (e.g.,
enactment of some actions in response to events). Authors were induced to introduce
these mechanisms in order to deal with the lack of expressiveness in UML1.4 activity
diagrams [31]. Nevertheless, PROMENADE does not provide the possibility to
specify Tasks with executable semantics. It lacks of evolution support as well as of
the Interaction element (i.e., human intervention) which is primordial due to the
variability and no-rigidity nature of software processes.

[18] Presents an approach which describes in UML, the dynamic part of the model
using class diagrams with stereotyped associations for showing the control and data
flow. The metamodel is defined by attaching stereotypes to model elements.
However, stereotypes and other UML extension mechanisms have proven several

Basic PML
Requirements SPEM1.1 UML4SPM

Formality -Lacks of a precise semantic of some
elements (e.g. Step, ProcessPerformer).

-Formality provided thanks to the precise and
executable semantics of Actions within UML2.0

Expressiveness -Lacks of some process model elements
(Human, Tool and Evolution Support);
-Lacks of efficient mechanism for Activity
and Step orchestrations;
-WorkProducts are used as parameters of
Activties and not of Steps(useless for
process automation);
-Lacks of explicit WorkProducts (models,
libraries…);

-Lacks of human interactions and decision
points

-Lacks of some features on process
elements in order to capture process
metrics, exceptions;

-SoftwareTool and Human elements provided to
overcome this lack
-Three mechanisms for Action and Activity
orchestrations: Control Flow, Object Flow and the
CallBeaviorAction.
- WorkProducts are used as typed parameters by
Actions;
-Definition of explicit WorkProduct (Model,
Guide, Library and Documentation);
urilLocalization attribute for WorkProducts;
WorkProduct as a concrete class with the
possibility to specify new properties.
- Class Interaction defined for human decisions as
well as Decision, Fork and Join Nodes thanks to
UML2.0
- TimeLimit, SoftwareActivity weight for process
metrics; the possibility to handle exceptions
thanks to ExceptionHandler in
ExtraStructuredActivities

Modularization -Lacks of ProcessComponent compositions
mechanism. Need of a Unification
mechanism.

-Process Component composition/integration
thanks to the CallBehaviorAction from/to
Activities

Executability -SPEM1.1 models are not executable. It
was outside the scope of the specification.

-Use/extends of Activities and Actions packages of
UML2.0 makes possible the specification of
executable software process models

Reflection -Lacks - Will be addressed in a further work.

36 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

limitations in order to define a metamodel. A well-known is the lack of standard
semantics. As in [18], [22] proposes the use of the stereotype mechanism of UML to
extend activity diagrams in the context of business process modelling. The new
diagrams can express the required activity properties (computer support to the
activity, duration...) but no new control paradigm is provided. In [17], authors select
class and state diagrams as main constructs to describe processes. Tasks are
represented as objects that can be created and manipulated as needed. Activities
(tasks) are represented as "task packages" which encapsulate the interface of a task
(i.e., offered behavior) and "realization packages" which define how the task is
realized in terms of other lower level tasks. In the corresponding class diagrams,
stereotypes are used to represent the input and output of each task, as well as the flow
of control and data between tasks which is missing in UML1.4 activity diagrams. The
internal behavior of tasks is described by a predetermined and un-modifiable state
diagram. Compared to previous approaches, this one is clearly more focused on
adapting UML to the capabilities and semantics of the virtual machine that will be
used to enact the process. Therefore, the process is described at a low level of
abstraction. However, it is not apparent how roles that participate in the process are
described and how they are associated to the various activities to be executed, or how
possible parallelisms between activities, synchronizations and decision points are
expressed. This, together with the replacement of activity diagrams with massively
stereotyped class diagrams makes the resulting process description less natural for
UML users. In [8] Di Nitto et at., propose a formalization of the semantics of the
UML subset and present the translation of UML process models into code, which can
be enacted in a process-centered environment. However, as in PROMENADE,
authors did not consider modeling the interface with human agents and/or the
development tools used in the process. Likewise, no semantics for executable actions
is defined in PM

6 Conclusion

One important challenge in the area of software process modelling is the development
of a standard PML. As principal requirements, the PML has to promote
expressiveness, understandability, and executability. In this paper, we introduced a
UML2.0-based metamodel for software process modelling named: UML4SPM. It
extends a subset of UML2.0 by adding constructs and semantics required for defining
process models. We compared it with primary PMLs requirements. UML4SPM has
proven that it fulfils all of them except Reflection, which will be addressed in a further
work. As a result, it allows the specification of understandable process models with
executable action semantics. Another contribution of this work was the identification
of SPEM1.1 limitations and advantages which may help in the next revision of the
standard, namely: SPEM2.0. One perspectives of this work is to address the
Reflection requirement in UML4SPM. Then, a case study will be elaborated and
evaluated within the MODELWARE project [25], which this work is part of. We will
also investigate the possible use of a UML virtual machine in order to execute
UML4SPM process models.

UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling 37

7 References

[1] Ambriola V., Conradi R. and Fuggetta A. “Experiences and Issues in Building and Using
Process centered Software Engineering Environments”, Internal draft paper, Politecnico di
Milano, September 1994.
[2] ANSI/IEEE Std 1012-1986, "IEEE Standard for Software Verification and Validation
Plans", The Institute of Electrical and Electronics Engineers, Inc., February 10, 1987.
[3] Blanc X., Gervais M.P., and Sriplakich P. "Model Bus: Towards the Interoperability of
Modelling Tools", in Proc. of the Model Driven Architecture: Foundations and Applications
(MDAFA 2004), Linköping University, Sweden, June 2004.
[4] Conradi R., Fernström C., Fuggetta A. and Snowdon R. "Towards a Reference Framework
for Process Concepts", in Proc. Of the 2nd European Workshop on Software Process
Technology (EWSPT’92), Trondheim, Norway, September 1992, LNCS Vol. 635.
[5] Conradi R., Liu C. "Process Modelling Languages: One or Many?", in Proc. of the 4th
European Workshop on Software Process Technology (EWSPT'95), Noordwijkerhout, The
Netherlands, April 1995, LNCS, Vol. 913.
[6] Curtis B., Kellner M., and Over J. "Process Modelling", Communications of the ACM Vol.
35, Num. 9, September 1992.
[7] Derniame J.C., Kaba B.A. and Wastell D. "Process Modelling Languages": in "Software
Process: Principles, Methodology, and Technology", LNCS Vol. 1500/1999.
[8] Di Nitto E. et at. "Deriving executable process descriptions from UML", in Proc. of the 24th
Inter. Conf. on Software Engineering (ICSE'02), Orlando, Florida 2002, ACM Press.
[9] Evans A.S., S.Kent. "Meta-modelling semantics of UML: the pUML approach", in Proc. of
the 2nd Inter. Conf. on the Unified Modelling Language, 1999, Colorado, LNCS Vol. 1723.
[10] Feiler P.H., Humphrey Watts. S. “Software process development and enactment”, in Proc.
of 2nd Inter. Conf. on the Software Process, Berlin, 1993, IEEE Computer Society Press.
[11] FIPS PUB 132, "Guideline for Software Verification and Validation Plans", U.S.
Department of Commerce/National Bureau of Standards (U.S.), November 19, 1987.
[12] Franch X., Ribó J. M. "Using UML for Modelling the Static Part of a Software Process",
in Proc. of UML ’99, Forth Collins CO, USA, LNCS, Vol.1723.
[13] Hausmann J.H., Störrle H., "Towards a Formal Semantics of UML 2.0 Activities", in Proc.
of the German Software Engineering Conference (SE'05).
[14] Humphrey Watts S. "Process Models in Software Engineering", Encyclopedia of Software
Engineering, 2nd Edition, John Wiley and Sons, Inc, New York, December 2001.
[15] Humphrey Watts S. "The Software Engineering Process: Definition and Scope", in Proc.
of the 4th International Software Process Workshop on Representing and Enacting the Software
Process, Devon, United Kingdom, 1989.
[16] Jaccheri M.L., Baldi M., Divitini M., "Evaluating the Requirements for Software Process
Modelling Languages and Systems", in Proc. of Process support for Distributed Team-based
Software Development (PDTSD'99), Orlando, Florida, USA, August 1999.
[17] Jager D., Schleicher A., and Westfechtel B. "Using UML for Software Process Modelling",
in Proc. of ESEC/FSE'99,Toulouse, France, LNCS Vol.1687, September 1999.
[18] Jäger D., Schleicher A., Westfechtel B." Object-Oriented Software Process Modeling", in
the Proc. of the 7th European Software Engineering Conference (ESEC), Toulouse, September
1999.
[19] JMI1.0, "Java Metadata Interface Specification", Java Community process document
JSR040, June 2002, at http://www.jcp.org.
[20] Kent S. "Model Driven Engineering", in Proc. of the 3rd Inter. Conf. on Formal Method
(IFM 2002), Turku, Finland, May 2002, LNCS Vol. 2335.

38 Reda Bendraou, Marie-Pierre Gervais, and Xavier Blanc

[21] Lonchamp J. “A structured conceptual and terminological framework for software process
engineering”, in Proc. of the 2nd Inter.l Conf. on Software Process, Berlin, 1993, IEEE
Computer Society Press.
[22] McLeod, G. "Extending UML for Entreprise and Business Process Modeling", in Proc. of
the UML 98’ Workshop, Mulhouse, France (1998).
[23] MDA. "Model Driven Architecture (MDA)", OMG TC document ormsc/2001-07-01, July
2001, at http://www.omg.org.
[24] Mellor S. J., Balcer M. J., Balcer M. "Executable UML: A Foundation for Model-Driven
Architecture", Pearson Education, July 2002.
[25] MODELWARE Project, at http://www.modelware-ist.org
[26] MOF 1.4. "Meta-Object Facility", OMG document formal/2002-04-03, April 2002, at
http://www.omg.org.
[27] Montangero C., Derniame J.C., and Kaba B.A., Warboys B. "The software process:
Modelling and technology", LNCS GmbH. Vol. 1500/1999.
[28] Osterweil L., "Software Processes Are Software Too" in Proc. of the 9th Inter. Conf. on
Software Engineering (ICSE'9), New York, 1987, ACM Press.
[29] Perry D. E., Editor, Proc. of the 5th Inter. Software Process Workshop (ISPW’5),
Kennebunkport, Maine, USA, October 1989, IEEE Computer Society Press.
[30] Raistrick C., Francis P. and Wright J. "Model Driven Architecture With Executable
UML", Cambridge University Press, March 2004.
[31] Ribó J. M., Franch X. " A Precedence-based Approach for Proactive Control in Software
Process Modelling", in Proc. of the Conf. on Software Engineering and Knowledge
Engineering (SEKE-2002), Ischia (Italy), ACM Press, September 2002.
[32] Riehle D., et at. "The Architecture of a UML Virtual Machine", n Proc. of the 2001 Conf.
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '01), ACM
Press, 2001.
[33] Semantics of a Foundational Subset for Executable UML Models RFP, OMG document
ad/05-04-02, April 2005, at: http://www.omg.org/docs/ad/05-04-02.pdf, page last visit June 17,
2005
[34] SPEM1.1, “Software Process Engineering Metamodel”, OMG document formal/02-11/14,
November 2002, at http://www.omg.org.
[35] SPEM2.0 RFP, “Software Process Engineering Metamodel”, OMG document ad/2004-
11-04, November 2004, at http://www.omg.org/docs/ad/04-11-04.pdf, page last visit April 4,
2005.
[36] Störrle H. "Semantics of UML2.0 Activities with Data-Flow", in Proc. of the Visual
Languages and Formal Methods Workshop (VLFM'04), Rome, Italy, Septembre 2004.
[37] UML2.0 Superstructure, "Unified Modelling Language", adopted specification, OMG
document ptc/04-10-02, October 2004, at http://www.omg.org.
[38] UML1.4, "Unified Modelling Language", OMG document formal/01-09-67, September
2001, at http://www.omg.org.
[39] Zameli, K. Z., Lee, P.A. "Taxonomy of Process Modelling Languages", in Proc. of the
ACS/IEEE Inter. Conf. on Computer Systems and Applications (AICCSA'01) Beirut, Lebanon,
June 2001.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 39-53, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Realizing Model Driven Security for
Inter-organizational Workflows with WS-CDL and

 UML 2.0
Bringing Web Services, Security and UML Together

Michael Hafner, Ruth Breu

Universität Innsbruck, Institut für Informatik, Techniker Straße 21a,
A – 6020 Innsbruck

{m.hafner, ruth.breu}@uibk.ac.at

Abstract. The growing popularity of standards related to Web services, Web
services security and workflows boosted the implementation of powerful
infrastructures supporting interoperability for inter-organizational workflows.
Nevertheless, the realization of such workflows is a very complex task, in many
aspects still bound to low-level technical knowledge and error-prone. We
provide a framework for the realization and the management of security-critical
workflows based on the paradigm of Model Driven Security. The framework
complies with a hierarchical stack of Web services specifications and related
technologies. In this paper, we introduce a UML based approach for the
modeling of security-critical inter-organizational workflows and map it to the
Web Services Choreography Description Language. Our approach is based on a
set of security patterns, which are integrated into UML class and activity
diagrams. A tool translates the models into executable artifacts configuring a
reference architecture based on Web services.

1 Introduction

Collaboration protocols or choreographies specify the communication processes
between collaborating partners. Modern businesses and governments implement such
processes based on Web services centric architectures. Although Web services
security standards, building on SOAP, WSDL, and UDDI provide some guidance for
the integration of security into B2B applications and workflows, they remain very
close to the technical level and hence almost unintelligible to the domain expert [1].

Even in case of a satisfying implementation of security requirements, the costs of
continually adapting workflows to match changing business requirements are very
often too high. The workflows remain static. Because of the low level of abstraction,
security requirements are often not aligned to the business goals.

Model driven software development is particularly suited to cases, where a
plethora of standards and complex technologies require highly specialized technical
knowledge for the implementation. Relying on Model Driven Approaches that
integrate an array of well-known security protocols, best practices, patterns, and
algorithms with formally proven correctness is a matter of cost-effectiveness. The

40 Michael Hafner and Ruth Breu

automatic generation of executable software for target architectures allows for an
agile approach to the implementation and a responsive high-level management of
secure inter-organizational workflows.

We present a UML based modeling language that supports the formal specification
of secure inter-organizational workflows in a peer-to-peer environment. Our approach
offers a standardized but intuitive means to model graphically collaboration protocols
with additional security semantics. As we provide an extensible meta-model, the
models can be enriched with workflow and security semantics. As the integration of
widespread standards fosters interoperability, we show how the models can
systematically be mapped to a choreography standard like the Web Services
Choreography Description language (WS-CDL) [2]. The actors of an inter-
organizational process can take the formal WS-CDL choreography definition to check
the compliance of their internal processes to the requirements of the choreography, to
generate public interfaces or to control correct proceeding during run-time.

Section 2 provides some background information on Web services standards our
work is based upon. We sketch the problem context by introducing an e-government
case study and give an overview on related work. In section 3, we present our UML-
based framework and map it to the W3C standard WS-CDL. Section 4 gives an
outlook and draws a brief conclusion.

2 Background

2.1 Technologies and Standards

Model Driven Architecture. The growing popularity of standards related to Web
services, workflows and security fosters the implementation of powerful
infrastructures supporting interoperability for inter-organizational workflows. The
paradigm of Model Driven Architecture (MDA) makes it possible to realize their full
potential. The OMG [3] is promoting the approach of Model Driven Architecture as a
means for the reduction of development costs and the improvement of application
quality. MDA defines two types of models, a Platform Independent Model (PIM), and
a Platform Specific Model (PSM). The PSM describes the system on its intended
platform (e.g. J2EE or .Net), whereas the PIM – specified using a well-defined
modelling language such as UML - captures the domain level knowledge and
abstracts from implementation details of the target PSM. Applying the MDA
approach means the transformation of a PIM into a PSM. Model Driven Security
Architectures (e.g. [4]) extend the MDA approach in the sense that the PIM integrates
security requirements and the PSM specifies the security infrastructure. Security
Requirements are mapped onto the platform.

Web Services Composition. Businesses provide value-added services through
composition of basic or elemental Web services using service composition languages.
Often the services are offered by different companies. A Web services composition
consists of multiple invocations of other Web services in a specific order. A
composition takes the form either of an orchestration or of a choreography. An
orchestration describes how Web services interact with each other at the message

Realizing Model Driven Security for Inter-organizational Workflows 41

level, including the business logic and the execution order of the interactions from the
viewpoint of the partner controlling the workflow execution. A choreography or a
business protocol describes the interaction between business partners in terms of the
sequence of messages that are exchanged in a “peer-to-peer” fashion. There is no
central control of workflow execution.

The Business Process Execution Language for Web Services (WS-BPEL) is an
XML-based language to compose workflows on top of atomic Web services [5]. It
provides mechanisms to define executable business processes and, with limitations,
abstract business protocols. BPML [7] is quite similar to WS-BPEL as it supports
Web services standards, but it is considered as semantically weaker.

 Collaboration protocols like WSCI [39], ebXML [8] and WS-CDL [2] provide the
means to specify distributed collaborations by offering a global view on collaborating
services. ebXML comprises a powerful set of standards for the specification of B2B
protocols but it is not compatible to the Web services concept [9].

Web Services Security. Currently a comprehensive set of Web services security
standards is emerging [6]. OASIS has proposed WS-Security, a security extension
built on top of the SOAP Protocol [10]. The extension uses the XML encryption and
signature mechanism to add security features to SOAP messages ([11], [12]). This
way, security mechanisms can be integrated into the header and the body of a SOAP
message, and be sent via any transport channel without compromising security.
Beside transport level security extensions, a variety of standards provides means to
manage and exchange security policies. XACML [13] is a standard to define access
control for resources in a system. Sun has proposed a specific profile for XACML –
called Web Services Policy Language - to define the reconcilement of access rights
between partners. The Security Assertion Markup Language [14] is a standard for the
exchange of security tokens (e.g. Certificates). WS-Policy [15] allows for the
definition of protocol level security requirements. WS-Security Policy [40] is a
complementary standard to WS-Policy and specifies how actors can assert to potential
partners their policies with respect to specific WS-Security mechanisms. WS-Trust
[41] enables token interoperability. It provides a request/response protocol for the
exchange, the issuance and the validation of security tokens by a trusted third party.

2.2 Problem Context

Our research efforts are driven by case studies in various industries. We illustrate our
methodology for the systematic design and realization of security-critical inter-
organizational workflows with a portion of a workflow-scenario drawn from the e-
government use case “Municipal Tax Collection” which describes the Web services
based interaction between a business agent (the Tax Advisor) and a public service
provider (the Municipality).

In Austria, wages paid to employees of an enterprise are subject to the municipal
tax. Corporations have to send an annual statement via their tax advisor to the
municipality, which in turn is responsible for collecting the tax by the end of March
of the following year. The municipality checks the declaration of the annual statement
and calculates the tax duties. As a result, a notification with the amount of tax duties
is sent to the tax advisor by mail.

42 Michael Hafner and Ruth Breu

We elaborated the case within the project SECTINO, a joint research project
between the research group Quality Engineering at the University of Innsbruck and
the Austrian Research Centre Seibersdorf. The project’s vision was defined as the
development of a framework supporting the systematic realization of e-government
related workflows with a special emphasis on security requirements. We specified the
project’s deliverables in terms of prototypical implementations of an MDA
framework in an industrial context. The case studies provide valuable practical
context for the definition of problems related to Model Driven Security, which are of
scientific interest. We identified five major topics of interest to our research agenda:

1. The modeling of distributed inter-organizational business processes
2. The integration of security requirements at an abstract model level
3. The transformation of the “virtual workflow” emerging out of the

collaboration between the actors to executable workflow stubs for the
distributed nodes

4. The transformation of the security requirements specified at the model
level into executable artifacts that configure the reference architecture

5. The specification of a component-based reference architecture that
provides the runtime environment based on Web services standards

In [21] and [38], we define the main model views and steps for the development of
security-critical inter-organizational business processes (topic 2). In [17] we extend
the concepts of Model Driven Architecture to provide Model Driven Security and we
provide a detailed description of model dependencies (topic 4). We present the
framework for the realization of security-critical workflows by applying it to an e-
government project in [16]. In [18] we specify a component-based security
architecture integrating several Web services security standards for the realization and
management of security-critical workflows (topic 5). We describe the mapping
between the models themselves and to the components of the target reference
architecture in [19] (topic 3).

In this paper, we describe a UML-based approach for the platform and standards
independent modeling of security-critical inter-organizational workflows, thereby
tackling the last open issue (topic 1). It takes into account the mapping to standards
for the modeling of collaboration protocols – like WS-CDL in our case – as well as
the mapping to the technologies of the target reference architecture, which we built on
Web services technologies (SOAP, WSDL, BPEL4WS, XACML, etc.).

2.3 Related Work

Workflow. A big community is currently working on issues related to inter-
organizational workflow management systems [24], [25], [26], [27], [28]. A number
of contributions discuss standards for specifying service choreographies (e.g., [9],
[42]) and propose formal foundations (e.g., [25], [48]). In [9] Bernauer et al. discuss
the semantic shortcomings of WSDL-based language concepts and analyze security
and workflow semantics related issues that arise when modeling B2B protocols. The
paper provides a methodical comparison of WSDL- and ebXML-based approaches.

Workflow Security. Security extensions for workflow management systems are
treated in [29], [30], [31] and [32] - although at a quite technical level. Some
contributions propose approaches for integrating security at different levels of

Realizing Model Driven Security for Inter-organizational Workflows 43

abstraction in the system development cycle, but the full potential of a model driven
approach, linking abstract domain-level models to their technical implementation, is
not yet exploited ([20], [21].

Model Driven Security. A model driven approach that is close to the idea of our
framework is [4]. It introduces the concept of Model Driven Security for a software
development process that allows for the integration of security requirements through
system models and supports the generation of security infrastructures. However, this
approach focuses exclusively on business logic, whereas we concentrate on inter-
organizational workflow management.

Tools. In [22] Mantell describes an implementation, where a local workflow is
modeled in a case-tool, exported via XMI-files to a development environment and
automatically translated into executable code for a BPEL-Engine based on Web
services [23]. Nevertheless, the approach does not provide any facilities for the
integration of security requirements at the modeling level nor does it support the
specification of global workflows by means of peer-to-peer interactions as suggested
by the concept of abstract processes in [5].

3 Modeling Inter-organizational Workflow Security with UML

In the following, we give an overview of the UML-based framework (Sect. 3.1). We
then focus on the Global Workflow Model, which models the collaboration protocol
and integrates the security requirements (Sect. 3.2). We map the generic, language
independent UML-framework to the WS-CDL, a language for the specification of
collaboration protocols (Sect. 3.3).

3.1 Model Views and Reference Architecture

Model Views. We define a workflow as a network of partners cooperating in a
controlled way by calling services and exchanging documents. Our approach is based
on two orthogonal views: the Interface View and the Workflow View (Figure 1a). The
latter is further divided into the Global Workflow Model (GWfM) specifying the
message exchange protocol between cooperating partners as well as additional
requirements related to security or quality of service and the Local Workflow Model
(LWfM) that describes an executable process. In practical terms, this means that the
partners agree on a particular workflow scenario by specifying the messages they
exchange and the services which every one of them agreed to contribute to the
“virtual” global workflow in compliance with additional constraints (e.g., security
requirements). In this way – through peer-to-peer interaction – the local workflows
should exactly realize the behavior as specified in the GWfM. Formal approaches
based on Petri Nets prove the consistency of the overall process [33].

The Interface View represents a contractual agreement between the parties to
provide a set of services based on the minimum set of technical and domain level
constraints and thereby links the GWfM to the LWfM. It describes the interface of
every partner independently of its usage scenario and consists of four sub-models: the
Role, the Interface, the Access and the Document Model. The Document Model is a

44 Michael Hafner and Ruth Breu

UML class diagram describing the data type view of the partner. We talk of
documents because we do not interpret this class diagram in the usual object oriented
setting but in the context of XML schema [35]. The Interface Model contains a set of
abstract (UML-) operations representing services the component offers to its clients.
The types of the parameters are either basic types or classes in the Document Model.
Additionally, pre- and post-conditions (in OCL style) may specify the behavior of the
abstract services. The Role Model describes the roles having access to the services.
The Access Model describes the conditions under which a certain role has the
permission to call a service. The permissions are written in SECTET-PL [44] in a
predicative style over the structures of the Document Model. We provide an in-depth
view on model dependencies in [16].

The GWfM and the models of the Interface View carry all information needed by
the security components in the hosting environments at the partner nodes to
implement their part of the workflow, the LWfM. In the present paper, we assume
that the partners have already implemented the application logic according to some
LWfM and made it available through a Web service interface.

Workflow View Interface View

Global
Workflow Model

Local
Workflow Model

Interface Model
<<interface>>
WebService

Op1(…)
Op2(…)

Role Model

<<role>>
ActorRole1

<<role>>
ActorRole2

Document Model Access Model

context
Webservice::op1(…)
perm[ActorRole1] : cond
...

Tax
Advisor Municip.

Internal
WS-Port

External
WS-Port

Local
Web

Services

Local
WS Calls

External
WS Calls

Unsecured
Request

Unsecured
Response

Secured
Request

Secured
Response

Secured
Request

Secured
Response

Workflow Engine
(Bpel)

Security Gateway
Components configured through XACML, WS-PL

Fig. 1. UML Model Views (a) and Schematic View on Target Architecture (b)

Target Reference Architecture. The overall architecture is based on the data-flow
model of XACML [13]. The target architecture (Figure 1b) wraps a set of local Web
services that implement the workflow. Since we strongly focus our approach on Web
services technologies, which is a widespread technology with strong vendor support,
we consider WS-BPEL as an appropriate standard to model executable processes. A
workflow engine, based on WS-BPEL (as e.g. BizTalk from Microsoft) orchestrates
the sequence of calls to local and external services as specified by the LWfM.

In order to guarantee the secure exchange of messages between cooperating
partners, security components “wrap” the workflow engine. Depending on its
functionality, every security component implements a specific Web services security
standard. At the core, a security gateway takes care of implementing requirements
related to message integrity, confidentiality and non-repudiation. It intercepts
incoming SOAP messages and applies basic security processing to the message
structure. It extracts tokens from the inbound SOAP messages, decrypts elements and
checks the validity of signatures. Accordingly, the gateway adds tokens to, encrypts
and signs elements in outbound messages according to some security policy as
specified in the GWfM. The component implements standards like XML-Encryption,
XML-Digital signature and WS-Security. After the basic processing, the gateway
queries a Policy Decision Point in order to check inbound messages for compliance to
the security requirements. The Policy Decision Point is configured via XACML
policy files. Interacting with other security components, the gateway provides

(a) (b)

Realizing Model Driven Security for Inter-organizational Workflows 45

authentication facilities, checks for authorization depending on dynamic constraints,
establishes a message-level security context and provides logging facilities. All
configuration data for the security components is generated from the respective
models views. We provide technical details on the target architecture in [18].

3.2 Modeling Secure Inter-Organizational Workflows

In the following section, we show how a security-critical, inter-organizational
workflow is modeled with an intuitive graphical notation based on a set of platform
independent UML 2.0 diagrams [34]. Activity and class diagrams are used to define
the GWfM (3.2.1) and its orthogonal view the Interface Model (3.2.2). In Section 3.3
we map the models to WS-CDL, a Web services based standard for the specification
of collaboration protocols.

3.2.1 The Global Workflow Model
The GWfM captures information required by a collaboration protocol standard like
WS-CDL or BPSS / ebXML. Figure 2 shows the document exchange between the two
public service providers. The exchange has to comply with the security requirements
of confidentiality, integrity and non-repudiation. In the sequel, key words describing
workflow semantics are in boldface Times, UML 2.0 elements are in boldface,
italicized Times and technical syntax is in Courier.

Partners are modeled as Swimlanes. Actions correspond to business logic at a
partner node, which either is made accessible to the outside through Web services
interfaces or makes calls to some partner’s interface. Sequences orchestrate actions by
a Control Flow and represent a workflow local to the partner node. Internal
processing steps of the local workflow at the partner nodes remain hidden.
Interactions in Web services based environments have the semantics of remote
procedure calls, where one partner requests a service that another one may provide. In
the GWfM they are always depicted as crossing domain boundaries and are modeled
as a Message Flow crossing the swimlanes from the party calling the service to the
one offering it. They start with a send action on the calling partner’s side and end with
a receive action on the provider’s side. In case of a synchronous invocation, where the
control flow is blocked until he gets an answer from the service provider, the receive
action on the caller’s side is omitted. The message flow returns to the initial send
action which in turn is handed back the control flow. Messages travel as instances of
XML-documents through an Object Node, which acts as their logical container. The
security requirements integrity, confidentiality and non-repudiation qualify the
instance of the message (or parts of it) flowing in the specific interaction. The Value
Specification of the constraint consists of attributes assigned to a document node
corresponding to the document parts to be encrypted and signed.

The security requirements are assigned to object nodes and described in the form
of navigation expression through the associated document model (red boxes in figure
2). In general, the requirement of confidentiality is associated with one or more
document nodes. It carries information about permissions to view the information, as
the security gateway encrypts the node with the corresponding public key of the
recipient. Accordingly, integrity means that the gateway signs the document at the
domain boundaries, whereas non-repudiation triggers a protocol, which requires the
gateways to exchange signed message receipts.

46 Michael Hafner and Ruth Breu

TaxAdvisor

receiveAnnualStatement

sendProcessedAS

sendConfirmation

Client

Municipality

receiveProcessedAS

sendNotification

«securityRequirements»
context processedAS : ProcessedAS:
self.Confidentiality ={
 (self.annualIncome),
 (self.clientID)
 }
self.Integrity ={ (self) }
self.NonRepudiation ={ (self) }

processedAS

notification

«securityRequirements»
context notification : Notification:
self.Confidentiality ={
 (self.annualIncome),
 (self.clientID)
 }
self.Integrity ={ (self) }

Fig. 2. Global Workflow Model with Security Requirements

3.2.2 Interface Model
The Interface View describes the partner nodes as components offering a set of
services with given properties and permissions. The four sub-models correspond to
the public part of the local application logic, which is accessible to the inter-
organizational workflow. Table 1 shows the mappings of the model elements of the
Interface View to their representation in UML.

Table 1. Model Elements of InterfaceView Mapped to UML Stereotypes.

UML Model Element UML Stereotype
InterfaceView Package <<interfaceView>>

InterfaceModel Package <<interfaceModel>>
Interface Class <<interface>>

RoleModel Package <<roleModel>>
Role Class <<role>>

DocumentModel Package <<documentModel>>
MessageTypeModel Package <<messageType>>
Message Class <<messageType>>
DocumentTypeModel Package <<documentType>>
Document Class <<documentType>>
DataTypeModel Package <<dataType>>
Information Classe <<dataType>>

AccessModel Constraint <<accessConstraint>>

InterfaceView Model Type

Figure 3(a) represents the InterfaceView with the document exchange

(processedAS and notification) in the interaction sendProcessedAS between
the roles TaxAdvisor and Municipality as specified in the GWfM (Fig. 2). In this
case, the Municipality implements the AS_Service interface. The Tax Advisor
implements the callback interface AS_Callback for receiving the notification.
The Document Model in Figure 3(b) represents the data type view of a component’s
interface.

The model consists of three conceptual layers. The Data and the Document Layer
model the application data relevant to the domain modeler. The Data Layer adds
facilities to reference information units of a document and specifies datatypes (e.g.,
client ID), that are the building blocks for the document layer (e.g., annual statement).

The Message Layer adds technical information to the message body. Protocol-
specific message classes (e.g. SOAP Envelope, Header and Body) are referenced

Realizing Model Driven Security for Inter-organizational Workflows 47

through stereotyped classes. For example a <<soapHeader>> class carries technical,
protocol and security related information that is used by the security infrastructure
(routing information, security tokens, encryption algorithms etc.) using the SOAP
protocol. Message Layer information is usually generated and added during the
transformation process and remains hidden to the business analyst.

Instances of the Document Model correspond to the messages traveling between
the actors in the GWfM. Security requirements at this level of abstraction involve the
support of a role model and the specification of access rights for particular Web
service operations. We describe access rights formally and platform-independently
using an OCL dialect. The predicative specification is transformed into an XACML-
policy file via automatic generation. A more detailed description of the corresponding
sub models can be found in [36].

«interfaceView»
globalProcessAS

«roleModel»
globalProcessAS

«interfaceModel»
globalProcessAS

«role»
TaxAdvisor

«role»
Municipality

«interface»
SendProcessedAS

+ sendProcessedAS ([in] processedAS : ProcessedAS)

«interface»
SendProcessedAS_Callback

+ sendNotification ([in] notification : Notification)

«use»

«use»
«Implement»

«Implement»

«role»
Actor

Fig. 3. InterfaceModel (a) and Related DocumentModel (b)

3.2.3 Integrating Security into the GWfM
The security requirements integrity, confidentiality and non-repudiation are associated
with the Object Node (see figure 2 in section 3.2.1). Hence, they only qualify the
document instance flowing in the specific interaction.

The Value Specification of the constraint consists of attributes assigned to a set of
element nodes, which correspond to the document parts to be encrypted and signed.
Figure 4 shows the metamodel for the integration of the basic security requirements
confidentiality, integrity and non-repudiation into the GWfM. A Constraint
stereotyped <<SecurityRequirements>> is associated to the constrained element
Object Node, which acts as a container for a message instance. The Value
Specification of the constraint consists of attributes assigned to a set of element nodes
corresponding to the document parts to be encrypted and signed. Every requirement
may be associated with one or more document nodes.

(a) (b)

48 Michael Hafner and Ruth Breu

 Fig. 4. Metamodel Associating Security Requirements Constraints to Object Nodes

3.3 WS-CDL

In this section, we introduce WS-CDL (Sect. 3.3.1), give an example WS-CDL file of
our use case (Sect. 3.3.2) and describe the mapping from the GWfM and the Interface
View to WS-CDL (Sect. 3.3.3).

3.3.1 WS-CDL Metamodel
The WS-CDL is a declarative XML-language for the specification of collaboration
protocols based on Web services. It provides a global or public view on participants
collaborating in a peer-to-peer fashion by offering distributed Web services in order
to achieve a common business goal. The protocol describes their observable behavior
through the order of the messages they exchange as well as the operations they have
offer. Figure 5 shows the main concepts of WS-CDL as a UML Class Diagram. The
Package element is the root of every chorography definition. A Choreography
Package aggregates a set of WS-CDL type definitions and provides a namespace for
the definitions. It contains eight basic entities. In the following, we confine ourselves
to those basic entities and concepts that are necessary to capture the information in the
Interface and GWfM of our use case scenario (grey shaded boxes in Figure 5).

The core of every collaboration is defined by the Choreography entity, which
specifies a set of peer-to-peer interactions. The Interaction element is the basic
building block of a choreography. It participates in a RelationshipType
referencing the two partners via RoleTypes (the sender is specified as FromRole
and the receiver as ToRole) and declares the interaction pattern in an Action
attribute (Request or Response) and the name of the Operation associated with
this interaction. The Exchange element describes the message flow between two
parties by associating specific WS-CDL–functions inside an Xpath-expression to a
Variable of type as declared in InformationType, which references either a
WSDL Message Type or a Schema Element.

Realizing Model Driven Security for Inter-organizational Workflows 49

Fig. 5. Class Diagram Showing Relationships of WS-CDL Entities

3.3.2 WS-CDL Example
Taking our example choreography “Municipal Tax Collection”, listing 1 shows the
main concepts of WS-CDL in two parts: the package information and the
choreography definition.

Fig. 6. Part of Global Workflow captured in WS-CDL Choreography Entity

50 Michael Hafner and Ruth Breu

The choreography definition in Figure 6 shows the part of the WS-CDL file that
specifies the interaction between the TaxAdvisor and the Municipality. The
Choreography {1} defines a Relationship {4} of type
TaxAdvisorMunicipality, whose RelationShipType has been declared as part
of the Package entity in the package information part {16-19}. The element
associates two roles (ServiceRequestorRole and Municipality) according to
their RoleType definitions, which defines one or more observable behavior
attribute and an optional WSDL interface type associated to the role. Additional
relationshipTypes may be added for modeling multi-party collaborations.

3.3.3 Mapping the GWfM to WS-CDL
The mapping of the GWfM and the Interface Model to an XML-based choreography
definition language (e.g. a WS-CDL file) allows the actors to verify that their internal
processes match the requirements for a participation in the collaboration.
Additionally, they can generate public interfaces and code skeletons of executable
workflow languages (e.g., BEPL4WS) that tie in their internal workflows to support
the global workflow. The names of the model elements conform to the uniform
technical and syntactical specifications the partners agreed upon during the design
phase (e.g., parameter format, interaction protocol, notation names of the
complementary roles, the service interfaces and the parameters, operation semantics
etc.).

The security requirements are integrated into the GWfM as UML artifacts and
directly translated into a set of executable XML code files that comply with Web
services standards (e.g., XACML [13] and WS-Policy [15]) and configure
components in the reference architecture [18].

Table 2 outlines the mapping of the most important UML elements of the GWfM
to WS-CDL. The inter-organizational workflow represented as an UML 2.0 Activity
Diagram - complemented by the orthogonal Interface View as a Class Diagram is
mapped to a WSDL Choreography Package. RoleTypes are modeled as Activity
Partitions. Business logic at a partner node, which either is made accessible to the
outside through a Web services interface or makes calls to some partner’s interface, is
represented as an Action. Internal processing steps of the local workflow at the
partner nodes remain hidden in the GWfM. Two related Actions correspond to an
Interaction Activity, which is the basic atom of every Choreography
composition. Actions are orchestrated into sequences by a Control Flow. All
Interaction Activities in a choreography are by default mapped to a choice
ordering structure.

Actions with an Object Flow Edge by default represent request action attributes
of an Exchange inside an Interaction. It can optionally be complemented by a
response or fault message. Document instances travel through an Object Node, which
maps to a Token reference and references a Variable and an InformationType.
We apply the following semantic restrictions:
1. A Control Flow cannot cross its Partition.
2. An Object Flow can only link Actions in two different Partitions.
3. Actions with an incoming and an outgoing Object Flow Edge represent a

synchronous invocation that halts the Control Flow and waits for a response. It
maps to an Interaction with two Exchange definitions: one with a request

Realizing Model Driven Security for Inter-organizational Workflows 51

Action attribute and one with a respond Action attribute in an Interaction
that can be complemented by a response or fault message.

4. An Interaction activity is marked as a Choreography Initiator when the
initiate attribute is set to "true". This is represented by an Action Object Flow
Edge coming from an Initial Node.

Table 2. Mapping of Activity Diagrams to WS-CDL

AD - Node Type AD Notation WS-CDL
Activity Activity Name Package

Choreography
Activity Partitions RoleTypes

 or ParticipantTypes
Two Actions linked by an Object Flow Interaction

Participate Element (fromRole, toRole)
Exchange Element Action (variable)

Activity Partitions linked by Object Flow RelationshipType
Behavior

RoleTypes
Object Node Token, Tokenlocator

Variable Definition
InformationType (WSDL/XSD) Reference

UML 2.0 Activity Diagram to WS-CDL Mapping

Forward AS ReceiveASprocessed
AS

TaxAdvisor Municipality

TaxAdvisor Municipality

processed
AS

3.3.4 Mapping the Interface View in UML to WS-CDL
The package <<interfaceView>> (See Figure 3(a), Section 3.2.2) contains all
<<interfaceModel>> elements that map to relationshipType declarations in a
WS-CDL package and to relationship elements in a choreography. The
<<interface>> AS_Service maps to a request action attribute of an exchange
element inside of an interaction block and to a corresponding operation
attribute. The <<interface>> AS_Callback maps to an associated response
action attribute of the same exchange element. A <<role>> maps to a roleType.
<<datatype>> and <<documentType>> (See Figure 3(b), Section 3.2.2) map to
informationType and optional associated WSDL Message type or Schema
element. Instances of documents are associated to variables.

4 Conclusion and Outlook

We do not aim to contribute a novel formal approach on how to model inter-
organizational workflows. Nor do we want to develop a new security technology or to
specify a new choreography standard. Instead, focusing on Web services technology,
we use existing technology and standards to realize our vision of Model Driven
Architecture in the context of inter-organizational workflows with a special emphasis
on security. We hope to boost the acceptance of Web services technologies and
standards in business areas, where security is critical and all stakeholders, from the
domain expert to the technician, need to have the same understanding of security
requirements.

As requirements of real-life scenarios drive our research activities, we are currently
working along two lines of actions. On the one hand, we push the stepwise
implementation of our MDA approach by developing custom modeling tools and
plug-ins as well as implementing the components of the reference architecture. On the

52 Michael Hafner and Ruth Breu

other hand, we are formalizing the current results and extending our research efforts
towards more complex security issues. Currently, we are analyzing the application of
the Qualified Signature in e-government and more complex security patterns like non-
repudiation, rights delegation and authorization [36].

References

1. A. Nadalin, et al., “Web Services Security: SOAP Message Security 1.0 (WS Security
2004)”. OASIS Standard 200401, March 2004.

2. N. Kavantzas et al., “Web Services Choreography Description Language Version 1.0”.
W3C Working Draft 17 December 2004.

3. J. Miller et al. (ed.), “MDA Guide Version 1.0.1”. OMG, 2003.
4. T. Lodderstedt et al., “SecureUML: A UML-Based Modeling Language for Model-Driven

Security”. In: J.-M. Jézéquel et al. (eds.), Proc. of the 5th Int. Conf. on the Unified
Modeling Language, Springer, 2002.

5. IBM, Microsoft, BEA Systems, SAP AG, Siebel Systems, “Specification: Business
Process Execution Language for Web Services Version 1.1”. IBM, 2003.

6. C. Gutiérez et al., “Web Service Security: is the Problem solved?”. In: Proc of the 2nd Int
Workshop on Security In Inf. Sys., WOSIS 2004, in conj. with ICEIS 2004, Porto, 2004.

7. BPMI, “BPML 1.0 Specification”. BPMI, 2002.
8. OASIS, “ebXML Business Process Specification Schema Version 1.01”. OASIS, 2001.
9. M. Bernauer et al., “Comparing WSDL-based and ebXML-based Approaches for B2B

Protocol Specification”. In: Proc. of the 1st Int. Conf. on Service-Oriented Computing
(ICSOC), Trento, 2003.

10. N. Mitra, N., “SOAP Version 1.2 Part 1: Messaging Framework”. W3C Recommendation
24 June 2003.

11. Eastlake, D. (ed.), et al., “XML-Signature Syntax and Processing”. W3C Recommendation
12 February 2002.

12. Eastlake, D. (ed.), et al., “XML Encryption Syntax and Processing”. W3C
Recommendation 10 December 2002”.

13. T. Moses (ed.), et al., “XACML Profile for Web-Services”. XACML TC Working draft,
Version 04, September 29, 2003.

14. P. Mishra (ed.), et al., “Conformance Requirements for the OASIS Security Assertion
Markup Language (SAML) V2.0”. Committee Draft 02, 24 September 2004.

15. S. Bajaj, et al., “Web Services Policy Framework (WS-Policy)”. September 2004.
16. R. Breu, M. Hafner, B. Weber, A. Novak, “Model Driven Security for Inter-Organizational

Workflows in E-Government”. In: Proc. TCGOV 2005, TED, ISBN 3-540-25016-6.
17. R. Breu, M. Hafner, B. Weber, “Modeling and Realizing Security-Critical Inter-

Organizational Workflows”, In: W. Dosch, N. Debnath (Eds.), Proc. IASSE 2004, ISCA,
ISBN 1-880843-52-X.

18. M. Hafner, R. Breu, M. Breu, “A Security Architecture for Inter-Organizational
Workflows: Putting Security Standards for Web Services Together”. In: C. S. Chen et al.
(Eds.): Proc. ICEIS 2005, INSTICC, ISBN 972-8865-19-8, 2005.

19. M. Hafner, R. Breu, M. Breu, A. Nowak, “Modeling Inter-organizational Workflow
Security in a Peer-to-Peer Environment”. Accepted for ICWS 2005.

20. A. Hall, R. Chapman, “Correctness by construction developing a commercial secure
system”. IEEE Software 19 (2002) 1, 2002, pp. 18-25.

21. R. Breu, K. Burger, M. Hafner, G. Popp, “Towards a Systematic Development of Secure
Systems”. Inf. Systems Security 13 (2004) 3, Auerbach, New York, 2004, pp. 5-13.

22. K. Mantell, “From UML to BPEL”. IBM-developerWorks, 2003.

Realizing Model Driven Security for Inter-organizational Workflows 53

23. IBM, “Business Process Execution Language for Web Services JavaTM Run Time
(BPWS4J)”. IBM, 2002.

24. W.M.P. van der Aalst, M. Weske, “The P2P approach to Interorganizational Workflows”.
In K.R. Dittrich et al. (eds.): Proc. of the 13th Int. Conf. on Adv. Information Systems Eng.
(CAiSE'01), Springer, Berlin, 2001, pp. 140-156.

25. W.M.P. van der Aalst, “Loosely Coupled Interorganizational Workflows: Modeling and
Analyzing Workflows Crossing Organizational Boundaries”. Information and
Management 37 (2000) 2, pp. 67-75.

26. Z. Luo, et al., “Exception Handling in Workflow Systems”. Applied Intelligence 13 (2000)
2, pp. 125-147.

27. P. Grefen, et al., “CrossFlow: cross-organizational workflow management in dynamic
virtual enterprises”. International Journal of Computer Systems Science & Engineering 15
(2000) 5, pp. 277-290.

28. F. Casati and M. Shan, “Event-based Interaction Management for Composite E-Services in
eFlow”. Information Systems Frontiers 4 (2002) 1, pp. 19-31.

29. V. Atluri, W.K. Huang, “Enforcing Mandatory and Discretionary Security in Workflow
Management Systems”. Proc. of the 5th Europ. Symp. on Research in Comp. Sec., 1996.

30. E. Gudes, et al., “Modelling, Specifying and Implementing Workflow Security in
Cyberspace”. Journal of Computer Security 7 (1999) 4, pp. 287-315.

31. W. K. Huang, V. Atluri, “SecureFlow: A secure Web-enabled Workflow Management
System”. ACM Workshop on Role-Based Access Control 1999, pp. 83-94.

32. J. Wainer, et al., “W-RBAC – A Workflow Security Model Incorporating Controlled
Overriding of Constraints”. International Journal of Cooperative Information Systems. 12
(2003) 4, pp. 455-485.

33. W.M.P. Van der Aalst, “Loosely Coupled Interorganizational Workflows: Modeling and
Analyzing Workflows Crossing Organizational Boundaries”. Information and
Management 37 (2000) 2, pp. 67-75.

34. OMG, “UML 2.0 Superstructure Specification ”. OMG, 2002.
35. D. Carlson, “Modeling XML Applications with UML: Practical E-Business Applications”.

Addison Wesley, Boston, 2001.
36. M. Alam, M. Breu, R. Breu, “Model Driven Security for Web Services”. In: Proc. of the

8th International Multi-topic Conference (INMIC 2004), IEEE, Lahore, 2004.
37. Austrian Signature Act (Signaturgesetz - SigG), Art. 1 of the Act published in the

Austrian Federal Law Gazette, part I, Nr. 190/1999.
38. R. Breu, M. Breu, M. Hafner, A. Nowak, “Web Service Engineering - Advancing A New

Software Engineering Discipline". Accepted for ICWE 2005.
39. BEA, Intalio, Sun Microsystems, SAP, “Web Service Choreography Interface (WSCI)”.

August 2002.
40. G. Della-Libera et al, “Web Services Security Policy Language (WS-SecurityPolicy)”.

December 2002.
41. S. Anderson et al., “Web Services Trust Language (WS-Trust)”. February 2005.
42. A. Barros et al., “A Critical Overview of the Web Services Choreography Description

Language (WS-CDL)”. BPTrends Newsletter, Volume 3, Number 3, March 1, 2005.
43. R. M. Dijkman, M. Dumas, “Service-Oriented Design: A Multi-Viewpoint Approach”.

Int. Journal of Cooperative Information Systems 13(4): 337-368 (2004).
44. M. Alam, R. Breu, M. Hafner, “Modeling permissions in a (U/X)ML world”. Submitted

to ECMDA 2005, Nuremberg, Germany.

Code Generation from UML Models with

Semantic Variation Points�

Franck Chauvel1 and Jean-Marc Jézéquel2

1 VALORIA
2 INRIA & Université de Rennes 1

Abstract. UML semantic variation points provide intentional degrees
of freedom for the interpretation of the metamodel semantics. The inter-
est of semantic variation points is that UML now becomes a family of
languages sharing lot of commonalities and some variabilities that one
can customize for a given application domain. In this paper, we propose
to reify the various semantic variation points of UML 2.0 statecharts
into models of their own to avoid hardcoding the semantic choices in the
tools. We do the same for various implementation choices. Then, along
the line of the OMG’s Model Driven Architecture, these semantic and
implementation models are processed along with a source UML model
(that can be seen as a PIM) to provide a target UML model (a PSM)
where all semantic and implementation choice are made explicit. This
target model can in turn serve as a basis for a consistent use of code
generation, simulation, model-checking or test generation tools.

1 Introduction

UML (Unified Modeling Language) has been widely critized in the past for its
fuziness, making it difficult to build code generators, simulation, model-checking
or test generation tools working in a consistent manner. Many tool vendors are
nevertheless producing useful tools, some of them even have reach a certain level
of industrial acceptance. The interest of having a unified modeling language is
however questionable if the meaning of a UML model depends on which tool
is used for any given purpose. With the advent of UML 2.0 [14] though, many
of previous version UML fuziness issues have been solved, and some of the rest
have been encapsulated into the notion of semantic variation points.

A semantic variation point is a point of variation in the semantics of a meta-
model. It provides an intentional degree of freedom for the interpretation of
the metamodel semantics. For instance, we find on page 40 of [14] The precise
lifecycle semantics of aggregation is a semantic variation point. The interest of
semantic variation points is that UML now becomes a family of languages shar-
ing lot of commonalities and some variabilities that one can customize for a

� This work has been partially supported by the Amadeus project of Région Bre-
tagne and by the Artist2 Network of Excellence on Embedded Systems Design (IST-
004527).

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 54–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Code Generation from UML Models with Semantic Variation Points 55

given application domain. This makes a lot of sense, because for instance the
type of behavior one would expect from the statecharts of books in a library
business application has some differences with the statecharts of a CD player in
a real-time system. Furthermore the code one wants to see generated definitively
does not look the same.

Similarly to working with product lines [18], the challenge of the tool builders
is then obviously to capitalize on commonalities while making it possible to cus-
tomize their tools with respect to the choosen variants. We propose to reify these
semantic variation points as well as possible implementation choices into models
of their own. Then along the line of the OMG’s Model Driven Architecture [15],
these models are processed along with a source UML model (that can be seen
as a PIM) to provide a target UML model (a PSM) where all semantic and im-
plementation choice are made explicit. This target model can in turn serve as a
basis for a consistent use of code generation, simulation, model-checking or test
generation tools. In this paper we concentrate on behavioral aspects described
through UML 2.0 statecharts. Section 2 introduces the running example of a
CD player modeled as a statechart at a PIM level. It then discusses semantic
variation points for UML statecharts and proposes a model Ms for them. Sec-
tion 3 discusses several implementation techniques for UML statecharts and also
proposes a model Mi for them. Section 4 describes how a PSM can be automat-
ically obtained from these three models, (the PIM, Ms and Mi) through model
transformations. Section 5 discusses related works, and Section 6 concludes and
present some perspectives to this work.

2 Semantic Variation Points for UML 2.0 Statecharts

Let’s consider a simple CD player supporting three main functionalities: one
can open the player and play a CD, as well as suspend and resume the playing.
Furthermore, if the playing is suspended (in pause) for more than 10 minutes,
the player automatically stops. This is modeled with a simple statechart [6,8] as
illustrated in Figure 1.

Before dealing with semantic variation points let’s have a look at the UML
Statecharts meta-model which is shown on figure 2. UML 2.0 Statecharts define
a set of concepts that can be used to define finite state-transitions systems.

Numerous semantics have already been developed to precisely define the
meaning of statecharts notations (see Von der Beek’s impressive catalog [3]).
Along this line, UML 2.0 defines yet another semantics for statecharts, or more
precisely a family of semantics since it lets a number of issues open. These seman-
tic variation points mainly concern 3 aspects: time management (synchronous
vs. asynchronous), the event selection policy, and the transition selection policy.

2.1 Time Management

With respect to the statechart progression, time can be either synchronous or
asynchronous.

56 Franck Chauvel and Jean-Marc Jézéquel

entry / openDrive()

exit / closeDrive()

Open

entry / stop()

Stop

do / playtrack()

Play

Pause

open

open

[CDinside()] play

play / pause()

Playing

endOfTrack

[cd.hasMoretrack()] / cd.nextTrack()

CDPlayerSM

stop

after(10min)

play

Fig. 1. Behavior of a CD player

Under the asynchronous hypothesis, time is discrete. On each step, the
statechart processes events that have occurred between the current and the
previous step. The statechart thus needs to store incoming events into some
sort of collection. Depending on the policy choosen for event processsing (see
below) this collection might be a queue, a bag or a stack or even something
more exotic.

Under the synchronous hypothesis, time is continuous. As soon as an event
occurs, it is processed in zero time. So, there is no more need of any data
structure to store events.

2.2 Event Management

Different kinds of events can be considered. Events can be internal/external or
discrete/continuous.

Events are called external if they are produced by an object different from
the target object. Let’s consider two objects O1 and O2 where O2 reacts when
event e1 occurs. In the context of O2, e1 is an external event because it was
produced by object O1. If it were produced by O2 itself, it would have been
viewed as an internal event.

Events are either discrete if they trigger only one transition during their life
cycle, or continuous otherwise. In UML 2.0, we also have deferred events: a state
may specify a set of event types that may be deferred in that state. If an event
occurs in a state where it cannot trigger any transitions, then it should not be
discarded if its type matches one of the types in the deferred event set of that
state. Instead, it should remain in the event pool while another non-deferred
event is dispatched instead.

Using deferred events can lead to conflict: for instance when a substate de-
fers an event while the composite state consumes it, or vice versa. In case of a
composite orthogonal state, substates of orthogonal regions may also introduce

Code Generation from UML Models with Semantic Variation Points 57

Region

Transition

+ kind : TransitionKind

internal
locale
external

<< enumeration >>

TransitionKind

StateMachine

initial
deepHistory
ShallowHistory
join
fork
choice
entryPoint
exitPoint
terminate

PseudoStateKind

<< enumeration >>

+region1..*

1..* +region

0..1

Vertex
+target

+source

1

1

+outgoing

+incoming

1..*

1..*

+doActivity

+exit

+entry

0..1

0..1

0..1

0..1

0..1

0..1

Activity
+effect

0..1

0..1

+container +container

+subvertex

0..10..1

* *

State

+kind : PseudoStateKind

PseudoState

+transition

+trigger*

0..1 Event

Fig. 2. Excerpt of the UML 2.0 Statecharts Meta-Model

deferral conflicts. To solve this kind of conflict, UML 2.0 consider that nested
states override composite state and a consumer state overrides a deferring state
when conflict appears between two orthogonal regions.

SpontaneousEvent

ChangeEventTimeEvent

ReceivingEvent

Object

+receiver

+sender

1

1 +receiving

+invocation

0..*

0..*

Event
0..*

+deferred
State

Fig. 3. Events in UML 2.0

One other variation point in UML is the way to select an event in the event
pool. It is explicitly listed as a semantic variation point in the UML 2.0. In fact,
there are many ways to do this. The structure can be a queue and so events
are selected by incoming order. It can also be a stack if the most recent event
is selected. We can also use any priority systems or a mail box system to define
more powerful selection policies.

58 Franck Chauvel and Jean-Marc Jézéquel

2.3 Transition Management

Using a composite state (such as the ”playing” state in our CD player) can lead to
conflicts among transitions. To solve this, the UML defines a transition priority
system based on source states, with transitions originating from deeper states
having higher priority. For example, if s2 is a substate of s1 then transitions
originating from s2 have higher priority than transitions originating from s1.

This kind of priority system does not solve every conflicts. For example,
consider the case of two transitions originating from the same state, triggered
by the same event, but with different guards. If that event occurs and both guard
conditions are true, then only one transition should be fired. Only one transition
can be fired simultaneously except for concurrent state’s regions. So we need
a way to decide between two conflicting transitions. There are two main ways
to solve this kind of conflicts: we can either always choose the same arbitrary
transition or use a randomized choice (for fairness purposes for example).

2.4 Modeling Statechart Semantic Variation Points

To explicitly express these semantic variation points, we need a model describing
the various event selection policies and transition policies. This model can be seen
as a reification of the part of the semantics which is subject to variability, with
the variability itself modeled using standard OO features such as inheritance
and delegation (see Figure 6).

Harel [8] describes the operational semantics of statecharts based on the
description of a run-to-completion step as it shown in figure 4.

The way this procedure is called depends on whether the time model is syn-
chronous or asynchronous. Under the asynchronous hypothesis, time is discrete
and so the step procedure must be triggered by a third party mechanism like
a clock for example. Under the synchronous hypothesis, time is continuous and
this procedure must be encapsulated into an infinite loop to process events as
soon as they occur.

procedure step()

begin

eventSet := eventPool.select();

anEvent := eventSet.choice();

transitionSet := getFirableTransition(anEvent).select();

aTransition := transitionSet.choice();

aTransition.fire();

end.

Fig. 4. The run-to-completion procedure

With respect to the semantic variation points described above, this run-to-
completion procedure looks like a GoF’s Template Method [4], that is the skeleton

Code Generation from UML Models with Semantic Variation Points 59

of an algorithm in an operation, deferring some steps to subclasses. The steps
we want to be able to redefine here are the following:

1. We apply some priority scheme in order to determine which event we want
to process (cf. operation ”eventPool.select()” on figure 4).

2. Since this priority scheme might return more than one event (events of the
same priority), we then need to choose the one we actually process (cf. op-
eration ”eventPool.choice()”).

3. With this event, we now can select the set of firable transitions (cf. operation
”getFirableTransition(anEvent)”).

4. On this transition set, we apply some other priority scheme to first resolve
simple cases of non-determinism (cf. operation ”transitionSet.select()”), and
then if this is not enough to get only one transition, we need to decide
between selected transitions.

5. finally, fire the transition.

All the semantic variation points are then encapsulated in the operations
select and choice called on event sets and transition sets. So to model state-
charts semantics we need to add some behavior behind these operations. Quite
straightforwardly, we can use the Strategy pattern [4] twice to define both an
event management policy and a transition management policy. Each one is de-
scribed with both a selection policy and a conflict resolution policy (See figure
6).

Event and transition management can be explicitly described with an ac-
tion language such as the Action Semantics. In figure 5, we use the Kermeta
Language [12] to describe the semantic of our ”select” operation. Kermeta is
an object-oriented meta-language and so is well suited to define semantics into
meta-models. So, to define a new event selection policy for example, one just
needs to extends the ”event selection Policy” and to redefine the select() op-
eration (See figure 6). For instance, we can define a new event selection policy
where TimeOut events have an higher priority than other events as described in
the example below.

class MyEventSelection inherits EventSelectionPolicy

{
method select() : OrderedSet<Event> is

do

result := eventPool.select{e | TimeEvent.isInstance(e)}.first()
end

}

Fig. 5. A event selection policy defined with KerMeta

60 Franck Chauvel and Jean-Marc Jézéquel

Statecharts
Semantics

+ step()

(from UML::State_Machines)
StateMachine

Asynchronous

Synchronous

RandomFIFO LIFO Fixed

Event Selection
Policy

<< MTLOperation >>

+ select()

<< MTLOperation >>

Event Conflict
Resolution

+ choice()

Event
Management

+ choice()
+ select()

+choice 1+select1

<< MTLOperation >>

Transition Selection
Policy

+ select()

<< MTLOperation >>

Transition Conflict
Resolution

+ choice()

Transition
Management

+ select()
+ choice()

+select1 +choice1

Pattern Strategy

+semantic

1 1

Fig. 6. Model of the UML Statecharts Semantic Variation Points

3 Implementing UML Statecharts

Even if we would have settled on a single possible semantics for statecharts,
there can still be many ways to implement them. There are indeed many trade-
off to make to handle non-functional issues such as execution time, memory
footprint, flexibility, maintenability, possibility of dynamic upgrade and so on.
For example, if we need a compact and efficient implementation, we might want
to use enumerated values representing states and events. If we rather want a
more flexible solution, we might prefer to resort to the State Pattern and/or the
Command Pattern [4]. In this section, we propose to model these implementation
choices in the same spirit as for the modeling of semantic variation points.

3.1 Enumeration Vs. Reification

For each of the statechart notions, such as states, events, or transitions, we typi-
cally face the choice of either hard code it (into static tables or switch blocs) for
maximum efficiency, or reify it for maximum flexibility (using the State Pattern,
the Command Pattern, and reifying transitions).

The easiest way to manage states is to represent them with an enumeration.
In our example, this type would be ”open, stop, playing Play, playing Pause”.
Note that this solution is not however very well suited for hierarchical state-
charts, because it requires to first flatten the state hierarchy. Another solution

Code Generation from UML Models with Semantic Variation Points 61

is to reify the possible states into a specific class hierarchy through the applica-
tion of the state pattern [4]. See the right side of Figure 7 for an illustration of
the application of the state pattern to our CD player statechart. This solution
would even allow us to dynamically add new states, which could be very useful
to modify a system behavior without stopping it.

Using an enumeration to manage events requires to put the statechart pro-
gression mechanism into a specific method called for instance ”processEvent(e :
event)”. Its role is to select the right transition using two ”switch” statements.
Alternatively we can reify events using the Command Pattern [4]. Then, the
progression mechanism is distributed into event classes through object-oriented
method dispatch. If the states have not been reified, we still need to select the
right state with a ”switch” statement.

CDPlayer

+ process(evt : CDEvent) + pause()
+ playTrack()
+ CDinside() : boolean
+ stop()
+ openDrive()
+ closeDrive()

CDPlayerState

Pause

Stop Playing Open

Play

Pattern State

PlayEvent StopEvent OpenEvent

CDPlayerEvent

+ execute(target : CDPlayer)

+context

concreteCommand

Pattern Command
abstractCommand

<< uses >>

1

+currentState

abstractState

concreteState

invoker

context

Fig. 7. Implementing CD player using states and events reification

It is also possible to reify both states and events as illustrated in Figure 7.
Then, the progression mechanism is distributed into the event classes and the
state classes. In fact, here, we use a double dispatch to select the right behavior
according to the event and the current state.

We might go as far as also reifying the transition concept. There are some
patterns indeed reifying most of the statechart notions (like Tomura’s statecharts
pattern [16]), including guard condition, actions, etc.

3.2 Statechart Progession

Beyond states, events and transitions, we also have to care for variations about
the implementation of the statechart “engine”, i.e. the method that makes it
progress by selecting which transition must be triggered according to events

62 Franck Chauvel and Jean-Marc Jézéquel

and to the current state. The basic choice here is whether the engine is shared
accross multiple statecharts or whether it is statechart specific. In the former
case, a single statechart can be considered as a passive reactive object with the
event dispatching being performed from outside. In the later case we can resort
to the Active Object pattern and encapsulate all the internal mechanisms behind
a proxy object, as illustrated in Figure8.

Scheduler

+ step()+ playTrack()

+ processEvent(evt : AbstractEvent)

Proxy

+ execute(target : CDPlayer)

AbstractEventCDPlayer

+ playTrack()

AbstractState

+ playTrack()

+ add(evt : AbstractEvent)
+ remove(evt : AbstractEvent)

EventPool

1 1

+pool

+events0..*

<< uses >>+currentState

1

+context

+ select() : OrderedSet

Fig. 8. Active-Object Pattern applied on CD Player

Applying this design patterns allow us to reify the statecharts progression
mechanism by defining a scheduler object manipulating object events for exam-
ple. Note that for this particular implementation choice, it becomes particularly
straightforward to attach the semantic variations we described in section 2: the
event selection policy would just have to be inserted as the body of the operation
select of the EventPool class.

3.3 Modeling the Implementation Choices

In previous sections, we have defined various semantics and implementation
choices but we still need to link these choices to our initial statemachine. To
help doing that, the UML provides an extension mechanism called a ”profile”.
A profile can be seen as a lightweight extension to the meta-model which adds
extra-information to meta-classes. To do this, a profile can contains ”stereotype”
and ”tagged values”. Stereotypes are a way to represent boolean information like
”is an interface” whereas ”tagged values” can be parameterizad by values.

The profile we provide is a way to specify required choices on a statemachine.
An example is given in the figure 9. Here, the CDPlayer statemachine would use
a FIFO policy for handling events for example.

eventSelection this tagged value allows the specification of the required event
selection policy. It correspond to the select() operation in the procedure
step() in figure 4. The value is a string which identifies the event selection
policy in the semantic model.

Code Generation from UML Models with Semantic Variation Points 63

entry / openDrive()

exit / closeDrive()

Open

entry / stop()

Stop

do / playtrack()

Play

Pause

open

open

[CDinside()] play

play / pause()

Playing

endOfTrack

[cd.hasMoretrack()] / cd.nextTrack()

CDPlayerSM

stop

after(10min)

{eventImplantation="StatePattern"}
{transitionSelection="Internal"} {transitionResolution = "Random"}
{eventSelection="FIFO"} {eventResolution = "Random"}

play

Fig. 9. The CDPlayerSM with some stereotypes specifying semantic

eventResolution this tagged value is used to specify a way to resolve conflict
between events. It corresponds to the choice() operation in the procedure
step() in Figure 4. The value is a string which identifies the concrete conflic-
tResolution policy in the semantic model.

transitionSelection this tagged value is used to specify the required transition
selection. It corresponds to the choice() operation in the procedure step()
in Figure 4. The value is a string which identifies the concrete transition
selction policy in the semantic model.

transitionResolution this tagged value is used to specify a way to resolve
conflict between firable transitions. It corresponds to the choice() operation
in the procedure step() in Figure 4. The value is a string which identifies the
concrete conflictResolution policy in the semantic model.

eventImplantation this tagged value represent the technic used to specify
implantation of event. This is an enumerate value, which can be ”enumerate”
or ”reify” to used a command pattern.

stateImplantation this tagged value represent the technic used to specify im-
plantation of state. This is an enumerate value, which can be ”enumerate”
or ”reify” to used a state pattern.

4 Processing Semantics and Implementation Variants
Through Model Transformations

We can now combine the description of a statecharts, its semantics choices and
implementation choices in a consistent manner for various software engineering
activities such as automatic code generation, simulation, model-checking and
test generation.

64 Franck Chauvel and Jean-Marc Jézéquel

4.1 Implementing Code Generation as a Model Transformation

For that we need a model transformation language and engine able to process
these 3 models as input, and produce either an implementation model or a vali-
dation model. In the following, we describe how we used MTL [13], an imperative
object oriented language based on KerMeta for that purpose. Our model trans-
formation can be divided in three main steps (See figure 10).

Model
a Semantic

Model
a UML

Meta−Model
Implementation

Meta−Model
Semantic Transformation

MTL

Model
a UML

Meta−Model
UML

Model
An Implementation

Fig. 10. Processing Statecharts, Semantics and Implementation models to pro-
vide a PSM model

Firstly, we search input models for semantic and implementation choices.
An abstract factory is then used to dynamically select and configure the needed
transformations, most of which are actually quite simple pattern applications [5].

In a second step, we apply the selected patterns. Defining a general way
to apply design patterns is a non-trivial issue, but we face here only a subset
of this problem: we just need to apply (or not apply) 3 patterns in a specific
order, which slightly reduce the combinatory aspect of the problem. So we start
with either a direct implementation or with the active-object pattern to define
a common structure to implement statecharts mechanisms. Then, depending on
the previous choice, we can apply (or not apply) the state and command patterns
in an orthogonal way. (See figure 11 for the result of the application of the 3
patterns in a row).

Anyway, we have obtained a detailed model where the statecharts progres-
sion mechanism has been fully reified. So, we can easily attach the statecharts
semantics by filling the corresponding methods. For example, the semantics spec-
ified by the user for the event selection policy would go into the select method
of the class Pool (See figure 11). To do that, we used the MTL language at
the meta-model level to describe semantic choices in the input semantic model.
As for KerMeta on which it is based, MTL can also be used at the model-level
as a kind of simple action language for UML, making it easy to translate the
description of the semantics into its implementation.

Finally, our model is refined to the point where each statecharts concept
has been mapped onto structural OO notions like classes or operations. An
example of behavior of this output model is presented on the figure 12. It can

Code Generation from UML Models with Semantic Variation Points 65

+ pause()
+ playTrack()
+ CDinside() : boolean
+ stop()
+ openDrive()
+ closeDrive()

CDPlayerState

CDPlayer

+ process(evt : CDEvent)

Scheduler

+ step()

Stop Playing Open

Play Pause

PlayEvent StopEvent OpenEvent

CDPlayerEvent

+ execute(target : CDPlayer)

+ select()
+ addEvent(evt : CDEvent)
+ delEvent(evt : CDEvent)

Pool

Pattern Command

1

1

+currentState

+context

concreteState

context

Pattern State
abstractState

1

0..*

<< depends >>

abstractCommand

concreteCommand

Fig. 11. Output model of the transformation

then be directly translated into executable code using any off-the-self UML code
generator, including the MTL one. Indeed, using MTL to describe operation
bodies allows us to re-use the MTL Java code generator to generate for free an
executable Java code corresponding to our input model.

4.2 Handling UML Variability into UMLAUT NG

UMLAUT NG [9] is an object-oriented framework dedicated to model transfor-
mations in a MOF based context. It provides both a library of model transfor-
mations specific to UML models (e.g.; UML2RDBMS which translate a UML
model to a relational model) as well as composition operators. UMLAUT NG
was designed as an open tool working with several flavors of XMI, in order to
be easily connected to various CASE tools.

UMLAUT NG also provides a way to connect MDD to formal technics ini-
tially developed for SDL, Lotos and others. UMLAUT NG supports model trans-
formations for transforming UML models into labelled transition systems (LTS),
to be used with the CADP tool box which provides tools for model checking,
simulation, test synthesis and vizualization of the state spaces.

The integration into UMLAUT NG of our approach at reifying statecharts
semantic variation points makes it possible to uncouple all of these tools from
a specific choice of the statechart semantics. It can be seen as an easy way
to specialize a complex tool chain towards a specific domain (e.g.; small em-
bedded devices) where a particular interpretation of the statechart semantics is
preferred.

66 Franck Chauvel and Jean-Marc Jézéquel

: CDPlayer :Scheduler :Pool : Pause

evt : PlayEvent

: Main

processEvent(evt)
addEvent(evt)

select()

execute() playTrack()

step()

new

Fig. 12. Behavior of the output model

5 Related Works

The work of [3] has been one of the starting point of our work. Indeed, many
papers try to define a formal semantics for Statecharts and especially for UML-
Statecharts. Among this works, M.Von der Beeck [17] proposes a structured
operational semantics for UML Statecharts. Borger provide another semantics
based on abstract StatesMachines [1]. All these works contribute to give a formal
ground to UML at the price of choosing a particular semantics, which might be
adequate for a particular application domain, but not that much for others,
which is the basic reason why the UML provides semantic variation points. In
this paper we specifically address this semantic variation point issue.

Building on formal semantics, many tools are able to simulate UML models
and specially statecharts [7]. Another example is iUML of Kennedy Carter [2]
which includes a modeler and a simulator based on the ASL language. Most of
these tools are based on more or less formalized semantics and do not take into
account semantic variation points.

Another way to execute UML models is to generate executable code directly
from models. In an MDA perspective, many models transformations are required
to get code from high level models. This process starts at the highest level with
the platform independent model (PIM) and continues until a Plateform Specific
Model (PSM) is generated. We believe that actual code generation should be
used only when a model is low level enough to be directly translated to C++ or
Java. However most of dedicated code generation tools provide code generation

Code Generation from UML Models with Semantic Variation Points 67

directly from e.g. statecharts. For instance Tanaka [11,10] proposes an UML to
Java code generation from statecharts diagrams (based on the state pattern with
events reified as method calls), or Rhapsody, a UML Case tool, proposes a code
generator where events and states are selected using a switch statement (which
is a relevant choice for its commercial target which is the real-time domain).
These code generators tends to hard code semantic and implementation choices,
making them difficult or even irrelevant to use outside of their sometimes very
narrow domain. On this aspect, the main contribution of our work consists in
providing a way to uncouple semantics issues and implementation choices from
code generation, and let them open-ended. Users can always add a particular
semantics and choose a particular implementation technics by extending the
existing framework.

6 Conclusion and Future Works

The interest of semantic variation points in UML is that it now becomes a family
of languages sharing lot of commonalities and some variabilities that one can
customize for a given application domain. In this paper, we have proposed to reify
the various semantic variation points of UML 2.0 statecharts into models of their
own to avoid hardcoding the semantic choices in the tools. We did the same for
various implementation choices. Through model transformations, these semantic
and implementation models are then processed along with a source UML model
to provide a target UML model where all semantic and implementation choice
are made explicit. We have shown how this target model can in turn serve as a
basis for a consistent use of code generation, simulation, model-checking or test
generation tools.

This process has been implemented within our UMLAUT framework for
model transformations, along with others tools such as statecharts generation
from sequences diagrams or sequences diagram generation from textual require-
ments. Even if a a complete chain of model transformations from requirements to
executable code is not a realistic approach, UMLAUT aims at providing building
blocks that can be customized for a specific model driven design and validation
process.

In the future, we plan to use the same approach to reify other semantic
variation points in the UML2.0 metamodel. In the UML2.0 component model
for example, we can find some open issues like the semantics of method dispatch,
interfaces conformity or the support of QoS attributes. It could be interesting
to describe these semantic choices as we did for statecharts and to merge them
with a component model to get a PSM model.

References

1. Egon Börger, Alessandra Cavarra, and Elvinia Riccobene. On formalizing UML
state machines using ASM. Information & Software Technology, 46(5):287–292,
2004.

68 Franck Chauvel and Jean-Marc Jézéquel

2. Kennedy Carter. iUMLite tool suite and ASL language. from Kennedy Carter’s
website (http://www.kc.com).

3. Michael Von der Beeck. A comparison of statecharts variants. In L. De Roever and
J. Vytopil, editors, In Formal technics in Real-Time and Fault-tolerant Systems,
volume 863 of Lecture Notes in Computer Science, pages 128–148, New-York, 1994.
Springer Verlag.

4. Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., 1995.

5. Alain Le Guennec, Gerson Sunyé, and Jean-Marc Jézéquel. Precise modeling of
design patterns. In Proceedings of UML 2000, volume 1939 of LNCS, pages 482–
496. Springer Verlag, 2000.

6. David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987.

7. David Harel and Eran Gery. Executable object modeling with statecharts. In ICSE
’96: Proceedings of the 18th international conference on Software engineering, pages
246–257. IEEE Computer Society, 1996.

8. Harel, David and Naamad, Amnon. The STATEMATE Semantics of Statecharts.
ACM Transactions on Software Engineering and Methodology, 5(4):293–333, octo-
ber 1996.

9. Wai-Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pennaneac’h.
UMLAUT: an extendible UML transformation framework. In Proc. Automated
Software Engineering, ASE’99, Florida, October 1999.

10. Jauhar, Ali and Tanaka, Jiro. Implementation of the Dynamic Behavior of Object
Oriented System. In Third World Conference on Integrated Design and Process
Technology (IDPT’98), volume 4, Berlin, Germany, July 1998.

11. Jauhar, Ali and Tanaka, Jiro. Implementing the dynamic behavior represented as
multiple state diagrams and activity diagrams. Journal of Computer Science &
Information Management (JCSIM), 2(1):24–36, 2001.

12. Franck Fleurey Pierre-Alain Muller and Jean-Marc Jézéquel. Weaving executabil-
ity into object-oriented meta-languages. In Proceedings of UML MoDELs 2005,
Jamaica, LNCS. Springer Verlag, 2005. to be published.

13. Damien Pollet, Didier Vojtisek, and Jean-Marc Jézéquel. OCL as a core UML
transformation language. WITUML 2002 Position paper, Malaga, Spain, jun 2002.
http://ctp.di.fct.unl.pt/ ja/wituml02.htm.

14. UML Revision Task Force RTF. UML draft version 2.0 specification, April 2003.
15. Soley, Richard and OMG Staff Group. Model Driven Architecture. White papers,

Object Management Group, Novembre 2000.
16. Toyoaki Tomura and Satoshi Kanai. Developing simulation models of open dis-

tributed control system by using object-oriented structural and behavioral pat-
terns. In ISORC, pages 428–437, 2001.

17. Michael von der Beeck. A structured operational semantics for UML-statecharts.
Software and System Modeling, 1(2):130–141, 2002.

18. Twefik Ziadi. Manipulation de lignes de produits en UML. PhD thesis, Universit
de Rennes 1, 2004.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 69-83, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Composing Domain-Specific Languages for
Wide-Scope Software Engineering Applications

Jacky Estublier, German Vega, Anca Daniela Ionita

LSR-IMAG, 220, rue de la Chimie BP5338041 Grenoble Cedex 9, France
{jacky.estublier, german.vega, Anca.Ionita}@imag.fr

http://www-imag.fr

Abstract. Domain-Specific Languages (DSL) offer many advantages over gen-
eral languages, but their narrow scope makes them really effective only in very
focused domains, for example Product Lines. The recent Model Driven Engi-
neering (MDE) approach seeks to provide a technology to compose and com-
bine models coming from different metamodels. Adapted to DSL, it means that
it should be possible to compose “programs” written in different DSLs, which
will enable the use of the DSL approach to build applications spanning different
domains. The paper presents the Mélusine environment, where such a composi-
tion technology has been developed and experimented.

1 Introduction

Most domain engineering approaches emphasize domain modeling as an important
mechanism for the development of product families. Domain-specific modeling ad-
dresses this issue by designing languages specifically tailored to directly represent the
concepts of an application domain.

Domain-Specific Languages (DSL) [1] have several advantages over general-
purpose languages:
 They raise the level of abstraction, by proposing constructs directly related to ap-

plication domain concepts.
 They provide a notation (graphical or not) close to the practitioners’ natural way of

thinking.
 They propose specialized tools (like optimizers, analyzers, editors) that embed

much domain knowledge and thus provide better support for practitioners, which
are not necessarily professional software engineers.

 They enable the partial automation of large parts of the development process, in-
creasing productivity.
 General-purpose languages propose generic, low-level concepts, so that develop-

ing an application requires lengthy and heavy programming, but they can be used for
a very large range of applications, such that the development of high quality environ-
ments and tools becomes economically feasible.

In contrast, to be effective, a DSL must target a narrow and well-scoped domain;
given the cost of the upfront domain analysis and of the development of the environ-
ment and tools, DSLs become economically viable only if many applications are to be

70 Jacky Estublier, German Vega, and Anca Daniela Ionita

built inside the targeted domain. This compromise is the major limitation of DSL in
practice. This limitation can be overcome in two ways :
 reduce the cost of developing tools,
 develop a large number of applications in the domain.

Programming languages address the first point, generating the tools from a formal
DSL specification; Product Lines address the second point, emphasizing variations
and features. In this paper, we present an alternative and complementary approach,
based on the development of generic reusable domains which can be composed for
developing wide-scope applications. We illustrate the approach by our environment -
Mélusine - in which these solutions have been implemented and tested in real size in-
dustrial projects.

The paper is organized as follows: section 2 gives some background information
and places our approach in the context of language and MDE technologies, section 3
presents our conceptual domain approach, section 4 is devoted to the subject of do-
main composition and evolution; the paper ends with related works and conclusions.

2 Languages and Models

Domain-Specific Languages (DSL) is a technology that takes its roots in two techno-
logical domains: programming languages and models. Their strength and weaknesses
are briefly analyzed in this section, before taking a closer look at DSL.

2.1 The Language and Compiler Technology

Programming languages heavily rely on a technology based on grammars. A grammar
G is a finite set of production rules. A language L(G) is defined by induction, as the
set of sentences obtained by the reflexive and transitive closure of the derivation rela-
tionship, from an axiom. A sentence s is said to conform to the grammar G if there
exists at least one sequence of derivations, from the axiom, that produces s; s is said
to pertain to L(G).

In this sense, a grammar can be seen as the model of a programming language and
the language as the set of all possible sentences (programs) conforming to that model
(Fig.1).

The main lesson from the language domain is that grammars themselves can be
seen as sentences in a (meta) language (e.g., EBNF - Extended Backus-Naur Form),
defined by another (meta) grammar and compiled by another (meta) compiler. This
meta-compiler can automatically generate, for a given grammar, the corresponding
syntactic analyzer. For example, this is how Yacc and Lex work [2]. Yacc defines a
metamodel for algebraic grammars; since it is formally defined, the algorithms can be
proved to be correct and can also be optimized.

The success in languages can be measured by the fact that, on one side, compilers
are now trusted and efficient and, on the other side, (simple) languages can be easily
built, using meta-compilers. The major lessons are the following:
 Formal meta-grammars enable creating generators, making it easy to produce reli-

able compilers.

Composing Domain-Specific Languages 71

 Conformity is checked, based on the grammar.
 The semantic domain consists of logic and mathematics.

2.2 Modeling: The MDE Approach

MDE, as depicted in Fig. 1, presents many similarities to languages, except that the
meta-meta level is not a grammar definition language, like EBNF, but a model defini-
tion language, like MOF.

The first fundamental difference is that modeling focuses on the relationship be-
tween the model and the modeled system, while languages do not consider directly
the relationship between a program and reality. In fact, many definitions of model re-
fer to this relationship, a model is usually defined as “a simplification of a system
built with an intended goal in mind. The model should be able to answer questions in
place of the actual system ” [3].

It is important to notice that the Model_of relationship is also fundamental to DSL.
Indeed, some of the alleged benefits of DSL stem from the fact that there is a close,
intentionally, direct link between the program and the modeled reality in the domain.

Interestingly enough, current work in MDE has shifted its emphasis from Model_of
to Conform_to [4] and recognizes that a metamodel is “a model that defines the lan-
guage for expressing a model” [5].

Programming Language

 Grammar Language

Program

Grammar Definition

Grammar

Meta Model
(Language definition)

All possible models
(Language)

Model System

Model_Of

Conform_To
Pertains

Model_Of

Meta Meta Model
(MModel definition)

All possible MM
(MetaModeling language)

Conform_To
Pertains

Model_Of

Image_of Element

Programming Languages Model Driven Engineering
Fig. 1. MDE fundamental relationships

In contrast with programming languages, MDE makes the assumption that a single
model can have different views and that the target system is described by many dif-
ferent models, possibly in different metamodels. Therefore, instead of considering a
single source and target language, MDE considers that many source models can pro-
duce one or more new models.

72 Jacky Estublier, German Vega, and Anca Daniela Ionita

2.3 Domain-Specific Languages (DSL)

DSL can thus be seen from a programming language or from an MDE perspective.
The fundamental difference lies in the relationship between a model (a program) and
the modeled system (the meaning of the program).

2.3.1 Model Meaning and Program Semantics
Consider the following Java method (seen as a model):

int m(int c, int d) {return c*10 + d;} . (1)

Its metamodel is the definition of the Java language [6]. Java syntax is defined
through a grammar; formal semantics can be defined through denotations toward
some mathematical semantic domain. Method m is a (valid) Java program, therefore
it satisfies Conform_to for the Java specification and, as such, is perfectly defined;
however, m gives no information about its “real world” meaning. A virtual machine
(the JVM – Java Virtual Machine) recognizes the Java concepts, but ignores what the
program means. In this example, a possible meaning for m could be that it computes
the speed of an object, occuring during c time, with d initial speed. Interpretation of
10 is earth acceleration (9.81 ms2); interpretation of c is a time in seconds, etc. This
simple example shows that formal semantics (i.e., models and metamodels, per se) do
not give any information on the meaning of the modeled system.

The major difference between a program and a model is that a model makes sense
only if an interpretation is available (relationship Image_Of, Fig. 1 and Fig. 2), while
a program's formal semantics do not provide any information about what it means.

2.3.2 Metamodel and Domain Semantics
An important characteristic of DSL is that some primitive constructs of the language
have an embedded interpretation in the target domain. A DSL for our simple example
could include a primitive construct for the concept of speed with its corresponding
operators. A DSL can be seen as a language where some concepts have a predefined
interpretation, i.e., these concepts are intended to be used as Image_Of (see Fig. 2)
their corresponding entities in the target domain.

Following the programming language approach, from the metamodel, a parser is
developed, which identifies the language elements. In a DSL, these elements consti-
tute the range of an interpretation relationship; the elements in the application domain
constitute its destination. Therefore, in a DSL, the metamodel makes explicit the
model elements for which a relevant interpretation relationship should be established
toward the domain elements.

To a large extent, a DSL metamodel is a model of the application domain.
In semiotics and linguistics, semantics is defined as “the study that relates signs to

things in the world” [7]. From that point of view, the interpretation relationship can be
considered the semantics of a DSL. We will call it the domain semantics. In summary,
we can identify the following important characteristics of a DSL:
 The metamodel is a model of the domain.
 Semantics can be defined with respect to (1) a mathematical domain (formal se-

mantics) and (2) the application domain (domain semantics).

Composing Domain-Specific Languages 73

The domain semantics identifies the model entities that are Image_of entities in the
system and defines their behavior. These entities and their relationships constitute the
structural part of the model. The interpretation relationship allows interpreting this
structure as a description of the target system structure at a given point in time. The
structural part of a model is a model of a state of the system.

Covers

Meta Model
(DomainModel)

DSL
(All Models)

Model Model_Of

Model_Of

Pertains
Conform_To

Domain

Transformed
Operates upon

Image_Of

Domain
MentalModel

Abstraction
(mental)

Model_Of
(informal)

ProgramCompiler Output

Input

System

Element
Fig. 2. The DSL Approach

The formal semantics serve essentially to specify the behavior, i.e., the operations
on the model entities that change the structure of the model. The interpretation rela-
tionship allows interpreting this model change as a system change. The behavioral
part of the model is a model of the system dynamics, i.e., it describes how the system
(is supposed to) evolve.

2.4 The Composition and Evolution Problems

The application domain evolves under market and technology pressures and, there-
fore, the domain model should evolve accordingly. Unfortunately, most tools are
based on the domain model and changes have dramatic consequences: rewrite the
compiler, editors, translators, programs (models) and so on. In practice, the cost of
such changes is so high that they are not performed. It is not easy to extend the com-
piler, nor the other associated tools, even for simple changes.

A similar scenario arises when we try to compose different domains. While the
composition can be clearly specified at the domain model level, it is not easy to spec-
ify the corresponding modifications at the compiler level. Indeed, the difficulties are
not at the meta and model levels; the problems arise at the implementation level, be-
cause there is another level of abstraction. This problem is well known and extensible
(DSL) languages and/or composition of existing DSLs [9] have been proposed. These
technologies have not been successfully deployed yet.

74 Jacky Estublier, German Vega, and Anca Daniela Ionita

3 The Mélusine Approach

Our approach to domain composition and evolution follows the underlying trend in
DSL and MDE: perform as many activities as possible at the level of the domain
model, not at the implementation level. Both DSL and MDE propose to perform not
only design, but also a part of the implementation in the problem area, since problem
concepts are directly available in the programming (modeling) language. Our proposi-
tion pushes this idea a step further: not only the language, but also the run-time archi-
tecture is based on the conceptual model of the domain and consequently, domain
composition can be performed at an abstract level, using high-level domain concepts.

Mélusine emphasizes two new requirements: (1) Reuse existing components and
tools and (2) Support different types of evolution.

3.1 Conceptual Domains

As in DSL, Mélusine relies on a metamodel, which is a domain model, and assumes
that there is an interpreter for that metamodel. A model is seen as a “program” inter-
preted by this interpreter; the dynamic part of the model specifies the behavior of enti-
ties and the structural part defines the state of the system, see section 2.3.2.

An important characteristic of most DSLs is that the metamodel encapsulates most
(if not all) the behavior of the entities in the domain. A survey of DSLs [10] has
shown that most DSLs do not provide constructs for user-defined abstractions: only
15% of the surveyed languages provide user defined types and roughly one third pro-
vide user-defined functions. This is interesting because in many DSLs, when develop-
ing a model, there is no need (and no way) to specify the behavior of the system; this
behavior is implicit in the constructs of the language. Most of the time the model
represents only the structural part of the application and simply parameterizes the
predefined behavior.

The fact a model is purely structural has important consequences:
1. It is relatively easy to fully generate, from the metamodel, a model editor and a

model does not need any programming.
2. The system behavior (how it evolves) is mainly defined by the behavior of the pre-

defined domain concepts, implemented by the domain interpreter.
3. Domains can be composed by composing their interpreters, without modifying the

existing models.

3.2 Domain-Specific Virtual Machines

A straightforward implementation of a domain interpreter is to transform each meta-
model concept into a class and the concept behavior into methods of these classes
(plus some technical classes, not discussed here). In this case, the structural part of the
model is simply transformed into instances of these classes and considered as the ini-
tial state of the interpreter. As this transformation is a bijection, there is an isomor-
phism between the model and the program state and, therefore, the program state is
also a model of the target system. Since execution is based on the domain model, the

Composing Domain-Specific Languages 75

program state evolves in accordance with the behavior of the associated domain enti-
ties (see Fig. 3). This implementation is not only straightforward - and supported by
most UML environments - but also has two important properties:
1. At any time, the state of the program is a model of the target system.
2. The interpreter is a domain virtual machine.
The former property is fundamental for DSL composition (see section 4). The latter is
important, since it gives a way to solve reuse and evolution issues. Indeed, since the
interpreter implementation is based on the domain semantics, its behavior is defined
only in terms of changes of the instances that are images of domain elements. It is a
formal execution. The execution, in this case, does not rely on lower level libraries or
languages, as is usually the case in DSL technology (Fig. 2), nor on a transformation
toward lower level “platform dependent” models, as in MDE. A very important prop-
erty of this approach is that the interpreter is independent from actual components,
tools and platforms.

Domain VM
(Interpreter) Element

state

Operates upon
(unspecified)

Covers

Meta Model
(DomainModel)

DSL
(All Models)

Model Model_Of

Model_Of

Pertains
Conform_To

Domain

Transformed Image_Of

Domain
Mental Model

Abstraction
(mental)

Model_Of
(informal)

System

Fig. 3. Domain modeling and Mélusine

3.3 Virtual Machine Implementation

Formal execution means the execution only changes the state of abstract entities (Java
objects) but, most often, such a change “means” that its “image” in the system (either
software or physical) must change its state accordingly. Conversely, if the state of the
system changes, the model should be updated accordingly. In other words, formal in-
terpretation is not sufficient, abstract actions should be mapped to actual software
components, devices and so on.

In order to reuse existing software artifacts, Mélusine supports a bottom-up ap-
proach, defining the concepts of role and tool [11]. A role is an abstract interface for a
class of tools. A tool is any piece of software, (a COTS, a legacy application, a com-
ponent, a library, a physical device and so on), local or distant, that can play a role
(directly or through a wrapper).

The Mapping expresses the relationship between a state change in a model entity (a
Java object) and the correspondent change for its image in the “real” system (a tool
executing an action, a device activations) and so on. Conversely, the mapping changes
the model entity state to keep them synchronized with changes in the “real” system.

76 Jacky Estublier, German Vega, and Anca Daniela Ionita

Our requirement is to keep the interpreter independent from mapping. For this pur-
pose, mapping is performed in the Mélusine environment by transparently translating
it into aspects, in the AOP (Aspect Oriented Programming) sense. This is easy to do,
because the formal interpretation directly changes the state of the model entities; it is
enough to capture the methods that change the (Java) model entities and to call the
corresponding mapping. Our AOP machine [12] inserts byte code in the interpreter, to
execute the aspect in accordance with the mapping specification (Fig. 4).

Conceptual
 Domain

 Model mapping

Implementation
 Domain
 Implementation
 Abstractions
 Common
 Implementation

Common
Domain
Abstractions

Application
Specific

Conform_to

Domain Model
(Meta Model)

Transformed

Abstract execution

AOP Machine

Mapping

Tools

 Model
Transformed

Operates_Upon
(Is part of)

Roles

Model_ofModel_of

Domain VM

System

state

Domain

Fig. 4. Conceptual domain and implementation

In our solution:
 the interpreter and the models are independent from any specific implementation,
 the mapping is defined at a high level, between the model and roles (abstract tools),
 actual tools implement abstract services (roles) and can be changed at any time.

Our domain-layered architecture emphasizes the reuse of tools, models and inter-
preters and enables each actor (analyst, designer, implementer, administrator) to work
with tools and concepts at its level of abstraction.

Reusing a domain model implies being able to combine it with other domains in
order to cope with wider scope applications (see section 4 about domain composition)
and to adapt it to specific requirements (see section 5 about domain evolution).

4 Domain Composition

Our approach to domain composition is built on the insight that composition is easily
expressed at the conceptual level (see section 2.4), and that most of the reuse benefits
can be achieved if one can use the existing domains and their models without modify-
ing them.

Domain composition (section 4.1) consists of defining concepts and relationships
that are valid for all the applications in the new composite domain. The new behavior

Composing Domain-Specific Languages 77

is implemented in the composition virtual machine (section 4.2) by synchronizing its
execution with the corresponding sub-domain interpreters. Then the domain models
can be easily composed (section 4.3).

4.1 Domain Model Composition

The composition is initially defined at the conceptual level, by identifying relation-
ships that must be established between existing domains and potentially new concepts
and behavior, specific to the composition (see the upper part of Fig. 5).

C om position
M odel

D om ain
C om position

Annotates

C om position
V M

Synchronization (AO P)

Interpreted B y

A nnotates

D om ain M odel

A pplication
M odel

D om ain V M

Trans-
formed

C onform s to

Interpreted B y

R eferences
R eferences

C onform s to

D om ain M odel

Application
M odel

D om ain V M

Trans-
form ed

C onform s to

Interpreted B y

M apping

Fig. 5. Conceptual Domain Composition

Because domain models are designed independently, they often contain similar
concepts, defined in different ways, since each domain corresponds to a specific con-
cern and outlines the characteristics relevant for this concern only. Two types of rela-
tionships can then be established between concepts present in two different domain
models: associations (in the UML sense) and correspondences, relating similar or
overlapping concepts [13]. For example, Fig. 6 shows some of the new relationships
defined for the composition of the Process and Resource domains. The association
Project/Resource models the resources assigned to the project, while Activ-
ity/Human indicates the person in charge of an activity; they are usually class asso-
ciations that capture some emerging behavior of the composition. The relationships
Process/Project and Task/Activity are correspondences between overlapping con-
cepts in different domains, in the sense that they can be considered as different as-
pects of a single unified concept in the composed domain. The example illustrates an
important property: domain composition may involve more than two domains. The
human resources assigned to an activity must be selected from the available resources
of the project; this is a constraint that covers the three composed domains.

A crucial point to highlight is that conceptual composition defines the metamodel
of the composed domain. This new metamodel comprises the concepts and associa-
tions existing in the sub-domains, the added relationships and, eventually, new emerg-

78 Jacky Estublier, German Vega, and Anca Daniela Ionita

ing concepts. As for any other domain, an interpreter must be implemented for this
new metamodel and appropriate models must be developed for the new composed
domain (section 4.3).

Fig. 6. Conceptual Composition

4.2 Composing Virtual Machine

To foster reuse of existing domains, the interpreter of the composed domain must be
implemented by composing the sub-domain virtual machines, as schematically pre-
sented in the lower part of Fig. 5.

It turns out that it is necessary to implement the new relationships and behavior
without changing the existing interpreters. The intention is to synchronize the execu-
tion of several independent virtual machines (sub-domain interpreters). Note that the
new virtual machine is allowed to explicitly reference existing classes and associa-
tions in the sub-domain interpreters, but not the other way around.

To implement this synchronization, AOP technology is used again, defining as-
pects that capture the methods representing significant events in the sub-domain in-
terpreters and calling the appropriate methods in the composition domain interpreter,
that implements the behavior of the new classes and relationships. This approach may
look low level, but this is not the case because, as pointed out in section 3.2, the state
of the virtual machine is a model of the target system and the captured events are
meaningful in the new conceptual model.

To illustrate this claim, the sample of program presented below shows the syn-
chronization between Process and Resource domains (this is the real, complete code,
extracted from an operational document management application). The new behavior
to be implemented is assigning a human to be responsible for a particular activity. The
aspect assignActivity captures, in the process virtual machine, the signals represent-
ing that an activity has become ready; the aspect calls the composite virtual machine
(class ActivityAssignationManager) that itself calls the resource virtual machine to
display a list of humans playing the associated role and changes the responsible.

import apel.motor.model.*;
aspect assignActivity(int newState) of Activity {
 when newState == Activity.READY;

Composing Domain-Specific Languages 79

 body(JAVA) {
 activityAssignationMaager.assignActivity(instance);
 }
}
public class ActivityAssignationManager {
 public ActivityAssignationManager () {

 resource = Domains.getRoot("resourceEngine");
 }
 public Vector getPotentialHumans(String roleName) {
 Role theRole = resource.getRole(roleName);

 return resource.getHumanIds(theRole);
 }
 public void assignActivity (Activity activity) {
 String user = showAssignDialog(activity.getName(),
 getPotentialHumans(activity.getRole()));
 return activity.setResponsible(user);
 }

}
The classes in the composition virtual machine are similar to other domains, they

capture abstract concepts of the composition and, as shown in Fig. 4, may require a
mapping to lower level software, components, devices and so on, just as for other
domains, see section 3.3.

Composing virtual machines is not necessarily easy, but not too complex either,
because each interpreter is a direct implementation of the corresponding domain con-
cept and therefore, the composition is performed at the conceptual level of the com-
posite domain. This is much easier than trying to change the existing interpreters or to
implement a new one. In our experience, a typical composition interpreter is very
tiny; for instance, in the document management application, the composition inter-
preter is about 15% (in LOC) of all composed domain virtual machines.

4.3 Model Composition

The composite domain has its own metamodel, meaning that we may need to develop
new models conforming to this metamodel. These models can refer to existing sub-
domains models and can make the links between them explicit. For example, for the
document management composite domain presented in section 4.2, the data circulat-
ing in the data flows defined in a process model should be associated with actual
product definitions in the product data management domain; more specifically, the
entity called doc in the process model is the document specifProjectX in the Product
domain. This information is captured by the composite model and is interpreted by
the composition virtual machine (see the code of class ActivityAssignationManager
in the previous section).

There is an important point to highlight: the existing models have not changed at
all, but a new model was defined that relates the existing sub-domain models. The ex-
perience shows that this is very easy to do and allows models to be reused. Since the
domain itself evolves, its model has to incorporate the novelties introduced in the real
domain.

80 Jacky Estublier, German Vega, and Anca Daniela Ionita

4.4 Domain Evolution

Some variations in the domain can be expressed without having to change the domain
model. A feature captures optional domain behavior; they are implemented in the
same way as mappings, by capturing domain behavior and adding/substituting it with
the actual feature behavior. In this way, the domain model, the interpreter and models
are totally unchanged. For example, the Process domain has trace, mail_notification
and persistent features. They can be selected or not for each application in the do-
main.

Extensions are new concepts, added to the domain and linked by associations with
the domain model concepts. These concepts, with their semantics, behavior and im-
plementation, make sense only in connection with the domain model.

This is in contrast with domain composition, where each domain is independent
and makes sense by itself. Nevertheless, the technology we use to define and imple-
ment extensions is the same as for domain composition [14].

5 Related Work

The idea of extending or specializing a language by modifying its interpreter has been
actively studied in the context of Meta Object Protocols [15] and reflective program-
ming languages. In this context, the formal domain interpreter can be seen as the meta
level, the actual tools and components as the base level and the mapping as the causal
link between the two. An important difference in our approach is that the meta level is
directly related to the domain (domain semantics) and not (only) to the formal seman-
tics. Another difference is that we develop the two levels separately, in order to be
able to evolve them independently, and we use AOP to keep them synchronized.

More generally, our approach is based on the idea that a domain presents two inter-
faces: when used in the development of a particular application, only the model editor
is visible, the domain model and its interpreter are hidden. When composed or ex-
tended, the conceptual model is exposed like a white box. In this regard, our work can
be related to the idea of open implementations [16][17] and more particularly to the
ideas of open design programming languages [18]. The domain-specific virtual ma-
chine can also be related to the idea of a UML virtual machine [19]. The difference is
that, instead of implementing a low-level UML action language, we implement the
behavior of the high-level domain concepts.

Composing modeling languages by composing their corresponding metamodels is
also considered in [20], but the approach is limited to the generation of the model edi-
tor and does not consider the domain behavior and run-time environment. Fritsch and
Renz [21] present a meta-level architecture for the development of product lines
based on several related DSLs, similarly Barry et Al. [22] present an example of
composition of Process and Product Data Management software, by composing
metamodels. Although very similar to our approach, both are limited to a particular
domain. We have generalized the approach and have applied it systematically in very
different domains.

The problem of metamodel evolution and adaptation and its impact on the corre-
sponding interpreters has been stated in [23] and an approach for metamodel evolu-

Composing Domain-Specific Languages 81

tion based on a transformation language is presented in [24]. These approaches are
based on the idea of refactoring the metamodel and automating the impact on the ex-
isting models and interpreters. Our approach is based on the idea of modularly defin-
ing the metamodel and reusing the existing models and interpreters. The two ap-
proaches complement each other very well.

Another solution other than DSL would be to use a general modeling language,
such as UML 2.0 [5], that offers support for:
 Evolution, with the possibility to introduce variability (through templates, power-

types for creating metamodels and semantic variation points like model annota-
tions) and extensions (with inheritance, stereotypes, constraints and tagged values);

 Reuse, with patterns, stereotyped packages like model libraries or frameworks and
the facility to merge packages (models), by introducing a generalization for classi-
fiers with the same name;

 Domain-specific concepts, with profiles, that allow for the definition of stereotypes
grouping property extensions.
UML was not adopted, because defining a DSL is simpler than defining a profile.

A profile, even if extending only a metamodel subset, requires conformity with the
huge UML semantics and checking this conformity is not entirely supported by exist-
ing tools. From the point of view of code generation, model transformation often
needs supplementary marking models [25] and restriction to UML subsets. Executa-
ble UML [26] goes forward, by creating an UML profile and adding actions for a de-
tailed definition of the behavior, such as to be executed. Models for different subject
matters are woven together by an executable UML compiler that, unlike Mélusine,
keeps all the burden of general languages. Apart from making the composition at the
meta level, between small DSLs, the flexibility added by our approach also comes
from its layered architecture, which separates the models from their implementation
tools and allows domain extensibility.

A possible solution for directly manipulating the domain concepts is expected to
be given by future tools, for example, based on MOF [27], allowing users to define
entirely new languages via metamodels. In the meantime, the Eclipse Modeling
Framework (EMF) seems to be closer to our needs, proposing Ecore meta-metamodel,
similar to MOF and expressing models as XML schemas, UML class diagrams or an-
nonated Java [28]. EMF provides all the facilities and extensibility of Eclipse and also
offers a number of tools to support automatic editor generation and round-trip engi-
neering, while still leaving the user the possibility to write code that remains outside
models.

6 Conclusion

Our work is based on a simple idea: DSL is a good engineering approach, but it is
limited by its narrow scope; so, composing DSLs would permit implementing wide-
scope applications, while retaining the strong points of DSLs. Unfortunately, this
simple idea is far from trivial if one seeks a solution answering the question: how is it
possible to compose DSLs, but still reuse existing components and tools and support
different types of evolution.

82 Jacky Estublier, German Vega, and Anca Daniela Ionita

We have spent a number of years answering this question, implementing (re-
implementing) solutions, and validating them in real scale industrial applications. The
lesson we have learned is that no single technology or technical approach alone can
solve these issues. Indeed, our approach puts together ideas coming from DSL, MDE,
programming languages, AOP and component technologies.

AOP, as well as components, are implementation techniques, not engineering ap-
proaches. Nevertheless, AOP is our corner stone implementation solution, because it
allows both reuse and evolution.

Our approach is typical of MDE, but, in contrast with the main stream, our tech-
nology allows for the composition of independent models and metamodels by defin-
ing relationships among their concepts. This composition technology is a practical
and high-level way to compose DSLs, defining a new, extended DSL, that can be fur-
ther composed itself. Furthermore, as this approach uses formal interpretation and
AOP techniques, it is possible to reuse the existing domains (interpreters, models and
so on) without changing them. Finally, the introduction of features and extensions at
the conceptual level and the explicit mappings and roles at the implementation level,
provide large evolution capabilities.

Composing DSLs in the general case is very difficult, but it becomes a practical
and promising software engineering approach when supported by a methodology and
a specific environment, like Mélusine, providing high-level modeling, generation,
evolution and reuse.

Acknowledgements: The work of Anca Daniela Ionita is supported by a Marie

Curie Intra-European Fellowship, within the 6th European Community Framework
Programme.

References

1. D. S. Wile., Supporting the DSL Spectrum, Journal of Computing and Information Technol-
ogy, CIT 9, 2001 (4) 263-287

3. Levine, John R., Tony Mason and Doug Brown [1992]. Lex & Yacc. O’Reilly & Associ-
ates, Inc. Sebastopol, California

3. Bézivin, J., Gerbé O., "Towards a Precise Definition of the OMG/MDA Framework",
ASE'01, Novembre 2001

4. Favre J.M., "Towards a Basic Theory to Model Model Driven Engineering", 3rd Workshop
in Software Model Engineering, WiSME 2004, http://www-adele.imag.fr/~jmfavre

5. OMG, “UML 2.0 Superstructure Specification”, August 2003
6. Gosling J., Joy B., & Steele G., The Java Language Specification, Addison Wesley, 1997
7. J.F. Sowa, Ontology, Metadata, and Semiotics, in B. Ganter & G. W. Mineau, eds., Concep-

tual Structures: Logical, Linguistic, and Computational Issues, Lecture Notes in AI #1867,
Springer-Verlag, Berlin, 2000, pp. 55-81

8. R.A. Falbo, G. Guizzardi, K.C. Duarte, An ontological approach to domain engineering,
Proc. of the 14thInt. Conf. on Software Eng. and Knowledge Eng., Ischia, Italy, 2002,
ISBN:1-58113-556-4, pp. 351 – 358

9. R. Prieto-Diaz, Domain Analysis: An Introduction, Software Engineering Notes, Vol. 15,
No. 2, April 1990

10. S. Thibault, “Langages Dédiés : Conception, Implémentation et Application”, Ph.D. Thesis
Université de Rennes1, 1998

Composing Domain-Specific Languages 83

11. T. Le-Anh, J. Villalobos, J. Estublier. Multi-level Composition for Software Federations. In
Proceedings of the 6th European Joint Conferences on Theory and Practice of Software
(ETAPS 2003) Workshop on Software Composition, April 2003

12. F. Duclos, J. Estublier, R. Sanlaville “Separation of Concerns and The Extended Object
Machine.” Submitted to Journal Advise. http://www-adele.imag.fr/Les.Publications/BD/
ADVICE2004Est.html

13. J. Estublier, A.D. Ionita, Extending UML for Model Composition, Australian Software En-
gineering Conference, 29 March – 1 April, Brisbane, Australia

14. J. Estublier, J. Villalobos, T. Le-Ahn, S. Sanlaville, G. Vega. An Approach and Framework
for Extensible Process Support System. . In Proceedings of the 9th European Workshop on
Software Process Technology (EWSPT 2003), September 2003

15. G. Kiczales, J. des Rivières, D. Bobrow. The Art of the Metaobject Protocol. MIT Press,
Cambridge Massachusetts, 5th Printing 1999

16. G. Kiczales. Beyond the black box: Open Implementation, IEEE Software, Vol. 13 Issue 1,
January 1996

17. C. Maeda, A. Lee, G. Murphy, G. Kizales. Open Implementation Analysis and Design,
ACM SIGSOFT Software Engineering Notes, Vol. 22 Issue 3, May 1997

18. P. Steyaert. Open Design of Object Oriented Languages. PhD thesis, Vrije Universiteit
Brussel, 1994.

19. D. Riehle, S. Fraleigh, D. Bucka-Lassen, N. Omorogbe. The Architecture of a UML virtual
machine, Proceedings of the 16th ACM SIGPLAN Conference on Object oriented program-
ming, systems, languages, and applications OOPSLA 2001, Tampa Bay, USA, October
2001

20. G. Karsai, M. Maroti, A. Ledeczi, J. Gray, J. Sztipanovits. Composition and Cloning in
Modeling and Meta-Modeling, IEEE Transactions on Control System Technology, Vol. 12
No. 2, March 2004

21. C. Fritsch, B. Renz. Four Mechanisms for Adaptable Systems A Meta-level Approach to
Building a Software Product Line. Proceedings of the 3rd International Software Product
Lines Conference, SPLC 2004, Boston, USA, August 2004

22. A. Barry, N. Baker, J.-M. Le Goff, R. McClatchey, J.-P. Vialle. Meta-Data based design of
Workflow Systems. Proceedings of Workshop on Meta-data and Active Object Model pat-
tern mining, OOPSLA 1998, Vancouver, Canada. October 1998

23. J. Zhang, J. Gray. A generative approach to model interpreter evolution. Proceedings of
Workshop on Domain Specific Modeling, OOPSLA 2004, Vancouver, Canada. October
2004

24. J. Sprinkle, G. Karsai. A Domain-Specific Visual Language For Domain Model Evolution.
Journal of Visual Languages and Computing, vol. 15, no. 2, April 2004.

25. S. Mellor, K. Scott, A. Uhl, D. Weise. MDA Distilled: Principles of Model-driven Architec-
ture, Addison-Wesley, 2004

26. S. Mellor, M. Balcer. Executable UML: A Foundation for Model Driven Architecture. Ad-
dison-Wesley, 2002

27. OMG, "Meta Object Facility (MOF) 2.0 Core Specification", October 2003
28. F. Budinsky, D. Steingerg, E. Merks, R. Ellersick, T. Grose, “Eclipse Modeling Frame-

work”, Addison Wesley, 200

Model Typing for Improving Reuse in

Model-Driven Engineering

Jim Steel and Jean-Marc Jézéquel

Irisa (INRIA & University of Rennes)
Campus Universitaire de Beaulieu

35042 Rennes CEDEX, France

Abstract. Where object-oriented languages deal with objects as de-
scribed by classes, model-driven development uses models, as graphs of
interconnected objects, described by metamodels. A number of new lan-
guages have been and continue to be developed for this model-based
paradigm, both for model transformation and for general programming
using models. Many of these use single-object approaches to typing, de-
rived from solutions found in object-oriented systems, while others use
metamodels as model types, but without a clear notion of polymorphism.
Both of these approaches lead to brittle and overly restrictive reuse char-
acteristics. In this paper we propose a simple extension to object-oriented
typing to better cater for a model-oriented context, including a simple
strategy for typing models as a collection of interconnected objects. Us-
ing a simple example we show how this extended approach permits more
flexible reuse, while preserving type safety.

1 Introduction

From the perspective of the data structures involved, model-driven computing
can be seen as a progression from object-oriented computing. Models are, in
essence, composed of objects linked together using first-class bidirectional rela-
tionships, where the structure of the objects and the relationships between them
are typically defined by a MOF, or MOF-like, metamodel. The presence of these
relationships has the effect that model structures are much more tightly coupled
than object structures.

For this reason, it is hardly surprising that the majority of approaches to
developing languages for manipulating models have adopted formalisms based
on those found in object-oriented programming languages.

The study of languages for manipulating these model structures is active.
In 2001, the OMG issued an RFP soliciting languages for defining model trans-
formations, as mappings between models. In response, many languages have
been developed, using variously logic-based[10], pattern-based [13], and graph-
transformation [14] approaches. Concurrently, a number of efforts are being un-
dertaken to develop or extend programming languages to better deal with models
as data structures [2, 17].

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 84–96, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Model Typing for Improving Reuse in Model-Driven Engineering 85

The vast majority of these efforts have chosen to use type systems developed
for use within object-oriented development. However, as discussed in [8] and
mentioned in [16], the use of such type systems in a model-oriented context
renders programs somewhat brittle with respect to changes in the metamodel.

Most importantly, however, is that these systems do not truly allow the user
to specify their transformations or programs in terms of models and types of
models, but rather in terms of objects within models. This is counter-intuitive
to the user.

To resolve this, we discuss necessary extensions to object-oriented typing to
deal with the relationships defined in MOF metamodels. Using this extended
notion of object typing, we propose a definition of a model type, including a
definition of substitutability of model types and a discussion of reflection and
inference of model types.

In section 2, we provide a background on typing and models and the role of
typing in model-driven engineering, including a motivating example. Following
this, in section 3 we present a definition of model types with a rule for model type
substitutability, including an illustration using the example. Section 4 discusses
the implication of this definition for the related issues of model type reflection
and model type inference. Section 5 discusses a number of related works from
the domains of both MDE and type systems.

2 Background

Generally speaking, a type can be understood as a set of values on which a
related set of operations can be performed successfully. Once types have been
defined, it is possible to use them in operation specifications of the form: if
some input of type X is given, then the output will have type Y. Type safety
is the guarantee that no run-time error will result from the application of the
operation to the wrong object or value. A type system is a set of rules for
checking type safety (a process usually called type checking since it is often
required that enough information about the typing assumptions has been given
explicitly by the designer or programmer, so that type checking becomes mostly
a large bookkeeping process).

Type checking is said to be static when it is performed without program exe-
cution (typically at compile-time or bind-time). It aims at ensuring once and for
all that there is no possibility of interaction errors (of the kind addressed by the
type system). Not all errors can be addressed by type systems, especially since
one usually requires that type checking is easy; e.g., with static type checking it
is difficult to rule out in advance all risks of division-by-zero errors.

Type systems allow checking substitutability when services are combined: by
comparing the data types in a service interface, and the data types desired by
its caller, one can predict whether an interaction error is possible (e.g. producing
a run-time error such as ”Method not understood”). Conformance is generally
defined as the weakest (i.e., least restrictive) substitutability relation that guar-
antees type safety. Necessary conditions (applying recursively) are that a caller

86 Jim Steel and Jean-Marc Jézéquel

must not invoke any operation not supported by the service, and the service
must not return any exception not handled by the caller. Conformance has a
property called contravariance: the types of the input parameters of a service
must conform in opposite to the types of its result parameters.

2.1 Example

We consider as a motivating example a simple model transformation that takes
as input a state machine and produces a lookup table showing the correspon-
dence between the current state, an arriving event, and the resultant state. The
input metamodel for this transformation is presented in figure 1. The output
metamodel, not shown, can be assumed to be a simple database language, but
in any case we will focus on the conformance of the input type.

Fig. 1. Simple State Machine Metamodel

The choice of which language is used to implement the transformation, and
even of which paradigm of language to use, is immaterial. Also immaterial is the
choice as to whether the input and output types of the transformation are derived
(inferred) or explicitly declared. (This choice is discussed further in section 4).

Having given this metamodel as the nominal input for the transformation, we
consider that there are a number of variants of state machines whose instances
might also be interesting as potential inputs to the transformation.

Initially, we might consider changing to the multiplicity of the “initial” refer-
ence from 0..1 to 0..*, for state machines with multiple start states (Figure 2), or
from 0..1 to 1..1, mandating that each state machine have exactly one start state
(Figure 3). Alternatively, we might apply the composite pattern by adding an
inheritance of State by StateMachine, for composite state machines (Figure 4).
Finally, we might consider the addition of a FinalState class as a new subclass
of State (Figure 5).

The question is, then, does the initial transformation written for models
conforming to Figure 1 still work with models conforming to these variant meta-
models?

Model Typing for Improving Reuse in Model-Driven Engineering 87

Fig. 2. State Machine Metamodel with multiple start states

Fig. 3. State Machine Metamodel with mandatory start states

Fig. 4. Composite State Machine Metamodel

88 Jim Steel and Jean-Marc Jézéquel

Fig. 5. With Final States

2.2 Objects, and Their Types

Although research is ongoing into the fine details, the basic notions of objects
and the type systems that describe them are by now reasonably well-understood
[1]. As mentioned briefly above, the main difference between the objects seen
in classical object-oriented systems and the objects used within models is the
presence of (potentially) bidirectional relationships.

In MOF 1.x, these were defined as binary associations, which in turn con-
tained association ends, which defined characteristics such as the upper and
lower bounds, uniqueness and orderedness of the association in a given direc-
tion. Navigabilities were specified by the addition of references.

In MOF 2.0, relationships are defined as a pair of references, each of which
defines the details formerly kept by association ends. These references may link to
another reference, thus forming a bidirectional relationship. This change entails a
subtle change of expressivity but, in effect, yields the same type of relationships.

2.3 Models and Metamodels

The MOF specifications, unlike those of UML, have never included a formal
definition of either a model or a metamodel. By convention, and intuitively, the
latter has usually been used as a synonym for a MOF package. In many MOF
1.x implementations, a model was defined as a “package instance”, a term not
defined in the specifications, but an intuitive concept that could contain objects
instantiated from any class within a given MOF package. While intuitive, these
definitions were somewhat limiting for situations where cross-”model” references
were common.

MOF 2.0 has introduced the notion of an extent, and made explicit the fact
that extents may contain objects instantiated from classes from different pack-
ages. This recognises the increasing abundance of models which reference other
models; these are intuitively, and may now be considered as, single models. How-
ever, this leaves us without a firm idea of a metamodel, since we can no longer

Model Typing for Improving Reuse in Model-Driven Engineering 89

be guaranteed that all objects within an extent will possess a type contained by
a single package.

Beyond these conventions, there are two general approaches to defining a
concept of a model. The first, that taken by UML, is to designate some class as
being a root node for the model, whereby the model thus consists of instances of
that class and all objects contained by (or perhaps reachable from) that object.
However, this does not work in the case of models which lack a single root
element, as is common in cases such as models containing tags or models of, for
example, collaborative processes[12]. The alternative and more general approach,
the one evident as Extent in MOF 2.0, is to define a model as just a set of objects.

Taking this second definition, the obvious choice for the type of a model is
the set of the object types of all the contained objects. The details of such a
definition are given in the next section.

2.4 Typing in Model-Driven Engineering

The application of typing in model-driven engineering is seen at a number of
levels.

At a fine-grained level, languages that manipulate and explore models need
to be able to reason about the types of the objects and properties that they
are regarding within the models. For this level of granularity, an object-based
approach to typing is probably more natural and appropriate.

From a broader perspective, there is also a need to reason about the types
of artifacts handled by the transformations, programs, repositories and other
model-related services. It is at this level that an appropriate type system should
allow us to reason about the construction of coherent systems from the services
available to us. While it is possible to define the models handled by these services
in terms of the types of the objects that they accept, we argue that this is not
a natural approach, since these services intuitively accept models as input, and
not objects.

Having established that services might accept and produce models, it follows
that they should specify a type for these models. Furthermore, having established
these type declarations, it is also useful to find a semantic for substitutability
that allows the maximum possible flexibility and reuse, while still assuring that
the services do not receive models whose elements they do not understand.

For example, the sample transformation described in section 2.1 can be said
to accept state machines as input, and should accept as many of the noted
variants as possible, provided that at no point the transformation attempts an
action on the model that is not possible.

3 Model Types and Model Type Substitutability

In this section we provide a simple structure for the type of a model and dis-
cuss the conditions under which one model type may be substituted for another.

90 Jim Steel and Jean-Marc Jézéquel

This includes an analysis of the dependence of model typing upon object typ-
ing, and the extensions necessary for object typing to function correctly in this
new context. We demonstrate the application of model types using the example
presented earlier.

3.1 Model Types

The previous section defines a model type as the set of object types for all the
objects contained in a model. However, this is a definition based on reflection,
and the aim of model types is rather targeted at transformation or model-based
programming languages, where reflection will not be the dominant manner of
determining types. Therefore, we need to redefine our model type more basically.

So what structures do we have? Normal MOF reflection upon an object
yields a MOF class. While literature on type systems, such as [11], suggests that
a type is not the same thing as a class, MOF is something of a special case. Since
MOF is a signature language, i.e. unable to specify behaviour, a MOF class is
in fact more analogous to a type than to a class in type system terminology. We
therefore content ourselves to define a model type as a set of MOF classes (and,
of course, the references that they contain).

In the example presented in section 2.1, the model type required for our
transformation is in essence the metamodel shown in figure 1. In fact, the only
significant difference between model types and metamodels is the structuring
provided by packages and relationships between packages.

3.2 Model-Type Checking

Under what conditions may one model type, i.e. set of object types, be considered
conformant, or substitutable, for another? Quite simply, each object type in the
required set must be “understood” by the candidate set. Clearly, this returns to
a situation of object type conformance.

Object-Type Conformance The presence of relationships, in whichever form,
defined between classes has little effect on the overall approach on the typing
of objects. The structure of an object type remains the same. Indeed, if one
considers a relationship as a mutually dependent pair of references, they do
not differ fundamentallly from the properties seen commonly in object-oriented
systems. There is, of course, a stronger prevalence of cyclic dependencies between
the conformance of classes. For example, consider a class C1 in a relationship
A1, consisting of two references R1 and R2, with another class C2. For a class
C1’ to be considered a subtype of C1, it must participate in a relationship A1’
with a class C2’ that is a subtype of C2, which fact depends on the original
comparison of C1’ and C1.

As has been already presented in [15], there are many possible approaches
to the type conformance of object types in a model-based context, ranging from
the currently-predominant approach based on subclass-based conformance, as

Model Typing for Improving Reuse in Model-Driven Engineering 91

in Java, to structural conformance. As is also presented in [15], these must be
extended to ensure that the covariance (for operation return types and prop-
erty types) and contravariance (for parameter types) rules take into account the
structural differences such as multiplicities on associations (using subsumption
and inverse subsumption respectively).

However, to use these approaches when typing a model as a collection of ob-
jects, there are additional requirements that must be met which do not appear
when evaluating object type conformance in isolation. Specifically, there are cer-
tain rules pertaining to the preservation of the identity of classes when assessing
conformance of relationships. These rules are most evident in resultant axioms
such as:

1. A reflexive relationship may not be satisfied by a non-reflexive relationship.
2. Similarly, a non-reflexive relationship may not be satisfied by a reflexive

relationship.
Having added this constraint, the choice remains open as to which algorithm

one uses when assessing object type conformance. So as to avoid confusing our
examples by using metamodel extension techniques, we will proceed using the
structural conformance proposed in [15], with appropriate extensions for the
above constraint.

Model-Type Conformance Using our object type conformance rule, the ques-
tion of whether a required model type may be satisfied by a provided model type
is determined by checking whether for each required object type, there exists a
conformant object type in the provided type.

It is very important to note here the reason for avoiding a reflective definition
of model type. In particular, in requiring that each object type exist in the
provided model type, we do not mandate that there exist an instance of each
object type. Put more simply, there is a difference between the absence of an
object of a given type in a model and the absence of the object’s type in the
model’s model type. The model type of a state machine without transitions
would still contain the Transition class.

This difference poses no problems if we remain within the domain of trans-
formations or programs with manifest typing, but may become problematic for
dynamically determining the type of a model using reflection, or for a language
that determines its input or output model types using inference. These problems
are discussed in section 4.

3.3 Details and Demonstration

The approach for testing model type conformance discussed above may be sum-
marised by the following steps:

– For each class (object type) in the required model type, find all conformant
object types in the provided model type. Using structural conformance from
[15], this means that

92 Jim Steel and Jean-Marc Jézéquel

• Each operation on the required class must be satisfied by a conformant
operation according to covariance on return type, contravariance on pa-
rameter types and appropriate subsumptions of multiplicities

• Each property on the required class must be satisfied by a conformant
property according to covariance on type, subsumption on multiplicity,
etc

– Eliminate conformant provided types which violate the identity rules de-
scribed above

– Ensure that for each class in the required model type, there remains at least
one conformant type in the provided model type.

More formally, conformance of a provided model type MTp to a required model
type MTr may be defined as follows.

First, we establish the object type conformance relation image(MTr.types →
MTp.types), such that:

∀Cp : Class ∈ MTp, ∀Cr : Class ∈ MTr,
Cp ∈ image(Cr)⇐⇒

∀Or : Operation ∈ Cr .allOperations(),
∃Op : Operation ∈Cp.allOperations() —

Op.name = Or.name, and
Op.type ≤ Or.type (return type covariance), and
Op.multiplicity ⊆ Or .multipicity (return type multiplicity subsump-

tion), and
∀Par : Parameter ∈ Or.ownedParameter,
∃Pap : Parameter ∈ Or .ownedParameter —

Par.type ≤ Pap.type (parameter type contravariance), and
Par.multiplicity ⊆ Pap.multipicity (parameter multiplicity sub-

sumption (inverse))
∀Prr : Property ∈ Cr.allP roperties(),
∃Prp : Property ∈ Cp.allP roperties() —

Prp.type ≤ Prr.type (property type covariance), and
Prp.multiplicity ⊆ Prr.multipicity (property multiplicity subsump-

tion), and
Prr.isReadOnly = false ⇒ Prp.isReadOnly = false

Having established this relation image(MTr.types → MTp.types), check the
identity constraints described above, by ensuring that:

∀Cr ∈ MTr, image(Cr) �= ∅ (each required class has a conformant)
∀Cr ∈ MTr,∀Pr ∈ Cr.allP roperties(),

Pr.type = Cr ⇒ image(Pr.type) = image(Cr), (reflexive properties are sat-
isfied by reflexive properties) and

Pr.type �= Cr ⇒ image(Pr.type) ∩ image(Cr) = ∅ (non-reflexive properties
are satisfied by non-reflexive properties)

Model Typing for Improving Reuse in Model-Driven Engineering 93

� conforms to → Simple Mult-St Mand-St Comp Final

Simple (Figure 1) YES YES NO NO YES

Multiple-Start (Figure 2) NO YES NO NO NO

Mandatory-Start (Figure 3) YES YES YES NO YES

Composite (Figure 4) YES YES NO YES YES

With-Final-States (Figure 5) YES YES NO NO YES

Table 1. Model Type Conformance Relation for State Machine Variants

Applying these steps to the example metamodels provided in section 2.1, we
obtain the model type conformance relation shown in Table 1.

In this relation we can see that the addition of new classes (FinalState)
and the broadening of multiplicity constraints have not broken the subtyping
relationship, but that tightening of multiplicities has. It is notable also that
composite state charts are found to be subtypes of simple state charts, although
the reverse might have been more intuitive. The effect of using structural con-
formance is seen by the conformance of simple state charts to those with final
states.

4 Further Considerations

Having considered the general idea of types for models and presented an ap-
proach for verifying the conformance of model types, we now proceed to discuss
two related issues, those of model type reflection and model type inference.

4.1 Model Type Reflection

Reflection is one of the key features of model-driven engineering. The ability to
ask an object about what features it provides allows for the creation of generic
tools that work regardless of the metamodel from which the object was instanti-
ated. Many services such as XML and textual serialization and deserialization,
model repositories, and code generators, already make extensive use of object
reflection.

Having added an idea of a model type, it is clearly necessary to consider the
problem of model type reflection. That is, if a user provides a model to a service,
it should be possible to determine the type of the model by looking at the types
of the objects that it contains.

As discussed, the main difficulty with model reflection is the difference be-
tween the presence of an object of a given type within a model and the presence
of the object type in the model’s type. This problem makes it impossible to
simply determine (using object reflection) the object type of each member of the
model and return that as the type of the model.

Intuitively, the problem requires finding all classes that may be associated
with the objects already present in the model. As a general problem, this re-
quires a form of existential quantification, which is something not available in

94 Jim Steel and Jean-Marc Jézéquel

current MDE tools. In lieu of this, an alternative is to use bounded existential
quantification, such as searching for all referring object types within a given
set of packages, e.g. those already containing object types obtained from object
reflection. This is, however, a partial solution that requires further consideration.

4.2 Model Type Inference

A closely related issue to model type reflection is that of model type inference.
In the example transformation presented earlier, we deliberately did not dis-

cuss how the input model type was determined, in order to remain independent
of the choice of language used for implementing the transformation language.
There are two alternatives for determining this type. In manifest typing, as is
commonly seen in languages such as Java and C#, for example, types are defined
by the user. By contrast, in languages such as ML, types are inferred from the
code written by the user.

One can imagine that a similar approach could be used by a model trans-
formation language. A transformation or program whose definition constructs
models from a limited set of classes might be able to determine its output model
type from the statements creating the objects. Obviously, this has a lot in com-
mon with the reflection problem discussed above, and one would imagine that,
having determined the classes used in the definition, similar techniques might
be used to determine more accurately the complete model type.

While model typing and model type reflection are problems that can be con-
sidered largely independent of the choice of model transformation or program-
ming language, model type inference is clearly not. Inference on transformations
defined using a rule/pattern-based language such as XMorph[7] will require a
different solution to inference on programs defined using a more imperative lan-
guage such as MTL[17].

5 Related Work

The problem of organising models, transformations, programs and other devel-
opment artifacts to form coherent model-driven systems is a field just beginning
to attract attention. In [5], the authors discuss a model bus, for describing model
services and mediating access to them including automation of coercion of models
to ensure compatibility. In [3], the idea is presented of a megamodel, a system or
registry of models and the relations that exist between them, most significantly
those of conformance and representation.

The study of type systems for object systems is a well-researched field. More
recently, a number of works have begun to extend this field towards type systems
for more tightly coupled systems of objects.

In [4], the authors present an extension to Java to provide for first-class
relationships between classes, including a formal definition for the resultant type
system. Their proposal includes a notion of relationship subtyping based on set

Model Typing for Improving Reuse in Model-Driven Engineering 95

membership, which bears a resemblance to the idea of association subsetting
presented in the UML 2.0 Infrastructure.

In [8], the authors present a system for checking the type compatibility of
constraints on object models expressed in Alloy, a language similar in purpose
to OCL. They propose an algorithm using bounding types and base types to
determine whether an expression has meaning with respect to a given object
model. Since this approach is based on the UML class diagram metamodel, which
bears significant structural similarity to that of MOF, this algorithm would apply
straight-forwardly to MOF metamodels.

Both of these works discuss, albeit from different perspectives, the problem
of checking the types of objects defined in the context of an object model that is
more tightly coupled than those traditionally used in object systems. However,
in each case, they consider only the typing of objects, and not of models as a
whole. By contrast, the extension presented here attempts, as much as possible,
to make orthogonal the question of typing the objects within a system, and to
address rather the problem of typing the model as a set of objects. Indeed, our
approach depends upon the existence of an object-typing algorithm that is able
to handle the presence of first-class relationships, and thus these works can be
seen as complementary.

There is also a body of work within the type system community on the
grouping of object types. In [9] and [6], the authors propose respectively “family
polymorphism” and “type groups”. However, although the type structures are
similar to those used in our approach, the problem under study in these works is
one of object typing, particularly of binary and reflective functions, which, due
to the simple type systems currently predominant in model-driven development,
does not pertain to our domain. Furthermore, their approach is, once again,
designed to aid in the typing of single objects (albeit objects whose types are
dependent on other types in a group), and not for typing models as sets of
objects. In light of this, these works might also be seen as complementary, if
MOF models in fact required the sophisticated checks that they provide.

6 Conclusion

The lack of proper mechanisms for typing operations on models such as model
transformations leads to brittle and overly restrictive reuse characteristics. In
this paper we have proposed a simple extension to object-oriented typing to
better cater for a model-oriented context, including a simple strategy for typ-
ing models as a collection of interconnected objects. Using a simple example we
have shown how this extended approach permits more flexible reuse of model
transformations accross various meta-models, while preserving type safety. We
have proposed a simple algorithm for checking the conformance of model types,
independently of any given transformation language. A prototype implementa-
tion of this algorithm is being implemented on the Eclipse/EMF platform, with
the goal of testing its usefulness in several contexts, such as Model-Bus tool
interoperability or Q/V/T transformations.

96 Jim Steel and Jean-Marc Jézéquel

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
[2] Mariano Belaunde and Mikael Peltier. From edoc components to ccm components:

A precise mapping specification. In FASE, pages 143–158, 2002.
[3] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. On the need for meg-

amodels. In OOPSLA and GPCE Workshop on Best Practices for Model Driven
Software Development.

[4] Gavin Bierman and Alisdair Wren. First-class relationships in an object-oriented
language. In Foundations of Object-Oriented Languages (FOOL 2005).

[5] Xavier Blanc, Marie-Pierre Gervais, and Prawee Sriplakich. Model bus : Towards
the interoperability of modelling tools. In Model Driven Architecture: Foundations
and Applications (MDAFA 2004).

[6] Kim B. Bruce. Some challenging typing issues in object-oriented languages. Electr.
Notes Theor. Comput. Sci., 82(7), 2003.

[7] Keith Duddy, Anna Gerber, Michael J. Lawley, Kerry Raymond, and Jim Steel.
Declarative transformation for object-oriented models. In P. van Bommel, editor,
Transformation of Knowledge, Information, and Data: Theory and Applications.
Idea Group Publishing, 2004.

[8] Jonathan Edwards, Daniel Jackson, and Emina Torlak. A type system for object
models. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software engineering, pages 189–199.
ACM Press, 2004.

[9] Erik Ernst. Family polymorphism. In ECOOP ’01: Proceedings of the 15th Eu-
ropean Conference on Object-Oriented Programming, pages 303–326. Springer-
Verlag, 2001.

[10] Anna Gerber, Michael J. Lawley, Kerry Raymond, Jim Steel, and Andrew Wood.
Transformation: The missing link of MDA. In Proc. 1st International Conference
on Graph Transformation, ICGT’02, volume 2505 of Lecture Notes in Computer
Science, pages 90–105. Springer Verlag, 2002.

[11] W. LaLonde and John Pugh. Subclassing �= subtyping �= is-a. Journal of Object-
Oriented Programming, 3(5):57–62, January 1991.

[12] Object Management Group. Enterprise collaboration architecture (ECA). OMG
Document no. formal/2004-02-01, 2004.

[13] QVT-Merge Group. Revised submission for MOF 2.0 Query/Views/Transforma-
tions RFP. OMG document number ad/2005-03-02, March 2005.

[14] Shane Sendall. Combining generative and graph transformation techniques for
model transformation: An effective alliance? In Proceedings of 2nd OOPSLA
Workshop on Generative Techniques in the context of Model Driven Architecture,
2003.

[15] Jim Steel and Jean-Marc Jézéquel. Typing relationships in MDA. In D.H.
Akehurst, editor, Second European Workshop on Model-Driven Architecture
(EWMDA-2), 2004.

[16] Jim Steel and Michael Lawley. Model-based test driven development of the tefkat
model-transformation engine. In 15th International Symposium on Software Re-
liability Engineering (ISSRE 2004), pages 151–160, 2004.

[17] Didier Vojtisek and Jean-Marc Jézéquel. MTL and umlaut NG - engine and
framework for model transformation. ERCIM news, 2004.

UML Vs. Classical Vs. Rhapsody Statecharts:

Not All Models Are Created Equal

Michelle L. Crane and Juergen Dingel

School of Computing, Queen’s University
Kingston, Ontario, Canada
{crane,dingel}@queensu.ca

Abstract. State machines, represented by statecharts or statechart dia-
grams, are an important formalism for behavioural modelling. According
to the research literature, the most popular statechart formalisms ap-
pear to be Classical, UML, and that implemented by Rhapsody. These
three formalisms seem to be very similar; however, there are several key
syntactic and semantic differences. These differences are enough that a
model written in one formalism could be ill-formed in another formalism.
Worse, a model from one formalism might actually be well-formed in an-
other, but be interpreted differently due to the semantic differences. This
paper summarizes the results of a comparative study of these three for-
malisms with the help of several illustrative examples. Then, we present a
classification of the differences together with a comprehensive overview.

1 Introduction

Model driven development (MDD) is a software development process that has
been gaining in popularity in recent years. MDD focuses on the models, or ab-
stractions of the software system, rather than on the final programs [20]; these
models are transformed, automatically or manually, into code. Executable mod-
els are a key component of MDD, as well as such concepts as automatic trans-
formation of models, validation of models, and standardization to enable in-
teroperability of different MDD tools (e.g., OMG’s Model Driven Architecture
initiative). Within MDD, state machines are a popular way of modelling the
behaviour of systems.

With respect to state machines, the most popular formalisms, as represented
in the research literature, are UML statechart diagrams (as specified in UML
2.0 [18]), Classical Harel statecharts (implemented in Statemate [9, 11]), and
a newer object-oriented version of Harel’s statecharts (implemented in Rhap-
sody [8]). These three formalisms appear to be very similar. For instance, at
first glance, a model written in one formalism could be easily ported to one of
the other two formalisms. However, there are some subtle syntactic and seman-
tic differences between the formalisms which can lead to pitfalls. Consider, for
example, the state machines shown in Fig. 1. The two machines are identical,
except for the notation used to represent static choice. Fig. 1(a) makes use of
a junction (small filled circle); this machine is well-formed in the Classical and

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 97–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

98 Michelle L. Crane and Juergen Dingel

UML formalisms. Fig. 1(b) shows a condition construct (circled ‘C’), which is
used by both the Classical and Rhapsody formalisms. Ignoring the notation dif-
ference for a minute, this model is well-formed in all three formalisms. However,
the behaviour exhibited by the state machine is different for all three. When
the state machine first starts, it moves to state A, at which point the variable
x = 0. All three formalisms agree on this point. What they do not agree on is
what happens when event e occurs. In the Classical formalism, the state machine
moves to state D. In the UML formalism, the state machine moves to state B.
Finally, in the Rhapsody formalism, the state machine moves to state C.

A

D

B

C

x:=0

e/x:=1

e

[x<1]

[x>=1]

(a) Junction (small filled circle)
used for static choice. Model is
well-formed in Classical and UML
formalisms

A

D

B

C

C

x:=0

e/x:=1

e

[x<1]

[x>=1]

(b) Conditional (circled ‘C’) used
for static choice. Model is well-
formed in Classical and Rhapsody
formalisms

Fig. 1. Ignoring notation differences, this model is well-formed in all three for-
malisms, but is interpreted differently in all three. The classical state machine
moves to D because the priority of conflicting transitions is handled differently
(see Section 3.2). In UML, the junction is a static choice, i.e., the guards are
evaluated with the information available at the beginning of the entire transition.
Here, x = 0, so the state machine moves to B. In Rhapsody, the conditional is
also a static choice, but the fact that it is enclosed in a composite state causes
it to behave as a dynamic choice (see Section 3.7). The initial transition is a
‘microstep’; variables are evaluated at the beginning of each microstep. x = 1
when the conditional is reached and the state machine moves to C. State machine
inspired by [8]

The fact that there can be three distinct interpretations of one state machine
indicates that there is a lack of standardization between the three formalisms. It
also indicates that the task of transforming, or porting, a model from one formal-
ism to another may not be straightforward. Therefore, it is worthwhile to study
the syntactic and semantic differences between the most popular formalisms. In
this paper, we present a detailed comparison of these three formalisms, including
several illustrative examples. Our results are of interest to modellers, customers,
and tool developers because they summarize the differences between the three
most popular formalisms and thus help to avoid the pitfalls of incorrectly in-

UML Vs. Classical Vs. Rhapsody Statecharts 99

terpreted models. On the one hand, modelling and transformation tools must
correctly implement the syntax and semantics of a formalism (or more than
one, if the tool is expected to import/export models). On the other hand, the
modellers and customers who make use of models to communicate must also be
conversant in these details in order to communicate effectively.

This paper is organized as follows: Section 2 briefly describes state machines
and the three formalisms. Section 3 contains a detailed comparison of syntactic
constructs and semantic concepts which differ between the three formalisms,
while a tabular summary is presented in Section 4. Section 5 discusses related
work. Finally, Section 6 contains the conclusion and contributions of this work.

2 State Machines, Statecharts and Statechart Diagrams

A finite state machine (FSM) is a model of computation that “specifies the
sequence of states an object goes through during its lifetime in response to
events, together with its responses to those events” [2, Ch. 2]. FSMs are very
useful for representing reactive systems. The term ‘finite state machine’ refers
to the model of computation, but not the diagram representing it; instead, the
traditional name for a diagram representing a FSM is ‘state diagram’ or ‘state
transition diagram’.

In the late 1980’s Harel defined a “visual formalism for describing states and
transitions in a modular fashion, enabling clustering, orthogonality, and refine-
ment, and encouraging ‘zoom’ capabilities...between levels of abstraction” [5].
These new statecharts were essentially state transition diagrams with the ad-
dition of hierarchy (also known as depth), orthogonality (also known as con-
currency) and broadcast communications [5, 14]. Other publications by Harel
and other authors quickly followed, defining a preliminary semantics for the
statecharts formalism [10, 19]. Far from being a final product, the statecharts
formalism evolved over the years, spawning many variants. In fact, as of 1994,
there were at least 20 variants of these statecharts [22]. In 1996, Harel revisited
the formalism, modifying some of the previous semantics [6, 9]. These state-
charts are often referred to in the research literature as simply statecharts, Harel
statecharts, or classical statecharts. Because of the fact that the semantics of stat-
echarts has evolved over the years, and the fact that there are so many variants,
it is necessary to define unambiguously which statecharts we refer to. For the
purposes of this paper, the term Classical statecharts will be used to represent
Harel’s original statecharts syntax with the newest semantics, as documented
in [6, 9, 11]. Although Harel himself states that there is no official semantics for
his statecharts [9], Classical statecharts are actually implemented in I-Logix’s
Statemate tool, to which Harel has contributed.

The Unified Modeling Language (UML) has become the de facto industry
standard for general-purpose modelling; it can be used for “specifying, construct-
ing and documenting the artifacts of a system” [17, Part I]. The UML is a vi-
sual modelling language; different diagram types (sub-languages) can be used to
model various parts of the system under consideration. These diagram types can

100 Michelle L. Crane and Juergen Dingel

be sub-divided into structural and behavioural views. In addition, behavioural di-
agrams can be further sub-divided into inter-object and intra-object behavioural
views. UML statechart diagrams are one diagram type that can be used to model
intra-object behaviour, i.e., how individual model elements behave. A statechart
diagram is used to represent a state machine. The syntax and semantics of UML
state machines have remained reasonably consistent throughout UML’s history,
although there are occasionally minor modifications. We concern ourselves with
the latest draft of the UML 2.0 Superstructure specification [18].

UML statechart diagrams are an object-based variant of Classical statecharts
[18, 16, 4]. An alternative object-based variant is one to which Harel himself has
contributed: the statechart formalism implemented in I-Logix’s Rhapsody tool.
This formalism was created after the introduction of UML 1.1. Actually, the
Rhapsody formalism is more closely related to the UML formalism than to
its Classical ancestor. In fact, there was cooperation between the Rhapsody
and UML development teams, resulting in cross-pollination between the two
formalisms [7, 21]. For the purposes of this paper, we concern ourselves with
Rhapsody as it is documented in [7, 8].

3 Detailed Comparison

In general, all three formalisms are similar. Basically, statecharts1 are directed
graphs, consisting of states and transitions between them. Transitions may have
labels of the form event[guard]/action. All three formalisms support both orthog-
onal (AND) and sequential (OR) composite states.

These basic similarities aside, there are several syntactic and semantic differ-
ences between the three formalisms. The syntactic differences concern how var-
ious syntactic constructs are represented and their well-formedness constraints,
while the semantic differences are caused by variations in basic semantic con-
cepts. These differences can be divided into three categories, based on the type
and severity of errors that they can cause when porting statecharts from one
formalism to another. Note that a particular syntactic construct or semantic
concept can result in differences in more than one category.

Notation A construct may be common to all three formalisms and yet be rep-
resented with alternative notation. For example, a final state in UML is
represented as “a circle surrounding a smaller solid filled circle” [18], while
the Classical and Rhapsody formalisms make use of a circled ‘T’. This cat-
egory is the least critical; after a simple notation translation, a model would
be compatible with the target formalism(s).

Well-Formedness Differences in this category are more important; they result
in models that are well-formed in one or two formalisms, but not in all three.
For instance, a construct may not be available in a particular formalism, or
a formalism may enforce additional or different constraints on a common

1 In the interests of simplicity, we refer to the diagrams of all three formalisms as stat-
echarts and use the term state machine when referring to the model of computation.

UML Vs. Classical Vs. Rhapsody Statecharts 101

construct. A model could be checked for compatibility with simple syntax or
well-formedness checking. Translation and re-working of a model may make
it compatible with the target formalism(s); however, not all models can be
made fully compatible with all formalisms. For example, event triggers are
not permitted after pseudo-states in UML; however, it may be possible to
re-work the state machine to conform to this restriction. On the other hand,
simultaneous events cannot be handled simultaneously in UML; it may not
be possible to re-work a Classical state machine to mimic this behaviour
without using simultaneous events.

Executable Behaviour This is the most critical category of differences, and
the most insidious. A model may be well-formed in more than one formalism
and yet not behave exactly the same. This type of incompatibility would
not be found by simple syntax or well-formedness checking. In essence, an
incompatible model would ‘compile’, but its executable behaviour would be
other than expected, sometimes the opposite of the intended behaviour.

In order to more fully understand these categories and the potential problems
associated with each, we now examine several syntactic constructs and semantic
concepts in detail. We start with the semantic concepts because, in general, they
affect multiple constructs and the overall understanding of the models. Several
of the more interesting syntactic constructs are then examined.

3.1 Synchrony Hypothesis

Synchrony and Zero Time The (perfect) synchrony hypothesis [1] states that
a system must react immediately to external events and that the correspond-
ing output must occur at the same time [22]. The zero-time assumption follows
from the synchrony hypothesis and implies that transitions take zero time to
execute [16]. In general, Classical statecharts support both the synchrony hy-
pothesis and the zero-time assumption [22, 16].2

In UML, a transition may take time [16], although no assumptions are ac-
tually made, allowing for models with either zero- or fixed-execution time [18,
Sect. 13.3.30]. The Rhapsody formalism mirrors that of UML in that a “step
does not necessarily take zero time” [8]. Therefore, with respect to the zero-
time assumption, it is theoretically possible that both the UML and Rhapsody
formalisms adhere to the synchrony hypothesis.

Synchrony and Simultaneous Events By the synchrony hypothesis, Classi-
cal statecharts must be able to react immediately to external events. They can
do so, supported by the fact that different events may occur simultaneously,
and be acted upon simultaneously, in Classical statecharts [15]. However, nei-
ther the UML nor Rhapsody formalisms support the synchrony hypothesis in
2 Note that Classical statecharts semantics, as implemented in Statemate, supports

two time models: asynchronous and synchronous. Only the asynchronous time model
supports zero-time transitions [9].

102 Michelle L. Crane and Juergen Dingel

this regard. Instead, both formalisms adhere to the concept of run-to-completion
(RTC), which means that each event is handled completely before the next event
is processed.3

It is thus impossible in a UML or Rhapsody statechart for different events
to be handled simultaneously.4 For example, consider the statechart in Fig. 2.
Assume that the state machine is currently in states A and C and that events e1
and e2 occur simultaneously. If this were a Classical statechart, then both events
would be handled simultaneously (since they do not conflict) and the machine
would move to states B and D in one step. However, in the other two formalisms,
only one event can be handled at a time. Therefore, the state machine would
next move to either states A and D or B and C, depending on which event was
handled.

A

B

C

D

e1 e2

Fig. 2. Statechart with potentially si-
multaneous events

D
B

C

A TOP

Fig. 3. Statechart with potentially
conflicting transitions

3.2 Priorities of Conflicting Transitions

It is possible in all three formalisms to have conflicting transitions, i.e., a set of
enabled transitions that cannot all be fired due to conflict in their results. For
example, consider the statechart in Fig. 3. Assume that the machine is currently
in state B and that events e1 and e2 are generated. The two transitions enabled
by these events are in conflict because their effects conflict. For instance, if the
transition labelled e2 is taken, the state machine moves to state D, and the
transition labelled e1 cannot be taken.

One of the most serious differences between the UML/Rhapsody and Classi-
cal formalisms is the handling of conflicting transitions. In Classical statecharts,
the scope of a transition is the lowest OR-state neither exited nor entered by
that transition [9, 15]. Priority is given to the transition with the highest scope.
In the case of the statechart in Fig. 3, the scope of the transition labelled e1

3 In UML, “event occurrences are detected, dispatched, and then processed...one at a
time” [18, Sect. 15.3.12]. In Rhapsody, events are handled “one by one, in order” [7].

4 It is however, possible for the same event to be handled simultaneously in different
regions of an orthogonal composite state.

UML Vs. Classical Vs. Rhapsody Statecharts 103

is state A, while the scope of the transition labelled e2 is the state TOP. Since
priority is given to the transition with the highest scope, event e2 is handled;
therefore, the state machine moves to state D.

In UML, a “transition originating from a substate has higher priority than
a conflicting transition originating from any of its containing states” [18, Sect.
15.3.12]. In Rhapsody, lower level states also get priority [7]. In this case, the
transition labelled e1 originates from state B, which is a substate of state A, the
origin of the transition labelled e2. Since priority is given to the substates, event
e1 is handled; therefore, the state machine moves to state C in both UML and
Rhapsody.

The rationale behind the different priority schemes is not well-documented,
although it has been suggested that the lowest-first priority scheme espoused by
both UML and Rhapsody is more object-oriented. In other words, this priority
scheme allows substates to override superstates in a way that is similar to how
subclass operations/methods can override those of the superclass [8].

3.3 Order of Execution of Actions

In all three formalisms, is it possible to list multiple actions (or behaviours) on
a transition between two states, as shown in Fig. 4. Assume that the state ma-
chine is in state A, x = 0, and event e occurs. In Classical statecharts, actions on
a transition are executed in parallel, rather than in sequence [9]. Therefore, at
state B, x = 1 and y = 0, because both actions were executed simultaneously. In
UML however, the behaviour expression “may be an action sequence comprising
a number of distinct actions” and “behaviors are executed in sequence following
their linear order” [18, Sect. 15.3.14]. Similarly, in Rhapsody, “actions are guar-
anteed to be performed in sequential order” [8]. For both UML and Rhapsody
therefore, at state B, x = 1 and y = 5.

A B
e/x:=x+1; y:=x*5

Fig. 4. Transition with a list of actions [9]

3.4 Fork and Join

Fork and join constructs are common to all three formalisms, although the no-
tation is slightly different in Classical/Rhapsody than in UML. Published work
on the Classical and Rhapsody formalisms show forks and joins as simply ar-
rows with either multiple sources or multiple targets. The UML specification, as
well as the Rhapsody 6.0 tool itself [13], show separate fork and join constructs,
which break the transitions into incoming and outgoing transitions.

104 Michelle L. Crane and Juergen Dingel

In addition to the notational differences between the formalisms, there are
several well-formedness differences. For example, actions (or any labelling) are
not permitted on the outgoing transitions of a fork in Rhapsody. Thus, the
UML statechart in Fig. 5 would be ill-formed in Rhapsody, even with the
alternate notation taken into account.

e
/a1

/a2

Fig. 5. This UML fork would be ill-
formed in Rhapsody

e

e1/a1

e2/a2

Fig. 6. This Classical fork would be
ill-formed in both UML and Rhap-
sody

As another example, the Classical statechart in Fig. 6 would be ill-formed
in both UML and Rhapsody. In the first place, Rhapsody does not allow
the labelling of transitions leaving a fork. UML does allow the placement of
actions on these transitions, but not event triggers. However, there is a much
more fundamental semantic difference between the Classical and the other two
formalisms. In the Classical formalism, the fork transition would only be taken
if all three events e, e1 and e2 were to occur simultaneously, which is possible
since the Classical formalism allows for simultaneous events. On the other hand,
both UML and Rhapsody adhere to the RTC assumption; therefore, only one
event can be handled at a time.

The Classical statechart in Fig. 7 would be ill-formed in UML because UML
does not allow for event triggers after the join pseudo-state. In addition, the
obvious solution of simply moving the event trigger to the incoming transitions
would not work; UML does not allow for event triggers incoming to join pseudo-
states. In fact, joins are not explicitly triggered in UML; they are only used with
completion events [21], i.e., leaving the last state in each region of an orthogonal
state. Finally, the UML statechart in Fig. 8 would be ill-formed in Rhapsody,
since Rhapsody does not allow for any labels on transitions coming into a join.

e

Fig. 7. This Classical join would be
ill-formed in UML

/a1

/a2

Fig. 8. This UML join would be ill-
formed in Rhapsody

UML Vs. Classical Vs. Rhapsody Statecharts 105

3.5 Junction

Junction constructs are common to all three formalisms, although there are some
well-formedness differences. For example, the Classical statechart in Fig. 9 is ill-
formed in UML. However, it is possible to make the statechart compatible by
simply moving the event trigger to the transitions coming into the junction. In
fact, each incoming transition may even have a different event trigger.

e

Fig. 9. This Classical junction can be
made compatible to UML

e1

e2

Fig. 10. This Classical junction
would be ill-formed in UML and
Rhapsody

In addition, the RTC assumption also affects the compatibility of the junction
construct. For example, the Classical statechart in Fig. 10 is ill-formed in both
UML and Rhapsody. The transition in question will only be triggered if both
events e1 and e2 occur at the same time, which is possible with Classical stat-
echarts but not with UML or Rhapsody. In addition, UML does not allow for
event triggers on transitions outgoing from a pseudo-state. Finally, Rhapsody
does not allow for more than one outgoing transition from a junction.

3.6 Conditional

Classical and Rhapsody statecharts support a specific conditional construct,
such as that shown in Fig. 11. This construct simply represents a static choice,
i.e., the guards on the outgoing transitions are evaluated before the transition
is taken. The conditional construct no longer exists in UML,5 but its semantics
can be mimicked with the standard junction pseudo-state, as shown in Fig. 12.

C

[g1]

[g2]

e

Fig. 11. Conditional construct sup-
ported by Classical and Rhapsody
formalisms

C

[g1]

[g2]

e

Fig. 12. UML supports the same
static choice by using the junction
pseudo-state

5 The conditional construct was removed from UML 1.3, since it is equivalent to a
junction [3, Sect. 3.4.3].

106 Michelle L. Crane and Juergen Dingel

3.7 Choice

UML does allow for a dynamic choice pseudo-state, which is not equivalent to
the Classical/Rhapsody conditional construct. Consider the UML statechart in
Fig. 13. When the state machine starts, it moves to state A and x = 0. When
event e occurs, the action on the transition is executed before the guards on the
outgoing transitions are evaluated. The state machine will thus move to state C.

Although neither the Classical nor Rhapsody formalisms support this dy-
namic choice construct, it is possible to simulate it at least in Rhapsody. Con-
sider the Rhapsody statechart in Fig. 14. In this case, the fact that Rhapsody
makes use of microsteps [8] comes into play. The default, or initial, transition
is considered a microstep. Attributes are assigned their values at the beginning
of each microstep, so the assignment x := 1 is executed as the state machine
enters the composite state. Once the conditional is reached, x = 1, so the state
machine would move to state C.

A

B

C

x:=0

e/x:=1
[x<1]

[x>=1]

Fig. 13. UML supports dynamic
choice

A

B

C

x:=0

e/x:=1
[x<1]

[x>=1]

C

Fig. 14. Dynamic choice can be sim-
ulated in Rhapsody

It is very important to note that even if the conditional in Fig. 14 were re-
placed by UML’s static choice construct (junction), the state machine would
not behave identically in UML. UML does not make use of microsteps, and the
action along the transition will not be considered when the guards are evalu-
ated [21]. If this state machine were to be evaluated in UML, it would move to
state B.

3.8 More on Compound Transitions

In Classical statecharts, any composition of pseudo-states, simple transitions,
guards and labels is permitted, but these transition compositions are constrained
for practical purposes in UML state machines [16]. Therefore, there are some
Classical statecharts which cannot be easily converted to UML. Consider, for
example, the statecharts below. Fig. 15(a) shows a compound transition between
two states. Both transitions are labelled with an event trigger and an action.
In the Classical formalism, the transition coming into the junction cannot be
executed without also executing the transition coming out of the junction [9].
Therefore, this compound transition is equivalent to the single transition in
Fig. 15(b), which is labelled with the conjunction of two events, and a pair of
resultant actions.

UML Vs. Classical Vs. Rhapsody Statecharts 107

A B
e1/a1 e2/a2

(a) Compound Transition

A B
e1 and e2/a1;a2

(b) Conjunction of Events

Fig. 15. Sample compound transition from Classical statecharts and its equiva-
lent single transition (with conjunction of events) [9]

Neither of these equivalent state machines would be well-formed in UML.
On the one hand, the state machine in Fig. 15(b) cannot be interpreted because
UML does not allow for the conjunction of events. On the other hand, the state
machine in Fig. 15(a) also cannot be interpreted because UML does not allow
for triggers on transitions leaving a pseudo-state [18, Sect. 15.3.14].

4 Comparison Summary

Table 1 summarizes the findings of the previous section, as well as results for
some other syntactic constructs. The left-hand columns of the table summarize
the syntactic and semantic differences. UML 2.0 is used as the baseline, with
Classical and Rhapsody both being compared to it. The right-hand columns
indicate in which potential problem categories each construct and concept fall:

– The notation category indicates differences which can be easily managed,
i.e., a model in one formalism can be easily ported to the other formalisms
with a simple notation translation.

– Differences in the well-formedness category are more serious. Sometimes it
will be possible to modify a model to make it compatible to another formal-
ism, e.g., the UML statechart in Fig. 12 represents the Classical/Rhapsody
statechart in Fig. 11. Unfortunately, not all models can be made compatible,
e.g., the Classical statechart in Fig. 7 cannot be translated into an equivalent
UML statechart.

– Finally, differences in execution behaviour are the most serious of all. This
is not because they imply a model cannot be ported to another formalism,
but because a model designed with constructs/concepts from this category
can be well-formed in more than one formalism and yet behave differently in
each. The statecharts in Fig. 1 are prime examples of this particular pitfall.

Obviously, problems caused by well-formedness differences can also cause
problems in execution behaviour. For example, a UML statechart with deferred
events6 would be ill-formed in the other two formalisms. However, if the deferred
6 Normally, when an event occurs, it either matches the event trigger on some transi-

tion and is handled, or it does not match any trigger and is ignored. However, the
use of deferred events allows the state machine to recognize certain events (which
do not trigger transitions) and postpone responding to them.

108 Michelle L. Crane and Juergen Dingel

Table 1. Summary of differences between Classical, UML and Rhapsody stat-
echart formalisms. Left-hand columns summarize syntactic and semantic differ-
ences. Right-hand columns indicate the severity of problems caused by these
differences

Construct/Concept UML Class. Rhap. Note Notation Well-Form. Behaviour
Syntax
States
entry/exit actions � � � 1 �
do-activity � � � 2 �
deferred events � ⊗ ⊗ �

Pseudo-states
initial � � � 3
final � � � 4 �
fork � � � 5 � �
join � � � 5 � �
shallow history � � ⊗ 6 �
deep history � � � 6 �
junction (static) � � � 7 � �
conditional (static) ⊗ + + 8 � �
choice (dynamic) � ⊗ ⊗ �

Transitions
event trigger � � � 9 �
action (behaviour) � � � 1 �
completion � � � 10

Semantics
simultaneous events ⊗ + ⊗ 11 � �
simultaneous actions ⊗ + ⊗ 12 �
priority � � � 13 �

1 Multiple actions are permitted on a transition (or as entry/exit actions) in all formalisms; see
Section 3.3 for how execution of these actions differs.

2 Classical and Rhapsody offer a ‘static reaction’ construct, which may also have triggers and
guards. In addition, Classical statecharts allow multiple (potentially simultaneous) static reac-
tions for a particular state [11, Sect. 6.1.1].

3 Called ‘default’ [9].
4 Called ‘termination connector’; symbol is a circled ‘T’ [11, 7].
5 Notation is slightly different. See Section 3.4.
6 UML allows history in orthogonal states. Rhapsody does not support shallow history.
7 Not used for static choice in Rhapsody. See Section 3.5.
8 Equivalent to junction; removed from UML [3, Sect. 3.4.3]. See Section 3.6.
9 Classical allows conjunction and negation of triggers [23], as well as disjunction. UML does

not permit conjunction or negation [23, 16]. Rhapsody does not support conjunction [7] or
disjunction [12], or presumably, negation.

10 Completion events and transitions are not mentioned in Classical or Rhapsody statecharts;
although null transitions are permitted.

11 See Section 3.1.
12 See Section 3.3.
13 See Section 3.2.

Legend for Left-Hand Columns

Symbol Description� supported, with little or no difference from UML 2.0

� supported, with considerable difference from UML 2.0

⊗ definitely not supported (direct evidence)

� presumably not supported (indirect evidence)

+ not supported by UML, but supported by other formalism(s)

UML Vs. Classical Vs. Rhapsody Statecharts 109

events were simply removed, the state machine would not behave as expected.
In this case, the execution behaviour problem would not be indicated in Table 1,
since the well-formedness problem itself alerts modellers of the mismatch and
thus encourages them to ensure that a ported model is well-formed and behaves
as expected. Instead, the behavioural problems indicated in Table 1 are in addi-
tion to any notational or well-formedness problems for that construct/concept,
and not caused by them.

Not only does this table present a comprehensive summary of the differences
between the three formalisms, but it also brings to light several facts, such as:

– Rhapsody is much syntactically and semantically closer to UML than to
its Classical ancestor, especially with respect to behavioural semantics. This
means that models can be more easily ported between UML and Rhapsody
than between either of these formalisms and Classical statecharts.

– UML is the only formalism that allows for dynamic choice.
– Many of the well-formedness and execution behaviour differences are indi-

rectly caused by the fact that UML and Rhapsody do not support simul-
taneous events or actions, e.g., with respect to do-activities, forks, joins,
junctions, and event triggers.

– Although the priority scheme between the Classical and UML/Rhapsody
formalisms is inverted, it does not cause any notation or well-formedness
problems with the syntactic constructs. In other words, the fact that a model
would behave differently due to the opposite priority schemes would not be
found by a syntax or well-formedness checker.

5 Related Work

The UML 2.0 Semantics Project is an international collaboration including IBM
(Canada, Germany, Israel), Queen’s University (Canada), the Technical Univer-
sity of Munich (Germany), and the Technical University of Braunschweig (Ger-
many). The purpose of this project is to define a formal semantics of UML 2.0.
Under the auspices of this project, we have initiated an effort to survey, catego-
rize and compare semantic approaches for formalizing state machine behaviour.
In order to critique these approaches, we needed a detailed understanding of the
syntax and intended semantics of state machines. During our literature review, it
became apparent that Classical, UML and Rhapsody statecharts could not be
considered equivalent, even though at first glance, they appear almost identical.

Unfortunately, although there is much research relating to these formalisms,
there is no definitive comparison between them. The most detailed comparison is
a bulleted list in an older UML specification [16, Sect. 2.12.5.4], which is not even
included in the new UML 2.0 specification. Other sources offer one- or two-line
high-level comparisons between Classical and UML statecharts, without going
into great detail. The bulk of the research presented in this paper is thus a result
of detailed inspection of the UML specification [18], as well as key documents
relating to the Classical [5, 6, 9, 11] and Rhapsody [7, 8] formalisms.

110 Michelle L. Crane and Juergen Dingel

It should be noted that there are several other statechart-like formalisms
linked to specific tools, such as RoseRT, AnyStates, LabVIEW, SmartState, etc.
We have not considered these latter formalisms for two reasons: 1) many of these
tool-specific formalisms claim to support UML and thus could be considered a
subset of the UML formalism; and 2) these tools are not very well represented
in the research literature.

6 Conclusion

There are currently three popular formalisms for modelling state machines: UML
statechart diagrams, Classical statecharts and Rhapsody statecharts. Modellers
may adhere to MDD without being restricted to one particular formalism. In gen-
eral, the similarities between Classical statecharts, UML statechart diagrams,
and the statecharts implemented by the Rhapsody tool are enough to imply
to the non-expert that a state machine modelled in one formalism can be inter-
preted in the other formalisms. Unfortunately, this is not necessarily the case;
there are enough syntactic and semantic differences between the formalisms to
cause problems when sharing models.

Some problems are caused by simple notation differences and can be solved
with a translation. Some problems cause well-formedness issues; occasionally,
these problems can be solved with translation or re-working of the model. Oc-
casionally, these problems cannot be solved, but at least their presence can be
identified by syntax or well-formedness checks. Finally, some problems cannot
be identified by such checks; these are the most insidious problems and result in
well-formed models which behave differently in different formalisms.

The results of this research are of interest to modellers, tool developers, and
end users of statecharts and statechart diagrams for the following reasons:

– Modellers should be aware of how their models will be interpreted in different
formalisms. This is especially important with respect to execution behaviour
issues, where a modeller might be expecting a different behaviour than that
exhibited by a model. In the same vein, statecharts can be used as a commu-
nication medium between modellers and their customers, or end users. Users
may interpret these models differently, based on an alternate formalism with
which they are familiar. Indeed, the users may not even be aware that their
interpretation is different, leading to a modeller/customer disconnect, which
may not be noticed.

– Similarly, models might be shared between modellers, or ported from one
modelling environment to another. If the participants are not aware of the
potential problems of notation, well-formedness and execution behaviour,
these models cannot be shared or ported accurately.

– Finally, tool developers should also be aware of these differences and po-
tential problems in order to gear their tools to particular formalisms. Tool
developers may also offer import/export capabilities; our work indicates the
parts of a model that must be translated or otherwise modified. In addition,

UML Vs. Classical Vs. Rhapsody Statecharts 111

the development of syntax and well-formedness checkers can benefit from
knowledge of these differences.

Future work on this particular topic includes adding in the formalisms sup-
ported by tools such as RoseRT, AnyStates, LabVIEW, SmartState, etc. Another
possible avenue is to investigate the possibility of creating automatic or guided
translations between the different formalisms.

Acknowledgements

We would like to acknowledge the invaluable assistance of Bran Selic from IBM
Rational Software Canada. This research is supported by the Natural Sciences
and Engineering Research Council of Canada and the IBM Centers for Advanced
Studies.

References

[1] G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
design, semantics, implementation. Science of Comp. Prog., 19:87–152, 1992.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

[3] B.P. Douglass. Real Time UML. Object Technology Series. Addison-Wesley, third
edition, 2004.

[4] M. Gogolla and F. Parisi-Presicce. State diagrams in UML: A formal semantics us-
ing graph transformations. In Proc. Workshop on Precise Semantics for Modelling
Techniques, pages 55–72. Technische Universität München, TUM-I9803, 1998.

[5] D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, 1987.

[6] D. Harel. Some thoughts on statecharts, 13 years later. In Proceedings of the 9th
International Conference on Computer Aided Verification (CAV’97), LNCS 1254,
pages 226–231. Springer, 1997.

[7] D. Harel and E. Gery. Executable object modeling with statecharts. Computer,
30(7):31–42, 1997.

[8] D. Harel and H. Kugler. The RHAPSODY semantics of statecharts (on, on the
executable core of the UML) (preliminary version). In SoftSpez Final Report,
LNCS 3147, pages 325–354. Springer, 2004.

[9] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293–333, 1996.

[10] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the formal semantics of
statecharts. In Proc. of the 2nd IEEE Symposium on Logic in Computer Science,
pages 54–64. Computer Society Press of the IEEE, 1987.

[11] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: the STATE-
MATE Approach. McGraw-Hill, 1998.

[12] I-Logix. Rhapsody 6.0 User Guide.
[13] I-Logix. Tutorial for Rhapsody in J (Release 4.1 MR2), 2003.
[14] G. Lüttgen, M. von der Beeck, and R. Cleaveland. A compositional approach to

statecharts semantics. In Proc.8th ACM SIGSOFT Int’ll Symposium on Founda-
tions of Software Engineering, pages 120–129. ACM Press, 2000.

112 Michelle L. Crane and Juergen Dingel

[15] E. Mikk. Semantics and Verification of Statecharts. PhD thesis, Christian-
Albrechts University of Kiel, 2000. Bericht Nr. 2011.

[16] OMG. OMG Unified Modeling Language specification. Adopted Formal Specifi-
cation formal/03-03-01, Object Management Group, 2003. Version 1.5.

[17] OMG. UML 2.0 infrastructure specification. Technical Report ptc/03-09-15,
Object Management Group, 2004.

[18] OMG. UML 2.0 superstructure specification. Technical Report ptc/04-10-02,
Object Management Group, 2004.

[19] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In
Proc. Int’l Conf. on Theoretical Aspects of Computer Software, LNCS 526, pages
244–264. Springer, 1991.

[20] B. Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19–
25, 2003.

[21] Bran Selic. Personal Communication, March 2005.
[22] M. von der Beeck. A comparison of statecharts variants. In Formal Techniques

in Real-Time and Fault-Tolerant Systems, LNCS 863, pages 128–148. Springer,
1994.

[23] M. von der Beeck. A structured operational semantics for UML-statecharts. Soft-
ware and Systems Modeling, 1(2):130–141, 2002.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 113-125, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Evaluating the Effect of Composite States on the
Understandability of UML Statechart Diagrams

José A. Cruz-Lemus1, Marcela Genero1, M. Esperanza Manso2 and Mario Piattini1

1ALARCOS Research Group, Department of Computer Science
University of Castilla – La Mancha

Paseo de la Universidad, 4 13071 Ciudad Real (Spain)
{JoseAntonio.Cruz, Marcela.Genero, Mario.Piattini}@uclm.es

2GIRO Research Group, Department of Computer Science
University of Valladolid

Campus Miguel Delibes, E.T.I.C. 47011 Valladolid (Spain)
manso@infor.uva.es

Abstract. UML statechart diagrams have become an important technique for
describing the dynamic behavior of a software system. They are also a signifi-
cant element of OO design, especially in code generation frameworks such as
Model Driven Architecture (MDA). In previous works we have defined a set of
metrics for evaluating structural properties of UML statechart diagrams and
have validated them as early understandability indicators, through a family of
controlled experiments. Those experiments have also revealed that the number
of composite states had, apparently, no influence on the understandability of the
diagrams. This fact seemed a bit suspicious to us and we decided to go a step
further. So in this work we present a controlled experiment and a replication,
focusing on the effect of composite states on the understandability of UML
statechart diagrams. The results of the experiment confirm, to some extent, our
intuition that the use of composite states improves the understandability of the
diagrams, so long as the subjects of the experiment have had some previous ex-
perience in using them. There are educational implications here, as our results
justify giving extra emphasis to the use of composite states in UML statechart
diagrams in Software Engineering courses.

1. Introduction

Modeling is at the core of many disciplines, but it is especially important in
engineering because it facilitates the communication and construction of complex
things from smaller parts [14]. Models help us understand a complex problem and its
potential solutions through abstraction. It seems obvious, therefore that software
systems, which are often among the most complex of all engineering systems, can
benefit greatly from using models and modeling techniques [12]. Over the last three
decades, the abstraction level has not only risen from implementation over design to
analysis; there is also a recent interest in code generation frameworks such as the
Model Driven Architecture (MDA) [9] proposed by the Object Management Group
(OMG). To the extent that code generation is used, it seems likely that factors which

114 José A. Cruz-Lemus et al.

influence evolvability on the implementation level, such as the naming of variables
and a badly structured program code, will become less relevant. Hence, in this
context, the evolvability of information systems would be more and more determined
by that of the models [15].

Linked to the idea of models which are capable of evolution, UML statechart
diagrams have become an important technique for describing of the dynamic aspects
of a software system and are also an important element of OO design documents [4].

According to [12], in order to be useful and effective, an engineering model must
possess, to a sufficient degree, the following five key characteristics: abstraction, un-
derstandability, accuracy, predictiveness and inexpensiveness .

The motivation for this research comes from the fact that in a previous work [3] we
have studied the relationship between many of the constructs of the UML statechart
diagrams and the effect that they have on the understandability of the diagrams
themselves. To do so, we had previously defined and validated, both theoretically and
empirically, a set of metrics [2] for evaluating the structural properties of UML
statechart diagrams, based on UML v.1.4 [8]. But in all these works we have found
that the effect of composite states on the understandability of the UML statechart
diagrams was unclear. A composite state is a state that contains other states within it.
When the behavior of a class is quite complicated, using composite states may be
useful, as we can join those simple states that are part of a larger common one.
Intuitively, grouping into a composite state those that are highly related could help to
improve the understandability of a diagram.

In this work we will focus on the evaluation of the effect that a construct of the
UML meta-model [8] has on one of the afore-mentioned .characteristics. More
specifically, we will evaluate the effect that composite states have on the
understandability of UML statechart diagrams, which are of the most commonly used
diagrams when modeling using UML and which are part of the main UML diagrams
set established in [5].

In order to clarify these impressions, we have designed and performed a controlled
experiment and a replication so as to evaluate whether the use of composite states
really does improve the understandability of the diagrams, as may be thought
intuitively. In this work we will present the experimental process and the conclusion
that has been reached after the performance of the experiment.

In section 2, we define our research question and formulate the work hypotheses.
Later, we test these hypotheses in the experiment and its replication as reported in
section 3. In section 4 we discuss the validity threats to our experiments. Finally,
section 5 sets out the conclusions reached and the future work that is planned.

2. Research Question and Hypotheses

As the main goal of the current work is to ascertain if the use of composite states can
make the UML statechart diagrams easier to understand, our research question can be
stated as:

Does the use of composite states improve the understandability of UML
statechart diagrams?

Evaluating the Effect of Composite States 115

Based on previous experiments [3] and on our intuition and experience working
with UML statechart diagrams, we think that the answer to this question should be a
‘yes’, especially when the person that is trying to understand the UML statechart
diagram is used to working with this modeling language and this kind of diagram.

In order to evaluate our research question, we carried out a controlled experiment
and a replication. In these experiments, we considered the efficiency of the subjects in
understanding the diagrams, i.e. the relationship between how accurately they solve
the required tasks and how quickly they do this. The understandability efficiency was
defined as correct answers given by the subjects divided by the time spent on
answering the questions related to an UML statechart diagram. This was used to
evaluate the property we have previously mentioned: the efficiency of the subjects.

On the basis of our research question we formulated the following experimental
hypotheses:

 H0: the use of composite states does not improve the understandability efficiency

of an UML statechart diagram.
 H1: the use of composite states improves the understandability efficiency of an

UML statechart diagram.

3. Experimental Process

In this section, we describe a controlled experiment and a replication that we carried
out for testing the hypotheses stated in the previous section. All the experimental
process is based on the guidelines outlined in [16].

3.1. First Experiment

This experiment took place at the University of Murcia (Spain) in February 2005. Its
main features are the following:

Subjects. 55 Computer Science students from the University of Murcia participated
in this experiment.

The tasks to be performed did not require high levels of industrial experience, so
experiments with students could be considered as appropriate [1, 6]. Moreover,
students are the next generation of people entering this profession , so they are close
to the population under study [7]. Besides, working with students implies a set of
advantages [15], such as the fact that the prior knowledge of the students is rather
homogeneous. The availability of a large number of subjects is another plus point.

All the subjects were in the fourth year of Computer Science and had received a
complete Software Engineering course in which they had studied modeling
techniques, including UML. They also received a short training session before the
performance of the experiment, in which the main constructs of UML statechart
diagrams were commented on and where two examples of the tasks to be performed
by them were explained by the conductor of the experiment. So we consider that the
level of experience they brought to the experiment was acceptable.

116 José A. Cruz-Lemus et al.

Experimental design. We selected a factorial with interaction confounded. Our
dependent variable was the understandability of UML statechart diagrams and we
would measure this through the previously introduced measure understandability
efficiency. Our independent variables were the Universe of Discourse (UoD) to which
the diagrams were related and the use or not of composite states (CS) in the diagram.

We used two different Universes of Discourses (UoD’s): an ATM machine and a
phone call. For each of them, we presented two different diagrams, conceptually iden-
tical. One of the diagrams included composite state(s) and the other did not.

As each subject would receive two diagrams, one with and another without
composite states, and each of them related to a different UoD, we obtained two
different groups as shown in Table 1. The diagrams of each group were given to the
subjects in different orders. For instance, in group A, the subjects first had to solve the
tasks related to an ATM machine without composite states and, after that, those
related to a phone call with composite states or exactly the same tasks for the same
diagrams but in an inverse order (phone call with composite states and then ATM
machine without composite states).

Table 1. Overview of the experimental design

Universe of Discourse ATM machine Phone call
Without composite states Group A Group B

With composite states Group B Group A

Group A was performed by 28 subjects and group B 27 subjects.

Experimental task. As commented previously, we used two different UoD’s, one
modeled the behavior of an ATM machine and the other the behavior of a phone call.
These UoD’s were quite usual and not exceptional at all, so that there was no need for
extra effort in understanding the diagrams.

Each diagram had a test which contained 6 questions which were conceptually
similar and set out in the same order. In fact, in both diagrams of each UoD, the
questions were the same. The questions inquired about what state would be reached
after the triggering of some events which were in a given state. Another question
asked which state would be reached after a certain sequence of events and guard
conditions. There was a final inquiry as to what sequence was the minimum possible
for going from one given state to another. The subjects had to note down the times at
which they started and finished answering the questions, as well as providing the
answers to the questions themselves.

An example of the experimental material given to the subjects can be found in
Appendix A, at the end of the present work.

Evaluating the Effect of Composite States 117

Experimental procedure. The experiment started with a twenty-five-minute
introductory session in which the conductor briefly explained the behavior of the
elements of an UML statechart diagram. After that, the materials for the experiment
were randomly distributed to the subjects.

In order to increase the motivation and interest of the subjects, they were explained
that the exercises that they were going to perform could be similar to those that would
find in their exam at the end of the term.

At this point two examples in shortened version were performed by the supervisor,
who explained the correct answer to each question and the way of noting down the
starting and finishing times properly.

Data analysis and interpretation1. First we carried out an analysis of the descriptive
statistics of the data. We obtained the results shown in the box-plot of figure 1 and
eliminated the extreme and atypical data, obtaining the results displayed in Table 2. In
this table, we show the descriptive statistics of the valid data for the diagrams that
used composite states and of those that did not.

5555N =

Composite States

WITHOUTWITH

U
nd

er
st

an
da

bi
lit

y
ef

fic
ie

nc
y ,05

,04

,03

,02

,01

0,00

17

11

Fig. 1. Box-plot of the data from the first experiment

Table 2. Descriptive statistics of the understandability efficiency (first experiment)

CS N Mean S.E. Min. Max. Skew. Kurtosis
With 55 0.024165 0.007447 0.00947 0.04138 0.1659 -0.5494
Without 51 0.015269 0.002809 0.00962 0.02151 0.0721 -0.3164

1 All the data analysis was carried out by means of SPSS [13]

118 José A. Cruz-Lemus et al.

Table 2 shows that these subjects, who were quite familiar with the use of UML
statechart diagrams, obtained much better results for efficiency when working with
those diagrams that used composite states.

After this, we decided to perform an ANOVA, because this type of analysis allows
us to analyze the interaction between the independent variables under study when the
measurement of the dependent variable is repeated [10].

The results of the ANOVA which was performed for the understandability effi-
ciency are shown in Table 3. The last column of Table 3 represents the level of sig-
nificance, which will allow us to reject or accept the hypothesis we have formulated.

Table 3. ANOVA results for understandability efficiency in the first experiment

Source Sum of
Squares df Mean

Squared F Significance
level

Subject (Group) 2.137E-03 51 4.190E-05 2.378 0.001
Error 8.632E-04 49 1.762E-05

UoD 3.555E-04 1 3.555E-04 20.182 0.000
Error 8.632E-04 49 1.762E-05

CS 1.711E-03 1 1.711E-03 97.133 0.000
Error 8.632E-04 49 1.762E-05

Group 8.334E-05 1 2.778E-05 0.675 0.572
Error 2.154E-03 52.301 4.119E-05

Interaction 4.108E-02 1 4.108E-02 1003.084 0.000
Error 2.160E-03 52.732 4.096E-05

In each row of the table we have the different factors to be taken into account:

 The interaction between the subject and the group of diagrams that he/she has per-
formed.

 The UoD of the diagrams.
 The use of composite states.
 The group of diagrams that the subject has performed (see Table 1).
 The interaction of the factors.

We can observe that there exist several factors whose significance level is below
0.05; hence these affect the understandability efficiency. We do not study the effect of
the interaction of factors nor the Group factor as the significance level for this is
0.572 (over 0.05).

We are especially interested in the CS factor, which indicates if a diagram uses this
kind of constructor or not. In this case, its value is below 0.05, which implies that the
use of composite states affects the understandability efficiency.

In figure 2, we can also observe the profile plot of the data, which indicates that in-
dependently of the UoD, using composite states in the diagrams makes the under-
standability efficiency increase.

 Combining the results obtained in Table 2. and figure 2, we can reject the hy-
pothesis H0, which asserted that the use of composite states did not improve the un-
derstandability efficiency of an UML statechart diagram.

Evaluating the Effect of Composite States 119

Composite States

WITHOUTWITH

,028

,026

,024

,022

,020

,018

,016

,014

,012

UoD

ATM

Phone call

Fig. 2. Understandability efficiency profile plot from the first experiment

3.2. Experiment Replication

This replication took place at the University of Alicante (Spain) in March 2005. As
most of its features are similar to those we have commented on before for the first ex-
periment, we will go over only the differences between them:

 In this case the subjects were 178 Computer Science students from the University

of Alicante.
 In order to increase the interest and motivation of the subjects, they would be

granted with some extra points in the exam at the end of the term. Anyway, they
participated voluntarily and some of the students decided not to perform the ex-
periment.

 The skill of the subjects using UML for modeling, especially UML statechart dia-
grams, was much lower in this replication, as most of them had only a few months
of experience, and they had not worked with some UML meta-model constructs
(e.g. composite states) yet. They received the same training session as in the origi-
nal experiment before performing the replication, but even with this, their experi-
ence level was much lower, compared to the first group of subjects.

 Due to space limitations in the classrooms where the replication took place, the
subjects were divided into two groups of 92 and 86 subjects respectively and they
performed the experiment at a different time. To be more specific, the second
group finished one hour later, but there was no interaction between the subjects of
both groups.

 The materials for the experiment were given out randomly to the subjects and a
half of them (89 subjects) performed each possible option (A and B).

120 José A. Cruz-Lemus et al.

Data analysis and interpretation. Again, our first step consisted of an analysis of the
descriptive statistics of the data. We obtained the results shown in the box-plot of
figure 3. In this case also, we eliminated the extreme and atypical data and obtained
the results shown in Table 4.

178178N =

Composite States

WITHOUTWITH

U
nd

er
st

an
da

bi
lit

y
ef

fic
ie

nc
y ,10

,08

,06

,04

,02

0,00

-,02

278302142

22473194212218
32202579522275
271

348

Fig. 3. Box-plot of the replication data

Table 4. Descriptive statistics of the understandability efficiency (replication)

CS N Mean S.E. Min. Max. Skew. Kurtosis
With 160 0.014956 0.003720 0.00580 0.02449 0.3205 -0.1812
Without 173 0.018106 0.005440 0.00496 0.03109 0.3649 -0.3192

In this case, the results were better for the diagrams which did not use composite

states. The lack of experience of the subjects working with this kind of UML diagram
was a key factor in obtaining these results. Anyway, although the subjects had
scarcely worked with composite states, the difference in the mean values are much
smaller than in the case of the first experiment, where the diagrams that used compos-
ite states were much more efficiently understood than the others.

In the replication, we also applied an ANOVA and obtained the results shown in
Table 5.

Again, we do not study the effect of the interaction of sources nor the Group factor,
as the significance level for this is 0.129 and the test power was 0.451. In this case,
the value of the factor CS is also below 0.05, as happened in the experiment. So,
again in the replication, the results show that using composite states in UML state-
chart diagrams affects their understandability efficiency. In this case the effect is
negative and makes the understandability decrease, but as we have remarked before,
this effect is a consequence of the lack of experience that the subjects had.

Evaluating the Effect of Composite States 121

Table 5. ANOVA results for understandability efficiency in the replication

Source Sum of
Squares df Mean

squared F
Signifi-
cance
level

Subject (Group) 3.759E-03 176 2.136E-05 1.649 0.001
Error 1.981E-03 153 1.295E-05

UoD 1.606E-03 1 1.606E-03 124.044 0.000
Error 1.981E-03 153 1.295E-05

CS 6.283E-04 1 6.283E-04 48.519 0.000
Error 1.981E-03 153 1.295E-05

Group 4.827E-05 1 4.827E-05 2.326 0.129
Error 3.994E-03 192.445 2.075E-05

Interaction 8.737E-02 1 8.737E-02 4210.117 0.000
Error 3.994E-03 192.445 2.075E-05

Composite States

WITHOUTWITH

,022

,020

,018

,016

,014

,012

UoD

ATM

Phone call

Fig. 4. Understandability efficiency profile plot from the replication

4. Threats to Validity

We must keep in mind a number of validity issues that are typically related to
experiments of this type.

First, the subjects were not professional modelers. Obviously, we would expect
much better results if the subjects were more experienced. However, the limited diffi-
culty of the tasks and the different UoD’s make the students become suitable experi-
mental subjects, as they are much easier to work with than some others.. Nevertheless,
further replications of these experiments using people already working in this profes-
sion would be really interesting.

Secondly, the diagrams that have been used represent relatively simple models and
it is possible that if real-projects data were used, we could obtain different results.

122 José A. Cruz-Lemus et al.

In order to alleviate possible effects of learning and fatigue, we counterbalanced
the order in which treatment combinations were given to the subjects; furthermore,
the subjects were assigned at random to each possible treatment order sequence. To
minimize plagiarism, the experiment conductor encouraged an honest performance of
the experiment and was present in the room throughout.

Finally, in order to decrease a possible ‘session effect’, in the replication the
subjects were randomly assigned to the session in which they performed the
experimental tasks.

5. Conclusions and Future Work

The appearance of the MDA, and hence the emphasis to be put on the models, has fa-
vored that UML statechart diagrams have become an important technique in the de-
scribing of the dynamic aspects of a software system.

In previous works [3] we have studied the relationship between many of the
constructs of the UML statechart diagrams and the effect that they have on the
understandability of the diagrams, based on a set of metrics that we had previously
defined and validated [2]. In these works we had found that the effect of the
composite states on the understandability of the UML statechart diagrams was not
clear. So we designed and performed a controlled experiment and a replication in
order to evaluate this effect. The experiment and its replication were carried out by
students of two different Spanish Universities. The results obtained show that the use
of composite states improves the understandability efficiency of UML statechart
diagrams if the subjects have a certain level of experience in working with this kind of
UML diagrams. Thus, we can conclude that using composite states when modeling
the behavior of systems through UML statechart diagrams makes them more
understandable.

These findings give greater justification than ever for putting special emphasis on
the use of composite states when teaching UML statechart diagrams in Software En-
gineering courses.

In spite of these encouraging findings, we considered them to be preliminary. Fur-
ther validation is needed, to be performed with experienced practitioners, as well as
by taking data from real projects. When we have obtained conclusive results about the
effect of composite states on the understandability of UML statechart diagrams, we
will investigate the optimal nesting level within the composite states.

It could also be interesting testing the hypotheses again but using other experi-
mental design in which the effect of interaction is not confounded, in order to obtain
more knowledge about it.

Once UML 2 [11] is adopted as standard by the OMG we will study the meta-
model corresponding to the statechart diagrams, in order to find out if the findings
presented in the present work are also valid for this version of the language. In addi-
tion, we will investigate whether our proposed metrics [2] could be used as maintain-
ability indicators of UML statechart diagrams.

Evaluating the Effect of Composite States 123

Acknowledgements

This research is part of the MESSENGER project (PCC-03-003-1) financed by
‘Consejería de Ciencia y Tecnología de la Junta de Comunidades de Castilla-La
Mancha (Spain)’, the CALIPO project supported by ‘Dirección General de
Investigación del Ministerio de Ciencia y Tecnología (Spain)’ (TIC2003-07804-C05-
03) and the DIESEL project (TIN2004-03145), financed by ‘MEC-FEDER’.

The authors would like give their sincere thanks to Professor Ambrosio Toval from
the University of Murcia and Professor Cristina Cachero from the University of Ali-
cante for allowing us to perform the above experiments with their students.

References

1. Basili, V., Shull, F. and Lanubile, F.: Building Knowledge through Families of Experiments.
IEEE Transactions on Software Engineering, Vol. 25(1999) 456-473

2. Cruz-Lemus, J. A., Genero, M. and Piattini, M.: Metrics for UML Statechart Diagrams. In:
Metrics for Software Conceptual Models. Genero, Piattini and Calero (eds.), Imperial Col-
lege Press, UK (2005)

3. Cruz-Lemus, J. A., Maes, A., Genero, M., Poels, G. and Piattini, M.: Analyzing Data Ex-
tracted from a Family of Experiments for Evaluating UML Statechart Diagrams Under-
standability. Research Working Paper, University of Ghent (to appear) (2005)

4. Denger, C. and Ciolkowski, M.: High Quality Statecharts through Tailored. Perspective-
Based Inspections. Proc. of 29th EUROMICRO Conference "New Waves in System Archi-
tecture". Belek, Turkey. (2003) 316-325

5. Erickson, J. and Siau, K.: Theoretical and Practical Complexity of UML. Proc. of 10th
Americas Conference on Information Systems. New York, USA. (2004) 1669-1674

6. Höst, M., Regnell, B. and Wohlin, C.: Using Students as Subjects - a Comparative Study of
Students & Professionals in Lead-Time Impact Assessment. Proc. of 4th Conference on
Empirical Assessment & Evaluation in Software Engineering (EASE 2000). Keele, UK.
(2000) 201-214

7. Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El-Emam, K. and
Rosenberg, J.: Preliminary Guidelines for Empirical Research in Software Engineering.
IEEE Transactions on Software Engineering, 28 Vol. 8. (2002) 721-734

8. Object Management Group: UML Revision Task Force. OMG Unified Modeling Language
Specification, v.1.4. document formal/01-09-67. (2001)

9. Object Management Group: MDA - The OMG Model Driven Architecture. (2002)
10. Reynoso, L., Genero, M. and Piattini, M.: Measuring OCL Expressions: An approach based

on Cognitive Techniques. In: Metrics for Software Conceptual Models, Genero, Piattini and
Calero (eds.), Imperial College Press, UK. (2005)

11. Rumbaugh, J., Jacobson, I. and Booch, G.: The Unified Modeling Language Reference
Manual, Second Edition. Addison-Wesley. (2005)

12. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software, 20 Vol. 5. (2003)
19-25.

13. SPSS: SPSS 11.5, Syntax Reference Guide, Chicago, USA, SPSS Inc. (2002)
14. Thomas, D.: MDA: Revenge of the Modelers or UML Utopia? IEEE Software, 21 Vol. 3.

(2004) 15-17
15. Verelst, J.: The Influence of the Level of Abstraction on the Evolvability of Conceptual

Models of Information Systems. Proc. of 3rd International Symposium on Empirical Soft-
ware Engineering (ISESE 2004). Redondo Beach, USA. (2004) 17-26.

124 José A. Cruz-Lemus et al.

16. Wohlin, C., Runeson, P., Hast, M., Ohlsson, M.C., Regnell, B. and Wesslen, A.: Experi-
mentation in Software Engineering: an Introduction. Kluwer Academic Publisher. (2000)

Appendix A. An Example of the Experimental Material

In this appendix we show part of the experimental material handed out to the subjects
in the experiments. These two diagrams model a phone call; the first one (figure 5)
uses composite states and the second (figure 6) does not. The complete original (in
Spanish) material can be found at http://alarcos.inf-cr.uclm.es/

The following text sets out the questions that had to be solved by the experimental
subjects. In this study, the questions were the same for both diagrams.

QUESTIONNAIRE (PHONE CALL DIAGRAM)

CHECK TIME (HH:MM:SS): __ : __ : __

Please solve the following questions related to the diagram shown on the following

page. This diagram models the behavior of a phone call:

1. If we are in the state DIALING and the event Dial digit occurs, which state do we
reach?

2. If we are in the state OBTAINING LINE and the event Time exhausted occurs,
which state do we reach?

3. Starting in the state DIALING, which state do we reach if the following sequence
of events occurs?

Number dialed [Number valid]
On-line
Destination answers

4. Starting in the state CONNECTED, which state do we reach if the following se-
quence of events occurs?

New call
On-line
Hang up

5. Write down the minimum sequence of events and conditions needed, to go from

the state DIALING to the state DISCONNECTED:

6. Write down the minimum sequence of events and conditions needed, to go from

the state CONNECTING to the state BUSY:

CHECK TIME (HH:MM:SS): __ : __ : __

Evaluating the Effect of Composite States 125

IDDLE

ACTIVE

BUSY

do/ Emit busy tone

CONNECTING

do/ Connect

ERROR

do/ Emit error

RINGING

do/ Emit ring tone

CONNECTED

on Incoming call/ Emit call tone

DISCONNECTED

DIAL PROCESS

OBTAINING LINE

do/ Emit line tone

DIALING

BUSY

do/ Emit busy tone

CONNECTING

do/ Connect

Destination busy

ERROR

do/ Emit error

RINGING

do/ Emit ring tone

On-line

CONNECTED

on Incoming call/ Emit call tone

Commute call

DISCONNECTED

End of message

DIAL PROCESS

OBTAINING LINE

do/ Emit line tone

DIALING

OBTAINING LINE

do/ Emit line tone

DIALING

Dial dig it(n)

Dial digit(n)

Time exhausted

Number dialed[Number valid]

Number dialed[Number invalid]
New call

Destination hangs up / Disconnect line

Pick up
Hang up / Disconnect l ine

Destination answers / Connect line

Fig. 5. Example of diagram with composite states (phone call)

IDDLE

OBTAINING LINE

do/ Emit line tone

BUSY

do/ Emit busy tone

DIALING

CONNECTING

do/ Connect

ERROR

do/ Emit error

RINGING

do/ Emit tone

CONNECTED

on Incoming call/ Emit call tone

DISCONNECTED

Dial digit(n)

Commute call

Hang up

Pick up

Destination busy

Hang up

On-line

Time exhausted

Dial digit(n)

Hang up

Hang up

Number dialed[Number invalid]

Hang up

Number dialed[Valid number]

Tim e exhaustedHang up

End of message

Hang up

Destination answers / Connect l ine

New call

Destination hangs up / Disconnect line

Hang up / Dis connect line

Fig. 6. Example of diagram without composite states (phone call)

Computing Refactorings of Behavior Models

Alexander Pretschner1 and Wolfgang Prenninger2

1 Information Security, ETH Zürich, 8092 Zürich, Switzerland
Alexander.Pretschner@inf.ethz.ch

2 BMW Group, 80788 München, Germany
Wolfgang.Prenninger@bmw.de

Abstract. For given behavior models expressed in statechart-like for-
malisms, we show how to compute semantically equivalent but struc-
turally different models. These refactorings are defined by user-provided
logical predicates that partition the system’s state space and that char-
acterize coherent parts—modes or control states—of the behavior.

1 Introduction

The use of explicit models is enjoying an increasing popularity in the develop-
ment of complex systems. Modeling languages, including UML, have matured
to a point where they are useful for many developers. Consequently, there is a
plethora of tools that enable one to specify systems with these languages. The
(behavior) models are then used to generate simulation and production code,
code skeletons, or test cases. They are also subjected to formal verification tech-
nology such as model checking or automated deductive theorem proving. While
there is no fit to all needs yet, the respective technology is impressive, and sys-
tems of considerable complexity can be handled.

The increasing complexity of these systems necessitates the study of the de-
velopment of the models itself. The context of this paper is the incremental
development of models. We study one particular development step in such pro-
cesses: refactoring [1, 2] denotes structural transformations of a system that do
not change its externally visible behavior, except maybe for memory allocation
or required processor cycles. Code-based examples include the definition of a
function or introduction of a common super class to avoid duplicate code.

We consider refactorings of finite state machines with I/O capabilities and
access to an extra data state. This is an add-on to the transitions between the
control states in finite state machines that are usually depicted as arrows and
bubbles. For each transition, the guard and the assignments to the data space
are specified in a well-defined action language. Our work builds on experience
with the CASE tool AutoFocus [3] that we used to model industry-size systems
to the end of test case generation (e.g., [4, 5, 6]). Building a model reflects the
process of understanding the requirements. The use of state machines forces one
to define the control states of this machine early in the development. Sometimes
this decision turns out to be inadequate, and different or additional control

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 126–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computing Refactorings of Behavior Models 127

states have to be defined. In the worst case, with current tools, the complete
state machine has to be redrawn, a tedious and error-prone task.

Control states can be interpreted as names of predicates over the state space.
Given a state machine and a set of such predicates, we show how to compute
the transitions (arrows) between the corresponding new control states. Consider
a state machine that models a stack: one control state with three looping tran-
sitions: push, pop, and get. Given two predicates that specify that the stack is
empty (p) or not empty (q), we show how to compute the transitions between
p and q. Our main motivation for refactorings of the said kind is the insight
that the control states of a behavior model were inadequately chosen. A further
motivation is the desire for complementary views on the system [7]. We do not
discuss how to pick p and q. The approach is prototypically implemented.

We present our ideas on the grounds of the simple example of a stack. As a
proof of concept, we show how our techniques have been used in the case study
of an automotive network controller [4]. We concentrate on one single flat state
machine: parallel composition and hierarchical states are not in the scope.

Our work is based on a development process that uses tables like those in SCR
[8, 9, 10]. Unless they grow too large, tables are easy to understand, and one of
their important advantages is that they are comparably easy to manipulate. Tool
support for manipulating and checking consistency or completeness of different
flavors of tables has been around for some time [11, 10]. On the other hand,
tables are not always utterly convincing to customers who sometimes prefer
equivalent graphically displayed executable state machines. We also found that
converting tables into a different representation, namely that of equivalent state
transition diagrams, is a valuable aid in reviewing the models. In sum, we believe
that both tables and graphically represented state machines are valuable in the
development process of models. This is consistent with the findings of Parnas
and his colleagues that there is a need for more than one kind of tables [12, 13].

To summarize, we tackle the following problem. In the context of incremental
development, assume a state machine, or a table, and a partitioning of the state
space, to be given. How can we compute an equivalent state machine with a set
of control states characterized by a set of predicates? The solution is the formal
definition of the transformation and its prototypical implementation. Our contri-
bution is, to our knowledge, the first formal treatment of refactorings of behavior
models on the grounds of partitions of the state space. Our approach generalizes
to other formalisms as well. Statecharts, for instance, may in principle arbitrar-
ily access the data definitions of a UML model. By translating the statechart
into the (standard) formalism given in this paper, we can directly apply our
approach, provided that only direct assignments (and output) are allowed in the
action part of a transition

Section 2 presents the formalism of this paper and defines the notions of rule
systems, state machines, state transition diagrams, and tables. Section 3 con-
siders the development steps in incremental development processes of behavior
models, given by both tables and state transition diagrams. Given a partitioning
of the state space, Section 4 shows how to compute refactorings and briefly con-

128 Alexander Pretschner and Wolfgang Prenninger

siders the implementation. Section 5 presents the application of the approach in
an industrial case study. Sections 6 and 7 present related work and conclude.

2 Modeling Constructs

In this section, we define the notion of rule systems. Roughly, rule systems are
programs in a language of guarded commands. Tables are textual representations
of rule systems. State machines are a special kind of rule systems with state
transition diagrams as their graphical representation. The usefulness of and need
for these different representations will become apparent later. Before precisely
formulating our refactoring steps, we have to introduce some formalism.

Preliminaries The formalism borrows from Breitling and Philipps [14]. Let V
denote a finite set of typed variables. A valuation β maps a variable to a term
of its type. AV is the set of all valuations for a set V . Let free(Φ) denote the set
of free variables in a logical formula Φ. In case an assertion Φ evaluates to true
when all v ∈ free(Φ) are replaced by β(v), we write β |= Φ.

Variable names also occur in primed form (intuition given in the next para-
graph on rule systems). For instance, if v is a variable, then priming yields a new
variable, v′. Natural extensions apply (1) to sets of variables: V ′ = {v′|v ∈ V },
(2) to valuations: for β ∈ AV , we have β′ ∈ AV ′ with β′(v′) = β(v) for all
v ∈ V , and (3) to assertions: if Φ is an assertion, then Φ′ is the assertion that
results from priming all variables in free(Φ). Unprimed valuations assign values
to unprimed variables only, and primed valuations assign values to primed vari-
ables only. If an assertion Φ contains both primed and unprimed variables, two
valuations are needed for evaluations. We write β, γ′ |= Φ in case Φ evaluates
to true when all unprimed variables v in free(Φ) are replaced by β(v), and all
primed variables v′ are replaced by γ′(v′). Two valuations β, γ ∈ AV coincide on
a subset W ⊆ V , denoted β

W= γ, if ∀v ∈ W • β(v) = γ(v). Extensions naturally
apply to sequences of valuations—β1β2 . . .

W= γ1γ2 . . . denotes βk
W= γk for all

k—and to sets of sequences: for two sets of sequences of valuations Y1 and Y2,
Y1

W= Y2 denotes ∀y1 ∈ Y1∃y2 ∈ Y2 • y1
W= y2 and ∀y2 ∈ Y2∃y1 ∈ Y1 • y2

W= y1.
T (Σ, X) denotes the set of terms over a signature Σ and a set X of variables.

We assume a fixed signature to be given—the names of the functions defined in
the action language and used in guards and assignments. The type of a term t is
denoted by type(t). Two terms are unifiable (l ∼= r) iff ∃β ∈ AVl∪Vr •β(l) = β(r),
where Vl and Vr are the sets of variables in l and r, respectively, and Vl ∩Vr = ∅.

Given a predicate p, p[fw/w]w∈W denotes the replacement of all variables
w in W by terms fw of the same type. p′[fw/w′]w∈W applies the same notion
to replacing primed variables. Finally, function composition is denoted by ◦,
∀x • (f ◦ g)(x) = f(g(x)). The identity mapping is called id.

Rule Systems A rule system is a tuple R = (V, S, T). V consists of disjoint
sets of typed variables, I, O, L. They denote input, output, and local variables,

Computing Refactorings of Behavior Models 129

respectively. A state of R is a valuation β ∈ AV that type-correctly maps all
variables in V to ground terms. β ∈ AL is called a data state of R.

S is an assertion with free(S) ⊆ V . It describes the initial state(s), and we
require S to be satisfiable: ∃β ∈ AV • β |= S.

T is a set of transitions. Each t ∈ T is an assertion with free(t) ⊆ V ∪ V ′.
It relates states to successor states. Unprimed variables are evaluated in the
current state, and primed variables are evaluated in the successor state.

We require all transitions in T to be of the form in ∧ g ∧ a ∧ out . in and
out read input values and compute and write output values, respectively. g is a
guard; it defines conditions on the input and the current values of the variables in
L. a assigns new values to the variables in L. More precisely, in is a statement of
the form

∧
i∈I i ∼= πi where πi is a pattern that may contain free transition-local

variables, Ht, with Ht∩V = ∅. We assume πi ∈ T (Σ, Ht) and type(πi) = type(i).
The idea is that these variables are bound at runtime, and the values can be
used in the computation of guards, output values, and assignments. We naturally
extend the notions of states by stipulating that states be elements of AV ∪HR

where HR =
⋃

t∈T Ht. The guard g is a conjunction of predicates over Ht ∪ L,
with type(g) = Bool . The assignment a ≡

∧
l∈L l′ = fl type-correctly assigns

values to the variables in L′, and it may do so by referring to the variables in
L ∪ Ht: fl ∈ T (Σ, L ∪ Ht) with type(fl) = type(l). Finally, out ≡

∧
o∈O o′ = fo

assigns values to the output variables, O′. It may refer to the variables in L∪Ht:
fo ∈ T (Σ, L∪Ht) with type(fo) = type(o). ε denotes the absence of signals both
for input and output channels; types are lifted correspondingly.

Without loss of generality, we will assume that the action language for guards
and assignments is a simple first-order functional language without explicit quan-
tifiers, i.e. all variables are free. The reason for this choice is that this is the
language supported by the CASE tool AutoFocus which was used in our studies.

A run of a rule system is an infinite sequence of states, β1β2 . . . with βi ∈
AV ∪HR . The set of all runs, i.e., the semantics of a rule system, R, is denoted by
[[R]]. We require β1 |= S and ∀o ∈ O • β1(o) = ε—output can only be produced
after or during the first transition. Subsequent valuations of a run, βn and βn+1,
are related by a transition in T : ∀n•βn, β′

n+1 |=
∨

t∈T t. Clearly, there is room for
many classical constraints such as causality [15], input enabledness [16], fairness,
etc. Rule systems need not be total nor deterministic.

State Machines, Tables, and State Transition Diagrams A state ma-
chine is a rule system with a dedicated variable state of a finite type. It spec-
ifies the control state or mode of the state machine. We require an initial con-
trol state to be determined in the initial assertion S, each guard to contain a
statement state = src, and each assignment to contain a statement state ′ = dst
where src and dst are the source and destination control states of the transi-
tion, respectively. By convention, we will use overlines for the names of control
states. State machines are graphically represented by state transition diagrams
(STDs)—bubbles (control states) and arrows (transitions). Two examples of (in-
complete) STDs are given in Fig. 1. The black dot denotes the initial state.

130 Alexander Pretschner and Wolfgang Prenninger

Fig. 1. Original STD of the stack (left); refactoring (right)

Every state machine is a rule system, but not each rule system is a state
machine. However, there are many ways of transforming a rule system into a
state machine. The simplest one is as follows: we add state of type {s} to L, add
the conjunct state = s to the guard of each transition, and add the conjunct
state ′ = s to the assignment of each transition (assuming state �∈ L; otherwise
we rename the old variable state before introducing the new one). Different ways
of computing state machines from rule systems are the topic of this paper.

A table is the textual representation of a rule system in some tabular form.
Parnas has devoted considerable work to the classification of tables [13]. For us,
any tabular representation will do. An example of a table is given in Tab. 1.

Name Guard Input Output Assignment

pushItem true e∼= push(DATA) a’=ε st’=list(DATA,st)

getItem not(isE(st)) e∼= get a’=ft(st) st’=st

popItem not(isE(st)) e∼= pop a’=ε st’=rt(st)

idle true e∼= ε a’=ε st’=st

Table 1. Behavior of a stack

Example Consider the specification of a stack of integers. We assume a compo-
nent with one input channel I = {e} with type(e) = {push(Int), get , pop, ε}, and
one output channel, O = {a} with type(a) = Int ∪ {ε}. There is one local vari-
able, L = {st}. Using functional notation, its type is recursively defined by data
d st = empty | list(Int, d st). Three functions are defined: isE(X) = (X
== empty), ft(list(X,Y)) = X, and rt(list(X,Y)) = Y. One transition-local
variable is used in the example, namely DATA in transition pushItem.

By adding a further local variable state of type(state) = {wait4Input} to the
set L of local variables, we generate a state machine from the rule system by
also adding trivial statements state = wait4Input and state ′ = wait4Input to
guard and assignment of each row of Tab. 1. Fig. 1, left, shows the STD that
corresponds to the state machine of the stack example.

Computing Refactorings of Behavior Models 131

3 Incremental Development

Increments denote different development stages of a system, or model, respec-
tively. To be as flexible as possible, we do not impose any constraints on these
steps (except for enforceable consistency conditions that we do not discuss here).

Development Process Our experience with building large models boils down
to the following process. Existing (informal) requirements specifications are read:
a first understanding of the system’s behavior is gained. One is capable of writing
down statement such as “if a certain input occurs under certain conditions, then
the system’s state changes as follows, by outputting certain values”. These rules
are preliminary in that they are likely to be corrected later on. Reading the
requirements documents also tends to lead to a first natural partitioning of the
state space; for instance, one might find it natural to have a partitioning into on
and off states in the model of an embedded system.

We found it useful not to exclusively use the graphical STDs in these early
stages of development. Instead, tables turned out to be tremendously useful.
The reason is that modifications in STDs are rather tedious: because the control
states of the state machine change, transitions or parts of transitions have to be
copied or removed multiple times. This is an error-prone and tedious task.

Nonetheless, there is no doubt that STDs are highly useful. Debugging is
sometimes easier with executable STDs than with tables. For demonstration pur-
poses with customers and domain experts, we found STDs to yield a good basis
for discussion. In addition, the graphical layout helps one to identify symmetries,
or missing symmetries which lead to corrections of the model (Section 5).

Modifications and Refactorings Development steps can alter interfaces, or
they alter the behavior. We do not consider architectural modifications such
as the addition of components here [15, 17, 18]. Interface modifications add or
delete input or output channels to or from a system. If, before deletion, the
name of a channel does not occur in a system’s description, its removal does not
change the system’s behavior, and neither does the introduction of a new channel.
Behavior modifications consist of removals and additions of traces of a model.
Syntactically, this is achieved by inserting, modifying, or deleting transitions in
T , possibly by taking into account extensions of L.

An increment R̃ of a rule system R with [[R]] I∪O= [[R̃]] is called a refactoring
of R. This assumes that R and R̃ define the same external interface I = Ĩ and
O = Õ: refactorings do not modify the interface of a component. An increment
that is no refactoring is called a modification. In our incremental development
process that relies on both tables (rule systems) and STDs (state machines),
there are hence four different kinds of development steps: refactorings of state
machines (ρS ∈ {ρ|[[R]] I∪O= [[ρ(R)]] and R is a state machine}), refactorings of
rule systems (ρR ∈ {ρ|[[R]] I∪O= [[ρ(R)]] and R is a rule system}), and modifica-
tions of rule systems and state machines (both denoted by δ in Fig. 2). Modifi-
cations modify, add, or delete transitions, possibly with alterations of L.

132 Alexander Pretschner and Wolfgang Prenninger

Let τ and τ−1 denote transformations from rule systems into state machines,
and vice versa. Fig. 2 illustrates the relationship between the development steps.
As development progresses from top to bottom, modifications take place. Within
each row, usually different refactorings of both tables and state machines are
considered, and the further can be transformed into the latter, and vice versa.

τ, τ−1

τ, τ−1

τ, τ−1 ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

δ

δ

δ

δ δ

δ

ρ ρ ρ

ρ ρρ

ρ ρ ρ

RRR

R RR

R R R

Fig. 2. Incremental Development

In the next section, we will describe how to compute refactorings of rule sys-
tems, ρR. Since state machines are rule systems, this also caters for refactorings
of state machines. However, for reasons that we will be able to explain only after
refactorings have been made precise, it is not always desirable to let τ−1 = id .

Refactorings of rule systems that are not state machines appear to be of mod-
erate value: they remain textual, and we have discussed the benefits of graphical
representations in Section 1. Methodologically, one would prefer to get a state
machine (in fact, an STD) from a refactored rule system (in fact, a table) in
one step. Consequently, we will focus on combinations of (1) refactorings of rule
systems (tables) and (2) transformations from rule systems (tables) into state
machines (STDs). As we will see in the next section, it is sufficient to consider
refactorings of state machines defined by ρS = τ ◦ ρR ◦ τ−1. The only reason
for having included refactorings of rule systems into the left part of Fig. 2 is
precisely that we compute refactorings of state machines by relying on these ρR.

4 Refactorings

In our stack example, one might want to transform the specification into an
equivalent one with two control states: one specifies that the stack is empty, and
the other one specifies that it is not. The problem then consists of computing
the transitions between these two control states.

Computing Refactorings of Behavior Models 133

Name Guard Input Output Assignment

pushItem isE(st) ∧ isE(list(DATA,st)) e∼=push(DATA) st’=list(DATA,st)

pushItem isE(st) ∧ not(isE(list(DATA,st))) e∼=push(DATA) st’=list(DATA,st)

pushItem not(isE(st)) ∧ isE(list(DATA,st)) e∼=push(DATA) st’=list(DATA,st)

pushItem not(isE(st)) ∧ not(isE(list(DATA,st))) e∼=push(DATA) st’=list(DATA,st)

getItem not(isE(st)) ∧ isE(st) ∧ isE(st) e∼=get a’=ft(st)

getItem not(isE(st)) ∧ isE(st) ∧ not(isE(st)) e∼=get a’=ft(st)

getItem not(isE(st)) ∧ not(isE(st) ∧ isE(st)) e∼=get a’=ft(st)

getItem not(isE(st)) ∧ not(isE(st)) ∧ not(isE(st)) e∼=get a’=ft(st)

popItem not(isE(st)) ∧ isE(st) ∧ isE(rt(st)) e∼=pop st’=rt(st)

popItem not(isE(st)) ∧ isE(st) ∧ not(isE(rt(st))) e∼=pop st’=rt(st)

popItem not(isE(st)) ∧ not(isE(st)) ∧ isE(rt(st)) e∼=pop st’=rt(st)

popItem not(isE(st)) ∧ not(isE(st)) ∧ not(isE(rt(st))) e∼=pop st’=rt(st)

idle isE(st) ∧ isE(st) e∼=ε

idle isE(st) ∧ not(isE(st)) e∼=ε

idle not(isE(st)) ∧ isE(st) e∼=ε

idle not(isE(st)) ∧ not(isE(st)) e∼=ε

Table 2. Refactored behavior

In this paper, the idea of refactoring state machines or rule systems is to
define a set of predicates that partition the data space. In general, whether a set
of predicates forms a partitioning is undecidable. In our case studies, however, we
could easily see whether or not a set of predicates formed a partitioning. Each
of these predicates corresponds to one control state of the refactored model:
control states are projections of the data space (defined as the set of all possible
valuations of all variables). Once the partitioning predicates have been defined,
one must compute the transitions between the corresponding states.

To get an intuition of this computation, assume a set of predicates, P , that
partition the data space, and that do not constrain input nor output values. The
elements of P will form the control states of the refactored model. Let p, q ∈ P .
Transitions (arrows in the graphical representation) from p to q for each pair
p, q are computed as follows. For each guard g of a row in the table, we compute
the intersection between p and g, i.e. p ∧ g. We also need to make sure that q
is compatible with the assignment a ≡

∧
l∈L l′ = fl of the transition, i.e. that

q holds if the assignment has been computed. Overall, the predicate g ∧ p ∧
q′[fl/l′]l∈L has to be satisfiable. With |P | new control states and t transitions,
the transformation requires the computation of t · |P |2 new transitions.
Example Consider the stack again. Suppose we want to derive a state machine
with two control states characterized by the predicates p ≡ isE(st) and q ≡
not(isE(st)). Clearly, p and q partition the data space. Tab. 2 shows the result
of the refactoring where empty output (a′ = ε) and trivial assignments (st ′ = st)
are, for brevity’s sake, omitted. Unsatisfiable transitions are canceled out.

For each transition of the original specification, four new transitions are com-
puted: from p to p, from p to q, from q to p, and from q to q. For instance, the
first row in the table corresponds to a transition from p to p that is defined by

134 Alexander Pretschner and Wolfgang Prenninger

the old transition pushItem. isE(st) checks if the source control state, p, is com-
patible with the old guard, true. isE(list(DATA, st)) checks if the destination
control state, p, is compatible with the old assignment, st ′ = list(DATA, st). The
conjunction of the two terms is unsatisfiable; the transition is canceled out.

As a second example, the tenth line of Tab. 2 is the transition from p to q
w.r.t. the old transition popItem. not(isE(st)) ∧ isE(st) checks the compatibility
of the old guard, g, with the source control state, p. not(isE(rt(st))) checks if
the destination control state, q, is compatible with the old assignment. p∧ g are
not satisfiable which is why this transition is also canceled out.

Fig. 1, right, shows the STD of the stack as defined by Tab. 2 that we assume
to be extended by the respective assignments to state and state’. Transitions are
abbreviated. isFilled denotes the control state that is defined by not(isE(st)).

Formalization We will now make the refactoring step precise. Let P denote a
finite set of predicates that partition the data space of a rule system R = (V, S, T)
with V = I ∪O∪L defined as above. The partitioning requirement means firstly
that P covers AL, i.e. for all states β, we have β |=

∨
p∈P p. Secondly, the

predicates in P must be pairwise disjoint, i.e. ∀p, q ∈ P • p �= q ⇒ ¬(p ∧ q). For
convenience, we also require that all predicates in P be satisfiable and an initial
partition be uniquely defined, i.e. ∃s ∈ P • S ⇒ s because of the partitioning
requirement. Refactoring a rule system R = (V, S, T) w.r.t. a partitioning P of
the data space yields a rule system ρR(R) = R̃ = (V, S, T̃) with

T̃ :=
{
in ∧ g ∧ p ∧ q′[fl/l′]l∈L ∧

∧
l∈L

l′ = fl ∧
∧

o∈O

o′ = fo |

(in ∧ g ∧
∧
l∈L

l′ = fl ∧
∧

o∈O

o′ = fo) ∈ T ∧ {p, q} ⊆ P
}

.

The proof that the transformation is indeed a refactoring, i.e. [[R]] I∪O= [[R̃]],
is given in Appendix A. The proof only requires P to cover the state space;
partitioning ensures that no internal nondeterminism is introduced.

If one wants to perform the refactoring and generate a state machine in
one step (Section 3), then the following construction can be used. With a new
variable state ∈ L̃ of type(state) =

⋃
p∈P {p} we define τ ◦ρR((I ∪O∪L, S, T)) =

(I ∪ O ∪ L ∪ {state}, S̃, T̃) with S̃ = S ∧ state = s for some s ∈ P with S ⇒ s,
and

T̃ :=
{
in ∧ g ∧ p ∧ q′[fl/l′]l∈L ∧ state = p ∧ state ′ = q ∧

∧
l∈L

l′ = fl ∧
∧

o∈O

o′ = fo | (in ∧ g ∧
∧
l∈L

l′ = fl ∧
∧

o∈O

o′ = fo) ∈ T ∧ {p, q} ⊆ P
}

.

Removing State Variables Assume an iterative process where a state ma-
chine, or an STD, is generated, modified, re-transformed into a table which is
subsequently modified, etc. Adding a new state variable for each transformation
from a rule system to a state machine is likely to clutter the model (more pre-
cisely, guards and assignments of transitions). This is the only reason for not

Computing Refactorings of Behavior Models 135

letting τ−1 = id (Section 3). It is not a conceptual but rather a practical prob-
lem: we would like the rule systems to be readable by humans, and thus contain
as little redundancy as possible.

We will now characterize the operations that, upon application of τ−1 allow
one to delete state variables in rule systems that were previously introduced
by the application of τ . As explained in Section 3, it is sufficient to focus on
behavior modifications, and to ignore interface modifications.

The above construction of computing a refactoring and a state machine in
one step shows that state = p whenever p holds. Conversely, we have state ′ = q
whenever q′[fl/l′]l∈L evaluates to true. In other words, the information on the
explicit state variable is indeed redundant and can be removed (it is only used
to decide whether or not to draw a transition arrow between two control states).

The same is true for modifications of existing transitions (including modifi-
cations of the data state L − {state}), and also for the deletion of transitions.
New transitions between control states that are characterized by p, q ∈ P are
equally unproblematic if some implementing CASE tool adds p ∧ q′[fl/l′]l∈L to
the guard of a transition from p to q (by removing assignments to state and
state’ ; this is the—informal—definition of τ−1). The only problem occurs if a
new control state plus transitions to or from it are added at the graphical level
without giving a logical characterization of this control state. This is problem-
atic because in this case, it is not possible to automatically modify guards and
assignments as in the case of logically characterized control states.

In other words, if the CASE tool forbids the introduction of new control
states at the graphical level when no logical characterization is provided and,
instead, requires development steps of this kind to be performed at the level
of tables only, then we can work with tables and STDs in parallel, without
cluttering the model. In this case, refactorings of state machines are computed
via ρS = τ ◦ ρR ◦ τ−1 rather than via ρR.

Implementation As far as we know, there is no model-based CASE tool that
integrates tables and STDs. We have used Excel and AutoFocus with ad-hoc
translations between the two. While not yet integrated into the tool, the compu-
tation of refactorings is automated and includes (a) the—trivial—computation
of refactored transitions (set T̃), and (b) their simplification, possibly to false.
Step (b) is particularly important because the computed transitions should be
readable by humans, and, as the examples of this paper show, there is a great
potential for the removal of redundant parts. Our simplification algorithm imple-
ments the rules of Boolean algebra and includes a simple satisfiability checker.
The latter is used to remove unsatisfiable disjuncts for formulas in disjunctive
normal form. The problem is generally undecidable, but one could argue that (a)
the cut-off of infinite data structure that can often be justified by domain knowl-
edge, and (b) the simplicity of the involved functions—e.g., there is usually no
mutual recursion, and most recursions turn out to be primitive—make manual
decisions possible. Because our action language for guards and assignments is a
functional language, we have implemented the simplifier in the functional logic

136 Alexander Pretschner and Wolfgang Prenninger

language Curry [19] (the operational semantics of which relies on narrowing [20]
which explains why it lends itself to satisfiability checking). With a restriction of
all lists to a maximum length of 5, the example in the next section is computed
in negligible time. We have not yet implemented a plugin that also takes into
account automatic layouting of computed STDs.

5 Example: MOST NetworkMaster

This section illustrates the methodological benefits of our approach when ap-
plied to the behavior model of a network controller for automotive infotainment
systems, the MOST NetworkMaster (NM) [21]. The model was the basis for
model-based testing of an NM implementation [4]. The functionality of the net-
work is divided into function blocks which reside on the network’s devices. The
NM is a special function block responsible for network management. Here we
consider only the model of the NM’s main service: setting up and maintaining
the central registry. The central registry contains all function blocks and their
associated network addresses currently available in the network.

We do not show any complex modeling details here and describe only the
main local variables of the model. The model defines the variable mode which
models the five modes of the NM: in mode off the NM is switched off; in mode
init the NM performs a system configuration check during startup—all devices
are asked for their function blocks; in mode cfgOk the NM has set up the network
to normal operation, i.e. all devices are allowed to communicate freely; in mode
ncd the NM performs a system configuration check after a network change, i.e. a
device has left or jumped in the network; and in mode delayed the NM requests
periodically devices which have not answered to any request yet. Furthermore
the model defines the variable wa which stores the network address from which
the NM expects an answer to its last request. There are four additional variables
for storing the central registry and other informations about the system.

In an advanced modeling stage the NM’s service is specified by a table with
17 rows where most guards contain four or five atoms. We transformed this table
into different state machines for a review of the model. We choose the partition-
ing P1 which divides the state space according to the five modes of the NM.
Fig. 3, left, depicts the respective state machine. In addition, we choose a sec-
ond partitioning P2 which distinguishes between states (1) requestingDevices ≡
wa = empty ∧ mode ∈ {init ,ncd , delayed} where the NM requests devices, (2)
waitForStatus ≡ wa �= empty ∧mode ∈ {init ,ncd , delayed} where the NM waits
for an answer, and the states (3) off and (4) cfgOk where the NM is in modes
off or cfgOk. Fig. 3, right, depicts the state machine w.r.t. partitioning P2.

P1 allows us to study symmetries w.r.t. mode switching. For example, upon
each network reset, the NM returns to mode init (transitions with names ending
in NotOk). We would have detected an error in the model if one of these transi-
tions had been missing. By means of P2, we can observe that the NM can enter
state requestingDevices from state cfgOk only if a network change occurs (tran-
sitions beginning with NCD) or if there are devices which have not answered yet
(transition swDelay). There would be an error if there were further transitions.

Computing Refactorings of Behavior Models 137

Fig. 3. STD of the NM w.r.t. partitioning P1 (left); w.r.t. partitioning P2 (right)

This example reveals that specific symmetries can be found and analyzed by
building different abstract views of behavior models. By reviewing this kind of
abstractions, the model can be analyzed easily if some transitions must or must
not exist for symmetry considerations. The abstract view reveals relations in the
model which would have stayed hidden in the detailed view of tables.

6 Related Work

Refactorings: Sunyé et al. consider the refactoring of statecharts on the grounds
of hierarchical states [22]. Roughly, sets of states are merged, and the new tran-
sitions are computed. This differs from our work in that they do not consider
arbitrary new definitions of states (our sets P that cover the state space). In the
context of inductive verification, Cheng considers refactoring a parameterized
process into a set of constant processes [23]. In our context, this would amount
to refactoring one state machine into more than one state machine. Van Gorp
et al. propose extensions to the UML meta model such that pre- and postcondi-
tions for behavior-preserving transformations can be expressed [24]. This work is
not concerned with refactorings of state machines. In a similar vein, Correa and
Werner discuss refactorings of OCL expressions and class structures, without
explicitly taking into account state machines [25]. Philipps and Rumpe present
a set of transformation rules for data flow networks and formally show that the
transformed system is a refinement of the original one [18]. Their work differs
from ours in that we actually compute the refactoring of a behavior model.

Tables and Incrementality: Shen et al. [12] are concerned with transforma-
tions of tabular specifications of a system. They concentrate on transformations
between different kinds of tables [13] rather than transforming tables into graph-
ical representations in the form of extended state machines. Their transforma-
tions are refactorings in their own right. Prowell and Poore use incrementally
discovered equivalence classes on I/O sequences to specify the I/O behavior of
a system [26]. One could directly use such canonical sequences as states. Janicki
and Sekerinski claim that this leads to complex state machines even for small
systems [27]. In that paper, the trace assertion method is revisited, and by di-

138 Alexander Pretschner and Wolfgang Prenninger

rectly catering for certain signal interleavings, the authors propose to interpret
certain so-called step-traces as states. Both approaches do not seem to see a need
for refactorings at all, but they also advocate the use of different specifications.

Logical Characterization: The state invariants in timed and hybrid automata
[28, 29] are directly related to our logical characterization of refactorings. How-
ever, we are concerned with discrete systems, and we use the invariants in a
methodologically different manner, namely to the end of refactoring. Further-
more, state invariants in timed and hybrid systems need not cover the state
space. Lamport uses TLA predicates—invariants—to characterize control states
[7] in predicate-action diagrams. Except for the concrete language, this is similar
to what we do in this paper. However, Lamport is not concerned with refactor-
ings. Finally, the predicates that we use to characterize control states relate
to the “reaffirmed invariants” in the context of STeP [30], namely local invari-
ants PC = i ⇒ I (i) that describe properties I(i) at program location i and that
are defined on data variables only. These special invariants are dubbed “mode
invariants” in the SCR context [31].

7 Conclusions and Future Work

The starting point of our work is the observation that current model-based CASE
tools provide insufficient support for the incremental development of STDs when
it comes to fundamental changes of the control states. These might become neces-
sary if a better understanding of the systems suggests a different, more adequate,
perspective on the state space. Refactorings of STDs are hence motivated by a
better understanding of the system rather than by a “model smell” [1, p. 75].

We have shown a way of computing refactorings of state machines on the
grounds of predicates that describe parts of the state space: local invariants. Our
incremental development process is based on both tables and STDs. We have
argued that there is room for both representations, and that it is beneficiary to
use them in parallel: because of their clear structure, tables are sometimes easier
to grasp—and STDs help with identifying symmetries and, possibly together
with simulation traces in the form of sequence diagrams, also with conveying
fundamental ideas behind the model. Refactoring tables that do not represent
state machines appears to be of modest value. Benefits do become apparent when
the simultaneous transformation into STDs is considered.

Because the computed refactorings are meant to be readable by humans,
we have shown how refactoring steps can be performed with both representa-
tions while reducing to a minimum the number of conjuncts in guards that are
introduced by the computation of a refactoring. We singled out one particu-
lar development step—the introduction of transitions from or to control states
with no logical characterization—that should be performed at the level of tables
rather than state machines.

Our experience with behavior models of embedded systems that we built to
the end of generating test cases suggests that the cost of building and main-
taining the models is likely to turn out as a critical parameter. In many cases,

Computing Refactorings of Behavior Models 139

the potential of considerable reuse will drive the decision for or against this or
comparable technologies. CASE tool support for (1) quick and easy development
of new models and, in particular, (2) comfortable modification of existing mod-
els then appears as an indispensable prerequisite for cost-effectively handling
their development. Refactorings of behavior models, like the work presented in
this paper, are one step towards more comfortable and cheaper model-based
development processes.

Future work is bound (1) to extended implementations of the satisfiability
checker that is needed for the reduction of refactored transitions, (2) to the tight
integration of our approach into a CASE tool that, in particular, must include
the automatic layouting of computed STDs, and (3) to an extension to other
formalisms, e.g., statecharts with OCL. While we believe that working with
logical characterizations of control states is a viable option to refactoring state
machines, we need more experience to identify situations where which model
refactorings are of considerable methodological value, where not, and why.

Acknowledgments J. Philipps pointed us to Lamport’s work on predicate-action
diagrams. B. Schätz and B. Seybold provided useful comments on this paper.

References

[1] Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
(1999)

[2] Mens, T., Demeyer, S., Du Bois, B., Stenten, H., Van Gorp, P.: Refactoring: Cur-
rent Research and Future Trends. In: Proc. ETAPS 2003 Workshop on Language
Descriptions, Tools and Applications. (2003)

[3] Huber, F., Schätz, B., Einert, G.: Consistent Graphical Specification of Dis-
tributed Systems. In: Proc. Formal Methods Europe. (1997) 122 – 141

[4] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Zölch,
R., Sostawa, B., Stauner, T.: One evaluation of model-based testing and its
automation. In: Proc. 27th Intl. Conf. on Software Engineering. (2005) 392–401

[5] Philipps, J., Pretschner, A., Slotosch, O., Aiglstorfer, E., Kriebel, S., Scholl, K.:
Model-based test case generation for smart cards. In: Proc. 8th Intl. Workshop
on Formal Methods for Industrial Critical Systems. (2003) 168–192

[6] Pretschner, A., Slotosch, O., Aiglstorfer, E., Kriebel, S.: Model Based Testing for
Real—The Inhouse Card Case Study. J. STTT 5 (2004) 140–157

[7] Lamport, L.: TLA in Pictures. IEEE TSE 21 (1995) 768–775
[8] Heninger, K.: Specifying Software Requirements for Complex Systems: New Tech-

niques and Their Application. IEEE TSE SE-6 (1980) 2–13
[9] Parnas, D., Madey, J.: Functional Documents for Computer Systems. Science of

Computer Programming 1 (1995) 41–61
[10] Heitmeyer, C., Jeffords, R., Labaw, B.: Automated Consistency Checking of Re-

quirements Specifications. ACM Trans. on SW Eng. and Meth. 5 (1996) 231–261
[11] Parnas, D., Peters, D.: An Easily Extensible Toolset for Tabular Mathematical

Expressions. In: Proc. TACAS’99. (1999) 345–359
[12] Shen, H., Zucker, J., Parnas, D.: Table transformation tools: Why and how. In:

Proc. 11th Annual Conf. on Computer Assurance. (1996) 3–11

140 Alexander Pretschner and Wolfgang Prenninger

[13] Parnas, D.: Tabular Representations of Relations. Technical Report CRL-260,
Telecommunications Research Institute of Ontario (1992)

[14] Breitling, M., Philipps, J.: Step by step to histories. In: Proc. Algebraic Method-
ology And Software Technology. Volume 1816 of Springer LNCS. (2000) 11–25

[15] Broy, M., Stølen, K.: Specification and Development of Interactive Systems –
Focus on Streams, Interfaces, and Refinement. Springer (2001)

[16] Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms.
In: Proc. 6th annual ACM symp. on principles of distr. computing. (1987) 137–151

[17] Philipps, J., Rumpe, B.: Refinement of information flow architectures. In: Proc.
ICFEM’97. (1997)

[18] Philipps, J., Rumpe, B.: Refinement of pipe and filter architectures. In: FM’99,
LNCS 1708. (1999) 96–115

[19] Hanus, M.: Functional Logic Language Curry. Language Hompage:
http://www.informatik.uni-kiel.de/˜mh/curry/ (2005)

[20] Hanus, M.: The integration of functions into logic programming: From theory to
practice. J. Logic Programming 19,20 (1994) 583–628

[21] MOST Cooperation: MOST Specification, Rev. 2.2.
http://www.mostnet.de/downloads/Specifications/ (2002)

[22] Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.M.: Refactoring UML models. In:
Proc. 4th Intl. Conf. on the Unified Modeling Language. (2001) 134–148

[23] Cheng, Y.P.: Refactoring design models for inductive verification. In: Proc. Intl.
Symp. on Software Testing and Analysis. (2002) 164–168

[24] van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards Automating Source-
Consistent UML Refactorings. In: Proc. UML. (2003) 144–158

[25] Correa, A., Werner, C.: Applying Refactoring Techniques to UML/OCL Models.
In: Proc. 7th Intl. Conf. on the Unified Modeling Language. (2004) 173–187

[26] Prowell, S., Poore, J.: Foundations of Sequence-Based Software Specification.
IEEE TSE 29 (2003) 1–13

[27] Janicki, R., Sekerinski, E.: Foundations of the Trace Assertion Method of Module
Interface Specification. IEEE TSE 27 (2001) 577–598

[28] Lynch, N., Vaandrager, F.: Forward and backward simulations for timing-based
systems. Volume 600 of Springer LNCS. (1991) 397–446

[29] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138 (1995) 3–34

[30] Manna et al., Z.: STeP: the Stanford Temporal Prover. Technical Report STAN-
CS-TR-94-1518, Dept. of Computer Science, Stanford University (1994)

[31] Jeffords, R., Heitmeyer, C.: Automatic Generation of State Invariants from Req.
Specifications. In: Proc. 6th Intl. Symp. on Foundations of SW Engineering.
(1998)

A Proof

We show that the given transformation w.r.t. a partitioning P is indeed a refac-
toring, i.e., [[R]] I∪O= [[R̃]]. We prove the stronger claim, [[R]] = [[R̃]]. Restrictions
to the I/O behavior are necessary only if the set of local data state variables, L,
is modified. We have moved modifications of this set—more precisely, of state
variable state—into the mappings τ and τ−1 that transform rule systems into

Computing Refactorings of Behavior Models 141

state machines, and vice versa. We need to show that for all pairs of subsequent
states, βγ, of runs in R, there is a transition t̃ of R̃ with β, γ′ |= t̃, and vice
versa. Both directions are proved by induction.

“⊆”. In order to show [[R]] ⊆ [[R̃]], we first show that the first state of a run
of the further also is the first state of a run of the latter. This follows directly
because R and R̃ have the identical assertion S for initial states.

For the induction step, consider two subsequent states β and γ of a run of
R, i.e., . . . βγ . . . ∈ [[R]]. By definition, there must be a transition t ∈ T with
β, γ′ |= t where β, γ ∈ AV ∪Ht . Let t ≡ in ∧ g ∧ a ∧ out . We have to show that
there are p, q ∈ P with β, γ′ |= p ∧ q′[fl/l′]l∈L.

Since P partitions the data space, AL, there must be p, q ∈ P s.t. β |= p and
γ |= q, or equivalently, γ′ |= q′. By definition, a ≡

∧
l∈L l′ = fl, and because

t implies a, it is the case that β, γ′ |= t implies β, γ′ |=
∧

l∈L l′ = fl. Hence
β, γ′ |= p ∧ q′ ∧

∧
l∈L l′ = fl.

By definition, we have q′[fl/l′]l∈L ≡ q′ ∧
∧

l∈L l′ = fl. Consequently, β, γ′ |=
p ∧ q′[fl/l′]l∈L. β, γ′ |= t implies β, γ′ |= in ∧ g ∧ out . Altogether, this yields
β, γ′ |= in ∧ g ∧ p ∧ q′[fl/l′]l∈L ∧ a ∧ out . This shows that if γ is reachable
from an initial state β in R, then this is also the case in R̃.

“⊇”. In order to show [[R]] ⊇ [[R̃]], we already know that the first state of a
run of R̃ also is one of a run of R. Consider subsequent states β, γ of a run of
R̃. There is a t̃ ∈ T̃ with β, γ′ |= t̃. By construction of T̃ , there also is a t ∈ T
with t̃ ⇒ t, and consequently, β, γ′ |= t.

Dynamic Secure Aspect Modeling with UML:

From Models to Code

Jan Jürjens1� and Siv Hilde Houmb2

1 Software & Systems Engineering, Dep. of Informatics, TU Munich, Germany
http://www4.in.tum.de/̃ juerjens

2 Department of Computer and Information Science,
Norwegian University of Science and Technology, Norway

siv.hilde.houmb@idi.ntnu.no

Abstract. Security engineering deals with modeling, analysis, and im-
plementation of complex security mechanisms. The dynamic nature of
such mechanisms makes it difficult to anticipate undesirable emergent
behavior. In this work, we propose an approach to develop and analyze
security-critical specifications and implementations using aspect-oriented
modeling. Since we focus on the dynamic views of a system, our work
is complementary to existing approaches to security aspects mostly con-
cerned with static views. Our approach includes a link to implementa-
tions in so far as the code which is constructed from the models can
be analyzed automatically for satisfaction of the security requirements
stated in the UML diagrams. We present tool support for our approach.

1 Introduction

Constructing security-critical systems in a sound and well-founded way poses
high challenges. To support this task, we propose an Aspect-Oriented Modeling
(AOM, see e.g. [EAK+01, EAB02, FRGG04, LB04]) approach which separates
complex security mechanisms (which implement the security aspect model) from
the core functionality of the system (the primary model) in order to allow a
security verification of the particularly security-critical parts, and also of the
composed model.

Since security requirements such as secrecy, integrity and authenticity of data
are always relative to an unpredictable adversary, they are difficult to even define
precisely, let alone to implement correctly within the development of security-
critical systems. Being able to consider security aspects already in the design
phase, before a system is actually implemented, is advantageous: Removing se-
curity flaws in the design phase saves cost and time. Thus, the goal is to develop
security-critical systems that are secure by design. Towards this goal, the security
extension UMLsec for the Unified Modeling Language (UML) has been defined

� This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project
under grant 01 IS C38. The responsibility for this article lies with the author(s).

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 142–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Secure Aspect Modeling with UML: From Models to Code 143

in [Jür02, Jür04a]. It allows us to encapsulate knowledge on prudent security en-
gineering as aspects and thereby make it available to developers which may not
be specialized in security. In the current work, we present an approach which lets
one weave in the security aspects specified as UMLsec stereotypes (such as se-
crecy) as concrete security mechanisms (such as a cryptographic protocol) on the
modeling level. We demonstrate how to check whether the code which is meant
to implement the models fulfills the security requirements by security verifica-
tion with automated theorem provers (ATPs) for first-order logic. To support
our approach, a tool is available over a web-interface and as open-source which,
from control flow graphs generated from the source code and corresponding se-
curity requirements, automatically generates FOL logic formulas in the standard
TPTP notation as input to a variety of ATP’s [Jür04b].

In the next section, we give a short background on aspect-oriented modeling.
In Sect. 3, we explain how one can specify security aspects in UMLsec models
and how these are woven into the primary model using our approach. Section 4
explains our code analysis framework. Throughout the paper we demonstrate
our approach using a variant of the Internet protocol Transport Layer Security
(TLS). In Sect. 5, we report on experiences from using our approach in an in-
dustrial setting. After comparing our research with related work, we close with
a discussion and an outlook on ongoing research.

2 Aspect-Oriented Modeling (AOM)

AOM techniques allow system developers to address crosscutting objectives, such
as security requirements, separately from the core functional requirements dur-
ing system design. An aspect-oriented design model consists of a set of aspects
and a primary model. An aspect describes how a single objective is addressed
in a design, and a primary model describes how core functional requirements
are addressed. The aspects and the primary model are then composed before
implementation or code generation. This is done by weaving the aspect and the
primary model at the modeling level.

As illustrated in Fig. 1, aspect models consist of models describing the static
and dynamic views. After weaving the security aspect with the primary model,
our approach allows one to perform a security verification on the composed
model. From the composed model, the code is constructed (either manually or
by automatic generation). If one later performs changes in the code, as often
necessary in industrial development, the primary and aspect models cannot be
directly extracted from the code any more. Thus changes in the code cannot in
general be un-weaved at the model level. Therefore, our approach furthermore
allows us to directly verify the code constructed from the UML model and to
make sure that, after the necessary manual adjustments, the code is still secure.

144 Jan Jürjens and Siv Hilde Houmb

Fig. 1. Overview of the AOM approach for dynamic security aspects

3 Introducing Dynamic Security Aspects

3.1 Specifying Security Aspects

We can only shortly recall part of the UMLsec notation here for space reasons. A
complete account can be found in [Jür02, Jür04a]. In Table 1 we give some of the
stereotypes from UMLsec and in Table 2 the associated tags and corresponding
adversary threats. The constraints connected to the stereotypes are formalized
in first-order logic and can be verified by an automated first-order logic theorem
prover, which is part of our UML analysis tool suite.

Stereotype Base Class Tags Constraints Description

Internet link Internet connection
encrypted link encrypted connection
LAN link LAN connection
secure links subsystem dependency security enforces secure

matched by links communication links
secrecy dependency assumes secrecy
secure subsystem 〈〈 call 〉〉, 〈〈 send 〉〉 respect structural interaction
dependency data security data security
critical object secret critical object
no down-flow subsystem prevents down-flow information flow
data subsystem provides secrecy basic datasec
security requirements
fair exchange package start,stop after start enforce fair

eventually reach stop exchange

Table 1. UMLsec stereotypes (excerpt)

Dynamic Secure Aspect Modeling with UML: From Models to Code 145

The general system model used here is the one that builds the foundation
for a semantics for part of UML currently in development in a project with IBM
Rational Software [BJCR05].

The primary model is a set of UML models and the dynamic aspect are
weaved in by including the stereotypes defined above.

3.2 Weaving in Dynamic Security Aspects

Aspects encapsulate properties (often non-functional ones) which crosscut a sys-
tem, and we use transformations of UML models to “weave in” dynamic security
aspects on the model level. The resulting UML models can be analyzed as to
whether they actually satisfy the desired security requirements using automated
tools [Jür05]. Secondly, one should make sure that the code constructed from
the models (either manually or by code generation) still satisfies the security
requirements shown on the model level. This is highly non-trivial, for example
because different aspects may be woven into the same system which may inter-
fere on the code level in an unforeseen way. To achieve it, one has in principle
two options: One can either again verify the generated code against the desired
security requirements, or one can prove that the code generation preserves the
security requirements fulfilled on the model level. Although the second option
would be conceptually more satisfying, a formal verification of a code generator
of industrially relevant strength seems to be infeasible for the foreseeable future.
Also, in many cases, completely automated code generation may not be practical
anyway. We therefore followed the first option and extended our UML security
analysis techniques from [Jür04b] to the code level (presently C code, while the
analysis of Java code is in development). The analysis approach now takes the
generated code and automatically verifies it against the intended security re-
quirement, which has been woven in as dynamic aspects. This is explained in
Sect. 4. This verification thus amounts to a translation validation of the weaving
and code construction process. Note that performing the analysis both at the
model and the code level is not overly redundant: the security analysis on the
model level has the advantage that problem found can be corrected earlier when
this requires less effort, and the security analysis on the code level is still nec-
essary as argued above. Also, in practice generated code is very rarely be used
without any changes, which again requires verification on the code level.

The model transformation resulting from the “weaving in” of a dynamic
security aspect p corresponds to a function fp which takes a UML specification

Tag Stereotype Type Multipl. Description

secret critical String * secret data
start fair exchange P(String) 1 start states
stop fair exchange P(String) 1 stop states

Stereotype Threatsdefault ()

Internet {delete,read,insert}
encrypted {delete}
LAN ∅

Table 2. UMLsec tags (excerpt); Threats from the default attacker

146 Jan Jürjens and Siv Hilde Houmb

S and returns a UML specification, namely the one obtained when applying p
to S. Technically, such a function can be presented by defining how it should
act on certain subsystem instances3, and by extending it to all possible UML
specifications in a compositional way. Suppose that we have a set S of subsystem
instances such that none of the subsystem instances in S is contained in any other
subsystem instance in S. Suppose that for every subsystem instance S ∈ S we
are given a subsystem instance fp(S). Then for any UML specification U , we
can define fp(U) by substituting each occurrence of a subsystem instance S ∈ S
in U by fp(S). We demonstrate this by an example.

We consider the data secrecy aspect in the situation of communication over
untrusted networks, as specified in Fig. 2. In the subsystem, the Sender object
is supposed to accept a value in the variable d as an argument of the operation
send and send it over the 〈〈 encrypted 〉〉 Internet link to the Receiver object, which
delivers the value as a return value of the operation receive. According to the
stereotype 〈〈 critical 〉〉 and the associated tag {secrecy}, the subsystem is supposed
to preserve the secrecy of the variable d.

A well-known implementation of this aspect is to encrypt the traffic over
the untrusted link using a key exchange protocol. As an example, we consider
a simplified variant of the handshake protocol of the Internet protocol TLS in
Fig. 4. The notation for the cryptographic algorithms is defined in Fig. 3.

The goal of the protocol is to let a sender send a secret over an un-
trusted communication link to a receiver in a way that provides secrecy, by
using symmetric session keys.4 The sender S initiates the protocol by sending
the message request(N, KS,SignK−1

S
(S :: KS)) to the receiver R. If the condition

[snd(ExtK′(cS))=K′] holds, where K ′ and cS are the second and third arguments
of the message received earlier (that is, if the key KS contained in the signa-
ture matches the one transmitted in the clear), R sends the return message
return

(
{SignK−1

R
(K :: N′)}K′ ,SignK−1

CA
(R :: KR)

)
back to S (where N′ is the first

argument of the message received earlier). Then if the condition

[fst(ExtKCA
(cR))=R ∧ snd(ExtK′′(DecK−1

S
(ck)))=N]

holds, where cR and ck are the two arguments of the message received by
the sender, and K′′ ::= snd(ExtKCA

(cR)) (that is, the certificate is actually for
R and the correct nonce is returned), S sends transmit({d}k) to R, where
k ::= fst(ExtK′′(DecK−1

S
(ck))). If any of the checks fail, the respective protocol

participant stops the execution of the protocol.
Note that the receiver sends two return messages - the first matches the

return trigger at the sender, the other is the return message for the receive
message with which the receiver object was called by the receiving application
at the receiver node.
3 Although one could also define this on the type level, we prefer to remain on the

instance level, since having access to instances gives us more fine-grained control.
4 Note that in this simplified example, which should mainly demonstrate the idea of

dynamic security aspect weaving, authentication is out of scope of our considerations.

Dynamic Secure Aspect Modeling with UML: From Models to Code 147

send(d)

/transmit(d)

s:
Wait Send

receive()
/return(d’)

transmit(d’)r:
Wait Received

«Interface»

send(d:Data)

R:Receiver

send(d:Data)

«Interface»
receiving

receive():Data

transmit(d’:Data)
receive():Data

«send»S:Sender

sending

{secrecy={d}}
«critical»

Receivercomp

Sendernode Receivernode

Sendercomp

S:Sender R:Receiver

«LAN»«LAN»

«Internet»

«send»

«secrecy»

receive():Data

Channel «data security»

send(d:Data)

{adversary=default}

Fig. 2. Aspect weaving example: sender and receiver

• :: (concatenation)
• head() and tail() (head and tail of a concatenation)
• { } (encryption)
• Dec () (decryption)
• Sign () (signing)
• Ext () (extracting from signature)

Fig. 3. Abstract Crypto Operations

To weave in this aspect p in a formal way, we consider the set S of subsystems
derived from the subsystem in Fig. 2 by renaming: This means, we substitute
any message, data, state, subsystem instance, node, or component name n by
a name m at each occurrence, in a way such that name clashes are avoided.
Then fp maps any subsystem instance S ∈ S to the subsystem instance derived
from that given in Fig. 4 by the same renaming. This gives us a presentation of

148 Jan Jürjens and Siv Hilde Houmb

«send»

«call»
receive():Data
transmit(e:Data)
request():Exp

send(d:Data)

s:
r:

R:Receiver

sending
«Interface»

receiving
«Interface»

Received

WaitTrm

Send

Request

«critical»
«critical»

{secrecy={d}}
S:Sender

transmit(E)

send(d)

receive()

WaitReq

Wait

receive():Datasend(d:Data)

K′′ ::=snd(ExtKCA
(cR))

k ::= fst(ExtK′′(Dec
K−1

S
(ck)))

/return {Sign
K−1

R
(K ::N′)}K′ ,Sign

K−1
CA

(R ::KR)

/request(N, KS,Sign
K−1

S
(S ::KS)) [snd(ExtK′(cS)) = K′]

/return(E)

return(ck, cR)

request(N′, K′, cS)

[fst(ExtKCA
(cR)) = R∧

snd(ExtK′′(Dec
K−1

S
(ck))) = N]

/transmit({d}k)

K−1
S ,KS,KCA :Keys

K−1
R ,KR :Keys

{fresh={k }}

Fig. 4. Aspect weaving example: secure channel

fp from which the definition of fp on any UML specification can be derived as
indicated above.

One can do the weaving by defining the transformation explained above using
the model transformation framework BOTL developed at our group [BM03]. The
overall tool-suite supporting our aspect-oriented modeling approach is given in
Fig. 5. The tool-flow proceeds as follows. The developer creates a primary UML
model and stores it in the XMI file format. The static checker checks that the
security aspects formulated in the static views of the model are consistent. The
dynamic checker weaves in the security aspects with the dynamic model. One
can then verify the resulting UML model against the security requirements using
the analysis engine (an automated theorem prover for first-order logic). One then
constructs the code and also verify it against the security requirements using the
theorem prover. The error analyzer uses the information received from the static
and dynamic checkers to produce a text report for the developer describing
the problems found, and a modified UML model, where the errors found are
visualized.

4 Analyzing the Code

We define the translation of security protocol implementations to first-order logic
formulas which allows automated analysis of the source code using automated
first-order logic theorem provers. The source code is extracted as a control flow

Dynamic Secure Aspect Modeling with UML: From Models to Code 149

UML Editor
(UML 1.5 / XMI 1.2 - compliant)

e.g. Poseidon 1.6

UML Model
(UML 1.5 /
XMI 1.2)

Analysis engine
MDR

JMI

Model
and

Desired
properties

Result

Text Report

Static Checker

Dynamic Checker

Analysis Suite

Modified
UML
Model

Error Analyzer

“uses"

data flow

Fig. 5. UML verification framework: usage

graph using the aiCall tool [Abs04]. It is compiled to first-order logic axioms
giving an abstract interpretation of the system behavior suitable for security
analysis following the well-known Dolev-Yao adversary model [DY83]. The idea is
that an adversary can read messages sent over the network and collect them in his
knowledge set. He can merge and extract messages in the knowledge set and can
delete or insert messages on the communication links. The security requirements
are formalized with respect to this adversary model. For example, a data value
remains secret from the adversary if it never appears in the knowledge set of
the adversary. As with similar approaches such as [SFWW03], our approach
works especially well with nicely structured code. For example, we apply an
automated transformation which abstracts from pointers before applying our
security analysis.

We explain the transformation from the control flow graph generated from
the C program to first-order logic, which is given as input to the automated

150 Jan Jürjens and Siv Hilde Houmb

theorem prover. For space restrictions, we restrict our explanation to the analysis
for secrecy of data. The idea here is to use a predicate knows which defines
a bound on the knowledge an adversary may obtain by reading, deleting and
inserting messages on vulnerable communication lines (such as the Internet) in
interaction with the protocol participants. Precisely, knows(E) means that the
adversary may get to know E during the execution of the protocol. For any data
value s supposed to remain confidential, one thus has to check whether one can
derive knows(s).

From a logical point of view, this means that one considers a term algebra
generated from ground data such as variables, keys, nonces and other data using
symbolic operations including the ones in Fig. 3. In that term algebra, one defines
the equations DecK−1({E}K) = E and ExtK(SignK−1(E)) = E (for all E ∈ Exp
and K ∈ Keys) and the usual laws regarding concatenation, head(), and tail().
This abstract information is automatically generated from the concrete source
code.

The set of predicates defined to hold for a given program is defined as fol-
lows. For each publicly known expression E, the statement knows(E) is derived.
To model the fact that the adversary may enlarge his set of knowledge by con-
structing new expressions from the ones he knows, including the use of crypto-
graphic operations, formulas are generated which axiomatize these operations.

We now define how a control flow graph generated from a C program
gives rise to a logical formula characterizing the interaction between the
adversary and the protocol participants. We observe that the graph can
be transformed to consist of transitions of the form trans(state, inpattern,
condition, action, truestate), where inpattern is empty and condition equals true
where they are not needed, and where action is a logical expression of the form
localvar = value resp. outpattern in case of a local assignment resp. output com-
mand (and leaving it empty if not needed). If needed, there may be additionally
another transition corresponding to the negation of the given condition, where
we safely abstract from the negated condition (for logical reasons beyond this
exposition).

Now assume that the source code gives rise to a transition TR1 =
trans(s1, i1, c1, a1, t1) such that there is a second transition TR2 =
trans(s2, i2, c2, a2, t2) where s2 = t1. If there is no such transition TR2,
we define TR2 = trans(t1, [], true, [], t1) to simplify our presentation, where
[] is the empty input or output pattern. Suppose that c1 is of the form
cond(arg1, . . . , argn). For i1, we define ī1 = knows(i1) in case i1 is non-
empty and otherwise ī1 = true. For a1, we define ā1 = a1 in case a1
is of the form localvar = value and ā1 = knows(outpattern) in case a1 =
outpattern (and ā1 = true in case a1 is empty). Then for TR1 we define the
following predicate:

PRED(TR1)≡ ī1&c1 ⇒ā1&PRED(TR2) (1)

The formula formalizes the fact that, if the adversary knows an expression he
can assign to the variable i1 such that the condition c1 holds, then this implies

Dynamic Secure Aspect Modeling with UML: From Models to Code 151

void TLS_Client (char* secret)

{ char Resp_1 [MSG_MAXLEN];

char Resp_2 [MSG_MAXLEN];

// allocate and prepare buffers

memset (Resp1, 0x00, MSG_MAXLEN);

memset (Resp2, 0x00, MSG_MAXLEN);

// C->S: Init

send (n, k_c, sign(conc(c, k_c), inv(k_c)));

// S->C: Receive Server’s respond

recv (Resp_1, Resp_2);

// Check Guards

if ((memcmp(fst(ext(Resp_2, k_ca)), s, MSG_MAXLEN) == 0) &&

(memcmp(snd(ext(dec(Resp_1, inv(k_c)),

snd(ext(Resp_2, k_ca)))), n, MSG_MAXLEN) == 0))

{ // C->S: Send Secret

send (symenc(secret, fst(ext(dec(Resp_1,

inv(k_c)), snd(ext(Resp_2, k_ca)))))); }}

Fig. 6. Fragment of abstracted client code

that ā1 will hold according to the protocol, which means that either the equation
localvar = value holds in case of an assignment, or the adversary gets to know
outpattern, in case it is send out in a1. Also then the predicate for the succeeding
transition TR2 will hold.

To construct the recursive definition above, we assume that the control flow
graph is finite and cycle-free. As usual in static code analysis, loops are unfolded
over a number of iterations provided by the user. The predicates PRED(TR) for
all such transitions TR are then joined together using logical conjunctions and
closed by forall-quantification over all free variables contained.

Figure 6 gives a simplified C implementation of the client side of the TLS
variant considered earlier. From this, the control flow graph is generated auto-
matically. Although the complete graph cannot be shown here, we show as an
example a fragment of the client side in Fig. 7. The main part of the transfor-
mation of the client to the e-SETHEO input format TPTP is given in Fig. 8.
We use the TPTP notation for the first-order logic formulas [SS01], which is
the input notation for many automated theorem provers including the one we
use (e-SETHEO [SW00]). Here & means logical conjunction and ![E1, E2] forall-
quantification over E1, E2. The protocol itself is expressed by a for-all quantifi-
cation over the variables which store the message arguments received.

Given this translation of the C code to first-order logic, one can now check
using the automated theorem prover that the code constructed from the UMLsec
aspect model still satisfies the desired security requirements. For example, if the
prover can derive knows(secret) from the formulas generated by the protocol, the
adversary may potentially get to know secret. Details on how to perform this
analysis given the first-order logic formula are explained in [Jür05].

152 Jan Jürjens and Siv Hilde Houmb

Fig. 7. Control graph for client

input_formula(protocol,axiom,(

![Resp_1, Resp_2] : (((knows(conc(n, conc(k_c,sign(conc(c,conc(k_c,eol)),inv(k_c)))))

& ((knows(Resp_1) & knows(Resp_2)

& equal(fst(ext(Resp_2,k_ca)),s)

& equal(snd(ext(dec(Resp_1,inv(k_c)),snd(ext(Resp_2,k_ca)))),n))

=> knows(enc(secret,fst(ext(dec(Resp_1,inv(k_c)),snd(ext(Resp_2,k_ca)))))))))).

Fig. 8. Core protocol axiom for client

5 Industrial Application

We are currently applying our method in an industrial project with a major
German company. The goal is the correct development of a security-critical bio-
metric authentication system which is supposed to control access to a protected
resource. Because the correct design of such cryptographic protocols and the cor-
rect use within the surrounding system is very difficult, our method was chosen
to support the development of the biometric authentication system. Our ap-
proach has already been applied at the specification level [Jür05] where several

Dynamic Secure Aspect Modeling with UML: From Models to Code 153

severe security flaws had been found. We are currently applying the approach
presented here to the source-code level for a prototypical implementation we
constructed from the specification. The security analaysis results achieved so
far are obtained with the automated theorem prover within less than a minute
computing time on an AMD Athlon processor with 1533 MHz. tact frequency
and 1024 MB RAM.

6 Related Work

In [FKGS04, FRGG04], aspect models are used to describe crosscutting solutions
that address quality or non-functional concerns on the model level. A rigorous
technique for specifying pattern solutions in UML is described. It is explained
how to identify and compose multiple concerns, such as security and fault tol-
erance, and how to identify and solve conflicts between competing concerns.
[GS04] proposes an approach which models application requirements and de-
signs separately from security requirements and designs in the UML notation.
Security requirements are captured in security use cases and encapsulated in
security objects separately from the application requirements and objects. One
of the benefits of aspect-oriented approaches is reuse of models or patterns and
code. [EAK+01] discusses an approach to enhance reuse of code for requirements
such as synchronization and scheduling. The authors present a formal design
methodology to model the system’s concerns based on aspect-orientation. As-
pects of AOP are discussed more generally in [EAB02]. [LB04] focuses on the
importance of subsystem (pattern) reusability. They propose an Aspect-Oriented
Development Framework (AODF) where functional behaviors are encapsulated
in each component and connector, while non-functional requirements are tuned
separately. To support the modularity of non-functional requirements, they de-
vise Aspectual Composition Rules (ACR) and Aspectual Collaborative Com-
position Rules (ACCR). Related to the source-code analysis side of our work,
[MSRM04] addresses the problem of concept location using an advanced infor-
mation retrieval method, Latent Semantic, that supports software maintenance
and reverse engineering of source code.

Note that although dynamic aspects have been one major focus of aspect-
oriented approaches in general, in the case of security, most approaches so far
have not concentrated on an integrated approach for weaving in dynamic security
aspects at the design level and for constructing and analyzing the code.

7 Conclusion

We explained how to develop and analyze specifications and implementations
wrt. dynamic security aspects using aspect-oriented modeling. The approach
separates complex security mechanisms from the core functionality to allow a
security analysis and verification of the particularly security-critical parts and
also of the composed model. Being able to consider security aspects already
in the design phase (before a system is actually implemented) is advantageous,

154 Jan Jürjens and Siv Hilde Houmb

since removing security flaws in the design phase saves cost and time. In practice
usually at least part of the code construction is still done manually and is thus
again prone to security flaws. We therefore extended our approach to be able to
check whether code obtained in the end actually fulfills the security requirements,
using an automated security analysis with first-order logic theorem provers.

Experiences from the industrial application project mentioned in
Sect. 5 indicate that our approach is quite suited to increase the security of
systems developed in practice (exemplified also by the number of security flaws
found and removed so far).

Since we focus on the dynamic views of a system, our work is complementary
to existing approaches mostly concerned with static views. For future work, it
would therefore be very interesting to try to integrate these approaches with the
one proposed here. Note that although we concentrate on security aspects in this
paper, which pose specific challenges (such as the correct use of cryptographic
operations), our approach can be generalized to other non-functional aspects
such as dependability by using a suitable extension of UML (see e.g. [Jür03]).

Acknowledgements Assistance from Mark Yampolskiy on the material for the
example in this paper is very gratefully acknowledged.

References

[Abs04] AbsInt. aicall. http://www.aicall.de/, 2004.
[BJCR05] M. Broy, J. Jürjens, V. Cengarle, and B. Rumpe. Towards a system model

for UML. Technical report, TU Munich, 2005.
[BM03] P. Braun and F. Marschall. The BOTL tool.

http://www4.in.tum.de/̃ marschal/botl/index.htm, 2003.
[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans-

actions on Information Theory, IT-29(2):198–208, 1983.
[EAB02] T. Elrad, O. Aldawud, and A. Bader. Aspect-oriented modeling: Bridging the

gap between implementation and design. In Don S. Batory, Charles Consel,
and Walid Taha, editors, GPCE, volume 2487 of Lecture Notes in Computer
Science, pages 189–201. Springer, 2002.

[EAK+01] T. Elrad, M. Aksit, G. Kiczales, K.J. Lieberherr, and H. Ossher. Discussing
aspects of AOP. Commun. ACM, 44(10):33–38, 2001.

[FKGS04] R.B. France, D. Kim, S. Ghosh, and E. Song. A UML-based pattern speci-
fication technique. IEEE Trans. Software Eng., 30(3):193–206, 2004.

[FRGG04] R.B. France, I. Ray, G. Georg, and S. Ghosh. Aspect-oriented approach to
early design modelling. IEE Proceedings - Software, 151(4):173–186, 2004.

[GS04] H. Gomaa and M.E. Shin. Modeling complex systems by separating applica-
tion and security concerns. In ICECCS, pages 19–28. IEEE Computer Society,
2004.

[Jür02] J. Jürjens. UMLsec: Extending UML for secure systems development. In
J.-M. Jézéquel, H. Hußmann, and S. Cook, editors, UML 2002 – The Unified
Modeling Language, volume 2460 of LNCS, pages 412–425. Springer, 2002.

[Jür03] J. Jürjens. Developing safety-critical systems with UML. In P. Stevens, editor,
The Unified Modeling Language (UML 2003), volume 2863 of LNCS, pages
360–372. Springer, 2003.

Dynamic Secure Aspect Modeling with UML: From Models to Code 155

[Jür04a] J. Jürjens. Secure Systems Development with UML. Springer, 2004.
[Jür04b] J. Jürjens. Security analysis tool (webinterface and download), 2004.

http://www4.in.tum.de/csduml/interface.
[Jür05] J. Jürjens. Sound methods and effective tools for model-based security engi-

neering with UML. In 27th International Conference on Software Engineering
(ICSE 2005). IEEE Computer Society, 2005.

[LB04] J.-S. Lee and D.-H. Bae. An aspect-oriented framework for developing
component-based software with the collaboration-based architectural style.
Information & Software Technology, 46(2):81–97, 2004.

[MSRM04] A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maletic. An information
retrieval approach to concept location in source code. In WCRE, pages 214–
223. IEEE Computer Society, 2004.

[SFWW03] J. Schumann, B. Fischer, M.W. Whalen, and J. Whittle. Certification
support for automatically generated programs. In HICSS, page 337, 2003.

[SS01] G. Sutcliffe and C. Suttner. The TPTP problem library for automated theo-
rem proving, 2001. Available at http://www.tptp.org.

[SW00] G. Stenz and A. Wolf. E-SETHEO: An automated3 theorem prover. In
R. Dyckhoff, editor, TABLEAUX 2000, volume 1847 of LNCS, pages 436–
440. Springer, 2000.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 156-170, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Performance Analysis of UML Models Using
Aspect-Oriented Modeling Techniques

Hui Shen and Dorina C. Petriu

Carleton University, Department of Systems and Computer Engineering
Ottawa, ON Canada, K1S 5B6

{hshen,petriu}@sce.carleton.ca

Abstract. Aspect-Oriented Modeling (AOM) techniques allow software de-
signers to isolate and address separately solutions for crosscutting concerns
(such as security, reliability, new functional features, etc.) This paper proposes
an approach for analyzing the performance effects of a given aspect on the
overall system performance, after the composition of the aspect model with the
primary model of a system. Performance analysis of UML models is enabled by
the "UML Performance Profile for Schedulability, Performance and Time"
(SPT) standardized by OMG, which defines a set of quantitative performance
annotations to be added to a UML model. The first step of the proposed ap-
proach is to add performance annotations to both the primary model and to the
aspect model(s). An aspect model is generic at first, and therefore its perform-
ance annotations must be parameterized. A generic model will be converted
into a context-specific aspect model with concrete values assigned to its per-
formance annotations. The latter is composed with the primary model, generat-
ing a complete annotated UML model. By using existing techniques, the com-
plete model is transformed automatically into a Layered Queueing Network
(LQN) performance model, which can be analyzed with existing solvers. The
proposed approach is illustrated with a case study system, whose primary model
is enhanced with some security features by using AOM. The LQN model of the
primary system was validated against measurements in previous work. The per-
formance effects of the security aspect under consideration are analyzed in two
design alternatives by using the LQN model of the composed system.

1. Introduction

Aspect-Oriented Modeling (AOM) techniques allow software designers to conceptu-
alize, describe and communicate separately solutions for crosscutting concerns (such
as security, reliability, new functional features, etc.) An aspect-oriented architecture
model produced by AOM consists of a base architecture model called the primary
model, which reflects core design decisions, and a set of aspect models, each reflect-
ing a concern that crosscuts the primary model [3]. In order to build the complete so-
lution for a system, different aspect models will be composed with the primary system
model. Current AOM research is addressing the following problems: using aspects to
describe crosscutting concern solutions [3, 13]; describing aspect models at different
levels of abstractions (e.g., generic and mechanism specific) [5]; composition of as-

Performance Analysis of UML Models Using Aspect-Oriented Modeling Techniques 157

pect and primary models [3, 17, 2]; automation of the AOM approach [8]; analysis of
composed models to identify and resolve conflicts and undesirable properties that
may arise as a result of the composition [5, 3].

According to [7], there are two broad categories of concerns: a concrete concern
can be directly realized by some model elements that specifically address it (e.g., se-
curity), whereas a qualitative concern is based on intrinsic qualities of a system (e.g.,
performance). This paper proposes an approach for analyzing the system-level per-
formance effects of a concrete concern realized as an aspect model, after its composi-
tion with the primary model. In other words, it becomes possible to analyze the com-
bined effects of any concrete concern with a specific qualitative concern (i.e.,
performance). In order to avoid confusion, the term “aspect model” will be used in the
rest of the paper for the concrete concern only.

Over the years, many modeling formalisms, methods and tools have been devel-
oped for performance analysis. The challenge is not to reinvent new analysis methods
for UML models, but to bridge the gap between UML-based software development
tools and different existing performance analysis tools.

Software Performance Engineering (SPE) is a methodology introduced in [16] that
promotes the integration of performance analysis into the software development proc-
ess from the early stages and continuing throughout the whole software life cycle. The
"UML Performance Profile for Schedulability, Performance and Time" (SPT) stan-
dardized by OMG enables the application of the SPE methodology to systems devel-
oped with UML [14]. The SPT Profile defines a set of quantitative performance anno-
tations (such as resource demands made by different software execution steps and
visit ratios) to be added to a given UML model. An annotated UML model can be
transformed into a performance model and analyzed with known analysis techniques
and tools. Since the introduction of SPE, there has been a significant effort to inte-
grate performance analysis into the software development process by using different
performance modeling paradigms: queueing networks, Petri nets, stochastic process
algebras, simulation, etc. [1]. The performance modeling formalism used in this paper
is the Layered Queueing Model (LQN) [18]. The transformation from UML to LQN
used in this paper was developed in previous research for systems designed without
AOM [10, 6, 9, 12, 19].

The paper is organized as follows: section 2 presents the overview of the proposed
approach; section 3 describes how performance annotations are added to aspect and
primary models and how are handled during the composition, which is approached as
a graph rewriting problem; and section 4 analyzes the performance effects of a con-
crete aspect under consideration and discusses different design alternatives. The case
study used throughout the paper is an existing application, named the Document Ex-
change Server (DES) that was implemented and measured in previous work [12].
DES is enhanced in this paper with some security features by using AOM. The ap-
proach for defining generic and context-specific aspect models and for combining the
aspect with the primary model is inspired from the work of France et al. [3, 5]. The
original contribution of this paper is two-fold: a) adding performance analysis to
UML models developed with AOM, and b) approaching the composition of the be-
havioural representation from the aspect and primary models as a graph rewriting
problem applied to activity diagrams with composite activities.

158 Hui Shen and Dorina C. Petriu

2. Overview of the Proposed Approach

The long-term goal of the research presented in this paper is to provide tool support to
software developers who are using AOM techniques for assessing the performance ef-
fects of different aspect realizations early in the development cycle. This paper is just
the first step on the road toward such a goal. Fig. 1 illustrates the high-level view of
the proposed approach.

A primary model and one or more generic aspect models with performance annota-
tions, produced with an UML tool, are exported to XMI. The first phase is to instanti-
ate the generic aspect model, producing a context-specific one as in [3, 5], by follow-
ing a set of binding rules provided by the designer. The binding rules are augmented
with instructions on how to transform the parametric annotations of the generic aspect
model into concrete ones. The next step is to compose the context-specific aspect
model(s) with the primary model, according to a set of composition directives. The
result is a composed annotated UML, which can be transformed automatically into a
performance model (LQN in this case) by using the transformation techniques from
[19]. The LQN model is analyzed with an existing solver for different workloads and
conditions, and the analysis results are used to draw conclusions about different de-
sign alternatives. The process will be eventually completed with a feedback path,
shown with dotted arrows, whereby the performance results are inserted into prede-
fined annotation placeholders in the XMI file of the composed model, which will be
imported back in the UML tool for display. The composed model can be also im-
ported directly into the UML tool for display without performance results.

The focus of this paper is on the instantiation and composition steps, and especially
on the treatment of performance annotations. The paper also illustrates the application
of the proposed approach to enhance an existing application, the Document Exchange
Server, with some security features (namely authorization). The LQN model of the
primary system was previously validated against measurements in [12]. The perform-
ance effects of the aspect under consideration are analyzed in the paper by solving the
LQN model of the composed system for two design alternatives.

Fig. 1. Approach for performance analysis of UML models using AOM

Binding
Rules

Composition
Directives

UML Generic
aspect model

(XMI)

UML Primary
model
(XMI)

Instantiate Context-spec
aspect model

Compose
Composed
UML model

(XMI)

UML tool

UML to LQN
transformation

LQN model

LQN solver

LQN Results
Merge/

FeedbackXMI import

XMI export

Focus of the paper

Binding
Rules

Composition
Directives

UML Generic
aspect model

(XMI)

UML Primary
model
(XMI)

Instantiate Context-spec
aspect model

Compose
Composed
UML model

(XMI)

UML tool

UML to LQN
transformation

LQN model

LQN solver

LQN Results
Merge/

FeedbackXMI import

XMI export

Focus of the paper

Performance Analysis of UML Models Using Aspect-Oriented Modeling Techniques 159

3. Aspect Oriented Models with Performance Annotations

The SPT Profile [14] contains the Performance Subprofile that identifies the main ba-
sic abstractions used in performance analysis. Scenarios define response paths
through the system, and can have QoS requirements such as response times or
throughput. Each scenario is executed by a workload, which can be closed or open,
and has the usual characteristics (number of clients or arrival rate, etc.) Scenarios are
composed of scenario steps that can be joined in sequence, loops, branches,
fork/joins, etc. A step may be an elementary operation at the lowest level of granular-
ity, or may be a complex sub-scenario. Each step has a mean number of repetitions, a
host execution demand, other demand to resources and its own QoS characteristics.
Resources are another basic abstraction, and can be active or passive, each with their
own attributes. A more detailed description of the way to apply the Performance Sub-
profile is given in [11]. Please note that SPT was standardized for UML 1.4; until SPT
will be upgraded for UML 2, we apply its stereotypes to UML 2.

3.1. Primary Model

The primary UML model contains different views necessary for performance evalua-
tion [10]:
 High-level software architecture represented by one or more class or components

diagrams showing the concurrent (distributed) component instances (Fig. 2).

User

DocServer
Access

<<PAresource>>
Dispatcher

getDocument()

Fig. 2. DES primary model: component diagram with performance annotations

<<PAresource>>
DocMgmt

<<PAresource>> Ethernet

Fig. 3. DES primary model: deployment diagram with performance annotations

doGetDocument()

<<PAresource>>
<<component>>

<<deploy>> <<artifact>>
UserA<<PAresource>>

UDisk
<<PAhost>>
UserCPU

<<component>>
User

<<manifest>>

<<deploy>> <<artifact>>
DocServerA<<PAresource>>

SDisk
<<PAhost>>
ServerCPU

<<component>>
DocServer

<<manifest>>

<<required interface>>
DocServerAccess

getDocument()

<<component>>

DocServer
<<provided interface>>
DocServerAccess

getDocument()

User

DocServer
Access

<<PAresource>>
Dispatcher

getDocument()

Fig. 2. DES primary model: component diagram with performance annotations

<<PAresource>>
DocMgmt

<<PAresource>> Ethernet

Fig. 3. DES primary model: deployment diagram with performance annotations

doGetDocument()

<<PAresource>>
<<component>>

<<deploy>> <<artifact>>
UserA<<PAresource>>

UDisk
<<PAhost>>
UserCPU

<<component>>
User

<<manifest>><<deploy>> <<artifact>>
UserA<<PAresource>>

UDisk
<<PAhost>>
UserCPU

<<component>>
User

<<manifest>>

<<deploy>> <<artifact>>
DocServerA<<PAresource>>

SDisk
<<PAhost>>
ServerCPU

<<component>>
DocServer

<<manifest>><<deploy>> <<artifact>>
DocServerA<<PAresource>>

SDisk
<<PAhost>>
ServerCPU

<<component>>
DocServer

<<manifest>>

<<required interface>>
DocServerAccess

getDocument()

<<component>>

DocServer
<<provided interface>>
DocServerAccess

getDocument()

160 Hui Shen and Dorina C. Petriu

 Deployment of high-level software components to hardware devices (Fig. 3).
 One or more key performance scenarios annotated with performance information

according to the SPT Profile [14], modeled by interaction or activity diagrams [11].
In the paper we consider the scenario modeled by the activity diagrams in Fig. 4.

The DES system was previously implemented with the ACE reusable frameworks
[15], and its LQN model was validated against measurements [12]. DES consists of a

(b) DES primary model: nested activity diagram doGetDocument

Fig. 4. DES primary model: scenario RetrieveDoc with performance annotations

in

out

User

send request

<<PAstep>>
{PAdemand=(‘msr’,
’mean’, ($G,’ms’)),

PAextOp=(‘network’,1)

Dispatcher DocMgmt

<<PAstep>>
{PAdemand=(‘msr’,
’mean’, ($R,’ms’))}

DocServer

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(110/$cpuS,’ms’))}

(a) DES primary model: high level activity diagram for RetrieveDoc scenario

RetrieveDoc <<PAcontext>>

idle_D

doGetDocument

accept request

dispatch thread

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(1.5,’ms’))}

receive
document

A

in

out

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(220/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(1.30 + 130/$cpuS,’ms’))} <<PAstep>>

{PAdemand=(‘msr’,’mean’,
(35/$cpuS,’ms’)
PAextOp=(‘readDisk’,$DocS’)}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(170/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(220/$cpuS,’ms’))}

DocMgmt

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
($scdC/$cpuS,’ms’)),
PAextOp=(‘network’,$DocS’)
}

doGetDocument

accept request

read request

update logfile

get document

send document

recycle thread

B

<<PAclosedLoad>>
{PApopulation = $Nusers,
PArespTime=

(‘req’,’mean’, (1,’sec’),
(‘pred’,’mean’,$RespT)}}

(b) DES primary model: nested activity diagram doGetDocument

Fig. 4. DES primary model: scenario RetrieveDoc with performance annotations

in

out

User

send request

<<PAstep>>
{PAdemand=(‘msr’,
’mean’, ($G,’ms’)),

PAextOp=(‘network’,1)

Dispatcher DocMgmt

<<PAstep>>
{PAdemand=(‘msr’,
’mean’, ($R,’ms’))}

DocServer

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(110/$cpuS,’ms’))}

(a) DES primary model: high level activity diagram for RetrieveDoc scenario

RetrieveDoc <<PAcontext>>

idle_D

doGetDocument

accept requestaccept request

dispatch thread

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(1.5,’ms’))}

receive
document

A

in

out

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(220/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(1.30 + 130/$cpuS,’ms’))} <<PAstep>>

{PAdemand=(‘msr’,’mean’,
(35/$cpuS,’ms’)
PAextOp=(‘readDisk’,$DocS’)}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(170/$cpuS,’ms’))}

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
(220/$cpuS,’ms’))}

DocMgmt

<<PAstep>>
{PAdemand=(‘msr’,’mean’,
($scdC/$cpuS,’ms’)),
PAextOp=(‘network’,$DocS’)
}

doGetDocument

accept requestaccept request

read requestread request

update logfileupdate logfile

get documentget document

send documentsend document

recycle threadrecycle thread

B

<<PAclosedLoad>>
{PApopulation = $Nusers,
PArespTime=

(‘req’,’mean’, (1,’sec’),
(‘pred’,’mean’,$RespT)}}

Performance Analysis of UML Models Using Aspect-Oriented Modeling Techniques 161

document exchange server and multiple clients. There are two types of users: regular
users and system administrator. A regular user can get the document directory from
the server, upload new documents and retrieve documents stored at the server. In this
case study, we will focus on the scenario for retrieving a document, RetrieveDoc,
as the key scenario for performance analysis. The UML model shown here does not
represent the complete design of the DES system, just the elements necessary for per-
formance analysis. The performance annotations are shown in notes in Figures 2 to 4
to make them visible. Due to space limitations, we give here just a brief overview of
the most important stereotypes and attributes.

The high-level architecture contains two components, User and DocServer
communicating through the interface DocServerAccess, which contains the op-
eration getDocument(). The server component is multithreaded, containing a
Dispatcher thread that accepts the requests and dispatches them to a number of
worker threads named DocMgmt, organized in a thread pool. In Fig. 2, the stereotype
<<PAresource>> is used to indicate those software units that are running under
their own thread of control (in this case, the user component and each server thread).
DES is deployed on a distributed system connected through a local area network, as
shown in Fig. 3. The shared documents are stored on the server’s local disk. A proc-
essor is modeled by the stereotype <<PAhost>>, which has attributes that define its
scheduling policy, processing rate, context switching time and performance measures
such as utilization and throughput. Other non-processing hardware devices that intro-
duce contention in the software may be modeled as <<PAresource>>.

The activity diagram for the RetrieveDoc scenario (Fig. 4) shows that the
Dispatcher loops infinitely, going back to accepting a new request once the previ-
ous one was dispatched. The detailed processing of the operation doGetDocu-
ment()performed by a DocMgmt thread is encapsulated in the composite activity
given in Fig.4.b, which has an input pin in and an output pin out. The call of this
operation is shown in gray in the main activity diagram from Fig.4.a. The labels A
and B are used to mark possible insertion points for the aspect behaviour during
model composition, as discussed later in section 3.4.

The main activity diagram is stereotyped as an SPT analysis context <<PAcon-
text>>, and each activity as a scenario step <<PAstep>>. The first step carries
the workload stereotype <<PAclosedLoad>> with a given number of users
$Nusers, and the scenario overall performance measures, which can be required
(‘req’), measured (‘msr’), estimated (‘assm’) or predicted (‘pred’). (Note
that in SPT variable names begin with ‘$’.) For example, the scenario from Fig. 4
has a required mean response time of 1 second for the specified number of users
$Nusers, and the response time predicted by the LQN model will be stored in the
variable $RespT, as indicated in the following tagged value:
PArespTime= ((‘req’,mean,(1,‘sec’)),(‘pred’,mean,$RespT))
A PAdemand tagged value indicates the execution time on the host processor for

the respective step. For instance, the activity accept request from Fig. 4.b has:
PAdemand=(‘msr’,’mean,(220/$cpuS,‘ms’))

which indicates that the mean measured value of the CPU demand is given by the ex-
pression (220/$cpuS) in milliseconds, where the variable $cpuS is the frequency
of the host processor in MHz. The variables used in performance annotations capture

162 Hui Shen and Dorina C. Petriu

application or platform-specific performance values. The following variables used in
the example are dependent on the disk I/O mechanism and the document size:
 $gcdC = CPU demand for getting a document from the disk

 $scdC = CPU demand for sending a document to the network
The following variables are application dependent:
 $RP = the size of a request message in data packets

$DocP = document size in data packets (given by the ratio between the
document size and network packet size rounded up to the closest integer).

3.2. Generic Aspect Model

AOM is applied in this paper to extend the original DES system with a security re-
lated crosscutting concern, whereby only authorized clients are allowed to get docu-
ments from the DES server. The approach for expressing the solution to this concern
as an aspect was inspired from [3], where a generic aspect model that describes the
general structure and behaviour of a generic authorization solution is defined with
UML 2 templates. More precisely, in [3] the generic aspect structure is modeled with
classifier templates (classes or structured classes) and the behaviour with interaction
templates. The generic aspect model is instantiated to get a context-specific aspect
model by binding the template parameters to application-specific values.

Our approach is similar to [3], except that the software architecture is modeled
with component templates (with offered and required interfaces), and the behaviour
with activity templates, as shown in Fig.5. We are making use of the UML 2 feature
that all subclasses of Classifier - such as Class, Collaboration, Component, Interface -
and all subclasses of Behavior - such as Activity, Interaction - are templateable. Com-
ponents and/or structured classes allow for a clear separation between their external
use and their internal structure/behaviour, and are more suitable than the traditional
class diagrams for representing the kind of systems for which performance analysis is
important (usually distributed and/or concurrent systems). We chose activity diagrams
rather than interaction diagrams because of their ability to describe both inter- and in-
tra-object behaviour as flows of actions, and to express concurrency more naturally,
like in Petri nets. We propose to approach the behaviour composition as a graph re-
writing problem applied to activity diagrams, as described in section 3.4.

Fig. 5.a shows that there are three kinds of components in the generic aspect
model: |Client, |Server and |AuthorizationRep. (Note that we use the same
notation for template parameters as in [3], i.e., a parameter name begins with a ‘|’).
The |Server component provides the interface |ServerAccess containing the op-
eration template |operation, and requires the interface |Authorization-
Access containing the operation template |checkAuth. The aspect model does not
know anything about the internal structure of |Server, nor any details about the ac-
tual functionality of |operation, which are given in the primary model.

The generic aspect model shows that, when a request for |operation arrives
from |Client to |Server, the latter must check with the component
|AuthorizationRep whether the client is authorized to perform the
|operation. More exactly, |Server invokes |checkAuth, waits for the reply,
and then verifies the result. If this indicates a not authorized access, then |Server

Performance Analysis of UML Models Using Aspect-Oriented Modeling Techniques 163

Fig. 5. Generic aspect model with parametric performance annotations

will reply to |Client that the access is denied; otherwise, it delegates the actual exe-
cution of the required functionality to |doOperation (which will be detailed only
in the primary model). The signatures and parameters of the operation templates are
similar to those from [3] and are not described here due to space limitations.

It is worthwhile to mention here that the behaviour model from Fig. 5.b contains
two kinds of activities: some represent the new functionality associated with the as-
pect (such as checking the access rights and letting the client know when the access is
denied) and others represent “embedding” activities, which show where to insert the
new behaviour relative to the primary model behaviour. In our example, the new au-
thorization functionality must take place every time when the client sends a request to

(b) Generic Authorization aspect model: activity diagram

(a) Generic Authorization aspect model: component diagram

|Client

request
|operation

idle_AR

accept
request

check
rights

<<PAstep>>
{Pademand =$C1}

accept
request

request
|checkAuth

|Server |AuthorizationRep

|doOperation

accept
result

access
denied

Authorization <<PAcontext>>

[invalid]

[valid]

<<classifier template>>
|Server

<<provided interface>>
|ServerAccess

|operation()

<<required interface>>
|AuthorizationAccess

|checkAuth()

|doOperation()

|ServerAccess
<<classifier
template>>

|Client

<<classifier template>
|AuthorizationRep

<<provided interface>>
|AuthorizationAccess

|checkAuth()

|Authorization
Access

<<required interface>>
|ServerAccess

|operation()

<<PAstep>>
{Pademand =$C2}

<<PAstep>>
{Pademand =$S1}

<<PAstep>>
{Pademand =$S2}

<<PAstep>>
{Pademand =$S3}

<<PAstep>>
{Pademand =$A1}

<<PAstep>>
{Pademand =$A2}

(b) Generic Authorization aspect model: activity diagram

(a) Generic Authorization aspect model: component diagram

|Client

request
|operation

idle_AR

accept
request

check
rights

<<PAstep>>
{Pademand =$C1}

<<PAstep>>
{Pademand =$C1}

accept
request

request
|checkAuth

|Server |AuthorizationRep

|doOperation

accept
result

access
denied

Authorization <<PAcontext>>

[invalid]

[valid]

<<classifier template>>
|Server

<<provided interface>>
|ServerAccess

|operation()

<<required interface>>
|AuthorizationAccess

|checkAuth()

|doOperation()

|ServerAccess
<<classifier
template>>

|Client

<<classifier template>
|AuthorizationRep

<<provided interface>>
|AuthorizationAccess

|checkAuth()

|Authorization
Access

<<required interface>>
|ServerAccess

|operation()

<<classifier template>>
|Server

<<provided interface>>
|ServerAccess

|operation()

<<required interface>>
|AuthorizationAccess

|checkAuth()

|doOperation()

|ServerAccess
<<classifier
template>>

|Client

<<classifier
template>>

|Client

<<classifier template>
|AuthorizationRep

<<provided interface>>
|AuthorizationAccess

|checkAuth()

|Authorization
Access

<<required interface>>
|ServerAccess

|operation()

<<PAstep>>
{Pademand =$C2}

<<PAstep>>
{Pademand =$C2}

<<PAstep>>
{Pademand =$S1}

<<PAstep>>
{Pademand =$S1}

<<PAstep>>
{Pademand =$S2}

<<PAstep>>
{Pademand =$S2}

<<PAstep>>
{Pademand =$S3}

<<PAstep>>
{Pademand =$S3}

<<PAstep>>
{Pademand =$A1}

<<PAstep>>
{Pademand =$A1}

<<PAstep>>
{Pademand =$A2}

<<PAstep>>
{Pademand =$A2}

164 Hui Shen and Dorina C. Petriu

the server, but before the request will be actually served. More on the embedding of
the aspect behaviour in the primary model behaviour will be discussed in section 3.4.

It was mentioned that activity diagram can represent both intra- and inter-object
behaviour. For instance, an |operation request is modeled by a CallOperationAc-
tion metaobject with a transition that crosses the swimlane boundary from |Client
to |Server, whereas the execution of |operation is represented by the activities in
the shaded area from |Server’s swimlane, starting with the acceptance of the re-
spective call (represented by an AcceptCallAction or AcceptEventAction metaobject
in UML 2), and ending with the call of |doOperation (represented by an Invoca-
tionAction metaobject). Similarly, the execution of operation |checkAuth is repre-
sented by the shaded area from the swimlane of |AuthorizationRep.

In what regards the performance annotations, each activity is stereotyped as an
SPT <<PAstep>>, whose tagged values provide performance information such as
CPU demand, probability of execution, external operations, etc. [14]. The stereotype
attributes are not assigned concrete values, but are represented instead by SPT vari-
ables that are treated as “performance parameters”. These variables will receive con-
crete values when it becomes known how the context-specific aspect model is instan-
tiated, what primary model is composed with and what kind of platform the final
composed model will be run on. The types of these performance parameters are de-
fined in the SPT profile, and some can be rather complex, such as the types for time
and performance values, PAtimeValue and PAperfValue [14]. However, a
UML tool treats them as string values assigned to the respective stereotype attributes.

3.3. Context-Specific Aspect Model

The next step is to instantiate the template aspect model for a given application con-
text by binding the template parameters to application-specific values. According to
[5], a generic aspect model can be instantiated multiple times to produce multiple
context-specific aspect models based on different binding rules. The result is a con-
text-specific aspect model. In our approach, the binding rules have two parts: one for
the “traditional” AOM approach, and the other for performance annotations.

In terms of “traditional” AOM binding, our approach is almost the same as in [3],
except for the fact that our templates refer to components and activities. The binding
rules for operation signatures, similar to [3], and are not shown here due to space limi-
tations. The bindings for structural elements used in our case study, listed here as
(formal parameter, actual parameter) pairs, would be normally given in a UML dia-
gram:
 Component bindings: (|Client, User); (|Server, DocServer);
(|AuthorizationRep, DocAuthorizationRep)

 Interface bindings: (|ServerAccess, DocServerAccess);
(|AuthorizationAccess, DocAuthorizationAccess);

 Operation bindings: (|operation, getDocument); (|doOperation,
doGetDocument); (|checkAuth, checkDocAuth).
In the structural view, some of the component (operation) templates are bound to

actual counterparts that exist in the application context, while others are bound to new
components/interfaces/operations (shown in boldface in the above list). For instance,

Performance Analysis of UML Models Using Aspect-Oriented Modeling Techniques 165

DocAuthorizationRep, along to its interfaces and operations, is a new compo-
nent that does not have a counterpart in the primary model of the application.

There is another issue concerning the model structure that has to be resolved dur-
ing the creation of the context-specific model: the allocation of the software compo-
nents to hardware resources. This is important for performance analysis. The rule is as
follows: if a component template is bound to an existing component, then the host
processor is already known from the primary model. However, for new components,
the designer has to specify the deployment explicitly (either on existing nodes or on
new ones).

The instantiation of the template activity diagram has two parts: one is concerned
with binding activity templates from the generic to the application-specific context,
and the other with assigning concrete values to the “performance parameters” identi-
fied in the previous section as part of the performance annotations. The binding of ac-
tivity templates will be done according to the binding of the corresponding operation
templates from the structural view. For instance, the activity template that requests
|operation will be bound to an activity that requests getDocument, and so on.
The activity diagram of the context-specific model is represented in Fig. 6.a.

The issue of binding “performance parameters” cannot be solved through the UML
2 template mechanism, because it requires the “binding” of new values to stereotype
attributes. For instance, the variable $A1 from Fig. 5.b, which represents the tagged
value PAdemand of the step accept_request, should be assigned the value

(‘assm’,’mean,(220/$cpuS,‘ms’))
of type PAperfValuedefined in SPT. We propose to use an auxiliary XML file for
“performance bindings” which gives all the values to be assigned to the performance
parameters representing stereotype attributes in the generic aspect model.

Choosing the values to be assigned to the performance parameters of the context-
specific aspect model is not a simple problem; some difficulties are related to per-
formance evaluation issues rather than to UML modeling. In general, it is difficult to
estimate quantitative resource demands for each activity in the design phase, when an
implementation does not exist and measurements cannot be performed yet. Several
approaches are used by the performance analysts to come up with reasonable esti-
mates in the early design stages: expert experience with previous versions or with
similar software, understanding of the algorithm complexity, measurements of reused
software, measurements of existing libraries, or using time budgets. As the project
advances, early estimate can be replaced with measured values for the most critical
parts. However, this is not to say that performance analysis should be deferred until
late in the lifecycle, when the system is implemented and can be measured, because
by then it may be too late to correct costly performance mistakes frozen in the code
(see [16] for more details on software performance engineering).

3.4. Model Composition

The role of model composition is to integrate a context-specific aspect model with the
primary model in all three relevant views: architecture, deployment and behaviour.

Composing the software architecture is not as difficult as composing the behaviour.
The context-specific aspect model contains either components that exist in the pri-
mary model or new ones, with well-defined interfaces. The composed model will con-

166 Hui Shen and Dorina C. Petriu

tain the union of all the components from the two models. It is however possible that
a component in the aspect model does not contain the level of details from the pri-
mary model (for example, DocServer is multithreaded in the primary model only).
A recursive approach, similar to that at the system level, will be applied to compose
the internal structure of each component in turn. The composition at the deployment
level, which is also a structural view, can be tackled in a similar way, adding new
nodes to he ones that exist already in the primary model.

The composition of the behaviour view is more challenging. Conceptually, we
propose to approach the composition of activity diagrams as a graph-rewriting prob-
lem, where a subgraph X found inside of a larger host graph H is isolated and replaced
by another subgraph Y. Subgraph X is described by the left-hand-side and Y by the
right-hand side of a rewriting rule, which also specifies how to embed (i.e., connect) Y
within the host graph H. In our case, the host graph is the activity diagram of the pri-
mary model, Y is the subset of activities from the context-specific model that bring
new functionality to the whole, and X is an element of the host H that pinpoints the
insertion place. The proposed approach is illustrated in Fig. 6.

Fig. 6.a shows the activity diagram for the behaviour of the context-specific model,
which contains two kinds of activities, as already mentioned in section 3.2: a) new
functionality introduced by the aspect (the shaded area in Fig. 6.a), and b) “embed-
ding” activities repeated from the primary model that indicate where to insert the new
functionality (the non-shaded area). We propose to isolate the activities from the
shaded area and to encapsulate them in a UML 2 complete structured activity with in-
put and output pins, which corresponds to the connecting points between the new
functionality from the shaded area with the embedding activities from the non-shaded
area, as shown in Fig. 6.b. In this case, there is only one input and one output pin, but
in general more than one input/output pins may be necessary. The designer has the re-
sponsibility to indicate which sub-area of the aspect model contains new functionality
and should be converted into a complete structured activity, to play the role of Y in the
rewriting rule.

The role of X is played by an element from the activity diagram of the primary
model that indicates the insertion place. In our case study, we have considered two
design alternatives: i) insert the authorization checking functionality in the Dis-
patcher thread in Fig.4.a, point A, and ii) insert it in the DocMgmt thread in Fig.
4.b, point B. As shown in the next section, the choice of the insertion point will have a
strong impact on the overall performance without changing in any way the aspect
model or its performance annotations.

The outcome of the composition for Design A is illustrated by the component dia-
gram in Fig. 7.a and the activity diagram in Fig. 7.b. The composed deployment dia-
gram is not given, as it is very similar to the deployment of the primary model from
Fig. 3.

4. Performance Analysis

This section presents the performance analysis experiments conducted with the
LQN models obtained from: a) the primary model, b) the composed model for design
A, and c) the composed model for design B. The LQN models were obtained with the

Performance Analysis of UML Models Using Aspect-Oriented Modeling Techniques 167

Fig. 7. Composed DES model

Fig. 6. Generating a complete structured activity with pins that contains the
aspect model sub-behaviour to be inserted into the primary model behaviour

Authorization
User

request
getdocument

idle_AR

accept
request

check
rights

accept
request

request
checkDocAuth

DocServer
DocAuthorization

Rep

doGetDocument

accept
result

access
denied

[invalid]

[valid]

begin

User DocServer
DocAuthorization

Rep
getDocument

end

(a) Context-specific aspect model behaviour (b) Complete structured activity with pins

(b) Composed DES model: high-level activity diagram

User

send request

Dispatcher DocMgmt

DocServerRetrieveDoc <<Pacontext>>

idle_D

doGetDocument

dispatch thread

accept request

receive
document in

out

getDocument
begin

end

(a) Composed DES model: component diagram

<<component>>
DocServer

DocServer
Access

<<PAresource>>
<<component>>

User

<<PAresource>>
<<component>

DocAuthorizationRep
DocAuthorization
Access

<<provided interface>>
DocAuthorizationAccess

checkDocAuth()

<<PAresource>>
Dispatcher

getDocument()

<<PAresource>>
DocMgmt

doGetDocument()

<<required interface>>
DocServerAccess

getDocument()

idle_AR

accept
request

check
rights

request
checkDocAuth

accept
result

access
denied

[invalid]
[valid]

Fig. 6. Generating a complete structured activity with pins that contains the
aspect model sub-behaviour to be inserted into the primary model behaviour

Authorization
User

request
getdocument

idle_AR

accept
request

check
rights

accept
request

request
checkDocAuth

DocServer
DocAuthorization

Rep

doGetDocument

accept
result

access
denied

[invalid]

[valid]

begin

User DocServer
DocAuthorization

Rep
getDocument

end

(a) Context-specific aspect model behaviour (b) Complete structured activity with pins

(b) Composed DES model: high-level activity diagram

User

send request

Dispatcher DocMgmt

DocServerRetrieveDoc <<Pacontext>>

idle_D

doGetDocument

dispatch thread

accept requestaccept request

receive
document in

out

getDocument
begin

end

(a) Composed DES model: component diagram

<<component>>
DocServer

DocServer
Access

<<PAresource>>
<<component>>

User

<<PAresource>>
<<component>

DocAuthorizationRep
DocAuthorization
Access

<<provided interface>>
DocAuthorizationAccess

checkDocAuth()

<<PAresource>>
Dispatcher

getDocument()

<<PAresource>>
DocMgmt

doGetDocument()

<<required interface>>
DocServerAccess

getDocument()

idle_AR

accept
request

check
rights

request
checkDocAuth

accept
result

access
denied

[invalid]
[valid]

168 Hui Shen and Dorina C. Petriu

methodology from [19]. The LQN models are not described in the paper due to space
limitations. The LQN model of the DES application without authorization was vali-
dated against measurements, as described in [12].

In the first set of experiments, we compared the effect of Design A authorization
on the response time perceived by a user who is retrieving documents, when the num-
ber of identical users is increasing from 1 to 15. The analysis was done for two docu-
ment sizes: short (5K B) and long (50 KB).

The analysis shows that the effect of the authorization aspect on the response time
depends strongly on the document size: there is almost no effect for large documents
(see Fig. 8), whereas there is an important effect for small documents (see in Fig. 9).
To understand the reason for this performance behaviour, we looked at the utilization
of different resources to identify the system bottleneck (i.e., the resource that saturates
first, has the longest waiting queue and limits the system throughput). For large
documents, the bottleneck device is the Local Area Network, which is utilized close
to 100% for 15 users, as shown in Fig. 10. Other resources, such as ServerCPU and
SDisk are utilized much less than the network (only about 55% for 15 users). How-
ever, the new authorization functionality adds no extra load on the network, but uses
instead ServerCPU and SDisk, which have enough available capacity. Therefore
the response time increases very little because of the additional work introduced by
the authorization functionality in the case of long documents.

The situation is different for short documents, where the bottleneck is the Dis-
patcher thread, as shown in Fig. 11. The choice of inserting the authorization re-
sponsibility in the Dispatcher in Design A serializes considerably the execution of
the requests in the system, as a lot of work is done in a single thread. This is an exam-
ple of so called “software bottleneck”, where none of the hardware resources gets to
be fully utilized due to the low concurrency levels in the software. In order to solve
the software bottleneck, we consider Design B, where the authorization functionality
is inserted in each of the DocMgmt threads (i.e., the authorization for different re-
quest is done in parallel). This insures higher concurrency levels in the system and
gives better response time than Design A, as long as DocAuthorizationRep is
also able to process requests concurrently. Fig. 12 shows that for small messages, the
response time of Design B is very close to that of the primary system. This is an illus-
tration of the fact that a small design difference may have a big performance impact.

Fig. 13 shows that in the case of Design B, the hardware resources (such as
ServerCPU) are indeed utilized at a higher level than in Design A, whereas the Dis-
patcher thread is no longer the bottleneck. This explains why Design B has better per-
formance than Design A.

Performance analysis allows developers to gain insight on the location of perform-
ance trouble spots under different workload conditions. The goal is to help developers
to evaluate and choose better design alternatives as early as possible in the develop-
ment process.

Performance Analysis of UML Models Using Aspect-Oriented Modeling Techniques 169

De si gn A: r e sponse t i me f or l a r ge
doc s. (5 0 KB) a nd 5 wor k e r t hr e a ds

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
no. of c l i e nt s

R T
ms Primary Model

Composed Model

Fig. 8. Design A: Response time for the

retrieval of large documents

 De si gn A: Re sponse t i me f or sma l l
doc ume nt s (5 KB) a nd 5 wor k e r t hr e a ds

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

no. of c l i e nt s

R T
ms Primary Model

Composed Model

Fig. 9. Design A: Response time for the

retrieval of small documents

D esig n A : U t il izat io ns
f o r larg e d ocument s

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
no . o f client s

U
%

Net work
Dispat cher
ServerCPU
SDisk

Fig.10. Design A: Utilization of resources for

the retrieval of large documents

D esig n A : U t il izat io ns
f o r small d o cument s

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12
no . o f cl ient s

U
%

Dispat cher
ServerCPU

DocMgmt

Fig.11. Design A: Utilization of resources for

the retrieval of small documents

R esp o nse t imes f o r
d if f erent d esig ns

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 1 11 1 1 1 15
no . o f client s

R T
ms

Design A

Design B
Primary Model

Fig.12. Response times for different

designs alternatives

D esig n B : U t il izat io ns f o r
 small d o cument s, 15 t hread s

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

no . o f client s

U
%

ServerCPU

DocMgmt

Dispat cher

Fig.13. Design B: Utilization of resources for

the retrieval of small documents

5. Conclusions

This paper proposes an approach for combining Aspect Oriented Modeling techniques
with performance analysis of UML models. The long-term goal of the research is to
provide tool support to software developers who are using AOM techniques for as-
sessing the performance effects of different aspect realizations early in the develop-
ment cycle. There is ongoing work to develop fully the proposed approach and to
build a tool prototype.

170 Hui Shen and Dorina C. Petriu

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M., "Model-based performance predic-
tion in software development: a survey" IEEE Transactions on Software Engineering, Vol
30, No.5, pp.295-310, May 2004.

2. Clarke, S. and Walker, R. J., “Composition patterns: An approach to designing reusable as-
pects”, In Proc. of 23rd Int. Conf. on Software Engineering (ICSE), Toronto, Canada, 2001.

3. R. B. France, R.B., Ray, I. ,.Georg, G. and Ghosh, S., "Aspect-Oriented Approach to Design
Modeling," IEE Proceedings - Software, Special Issue on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design, 151(4):173--185, August 2004.

4. Franks, G., Hubbard, A., Majumdar, S., Petriu, D.C., Rolia, J., Woodside, C.M., A toolset
for Performance Engineering and Software Design of Client-Server Systems, Performance
Evaluation, Vol. 24, Nb. 1-2 (1995) 117-135.

5. Georg, G., France, R. and Ray, I. “An Aspect-Based Approach to Modeling Security Con-
cerns”.In Proceedings of the Workshop on Critical Systems Development with UML, Dres-
den, Germany, 2002.

6. Gu, G., and Petriu, D.C. "XSLT Transformation from UML Models to LQN Performance
Models", Proc. of 3rd Int. Workshop on Software and Performance WOSP'2002, pp.227-
234, Rome, Italy, 2002.

7. Kande, M., “A Concern-Oriented Approach to Software Architecture”, PhD thesis, EPFL,
Lausanne, Switzerland, 2003.

8. Mekerke, F., Georg, G., France, R., and Alexander, R. “Tool Support for Aspect-Oriented
Design”, In Advances in Object-Oriented Information Systems: OOIS2002 Workshops.
Springer-Verlag, 2002.

9. Petriu, D.B. and Woodside, C.M., "A Metamodel for Generating Performance Models from
UML Designs," in In Proc. «UML» 2004 - Modelling Languages and Applications, 7th Int.
Conference, Lisbon, Portugal, vol. LNCS 3273, Springer 2004, pp. 41-53.

10. Petriu, D.C. and Shen, H. “Applying the UML Performance Profile: Graph Grammar based
derivation of LQN models from UML specifications”, in Computer Performance Evalua-
tion: Modelling Techniques and Tools, (T. Fields, P. Harrison, J. Bradley, U. Harder, Eds.)
LNCS 2324, pp.159-177, Springer, 2002.

11. Petriu,D.C. and Woodside, C.M., "Performance Analysis with UML," in UML for Real, B.
Selic, L. Lavagno, and G. Martin, pp. 221-240 Kluwer, 2003.

12. Petriu,D.C., Zhang, J., Gu, G and Shen, H., “Performance Analysis Based on the UML SPT
Profile”, to appear in MDD for Distributed Real-time Embedded Systems (Eds. J.-P. Babau,
J. Champeau and S. Gérard), Hermes, Paris, 2005.

13. Ray, I., France, R., Li, N., Georg, G. An aspect-based approach to modeling access control
concerns”, Information and Software Technology, 46 (2004) 575–587.

14. Object Management Group, UML Profile for Schedulability, Performance, and Time Speci-
fication, OMG Adopted Specification ptc/02-03-02, July 1, 2002.

15. Schmidt, D.C., Huston, S. D., C++ Network Programming Vol 2: Systematic Reuse with
ACE and Frameworks, Addison-Wesley, 2002.

16. Smith, C.U., Performance Engineering of Software Systems, Addison Wesley, 1990.
17. Straw, G., Georg, G., Song, E., Ghosh, S., France, R., Bieman, J.M., “Model Composition

Directives”, In Proc. «UML» 2004 - Modelling Languages and Applications, 7th Int. Con-
ference, Lisbon, Portugal, LNCS 3273, pp 84-97, Springer 2004.

18. Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S., “The Stochastic Rendezvous
Network Model for Performance of Synchronous Client-Server-like Distributed Software”,
in IEEE Transactions on Computers, Vol.44, Nb.1, pp. 20-34, 1995.

19. Woodside, C.M, Petriu, D.C., Petriu, D.B., Shen, H, Israr, T., and Merseguer, J. " Perform-
ance by Unified Model Analysis (PUMA)", In Proc. 5th Int. Workshop on Software and Per-
formance WOSP'2005, Palma, Spain, July 2005.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 171-185, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Domain Models Are Aspect Free

Friedrich Steimann

Fachbereich Informatik, Lehrgebiet Programmiersysteme
Fernuniversität in Hagen

Universitätsstraße 1, D-58097 Hagen
steimann@acm.org

Abstract. Proponents of aspect orientation have successfully seeded the im-
pression that aspects—like objects—are so fundamental a notion that they
should pervade all phases and artefacts of the software development process.
Aspect orientation has therefore proliferated from programming to design to
analysis to requirements, sparing neither software processes nor their favourite
languages. Since modelling plays an important role in software engineering,
much effort is currently being invested in making modelling languages aspect
ready. However, based on an observed lack of examples for domain level (or
functional) aspects this paper argues the case against the omnipresence of as-
pects, particularly the existence of aspects in domain models, and offers some
informal arguments as well as a semiformal proof in favour of the claims made.

1 Introduction

Since the term AOP came public at ECOOP in 1997 1, workshops and conferences on
aspect-related matters have literally mushroomed. Today we witness attempts to re-
write large parts – if not all – of software engineering to become aspect oriented: as-
pect-oriented design, aspect-oriented modelling, aspect-oriented requirements engi-
neering, and so forth. One may ask oneself whether this enthusiasm is a sign of some-
thing revolutionary having been discovered, or just a symptom of the general pressure
felt by the OO community to come up with something suitable to fill the hole called
“post OO”. Does aspect orientation really have the substance necessary to found a
new software development paradigm, or is it just another term to feed the old buzz-
word-permutation based research proposal and PhD thesis generator?

That aspects can revolutionize software engineering analogous to the way objects
did would require that aspects are an equally general notion, one that applies to the
domains hosting computing problems as well as to the technology used to solve them.
At first glance, this would seem case: when looking at a problem, we usually find that
it has many aspects, that indeed every aspect comes with its own set of problems. We
can even say that the objects of a domain themselves have different aspects, so that

1 Popular precursors of (and contributors to) the AOP paradigm were Composition Filters [1],

DEMETER [15], and Subject-Oriented Programming [12].

172 Friedrich Steimann

viewing aspects as a primitive concept of object-oriented software development
would only seem natural.

Yet an aspect is immanently something observed of an object (or a problem), it is
not itself one (or part of one). This is also reflected in natural language, where we
usually speak of the aspects of something, not of the aspects in something. In fact, it
seems that aspects reside one level above what is being looked at or, in other words,
that aspects are a meta-level construct. Although aspects are not alone in this regard, I
will argue below that this – together with a few other peculiarities – explains why we
cannot expect to find aspects (at least not in the aspect-oriented sense) in any but a
single, rather special problem domain.

The remainder of this paper is organized as follows. First I will identify different
uses of the term aspect as relevant in the context of modelling. As I will argue, these
uses are either better covered by other concepts or lie outside the subject of a domain
model, i.e., do not refer directly to the modelled domain. Based on these findings I
will attempt a theoretical argumentation explaining why aspects (in the aspect-
oriented sense) are necessarily second-order constructs and hence extrinsic to the
problem domain and its models, which focus on the nature (the intrinsic properties) of
the things being looked at. A discussion of my claim with some of the relevant litera-
ture concludes my position.

2 Different Uses of the Term Aspect in Modelling

While technically the concept of an aspect is unambiguously defined by the aspect-
oriented (modelling) language being used, conceptually it is not: people have different
conceptions of what an aspect is and, consequently, of how and where it can be identi-
fied in a given subject matter. This is only natural since aspect is a general term in
broad use not only in software engineering, but also in everyday conversation; like the
term object before, it is readily adopted by everyone, but acceptance and popularity
come at the price of precision.

What follows is a brief discussion of the different uses of the term aspect as found
in software modelling. The discussion may be incomplete, yet I believe it covers the
most important points being taken in the literature, and suffices to show that these
kinds of aspects are either not needed for domain modelling, or lie outside its scope.

2.1 Aspects as Roles

Long before the term aspect-oriented programming was coined, it was discovered that
objects can have different facets, views, perspectives, roles, or aspects [24]. The clas-
sic example of a class whose instances have many roles2 is Person: Employee, Em-
ployer, Customer, Student, and so forth are all roles that can be played by a person.
Many different ways to deal with roles have been proposed; most frequent are ap-
proaches that treat roles as subtypes, as supertypes, as a combination of both, or as ad-

2 In order not to confuse aspects and roles (which basically mean the same thing in this subsec-

tion, but do not in the remainder of this paper), I use the term role here.

Domain Models Are Aspect Free 173

junct instances [24]. All share the same least intent: to let objects of same type have
different properties in different contexts at different times.

There is however another important characteristic of the role concept: objects of
different types having same properties. For instance, many things in a modelled do-
main may be billable (play the role of a Billable), but these things need not be natu-
rally related. On the programming side, we have roles such as Serializable, Compara-
ble, Printable, etc., which are implemented by the most different classes. Technically,
these are all role types allowing assignment compatible objects of otherwise unrelated
types to play the associated roles in the context of serialization, comparison, and
printing, respectively. Conceptually, there is no difference between a document’s be-
ing printable and a person’s being employable; both require that the objects have cer-
tain properties that enable their functioning in the context defining the role. These
properties are comprised in a corresponding role type.

Role types complement the natural partitioning of a problem domain (based on the
natural types of objects, i.e., their classes) by one that is based on relationships and
the contexts they produce. Given that roles partition a domain, one might argue that
they crosscut it in the sense that they let several otherwise unrelated classes share
same properties. However, although these properties are same, they are usually real-
ized differently, reflecting the different nature of the objects possessing them – the
roles are in fact polymorphic, meaning that they have different implementations. Fac-
toring out different implementations to a single place as suggested by an aspect-
oriented approach would seem inapt, since it would contradict basic object-oriented
principles.3 Instead, interfaces (specifying protocol, but lacking implementation) and
multiple (interface) inheritance readily lend themselves to representing roles and role
playing, respectively, with mixins stepping in to allow for the inheritance of code
wherever deemed appropriate [25, 26].

In object-oriented software modelling, roles are tied to collaborations: they specify
what it takes for a single object to contribute to fulfilling some joint system function-
ality [2, 17, 25]. Collaborations are based on interactions of objects; specification of
such an interaction is typically not tied to a single role, but is distributed over all that
contribute. Aspects on the other hand are typically defined independently of one an-
other; in fact, the obliviousness property of aspect orientation [8] suggests that aspects
have no mutual knowledge of each other.4 It follows immediately that modelling the
roles of a system as aspects works only in cases where roles are isolated and mono-
morphic.5

3 In fact, it would effect to replacing the polymorphism of a role with a conditional (reversing

the Replace Conditional with Polymorphism refactoring [9]): code treating objects of differ-
ent types differently would not be attached to the types, but located in a single place, a condi-
tional (typically a switch statement) branching on the type of an object. Although aspects
could be made polymorphic [4], doing so does not better the situation, since the definition of
role-playing objects would remain scattered.

4 Note that aspects can apply to aspects, so that there may be some unilateral awareness. Also,
aspects can model collaborations [2, 25], which includes the modelling of roles; the roles
themselves however are no aspects.

5 One might argue that there are roles whose implementation is the same throughout, so that
they are naturally represented by aspects. For instance, “having an address” (role Addressee)
is something that applies to the most different objects, but has the same implementation eve-
rywhere. However, this does not preclude Addressee from being modelled as a role, particu-

174 Friedrich Steimann

All this in not to say that aspect technology has nothing to contribute to role mod-
elling. In fact, role-oriented modelling (in the spirit of OORAM [23]) requires some
kind of weaving, since it is not sufficient that the objects (of the classes) playing the
roles of a collaboration guarantee to conform to the interface specification (or con-
tract) associated with each role: the way the state of the same object playing different
roles at the same time is to be shared or kept separate must also be specified. Because
roles of different collaborations are defined largely independently of each other, some
kind of weaving has to be performed when merging the different roles into the im-
plementation of one class. However, given that every class implements its roles dif-
ferently (the general case), it is difficult to conceive how aspect weaving mechanisms
could help without major modifications. Aspectual collaborations [15] address these
problems in some detail, but use roles in the specification of aspects, without equating
the two concepts (cf. related work in Section 5).

To summarize: a role is a named type specifying a cohesive set of properties whose
specification is determined by the collaboration with other roles and whose imple-
mentation by different classes is typically polymorphic. An aspect on the other hand
is neither a type, nor is it meaningful only in the context of another aspect, nor does is
naturally introduce different implementations for different objects. Although concep-
tually a role of an object can be viewed as an aspect of it, this aspect is typically not
one in the aspect-oriented sense.6

2.2 Aspects as Ordering Dimensions

Ever since Aristotle, taxonomical orderings have been regarded as useful for structur-
ing complex domains. However, the problem with taxonomies is that they can be
based on different criteria, which may be independent of each other. Different views
(or aspects) on a domain may therefore lead to different orderings which, without one
dominating the other, are difficult – if not impossible – to unify.

The introduction of polyhierachies (and multiple inheritance) combining several al-
ternative classifications seems an immediate remedy. On closer inspection, however,
they introduce more problems than they solve, since they tend to obscure the original
orderings they are trying to combine – not without reason, major programming lan-
guages such as JAVA and SMALLTALK have abandoned the concept. The Unified
Modeling Language UML [19] on the other hand has a special discriminator con-
struct used to separate different dimensions (“partitionings”) of a model’s generaliza-
tion/specialization hierarchies; however, as mere labelling this has no further-reaching
effect on the structure of a model. In fact, keeping the dimensions separate and thus
avoiding the dominance of one structure (the aspect-oriented way) seems to be the
best bet for maintaining accessibility of the domain. However, this does not mean that
domains come with aspects, as the following reasoning shows.

The archetypal domain having conflicting ordering principles is the taxonomy of
species. Its traditional version is based on externally visible properties such as number

larly as this would allow its objects to participate in a send collaboration (with roles Ad-
dresser and Addressee), which the aspect does not. Cf. the discussion in Section 5.2 for more
on this issue.

6 A contrary, but not very convincing view is held in [11].

Domain Models Are Aspect Free 175

of legs, reproductive system, etc. Although the discovery of new species and even
whole kingdoms requires reorganization from time to time, biologists have managed
to keep the taxonomy in a strict tree form. Modern genetics however has made it pos-
sible to reconstruct the evolutionary development of the different species right from
the first protists, thereby creating a taxonomy based on common ancestors rather than
observables, which means that it cannot be forced into strict tree form. While both
evolution and similarity can be viewed as different aspects structuring the same prob-
lem domain, we observe that neither of these aspects is itself an element of the do-
main. Aspects as ordering principles describe the order, not the domain; hence, they
reside one level above what they order.7

2.3 Domain-Specific Aspects

It has been noted many times that literally all aspects discussed in the literature are
technical in nature: authentication, caching, distribution, logging, persistence, syn-
chronization, transaction management, etc. One may add that these are all rather uni-
versal aspects, an observation that naturally begs the question whether all aspects are
general, or whether there is such a thing as a domain-specific aspect. A comparison
with classes springs to mind: while we have general purpose, technical classes such as
String, Vector, and Exception in a program, we usually also have domain-specific,
non-technical classes such as Account, Loan, and Currency; in fact, the latter are the
classes that are being modelled during the early phases of software development,
since they represent the problem domain.

On closer inspection, it becomes clear that the standard aspects are aspects of pro-
gramming rather than aspects of the domain the program is applied in: caching is a
programming problem, as are logging, security, transaction management, etc.8 In fact,
we can observe that these aspects are aspects of the solution and its artefacts, not of
the original problem. While this explains why the aspects are all technical (program-
ming is a technical matter, and looking at it from different perspectives necessarily
reveals its technical aspects), it also sheds a different light on the term domain speci-
ficity: an aspect is considered domain-specific if it occurs only in few, rather special
programming problems. Note that the same domain specificity can be observed of
classes: Thread for instance is specific to domains that exhibit concurrency, and it is
technical (part of the solution, unlike for instance PatientRecord, which is a domain-
specific, non-technical class).

7 This argumentation also applies to other abstraction mechanisms such as classification and

composition: an object can be classified according to its natural type (e.g., a Person, not a
Thing) or to its technical type (e.g., an Object, not a Class); it can be a component of an-
other object in the same problem domain, or of a deployment, etc. None of these ordering
dimensions are themselves part of the ordered domain.

8 Having said this, we note that sometimes a technical aspect has a namesake in the problem
domain: in the perennial ATM example, for instance, transactions and logs are entities that
occur in the problem domain. However, these entities are in the same league as customers,
accounts, and terminals: they are neither crosscutting nor do they exhibit other aspect-
oriented peculiarities, so that they would preferably be considered (and implemented) as or-
dinary types.

176 Friedrich Steimann

Seen this way, we can expect to find new aspects while we address new problems
(e.g., aspects of compiler construction, aspects of middleware, aspects of webs ser-
vices, etc.), but these aspects will be domain-specific only in the sense that they ad-
dress a programming problem that is specific to the domain – they are not themselves
part of the domain. In fact, we can expect that every framework comes with its own
set of aspects, and aspects will keep being discovered as long as technological ad-
vances are being made. But all of these aspects will be specific to the technical solu-
tion (the “domain”, if you will), not to the concrete problem it is applied to.

2.4 Aspects of Modelling

Now if the aspects we find when programming are aspects of programming, not of the
programmed problem, then we may expect that the aspects we find when modelling
are really aspects of modelling (and not of the modelled problem). And indeed, the
aspects we can immediately identify are aspects of such kind: a static and a dynamic
aspect, a component view, a use case view, etc. The fact that it has aspects is part of
the nature of modelling, as it is part of the nature of programming; however, this pro-
vides no evidence that there are aspects in the domain being programmed or mod-
elled, unless in the rather special case that the modelled domain is Modelling itself.

As an aside, the fact that modelling has aspects implies that it requires some kind
of weaving. In fact, since every model (model here defined as a single diagram) usu-
ally specifies only one tiny aspect of a modelled problem. I would conjecture that the
weaving of diagrams (as partial models) is one of the key issues to be addressed if
modelling is to deliver on its promises, MDA especially. I suspect that much can be
learnt from AOP that can be extremely helpful in developing object-oriented model-
ling into a truly useful discipline, but I would expect none of this to relate to the level
of the actual model, that is, to the conceptualization of a problem domain. This issue
is picked up again in Section 4.

2.5 Aspects as Non-functional Requirements

Those who have given up on searching for functional aspects (or perhaps never did
so) have retreated to the position that aspects model non-functional requirements.
Non-functional requirements are often considered to be hard to express given the
usual modelling languages (which might explain their absence from domain models);
however, this is not necessarily so. For instance, that a banking transaction may only
take a certain period of time would require that the modelling language has a notion
of time, which is nothing too special in disciplines other than software engineering.
Likewise, that a money withdrawal requires authentication can be expressed through
an ordinary sequence diagram. In fact, that something is classified as a non-functional
requirement does not preclude it from being part of a domain model – rather, it is the
fact that it cannot be reified.

Modelling languages are usually first-order languages [5, 20]. This implies that
statements about statements cannot be expressed unless the statements themselves be-
come objects, that is, are reified. Aspects on the other hand are typically expressed as
statements quantified over an infinite number of statements; in fact, non-functional

Domain Models Are Aspect Free 177

requirement that might be expressed by an aspect are usually of the form “for all func-
tional requirements of kind x, make sure that y”. For instance, a statement of the form
“make sure that all methods of a program that are called in the course of a transaction
are logged” is something that cannot be expressed using the means of a first-order
language, as will be argued below.

To conclude, one could be led to argue that aspects invariably express non-
functional requirements, so if non-functional requirements are no elements of domain
models, then neither are aspects. But even if one dismisses this argumentation (be-
cause certain non-functional requirements can be expressed using standard modelling
languages), this does not imply that aspects can be found in domain models, since not
all non-functional requirements are adequately expressed as aspects. In fact, as will be
argued next, it is the very nature of aspects that makes them unsuitable for being in-
cluded in domain models.

3 Proving Aspect-Freeness of Domain Models

Given that roles have properties that make them unsuitable for being modelled as as-
pects, that ordering dimensions are one level above the problem domain, and that the
aspects we know of are really aspects of the solution and its technology rather than
the underlying problem domain, are we ready to conclude that domains are aspect
free? No, since it could be the case that there are aspects I have forgotten to mention
or that we do not even know of yet. What is really needed is a positive argument mak-
ing the claimed non-existence plausible or, better still, a proof of thereof.

Obviously, such a proof depends critically on two definitions: what a domain
model is, and what an aspect is. Since both terms are in a rather broad use, definitions
that are both precise and generally accepted are hard to find. I will therefore attempt a
semiformal proof that builds on preconditions that should be easy to accept for a wide
audience. That such a proof must remain debatable is a tribute to the diversity of the
work in the field, and the many views held by the many authors. However, the proof
should be seen in light of the observed absence of domain-level, or functional, aspects
and as such as an explanation attempt in the tradition of natural science; questioning
its soundness only leaves the observations unexplained, it does not make them wrong.

3.1 The First-Orderedness of Domain Models

There appears to be broad consensus in the conceptual, the data, and the software
modelling community that the world be viewed as interrelated objects with attributes
and behaviour. According to this view, objects are abstractions of real world entities
(where we must be aware that even the concept of an entity is an invention of the
mind), and their properties describe how entities appear, how they relate to others,
and how they behave. While objects are the subjects of modelling, properties are
“about” (or “above”, which is the same word in German) them: not coincidentally, the
most successful formalization of natural language, predicate logic, distinguishes be-
tween objects (zeroth-order expressions) and propositions about them (first-order ex-
pressions). As an aside, it is interesting to note that reality itself is free of propositions

178 Friedrich Steimann

(it is only entities that exist), unless of course “reality” (the modelled domain) is lan-
guage.

Being a picture of reality, a domain model consists of objects (representing the
perceived entities of the real word) and propositions about them. In particular, a do-
main model contains no propositions about propositions, since these would describe
the model rather than reality. Generally, there is broad consensus that domain models
are first order (e.g., [5, 20]). Indeed, it appears that first order predicate logic is the
natural language of domain models even in presence of object-orientation, i.e., typing,
generalization, and inheritance. The following explains why this is so.

The standard semantics of object-oriented modelling maps the objects of a model
to elements of the modelled domain. Types are mapped to unary predicates (called
type predicates) serving as membership functions: an object o is an instance of type T
iff T(o) is true. Attributes correspond to functions associating certain elements (the
objects) with others, their attribute values. Relationships between objects are mapped
to binary or higher arity predicates, specifying tuples of elements that go together.
Methods can be viewed as temporary relationships that objects engage in while col-
laborating; they introduce dynamics to a model in that they have the ability to alter
existing relationships and attribute values as the result of their execution. [27]

The generalization of types expresses type inclusion, i.e., the fact that elements of
one type are always (and necessarily) also elements of another type. More specifi-
cally, that T is a subtype of U maps to

)()(: oUoTo (1)

where o ranges over all objects in the domain and T and U are the corresponding type
predicates. From this, the semantics of generalization, the inheritance of properties,
follows immediately: whatever is asserted of objects of type U must also hold for ob-
jects of type T.

Because sentences of the form of (1) occur repeatedly in object-oriented models
(they express the type hierarchy), it is commonplace to introduce a special relation-
ship, called generalization, whose instances (tuples) relate types (and thus predicates)
rather than objects. In fact, in a model we would not write (1), but

 T < U (2)

or something alike. However, generalization as a relationship is only extensionally de-
fined (i.e., by listing all its elements) – it rolls out to a finite set of first-order formulas
in the style of (1).9 And indeed, even though (2) suggests that that type T inherits the
properties from type U, it is only the declaration of properties that is inherited (where
the properties themselves pertain to the types’ objects).

It is an interesting result of mathematical logic that many-sorted (typed) and also
order-sorted (object-oriented) logic are no more expressive than their uni-sorted fore-
runner: as long as they do not quantify over propositions, they are all first order, i.e.,
their sentences consist of objects (zeroth order) and propositions about them (first or-
der) [18]. Thus, the fact that a model is object-oriented does not negate that it is a pure
domain model in the above sense. As it turns out, this is generally not the case for as-

9 In particular, generalization does not quantify over types (cf. Footnote 11 for a contrary posi-

tion).

Domain Models Are Aspect Free 179

pect-oriented models, which typically quantify over open (potentially infinite, in any
case intensionally defined) sets of propositions (cf. related work in Section 5, in par-
ticular [8]).

3.2 The Second-Orderedness of Aspects

Frankly, the claim is that aspect-oriented languages are essentially second-order lan-
guages, so that their models are no pure domain models in the above sense. The sec-
ond order follows from the fact that it is necessary for an aspect to be able to make
propositions about propositions. In ASPECTJ, this is reflected in the fact that an aspect
definition usually contains clauses specifying where (or when) the aspect applies, and
this specification involves variables (wildcards and other constructs) ranging over
classes, methods, and control flow. Mathematically, this is comparable to a second-
order predicate logic in which variables may range not only over objects, but also
over predicates and functors. In fact, an aspect of AOP saying that a certain procedure
or code fragment a (for action or advice) is to be executed with all methods satisfying
some predicate s (for selection) translates to an expression of the form

),...,(),...,()),...,((:),...,(1111 nnnn xxaxxmxxmsMxxm (3)

where M corresponds to the set of methods of a program. Note that (3) is not a first
order formula: while a is a first-order predicate specifying the advice of the aspect
(the what), s is a second-order predicate selecting certain methods (specifying the
where) quantified over the predicate variable m(…). Note that this way the specifica-
tion of the advice a has access to the parameters of the methods m it applies to (but a
need not make use all parameters of m). Without resorting to the second order, the pa-
rameters of an aspect cannot be bound to the parameters of the methods they apply to;
the aspect remains isolated and hence useless.

Theory aside, it is easy to see that in practice the processing of an aspect requires
reasoning about and involves manipulation of a program, that AOP is de facto a meta-
programming technique; this applies equally to aspect-oriented modelling. On the
other hand, in order to actually do something every aspect must contain expressions
(method calls etc.) that are on the same level as the items it is an aspect of. Since an
aspect always (and necessarily) consists of both, a what and a where/when part, there
can be no aspect without a meta-level.

On the other hand, postulating that there are (also) aspects in a first-order language
(on the same level as other properties, namely types, attributes, relationships, and
methods) would either force us to

a) explain what an aspect of an aspect is (or else exclude self-application of the
concept), or would

b) require that the where part of these aspects applies to propositions one level be-
low the other properties.

As for the latter: both modelling and programming usually start at the level of types;
there are no propositions of a lower level so that the subject of first-order aspects
would have to remain imaginary. As for the former: the only constellation in which I
find aspects of aspects easy to conceive is if aspects are themselves the subject matter.
However, these aspects must then be a weaker concept than the aspects of aspect ori-

180 Friedrich Steimann

entation, since there are no aspects they could be applied to (there is no lower level
and applying them to themselves or to their second-order relatives would open the
door for paradoxes or ill-definedness, as the history of mathematical logic has taught
[29]). It follows that first-order aspects are unlikely to exist and, because pure domain
models are first order, that these models are aspect free.

4 Possible Impact of Aspect Orientation on Domain Modelling

The immediate (and also rather dramatic) consequence of the absence of aspects from
first-order languages is that it frees all modelling languages that are (and are to re-
main) first order from having to introduce aspects as an additional modelling con-
struct. This may come as a disappointment to some, but should really be perceived as
a relief rather than a setback, as the following argumentation shows.

The main advantage of graphical models (diagrams) over programs (text) is that
they can express proximity in more than one dimension. In fact, literally all diagrams
use lines to indicate the relatedness of concepts (represented by boxes and other
shapes), thereby distinguishing conceptual proximity from the geometric one that re-
sults from diagram layout.10 However, aspect orientation breaks with the proximity
(“locality”) concept of a language [8], so that the principal advantage of graphical
over textual notations is lost. This explains why there seems to be no natural way of
integrating aspects into UML as a complementary concept (see, e.g., [3, 4, 13] for at-
tempts), an observation that should really come as no surprise, for subroutines (an-
other language construct that breaks with locality [8]) cannot be represented naturally
in flowcharts either. Seen this way, that everything can remain as is—at least for do-
main models—is good news.

Things get different, however, as soon as we switch from domain modelling to
metamodelling. Metamodelling requires a second-order language (a language that can
make statements about a language; cf. Section 5), in which aspects can be expressed.
This might turn out to be extremely handy.

As mentioned in Section 2.4, modelling itself has many aspects; it could in fact be
considered aspect oriented. An aspect language could be devised that allows one to
model modelling much more adequately than the metamodelling languages used to-
day (e.g., MOF or even UML); that allows the integration of functional and non-
functional views, of static and dynamic views, of analysis, design, and even deploy-
ment views (which all could be considered aspects in this aspect-oriented metamodel-
ling language) by suitable weaving techniques. The definition of such a metamodel-
ling language would include aspects as a modelling concept but, as argued above,
each concrete aspect would be a construct of the modelling language, not any domain
modelled with it. It follows that only if a modelling language is itself considered the
domain of modelling is it possible that we have an aspect in the domain. However, the
discussion of metamodels and their languages is not what this paper is about.

10 That related elements of a diagram are mostly also in geometric proximity of each other is a

tribute to readability, but neither necessary nor always possible.

Domain Models Are Aspect Free 181

5 Related Work

5.1 Aspects and Second Order

In order to exclude certain paradoxical expressions involving negation and self-
reference Russell introduced types to set theory and mathematical logics [29]. His
type theory has led to the distinction of first and higher-order logics and – by general-
izing the type concept – to the introduction of many and order-sorted logics (the latter
being the logical pendant to the type systems of OOPLs such as C++ and JAVA). In-
terestingly, as stated before both many and order-sorted logics are first order [18].

Somewhat related to Russell’s introduction of types is the work of Tarski and Car-
nap, who found in their investigations on the concept of truth that when speaking
about sentences in a language we must cleanly separate between object and metalan-
guage [28]. According to this distinction, the former is the language used to speak
about objects the in the world, while the later is used for the analysis of the former.
Metalanguage is inherently more expressive than object language, since it must con-
tain all sentences of the former plus a notion of truth and corresponding logical opera-
tions. Natural language permits paradoxes of Russell’s kind only because object and
metalanguage are the same. While all languages are products of the mind, the subject
matter of object language is the real word, whereas that of metalanguage is itself lan-
guage and as such un-real (in the literal sense of the word). Thus, metalanguages are
not needed to model reality and, more important for the claim of this paper, concepts
that can only be expressed by means of a metalanguage are not found in the modelled
domain.

Filman and Friedman have identified “quantified programmatic assertions” (“quan-
tification”) as a “distinguishing characteristic of AOP” [8]. As it turns out, (3) is a
formal paraphrase of their sentence

 “In programs P, whenever condition C arises, perform action A” [8] (4)

where P corresponds to M in (3), C corresponds to s(.), and A to a(…). That C is for-
mulated in terms of (the elements of) P and thus second order is implicit in the sur-
rounding text; obliviousness, the other defining characteristic of AOP, is also an im-
plicit consequence of (4), since the elements of P have no knowledge of the condi-
tions C. According to Filman and Friedman, no language (construct) that lacks quanti-
fication or obliviousness can be called aspect-oriented; since quantification involves
second-order statements, first-order languages are aspect free.11

Lopes et al. have also pointed out that the ability to reference parts of a program
(the programmatic equivalence of linguistic anaphora) is a (if not the) key contribu-
tion of aspect orientation [17]. Being able to reference what has just been said or
done, they argue, is the natural way of keeping specifications both concise and under-
standable. While I could not agree more with this, I note that this raises the program-

11 Deviating from my argumentation in Section 3.1, the authors view mixins and even general

inheritance as a form of quantification, since it induces statements of the form “for all classes
inheriting from me, add …”. However, neither programs nor models actually quantify over
the inheritance relationship; instead, they include explicit statements of inheritance so that
the “quantification” is in fact a finite (and explicit) conjunction; in particular, as argued in
Section 3.1, it is not second order.

182 Friedrich Steimann

ming language to the level of a metalanguage, since it involves sentences about sen-
tences. The subject matter of these meta-sentences is programming artefacts, which
are not themselves objects of the programmed domain.

5.2 Aspects and Roles

The relationship of aspects and roles has been investigated by several authors, for in-
stance [10, 11, 14]. Most of this work regards roles as adjunct instances [24], separate
objects which are the bearers of role-specific state and behaviour, but whose identity
is amalgamated with that of the role player. This would make role-related properties
extrinsic to the role-playing object (extrinsic in contrast to its own properties, which
would be regarded as intrinsic). Contrary to this view, I argue that the role-playing
ability of every object is intrinsic to it, since it must be made possible by its nature. In
fact, I prefer to view roles as abstract data types specifying role-related properties and
behaviour in the context of one or more collaborations, with the implementation being
provided by classes (since different role player classes will implement roles – or pro-
vide role-specific features – differently). The role playing of an instance then amounts
to that instance being assigned to a variable typed with the role (tantamount to the in-
stance taking part in a collaboration), letting instances pick up and drop roles dynami-
cally. Independent of how roles are being viewed, however, there seems to be consen-
sus that there are only few rather special roles that can be covered by aspects ([10]
and Section 2.1).

In contrast to its nature and its role-playing abilities (which, as argued above,
should be regarded as the intrinsic properties of an object) aspects in the aspect-
oriented sense add extrinsic properties and behaviour, namely features that are at-
tached to objects by reason lying outside their nature.12 This is why the definition of
an aspect can be kept in one place, with second-order expressions specifying where
these properties apply. It would appear that properties extrinsic to the objects of a
domain are also extrinsic to the domain itself, since the domain consists of only ob-
jects and their interactions; one could maintain, though, that it is these interactions as-
pects focus on, but this has not become evident so far (cf. below).

As for the claimed lack of polymorphism of aspects (Section 2.1): Ernst and Lo-
renz have argued that late binding of advice could be introduced, for instance based
on the actual (dynamic) type of the receiver of an intercepted method call [4]. How-
ever, Footnote 3 applies in full. In fact, Ernst’s and Lorenz’s exploration of the possi-
bility to add late bound methods to a statically binding language via aspects ([4, Sec-
tion 3.5]) is merely a theoretical contemplation and not meant to inspire the design of
new programming languages based on late-bound advice rather than methods.

The relationship of aspects and collaborations (of which roles represent the parici-
pants) mentioned in Section 2.1 also deserves further discussion. The definition of an
aspect and, in particular, aspectual collaborations [15] can involve roles, but these
roles are not themselves aspects. Surely, one could argue that if roles are valid model-
ling elements, then it is hard to see why an aspect defining the roles should not

12 Note that aspects can be used to implement adapters for classes (or entity types, see e.g. [20])

but this can also be done with adapter classes and makes sense only if the aspect weaver is
more flexible than the compiler.

Domain Models Are Aspect Free 183

equally be considered as a domain-level concept. In fact, a collaboration of objects is
identifiable at the same level as the objects themselves, and generalizing it (by intro-
ducing role types as placeholders for role players) does not raise it to a meta-level: for
instance, Printing is a collaboration that is on the same (domain) level as its roles
Printer and Printed. However, even though blending of collaborations and aspects is
possible [15], the two are not the same concept (after all, not all aspects involve
roles); a Printing aspect for instance would be largely infeasible, since the knowledge
of how to print/be printed is intrinsic to the role-playing objects. The aspect could
serve as a reification of the collaboration, but this does not seem to be what aspects
were intended for. All that remains is to add extrinsic behaviour, which is likely to be
extrinsic to the problem as well.

5.3 Early Aspects

Some authors (e.g., [1, 4, 22]) suggest methods for the discovery and handling of as-
pects in the non-functional and functional requirements of a software product (“early
aspects”). However, the language of requirements is largely informal, as is the au-
thors’ notion of an aspect. That a functional requirement crosscuts several others does
not suffice for it to be considered an aspect, at least not in the strict sense (such as
elaborated here or in [8], as reflected in (3) and (4)). Instead, one could argue that
“obliviousness” [8] is hardly a required property of a functional requirement, and that
all “quantification” in the requirements list is over this (finite) list of requirements so
that neither of the defining criteria of [8] for aspects is fulfilled. In fact, “candidate
aspects” identified at the functional requirements level are formally indistinguishable
from roles or plain old subroutine calls, and the claim of this paper is that in a domain
model, they end as such.

6 Falsification of My Thesis

Of course my position could be proven wrong simply by providing counterexamples.
However, I would conjecture that finding such examples is not as straightforward as it
might seem, since in order to be sufficient a counterexample must fulfil the following
criteria:

 the aspect must be an aspect in the aspect-oriented sense (in particular, it must
not be a subroutine or a role);

 it must not be an artefact of the (technical) solution, but must be seen as repre-
sentative of an element in the underlying problem domain; and

 its choice must have a certain arbitrariness about it so that the example provides
evidence that there are more aspects of the same kind, be it in the same or in
other domains.

184 Friedrich Steimann

7 Conclusion

Aspect-orientation has set off to augment all phases of software engineering – and
their artefacts – with the notion of an aspect. This would include the analysis phase
and with it object-oriented modelling of a problem domain. Although a full proof
would require more rigorous reasoning (including complete formal definitions of both
domain models and aspects, and widespread acceptance of these definitions), I believe
to have made plausible that domain models are, under generally accepted precondi-
tions, aspect free. This is in contrast to some of the published literature, which seems
to suggest that so-called functional aspects exist in the same right and frequency as
their more popular, non-functional siblings. As a result of my argumentation, domain
modelling is freed from the felt obligation to become aspect oriented.

Acknowledgments

The paper has profited from helpful comments from various anonymous reviewers.
Thank you for taking the time!

References

1. M Aksit, L Bergmans, S Vural “An object-oriented language-database integration model:
the composition-filters approach” in: ECOOP ’92 (1992) 372–395.

2. M Aksit, K Wakita, J Bosch, L Bergmans, A Yonezawa “Abstracting object-interactions
using composition-filters” in: R Guerraoui, O Nierstrasz, M Riveill (eds) Object-Based Dis-
tributed Processing ECOOP ’93 Workshop, Springer LNCS 791 (1994) 152–184.

3. J Araújo, A Moreira, I Brito, A Rashid “Aspect-oriented requirements with UML” Second
International Workshop on Aspect-Oriented Modelling with UML (2002).

4. ELA Baniassad, S Clarke “Theme: an approach for aspect-oriented analysis and design”in:
ICSE 2004 (2004) 158–167.

5. J Edwards, D Jackson, E Torlak “A type system for object models” in: RN Taylor, MB
Dwyer (eds.) Proceedings of the 12th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ACM 2004) 189–199.

6. T Elrad, O Aldawud, A Bader “A UML profile for aspect oriented modeling” in: OOPSLA
2001 workshop on Aspect Oriented Programming (2001).

7. E Ernst, DH Lorenz “Aspects and polymorphism in AspectJ” in: Proceedings of the 2nd In-
ternational Conference on Aspect-Oriented Software Development (ACM 2003) 150–157.

8. RE Filman, DP Friedman “Aspect-oriented programming is quantification and oblivious-
ness” in: OOPSLA Workshop on Advanced Separation of Concerns (Minneapolis, 2000).

9. M Fowler Refactorings: Improving the Design of Existing Code (Addison-Wesley, 1999).
10. KB Graversen, K Østerbye “Aspect modelling as role modelling” in: OOPSLA '02 Work-

shop on Tool Support for Aspect Oriented Software Development (2002).
11. S Hanenberg, R Unland “Roles and aspects: similarities, differences, and synergetic poten-

tial” in: Z Bellahsène, D Patel, C Rolland (eds) OOIS 2002 Springer LNCS 2425 (2002)
507–520.

12. WH Harrison, H Ossher “Subject-oriented programming (a critique of pure objects)” in: 8th
OOPSLA (1993) 411–428.

Domain Models Are Aspect Free 185

13. M Kande, J Kienzle, A Strohmeyer From AOP to UML: towards an aspect-oriented archi-
tectural modeling approach Technical Report, Swiss Federal Institute of Technololgy
(Lausanne, 2003).

14. EA Kendall “Role model designs and implementations with Aspect-Oriented Program-
ming” in: OOPSLA (1999) 353–369.

15. KJ Lieberherr, AJ Riel “Demeter: a case study of software growth through parameterized
classes” in: 10th ICSE (1988) 254–264.

16. KJ Lieberherr, DH Lorenz, J Ovlinger “Aspectual collaborations: combining modules and
aspects” The Computer Journal 46:5 (2003) 542–565.

17. CV Lopes, P Dourish, DH Lorenz, K Lieberherr “Beyond AOP: toward naturalistic pro-
gramming” in: OOPSLA'03 Special Track on Onward! Seeking New Paradigms & New
Thinking (ACM 2003) 198–207.

18. A Oberschelp “Untersuchungen zur mehrsortigen Quantorenlogik” Mathematische Annalen
145 (1962) 297–333.

19. OMG http://www.uml.org/
20. B Paech, B Rumpe “A new concept of refinement used for behaviour modelling with auto-

mata” in: M Naftalin, BT Denvir, M Bertran (eds.) 2nd International Symposium of Formal
Methods Europe Springer LNCS 873 (1994) 154–174.

21. A Rashid, P Sawyer, “Aspect-orientation and database systems: an effective customisation
approach” IEE Proceedings – Software 148:5 (2001) 156–164.

22. A Rashid, P Sawyer, AMD Moreira, J Araújo “Early aspects: a model for Aspect-Oriented
Requirements Engineering” RE (2002) 199–202.

23. T Reenskaug, P Wold, OA Lehene Working with Objects – The OOram Software Engineer-
ing Method (Addison-Wesley 1996).

24. F Steimann “On the representation of roles in object-oriented and conceptual modelling”
Data & Knowledge Engineering 35:1 (2000) 83–106.

25. F Steimann “A radical revision of UML’s role concept” in: A Evans, S Kent, and B Selic
(eds) UML 2000, Proceedings of the 3rd International Conference (Springer 2000) 194–
209.

26. F Steimann “Role = Interface: a merger of concepts” Journal of Object-Oriented Pro-
gramming 14:4 (2001), 23–32.

27. F Steimann, T Kühne “A radical reduction of UML’s core semantics” in: JM Jézéquel, H
Hussmann, S Cook UML 2002: Proceedings of the 5th International Conference (Springer,
2002) 34–48.

28. A Tarski “The semantic conception of truth and the foundations of semantics” Philosophy
and Phenomenological Research 4 (1944).

29. AN Whitehead, B Russell Principia Mathematica (Cambridge University Press, 1910).

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 186-200, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Representing and Applying Design Patterns:
What Is the Problem?

Hafedh Mili & Ghizlane El-Boussaidi

Laboratoire de Recherches en Technologies du Commerce Électronique (LATECE)
Faculté des Sciences, Université du Québec à Montréal

B.P 8888, succursale Centre-Ville, Montréal (Québec) H3C 3P8, Canada
{hafedh.mili, el_boussaidi.ghizlane}@uqam.ca

Abstract. Design patterns embody proven solutions to recurring design
problems. Ever since the gang of four popularized the concept, researchers have
been trying to develop methods for representing design patterns, and applying
them to modeling problems. To the best of our knowledge, none of the
approaches proposed so far represents the design problem that the pattern is
meant to solve, explicitly. An explicit representation of the problem has several
advantages, including 1) a better characterization of the problem space
addressed by the pattern—better than the textual description embodied in
pattern documentation templates, 2) a more natural representation of the
transformations embodied in the application of the pattern, and 3) a better
handle on the automatic detection and application of patterns. In this paper, we
describe the principles underlying our approach, and the current implementation
in the Eclipse Modeling Framework™.

1 Introduction

Software development may be seen as a sequence of property-preserving
transformations that are applied to a set of user requirements to produce a functional
software that satisfies a number of quality requirements [16]. Researchers have long
tried to describe those transformations precisely. However, doing so in a domain
independent way has proved elusive because of the vast amounts of both domain and
development knowledge that would be required. Design maintenance systems (see
e.g. [3]) break the process of development by transformation into, i) choosing a
transformation, which is a knowledge-intensive and complex task, but involving little
labor, and ii) applying a chosen transformation, which is labor-intensive but
knowledge poor. They, thus, focus on applying chosen transformations, and argue
that, by changing the requirements a bit, they can update the design by reapplying the
same set of transformations that were chosen for the initial requirements. To some
extent, the design patterns movement takes an orthogonal approach to design
maintenance systems : instead of focussing on small changes in the overall
requirements, they focus on localized, recurrent design problems, whose solutions
they codify [9].

Representing and Applying Design Patterns: What Is the Problem? 187

Since the publication of the gang of four book, several researchers have worked on
providing support to developers for applying design patterns, including [4], [5], [6],
[18], [1], and many more. Viewing design patterns as reusable artefacts, their usage
requires [13] :

 Recognizing opportunity : recognizing the pattern as a potential solution to
the problem at hand,

 Understanding the artefact : understanding the pattern, its structure, and the
principles underlying it, and

 Adapting the artefact: in this case, applying the pattern to the problem at
hand.

Each one of these tasks requires a particular representation of the pattern. To
recognize opportunity, we need a representation of the problem solved by the pattern
that we can match to a representation of the problem at hand. To understand the
pattern, we need a representation that is intuitive, typically mixing text with a visual
notation. The third task requires a representation of the transformation embodied in
the pattern.

The approaches that we have studied have tackled either the understanding task, or
the pattern application task (e. g. [2], [18], [17]), and sometimes both [7],[11].
Significant research in the software metrics area has addressed the opportunity
aspects, but does little for pattern understanding, or for performing the subsequent
refactoring—with a few exceptions, e.g. [19]. We know of no approach that tries to
handle all three tasks. We argue that a representation of the design problem is
required for all three tasks:

 We cannot ascertain the relevance of a design pattern to a design problem
without a formal characterization of the design problems that the pattern is
meant to solve,

 Proper understanding of the pattern requires that we understand the structure
of our software (its models) before applying the pattern, and after

 The application (instantiation) of the pattern may be expressed declaratively
as a mapping between a model of the problem and a model of the solution,
that can be implemented by a generic transformation engine.

In this paper, we describe our approach for representing and applying design
patterns. Section 2 presents the representation of the design problem, which is
illustrated using the bridge pattern. We describe the model of the solution and the
model of the transformation in section 3.We describe our EMF-based implementation
in section 4. We compare our approach to related work and discuss the issue of
assessing a pattern’s applicability in section 5. We conclude in section 6.

2 Modeling the Design Problem

2.1 Example: The Bridge Pattern

Figure 1 illustrates a situation that warrants the bridge pattern [9]. Assume that we
want to develop a program that manipulates graphical window objects, and that we
want our program to be portable across OS platforms (MS Windows, Unix-based,

188 Hafedh Mili and Ghizlane El-Boussaidi

etc.). A typical object-oriented design idiom consists of creating a root abstract
class—call it Window—that defines abstract methods that specify the behavioral
contract that the various implementations must provide. This solution is illustrated by
the left hand-side of Figure 1. Assume now that we want to define new types of
windows, e.g. square windows, which may provide additional behaviour (new
methods) or refine existing ones (e.g. providing a more optimal implementation of
some generic behavior). The extended design is shown on the right hand-side of
Figure 1: a new subclass of Window has been created—SquareWindow—and new
implementations of SquareWindow have been defined, one for each target platform.

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

Window

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowMSWin32

+getSide() : float

SquareWindow

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowXWindow

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

Window

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowMSWin32

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowXWindow

+display() : void
+move() : void
+getLength() : float
+getWidth() : float
+getSide() : float

SquareWindowMSWin32

+display() : void
+move() : void
+getLength() : float
+getWidth() : float
+getSide() : float

SquareWindowXWindow

Fig. 1. An example problem solved by the bridge pattern.

The solution proposed by the bridge pattern consists of decoupling
implementations from abstractions by putting them in separate class hierarchies that
can evolve independently. In particular, new implementation classes are needed only
in those cases where they provide new behaviour implementations. The example of
Figure 2 shows a case where a new abstraction (SquareWindow) uses the same
implementation as its parent (Window).

Figures 1 and 2 help explain the design pattern by showing a sample problem and
the corresponding solution, i.e. a <problem, solution> instance. We would like to
abstract, from this example, and from the textual pattern documentation, a
representation of the problem solved by the bridge pattern that would support the
three reuse tasks mentioned in the introduction. The subsequent subsections describe
our representation.

Representing and Applying Design Patterns: What Is the Problem? 189

+getRadius() : float

CircularWindow

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

-window : ImpWindow
Window

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

ImpWindow

* *

+getSide() : float

SquareWindow

float getSide() {
 return getLength()

}

void getLength() {
 return window.getLength();

}

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowXWindows

+display() : void
+move() : void
+getLength() : float
+getWidth() : float

WindowMSWin32

Fig. 2. The solution proposed by the Bridge pattern

2.2 A Metamodel of the Design Problem

Instances of the design problem solved by the bridge pattern are analysis and design
models of applications. To describe the class of problems solved by the pattern, we
will define a problem meta-model, i.e. a model whose instances are models such as
the one in Figure 1. Figure 3 shows a first-cut metamodel.

Fig. 3. A first-cut metamodel of the problem solved by bridge.

The classes Abstraction and Implementation are meta-classes in the sense that their
instances are classes such as Window or WindowMSWin32, respectively. The
associations labeled “inherits_from” represent inheritance relationships that exist
between instances of the corresponding classes. For example, such a relationship
exists between the two abstractions SquareWindow and Window (see Figure 1).
Similarly, there is an inheritance relationship between the implementation
SquareWindowMSWin32 and the abstraction SquareWindow. Note that, for the time
being, we don’t worry about what it means to be “an abstraction” or “an
implementation”. We interpret these (meta)classes as simple tags for now; we later
discuss their semantics.

Abstraction
-sub

0..*

-sup 0..1

inherits_from

Implementation
-sub

0..*

-sup 0..1

inherits_from

inherits_from

190 Hafedh Mili and Ghizlane El-Boussaidi

A metamodel of the problem should also include a description of the operations
that are affected by the pattern. The operations of the Abstraction’s will be abstract,
and the operations of the Implementation’s will be concrete. Further, each
Implementation must implement all of the abstract operations of the Abstraction from
which it inherits. We represent this constraint as a constraint between the association
“inherits_from”, between classes, and the association “implements”, between the
corresponding operations (Figure 4).

There is yet more to represent. We would normally need to capture return types
and parameters of the operations that are affected by the pattern. We should also
cover cases where Abstraction’s are not pure abstract classes, but may include some
implementations. To keep the model simple, we will ignore parameters1 and partially
abstract classes.

Fig. 4. A metamodel of the problem solved by the Bridge pattern. Take two.

2.3 The Missing Link: The Time Derivative!

To some extent, the various design patterns aim at shielding a client program from
changes in the functionality, the environment, or the implementation of another
program. Design patterns either make those changes transparent, or minimize their
maintenance impact.

We argue that the dynamic nature of the problem to be solved is an essential part
of the design problem, and as such, it needs to be captured explicitly. Consider the
case of the visitor pattern. This pattern is applicable when a class hierarchy is stable,
but the behaviours it supports (the set of methods) is not. Notice that if the set of
behaviours is stable, but the set of types is not, plain class inheritance works just fine.
Were we to use the same notation as in Figure 4, both situations would be
characterized by the same metamodel, missing the essence of the problem.

1 In our approach, what is not explicitly represented is assumed to be carried over, as is, from

problem to solution. Thus, ignoring parameters in this case, simply means that they won’t be
modified by the application of the pattern, which is true for Bridge.

Abstraction
-sub

0..*

-sup 0..1

inherits_from

Implementation
-sup

0..1

-sub

0..*

inherits_from

-sub

0..*

-sup 0..1

inherits_from

AbstractOperation ConcreteOperation

-def_class 1

-message 0..*
has-message

-imp_class 1

-method 0..*
has_method

-interface

1

-impl.

0..*

implements

{Homomorphism with has_method/has_message
}

Representing and Applying Design Patterns: What Is the Problem? 191

Accordingly, we decided to augment our problem metamodels by specifying those
aspects that change. By studying the various kinds of time changes, we were able to
reduce them all to changes in the cardinalities of some meta-level associations. For
example, both the Bridge and the Abstract factory pattern handle cases where the
number of subclasses of a given class is geared for frequent change. With visitor and
decorator, the number of operations associated with a class is geared for change.
Template method and strategy characterize cases where the number of
implementations of a given operation is geared for change. And so forth. We
represent these “time hotspots” by adding the symbol “++” to the cardinalities on the
appropriate association ends. Figure 5 shows the new metamodel of the problem
solved by Bridge. This model is saying that both the number of abstractions, and the
number of implementations per abstraction, are geared for change.

Fig. 5. A metamodel of the problem solved by Bridge, including the time hotspots.

2.4 A Language for Problem Metamodels

The previous example gave us some idea about the kinds of constructs needed by our
language. Note that concepts such as Abstraction or Implementation are not part of
the language primitives : the pattern designers (or documenters) can define any
metaclass and give it the meaning they want. However, these metaclasses must inherit
from the UML subset that is MOF compliant. Thus, while Abstraction and
Implementation are specific to the bridge pattern2, because they represent classes,
they must both be (UML) classifiers. Similarly, while AbstractOperation and
ConcreteOperation are specific to this pattern, the fact that they represent operations
means that they must inherit from the UML/MOF Operation.

We have also introduced the notion of family, which represents a set of entities of
the same type that share some characteristics, and that can be referenced or handled as

2 Actually, the notion of Abstraction and Implementation are used in several patterns, and may

be made part of a shared library of metaclasses.

Abstraction
-sub

0..*

-sup 0..1

inherits_from

Implementation
-sup

0..1

-sub

0..*

inherits_from

-sub

0..*

-sup 0..1

inherits_from

AbstractOperation ConcreteOperation

-def_class 1

-message 0..*
has-message

-imp_class 1

-method 0..*
has_method

-interface

1

-impl.

0..*

implements

{Homomorphism with has_method/has_message
}

++

++

++

192 Hafedh Mili and Ghizlane El-Boussaidi

a group. For example, we have the notion of class family that represents the set of
subclasses of a given class, or what Odell calls powertype [14]. We also have the
notion of method families that represents the set of methods that share some
characteristic (name, signature, return type, etc.). Other than these two modifications,
our metamodeling language is similar to UML’s metamodel. Our EMF™
implementation led us to make some adjustments, as we will see in section 4.

3 Representing the Solution and the Transformation

3.1 Representing the Solution

We used the same principles to represent the solutions produced by design patterns. In
this regard, our approach is not much different from metamodel-based representations
of design patterns, including [15], [1], [17], and [8]. Figure 6 shows a model of the
solution provided by the bridge pattern.

Fig. 6. A metamodel of the solution embodied by the bridge pattern.

The model is read as follows. We have a hierarchy of classes, representing
abstractions (RootAbstraction and Abstraction), that delegates processing to another
hierarchy of classes, representing implementations (RootImplementation and
ConcreteImplementation). Note that we need to distinguish root classes from other
classes in the tree, for both abstractions and implementations. Indeed, the root of the
implementation hierarchy is an abstract class while its descendants are concrete
classes that implement its interface. Interestingly, all of the classes of the abstraction
hierarchy are concrete classes that delegate their processing to the corresponding
methods on the implementation object.

RootAbstraction

-sub

0..*

-sup 0..1

inherits_from

RootImplementation
-interf

0..1

-impl

0..*

delegates_to

-sub

0..*

-sup 0..1

inherits_from

AbstractionOperation AbstractImplementationOperation

-imp_class 1

-method 0..*
has-method

-def_class 1

-message 0..*
has_message

-delegator

0..*

-delegatee

1

delegates_to

Abstraction

-sup1

-sub0..*

inherits_from

ConcreteImplementation

-sup1

-sub0..*

inherits_from

-imp_class

1

-method

0..*

has-method

-def_class

1

-message

0..*

has_message

ImplementationOperation

-imp_class

1

-method 0..*

has-method

-signature

1

-method1..*

implements

Representing and Applying Design Patterns: What Is the Problem? 193

Recall that, as was the case for the problem metamodel, the semantics of the
classes Abstraction and RootAbstraction are specific to the Bridge pattern, and we
are free to give them the meaning we want. Further, we don’t have to use the same
metaclasses that we used to describe the problem, since we will represent the
transformation from problem to solution, explicitly. We discuss the representation of
transformations in the next section.

The representation of solution models requires additional constructs that are not
needed for problem models. One such construct is the notion of constants or literals.
We have no need for literals in the bridge pattern, since all the operations that appear
on the solution side come from the problem. However, some design patterns introduce
methods and attributes that are supposed to appear as-is in the transformed model. For
example, the Observer/Observable pattern requires that observable objects implement
pattern-specific operations (notify(…), among others). Our representation language
accommodates the representation of literals.

3.2 Representing the Mapping from Problems to Solutions

Applying a design pattern consists of transforming an instance of the class of
problems solved by the pattern, to an instance of the class of solutions. Accordingly,
we can represent this transformation as a mapping from elements of the problem
metamodel (Figure 5) to elements of the solution metamodel (Figure 6). To apply the
transformation to a sample input model—an analysis or a design-level UML model—
we:

1) first map the problem (meta)model to the input model, to identify those
entities of the input model that match entities in the problem model, and

2) second, produce the output model by transforming those so-matched
entities (classes, associations, operations) according to the mapping, leaving
the others unchanged.

In essence, the first step identifies the entities in the input model that play the roles

described by the entities of the problem model. This step is typically referred to as
model marking, and the outcome is a marked (input) model. In the case of the bridge
pattern, we need to identify, in the input model, those classes that play the role of
Abstraction and Implementation. The so-marked classes will be transformed
according to the mapping.

Figure 7 shows a mapping metamodel, i.e. a model that represents mappings
between problem models and solution models. A <problem model,solution model>
mapping is represented by an instance of the class ModelMapping. For example, the
mapping from the bridge problem model (Figure 5) to the bridge solution model
(Figure 6) is represented by an instance of ModelMapping. An instance
<model1,model2> of ModelMapping is an aggregation of, i) mappings between their
classes (classes of model1 and classes of model2), and ii) mappings between their
associations. In turn, the mapping between two classes (an instance of
ClassMapping) is an aggregation of, i) mappings between attributes (instances of
AttributeMapping), and ii) mappings between operations (instances of
OperationMapping). And so forth.

194 Hafedh Mili and Ghizlane El-Boussaidi

Fig. 7. A model for representing mappings between problem models and solution models.

All of the mapping classes inherit from ElementMapping. Each mapping has a
source element, a destination element, and a description of how the source element is
transformed into the destination element (attribute “transformation” of the class
ElementMapping). The source and destination are instances of the class Element (with
grey background), which represents MOF’s ModelElement. A mapping with no
source element means an element that is added by the application of the pattern. A
mapping with no destination element means an element that is removed by the
application of the pattern.

4 Implementation

We have implemented our representation of design patterns, and the transformation
procedure in the Eclipse™ environment using the Eclipse Modeling Framework™.
EMF is a modeling framework that supports code generation and XMI-based
persistence. EMF includes a package—called ECore—that provides a simplified
implementation of MOF. Section 4.1 describes the implementation of the various
metamodels (problems, solutions, and mappings). The transformation algorithm is
described in section 4.2.

-transformation
ElementMapping

CompositeElementMapping

*

*

TypedVarMapping

ParameterMapping

TypeMapping

ModelMapping ClassMapping OperationMappingAssociationMapping

1 0..*

1 0..*

1 1

1 1

1

0..*

1

0..*

AttributeMapping

1

0..*

0..*

1

-nom : String
Element

0..* 0..1

source

0..* 0..1

destination

Representing and Applying Design Patterns: What Is the Problem? 195

4.1 Common Metamodel for Problems and Solutions

Figure 8 shows the common metamodel for representing problem models and solution
models of design patterns. Initially, we planned to represent this metamodel as an
instance of EMF’s ECore package. This model would then be instantiated to describe
problem models and solution models for specific patterns. Those models would, in
turn, be instantiated to represent specific application models. Developers, working in
the Eclipse environment with the EMF plug-in, would then load representations of
various patterns (problem models, solution models, and mappings) from secondary
storage, and apply them to the application models they are working on. However,
EMF’s built-in serialization mechanism supports the XMI serialization of only those
models that have ECore (or an extension thereof) as a metamodel. Accordingly,
instead of defining our pattern metamodel as an instance of ECore, we implemented it
using an extension of ECore classes. Figure 8 shows the metamodel, which we will
comment briefly. The ECore classes correspond closely to MOF entities (and to
UML’s meta-meta-model), and are greyed out.

First, in order to define a new metamodel, and thus, a new type of models, we have
to define a subclass of EPackage, and register the new metaclasses within this
subclass. In our case, this subclass is called ModelPackage. Figure 8 shows a class
ModelClass, that extends the ECore class, EClass. ModelClass represents all the
classes that appear within problem models or solution models. In our bridge example,
the classes Abstraction and Implementation, from the problem model, and
RootAbstraction, Abstraction, RootImplementation, and Concrete-Implementation,
from the solution model, are all instances of ModelClass.

The class ModelOperation is used to represent all kinds of operations, be they
virtual (abstract), concrete, or literal. Two boolean instance variables are used to
distinguish between the various types: «abstract » and « literal ». Note also that we
extended the ECore class EReference by our own ModelReference class in order to :
1) be able to represent inheritance relationships at the meta level (SubtypeReference),
and 2) to represent the time variability of the cardinality, i.e. the so-called time
hotspots (symbol ++ used in Figure 5).

4.2 Implementing the Transformation

We implemented model mappings in a similar fashion to problem and solution
models : by extending ECore classes. As for the transformation algorithm itself, it
takes three inputs:

1) the input model that we wish to transform, with properly marked entities
2) the mapping between the problem model and the solution model, and
3) the solution model

196 Hafedh Mili and Ghizlane El-Boussaidi

Fig. 8. Implementing the metamodel for pattern problem models and solution models in EMF.

The transformation engine uses a recursive algorithm, starting with aggregate,
maps it to an empty aggregate on the destination side, and then recursively maps its
components. For example, starting at the highest level, given the marked input model,
we first generate an empty destination model, and then transform the classes in the
input model, putting their transforms in the destination model. The same is true with
classes, where we first generate en empty class, and then map its attributes and
operations.

Notice that the same <problem --> solution> mapping may be applied to several
entities in the input model. In the bridge pattern, for example, the mapping

0..1

ModelParameter

classAttributes

classOperations

modelClasses ModelPackage

ModelAttribute

litteral : boolean

ModelOperation

abstract : boolean
litteral : boolean
variationType : VariationType

ModelClass

isModelSuperType(someModelClass : ModelClass)

ModelReference

enableExtension : boolean

EPackage

EClass

EClassifier

EOperation

EReference

containment : boolean

EParameter

EAttribute

1..*

0..*

classReferences

0..*

0..*operationParam
eters

0..*
implements

0..1

ETypedElement

ordered : boolean = true
unique : boolean = true
lowerBound : int
upperBound : int = 1

EStructuralFeature

TypeParameter

eType

specializes

eOpposite
0..1

eReferenceType
0..1

1

«enumeration»
VariationType

- isNotVariationPoint : 0
- isSateDepenedent : 1
- hasDifferentAlgorithms : 2
- otherVariationType : 3

ClassFamily

ImplementReference SubtypeReference

Representing and Applying Design Patterns: What Is the Problem? 197

<Implementation --> ConcreteImplementation> will be applied to all the classes in the
input model that have been marked by the Implementation tag.

5 Discussion

5.1 Related Work

Ever since the publication of the GOF patterns, the representation and application of
design patterns has received a lot of attention. Several approaches have been
proposed, depending, in part, on the way design patterns are used. In the so-called
top-down approach [6], developers instantiate a design pattern by specifying its
components, as in [15] [6] [5] [1] [11] [8]; Budinsky et al.’s work on code generation
by pattern instantiation may be seen as a special case [4]. The bottom-up approach
consists of identifying perfect instances (hits) or imperfect ones (near hits) of specific
design patterns, as in [5] [1], [10]. A hybrid approach attempts to re-engineer existing
models to make them conform to a specific design pattern, as in [2] [5] [18]. Clearly,
each one of these three usages has its own representational requirements.

Those approaches that set out to provide an explicit representation of design
patterns were limited to the structural aspects (object model). Some approaches used
meta-models to represent design patterns, while others simply offered a set of models,
with no concern for a common, pattern-specific metamodel. In either case, the
representation focused on the description of the solution : what the instantiated pattern
will look like. This was the case for most of the top-down, forward-engineering
approaches, which used design patterns as design templates that needed to be
instantiated. However, we know of no approach that attempted to represent the
problem; the work of Budinsky et al. may be the exception that confirms the rule [4]:
the problem was described using natural language, according to the GOF pattern
documentation template [9], but that description didn’t lend itself to formal
processing. To the best of our knowledge, our work is the only one that attempts to
represent the problem explicitly. Such a representation enables us to formally
characterize those situations where the pattern is appropriate. Such a representation
would also enable us to specify the transformations that are embodied in the pattern.
The time variability aspect—what we called time hotspots—is also unique to our
approach, and we consider it to be a central aspect of the design problem solved by
the design pattern.

With regard to the transformations, only those approaches that focussed on re-
engineering existing models with patterns did provide an explicit representation for
the transformation [2],[18],[19]. However, in such cases, the structure of the pattern
itself is not explicit: it is embodied in the transformation. In our case, both the
structure of the pattern, and the transformation embodied in its application, are
represented explicitly. Further, the transformation is specified declaratively, making it
possible to develop a generic, pattern-independent transformation engine (see section
4.2) that takes a marked input model, a pattern mapping model, and a pattern solution
model, and produces a properly transformed output model.

198 Hafedh Mili and Ghizlane El-Boussaidi

5.2 Problem Model Semantics and Marking

In our current implementation, the entities that belong to problem models or solution
models (e.g. Abstraction, Implementation) have no proper semantics. The only
semantic constraints are inherent in their type (whether the entities represent a class or
an operation) or in the relationships they have to other entities within a given problem
(or solution) model. For example, if we look at the bridge problem model, we only
know that Abstraction’s have AbstractOperation’s, and that Implementation’s have
ConcreteOperations, but we don’t know what either concept means, beyond the fact
that Abstraction and Implementation are classes, and AbstractOperation and
ConcreteOperations are operations.

One way of capturing the semantics of these entities is to provide membership
predicates for them that test a subset of the properties that are typically represented in
input models, either directly—stored properties, such as the scope of a feature
(instance versus class)—or implicitly –computed, such as the number of associated
entities of a particular type. For example, we would define AbstractOperation as an
operation that is, well, abstract, which is a property that is captured by the EMF
metamodel—the class EOperation has such an attribute. Similary, Abstraction can be
defined as a class whose methods are all abstract. Clearly, such a definition is useful
in many patterns, and may be included in a library of such (meta)modeling concepts
that are shared between several patterns. Pattern writers and documenters would have
the option of using such concepts as is, extending them, or composing them—through
mutiple inheritance.

We considered many languages for expressing membership predicates, including
OCL, the early drafts of the (upcoming?) QVT standard (Query, View,
Transformation), and a number of object-rule languages (e.g. JESS, ILOG JRules,
OPSJ). We chose object-rule languages (and JRules in particular), because of their
expressive power and because of the availability of mature, high performance tools
for interpreting rules on Java objects. The following two rules, used to illustrate the
syntax, show two ways of identifying abstract classes. We assume in this case that the
class Abstraction is stored in a static member of our metaclass ModelClass, with the
name ABSTRACTION.

rule mark_abstract_classes {
when {
 ?aClass: EClass (isAbstract());
} then {
 modify ?aClass {tag = ModelClass.ABSTRACTION;}

}
}
rule mark_abstract_classes_from_operations {
when {
 ?aClass: EClass();

not EOperation(isConcrete()) in ?aClass.getEOperations();
} then {

modify ?aClass {tag = ModelClass.ABSTRACTION;}
}

}

Representing and Applying Design Patterns: What Is the Problem? 199

The first rule uses a simple test : the result of (actual) boolean method “boolean
isAbstract()” on EClass. The second rule matches any EClass (any class in an input
model) such that none of its operations are concrete3, and marks it as an abstract class.
Thanks to rule chaining, we could have tags that depend on complex patterns being
built up incrementally, starting with simpler patterns. In fact, the entire problem
model itself can be written as one (or several alternate) rule(s) that use pre-assigned
tags [12].

 There remains one aspect that membership predicates cannot capture: the probable
evolution scenarios of the input model, which would make a design pattern a
desirable alternative. This information is dynamic and will not be implicit in the input
object model, which provides only a snapshot of the target application at the present
time. There are two possible strategies for capturing this information. First, we make
it a property that designers or analysts will have to enter before they can submit their
models for marking. Experienced analysts and designers, with some knowledge of the
application domain (e.g. a product line) will know this information but, conceivably,
our tool can prompt analysts or designers for potential “time hotspots”—themselves
following specific patterns. Second, we can look at consecutive versions of the same
software to determine which parts have evolved and how, and use that information to
identify the time hotspots. This second approach requires no judgement, but will only
work for long-lived software whose source code, throughout several versions, is
available.

6 Conclusion

Our work deals with providing developers with a repository of reusable model-based
artifacts, and with the tools needed to assist them in using those artifacts. Developing
with reuse involves three main tasks, 1) evaluating the opportunity of using an artifact
for the problem at hand, 2) understanding that artifact, and 3) integrating the
artifact—typically through model transformation—in the system at hand [13]. In this
paper, we dealt specifically with the issue of representing and applying/enacting
design patterns. Our approach relies on an explicit and precise description of the
design problem solved by a given pattern. This description, provided in the form of a
meta-model, supports the three reuse tasks.

Our approach is generic and consistent with model-driven engineering.
Recognizing the opportunity for reusing a design artifact—design pattern in this
case—remains a big challenge, similar to model marking in the context of MDA. One
reason is that design problems come from non-functional requirements, which are
usually not explicitly represented (or representable with available notations) in
software models. To some extent, design patterns are point solutions, or
implementations, for a general design requirement: provide model resilience through
functional requirements change. Specifically, each design pattern addresses the
general design requirement for a specific functional pattern, which can be
characterized as the combination of a static structure, and an evolution pattern. To this

3 There is no such method on org.eclipse.emf.ecore.EOperation. This is shown for illustration

purposes only.

200 Hafedh Mili and Ghizlane El-Boussaidi

extent, we believe that our representation of design problems, which captures both the
static structure of a functional pattern, and its evolution patterns, is a step in the right
direction.

References

1. Albin-Amiot, H., Guéhéneuc, Y.G.: Meta-modeling Design Patterns: application to pattern
detection and code synthesis. Proceedings of ECOOP Workshop on Automating OO
Software Development Methods, 2001.

2. Alencar, P.S.C., Cowan, D.D., Dong, J., Lucena, C.J.P.: A transformational Process-Based
Formal Approach to Object-Oriented Design. Formal Methods Europe FME’97, 1997.

3. Baxter, I.: Design Maintenance Systems. Communications of the ACM, vol. 35, no. 4,
(1992) 73-89.

4. Budinsky, F.J., Finnie, M.A., Vlissides, J.M., Yu, P.S.: Automatic Code Generation from
Design Patterns. IBM Systems Journal, vol. 35, n° 2, (1996) 151-171.

5. Eden, A.H., Gil, J., Hirshfeld, Y., Yehudai A.: Towards a mathematical foundation for
design patterns. Technical report, dep. of information technology, Uppsala University,
1999.

6. Florijn, G., Meijers, M., van-Winsen, P.: Tool support for object-oriented patterns. Lecture
Notes in Computer Science, vol. 1241, (1997) 472-495.

7. Fontoura, M., Lucena, C.: Extending UML to Improve the Representation of Design
Patterns. Journal of OO Programming, vol. 13, n° 11 (2001).

8. France, R., Kim, D.k., Ghosh, S., Song, E.: A UML-Based Pattern Specification
Technique, IEEE Trans. on Software Engineering, vol. 30, n° 3, (2004) 193- 206.

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995).

10. Guéhéneuc, Y-G., Sahraoui, H.: des signatures numériques pour améliorer la recherche
structurelle de patrons. Proceedings of Langages et Modèles à Objets 2005, Berne, Suisse,
(2005).

11. Maplesden, D., Hosking, J., Grundy, J.: Design Pattern Modelling and Instantiation using
DPML. Proceedings of 14th International Conference on Technology of OO Languages
and Systems (2002).

12. Mili, H., El-Boussaidi, G.: Design patterns : recognizing opportunity through rule-based
semantic marking. LATECE Technical report, LAT-2005-12 (2005).

13. Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse-Based Software Engineering: Techniques,
Organization, and Control. John Wiley & Sons, (2002) ISBN 0-471-39819-5.

14. Odell, J.: Power Types. Journal of Object-Oriented Programming (JOOP), (1994).
15. Pagel, B-U., Winter, M.: Towards Pattern-Based Tools. Proc. of EuropLop (1996).
16. Partsch, H., Steinbruggen, R.: Program Transformation Systems. Computing Surveys, vol.

15, no. 3, (1983) 199-236.
17. Sanada, Y., Adams, R.: Representing Design Patterns and Frameworks in UML, Towards

a Comprehensive Approach. Journal of Object Technology, vol. 1, n° 2, (2002)143-154.
18. Sunyé, G., Le Guennec, A., Jézéquel, J.M.: Design pattern application in UML. Proc. of

the 14th Object Oriented Programming European Conference, (2000) 44-62.
19. Tahvildari, L., Kontogiannis, K.: Improving Design Quality Using Meta-Pattern

Transformations: A Metric-Based Approach. The Journal of Software Maintenance and
Evolution: Research and Practice, John Wiley Publishers, Volume 16, Issue 4-5, (2004)
331-361.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 201-216, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Properties of Stereotypes from the Perspective of Their
Role in Designs

Miroslaw Staron, Ludwik Kuzniarz

Department of Systems and Software Engineering
School of Engineering

Blekinge Institute of Technology
Ronneby, Sweden

(miroslaw.staron, ludwik.kuzniarz)@bth.se

Abstract. Stereotypes in object-oriented software development can be
perceived in various ways and they can be used for various purposes. As a
consequence of these variations, assessing quality of stereotypes needs to be
purpose-specific. In this paper we identify eight types of stereotypes and
provide a set of criteria for assessing quality of stereotypes. The criteria for
each type are formed by a set of properties that characterizes its stereotypes.
The identified types are based on the purpose of each stereotype (its role in
designs) and its expressiveness. We identified the types of stereotypes and their
properties in an empirical way by investigating stereotypes from UML profiles
used in industrial software development. The properties are intended to be used
in our further research for developing guidelines for creating and using
stereotypes in a more efficient way.

1. Introduction

Extending a set of modeling abstractions with dedicated constructs for modeling
specific purposes is an important issue in using the Unified Modeling Language
(UML, [1, 2]) for model-driven development. This general-purpose language is
known to have limitations and its extensions can be seen as a means of overcoming
some of those issues. One of the extension mechanisms in UML is the notion of
stereotype. Stereotypes are means of branding the existing UML modeling elements
with new semantics and properties. The notion of stereotypes, however, was
introduced into object-oriented software development before the creation of UML and
MDA when the stereotypes were used in a different manner than in UML.

In order to properly create and use stereotypes, modelers should be able to assess
whether their stereotypes are appropriate for the purpose – i.e. assess the quality of
the stereotypes. Thus, we perceive the quality of stereotypes from one dimension
which is fitness for the purpose. In order to assess the quality we elaborate the
properties which the good stereotypes should possess. The criteria for quality
assessment of stereotypes can created based on finding common properties of existing
stereotypes which are known to be appropriate for their purposes (an alternative way
is to arbitrarily set criteria for assessing the quality). The purposes, which were
identified in our previous studies, are organized into categories according to the roles

202 Miroslaw Staron and Ludwik Kuzniarz

of stereotypes [3]. The identified properties of stereotypes can be used within a
proposed lightweight process for assessing quality of stereotypes which is presented
in Fig 1. The process is based on finding common properties of a set of reference
stereotypes that are known to be well suited for their purpose. The stereotypes are
presented as SR. The criteria identified, based on investigation of SR, are used to
assess quality of other stereotypes (assessed stereotypes – SA) in the process. In order
to assess the quality of SA they must be classified (outlined in Sect. 7). The outcome
of quality assessment process is an assertion whether the stereotype is good (i.e.
appropriate for its purpose) or not.

Fig. 1. A process of assessing quality of stereotypes

In this paper we focus on the way in which a set of criteria for assessing quality of
stereotypes can be identified by extracting desired properties of good stereotypes
(shadowed part in Fig. 1) hence we address the following research question:

How to elaborate quality assessment criteria for new stereotypes based on
existing stereotypes which are known to be “good”?

In this research question we identify the need for quality assessment criteria to be
based on existing good practices of creating stereotypes. In our approach the
identification of the properties, and their subsequent analysis, is done in an empirical
way by investigating a set of 98 stereotypes used in practice. These stereotypes are
grouped into profiles, which are standardized or used in companies developing UML
tools and realizing the vision of model-driven software development. In the criteria
elaboration we group stereotypes using categories from two classifications of
stereotypes. Initially three classifications of stereotypes were considered: (i)
according to their role, (ii) according to their usage scenarios [4, 5], and (iii)
according to their expressiveness [6]. Based on our experiment it was found that only
two classifications should be considered: (i) and (iii). Based on the results of
classifying stereotypes we elaborated types of stereotypes. The type of a stereotype is
a pair which consists of two categories to which the stereotype is classified – (CR,
CE); where CE is a category in classification according to expressiveness and CR is a
category in classification according to role. After elaborating the types we examined
the stereotypes of each type thoroughly to identify common properties of stereotypes
of each type. The properties of stereotypes we consider subsets of the following:

 kinds of data types of tag definitions (these kinds can be either data types
defined in the UML metamodel or custom defined),

 kinds of the base classes the stereotype extends (concrete of abstract classes),
 kind of constraints the stereotype have,
 kind of concrete syntax (icons or guillements), and
 what kind of abstraction the stereotype should represent.

Properties of Stereotypes from the Perspective of Their Role in Designs 203

The first four properties are used to characterize stereotypes of each type. The last
property is used to differentiate between types and is the basis for developing
guidelines on how to choose a type of stereotype appropriate for the purpose under
consideration. The guidelines are the core of our current work.

The outline of the paper is as follows. The most relevant related work in the field is
presented in Sect. 2. In Sect. 3 we outline the evolution of the notion of stereotype in
object-orientation and in Sect. 4 we describe the classifications used in our analysis.
The design of the empirical investigation of stereotypes is presented in Sect. 5 which
contains the identification of types of stereotypes. In Sect. 6 we present the properties
of identified types of stereotypes. Sect. 7 suggests how the properties are to be used to
assess the quality of stereotypes and Sect. 8 contains conclusions and outlines our
further work.

2. Related Work

Stereotypes have been given a special attention together with the idea of the Model
Driven Architecture (MDA, [7]) which is gaining popularity. The idea of models
being main assets in modern software development strives for more precise models
and more flexible languages to create them. As stereotypes are the main extension
mechanism providing some flexibility for UML, they were evaluated in several ways
by analyzing different ways of using and defining them (e.g. [8-11]). Although the
stereotypes are found to be very suitable for lightweight language customization, none
of the analyses performs a formal empirical study on stereotypes, which is a presented
in our research.

An alternative to using stereotypes for customizing UML is to extend the
metamodel of UML – i.e. to facilitate the technique of metamodeling. There exists an
extension of the classification of stereotypes according to expressiveness. It is a
classification of various kinds of metamodel changes developed in [12] which
attempts to classify the metamodel extensions into two categories: regular metamodel
extensions and restrictive metamodel extensions. The classification can be used if one
wants to extend our study from stereotypes to metamodel extensions.

The analysis methods for the auxiliary study presented in our paper are based on
the analysis methods used in [13]. One of the results from the study (on defect
classification) is that the poor agreement between classifiers can be caused by the fact
that the classifiers are not the creators of the classified objects. To some extent this
claim is valid in case of our study.

An empirical approach to verification of a small-scale classification schemes in the
context of requirement engineering has been done in [14]. One of the outcomes of that
study is that the classification result depends on the role of the classifier and that even
classifiers that are well into the domain of the built system need a considerable time in
order to classify a single requirement. Furthermore, a considerable amount of time
was required for getting insight into the understanding of the differences between
classifiers. The design of our study also used the same means of getting insight of the
classification process performed by each subject in the auxiliary study.

204 Miroslaw Staron and Ludwik Kuzniarz

3. Stereotypes in UML

The idea of stereotyping was first introduced into software development by Rebecca
Wirfs-Brock, who used the concept of stereotype to classify objects according to their
“modus operandi” [15, 16]. Wirfs-Brock’s original intention behind the usage of
stereotypes was similar to the aforementioned view of stereotypes in other areas i.e. as
a way of oversimplifying the view of objects’ role or behavior. She used a fixed set of
stereotypes, useful in characterizing the special roles of objects in the system.

An approach which is similar to Wirfs-Brock’s of using stereotypes as a secondary
classification of elements was adopted by the OPEN (Object-Oriented Process
Environment and Notation) Modeling Language – OML [17]. Its designers perceived
a stereotype as “a facility for metaclassification”. The initial set of stereotypes in the
language was restricted (c.f. [17]), although it was divided into several groups of
stereotypes (for example object, class and type stereotypes).

UML also contains a definition of stereotypes, but it specifies them as one of the
possible extension mechanisms of the language. In UML, the stereotypes are a way of
adding a new semantics to the existing model elements. They allow branding the
existing model elements with new semantics, thus enabling them to “look” and
“behave” as virtual instances of new model elements [2, 18]. They are no longer seen
(at least directly in the specification) as a way of additional classification of model
elements, according to their “modus operandi”, but rather as a way of introducing new
elements into the language, thus providing additional modeling abstractions (or
providing means of adding secondary classification of the existing modeling
abstractions – c.f. [9]).

During the evolution of UML (from version 1.1 [18] to 1.5 [2]), the definition of
stereotypes in the UML metamodel has not changed significantly, although it
underwent minor revisions due to the changes in the definition of other extension
mechanisms (mostly tagged values, which evolved from being merely additional
information for code generators in UML 1.1 specification towards virtual links
between metamodel elements – tag definitions – in UML 1.3 and later). With a
growing UML tool support for this mechanism the stereotypes are beginning to play a
major role as a means of realizing the provision of UML as a family of languages
rather than a one-fits-all modeling language [19].

In UML 2.0 [1], stereotypes are seen as a special kind of meta-classes that allow
creating new modeling constructs. The constructs created in this way are intended to
be as similar as possible to the original modeling constructs defined in the language
specification. As far as the usage of stereotypes is concerned, the notion of
stereotypes does not differ in UML 2.0 (compared with UML 1.x), but the way in
which stereotypes are defined is more coherent with respect to the different levels in
the four-layer metamodeling architecture.

4. Classifications of Stereotypes

Two classifications of stereotypes are considered in the course of identifying
properties of “good” stereotypes. The classifications are developed independently and
classify stereotypes based on distinct criteria. The classifications are summarized in

Properties of Stereotypes from the Perspective of Their Role in Designs 205

this section, while the details of them can be found in the papers where they are
originally defined.

4.1. Classification of Stereotypes According to Their Expressiveness

Berner et al. [6] examined the notion of stereotype independently from object
orientation within the context of modeling languages with the focus on classifying
stereotypes. Their work introduced a classification of stereotypes according to the
expressiveness of the stereotype, i.e. according to the amount of changes in syntax
and semantics they introduce to the base model element. In their work the authors
distinguished between four categories of stereotypes (denoted as CE while defining
the type of stereotype):
1. Decorative stereotypes, i.e. stereotypes which do not change the semantics of a

language element, but change its concrete syntax (graphical representation),
2. Descriptive stereotypes, i.e. stereotypes which modify the abstract syntax of a

language element and define the pragmatics of the newly introduced element
without changing the semantics,

3. Restrictive stereotypes are descriptive stereotypes which modify the semantics of a
language element,

4. Redefining stereotypes, which redefine a language element by changing its original
semantics, w. r. t. syntax, they are similar to the restrictive stereotypes.

The classification attempts to address the complexity of a stereotype definition and
provides guidelines for applying the different kinds of stereotypes. Although the
classification addresses the problems of how stereotypes change the extended model
element, it seems to neglect the problems of practical aspects of mechanisms for
supporting stereotypes and the metamodeling levels that the stereotype definition
concerns.

The classification aims in answering the question: “What changes does the
stereotype make to the base model element?”

4.2. Classification of Stereotypes According to Their Role

It is not always the case that the classifications presented above categorize the role of
a stereotype in modeling. Therefore there is a need for a classification of stereotypes
based on the usage of stereotypes in software development thus capturing this role.
We use the classification to categorize the notion of stereotype within the context of
practical usage and introduction of stereotypes into software development, especially
customizing UML tools. The classification organizes the stereotypes into three
categories (denoted as CR while defining the type of stereotype):
1. Code Generation stereotypes. They are aimed at making code generation rules for

specific programming languages more precise and detailed, e.g. [20], intended to
provide abstractions from a target programming language in order to model
software using the “vocabulary” of the target programming language. Specific
code generators are usually created together with the specific sets of stereotypes for
code generation.

206 Miroslaw Staron and Ludwik Kuzniarz

2. Virtual Metamodel Extension stereotypes. They are used to extend the set of UML
modeling elements and perhaps to create a new “dialect” of UML, e.g. [21],
intended to provide abstractions denoting new modeling constructs which are not
present in the standard UML. For example these stereotypes can be used to add a
“vocabulary” from another notation into UML (e.g. SPEM Profile, [22]).

3. Model Simplification stereotypes. They are used as an “oversimplification” of
modeling elements (e.g. denoting the role of the stereotyped model element in the
design), e.g. [16], intended to be created by individual modelers in an informal
way. The majority of these stereotypes are used to distinguish between elements –
denoting a specific purpose of the element or its role.

The detailed description of the categories is presented in [3]. The classification is
based on the use of stereotypes in software development and in particular the purpose
for which they are used in UML models. The proper categorization of a stereotype in
this classification allows choosing the proper way of using the stereotype in UML
tools.

The classification aids in answering the question – “What is the role of the
stereotype in the design?”

5. Investigation of Profiles

A previous step that we conducted of identifying the properties of stereotypes was a
study on comparing the classifications of stereotypes. In that study we have found that
only two classifications can be used for the purpose of evaluation of quality: (i)
classification according to expressiveness, and (ii) classification according to role.
The third classification (the classification according to usage scenarios [4, 5]) is not
considered in our study as it was found that all stereotypes in the studied profiles were
categorized into one category only – i.e. type classification category.

In this paper, the set of investigated stereotypes is extended to 98 stereotypes
(compared to 68 stereotypes in the previous study). The stereotypes are part of
established and standardized profiles by Object Management Group (OMG): UML
Profile for Software Development Processes [2, pp. 4-3 to 4-9], UML Profile for
CORBA [23]; UML Testing Profile. Furthermore, we investigated profiles developed
by companies and used by them: JNX profiles used by a company which developed
an MDA framework [20, 24]; and profiles available in a UML 2.0 tool (Telelogic Tau
[25]): TTDApplicationBuilder profile, TTDExport profile, and
TTDCppAppGeneration profile. The fact that the profiles are standardized and used
in industry allows using them as a set of reference stereotypes in the lightweight
process of assessing quality of stereotypes.

5.1. Operation of the Study

The operation of the study is summarized in Fig. 2, where each oval represents a step
taken during the study. Steps 1 and 5 are the main classification study. However, in
order to increase the internal validity of the study, additional steps were required.
Before classifying all stereotypes, the appropriateness of the classifier was verified by
comparing the classifier’s classification results to classifications of other subjects.

Properties of Stereotypes from the Perspective of Their Role in Designs 207

Thus steps 2 through 4 are introduced as
auxiliary steps used to verify the
instruments before the classification study
in step 5.

Using only one classifier during the
study was caused by the fact the there is a
substantial amount of time required to
classify all stereotypes. This makes it hard
to involve many subjects with appropriate
knowledge for classification of all 98
stereotypes.

5.2. Auxiliary Experiment

The auxiliary study was conducted with
two additional subjects. The study was
performed in an academic environment

with doctoral students classifying a subset of thirteen stereotypes. The subjects (and
the classifier) possessed the necessary knowledge of stereotypes and they also
participated in other studies on stereotypes. They were sufficiently experienced in
modeling, object orientation and programming. The study afforded us with the
possibility to observe whether different individuals have different understandings of
the criteria used in classifying stereotypes. The results from the classifications of three
subjects were analyzed with Kappa statistics [26]. The Kappa statistics measures the
agreement between pairs of the variables (in this case the classification results
obtained from each subject). In order to use the statistics the categories were
translated to numeric values on the nominal scale. The values of the Kappa statistics
are presented in Table 1 for the two subjects in the study (denoted as S1 and S2) and
the classifier performing the classification on the whole set of 98 stereotypes (denoted
as C).

Pair Kappa value Significance level Agreement level

(according to [26])
C – S1 0.24 0.0220 Fair
C – S2 0.39 0.0001 Fair
S1 – S2 0.09 0.4020 Poor

Table 1. Summary of Kappa statistics

The results indicate that there is a poor agreement (statistically non-significant – the
significance level is above 0.05) between subjects S1 and S2. However, the subjects’
classifications are in fair agreement with the classification done by the classifier of the
whole set of stereotypes (fair agreement with both subjects, significant at the levels of
0.022 and 0.0001 respectively for C-S1 and C-S2). The fact that the subjects were in
agreement with the classifier supports the decision of choosing C as the classifier for
the whole set of stereotypes at the same time minimizing the risk of obtaining an
incorrect classification. Nevertheless, the fair agreement level indicates that there is a
dose of personal judgment in the classification. This judgment can be caused by the

Fig. 2. Operation of the study.

208 Miroslaw Staron and Ludwik Kuzniarz

fact that none of the subjects has developed these particular stereotypes that were used
in the study. Furthermore, as it was also found in a similar study in [13], the fact that
the subjects and the classifiers were not the creators of the objects of classification
could be one of the factors that could result in the low classification agreement. In
order to minimize the influence of a personal judgment, a consensus meeting was held
after step 4. The objective was to discuss the different perspectives on each classified
stereotype of each subject. The meeting resulted in establishing a common
understanding of the different categories and which stereotypes should be included in
them. Additionally the meeting provided us with the reasons for classifying particular
stereotypes into each category. This in our opinion improves the objectivity of the
classifier.

5.3. Results of the Study

While analyzing types of stereotypes, the starting point for considerations of the
properties is the purpose of the stereotype: i.e. investigating the appropriate category
in the classification according to the role of stereotypes. After the consideration of the
role of stereotypes, the properties of stereotypes from the perspective of the
expressiveness of stereotypes need to be considered – i.e. investigating the
appropriate category in the classification according to the expressiveness of
stereotypes.

The results of the study are presented in Fig. 3. The nodes in the structure represent
different groups of stereotypes and the edges represent the percentage of stereotypes
that belong to the appropriate category in the node below. On the lowest level of the
structure there are categories in the classification according to expressiveness. In the
middle level there are categories in the classification according to the role of
stereotypes. The top level node represents all stereotypes in the study.

Fig. 3. Results of investigation of 98 stereotypes – grouping of stereotypes

The results of the study were the basis for elaborating types of stereotypes. Certain
types of stereotypes, however, were not present in the study, e.g. (code generation,
decorative). The results indicate that there exist some relationships between different
categories in these classifications which make certain stereotypes (decorative) not
usable for a certain purpose (code generation). The identified types of stereotypes are
presented in Fig. 4 together with the percentage of stereotypes in this study that
belong to each type.

Properties of Stereotypes from the Perspective of Their Role in Designs 209

7,2%

16,8%

9,5%
12,9% 11,6%

37,8%

2,1% 2,1%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

40,0%

Code
generation,
restrictive

Code
generation,
redefining

Virtual
metamodel
extension,
redefining

Virtual
metamodel
extension,
restrictive

Virtual
metamodel
extension,
descriptive

Model
simplif ication,

decorative

Model
simplif ication,

descriptive

Model
simplif ication,

restrictive

Fig. 4. Frequencies of types of stereotypes in the study

The figure shows that the most common type of stereotypes is type (model
simplification, decorative). This observation shows that stereotypes are used to
designate specific elements and their usage for altering the semantics of the extended
elements is not very often.

6. Properties of Types of Stereotypes

We examined stereotypes of each type by conducting a qualitative analysis of their
definition and usage. Properties of each type of stereotype are presented in the
following section grouped according to the role of stereotypes.

6.1. Code Generation

Fig. 3 shows that there are two categories of code generation stereotypes, restrictive
and redefining stereotypes. A close investigation of these two types: (code generation,
restrictive) and (code generation, redefining). It shows that all code generation
stereotypes possess common properties:

 base model elements (i.e. the elements the stereotype is extending) are usually
concrete meta-classes from the UML metamodel as the concrete meta-classes
have rules on how they should be used in the designs (some also have some
standard code generation rules built into modeling tools),

 “templates” for code generation as part of the semantics of the stereotype;
sometimes the “template” can be defined as a specific tagged value (provided
that the code generator can interpret it), and

 no additional graphical icons defined for their presentation.

A way in which the templates for code generation are specified depends on the used
code generator. The mechanisms of code generation should be investigated before
creating code generation stereotypes (except, naturally, for profiles intended to be
standardized – e.g. the UML Profile for CORBA – in which the templates can be

210 Miroslaw Staron and Ludwik Kuzniarz

given only in textual form as the profiles are not dedicated for any specific tool –
other examples of code generation templates can be found in [27, 28]).

6.1.1. Redefining Stereotypes
The stereotypes in this group redefine the semantics of their base elements. The
redefinition of semantics makes the stereotyped instances of base model elements
completely different from non-stereotyped ones. The semantics of the stereotypes of
this type is defined by the semantics of the element in the target language which the
stereotype represents. The redefinition of the semantics usually requires that the
stereotyped elements are used in models only with other stereotyped elements. The
redefining code generation stereotypes possess:

 tag definitions which have custom-defined data types,
 constraints restricting the usage of the stereotyped elements so that they can be

used only with other stereotyped elements,
 semantics of the stereotyped elements that differs significantly from the

semantics of the semantics of the model element being extended.
The data types of tag definitions are defined as part of the same profile. There exist
certain exceptions as not all tag definitions have custom defined data type. A few
stereotypes in the study had tag definitions which had standard data.

An example stereotype of this type is «CORBATypedef» from the UML profile for
CORBA. It is a stereotype that can be applied to classes. The stereotyped classes can
be used only with relation to classes that are stereotyped with other stereotypes from
the CORBA profile. Furthermore, the stereotyped classes cannot have attributes and
the code to be generated for the «CORBATypedef» stereotyped classes is very
different than the code to be generated from non-stereotyped classes.

6.1.2. Restrictive Stereotypes
This type of stereotypes is used if an element in the target programming language is
similar to an existing model element in UML although it lacks certain properties.
Using model elements stereotyped with stereotypes of this type is allowed in most of
the cases when the base model element can be used, but there are restrictions on the
usage of the stereotyped elements(c.f. [6]). Stereotypes of this type have:

 tag definitions which types are custom-defined or built-in data types,
 constraints “restricting” the usage of the stereotyped elements in certain

situations in which the base modeling element can be used,
 semantics making the semantics of the extended model element more precise.

The data types used for tag definitions can be both custom-defined (most often) or
built-in.

As example stereotype of this type is «CORBAStruct» from the UML Profile for
CORBA. The stereotype is applied to classes in UML and makes the semantics of
classes more precise, e.g. that all the attributes should be public. Its constraints state
that the «CORBAStruct» stereotyped class cannot be used in some situations when
the non-stereotyped class can be used.

Properties of Stereotypes from the Perspective of Their Role in Designs 211

6.2. Virtual Metamodel Extension

Virtual metamodel extension stereotypes can be categorized into three categories in
classification according to expressiveness: redefining, restrictive and descriptive. The
virtual metamodel extension stereotypes are stereotypes that are used to add new
constructs into UML.

6.2.1. Redefining Stereotypes
Virtual metamodel extension stereotypes which are also redefining stereotypes are
stereotypes that are intended to create a new (sub-) language based on UML. In many
cases these stereotypes have been created based on metaclasses from another
metamodel (further referred to as the defining metamodel). The defining metamodel
specifies “a language” that is intended to be used as a member of the UML family of
languages. Examples of this kind of metamodel-based profiles are the SPEM Profile
or the UML Testing Profile [29]. They both have defining metamodels, which are
then “translated” into UML profiles. The UML Profile for CORBA is similar, but the
designers of the profile explicitly name the metamodel “virtual” and use only
stereotypes in it.

The stereotypes of this type have:
 constraints stating that the stereotyped elements are allowed to be used only

with other stereotyped elements,
 tag definitions (if defined) of custom-defined types (corresponding to attributes

of the model element in the defining metamodel which is the basis for creating
the stereotype),

 semantics of stereotypes in this group differs from the semantics of their base
elements and is defined based on the defining metamodel (which is the base
for abstractions denoted by stereotypes) and not the UML metamodel,

 base classes are concrete meta-classes in the UML metamodel as the
redefinition of the semantics is usually restricted to only the concrete meta-
class being extended, and

 icons with concrete syntax specified for the defining metamodel.
Examples of this type of stereotypes are stereotypes presented in [6] as typical
redefining stereotypes, «actor» and «use case» in early versions of UML. These
stereotypes change the meaning of the standard modeling elements (class) and in fact
create a new kind of diagrams in UML (use case diagrams) which are different from
class diagrams.

6.2.2. Restrictive Stereotypes
The difference of this type in comparison to the previous type is that the semantics of
the stereotypes is based on the semantics of the base model element, e.g. when the
abstraction in the defining metamodel is based on an element in the UML metamodel.
Just as the redefining virtual metamodel extension stereotypes they are based on
defining metamodels. Thus the stereotypes in this group have:

 constraints restricting the usage of the stereotyped elements – they cannot
always be used in places of the base model elements,

212 Miroslaw Staron and Ludwik Kuzniarz

 base classes are most often (but not always) concrete meta-classes from the
UML metamodel, the abstract meta-classes are rather uncommon as base
classes for this type of stereotypes,

 tag definitions of custom-defined types (corresponding to attributes of the
model element in the defining metamodel which is the basis for creating the
stereotype),

 semantics making the semantics of the extended model element more precise,
and

 icons with concrete syntax specified for the defining metamodel.
A representative of this type of stereotypes is «GRMdeploys» from the UML Profile
for Performance, Schedulability and Time [30]. The stereotype restricts the usage of
the stereotyped element in certain situations and the data type of the tag definition is
custom-defined (defined as part of the same profile).

6.2.3. Descriptive Stereotypes
Virtual metamodel extension stereotypes which are descriptive stereotypes are
defined in order to make the structure of existing modeling elements more precise in a
new context (although these stereotypes usually do not represent elements from any
defining metamodel). They are characterized by:

 types of tag definitions being usually standard data types specified in the UML
metamodel,

 base classes can be both abstract and concrete meta-classes from the UML
metamodel,

 no constraints restricting the usage of the stereotyped elements, and
 usually no icons.

The tag definitions are usually used by external tools. An example stereotype of this
type is the «GenericExport» stereotype from the TTDExport profile in Telelogic Tau
G2. The intent of this stereotype is to provide means of connecting elements in the
model with other artifacts, for example relating a class to a piece of Java code in
Eclipse (but not for the generation of the code itself) or linking a class to a
requirement in Telelogic DOORS.

6.3. Model Simplification

Model simplification stereotypes are intended to be used for designating certain
model elements. Thus they are usually the simplest of stereotypes and they merely
change the concrete syntax of the stereotyped element. The name of the stereotype is
usually the main element of its definition and it reveals the intention of the stereotype
of all types of stereotypes for model simplification. Most of the stereotypes created
for this purpose belong to the category of decorative stereotypes (90% of all model
simplification stereotypes). A common property of model simplification stereotypes
is that their semantics is specified in a very loose form, e.g. only an intension of a
decorative model simplification stereotype.

Properties of Stereotypes from the Perspective of Their Role in Designs 213

6.3.1. Decorative Stereotypes
Most of the model simplification stereotypes are decorative stereotypes. They have
the following properties:

 no tag definitions,
 no specific semantics, i.e. they are used for decoration of specific model

elements, and
 icons associated with them to enable more effective recognition of stereotyped

elements.
An example stereotype in this group is the stereotype «hidden» from the set of
predefined stereotypes in Telelogic Tau G2. The stereotype means that the
stereotyped elements should not be visible in a certain view in the tool. The stereotype
does not add new properties to the extended model element, but it causes that
stereotyped model elements are treated in a different way in model explorer in the
tool (although they are treated in the same way as non-stereotypes model elements in
models).

6.3.2. Descriptive Stereotypes
Some model simplification stereotypes add properties to the stereotyped model
elements. The tag definitions provide additional information about the “context” of
making the element distinct. The properties of this group of stereotypes are:

 tag definitions which usually are of standard data types,
 no constraints, and
 no icons.

An example stereotype in this category is «commentedClass» from [5, p. 155] which
provide means of adding information (as a tag definition) about authors of classes in
UML designs thus making the stereotyped elements special in the design.

6.3.3. Restrictive Stereotypes
Finally, there are also certain stereotypes, which to some extent restrict the usage of
the stereotyped element though they are not intended to create a new modeling
element (thus they are not virtual metamodel extension stereotypes). They are used to
designate the elements and impose light restrictions on the elements denoting that the
simplified element sometimes should not be used (the restrictions then designate the
situations in which the stereotyped element should not be used). The restrictions are
usually specified only informally. The properties of these stereotypes are:

 tag definitions which are usually of standard data types,
 constraints that restrict the usage of the stereotyped model element, and
 no icons.

An example stereotype which was found to be a restrictive model simplification in the
study is «UseCasePackage» from the UML Profile for Software Development
Processes [2, p. 4-4]. Applying the stereotype restricts the packages to be used only in
specific contexts.

214 Miroslaw Staron and Ludwik Kuzniarz

7. Basic Guidelines on Assessing Quality

The elaborated properties of the types of stereotypes are to be used as assessment
criteria. Modelers who use the properties for assessing quality of a particular
stereotype should:

1) Find the type of the stereotype, i.e. answer the questions:
a) What is the purpose of the stereotype?
b) What changes the stereotype introduces to the base model element?
i) Does it redefine the semantics of the base model element (i.e. is it

redefining)?
ii) Does it make the semantics of the base model element more precise (i.e.

is it restrictive)?
iii) Does it add any tag definitions (i.e. is it descriptive)?
iv) If none of the above, then it is a decorative stereotype.

2) Check whether the stereotype has properties of the stereotypes of this type

The stereotypes which are of a good quality should possess the properties. These
well-designed stereotypes save the effort for their maintenance since their definition is
as easy as it is possible given their purpose. For example the model simplification
stereotypes are very simple since they are used for simple purposes while the virtual
metamodel extension stereotypes are more complex since they are dedicated for more
advanced purposes.

There might be other types of stereotypes than the types found in the study
although we made our best efforts to include stereotypes from various vendors and for
diverse purposes in order to make the study as broad as possible. If the stereotype is
of a type that is not included in the study it might be the case that the stereotype is too
complex for the purpose it is supposed to serve (e.g. a redefining model simplification
stereotype) and therefore it should be redesigned. Sometimes it is a case that a
stereotype is intended to play two roles – then the stereotype should be redesigned
and split into two stereotypes. It is important that the stereotypes are “coherent” in the
sense that they are serving a single purpose and they are of a single type.

8. Conclusions

Stereotypes play an important role in using UML in an effective way. The set of
standard UML constructs is known to be insufficient for all purposes and the users of
UML often create stereotypes to enrich their set of modeling elements. Since
stereotypes are a notion which is defined by the users of the language and it is
supposed to be instantiated in user models, thus being a part of the language, the
quality assessment is specific. Furthermore, due to the fact that there are various
reasons for which the stereotypes, these reasons influence the way in which the
quality of stereotypes should be assessed. In this paper we provide a way in which a
question “What is a good stereotype?” can be answered. This paper presents a part of
the lightweight process for assessing quality of stereotypes and addresses the research
question on how the existing stereotypes can be used for creating criteria for assessing
quality of new stereotypes. It includes an investigation of a set of stereotypes used in
industry aimed at identifying types of stereotypes. The types of stereotypes reflect the

Properties of Stereotypes from the Perspective of Their Role in Designs 215

purpose for which the stereotypes are created and the changes which the stereotype
introduces to its base model element.

The identified properties of stereotypes are designed to be used in assessing the
quality of stereotypes that have already been created. The assessment is done in the
final phase of creation of stereotypes. Currently in our research we focus on
developing a set of guidelines for creating stereotypes which are appropriate for their
purposes. The guidelines are intended to aid modelers to create “good” stereotypes for
their purposes in a structured way. The intention of the guidelines are designed to be
in a form of simple questions that would guide modelers through the process of
creating the stereotype, beginning from an initial idea of what the stereotype is for and
ending with the set of properties which the stereotype should possess. In our further
research we intend to validate the method in a company creating a framework for
model-driven software development.

References

1. Object Management Group, "Unified Modeling Language Specification: Infrastructure
Version 2.0", OMG, 2004, www.omg.org, last accessed 2004-02-20.

2. Object Management Group, "Unified Modeling Language Specification V. 1.5", OMG,
2003, www.omg.org, last accessed 2004-10-01.

3. Kuzniarz L. and Staron M., "On Practical Usage of Stereotypes in UML-Based Software
Development", In the Proc. of Forum on Design and Specification Languages, Marseille,
2002, pp. 262-270.

4. Atkinson C., Kühne T., and Henderson-Sellers B., "Stereotypical Encounters of the Third
Kind", In the Proc. of The 5th Int. Conf. on UML, Dresden, Germany, 2002, pp. 100-14.

5. Atkinson C., Kühne T., and Henderson-Sellers B., "Systematic Stereotype Usage", Software
and Systems Modeling, vol. 2, 2003, pp. 153-163.

6. Berner S., Glinz M., and Joos S., "A Classification of Stereotypes for Object-Oriented
Modeling Languages", In the Proc. of The 2nd Int. Conf. on UML, Fort Collins, CO, USA,
1999, pp. 249-64.

7. Miller J. and Mukerji J., "MDA Guide", OMG, 2003, http://www.omg.org/mda/, last
accessed 2004-01-10.

8. Gogolla M. and Henderson-Sellers B., "Analysis of UML Stereotypes within the UML
Metamodel", In the Proc. of The 5th Int. Conf. on UML, Dresden, Germany, 2002, pp. 84-
99.

9. Atkinson C. and Kühne T., "Rearchitecting the UML Infrastructure", ACM Trans. on
Modeling and Comp. Simulation, vol. 12, 2002, pp. 290-321.

10. Atkinson C. and Kühne T., "The Role of Metamodeling in MDA", In the Proc. of Workshop
in Software Model Engineering, Dresden, Germany, 2002.

11. Atkinson C. and Kühne T., "Model-Driven Development: A Metamodeling Foundation",
IEEE Software, vol. 20, 2003, pp. 36-41.

12. Schleicher A. and Westfechtel B., "Beyond Stereotyping: Metamodeling Approaches for the
UML", In the Proc. of Hawaii Int. Conf. on Syst. Sciences, Maui, HI, USA, 2001, pp. 10-17.

13. Henningsson K., Wohlin, C., "Assuring Fault Classification Agreement - an Empirical
Evaluation", Proc. Int. Symposium on Empirical Software Engineering, 2004, pp. 95-104.

14. Hertzum M., "Small-Scale Classification Schemes: A Field Study of Requirements
Engineering", Computer Supported Cooperative Work, vol. 13, 2004, pp. 35-61.

15. Wirfs-Brock R., "Stereotyping: A Technique for Characterizing Objects and Their
Interactions", Object Magazine, vol. 3, 1993, pp. 50-3.

216 Miroslaw Staron and Ludwik Kuzniarz

16. Wirfs-Brock R., Wilkerson B., and Wiener L., "Responsibility-Driven Design: Adding to
Your Conceptual Toolkit", ROAD, vol. 2, 1994, pp. 27-34.

17. Firesmith D. G., Henderson-Sellers B., and Graham I., "The Open Modeling Language
(OML) Reference Manual", New York, Cambridge University Press/Sigs Books, 1998.

18. Object Management Group, "UML Specification ver. 1.1", OMG, 1997, www.omg.org, last
accessed 2004-10-11.

19. Cook S., "The UML Family: Profiles, Prefaces and Packages", In the Proc. of The 3rd Int.
Conf. on UML, York, UK, 2000, pp. 255-264.

20. Staron M., Kuzniarz L., and Wallin L., "A Case Study on Transformation Focused Industrial
MDA Realization", In the Proc. of 3rd Workshop in Software Model Engineering, Lisbon,
Portugal, 2004.

21. Evans A., Maskeri G., Sammut P., and Willians J. S., "Building Families of Languages for
Model-Driven System Development", In the Proc. of 2nd Workshop in Software Model
Engineering, San Francisco, CA, 2003.

22. Object Management Group, "Software Process Engineering Metamodel Specification 1.0",
OMG, 2001, www.omg.org, last accessed 2004-02-01.

23. Object Management Group, "UML Profile for CORBA", OMG, 2002, www.omg.org, last
accessed 2004-10-10.

24. Staron M., Kuzniarz L., and Wallin L., "Factors Determining Effective Realization of MDA
in Industry", In the Proc. of 2nd Nordic Workshop on the Unified Modeling Language,
Turku, Finland, 2004, pp. 79-91.

25. Telelogic, "Telelogic Tau G2", 2004, http://www.telelogic,com.
26. Altman D., "Practical Statistics for Medical Research", Chapman-Hall, 1991.
27. Kuzniarz L. and Ratajski J., "Code Generation Based on a Specific Stereotype", In the Proc.

of Information Systems Modeling, Roznov, Chech Republic, 2002, pp. 119-128.
28. Sturm T., von Voss J., and Boger M., "Generating Code from UML with Velocity

Templates", In the Proc. of The 5th Int. Conf. on UML, Dresden, Germany, 2002, pp. 150-
161.

29. Object Management Group, "Unified Modeling Language: Testing Profile", OMG, 2004,
www.omg.org, last accessed 2004-02-14.

30. Object Management Group, "UML Profile for Schedulability, Performance and Time",
OMG, 2002, www.omg.org, last accessed 2003-09-20.

A Modelling and Simulation Based Approach to
Dependable System Design

Miriam Zia, Sadaf Mustafiz, Hans Vangheluwe, and Jörg Kienzle

School of Computer Science, McGill University
Montreal, Quebec, Canada

{mzia2, sadaf, hv, joerg} @cs.mcgill.ca

Abstract. Complex real-time system design needs to address dependability re-
quirements, such as safety, reliability, and security. We introduce a modelling
and simulation based approach which allows for the analysis and prediction of
dependability constraints. Dependability can be improved by making use of fault
tolerance techniques. The de-facto example in the real-time system literature of a
pump control system in a mining environment is used to demonstrate our model-
based approach. In particular, the system is modelled using the Discrete EVent
system Specification (DEVS) formalism, and then extended to incorporate fault
tolerance mechanisms. The modularity of the DEVS formalism facilitates this
extension. The simulation demonstrates that the employed fault tolerance tech-
niques are effective. That is, the system performs satisfactorily despite the pres-
ence of faults. This approach also makes it possible to make an informed choice
between different fault tolerance techniques. Performance metrics are used to
measure the reliability and safety of the system, and to evaluate the dependabil-
ity achieved by the design. In our model-based development process, modelling,
simulation and eventual deployment of the system are seamlessly integrated.

1 Introduction

Model-based approaches are used to represent the structure and behaviour of sys-
tems, which are becoming increasingly complex and involve a large number of com-
ponents and domain-specific requirements [1][2]. Dependable systems, in particular,
must satisfy a set of functional requirements, and in addition, must adhere to constraints
which ensure correct behaviour of the system. Safety, security and reliability are a few
such dependability requirements. The necessity for accomplishing these constraints has
spawned new fields of research. The most prominent area is that of fault-tolerant sys-
tems, and the introduction of fault tolerance design in the software development process
is an emerging topic.

We are interested in developing the model-based process illustrated in Fig. 1 for
designing a dependable system. The process allows us to predict the behaviour of a
specific system, and compare it to the behaviour of a fault-tolerant implementation of
the same system. This is done through a sequence of manual activities. First, from
functional requirements, a model is derived which represents the structure of a chosen
system. A fault injection mechanism is also modelled as a means to generate faulty
behaviour of the system. Simulation results indicate how the system performs in the

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 217–231, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

218 Miriam Zia et al.

Fig. 1. The Model-based Process

presence of faults, and whether it conforms to the specified requirements. Secondly,
from dependability constraints, a fault-tolerant model is created which includes tech-
niques designed to improve on the initial system. A fault-tolerant simulation model is
derived and simulated to gather performance data. This data reflects the dependability
constraints that must be satisfied by the system.

Although research has been done in formal modelling and analysis of fault toler-
ance properties [3][4], either using natural language description of models, probabilistic
models, figures of fault-trees or Markov models, we suggest using the formalism DEVS
(Discrete EVent System specification). In our case study, the initial system as well as the
fault tolerant system are translated into DEVS.

The paper is structured as follows. Section 2 presents essential background concepts
relating to the DEVS formalism and to fault tolerance. Section 3 describes the real-time
Pump Control System (PCS) chosen to demonstrate our process. We introduce its func-
tional requirements and dependability constraints and briefly discuss why modelling
and simulation is an appropriate approach, and why DEVS is an suitable modelling
formalism. Section 4 introduces the model of the PCS, and the means by which fault
injection is introduced in the system. A PCS failure situation is described in Section 5,
and a fault-tolerant model is presented that counteracts this failure. Furthermore, safety
and reliability are defined as the dependability constraints that are threatened by failure
of the PCS. In Section 6, implementation-specific and experimental simulation frame-
work details are outlined. Mathematical equations are presented to quantify the safety
and reliability of the PCS, and results of the simulations are analyzed to compare the
performance of the PCS in the two models. Finally, some general conclusions about our
model-based process are drawn in Section 7.

A Modelling and Simulation Based Approach to Dependable System Design 219

2 Background

This section introduces the modelling formalism used in the case study, the DEVS (Dis-
crete EVent system Specification) formalism and gives a brief overview of fault tolerance
and the technique we apply in our work.

2.1 The DEVS Formalism

The DEVS formalism was introduced in the late seventies by Bernard Zeigler to de-
velop a rigorous basis for the compositional modelling and simulation of discrete event
systems [5][6]. The DEVS formalism has been successfully applied to the design and
implementation of a plethora of different complex systems such as peer-to-peer net-
works [7], transportation systems [8], and complex natural systems [9]. In this section
we briefly present the DEVS formalism.

A DEVS model is either atomic or coupled. An atomic model describes the be-
haviour of a reactive system. A coupled model is the composition of several submodels
which can be atomic or coupled. Submodels have ports, which are connected by chan-
nels. Ports have a type: they are either input or output ports. Ports and channels allow a
model to receive and send signals (events) from and to other models. A channel must go
from an output port of some model to an input port of a different model, from an input
port in a coupled model to an input port of one of its submodels, or from an output port
of a submodel to an output port of its parent model.

An atomic model has, in addition to ports, a set of states, one of which is the initial
state, and two types of transitions between states: internal and external. Associated with
each state is a time-advance and an output.

Atomic DEVS 1

An atomic DEVS is a tuple (S,X ,Y,δint ,δext ,λ,τ) where S is a set of states, X
is a set of input events, Y is a set of output events, δint : S → S is the internal
transition function, δext : Q×X → S is the external transition function, λ : S→Y
is the output function and τ : S → +

0 is the time-advance function.
In this definition, Q = {(s,e) ∈ S × + | 0 ≤ e ≤ τ(s)} is called the total-state
space, for each (s,e) ∈ Q, e is called the elapsed-time.2

Informally, the operational semantics of an atomic model are as follows: the atomic
model starts in its initial state, and it will remain in any given state for as long as its
corresponding time-advance specifies or until input is received on some port. If no input
is received, when the time of the state expires, the model sends output as specified by λ
(before changing the state), and subsequently jumps to the new state as specified by δint .
On the other hand, if input is received before the time for the next internal transition
expires, then it is δext which is applied. The external transition depends on the current
state, the time elapsed since the last transition and the inputs from the input ports.

The following definition formalises the concept of coupled DEVS models3

1 For simplicity, we do not present a formalisation of the concept of “ports”.
2 +

0 denotes the positive reals with zero included.
3 For simplicity, this “formalisation” does not deal with ports, and it leaves out the proof of

well-definedness for coupled models.

220 Miriam Zia et al.

Coupled DEVS
A coupled DEVS named D is a tuple (X ,Y,N,M, I,Z,select) where X is a set of
input events, Y is a set of output events, N is a set of component names such that
D �∈ N, M = {Mn | n ∈ N,Mn is a DEVS model (atomic or coupled) with input set
Xn and output set Yn} is a set of DEVS submodels, I = {In | n ∈ N, In ⊆N∪{D}} is
a set of influencer sets for each component named n, Z = {Zi,n | ∀n ∈ N, i ∈ In.Zi,n :
Yi → Xn or ZD,n : X → Xn or Zi,D : Yi → Y} is a set of transfer functions from each
component i to some component n, and select : 2N → N is the select function.

Connectivity of submodels is expressed by the influencer set of each component.
Note that for a given model n, this set includes not only the external models that provide
inputs to n, but also its own internal submodels that produce its output (if n is a coupled
model.) Transfer functions represent output-to-input translations between components,
and can be thought of as channels that make the appropriate type translations. The select
function takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the parallel composition of all the
submodels. This is, each submodel in a coupled model is assumed to be an independent
process, concurrent to the rest. There is no explicit method of synchronization between
processes. Blocking does not occur except if it is explicitly modelled by the output
function of a sender, and the external transition function of a receiver. There is however
a serialization of events whenever there are two submodels that have a transition sched-
uled to be performed at the same time. Logically, the transitions are assumed to be done
in that time instant, but its implementation on a sequential computer is serialized. The
coupled model has a select function which chooses one of the models to undergo the
transition first.

2.2 Fault Tolerance

Complex computer systems are increasingly built for highly critical tasks, from mili-
tary and aerospace domains to industrial and commercials areas. They are critical in the
sense that their failures may have severe consequences ranging from loss of business
opportunities, physical damage, to more catastrophic loss, such as human lives. Systems
with such responsibilities should be highly dependable. A number of varied means of
achieving this goal have been established and should be considered jointly during hard-
ware as well as software development: fault prevention, fault removal, fault forecasting
and fault tolerance [10]. In particular, we will discuss fault tolerance in more detail in
this section.

The idea of incorporating means for fault tolerance in order to achieve system de-
pendability has developed considerably since the original work by von Neumann in the
mid-1950s [11], and many techniques have been established. To discuss fault tolerance
more meaningfully, a definition of correct system behaviour is needed: the specifica-
tion. As long as the system satisfies the specification, it is considered to be behaving
correctly. A failure can then be defined as an observable deviation from the system
specification. An error is that part of the system state that leads to a failure. The error
itself is caused by some defect in the system; those defects that cause observable er-
rors are called faults [12]. Fault tolerance aims at preventing failures in the presence of

A Modelling and Simulation Based Approach to Dependable System Design 221

hardware or software faults within the system. Therefore, as soon as an error has been
detected, it must be corrected to ensure that a system continues to deliver its services
and to avoid a potential failure later on in the execution.

These corrective measures need to be taken to keep the error from propagating to
other parts of the system, thus preventing further damage. Once the error is under con-
trol, error recovery is applied and a correct error-free system state is restored. There are
two basic recovery techniques [13]:

Backward error recovery replaces the erroneous system state with some previous
correct state.

Forward error recovery attempts to construct a coherent, error-free system state by
applying corrective actions to the current, erroneous state.

A popular form of forward error recovery is Triple Modular Redundancy (TMR).
TMR uses three identical copies of a unit instead of one, and an intelligent, application-
specific voting scheme which is applied to their output. In stateless cyclic systems,
where one iteration of execution does not depend on the previous run, this mechanism
allows for faults to be masked. This technique will be used in this case study to remedy
the failure scenario discussed in section 5.1.

3 Modelling and Simulation Based Design: An Example

In Modelling and Simulation Based Design, all steps in the evolution from initial re-
quirements to final system are explicitly modelled. Models at various stages of the pro-
cess are each expressed in the most appropriate formalism. Transformations themselves
are also modelled explicitly, so no knowledge is left implicit. Initially, the system is
modelled in a formalism amenable to formal analysis and verification (covering all pos-
sible behaviours). Subsequently, simulation of the model is performed. The output of
this simulation is processed by a checker, which checks it against a set of rules (derived
from the requirements). An error found during this checking indicates an error in the
design. Note that as even a large number of simulation runs may not cover all possible
behaviours of the system, no positive statements about correctness of the model may be
made. In the next phase, performance analysis is done to tune the model structure and
parameters to satisfy performance requirements. Finally, code is synthesized from the
model (if necessary), thus providing a continuous, traceable path from analysis model
to deployed system. With appropriate model compilers, the simulation knowledge of
the designer is limited to knowledge of suited formalisms (such as DEVS).

3.1 The Pump Control System Case Study

The system used to demonstrate our approach is a Pump Control System (PCS). The
PCS has often been used in the real-time systems literature. For example, Burns and
Lister used the PCS as a case study to discuss the TARDIS project [14]. We adopt the
Pump Control System problem from [14], and with some abstractions, define it as our
case study for modelling and simulation based design of a dependable system.

222 Miriam Zia et al.

The basic task of the system is to pump to the surface the water that accumulates
at the bottom of a mine shaft. The pump must be switched on when the water-sensor
detects that the water has reached a high-level depth, and must be switched off when
it detects that the level has been sufficiently reduced (low-level). In addition, the pump
functionality depends on some atmospheric readings. A methane-sensor measures the
level of methane in the environment: high levels may cause fire in the shaft if the pump
is in operation. A carbon monoxide-sensor and an air-flow sensor also monitor the
environment for critical readings (high for carbon monoxide and low for air-flow) which
cause immediate evacuation of the shaft. Critical readings produced by all atmospheric
sensors are sent to a human operator, but only critical methane readings cause the pump
to switch off. To summarize, the pump is switched ON if the water-level is high and
methane-level is not critical, and is switched OFF if the water-level is low and pump is
on; or if the pump is on and methane-level is critical. The proposed architectural system
structure for the PCS is illustrated in Fig. 2.

As all complex and critical applications, the PCS involves some important con-
straints, namely those of dependability, timing and security. This case study focuses on
the dependability requirements defined for the PCS in [14] which dictate that the system
is reliable and safe.

Reliability of the pump system is measured by the number of shifts that are lost if the
pump does not operate when it should. In order to be considered reliable, our PCS
should lose at most 1 shift in 1000.

Safety of the system is related to the probability that an explosion occurs as a result of
the pump operating despite critical methane levels. In order to be considered safe,
the probability of a possible explosion in our PCS should be less than 10−7 during
the lifetime of the system.

Environment Monitor

Environment Sensors

Environment Subsystem

Pump Controller

Pump Subsystem

Water Sensor

ON

OFF

Methane Request

Methane Reply

Methane Alarm

Human
Operator

Alarms
Pump

Fig. 2. The Pump Control System Logical Structure.

3.2 Why Use DEVS for the PCS?

The successful development of large-scale complex real-time systems commonly re-
lies on system-theoretic modelling approaches, such as DEVS, or object-oriented ap-
proaches such as UML Real-Time. UML-RT is an extension to UML which, in addition
to offering constructs to model relationships among components, incorporates the Real-
Time Object-Oriented Modelling constructs and is used to model the structural and be-
havioural aspects of systems. The behaviour of the system is specified in StateCharts by
the sequence of signal communication [15]. Contrary to DEVS, in StateCharts we can-
not formally specify explicit timing in the specification of models. StateCharts are also

A Modelling and Simulation Based Approach to Dependable System Design 223

based on multi-component specification and broadcast communication, and the lack
of a complete formal definition of UML-RT StateChart semantics hinders the formal
specification of structural information. Furthermore, although UML-RT offers impor-
tant capabilities for modelling real-time systems, it does not provide semantics suitable
for simulated time: it prohibits carrying out simulation studies. On the contrary, DEVS
separates models from how they may be executed; therefore simulators can be indepen-
dently developed and verified, thus increasing reusability, formal analysis, and model
validation. In addition, DEVS allows the specification of both the structural and be-
havioural aspects of a system.

The PCS is a reactive discrete-event system: the system’s state changes in reaction
to external events, such as critical environmental readings. In addition, the PCS is com-
posed of many different interacting subsystems. DEVS, being highly modularized and
defining hierarchical coupling of modules, allows for the separation of concerns and a
clean model of such a complex system. Since the aim of our approach is to improve
the design of a real-time system, we can use the powerful simulation capabilities of
DEVS to observe the faulty behaviour in the original PCS model and to predict the sys-
tem’s behaviour under different fault tolerance techniques. From the simulations one
can gather statistical data on whether or not dependability requirements are met within
the PCS, and evaluate alternative system designs. The above mentioned reasons make
DEVS an appropriate modelling formalism for the Pump Control System.

4 Modelling the PCS

4.1 Building the DEVS Model of the PCS

Each subsystem illustrated in Fig. 2 (pump, environment, communication) is modelled
as an atomic DEVS whose structure and behaviour encodes the functional requirements
of the PCS (Fig. 3). Below is the general description of the system’s model.

MethaneSensor EnvMonitor Communication PumpController

Human Controller WaterSensor

PumpmrOUT mrIN

afIN

cmIN

alarmOUT

q_recv

q_sack q_recv

q_sack

q_sendq_send

q_rack q_rack

alarm_recv
alarm_sent_pc

alarm_sent_hc

alarmIN

meth_alarm

wOUT

pump_op opINAirflowSensor
afOUT

CarbonMonoxide
Sensor cmOUT

wIN

Fig. 3. The Pump Control System Modelled with the DEVS Formalism.

Methane Sensor, Carbon Monoxide Sensor, Airflow Sensor
States: Sensor may either be ‘READING’ the level of gas or flow in the environment

or ‘IDLE’ between readings.
Output: Upon transitioning from ‘READING’ to ‘IDLE’, the sensor outputs the level

of gas or flow in the environment at that time.

224 Miriam Zia et al.

Environment monitor
States: The monitor may either be processing sensor readings (‘PROCESSING’), re-

sponding to a query (‘QUERYING’) or doing nothing (‘IDLE’).
Output: Upon receiving a query from the Pump Controller through the Communica-

tion channel, the monitor responds by sending an acknowledgement which contains
a message stating the criticality of the methane level. Upon receiving critical read-
ings from the environment sensors, it outputs alarms. All messages to and from the
pump controller or to the human controller are sent through the Communication
DEVS.

Communication
States: The communication channel may either be sending alarms (‘SEND-ALARM’),

sending a query to the environment monitor (‘SEND-QUERY’) or sending a query
acknowledgement to the pump controller (‘SEND-ACK’). When it completes either
of these tasks, its state is ‘IDLE’.

Output: Upon receiving a query from the Pump Controller, it forwards this query to the
environment monitor, and once it receives the reply from the environment monitor,
it propagates it to the pump controller. When it receives critical alarms, it delivers
them to the human and pump controllers.

Pump Controller
States: It may either be processing a water sensor reading and send-

ing an operation to the pump (‘PROCESSING-WATER’), processing a
methane alarm (‘PROCESSING-ALARM’), processing a query acknowledgement
(‘PROCESSING-ACK’), or doing nothing (‘IDLE’).

Output: Upon receiving a low-water reading, the pump controller sends an “off” mes-
sage to the pump to switch it off. If the controller receives a high-water reading, it
turns the pump to ready mode and sends a query to the environment monitor: the
controller only turns the pump on if the methane level is not critical. If an acknowl-
edgement is received stating that the methane level is high, then the controller turns
the pump off, otherwise, it turns it on. Similarly, when the controller receives a
methane alarm, it turns the pump off.

Water Sensor
States: It randomly switches between the ‘HIGH’ and ‘LOW’ states.
Output: Upon switching, the sensor outputs the state to which it is transitioning.

Human Controller
This is a passive DEVS: it does not react to any input messages and remains
constantly ‘IDLE’.

4.2 Modelling of Fault Injection in the PCS

As dependability constraints need to be met in addition to functional requirements, a
quantitative analysis method for assessing the dependability of the system must also be
modelled. For this purpose, many methods have been defined, such as reliability block
diagrams, analysis of non-deterministic state graph models, and fault simulation [10].
The latter is a universal approach combining techniques which assume a model of the
system, a set of external input/output sequences applied to it, and the possibility to inject
faults into it. Most of these techniques can be classified as fault injection techniques,

A Modelling and Simulation Based Approach to Dependable System Design 225

which consist in adding faults to a system in order to analyze the behaviour. These faults
make the system evolve towards different states which are recorded in order to assess
the dependability constraints.

Therefore, in addition to modelling the PCS, a model for fault injection must be
built. A fault injector could be described as an atomic entity on its own in the coupled
DEVS model. However, modelling faults within a specific subsystem itself more accu-
rately represents its real-world faulty behaviour. Our approach consists in provoking a
sensor break-down on a periodic basis to simulate a fault which makes the Pump Con-
trol subsystem fail. For example, a fault in the methane sensor would generate faulty
(noisy) methane readings of the environment, which would be propagated to the envi-
ronment monitor, and through the communication subsystem to the pump controller.
This wrong methane reading could possibly force the pump to shut off when it is not
supposed to, or it might fail to cause a critical alarm to be raised. The simulation re-
sults should show how the performance varies over time in the absence and presence of
faults.

We concentrate here on the consequence of the methane sensor failure on the safety
and reliability requirements of the PCS (Section 5.1). To model faulty behaviour of
a methane sensor s, we assign to it a probability p of failure. We assume Byzantine
failures, i.e. upon failing, sensors produce an erroneous result rather than no result at
all. Therefore, s fails by providing erroneous readings with probability p. In practice,
a sensor has a very low failure probability, however in this case study, the simulated
probability p is chosen to be significantly higher to induce more erroneous states and
observable failure of the system. For the methane sensor, we assume p = 0.1.

5 Modelling the Fault-Tolerant System

5.1 Failure Scenario in the PCS

Burns and Lister [14] describe four failure situations at the environment, communica-
tion and pump subsystems level for the PCS that affect the dependability. To illustrate
our approach, we consider the situation in which the environment subsystem provides
an incorrect methane reading (when asked by the pump subsystem). The case study
focuses on the role of the environment subsystem on safety and reliability, thus upper-
bounding the measure of dependability of the system by the dependability of the envi-
ronment subsystem. We assume that no mechanical failures occur in the communication
and pump subsystems and that they do not introduce erroneous state.

The environment subsystem fails in a noisy manner, i.e. it generates incorrect/noisy
output. Since we only investigate hardware faults, we assume failures originate in the
methane sensor: the subsystem provides incorrect methane readings if it receives such
incorrect values from the sensor itself. Therefore, we can generalize the failure scenario
to that of the methane sensor providing an incorrect methane reading.

Safety of the System. The safety requirement is threatened if the sensor outputs a
falsely low methane reading which causes the pump to operate despite critical con-
centrations in the environment. This introduces a threat of explosion in the mine

226 Miriam Zia et al.

shaft. However, if the sensor outputs a false reading whose criticality is in accor-
dance with the accurate reading, i.e. it is critical when the accurate reading is criti-
cal, and not critical when the accurate reading is not critical, then the system is still
considered to be safe.

Reliability of the System. The reliability requirement is threatened if the sensor out-
puts a falsely high methane reading which causes the pump to shut down despite
non-critical concentrations in the environment. This causes a loss of shift for the
pump.

Safety and reliability can be improved by replication of the methane sensors and apply-
ing the TMR technique [14]. This method can also be used for the carbon monoxide
and airflow sensors.

5.2 Modelling Fault Tolerance for the PCS

We change the PCS model to integrate fault tolerance based on TMR. A coupled DEVS
containing three sets of methane sensors and a voter replace the sensor modelled in
Fig. 3. In this case, even if one methane sensor fails, the correct reading can still be de-
termined using the output of the other sensors, and a response from the voter is passed
on to the environment monitor. This approach can also be applied to the carbon monox-
ide and airflow sensors. The fault-tolerant environment subsystem is shown in Fig. 4.
In our experiment, we use two different types of voters, a maximum voter and a ma-
jority voter. The maximum voter is a PCS-specific voter in which the highest value
received from the replicated sensors is considered as accurate. The interest in the high-
est value resides in the fact that the system must be safe: if the pump is switched on
while methane levels are critical, safety is threatened. Thus, the maximum voter is an
appropriate choice for this problem. The majority voter is a well-studied voter that given
n results selects the value of the majority. In our case, if majority cannot be decided, the
voter falls back on the maximum value.

The fault injection in the sensors is modelled similarly to the PCS model. This al-
lows us to compare the behaviour of the two systems and observe how the performance
changes.

6 Simulation and Results

6.1 Performance Metrics Modelling

In the previous sections we showed how the PCS and the fault-tolerant PCS are mod-
elled using DEVS. In order to perform dependability analysis, we model the safety and
reliability as dependability metrics to be evaluated while the simulation runs. Each sim-
ulation keeps track of the total number of methane readings performed (TotalMethane-
Readings). A reading mi is associated with a safety conformance index si and a relia-
bility conformance index ri. These indices are equal to 0 if the reading causes a safety-
threatening (for si) or reliability-threatening (for ri) fault, and 1 otherwise. Then safety
of the system can be determined by ∑n

i=1 si/TotalMethaneReadings, and reliability by
∑n

i=1 ri/TotalMethaneReadings (where n is equal to TotalMethaneReadings).

A Modelling and Simulation Based Approach to Dependable System Design 227

EnvMonitor

mrIN afIN cmIN

alarmOUT q_recv q_sack

ms1

ms2

ms3

MethaneCDEVS

Methane
Voter

cm1

cm3

CarbonMonooxideCDEVS

Carbon
Monooxide
Voter

af1

af2

af3

AirflowCDEVS

Airflow
Voter

cm2

Fig. 4. Fault-tolerant Environment Subsystem of the Pump Control System

6.2 Implementation

Once the system and the constraints are modelled, they are implemented using the
PythonDEVS package [16]. This package provides a simulation engine and a class
architecture that allows hierarchical DEVS models to be easily defined. Using this
framework, each atomic and coupled DEVS described in the model of the PCS, the
fault-tolerant PCS using maximum voting, and the fault-tolerant PCS using majority
voting, can be encoded into a Python class. Python is an interpreted object-oriented pro-
gramming language, which offers high-level data types and a simple syntax. Its main
advantage for the PCS case study is that it is an ideal language for quick and simple
application development.

Each Python class representation of a DEVS has four functions defined in it: an
internal transition function, an external transition function, an output function and a
time-advance function. Next, simulation experiments are set-up to gather statistical data
which is representative of the system’s behaviour under the specified constraints. The
following summarizes the experimental framework:

– Time advances: A methane reading is generated every 2s, carbon monoxide every
6s, airflow every 5s, and water level is checked every 10s.

– Reading Interval: All environmental readings are integers in the interval [0,10].
We chose integers to avoid the errors common in voters when comparing float-
ing point numbers.

– Critical Readings: The critical concentrations are defined in the reading interval
to be 7 for methane, 5 for carbon monoxide and 3 for airflow.

– Simulation Time: Two sets of experiments are conducted. In the first set, each
model is run for a duration of 2000 simulation time units (seconds). This pro-
cess is repeated 5 times, starting from the same initial state. In the second set,
each model is run for a duration of 75000 simulation units to satisfy the law of
large numbers. As with the first set, this process is also repeated 5 times. For
each of these runs, safety and reliability results are logged and analyzed.

228 Miriam Zia et al.

Fig. 5. Safety Results for the Second Set of Simulations.

6.3 Results

Since the results of the first set of simulations are comparable, only results of the second
set are analyzed here. These results are an indicator of which voter is best suited for the
PCS with regards to system safety and reliability.

Fig. 6. Reliability Results for the Second Set of Simulations.

Safety. In the initial model, the average failure to satisfy the safety requirement is
2.32%, which is considerably high for a system in which failures are catastrophic
in nature. In the fault-tolerant model using the maximum voter, the average safety
rises to 99.99% (Fig. 5). It can be concluded that TMR with maximum voting re-
duces the occurrence of safety-threatening failures. However, there is a notable
trade-off between safety and reliability here. This is not surprising as the choice of
maximum voter was made to emphasize the safety requirement in such a critical
system.

Reliability. In the initial model, the average failure to satisfy the reliability requirement
is 10.09%, which is proportional to the probability that was associated with the

A Modelling and Simulation Based Approach to Dependable System Design 229

methane sensor DEVS of 10% failure. In the implementation with the maximum
voter, the reliability percentage falls even lower (Fig. 6). This is explained by the
fact that the maximum voter always picks the highest value to output, be it accurate
or false. For example, a case where the actual reading is 2, but the false reading
received is 8, then 8 is voted to be the correct reading. This approach advocates
safety of the system at the cost of reduced reliability of the sensors. In order to attain
a fair balance between the safety and reliability requirements, the use of a majority
voter is advised. The majority voter implementation results in an average reliability
of 98.3%, but a slight decrease in the safety can be seen in Fig. 5. However, this
is clearly a solid improvement on the original model and on the maximum voter,
while still preserving safety.

6.4 Validation of Results

Over the years, a lot of work has been done on estimating software reliability based on
probabilistic models. To compare our simulation-based approach to an analytic one, we
perform a probabilistic assessment of the reliability based on the fault-tolerant model
that uses majority voting and on the same assumptions as those used for our simulation.
We assume that a methane sensor produces an integer reading r ∈ [0,10]. The sensor
either works correctly, or fails with a probability p by outputting a random reading
uniformly distributed between 0 and 10.

As discussed previously, reliability fails when a falsely critical reading is sent to
the environment monitor although the actual reading is non-critical. There are three
cases that lead to a wrong decision by the voter, and can be considered separately. The
total probability of the voter failing to decide on the correct output is then equal to the
probability that the correct reading is non-critical (which is 7/11) multiplied by the sum
of the probabilities corresponding to the cases listed below:

– one sensor outputs a correct reading, two sensors output equal, critical and false
reading: 3∗ (1− p)∗ (p ∗4/11)∗ (p ∗1/11)

– all three sensors output wrong readings, but at least two are equal, critical and false
reading: p3 ∗ ((4/11)(1/11)+ 2(7/11)(4/11)(1/11))

– all three sensors output wrong distinct readings, and at least one is critical: p3∗(1−
7/11 ∗ 6/11 ∗5/11)∗ (10/11 ∗9/11)

Since we assume that p = 0.1 for the methane sensor, this leads to a majority voter
failure probability of 0.0061, or a reliability of 99.39%. The results of our simulation
indicated a reliability of 98.3%, clearly comparable to the results derived from the ana-
lytic model.

This probabilistic assessment leads to exact and precise results, but in cases where
the problem is non-linear, the equations may become very complex and impossible to
solve. On the other hand, the approach presented in this paper is especially effective for
complex systems for which deriving mathematical models is not feasible. One might
argue that this approach requires extensive work in designing and encoding the models,
and in analyzing the simulation results. However, models are easily derived from the
requirements and logical structure of the system. Furthermore, the choice of modelling

230 Miriam Zia et al.

formalism and programming language make for a modular implementation, and if tools
are available which automatically generate the applications, the process can be speedy.
Lastly, simulation results are simple to analyze as they are derived from such simple
equations as those described in Section 6.1. Mathematical models do not have these
advantages. However, probabilistic models can be useful as a validation method for
modelling and simulation based approaches as well as provide solutions to rare-event
cases.

7 Conclusion

In most complex systems today, it is crucial to guarantee that the dependability require-
ments are successfully achieved. Methods should be provided which can accurately
assess what level of dependability has been attained by a system. In this paper, we have
presented a modelling and simulation-based development process targeted towards de-
pendable systems, and have demonstrated it through an application to the safety-critical
Pump Control System.

A continuity was maintained throughout the development process. We started from
requirements, mapped these to a DEVS model, extended the model to consider the
dependability constraints, defined performance metrics, implemented the model using
the PythonDEVS framework, and performed simulations whose results reflected the
safety and reliability of the system. DEVS is deemed the most appropriate formalism
for modelling both the system under study and the fault tolerance techniques. This,
as discrete-event models are clearly at the right abstraction level, and because of the
compositionality of the DEVS formalism. Fault tolerance, more specifically TMR, was
used as a means to achieve dependability. In this approach, two types of voters were
used, and the simulation results were inspected to decide which voter best satisfied the
dependability requirement. The results indicated that this outlined method improved the
dependability levels of the example system.

We have shown how models can be useful for designing dependable systems: a
model can be extended to address possible failures and to incorporate fault tolerance
techniques that overcome them. This approach allows us to predict behaviour and esti-
mate system dependability, and it enables an informed decision on which fault tolerance
technique to apply. If such a step is taken during the analysis and design phase of any
project, development cost is reduced as an optimal system is built right the first time,
while fault tolerance is addressed earlier on in the development cycle, and simulation
results emulate the expected behaviour of the dependable system.

We plan to further investigate a generic process for the analysis and design of de-
pendable systems. Furthermore, we will use the fault-tolerant models to synthesize the
final application.

References

[1] Gray, J., Rossi, M., Tolvanen, J.P., eds.: Domain-Specific Modeling with Visual Languages.
Volume 15 of Journal of Visual Languages & Computing. Elsevier Science Publishers
(2004)

A Modelling and Simulation Based Approach to Dependable System Design 231

[2] Vangheluwe, H., de Lara, J.: Domain-specific modelling for analysis and design of traf-
fic networks. In Ingalls, R., Rossetti, M., Smith, J., Peters, B., eds.: Winter Simulation
Conference, IEEE Computer Society (2004)

[3] Pfeifer, H., von Henke, F.W.: Formal modelling and analysis of fault tolerance properties
in the time-triggered architecture. In: 5th Symposium on Formal Methods for Automation
and Safety in Railway and Automotive Systems. (2004)

[4] Boue, J., Arlat, J., Crouzet, Y., Petillon, P.: Verification of fault tolerance by means of fault
injection into VHDL simulation models. In: Contrat Esprit DeVa Project. (1996)

[5] Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic Press
(1984)

[6] Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation, Second Edi-
tion. Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic
Press (2000)

[7] Cheon, S., Seo, C., Park, S., Zeigler, B.: Design and implementation of distributed DEVS
simulation in a peer to peer network system. In: 2004 Advanced Simulation Technologies
Conference, Design, Analysis, and Simulation of Distributed Systems Symposium 2004
(2004)

[8] Chi, S., Lee, J.: DEVS-based modeling and simulation for intelligent transportation sys-
tems. In Sarjoughian, H.S., Cellier, F.E., eds.: Discrete event modeling and simulation:
A tapestry of systems and AI-based theories and methodologies. Springer-Verlag (2001)
215–227

[9] Filippi, J., Chiari, F., Bisgambiglia, P.: Using jDEVS for the modeling and simulation
of natural complex systems. In: SCS AIS 2002 Conference on Simulation in Industry.
Volume 1. (2002)

[10] Geffroy, J.C., Motet, G.: Design of Dependable Computing Systems. Kluwer Academic
Publishers (2002)

[11] von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreli-
able components. In Shannon, C.E., McCarthy, J., eds.: Annals of Math Studies. Princeton
University Press (1956) 43–98

[12] Laprie, J.C.: Dependable computing and fault tolerance : Concepts and terminology. In
Meyer, J.F., Morgan, D.E., eds.: 15th FTCS. (1985)

[13] Lee, P.A., Anderson, T.: Fault tolerance - principles and practice. In: Dependable Comput-
ing and Fault-Tolerant Systems. 2nd edn. Springer Verlag (1990)

[14] Burns, A., Lister, A.: An architectural framework for timely and reliable distributed in-
formation systems (TARDIS): Description and case study. Technical report, University of
York (1990)

[15] Huang, D., Sarjoughian, H.: Software and simulation modeling for real-time software-
intensive system. In: Proceedings of the 8th IEEE International Symposium on DS-RT.
(2004)

[16] Bolduc, J.S., Vangheluwe, H.L.: The modelling and simulation package pythonDEVS for
classical hierarchical DEVS. Technical report, McGill University (2001)

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 232-247, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Extending Profiles with
Stereotypes for Composite Concepts1

Dick Quartel, Remco Dijkman, Marten van Sinderen

Centre for Telematics and Information Technology, University of Twente,
PO Box 217, 7500 AE Enschede, The Netherlands

{D.A.C.Quartel, R.M.Dijkman, M.J.vanSinderen}@utwente.nl

Abstract. This paper proposes an extension of the UML 2.0 profiling mecha-
nism. This extension facilitates a language designer to introduce composite
concepts as separate conceptual and notational elements in a modelling lan-
guage. Composite concepts are compositions of existing concepts. To facilitate
the introduction of composite concepts, the notion of stereotype is extended.
This extension defines how a composite concept can be specified and added to
a language’s metamodel, without modifying the existing metamodel. From the
definition of the stereotype, rules can be derived for transforming a language
element that represents a composite concept into a composition of language
elements that represent the concepts that constitute the composite. Such a trans-
formation facilitates tool developers to introduce tool support for composite
concepts, e.g., by re-using existing tools that support the constituent concepts.
To illustrate our ideas, example definitions of stereotypes and transformations
for composite concepts are presented.

1 Introduction

The profiling mechanism, as defined in the UML 2.0 Infrastructure Specification
[10], is a lightweight metamodel extension mechanism. It allows one to specialize any
language, provided its metamodel is defined in the MOF, by specializing existing
concepts that are represented in the metamodel of that language. By defining profiles
on top of a general-purpose language one can re-use tools for the general-purpose
language to support the languages that are defined by the profiles. Furthermore, one
can develop dedicated languages for specific stages in the design process or specific
application domains. Hence, the profiling mechanism combines the efficiency of
general purpose languages with the intuitive clarity of dedicated languages.

We claim however that besides specialization, the profiling mechanism should
support the extension of metamodels with composite concepts, i.e., concepts that are
defined as compositions of existing concepts. In general, the introduction of compos-
ite concepts and associated language elements facilitates the task of a modeller and

1 This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl), which
is sponsored by the Dutch government under contract BSIK 03025.

Extending Profiles with Stereotypes for Composite Concepts 233

increases the clarity of models, because frequently occurring compositions of con-
cepts can be replaced by composite concepts. In addition, the possibility of defining
composite concepts allows one to use a general-purpose language consisting of a
limited number of elementary and generic concepts. More complex concepts can then
be defined as compositions of those elementary and generic concepts. The benefit of
such an approach is that, on the one hand, it is easy to maintain consistency and tool
support for a limited set of elementary concepts, while, on the other hand, it provides
clarity and ease of use, because complex concepts can be defined directly and clearly.

For example, consider the extension of the UML 2.0 action semantics with a Time-
dOperationCall, which represents the handling of an operation call, including the possi-
bility to set a maximal completion time. A timed operation call involves a number of
elementary actions, such as CallOperationAction, AcceptCallAction, ReplyAction and Ac-
ceptTimeEventAction (see also the elaboration of this example in section 3.3). This
means one has to be able to define which elementary actions are involved and how
these actions are related. This is however not possible by defining a timed operation
call as a stereotype of an existing concept using the current profiling mechanism.

The contribution of this paper is twofold. First, we propose an extension of the
UML 2.0 profiling mechanism with stereotypes for composite concepts. These stereo-
types should leave the existing metamodel unmodified. Second, we describe how
rules can be derived from the stereotypes to transform a composite concept into the
corresponding composition of (elementary) concepts. Such transformation rules can
be used to generate tools supporting the dedicated modelling languages that use the
composite concepts, based on existing tools for the general-purpose language.

This paper is further structured as follows. Section 2 describes the profiling
mechanisms and the trade-off between profiling and metamodelling. Section 3 intro-
duces stereotypes for specifying composite concepts. Section 4 explains how model
transformation can be used to implement these stereotypes. Section 5 illustrates some
applications of our ideas. And section 6 presents conclusions and future work.

2 Profiling

Profiling allows one to extend an existing language metamodel with specializations of
metaclasses and with constraints. The purpose of such an extension is to adapt a lan-
guage for a particular application domain, development platform or design method.
For example, one may want to support specific concepts, notation or terminology. An
important restriction is that profiling does not allow one to modify the existing meta-
model. Profiling in UML 2.0 can be applied to any MOF-compliant metamodel.

2.1 Profiles Package

Figure 1 depicts the Profiles package from the Infrastructure specification [10]. A
profile is a kind of package that extends an existing metamodel or profile. A profile
contains stereotypes. A stereotype extends (specializes) an existing metaclass or
stereotype. This extension is defined by a specialized association between the stereo-

234 Dick Quartel, Remco Dijkman, and Marten van Sinderen

type and the extended metaclass. Through the extension each instance of the stereo-
type is associated with an instance of the metaclass that it extends. A profile applica-
tion defines which profiles have been applied to some package.

Extension

Stereotype

Class

PackageImport
(from Constructs)

Package
(from Constructs)

Property
(from Constructs)

Class
(from Constructs)

Association
(from Constructs)

ProfileApplicationPackage

PackageImport
(from Constructs)

ElementImport
(from Constructs)

ExtensionEnd

Profile

/metaclass+

/extension+

*

*

importedProfile+

appliedProfile+

*

metamodelReference+

*

ownedEnd+

ownedStereotype+

*
meteaclassReference+

*

*

type+

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Fig. 1. The classes defined in the Profiles package.

Figure 2 depicts an example of the definition of an EJB profile. A profile is de-
fined as a package stereotyped <<profile>>. A stereotype is denoted by the keyword
<<stereotype>> above the stereotype name. An extension association is represented by
a filled arrow pointing from the stereotype to the metaclass. The constraint {required}
defines that the extension is required, which means that an instance of Bean, i.e., an
instance of Entity or Session, must always be linked to an instance of Component. In
general, constraints can be associated with stereotypes to specify rules and restrictions
on their use. Just like a class, a stereotype may have properties (attributes). These
properties extend the properties of the extended metaclass or stereotype. For example,
attribute state of stereotype Session defines whether a session object is stateful or
stateless. The values of stereotype properties are also referred to as tagged values.
Package Conference illustrates how the EJB profile can be applied, which is repre-
sented by an import association stereotyped <<apply>>. Because state is a meta-
attribute of stereotype Session, its value can not be set directly by the ConferenceMan-
agement class, but can be set in a comment box that starts with the name of the stereo-
type.

<< profile >>

EJB

Component

<< stereotype >>
Session

-state:StateKind

<< stereotype >>
Entity

<< stereotype >>
Bean

<< enumeration >>
StateKind

stateless
stateful

Conference

<<session>>
state = stateful

<< Session >>
Conference
Management

{required}

<< apply >>

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Fig. 2. Example of profiling.

Extending Profiles with Stereotypes for Composite Concepts 235

We would like to stress that the Profiles package only provides a way to extend the
metamodel, i.e., the abstract syntax, of some language. Language extension also in-
volves the definition of the semantics and concrete syntax for the metamodel exten-
sion. This has to be done separately.

2.2 Profiling Versus Metamodelling

In general, two approaches to metamodel extension can be distinguished, which are
often referred to as ‘profiling’ and ‘metamodelling’. Profiling refers to the extension
mechanism described in section 2.1. Metamodelling refers to the definition of meta-
models. An essential difference between both approaches is that profiling starts from
an existing metamodel and does not modify this metamodel, whereas metamodelling
involves the creation of a new or the modification of an existing metamodel.

The metamodelling approach can always be used instead of profiling. Metamodel-
ling has to be used in case some of the modelling concepts that have to be represented
by the metamodel can not be obtained as specializations of existing concepts. Fur-
thermore, if one has a stable set of modelling concepts, one may want to create a
separate metamodel and develop dedicated tools, since this pays off by having better
modelling and tool support.

Instead, the profiling approach is meant to provide a lightweight extension mecha-
nism that is more easy to use by language developers and more easy to support by
tools. This approach can only be used in case the required modelling concepts are
specializations of existing concepts. From the MDA perspective this seems sufficient
to facilitate the development of transformations from general models (PIMs) to more
specific models (PSMs). However, a more expressive profiling mechanism may fa-
cilitate the MDA approach even further. In particular, we claim that an extension
mechanism for composite concepts is useful and can be introduced while maintaining
the lightweight character of profiling. Section 5 discusses some applications of such
an extension mechanism for composite concepts.

The characteristic that an existing metamodel is left unmodified has been an im-
portant motivation to propose an extension of the profiling approach. The profiling
approach avoids that an existing metamodel is compromised, helps to shield distinct
language extensions from each other, and facilitates re-use of tool support. One could
argue that the same benefits can be achieved by structuring metamodels and their
extensions properly, but this would require much more expertise from the language
developer. Furthermore, the choice to extend the profiling mechanism should not be
considered as a (strong) preference for stereotypes to define language extensions. In
fact, some of the ideas underlying the definition of stereotypes for composite con-
cepts can also be used when following a metamodelling approach (see also section
3.3).

Several papers [1,2,3,4,8,15] discuss the principles of and problems associated
with metamodelling and profiling in more detail.

236 Dick Quartel, Remco Dijkman, and Marten van Sinderen

3 Specification of Composite Concepts

A concept represents some system property that is considered essential in the devel-
opment of (software) systems. Concepts form the building blocks for constructing
models. A model consists of one or more concept instances, representing the system
properties that are conceived by the developer and considered relevant in relation to
the purpose of the model in the development process.

An elementary concept represents an elementary system property, and forms the
smallest unit for constructing models. We define a composite concept as a composi-
tion of concept instances, where a concept can be an elementary or a composite con-
cept. We define a structure concept as a composition of concepts (rather than concept
instances). The difference between a structure concept and a composite concept is
that, if we want to use a structure concept in a model, we still have to decide on what
instances of its constituents we want to use and how we want to associate them. Con-
sequently, a structure concept represents a set of composite concepts, i.e., one for
each possible composition of instances of the structure concept.

Composite and structure concepts are commonly used during a development proc-
ess, either explicitly or implicitly. Examples are compositions, patterns or groupings
of model elements; e.g., a transaction that consists of multiple related operation calls
is an example of a composite concept, and the StructuredActivityNode in UML’s activi-
ties that represents a group of activity nodes and edges is an example of a structure
concept.

3.1 Representing Composite and Structure Concepts

We represent a composite or structure concept as a class that is related to its constitu-
ents by composite aggregations. For example, figures 3(i) and 3(ii) depict metamod-
els representing the structure concepts ATask and BTask, respectively, which consist of
the elementary concepts Action and Flow.

1..*

{redefined
action}

0

Task

ActionFlow

+source

+target

+m : String
Messaging

+m : String
Send

+m : String
Receive

:Send

:Receive

:Flow

Process

+flow

{redefined flow}
0

+source

+target

+classifier

+classifier

+classifier

1..*+action*

1

1

1

ATask

ActionFlow

+source

+target

+flow 2 +action1

BTask

ActionFlow

+source

+target

+flow 3 +action2

(i)

(ii)

(iii)

+outgoing

+incoming

Fig. 3. Composite concepts.

One may be tempted to interpret the metamodel of figure 3(i) at an instance level,
such that it represents: a task consisting of two actions that are related by a flow.
However, the metamodel of figure 3(i) can only be interpreted at type level, such that

Extending Profiles with Stereotypes for Composite Concepts 237

it represents: a task consisting of two actions and a flow between (any) two actions.
The difference between both interpretations becomes clearer in case of the metamodel
of figure 3(ii), which represents: a task consisting of three actions and two flows, but
does not define which actions are related by a flow. Also the metamodel of figure 3(i)
does, strictly speaking, not define which actions are related by a flow.

We conclude that a composite aggregation between a structure concept and a con-
stituent concept can be used to represent that an instance of the structure concept
contains instances of the constituent concept, where the number of instances is deter-
mined by the multiplicity constraint. In addition, associations can be defined between
the constituent concepts, but these associations represent associations at type level
and can not be used to define associations between instances of the constituent con-
cepts. Consequently, this way of specifying a structure concept does not allow one to
define how the constituents of a composite concept are related at instance level.

To represent the instances that a composite concept consists of as well as their as-
sociations, we use the notion of instantiation. An instantiation represents a particular
instance, but at a higher meta-level than the instance itself2. This allows one to define
a composite concept as a composition of instantiations, which define the instances
that should be created upon instantiation of the composite instance.

To represent instantiation, we use the UML metaclass InstanceSpecification, as de-
fined in [10]. An InstanceSpecification represents an instance in a modelled system.
Instances of any classifier can be specified, so not only instances of a class but also of
an association. Furthermore, values can be specified for the structural features of the
instance. Figure 3(iii) depicts the definition of composite concept Messaging, which
consists of an instance of a Send action, a Receive action and a Flow, where Send and
Receive are defined as specialized actions. An instance specification is expressed
using the same notation as its classifier, with the classifier name replaced by the con-
catenation of the instance name (if any), a colon symbol and the classifier name. Con-
straints can be added, e.g., to specify that the contents of the message in the anony-
mous instances :Send and :Receive must be equal to the message specified in Messag-
ing.

3.2 Extended Profiles Package

Figure 4 depicts an Extended Profiles package that supports the extension of meta-
models with stereotypes for composite concepts. A composite concept is defined
using the metaclasses CompositeStereotype, ConstituentClass(End), ConstituentAssocia-
tion(End), ClassInstantiation and AssociationInstantiation. A CompositeStereotype represents
the composite concept and inherits from Stereotype to define that it extends an existing
metaclass or stereotype. A ConstituentClass represents a composite aggregation be-
tween a composite stereotype and an instantiation of one of its constituent classes. An
instantiation is defined as a kind of InstanceSpecification. Similarly a ConstituentAssocia-
tion represents a composite aggregation between a composite stereotype and an instan-
tiation of one of its constituent associations. A ConstituentAssociation is related to the
class instantiations that it will associate.

2 In Merriam-Webster Online, instantiate is defined as “to represent (an abstraction) by a con-

crete instance”.

238 Dick Quartel, Remco Dijkman, and Marten van Sinderen

The package defines how stereotypes can be defined, but does not enforce one to
define how these stereotypes can be used in relation to existing metaclasses and
stereotypes. However, both in case of a ‘regular’ stereotype and in case of a compos-
ite stereotype this is no issue, since a stereotype is defined as an extension of an exist-
ing metaclass, thereby ‘inheriting’ via the extended metaclass the associations that are
defined between this metaclass and other metaclasses.

Association

(from Constructs)

Class
(from Constructs)

Class

Property
(from Constructs)

ExtensionEnd

*
type+

Package
(from Constructs)

Profile
ownedStereotype+

*

ConstituentAssociation

ownedEnd+

ownedEnd+

/metaclass+

/extension+

*

/compositeStereotype+

/composition+

*

CompositeStereotype

Stereotype

ConstituentAssociationEnd

-isComposite:Boolean=true

memberEnd+

2..*

Package

PackageImport
(from Constructs)

ProfileApplication
appliedProfile+

*

*
importedProfile+

InstanceSpecification
(from Kernel)

type+
type+

ElementImport
(from Constructs)

PackageImport
(from Constructs)

meteaclassReference+

*

metamodelReference+

*

ClassInstantiation

metaclass+
{redefined classifier}

/compositeStereotype+

/compositionAssociation+

*

ownedEnd+

AssociationInstantiation

Association

metaassociation+
{redefined classifier}

ConstituentClass ConstituentClassEnd

-isComposite:Boolean=true

Extension

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Fig. 4. The classes defined in the Extended Profiles package.

Hence, by extending an existing metaclass, a composite stereotype defines its pos-
sible associations with other existing metaclasses implicitly. The possible associations
of the stereotype’s constituents and these metaclasses are however not defined in this
way. We call these associations the context relations of a stereotype. The context
relations define how associations between the composite stereotype and other meta-
classes must be replaced by associations between the composite’s constituents and
other meta-classes. We note, however, that associations between a composite’s con-
stituents and other meta-classes can only exist in the model, after the composite con-
cept is replaced by its constituents. Otherwise, an inconsistent model may be the
result. We represent context relations as OCL constraints. Since context relations
represent changes to a model, we define the OCL constraints as constraints on opera-
tions that define these changes.

a:Action :Flow m:Messaging b:Action
+outgoing

+source
:Flow

+incoming

+target +source
+outgoing +incoming

+target

a:Action :Flow b:Action
+outgoing

+source
:Flow

+incoming
+target +source

+outgoing
+incoming

+target

:Send :Flow :Receive
+outgoing

+source
+incoming

+target

(ii)

(i)

Fig 5. Example object models.

Extending Profiles with Stereotypes for Composite Concepts 239

For example, consider the object model in figure 5(i). The context relations be-
tween the constituents of messaging task m and actions a and b are not defined by the
definition of Messaging in figure 3(iii). We define the following context relations.
Each association that relates an incoming flow to an instance of Messaging, must relate
that incoming flow to the Send action of that instance instead. Each association that
relates an instance of Messaging to an outgoing flow, must relate the flow to the Re-
ceive action of that instance instead. In addition, if a messaging concept instance is
defined as part of a process or task, its constituents must be added to this process or
task instead. Figure 5(ii) depicts the object model that results from replacing object m
by the corresponding composition of elementary concept instances. We express the
context relation regarding incoming flows in OCL as follows, where operation proc-
essContextRelations is assumed to implement the context relations when replacing a
Messaging object by its constituents:

context Messaging::processContextRelations()
 post initial_actions:
 let incomingflows = self.incoming in
 self.Send.incoming->includesAll(incomingflows) and
 incomingflows->forAll(f|f.target = self.Send)

3.3 Example: Operation Call with Time-Out

As an example we consider the definition of composite concept TimedOperationCall, as
introduced in section 1. The activity diagram in figure 6 defines the behaviour of a
timed operation call. For brevity, information aspects are not considered, which could
be modelled through input and output pins.

When a timed operation call is invoked, actions CallOperationAction and Ac-
ceptTimeEventAction are enabled. CallOperationAction represents the transmission of an
operation call request to the target object. The receipt of this request is represented by
AcceptCallAction, which enables the actual handling of the operation call. ReplyAction
represents the returning of the operation result, for which it uses return information
produced by the AcceptCallAction. Action AcceptTimeEventAction represents the occur-
rence of a timeout after some time has expired. In this case an exception is generated
through RaiseExceptionAction, which may interrupt the action sequence CallOperationAc-
tion, AcceptCallAction and ReplyAction.

CallOperationAction AcceptCallAction

AcceptTimeEventAction

RaiseExceptionAction

ReplyAction

Fig. 6. Activity diagram of a TimedOperationCall.

Figure 7 depicts the metamodel definition of a timed operation call as a composite
stereotype. The keywords <<composite>> and <<instantiate>> denote a composite stereo-
type and an instantiation, respectively. A line between two instantiations denotes the

240 Dick Quartel, Remco Dijkman, and Marten van Sinderen

instantiation of an association between those instantiations. For clarity, a single Con-
stituent association between TimedOperationCall and a grey box is used to represent all
ConstituentClass and ConstituentAssociation associations between TimedOperationCall and
the instantiations in the box.

Stereotype TimedOperationCall has been defined as an extension of metaclass Struc-
turedActivityNode to define the way in which it can be composed with other metaclasses
in the action semantics. Since an StructuredActivityNode is a kind of ActivityNode, it can
be connected to other ActivityNodes via ActivityEdges. The context relations for Time-
dOperationCall are the following. An association that relates an incoming ActivityEdge to
the TimedOperationCall must relate that ActivityEdge to the ForkNode that is labelled initial
instead. An association that relates an outgoing ActivityEdge to the TimedOperationCall
must relate that outgoing ActivityEdge to the MergeNode that is labelled final instead.

StructuredActivityNode
(from StructuredActivities)

<< composite >>
TimedOperationCall

InterruptableActivityRegion
(from CompleteActivities)

ControlFlow
(from BasicActivities)

ForkNode
(from BasicActivities)

<< instantiate >>
initial:BasicActivities::
ForkNode

<< instantiate >>
:IntermediateActions::
CallOperationAction

AcceptTimeEventAction
(from CompleteActions)

<< instantiate >>
:BasicActivities::
ControlFlow

source+

<< instantiate >>
:CompleteActions::
AcceptCallAction

target+

<< instantiate >>
:CompleteActions::
AcceptTimeEventAction

MergeNode
(from BasicActivities)

<< instantiate >>
final:BasicActivities::
MergeNode

<< instantiate >>
:CompleteActions::
RaiseExceptionAction

<< instantiate >>
:CompleteActivities::
InterruptableActivityRegion

Operation
(from Kernel)

*

operation+

CallTrigger
(from Communications)

*

operation+

CallOperationAction
(from IntermediateActions)

*

operation+

ReplyAction
(from CompleteActions)

replyToCall+

AcceptCallAction
(from CompleteActions)

trigger+

<< instantiate >>
:CompleteActions::
ReplyAction

<< instantiate >>
:BasicActivities::
ControlFlow

<< instantiate >>
:BasicActivities::
ControlFlow

<< instantiate >>
:BasicActivities::
ControlFlow

<< instantiate >>
:BasicActivities::
ControlFlow

<< instantiate >>
:BasicActivities::
ControlFlow

<< instantiate >>
:BasicActivities::
ControlFlow

source+

source+

target+

target+

inGroup+

inGroup+

inGroup+

inGroup+

interruptingEdge+

inGroup+

source+ target+ source+

target+

target+

source+
target+

source+

RaiseExceptionAction
(from CompleteActions)

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Fig. 7. Stereotype definition of composite concept TimedOperationCall.

Metamodelling. The composite concept of timed operation call can also be defined
using metamodelling. We indicate two possible approaches to do this: a constructive
and a constraint-oriented approach. In both approaches a TimedOperationCall is defined
as a specialization of a StructuredActivityNode. Both approaches differ however in the

Extending Profiles with Stereotypes for Composite Concepts 241

way the composition is defined. The constructive approach defines the composition
explicitly in terms of its constituents. This approach resembles the approach followed
in section 3.3. The constraint-oriented approach defines the composition by adding
OCL constraints to the composite concept, which define the constituents of the com-
position implicitly. We expect this approach is much more difficult to apply and un-
derstand than the constructive approach.

4 Transformation of Composite Concepts

In order to use design techniques that are defined on elementary concepts, such as
simulation, analysis and validation, we have to transform each stereotype into the
concept or concepts that it consists of. In this way, existing tools can largely be re-
used and the need for tool modification is minimized. Section 5 presents an example
of how tool support can be extended through model transformation.

In this section we focus on the transformation of composite stereotypes. The trans-
formation of ‘regular’ stereotypes as defined by the UML 2.0 Profile package is
rather straightforward. Regular stereotypes can be transformed directly to the meta-
classes they extend. We note, however, that in this transformation any specialized
design information added by the stereotype is lost. It depends on the particular design
technique whether this loss of information is acceptable and existing tools can be
reused.

4.1 Transformation Rules

A composite stereotype completely defines how an instance of the corresponding
composite concept is composed of instances of existing concepts and associations. In
addition, context relations (see section 3.2) define how this composition is embedded
in a model that contains the composite concept, i.e., how the constituent concept
instances and associations are related to other concept instances in the model. This
means that the definition of a composite concept, including its context relations, pro-
vide all the information that is required to define rules for transforming its instances
to existing concept instances and associations. In principle, these rules can be derived
automatically. The following transformation steps are distinguished:

1. creation of the constituent concept instances. For each instance of Constituent-
Class, create an instance of the metaclass defined by the instantiation. In addi-
tion, each ConstituentClass may define the instance name and attribute values;

2. creation of associations between concept instances. For each instance of Con-
stituentAssociation, create an instance of the meta-association defined by the in-
stantiation. Relate this instance to the classes to which the ConstituentAssociation
is related via ConstituentClassEnd.

3. replacement of associations between the composite concept instance and other
concept instances in the model by associations between the constituent concept
instances as created in step 1 and the other concept instances. This replacement
is defined by the context relations associated with the composite stereotype.

242 Dick Quartel, Remco Dijkman, and Marten van Sinderen

4.2 YATL

We use the transformation language YATL [9] to define transformations, because
tool support exists for this language and because it is compliant to the MOF. YATL
makes extensive use of the Object Constraint Language (OCL) [11], a language that
can be used to describe constraints on how concepts can be used. It can also be used
to query a design to verify that a constraint holds on that design or to yield a particu-
lar set of concept instances as indicated by the query. Here, we assume the reader is
familiar with the basic properties of OCL.

A YATL transformation has a name and consists of a set of transformation rules.
These rules are performed in the order in which they are invoked by the rule that is
declared the start rule. Each rule has a name, it optionally has a match part and it has a
body part. The match part identifies a MOF Class by its name and optionally defines an
OCL expression over that concept. The body part of the rule is evaluated over each
instance that is selected in the match part. For each execution of the body part self
takes the value of one of these instances.

The body part contains a sequence of statements that must be performed. A let
statement, let <name>: <classifier name>;, declares a variable by the given name of the
type given by the classifier name. An assignment statement, <expr1> := <expr2>, assigns
the value of <expr2> to <expr1>. A track statement is used to store and recall a temporary
relation between two concept instances. track(<ci1>, <relation name>, <ci2>) stores a rela-
tion between the concept instances <ci1> and <ci2> in the relation identified by <relation
name>. The relation must be functional, such that each <ci1> can be assigned to at most
one other concept instance. track(<ci1>, <relation name>, null) returns the concept instance
that is related to concept instance <ci1> by the relation identified by <relation name>. A
tracking relation is visible in each rule in an entire transformation. A new statement,
new <class name>, creates a new instance of the Class by the specified name.

YATL transformations can be structured by defining them in the context of name-
spaces. A namespace identifies the Packages that contain the Classes that are the source
and the target of the transformation, respectively.

4.3 Example Transformation

As an example we have defined a YATL transformation for composite concept Mes-
saging in figure 3(iii), which transforms a source model into a target model, such that
each instance of Messaging in the source model is replaced by its corresponding com-
position of elementary concept instances in the target model. We assume that the
metamodel of figure 3(iii) has been defined in a package named messagingpackage.
Furthermore, for convenience, directed composite aggregations have been used.

The following excerpt describes the main transformation rule, which consists of
the sequential invocation of 9 other rules. The first 7 rules basically define the copy-
ing of concept instances from the source model to the target model, excluding in-
stances from the composite Messaging concept. For brevity, we don’t illustrate these
rules here, but the complete transformation can be obtained from [16].

Extending Profiles with Stereotypes for Composite Concepts 243

rule main (){
 pureaction2pureaction();
 sendaction2sendaction();
 receiveaction2receiveaction();
 taskaction2taskaction();
 flowrelation2flowrelation();
 taskcontainment2taskcontainment();
 process2process();
 messaging2basic();
 messagingassociations2basicassociations();
}

Rule messaging2basic defines the creation of the constituent concept instances and
the associations between them. This corresponds to steps 1 and 2 from section 4.1.

rule messaging2basic match messagingpackage::Messaging (){
 let dstsend: messagingpackage::Send;
 let dstreceive: messagingpackage::Receive;
 let dstflow: messagingpackage::Flow;
 dstsend := new messagingpackage::Send;
 dstreceive := new messagingpackage::Receive;
 dstflow := new messagingpackage::Flow;
 dstsend.m := self.m;
 dstsend.outgoing := dstsend.outgoing->including(dstflow);
 dstreceive.m := self.m;
 dstreceive.incoming := dstreceive.incoming->including(dstflow);
 dstflow.source := dstsend;
 dstflow.target := dstreceive;
 track(self, tmessage2send, dstsend);
 track(self, tmessage2receive, dstreceive);
 track(self, tmessage2flow, dstflow);
}

Finally, rule messagingassociations2basicassociations() implements the context
relations for Messaging. This corresponds to step 3 from section 4.1. The following
code excerpt describes part of the rule, which defines that any incoming flow of a
Messaging instance must be an incoming flow for its constituent Send instance. In
addition, if a messaging concept instance is defined as part of a process or task, its
constituents must be added to this process or task.

rule messagingassociations2basicassociation match
 messagingpackage::Messaging (){
 --if messaging is part of process p, its constituents are part of p
 let dstsend: messagingpackage::Send;
 let dstreceive: messagingpackage::Receive;
 let dstflow: messagingpackage::Flow;
 dstsend := track(self, tmessage2send, null);
 dstreceive := track(self, tmessage2receive, null);
 dstflow := track(self, tmessage2flow, null);
 foreach p: messagingpackage::Process in
 Process.allInstances()->select(p| p.task->includes(self)) do {
 let dstp: messagingpackage::Process;
 dstp := track(p, tprocess2process, null);
 dstp.task := dstp.task->including(dstsend);
 dstp.task := dstp.task->including(dstreceive);
 }
 --if messaging is part of a task t, its constituents are part of t
 foreach t: messagingpackage::Task in
 Task.allInstances()->select(t| t.action->includes(self)) do {
 let dstt: messagingpackage::Task;
 dstt := track(t, ttask2task, null);
 dstt.action := dstt.action->including(dstsend);
 dstt.action := dstt.action->including(dstreceive);
 dstt.flow := dstt.flow->including(dstflow);
 }

244 Dick Quartel, Remco Dijkman, and Marten van Sinderen

 --if messaging has an incoming flow f, its send action has f
 foreach f: messagingpackage::Flow in self.incoming do {
 let dstsend: messagingpackage::Send;
 dstsend := track(self, tmessage2send, null);
 let inflow: messagingpackage::Flow;
 inflow := new messagingpackage::Flow;
 inflow.target := dstsend;
 dstsend.incoming := dstsend.incoming->including(inflow);
 let srcsourceaction: messagingpackage::Action;
 srcsourceaction := f.source;
 if (f.source.oclIsTypeOf(messagingpackage::Messaging)) then
 let dstsourcemessage: messagingpackage::Messaging;
 dstsourcemessage :=
 track(srcsourcemessage, tmessage2receive, null);
 inflow.source := dstsourcemessage;
 dstsourcemessage.outgoing :=
 dstsourcemessage.outgoing->including(inflow)
 else
 let dstsourceaction: messagingpackage::Action;
 dstsourceaction:=track(srcsourceaction, taction2action, null);
 inflow.source := dstsourceaction;
 dstsourceaction.outgoing :=
 dstsourceaction.outgoing->including(inflow)
 endif;
 }

5 Example Applications of the Extended Profiles Package

This section further motivates and illustrates the use of the Extended Profiles package
by presenting two possible applications: (i) relating modelling languages and (ii)
structuring modelling languages.

Relating modelling languages. In earlier work [5], we presented an approach to
relate different viewpoints and viewpoint models via a basic viewpoint (see Figure 8).
A conceptual model represents the set of concepts that is used in a particular view-
point and forms the basis for modelling languages that are used to express models
(views) of a system as conceived from this viewpoint. The approach is based on the
assumption that the concepts from each viewpoint can be considered as extensions of
a common set of basic, i.e., elementary and generic, modelling concepts, as repre-
sented by the basic viewpoint. Two types of extensions are considered: (i) a view-
point concept is a specialization of a basic viewpoint concept, or (ii) a viewpoint
concept is a composition of (possibly specialized) basic concepts. These assumptions
allow one to map different models from the same or different viewpoints onto basic
viewpoint models. In this way, relationships between different viewpoint models,
e.g., refinement and consistency relationships, can be analysed within the scope of a

Conceptual model

 Viewpoint 1
Conceptual model

 Viewpoint 2
Conceptual model

 Viewpoint 3

Conceptual model
 Basic viewpoint

Fig. 8. Relating viewpoints via a basic viewpoint.

Extending Profiles with Stereotypes for Composite Concepts 245

single conceptual model and by using the same set of analysis tools. By defining
viewpoints as extensions (profiles) of a basic viewpoint, the Extended Profiles pack-
age provides a technique to implement the approach described above.

Structuring modelling languages. Another application of the Extended Profiles
package is to structure and extend existing modelling languages, using the profiling
mechanism. Using the Extended Profiles package we can structure a language into a
small set of basic, i.e., elementary and generic, concepts and sets of composite (and
specialized) concepts as extensions of those concepts. Having a small set of basic
concepts helps to keep a language clear and consistent, while the definition of com-
posite concepts helps us to increase the language’s suitability and ease of use for
some application domain. Although the existing profiling mechanism already helps us
to structure a language in this way, the addition of composite stereotypes extends our
possibilities.

An interesting case for this approach is UML, which consists of different lan-
guages supporting different modelling viewpoints. As is shown in [6], these lan-
guages can be divided into two main categories: structural languages (for class and
component diagrams) and behavioural languages (for use case, collaboration, state,
activity and sequence diagrams). Furthermore, it is shown that for each of these cate-
gories a basic conceptual model can be defined.

We also applied this structure to our behaviour modelling language ISDL [12, 13].
This language has originally been based on a small set of basic concepts [14]. To
facilitate a designer in modelling frequently used compositions of ISDL concepts, we
are currently introducing shorthand notations to express composite concepts more
conveniently. Since each composite concept can be transformed into the basic con-
cepts, we are able to reuse tools that we developed for the basic concepts to support
the extended concepts. For example, in this way we have been able to reuse the ISDL
simulator for ISDL models that contain instances of composite concepts. The same
holds for our technique to assess the conformance between two ISDL models [16].

6 Conclusions

The use of the UML’s 2.0 profiling mechanism allows one to combine the efficiency
of general purpose languages with the intuitive clarity and ease of use of dedicated
languages. Since the profiling mechanism leaves the language metamodel unmodified
and introduces stereotypes as extensions of existing metamodel elements, modelling
tool support can be reused. This benefit of profiling can be exploited further by al-
lowing one to specify stereotypes for composite concepts, representing (frequently
used) compositions of existing concepts. An extension of the UML’s Profiles package
is presented that supports the specification of composite stereotypes.

At the time of writing, we are not aware of other work that proposes metamodel
extension mechanisms for composite concepts, particularly based on the UML profil-
ing mechanism. However, many contributions can be found in literature on classifica-
tions of metamodel extension mechanisms and approaches, and on guidelines to use
and interpret stereotypes [1,2,3,4,8,15]. This paper is orthogonal to this work and

246 Dick Quartel, Remco Dijkman, and Marten van Sinderen

makes a further contribution by extending the use of stereotypes in a general way.
The notion of composite stereotype we introduce can be seen as a restrictive kind of
stereotype as described in [4]. Furthermore, this notion is used for type classification
as described in [3], since it is meant to introduce new language elements. Although
general metamodelling techniques can be used to support the introduction and appli-
cation of composite concepts, we have extended the UML 2.0 Profiles package be-
cause it does not allow a language developer to modify an existing metamodel. But,
in principle, this restriction can also be obtained through, or actually is, a restrictive
form of metamodelling.

We believe that tool support for the specification of composite stereotypes as de-
scribed in this paper can be developed rather easily. In addition, we have illustrated
how transformation rules can be derived systematically from the specification of a
composite stereotype to transform a composite concept instance to the composition of
the constituent concept instances it represents. Such a transformation can be used to
implement the composite concept using existing tool support.

A question that remains to be resolved is the expressive power of the proposed Ex-
tended Profiles package compared to metamodelling. To answer this question, the
ideas presented in this paper should be applied to multiple cases from different appli-
cation areas. In particular, attention should be paid to the systematic definition of the
context relationships of a composite stereotype. This future work should lead to a
precise set of rules for specifying stereotypes and deriving transformations, which
should guarantee both the consistent use of stereotypes by language developers as
well as the correct implementation of tool support.

References

1. Atkinson, C. and Kühne, T. Strict Profiles: Why and How. In Proceedings of <<UML>>
2000, York, UK, October 2000, pp. 309-322.

2. Atkinson, C., et al. To Meta or Not to Meta – That is the Question. In Journal of Object
Oriented Programming, Vol. 13, No. 8, December 2000, pp. 32-35.

3. Atkinsion, C. et al. Stereotypical Encounters of the Third Kind. In Proceedings of
<<UML>> 2002, Dresden, Germany, September 2002, pp. 100-114.

4. Berner, S., et al. A Classification of Stereotypes for Object-Oriented Modeling Languages.
In Proceedings of <<UML>> ‘99, Fort Collins, CO, USA, October 1999, pp. 249-264.

5. Dijkman, R.M., et al. An Approach to Relate Viewpoints and Modeling Languages. In
Proceedings of the 7th IEEE Enterprise Distributed Object Computing (EDOC) Conference,
Brisbane, Australia, pp. 14-27, 2003.

6. Evans, A., et al. A unified superstructure for UML. In Journal of Object Technology, Vol. 4,
No. 1, January-February 2005, pp. 165-181.

7. ISDL. http://isdl.ctit.utwente.nl.
8. Jiang, Y., et al. On the Classification of UML’s Meta Model Extension Mechanism. In

Proceedings of <<UML>> 2004, Lisbon, Portugal, October 2004, pp. 54-68.
9. Patrascoiu, O. YATL: Yet Another Transformation Language. In Proceedings of the 1st

European MDA Workshop, MDA-IA, pages 83-90. University of Twente, the Netherlands,
January 2004.

10. OMG. UML 2.0 Infrastructure Specification. OMG Adopted Specification ptc/03-09-12.
11. OMG. UML 2.0 OCL Specification. OMG Adopted Specification ptc/03-10-14.

Extending Profiles with Stereotypes for Composite Concepts 247

12. Quartel, D., et al. Methodological support for service-oriented design with ISDL. In Proc. of the 2nd
Int. Conf. on Service Oriented Computing, New York City, NY, USA, 2004.

13. Quartel, D. et al. On architectural support for behavior refinement in distributed systems design.
Journal of Integrated Design and Process Science, 6(1), March 2002.

14. Quartel, D. et al. On the role of basic design concepts in behaviour structuring. In Computer
Networks and ISDN Systems, No. 29, 1997, pp. 413-436.

15. Schleicher, A. and Westfechtel, B. Beyond Stereotyping: Metamodeling Approaches for the
UML. In: Proceedings of HICSS 34, 2001, pp. 3051-3060.

16. http://wwwhome.cs.utwente.nl/~dijkman/downloads/messagingtransformation.yatl.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 248-263, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Transformation from CIM to PIM: A Feature-Oriented
Component-Based Approach

Wei Zhang1, Hong Mei2, Haiyan Zhao3, Jie Yang4

Institute of Software, School of Electronics Engineering and Computer Science,
Peking University, Beijing, 100871, China

{zhangw1,zhhy3,yangj4}@sei.pku.edu.cn, meih@pku.edu.cn2

Abstract. Model Transformation is a crucial part of Model-Driven Architecture
(MDA). However, most of the current researches only focus on the transforma-
tion from PIM to PSM, and pay little attention to the CIM-to-PIM transforma-
tion. One of the results is that converting CIM to PIM will depend much on de-
signers’ personal experience or creativity, and thus the quality of PIM can not
be well controlled. This paper presents a feature-oriented component-based ap-
proach to the CIM-to-PIM transformation. In this approach, features and com-
ponents are adopted as the key elements of CIM and PIM, respectively. One
important characteristic of this approach is that it provides a method to decom-
pose the n-to-n relations between features and components into two groups of
1-to-n relations. The other important characteristic is that this approach pro-
poses a way to create components by clustering responsibilities which are op-
erationalized from features. These two characteristics partially resolve two ba-
sic problems related to the CIM-to-PIM transformation: one is the traceability
problem between CIM and PIM, the other is the problem of CIM-based PIM
construction.

1 Introduction

One crucial part of Model-Driven Architecture (MDA) is model transformation [16],
i.e. transformation from CIM to PIM, or from PIM to PSM. In MDA, requirements
for a system are modeled in CIM (Computation Independent Model). However, most
of the current researches only focus on the transformation from PIM to PSM, and pay
little attention to the CIM-to-PIM transformation. One possible reason of this phe-
nomenon may be that there have been many mature technologies that can be adopted
to represent PIM and PSM precisely (such as, UML [17], Software Architecture [6],
CCM [15], EJB [19], and COM [14]), and many researchers believe it is possible to
automate the transformation from PIM to PSM based on these technologies. Whereas,
requirements modeled in CIM often lack a good structure, and it is thought to be
impossible to automate the CIM-to-PIM transformation [11]. Consequently, MDA
does not have enough capability to support the CIM-to-PIM transformation. One of
the results is that converting CIM to PIM will depend much on designers’ personal
experience or creativity, and thus the quality of PIM can not be well controlled.

Transformation from CIM to PIM: A Feature-Oriented Component-Based Approach 249

In this paper, we present an approach to transforming CIM to PIM in a feature-
oriented component-based view. We use the feature model (consisting of a set of
features and relationships between features) to structure requirements in CIM, and
use the software architecture (consisting of a set of components and interactions
between components) to organize elements at the PIM level. The feature model has
been widely used in software reuse to capture the requirements of a set of similar
systems [5, 7, 9, 10]. The entity-relationship structure and the explicit variability
modeling of the feature model make it easy to be customized according to different
reuse context [25]. The software architecture has long been recognized as a high-level
design model to decompose a system into a set of computational elements and inter-
actions between them [6, 1], and shows much chance of being adopted by UML2.0
[18]. Based on the research results in software reuse and software architecture, our
approach mainly focuses on bridging the gap between CIM and PIM in a disciplined
way, although not a fully automatic way.

Generally, there are two important problems related to model transformation. One
is the traceability between the source and the sink model, that is, how the elements in
the source model can be traced to elements in the sink model. It is the base for model
transformation. The other is the problem of the sink model’s construction, which
means how the elements in the sink model are formed in transformation. It is the core
of model transformation. In our approach, these two problems are incarnated into the
problems concerning features and components, namely, how to trace features to com-
ponents, and how to construct the software architecture based on the feature model.

To resolve these two problems, our approach introduces the concept of responsi-
bilities as the connector between features and components. A responsibility is a cohe-
sive set of program specifications from programmers’ viewpoint, and can be used as a
unit for work assignment.

Tracing features to components is complex. One important reason is the complex
n-to-n relations between features and components [8]. By introducing responsibilities
as the connector, the n-to-n relations are decomposed into two sets of 1-to-n relations.
One set contains the 1-to-n relations between features and responsibilities, indicating
that a feature can be generally operationalized into several responsibilities. The other
contains the 1-to-n relations between components and responsibilities, showing that a
component may be assigned several responsibilities. Based on the decomposition,
tracing features to components can be done in a two-step way: first operationalizing
features into responsibilities, then assigning responsibilities to components.

As to the software architecture’s construction, we decompose it into two sub-
problems, namely, component construction and interaction identification. Based on
the 1-to-n relations between features/components and responsibilities, we propose a
method of component construction by clustering responsibilities operationalized from
features. We resolve the second sub-problem by analyzing interactions between re-
sponsibilities, and using them as the source of interactions between components.

The rest of this paper is organized as follows. Basic knowledge about the feature
model is presented in Section 2. Section 3 gives the feature model of a simple docu-
ment editor. Section 4 shows how to decouple the n-to-n relations between features
and components. Section 5 presents a method of feature model based software archi-
tecture construction. Related work is discussed in Section 6. Finally, Section 7 con-
cludes this paper with a short summary.

250 Wei Zhang et al.

2 The Feature Model

In this section, we give some basic knowledge of the feature model, with the purpose
of helping readers build a clear view on feature-oriented requirements modeling.

2.1 Definition of Features

Generally, the definition of a concept can be considered from two aspects: intension
and extension. The intension describes the intrinsic qualities of a concept, while the
extension characterizes the external embodiment. Many researches have given their
definitions of features from either of the two aspects. For example, [20], [13] and [22]
focus much on the intension aspect, defining a feature as a set of related requirements,
while [9] and [8] emphasize the extension aspect, stating that a feature is a software-
characteristic in the user or customer view. In this paper, we do not introduce any
novel idea about features, but just combine these two aspects and give the following
definition of features.

In intension, a feature is a cohesive set of individual requirements.
In extension, a feature is a user/customer-visible characteristic of a software
system.

Then, requirements in CIM can be partitioned into a set of features.

2.2 Refinement

Refinements are binary relationships between features, which integrate features at
different levels of abstraction into hierarchy structures. Hierarchy structures provide
an effective way to describe complex systems.

Table 1. Refinement Definitions. This show informal definitions of three kinds of refinements

Refinement Informal Definition

Decomposition Refining a feature into its constituent features
Characterization Refining a feature by identifying its attribute features
Specialization Refining a general feature into a feature incorporating further details

Refinements can further be classified into three more concrete subclasses: decom-

position, characterization, and specialization. Their informal definitions are given in
Table 1. Some examples of them are depicted in Fig.1. The three kinds of refinement
are differentiated by roles of features involved in them (see Table 2).

Transformation from CIM to PIM: A Feature-Oriented Component-Based Approach 251

<<Feature>>
Edit

<<Feature>>
Copy

<<Feature>>
Cut

<<Feature>>
Paste

<<Feature>>
Graph-move

<<Feature>>
Moving-mode

<<Feature>>
Moving-constraint

<<Feature>>
Content-moving

<<Feature>>
Outline-moving

<<Feature>>
Horizontal

<<Feature>>
Vertical

Legend

Optional

Decomposition

Characterization

Specialization

Fig. 1. Refinement Examples. This shows examples of three kinds of refinement, namely de-
composition, characterization, and specialization

Table 2. Roles in Refinements. This table shows the different roles played by parents and
children in different kinds of refinement. In a refinement, we call the feature at a higher level
of abstraction the parent, and the other feature the child

Refinement Parent-Role Child-Role

Decomposition Whole Part

Characterization Entity Attribute

Specialization General-Entity Specialized-Entity

2.3 Constraint

Constraints are static relationships among binding-states of features. It provides a
way to verify the results of requirements customization [25] and release planning [4].
Only those results that do not violate constraints on features can be treated as candi-
dates of valid requirements subsets or releases. By explicitly modeling constraints,
the feature model possesses a good quality of customization.

There are two important constraint categories, namely binary constraints, and
complex constraints. Their formal definitions are given respectively in Table 3 and 4.

Table 3. Binary Constraints. Binary constraints are constraints on the binding-states of two
features. This shows two kinds of basic binary constraint and their formal definitions

Binary Constraint Definition

requires(a, b: Feature) bound(a) bound(b)
excludes(a, b: Feature) (bound(a) bound(b))
Where: bound(a: Feature) =def (a.binding-state = bound);

Table 4. Complex Constraints. Complex constraints are between two feature sets, which ex-
tend the parameters of binary constraints to group predicates. This shows two kinds of complex
constraint and their formal definitions. Typical group predicates are listed in Table 5

Complex Constraint Definition

requires(x, y: Group-Predicate) x y

excludes(x, y: Group-Predicate) (x y)

252 Wei Zhang et al.

Table 5. Group Predicates. Group predicates extend the parameter of the predicate bound(a:
Feature) (see Table 3) to a feature set. This shows four kinds of group predicate and their
formal definitions

Group Predicate Definition

single-bound(P: set Feature) one a P bound(a)

all-bound(P: set Feature) a P bound(a)

multi-bound(P: set Feature) some a P bound(a)

no-bound(P: set Feature) a P bound(a)

3 A Simple Document Editor

In this section, we introduce the feature model of a simple document editor, which
will be used in the rest of this paper as an example to demonstrate our approach.

<<Feature>>
Edit

<<Feature>>
Copy

<<Feature>>
Cut

<<Feature>>
Paste

<<Feature>>
Save

<<Feature>>
Un/re-do

<<Feature>>
Undo

<<Feature>>
Redo

Fig. 2. The Refinement View. This shows all features in the simple document editor and re-
finements between these features

The simple document editor contains 8 features. The refinement view of its feature
model is shown in Fig. 2. Each feature’s description is listed in Table 6.

There is one complex constraint on these features:
requires (single-bound ({un/re-do}), multi-bound ({copy, cut, paste}));

Its meaning is that feature un/re-do’s availability depends on one or more binding of
features copy, cut and paste. That is, if none of the three features is bound, the bind-
ing of un/re-do will be not available to users.

Table 6. Descriptions of Features.

Feature Description

Edit The collection of feature copy, cut, and paste.
Copy Copy the selected text in the current document to the clipboard.
Cut Cut the selected text in the current document to the clipboard.
Paste Paste the text in the clipboard to the current position of the current document.
Un/re-do The collection of feature undo and redo.
Undo Undo the latest unsaved edit operation.
Redo Redo the latest undo-ed and unsaved edit operation.
Save Save the current document into a disk.

Transformation from CIM to PIM: A Feature-Oriented Component-Based Approach 253

4 Responsibilities

In this section, we introduce the concept of responsibilities and show how responsi-
bilities can be used to decouple the complex n-to-n relations between features and
components. At the end of this section, we introduce resource containers as a special
kind of responsibility containers.

4.1 Definition of Responsibilities

The UML defines a responsibility as “a contract or obligation of a classifier” [17].
This definition clarifies the fact that a responsibility will be assigned to a classifier,
for example, to a component in the software architecture. However, it does not tell us
where a responsibility comes from, nor does it tell us the intension meaning of a re-
sponsibility.

Similar to features, we define responsibilities from two aspects:
In intension, a responsibility is a cohesive set of program specifications.
In extension, a responsibility is a partial operationalization to certain
requirements and can be used as a basic unit for work assignment to
programmers.

We define responsibilities as a concept at the level of program specifications and
use it to partition program specifications for work assignment. We also think it is
requirements that responsibilities come from, since the final purpose of building
software is to satisfy requirements.

4.2 Decoupling the n-to-n Relations Between Features and Components

The purpose of introducing responsibilities is to decouple the n-to-n relations be-
tween features and components. These relations indicate that a feature may finally be
implemented by a set of components, while a component may contribute to several
features’ implementation. The underlying idea of the decoupling is that besides the n-
to-n relations, we should further point out the exact meaning of “a feature has a rela-
tion with a component”, or “a component contribute partly to a feature’s implementa-
tion”. The decoupling is based on the following pattern:

Feature A has a relation with Component B.
 Feature A assigns Responsibility A.B to Component B.

Fig. 3 shows an example of decoupling the n-to-n relations between features and
components by using this pattern.

254 Wei Zhang et al.

<<Feature>>

1

<<Feature>>

2

<<Feature>>

3

<<Comp>>

1

<<Comp>>

2

<<Comp>>

3

<<Comp>>

4

1.1

1.2

1.3

<<Feature>>

1

<<Feature>>

2

<<Feature>>

3

<<Comp>>

1

<<Comp>>

2

<<Comp>>

3

<<Comp>>

4

2.2

2.3

2.4

3.3

3.4

3.1

Decoupling

Responsibility

Fig. 3. A Decoupling Example. This shows how the n-to-n relations between features 1, 2, 3
and components 1, 2, 3, 4 are decoupled by responsibilities.

One result of the decoupling is that the original n-to-n relations between features
and components are decomposed into two sets of 1-to-n relations. One set contains
the 1-to-n relations between features and responsibilities. The essential of these rela-
tions is that “a feature can be generally operationalized into a set of responsibilities”.
The other set contains the 1-to-n relations between components and responsibilities,
and the essential of them is that “a component can be generally assigned several
responsibilities”. In this sense, components can be viewed as a kind of responsibility
containers.

Based on the decomposition, tracing features to components can be done following
two steps: first operationalizing features into responsibilities, then assigning respon-
sibilities to components. On the other hand, the decoupling also supports tracing back
from components to features. This can be achieved just by changing the deduced part
of the decoupling pattern into “Component B is assigned Responsibility A.B from
Feature A”. So we can see that, by introducing responsibilities, we find a more con-
trollable way to create traceability between features and components.

4.3 Resource Containers: A Special Kind of Responsibility Containers

In features’ operationalization, there are often responsibilities that consume or pro-
duce certain resources which are produced or will be consumed by other features. We
introduce resource containers to structure resources related to features. Fig. 4 shows
an example of resource containers in features’ operationalization.

<<Feature>>
Copy

<<Feature>>
Paste

Get-Selection Set-Clipboard InsertRead-Clipboard

<<Resource-Container>>
Document

<<Resource-Container>>
Clipboard

Operationalized into

Interaction

Responsibility

Reads Writes

Flows Flows

Writes Reads

Fig. 4. An Example of Resource Containers. This shows the operationalization results of two
features copy and paste in the simple document editor, and two resource containers (clipboard
and document) related to the operationalization

Transformation from CIM to PIM: A Feature-Oriented Component-Based Approach 255

Resource containers can be viewed as a special kind of responsibility containers,
which are assigned responsibilities of passively accepting requests from environment
for resource storing, querying and retrieving.

Another important role of resource containers is the medium of indirect interac-
tions between features. An example of this can be found in Fig. 4, in which set-
clipboard (operationalized from copy) writes information into resource container
clipboard, while read-clipboard (operationalized from paste) reads information from
it. That is, feature copy and paste interact indirectly through resource container clip-
board.

5 Constructing Software Architecture

In section 4, we show how to create traceability between features and components, in
the case that the feature model and software architecture have already existed. How-
ever, the real condition of transforming the feature model to the software architecture
is that the later model does not exist. So, in transformation, we have to construct the
software architecture based on the feature model.

In this section, we show how to construct components by clustering responsibili-
ties operationalized from features, and how to identify interactions between compo-
nents by analyzing interactions between responsibilities and using them as the source
of interactions between components.

5.1 An Overview

An overview of transforming the feature model (CIM) to the software architecture
(PIM) is depicted in Fig. 5. The principle of constructing components is based on the
observation that “a component can be generally assigned several responsibilities”
(see section 4). So, components can be treated as containers of responsibilities, and
thus can be constructed by clustering responsibilities. Identifying interactions be-
tween components is guided by the following assumption: if two responsibilities are
assigned to two different components, then any interactions between these two re-
sponsibilities will be developed into interactions between components.

Direct-Interaction

Requirement
1..*

Component SeedCore
Responsibility

Added
Responsibility

Responsibility
Conceptual Component

Resource Container

1..*

O
p

e
ra

tio
n

a
lize

d
-in

to

*

1

1

*

Direct-Interaction

*

The Requirement Level

The Specification Level

*

Feature

Direct-Interaction

Constraint

Refinement*

*

*

1

1

1

1 1

1

1

Fig. 5. An overview of transforming CIM to PIM.

256 Wei Zhang et al.

The key concepts involved in the transformation can be categorized into two levels.
First is the requirements level, at which requirements are organized into the feature
model. Second is the specification level. At this level, program specifications are first
be partitioned into responsibilities and resource containers, with a set of interactions
between them. Then, responsibilities and resource containers are clustered into a set
of conceptual components and interactions between these components.

In the remainder of this section, six basic aspects of the transformation are pre-
sented in six sub-sections, respectively. However, the order of these aspects is not
essential. It is often the case that several of them should be considered simultaneously.

5.2 Feature Operationalization

The purpose of feature operationalization is to find a programmable way to imple-
ment requirements denoted by a feature. One basic way to feature operationalization
is by analyzing a feature’s description. For example, operationalizing feature copy
follows this way. By analyzing the feature’s description, an experienced designer can
easily operationalize it into two responsibilities (see Fig. 4): get-selection which
means “getting the selected text from the current document”, and set-clipboard which
means “putting the selected text into the clipboard”.

When a feature has dependency on other features, its operationalization should
also include responsibilities that this feature depends on other features to fulfill. For
example, from the description of feature undo, we can find a requirement that only
those unsaved operations can be undo-ed. Then, a responsibility inform-saved is iden-
tified, which means “when the current document is saved, feature undo should be
informed”. And undo depends on feature save to fulfill this responsibility.

Besides analyzing a feature’s description, we can also find dependency between
features from constraints on features. For example, from the constraint: requires (sin-
gle-bound ({un/re-do}), multi-bound ({copy, cut, paste})), a designer can identify
responsibilities of “recording information about each operation on the current docu-
ment so that any operation can be undo-ed or redo-ed later”, responsibilities which
are necessary for feature un/re-do’s implementation, and which un/re-do depends on
the three features copy, cut and paste to fulfill respectively. From this example, we
can see the value of constraints in feature operationalization.

5.3 Resource Container Analysis

Resource containers can be identified following two ways. One way is by analyzing
features’ descriptions, since many resource containers have been explicitly referred in
these descriptions. For instance, by analyzing the description (see Table 7) of feature
copy, a designer can easily find two resource containers: clipboard and document.

The other way is by analyzing constraints on features. Some resource containers
are implied by constraints. For example, from the only constraint (see section 3) in
the simple document editor, an experienced designer should be able to identify the
resource container that stores the un/re-doing information about operations, although
such a resource container are not mentioned by any features involved in the constraint.
Here, we can see the value of constraints when identifying resource containers.

Transformation from CIM to PIM: A Feature-Oriented Component-Based Approach 257

5.4 Interaction Analysis

Interaction analysis is a process tightly related to feature operationalization and re-
source container analysis. Its purpose is to identify interactions between responsibili-
ties /and resource containers. These interactions will be used later as the source of
interactions between components. We use IRR to denote the set contains all these
interactions. For an interaction irr in IRR, we use irr.trigger to denote the entity that
triggers irr and thus plays an active role in irr, and irr.triggee the other entity which
has a passive role.

At a low level, all these interactions are data flows between two entities. However,
at some more semantic level, these interactions may be classified into more meaning-
ful categories. For example, we can use write, read, produce or consume to character-
ize interactions between responsibilities and resource containers. In section 5.6, we
will give an interaction classification at the feature level. As an example, in Fig. 4, we
can see interactions between responsibilities operationalized from feature copy/paste,
and interactions between these responsibilities and related resource containers.

5.5 Component Seed Creation

The purpose of this step is to create seeds of components, so that responsibilities
operationalized from features can be assigned to them, and conceptual components
can be formed by clustering these seeds and resource containers.

In our approach, we adopt a simple rule to create component seeds, that is, creating
one component seed for each feature. We use ftr.cs to denote the component seed of
feature ftr, cs.ftr the feature that component seed cs is created for , and cs.contains the
set of responsibilities assigned to component seed cs.

5.6 Responsibility Assignment

This step concerns assigning responsibilities operationalized from features to compo-
nent seeds. For a responsibility r, we use r.ftr to denote the feature that r is operation-
alized from, and r.assignedTo the component seed that r is assigned to.
Definition: Core Responsibilities; Added responsibilities

A responsibility r is a core responsibility, iff r.assignedTo = r.ftr.cs.
A responsibility r is an added responsibility, iff r.assignedTo r.ftr.cs.

In other words, a core responsibility cr can be fulfilled by the feature from which
that cr is operationalized (namely cr.ftr), while an added responsibility ar is a
responsibility that ar.ftr has to depend on another feature to fulfill.

The reason for assigning a responsibility r to a component seed other than r.ftr.cs
is that the feature r.ftr depends on the data produced by feature r.assignedTo.ftr,
whether directly or indirectly. For example, r.assignedTo.ftr sends an event directly
to r.ftr, or r.assignedTo.ftr put some data into a resource container rc and later r.ftr
reads data from rc.

Fig. 6 shows responsibilities assigned to component seed copy.cs, in which get-
selection and set-clipboard are core responsibilities, and record-copy-URI is an added

258 Wei Zhang et al.

responsibility (where URI is the acronym for un/re-doing infomation) of copy.cs since
record-copy-URI is only necessary to feature un/re-do’s implementation.

<<Feature>>
Copy

<<Component-Seed>>
Copy.cs

Set-Clipboard Get-Selection

Operationalized into

Assigned to

: Core-Responsibility : Added-Responsibility

Set-Clipboard Get-Selection

<<Feature>>
Un/Re-do

<<Resource-Container>>
Un/Re-do.cs

Record-Copy-URI …

Record-Copy-URI

Assigned to

…

Operationalized into

1

1

1

1

Fig. 6. An Example of Core and Added Responsibilities.

After responsibility assignment, the original interaction set IRR can be partitioned
into three sets IIS, IBS, and ISR, where IIS denote the set of interactions inner compo-
nent seeds, IBS the set of interactions between component seeds, and ISR the set of
interactions between component seeds and resource containers. Due to page limita-
tion, the formal definitions of the three sets are omitted here. We exclude interactions
in IIS from our consideration since they have lost the chance to be developed into
interactions between components.

<<Feature>>
a

<<Feature>>
b

<<Component Seed>>
acs

<<Component Seed>>
bcs

ar1 ar2 arn

Operationalized into

brn br2 br1

Operationalized into

ar1

Assigned to

br1

Assigned to

<<Feature>>
b

<<Component Seed>>
acs

<<Component Seed>>
bcs

brn br2 br1

Operationalized into

br2 br1

Assigned to

1

1

1

1

1

1
Flow Flow

<<Feature>>
a

Invoke Inform1

1

trigger triggee trigger triggee

Depend on Depend on

Fig. 7. Invoke and Inform.

Interactions in IBS can be classified into two categories: InvokeIBS and InformIBS.
InvokeIBS =def {i | (i IBS) (i.trigger.ftr i.triggee.ftr)};
InformIBS =def {i | (i IBS) (i.trigger.ftr = i.triggee.ftr)};

The meaning of this classification should be understood at the feature level. The left
part in Fig. 7 depicts a typical interaction in InvokeIBS. At the low level, the interaction
only models a data flow from responsibility ar1 to br1, while at the feature level, it is
an interaction in which feature a sends a command to b and a depend on b to behave
according to this command, called “a invokes b”. The right part in Fig. 7 depicts a
typical interaction in InformIBS. At the low level, it models a data flow from responsi-
bility br2 to br1, while at the feature level, it is an interaction in which feature a sends
an event to b to indicate certain condition has been satisfied, called “a informs b”.

Transformation from CIM to PIM: A Feature-Oriented Component-Based Approach 259

<<Component-Seed>>
Edit.cs

<<Component-Seed>>
Copy.cs

<<Component-Seed>>
Cut.cs

<<Component-Seed>>
Paste.cs

Set-CP

Set-CP

Read-CP

Record
Copy-URI

Record
Cut-URI

Record
Paste-URI <<Component-Seed>>

Un/Re-do.CS

<<Component-Seed>>
Redo.cs

<<Component-Seed>>
Undo.cs

<<Component-Seed>>
Save.cs

Read-Doc Inform Saved

Clear-URI

<
<

R
e
so

u
rc

e
-C

o
n

ta
in

e
r>

>
U

n
/

R
e
-d

o
in

g
 I

n
fo

(U
R

I)

<
<

R
e
so

u
rc

e
-C

o
n

ta
in

e
r>

>

C
li
p

b
o
a
rd

writes

writes

reads
writes

writes

writes

consumes

consumes

clears

: Core Responsibility

: Added Responsibility

Undo Redo

<
<

R
e
so

u
rc

e
-C

o
n

ta
in

e
r>

>

D
o
cu

m
e
n

t

Get-Slt

Csm-Slt

Wrt-Doc

writes

reads

consumes

<<Resource-Container>>

Storage

informs

Wrt-Doc

Fig. 8. The Result of Responsibility Assignment.

Interactions in ISR can also be classified into two similar categories: InvokeISR and
InformISR, where

InvokeISR =def {i | (i ISR) (i.trigger is Feature)};
InformISR =def {i | (i ISR) (i.trigger is Resource-Container)};

This classification is based on the roles in an interaction i in ISR. When i.trigger is a
feature, i is an interaction in which the feature depends on the resource container to
fulfill a responsibility of resource storing, querying or retrieving, called “i.trigger
invokes i.triggee”. When i.trigger is a resource container, i is an interaction in which
the resource container tells the feature certain condition about resources has been
satisfied, called “i.trigger informs i.triggee”.

Fig. 8 shows the result of responsibility assignment of the simple document editor.
It contains 8 component seeds corresponding to the 8 features in the feature model, 4
resource containers identified by following the two ways in sub-section 5.3, and 15
interactions between them. For clarity, interactions inner component seeds are not
included in this figure. Due to page limit, the descriptions of each responsibility are
not listed here.

5.7 Conceptual Component Analysis

The purpose of this step is to cluster component seeds and resource containers into
components in the PIM, called conceptual components (to distinguish them from
components that contain platform-specific information). For a component seed or a
resource container entity, we use entity.clusteredTo to denote the conceptual compo-
nent that entity belongs to.

Generally, there are three heuristic rules to decide which component seeds or/and
resource containers should be clustered into a conceptual component. First rule is to
consider the decomposition relationships (inherited from features) between compo-
nent seeds and cluster a parent seed and all its children into a conceptual component.
However, this rule provides no support to further cluster these children into sub-
components.

The second rule is to cluster component seeds with same interaction context into a
conceptual component. The interaction context of a component seed consists of all

260 Wei Zhang et al.

entities that directly interact with it. For example, in Fig. 8, component seed copy.cs,
cut.cs and paste.cs have the same interaction context: {clipboard, URI, document}.
So, the three components are preferred to form a conceptual component. In this ex-
ample, the first and the second rules indicate the same thing from two different view-
points. In addition, the second rule can be used to cluster children seeds into sub-
components.

The third rule is to cluster a resource container with component seeds that are con-
sumers of resources. For a resource container rc, and two component seeds p and c
which play the producer and the consumer role respectively, we prefer to cluster rc
with c rather than p, since rc is only necessary to feature c.ftr’s implementation and
has no contribution to p.ftr’s. According to this rule, the resource container URI (see
Fig. 8) should be clustered with component seed un/re-do.cs, rather than copy.cs,
cut.cs and paste.cs.

There may also be such a situation, in which a resource container rc has several
consumers, and these consumers should not be clustered into one component. In this
case, rc may need to be further decomposed. Otherwise, we can just transform rc into
a conceptual component without clustering it with other entities.

After clustering, only a subset of interactions in IBS and ISR are developed into in-
teractions between conceptual components. We use IBC to denote this subset, which
is defined as:

IBC =def {i | (i (IBS ISR)) (i.trigger.clusteredTo i.triggee.clusteredTo)}

Fig. 9 shows the result of conceptual component analysis of the simple document
editor. It contains 6 conceptual components identified based on the three rules above,
and 6 component interactions, identified by clustering similar elements in IBC.

<<Conceptual Component>>
Un/Re-do

<<Conceptual Component>>
Clipboard

<<Resource Container>>
Clipboard

<<Conceptual Component>>
Edit

<<Component Seed>>
Copy

<<Component Seed>>
Cut

<<Component Seed>>
Paste

<<Resource Container>>
URI

<<Conceptual Component>>
Save

<<Component Seed>>
Un/Re-do

<< Component Seed>>
Save

<<Conceptual Component>>
Document

<<Resource Container>>
Document

<<Conceptual Component>>
Storage

<<Resource Container>>
Storage

Reads, Writes Reads, Modifies

Produces

Informs Produces

Consumes Clears

Reads

Fig. 9. The Result of Conceptual Component Analysis

6 Related Work

CRC cards [2], RDD (Responsibility-Driven Design) [23, 24], GRASP (General
Responsibility Assignment Software Patterns) [12] are three responsibility-driven
object-oriented design methods, in which responsibilities are assigned to objects in a
domain model. Although these methods implicitly acknowledge the tight relation
between responsibilities and requirements, none of them provides enough capabilities
to organize requirements, or to maintain traceability between requirements and re-
sponsibilities/objects. These methods also depend much on the correctness and com-
pleteness of a pre-created domain object model. Our approach adopts the feature
model to organize requirements, and uses responsibilities as the connector between

Transformation from CIM to PIM: A Feature-Oriented Component-Based Approach 261

requirements and design elements. Our approach focuses much on system functional-
ity instead of object behavior, and is independent of any pre-created domain model.
However, these methods do suggest an object-oriented way to implement these con-
ceptual components in our approach.

UCM (Use Case Map) [3] also treats components as responsibility containers and
assigns responsibilities to components. However, it doesn’t point out where to find
components, but presumes the pre-existence of components. On the contrary, our
approach doesn’t require the pre-existence of components. Components in our ap-
proach are constructed by clustering related responsibilities and resource containers.
In addition, UCM doesn’t make a distinction between core and added responsibilities.
It only focuses on the time sequence between responsibilities, and doesn’t distinguish
between invoke and inform interactions.

[21] presents an approach to deriving software architecture from system goals. In
this approach, agents in a system are treated as components in software architecture;
responsibilities (called operations) are identified from goal specifications and as-
signed to agents; interactions between components are identified by considering the
data dependencies among them. This approach may not work well when a software
system contains only a few agents. Such a problem doesn’t exist in our approach,
since components in our approach are formed in a constructive way, instead of pre-
appointed. An interesting characteristic of this approach is that it provides a set of
formal patterns to ensure the correctness of goal operationaliztion, which is currently
lacked in our approach.

7 Conclusions

This paper presents an approach to CIM-to-PIM transformation, in which, the feature
model and the software architecture are adopted as CIM and PIM, respectively. This
approach introduces responsibilities as the connector between features and compo-
nents, that is, a feature can be generally operationalized into a set of responsibilities,
and a component can be generally assigned several responsibilities. Then, this ap-
proach proposes a method to constructing software architecture based on the feature
model. In this method, features are first operationalized into responsibilities, resource
containers and interactions between them, then responsibilities and resource contain-
ers are clustered to form the software architecture at the PIM level. We think this
approach provides a disciplined way to CIM-to-PIM transformation, although not a
fully automatic way.

Future work includes the study of the issue of formal patterns in feature operation-
alization and component construction, applications to more complex case studies, and
tool support for CIM-to-PIM transformation.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable com-
ments and suggestions. This work is supported by the National Grand Fundamental

262 Wei Zhang et al.

Research 973 Program of China under Grant No. 2002CB312003, the National Natu-
ral Science Foundation of China under Grant No.60233010, 60125206 and 90412011,
and the Beijing Natural Science Foundation under Grant No. 4052018.

References

1. Allen, R., Garlan, D.: Formalizing Architectural Connection. In: Proceeding of 16th
International Conference on Software Engineering. (1994) 71-80

2. Beck, K., Cunningham, W.: A Laboratory for Teaching Object-Oriented Thinking. In:
OOPLSA89, SIGPLAN Notices, Vol. 24. New Orleans, Louisiana (1989) 1-6

3. Buhr, R.J.A.:Use Case Maps as Architectural Entities for Complex Systems. In: IEEE
Transactions on Software Engineering, Vol. 24. IEEE Computer Society (1998) 1131-
1155

4. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J.: An Industrial
Survey of Requirements Interdependencies in Software Product Release Planning. In:
Proceedings of 5th IEEE International Symposium on Requirements Engineering. IEEE
Computer Society (2001) 84-91.

5. Chastek, G., Donohoe, P., Kang, K.C, Thiel, S.: Product Line Analysis - A Practical
Introduction. SEI-2001-TR-001, Software Engineering Institute, Carnegie Mellon
University (2001)

6. Garlan, D., Shaw, M.: An Introduction to Software Architecture. In: Ambriola, V.,
Tortora, G. (eds.): Advances in Software Engineering and Knowledge Engineering.
Series on Software Engineering and Knowledge Engineering, Vol. 5. World Scientific
Publishing Company, Singapore (1993) 1-39

7. Griss, M.L., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB.
In: Proceedings of 5th International Conference on Software Reuse. IEEE Computer
Society, Canada (1998) 76-85

8. Griss, M.L.: Implementing Product-Line Features with Component Reuse. In:
Proceedings of 6th International Conference on Software Reuse. IEEE Computer Society,
2000.

9. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis Feasibility Study. SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University (1990)

10. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM - A Feature-Oriented
Reuse Method with Domain-Specific Architecture. Annals of Software Engineering, Vol.
5. (1998) 143-168

11. Kleppe, A., Warmer, J., Bast, W.: MDA Explained-The Model Driven Architecture
Practice and Promise. Addison Wesley (2003)

12. Larman, C.: Apply UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process. Prentice Hall (2001)

13. Mehta, A., Heineman, G.T.: Evolving Legacy System Features into Fine-Grained
Components. In: Proceedings of the 24th International Conference on Software
Engineering, IEEE Computer Society, Florida (2002) 417-427

14. Microsoft: Component Object Model. http://www.microsoft.com/com/.
15. Object Management Group: CORBA Component Model, v3.0.

http://www.omg.org/technology/documents/formal/components.htm.
16. Object Management Group: MDA Guide Version 1.0.1. http://www.omg.org/mda/.

(2003)
17. Object Management Group: UML 1.5 Specification. http://www.uml.org/. (2003)

Transformation from CIM to PIM: A Feature-Oriented Component-Based Approach 263

18. Object Management Group: UML 2.0 Superstructure FTF convenience document.
http://www.omg.org/cgi-bin/apps/doc?ptc/04-10-02.zip. (2004)

19. Sun Microsystems: EJB 2.1 Specification. http://java.sun.com/products/ejb/. (2002)
20. Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L.: A Conceptual Basis for Feature

Engineering. Journal of Systems and Software, Vol. 49. (1999) 3-15
21. van Lamsweerde, A.: From System Goals to Software Architecture. In: Bernardo, M.,

Inverardi, P. (eds.): Formal Methods for Software Architectures. LNCS 2804. Springer-
Verlag (2003) 25-43

22. Wiegers, K.E.: Software Requirements, Microsoft Press (1999)
23. Wirfs-Brock, R., Wilkerson, B.: Object-Oriented Design: A Responsibility-Driven

Approach. In: OOPLSA89, SIGPLAN Notices, Vol. 24. New Orleans, Louisiana (1989)
71-76

24. Wirfs-Brock, R., McKean, A.: Object Design: Roles, Responsibilities, and Collaborations.
Addison Wesley (2002)

25. Zhang, W., Zhao, H.Y., Mei, H.: A Propositional Logic-Based Method for Verification of
Feature Models. In: Davies, J., Schulte, W., Barnett, M. (eds.): Formal Methods and
Software Engineering. LNCS 3308. Springer-Verlag (2004) 115-130

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 264-278, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Weaving Executability into
Object-Oriented Meta-languages

Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel

 IRISA / INRIA Rennes
Campus Universitaire de Beaulieu

Avenue du Général Leclerc
35042 RENNES Cedex - France

{pa.muller, franck.fleurey, jean-marc.jezequel}@irisa.fr

Abstract. Nowadays, object-oriented meta-languages such as MOF (Meta-
Object Facility) are increasingly used to specify domain-specific languages in
the model-driven engineering community. However, these meta-languages
focus on structural specifications and have no built-in support for specifications
of operational semantics. In this paper we explore the idea of using aspect-
oriented modeling to add precise action specifications with static type checking
and genericity at the meta level, and examine related issues and possible
solutions. We believe that such a combination would bring significant benefits
to the community, such as the specification, simulation and testing of
operational semantics of metamodels. We present requirements for such
statically-typed meta-languages and rationales for the aforementioned benefits.

1 Introduction

In the model-driven engineering community, meta-languages such as MOF [11, 12],
EMOF [12] or Ecore [3] are increasingly used to describe the metamodels of domain-
specific languages. These meta-languages focus on structural specifications but have
no built-in support for the definition of actions. Therefore, they cannot be used to
precisely specify the operational semantics of metamodels. When such a precise
semantics is needed, one has to resort to external languages, either imperative such as
Java, or declarative such as OCL [14].

In this paper we explore the idea of using aspect-oriented modeling to build an
executable meta-language by composing action metamodels with existing meta-
languages. We examine how imperative control structures and iterators can be
incorporated, while ensuring static typing capabilities and preserving compatibility
with existing tools supporting MOF-like meta-languages (e.g.; Eclipse/EMF).

The intent of this paper is to describe why an executable meta-language would be
valuable, to examine how such language could be composed using aspect-oriented
modeling and then to expose how it may be promoted to become an executable meta-
language.

This paper is organized as follows: Section 2 presents our motivations for adding
action specifications in metamodels and justifies our proposal. Section 3 examines

Weaving Executability into Object-Oriented Meta-languages 265

how aspect-oriented modeling can be used to extend existing meta-data languages
with action specifications and presents the metamodel of KerMeta (our experimental
language). Section 4 shows how KerMeta is used to define a simple finite-state
machine language. Section 5 examines some related works and finally the conclusion
opens some general perspectives about aspect-oriented meta-modeling.

2 Motivations

In this section we present the rationales of our work. We explain why we believe that
an action specification capability at the meta-level would be useful, and we examine
some alternatives.

Why do we need to extend meta-languages, aren’t meta-data languages

powerful enough? MOF is an example of an object-oriented meta-data language,
which provides support for metamodel modeling via object-oriented constructs such
as classes, operations, attributes and relations. MOF defines operations, but not their
implementation counterparts, which have to be described in text. The following
example is excerpted from the MOF 2.0 Core Specification. The definition of the
isInstance operation of the EMOF class Type (section 12.2.3 page 34) is given as
follows:

Operation isInstance(element : Element) : Boolean

“Returns true if the element is an instance of this type or a subclass of this type.
Returns false if the element is null”.

Such specification of the operational semantics of an operation is not easily

amenable to automatic execution. Indeed, we need a real programming language,
which goes beyond a meta-data description language. According to N. Wirth [20], a
program is made of data structures + algorithms; so we propose to see executable
metamodels as meta-data + actions. We see a lot of value in this capability, for
instance for model transformations which involve strong algorithmic facets, e.g. the
synthesis of state-machines from hierarchical message sequence charts [21].

The following specification given in our experimental language KerMeta is an
example of executable specification which could be used in place of the previous
textual description.

operation isInstance(element : Element) : Boolean is do
 // false if the element is null

 if element == void then result := false
 else
 // true if the element is an instance of this type
 // or a subclass of this type
 result := element.getMetaClass == self or
 element.getMetaClass.allSuperClasses.contains(self)
 end

end

Fig. 1. Executable specification of the isInstance operation of the EMOF Type class

266 Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel

Why not use an existing programming language like Java? Existing
programming languages already provide a precise operational semantic for action
specifications. Unfortunately, these languages provide both too much (e.g. interfaces),
and too few (they lack concepts available in MOF, such as associations,
enumerations, opposite properties, multiplicities, derived properties…).

There is no easy way to simultaneously restrict and extend such existing languages.
Extension is difficult because of the typing mismatch between MOF and Java.
Restriction is even more difficult, and we would have to stay with the existing
language design choices for things such as single- or multiple-inheritance of classes,
early- or late-binding, and schemes of method redefinition.

Why not use the OCL language? OCL (the Object Constraint Language) has

been designed to express side-effect free constraints on UML models, and is also very
well adapted for expressing queries and navigation expressions.

Provided that we would restrict OCL to work only on the subset of UML which
could be aligned onto the MOF, we could use OCL to specify operations in terms of
pre- and post-conditions. Nevertheless, and this was already pointed out by S. Mellor
et al. [8], there is often a need to include some level of algorithmic specifications to
ensure efficient implementation. This could be done by extending OCL with
constructions such as assignment or object creation to support an imperative style for
writing complex algorithms.

Why not use the Action Semantics? Like OCL, the Action Semantics is defined

for UML models. The Action Semantics defines a minimal set of concepts useful to
describe actions. Action languages are free to provide more sophisticated constructs,
as long as these constructs can be translated into the basics concepts defined by the
Action Semantics.

Executable meta-level languages and the UML Action Semantics are defined at
different levels of abstraction. The Action Semantics defines fine-grained general
purpose actions. Executable meta-languages define specific actions dedicated to
metamodel specifications; e.g. the specification of the Action Semantics itself.

3 Using Aspect-Oriented Modeling to Extend a Meta-language

In this section, we examine how aspect weaving can be used to extend existing meta-
languages. Fig. 2 shows how we use aspect-oriented modeling [5, 17] to compose the
primary structural aspect (e.g. EMOF) with a behavioral aspect (which conforms to
EMOF as well). The resulting metamodel is then further promoted to the M3 level,
and can be substituted to EMOF. The composition process is designed to ensure that
existing metamodels (such as UML), already defined in terms of EMOF, remain fully
compatible with the new executable meta-language.

Weaving Executability into Object-Oriented Meta-languages 267

Executable
EMOF

M3

M2
EMOF Action

Meta-model

Composition

Primary
meta-model

Promotion

Action
Meta-model

Aspect meta-model

UML

EMOF

EMOF

Executable
EMOF

Executable
EMOF

M3

M2
EMOF Action

Meta-model

Composition

Primary
meta-model

Promotion

Action
Meta-model

Aspect meta-model

UML

EMOF

EMOF

Executable
EMOF

Fig. 2. Composing an action metamodel into the EMOF metamodel

The following paragraphs investigate how a meta-data language and a statically
typed action language can be woven into a consistent executable meta-language.
Section 3.1 motivates the choice of EMOF, section 3.2 lists the language constructs
for precise action specification, section 3.3 presents how actions can be attached to
EMOF operations and discusses the use of classical OO behavioral extension
mechanisms. Sections 3.4 and 3.5 present several issues related to EMOF type system
and some possible extensions to allow static typing of the action specifications. The
discussion is illustrated by examples in KerMeta, our prototype language presented in
section 3.6.

3.1 Choosing a Meta-data Language

The process described in this paper is directly applicable to any object-oriented meta-
data language, such as the OMG MOFs (MOF 1.4, CMOF and EMOF) or Eclipse
ECore. For our prototype language, we have chosen EMOF as the structural base for
the executable meta-language. This decision is motivated by two main reasons: first
because EMOF is standardized by the OMG and second as it is well-supported by
tools such as Eclipse/EMF.

EMOF provides concepts for structuring data (package, classes, properties…),
mechanisms for extending data structures (inheritance) and a type system (based on
classes, primitive types and enumerations).

The following paragraphs will examine issues and solutions to integrate action
specifications with those concepts and mechanisms.

3.2 Adding Imperative Control Structures

Adding imperative control structures into EMOF requires identifying how behavior
can be attached to the structural constructions of the meta-language. As EMOF is
already object-oriented, we have found that it is convenient to use class operations to
hold this behavior specification.

Our work takes place in a software engineering context which includes relations
with industrial partners who have very strong reliability concerns. In this context,

268 Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel

static typing is a recognized best practice as it allows many kinds of early
verifications, such as model-driven editing, testing and simulation.

Therefore, we have chosen to complement EMOF with imperative and statically-
typed action specifications, which include the following control structures:

 Conditionals, loops and blocks.
 Local variable declarations.
 Call expressions for reading variables and properties or calling operations.
 Assignment expressions for assigning variables and properties.
 Literals expressions for primitive types,.
 Exception handling mechanism: exceptions can be raised and caught by rescue

blocks.
 A limited form of lambda expressions which correspond to the implementation

of OCL-like iterators such as collect, select or reject on collections.

Fig. 3 shows how behavior is attached to operations, using the property body of

class Operation (to define the behavior of operations) and the properties getterbody
and setterbody of class Property (to specify derived properties).

Fig. 3. Using operation bodies as join points between structure and behavior

However, this simple join point between data and behavior is not sufficient to
define a full-fledged object-oriented executable meta-language, and a special attention
has to be paid to ensure compatibility between extension mechanisms and type
systems. The next subsections examine these points.

3.3 Adding Late Binding

Experience with the OO paradigm has demonstrated that operation redefinition is a
useful and powerful mechanism to define the behavior of objects and support
variability. However, EMOF does not provide semantics neither for operation call nor
for operation inheritance and redefinition.

The issue of choosing semantics for operation overriding has been widely studied
for the design of OO languages [1]. However, OO languages have not adopted a
unique solution to this problem. For the sake of simplicity, in the current version of
KerMeta we have chosen to implement invariant overriding (i.e. no specialization)
and to exclude overloading.

EMOF provides multiple inheritance of classes. In the current version of KerMeta,
we have chosen to include a minimal selection mechanism that allows the user to
explicitly select the inherited method to override when several implementations of an
operation are inherited. In the future, we plan to include a more general mechanism

Weaving Executability into Object-Oriented Meta-languages 269

such as traits proposed by Schärli et al [15]. In any case, we believe that the conflict
resolution mechanism should be explicitly stated by the programmer.

The following picture shows the extensions that we have made to the Operation
class to support operation inheritance and redefinition (the red ellipses show what has
been added).

Fig. 4. Extensions to support operation inheritance and redefinition

3.4 Adding Genericity

As stated in section 2, an executable meta-language should include convenient model
navigation capabilities. This section discusses the static typing of such navigation
expressions.

 toString()

A

label: String

 toString()

B
a

1
b

*

Fig. 5. A very simple metamodel

Fig. 5 presents a small metamodel which defines two classes A and B linked
through an association. Let myA be an instance of class A; we need to write
expressions such as:

myA.b.first.label

The type of myA is A, and according to EMOF the type of myA.b is Set whereas it
should be Set of B. The type checking problem raised by this expression then
concerns the type of myA.b.first that must be determined statically in order to check
that it contains an attribute called label (first is supposed here to be an operation on
sets which returns the first element of a set). Java, for instance, would ask the
programmer to explicitly specify the expected type with static casts:
((B)myA.b.first).label. More generally, the problem is that the type of what is returned
by operations on collections depends on the contents of the collection at runtime. The
following paragraphs detail two options for implementing static typing in this context.

Option 1: Specific language constructions. Collections (sets, ordered sets, bags

and sequences) are introduced in the language, as in Xion [10] or MTL [19]. This can
be viewed as an extension of the definition of arrays in OO languages such as Java 2.

This option requires syntactic and semantic language constructions specific to
collections and the definition of corresponding policies in the type-checker. For this
reason we did not chose this option for KerMeta.

270 Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel

Option 2: Parameterized classes support. Parameterized classes (generics) are
included in the language. This way, typed collections can be defined like any other
class. The concept of generics is now widely adopted in OO languages, including the
recent versions of Java and C#, and it offers an elegant solution to static typing.
However, the introduction of parameterized classes imposes some changes in the
EMOF type system.

In EMOF a type can be a primitive type, an enumeration or a class. Adding type
parameters on classes makes the link between classes and types more complex. For
instance, a class Collection<G> defined with a type parameter G does not define a
type Collection but engenders a family of types by binding G to actual types. In other
words the type of a variable cannot simply be a Collection but must be a collection of
something.

Fig. 6 shows the principle of weaving genericity into EMOF. Box A shows the
original EMOF classes. Class Class inherits from class Type and contains a set of
Features, i.e. properties and operations. Box B displays how genericity can be
modeled. On one hand a parameterized class is modeled by a class ClassDefinition
which contains a set of TypeVariables and a set of Features. On the other hand
ParametrizedClass inherits from Type, references a ClassDefinition and is composed
of a binding between the type variable of the class definition and actual types.

A careful weaving must be performed to obtain a model both compatible with
EMOF and which supports genericity. In our context, “compatible with EMOF”
means that EMOF features should be available in the woven model. As an example,
since EMOF provides a class named Class that has two properties isAbstract and
ownedFeatures, the resulting model should provide a similar structure.

Fig. 6. Adding genericity to EMOF

Weaving Executability into Object-Oriented Meta-languages 271

Box C presents the result of the composition process. Classes such as Type or
Feature play the role of join points between A and B models. EMOF class Class has
been merged with classes ClassDefinition and ParametrizedClass. The name Class
has been kept instead of ParametrizedClass to ensure EMOF compliance. Finally,
some derived properties such as isAbstract and ownedFeature have been added to be
fully-compatible with EMOF.

We have chosen this solution for the KerMeta language not only because it
provides a general answer to the typing problem of navigation expressions but also, as
presented in the next section, because it helps designing an elegant solution to the
typing problem of OCL-like iterators.

3.5 Adding Function Objects (Typed Functions)

Iterators (such as collect, select, reject and foreach) are some of the most convenient
constructions of OCL because they simplify a lot collection processing. The following
expression (based on the metamodel described in Fig. 5) illustrates the kind of
expressions that we want to type statically; the operation toUpper is supposed to be
defined on String.

myA.b.collect{ o | o.label }.first.toUpper .

Statically type checking such an expression raises two issues. First, in order to

type-check the expression o.label, the type of variable o must be deduced from the
type of the elements of the collection myA.b. Second, the type of the elements
contained in the collection myA.b.collect{ o | o.label } depends on the type of the
expression o.label in the body of collect.

In the following paragraphs, we examine two options to address these issues of
typing.

Option 1: Specific language constructions. The problem can be addressed by

defining iterators directly as constructions of the language. This is what is done in
languages such as Xion, MTL, Java or C#. Iterators are implemented through specific
statements such as foreach in C# and Java. This solution requires the set of iterators to
be fixed during language design.

Each iterator needs to be specifically added to the language and specific rules for
the type checker must be designed. Furthermore, this solution does not allow the
programmer to easily define custom iterators or similar constructions on her classes.
We thus rather propose a more general solution involving parameterized operations
and an extension of the type system.

Option 2: Function types and generic operations support. The idea here is to

extend the language to allow the definition of OCL-like iterators as regular operations
in class Collection. In practice, this is implemented in dynamic OO languages such as
Ruby [18] and in functional languages. This can be implemented in a statically typed
OO language by extending the type system to support function types and by using
generic operations.

272 Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel

The collect iterator for instance applies an expression to each element of a
collection and collects the results. The operation collect has one parameter: an
expression which is applied to each element of the collection. It returns a collection
which contains the results of the application of the expression passed as parameter on
each element of the collection. This example pin-points two major typing issues:

 The type of the parameter is a function. The language should then support
function types.

 The return type depends on the type of the parameter. The language should
support generic operations.

Using these concepts, iterators can be defined as regular operations. Fig. 7 presents
the definition of the collect iterator in the class Collection of our prototype language.

����������������������	�
�����
	
��
���
�����������
�����������������������
�����
���
�����������������	��������������������	��������
��������������	��	�����
������������
�������������������� ������������	��
�!�����
������������
��������
	
������
"�

Fig. 7. Using an operation to implement the collect iterator

Operation collect has a parameter collector which represents the expression to be
applied to each element of the collection. The type of the parameter is a function type
<G -> T>; the actual parameter should be a function applicable on the elements of
the collection. T is a type parameter of the operation; it allows the expression of the
link between the type of the parameters and the return type. Here the return type is a
Sequence of T.

Fig. 8 shows how function types and generic operations can be added into EMOF,
consistently with the adjustments made previously to support genericity.

Fig. 8. Adding function objects and generic operations to EMOF

The class TypeVariable defines the generic formal type parameters of the
operation, which must be used as the type of the formal parameters and return type of
the operation. Actual types are bound to the generic formal type parameters for each
call of the operation depending on the type of the actual parameters. In KerMeta,
support for function types is provided by a sub-class FunctionType of EMOF class
Type.

Weaving Executability into Object-Oriented Meta-languages 273

3.6 The Result: KerMeta

Fig. 9 shows an excerpt of the KerMeta metamodel, which results from the weaving
of EMOF with our action specification metamodel. As detailed previously, it includes
constructions that permit the static typing of KerMeta expressions in addition to
EMOF constructions. The KerMeta metamodel can be divided in two parts,: structural
and behavioral. The structural part is fully-compatible with EMOF. The behavioral
part corresponds to class Expression and its sub-classes and is used for the
specification of the operational semantics of metamodels.

name: String

NamedElement

TypedElement

isOrdered: Boolean
isUnique: Boolean
lower: Integer
upper: UnlimitedNatural

MultiplicityElement

isAbstract: Boolean

Operation

isComposite: Boolean
isDerived: Boolean
isReadOnly: Boolean

Property

Parameter

Package

TypeDefinition

isAbstract: Boolean

ClassDefinition
DataType

PrimitiveType Enumeration

EnumerationLiteral

Expression

 isInstance()

Type
TypeVariable

CallExpression

CallVariable

CallResult

CallFeature

CallSuperOperation

AssignementBlock

Conditionnal

Literal

IntegerLiteral

StringLiteral

BooleanLiteral

TypeLiteral

VoidLiteral

EmptyExpression

Loop

SelfExpression

VariableDeclRaise

LambdaExpression

type0..1

operation
0..1

ownedParameter0..*

superOperation

0..1

raisedException
0..*

body
0..1

typeParameter

0..*

owningClass

0..1

ownedOperation0..*

opposite

0..1

setterbody

0..1

getterbody
0..1

owningClass0..1

ownedAttributes0..*

ownedTypeDefinition

0..*

nestedPackage0..*

nestingPackage

0..1

typeParameter0..*

superType
0..*

enumeration 0..1

ownedLiteral 0..*

supertype

0..1

Fig. 9. Excerpt of the Kermeta metamodel

The next section presents an example of using KerMeta to define a simple state-
machine language.

274 Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel

4 A Simple Example: A Language to Define Finite-State Machines

This section illustrates the benefits of an executable meta-language. The example is
based on the definition of simple finite state-machines such as the one presented Fig.
10. Each state is labeled by a string, and each transition reads a character and writes
another one. Section 4.1 shows how both the structure and the semantics of such a
language can be defined and section 4.2 presents some simple example of how it can
be used.

2 3 4 5 61

?h !w ?e !o

?! !!

?l !l?l !r ?o !d

2 3 4 5 61

?h !w ?e !o

?! !!

?l !l?l !r ?o !d

Fig. 10. A simple state machine to translate “hello” into “world”

4.1 Definition of the FSM Language

Fig. 11 presents a metamodel for this simple FSM (Finite-State Machines). An FSM
is composed of states, it refers to an initial state and it can refer to a current state. A
state has a name, it contains outgoing transitions and it refers to incoming transitions.
A transition contains an input character and an output character and it refers both to a
source and to a target state.

Character

Stringinput: Character
output: Character

 fire(): Character

Transition

name: String

 step(c: Character): Character

State

 reset()
 run(input: String): String

FSM FSMException

NonDeterminism NoTransitionowningFSM0..1

ownedState0..*

target 1
incomingTransition0..*

source

1

outgoingTransition

0..*

currentState

0..1

initialState1

Fig. 11. Simple FSM metamodel

Fig. 12 presents the FSM metamodel in the textual syntax of KerMeta. The code
highlighted in gray is derived from the class diagram represented in Fig. 11 and
conforms to the structural part of KerMeta (and thus also to EMOF). The remaining
part of the code represents the specification of the behavior of the operations (which
could not be expressed in vanilla EMOF). The method run of the FSM reads its input
string character by character. If the current state contains an outgoing transition which
matches the read character then this transition is fired. If no transition or several
transitions match the read character then an exception is raised. When a transition is
fired the current state of the FSM becomes the target state of the transition.

Weaving Executability into Object-Oriented Meta-languages 275

#$������������%&�
#'����
#(�����������)*��%���+���
 �� �*%�)�
#,���������*��%��������
 �� �
#-����
#.������������	
	�
�����	�����
��
��������
	�
	��	�������	���
#/������������	
0���*��%��������
 �� �����	
0&�
#1����������2����������*��%��������
 �� ���2�������&�
#3����
$#���������4�5���
$$������������������
� �����������������6#��789��
	
04�5�
$'�����������������	
	�	���������������6$��$8�
$(����������������������
���������������
$,��������
$-������������������
�	
:��������	
0�������	
0��������4�5;!��:�	�
�������
$.�����������������
����
����������������
�
	
��
$/�������������������
������������������������������
$1�����������������
�	��������
�
$3���������������������))�
'#��������������������	����
��0��������#�
'$�����������������	
:����	<�����	�
''���������������
'(�����������������������::�
 �������
����������:��	
:����2��=��	���������	
0���
',���������������	����	�>�$�
'-���������������
'.�����������
'/�������������������������������������
'1����������������
����������	
	�	��������
'3�����������
(#���"�
($�����������������
('����������������
�%�������	
0�
((�������������������
	
04�5���4�59��
� ������
(,�������������������0�	
0���
�	�	�
����������
�	�	�
6#��789�������
(-�����������������	
��%	
0���
�	�	�
����������
�	�	�
6#��789���0���
(.��������
(/�������������������:������2������������2���������������4�5;!��:�	�
�������
(1����������������
�
����	����
�	��
����
(3���������������?��	 ���
�	�	�
�����������	�
����
�	�	�
��
,#�����������?��	 ���
�	�	�
��������0�	
0���
�	�	�
�������������@���	
:�������������"�
,$�����������������������
�����������	�������������	����
�	��
����
,'��������������?��	 ���
�	�	�
��	�;%:�A������������B����
�	�	�
�
�������
,(��������������?��	 ���
�	�	�
���	<���$������������B�
C����%	
	�%�
�������
,,�������������������
���
�	��
����
,-���������������������?��	 ���
�	�	�
���
���	���
,.�����������
,/���"�
,1������������
�	�	�
���
,3�������������������������������6$��$89���0�	
0���
�	�	�
�
-#��������������������0����������6$��$89	
��%	
0���
�	�	�
�
-$�������������������:������2��������
-'����������������	
:������2��������
-(��������
-,�����������������	��������2��������������
--�����������������	
������������
�
	
��
-.��������������������
	
04�5������
�������������0���
-/������������������������:���
-1�����������
-3���"�
.#������������������4�5;!��:�	�
��"�
.$���������B�
C����%	
	�%����������4�5;!��:�	�
��"�
.'���������B����
�	�	�
����������4�5;!��:�	�
��"�

Fig. 12. Simple FSM in KerMeta concrete syntax

4.2 Benefits of Defining the FSM Language with an Executable Meta-language

The benefits of using KerMeta to describe a language such as the FSM language are
two-fold. First, KerMeta is, by construction, compatible with EMOF which allows
reusing existing EMOF tools to manipulate state machines. Fig. 13 (A) presents a
screenshot of the model editor generated by EMF from the state machine metamodel.

276 Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel

Second, as KerMeta is executable, the state machines can be instantly simulated. Fig.
13 (B) presents a screenshot of the Kermeta interactive interpreter. The require
statement is used to get access to a metamodel. The operation system.load loads a
model from its representation in XMI (generated by the EMF generated editor).

kerm et a> require ‘ fsm ’
Void

kerm et a> var m yStateMachine : fsm ::FSM
Void

kerm et a> m yStateMachine := system .load(‘m yFSM.xm i’)
< fsm ::FSM oid= 8 7 4 6 >

kerm et a> m yStateMachine.run(’hello’)
‘w orld ’

kerm et a> _

kerm et a> require ‘ fsm ’
Void

kerm et a> var m yStateMachine : fsm ::FSM
Void

kerm et a> m yStateMachine := system .load(‘m yFSM.xm i’)
< fsm ::FSM oid= 8 7 4 6 >

kerm et a> m yStateMachine.run(’hello’)
‘w orld ’

kerm et a> _

(A) EMF generated editor

(B) Interactive interpreter

Fig. 13. KerMeta editor and interpreter

5 Related Works

Our work is related to many other works, and can be considered as some kind of
synthesis of these works, in the specific context of model-driven engineering applied
to language definition. The sections below include the major areas of related works.

Grammars, graphs and generic environment generators. Much of the concepts

behind our work take their roots in the seminal work conducted in the late sixties on
grammars and graphs and in the early eighties in the field of generic environment
generators (such as Centaur [2]) that, when given the formal specification of a
programming language (syntax and semantics), produce a language-specific
environment. The generic environment generators sub-category has recently received
significant industrial interest; this includes approaches such as Xactium [4], or
Software Factories [7]. Among these efforts, it is Xactium which comes closer to our
work. The major differences include the fact that we use aspect composition to
generate the meta-meta level while preserving a clean separation of concerns, and that
we have a fully static type system.

Model-driven environments. There are several ongoing efforts to promote the

convergence of open-source model-driven environments, for instance: Modelware
(http://www.modelware-ist.org/), TopCaseD (http://www.laas.fr/SPIP/spip-topcased/)
and TopModL [9], and our work takes place in this context.

Generative programming and domain-specific languages. Generative

programming aims at modeling and implementing system families in such a way that
a given system can be automatically generated from a specification written in a

Weaving Executability into Object-Oriented Meta-languages 277

domain-specific language. This includes multi-purpose model-aware languages such
as Xion [10] or MTL [19], or model transformation languages such as QVT [13].

We share the vision of generative programming, and we use models to generate
fully executable code which can be compiled. The Xion and MTL languages have had
a direct impact on our work.

QVT is different as it addresses mappings between models. QVT works on
structures, by specifying how one structure is mapped into another one; for instance
translating a UML class diagram into a RDBMS schema. QVT is not suitable for the
definition of the behavior of metamodels.

Meta-CASE systems. Meta-CASE systems, such as MetaEdit [16], Dome [6] or

EMF [3], provide customized software engineering environments, separately from the
main software components. The major difference with meta-CASE systems is that we
remove the M3 level by the promotion process.

6 Conclusion

In this paper we have been discussing the rationales and benefits of weaving
executability into meta-data languages. We have presented the benefits of defining the
operational semantics of metamodels (using a statically-typed meta-language) for
testing and simulation purposes.

We have explained how it is possible to design new executable meta-languages,
using aspects to weave metamodels of existing meta-data languages with metamodels
for precise action specifications. We have examined general issues related to meta-
languages extensions, and we have presented several options to address these issues.

We have presented how to generate the metamodel of KerMeta, our experimental
meta-language, and illustrated the benefits of static-typing and genericity, via an
example featuring finite-state machines.

The same kind of process could be used to build tools such as parsers, code
generators, interpreters or editors for specific languages. In fact each kind of tool
requires a specific aspect to be composed with the metamodel of the language. For
instance, a concrete syntax could be woven into the model of the language to allow
the generation of a parser. Generally speaking, the idea is to define the aspect
metamodel of the information which has to be composed in order to automatically
obtain tools to work with domain-specific languages.

References

1. Abadi, M. and Cardelli, L. A theory of objects. New York: Springer, 1996.
2. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B. and Pascual, V.

Centaur: the system. Proceedings of the ACM SIGSOFT/SIGPLAN software engineering
symposium on practical software development environments, 13 (5). 14 - 24.

3. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R. and Grose, T. Eclipse Modeling
Framework. Addison Wesley Professional, 2003.

278 Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel

4. Clark, T., Evans, A., Sammut, P. and Willans, J. Applied Metamodelling: A Foundation
for Language Driven Development, http://albini.xactium.com, 2004.

5. Clarke, S. Extending standard UML with model composition semantics. Science of
Computer Programming, 44 (1). 71-100.

6. Engstrom, E. and Krueger, J. Building and rapidly evolving domain-specific tools with
DOME. Proceedings of IEEE International Symposium on Computer-Aided Control
System Design (CACSD 2000). 83-88.

7. Greenfield, J., Short, K., Cook, S., Kent, S. and Crupi, J. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. Wiley, 2004.

8. Mellor, S., Tockey, S., Arthaud, R. and Leblanc, P. Action Language for UML: Proposal
for a Precise Execution Semantics. Proceedings of UML 98 (LNCS1618). 307-318.

9. Muller, P.-A., Dumoulin, C., Fondement, F. and Hassenforder, M. The TopModL
Initiative. in UML Satellite Activities, Springer, 2005, 242-245.

10. Muller, P.-A., Studer, P., Fondement, F. and Bezivin, J. Platform independent Web
Application Modeling and Development with Netsilon. Accepted for publication in
Journal on Software and Systems Modelling (SoSym). http://www.sciences.univ-
nantes.fr/lina/atl/www/papers/netsilon_sosym.pdf.

11. OMG. Meta Object Facility (MOF) Specification 1.4, Object Management Group,
http://www.omg.org/cgi-bin/doc?formal/2002-04-03, 2002.

12. OMG. MOF 2.0 Core Final Adopted Specification, Object Management Group,
http://www.omg.org/cgi-bin/doc?ptc/03-10-04, 2004.

13. OMG. Revised submission for MOF 2.0 Query/View/Transformation, Object
Management Group (QVT-Merge Group), http://www.omg.org/cgi-
bin/apps/doc?ad/2005-03-02, 2005.

14. OMG. UML 2.0 Object Constraint Language (OCL) Final Adopted specification, Object
Management Group, http://www.omg.org/cgi-bin/doc?ptc/2003-10-14, 2003.

15. Scharli, N., Ducasse, S., Nierstrasz, O. and Black, A. Traits: Composable units of
behavior. Proceedings of ECOOP 2003.

16. Smolander, K., Lyytinen, K., Tahvanainen, V.-P. and Marttiin, P. MetaEdit: a flexible
graphical environment for methodology modelling. Proceedings of the third international
conference on Advanced information systems engineering.

17. Straw, G., Georg, G., Song, E., Ghosh, S., France, R.B. and Bieman, J.M. Model
Composition Directives. Proceedings of the 7th International Conference Unified
Modelling Language: Modelling Languages and Applications. 84-97.

18. Thomas, D., Fowler, C. and Hunt, A. Programming Ruby - The Pragmatic Programmer's
Guide, Second Edition, 2004.

19. Vojtisek, D. and Jézéquel, J.-M. MTL and Umlaut NG: Engine and Framework for Model
Transformation. ERCIM News, 58.

20. Wirth, N. Algorithms + data structures = programs. Prentice-Hall, Englewood Cliffs,
1976.

21. Ziadi, T., Hélouët, L. and Jézéquel, J.-M. Revisiting statechart synthesis with an algebraic
approach. Proceedings of the 26th International Conference on Software Engineering
(ICSE 04).

Keynote Address II:

Domain-Specific Modeling: No One Size Fits All

Juha-Pekka Tolvanen

MetaCase, Finland
jpt@metacase.com

Abstract

After 10 years of UML we have still not overcome the problems of the CASE tools
of the 1980ś. Imposing a ”one size fits all” modeling language and generators
has not significantly increased developers’ productivity. Domain-Specific Model-
ing (DSM) provides a viable solution for improving development productivity by
moving the focus from implementation concepts to problem domain concepts.
With DSM, a new modeling language is created for each problem domain, with
elements representing concepts from the domain world, not the code world. The
DSM language follows domain abstractions and rules, guiding developers and
allowing them to perceive themselves as working directly with domain concepts.
When the domain is narrowed down to fit a single company’s needs, domain-
specific code generators can automatically produce full code straight from the
models. Industrial experiences of this approach have consistently shown produc-
tivity increasing by a factor of 5-10.

This talk introduces DSM and shows a series of real-life examples from var-
ious fields of software product development, ranging from embedded cell phone
software to B2B J2EE web sites. These cases illustrate a wide variety of design
and generation requirements and demonstrate how different languages can sup-
port different kinds of modeling work. Having a modeling language focused on
a given domain allows better code generation, optimization, error detection and
reuse.

Defining a language and generator is usually considered a difficult task: this
is certainly true if you try to make one language for everyone. The task eases
considerably if you need make it for just one problem domain in one company -
areas where you are the experts. In the second part of the talk we will explore
the principles of creating DSM languages and generators: how to identify the
necessary language constructs, different ways of building code generation, and
how to deal with evolution of the DSM language.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 279–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Refactoring OCL Annotated UML Class

Diagrams�

Slavǐsa Marković and Thomas Baar

École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
{slavisa.markovic, thomas.baar}@epfl.ch

Abstract. Refactoring of UML class diagrams is an emerging research
topic and heavily inspired by refactoring of program code written in
object-oriented implementation languages. Current class diagram refac-
toring techniques concentrate on the diagrammatic part but neglect OCL
constraints that might become syntactically incorrect by changing the
underlying class diagram. This paper formalizes the most important
refactoring rules for class diagrams and classifies them with respect to
their impact on annotated OCL constraints. For refactoring rules, whose
application on class diagrams could make attached OCL constraints in-
correct, we formally describe how the OCL constraints have to be refac-
tored to preserve their syntactical correctness. Our refactoring rules are
defined in the graph-grammar based formalism proposed by the QVT
Merge Group for the specification of model transformations.

1 Introduction

Modern software development processes, such as Rational Unified Process (RUP)
[1] and eXtreme Programming (XP)[2] propagate the application of refactoring
to support iterative software development. Refactoring (see [3] for an overview)
is a structured technique to improve the quality of artifacts.

Artifacts produced in all phases of the software development lifecycle could
become a subject of refactoring. However, existing techniques and tools mainly
target the implementation code. Due to the increase in popularity of XP, the
tool support for refactoring has been improved considerably over the last years.
An up-to-date list of existing tools can be found at [4].

As the first author, Opdyke has tackled refactoring of implementation code
in [5]. He defines refactorings as ”... reorganization plans that support change at
an intermediate level” and identifies 26 of such reorganization plans; now better
known as refactoring rules. A refactoring rule for implementation code describes
usually three main activities:

� This work was supported by Swiss National Scientific Research Fund under the
reference number 2000-067917.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 280–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Refactoring OCL Annotated UML Class Diagrams 281

1. Identify the parts of the program that should be refactored (code smells).
2. Improve the quality of the identified part by applying refactoring rules, e.g.

the rule MoveAttribute moves one attribute to another class. As the result
of this activity code smells such as LargeClass disappear.

3. Change the program at all other locations which are affected by the refac-
toring done in step 2. For example, if at some location in the code the moved
attribute is accessed, this call became syntactically incorrect in step 2 and
must be rewritten.

There are several catalogs of refactoring rules for different languages. The most
complete and influential was published by Fowler in [6] for refactoring of Java
code. The refactoring of artifacts more abstract than implementation code has
become only recently a research topic. Some initial catalogs of refactoring rules
for UML diagrams, mostly adaptations from the Java refactorings given by
Fowler, are presented in [7, 8, 9]. Only few tools are currently available to support
UML refactorings [10, 11]. None of these catalogs or tools takes OCL constraints
into account, which might be attached to diagrams. Thus, applying these refac-
toring rules on diagrams that have constraints attached can make them syntacti-
cally incorrect. As spoken in terms of the above shown MoveAttribute example,
the first two steps have been realized but the last step is ignored. The only
refactoring approach of OCL we are aware of is by Correa and Werner [12], but
here the focus is on improving badly structured OCL constraints and only to a
very limited extent the relationship between OCL constraints and the underlying
class diagram.

In this paper, the most important refactoring rules for class diagrams in-
cluding attached OCL constraints are described formally. Not all class diagram
refactoring rules have an impact on attached OCL constraints, so we first answer
the question which of the rules for class diagrams can destroy the syntactical
correctness of attached OCL constraints. If a rule has no impact on OCL we
informally give the reasons for this. For the rules, whose application can influ-
ence the syntactical correctness of OCL constraints, we formalize the necessary
changes on the OCL code. Up to now, we are not able to argue for all rules that
they preserve the semantics of the refactored OCL constraint. This important
topic will be addressed in our future research.

The formal description of refactoring rules is done on the level of the meta-
model for UML and OCL. Unlike other approaches to describe refactoring rules
formally [12, 7, 13] we do not use OCL pre/post-conditions for this purpose.
The formalism of our choice is a slight adaptation of the QVT Merge Group [14]
proposal to describe model transformations (note that refactoring can be seen
as a special case of model transformation) that is based on graph grammars.
Hence, our catalog of refactoring rules can also be seen as a case study for QVT.

In Sect. 2 we give preliminaries to understand our rules formally defined in
Sect. 3. The insights gained during the formalization of the refactoring rules are
summarized in Sect. 4 whereas Sect. 5 concludes the paper and gives an outlook
of future research activities.

282 Slavǐsa Marković and Thomas Baar

2 Description of Refactoring Rules with QVT

Model transformations are widely recognized now as the ’heart and soul’ of model
driven development [15]. The Object Management Group (OMG) is currently in
the process to standardize the notation for the formal description of model trans-
formations and has launched a corresponding Query/Views/Transformations
Request for Proposals in 2002. In this paper, we mainly use the notation sug-
gested by the QVT Merge Group in the subsequent proposal [14]. Since our aim
is to refactor UML class diagrams annotated with OCL, our refactoring rules
are based on the metamodels of UML and OCL. The following subsection recalls
those parts of these metamodels that are used in our refactoring rules. After-
wards, a brief introduction to the QVT notation for model transformations is
given.

2.1 Metamodels of UML/OCL

Metamodeling is a powerful technique to describe the abstract syntax of lan-
guages in a concise way. A metamodel for a language can roughly be seen as a
class model whose classes and associations encode the concepts of the language
and the relationships between them. Each syntactically correct sentence of the
language can be represented in form of an instance of the metamodel.1

GeneralizableElement

Attribute Operation

Namespace

ModelElement
name : Name

0..1
n

+namespace0..1

+ownedElement
n

BehavioralFeature
isQuery : Boolean

Feature

StructuralFeature

Classifier
0..n

0..1+feature
0..n

{ordered}

+owner

0..1

n
1

+typedFeature
n

+type1

Class

ModelElement

Association

AssociationEnd
multiplicity : Multiplicity

2..*

1

+connection
2..*

{ordered}

+association 1

GeneralizableElement

Classifier

1
n

+participant1

+association
n

Generalization
n 1

+generalization
n

+child
1

1n
+parent

1
+specialization
n

0..1

n

+powertype 0..1
+powertypeRange n

Relationship

Fig. 1. Relevant parts of UML metamodel - Backbone and Relationships

Fig. 1 and Fig. 2 show relevant parts of the official metamodels for UML1.5
and OCL2.0 (for a complete definition see [16, 17]).2 In addition to what is
shown in Fig. 1 and Fig. 2, some of the refactoring rules refer to additional
operations such as Classifier.allParents:Set(Classifier). The definition for these
operations are omitted here for the sake of brevity but can be found in the official
metamodels [16, 17].
1 In the remaining paper, such representations are called MM-representations.
2 We have chosen UML1.5 as a basis, because in time of writing this paper, the OCL2.0

metamodel was not aligned yet to UML2.0 and still relied on UML1.5.

Refactoring OCL Annotated UML Class Diagrams 283

Attribute
(from Core)

AttributeCallExp
10..n

+referredAttribute
10..nModelElement

(from Core)

Expression
(from Data_Types)

Constraint
(from Core)

0..n

0..n

+constraint0..n

+constrainedElement0..n

10..1
+body

10..1

AssociationEndCallExp

Operation
(from Core)

AssociationEnd
(from Core)10..n

+referredAssociationEnd
10..n

OperationCallExp
10..n

+referredOperation

10..n

NavigationCallExp

1+navigationSource 1

ModelPropertyCallExp

OclExpression

0..1

0..n
+parentOperation

0..1

+arguments0..n
{ordered}

0..1

0..n

0..1

+qualifiers
0..n

{ordered}

0..1

0..1

+appliedProperty
0..1

+source
0..1OclExpression

Classifier
(from Core)

1 +type1

ExpressionInOcl

1 +bodyExpression1

0..1 +contextualClassifier0..1

Fig. 2. Relevant part of OCL metamodel - Overview and ModelPropertyCallExp

2.2 Introduction to QVT

The QVT Merge Group proposal [14] aims at providing a standardized graphical
notation to define model transformations.3 A model transformation is defined as
a set of transformation rules that, when applied on a source model, transform
this into a target model. Source and target models are assumed to be represented
as instances of metamodels. In general, QVT can handle the case of different
metamodels for the source and target models but refactoring rules need only
one metamodel for both source and target model.

A transformation rule in graphical notation consists of two patterns LHS (left
hand side), RHS (right hand side) that are connected by a symbol indicating
the transformation’s type such as general transformation (), relation (),
or mapping (). Optionally, a rule can have parameters and a when-clause
comprising textual constraints.
The LHS and RHS patterns are denoted by a generalized form of object dia-
grams. In addition to the normal object diagrams, free variables can be used in
order to indicate object identifiers and values of attributes. The same variable
can occur both in LHS and RHS and refers – during the application of the rule
– at all occurrences to the same value. Furthermore, links and objects in the
pattern can be marked as non-existing (by a cross) what is read when applying
the rule as a negative matching condition. In order to distinguish between ob-
jects/links occurring in the patterns and objects/links occurring in the concrete
models we call the former ones as pattern objects/links and the later ones as
concrete objects/links.

If a rule is applied on a source model (represented as an instance of the meta-
model, i.e. as a graph), then each subgraph that matches with LHS is rewritten
by a new subgraph derived from RHS under the same matching. A matching is
an assignment of all variables occurring in LHS/RHS to concrete values. When
applying a rule, the matching must obey the restrictions imposed by the when-

3 The proposal defines also a purely textual notation that results, however, into less
understandable transformation descriptions.

284 Slavǐsa Marković and Thomas Baar

clause. This semantics of the QVT rules has the following consequences: If a
pattern object appears in the rule’s RHS but not in its LHS (i.e., in LHS there is
no pattern object of the same class and identified by the same variable as in RHS)
then – when applying the rule – a corresponding, concrete object is created. If
there is a pattern object in LHS but not in RHS, then the matching object in
the source model is deleted together with all ’dangling links’. Similarly, a link is
created/deleted if the corresponding pattern link does not appear in both LHS
and RHS (pattern links are identified by their role names and the pattern ob-
jects they connect). An attribute value is changed to the value derived from its
specification in RHS under the current matching. Values of the attributes that
are not mentioned in LHS and RHS remain unchanged. We have now explained
the basic principle of rule applications and the fundamental constructs used in
patterns. More complicated constructs will be explained later at the places they
are needed.

As an example, suppose we want to describe the renaming of some model
elements (such as attributes, operations, or classes) in UML models. As a first
step, the model element, whose name should be changed, has to be selected.
Then, its name can be changed to the new name if it is not already used by
another model element of the same type in the same namespace.

RenameElementUML(el:ModelElement, newName:String)

el1:ModelElement

name=newName

n:Namespace

el:ModelElement

name=oldName

+ownedElement

+namespace +namespace

+ownedElement
+namespace

{when}
Set{Attribute,Operation,Class}->exists(x| el.oclIsTypeOf(x) and el1.oclIsTypeOf(x))

+ownedElement

n:Namespace

el:ModelElement

name=newName

Fig. 3. Formalization of RenameElement refactoring

In the left pattern in Fig. 3, the model element el is selected by a parameter.
If there is no other model element with a name equal to newName in the same
namespace (indicated by the cross on el1), then the RHS pattern describes the
change of the name of el to newName. Furthermore, the model elements el and
el1 must be both either attributes, operations, or classes. This is formalized by
the when-clause.

3 A Catalog of UML/OCL Refactoring Rules

The rules presented below for refactoring of UML class diagrams and OCL
are heavily inspired by refactoring rules for the static structure of Java pro-
grams given by Fowler in [6]. We took the freedom to change some rule names
introduced by Fowler to indicate UML as their new application domain (e.g.
MoveMethod became MoveOperation). Table 1 gives the list of the formalized

Refactoring OCL Annotated UML Class Diagrams 285

rules. If the rule name has changed compared to the name used by Fowler, the
original name is given in parentheses. In few cases, not only the name but also
the semantics of the rule has slightly changed. Details on this are given at ap-
propriate places in the text. Furthermore, Table 1 shows which of the rules have
an influence on OCL. Note that two rules have an influence only either on the
MM-representation or the textual notation of the OCL constraints.

Table 1. Overview of UML/OCL refactoring rules

Refactoring rules Influence on syntactical
correctness of OCL constraints

MM-Representation Textual Notation

ExtractClass No No

ExtractSuperclass No No

RenameElement (RenameMethod) No Yes

MoveAttribute (MoveField) Yes Yes

MoveOperation (MoveMethod) Yes Yes

PullUpOperation (PullUpMethod) No No

PullUpAttribute (PullUpField) No No

PushDownOperation (PushDownMethod) Yes Yes

PushDownAttribute (PushDownField) Yes No

3.1 Rules Without Influence on OCL

RenameElement The rule RenameElement has been already used as an ex-
ample in Sect. 2. Our version allows changing the name of many model elements
(attributes, operations, and classes) whereas Fowler allows in [6] only renaming
of methods.4 This motivates the change of the rule name from RenameMethod
to RenameElement.

At a first glance, renaming of an attribute requires to change all annotated
OCL constraints where the attribute is used. However, these changes are re-
quired only for the textual notation. If the attached OCL constraint is seen as
an instance of the OCL metamodel, then this instance remains the same. Note
that the OCL metamodel refers only to the UML metamodel but does not com-
prise it. Thus, the change made in the underlying UML model is automatically
propagated to all OCL expressions that use the changed UML element.

PullUpAttribute/PullUpOperation These two rules remove one attribute/
operation from a class and insert it into one of its superclasses, Fig. 4 shows a
concrete example. We will concentrate our description on PullUpAttribute, the
rule PullUpOperation is handled analogously.
4 However, there is no principal obstacle for renaming other declarations in Java. The

Eclipse tool [18], for example, provides capability for renaming other model elements,
e.g. attributes.

286 Slavǐsa Marković and Thomas Baar

ExaSon

ExaFather1 ExaFather2

ExaSon

exaAttr

ExaFather2ExaFather1

exaAttr

Fig. 4. Example for applying PullUpAttribute

PullUpAttributeUML(a:Attribute, father:Class)

g:Generalization

father:Class
+parent
+specialization

+generalization

a:Attribute+owner
+feature

+child

+parent
+specialization

son:Class +owner
+feature

+generalization
+child

g:Generalization

father:Class

a:Attribute son:Class

Fig. 5. PullUpAttribute refactoring rule

In Fig. 5, the pre-conditions to apply this rule are given: Attribute a is owned
by class son that must have a parent class father. The RHS pattern formalizes
that the owner of attribute a has changed from class son to class father (link
from a to son is deleted and to father created). Unlike the PullUp rules for
Java, it is not necessary to state as a condition on the LHS, that in the pre-state
the class father must not have an attribute with the same name as a. This is
automatically imposed by a well-formedness rule in UML1.5 preventing a class
to use names for its attributes which were already taken by one of its ancestor
classes (cmp. Sect. 2.5.4.4 in [17]). If the class father had an attribute with the
same name as attribute a then this well-formedness rule would be broken for
class son. Java is not so strict in this respect; e.g. names for private attributes
can be reused in subclasses without problems.

The PullUpAttribute rule has no influence on OCL constraints because it
widens the applicability of the moved attribute. The attribute exaAttr can only
occur in attribute call expressions (AttributeCallExp) of form exp.exaAttr. Here,
the type of expression exp must be compatible with the owner of the attribute
son. After the refactoring, exp.exaAttr is still syntactically correct because the
type of exp is also a subtype of father what is the new owner of the attribute.

ExtractClass/ExtractSuperclass The rule ExtractClass creates an empty
class and connects it with a new association to the source class from where
it is extracted. The multiplicity of the new association is 1 on both sides.
The ExtractSuperclass rule creates an empty class as well but inserts it be-
tween the source class and one of its direct parent classes. Note that Extract-
Class/ExtractSuperclass differ from the corresponding rules given by Fowler
in [6]. Our rules are more atomic since they do not move features from the
source class to the newly created class. In order to move features to the new

Refactoring OCL Annotated UML Class Diagrams 287

class one could apply the refactorings MoveAttribute/Operation or PullUpAt-
tribute/Operation.

ExtractSuperclassUML(son:Class, newCN:String, gen:Generalization)ExtractClassUML(init:Class, newCN:String)

son:Class

+child

+generalization
gen:Generalization

+child

gen:Generalization

+child

+generalization

+parent
+specialization

init:Class

init:Class

a:Association

+association

+participant

ae1:AssociationEnd

multiplicity=1

ae2:AssociationEnd

multiplicity=1

extracted:Class

name=newCN

father:Class

name=newCN

+participant

+generalization

son:Class

g:Generalization

+association

Fig. 6. ExtractClass/ExtractSuperclass refactoring rules

Applying the rules ExtractClass/ExtractSuperclass cannot alter the syntac-
tical correctness of attached OCL constraints because both the rules merely
introduce new model elements and do not delete or change old ones.

3.2 Rules with Influence on OCL

PushDownAttribute This rule is the counterpart of the rule PullUpAttribute
from Fig. 5 and moves an attribute from the parent to some selected subclasses
(see Fig. 7). As described by Fowler in [6] for the corresponding rule PushDown-
Field, the attribute is moved only to such classes, where it is actually used.

ExaFather

exaAttr
ExaFather

ExaSon1 ExaSon3

exaAttr

ExaSon2

exaAttr
ExaSon1 ExaSon3ExaSon2

Fig. 7. Example for applying PushDownAttribute

The formalization of the PushDownAttribute rule is split into a UML and
an OCL part shown in Fig. 8 and Fig. 9. It uses some elements of QVT that
have not been explained yet as well as some ’private’ elements that are missing
in QVT.

Multiobjects as gs and users are already defined in QVT and represent a set
of objects of the same type (here Generalization and Class). A multiobject that
is linked to an ordinary pattern object – in our example, gs is linked to father
– encodes the situation where all elements represented by the multiobject have
actually a link to the object represented by the ordinary pattern object. Note

288 Slavǐsa Marković and Thomas Baar

PushDownAttributeUML(a:Attribute, users:Set(Class))

+parent+specialization

+generalization

father:Class
+parent+specialization

as:Attribute+owner
+feature

+generalization
+child

a:Attribute

+owner

+feature+child

gs:Generalization gs:Generalization

as->forAll (x | x.isCopyOf(a))
{when}

father:Class

users:Class users:Class

1
1

1
1

1
1

Fig. 8. UML part of PushDownAttribute rule

PushDownAttributeUML+OCL extends PushDownAttributeUML(a:Attribute, users:Set(Class))

{when}
AttributeCallExp.allInstances()->
 forAll(ace| ace.referredAttribute=a implies
 users->exists(user| user=ace.source.type or ace.source.type.allParents->includes(user))

Fig. 9. OCL part of PushDownAttribute rule

that in Fig. 8 the variable a is passed as an parameter and thus father is implicitly
determined as the owner of attribute a. The multiobject gs is determined as the
set of generalizations which have father as the parent and which are linked with
the elements represented by the multiobject users as their child. Note that the
variable users is also passed as a variable to the rule in order to select the
subclasses where the attribute a is moved to.

The multiplicity 1/1 at the link between gs and users is a ’private’ pattern
element and not included in the QVT Merge Group proposal yet. It was added
here to enrich QVT’s standard semantics of links between two multiobjects. The
QVT semantics always assumes that such a link represents the situation where
each element of the first multiobject is linked to every element of the second
one, and vice versa. This standard semantics is not appropriate to describe the
relationship between gs and users since each element of gs should be linked to
exactly one element of users, and vice versa. Thus we propose to add multiplici-
ties to pattern links between multiobjects what allows to indicate a non-standard
semantics of such links in an intuitive way.

Another new element is the usage of operation isCopyOf() in the when-
clause. Since the multiobject as occurs only in the RHS, we already know that
all its elements are newly created. The multiplicity 1/1 between as and users
let us further conclude, that for each element of users exactly one element of as
is created. The when-clause and the intended semantics of isCopyOf() should
ensure that each element of as is a shallow copy of attribute a. However, the
elements of as have a different owner than a as indicated in RHS.

If PushDownAttribute is applied on a class diagram that has attached OCL
constraints then we must ensure that in all constraints the attribute is never
used in the superclass (father) nor in any class which is not compatible with at
least one of the selected subclasses (users). This has been formalized by the rule
shown in Fig. 9 that extends the rule of Fig. 8.

Refactoring OCL Annotated UML Class Diagrams 289

The rule PushDownAttribute does not cause changes of the OCL textual
notation because instead of calling the attribute that is removed from the su-
perclass, all calls now refer to a copy of this attribute at some of the subclasses.
However, this refactoring causes changes on the MM-representation of OCL be-
cause every instance of AttributeCallExp that was calling the moved attribute
has after the refactoring a new link to a newly created copy of the attribute in
the subclasses.

MoveAttribute Applying the MoveAttribute rule helps to make a class smaller;
an example of this refactoring is shown in Fig. 10.

ExaInitial

exaAttr

ExaDestination

exaAttr

ExaInitialExaDestination1 11 1

Fig. 10. Example for applying MoveAttribute

The attribute can only be moved to a class which is connected with the initial
class by an association with multiplicity 1 at both ends. This allows objects of
the initial class still to have access to the moved attribute after the refactoring.
Not visible in the example but in the formalization in Fig. 11 is that neither the
destination class nor one of its parents or children is allowed to have already an
attribute with the same name as the moved attribute.

MoveAttributeUML(dest:Class, a:Attribute)

:Attribute

name=attrName
a:Attribute

name=attrName

a:Attribute

name=attrName

+owner
+feature

+owner
+feature

+owner
+feature

dest:Classinit:Class

as:Association

+participant
+association

+participant
+association

ae1:AssociationEnd

multiplicity=1

+connection+connection

{when}
dest.allParents->union(dest.allChildren)->forAll(p|p.feature->
 select(a|a.oclIsTypeOf(Attribute)).name->excludes(attrName))

dest:Classinit:Class

as:Association

+participant
+association

+participant
+association

ae1:AssociationEnd

multiplicity=1

+connection+connectionae2:AssociationEnd

multiplicity=1 ae2:AssociationEnd

multiplicity=1

Fig. 11. UML part of MoveAttribute rule

Analogously to the changes of Java code described by Fowler for the cor-
responding refactoring MoveField, this rule must update OCL constraints on
all locations where the moved attribute is applied. The necessary change of the
OCL expressions can be seen as a kind of ”Forward Navigation”: Terms of form
exp.exaAttr have to be rewritten as exp.destination.exaAttr. This change of
OCL is formalized by the rule in Fig. 12.

290 Slavǐsa Marković and Thomas Baar

MoveAttributeUML+OCL extends MoveAttributeUML(dest:Class, a:Attribute)

at:AttributeCallExp

oe:OclExpression a:Attribute

+referredAttribute+source
+appliedProperty

at:AttributeCallExp

aec:AssociationEndCallExp

oe:OclExpression ae:AssociationEnd
+source +referredAssociationEnd

+appliedProperty

+appliedProperty
+source

a:Attribute

+referredAttribute

dest:Class
+association

+participant

Fig. 12. OCL part of MoveAttribute rule

MoveOperation The rule MoveOperation is often applied when some class has
too much behavior or when classes are collaborating too much.

The formalization of MoveOperation refactoring is similar to that of MoveAt-
tribute and shown in Fig. 13. As for MoveAttribute, the association must have
on both ends multiplicity 1. The main difference is that the name of the moved
operation is now allowed to be already used in the parent classes of the des-
tination since UML1.5 allows operations to be refined along the generalization
hierarchy.

MoveOperationUML(dest:Class, o:Operation)

:Operation

name=opName

+owner
+feature +owner

+feature

+owner
+feature

dest:Classinit:Class

as:Association

+participant
+association

+participant
+association

ae1:AssociationEnd

multiplicity=1

+connection+connection

dest:Classinit:Class

as:Association

+participant
+association

+participant
+association

ae1:AssociationEnd

multiplicity=1

+connection+connection

o:Operation

name=opName

o:Operation

name=opName

ae2:AssociationEnd

multiplicity=1
ae2:AssociationEnd

multiplicity=1

Fig. 13. UML part of MoveOperation rule

The changes induced on OCL can be described in three steps:

”Change context”: If a constraint is attached to the operation (e.g. as pre/post-
condition) then the context of this constraint has to be changed, in the above
example from context ExaInitial::exaOp() to
context ExaDestination::exaOp(). Fowler describes in [6] informally this
step as ”Copy the code from the source method to the target”. Note that
in this step, we only copy the constraint body, the adaptations of the body
will be done in the next steps.

”Backward navigation”: After ”Change context” the constraint attached to the
moved operation still assumes variable self to be of type of the original
class. At the new location, the variable self of the original class can be
”simulated” by navigation from the destination class to the original class.

Refactoring OCL Annotated UML Class Diagrams 291

All occurrences of self.propertyCallExp in the moved constraints4 have to
be rewritten by self.exaInitial.propertyCallExp. This navigation is made
possible by the multiplicity 1 on the end of the original class. For this step,
Fowler says: ”... create or use a reference from the target class to the source”.

”Forward navigation”: In case that the moved operation is a query we have to
redirect in all operation call expressions the operation reference. This means
to substitute all expressions expression.exaOp() by
expression.exaDestination.exaOp(). This step corresponds to ”Turn the
source method into a delegating method” from Fowler’s book.

MoveOperationUML+OCL extends MoveOperationUML(dest:Class, o:Operation)

eo:ExpressionInOcl+contextualClassifier

c:Constraint

+body

+constraint
+constrainedElement

+feature
+owner

dest:Class eo:ExpressionInOcl+contextualClassifier

c:Constraint

+body

+constraint
+constrainedElement

+feature
+owner

{and}

op:OperationCallExp

o:Operation
+referredOperation+source

+appliedProperty

op:OperationCallExp

aec:AssociationEndCallExp

+source
+referredAssociationEnd+appliedProperty

+appliedProperty
+source

o:Operation
+referredOperation

v:VariableExp

name='self'
+source

+appliedProperty

mp:allSubsaec:AssociationEndCallExp

ae1:AssociationEnd
+referredAssociationEnd

+appliedProperty
+source

v:VariableExp

name='self'

+source
+appliedProperty

init:Class+association
+participant

+association
+participant

dest:Class

o:Operation o:Operation

mp:allSubs

init:Class

ae2:AssociationEnd

{and}

eo:ExpressionInOcl

oe :OclExpression
+bodyExpression

allSubs:ModelPropertyCallExp

eo:ExpressionInOcl oe :OclExpression+bodyExpression

allSubs:ModelPropertyCallExp

{and}

{and}

oe1:OclExpression
oe1:OclExpression

allSubs=oe->allSubExps()->select(s| s.oclIsKindOf(ModelPropertyCallExp))
{when}

Fig. 14. OCL part of MoveOperation rule

As shown in Fig. 14, the formalization of MoveOperation refactoring is com-
posed of three smaller transformations. The first sub-transformation is used to
change the context of one OCL expression. LHS and RHS in the rule differ only
in the class that represents the context for the attached OCL constraint.

In the second sub-transformation, the backward navigation is specified by
adding a new instance of AssociationEndCallExp to the class from which the
operation has moved. The when-clause uses a new operation
OclExpression.allSubExps:Set(OclExpression) that is not part of the OCL meta-
model yet. The intended semantics of allSubExps is to return all subexpressions
of the OclExpression it is applied to.

4 Note that OCL allows in the textual notation to suppress self. Thus, self within
self.propertyCallExp is sometimes given only implicitly.

292 Slavǐsa Marković and Thomas Baar

The third sub-transformation describes ”Forward navigation”. The LHS pat-
tern finds all occurrences where the moved operation is called. RHS specifies the
insertion of an additional navigation to the destination class.

PushDownOperation This rule is very similar to PushDownAttribute but,
somehow surprisingly, it has influence on the OCL textual notation.

PushDownOperationUML(o:Operation, users:Set(Class))

father:Class
+parent+specialization

users:Class

+generalization

father:Class
+parent+specialization

+owner
+feature

+generalization
+child

+owner
+feature+child

os:Operation

gs:Generalizationgs:Generalization

o:Operation

{when}

users:Class

1
1 1

1

1
1

os->forAll (x | x.isCopy(o))

Fig. 15. UML part of PushDownOperation rule

PushDownOperationUML+OCL extends PushDownOperationUML (o:Operation, users:Set(Class))

{when}

c1:Constraint

+constraint
+constrainedElement

cs:Constraint

+constraint
+constrainedElemento:Operation os:Operation

 OperationCallExp.allInstances()->forAll(oce| oce.referredOperation=o implies
 users->exists(user| user.allChildren->including(user)->includes(oce.source.type))) and
 cs->forAll(x |x.isCopy(c1))

1 1

Fig. 16. OCL part of PushDownOperation rule

If the moved operation is a query and occurs in operation call expressions
then the operation must be moved at least to all children that actually use the
query.
No matter whether the moved operation is a query or not all its constraints
have to be copied with an adapted context to the new operations in the selected
subclasses (see Fig. 16).

4 Lessons Learned

The formalization of refactoring rules for UML/OCL has highlighted some ad-
vantages but also some missing elements of the graph-grammar based notation
proposed by the QVT Merge Group in [14].

Since our refactoring rules are described in a graphical formalism they are
much more accessible and understandable than existing formalizations of UML
refactoring rules in form of pure OCL pre/post-conditions. Another advantage
compared to purely OCL-based formalizations is the elegant solution of the
Frame problem that is provided by the QVT semantics: only structures of the
source model which match the LHS pattern of the rule are processed and sub-
stituted by the RHS under the same matching. The source model and the result

Refactoring OCL Annotated UML Class Diagrams 293

of the refactoring can only differ in the elements that were made explicit in the
RHS whereas an OCL formalization of the rules has to be read as ”everything
can change unless it is not explicitly stated that it remains the same”.

Compared to corresponding refactoring rules for Java, the rules for UML and
OCL are sometimes simpler to formulate because, for example, the visibility of
model elements is ignored in the OCL syntax. Also the assumption in UML1.5
on the uniqueness of attributes names along the generalization hierarchy helps to
keep the formulation of refactoring rules elegant. On the contrary, other concepts
of UML such as multiple inheritance make the formulation of refactoring rules
often more difficult.

Another interesting insight is that, not all class diagram refactoring rules can
simply be classified in such a way that keep the OCL code untouched and in a
way that can require a change in OCL. There is a group of rules in between which
do not influence the OCL but whose applicability depends on some properties of
the OCL constraints attached to the class diagram (e.g., in PushDownAttribute
the LHS of the rule states that terms of a certain type do not appear).

Proposed Change to QVT and OCL We have encountered some elements
that are missing in the current QVT proposal and OCL metamodel:

– Sometimes, it is inevitable to express, that an object is the (shallow) copy of
another object but an operation such as OclAny.isCopyOf(OclAny):Boolean
is not available in OCL yet although its semantics is clear.

– The pattern language of QVT should allow to express a 1-1 relationship
between objects of two multiobjects. As an intuitive way, we propose to add
multiplicities to links connecting two multiobjects.

– The operation OclExpression.allSubExps():Set(OclExpression) is needed to
access all subexpressions of an expression and, thus, should be added to the
OCL metamodel as an additional operation.

5 Conclusions and Future Work

In the literature, refactoring rules for UML class diagrams have been described so
far only informally or in form of pure OCL pre/post-conditions. In this paper, we
formalized these rules in a precise and very readable way by using the formalism
proposed by the QVT Merge Group. As the main contribution, the impact of
changing class diagrams on annotated OCL constraints has been investigated.
For the rules having an impact on OCL, the class diagram refactoring rules
have been extended by additional transformation rules for OCL expressions.
The extended rules now allow keeping class diagrams, which are often subject
of change, easily in sync with annotated OCL constraints. Note that the OCL
constraints play an important role in modern model-based software development
paradigms.

So far, we are only able to argue that the presented refactoring rules preserve
the syntactical correctness of OCL constraints. In a next step we will investigate

294 Slavǐsa Marković and Thomas Baar

whether or not the given refactoring rules are also behavior preserving (or rather
semantics preserving). As another activity, we are currently developing a tool
that is capable to perform the described UML refactorings and propagate these
refactorings to annotations given in OCL.

References

[1] Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
(2004)

[2] Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(2000)

[3] Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Software
Eng. 30 (2004) 126–139

[4] Refactoring community: Refactoring homepage. www.refactoring.com (2005)
[5] Opdyke, W.F.: Refactoring: A Program Restructuring Aid in Designing Object-

Oriented Application Frameworks. PhD thesis, University of Illinois at Urbana-
Champaign (1992)

[6] Fowler, M.: Refactoring: Improving the Design of Existing Programs. Addison-
Wesley (1999)

[7] Rumpe, B.: Agile Modellierung mit UML. Springer (2005) In German.
[8] Astels, D.: Refactoring with UML. In: International Conference eXtreme Pro-

gramming and Flexible Processes in Software Engineering. (2002) 67–70
[9] Sunyé, G., Pennaneac’h, F., Ho, W.M., Guennec, A.L., Jézéquel, J.M.: Using

UML action semantics for executable modeling and beyond. In Dittrich, K.R.,
Geppert, A., Norrie, M.C., eds.: CAiSE. Volume 2068 of LNCS., Springer (2001)
433–447

[10] Boger, M., Sturm, T., Fragemann, P.: Refactoring browser for UML. In: Inter-
national Conference eXtreme Programming and Flexible Processes in Software
Engineering. (2002) 77–81

[11] Porres, I.: Model refactorings as rule-based update transformations. In Stevens,
P., Whittle, J., Booch, G., eds.: UML 2003 - The Unified Modeling Language,
Modeling Languages and Applications, San Francisco, CA, USA. Volume 2863 of
LNCS., Springer (2003) 159–174

[12] Correa, A., Werner, C.: Applying refactoring techniques to UML/OCL. In Baar,
T., Strohmeier, A., Moreira, A., Mellor, S.J., eds.: UML 2004 - The Unified Mod-
eling Language. Model Languages and Applications, Lisbon, Portugal. Volume
3273 of LNCS., Springer (2004) 173–187

[13] Gorp, P.V., Stenten, H., Mens, T., Demeyer, S.: Towards automating source-
consistent UML refactorings. In Stevens, P., Whittle, J., Booch, G., eds.: UML
2003 - The Unified Modeling Language, Modeling Languages and Applications,
San Francisco, CA, USA. Volume 2863 of LNCS., Springer (2003) 144–158

[14] OMG: Revised submission for MOF 2.0, Query/Views/Transformations, version
1.8. OMG Document ad/04-10-11 (2004)

[15] Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Software 20 (2003) 42–45

[16] OMG: UML 2.0 OCL Specification – OMG Final Adopted Specification. OMG
Document ptc/03-10-14 (2003)

[17] OMG: UML 1.5 Specification. OMG Document formal/03-03-01 (2003)
[18] Eclipse community: Eclipse homepage. http: //www.eclipse.org (2005)

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 295-308, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Replicators: Transformations to Address Model
Scalability

Jeff Gray1, Yuehua Lin1, Jing Zhang1, Steve Nordstrom2,
Aniruddha Gokhale2, Sandeep Neema2, and Swapna Gokhale3

1 Dept. of Computer and Information Sciences, University of Alabama at Birmingham
Birmingham AL 35294-1170

{gray, liny, zhangj}@cis.uab.edu

2 Institute for Software Integrated Systems, Vanderbilt University
Nashville TN 37235

{steve-o, gokhale, sandeep}@isis.vanderbilt.edu

3 Dept. of Computer Science and Engineering, University of Connecticut
Storrs, CT 06269

ssg@engr.uconn.edu

Abstract. In Model Integrated Computing, it is desirable to evaluate different
design alternatives as they relate to issues of scalability. A typical approach to
address scalability is to create a base model that captures the key interactions of
various components (i.e., the essential properties and connections among
modeling entities). A collection of base models can be adorned with necessary
information to characterize their replication. In current practice, replication is
accomplished by scaling the base model manually. This is a time-consuming
process that represents a source of error, especially when there are deep
interactions between model components. As an alternative to the manual
process, this paper presents the idea of a replicator, which is a model
transformation that expands the number of elements from the base model and
makes the correct connections among the generated modeling elements. The
paper motivates the need for replicators through case studies taken from models
supporting different domains.

1. Introduction

A powerful justification for the use of models concerns the flexibility and analysis
that can be performed to explore various design alternatives. This is particularly true
for distributed real-time and embedded (DRE) systems, which have many properties
that are often conflicting (e.g., battery consumption versus memory size), where the
analysis of system properties is often best provided at higher levels of abstraction
[10]. A general metric for determining the effectiveness of a modeling toolsuite
comprises the degree of effort required to make a change to a set of models. In
previous work, we have shown how crosscutting concerns that are distributed across a
model hierarchy can negatively affect the ability to explore design alternatives [9]. A

296 Jeff Gray et al.

form of alternative exploration involves experimenting with model structures by
scaling up different portions of models and analyzing the result on scalability. This
paper makes a contribution to model scalability and describes an approach that can be
used to enable automated replication1 to assist in rapidly scaling a model.

Scalability of modeling tools is of utmost concern to designers of large-scale DRE
systems. From our personal experience, models can have multiple thousands of coarse
grained components (others have reported similar experience, please see [11]).
Modeling these components using traditional model creation techniques and tools can
approach the limits of the effective capability of humans. The process of modeling a
large DRE system with a domain-specific modeling language (DSML), or a tool like
MatLab, is different than traditional UML modeling. In DRE systems modeling, the
models consist of instances of all objects in the system, which can number into
several thousand instances from a set of types defined in a meta-model (e.g.,
thousands of individual instantiations of a sensor type in a large sensor network
model). The traditional class-based modeling of UML, and supporting tools, are
typically not concerned with the same type of instance level focus.

The issue of scalability affects the performance of the modeling process, as well as
the correctness of the model representation. Consider a base model consisting of a
few modeling elements and their corresponding connections. To scale a base model to
hundreds, or even thousands, of duplicated elements would require a lot of clicking
and typing within the associated modeling tool. Furthermore, the tedious nature of
manually replicating a base model may also be the source of many errors (e.g.,
forgetting to make a connection between two replicated modeling elements). A
manual process to replication significantly hampers the ability to explore design
alternatives within a model (e.g., after scaling a model to 800 modeling elements, it
may be desired to scale back to only 500 elements, and then back up to 700 elements,
in order to understand the impact of system size).

Often, large-scale system models leverage architectures that are already well suited
toward scalability. Likewise, the modeling languages that specify such systems may
embody similar patterns of scalability, and may lend themselves favorably toward a
generative replication process. The contribution of this paper is automatic generation
of large-scale system models from smaller, baseline specification models by applying
basic transformation rules that govern the scaling [2] and replication behavior.

The rest of the paper is organized as follows: Section 2 provides an overview of the
tools used in the paper, followed by an outline of the technical challenges of model
replication in Section 3. Two case studies of model scalability using replicators are
provided in Section 4. The conclusion offers summary remarks and a brief description
of future work.

1 The term “replicator” has specific meaning in object replication of distributed
systems and in database replication. In the context of this paper, the term is used to
refer to the duplication and proper connection of modeling elements to address
scalability concerns.

Replicators: Transformations to Address Model Scalability 297

2. Background: Supporting Technologies and Related Work

The implementation of the scalability approach described in this paper is tied to a
specific set of tools, but we believe the general idea can be applied to many toolsuite
combinations. The modeling tool and model transformation engine used in the work
are overviewed in this section. The purpose of the paper is not to describe these tools
in detail, but an introduction may be needed to understand the subsequent sections of
the paper.

2.1 Model-Integrated Computing

A specific form of model-driven development, called Model-Integrated Computing
(MIC) [17], has been refined at Vanderbilt University over the past decade to assist
the creation and synthesis of computer-based systems. A key application area for MIC
is those domains (such as embedded systems areas typified by automotive and
avionics systems) that tightly integrate the computational structure of a system and its
physical configuration. In such systems, MIC has been shown to be a powerful tool
for providing adaptability in frequently changing environments. The Generic
Modeling Environment (GME2) [12] is a meta-modeling tool based on MIC that can
be configured and adapted from meta-level specifications (called the modeling
paradigm) that describe the domain. An effort to make the GME MOF-compliant is
detailed in [6]. Each meta-model describes a domain-specific modeling language
(DSML). When using the GME, a modeling paradigm is loaded into the tool to define
an environment containing all the modeling elements and valid relationships that can
be constructed in a specific domain. A model compiler can be written and invoked
from within the GME as a plug-in in order to synthesize a model into some other form
(e.g., translation to code or simulation scripts). All of the modeling languages
presented in the paper are developed and hosted within the GME.

2.2 C-SAW: A Model Transformation Engine

The paper advocates automated model transformation to address scalability concerns.
The Constraint-Specification Aspect Weaver (C-SAW3) is the model transformation
engine used in the case studies in Section 4. Originally, C-SAW was designed to
address crosscutting modeling concerns [9], but has evolved into a general model
transformation engine. C-SAW is a GME plug-in and is compatible with any meta-
model; thus, it is domain-independent and can be used with any modeling language
defined within the GME. The Embedded Constraint Language (ECL) is the language
that we developed for C-SAW to specify transformations. The ECL is featured and
briefly explained in Figures 3 and 5.

2 The GME is an open-source meta-programmable tool that is available from the
following website: http://escher.isis.vanderbilt.edu/tools/get_tool?GME
3 The C-SAW plug-in, publications, and video demonstrations are available at the
following website: http://www.cis.uab.edu/gray/Research/C-SAW/

298 Jeff Gray et al.

2.3 Related Work

We are not aware of any other research that has investigated the application of model
transformations to address scalability concerns like those illustrated in this paper.
However, a large number of approaches to model transformation have been proposed
by both academic and industrial researchers (example surveys can be found in [4,
15]). There is no specific reason that GME, ECL and C-SAW need to be used for the
general notion of model replication promoted in this paper; we used this set of tools
simply because they were most familiar to us and we had access to several DSMLs
based on the combination of these tools. Other combinations of toolsuites are likely to
offer similar capabilities.
 There are several approaches to model transformation, such as graphical languages
typified by graph grammars (e.g., GReAT [1] and Fujaba [7]), or a hybrid language
(e.g., the ATLAS Transformation Language [3] and Yet Another Transformation
Language [14]). Graphical transformation languages provide a visual notation to
specify graphical patterns of the source and target models (e.g., a subgraph of a
graph). However, it can be tedious to use purely graphical notations to describe
complicated computation algorithms. As a result, it may require generation to a
separate language to apply and execute the transformations. A hybrid language
transformation combines declarative and imperative constructs inside the
transformation language. Declarative constructs are used typically to specify source
and target patterns as transformation rules (e.g., filtering model elements), and
imperative constructs are used to implement sequences of instructions (e.g.,
assignment, looping and conditional constructs). However, embedding predefined
patterns renders complicated syntax and semantics for a hybrid language.
 With respect to model transformation standardization efforts, C-SAW was under
development two years prior to the initiation of OMG’s Query View Transformation
(QVT) request for proposal. It seems reasonable to expect that the final QVT standard
would be able to describe transformations similar in intent to those presented in this
paper. For the purpose of exploring our research efforts, we have decided to continue
our progress on developing C-SAW and later re-evaluate the merits of merging
toward a standard.

3. Alternative Approaches to Model Replication

This section provides a discussion of key characteristics of a model replication
technique. An overview of existing replication approaches is presented and a
comparison of each approach is made with respect to the desired characteristics. The
section offers an initial justification of the benefits of a model transformation engine
to support scalability of models through replicating transformations.

3.1 Key Characteristics for a Replication Approach

An approach that supports model scalability through replication should have the
following desirable characteristics: 1) retains the benefits of modeling, 2) general

Replicators: Transformations to Address Model Scalability 299

across multiple modeling languages, and 3) flexible to support user extensions. Each
of these characteristics (C1 through C3) is discussed further in this subsection.

C1. Retains the benefits of modeling: As stated in Section 1, the power of
modeling comes from the ability to perform analysis (e.g., model checking
and verification of system properties) in a way that would otherwise be
difficult at the implementation level. A second advantage is the opportunity
to explore various design alternatives. A model replication technique should
not remove these benefits. That is, the replication mechanism and tool
support should not perform scalability in such a way that analysis and design
exploration is not possible. This seems to be an obvious characteristic to
desire, but we have observed replication approaches that void these
fundamental benefits of modeling.

C2. General across multiple modeling languages: A replication technique
that is generally applicable across multiple modeling languages can leverage
the effort expended in creating the underlying transformation mechanism. A
side benefit of such generality is that a class of users can become familiar
with a common replicator technique that can be applied to many modeling
languages they use.

C3. Flexible to support user extensions: Further reuse can be realized if the
replicator supports multiple types of scalability concerns in a templatized
fashion (e.g., the name, type, and size of the elements to be scaled are
parameters to the replicator). The most flexible type of replication would
allow alteration of the semantics of the replication more directly using a
notation or language that can be manipulated by an end-user. In contrast,
replicator techniques that are hard-coded and unable to be extended restrict
the impact for reuse, thus limiting the value of the time spent on creating the
replicator.

The next subsection will compare existing replicator approaches to these
characteristics.

3.2 Existing Approaches to Support Model Replication

From our past experience in applying MIC to DRE modeling, the following categories
of techniques represent alternative approaches to support replicators: 1) an
intermediate phase of replication within a model compiler, 2) domain-specific model
compiler for a particular modeling language, and 3) specification of a replicator using
a model transformation engine. Each of these approaches is discussed in this
subsection and compared to the desiderata mentioned in Section 3.1.

A1. Intermediate stage of model compilation: As a model compiler
performs its translation, it typically traverses a parse tree (containing an
internal representation of the model) through data structures and APIs
provided by the host modeling tool. Several model compilers can be con-

300 Jeff Gray et al.

Fig. 1. Alternative Approaches for Scaling Models

constructed that generate different artifacts from the same model. One of our
earlier ideas for scaling large models considered performing the replication as
an intermediate stage of the model compiler. Prior to the generation phase of
the compilation, the parse tree can be converted to an intermediate
representation that can be expanded to address the desired scalability. This
idea is represented in the left-hand side of Figure 1.

This is the least satisfying solution to replication and violates all three of the
desired characteristics enumerated in Section 3.1. The most egregious
violation is that the approach destroys the benefits of modeling. Because the
replication is performed as a pre-processing phase in the model compiler, the
replicated structures are never rendered back into the modeling tool itself.
Thus, analysis and design alternatives are not made available to the end-user
for further consideration. Furthermore, the pre-processing rules are hard-
coded into the model compiler and offer little opportunity for reuse across
other modeling languages. In general, this is the least flexible of all
approaches that we considered.

A2. Domain-specific model compiler to support replication: A model
compiler is not only capable of synthesizing to an external artifact, but is also
able to alter the current model structure through API calls. Another approach
to model scalability is to construct a model compiler that is capable of
replicating the models as they appear in the host modeling tool. Such a model
compiler has detailed knowledge of the specific modeling language, as well
as the particular scalability concern. Unlike approach A1, this technique
preserves the benefits of modeling because the end result of the replication
provides visualization of the scaling, and the replicated models can be further
analyzed and refined.

This approach has a few drawbacks as well. Because the replication rules are
domain-specific and hard-coded into the model compiler, the developed
replicator has limited use outside of the intended modeling language.
Although generality across modeling languages is lost, some replicators

Replicators: Transformations to Address Model Scalability 301

based on this approach may have means to parameterize certain parts of the
replication process (e.g., the replicator may request the size to scale, or the
name of specific elements that are to be scaled).

A3. Replication with a model transformation specification: A special type
of model compiler within the GME is a plug-in that can be applied to any
meta-model (i.e., it is domain-independent). The C-SAW model
transformation engine (see Section 2.2) is an example of a plug-in that can be
applied to any modeling language. C-SAW executes as an interpreter and
renders all transformations (as specified in the ECL) back into the host
modeling tool. The ECL can be altered very rapidly to analyze the affect of
different degrees of scalability (e.g., the affect on performance when the
model is scaled from 256 to 512 nodes).

This third approach to replication advocates the use of a model transformation engine
like C-SAW to perform the replication (please see the right-hand side of Figure 1 for
an overview of the technique). This technique satisfies all of the desirable
characteristics of a replicator: by definition, the C-SAW tool is applicable across
many different modeling languages, and the replication strategy is specified in a way
that can be easily modified, as opposed to a hard-coded rule in the approaches
described in A1 and A2. With a model transformation engine, a code generator is still
required for each domain (see “Artifact Generator” in the right-hand side of Figure 1),
but the scalability issue is addressed independently of the modeling language. Our
most recent efforts have explored technique A3 on several existing modeling
languages as described in the next section.

4. Case Studies in Scalability with Model Replicators

In this section, the concept of model replicators is demonstrated on two separate
example modeling languages that were created in GME for different domains. In each
subsection, the DSML is briefly introduced, including a discussion of the scalability
issues and how ECL model transformations solve the scalability problem. The
DSMLs chosen are:

 System Integration Modeling Language, which has been used to model
hardware configurations consisting of up to 5,000 processing nodes for high-
energy physics applications at Fermi National Accelerator Lab.

 Event QoS Aspect Language, which has been used to configure a large
collection of federated event channels for mission computing avionics
applications.

In addition to the above cases studies, our initial exploration into scalability of models
was performed for a different modeling language representing unmanned air vehicles
to address various quality of service concerns related to transmitted video (e.g.,
bandwidth and frame size adjustment). Space limitations prohibit further discussion of
this third example.

302 Jeff Gray et al.

4.1 Scaling the System Integration Modeling Language

Fig. 2. Visual Example of SIML Scalability

The System Integration Modeling Language (SIML) is a language developed to
specify configurations of large-scale fault tolerant data processing systems [16].
Features of SIML include hierarchical component decomposition and dataflow
modeling with point-to-point and publish-subscribe communication between
components. There are several rules defined by the SIML meta-model:

 A system model may be composed of several independent regions
 Each region model may be composed of several independent local process

groups
 Each local process group model may include several primitive application

models
 Each system, region, and local process group must have a representative

manager that is responsible for mitigating failures in its area

The local process group is the set of processes that run the set of critical applications
to perform the system’s overall function. In a data processing network, the local
process group would include the algorithmic tasks to perform as well as the data
processing and transport tasks. A region is simply a collection of local process
groups, and a system is defined as a collection of regions and possibly other
supporting processes. As the SIML language itself is used to describe configurations
of highly scalable architectures, it embodies some patterns of scalability as a by-
product of the domain for which it was created. These patterns include the one-to-
many relationship between system and regional managers, and also a one-to-many

Replicators: Transformations to Address Model Scalability 303

relationship between regional and local process group managers. These relationships
are well defined. Because this relationship can be captured, it should be feasible to
perform automatic generation of additional local process groups and/or regions to
create larger and more elaborate system models.
 Scaling up a system configuration using SIML can involve: 1) an increase in the
number of regions, 2) an increase in the number of local process groups per region, or
3) both 1 and 2. The left-hand side of Figure 2 shows a simple SIML base model that
captures a system composed of one region and one local node in that region (shown as
an expansion of the parent region), utilizing a total of 15 physical modeling elements
(several elements are dedicated to supporting applications not included in any region).
Consider this example when the system is increased to 9 regions with 6 local process
groups per region. Such replication involves the following:

 Replication of the local process group models
 Replication of entire region models and their contents
 Generation of communication connections between regional managers and

newly created local managers
 Generation of additional communication connections between the system

manager and new regional manager processes

The scaled model is shown in the right-hand side of Figure 2. This example scales to
just 9 regions and 6 nodes per region simply because of the printed space to visualize
the figure. In practice, SIML models have been scaled to 32- and 64-node models.
However, the initial scaling in these cases was performed manually. The ultimate goal
of the manual process was to scale to 2500 nodes. After 64 nodes, it was determined
that scaling to further nodes would be too tedious to perform without proper
automation through improved tool support. Even with just a small expansion, the
manual application of the same process would require an extraordinary amount of
manual effort (much mouse-clicking and typing) to bring about the requisite changes,
and increase the potential for introducing error into the model (e.g., forgetting to add a
required connection). If the design needs to be scaled forward or backward, a manual
approach would require additional effort that would make the exploration of design
alternatives impractical.

ECL Transformation to Scale SIML: The scalability illustrated in Figure 2 can be
performed with a model transformation, as illustrated by the ECL specification shown
in Figure 3. As a point of support for the effectiveness of replicators as
transformations, this ECL specification was written in less than an hour by a user who
was very familiar with ECL, but had studied the SIML meta-model for less than a few
hours.

The ECL transformation specification is composed of an aspect and several
strategies. An aspect serves as the starting point of a transformation, and a strategy is
used to specify the computation entities to perform a particular transformations task.
In Figure 3, the aspect “Start” (Line 1) invokes two strategies, “scaleUpNode”
and “scaleUpRegion” in order to replicate the local process group node
(“L2L3Node”) within the region model, and the region itself. The strategy
“scaleUpNode” (Line 7) discovers the “Region” model, sets up the context for

304 Jeff Gray et al.

the transformation, and calls the strategy “addNode” (Line 12) that will recursively
increase the number of nodes based on the given name “L2L3Node.” The new node
instance is created on Line 18, which is followed by the construction of the
communication connections between ports, regional managers and the newly created
nodes (Line 21 to Line 23). Some other connections are omitted here for the sake of
brevity. Two other strategies “scaleUpRegion” (Line 29) and “addRegion”
(Line 34) follow the similar mechanism as above.

1 aspect Start()

2 {

3 scaleUpNode("L2L3Node", 5); //add 5 L2L3Nodes in the Region

4 scaleUpRegion("Region", 8); //add 8 Regions in the System

5 }

6

7 strategy scaleUpNode(node_name : string; max : integer)

8 {

9 rootFolder().findFolder("System").findModel("Region").addNode(node_name,max,1);

10 }

11

12 strategy addNode(node_name, max, idx : integer) //recursively add nodes

13 {

14 declare node, new_node, input_port, node_input_port : object;

15

16 if (idx<=max) then

17 node := rootFolder().findFolder("System").findModel(node_name);

18 new_node := addInstance("Component", node_name, node);

19

20 //add connections to the new node; three similar connections are omitted here

21 input_port := findAtom("fromITCH");

22 node_input_port := new_node.findAtom("fromITCH");

23 addConnection("Interaction", input_port, node_input_port);

24

25 addNode(node_name, max, idx+1);

26 endif;

27 }

28

29 strategy scaleUpRegion(reg_name : string; max : integer)

30 {

31 rootFolder().findFolder("System").findModel("System").addRegion(reg_name,max,1);

32 }

33

34 strategy addRegion(region_name, max, idx : integer) //recursively add regions

35 {

36 declare region, new_region, out_port, region_in_port, router, new_router : object;

37

38 if (idx<=max) then

39 region := rootFolder().findFolder("System").findModel(region_name);

40 new_region := addInstance("Component", region_name, region);

41

42 //add connections to the new region; four similar connections are omitted here

43 out_port := findModel("TheSource").findAtom("eventData");

44 region_in_port := new_region.findAtom("fromITCH");

45 addConnection("Interaction", out_port, region_in_port);

46

47 //add a new router and connect it to the new region

48 router := findAtom("Router");

49 new_router := copyAtom(router, "Router");

50 addConnection("Router2Component", new_router, new_region);

51

52 addRegion(region_name, max, idx+1);

53 endif;

54 }
Fig. 3. ECL Model Transformation to Perform Replication Shown in Figure 2

Replicators: Transformations to Address Model Scalability 305

Flexibility of the replicator can be achieved in several ways. Lines 3 and 4 specify
the magnitude of the scaling operation, as well as the names of the specific nodes and
regions that are to be replicated. In addition to these parametric changes that can be
made easily, the semantics of the replication can be changed because the
transformation specified can be modified directly. This is not the case in approaches
A1 and A2 from Section 3.2 because the replication semantics are hard-coded into the
model compiler.

4.2 Scaling the Event QoS Aspect Language

Fig. 4. Illustration of Replication in EQAL

The Event QoS Aspect Language (EQAL) [5] is a DSML for graphically specifying
publisher-subscriber service configurations for large-scale DRE systems. Publisher-
subscriber mechanisms, such as event-based communication models, are particularly
relevant for large-scale DRE systems (e.g., avionics mission computing, distributed
audio/video processing, and distributed interactive simulations) because they help
reduce software dependencies and enhance system composability and evolution. In
particular, the publisher-subscriber architecture of event-based communication allows
application components to communicate anonymously and asynchronously. The
publisher-subscriber communication model defines three software roles:

 Publishers generate events to be transmitted
 Subscribers receive events via hook operations
 Event channels accept events from publishers and deliver events to

subscribers

306 Jeff Gray et al.

The EQAL modeling environment consists of a GME meta-model that defines the
concepts of publisher-subscriber systems, in addition to several model compilers that
synthesize middleware configuration files from models. The EQAL model compilers
automatically generate publisher-subscriber service configuration files and component
property description files needed by the underlying middleware.

The EQAL meta-model defines a modeling paradigm for publisher-subscriber
service configuration models, which specify quality of service (QoS) configurations,
parameters, and constraints. For example, the EQAL meta-model contains a distinct
set of modeling constructs for building a federation of real-time event services
supported by the Component-Integrated ACE ORB (CIAO) [8], which is a component
middleware platform targeted by EQAL. A federated event service allows sharing of
filtering information to minimize or eliminate the transmission of unwanted events to
a remote entity. Moreover, a federated event service allows events that are being
communicated in one channel to be made available on another channel. The channels
typically communicate through CORBA Gateways, UDP, or IP Multicast. Figure 4
illustrates the modeling concepts provided by EQAL including CORBA Gateways
and other entities of the publish-subscribe paradigm (e.g., event consumers, event
suppliers, and event channels) to model a federation of event channels in different
sites.

1 //traverse the original sites to add CORBA_Gateways

2 //n is the number of the original sites

3 //m is the total number of sites after scaling

4 strategy traverseSites(n, i, m, j : integer)

5 {

6 declare id_str : string;

7 if (i <= n) then

8 id_str := intToString(i);

9 rootFolder().findModel("NewGateway_Federation").findModel("Site " + id_str)

10 .addGateWay_r(m, j);

11 traverseSites(n, i+1, m, j);

12 endif;

13 }

14

15 //recursively add CORBA_Gateways to each existing site

16 strategy addGateWay_r(m, j: integer)

17 {

18 if (j<=m) then

19 addGateWay(j);

20 addGateWay_r(m, j+1);

21 endif;

22 }

23

24 //add one CORBA_Gateway and connect it to Event_Channel

25 strategy addGateWay(j: integer)

26 {

27 declare id_str : string; declare ec, site_gw : object;

28 id_str := intToString(j);

29 addAtom("CORBA_Gateway", "CORBA_Gateway" + id_str); //create one CORBA_Gateway

30 ec := findModel("Event_Channel"); site_gw := findAtom("CORBA_Gateway" + id_str);

31 addConnection("LocalGateway_EC", site_gw, ec);

32 }
Fig. 5. ECL Fragment to Perform the First Step of Replication in EQAL

The scalability issues in EQAL arise when a small federation of event services must

be scaled to a very large system, which usually accommodates a large number of
publishers and subscribers. It is conceivable that EQAL modeling features, such as
the event channel, the associated QoS attributes, connections and event correlations

Replicators: Transformations to Address Model Scalability 307

must be applied repeatedly to build a large scale federation of event services. Figure 4
shows a federated event service with 3 sites, which is then scaled up to federated
event services with 8 sites. This scaling process includes three steps:

 Add 5 CORBA_Gateways to each original site
 Repeatedly replicate one site instance to add 5 more extra sites, each with 5

CORBA_Gateways
 Create the connections between all of the 8 sites

The above process can be automated with an ECL transformation that is applied to

a base model with C-SAW. Figure 5 shows a fragment of the ECL specification for
the first step, which adds more Gateways to the original sites. The other steps would
follow similarly using ECL. The size of the replication in this example was kept to 5
sites so that the visualization could be rendered appropriately in Figure 4. The
approach could be extended to scale to hundreds or thousands of sites and gateways.

5. Conclusion

This paper has demonstrated the effectiveness of using a general model
transformation engine to specify replicators that assist in scaling models. Among the
approaches to model scalability, a model transformation engine offers several
benefits, such as domain-independence and improvements to productivity (when
compared to either the corresponding manual effort, or the effort required to write
plug-ins that are specific to a domain and scalability issue). The case studies
presented in this paper highlight the ease of specification and the general flexibility
provided across domains.
 Transformation specifications, such as those used to specify the replicators in this
paper, are written by humans and prone to error. To improve the robustness and
reliability of model transformation, there is a need for testing and debugging support
to assist in finding and correcting the errors in transformation specifications. Ongoing
and future work on ECL focuses on the construction of testing and debugging utilities
within C-SAW to ensure the correctness of the ECL transformation specifications
[13].

6. Acknowledgments

This project was supported by the DARPA Program Composition for Embedded
Systems (PCES) program and the National Science Foundation under CSR-SMA-
0509342.

308 Jeff Gray et al.

References

1. Aditya Agrawal, Gábor Karsai, and Ákos Lédeczi, “An End-to-End Domain-Driven
Software Development Framework,” Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) – Domain-driven Track, Anaheim, CA, October 2003, pp. 8-
15.

2. Don Batory, Jacob Neal Sarvela, and Axel Rauschmeyer, “Scaling Step-Wise
Refinement,” IEEE Transactions on Software Engineering, June 2004, pp. 355-371.

3. Jean Bézivin, F. Jouault, and P. Valduriez, “On the Need for MegaModels,” OOPSLA
Workshop on Best Practices for Model-Driven Software Development, Vancouver, BC,
October 2004.

4. Krzysztof Czarnecki, and Simon Helsen, “Classification of Model Transformation
Approaches,” OOPSLA Workshop on Generative Techniques in the Context of Model-
Driven Architecture, Anaheim, CA, October 2003.

5. George Edwards, Gan Deng, Douglas Schmidt, Aniruddha S. Gokhale, Bala Natarajan,
“Model-Driven Configuration and Deployment of Component Middleware
Publish/Subscribe Services,” Generative Programming and Component Engineering
(GPCE), Vancouver, BC, October 2004, pp. 337-360.

6. Matthew Emerson, Janos Sztipanovits, and Ted Bapty, “A MOF-Based Meta-modeling
Environment,” Journal of Universal Computer Science, October 2004, pp. 1357--1382.

7. The FUJABA Toolsuite, http://www.fujaba.com
8. Aniruddha Gokhale, Douglas Schmidt, Balachandran Natarajan, Jeff Gray, and Nanbor

Wang, “Model-Driven Middleware,” in Middleware for Communications, (Qusay
Mahmoud, editor), John Wiley and Sons, 2004.

9. Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, “Handling Crosscutting
Constraints in Domain-Specific Modeling,” Communications of the ACM, Oct. 2001, pp.
87-93.

10. John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, Venkatesh Prasad Ranganath,
“Cadena: An Integrated Development, Analysis, and Verification Environment for
Component-based Systems,” International Conference on Software Engineering, Portland,
OR, May 2003, pp. 160-173.

11. Sven Johann and Alexander Egyed, “Instant and Incremental Transformation of Models,”
Automated Software Engineering, Linz, Austria, September 2004, pp. 362-365.

12. Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan
Sprinkle, and Gábor Karsai, “Composing Domain-Specific Design Environments,” IEEE
Computer, November 2001, pp. 44-51.

13. Yuehua Lin, Jing Zhang, and Jeff Gray, “A Framework for Testing Model
Transformations,” Model-Driven Software Development, Springer, 2005.

14. Octavian Patrascoiu, “Mapping EDOC to Web Services using YATL,” 8th International
IEEE EDOC Conference, Monterey, CA, September 2004, pp. 286-297.

15. Shane Sendall and Wojtek Kozaczynski, “Model Transformation – the Heart and Soul of
Model-Driven Software Development,” IEEE Software, Special Issue on Model Driven
Software Development, September/October 2003 (Vol. 20, No. 5). pp. 42-45.

16. Shweta Shetty, Steve Nordstrom, Shikha Ahuja, Di Yao, Ted Bapty, and Sandeep Neema,
“Systems Integration of Large Scale Autonomic Systems using Multiple Domain Specific
Modeling Languages,” Engineering of Autonomic Systems, Greenbelt, MD, April 2005.

17. Janos Sztipanovits and Gábor Karsai, “Model-Integrated Computing,” IEEE Computer,
April 1997, pp. 10-12.

Simplifying Transformations

of OCL Constraints

Martin Giese1 and Daniel Larsson2

1 Johann Radon Institute for Computational and Applied Mathematics
Altenbergerstr. 69, A-4040 Linz, Austria

martin.giese@oeaw.ac.at
2 Chalmers University of Technology

Department of Computer Science and Engineering
S-412 96 Gothenburg, Sweden

danla@cs.chalmers.se

Abstract. With the advent of Model Driven Architecture, OCL con-
straints are no longer necessarily written by humans. They can be part
of models that emerge from a chain of transformations. They might be
the result of instantiating templates, of combining prefabricated parts,
or of more general computation. Such generated specifications will of-
ten contain redundancies that reduce their readability. In this paper,
we explore the possibilities of transforming OCL formulae to a simpler
form through the repeated application of simple rules. We discuss the
different kinds of rules that are needed, and we describe a prototypical
implementation of the approach.

1 Introduction

The Object Constraint Language (OCL) [12] is designed with human authors
and readers in mind. While some of today’s UML tools allow attaching OCL con-
straints to diagrams and checking their syntax with a parser, there is practically
no support for authoring OCL specifications. But writing good specifications
is hard, and as the software to be specified becomes larger and more complex,
designers will need tools that help them with that task.

OCL constraints might result from a transformation of a more abstract de-
scription of the system. For instance, constraints written at the analysis level
might be transformed into design level constraints by some tool. Or a specifica-
tion in some other graphical or logic-based formalism might be translated into
OCL.

While tools performing such tasks have yet to be written, we already en-
counter tool-generated constraints in connection with an extension of the ‘design
pattern’ instantiation mechanism provided by various case tools [2].3 The idea
is to let the user instantiate templates, pieces of class diagrams, which provide
implementations for various design patterns. As part of the instantiation, one
3 In the present work we employ Borland Together ControlCenter (TCC), see

http://www.borland.com/together/index.html.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 309–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

310 Martin Giese and Daniel Larsson

can generate OCL constraints that capture certain properties of the pattern.4

Due to the availability of the tool as part of the KeY system [1], we will use the
design pattern instantiation scenario in the motivating example for this paper.
See e.g. [7, 8] for other work involving tool-generated OCL constraints.

Whichever scenario we pick, the (semi-)automatically generated constraints
will often contain redundancies that make them hard to read for humans. The
topic of this paper is how OCL constraints can be simplified with the goal of
making them more readable. We will propose a rule-based method where various
simple rules get applied exhaustively.

In Sect. 2, we describe the context of this work and give a motivating ex-
ample. We show in Sect. 3 how a generated constraint can be simplified. We
then analyze the required simplification steps in Sect. 4. In Sect. 5, a prototyp-
ical implementation of our ideas within the KeY system is presented. Sect. 6
discusses related work. Finally, Sect. 7 concludes the paper with some remarks
about future work.

2 Motivation

The KeY tool [1] is a CASE tool in which formal methods are integrated with
contemporary software development techniques. Besides the usual tasks of a
CASE tool of creating UML models and creating implementations in Java, KeY
allows the developer to add formal specifications to a model in the form of OCL
constraints. One of the main goals of the KeY project is to spread the use of
formal methods in software development, and a crucial step in the use of formal
methods is the authoring of formal specifications like OCL constraints.

Unfortunately, it is not easy to write useful formal specifications. This is one
of the major obstacles in getting developers to use formal methods in software
development. One possible solution to this problem would be to, somehow, au-
tomatically generate formal specifications out of some prior information. Ideally,
we would like to go directly from an informal specification to a formal one, but
the possibilities to do so are very limited. However, an experienced developer can
often recognize parts of an informal specification as instances of certain design
patterns and, given a specific design pattern, it is possible to generate a formal
specification that expresses useful requirements associated with that pattern [2].

As software development is becoming more and more structured, using pat-
terns, frameworks, and so on, it is very natural that authoring of formal specifi-
cations also follows that line. It is a good way of re-using and taking advantage
of experienced developers’ knowledge.

4 Design patterns in the usual sense of the word [5] provide a vocabulary for com-
municating design ideas. They are relatively abstract entities, consisting of textual
descriptions of why, when, and how to use them, and the consequences of using them.
What is called “design pattern” in CASE tools like TCC is just mechanical instan-
tiation of templates. It is nevertheless useful, and it is such a template mechanism
we use as an example in this work.

Simplifying Transformations of OCL Constraints 311

How can we obtain a formal specification for a design pattern? The problem
is that in order to write a useful specification we need some information that is
not available until the pattern gets instantiated, i.e. applied to a concrete design.
Until then we do not know:

– The name space of the modeled domain, i.e. we do not know the names of the
classes, fields, methods, associations, etc. in the design to which the pattern
is being applied.

– How the developer will modify the structure of the pattern, i.e. adding or
removing classes, fields, methods, associations, etc.

– What flavor of the pattern the developer will use. By flavor we here mean
that different instances of a specific design pattern can have different re-
quirements associated with it regarding some details.

2.1 Example of Constraint Generation

Let us look at a concrete example to make this more clear. The intention of the
Observer design pattern (taken from [5]), that is shown in Fig. 1, is to “define
a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically.” This pattern
is useful when one needs to maintain consistency between related objects, but
one does not want to achieve this by making the classes tightly coupled.

In modern CASE tools such as TCC, one can perform machine-assisted ap-
plication of design patterns. The user then has to supply a mapping from the
name space of the pattern to the name space of the modeled domain. Optionally,
the user may choose to modify the structure of the pattern. In the KeY tool, the
user can also choose what flavor of the pattern he wants to use. In the context of
the Observer pattern we can, for instance, find the following “flavor component”:

– Should the observers be allowed to observe more than one subject? In other
words, what should be the multiplicity of the subject association-end: 0..1
or 0..*? In some situations, observers need information from more than one
source, and then it might be a good idea to let them observe more than
one subject. For example, a spreadsheet may depend on more than one data
source.

An instance of the Observer pattern is shown in Fig. 2. This example is
from the design of a system that handles statistical data. The statistics can be
viewed graphically, both as a pie chart and as a bar chart. We can see that what
is called ConcreteSubject in the pattern is here called Statistics, the role-
name statistics corresponds to the role-name subject in the pattern, and so
on. We can also see that we here have two concrete observers (PieChart and
BarChart) in contrast to the single one in the pattern (ConcreteObserver), so
the original structure of the pattern has been slightly modified.

What flavor of the pattern would be useful for this particular instance? Let
us assume that the GUI observers only need information from one Statistics
object, i.e. the subject association-end has multiplicity 0..1.

312 Martin Giese and Daniel Larsson

subject

0..*

observers

Subject

+attach(o:Observer):void
+detach(o:Observer):void
+notify():void

Observer

+update():void

ConcreteSubject

-state:SubjectState

+getState():SubjectState
+setState(s:SubjectState):void

ConcreteObserver

-state:ObserverState

+update():void

notify():

for all o in observers

o.update()

Fig. 1. The Observer pattern

Now, if we are going to write a formal specification for this design pattern,
we need information that we do not obtain until the pattern is instantiated. A
possible solution is to use schemas, as suggested in [2]. For each design pattern
we want to specify, we design a schema from which we can generate formal
specifications when the pattern is applied. A schema for (part of) the Observer
pattern might look like this:

schema numOfSubjects(String flavor)
ocl: context Observer inv:

if flavor = ’one’
then self.subject->size() <= 1
else true

endif

Here we have a parameterized version of one of the “flavor components”, namely
whether the subject association-end should have multiplicity 0..1 or 0..*. The
keyword schema, the name of the schema, optional flavor parameters, and the
keyword ocl: are followed by the actual OCL constraint containing the flavor
parameters. But there is a problem with this schema. There is no inheritance
mechanism in the semantics of OCL, and this means that a formal specification
will be generated for the abstract class Observer but not for the concrete ob-

Simplifying Transformations of OCL Constraints 313

0..*

observers

statistics

statistics

Subject

+attach(o:Observer):void
+detach(o:Observer):void
+notify():void

Observer

+update():void

BarChart

+update():void

Statistics

-a:int
-b:int
-c:int

+setStatistics(a:int,b:int,c:int):void
+getStatistics():int[]

PieChart

+update():void

Fig. 2. An instance of the Observer pattern

server objects PieChart and BarChart. Writing a schema for ConcreteObserver
instead, so that a specification is generated for each concrete observer in the
model, does not solve the problem in general. If the developer introduces a hier-
archy of observers including abstract super classes for subsets of the observers,
then we have the same problem again. However, we can address the problem
directly in our schema:

schema numOfSubjects(String flavor)
ocl: Observer.allSubtypes()->

forAll(s | s.allInstances()->
forAll(i |

if flavor = ’one’
then i.subject->size() <= 1
else true

endif))

Now we quantify over all subtypes of Observer, and for each subtype we
quantify over all instances of that subtype. This means that in essence we will
get an invariant for each subtype. (The property allSubtypes is not pre-defined
in OCL but can be expressed with the help of other operations. We just use it
here to make the constraint more readable.) Here is the result of applying the
Observer pattern to the model in Fig. 2 and using the schema above to generate
a specification for the pattern instance:

314 Martin Giese and Daniel Larsson

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i |

if ’one’ = ’one’
then i.statistics->size() <= 1
else true
endif))

Observer in the pattern is mapped onto Observer (could have another name) in
the model, the subject association in the pattern is mapped onto statistics,
and the parameter flavor is bound to the string literal ’one’. As one can see,
there is a potential for simplification here. Since we now have a concrete design,
it should be possible to evaluate the expression Observer.allSubtypes(). It
should also be possible to evaluate the if-then-else construct now that the flavor
parameter is bound to a concrete value.

In general, when we write OCL constraint schemas for design patterns, they
will be parameterized. We will have explicit parameters of the schema for dif-
ferent flavors of the pattern. The elements from the pattern’s name space can
also be viewed as formal parameters, since they have to be bound to concrete
elements from the modeled domain. Moreover, we have to take into account pos-
sible structural modifications of the pattern. As we saw in the example, all this
will lead to generated specifications containing redundant information. They be-
come hard to read, hard to understand. The generated specifications need to be
simplified.

3 Example

We shall now see how the previous example may be simplified through the appli-
cation of several small simplification steps. The first step would be to recognize
that ’one’ = ’one’ is always true, and may therefore be replaced by true:

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | if true

then i.statistics->size() <= 1
else true
endif))

Next, an if-then-else construct with a condition known to be true may be replaced
by its then-branch:

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | i.statistics->size() <= 1))

A further simplification becomes possible if we take information about the model
into account, namely the subtypes of Observer in this particular instance of the
pattern. In Fig. 2, there are only two subtypes, so we can simplify the constraint
as follows:

Simplifying Transformations of OCL Constraints 315

Set{PieChart,BarChart}->
forAll(s | s.allInstances()->
forAll(i | i.statistics->size() <= 1))

The outer forAll application now ranges over a finite set of which we know all
elements. We can therefore transform it into a conjunction:

PieChart.allInstances()->forAll(i | i.statistics->size() <= 1)
and BarChart.allInstances()->forAll(i | i.statistics->size() <= 1)

Finally, a property that should hold for all instances of a class is usually stated
as an invariant. One could therefore split up this constraint and add an invariant
to both of the observer classes:

context PieChart inv: statistics->size() <= 1
context BarChar inv: statistics->size() <= 1

These constraints are certainly much simpler and more natural than the original
general form from the schema. On the other hand, the meaning is guaranteed to
be the same, as none of the small transformations changed it.

As a second example, let us assume that flavor was bound to many. We
then get the constraint

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | if ’many’ = ’one’

then i.statistics->size() <= 1
else true
endif))

The strings ’many’ and ’one’ are different, so the condition can be simplified
to false:

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | if false

then i.statistics->size() <= 1
else true
endif))

In this case, only the else-branch needs to be kept:

Observer.allSubtypes()->
forAll(s | s.allInstances()->
forAll(i | true))

A forAll expression with body true always evaluates to true, so we can simplify
this to

Observer.allSubtypes()->
forAll(s | true)

316 Martin Giese and Daniel Larsson

and finally to

true

In this case, the constraint gets simplified away completely, as it does not
say anything about the case where flavor is not ’one’.

Another example of a step-wise simplification is given in [2]. There, OCL
constraints from an instantiation of the Composite pattern are simplified in a
similar way as was presented here.

4 Analysis

The previous section shows how OCL constraints can be simplified considerably
through the repeated application of small, simple rules. All rules require only
local transformation of the constraint, no global analysis is needed. This suggests
implementing our simplification using a kind of rewriting rule engine. Such a rule
engine repeatedly tries to apply transformation rules on subexpressions of the
input until no more rules are applicable. This is a well-known principle and
our work can profit from the extensive research on term rewriting systems (see
e.g. [4]).

In this section, we are going to have a closer look at the different kinds of
rules that are needed to simplify OCL constraints.

4.1 Primitive Types

The most fundamental primitive type in OCL is of course the Boolean type.
For this, general logic simplification steps are needed, like for instance rewriting
false and e to false, true and e to e, etc. One can give this kind of rules
for all logical connectives, including the if-then-else construct. The rule that
simplifies e=e to true also belongs to this category.5

A more difficult question is how to handle the other data types built into
OCL. For instance, one surely wants to have simplification rules that rewrite
2+3 to 5. Simplifying 0+x to x is also useful. But should one have rules ca-
pable of simplifying (x+y)*(x+y) - (x-y)*(x-y) to 4*x*y? It is known from
computer algebra research that the simplification of algebraic expressions is a
complicated affair. We think that it depends very much on the application field
whether an OCL simplifier should be able to handle this kind of problem. If
one thinks of design pattern instantiation, then it seems unlikely that algebraic
simplification would be useful. We limit ourselves to evaluation of concrete ex-
pressions and simple laws on neutral elements, units, etc., until we come across
an application that makes more powerful simplification necessary. This holds for
all the primitive data types of OCL, i.e. integers, reals, and strings.

5 We have so far ignored the difficulties of handling undefined using an appropriate
three-valued semantics.

Simplifying Transformations of OCL Constraints 317

4.2 Collection Types

In Sect. 3 we saw an example of how a forAll expression over a finite set can
be rewritten to a conjunction. Many interesting simplifications are possible for
collections. Here are some examples:

– Operations with finite sets can be simplified: Set{a,b}->exists(x|p(x))
can be written as p(a) or p(b).

– Some operations can be completely evaluated for concrete sets. For instance,
Set{1,2,3}->sum() can be simplified to 6.

– Operations where the other parameters have a simple form can often by
simplified: s->forall(x|true) can be rewritten to true and, if s is a Bag,
s->collect(x|x) can be reduced to s.

– Special cases can be detected for some operations. For instance, one might
rewrite s->including(o)->includes(o) to true.

As is the case for primitive types, no finite set of simplification rules can cover all
cases. One should therefore pick a basic supply and extend it when applications
make it necessary.

An common property of the collection operators in OCL is that they can all
be expressed using the iterate construct. We can reduce the number of needed
simplification rules for the various collection operators by translating them to an
iterate expression and providing simplification rules only for that. For instance,
the previously mentioned expression

Set{a,b}->exists(x | p(x))

can be written as

Set{a,b}->iterate(x ; acc:Boolean = false | acc or p(x))

The iteration over the finite set can then be unrolled to

(false or p(a)) or p(b)

which is in turn simplified to

p(a) or p(b)

It turns out that most of the simplifications one might think of for forAll,
exists, collect, etc., can actually be handled in this way. If one has m simpli-
fication rules for n operators, one can effectively replace m · n rules by m + n.

The drawback of this approach is what happens when the expression cannot
be simplified further after translation to the iterate form: in that case, the
latter form is certainly harder to read than the original. Our current solution
to this problem is to provide a number of rules for the inverse transformation,
i.e. to transform iterate expressions of certain forms to forAll, exists, etc.
These rules are applied as a final step after all other simplifications. In other
words, simplification proceeds in two phases. In the first phase, everything is
translated to the iterate form and simplified as much as possible. In the second
phase, remaining iterate expressions are translated back to the various simpler
operators.

318 Martin Giese and Daniel Larsson

This approach leads to an interesting theoretical question, namely which
properties the rule sets for the two phases should have to make the overall
behaviour equivalent to that of a single phase with m · n rules.

4.3 Model Dependent Simplifications

The previously discussed simplification rules are not very specific to OCL. They
would make sense in any formal language that provides the same data types. A
peculiarity of OCL is that OCL constraints are always attached to UML dia-
grams. They cannot occur in isolation. Accordingly, we can identify simplification
rules that depend on the model.

For instance, some of the properties (operations) defined by OCL refer to
the operations and attributes available for a type, rather than to a state of the
modeled system.6 If the concrete model is known, these can often be evalu-
ated. For instance, in our example, PieChart.supertypes() can be simplified
to Set{Observer}. In contrast to the simplifications proposed in the previous
sections, this requires knowledge of the model. Similarly, expressions involving
the attributes, operations, etc., properties defined for OclType will usually
be simplifiable once the model is known.

The use of information from the UML model is not limited to ‘meta’-proper-
ties: another possibility might be to use the multiplicities of associations. For
instance, if the association assoc has a multiplicity of n, then o.assoc->size()
can be simplified to n.

The interesting issue here is how to organize the implementation of such
simplifications. An implementation that uses a rule engine with a fixed set of
syntactic rewrite rules would have to generate a considerable number of rules
from the model. For instance, there would be a rule for each of the OclType
properties for each class in the model. Even worse, simplification rules that
involve two types, for instance for expressions involving oclIsKindOf, might
need one rule for every pair of classes, so the rule set would grow quadratically
in the size of the model. At the same time, most of these rules would not be
needed for any particular simplification.

To avoid this waste of resources, a practical solution requires a rule engine
that can obtain information from the model to determine the applicability and
result of some of the rules. This is the approach we have chosen, using the rule
engine’s ‘meta constructs’ as described in the next section.

We have not yet discussed the final step in Sect. 3, where a single constraint
is split up and distributed among the invariants of several classes. This could
be done as a post-processing step, but we chose to incorporate it into our rule
based mechanism. The simplification rules are not applied on raw constraints,
but on lists of constraints with contexts. This allows us to formulate rules that
add constraints to different classes.
6 In other words, these properties return information about the state of the meta-

model. Up to OCL 1.5, these were predefined on the type OclType. In OCL 2.0, they
were removed to avoid inconsistencies between OCL and the UML metamodel. Our
discussion is based on the properties as defined in OCL 1.5.

Simplifying Transformations of OCL Constraints 319

5 Implementation

We have implemented a prototype of a rule-based OCL simplifier and integrated
it with the pattern-instantiation mechanism in KeY. It is now possible in KeY
to generate OCL specifications for instances of certain design patterns, with
the help of schemas, and then to use the simplifier to simplify the generated
specifications. To parse the OCL expressions that need to be simplified, we use
a parser and typechecker that has been developed at Chalmers University and
is described in [9]. When implementing the OCL simplifier, we used the fact
that we already had a rule-engine available: the theorem prover in the KeY tool.
This theorem prover is based on taclets [3], which are a kind of generalized term
rewriting rules that can be used to describe the rules of a logic calculus.

5.1 Taclets

Although the taclet concept was designed with theorem proving in mind, the
design is so general that it is possible to use taclets for other purposes as well.
After a few extensions of the implementation of the KeY taclet engine, we were
able to use taclets to perform OCL simplification.7 A rewrite taclet for OCL
simplification can, for instance, look like this:

find(#e and true) replacewith(#e)

Here, #e is a schema variable, i.e. it stands for an arbitrary expression. This taclet
is applicable to an OCL expression exp if the find-part of the taclet matches exp
(i.e. if we can instantiate the schema variable so that exp and the find-part
become identical). If we apply the taclet to exp, then exp will be replaced by the
instantiated replacewith-part of the taclet. The schema variables used in a taclet
must first be declared, meaning that they are given a type. In this way we can
ensure that taclets are only applicable to expressions with matching types. New
rules can easily be defined in a text file, using the notation above, and are then
parsed into the KeY system. Our approach is to write a set of simplification rules,
in the form of taclets, and then apply them to the generated OCL specifications.

Each OCL taclet contains a find-expression and a replacewith-expression,
both consisting of OCL syntax extended with schema variables, meta constructs,
and the substitution operator. Meta constructs are references to procedures that
transform a given OCL expression into another one when a taclet is being ap-
plied. They are only allowed to appear in the replacewith-part and are used to
extract information from the UML model, e.g. the subtyping hierarchy of classes.
Most taclets do not need any meta constructs. The meaning of the substitution
operator will be explained in the context of an example below. Here are some
examples of taclets needed for OCL simplification:

7 There exists a number of model transformation languages within the MDA frame-
work, and one of them could probably have been used to express the OCL simpli-
fication. However, when our project started no tool support was available for these
languages, and we therefore went for the taclet solution.

320 Martin Giese and Daniel Larsson

equals {find(#e = #e) replacewith(true)}

and_false {find(#e and false) replacewith(false)}

if_true {find(if true then #e1 else #e2 endif)
replacewith(#e1)}

In the examples, all schema variables are prefixed with a ‘#’ sign to distinguish
them from the keywords in the syntax. It should be pointed out that in the
current implementation, one cannot use proper OCL syntax in the taclets like
in the examples. A special, taclet-tailored syntax has to be used instead. This is
due to the difficulties in integrating the parser for the taclet language with an
OCL parser. Of course, this technicality will be visible only to the author of the
simplification rules, and not to the user of the simplifier.

5.2 Collections

In order to simplify OCL expressions, one has to have a way of dealing with OCL
collections. The constructors for OCL collections (Set{...}, etc.) can enumerate
any number of elements, i.e. they can be viewed as operators having a variable
arity. Now, operators with variable arity are not very easy to handle in an ef-
ficient way when one wants to apply rules to them. Our solution to this is to
represent collection literals in structures that resemble the list in functional pro-
gramming languages. These structures are built using two constructors: insert
that takes two arguments—the “first” element in the collection and the rest of
the collection—and empty that represents the empty collection.

To be more precise, we have two collection constructors for each collection
type: insert_set and empty_set, insert_bag and empty_bag, and so on. In
that way we do not lose the type information. Using these collection constructors,
it is easy to perform various operations on OCL collections. Instead of having
to deal with variable arity, we use induction when designing our simplification
rules: we have one base case rule for the empty collection, and one induction step
rule, just as one defines functions operating on lists in functional programming
languages. As an example for this representation, Set{a, b, c} becomes

insert_set(a, insert_set(b, insert_set(c, empty_set)))

We can now define taclets to transform a universal quantification over a concrete,
finite set to a conjunction. In other words, we want to transform an expression
like

insert_set(a, insert_set(b, insert_set(c, empty_set)))
->forAll(x | e(x))

to

e(a) and e(b) and e(c)

Simplifying Transformations of OCL Constraints 321

Below we see the two taclets needed to perform this transformation, one rule for
the base case and one for the induction step:8

forAll2Conjunction_base {
find(empty_set->forAll(#x | #exp))
replacewith(true)}

forAll2Conjunction_step {
find(insert_set(#head, #tail)->forAll(#x | #exp))
replacewith({#x #head}#exp and #tail->forAll(#x | #exp))}

Here we can see the syntax for substitution, {x e}exp, which causes all free
occurrences of x in exp to be replaced with e once the taclet is applied.

5.3 Type Inference

Another thing we must handle in our implementation is a certain degree of type
inference. The type of an OCL expression is in most cases given directly by the
top operator of the expression, but in some cases one has to infer the type of
the expression from the types of its subexpressions. For example, the type of an
expression with forAll() as top operator is always Boolean, while the type of
the expression if b then e1 else e2 endif is the least common supertype of
the types of e1 and e2. One way to implement a type system that handles this
kind of type inference would be to design a general type inference algorithm,
e.g. using unification, like the ones found in functional programming languages
like ML and Haskell. However, combining such an algorithm with subtyping is a
delicate matter. Moreover, there are relatively few, builtin OCL operations that
need special treatment, and their number is fixed. Instead of using a general
type inference algorithm, we have therefore chosen to hard-code the necessary
inference directly in the representation of these OCL operations.

5.4 Status of Implementation

In order to perform OCL simplification using taclets we have extended the im-
plementation of the KeY tool so that we can now, for instance, perform the
simplification steps described in Sect. 3, and also what is needed for the problem
described in [2]. We can perform basic simplifications, like x and true to x, but
also more advanced tasks like extracting information from the model using meta
constructs. We can also handle bound variables and express the substitution of
such variables, which is needed to handle forAll, iterate, etc. Moreover, we
have extended the pretty-printing module of KeY so that the simplified OCL
expression can be displayed in proper OCL syntax. What remains to be done is
to complete our set of taclets. So far we have only written simplification taclets
for a few design pattern schemas.
8 As mentioned in Sect. 4.2, this simplification would actually be performed via the
iterate representation. To make our presentation simpler, we here give rules that
simplify forAll-expressions directly.

322 Martin Giese and Daniel Larsson

Since it is possible to use the prover of the KeY system “stand-alone”, without
the CASE tool component, we expect to be able to produce a stand-alone version
of our OCL simplifier as well.

6 Related Work

The idea to attach schematic OCL constraints to design patterns was first dis-
cussed in [2]. The need for simplification was recognized there, but not sys-
tematically investigated. This is done in the present paper, together with an
implementation approach.

The authors have explored the idea of applying partial evaluation [10] tech-
niques to simplification, but the approach turned out to be rather unfruitful, as
discussed in Sect. 6 of [6].

7 Conclusion

We presented an approach to perform OCL simplification through repeated ap-
plication of simple rules. Simplification of OCL constraints is often needed when
the constraints have been automatically generated by instantiation of templates,
by combination of constraint fragments, or by some other technique. On a higher
level, we think that tool support for the generation of formal specifications is an
important step on the way to make formal methods more accessible to software
developers. In this paper we concentrated on how to simplify OCL constraints
generated in the context of design pattern instantiation, i.e. constraints express-
ing requirements associated with the patterns.

We identified various kinds of rules that are needed for OCL simplification
and pointed out differences to usual term rewriting systems. We also compared
template instantiation and simplification of OCL constraints to program spe-
cialization.

Moreover, we implemented a prototype of an OCL simplifier by re-using the
rule application mechanism of the theorem prover in the KeY tool. We described
some of the technical issues that need to be solved in such an implementation.

An important body of future work will be to add simplification rules for the
various operators and data types built into OCL. In connection with this, we will
need to evaluate our approach in some significant case studies. The well-studied
theory of rewrite systems [4] can be applied to show termination, uniqueness of
simplification results, etc. The presence of variable binding operators (forAll,
iterate, etc.) also makes the work on higher-order rewriting [11] relevant in
this context.

An interesting direction for future research is to perform simplification under
side conditions. For instance, one might have information that is separate from
an OCL constraint, but lets one decide which branch of an if-then-else construct
needs to be kept. This would be useful for the work presented in [7].

Simplifying Transformations of OCL Constraints 323

We believe that future software engineering tools will in an increasing degree
generate models and OCL constraints, in addition to today’s manual authoring.
Simplifying these specifications for improved readability will be indispensable.

Acknowledgment

The authors are thankful to Philipp Rümmer for his useful comments on a draft
of this paper.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin
Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Stef-
fen Schlager, and Peter H. Schmitt. The KeY tool. Software and Systems Model-
ing, 4(1), 2005.

[2] Thomas Baar, Reiner Hähnle, Theo Sattler, and Peter H. Schmitt. Entwurfs-
mustergesteuerte Erzeugung von OCL-Constraints. In K. Mehlhorn and G. Snelt-
ing, editors, Informatik 2000, 30. Jahrestagung der Gesellschaft für Infomatik,
pages 389–404. Springer, September 2000.

[3] Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle, Andreas Roth,
Philipp Rümmer, and Steffen Schlager. Taclets: A new paradigm for constructing
interactive theorem provers. Revista de la Real Academia de Ciencias Exactas,
F́ısicas y Naturales, Serie A: Matemáticas (RACSAM), 98(1):17–53, 2004. Special
Issue on Symbolic Computation in Logic and Artificial Intelligence.

[4] Nachum Dershowitz and David A. Plaisted. Rewriting. In Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 9,
pages 535–610. Elsevier Science, 2001.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] Martin Giese, Reiner Hähnle, and Daniel Larsson. Rule-based simplification of
OCL constraints. In Octavian Patrascoiu et al., editor, Workshop on OCL and
Model Driven Engineering at UML2004, Lisbon, pages 84–98, 2004.

[7] Martin Giese and Rogardt Heldal. From informal to formal specifications in UML.
In Thomas Baar, Alfred Strohmeier, Ana Moreira, and Stephen J. Mellor, editors,
Proc. of UML2004, Lisbon, volume 3273 of LNCS, pages 197–211. Springer, 2004.

[8] Reiner Hähnle, Kristofer Johannisson, and Aarne Ranta. An authoring tool for
informal and formal requirements specifications. In Ralf-Detlef Kutsche and Her-
bert Weber, editors, Fundamental Approaches to Software Engineering (FASE),
Part of Joint European Conferences on Theory and Practice of Software, ETAPS,
Grenoble, volume 2306 of LNCS, pages 233–248. Springer, 2002.

[9] Kristofer Johannisson. Disambiguating implicit constructions in OCL. In Work-
shop on OCL and Model Driven Engineering at UML2004, Lisbon, 2004.

[10] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

[11] Tobias Nipkow and Christian Prehofer. Higher-order rewriting and equational
reasoning. In W. Bibel and P. Schmitt, editors, Automated Deduction — A Basis
for Applications. Volume I: Foundations, volume 8 of Applied Logic Series, pages
399–430. Kluwer, 1998.

[12] J. Warmer and A. Kleppe. The Object Constraint Language. Object Technology.
Addison-Wesley, second edition, 2003.

Lessons Learned from Automated Analysis of

Industrial UML Class Models
(An Experience Report) � ��

Betty H.C. Cheng1, Ryan Stephenson1, and Brian Berenbach2

1 Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University
East Lansing, Michigan 48824 USA
{chengb,steph146}@cse.msu.edu

2 Siemens Corporate Research, Inc.
Brian.Berenbach@siemens.com

Abstract. Automated analysis of object-oriented design models can
provide insight into the quality of a given software design. Data obtained
from automated analysis, however, is often too complex to be easily un-
derstood by a designer. This paper examines the use of an automated
analysis tool on industrial software UML class models, where one set
of models was created as part of the design process and the other was
obtained from reverse engineering code. The analysis was performed by
DesignAdvisor, a tool developed by Siemens Corporate Research, that
supports metrics-based analysis and detection of design guideline viola-
tions. The paper describes the lessons learned from using the automated
analysis techniques to assess the quality of these models. We also assess
the impact of design pattern use in the overall quality of the models.
Based on our lessons learned, identify design guidelines that would min-
imize the occurrence of these errors.

1 Introduction

As software systems become more complex, it is important to have techniques
and tools to support the systematic design and development processes. While
university texts and courses cover the fundamentals of software design, they
typically do not adequately deal with issues associated with large models de-
veloped by teams. The interactions between hundreds or thousands of classes
make it difficult for a designer to develop an object-oriented system that is free
of design-level errors. Designs quickly expand to the point where they cannot

� This work is supported in part by Siemens Corporate Research, NSF grants EIA-
0000433, CDA-9700732, CCR-9901017, Department of the Navy, and Office of Naval
Research under Grant No. N00014-01-1-0744, and in cooperation with Siemens
Transportation and Detroit Diesel Corporation.

�� Please contact B. Cheng for all correspondences

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 324–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Lessons Learned from Automated Analysis of Industrial UML Class Models 325

be fully understood by reviewing diagrams, and serious flaws (e.g. circular de-
pendencies) may go unnoticed because of the sheer volume of material. Even
processes specifically developed to support large scale designs tend to be incom-
plete and not fully scalable [1]. To help manage the complexity of these systems,
a variety of automated analysis tools have been developed. This paper describes
experiences in using the DesignAdvisor tool to analyze two large industrial-scale
models from the transportation domain, as well as numerous smaller models
for automotive embedded systems and client-server applications developed in an
academic setting. We compare the kinds of design errors obtained from analyzing
the models and identify guidelines for best interpreting the error analysis data
when revising a design.

Several tools have been developed to analyze the Unified Modeling Language
(UML) diagrams for errors, where UML has become the de facto standard for
modeling object-oriented designs. For example, several tools use software met-
rics [2, 3, 4, 5, 6, 7] to find examples of high coupling and high complexity in a
software design, both of which strongly correlate to software flaws during cod-
ing or implementation. In addition to analyzing metrics, DesignAdvisor [8] also
attempts to identify violations of general design principles such as high cohesion
and low coupling. While useful, automated model analysis poses several difficul-
ties despite its ability to examine large models for design errors. Analysis may
yield a large amount of data, as thousands of errors are reported when analyzing
models. It is often unclear how these errors should be repaired or which of these
errors are the most critical to the quality of a model.

Based on the automated analysis of industrial and academic models, we pro-
pose some strategies for improving the understandability of the output produced
by the automated model analysis. We also identified design guidelines that will
minimize the number of design errors found by DesignAdvisor. It should be
noted that one of the key motivations for selecting DesignAdvisor for our stud-
ies is that we had direct access to the product developers and were able to add
metrics and design heuristics to be analyzed. We also were able to influence the
output and the presentation of the analysis results. Furthermore, DesignAdvisor
has a rich set of measurements suitable for both analysis and design models.
In addition, it focused on the underlying model and did not use diagrams to
perform analysis. This feature made it effective in studying models that had
been reverse engineered from code (where there were no diagrams). A previ-
ous paper [8] described heuristics for improving the quality of analysis models
through rigor and measurement; DesignAdvisor can be used to analyze models
for adherence to these design heuristics. This paper describes results obtained
from using DesignAdvisor to analyze these measurements taken primarily from
design models, and from models that have been reverse engineered from code.

The remainder of the paper is organized as follows. Section 2 gives back-
ground information about the analysis tool DesignAdvisor and the models on
which automated analysis was performed. Section 3 describes the results of the
automated analysis on the models. Section 4 overviews related work in the field
of automated metrics-based model analysis. Section 5 describes lessons learned
from the analyses and briefly discusses future work.

326 Betty H.C. Cheng, Ryan Stephenson, and Brian Berenbach

2 Background

In order to evaluate the utility of automated analysis performed on UML models
of software designs, we used a model analyzer tool, DesignAdvisor [9], on two
industrial case-studies as well as numerous smaller models to identify guidelines
for developing good designs. This section describes the DesignAdvisor tool and
the industrial models analyzed.

2.1 DesignAdvisor

The DesignAdvisor tool [9] developed by Siemens Corporate Research is an
automated model analyzer built atop the Rational RoseTM CASE tool. The
DesignAdvisor tool was developed specifically to analyze and measure the “good-
ness” of large, complex UML models. There are two types of analysis rules
encoded in DesignAdvisor: rules that encode design guidelines and rules that
capture metrics that have upper and lower bounds. DesignAdvisor produces er-
ror reports for a given model by analyzing artifacts and relationships between
artifacts in that model, and determines whether a given artifact or relationship
violates any of the design rules encoded in the tool. As an example of a design
guideline rule, if two classes exist in a design model with an inheritance relation-
ship between the two, and if the parent class is accessing the methods inside the
child class, a “Parent has knowledge of Child” error would be reported for the
offending parent class. In addition, DesignAdvisor performs a metrics analysis
on artifacts in the model, essentially determining whether the number of classes,
associations, or any other artifact violates a (user) predetermined upper or lower
bound.

Since the DesignAdvisor tool (described below) looks at the underlying model
rather than at diagrams, it is capable of reporting problems that would not be
amenable to visual inspection. For example, if there are circular dependencies
between classes that are in the code but that do not appear on any diagram(s),
then DesignAdvisor is able to find them.

As with many types of automated analysis of models, it is possible for spuri-
ous errors. Causes for spurious errors include incomplete designs, lack of context
information, or difference in notation conventions. DesignAdvisor provides two
facilities for handling spurious errors: a rule can be turned off (globally affecting
all artifacts), or the rule can be suppressed for a single model object. By turning
off some rules and suppressing others for specific objects, DesignAdvisor can be
“tuned” to provide developer-specific meaningful information without showing
erroneous or spurious errors.

2.2 Industrial Models

Class diagrams from two large, industrial models provided by Siemens Trans-
portation were used as case studies. Model A is an integrated model of complex
signaling systems in the transportation domain, containing both analysis and
design artifacts. The model contains 1105 classes. It serves as an example of an

Lessons Learned from Automated Analysis of Industrial UML Class Models 327

industrial design model, as it existed in the design phase of software develop-
ment prior to the coding phase. Model B is also from the transportation domain.
As only the Java code was available for review, this model was developed via a
reverse-engineering of code using The Rational RoseTM CASE tool. The reverse-
engineered model provided a view of a design model as it existed at the end of
the design life-cycle, after all changes to the model have been completed and the
model has been implemented into a software system. This model contains 1570
classes.

2.3 Student-Designed Models

In addition to the large industrial transportation models, two collections of
smaller models from student projects were examined. The first collection com-
prised smaller models that made use of design patterns [10]. These models were
all created as a project for a graduate-level software engineering course by inex-
perienced model designers. The models themselves represent either a simplified
course enrollment system or a simple e-commerce system for purchasing books.
These models contained between 18 and 30 classes.

The second collection of smaller models did not make use of design patterns.
These models each contained 10-20 classes and were developed by undergradu-
ates in an upper-level undergraduate software engineering course. The models
represented industrial automotive embedded systems for controlling cruise con-
trol or power window systems.

3 Automated Analysis Results

Several experiments were performed using the DesignAdvisor tool to help vali-
date the results obtained from the tool and design guidelines for UML models
that help minimize errors. This section describes the results obtained from the
DesignAdvisor tool for each model.

3.1 Analysis of Industrial Models

We obtained computer-generated error reports by running the DesignAdvisor
tool on the transportation models Model A and Model B. For both models,
the total number of errors found in each was high, up to an order of magnitude
higher than the number of classes in each model! For Model A, 12534 errors were
found dealing with classes and their relationships. For Model B, 3751 such errors
were found. The unexpected high number of errors reported by DesignAdvisor
prompted us to manually examine the errors for both models to determine the
relative importance of errors to each model. In particular, the large number of
errors for Model B posed the possibility that many of the errors found in the
model were spurious, since System B was already deployed and had very few
error reports from the field. Table 1 contains a summary of the design error
analysis for Models A and B.

328 Betty H.C. Cheng, Ryan Stephenson, and Brian Berenbach

Table 1. Design errors reported in Models A and B, sorted by severity

Error Description Model A Model B
(total number of classes) (1105) (1570)

SEVERE ERRORS:
Abstract class not inherited 8 82
Circular association 0 8
Circular dependency 102 0
Abstract class inherits from concrete class 6 34
Class inherits from one or more non-base classes 0 5
Interface to class expected but defined improperly 1 53
Two methods exist in the model with the same signature 1 0
Two objects exist in the model with the same name 5 23
Parent accessing attributes/operations of child class 0 2

Rate of total number of severe errors per class 0.11 0.13

MODERATE ERRORS:
Number of associations above user-defined threshold 5 21
Number of attributes above user-defined threshold 1 2
Number of methods above user-defined threshold 2 3
Base artifact in an inheritance tree is concrete 55 107
Number of messages passed to a class above user-defined thresh-
old

0 5

Multiple inheritance 0 10
Operation has more arguments than user-defined threshold 0 44
Base class in inheritance tree has publicly accessible attributes 352 154

Rate of total number of moderate errors per class 0.37 0.22

LOW SEVERITY ERRORS:
A dependency has no declared stereotype 624 0
Interface not used 12 0
Missing Associations 144 132
Missing Dependencies 281 1061
No classes are dependent on this class 303 1061
Operation missing postconditions 4903 NA
Operation missing preconditions 4903 NA
A class’s methods or attributes are unused by other classes 826 944

Rate of total number of low severity errors per class 10.85 2.03

Rate of total number of all error types per class 11.34 2.39

Categorization of Errors. Numerous design errors found in both models by
DesignAdvisor were determined to be spurious. For both models, several errors
implied that model artifacts were missing or unused in their respective models.
After examining these errors in the models, it was determined that in both cases,
these omissions were intentional on the part of their respective developers. For
example, Model B contains 1570 classes. In DesignAdvisor’s error report, 1061
“Missing Dependencies” and 1061 “Missing Inverse Dependency” (no classes
dependent on this class) errors were reported for Model B.

Lessons Learned from Automated Analysis of Industrial UML Class Models 329

It is immediately clear from examining the model manually that since few de-
pendencies were included in the model due to the reverse engineering performed,
these errors would occur. A human observer, upon recognizing this case, would
most likely determine that the model was not faulty for not including depen-
dencies; however, DesignAdvisor reported the errors anyway (the option exists
to disable reporting of any given type of error at the user’s request). This error,
and other errors of seemingly intentional omission were determined to have little
effect on the quality of the design.

Several more types of errors found by DesignAdvisor were determined to be of
moderate severity. These errors frequently exhibited the following characteristic
– that they were violations, but not fatal violations, of good software engineering
practice. Maintaining a proper structure of inheritance, with each class inheriting
from one abstract class, and not multiple concrete classes, is an example of such
a practice. Violation of this practice is not, by itself, indicative of a flaw in
the design, but such a violation does complicate the design and thus creates
a potential for errors. Concrete inheritance and multiple inheritance also fall
into this category of moderate errors. Violations of lower or upper bounds on
complexity or coupling metrics were also represented in this category. A class
that is too tightly coupled with another class need not necessarily cause design
problems, but such a class is much more likely to introduce design difficulties
than a class with a more nominal level of coupling [3].

Finally, errors that actually represent a fatal violation of software engineering
practice were determined to have high severity. Errors such as circular associ-
ations, a parent class having knowledge of its child class, two different classes
named with the same identifier, etc., represent errors of this magnitude; these
types of errors are very likely to cause problems if not corrected.

Analysis of Model A. Model A had several design errors identifiable as being
severe. On eight occasions, abstract classes existed without corresponding con-
crete classes. There were 102 circular dependencies present in the model. On six
occasions, an abstract class inherited from a concrete class. At one point in the
model, an interface is required by a stereotype but is not present. Five name
collisions and one method signature collision were also identified.

Moderate errors in Model A involved inappropriate (but not illegal) use of
inheritance constructs. There were 55 instances of a base artifact defined as a
concrete class. There were 352 instances of public information provided by a class
at the base level, as opposed to an inherited class. There were also a handful
of metrics violations reported due to abnormally high numbers of associations,
attributes, and methods within a single class.

Model A had a very large number of low severity errors, most likely due to
the fact that the model was constructed for the early phase of design. Asso-
ciations and dependencies were not indicated on some diagrams in the model.
The majority of operations did not have pre- or post-conditions listed. Likewise,
many dependencies were missing stereotypes. Finally, 826 classes had publicly
accessible methods or attributes yet were not explicitly referenced as being used
elsewhere in the model.

330 Betty H.C. Cheng, Ryan Stephenson, and Brian Berenbach

Analysis of Model B. Model B also had several design errors identifiable as
severe. 82 abstract classes existed without corresponding concrete classes. There
were eight circular associations present in the model. On 34 occasions, an ab-
stract class inherited from a concrete class. There were 5 occurrences of a multi-
ple inheritance construct inheriting from at least one concrete class. Stereotypes
required interfaces that did not exist within the model 53 times. Name colli-
sions occurred within the model 23 times. On 2 occasions, a parent class has
knowledge of one of its child classes.

Several moderate errors found in Model B were due to violations found by
the DesignAdvisor metrics analysis. Several classes had too many associations,
attributes, methods, and messages. Base classes in inheritance trees were iden-
tified as concrete 107 times. Additionally, 10 occurrences of multiple inheritance
and 154 occurrences of public information within a base class were present.

Since Model B was reverse engineered from code, several types of relation-
ships, such as dependencies were not included. Their absence resulted in the
large number of low severity errors. For example, there were 1061 occurrences of
“Missing Dependency” and 1061 occurrences of “Missing Inverse Dependency”,
as dependencies were not generated during the reverse engineering process. 132
classes were also missing associations. In addition, 944 classes were flagged as
“Unused Classes”, meaning that during reverse engineering, external usage of
these classes was not detected.

Comparison of Model Analyses. Models A and B represent designs at
different stages of development. Model A represents a system that was in the
midst of development at the time the design diagrams were constructed. Model B,
however, represents a design that had already been coded, and the design model
was obtained by reverse engineering from code. Three important differences were
discovered when comparing the error analysis results of the two models.

First, Models A and B differ in the quantity and types of low severity errors.
Model B had nearly all of its low severity errors due to its lack of dependencies,
while Model A had many more missing model artifacts. This finding suggests that
low severity errors do not imply errors in a model, but they are more indicative
of an incomplete model. If a model is missing associations or dependencies in the
early design phase, then they will often be added in later phases as the design
evolves towards code.

Second, far more errors of moderate severity were found in the implemented
Model B than in the diagram-only Model A. Violations of “complexity” metrics
(having too many associations, methods, etc. attached to a class) occur in Model
B but not in Model A. In addition, Model B exhibits multiple inheritance while
Model A does not. The higher number of errors could once again emphasize a
difference in design stage; creating a large, important class with many associ-
ations and methods may occur at coding time, when ensuring that all objects
communicate becomes absolutely necessary.

Finally, both Model A and Model B had similar types and numbers of severe
errors. Both models have one major problem (many circular dependencies in the

Lessons Learned from Automated Analysis of Industrial UML Class Models 331

case of Model A, and many failures to inherit from an abstract class in Model B)
and several infrequent errors (such as one instance of name collision and several
instances of a parent class having knowledge of a child class.) This finding implies
that it is likely that severe errors are often generated early in the design process
and not as a result of refining a design into code, as both models had similar
quantities of errors despite representing different design phases.

The fact that Model B contains many severe design errors despite existing
in the field with minimal error reports is also interesting. The types of errors
examined and reported by DesignAdvisor relate exclusively to the quality of
a software design, and can reveal poor design practice. However, poor design
practice does not always translate into poor software when exhaustive testing is
taken into account. The most likely explanation of the high number of design
errors and low number of system failures in Model B is that exhaustive testing
performed prior to deployment corrected many errors created by the poor design
practices used.

Impact of Design Patterns. An attempt was made to determine possible
causes of the high error rates found by DesignAdvisor’s automated analysis.
Our goal was to determine whether the software design practices used in the
industrial models obtained from Siemens influenced the type and quantity of
errors reported by the DesignAdvisor tool. A detailed manual examination of
the models was performed to identify the methodology used in designing the
models. Several sections of the models, when examined, appeared to use design
patterns [10] to facilitate their construction. In other sections, however, no obvi-
ous methodology was used. After comparing the sections of the models created
using design patterns to the model sections with less obvious design method-
ology, we found that the sections designed with patterns display a significantly
lower rate of error than both the overall model and the sections constructed with
no obvious design methodology.

An examination of Model A provided by Siemens was performed to identify
the methodologies used in the design of the various sections of the model. Upon
examination, several classes in Model A are related by structural design patterns
found in the literature [10] such as the composite pattern, decorator pattern, or
facade pattern. For example, a section of Model A provides a simple interface to
a complex subsystem involving observation in the model, a clear instance of a
Facade pattern. Another section of the model involves the linkage of a diagnostic
controller and its subclasses and a diagnostic filter and its subclasses in Model
A via a single aggregation, an example of a Bridge pattern. Other sections of
the model use less clear methodology. For example, a diagnostic utility in Model
A involves a single controller containing the aggregation of 21 other diagnostic
subsystems in the model. These clear differences in design methodology within
the same model led to an obvious question – Did the sections of the model
designed using design patterns have a lower rate of errors than the sections of
the model that did not use patterns?

332 Betty H.C. Cheng, Ryan Stephenson, and Brian Berenbach

Error Analysis. We wanted to determine the impact on the error rate with
and without the use of design patterns. For example, a section of Model A
implements a bridge pattern linking a diagnostic subsystem to a diagnostic filter
for that subsystem. This model section contains 11 classes and various linking
relationships, and represents approximately 2% of the total size of Model A
(650 classes). When DesignAdvisor analysis was performed on this subsection of
Model A, 119 total errors were detected by the software, for an error rate of 10.8
errors per class. When factoring out low severity errors, 11 errors were found in
the 11 classes for an error rate of one error per class. Recall that DesignAdvisor
found 12534 errors in Model A as a whole and 633 errors of moderate or high
severity, corresponding to error rates of 19.3 errors per class and .97 errors per
class, respectively. The error rate of the model section implementing the Bridge
pattern was thus found to have roughly 43% fewer errors per class than the
model as a whole, and roughly the same percentage of moderate or severe errors
per class.

When DesignAdvisor analyzed a model section not implemented by a design
pattern, far different results were obtained. A section of Model A responsible for
running diagnostics on the rest of the system consists of a master class linked
to 21 diagnostic subsystems via aggregation. This model section contained 29
total classes, or roughly 3.5% of the total size of Model A. After DesignAdvisor
analyzed this section of the model, 537 total errors were recognized, for an error
rate of 18.5 errors per class. 64 errors of high or moderate severity were found,
making the error rate for these types of errors 2.2 per class. This section of the
model had roughly the same number of errors per class as Model A as a whole,
and it had 220% higher rate of errors of moderate or high severity per class when
compared to Model A taken as a whole.

3.2 Examination of Classroom Models

A collection of smaller models designed by software engineering students were
examined by DesignAdvisor. Ten models of an e-commerce system were devel-
oped as part of a graduate software engineering course by designers of relative
inexperience. Each of these models was required to make use of common design
patterns [10]. Additionally, ten models of automotive subsystems were analyzed
by DesignAdvisor. These models were developed by students in an upper-level
undergraduate software engineering course. All twenty models contained between
10 and 30 classes.

We used DesignAdvisor to analyze the classes and relationships in each of
the ten small e-commerce class project models using patterns to identify the
error rate of the models. In each of the 10 models examined, the errors found by
DesignAdvisor were very similar. No severe errors were found in any of the mod-
els. This result seems reasonable as none of the models required more than one
diagram to display, and there were no naming violations or circular relationships
identifiable through automated analysis.

Only a small number of moderate errors were found by the DesignAdvisor.
Typically, the most egregious errors found include a failure to use abstract base

Lessons Learned from Automated Analysis of Industrial UML Class Models 333

classes in inheritance structures. The rate of severe/moderate errors per class
was found to be between 0.15 and 0.35 in the case of all 10 models. Low priority
errors were once again common due to the fact that not all features of a UML
class model were used by the designers of the models. Several models either con-
tained no dependencies or no associations between a single class in the model. In
addition, the students were not required to include the attributes and operations
of each of the classes in the models. Thus, DesignAdvisor found that none of the
classes were used by other classes in the model. Overall, there were between 4
and 5 low-priority errors per class found by DesignAdvisor. The overall error
rate for each model varied between 4.1 and 5.1 errors per class. This error rate
is much lower than either of the subsections of the Siemens model. Therefore,
for small systems, the impact of design patterns use is not sufficiently high to
see a noticeable improvement in the quality of the designs.

DesignAdvisor found very similar results for the automotive embedded sys-
tems models (developed by the undergraduates) that did not use design pat-
terns, with one significant exception. Most of the small models designed without
patterns contained violations of coupling metrics, indicating that classes had
too many incoming or outgoing associations. On average one in ten classes in
the small models had these errors. The overall number of severe and moderate
errors found in the models was similar to the rate in the models that used de-
sign patterns, as was the rate of error when looking at all errors reported by
DesignAdvisor.

4 Related Work

Several approaches to automated model analysis already exist. Several research-
ers have proposed modifications to the Object Management Group UML stan-
dard [11]. By adding formalism to UML specifications, ambiguity in the UML
specification could be eliminated thus allowing for easier mathematically-based
analysis of design models [12, 13, 14, 15]. Riel [16] proposed improvement to de-
sign model heuristics to eliminate ambiguity in models. Improvements to existing
model validation techniques have been proposed by Campbell et al. [17]. These
techniques, in general, require defining formal UML semantics [12, 13, 14, 15] and
a strong mathematical background [17] to benefit from these techniques. Model
analysis using the DesignAdvisor tool, by contrast, requires no background in
formal analysis and runs on conventional UML diagrams.

Several researchers have attempted to assess design quality via empirical
means through the use of software metrics. Chidamber and Kemerer [2], as well
as Eder [3] developed software metrics to identify coupling between objects in
a system, and found a correlation between coupling in a software system and
the probability of faults in a system. Lorenz and Kidd [5] developed a series of
metrics identifying the complexity of classes and correlated complexity to the
likelihood of software faults. Briand et al. [18] and Chae and Kwon [19] devel-
oped metrics to identify cohesion within classes, using the principle that highly
cohesive classes contribute to an uncluttered design and thus fewer design flaws.

334 Betty H.C. Cheng, Ryan Stephenson, and Brian Berenbach

Several researchers [20, 21] have developed clustered metrics that attempt to
measure complexity, cohesion, and complexity simultaneously to ascertain the
“goodness” of a particular class. These metrics could be added to the DesignAd-
vsior to provide further capabilities during the analysis process.

5 Conclusions

After automatically analyzing the two industrial models, it was apparent that
the results obtained, although very useful, required substantial effort to process
into a useful form. This section presents important lessons learned that could
benefit future automated analyses. And we conclude with suggestions for follow-
on investigations.

5.1 Lessons Learned

As many errors reported by a model analysis tool are spurious, some method
of ranking or prioritizing errors should be performed by a tool; obvious errors
like “Parent has knowledge of child” should take precedence over less important
errors, such as unused classes. It was apparent when analyzing both models
that grouping errors based on the severity of the reported error would be useful.
Groups could be chosen on the basis of ranking severe, moderate, and low priority
errors as done above, or each error could be given individual rank according
to the experience of the developer. Using this grouping or ranking, designers
would be able to use the majority of their time reviewing designs in the parts
of models most likely to contain errors (the classes with many identified severe
or moderate errors), reducing the quantity of errors propagated into the coding
and post-release phases of development.

Both Model A and Model B were relatively similar in size, yet had a differ-
ence in rate of detected errors that was roughly one order of magnitude (11.34
errors/class in Model A versus 2.39 errors/class in Model B). The rate of severe
errors detected in Model A was similar to the rate of severe errors detected in
Model B (0.11 for Model A versus 0.13 for Model B). The rate of moderate errors
detected in Model A was also similar to the rate of moderate errors detected in
Model B (0.37 for Model A versus 0.22 for Model B). The major contributor
to the difference in error rates was due to the occurrence of low severity errors,
where Model A had 10.85 errors/class and Model B had 2.03 errors/class. The
only real substantial difference in the two models was the design phase each
model represented, as Model B was reverse-engineered from code that was al-
ready deployed, while Model A was created from UML design diagrams. Both
models otherwise were developed by designers of similar skill level in the same
domain. The quantity of total errors is thus likely to be inversely correlated to
the design phase during which the model is analyzed. During the design phase,
it is more likely for incompleteness thus pushing the low severity error rate up
dramatically. Given that the high severity rates are similar for both models at
different design stages, the error rate is most likely not strongly correlated to

Lessons Learned from Automated Analysis of Industrial UML Class Models 335

design phase. This finding suggests that severe errors are very likely to be prop-
agated through the design process.

To obtain further data as to the origin of severe errors, we used DesignAdvisor
to analyze several small UML models serving as simple textbook implementa-
tions of design patterns [10]. Each model had 5 classes on average. For each
model, DesignAdvisor reported no severe errors, no moderate errors, and approx-
imately 20 low severity errors. DesignAdvisor then performed analysis on several
small embedded systems models of approximately 20 classes each. DesignAdvisor
once again reported no severe errors for these models, few errors of moderate
severity, and numerous errors of low severity.

Since only the two industrial-scale models examined had instances of severe
errors, the conclusion can be reached that as design complexity increases, the
quantity of severe errors increases. In small designs, severe errors are unlikely
to appear because they would be easily identifiable to the original designer.
In larger, more complex designs, this detection is not necessarily possible as
different portions of a design created by different developers may conflict with
each other.

Benefits of Automated Analysis. The benefits of automated analysis seem
obvious, and are readily apparent from the results of the DesignAdvisor analysis
performed on large models. Automated analysis, when run on large models,
has the potential to greatly increase the speed at which developers find and
correct design errors. In the case of each small model, any errors in the design
would likely be visible during a manual inspection requiring a relatively short
time to fully examine the model, reducing the potential utility of automated
analysis. However, the complex, industrial models take much longer to analyze
manually and contain more difficult-to-find and necessary-to-correct errors, and
thus benefit greatly from automated means of analysis.

Utility of Metrics. Despite expectations confirmed in the literature regard-
ing coupling and complexity metrics that high coupling and high complexity
correlate strongly to software errors, the number of instances where a class had
violated an upper or lower bound defined by a metric did not correlate to the
likelihood of a more severe error at that point in the design. In Model B, a class
violated a complexity or coupling metric on 26 separate occasions, and the per-
centage of these classes involved in severe errors was similar to the percentage of
classes involved in severe errors throughout the model. The most likely reason
for this disparity is the design phase represented by Model B. It is possible and
likely that errors in complex classes were corrected at some point during the
design life-cycle. Metrics may provide a more proper correlation to design errors
in models examined earlier in the design process.

Utility of Patterns. In general, it was found that the use of design patterns
contributed greatly to the lower number of errors in the model sections in which

336 Betty H.C. Cheng, Ryan Stephenson, and Brian Berenbach

the patterns were used. Sections of Model A that implement design patterns
have lower rates per class of both overall errors and severe errors when com-
pared to sections of Model A that do not contain a design pattern. In Model A,
a section of the model implementing a bridge pattern had 43% fewer errors per
class and 220% fewer severe errors per class than a section of Model A that did
not implement a design pattern. Small models that use design patterns contain
fewer errors than small models that do not, when considering metrics bounds
violations. One clear design guideline can thus be determined from these ex-
periments – The reuse of good designs (e.g., in the form of one or more design
patterns) directly contributes to a reduction of design-level errors in large scale
systems.

5.2 Future Work

Analysis of Models A and B has revealed several important conclusions regard-
ing the relative importance of various errors in models. The most severe design
errors, that is, errors in a model that are most likely to cause the corresponding
software to fail, are typically introduced early in the design process. This phe-
nomenon may be due to a misunderstanding of the requirements. These errors
are less likely to be introduced in later phases, such as when trying to refine
a design into programming language code. Examples of severe errors include
“Circular Association” and “Parent has knowledge of Child”. A second tier of
errors, including errors reported by metrics analysis of a design, were found to be
correlated to the maturity of a design. These errors of “moderate severity” de-
scribed above increased in number as a design evolved closer to the coding phase.
Examples of moderately severe errors include “Multiple Inheritance”, which is
reported but may not be an error, depending on the design parameters, and
“Public Information in Base Class”.

It is most likely that the error types recognized as “severe” for the two models
tested will be “severe” for all models DesignAdvisor tests. Likewise, moderate
and low severity errors will also be of correspondingly low or moderate prior-
ity for all models. Comparing the analysis of industrial scale models in other
domains to the results of the analysis performed here would reaffirm the given
priority grouping of errors. Finding software metrics that strongly correlated
to severe errors could eliminate time-intensive checks for severe errors and tar-
get problematic sections of a large model for visual inspection. Furthermore, a
mechanism that would allow users to declare priorities of errors in the output
of an analysis tool could then be added, providing an immediate benefit in the
readability of the tool’s results. For example, in a generated list of errors found
by DesignAdvisor, each error would be preceded by “low”, “moderate”, or “se-
vere”, based upon user declarations of each error type. These error quantities
could then be normalized and combined via a function relating their relative
severity, potentially giving the designer a single value representing the quality
of the model.

Lessons Learned from Automated Analysis of Industrial UML Class Models 337

Acknowledgements

The authors gratefully acknowledge the feedback on this work from Laura Campbell
and Sascha Konrad. In addition, the authors greatly appreciate the detailed and in-
sightful comments from the anonymous reviewers of an earlier version of this paper.

This work is supported in part by Siemens Corporate Research, NSF grants EIA-

0000433, CDA-9700732, CCR-9901017, Department of the Navy, and Office of Naval

Research under Grant No. N00014-01-1-0744, and in cooperation with Siemens Trans-

portation and Detroit Diesel Corporation.

References

[1] Rational Software: The Rational Unified Process. (2002)

[2] Chidamber, S.R., Kemerer, C.F.: A metrics suite of object oriented design. IEEE
Transactions on Software Engineering 20 (1994)

[3] Eder, J., Kappel, G., Schrefl, M.: Coupling and cohesion in object-oriented sys-
tems. In: Conference on Information and Knowledge Management, Baltimore,
USA. (1992)

[4] Li, W., Henry, S.: Object-oriented metrics that predict maintainability. Journal
of Systems and Software 23 (1993) 111–122

[5] Lorenz, M., Kidd, J.: Object-Oriented Software Metrics: A Practical Guide. Pren-
tice Hall (1994)

[6] Harrison, R., Counsell, S., Nithi, R.: Coupling metrics for object-oriented design.
In: 5th International Symposium on Software Metrics. (1998) 150–157

[7] Tahvildari, L., Kontogiannis, K.: A metric-based approach to enhance design
quality through meta-pattern transformations. In: Seventh European Conference
on Software Maintenance and Reengineering. (2003) 183,192

[8] Berenbach, B.: The evaluation of large, complex UML analysis and design models.
In: 26th IEEE International Conference on Software Engineering (ICSE04). (2004)

[9] Berenbach, B., Hartman, J.: DesignAdvisor, A UML-based Architectural Design
Tool. Siemens Corporate Research. (2002)

[10] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

[11] The Object Modelling Group: OMG Unified Modelling Specification Version 1.5.
Object Management Group, Needham MA (2003)

[12] Babin, G., Lustman, F.: Formal data and behavior requirements engineering: a
scenario based approach. In: 3rd annual IASTED International Conference on
Software Engineering and Applications. (1999) 119–125

[13] Jackson, M.: Formalism and informality in RE. In: Fifth IEEE International
Symposium on Requirements Engineering. (2001) 269

[14] Li, X., Liu, Z., He, J.: Formal and use-case driven requirement analysis in UML.
In: 25th Annual International Computer Software and Appliations Conference.
(2001) 215–224

[15] McUmber, W.E., Cheng, B.H.C.: A general framework for formalizing UML with
formal languages. In: 23rd IEEE International Conference on Software Engineer-
ing (ICSE01). (2001) 433–442

[16] Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley (1996)

338 Betty H.C. Cheng, Ryan Stephenson, and Brian Berenbach

[17] Campbell, L., Cheng, B.H.C., McUmber, W., Stirewalt, R.E.K.: Automatically
detecting and visualizing errors in UML diagrams. Requirements Engineering
Journal (2002)

[18] Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement
in object-oriented systems. Empirical Software Engineering: An International
Journal 3 (1998) 65–117

[19] Chae, H.S., Kwon, Y.R.: A cohesion measure for classes in object-oriented sys-
tems. In: 5th International Symposium on Software Metrics. (1998) 158–166

[20] Erni, K., Lewerentz, C.: Applying design-metrics to object-oriented frameworks.
In: 3rd International Software Metrics Symposium. (1996) 64–74

[21] Muthanna, S., K.Ponnambalam, Kontogiannis, K., Stacey, B.: A maintainability
model for industrial software systems using design level metrics. In: 7th Working
Conference on Reverse Engineering. (2000) 248–257

Reliability Prediction in Model-Driven Development

Genaı́na N. Rodrigues1, David S. Rosenblum1, and Sebastian Uchitel2

1 London Software Systems
Department of Computer Science

University College London
Gower Street

London WC1E 6BT
United Kingdom

{g.rodrigues,d.rosenblum}@cs.ucl.ac.uk
2 Department of Computing

Imperial College London
180 Queen’s Gate
London SW7 2RH
United Kingdom

su2@doc.ic.ac.uk

Abstract. Evaluating the implications of an architecture design early in the soft-
ware development lifecycle is important in order to reduce costs of development.
Reliability is an important concern with regard to the correct delivery of software
system service. Recently, the UML Profile for Modeling Quality of Service has
defined a set of UML extensions to represent dependability concerns (including
reliability) and other non-functional requirements in early stages of the software
development lifecycle. Our research has shown that these extensions are not com-
prehensive enough to support reliability analysis for model-driven software engi-
neering, because the description of reliability characteristics in this profile lacks
support for certain dynamic aspects that are essential in modeling reliability. In
this work, we define a profile for reliability analysis by extending the UML 2.0
specification to support reliability prediction based on scenario specifications. A
UML model specified using the profile is translated to a labelled transition system
(LTS), which is used for automated reliability prediction and identification of im-
plied scenarios; the results of this analysis are then fed back to the UML model.
The result is a comprehensive framework for addressing software reliability mod-
eling, including analysis and evolution of reliability predictions. We exemplify
our approach using the Boiler System used in previous work and demonstrate
how reliability analysis results can be integrated into UML models.

1 Introduction

The evaluation of system specifications early in the software development lifecycle has
increasingly gained attention from the software engineering community. Early evalu-
ation of software properties, including non-functional ones, is important in order to
reduce costs in software development before resources have been allocated and deci-
sions have been made. Dependability is one example of an important non-functional
property and represents the ability to deliver service that justifiably can be trusted. One

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 339–354, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

340 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

of the attributes encompassed by dependability is reliability, which is concerned with
the correct delivery of software system service.

There has been growing interest in closing the gap between commercial design
tools and quantitative evaluation of software systems. However, techniques available
to validate a design against non-functional properties often require significant effort
and expertise unrelated to the usual business of developing software. The UML 2.0
Specification itself has augmented the previous UML version so that software system
characteristics, and in particular the dynamic aspects of software behaviour, can be rep-
resented more accurately [14]. As a result, mechanisms to represent various aspects of
system design and analysis can be expressed within one consistent language for speci-
fying, visualising, constructing and documenting the artifacts of software systems. As a
result of the task force to make UML more comprehensive to cover all aspects and con-
cerns of the software development lifecycle, UML extension mechanisms (particularly
UML profiles) have been used to introduce capabilities for representing non-functional
concerns in UML models [15, 16].

The UML Profile for Modeling Quality of Service and Fault-Tolerance (henceforth
referred to as the QoS Profile) defines a set of UML extensions to represent depend-
ability concerns (including reliability) and other non-functional requirements using the
lightweight extension mechanisms of UML [15]. However, we believe the QoS Profile
is not comprehensive enough to support reliability analysis, as it does not address the
modeling of dynamic aspects (such as scenarios, component interactions, and opera-
tional profiles) often required in modeling reliability. On the other hand, dynamic as-
pects have been defined in the UML Profile for Schedulability, Performance and Time
Specification (henceforth referred to as the SPT Profile), but they were not incorporated
into the QoS Profile. Because a system consists of a set of interacting components such
that the interactions can reveal faults [1], modeling and annotating these interactions
appropriately can assist us in predicting software reliability.

In previous work, we defined a technique to predict software system reliability based
on scenario specifications [19]. The technique relies on LTSA, the Labelled Transition
Systems Analyser tool [21], which provides scenario-based model synthesis and model
checking capabilities to support the analysis. In this work, we define a profile for re-
liability analysis by extending the UML 2.0 specification to support reliability predic-
tion using our LTSA-based approach. Following this principle, our approach to meta-
modeling using the UML lightweight extension mechanisms (i.e., profiles) is consistent
with the MDA white paper [11], which defines basic mechanisms to structure models
consistently and to express formally the semantics of the model in a standardised way.
The result is a framework for systematically and pragmatically addressing software re-
liability modeling, including reliability analysis and prediction, with analysis results
integrated back with the UML modeling environment to support system reliability en-
hancement. We point out here that it is not our intent to propose a new, independent
UML profile. To the contrary, our purpose is to contribute towards a more comprehen-
sive profile for reliability modeling premised on existing directions sanctioned by the
OMG [15]. We exemplify our approach using the Boiler System used in previous work
and demonstrate how the analysis results can be applied back into the UML models.

Reliability Prediction in Model-Driven Development 341

This paper is structured as follows: In Section 2 we present the basic concepts re-
lated to our technique for software reliability prediction. In Section 3 we introduce our
model-driven development framework for reliability prediction. In Section 4 we present
the core steps of our MDA-compliant model-driven reliability prediction approach. We
illustrate the application of our profile in Section 5. Related work is presented in Sec-
tion 6, and we conclude in Section 7 with a discussion of future directions for our work.

2 Background

In this section we present a succinct description of our reliability prediction technique
based on scenario specification, presented in detail in previous papers [19, 18].

Scenarios are partial descriptions of how components interact to provide system
functionality. A scenario specification is formed by composing multiple scenarios pos-
sibly from different stakeholders. To support reliability prediction, we annotate a sce-
nario specification with probability annotations and use LTSA to process the annotated
scenarios. LTSA is a tool that allows using behaviour models of distributed systems
as prototypes for exploring system behaviour, and for automated checking of model
compliance to properties (i.e., model checking) [21].

2.1 Reliability Prediction

In Figure 1 we depict the major steps our reliability prediction approach comprises.
The steps are applied to a scenario specification expressed as a collection of Basic Mes-

1. Annotated MSCs
2. Synthesis of Annotated

LTS

4. System Reliability

Estimate
5. Implied Scenarios Detection

3. Stochastic Matrix

Construction

NegativePositive

Fig. 1. The Steps of Our Reliability Prediction Approach.

sage Sequence Charts (henceforth BMSCs) and High-Level Message Sequence Charts
(henceforth HMSCs). HMSCs provide sequential, conditional and iterative composition
of BMSCs and other HSMCs, while BMSCs describe the message exchange between
components on a time-line basis.

In the first step, we annotate the scenarios with two kinds of probabilities, the prob-
ability of transitions between scenarios PTSij , and the reliability of the components
RC . PTSij is the probability that the system will execute scenario Sj after executing
scenario Si. This information would be derived from an operational profile for the sys-
tem [9] and is annotated on the HMSCs. The sum of the probabilities PTSij for all
successor scenarios Sj must equal one. As for the component reliabilities RC , they are

342 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

annotated on the BMSCs. For the purposes of our approach, we interpret the reliability
of a component C as being the probability of successful completion of an invocation of
any service offered by C, irrespective of the execution time of the service.

The second step of our method is to synthesise a probabilistic Labelled Transition
System (LTS) from the annotated scenario specification. This step is an extension of the
synthesis approach of Uchitel et al. [22], in which a separate LTS is first synthesised
for each component, and then the system architecture is taken as the parallel compo-
sition of the component LTSs. Our extension involves enhancements to this synthesis
approach and exploits recent probabilistic extensions to the LTS formalism [2]. The en-
hancements have the effect of mapping the probability annotations of the scenario spec-
ification into probability weights for transitions in the synthesised architecture model.
The probability weights of the composed LTS are computed according to the notion of
generative parallel composition defined by D’Argenio et al. [5]. At the end of this step,
it follows that for each state i of the synthesised architecture model and for all succes-

sor states j of i,
n∑

j=1

PAij = 1, where n is the number of states in the LTS architecture

model and PAij is the probability of transition between state si and sj of the composed
LTS; PAij = 0 if the transition (si, sj) does not exist.

In the third and fourth steps of our reliability prediction method, the architecture
model synthesised in the second step is interpreted as a Markov model, and we apply the
method of Cheung to compute the reliability prediction [3]. In particular, the probability
weights of the architecture model are mapped into a square transition matrix whose row
entries sum to one. To conform to Cheung’s model, we extend the scenario specification
to ensure that it contains exactly one initial and one final scenario. At this stage we can
also perform sensitivity analysis of the prediction [18].

2.2 Implied Scenarios

Given a scenario specification, it may be impossible to build a set of components that
communicate exclusively through the interfaces described and that exhibit only the
specified traces when running in parallel [23]. The additional unspecified traces that
are exhibited by the composed system are called implied scenarios and are the result of
specifying the behaviour of the system from a global perspective while expecting the
behaviour to be provided by components having only a local system view.

From the reliability prediction point of view, the existence of an implied scenario
means that the system produces a trace that reveals a mismatch between behaviour
and architecture. In that case, the model can exhibit behaviour (an implied scenario)
that has not yet been validated and that, depending on whether it describes intended or
unintended system behaviour, can impact system reliability. If we decide that the occur-
rence of the trace is desirable, we then need to appropriately place the positive scenario
containing the trace into the scenario specification and annotate it with probabilities
as described above. If we consider the occurrence of the trace as undesirable, then the
scenario is a negative scenario, and the synthesised model must be constrained to pre-
vent the occurrence of the negative scenario; this is accomplished by composing the
synthesised model with an LTS that encodes the constraint [23]. We refer to the model
where we apply such constraints as the Constrained Model, while the unconstrained

Reliability Prediction in Model-Driven Development 343

model we refer to as the Architecture Model. In both cases, a new reliability prediction
is computed from the revised model.

3 The Reliability Prediction Domain

Our framework for reliability prediction in model-driven development is based on the
process depicted in Figure 2. The contribution presented in this paper is for steps 1, 2
and 3. The other steps constitute the work described in the previous section.

The framework consists of a UML profile for reliability prediction, plus a translation
from the UML diagrams to LTSA. Reliability prediction is carried out as described be-
fore, as is the validation of the model by LTSA for implied scenarios. The result of this
analysis provides a specification that has been elaborated through detection and valida-
tion of implied scenarios. Additionally, the results provide guidance to which software
elements modeled in the UML profile the system is more sensitive. The rationale be-

Apply the

UML Profile for
Reliability

Prediction

Configured UML

Model in XMI

4. Architecture LTS

Synthesis

5. Reliability

Computation

3. Translation to

LTSA

6. Implied Scenarios

and System

Reliability

Sensitivity

2.

LTSA

1.

Fig. 2. The Model Processing Framework for Reliability Prediction.

Fig. 3. The Domain Model of the Reliability Prediction Technique.

hind our approach is that the reliability of the system depends on two key pieces of
information, as explained in Section 2: (1) scenario transition probabilities and (2) the

344 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

reliability of the components. In order to support this approach within the MDA, we
devise the conceptual model of reliability prediction depicted in Figure 3.

From Figure 3 it can be noticed that there are two main abstract constructs in our
domain model: the Node and the Scenario. A Node represents the nodes of an HMSC.
These nodes can be specialized as a BMSC or another HMSC, in case of a hierarchical
HMSC. A BMSC corresponds to a Basic Message Sequence Chart describing the inter-
actions between components participating in a scenario, and an HMSC corresponds to
the high-level structure representing the composition of BMSCs. A Node element may
be associated to an HTransition element, which represents the probability of transition
to a node representing one of a set of alternative choices of behaviour. In that case, each
node representing an alternatives is stereotyped as an HTransition.

A Scenario, the other main abstraction of our domain model, is an aggregation of
at least two BComponents and at least one BConnector. A BComponent represents a
software component, while a BConnector represents the logical or physical connection
between two BComponents. The number of BConnectors associated to a BComponent
is equal to the number of other components connected to that BComponent. A Scenario
can be specialised as a BMSC or a NegBMSC, with the latter corresponding to a negative
scenario as previously explained in Section 2.2.

In the next section, we delve more deeply into the processes depicted in Figure 2
and present the UML viewpoint of the structures in Figure 3.

4 Our Reliability Prediction Profile

Our profile for reliability prediction exploits the lightweight extension mechanisms of
UML rather than the heavyweight mechanisms. Lightweight extensions of UML con-
sist in defining a profile, i.e., a set of stereotypes, tagged values and OCL constraints.
Heavyweight extensions of UML work in a higher level of abstraction by extending the
Meta-Object Facility with new UML modelling constructs [13]. These extension fea-
tures present in UML allow us to express the design and analysis domains seamlessly
using the concepts inherent to these domains. Also, they permit us to map the behaviour
of distributed component architectures into a domain representation preserving the se-
mantics of UML in accordance with the MDA.

4.1 The UML Viewpoint

From the UML point of view, our profile depends on two major packages: (1) the SPT
Profile, which defines the notion of time and resources modeling, and (2) the UML
2.0 Specification, where we realise the structures defined in the SPT domain and those
required to model reliability.

In Figure 4 we show how the elements of our domain model relate to the elements
that constitute the SPT Profile. The elements in Figure 4 in italicised font are part of
the SPT Profile. A Scenario, in the SPT Profile, is an ordered series of steps called ac-
tion executions, and a step, at one level of abstraction, can be decomposed further into
a set of finer-grained steps. As can be noticed, all the elements in our domain model,

Reliability Prediction in Model-Driven Development 345

except for Node and Scenario, extend elements of the SPT Profile. The abstract ele-
ment Node of our domain, depicted in Figure 3, can be represented as a Scenario in the
SPT profile or as coarse-grained ActionExecutions. A Scenario of our domain, depicted
in Figure 3, can be represented as fine-grained ActionExecutions in the SPT profile. A
Scenario in the SPT profile is specialized as an HMSC and an ActionExecution class is
specialised as a BMSC or as an HTransition. The specialisation of the ActionExecution
as an HTransition happens whenever the ActionExecution represents a choice of behav-
ior. The HTransition also holds an association with Resource Service Instance, meaning
that an HTransition keeps the reference of the resource service.

Fig. 4. Relationship between our Reliability Profile and the SPT Profile.

In SPT, resources are categorised being passive or active. Passive resources cannot
generate their own behaviour, but only react to the occurrence of a stimulus, while active
resources are those capable of spontaneous unprompted behaviour. The BConnector is
a kind of passive resource, while the BComponent is an active resource.

Table 1 describes the elements constituting the UML profile for reliability modeling.

Table 1. Stereotypes and Tag Definitions for the Reliability Profile.

Stereotype Base Class Tags

� HMSC � Interaction
Activities

HName

� BMSC � Interaction BName
� NegBMSC � Interaction BName
� HTransition � Interaction PTS

� BComponent �
Classifier
Component
Instance

BCompRel

� BConnector � Stimulus
Message

BConnRel

� Stop � Interaction N/A

Tag Type Multiplicity
PTS Real (0,1] [0..1]
BCompRel Real (0,1) [0..1]
BConnRel Real (0,1) [0..*]
HName String [0..1]
BName String [0..1]

346 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

The stereotypes our profile comprises correspond to the concrete classes of our domain
model depicted in Figure 3. Those stereotypes apply to UML 2.0 domain elements as
follows:

– BMSC – Applies to Interactions of Sequence Diagram type.
– NegBMSC Applies to Sequence Diagrams with a CombinedFragment having neg

as its InteractionOperator.
– HMSC – Applies to the Interaction Overview Diagram, which is the structure that

best suits the modeling of an HMSC. Interaction Overview Diagrams focus on the
overview of the flow of control where the nodes are Interactions or InteractionOc-
currences [14]. Also, as a structure to represent the flow of control, the Interaction
Overview Diagram enables the representation of the initial and the final states of the
flow, which are also structures required in our reliability prediction technique [19].
Alternatively, we could use the CombinedFragments structure, but an Interaction
Overview Diagram is semantically closer to HMSCs.

– HTransition – Applies to an Interaction representing an alternative choice of be-
haviour. It is tagged with the value PTS, the probability of transition to the Interac-
tion.

– BComponent – Applies to components participating in Sequence Diagrams to be
analysed by the model processor. The tag BCompRel associated to the BComponent
stereotype represents the reliability of the component, as defined in Section 2.

– BConnector – Applies to messages exchanged between two BComponents in an
Interaction. The tag BConnRel associated to the BConnector represents the relia-
bility of the connector enabling the communication between the components. The
reliability of the connector is regarded as the probability of success of a message
transition, irrespective of the transition execution time.

– Stop – Due to the assumption in our prediction technique that there must be one
final scenario in the scenario specification [19], it is required that no more than one
Interaction connects to the final node of the HMSC Interaction Overview Diagram.
The Stop stereotype applies to the Interaction with that feature.

The following are constraints defined in our Reliability Profile package:

1. Every HMSC and BMSC must be uniquely named.
2. Within an Interaction Overview Diagram stereotyped as an HMSC, every node

must be either a BMSC or another HMSC.
3. Every BMSC is an Interaction of type Sequence Diagram.
4. Every HMSC must have one Activity initial node and one Activity final node.
5. HMSC nodes must have at least one incoming and one outgoing transition, except

the initial node and final node.
6. The PTS values of HTransition-stereotyped nodes connected to the same Decision

node within an HMSC must sum to one.
7. In an HMSC, there must be one (and only one) Interaction stereotyped as Stop and

connecting to the final node.

Each of these constraints can be expressed easily in OCL, but for space reasons we do
not present their OCL rendition.

Reliability Prediction in Model-Driven Development 347

4.2 Mapping from UML to LTSA

Once our profile is applied to a UML model, the translation from UML to LTSA is
carried out. The transformation consists of (1) parsing the XML Metadata Interchange
(XMI) form of the UML model, which is the standard representation of UML models
in XML [12], and (2) generating the XML input format accepted by LTSA.

Current UML tools provide only partial conformance with the UML 2.0 specifi-
cation, which has forced us to make some workarounds in our implementation. The
major problem we encountered was to apply the stereotype HTransition and its PTS
tagged value to the nodes (i.e., Interaction Occurrences) within Combined Fragments
within Interaction Overview Diagrams. To get around this problem, we had to associate
the HTransition stereotype with the transitions between nodes rather than to the nodes
themselves. This solution is temporary, and we will evolve the implementation of our
profile as tool support improves to properly accommodate the UML 2.0 specification.

We implemented the transformation of our UML profile to LTSA in XSLT [24].
XSLT describes rules for transforming a source document in a tree format (such as an
XML file) into a result document described also by a tree. It therefore suits our need
to transform the XMI representation of a UML model into the XML format accepted
by LTSA. The transformation process is rather straightforward as long as the following
conditions are satisfied:

1. An HMSC in LTSA cannot have multiple nodes that correspond to the same BMSC.
In case there are multiple Interaction Occurrences of the same Sequence Diagram
in a UML Interaction Overview Diagram, those multiple occurrences are reduced
to just one node of the LTSA HMSC during the transformation process, keeping
the same set of transitions contained in the Interaction Overview Diagram.

2. LTSA does not support hierarchically nested HMSCs at the moment. In case an
Interaction Overview Diagram is specified in multiple hierarchical levels, it should
be flattened before transformation is carried out.

4.3 Mapping Analysis Results Back to UML

After analysis has been carried out in LTSA following the approach presented in Sec-
tion 2, we have the system reliability prediction and the detection of implied scenarios.
In particular, we can use this analysis to provide answers to the following questions: Do
we have any implied scenarios in our system architecture model? What is the impact
of the implied scenarios on the system reliability? What is the sensitivity of the system
reliability to changes in individual probability values?

If an implied scenario is a positive scenario, which means that the detected trace is to
be included in the scenario specification, then a new Sequence Diagram is constructed
for the trace and annotated with our profile for reliability prediction. This new Interac-
tion is then incorporated appropriately as a node in the Interaction Overview Diagram.
Incoming and outgoing transitions must be manually attached to the new positive sce-
nario. If an implied scenario is a negative scenario, i.e., a trace to be avoided, it needs to
be incorporated into a NegBMSC, with the undesirable message traces specified inside
an Interaction Fragment having InteractionOperator type neg.

348 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

As for the sensitivity analysis, the purpose is to study the impact of components
and usage profiles on system reliability [18]. For this purpose, the analysis reveals how
the system reliability is sensitive to (1) the component reliabilities, and (2) the scenario
transition probabilities. These two analyses can help in identifying components and
scenario transitions that could threaten the reliability of the software system. The results
produced by the sensitivity analysis can then be used by system designers to decide on
mechanisms to use for enhancing the system reliability.

5 Example

We exemplify our approach using a variant of the Boiler Control system presented by
Uchitel et al. [23]. As shown in the Interaction Overview Diagram of Figure 5, the
Boiler Control system composes five Sequence Diagrams Initialise, Register, Analyse,
Terminate and Shutdown, which are are depicted in Figure 6.

ref
Register

ref
Initialize

ref

Analyse

<<HTransition>>
{PTS=0.2}

ref

Initialize

<<HTransition>>

{PTS=0.5}

ref

Terminate

<<HTransition>>

{PTS=0.1}
ref

Register

<<HTransition>>

{PTS=0.7} ref

Shutdown

<<Stop>>

<<HTransition>>
{PTS=0.5}

<<HMSC>>

{HName = Boiler}

Fig. 5. The Interaction Overview Diagram of the Boiler System.

As presented in Section 4, the stereotype HTransition is tagged with the probability
of transition between scenarios, PTS, as shown in Figure 5. The values for the PTS are
based on the assumption that the system executes the scenario Register (which causes
sensor readings to be entered into the database) far more frequently than the scenarios
Analyse and Terminate, and that when it does execute Terminate there is an equal prob-
ability of either reinitialising or shutting down completely. As shown in the figure, it
may be necessary to specify multiple references to the same Sequence Diagram if they
are to be tagged with different scenario transition probabilities.

Inside the BMSC-stereotyped Sequence Diagrams, the components’ reliabilities are
annotated by applying the stereotype BComponent with its tagged value BCompRel, as
depicted in Figure 6. Without loss of generality, we use coarse-grained, single values
for the overall component reliabilities. In general, we can also associate finer-grained
values for reliability through annotation of individual messages and segments of com-
ponent timelines. The BConnector element of our profile suits the use of finer-grained

Reliability Prediction in Model-Driven Development 349

Fig. 6. The Annotated Sequence Diagrams of the Boiler System.

(1) start

(0.333) stop

(0.667) query (0.95) data

(0.05) data

(1) command

(0.5) start

(0.5) shutdown (1) endAction

-1 0 1 2 3 4 5 E

Fig. 7. The Synthesised Label Transition System for Component Control in LTSA.

values where individual messages can also be associated with a communication relia-
bility value; in the example, these values are all set to 1.0. The values in Figure 6 for
the reliability of the components reflect the assumption that the Database is a highly
reliable, mature commercial software product, that the Sensor and Actuator are compo-
nents whose hardware interface to the sensed/actuated phenomena will eventually wear
out and fail, and that Control is a newer, complex software subsystem that still contains
latent faults. Notice that the Shutdown Sequence Diagram is not present in Figure 6, as
it has traces identical to those in the Terminate scenario.

Following the steps of our reliability prediction technique [19], the LTS model for
each component participating in the scenarios is generated; for instance, the LTS for
component Control is depicted in Figure 7. Then, the Architecture Model of the sys-
tem is synthesised as the parallel composition of the component LTSs. Using Cheung’s

350 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

approach to compute a prediction for the system reliability for the synthesised Archi-
tecture Model, we obtain a 64.9% probability of successful completion of the whole
system execution, irrespective of time duration.

5.1 Validating for Implied Scenarios

The Boiler Control System specification of Figures 5 and 6, has implied scenarios, and
Figure 8(a) depicts one of them. From the specification we see that the Boiler Con-
trol system architecture may exhibit the trace start–pressure–query–data–command,
and that component Control interacts with Database only through messages query and
data. However, in the implied scenario of Figure 8(a), a query is performed immedi-
ately after start but before a pressure reading is provided by the Sensor to the Control.
In other words, the Architecture Model produces a trace that reveals a mismatch be-
tween behaviour and architecture, and we view this particular trace as being undesir-
able. This trace thus represents a negative scenario, and so a set of constraints preventing
the occurrence of the negative scenario is expressed in FSP, the modeling notation of
LTSA [7], and then composed with the Architecture Model. Following the steps of our

ActuatorControlDatabaseSensor

start

pressure

query

stop

start

(a) Detected in LTSA

neg

<<BComponent>>

Sensor

{BCompRel=0.99}

<<BComponent>>

Control

{BCompRel=0.95}

<<BComponent>>

Database

{BCompRel=0.999}

1:start

3:stop

4:start

2:pressure

5:query

<<NegBMSC>>

{BName=NegBoiler}

(b) Mapped to the UML Profile

Fig. 8. An Implied Scenario.

reliability prediction technique, a Constrained Model of the system is then synthesised
as the parallel composition of the constraints with the Architecture model previously
obtained. Calculating the reliability of the resulting Constrained Model, we obtain the
value of 86.2% probability of successful completion of the whole system execution,
irrespective of time duration. Figure 8(b) depicts the implied scenario detected in LTSA
as it would be mapped back to UML as a NegBMSC.

Reliability Prediction in Model-Driven Development 351

5.2 Sensitivity Analysis

Sensitivity analysis consists of determining how the system reliability varies as a func-
tion of the components’ reliabilities and scenario transition probabilities, with the pur-
pose of identifying probabilities that have the greatest impact on the reliability of the
software system [18]. For component reliabilities, the method consists of varying the
reliability of one component at a time and fixing the others to 1. Then, computing the
system reliability, we obtain the results presented in Figure 9.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 70 75 80 85 90 95 100

S
ys

te
m

 R
el

ia
bi

lit
y

(%
)

Component Reliability(%)

Constrained Model

Control
Sensor

Actuator
Database

Fig. 9. The System Reliability as a Function of the Component Reliabilities.

The graph shows the system reliability of the Constrained Model as a function of
the component reliabilities. The analysis shows that the reliability of the Boiler System
is most sensitive to component Database, followed by components Sensor, Control and
Actuator. Note that the Control and the Actuator curves coincide, meaning that they
have an identical impact on system reliability.

6 Related Work

Using UML profiles to support modeling of non-functional aspects of software systems
following a model-driven approach is not a new idea. The approaches for model-driven
non-functional analysis are distinguished mostly by the way they support analysis of
annotated UML models.

Majzik et.al. provide a profile for modeling fault-tolerant mechanisms, particularly
redundancy, in UML diagrams [8]. Transformations are done in a sound manner through
graph transformation, from UML to their analysis platform. Approaches in this category

352 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

do not follow a standardised MDA approach. As a result, the key benefit of a standards-
based approach is lost, i.e., interoperability of applications enabling a market in robust
industrial tools that support the approach.

There has been work following the MDA approach for non-functional requirements
modeling by extending the SPT Profile with regard to performance [6, 20]. Gu et.al.
implement a transformation by parsing the XMI output of profile-mapped UML dia-
grams [6]. The approach of Skene et.al. resembles that of Gu et.al. but provides a more
formal elaboration of the profile via OCL constraints [20]. Our approach follows in the
same standards-based spirit, but with regard to reliability modeling. At the end of the
day, any standards-compliant UML tool is capable of storing these models.

Recently, Cortellessa et.al. [4] proposed an amendment to the QoS Profile [15] with
the purpose of addressing issues related to the reliability modeling of component-based
systems. Our profile follows a similar structure as their extension for the QoS Profile,
but we differ in the way we compose scenarios. In particular, we consider it important
to provide more structure to a scenario specification and thus to model the interaction
between scenarios through the HMSC structure of our profile. This feature allows us
to model larger systems, as a greater number of scenarios can be analysed more easily
through the HMSC structure. Therefore, we believe that our profile provides gains in
modularity for modeling large systems and their reliability issues.

In our profile, we use of UML 2.0 constructs to support reliability analysis for
component-based software systems. Constructs in UML 2.0 make easier the task of
modeling non-functional requirements due to its richer expressiveness compared to pre-
vious UML versions. Reliability modeling using new concepts introduced in UML 2.0
are not commonly found in the literature. We believe that wider availability of mod-
elling tools supporting UML 2.0 will stimulate new work in this area.

7 Conclusion

We present in this paper a UML profile to aid reliability prediction and analysis of soft-
ware systems. We define a framework based on the UML 2.0 specification and the SPT
Profile to support a reliability prediction technique that takes into account component
structure exhibited in scenarios and the concurrent nature of component-based systems.

Following a compliant MDA process, a UML model specified using the profile is
translated to a labelled transition system, which is model-checked by the LTSA tool to
identify implied scenarios and is used to compute a reliability prediction according to
the method of Cheung. Sensitivity analysis is also used to highlight components and
scenario transitions that have a high impact on system reliability. The analysis results
are integrated back with the UML modeling environment to support system reliability
enhancement. Our purpose with the profile is to contribute towards a more comprehen-
sive profile for reliability modeling consistent with the direction of the OMG [15].

We may acknowledge some shortcomings of our UML profile. We have imple-
mented our profile using the MagicDraw UML tool version 9.0 Community Edition [10],
and the XSLT stylesheet we implemented was based on the XMI version 1.2 the tool
generates for the UML diagrams. The problem is that Magic Draw provides just partial

Reliability Prediction in Model-Driven Development 353

support to UML 2.0, and the XMI output is out of date. Future versions of the tool are
expected to be fully compliant with UML 2.0, as well as the XMI counterpart.

Future directions of our work include extending the profile to support modelling of
fault-tolerance mechanisms. The first steps towards this goal were initiated in previous
work [17] and by others in the literature, including the OMG itself [15]. By doing
this, we intend to support code generation with assessed reliability, enhanced via fault-
tolerance mechanisms present in current distributed component platforms. Additional
work is also needed to explore methods and techniques that can fully reveal the impact
of implied scenarios on system reliability. Finally, we plan to apply our approach on
case studies of larger, more realistic systems to evaluate its scalability and the accuracy
of the predictions it produces.

Acknowledgments

David Rosenblum holds a Wolfson Research Merit Award from the Royal Society. Se-
bastian Uchitel was partially funded by EPSRC grant READS GR/S03270/01. Genaı́na
Rodrigues was funded by CAPES, grant 108201-9. Vittorio Cortellessa provided sev-
eral valuable comments that improved our understanding of reliability modeling in
UML and the state of current efforts with relevant UML profiles. We also thank the
anonymous referees for their helpful suggestions on improving the manuscript.

References

[1] A. Avižienis, J. Laprie, and B. Randell. Fundamental Concepts of Dependability. In Proc.
IARP/IEEE-RAS Workshop on Robot Dependability, May 2001.

[2] T. Ayles, A. Field, J. Magee, and A. Bennett. Adding Performance Evaluation to the LTSA
Tool (Tool Demonstration). In Proc. 13th Performance Tools, September 2003.

[3] R. C. Cheung. A User-Oriented Software Reliability Model. In IEEE Transactions on
Software Engineering, volume 6(2), pages 118–125. IEEE, Mar. 1980.

[4] V. Cortellessa and A. Pompei. Towards a UML profile for QoS: a contribution in the
reliability domain. In Proc. of the 4th WOSP, pages 197–206. ACM Press, 2004.

[5] P. R. D’Argenio, H. Hermanns, and J.-P. Katoen. On Generative Parallel Composition. In
Electronic Notes in Theoretical Computer Science, volume 22. Elsevier, 2000.

[6] G. P. Gu and D. C. Petriu. Early Evaluation of Software Performance Based on the UML
Performance Profile. In Proc. of the 2003 CASCON, pages 66–79. IBM Press, 2003.

[7] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley, NY, 1999.
[8] I. Majzik, A. Pataricza, and A. Bondavalli. Stochastic Dependability Analysis of System

Architecture Based on UML Models. In Architecting Dependable Systems, LNCS–2667,
pages 219–244. Springer, 2003.

[9] J. D. Musa. Operational profiles in software-reliability engineering. IEEE Software,
10(2):14–32, 1993.

[10] NoMagic Inc. MagicDraw UML. http://www.magicdraw.com/.
[11] OMG. Model Driven Architecture. http://www.omg.org/mda/, July 2001.
[12] OMG. XMI Specification. http://www.omg.org/cgi-bin/doc?formal/2002-01-01, Jan 2002.
[13] OMG. MOF 2.0 Specification. http://www.omg.org/cgi-bin/doc?ptc/2003-10-04, Oct 2003.
[14] OMG. UML 2.0 Superstructure. http://www.omg.org/cgi-bin/doc?ptc/2004-10-02, 2003.
[15] OMG. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics

and Mechanisms. http://www.omg.org/docs/ptc/04-09-01.pdf, Sep 2004.

354 Genaı́na N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel

[16] OMG. UML Profile for Schedulability, Performance and Time Specification.
http://www.omg.org/technology/documents/formal/schedulability.htm, Jan 2005.

[17] G. Rodrigues, G. Roberts, and W. Emmerich. Reliability Support for the Model Driven
Architecture. In Architecting Dependable Systems II. Springer, LNCS 3069, 2004.

[18] G. Rodrigues, D. Rosenblum, and S. Uchitel. Sensitivity Analysis for a Scenario-Based
Reliability Prediction Model. In Proc. ICSE 2005 Workshop on Architecting Dependable
Systems, pages 73–77, May 2005.

[19] G. Rodrigues, D. Rosenblum, and S. Uchitel. Using Scenarios to Predict the Reliability
of Concurrent Component-Based Software Systems. In Proc. ETAPS 2005 Conference on
Formal Approaches to Software Engineering, pages 111–126. Springer, LNCS 3442, 2005.

[20] J. Skene and W. Emmerich. A Model Driven Architecture Approach to Analysis of Non-
Functional Properties of Software Architecture. In Proc. of the 18th ASE. Toronto, CA.
IEEE Computer Society, Oct. 2001.

[21] S. Uchitel, R. Chatley, J. Kramer, and J.Magee. LTSA-MSC: Tool Support for Behaviour
Model Elaboration Using Implied Scenarios. In Proc. of 9th TACAS, Warsaw, Apr. 2003.

[22] S. Uchitel, J. Kramer, and J.Magee. Synthesis of Behavioral Models from Scenarios. IEEE
Transactions on Software Engineering, 29(2):99–115, Feb. 2003.

[23] S. Uchitel, J. Kramer, and J.Magee. Incremental Elaboration of Scenario-Based Specifi-
cations and Behavior Models Using Implied Scenarios. ACM Transactions on Software
Engineering and Methodologies, 13(1):37–85, Jan. 2004.

[24] W3C. XSL Transformations (XSLT). http://www.w3.org/TR/xslt, November 1999.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 355-366, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Model-Based Scalability Estimation in Inception-Phase
Software Architecture

Steve Masticola1, Andre Bondi1, and Mark Hettish2

1Siemens Corporate Research, Inc.
755 College Road East

Princeton, NJ 08520
stephen.masticola@siemens.com

andre.bondi@siemens.com

2Siemens Communications, Inc.
1700 Technology Drive

San Jose, CA 95110
mark.hettish@siemens.com

Abstract. Scalability is one of the crucial nonfunctional requirements that must
be evaluated in the Inception Phase of the Rational Unified Process [9]. This is
the phase in which the least information is generally available to form a
principled evaluation. We demonstrate how an estimate of user scalability can
be formed using sequence diagrams of the common user scenarios, together
with experimentation (ranging from simple timing measurements to more
complex architectural prototypes), published study data, and performance data
from baseline systems. Despite being quite inexpensive, the techniques used by
our team enabled us to identify and guide corrective actions for major
bottlenecks before they became serious design flaws in the Elaboration and
Construction phases of the Unified Process. The same techniques also allowed
us to quickly evaluate the effects of high-level architecture and technology
alternatives on user scalability and response time.

1. Problem Statement

This study concerns a large-scale commercial server-based software product (denoted
by LSCSP1) based on the Microsoft C# platform [6]. The system is partitioned into
concurrent processes that communicate using socket-based communication
transmission of SOAP messages.

An effort is underway to develop version N+1 of LSCSP based on Java technology,
including elements of J2EE. The migration to Java was undertaken for two reasons.

1 The name of the product, the scenarios it supports, and all other identifying information, have

been changed to protect Siemens intellectual property.

356 Steve Masticola, Andre Bondi, and Mark Hettish

First, the LSCSP marketers wanted to reach customers who find the C# platform
unacceptable. Second, it was hoped that the mapping could increase the number of
users supported by each server. The LSCSP architects thought that the SOAP
messaging scheme was inefficient and that they could get significant scalability with
respect to the number of users (“user scalability”) gains from a more tightly-coupled
messaging mechanism. In this context, user scalability has two components, load
scalability, which concerns scalability with respect to the use of active resources such
as processors, bandwidth, and I/O devices, and space scalability, which concerns
scalability with respect to passive resources such as memory [8]. The LSCSP
architects were primarily concerned with load scalability.

The architecture team realized early that, to achieve these gains, LSCSP’s modules

would have to be mapped onto Java containers of various types (servlet/JSP, EJB etc.)
differently from the way they were mapped onto .NET processes and threads. The
architecture team identified at least ten reasonable ways to do this. They needed to
evaluate the effect that each mapping would have on user scalability. Additionally,
within each possible mapping, several technology options were also possible for
communications between different pairs of modules. These, too, could potentially
affect the scalability of the system.

The two problems we faced, then, were:

 to estimate user scalability for each of the reasonable process-to-container
mappings and for each of the possible communication technology
alternatives,

 to estimate the increase in user scalability that could be expected from the
migration to the new architecture and the Java platform.

This paper presents the lessons learned in creating these estimates. Our purpose is

to show a set of useful estimation techniques, rather than to present normative
performance data or experimental studies. We therefore omit all detailed description
of the experimental procedure, which was intended purely to provide “first-look” data
for our own use. Any data here is shown only for descriptive purposes, and should not
be taken as normative.

2. Nonfunctional Requirements in the Forthcoming System

The forthcoming version of LSCSP had several ambitious performance goals as
nonfunctional requirements. Determining whether these goals could be met was the
major motivation for doing performance analysis.

First, LSCSP N+1 had a goal of increasing the number of users supported on a
“standard server” by an order of magnitude. An example of a “standard server” is a
dual Pentium PC with a substantial amount of RAM and hard disk.

In addition, enterprise-level scalability was desired. The intent was to scale to
systems of collaborating servers to support increasing numbers of users. Another goal
was to support failover between servers with minimal interruption in service.

Model-Based Scalability Estimation in Inception-Phase Software Architecture 357

Achieving both of these goals will require system resources and thus affect user
scalability.

3. Anticipated Performance Impacts of Some Implementation
Choices

LSCSP relies on “server push” technology2 to periodically update one particular
frame. Server push requires the client to periodically poll the server for updates. This
further increased the server workload. It was thought that server-push would cause
serious scaling problems. Therefore, we wanted to investigate updating technologies
other than server push, and their effect on user scalability.

A certain amount of off-server traffic was expected to support cross-server request
handling and data replication during normal operation to support failover handling.
We wished to get a precise estimate of how much extra load would be caused by
server-to-server communication in a large-scale scenario. We acknowledge, therefore,
that the resource utilization of these scenarios should be modeled, but that we have
not as yet examined this in detail.

3.1. The Need for Model Parameterization

Early in the scalability estimation effort, we decided to develop a spreadsheet-based
model of user scalability. This would allow us to decide at the Inception Phase of the
Rational Unified Process [9] (or at a similarly early stage in other processes) whether
the nonfunctional requirements could likely be simultaneously met, or whether the
architecture and/or choice of technologies needed to be revised.

Additionally, the team recognized that there were other factors that could not easily
be predicted or determined through experimentation or existing data. These included,
but were not limited to, per-user resource demands for various usage scenarios, the
performance gain in the LSCSP business logic from parallel processing, and the
language-dependent performance of Java versus C#. We parameterized the
spreadsheet model to allow architects to see the performance impacts of different
choices of technologies under different sets of assumptions about their associated
processing costs. In the end, our model had twenty-three different parameters.

4. Procedure

Our procedure to conduct the analysis was to specify each architectural alternative
under consideration in sufficient detail that UML sequence diagrams of the most
common scenarios, and experimental data from architectural prototyping, could be

2 This is the conventional terminology, though in fact the client pulls the content.

358 Steve Masticola, Andre Bondi, and Mark Hettish

used to derive expected consumptions of server resources. Our methodology was
very similar to that of Smith and Williams [7]. We adapted their techniques in two
key ways: we used no special-purpose performance analysis extensions to the UML,
and we also employed only commercial UML modeling tools (mainly the UML
features of Microsoft Visio), rather than special-purpose tools for performance
analysis such as Smith and Williams’ SPE*ED.

Obtain Experimental
Data

Model the Scenarios of the Important
Transactions

Resource Use Data for Each
Message Technology

Message Sequence Diagrams for
Each Scenario

Scenario Rate per
User per Second

Specify Messaging Technology Alternatives

Intercomponent Messaging
Architecture

Candidate Message
Technologies

Specify Platform
Alternatives

Specify Architectural
Alternatives

Combine

Annotated
MSDs

Obtain Business
Logic Data

Combine and
Normalize

User Scalability
Estimate

Scenario Latency
Estimates

Business Logic Resource Use
for Each Scenario

Figure 1: The model-based scalability estimation process used by the team.

Figure 1 shows an abstract overview of the process that was used to estimate user

scalability. The team modeled each of the important transaction use cases of LSCSP,
producing a message sequence diagram (MSD) for each scenario and an estimated
scenario repetition rate (transaction rate) per user per second. Once the scenarios were
modeled, resource use data was obtained from the LSCSP performance analysts for
most of the business logic used in the scenarios.

Simultaneously, the team specified the platform, architectural, and messaging

technology alternatives that they wished to evaluate. This effort produced a list of
candidate messaging technologies, and a set of inter-component messaging
architectures (i.e., maps from the communication relationships between components
to these technologies.) The latter was combined with the scenario MSDs to produce
MSDs that had been annotated with the size and technology of each message.

Once the candidate message technologies had been identified, the relationship

between message size and resource usage could be determined experimentally for

Model-Based Scalability Estimation in Inception-Phase Software Architecture 359

each technology. The annotated MSDs could then be combined with this data to
produce an estimate of resource usage for each instance of each scenario. Business
logic resource usage could be added as well. With these data in hand, we would be in
a position to determine the maximum sustainable transaction rates for given mixes of
scenarios.

We note that other performance measures of interest, e.g., a lower bound on the
latency for the scenarios, can be estimated using the same data, by finding the length
of the critical path through the MSD.

4.1. Architectural Alternatives Under Consideration

We wished to analyze the user scalability of several different possible architectural
alternatives. In each alternative, a choice was made for platform technologies,
mappings of system components to those platforms, and inter-component
communications technologies within each mapping.

4.1.1. Platform Technologies

LSCSP version N is based on a tiered architecture, consisting of client, presentation,
business logic, integration, and resource tiers. Many of the tiers would undergo
changes to their platform technology in version N+1.

 The presentation tier platform on LSCSP version N is Microsoft Internet
Information Server, including Active Server Pages. In version N+1, this
would probably change to Apache Tomcat and Java Server Pages. There is
also an option for a tight integration of the presentation tier platform with the
business logic tier platform.

 The business logic tier platform in LSCSP version N is simply the Windows
runtime, since the LSCSP components run as processes. In LSCSP N+1, the
business tier would run on EJB, a lightweight platform (called LWP here), or
some architectural alternative that combines the two. Additionally, some
non-real-time business logic could be implemented as servlets and run in the
servlet container.

 In LSCSP N, there is no integration tier as such. The Java Connector
Framework could potentially serve as an integration tier in LSCSP N+1.

The major decisions on platform technology for LSCSP N+1 involved mapping the

components of LSCSP to these technologies, possibly with some repartitioning.
Additionally, there was a question of whether to use Tomcat standalone or some other
technology.

4.1.2. High-Level Architecture Options

We considered eight proposed LSCSP package architectures. Ad-hoc diagrams
showed the embedding and communication of the business-logic software
components within and between the proposed container technologies. These diagrams

360 Steve Masticola, Andre Bondi, and Mark Hettish

established partial constraints on the mappings from inter-component messages to
specific technologies.

4.1.3. Inter-component Communications Technology Options

Within each high-level architecture option, it was clear that a LSCSP implementation
could use many different communication technologies. We wanted to evaluate the
effect of each of these technologies upon system performance. The technologies
identified for study included:

 HTTP (for communicating between the client and presentation tiers.)
 Java Messaging Service.
 EJB calls (local and remote.)
 Lightweight component-to-component calls.
 Serialized Java objects over TCP.
 SOAP-serialized objects over TCP.
 Web services invocation via Jboss Mbean technology.

4.2. Scenario Modeling

For the Inception Phase performance modeling, the architecture team extrapolated the
inter-component call sequences of LSCSP Version N to LSCSP Version N+1. These
sequences were captured in the form of UML sequence diagrams. Figure 2 is an
example of one of these scenario diagrams.

4.3. Experimentation

While part of the architecture team was capturing scenarios as MSDs, a second part of
the team started a program of experimentation with the communication technologies
listed in Section 4.1.3. These experiments were an early phase of architectural
prototyping, and were intended to produce rough timings for internal use rather than
benchmarks for engineering and sizing purposes. Creating a publishable benchmark
was outside the scope of our activities.

To obtain reasonably accurate timings on a Windows XP platform from inside of

Java, we used Vladimir Robutsov’s com.vladium.utils timing utilities [1], [2].
Most of our timing experiments were timed using the sub-microsecond PC wall-clock
timer. We standardized on using the wall-clock time to execute a scenario as the basis
for resource consumption, for two reasons. First, using CPU time alone would hide
idle time and delays due to non-CPU resource utilization. Second, CPU time as
measured on Windows XP includes only the immediate process and kernel time, and
wouldn’t include CPU used by system processes that are called into action indirectly
while executing the scenario.

Model-Based Scalability Estimation in Inception-Phase Software Architecture 361

Figure 2: Sample MSD from one LSCSP scenario (S1).

Message transmission timings were performed by sampling the performance timer

at six instants in the handling of each message: (sender) start of process, marshalling
completed, send done; (receiver side) start of reception, message received, message
unmarshaled. Synthetic messages with payload lengths varying from one byte to one
megabyte were generated and marshaled. Ten messages of each length were sent and
received.

Two special concerns were queuing artifacts and JVM optimization. To avoid

message queue problems, transmission of any test message was held off until the
previous test message had been received and unmarshaled. Since the beneficial effect
of JVM optimization only comes into play after the corresponding code has been
executing without being optimized, a “warm-up” run was completed before the test
run was performed with measurement turned on.

Figure 3 is an example plot of experimental data for a light-weight service call,

which confirmed our beliefs that this mechanism is fairly efficient. The upper plot
shows that the average elapsed time for handling and light-weight service call is of
the same order of magnitude for all message payload sizes. The lower plot contains
the same data. Its vertical scale has been expanded to show that the processing time of
the light-weight message handling mechanism is quite insensitive to the size of the
payload field. Moreover, the average observed processing time is visibly low
compared with the displayed points, indicating that the distribution of values is
skewed below the average. We did observe some spikes in wall-clock time. We
believe that they might be caused by uncontrolled activity by other processes
executing under Windows XP.

362 Steve Masticola, Andre Bondi, and Mark Hettish

Lightweight Service Call - Overview

-20

0

20

40

60

80

100

120

1 10 100 1000 10000 100000

Message length (bytes)

Ti
m

e
(m

ill
is

ec
on

ds
)

Time
Avg

Lightweight Service Call - Detail

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000 10000 100000

Message length (bytes)

Ti
m

e
(m

ill
is

ec
on

ds
)

Time
Avg

Figure 3: Sample data for a light-weight service call. Error bars are at one standard
deviation from the mean.

Mechanism Latency
(msec)

with
1024
bytes

Latency
(msec)

with
2048
bytes

Latency
(msec)

with
4096
bytes

Latency
grows with

message
size?

HTTP server-side response (Tomcat) 8.60 14.70

27.07 Yes

Java local call (intraunit) 0.05 0.05 0.05 No
Java Messaging Service (JBoss) 511.80 494.38 468.43 Yes3
Light-weight service call (LWS-Impl) 0.19 0.11 0.19 No
Remote session EJB, same container (JBoss) 0.20 0.24 *0.17 No
Local session EJB, same container (JBoss) *0.25 0.25 *0.15 No
Serialized objects over TCP 0.34 0.74 0.36 No
SOAP messages over TCP (send time) 0.78 1.19 1.66 Yes
SOAP messages over TCP (receive time) 1.26 2.13 2.18 Yes
Web services using JBoss.NET MBeans 10.04 10.80 11.86 Yes

Table 1: Summary of experimental results at 1024, 2048, and 4096 bytes.

3 The Jboss implementation of JMS showed three different operating regions with respect to

message size.

Model-Based Scalability Estimation in Inception-Phase Software Architecture 363

Table 1 shows a summary of the experiment results with message payload sizes of
1024, 2048, and 4096 bytes (a common expected message size) for each of the
messaging technologies we considered.

For some messaging mechanisms, such as HTTP and SOAP over TCP, we saw that
the elapsed time increased as the message length increased. For other messaging
mechanisms, such as EJB inter-bean calls in Jboss and light-weight inter-service calls
in LWS-Impl, there was no such trend. These results are indicated in the “Latency
grows with message size?” column of Table 1. The asterisks indicate that the data
may reflect unexplained experimental error for those measurements and that we have
used a conservative estimate instead. (Again, these latency values should not be
viewed as normative, since that was not their intent.)

Interestingly, we found that the light-weight service technology LWS-Impland
Jboss EJB [5] had about the same message transmission time, probably because they
are using similar underlying mechanisms for separating Java namespaces and passing
object references between them. The data also shows that the Java Messaging Service
(JMS) would not be fast enough to use as an internal communication mechanism
within LSCSP. This observation alone saved the team from taking a wrong direction,
since JMS was being advocated within the team as a high-speed inter-component
communication mechanism.

It is worth noting that the latency for transmitting serialized Java objects over TCP
within the same server did not grow much with increasing message size. We
conjecture that there is some optimization within the platform (at the Java and
possibly the Windows XP layers) that avoids memory copying for these messages.

4.4. Use of Published Data

A literature search was undertaken early in the Inception Phase to find any published
timing benchmark data that would be relevant to the project. In particular, we wanted
to find any existing benchmarks relating business logic performance in Java and C#.
Many claims and counterclaims have been made about the performance of these
platforms by their proponents, but little data is available comparing communications
mechanisms and business logic. One exception is [3]; while this data did not pertain
directly to our needs, it served to reinforce our belief that the two languages would
have roughly equivalent performance in business logic. Our experimental data later
supported this belief.

4.5. Baselining the Existing System

Baseline data on CPU usage was available for LSCSP N for each of several scenarios.
The usage figures included inter-component messaging, which we wished to exclude
in order to baseline the cost of handling business logic irrespective of which option
we chose. We therefore ran an experiment to estimate the CPU overhead in
messaging.

364 Steve Masticola, Andre Bondi, and Mark Hettish

Following this, the CPU time on the LSCSP N experimental machine was
normalized to wall-clock time on the LSCSP N+1 experimental machine, using ratios
of CPU clock rate on the two machines and Amdahl’s Law [5] to normalize with
respect to the number of processors. The ratio of CPU time to wall-clock time and the
fraction of parallelizable business logic are engineering estimates that are settable
parameters in the spreadsheet model.

We also needed to understand how the performance of the application in C# would

compare with that in Java, other things being equal. For this purpose, we created a
non-recursive “Towers of Hanoi” program in both languages and ran it with tower
sizes from one to twenty. While the experiment is certainly not normative, it
reinforced our impression that the business logic would probably not get a significant
performance increase in the migration from C# to Java.

4.6. Spreadsheet Model

A spreadsheet model was created to summarize the scenarios of Section 4.2. Each
worksheet in the spreadsheet corresponded to one scenario. One line on each sheet
counted all the messages of a given communication technology and approximate
message length in one of the MSDs in the scenario. Since the process of translation
from the Visio MSDs to the spreadsheet was manual, checksums for the number of
messages were included to check for errors in the transcription of the diagrams.

5. Discussion of the Performance Results and Their Architectural
Implications

The pie chart in Figure 4 illustrates how the data gathered in the spreadsheet
contributed to our understanding of resource usage for a particular group of parameter
settings. It clearly shows that the business logic in two particular scenarios (labeled
S1 and S2 in Figure 4) would the biggest contributors to system load in LSCSP N+1’s
expected operation, for a total of 89% of the system load. The total contribution of all
messaging in all scenarios to the system load was less than one tenth of the total CPU
usage.

We used a partial UML model of LSCSP N+1 (the MSDs of the most important
scenarios) along with other experimental and published data and engineering
estimates to approximately predict single-server user scalability with good effect.
Moreover, we constructed a model which allows architects to vary the engineering
estimates as parameters and derive best-case and worst-case user scalability estimates.

Model-Based Scalability Estimation in Inception-Phase Software Architecture 365

Percent of Total Load by Scenario

S9 business logic
3%

S5 business logic
0%

S5 messaging
0%

S6 messaging
0%

S6 business logic
0%
S7 messaging

0% S8 business logic
0%S4 business logic

2%

S1 business logic
42%

S1 messaging
2%

S2 messaging
1%

S2 business logic
47%

S3 business logic
0%

S3 messaging
2%

S4 messaging
1%

Figure 4: Breakdown of load by scenario and load type (inter-component messaging
vs. business logic).

The effort to construct these inception-phase estimates, excluding the
experimentation, was less than one person-month. Getting the experimental data for
message transmission time comprised most of the effort involved in the estimation.
This data can now be reused for other projects, greatly reducing the effort needed to
get scalability estimates.4 Moreover, the same technique can be applied to estimate
other architectural information of interest in the Inception Phase, such as latency and
enterprise-wide user scalability.

Examples of two useful results that came out of our effort were:
 the identification of JMS as being unsuitable for use in LSCSP on

performance grounds, and;
 the observation that LSCSP N+1 would be bottlenecked by business logic

(especially scenarios S1 and S2), rather than by inter-module
communications as was previously expected. This implies that the project
goal of a five-fold improvement in users per server would require major
attention to business logic performance.

These timely and inexpensively obtained results prevented later embarrassment.
They could be used to focus architecture and development activity in LSCSP N+1.

4 The experimentation required about five person-months. It must be emphasized, though, that

the data can be re-used for other estimation. Therefore, the cost of the experiments should be
amortized over other estimations.

366 Steve Masticola, Andre Bondi, and Mark Hettish

6. Future Work

This paper demonstrates the feasibility of model-based scalability estimation based on
industry-standard tools, but it could be made far more efficient with improved tool
support. In particular, estimating the resource usage of the MSD edges was tedious
and error-prone. Given the fact that the commonly-used UML diagramming tools all
support plug-ins, it shouldn’t be too difficult to automate this step.

By annotating activity diagrams with branch probabilities, it should also be

possible to form quantitative performance models in a manner similar to that
suggested by Smith and Williams [7]. In this way, it should be possible to use activity
diagrams as inputs to an analytic queuing model that can help evaluate performance
over all possible scenarios for which the system is designed, rather than just an
enumerated subset.

7. References

[1 Robutsov, Vladimir. “My kingdom for a good timer! Reach submillisecond timing in Java.”
JavaWorld, January 10, 2003.

[2] Robutsov, Vladimir. “Profiling CPU usage from within a Java application. JavaWorld,
November 8, 2002.

[3] Wilson, Matthew. “C# Performance: Comparison with C++, C, D, and Java, Part 1.”
Windows Developer Network, Fall 2003,

[4] JBoss, Inc. “JBoss Administration and Development Guide, JBoss 3.2.6.”
http://docs.jboss.org/jbossas/admindevel326/html/ , 2004.

 [5] Gunther, Neil. The Practical Performance Analyst, iUniverse Inc., 2000.
[6] Robinson, S. et. al. Professional C#. Wrox Press, 2001. ISBN 1861004990.
[7] Smith, C.U. and Williams, L.G. Performance Solutions: A Practical Guide to Creating

Responsive, Scalable Software. Addison Wesley, Boston, 2002. ISBN 0-201-72229-1.
[8] Bondi, A.B. “Characteristics of scalability and their impact on performance.” Proc. WOSP

2000, 195-200, Ottawa, September 2000.
[9] Kruchten, Philippe. The Rational Unified Process: An Introduction, Third Edition. Addison-

Wesley, 2003. ISBN 0-321-19770-4.

Explicit Platform Models for MDA

Dennis Wagelaar� and Viviane Jonckers

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
dennis.wagelaar@vub.ac.be, vejoncke@info.vub.ac.be

Abstract. The main drive for Model-Driven Architecture is that many
software applications have to be deployed on a variety of platforms. The
way MDA achieves this is by transforming a platform-independent model
of the software to a platform-specific model, given a platform model. In
current MDA approaches, the model transformations implicitly represent
this platform model. Therefore, the number of different target platforms
is limited to the number of supported model transformations. We pro-
pose a separate platform model, based on description logics, that can
can be used to automatically select and configure a number of reusable
model transformations for a concrete platform. This platform model can
be extended to describe the relevant platform information, including con-
crete platform instances as well as platform constraints for each model
transformation. This separates the model transformation concern from
the platform concern and, since the model transformations are no longer
limited to targeting one platform, more platforms can be supported with
the same set of transformations.

1 Introduction

The Model-Driven Architecture (MDA) allows for “separating the specification
of the operation of a system from the details of the way that system uses the
capabilities of its platform.” [1]. This enables the deployment of software appli-
cations on a variety of different platforms. The MDA pattern involves modelling
the software in a platform-independent model (PIM). This PIM should then be
transformed to a platform-specific model (PSM), given a platform model (PM).
In current model transformation approaches for MDA [2], the model transforma-
tions themselves implicitly represent this platform model. As such, each platform
requires one or more corresponding model transformations, which are specifically
configured for that platform only. Because the platform concern is not separated
from the model transformation concern, the number of supported target plat-
forms is limited to the number of supported model transformations.

In practice, this means that only a relatively small number of general plat-
forms can be targeted, e.g. Java, EJB [3] or C++. Targeting very specific plat-
forms, e.g. Qtopia Palmtop Environment[4] or J2ME Mobile Information Device

� The author’s work is part of the CoDAMoS project, which is funded by the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders)

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 367–381, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

368 Dennis Wagelaar and Viviane Jonckers

Profile 1.0 [5], is not feasible because of the maintenance overhead, even though
such precise targeting can result in a better optimised PSM in terms of memory
footprint, available features, etc. Especially in a world where constrained com-
puting devices become more commonplace every day [6], getting the most out
of such a platform is very important.

On the other hand, most model transformations are reusable over multiple
platforms and it is only how they are configured that makes them applicable
only to one specific platform. For example, one model transformation could tar-
get all Java 2 platforms by transforming UML “to-many” association ends to
attributes using the Java 2 Collections framework. If this transformation is con-
figured to be applied in combination with a transformation that targets the Java
Swing framework, the target platform is already limited to J2SE for the desk-
top computer [7]. The fact that each configuration of model transformations is
also maintained by hand, makes that the problem of limited platform support
remains.

We propose a separate platform model, which can be used to automati-
cally select and configure a number of reusable model transformations for a con-
crete platform. This platform model is expressed in the Web Ontology Language
(OWL) [8], which is an extensible language for describing ontologies. Further-
more, we use the OWL-DL variant, which corresponds to description logics [9],
such that computational completeness can be guaranteed. This platform model
forms a basis for describing platforms in general and can be extended to include
the specific platform information that is relevant for a particular application do-
main. The model transformations can be augmented with a platform constraint
that refers to the platform model. This way, the model transformations are no
longer limited to one platform, but can instead be used for a well-defined class
of platforms. An automatic reasoner, such as RACER [10] or Pellet [11], can be
used to verify whether a concrete platform satisfies the platform constraints of
a model transformation.

Section 2 explains in detail how platforms can be modelled. The definition of
platform dependency constraints is discussed in section 3 and is illustrated by an
example PIM and example model transformations. Section 4 explains how rele-
vant model transformations are selected, based on their platform constraints and
the concrete platform description. Section 5 discusses related work and section 6
concludes this paper.

2 Modelling Platforms

In order to reason about platforms and platform constraints, an ontology of plat-
forms is used. Ontologies can serve as a common vocabulary for a domain [12].
The relationships between the ontology elements can be used to reason about
elements based on that ontology, even if those elements aren’t related directly.
A platform ontology allows one to base expressions about a platform on the
vocabulary expressed by the ontology. By using a shared model of platforms, we
can reason about the relationship between a platform description and a platform

Explicit Platform Models for MDA 369

constraint, even if the two do not have a direct relationship. An example plat-
form constraint is that the Java 2 Collections framework needs to be present.
An example of a platform description is a Sharp Zaurus hand-held computer.
Since both the platform constraint and the platform description refer to the
platform ontology to explain what the Java 2 Collections framework and the
Zaurus hand-held computer are, one can derive whether the Zaurus hand-held
computer platform satisfies the Java 2 Collections framework constraint.

2.1 A Platform Vocabulary

Before modelling any specific platforms or platform properties, a basic structure
needs to be defined, into which platform extensions can be fitted. We will use
a predefined ontology for describing computing context [13], which includes the
platform. This ontology is in turn inspired by the User Agent Profile specification
(UAProf) [14] and Composite Capability/Preference Profiles (CC/PP) [15], both
of which are standards intended to describe target platforms. The ontology is
expressed in OWL, an extensible standard for describing ontologies. OWL has
a variant, called OWL-DL, that corresponds to description logics, allowing for
automated reasoning about the ontology. The ontology used complies to this
OWL-DL variant. The part of the ontology that models platforms is shown in
Fig. 1.

Fig. 1. Part of the context ontology for describing platforms

The platform concept in this ontology can provide software and hardware. A
’*’ next to the relationship names denotes a one-to-many relationship. Software
and hardware are broken down into different sub-concepts. This is denoted by
the special “isa” subsumption relationship, e.g. the set of operating systems

370 Dennis Wagelaar and Viviane Jonckers

subsumes the set of software in general. The software can impose requirements
on the platform, e.g. the need for a network resource, a particular virtual machine
or a user interface rendering engine that supports voice communication. This is
denoted by the “requiresPlatform” relationship, which points to a description of
the required platform.

The ontology can be extended for particular domains of platforms, such as
Java virtual machines. Fig. 2 shows part of such an ontology. Above the line is a
taxonomy of the Java virtual machines themselves. The “VirtualMachine” con-
cept starts with “context:” to indicate it refers to the “VirtualMachine” concept
from the main context ontology. The “JavaVM” can be subdivided in many dif-
ferent configurations. The “JDK” was the first Java configuration. “J2SE” refers
to the virtual machines based on JDK 1.2 or up. “PersonalJava” is an early ver-
sion of Java for mobile devices, which was later re-done as “J2ME”. “J2ME”
offers two main configurations, “CDC” and “CLDC”, which are in turn refined
by several sub-profiles. Each of these virtual machine classes implies a specific
set of libraries and rendering engines. This is shown below the line: the “JDK”
includes a simple “AWT” rendering engine, whereas “JDK1.1” already supports
event-driven AWT, as does “CDC”. “J2SE” includes “Swing” in addition and
“MIDP” has its own rendering engine, named “LCDUI”. Similarly, different ver-
sions of the java.util library are included in the “CLDC”, “JDK”, “CDC” and
“J2SE” virtual machines.

Fig. 2. Part of an ontology describing Java virtual machines

Explicit Platform Models for MDA 371

2.2 Modelling Concrete Platforms

Given the base context ontology and the extensions for the relevant domains, we
can model concrete platforms as ontology instances. The Sharp Zaurus PDA, for
example, has a J2ME PP virtual machine. The ontology extension that describes
this is shown in Fig. 3.

Fig. 3. Partial platform description for the Sharp Zaurus PDA

The concepts “Platform” and “PP” are taken from the context and Java on-
tologies. The instances, “zaurusC860” and “zaurusPP”, are depicted as rounded
rectangles and are instances of the “Platform” and “PP” classes. This is depicted
by the “io” relationships. Finally, the “zaurusC860” platform has a “provides-
Software” relationship with the “zaurusPP” Java Personal Profile virtual ma-
chine.

3 Modelling Platform Dependencies

The platform dependencies for a particular model transformation can be mod-
elled by defining new, completely specified concepts. Such concepts have necessary-
and-sufficient constraints in addition to any necessary constraints. A necessary
constraint is depicted by the “isa” relationship: whereas it is necessary that each
“JDK” instance is also an instance of “JavaVM”, being a “JavaVM” instance is
not sufficient for also being a “JDK” instance (see Fig. 2). We will use the nota-
tion for describing conditions as used in the Protégé ontology modelling tool [16].
A constraint that requires a platform with an “AWT” rendering engine can be
defined as a concept “JavaAWTPlatform”, which is a sub-concept of “Platform”
(necessary) and provides an “AWT” rendering engine (necessary-and-sufficient):

JavaAWTPlatform � context : P latform

≡ ∃ context : providesSoftware java : AWT

Whenever a “Platform” instance fulfils the condition of providing an “AWT”
rendering engine, it can be classified as an instance of “JavaAWTPlatform”. This
classification can be performed by automatic reasoners. This way, concrete plat-
form instances can be matched against a completely defined constraint concept.

372 Dennis Wagelaar and Viviane Jonckers

If the platform instance classifies as an instance of the constraint concept, then
the constraint holds for that instance. For example, the “zaurusC860” platform
from Fig. 3 classifies as an instance of “JavaAWTPlatform”, since “zaurusPP”
is an instance of “PP”, which is a sub-concept of “AWT”.

3.1 Example PIM

Fig. 4 shows the UML class diagram of part of the PIM for a simple instant
messaging client. The instant messenger client is able send and receive messages
over different kinds of networks (e.g. Jabber/Internet or SMS)1. It also keeps a
list of contacts for each supported network. The InstantMessagingClient both
uses and implements the ErrorReporter interface: it reports raised exceptions
either on the command line or on a Network that implements ErrorReporter
(e.g. a Loopback network). The design is split up in a model, edit, view and
networking part, each in their own package. Concrete view and network types
are not shown in the class diagram and will not be considered for the purpose
of our example.

The example PIM contains several elements that are not available in the
programming language used for the target platform. These elements are the
“Applet”, “Observer”, “Observable”, “subscribe” and “Singleton” stereotypes,
the “String”, “Integer”, “Exception” and “OclAny” data types, association re-
lationships and specifications of operations (e.g. in OCL, a dynamic diagram or
an Action Language). Model transformations can be defined to translate each
of these elements to one or more elements that are available in the target pro-
gramming environment. Examples of some of these model transformations will
be discussed below. The ATL transformation language [17], which has a simple,
rule-based syntax, will be used to express these examples.

3.2 Example Model Transformations

A common way for transforming UML 1.5 [18] associations to corresponding at-
tributes in Java is to use the Java 2 Collections framework to implement a one-to-
many association. The following transformation rules use the java.util.List
interface and the implementing java.util.ArrayList class to achieve a one-
to-many association2:

rule AssocToSingleAttr {
from s : INMODEL ! AssociationEnd (

s.isNavigable and
s.multiplicity.range -> select (r|r.upper <>1)-> isEmpty ())

to t : OUTMODEL ! Attribute mapsTo s (
name <- s.name ,
owner <- s. association.connection ->select(x|x<>s)->first ().participant ,

1 The Network class in the model actually represents a network connection; this is
why InstantMessagingClient “owns” Network

2 Note that, in ATL, additional headers are needed and rules are necessary for each
model element that needs to be copied/transformed. Only the rules that perform
actual transformation are shown here for brevity.

Explicit Platform Models for MDA 373

<< Observer , Singleton , Applet >>

InstantMessagingClient

+ init ():
+ start ():
+ stop ():
+ onRecvMsgChange (r:Message):
+ onRecvContactChange (c:Contact):
+ report (e:Exception):
−loadSettings ():

model

Contact

+ userId :String
+ name :String
+ status :String

<< Observable >>

ContactList

+ getIdentity (forNw :Network):Identity
+ getUserName (userId :String):String

list+

contact+

*
{ordered }

<< Observable >>

NetworkSpecificData

<< Observable >>

Conversation

contact+

Identity

+ password :String

Message

+ sender :String
+ recipient :String
+ content :OclAny

+ send ():
conversation+

message+

edit

<< Observer >>

ContactEdit

<< create >> + ContactEdit (c:Contact):ContactEdit
+ onStatusChange (s:String):
+ onNameChange (n:String):
−onChange ():
+ formatContact ():String

<< Observer >>

ConversationEdit

<< create >> + ConversationEdit (c:Conversation):ConversationEdit
+ onMessageChange (m:Message):
+ onContactChange (c:Contact):
+ onConversationClose
+ onConversationSend
−getSender (recipient :Contact):Contact

<< Observer >>

ContactListEdit

<< create >> + ContactListEdit (c:ContactList):ContactListEdit
+ onContactChange (c:Contact):
+ onContactListAdd ():
+ onContactListRemove ():
+ onContactListAction ():
+ onNewContactDialogClose (okClicked :Boolean ,dlg :NewContactDialog):
−getContactEditIndex (contact :Contact):Integer

listEdit+

contactEdit+

*
{ordered }

contactList+

networking

<< Observable >>

Network

+ name :String
+ recvMsg :Message
+ recvContact :Contact

+ send (msg :Message):
+ login (uid :String ,pwd :String):
+ logout
+ addContact (c:Contact):
+ removeContact (c:Contact):
+ getDefault ():Network[]

model+

<< subscribe >>

conversation+

*{ordered }

view

<< interface >>

ContactListView

+ addContact (c:String ,index :Integer):
+ removeContact (index :Integer):
+ addListener (l:ContactListViewListener):
+ getSelectedContact ():Integer
+ setEnabled (enabled :Boolean):

<< interface >>

ConversationView

+ getContent ():OclAny
+ addContent (c:OclAny):
+ addListener (l:ConversationViewListener):
+ setTitle (t :String):
+ toFront ():

NewContactDialogListener

<< interface >>

NewContactDialog

+ getUid ():String
+ getName ():String
+ getNetwork ():Integer
+ getPassword ():String
+ addListener (l:NewContactDialogListener):
+ addNetwork (n:String):

ContactListViewListener ConversationViewListener

ViewFactory

+ createContactListView ():ContactListView
+ createNewContactDialog ():NewContactDialog
+ createConversationView ():ConversationView
+ getDefault ():ViewFactory

model+
<< subscribe >>

view+
view+

model+

<< subscribe >>

network+

1..*
{ordered }

<< subscribe >>

network+

BelongsToNetwork

viewFactory+

ExceptionReporter

Fig. 4. Example PIM class diagram for a simple instant messaging client

374 Dennis Wagelaar and Viviane Jonckers

type <- s.participant ,
visibility <- s.visibility ,
ownerScope <- s.targetScope ,
changeability <- s.changeability)

}

rule AssocToArrayList {
from s : INMODEL ! AssociationEnd(

s.isNavigable and
not s.multiplicity.range ->select (r|r.upper <>1)-> isEmpty ())

using { list : INMODEL ! Interface =
INMODEL !Interface.allInstances()->select(c|c.name=’List ’)->first (); }

to t : OUTMODEL ! Attribute mapsTo s (
name <- s.name ,
owner <- s. association.connection ->select(x|x<>s)->first ().participant ,
type <- list ,
visibility <- s.visibility ,
ownerScope <- s.targetScope ,
changeability <- s. changeability ,
initialValue <- value),

value : OUTMODEL ! Expression (
language <- ’java ’,
body <- ’new java.util.ArrayList();’)

}

The transformation rules translate only the navigable association ends to
attributes. The first rule translates all association ends with an upper multiplicity
range of “1” to simple attributes. The second rule translates all association ends
with an upper range other than “1” to Java Lists. The from keyword indicates
the element to read from the source model, whereas the to keyword indicates
the element to be created in the target model. The INMODEL and OUTMODEL in
the transformation refer to the meta-models used, which is the UML 1.5 meta-
model in both cases. The second rule has a using clause, which locates the Java
List interface. This List interface is then used as the type of the attribute that
is created. The ArrayList class is used for initial value of this attribute.

The AssocToSingleAttr transformation rule does not use any Java-related
elements, and has no platform dependencies. The AssocToArrayList rule uses
the Java 2 Collections framework, which is part of the “Java2Util” library from
Fig. 2. This corresponds to the following constraint:

Java2UtilP latform � context : P latform

≡ ∃ context : providesSoftware java : Java2Util

An alternative for the AssocToArrayList rule could use the java.util.Vector
class to implement the one-to-many association:

rule AssocToVector {
from s : INMODEL ! AssociationEnd(

s.isNavigable and
not s.multiplicity.range ->select (r|r.upper <>1)-> isEmpty ())

using { vector : INMODEL !Class =
INMODEL !Class. allInstances()->select (c|c.name=’Vector ’)->first (); }

to t : OUTMODEL ! Attribute mapsTo s (
name <- s.name ,
owner <- s. association.connection ->select(x|x<>s)->first ().participant ,
type <- vector ,
visibility <- s.visibility ,
ownerScope <- s.targetScope ,
changeability <- s. changeability ,
initialValue <- value),

Explicit Platform Models for MDA 375

value : OUTMODEL ! Expression (
language <- ’java ’,
body <- ’new java.util.Vector ();’)

}

Because the Java Vector class is already available in the “CLDCJavaUtil”
library from Fig. 2, the platform constraint can be relaxed to only requiring a
“CLDCJavaUtil” library:

JavaUtilP latform � context : P latform

≡ ∃ context : providesSoftware java : CLDCJavaUtil

4 Selecting Model Transformations

In order to select which model transformations need to be applied, the trans-
formations are grouped into sets of alternatives that represent the same func-
tionality. This grouping can be (partially) automated, based on a heuristic that
checks the input specification of the transformation rules. If certain transforma-
tion rules have the same input specification, then they are considered alterna-
tives. The transformation rules AssocToArrayList and AssocToVector, given
in subsection 3.2, have the same input specification (represented by the from
part). Hence, they are considered to be alternatives belonging to one group. The
groups that are formed in this way can be adapted manually afterwards. The
grouping information is reusable over multiple PIMs and PMs: it only has to be
re-computed if the set of transformation rules changes. An example grouping for
the model transformations needed for our example PIM is shown in Table 1.

AssocToArrayList | AssocToVector

Observer | JavaObserver

Accessors | Java2Accessors

Applet | MIDlet

Singleton

DataTypes | Java2DataTypes

Table 1. Example model transformations grouping

The AssocToArrayList and AssocToVector transformations have already
been discussed and form one group.The Observer and JavaObserver transfor-
mations both implement the “Observer”, “Observable” and “subscribe” stereo-
types. The first transformation requires no Java API, while the second uses the
Java 1.0 java.util.Observer interface and the java.util.Observable class.
The Accessors transformation creates accessor operations (getters and setters)

376 Dennis Wagelaar and Viviane Jonckers

for each public attribute. Java2Accessors does the same, but uses the Java 2
Collections data types. The Applet transformation transforms all classes with
the “Applet” stereotype into Java applets, whereas the MIDlet transformation
transforms the same classes into J2ME MIDlets. The Singleton transformation
adds the singleton infrastructure to each class with the “Singleton” stereotype.
Finally, the DataTypes and the Java2DataTypes transformations translate the
OCL data types into Java data types and Java 2 Collections data types respec-
tively.

Since some model transformations may depend on the result of other model
transformations, they need to be ordered. The transformation dependencies can
also be checked (semi-)automatically by a heuristic that checks if the input speci-
fication of a transformation may overlap with the output specification of another
(represented by the to part). The output specification of the Java2Accessors
transformation states that it creates new operations. If another model transfor-
mation, JavaObserver, adapts all setter accessor operations for each Observable,
then its input specification could match elements generated by Java2Accessors.
Hence, Java2Accessors has to be placed before JavaObserver. If no decision
can be made on whether to put one transformation before another, the order is
left unchanged. This way, the developer can already pre-sort the groups of trans-
formations manually. The sorting information is, again, reusable over multiple
PIMs and PMs: it only has to be re-computed if the set of transformation rules
changes. The sorted list of transformation groups is shown in Table 2.

AssocToArrayList | AssocToVector

Accessors | Java2Accessors

Observer | JavaObserver

Applet | MIDlet

Singleton

DataTypes | Java2DataTypes

Table 2. Example model transformations grouped and sorted

From each group, at most one model transformation is selected. This selec-
tion is based on platform relevance. The platform relevance is determined by
subsumption of constraint concepts. If a constraint concept defines a subset of
another constraint concept, then that constraint is considered more platform-
specific3. Consider the following platform constraint:

CLDCUtilP latform � context : P latform

≡ ∃ context : providesSoftware java : CLDCJavaUtil

3 This criterion is based on the “Do the Most Specific” conflict resolution strategy in
Forward Chaining reasoners such as OPS5 [19] and successors.

Explicit Platform Models for MDA 377

Compared to the “Java2UtilPlatform” constraint, this constraint requires the
“CLDCJavaUtil” library instead of the “Java2Util” library. Since “Java2Util”
subsumes “CLDCJavaUtil” (see Fig. 2), “Java2UtilPlatform” also subsumes
“CLDCUtilPlatform”. Reasoner engines, such as RACER, can automatically
determine a taxonomy of constraints using such inference rules. Note that this
taxonomy can be determined without knowledge of any concrete platform (i.e.
the platform instances). As such, this taxonomy can be pre-computed and only
needs re-computing if the set of constraints changes.

One can imagine that there are cases in which one cannot determine whether
a constraint concept subsumes another constraint concept. Consider the follow-
ing constraint:

AWTUtilP latform � context : P latform

≡ ∃ context : providesSoftware java : CLDCJavaUtil ∧
∃ context : providesSoftware java : AWT

When comparing this constraint to “Java2UtilPlatform”, no conclusion can
be made on which is more specific. While “CLDCJavaUtil” is subsumed by
“Java2Util”, nothing can be said about “AWT”, since no comparable rule occurs
within the “Java2UtilPlatform” constraint. It is very unlikely that functionally
equivalent model transformations (i.e. alternatives from one group) will have
orthogonal (parts of) constraints (e.g. one constraint requires “AWT” whereas
another requires nothing of the sort). However, to cope with this case, one can
manually order a group of model transformations, such that the first most-
specific is chosen.

When selecting the model transformations for a specific platform, (1) the
local constraint taxonomy is taken for each group of alternative transformations
and (2) pruned such that all constraints that do not hold are removed. Note that,
if no transformations are left for a particular group after this step, no PSM can
be generated for the given platform. Then, (3) the first model transformation
for which the constraint forms a leaf in the taxonomy tree is chosen. All of the
steps 1-3 are of linear complexity4, so the selection mechanism in its entirety
also performs in linear time.

The list of chosen transformations for the example platform from Fig. 3 is
shown in Table 3.

The AssocToArrayList transformation was chosen over the AssocToVector
transformation, because it requires a “Java2Util” library instead of a “CLDC-
JavaUtil” library. For the same reason, the Java2Accessors transformation is
chosen over Accessors. The JavaObserver transformation is chosen over the
Observer transformation, because it requires a “JDKUtil” library instead of
just any “JavaVM”. Applet is chosen over MIDlet because the constraint of the
latter did not hold (a MIDlet requires J2ME MIDP). Finally, Java2DataTypes
is chosen over DataTypes, because it again requires a “Java2Util” library instead
of a “CLDCJavaUtil” library.

4 the set of transformations and the set of constraints are constant at this time

378 Dennis Wagelaar and Viviane Jonckers

AssocToArrayList

Java2Accessors

JavaObserver

Applet

Singleton

Java2DataTypes

Table 3. Example selection of model transformations

5 Related Work

Model transformations are subject to similar configuration management issues
as regular software components [20]. Transformation dependencies can be made
explicit through their input and output specifications. Limited versioning sup-
port is provided by the platform constraints: one can discriminate on platform-
specificness of different versions of a transformation.

In Generative Programming [21] and Step-Wise Refinement [22], features and
feature models are used to model a family of software systems instead of a single
system. Features can be optional or mandatory for a software system, depending
on the presence of other features. In our framework, features are implicitly gener-
ated by model transformations, which are chosen based on platform constraints.
Feature models can be used to verify if the chosen transformations represent a
valid set of features.

The lack of explicit platform models is also discussed in [23]. They introduce
abstract platforms, which describe a set of elements to model a PIM against. This
set of elements includes design artifacts that are available in a target platform
(classes, interfaces) and design constructs that can be mapped to that platform
(stereotypes, profiles), e.g. with model transformations. The goal of abstract
platforms is to ease platform-independent modelling, whereas our platform mod-
els are meant to decouple model transformations from concrete platforms.

In [24], platform selection rules are discussed, which allow for pre-selecting
a number of target platforms. In that way, less platforms need to be supported.
In our case, platform selection rules can be used to narrow down the amount of
platform domain aspects (e.g. Java virtual machines) that need to be modelled
for a particular application domain (e.g. instant messaging). This does not con-
flict with the envisioned scenario [6] that targets an open-ended infrastructure of
unanticipated devices, since this is supported by in-depth modelling of platform
domain aspects, not the amount of aspects that are modelled.

In [25], an infrastructure for combining UML/MOF models and ontologies
is introduced. Such an infrastructure can be useful for a better integration of
platform constraints into model transformation languages that are based on
MOF.

Explicit Platform Models for MDA 379

6 Conclusion and Future Work

This paper has introduced a platform modelling framework that can describe
platform constraints as well as instances of concrete platforms. By separating
the platform concern from the model transformation configuration and moving it
to an explicit platform model, the model transformations can be reused over sev-
eral platforms. Our framework can automatically select a number of applicable
model transformations for a specific platform. This is done by matching platform
constraints for each model transformation against a concrete platform descrip-
tion. Both of these are based on a common ontology, described in OWL-DL,
such that an automatic reasoner can determine whether the platform matches
the constraint. In this way, more than one concrete platform can be supported
with the same set of model transformations.

Note that the reusability of the individual model transformations remains
the same. Only the configurations of model transformations, which are far less
reusable than an individual transformation, are now automatically derived by
means of an explicit platform model. As such, the separation of the platform
concern from the model transformation concern is not complete, since each model
transformation must include the local platform information that it is supposed
to add to the PSM.

The chosen ontology for modelling platforms may not be general enough for
all cases and it may also not be specific enough in some cases. Experience will
have to show how far we can go with the current ontology. However, we expect
that our mechanism can also be applied to different ontologies, since it only
requires that the constraints are expressed in description logic.

For the selection mechanism, all the potentially expensive calculations are
done in advance (i.e. transformation grouping and sorting and calculating the
subsumption taxonomy of constraints). Only if the set of transformations or
the set of constraints on those transformations changes, these calculations need
to be redone. When transforming a PIM to a PSM, using a concrete platform
model, three steps are performed to select which model transformations need to
be applied. Each of these steps are of linear complexity, such that the mechanism
in its entirety also performs in linear time. As such, the proposed mechanism
should scale sufficiently.

Using the current ordered lists of model transformation groups, only a lim-
ited set of model transformation dependencies can be expressed. The example
used in this paper shows a group containing the AssocToArrayList and Assoc-
ToVector transformations and another group containing Accessors and Java2-
Accessors. While we can express that the second group depends on the first, we
cannot express that, for the sake of type consistency, AssocToArrayList may
only be applied in combination with Java2Accessors. Recent work on feature
modelling [26, 27] and product families [28] provides promising approaches for
modelling such complex dependencies and do automatic reasoning on them. We
will also investigate if we can map these feature modelling approaches to descrip-
tion logic in order to integrate feature modelling with our platform modelling
approach.

380 Dennis Wagelaar and Viviane Jonckers

Acknowledgement

The author would like to thank Ragnhild Van Der Straeten, Bruno De Fraine
and Wim Vanderperren for reviewing a draft of this paper. Furthermore, the
author would like to thank the CoDAMoS project user committee for discussing
their ideas for the Instant Messaging scenario, which were useful for the example
PIM in this paper.

References

[1] Miller, J., Mukerji, J.: MDA Guide. Object Management Group, Inc. (2003)
Version 1.0.1 (omg/03-06-01).

[2] Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches.
In: OOPSLA 2003 Workshop on Generative Techniques in the context of Model
Driven Architecture. (2003)

[3] DeMichiel, L., Ümit Yalçinalp, L., Krishnan, S.: Enterprise
JavaBeansTMSpecification. Sun Microsystems, Inc. (2001) Version 2.0.

[4] Trolltech: Qtopia application platform for embedded Linux. (2005) [Online]
http://www.trolltech.com/products/qtopia/.

[5] Sun Microsystems, Inc.: Java 2 Micro Edition website. (2005) [Online]
http://java.sun.com/j2me/.

[6] Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: Scenarios
for Ambient Intelligence in 2010. IST Advisory Group (ISTAG). (2001) [Online]
ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf.

[7] Sun Microsystems, Inc.: Java 2 Standard Edition website. (2005) [Online]
http://java.sun.com/j2se/.

[8] Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide.
World Wide Web Consortium. (2004) W3C Recommendation 10 February 2004.

[9] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, Cambridge, UK (2003)

[10] Möller, R., Haarslev, V.: Description Logics for the Semantic Web: Racer as a
Basis for Building Agent Systems. Künstliche Intelligenz (2003) 10–15

[11] Parsia, B., Sirin, E., Grove, M., Alford, R.: Pellet website. Mindswap. (2005)
[Online] http://www.mindswap.org/2003/pellet/.

[12] Gruber, T.R.: A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition 5 (1993) 199–220

[13] Preuveneers, D., den Bergh, J.V., Wagelaar, D., Georges, A., Rigole, P., Cler-
ckx, T., Berbers, Y., Coninx, K., Jonckers, V., Bosschere, K.D.: Towards an
extensible context ontology for Ambient Intelligence. In: Proceedings of the Sec-
ond European Symposium on Ambient Intelligence, Eindhoven, The Netherlands,
Springer-Verlag (2004) 148–159

[14] Open Mobile Alliance: User Agent Profile 2.0 Specification. (2003) Version 20-
May-2003.

[15] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M.H., Tran, L.:
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies
1.0. World Wide Web Consortium. (2004)

[16] Stanford Medical Informatics, Stanford University School of Medicine Stanford,
CA, USA: Protégé Project website. (2005) [Online] http://protege.stanford.edu/.

Explicit Platform Models for MDA 381

[17] Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments
with the ATL model transformation language: Transforming XSLT into XQuery.
In: OOPSLA 2003 Workshop on Generative Techniques in the context of Model
Driven Architecture. (2003)

[18] Object Management Group, Inc.: Unified Modeling Language Specification.
(2003) Version 1.5 (formal/03-03-01).

[19] Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming expert systems
in OPS5: an introduction to rule-based programming. Addison Wesley, Reading,
Massachusetts, USA (1985)

[20] Larsson, M.: Applying Configuration Management Techniques to Component-
Based Systems. Licentiate thesis, Department of Information Technology, Uppsala
University, Uppsala, Sweden (2000) Also published as report MRTC 00/24 at
Mälardalens högskola.

[21] Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. 1st edn. Addison Wesley, Reading, Massachusetts, USA (2000)

[22] Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. In:
Proceedings of the 25th International Conference on Software Engineering (ICSE
2003), Portland, Oregon, USA, IEEE Computer Society (2003) 187–197

[23] Almeida, J.P., Dijkman, R., van Sinderen, M., Pires, L.F.: On the Notion of
Abstract Platform in MDA Development. In: The 8th International IEEE En-
terprise Distributed Object Computing Conference, Monterey, California, USA,
IEEE Computer Society (2004) 253–263

[24] Tekinerdoğan, B., Bilir, S., Abatlevi, C.: Integrating Platform Selection Rules
in the Model-Driven Architecture Approach. In Aßmann, U., ed.: Proceedings
of Model Driven Architecture: Foundations and Applications (MDAFA 2004),
Linköping, Sweden, Research Center for Integrational Software Engineering,
Linköping University (2004) 184–200

[25] Bézivin, J., Devedz̆ić, V., Djurić, D., Favreau, J., Gas̆ević, D., Jouault, F.: An M3-
Neutral infrastructure for bridging model engineering and ontology engineering.
In: First International Conference on Interoperability of Enterprise Software and
Applications (INTEROP-ESA’05), Geneva, Switzerland, Springer-Verlag (2005)

[26] Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature
Models. In: Proceedings of the 17th Conference on Advanced Information System
Engineering (CAiSE’05), Porto, Portugal (2004)

[27] Klint, P., van der Storm, T.: Reflections on Feature Oriented Software Engineer-
ing. In: OOPSLA Workshop on Managing Variabilities Consistently in Design
and Code (MVCDC 2004), Vancouver, Canada (2004)

[28] Liu, J., Batory, D.: Automatic Remodularization and Optimized Synthesis of
Product-Families. In: Proceedings of the Third International Conference on
Generative Programming and Component Engineering (GPCE 2004), Vancouver,
Canada, Springer-Verlag (2004) 379–395

Integrated Model-Based Software Development,

Data Access, and Data Migration

Behzad Bordbar1, Dirk Draheim2,
Matthias Horn3, Ina Schulz3, and Gerald Weber4

1 School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK

B.Bordbar@cs.bham.ac.uk
2 Institute of Computer Science, Freie Universität Berlin

Takustr. 9, 14195 Berlin, Germany
draheim@acm.org

3 IMIS Projekt, Condat AG
Alt-Moabit 91d, 10559 Berlin, Germany

{horn,schulz}@condat.de
4 Department of Computer Science, The University of Auckland

38 Princes Street, Auckland 1020, NZ
g.weber@cs.auckland.ac.nz

Abstract. In this paper we describe a framework for robust system
maintenance that addresses specific challenges of data-centric applica-
tions. We show that for data-centric applications, classical simultaneous
roundtrip engineering approaches are not sufficient. Instead we propose
an architecture that is an integrated model-based approach for software
development, database access and data migration. We explain the canon-
ical development process to exploit its features. We explain how the
approach fits into the model-driven architecture vision. We report on ex-
periences with the approach in the IMIS environmental mass database
project.

1 Introduction

It is well-known that maintenance cost regularly is the largest share of software
expenditure [4]. Software development does not end after deployment of the ini-
tial system version at the customer site. On the contrary, changing functional
and non-functional requirements enforce changes in the system and its structure.
Software development process models tended to underemphasize the importance
of maintenance [28], and are only recently targeting easy maintenance. More se-
riously and often overlooked, data migration is an issue in software maintenance.

In a model-based approach, simultaneous roundtrip engineering can add
value to software development and assist in system maintenance. For data-centric
applications however, classical simultaneous roundtrip engineering approaches
are not sufficient: during a system’s lifetime data have been gathered that must
be transported from the old system version to the new system version. This
means that you have to deal with database reorganization [24].

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 382–396, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Integrated Model-Based Software Development 383

In practice [26], vendors have started to integrate database mapping facilities
into CASE tools and integrated development environments that are capable of
model-based development, but this does not solve the data migration problem.
As a matter of fact, data migration is still mostly done by hand-coded SQL
scripts. This is not a legacy problem of relational databases. Please note that
the advanced features of object-relational database management systems [27] for
altering database schemas do not help with data migration problems. In prac-
tice, relational database technology is here to stay [5]. Therefore a well-defined
object-relational mapping mechanism is needed. Hand-coding SQL scripts for
data migration is tedious and error-prone in a model-based scenario with object-
relational mapping: the abstraction level achieved by model-orientation is broken
and the developer has to understand all details of the object-relational mapping.

In this paper we describe a comprehensive framework that provides a solution
for the problem posed. We present an integrated model-based approach to (i)
object-oriented software development and simultaneous roundtrip engineering,
(ii) transparent database access and (iii) data migration. It employs object-
relational mapping and novel features like automatic model change detection,
and data migration API generation. The paper describes the design rationales
of the framework.

The framework incorporates technology that tightly integrates from scratch
model evolution, programming language type evolution, database schema evolu-
tion and customer data migration [7, 9].

The described framework basically consists of a generator for data migration
APIs. For each combination of a current model and an intended new model a
specialized data migration API is generated. On the one hand the generated
data migration API is intended to be as complete as possible with respect to
automatically inferring a schema mapping from the two models under consider-
ation, on the other hand it provides as many hooks as needed to fully customize
the data migration. With this approach guidance for the implementation of the
data migration is provided. Furthermore, the customizations can be done on the
level of transparent database access.

Our framework realizes a persistent object-oriented programming environ-
ment. Although relational database technology is employed in the back end, our
framework enables us to discuss problems of schema evolution and migration of
customer data solely on the level of the object-oriented system model: changes in
the object model have a defined footprint in the database schema, and existing
data are transformed into the new system accordingly.

In Sect.2 we discuss an introductory example of model evolution with respect
to persistent data. We describe how we achieved our goals in Sect. 3. In this paper
we take for granted the advantages of transparent database access and do not
delve into a discussion under which circumstances transparent database access
may infringe the best practice of data independency as provided by mature
modern database technology, with, for example, respect to performance tuning.
Actually, our approach of lifting data migration to the transparent database
access level has proven in the IMIS project to stabilize the development and speed

384 Behzad Bordbar et al.

up the development cycles. We report on the IMIS project and its experiences
with our approach in Sect. 4. The paper finishes with a discussion of related
work and a short conclusion in Sects. 5 and 6.

2 The Model Evolution Problem

Figure 1 shows the model evolution of a Company class with an address attribute
and some further attributes. The modified model has a new Address class with
a new street attribute, city attribute and zip attribute. The address attribute
is removed from the Company class. Furthermore there exists an association
between the Company class and the Address class. This way the schema migra-
tion is uniquely defined. However the data migration is more complicated and
depends on the semantics of the changes. In the current example new objects
of Address type have to be created and linked to the correct Company objects,
whereas their attributes have to be computed properly from the old address
attributes.

In a working framework solution the developer must have the capability to
define the data migration based on his or her semantic knowledge about the
information base. However, at the same time the developer should be supported
with respect to canonically given parts of data migration, which can be gen-
erated. In our simple example the framework can assume that the remaining
attributes of the Company class, i.e. the non-address attributes, are intended to
have the same semantics in the new model as in the old model. Based on this as-
sumption the data migration is conceptually just a copying for these attributes.
Of course an elaborated approach has to provide means to override the default
behavior of such simple data migration parts, too.

3 The Proposed Integrated Approach

3.1 The Solution Framework

In our approach applications are developed by simultaneous roundtrip engineer-
ing of Java programs and UML diagrams. The approach provides transparent
database access to a relational database and support for data migration. Fig-
ure 2 shows the components of the approach and their interplay. The solution
consists of the following new components, which we have implemented in the
IMIS project – see Sect. 4.1 – and which encompass a total of 90 kLOC of
documented Java code:

– Extensions to the case tool Together:

• Modules for model annotations. The new model annotations allow for
specifying the persistent classes of the model and the typical customiza-
tions needed for object-relational mapping [23].

Integrated Model-Based Software Development 385

address=

“207 Lake Bvd,

Minneapolis,

MN 55455-0436“

···

address=

“205 Hill Street,

Boulder,

CO 80309-0178“

···

aCompany

aCompany

street=“205 Hill Street“

city=“Boulder“

zip=“CO 80309-0178“

street=“207 Lake Bvd“

city=“Minneapolis“

zip=“MN 55455-0436“

aCompany

aCompany

database

reorganisation

Company

address:String
···

model

evolution

anAddress

anAddress

···

···

Company

···

Company

···

Address

street:String

city:String

zip:String

Address

street:String

city:String

zip:String

Fig. 1. Non-trivial data migration.

• Model generator. The so-called model generator creates a model represen-
tation of the annotated UML model that is appropriate as input for the
generic database adaptor and upgrader generator, which are explained
below. In our implementation model representations consist of serialized
Java objects. These representations are stored in files named model.dat
in Fig. 2.

– Generic database adaptor. For each concrete model this generic compo-
nent [9] realizes the transparent database access layer for the application.
It exploits the information in the model representation by inspection and
generates the necessary SQL queries.

– Arbitrary SQL query API. Note that our approach offers full-fledged support
of typical mapping tools, i.e., the developer is able to formulate arbitrary
SQL queries to the database that go beyond the canonically generated access
methods. Our approach offers an API for this purpose.

– Upgrader generator. The upgrader generator takes an old model representa-
tion, a new model representation, and an auxiliary property file. It generates
an upgrader program API. Next we explain, how database reorganization is
supported with the upgrader generator mechanism.

If database reorganization becomes necessary, three steps are undertaken in
our approach: (i) database cloning, (ii) schema evolution, and (iii) data migra-
tion. Please consider the middle tier of Fig. 2:

(i) Database cloning. First a complete copy of the old database is done. This
clone has to be adapted by schema evolution and data migration to fit the new
model.

386 Behzad Bordbar et al.

application layer

database adaptor

model

model.dat

Together

database adaptor

old database

upgrader

generator

model.dat

property

files
SQL for

schema

modification

upgrader

inserter

database adaptor

upgrader API

+ extra annotation modules

+ model-generator

�

new system

data migration

old system

new application

�

�

RMI

c
lo

n
in

g

Fig. 2. The proposed integrated approach. Developer activity is denoted by a
little icon. Developers work with a simultaneous round trip engineering tool. If
database reorganization becomes necessary they are supported by the upgrader
generator that compares the new model and the old model, detects changes and
generates a data migration program with customizable hooks – the upgrader
API. The developer can influence the upgrader generator with property files.

Integrated Model-Based Software Development 387

(ii) Schema evolution. Then the schema of the clone is changed so that it
correctly implements the new model with respect to object-relational mapping.
For this purpose the upgrader generator compares the new model with the old
model and detects changes. This means that the upgrader generator constructs
a schema morphism along the lines of a defined set of rules. For example classes
with same name are identified in both models. Based on that, the upgrader
generator can detect, for example, new attributes of a class. Of course, entirely
new classes can be detected as well as deleted classes. Sometimes the default
mechanism must be customized. This can be done by the developer via property
files, where he or she partly defines an own schema morphism that overrides
the default morphism. For example, the developer can define the renaming of a
class or attribute. From the detected and defined changes the upgrader generator
generates SQL code that can modify the database appropriately.

(iii) Data migration. Finally, the data of the old database have to be migrated
to the new database. Now cloning the database earlier pays off. For all classes
that are not affected by the model evolution step data migration is already
completed. For each of the other classes the upgrader generator creates an update
class. All the generated upgrade classes form the upgrader API mentioned above.
For some of the affected classes the upgrader generator cannot generate the
correct default data creation – here the property file mechanism comes into play
again: the developer can, for example, specify the movement of classes in the
class hierarchy, or the movement of an attribute from one class to another. The
generated data migration code reads necessary data in the old database via the
old database adaptor. It sends data for the new database via RMI to an inserter
component that writes the data via the new database adaptor into the new
database. The chosen RMI mechanism is a technical detail that prevents name
conflicts by employing two different JVMs for the old and the new system. The
developer can override all generated default data migration code. In cases, where
the upgrader generator cannot guess a solution, data migration code must be
implemented by the developer. Consider our example in Sect. 2: the upgrade
API does not possess default behavior for the creation of new Address objects
– the Address class is entirely new and the splitting of the old address attribute
into the new attributes street, city, and zip is not trivial and must be provided
by the developer.

Our approach addresses two objectives with respect to database reorganiza-
tion: (i) development speed and robustness and (ii) technical speed:

(i) Development speed and robustness. A major part of canonically given
data migration is generated automatically. The developers have to customize
only those parts for which semantic knowledge is required. This speeds up the
development needed and therefore stabilizes the database reorganization process.
Furthermore, the customizations are done on the level of transparent database
access, i.e., on the application programming level, and the developers don’t have
to be aware of the details of the underlying object-relational mapping all the
time during data migration customization.

388 Behzad Bordbar et al.

(ii) Technical speed. The first step in the database reorganization process is
schema migration and there are several ways to do it. One way would be the
creation of a new and empty schema. This could be done easily by generating
DDL statements from the object model. But creating an empty schema implies
that a lot of unchanged data have to be moved from the old into the new schema.
The more efficient way is to keep the data in the original schema. The schema is
to be modified step by step until the structure fits the new model requirements
by dropping, adding and modifying tables or columns etc. Only tables that
are related to changed model elements are touched. However, modifying the
existing data has also its pitfalls. Some object transformation processes may
need information of other objects and these objects may be subject to change,
too. With a copy it is not necessary to take dependencies into account, because
all the information is still accessible in the old schema. The most efficient and
easiest way is to duplicate the database – our tests have shown that it is at least
twenty times faster as an SQL based transport solution.

In the past, all constraints and indices were deactivated during evolution.
This step was necessary in order to avoid that the evolution process is infringed
while it is processing the objects class by class. Since most of the tables and
therewith most of the constraints and indices are not involved in the evolution
process, a more sophisticated treatment of constraints and indices was developed.
This way, in the future it will be possible to deactivate only the few constraints
that really interfere with the upgrade process.

IMIS

original

dump

original

dump

current

baseline

dump

A

B

C

domain data application data

current

baseline

evolution

current

baseline

evolution

database

dumps

development

database

schemas

integration of

model changes

into baseline

evolution

A

evolution

B

developer

workspace

setup

imp

Fig. 3. Development process.

Integrated Model-Based Software Development 389

3.2 The Development Process

At regular intervals, in particular after each installation, the database is dumped
from the production system for all used schemas – consider Fig. 3. The dumps
are used as a basis for database schema setup during development. During de-
velopment the same evolution mechanism is used that is used for installing a
new software version on the production system. Upgrader code always has to be
integrated into the project workspace together with the appropriate model and
code changes. This way, the consistency of model, application code and evolu-
tion code is enforced. To allow faster setup times, the number of data records is
reduced in the dumps that are used during development.

During integration of model changes into the project workspace the com-
monly used database schema is setup with the new upgrader. During setup of
a developer workspace the schema is not affected. In order to prevent that the
work of other developers is affected during setup of a new schema, a second
database instance is used for the new schema. Developers can decide on there
own when to switch to the new schema.

The developer schemas (developers A and B) are set up using the evolution
that corresponds to the model changes the developer has done so far. If no model
changes have been done by a developer (developer C) a dump of repository data
that have already passed through the evolution in the current project workspace
is used for developer workspace setup. This way, most of the developers can setup
there workspace by importing a database dump. As soon as a developer inte-
grates a model change of the repository data model into the project workspace
the current workspace dump is updated using the evolution code just integrated.

At customer site two systems are installed – see Fig. 4. The production
system is accompanied by a so called reference system which is used for testing
purposes. The evolution process is used in two cases: (i) installation of a new
release for testing onto the reference system; and (ii) installation of a new release
onto the production system. In addition to the target database, the evolution
process always uses a second database as source for the upgrader.

productive

data base

test

data base

evolution

copy

evolution

test system

installation

productive

installation

Fig. 4. Installation at the customer site

390 Behzad Bordbar et al.

3.3 On the Integrated Approach and Model Driven Architecture

IMIS draws on the vision promoted by the MDA [25]. In the MDA, the platform
independent model (PIM), which is a high-level abstraction independent of any
technology and platform specific model (PSM), which is the transformation of
the PIM into a specific platform. In our approach, the PIM is captured as a UML
model in the Together CASE tool, which is transferred by the model generator
component to a model.dat file, which is just another way of representing the PIM.
This file is transformed into code consisting of Java, SQL DDL and eventually
SQL DML. Our approach is based on marking PIMs and direct transformation to
code – see Sects. 3.5. and 3.7 of the MDA Guide [16]. However, it is noticeable
that the transformation in our approach takes a special shape. Simultaneous
roundtrip engineering keeps the model and the code in synch by continuous tool
support. Furthermore, the transformation explicitly makes use of an old PIM
(and for technical speed even of an old implementation), because there are parts
in the generated code, i.e., schema manipulating SQL code and customized Java
data migration code, that depends on a notion of PIM model difference. As a
result, the transformation takes into account the information layer, i.e., existing
data, on a conceptual level.

There are different forms of model transformation in the MDA [6, 11]. Round
trip engineering points out an important class of transformations, too. There are
two main advantages in using this kind of transformations. Firstly, code may
include platform specific information added by the developer. In particular, it
may include part of the code that cannot be created automatically. In a rigid
ad-hoc MDA scenario we either (i) have to discard such information, i.e., re-
include them into the code generated from the new model – which is wasteful
and error-prone – or (ii) we have to reverse engineer [3] the entire code to create
a system which mirrors the old system – which is impractical and can create
possible inconsistencies.

In our approach, it is particularly important that the new and the old system
share persistent data. The model goes through evolution, but the persistent data
are cloned and adapted under the umbrella of a defined model transformation. In
a conventional MDA model transformation, there is no defined coupling between
the persistent data and the evolution from the old model to the new one.

4 Experiences with the Integrated Approach

4.1 The IMIS System

Following the nuclear accident in Chernobyl the German federal government
established a program targeting radiation protection and precaution in 1986.
By the end of 1986 the respective federal law StrVG (Strahlenschutz Vorsorge
Gesetz) was adopted. Besides other rules the StrVG contains guidelines for the
installation of an information system for monitoring and prediction of radioac-
tivity in the environment. The first version of IMIS was developed between 1989
and 1993 and it has been in use till March 2005. In this paper we describe the

Integrated Model-Based Software Development 391

entirely new IMIS system, which has been developed by Condat AG in Berlin,
Germany. IMIS gathers environmental data, for example, from air, sea, lakes,
ground water, plants, soil, food, feed, sewage, waste. IMIS has the following
characteristics:

– 2000 measurement stations;
– more than 160 deployed clients;
– 60 client locations;
– 7 days and 24 hours operation.

From the end user’s viewpoint the IMIS system has to be understood as
a collection of rather loosely coupled client applications that together provide
a broad range of features: data collection (automatic and manual), data ex-
port, data import (in particular from the forecast system PARK), data analysis
(browsing with different views, domain specific visualization capabilities), doc-
ument generation (automatic and manual), document retrieval.

server

application

logic

document

management

system

job

batch

processing

client tier

application server cluster

PARK

system

PARK

controller

database cluster

FTP

server

measurement stations

Fig. 5. The IMIS Integrated Measurement and Information System.

The system architecture of the IMIS system is depicted in Figure 5. A central
Oracle9i database stores the data for evaluation and further processing. Config-
uration data for the different functions of IMIS are stored in the same database
instance. It is running on a Sun V880 high availability cluster server consisting of
two nodes. For data storage two Sun T3 storage subsystems are used. Server and
communication processes are hosted on four Sun Fire 280 application servers.
They are redundant and can replace each other in case of failure. All servers are
located at the German federal office for radiation protection BfS (Bundesamt
für Strahlenschutz) in Munich.

392 Behzad Bordbar et al.

PCs are used as client systems. The client software follows a straightforward
fat client approach. While most of the clients are connected via ISDN to the
server LAN, the clients located on site in Munich are connected directly via
Ethernet. Most of the new data that are stored into the IMIS database stems
from the measurement stations. These provide data by uploading it to an ftp
server. From there the data are written by bulk data transfers, in normal op-
eration mode on a daily basis and on a two hour basis in emergency operation
mode.

Further data are stored into the database by the external PARK system
through the PARK controller. Further data are entered manually by the user.
Nearly all the data stored in the IMIS system are long-lived, almost all the
data stay unchanged. There is no heavy transaction load on the IMIS system.
IMIS is estimated to store data about approximately one million measurements
per year - this is equivalent to several million records. This leads to a forecast
of approximately 50 GB of measurement data after 10 years – if certain data
transforms become necessary due to changing requirements, e.g. for reasons of
analytical processing, the actual needed database size has to be reestimated.

4.2 Usage of the Integrated Approach in the IMIS Project

The new IMIS has been installed in a preliminary version in October 2003 and
was used for continuous test operation until November 2004. At this point in
time the system was upgraded to the final version using the upgrade technique
described here for the first time in a production environment. In February 2005
an improved and optimized update was installed, which officially substituted
the old IMIS system on April 1st 2005. The data stock has continuously evolved
during the test period from October 2003 till February 2005 and was migrated
to each new version with the evolution technique described here.

Figure 6 shows some key figures for both major evolution steps. For each
installation the total number of data records in the database, the number of
model changes and the quantity of objects that were actually affected by data
migration are given.

Besides these figures we gained the following experiences:

– The actual evolution step, which is copying objects between the old and
the new database, takes only three to five minutes on our target hardware.
Therefore the mechanisms that has been implemented to reduce the necessity
of object copying can be considered as working.

– The usage of evolution code during development leads to a reliable data
migration at customer site. We encountered no data corruption or misses
caused by evolution.

– Both uses of the evolution technique performed on the real system has shown
that auxiliary steps that accompany the actual evolution are much more time
consuming. Dump importing was rather costly and took up to three hours.
Currently we change the database cloning step to use the data backup and

Integrated Model-Based Software Development 393

IMIS

repository

14.1M

8.5M

20.8M

20.1M 29.3M

classes created/deleted 28 9

attributes/associations created/deleted 69 23

objects updated/inserted ~ 4700 ~ 3600

associations updated/inserted ~ 270 ~ 1300

total number of data records

model changes (oo)

data modifications

11-22-04 02-26-05

number of tables

IMIS

repository

134

278 280

152

279

152

tables created/deleted 32 5

columns created/deleted/modified 87 33

model changes (relational)

6.0M

Fig. 6. Results of IMIS tool support for data migration.

restore routines of the Oracle recovery manager to copy the old content
between the databases.

– Most of the model changes are more or less trivial like attribute insertion
or deletion. Changes that require one of the more sophisticated evolution
techniques offered by our framework are rather seldom.

– However, the offered sophisticated techniques are particularly useful for com-
plex model changes. For example, during the last installation a new table
was created that normalizes a set of three columns that were contained in
two other tables before. The new table was filled and the attribute columns
were replaced by foreign keys.

5 Related Work

ORION [10, 2] is an object-oriented database. It provides a solution to data
migration based on dynamic schema evolution that targets the physical level. It
is possible to change the schema in a deployed instance of the ORION database.
The ORION data migration mechanism is adaptional. This means, that data
and application code are adapted to a new model in the evolution cycle.

The TSE [20] solution never deletes parts of the defining model. Schema
versioning is based on a view mechanism and all changes, i.e., in particular
deletes, are recorded in view changes.

Schema versioning [22] is combined with an adaptional mechanism in the
O2 [8] system. O2 minimizes needed application reconstructions.

OTGen [13] is based on a generator for data migration programs. Input to
the generator is a declarative definition of an object-relational mapping. The
successor of OTGen is the Tess [12] system. The Tess generator also takes into

394 Behzad Bordbar et al.

account an existing old schema so that it can generate an initial schema mapping
itself.

Clio [18, 17] is an exemplary system for automatic schema matching [21],
which is supported by a correspondence engine. The mapping generator of Clio
gets source and target schemas as input.

The analysis in [15] clarifies the relationship between data migration and
model evolution, given a scenario with a relational schema and a semantic data
model.

The approach in [1] succeeds in representing relational views in OCL, whereas
[14] discusses extensions to UML for database design taking into account the
object-relational features of modern database technology.

The approach in [19] shows that it is possible to specify consistencies for
legacy data sources in OCL.

6 Conclusion

A round-trip engineering can play the role of an integrated development en-
vironment. If cohesion in work product management is the goal support for
object-relational mapping should be integrated into each CASE tool that is used
in a typical multi-tier setting. Improving schema evolution and data migration
with respect to an object-relational mapping has subtle issues, because object-
relational mapping is a practical challenge on its own. If an MDA tool does not
support data migration it stops supporting the developer of a data-centric ap-
plication adequately after the first version of the system has been deployed at
the customer site.

We can summarize the problem we are addressing in this paper as the prob-
lem of combining software maintenance with data migration. This problem is
challenging from the standpoint of the MDA. In terms of the MDA, roundtrip
engineering tools are traditionally restricted to the model layer. Database re-
organization however targets the model layer as well as the information layer
below this, i.e., the layer of the model instances. The database metadata belong
to the model layer, the persistent data live on the information layer.

We argue that our approach benefits from adding a transparent database
access layer between application logic and backend. The code for the layers on
the backend side is maintained completely automatically by code generation
into heterogeneous technologies. The generated code is not subject to white box
reuse. Initially, there would be no need of roundtrip engineering. The need for
providing transition support is solely created by the data migration problem.

References

[1] Herman Balsters. Modelling Database Views with Derived Classes in the
UML/OCL-Framework. In UML, pages 295–309, 2003.

[2] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth. Semantics and
Implementation of Schema Evolution in Object-Oriented Databases. ACM SIG-
MOD Record, 15(4), February 1987.

Integrated Model-Based Software Development 395

[3] Elliot J. Chikofsky and James H. Cross. Reverse Engineering and Design Recov-
ery: A Taxonomy. IEEE Software, pages 13–17, January 1990.

[4] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using Metrics to Evalu-
ate Software System Maintainability. IEEE Computer, 27(8):44–49, August 1994.

[5] Graham Colleen. DBMS Software Market: Flat but Not Calm, Dataquest Alert.
Gartner Group, May 2002.

[6] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation
Approaches. In 2nd OOPSLA Workshop on Generative Techniques in the context
of Model Driven Architecture, 2003.

[7] Dirk Draheim, Matthias Horn, and Ina Schulz. The Schema Evolution and Data
Migration Framework of the Environmental Mass Database IMIS. In Proceed-
ings of SSDBM 2004 - 16th International Conference on Scientific and Statistical
Database Management. IEEE Press, 2004.

[8] Fabrizio Ferrandina and Sven-Eric Lautermann. An Integrated Approach to
Schema Evolution for Object Databases. In 3rd International Conference on
Object-Oriented Information Systems, pages 280–294. Springer, December 1996.

[9] M. Horn, V. Triestram, and J. van Nouhuys. Data Evaluation Using the Generic
Selection Component of the New IMIS System. In EnviroInfo 2003 - 17th Inter-
national Conference Informatics for Environmental Protection. Metropolis, 2003.

[10] J.Banerjee, H. Chou, J.Garza, W.Kim, D.Woelk, and N.Ballou. Data Model Issues
for Object-Oriented Applications. ACM Transactions on Information Systems,
5(1), January 1987.

[11] I. Kurtev and K. van den Berg. Unifying Approach for Model Transformations in
the MOF Metamodeling Architecture. In 1st European MDA Workshop. Univer-
sity of Twente, March 2004.

[12] Barbara Staudt Lerner. A Model for Compound Type Changes Encountered in
Schema Evolution. ACM Transactions on Database Systems, 25(1):83–127, 2000.

[13] Barbara Staudt Lerner and A. Nico Habermann. Beyond Schema Evolution to
Database Reorganization. SIGPLAN Notices, 25(10):67–76, 1990.

[14] Esperanza Marcos, Belén Vela, and José Maŕıa Cavero. Extending UML for
Object-Relational Database Design. In UML, pages 225–239, 2001.

[15] Victor M. Markowitz and Johann A. Makowsky. Incremental Reorganization
of Relational Databases. In 13th International Conference on Very Large Data
Bases, pages 127–135. Morgan Kaufmann, 1987.

[16] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Technical Report omg/2003-
06-01, Object Managment Group, 2003.

[17] R. J. Miller, L. M. Haas, and M. Hernandez. Schema Mapping as Query Discovery.
In Proceedings of the International Conference on Very Large Data Bases, pages
77–88. Morgan Kaufmann, 2000.

[18] Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Lingling Yan,
C. T. Howard Ho, Ronald Fagin, and Lucian Popa. The Clio Project: Managing
Heterogeneity. SIGMOD Record (ACM Special Interest Group on Management of
Data), 30(1):78–83, 2001.

[19] Jan Pettersen Nytun and Christian S. Jensen. Modeling and Testing Legacy Data
Consistency Requirements. In UML, pages 341–355, 2003.

[20] Young-Gook Ra and Elke A. Rundensteiner. A Transparent Object-Oriented
Schema Change Approach Using View Evolution. In 11th IEEE International
Conference on Data Engineering. IEEE Press, 1995.

[21] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal: Very Large Data Bases, 10:334–350, 2001.

396 Behzad Bordbar et al.

[22] J. Roddick. A Survey of Schema Versioning Issues for Database Systems. Infor-
mation and Software Technology, 37(7):383–393, 1995.

[23] Devang Shah and Sandra Slaughter. Transforming UML Class Diagrams into
Relational Data Models. In UML and the Unified Process, pages 217–236. Idea
Group Publishing, 2003.

[24] Gary H. Sockut and Robert P. Goldberg. Database Reorganization - Principles
and Practice. ACM Computing Surveys, 11(4):371–395, 1979.

[25] Richard Soley. Model Driven Archtitecture, white paper formal/02-04-03, draft
3.2. Object Managment Group, November 2003.

[26] Ruth Sterto. White Paper: Persistent Data Development Tools Validate the Model
Driven Architecture Approach. Technical report, Progress Software Corporation,
2004.

[27] Can Türker. Schema Evolution in SQL-99 and Commercial (Object-)Relational
DBMS. In 9th International Workshop on Foundations of Models and Languages
for Data and Objects - Database Schema Evolution and Meta-Modeling, volume
2065 of LNCS. Springer, 2000.

[28] Edmond VanDoren. Maintenance of Operational Systems - An Overview. In
Software technology Roadmap. Carnegie Mellon Software Engineering Institute,
1997.

Invited Presentation I:

Lessons Learned, New Directions, and Migration
Plans for Model-Driven Development of Large

Scale Software Based Systems

Michael J. Marich and Haig F. Krikorian

The Boeing Company
{michael.j.marich|haig.f.krikorian}@boeing.com

Abstract

Model-driven development of software-based systems has only recently witnessed
significant progress attributable to the application of approaches such as the
Unified Modeling Language (UML) to the task of capturing the architecture
details of a system. However, industry has experienced a shortfall in approaches
available to architects of large scale distributed, dynamic, and mobile software-
based systems. This shortfall is characterized in a number of recently published
articles; chief among the reasons highlighted is the lack of precise semantics in
available modeling tools.

This talk presents an experience-based look at the lessons learned in model-
driven development from the perspective of practicing systems and software
engineering professionals. Here we explore the measures that we believe should
be undertaken to increase the usefulness of modeling tools. In providing di-
rection, we extend an urgent call to the academic community for assistance in
developing and refining formal grammars necessary for the development of large-
scale, software-based systems. Based on our experience, we offer guidance to the
modeling community that we believe could improve the current state of affairs
regarding the use of tools as well as promote the evolution of future tool develop-
ment. Additionally, we offer insight into the problems associated with migrating
the use of modeling tools into the software process for companies that employ
several hundred systems and software engineers. While the focus of this pre-
sentation is biased toward large-scale systems, medium- and small-scale system
developers should also be able to achieve considerable benefit from many of the
aspects we propose.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 397–397, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 398-413, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Concepts for Comparing Modeling Tool Architectures

Colin Atkinson1 and Thomas Kühne2

1 University of Mannheim
atkinson@informatik.uni-mannheim.de

2 Darmstadt University of Technology
kuehne@informatik.tu-darmstadt.de

Abstract. As model-driven development techniques grow in importance so do
the capabilities and features of the tools that support them, especially tools that
allow users to customize their modeling language. Superficially, many model-
ing tools seem to offer similar functionality, but under the surface there are
important differences that can have an impact on tool builders and users depen-
ding on the tool architecture chosen. At present, however, there is no estab-
lished conceptual framework for characterizing and comparing different tool
architectures. In this paper we address this problem by first introducing a con-
ceptual framework for capturing tool architectures, and then—using this
framework—discuss the choices available to designers of tools. We then com-
pare and contrast the main canonical architectures in use today.

1 Introduction

Given the growing interest in Model Driven Development (MDD), modeling tools are
becoming an increasingly central and important element of software development
environments. As a result, software project managers are increasingly faced with the
issue of deciding what modeling tool(s) to use in a project and what role the chosen
tool(s) should play. Until recently this was not an issue of great import because
modeling has traditionally played a secondary, supportive role in software engi-
neering. The primary artifact of software development has until recently always been
code, leaving models, if used at all, to play the role of supporting, non-essential
documentation. Even when models are used to generate code skeletons, as is often the
case today, they are essentially viewed as accelerators of the coding process rather
than as a part of the critical path of software development. However, if the vision of
model driven development is even partially successful this situation will change and
modeling will become the dominant, critical path activity in software development.

At present however there is no established way of characterizing and comparing
the capabilities of modeling tools beyond a superficial comparison of feature lists.
This makes it difficult to select a tool for a specific project on a serious technical
basis. Without the availability of concrete comparison concepts and evaluation
criteria, decisions for modeling tools will be more or less random and at best based on
irrelevant or secondary properties.

The lack of a tool evaluation framework not only affects tool users but also tool
builders. Unless tool builders are aware of all the architectural options available to

Concepts for Comparing Modeling Tool Architectures 399

Classes

Objects

Fig. 1. Classification.

them and are able to evaluate and compare their tool architecture against other alter-
natives, they will make their choices in a restricted design space, usually heavily
influenced by tradition rather than by objective criteria. The problem is not that there
is a lack of different (meta-) modeling infrastructure models or metaphors. On the
contrary, quite a number of different approaches exist, such as the famous OMG four-
layer architecture [1], powertype-based approaches [2], two-level approaches [3],
Domain Specific Languages [4], and the orthogonal classification approach [5]. The
problem is that each of these on its own is not a suitable basis for a tool evaluation
framework. While each approach has certain advantages in its own right, none
provides a general perspective for capturing the properties of a particular tool
architecture. In fact, the very number of different notations and modeling metaphors
compounds the problem of enabling an objective tool architecture comparison.

Unfortunately, even the venerable OMG four-layer architecture cannot serve as a
reference architecture against which to compare the design of modeling tools. Not
only is it the subject of much debate on what its different levels actually mean and
how they are related to one another, it is also difficult to map it to other modeling
metaphors. Furthermore, it is a high-level architecture and therefore does not lend
itself to explaining or discriminating between architectures used in current tools.

Consequently, in this paper we provide a conceptual basis for describing and
distinguishing different tool architectures. These concepts allow us to compare the
main realization approaches in use today and to provide a reinterpretation of the OMG
four-layer architecture which more precisely characterizes how it is implemented in
most modeling tools. One of the main contributions of the paper is an enumeration
and trade-off analysis of the architectural options tool designers should consider when
developing a tool. These can be thought of as tool architecture patterns for tool
developers. Finally, we analyze the advantages and disadvantages of some existing
architectures in use today.

2 Conceptual Foundations

Before discussing the various architectures that can be used to
realize modeling tools we first need to establish ways to pre-
cisely and exhaustively capture the associated design space.

2.1 Types and Instances

The basic building block for constructing modeling tool architectures is the
relationship between a type and its instances. This is not only the foundation for many
metamodeling infrastructures, but also the foundation for the object-oriented
implementation technology most widely used in mainstream software development
today, e.g., that of Java.

Fig. 1 shows how we depict the relationship between types and instances. We use
the concept of a classification frame split into two compartments—a type compart-
ment and an instance compartment. To distinguish the type compartment from the
instance compartment we draw the former with a darker shade of color than the latter

400 Colin Atkinson and Thomas Kühne

logical
instance-of

content

content
Instance "Lassie"

maps
name "age" to

value 7

My instances
must map the
name "age" to

an Integer value

LassieLassie

age = 7age = 7
LassieLassie

age = 7age = 7

CollieCollie

age : Integerage : Integer
CollieCollie

age : Integerage : Integer

Fig. 3. Content Classification.

linguistic
instance-of

content

My instances
may have a
number of

contained elements,
e.g., name/value pairs

InstanceSpecificationInstanceSpecification

LassieLassie

age = 7age = 7
LassieLassie

age = 7age = 7

slots : SlotSetslots : SlotSet

Fig. 2. Form Classification.

and typically on the top or
to the left. Note that in
general one frame may
have more than two
compartments, in which
case the additional ones
simply extend the classi-
fication hierarchy linearly.
Between any two adjacent
compartments we always
have type / instance rela-
tionship.

2.2 Form Versus Content

To fully capture an architectural design it is insufficient to use just one general notion
of “instance-of”. An architecture presented in this way will admit many different
interpretations and thus possibly allow consensus where there should be none. We
therefore need to be more precise in order to explicitly distinguish between two
fundamentally different kinds of instance-of relationships (see also [6] for a similar
discussion).

We refer to the kind of instance-of
relationship used in Fig. 2 as “lin-
guistic” instance-of. When it is used,
the type (e.g., “Instance Specifica-
tion”) is part of a language defini-
tion and the instance (e.g., “Lassie”)
constitutes a language usage. Hence,
we can check whether an element,
(e.g., “Lassie”) can be regarded as
an instance of a form, e.g., “In-

stanceSpecification”. The elements “age” and “7” of “Lassie” only need to be
representable by the “Slot” classifier, i.e., be in a required form (e.g., “string” and
“string” respectively). Whether e.g., “7” is an integer or not is irrelevant at this stage.
Fig. 2 shows how we depict form-classification by embedding a frame within an
instance compartment, and starting a new color scheme for the embedded frame. In
the following, we will use form-classification to denote the representation format used
to store elements, e.g., in a repository. The word “form” is used deliberately in the
previous definition to distinguish this kind of “instance-of” relationship from the
second kind of instance-of relationship which we refer to as “logical” instance-of (see
Fig. 3).

Whether “7” needs to be of type “Integer” or an alternative type must be specified
along the logical classification dimension (see Fig. 3). Here we may check whether
the content (i.e., information expressed by “Lassie”) can be regarded as an instance of
the content expressed by “Collie”. In other words, the type “Collie” contains informa-
tion that is intended to define well-formedness rules which the content of instance
“Lassie” must obey. We depict logical-classification by stacking compartments on top

Concepts for Comparing Modeling Tool Architectures 401

MOF

In
st

an
ce

s
(M

1i
)

Ty
pe

s
(M

1t
)

UML
metamodel

(M2)

Fig. 5. Embedding

& Spanning.

In
st

an
ce

s
(M

1i
)

Ty
pe

s
(M

1t
)

UML
metamodel

(M2)

User Models
(M1)

UML
metamodel

(M2)

(a) (b)

Fig. 4. Stacking versus Spanning.

of each other. Thus, in summary, “form” and “content” are about the difference
between how information is stored (form) and what information is stored (content).
From now on, in contrast to Figs. 2 & 3, we will not use labels “linguistic” / “logical”
for classification arrows anymore, because it will be clear from the frame notation
(e.g., embedding) which kind is implicitly applicable.

2.3 Level Spanning

Figs. 2 & 3 show two different ways of combining
frames which we refer to as embedding and stacking
respectively. In order to effectively capture all the
level relationships that may occur in tool
architectures, we need a third frame combination
concept which we refer to as spanning. Fig. 4 shows
an example of level-spanning, in terms of the OMG’s classic four-layer architecture.

Fig. 4 (a) shows the usual depiction of the M2 and M1 levels
in this architecture, where level M1 is regarded as a monolithic
level, even though it contains user instances (e.g., objects) and
user types (e.g., classes), which are in a logical instance-of
relationship to each other1. Fig. 4(b) makes this explicit by
dividing level M1 into two sublevels M1t and M1i. The reason for
not embedding levels M1t and M1i within the instance compart-
ment of frame M2, is that we assume the contents of both M2
and M1 to be represented as MOF-data. Hence, we have only
one representation format (MOF) and all three frames shown in
Fig. 4(b) contain data that must be well-formed logically with
respect to each other. However, none is the other’s represen-
tation format.

The complete picture is
depicted by Fig. 5, using
embedding, spanning and

stacking2 to reinterpret the linear OMG four-layer
design as an architecture in which the MOF is the
common representation format for all other levels,
the latter just establishing logical instance-of
relationship with each other3. Note that the logical
instance-of relationship from M1i to M1t is defined
within M2. In other words, level M2 spans both
levels M1t and M1i, meaning that elements from
both levels must be well-formed with respect to
the rules expressed in M2.

1 We are referring to the corrected four-layer architecture, in which level M0 is no longer part of

the modeling stack, but represents the modeled system.
2 One can think of Fig. 5 as a flat projection of a three-dimensional diagram.
3 In section 4 we will further discuss possible interpretations of the four-layer architecture.

Instances (M
1i)

Types (M
1t)

UML
metamodel

(M2)
AppletApplet

myShopmyShop

PetShopPetShopClassClass

ObjectObject

Fig. 6. Type Specialization.

402 Colin Atkinson and Thomas Kühne

2.4. Generalization

Classification is not the only way of deriving new elements from existing elements.
Instead of differentiating an element by instantiating it from a type of another
metalevel, it is sometimes more appropriate to specialize it using a supertype

Fig. 6 shows an example, where a “PetShop” class is defined to have “Applet”
instances, by deriving it from superclass “Applet”, as opposed to giving it a special
“Applet” property through instantiation. Depending on the purpose of the model, one
of these alternatives might be more appropriate than the other, but both are available
and a detailed architectural description technique must be able to distinguish and ex-
press both cases.

As we are typically not interested in individual
element relationships when describing tool
architectures, the typical use of a generalization
layer to specialize from will be depicted in the way
shown in Fig. 7. The generalization dimension is
orthogonal to all other types of instance-of
relationship kinds and may be used in any
combination within a frame.

Note that the orientation of the frames carries no
semantics and can thus be used to emphasize certain
perspectives, such as the linguistic, logic or
generalization dimension.

3 Architectural Options

Any tool architecture embodies a number of design decisions which directly or
indirectly influence the challenge faced by the tool builders as well as the
functionality available to tool users. The purpose of the following subsections is to
make the respective design decisions more explicit and to provide a checklist to
compare tool architectures against each other.

3.1 Number of Levels

One of the most basic choices to be made
when designing a tool architecture is to
decide how many type/instance levels it
directly supports. A very common
approach is to support two user modeling
levels only. This is probably a vestige of
traditional technologies such as data-
bases (schema / data distinction) and
object-oriented languages (type / in-
stance distinction).

(M
1i)

(M
1t)

UML
metamodel

(M2)

Superclasses

(Sub-)classes

User
Objects

Fig. 7. Generalization Layer.

CreateDesignCreateDesign

designer : String
duration : Float

designer : String
duration : Float

CreateDesignCreateDesign

designer : String
duration : Float

designer : String
duration : Float

"Bob" designs"Bob" designs

duration = 2.5duration = 2.5
"Bob" designs"Bob" designs

duration = 2.5duration = 2.5

ActivityTypeActivityType

CreateDesignCreateDesign

duration : Floatduration : Float
CreateDesignCreateDesign

duration : Floatduration : Float

BobDesignsBobDesigns

duration = 2.5duration = 2.5
BobDesignsBobDesigns

duration = 2.5duration = 2.5

 (a) (b)

Fig. 8. DSL vs Domain Metamodel.

Concepts for Comparing Modeling Tool Architectures 403

"Bob" designs"Bob" designs

duration = 2.5duration = 2.5
"Bob" designs"Bob" designs

duration = 2.5duration = 2.5

Tool
Format

Tool
Format

CreateDesignCreateDesign

designer : String
duration : Float

designer : String
duration : Float

CreateDesignCreateDesign

designer : String
duration : Float

designer : String
duration : Float

Fig. 9. Two Level Implementation.

Even tools referred to as meta-modeling tools (e.g., MetaEdit+ [7]) often only
support two user levels. Such tools allow users to first define a domain specific
language (see Fig. 8(a), top part) and then build models using that new language
(Fig. 8(a), bottom part). By allowing users to define their own languages they justify
their name as “meta”-modeling tools, since the language definition is regarded as a
model for the domain models. In other words, the language definition represents a
(linguistic) model for models.
However, the existence of just two logical levels (Fig. 8(a)) already causes a problem
for a tool based on a two-level implementation technology because it means that two
logical levels have to be implemented within just one instance level. In general, one
may even desire more than two logical levels:
Fig. 8(b) demonstrates how users might want to
model at three domain levels using the UML with
a domain metalevel added on top of the usual
instance and type levels. Such an additional
metalevel is useful for making the class level
dynamic as it is able to support the creation and
deletion of classes even while the (modeled)
system is running. Moreover, it lets one easily
assign information to classes (e.g., whether an
activity type appears in a certain workflow plan
or not) by declaring corresponding attributes at
the metalevel-types4.

Fig. 9 illustrates the above mentioned problem
by showing an object-oriented (two-level) implementation in which the class level has
to be used for defining the tool format in which the user data is modeled. The
remaining object level then needs to represent the user models. Fig. 9 shows that both
the user’s domain specific language (DSL) and the corresponding user models must
be represented within the tool. As none of the mainstream programming languages
natively support more than two levels one cannot simply represent the user models in
terms of the user language. However, creating user models only makes sense if the
corresponding well-formedness rules are available at the same time. One way of
having the models and rules available as data in the tool format is described in the
next subsection.

The other approach uses code generation techniques to cast the information of the
top part of Fig. 9 into a hard-coded, domain specific metamodel of a generated mod-

eling tool. Fig. 10 depicts this process.
Fig. 10(a) corresponds to Fig. 9’s top
part. Fig. 10(b) shows the architecture
of the generated tool which is specif-
ically tailored to deal with the user’s
DSL. Note that user models are direct-
ly represented in the format defined by
the DSL definition.

4 Similar to the tagged value concept in the UML, but in more uniform way that simply extends

the principles of the lower two levels.

Tool
Format

User
Models

User
Language

User
Language

(a) (b)
Fig. 10. Tool Generation.

404 Colin Atkinson and Thomas Kühne

Tool
Format

User Types

User Instances

Fig. 11. Logical Stacking.

The advantage of this generative approach is that any well-formedness rules
governing the creation of user models are directly enforced by the underlying data
structure. It is not necessary to write a generic checking algorithm which needs to be
parameterized with the definition of the user’s DSL. Also, such a tool offers an API
for accessing and manipulating user models that is specifically tailored to the DSL
used. An access method might thus be called “getDuration()” yielding a result
of type “Float” instead of some generic access like
“getFeatureWithName('duration')” yielding a result with a generic type,
e.g., of type “String”. A generated tool will also be very efficient in dealing with user
models, as all the generated code will be specific to the DSL defined and will have
been compiled.

The disadvantage of this generative approach is that it is not possible to use a
single tool to work on several levels (language definition + language usage) at once.
Especially in early phases, when the DSL is still being defined, it is very convenient
to switch back and forth between the levels without going through a change-generate-
compile-validate cycle every time. An interpreted language, such as Java, which
allows compilation of new code to be done in the background and supports reloading
of the new code into the running tool, blurs the boundaries between a generative and
an integrative approach from the point of view of the user of the tool.

Another disadvantage of two-level based tools is that they potentially cannot use a
user domain model directly as input for a new DSL. In other words, it may not be
possible to conveniently use such a tool repeatedly in order to create a cascade of
definition-usage pairs, thus creating a (meta-) modeling stack (e.g., MOF UML
Classes Objects). The only way for tools with such a limitation to support more
than two levels is “level compaction”.

3.2 Level Compaction

An alternative way to support multiple modeling
levels with just one instance level is to abandon the
idea that one modeling level (e.g., user classes)
automatically defines the representation format for the
level below (e.g., user objects). Instead, the native tool
representation format is used for both user modeling
levels. Fig. 11 shows how the situation of Fig. 9 can
be resolved by keeping both datasets in the same tool, stacking them on top of each
other.

With stacking we express the fact that one level (“User Types” in Fig. 11) controls
another level (“User Instances” in Fig. 11) but not by being its format definition but
by specifying the rules that it’s controlled level must obey. In other words, the tool
needs to look up data in the controlling level in order to check the data in the
controlled level with respect to well-formedness. The scheme in Fig. 11 can easily be
extended to include another level (above “User Types”) in order to support a user
domain metalevel and hence enable modeling as illustrated in Fig. 8(b).

The architecture shown in Fig. 11 can be extended not only by increasing the
innermost stack, but also by using spanning. In this way, a tool can be promoted from

Concepts for Comparing Modeling Tool Architectures 405

being specialized for one language (e.g., UML) only, to supporting many user-
definable languages. Fig. 5 shows how spanning can be used to build such a (MOF-
based) UML tool.

The advantages of an integrative, level-compaction approach are manifold: User
instance data can be manipulated independently of user type data. This allows for un-
limited freedom in experimentation with what e.g., user domain models should look
like. Note that a generative approach (Fig. 10) only allows domain models that adhere
to the rules of the user DSL. When the DSL is changed the models formerly created
with it are in an outdated format. In contrast, in an integrative approach—although the
user instances will no longer conform to the DSL—there will be no need to migrate
them to the new format. No representation change is ever needed as long as all levels
that may change are in a logical content-controlling relationship with each other.

From the point of view of tool builders, levels belonging to the same level stack
can be treated in a uniform way. Multiple-level support only needs to be provided
once and can then simply be scaled up to support any number of levels. Levels
belonging to the same representation format can be treated uniformly with respect to
many operations, such as serialization to output formats.

Another important difference introduced by level compaction is the fact that a tool
builder no longer has to replicate model data. Fig. 10 makes it clear that a cascading
approach necessitates model data to be stored twice: Once as instance data (e.g.,
“User Language” in Fig. 10(a)) and another time as type data (“User Language” in
Fig. 10(b)). Level compaction uses the same set of data for both purposes at the same
time (see, e.g., “User Types” in Fig. 11).

A potential disadvantage of level compaction is that access and modification of the
supported levels has to occur in a generic manner, i.e., all levels are treated the same
and thus the advantages of level-specific APIs are lost. Yet, this need not necessarily
be the case. It is of course possible to provide special views onto each of the levels, by
using adapters, for
example, so that APIs
can be made available
that are identical to
those of a two-level
cascading approach.

3.3 Language Versus
Library Metaphor

The previous section
demonstrated how
level compaction can
be used to move
control from the
format-language to a
logically controlling
language. However, the issue of whether one supports multiple levels within one
instance level (level compaction) is orthogonal to whether one uses a very liberal
format language or not. A modeling tool with a built-in UML metamodel (see

ActivityTypeActivityType

CreateDesignCreateDesign

duration : Floatduration : Float
CreateDesignCreateDesign

duration : Floatduration : Float

BobDesignsBobDesigns

duration = 2.5duration = 2.5
BobDesignsBobDesigns

duration = 2.5duration = 2.5

UML+

ClassClass

ObjectObject

ActivityTypeActivityType

CreateDesignCreateDesign

duration : Floatduration : Float
CreateDesignCreateDesign

duration : Floatduration : Float

BobDesignsBobDesigns

duration = 2.5duration = 2.5
BobDesignsBobDesigns

duration = 2.5duration = 2.5

UML+

ElementElement

ClassClass

Meta
Class
Meta
Class

ObjectObject

(a) (b)

Fig. 12. Language vs Library Metaphor.

406 Colin Atkinson and Thomas Kühne

Fig. 12(a)) is an example of the simultaneous use of both level compaction (for user
types & instances) and a confined language space. In order to make our next point
more clearly we have added a domain metalevel and hence named the corresponding
metamodel “UML+” instead of just “UML”. As can be observed from Fig. 12(a), user
elements are controlled by two dimensions: First, their form must conform to the
UML+ metamodel (through linguistic instantiation). Second, their content must
conform to the next logical level higher up in the stack. The top level of the stack is
not content controlled in any way and just needs to obey the format rules imposed by
the UML+ metamodel.
As discussed in the previous sections the approach shown in Fig. 12(a) has some
trade-offs: Users may only model within the limits of the language defined at the
UML+ level. This may be regarded as an advantage (in order to enforce a standard) or
a disadvantage (since it is then impossible to use any kind of concept). Hence, any
language extension will have to be accomplished by altering the built-in language
metamodel “UML+”. This is a direct consequence of using, what we call the
language metaphor for defining valid syntax for user models. Even if the UML+
metamodel were kept as modifiable data, one still needed to perform language meta-
modeling and, thus, alter the modeling language standard when trying to create more
domain specific models. This is of course the reason why the UML language
designers chose to introduce stereotypes as a “lightweight” way of metamodeling.
Hence, stereotypes represent another, third way of supporting one more level, in
addition to “two-level cascading” (section 3.1) and “level compaction” (section 3.2).
Note however the difference in providing a domain metamodel (as in Fig. 8(b)) versus
allowing (strictly limited) extensions to the language definition (using stereotypes).

Fig. 12(b) demonstrates an alternative to the language metaphor which we refer to
as the library metaphor. In comparison to Fig. 12(a), the language definition has been
reduced to a bare minimum. User elements are not distinguished by their form
classifier anymore (e.g., Class or Object), but by an assigned level number. They are
not differentiated by creating them from special form-classifiers (e.g., UML+ element
“Object”), but by controlling them with a special content-classifier (e.g., user type-
level element “Object”). Typically, this control will
occur indirectly, as the example in Fig. 12(b)
demonstrates: Element “BobDesigns” is only indirect-
ly controlled via “Object”, being much more tightly
controlled by “CreateDesign”.

Fig. 13 gives an architectural view of this approach
where the original language definition is split into a
minimal core part and a number of predefined ele-
ments located at logical levels. The library part of the
control over user models is hence distributed over the
logical levels, depending on what user-model level the
respective elements control.

Note that the two elements labeled “Object” (or
“Class” respectively) in Figs. 12(a) and 12(b) are not
identical. They not only differ with respect to their
location in the architecture but also with respect to the
way in which they control elements. Element “Object” in Fig. 12(a) enables its
instances (e.g., “BobDesigns”) to have a certain form. Element “Object” in Fig. 12(b)

User Instances

UML+
core

language

Predefined
Type Types

Predefined
Instance Types

User Metatypes

User Types

Fig. 13. Generalization Layer.

Concepts for Comparing Modeling Tool Architectures 407

does not need to do that as this is already accomplished by “Element” at level
“UML+”, albeit in a much more generic way. Element “Object” in Fig. 12(b) restricts
this genericity by exerting content-control over, e.g., “BobDesigns” yet this control is
considerably strengthened by element “CreateDesign”. The latter will be much more
specific about the allowed properties of “BobDesigns” as any of the “Object” ele-
ments of Fig. 12(a) or 12(b) could ever be.
Note that element “Object” in Fig. 12(a) represents a tool builder’s perspective and
will support operations for model management. In contrast element “Object” in
Fig. 12(b) may contain operations of relevance to the modeling tool user, such as
“equals()” for comparing objects based on domain principles, instead of model
management principles.

The advantages of using the library metaphor to controlling user models are:
- a simplified core language definition allowing experimentation with model con-

cepts at all logical modeling levels,
- a stable core language definition even in the event of users wishing to extend

their “language”, and, hence,
- maximum flexibility for users with respect to domain specific modeling.

If the predefined libraries (see Fig. 13) are made immutable and fixed, this
flexibility is even reconciled with the desire to retain a common core standard mod-
eling approach, which may only be extended but not completely redefined.

The reduction of the core language to a minimal set of features can be compared to
reducing the BNF definition of a programming language’s syntax to a bare minimum
and letting all removed rules (such as the difference between arithmetic and Boolean
expressions) be enforced by static semantics checking. This makes the syntax defini-
tion more immune to changes to the language definition at the cost of shifting the
change-burden to the definition of the static semantics (the library in our example).
The library metaphor has indeed proven to be very successful for languages such as
Smalltalk and Java which have a rather small language definition and provide the bulk
of their utility through the availability of standardized libraries.

The disadvantages of the library metaphor is the unfamiliarity of the approach to
most users and the need for creating machinery that deals with all possible logical
levels generically. In particular one needs to implement a generic well-formedness
checking algorithm to be applied to a level by parameterizing it with the content of
the level above. However, tool builders then only need to define the basic principles
of modeling, such as instantiation, specialization, and association once in the core
language. These will work uniformly for all levels and there is no need for tool
builders to use different checking algorithms for different level crossings or replicate
the basic mechanisms time and again so that they are available to the next level. This
replication is typically unnecessary, unless one specifically desires these features to
work differently for each language level incarnation5.

The next question to address with respect to tool architectures is therefore the
choice of the appropriate number of linguistic levels.

5 The MOF and the UML represent a typical counter-example. Here, one desires as much as

uniformity between the UML core and the MOF as possible.

408 Colin Atkinson and Thomas Kühne

3.4 Language Definition Stack Depth

The use of specialization, rather than instantiation, can also be put to use in the core
language definition (in the linguistic dimension). Fig. 14 shows a very rough
conceptual sketch of how the Fujaba [8] metamodel is composed of several
specialization layers. Instead of creating a language definition stack in the sense of
“MOF UML UserModels”, the Fujaba developers opted to have a number of
languages which refine each other, as opposed to being instantiations of each other. In
this way, they have built up the resulting metamodel, step by step, and have
alternative views (e.g., as AbstractSyntaxGraph elements or UML elements) on the
same set of user data.

The design shown in Fig. 14 of course begs the question as to why the OMG has
not opted to cast MOF as a super-model, i.e., use generalization rather than a
classification, on top of languages such as UML or CWM?

The purpose of the MOF is to provide a
common basis for defining all other OMG lang-
uages. One way to provide such a common
basis is to define a language that classifies all
the languages one is interested in, as is done by
the MOF in its M3-level role. The more diverse
the set of languages to be captured under a
common umbrella, the more linguistic levels
are useful. At each language definition level,
more languages fitting into the paradigm
currently addressed can be properly described, a
process that continues to the very top of the
language stack. In the OMG’s case we just have
a language describing all user models (the UML metamodel) and another language on
top of this (the MOF), describing object-oriented approaches to modeling. This makes
sense if one is interested in a standardized meta-meta-language for creating
metamodels (such as the UML) and providing the corresponding tools along with this
capability.

However the same effect, and more in this example, can be achieved by using a
standardized library of metamodeling superclasses. Instead of specifying the element
“Component” to be a “Class” (in contrast to, e.g., a “Data Type”) by assuming it to be
an instance of a M3-level MOF-element “Class”, it could also be differentiated as
such by letting it subclass from an M2-level element “M-Class”. In this way,
“Component”-usages would still be different to other UML concept usages, and they
would immediately be accessible through this “M-Class” interface. We use the prefix
“M-” (for MOF) in order to distinguish this element from the ordinary M2-level UML
element called “Class”. In other words, the desired repository access to elements in
user models can directly be achieved through corresponding metamodel superclasses.
A double role as played by the MOF (as a M3-level meta-metamodel & as a general
repository format for all levels) would therefore not be necessary.

Note, however, that the above described library approach in the linguistic
dimension only works if one is able to find a (MOF-)super-model for all the language
defining metamodels (such as UML and CWM) that one would like to include. It is
the distinguishing advantage of using a classifying language (as the MOF in its M3-

Fujaba
Metamodel

Basic
Element
Basic

Element

ASG
Element
ASG

Element

UML
Element
UML

Element

User
Types
User

Instances

User
Types

User
Types
User

Instances

User
Types

Fig. 14. Language Layers.

Concepts for Comparing Modeling Tool Architectures 409

level role) that it can abstract from the metamodels to be captured, without requiring
them to share a common (super-)structure.

Summarizing, through “level compaction” and/or using repository superclasses in a
language defining metamodel, it is possible to remove language definition levels in
the linguistic dimension. Fig. 13 shows an extreme case, where one could do away
with a MOF format as well and integrate other modeling approaches, such as CWM,
as modeling libraries within the logical levels.
The appeal of a minimal length language stack (in the linguistic dimension) is the
simplicity of the associated architecture and the resulting lack of redundancy. All
levels can be treated uniformly and neither data nor basic modeling principles have to
be replicated.

In favor of a language stack with two or more levels it can be noted that each
language introduced makes the associated storage format more concrete and more
tailored to the paradigm one aims to cover. Hence, the representation can be more
compact and easier to read and write for both humans and tools.

4 Canonical Architectures

We will now use the concepts, notation, and architectural options previously
introduced to characterize and evaluate the three main canonical architectures
currently underpinning modeling tools. This is not intended to be an exhaustive
characterization, but to layout the major reference architectures against which other
more specialized architectures can be compared.

4.1 Four-Layer Architecture

Certainly today’s most prominent architecture
for metamodeling infrastructures or tool de-
signs is the OMG’s four-layer architecture (see
Fig. 15(a)).

Since this architecture is not unambiguously
specified we can only offer interpretations of
it. One alternative, visually suggested by
Fig. 15(a), is a logical language stack of “MOF

 UML M1”6, but that would neglect the
MOF’s role as a repository format for all the
levels. However, just casting the MOF as a
pure repository format would neglect the
MOF’s role as a logical language definition for the UML metamodel at M2.,
Fig. 15(b) therefore best seems to capture the apparently intended dual role of the
MOF and hence best captures the spirit of the whole architecture. Note that it
explicitly shows the MOF’s ability to represent itself.

6 We are using M1 as a shortcut for M1t and M1i combined, in part because the OMG does not

explicitly distinguish between M1t and M1i.

UML
metamodel

User Models
(M1t + M1i)

MOF

User Data
(not part of the
modeling stack)

M1

M3

M2

M0

MOF

UML
metamodel

U
se

r I
ns

ta
nc

es
(M

1i
)

U
se

r T
yp

es
(M

1t
)

U
se

r I
ns

ta
nc

es
(M

1i
)

U
se

r T
yp

es
(M

1t
)

MOF

(a) (b)

Fig. 15. Four-Layer Architecture.

410 Colin Atkinson and Thomas Kühne

A non-technical but nonetheless very real advantage of the four-layer architecture
is that it defines a standard, including standard implementation technologies. It
furthermore allows several modeling standards such as the UML and CWM to be
fitted under one (MOF-based) architecture.
Its main drawback is the lack of support for more than two user modeling levels.
While the architectural style does not prevent an extension of the user modeling levels
(within M1), the standardized UML metamodel restricts them to two. Although the
UML’s solution for providing a language extension feature to modelers—the
stereotype mechanism—has been improved from version 1.5 to 2.0, it still does not
offer the same power for user domain metamodeling as another user modeling level
would offer (as exemplified in Fig. 8(b)).

4.2 Two-Level Cascading

The popularity of the two-level cascading approach is testified by the many practical
examples of its use. Fig. 16(a) informally depicts the approach of providing a format
for creating user defined languages and then, after a generation step, using the user
language definition to create user models.

Fig. 16(b) uses our notation to more precisely capture the promotion of the “User
Language” instance data to “User Language” types that then can be used to create
models. Tools such as MetaEdit+ [7] and Fujaba [8] use this approach. Also the MDR
approach using JMI technology [3] and the Software Factories approach [4] use the
same underlying principle.

The advantages of this approach are:
- the efficiency of the generated modeling

facilities.
- the specificity of the API for accessing

user models.
- the fact that metacase tool vendors may

produce metamodels for their customers
and only ship a generated tool, without
giving away the corresponding meta-
model data as well.

Its disadvantages are:
- the need to replicate the definition of ba-

sic modeling primitives, such as instan-
tiation, specialization, etc. time and
again.

- the need to duplicate model content by
keeping it both as user instance data (for
manipulation during the language
definition phase) and as tool type data (for creating user models).

- an inconvenient “edit-generate-compile-validate”-cycle when developing the
modeling language (e.g., a DSL).

Tool
Format

User
Models

User
Language

User
Language

Tool
Format

User
Language

User
Language

User
Models

 (a) (b)

Fig. 16. Two-Level Approach.

Concepts for Comparing Modeling Tool Architectures 411

4.3 Orthogonal Classification Architecture

Perhaps the antithesis to the two-level cascading approach described above is the so
called orthogonal classification architecture (OCA) based on level-compaction [5].
Fig. 17(a) shows the two (linguistic and ontological7) dimensions of this approach
featuring just one format level (L1) used for representing an unbounded number of
ontological levels. Although
the OCA does not dictate any
particular number of linguistic
or ontological levels, it lends
itself to be used with a single
(MOF-like) universal format
and an unbounded number of
user domain modeling levels
based on the library metaphor
(see section 3.3 and Fig.
17(b)). A tool with this archi-
tecture as its basis is
ConceptBase [9]. The one
format level in ConceptBase is
based on the Omega level of
Telos [10]. Any other modeling data in ConceptBase is expressed as instances of this
one “format” level. In ConceptBase terminology all model data is expressed as
propositions.

The advantages of the OCA are:
- the complete uniformity with which all ontological levels can be treated. One

does not need to consider various kinds of level boundaries except logical
stacking.

- the completely redundancy-free storage of modeling data. No single level has to
be represented twice so as to use it in two roles.

- a single tool can be used to manipulate all levels in the same manner. There are
no limits to experimenting with content in levels since the basic representation
format virtually allows unlimited expressiveness. Well-formedness conformance
to a higher logical level, of course, is a different matter and may also need to be
supported. Locking mechanisms could be used to prevent users altering data in
levels they are not supposed to change or even see.

Its disadvantages are:
- the unfamiliarity of the library approach to the majority of modelers
- the fact that current established technologies and market rules are better suited to

standardize languages, rather than libraries.

7 For the purpose of this discussion we can equate “ontological” with “logical” instantiation.

O2

L1

L1 L0

O0

O1

User Types

User Instances

User Metatypes

Common
Format

 (a) (b)

Fig. 17. Orthogonal Classification Approach.

412 Colin Atkinson and Thomas Kühne

5 Conclusion

As model-driven development gains popularity, supporting tools are becoming an
increasingly important part of software development. The internal architecture of such
tools is not only of concern to tool builders but also to tool users since it determines
the basic functionality available. Unfortunately, at present there is no framework for
characterizing and evaluating such architectures, as previous work on clarifying
metamodeling infrastructures has never attempted to include tool representation
issues. In this paper we have laid the foundation for such a framework by introducing
concepts—including the as yet undistinguished “embedding” and “spanning”—to
capture core architectural elements. Using this framework we then discussed the
architecture design space and outlined the main canonical architectures in use today.

At one end of the spectrum there is the “Two-level Cascading” approach which
supports multi-level modeling technology in terms of classic two-level object-oriented
technology. At the other end there is the “Orthogonal Classification Architecture”
which provides a genuine multi-level modeling platform, typically in the context of a
single linguistic format definition. In between these two extremes, various combina-
tions may be applied to achieve different balances between their pros and cons, as
exemplified by the OMG’s four-layer architecture.

We believe that an evaluation framework for tool architectures, allowing concrete
technical comparisons to be made will be an invaluable help for making strategic
decision in the near future, and we hope that our contribution in the form of this paper
represents a useful step in this direction.

Acknowledgements

We would like to thank Andy Schürr and his group and Pierre-Alain Muller for
stimulating discussions and for information on Fujaba, and TopModL respectively.

References

[1] OMG: Unified Modeling Language, v1.5. OMG document formal/03-03-01, (2003)
[2] Gonzalez-Perez, C. and Henderson-Sellers, B.: Templates and Resources in Software

Development Methodologies. To appear, Journal of Object Technology, May/June (2005)
[3] Matula M.: Netbeans Metadata Repository. http://mdr.netbeans.org/ (2003)
[4] Greenfield, J., Short, K.L., Cook, S. and Kent, S.: Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools. Hungry Minds Inc. (2004)
[5] Atkinson, C., Kühne, T., Model-Driven Development: A Metamodeling Foundation.

IEEE Software, vol. 20, no. 5 (2003) pp. 36-41
[6] Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework.

Proceedings of ASE'2001, San Diego, USA (2001)
[7] Kelly, S., Lyytinen, K. and Rossi, M.: MetaEdit+: A fully configurable multi-user and

multi-tool CASE and CAME environment. In Proceedings of the 8th International
Conference CAISE'96, Springer-Verlag (1996) pp. 1-21

Concepts for Comparing Modeling Tool Architectures 413

[8] Klein, T. Nickel, U.A., Niere, J., Zündorf, A.: From UML to Java And Back Again, Tech.
Rep. TR-RI-00-216, University of Paderborn (1999)

[9] Jeusfeld, M.A. et al.: ConceptBase: Managing conceptual models about information
systems. Handbook of Information Systems, Springer-Verlag (1998) pp. 265-285

[10] Mylopoulos, J., Borgida, A. Jarke, M. Koubarakis, M.: Telos: representing knowledge
about information systems. Vol. 8. No. 4, ACM Trans. on Information Systems (1990)

Scenario Construction Tool Based on Extended

UML Metamodel

Micha�l Śmia�lek1,2, Jacek Bojarski1, Wiktor Nowakowski1, Tomasz Straszak1

Warsaw University of Technology1 and Infovide S.A.2, Warsaw, Poland
smialek@iem.pw.edu.pl

Abstract. Scenario based notations are becoming more and more popu-
lar as means for user requirements elicitation. They can be used in more
formal specifications as part of detailed use case templates or in agile
processes to capture informal user stories. Despite their significance in
software engineering, scenarios seem not to be properly supported by
appropriate tools. This paper describes a scenario construction tool that
offers clear separation of the actual story from notions used therein.
The tool is constructed as an extension to visual notation of UML’s use
cases. It is based on an extended UML metamodel in the area of activi-
ties and classifiers. This formal basis makes the tool capable of supplying
the existing UML tools with an additional layer of requirements models
based on scenarios and notions. This layer makes it possible to trans-
form requirements directly into design-level models. The tool offers such
transformation capabilities based on a simple model mapping. This trans-
formation supports human efforts to keep the system’s design consistent
with the user’s needs expressed through scenarios.

1 Introduction

Writing a good film scenario is difficult. Apart from being based on an interest-
ing idea, it has to tell a coherent and logical story, and it also has to describe
precisely the environment for this story. Such a scenario defines requirements
for the film producer. It describes what elements of scenography and what ac-
tors are needed. It also tells the filmmakers about the desired “dynamics” of
the film. Film scenarios seem to be a good metaphor for structuring software
requirements. By writing certain scenarios, the users can tell the developers sto-
ries (defined as an “account of incidents or events”1) about the functionality of
the prospective system. These stories would start with an initial event and end
with a happy or sad ending.

Being a good metaphor, scenarios are becoming more and more popular as
means for eliciting and writing user requirements [1]. Two of the most widely
known scenario-based requirements artifacts are use cases [2] and user stories
[3]. Depending on the approach taken by the scenario writers, use case scenarios
can be as formal as in [4] or as light as in [5]. User story approach gives an even
lighter notation.
1 Merriam-Webster On-line Dictionary

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 414–429, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Scenario Construction Tool Based on Extended UML Metamodel 415

Despite their popularity, scenarios can cause significant problems for their
writers. Writing a set of good scenarios for a software system seems to be equally
hard as writing a good scenario for a film. It can be argued that these problems
are caused by the fact that scenarios are written by and for different audiences.
On one hand, scenarios should be informal and comprehensible by “ordinary
people” (i.e. the users and stakeholders). On the other hand, they should be
very precise in order to be implemented correctly by the developers. This leads to
numerous propositions of notations for scenarios which causes confusion among
people trying to choose an approach that is appropriate for them (see [6] for an
insight on this).

The above mentioned plethora of notations for stories calls for some unifi-
cation. According to what we said above, this unified notation would need to
accommodate informality with necessary precision (see [7]). Informality can be
assured by writing scenario steps with very simple sentences composed eg. of a
subject, a verb and one or two objects (see [8] for an initial idea). In turn, preci-
sion can be accomplished by unifying the syntax of scenarios and allowing them
to constitute models with well defined semantics. Precise model of requirements
would allow for their easier transformation into models associated with the de-
velopment of the final system (architectural and design models). This brings the
requirements models into the mainstream of software development activities.

The activity of writing scenarios calls for some significant tool support. Un-
fortunately, lack of more precise semantics for scenario steps makes this support
quite weak. General requirements management tools can be used only to orga-
nize scenarios written in free-form text. Some tools [9] propose more structured
approach, offering compliance with some standard templates [2]. Other tools
allow for generating scenarios from some formally defined action models [10],
[11]. In this paper we propose a tool that allows for creating semantically precise
scenario-based models. This precision is based on a very simple notation and
thus allows for building textual descriptions that can be easily understood by
the users (see also [12]). At the same time, this simple notation can be automat-
ically transformed into a precise model that clearly separates the structure of
the problem from its dynamics. This separation on the requirements level allows
for transformation into more design-specific models.

The above uniform modeling notation used in the tool, puts it in the con-
text of model-driven development, based on standard modeling notation of UML
[13] and the concepts of MDA [14]. Efforts to unify the notation for scenarios
lead to extending the UML’s UseCase metamodel package. The tool presented
in this paper adds the extended metamodel to existing UML tools by offering
an appropriate plug-in component. Unified notation for scenarios makes it pos-
sible to define appropriate transformations from the requirements level model
to the design-level models. By using a plug-in to a UML CASE tool we make
this transformation possible thus leading to more flexible development lifecycles
leading from the initial user’s needs to the resulting code.

In the following sections we describe the concepts behind the tool in more
detail. First, we update the UML 2.0 metamodel to accommodate for precise

416 Micha�l Śmia�lek et al.

notation and semantics in the area of use cases. We also define an additional
metamodel package that contains notions used in the scenario content. Finally
we describe the application of the proposed tool in the software development
lifecycle.

2 Introducing Use Case Scenarios with Notions to UML

Execution of a scenario is a sequence of actions forming a dialog between one
or more objects outside of some system and that system. This sequence is per-
formed on behalf of a single primary object (primary actor). This primary object
triggers the scenario by interacting with the system. The initial trigger is fol-
lowed by a sequence of actions performed by the system and by the outside
objects (including the primary object). The sequence is controlled by the system
and leads to a single goal of significant value to the primary object. This goal
can constitute a change in the system’s state or change in the state of outside
objects or can mean revealing the current state of the system to the primary
object. When the above sequence of actions fails to reach the goal, the system
returns to the initial state or reaches some error state. When writing-down in-
dividual scenarios it makes sense to group them by the initial triggering actions
and the final goals for the primary actors. We can call such a group of scenarios
having the same trigger and the same goal - a use case (see [2]).

While designing a notation for the above defined scenarios and use cases,
we constantly have to bear in mind their diverse audience. This means, that
scenarios have to be readable and informal yet precise. Users and stakeholders
are used to free-form textual notations for requirements. On the other hand,
developers would prefer to have a precisely defined flow of control. This means
that we should have in fact two notations easily transformable one into another
(see [7]).

In order to combine informality with precision we can write scenarios as
sequences of textual sentences. To be precise, these sentences would need to
have very simple grammar. A bare minimum for a full sentence is a subject, a
verb and an object. With this notation, a scenario might look like this:
1. Superuser chooses to add a user.
2. System shows user data dialog.
3. Superuser enters user data.
4. System validates user data.
5. System adds user to user list.

Sometimes we also need a second object in the sentence (see: “user list” above)
which has to be associated with the rest of the sentence with a preposition (“to”
in the last sentence above). This gives us a simple, yet powerful grammar for
individual actions in a scenario. Every action sentence consists of a Subject, a
Verb, and one or two Objects (SVO[O] grammar - see [8]).

If we treat the above scenario as part of a full use case (here: “Add user”), we
could define also some other scenarios that are initiated with the same triggering
action (Superuser chooses to add a user) and lead toward the same goal (a user
gets added to the user list). Another such scenario could look as follows:

Scenario Construction Tool Based on Extended UML Metamodel 417

Superuser

Add user Change user's
group membership

Import users

HumanResourceSystem

Check user import
log

«invoke»

«use»

«invoke»

«use»

«use»

«participate»

Fig. 1. Example use case model

1. Superuser chooses to add a user.
2. System shows user data dialog.
3. Superuser enters user data.
4. System validates user data.
5. System shows error dialog.

The only difference between the two scenarios is the last sentence. We suspect
that the alternative scenario is caused by a failed validation of the entered user
data. We can note that although the final goal is not reached, the second scenario
is part of the same “Add user” use case. We can treat this type of scenarios as
failure scenarios.

Having several scenarios within a use case necessitates some ordering of the
control flow. We also need some explanation about the conditions that cause
different scenarios to be evoked. This leads us to introducing precise control flow
semantics for use cases (see [15], [16]). This precision is also needed when we want
to express control flow relationships between different scenarios (¡¡include¿¿ and
¡¡extend¿¿ relationships in UML). It can be argued that interleaving this flow of
control is harmful (see [17], [18]). Thus, we will assume invocation type of control
flow here, ie. control flow returns to the invoking use case only after performing
one of the final actions in the invoked use case.

We will illustrate the flow semantics by elaborating on the example scenarios
already presented above. Our example will consist of four use cases illustrated
on Figure 1. Three of these use cases can be ¡¡used¿¿ directly by the “Superuser”
actor. The fourth use case can only be ¡¡invoked¿¿ from the “Add user” use case.
One of the use cases needs additional ¡¡participation¿¿ of an external interface
(interface to another system). It can be noted, that in addition to being ¡¡used¿¿
directly, the “Check user import log” use case can be also ¡¡invoked¿¿ from
“Import users”.

The details of this use case model can be revealed by showing scenarios of
individual use cases. This time, instead of writing only sequences of SVO(O)
sentences we will use graphical notation of UML’s activities ([13], p. 317). With
this notation we can precisely describe control flow semantics for alternative
flows and inter-use case invocations (see [15]). Figure 2 presents an appropriate

418 Micha�l Śmia�lek et al.

«requested»
{logged-in; user log not blocked}

Superuser
chooses to
add a user

System
shows user
data dialog

Superuser
enters

user data

System
validates
user data

System
adds user
to user list

«success»

{added user can log-in}

System
shows error

dialog

Superuser
cancels
operation

«failure»

{only the
previously existing
users can log-in}

«invoke/request»
Change user's

group membership

{at least one
group exists}

[user data
valid]

[user data invalid]

Fig. 2. Activity for the “Add user” use case

«requested» «success»

Superuser
chooses to
import users

System asks for
imported user list from
HumanResourceSystem

HumanResourceSystem
creates imported user

list

System
adds users
to user list

«invoke/insert»

Check user
import log

Fig. 3. Activity for the “Export users” use case

activity with scenarios for the “Add user” use case. The initial node contains a
precondition that guards the usage of this use case, ¡¡requested¿¿ by the actor.
There are also two final nodes that denote ¡¡success¿¿ and ¡¡failure¿¿ of appro-
priate scenarios. These final nodes contain postconditions describing the desired
system state in case of use case success or failure respectively.

It can be noted that flow in a use case can be controlled in four ways:
– The user can decide on performing one action or another (“enters user data”

or “cancels operation”).
– The system might decide on further actions (“user data valid” or “user data

invalid”).
– The user may ¡¡request¿¿ invoking another use case (“Change user’s group

membership”).
– The system may invoke a use case by ¡¡inserting¿¿ its activity.

The fourth of these possibilities is illustrated on Figure 3. The invoked use case is
inserted directly into the flow of the base use case without any user intervention.
It can be observed that ¡¡inserting¿¿ a use case has a slightly different semantics
than ¡¡requesting¿¿ it from within another use case or ¡¡using¿¿ it directly. This
difference in semantics is illustrated on Figure 4. When the “Check user import
log” use case is ¡¡requested¿¿, this is done through initial user action (“Supe-
ruser chooses to check import log”). When use case is invoked by ¡¡inserting¿¿
it into the flow of another use case, this initial action is omitted. Such duality
of invocation is reflected by introducing two types of initial nodes.

Having resolved ambiguity of control flow we still face another source of
misunderstanding. With simple SVO(O) sentences formed into an activity with

Scenario Construction Tool Based on Extended UML Metamodel 419

«requested» «inserted»

Superuser
chooses to

check import log

System shows
import log dialog

System seeks
for import log

entries

Superuser
browses the

import log

«success»

Superuser
acknowledges
the import log

dialog

Fig. 4. Activity for the “Check import log” use case

«noun»
import log

«noun»
import log entry

«noun»
user data

«noun»
user

«noun»
import log dialog

«noun»
imported user list

«noun»
user data dialog

«noun»
user list

«noun»
dialog

Fig. 5. Fragment of the noun vocabulary

different scenarios, we only tell a story. We don’t have the means to describe
the environment. For instance, we would like to know what “user data” is, and
how it is related to “user” and “user data dialog”. We thus need some way of
expressing the vocabulary that is used when writing scenarios.

An appropriate vocabulary of nouns is illustrated on Figure 5. Relationships
between nouns can get reflected in their textual definitions, as presented below
(where links to other notions are denoted with square brackets):

– User - contains basic information about the user (login/password), detailed
in [user data]; can be inserted into a [user list] or [imported user list].

– User data - detailed information about a [user]; includes user’s personal data;
user data is part of [imported user lists], gets registered as [import log entry],
and is presented to the user through [user data dialog].

Additionally to defining all the nouns, we can also define verbs that can be
related to appropriate nouns, thus forming operations on them. Such relation-
ships for our example model are illustrated on Figure 6. Verbs (like “show” or
“validate”) are treated as behavioral ¡¡features¿¿ of related nouns. Some verbs
may also ¡¡compose¿¿ a “complex verb” together with another noun.

The relationships between nouns and verbs form a complete vocabulary. This
vocabulary specifies an environment for stories defined through use case scenar-
ios. Such a clear separation of stories from notions used therein gives a very
coherent model which can be transformed into other models. As a first step to-
wards designing a system based on developed scenarios we can generate a simple
class model (see Fig. 7). Having some simple transformation rules, such a model
can be generated automatically from textual scenarios.

420 Micha�l Śmia�lek et al.

«noun»
dialog

«verb»
show

«noun»
user data

«verb»
validate

«noun»
user

«noun»
user list

«verb»
add

«noun»
user data dialog

«compose verb»

«feature»

«feature»

«feature»

Fig. 6. Relationships between verbs and nouns

User

UserList

add_user()

Dialog

show()

UserData

validate()

UserDataDialog

Fig. 7. Class model after transformation from the vocabulary

Apart from being a good basis for model transformation, the “scenarios with
notions” model can be used just for writing unambiguous and semantically pre-
cise requirements specifications. Notions used consistently throughout different
scenarios make this task relatively easy. While writing the stories we constantly
extend our vocabulary of notions. We describe all the sentence objects and verbs
that might cause ambiguity when developing the stories. We also define relations
between the notions. This gives us a static map of the “user’s territory”, which
is illustrated on Figures 5 and 6.

Unfortunately, UML does not introduce the notion of a scenario in the use
case package ([13], p. 641). It also gives a very vague semantics of such a fun-
damental modeling element as use case is. On the other hand, introducing clear
semantics to the UML’s UseCase metaclass seems to be crucial if we want to
define transformations from use case based requirements specifications to design
level models. This could also allow for applying the concept of MDA [14] to
requirements models.

UML, as an extensible modeling language, gives us two ways to clarify the
use case semantics through adding scenarios, SVO sentences or notions. The
first way is to introduce certain profiles (see [19]) and use existing modeling
elements to represent eg. sentence subjects, verbs and objects. Another way is
to extend the language’s metamodel. This second method seems to be better
suited for our purpose, as we want to add new notation and create a plug-in tool
that would extend the capabilities of an existing UML-based tool. Extending the
UML metamodel gives us also an opportunity to fix numerous problems with
the metamodel related to use cases, raised by various authors (see eg. [18], [20]).

Scenario Construction Tool Based on Extended UML Metamodel 421

BasicActivities
BasicBehaviors

UseCases

FundamentalActivities

Kernel
Notions

«import»

«merge»
«merge»

«merge»«import»

«merge»

Fig. 8. Changes and additions to UML metamodel package dependencies

Classifier
BasicBehaviors::

BehavioredClassifier

UseCase

Extend Include

ExtensionPoint

Kernel::
Constraint

Kernel::
RedefinableElement

Actor

Relationship

Kernel::
DirectedRelationship

Fig. 9. Initial use case metamodel taken from the UML 2.0 specification

These considerations lead us to defining an extension to the UML meta-
model. We shall redefine the UseCase package substituting the vague semantics
of “behaviored classifiers” with more precise “activities”. We also add a separate
Notions package which defines specific classifiers that form the notion vocabulary.
The two affected packages are illustrated on Figure 8. The concrete syntax of
contained elements is based on the notation of use cases, activities (with textual
SVO variant) and classes, as presented in this section. Semantics is defined by
introducing appropriate new activity nodes, and by specifying transformation
of these nodes into vocabulary notions and then - into more design-specific do-
main model. The abstract syntax and more detailed description of semantics is
presented in the following sections.

3 Extending UML Activities and Use Cases for Scenarios

The initial UML metamodel for the UseCase package is presented (in a slightly
simplified form) on Figure 9 (see [13], p. 642). UseCase metaclass is kind of Be-
havioredClassifier. UseCase is owned by a Classifier that has its behavior defined
with this UseCase. UseCases can be related through Extend or Include Directe-
dRelationships. They can be also related to Actors. The Extend relationship can
be attached to several ExtensionPoints defined within the UseCase.

This metamodel seems to cause several problems pointed out in [20]. The first
problem is with UseCase being a specialization of BehavioredClassifier (a Classifier

422 Micha�l Śmia�lek et al.

Activity

ActivityNode

ActivityEdge

Kernel::
RedefinableElement

Kernel::
ValueSpecification1

+guard

*+outgoing

1+source

* +incoming

1 +target

Fig. 10. Fragment of the activity metamodel taken from the UML 2.0 specifica-
tion

BasicActivities::
Activity

UseCaseScenario

UseCase
UseCaseNode

BasicActivities:
:ActivityNode

Kernel::
RedefinableElement

UseCaseTerm

Classifier

0..*+observable_behavior

1+owner

*
{subsets
ownedAttribute}

+notion

1..*

1..*+scenario_step
*
{subsets ownedOperation}

+scenario

*
{subsets node}

+uc_node

Fig. 11. Use case metamodel modified for scenarios, terms and activities

with attached Behavior - see description in [13], p. 469). It is very unclear how
semantics of UseCase metaclass relates to semantics of BehavioredClassifier meta-
class. Especially considering the fact that the Behavior metaclass is a Classifier
itself (even more specificaly - a Class)! Another problem is with the semantics
of Extend and Include relationships and ExtensionPoints. ExtensionPoints relate
only to Extend relationships. It seems that Include relationships have no defined
points of inclusion in the base UseCase. This asymmetry in treating two UseCase
relationships seems not to be justified. Extend relationships can have several as-
sociated ExtensionPoints. This could be acceptable, however, the semantics of
the Extend relationship ([13], p. 647) indicates that ExtensionPoints are actually
points of interleaving (similar to GOTO and COMEFROM statements) which
was highly criticized in [18] and [17].

Our proposition is that UseCase metaclass would specialize Activity from Ba-
sicActivities (see Figure 10 for a short extract from this UML package). It would
then be composed of several UseCaseNodes that are kind of ActivityNode. Figure
11 shows, that UseCase, according to our proposition, is composed of several
UseCaseScenarios and also contains UseCaseTerms (denoting subjects, verbs and
objects in SVO sentences). UseCaseScenarios and UseCaseTerms inherit from Re-
definableElement which should clarify the semantics of generalization relationship
between UseCases.

Types of UseCaseNodes are presented on Figure 12. We have SentenceNodes
(denoting SVO sentences) and ControlFlowNodes. ControlFlowNodes have an as-

Scenario Construction Tool Based on Extended UML Metamodel 423

ActivityNode

UseCaseNode

PreconditionNode

type: InclusionType PostconditionNode

isSuccess: boolean

SentenceNode

InvocationNode

type: InclusionType

Kernel::
Constraint

«enumeration»
InclusionType

ControlFlowNode
+condition

Fig. 12. Extended metamodel for ActivityNodes

sociated (optional) Constraint. PreconditionNodes and PostconditionNodes are the
initial and final nodes of the activity. A constraint is set that PreconditonNodes
can have only a single outgoing ActivityEdge. PostconditionNodes can have one
or more incoming ActivityEdges only.

InvocationNode denotes the invocation of another UseCase instance from
within the current UseCase instance. InvocationNodes are semantically related
to PreconditionNodes. This relation is denoted by the node’s type, which can
be either request or insert. In the UseCase’s activity there can be only a single
request and a single insert PreconditionNode (or one of them). The request node
can be connected to a SentenceNode that has no other incoming ActivityEdges.
The insert node has to be connected to a SentenceNode that is a target of an
ActivityEdge connected with SentenceNode being connected with a request node.
This reflects the situation shown on Figure 4.

To complete the UseCase metamodel we define appropriate relationships as
shown on figure 13. We introduce Usage and Participation relationships that con-
nect a UseCase with external Classifiers (eg. Actors or Interfaces - see. Fig. 1). We
also have a single Invocation relationship that can have several associated Invo-
cationNodes that denote points of invocation within the UseCase’s activity. This
relationship substitutes the Include and Extend relationships from the current
UML metamodel. Structure of a SentenceNode is presented on Figure 14.

4 Extending UML Kernel for Vocabulary

The structure of vocabularies is shown on Figures 15 and 16. The syntax of
the vocabulary model is quite simple. A Vocabulary is kind of Package and con-
tains several Notions that can be Nouns or Verbs. Every Notion has a textual
description. Nouns can be of type: actor, object or system. This type determines
the relation of a Noun to terms in SentenceNodes of the UseCase metamodel
(see also Fig. 14). Nouns and Verbs can be related through NounAssociations and
NounVerbAssociations. NounAssociations relate two Nouns. Such associations can
have associated NounLinks. Every such link points to a position in the source
Noun’s description where the target Noun is referenced. Noun associations can be

424 Micha�l Śmia�lek et al.

Activity

UseCase

Participation

Invocation

ClassifierUsage
ControlFlowNode

InvocationNode

type: InclusionType

Actor

Relationship

Kernel::
DirectedRelationship

1

0..*

11

0..*

1

1

1

0..* 1

Fig. 13. Use case metamodel modified for relationships

UseCaseNode

SentenceNode

RedefinableElement

UseCaseTerm

SentenceSubject
SentenceObject

SentenceVerb

1

1

1..2
{ordered}

Fig. 14. Detailed structure of SentenceNodes

of type: regular or generalization. NounVerbAssociations relate Nouns with Verbs.
Every Verb can be related to a maximum of two Nouns. One of these relationships
can be of type feature, and another one of type compose verb. The semantics of
these types of relationships was described in section 2.

Figure 17 shows transformation mappings between UseCaseTerms, Notions
and other Classifier-based models. These mappings allow for automatic genera-
tion of class models directly from use case and vocabulary definitions. All Sen-
tenceVerbs are mapped to Verbs in the vocabulary. SentenceSubjects and Sen-
tenceObjects map into Nouns of appropriate type. NounVerbAssociations can be
generated from SentenceNodes (see Fig. 14) through appropriate transformation
rules. These rules determine how to relate nouns and verbs depending on the
position of related UseCaseTerms in SentenceNodes. For example, when a sen-
tence has two objects, the rule might say that the first object with the verb form
a ¡¡compound verb¿¿ and together they form a ¡¡feature¿¿ of the second object.
Such rules might be used to perform automatic transformations. NounAssocia-
tions are determined by hand by the model developer. This is done simply by
adding appropriate NounLinks in the Noun descriptions (i.e. while using other
noun’s name when defining the current noun). Having determined NounVerbAs-
sociations and NounAssociations, the transformation to a class model is quite
straightforward. Every NounAssociation maps to a Generalization or Association

Scenario Construction Tool Based on Extended UML Metamodel 425

Vocabulary Notion

description: string

Kernel::
Package

Noun

type: NounType

Verb

Kernel::
PackageableElement

«enumeration»
NounType

0..*
{redefines ownedMember}

+ownedMember

1

Fig. 15. General structure of the vocabulary

Notion

Noun

type: NounType

Notion

Verb

NounAssociation

type: NAType

NounVerbAssociation

type: NVAType

Kernel::
DirectedRelationship

Kernel::
Relationship

Kernel::
Classifier

Kernel::
InstanceSpecification

NounLink

positionInSource: int

«enumeration»
NAType

«enumeration»
NVAType

* 1
{redefines classifier}

+classifier

0..2

1
{subsets relatedElement}

0..*

1
{subsets
relatedElement}

*

1
+target

*

1
+source

Fig. 16. Relationships between vocabulary elements

kind of Relationship. Nouns got mapped to Classifiers (Classes) or their Struc-
turalFeatures (Properties). This distinction has to be made by hand by the model
developers before the transformation. Verbs alone and Verbs with Nouns having
compose verb relationships translate into BehavioralFeatures (Operations). These
operations are inserted into appropriate Classifiers.

5 Supporting the Software Lifecycle with a Scenario
Construction Tool

The presented notation and metamodel with appropriately defined semantics
can be the basis for creating a scenario construction tool. The requirements for
such a tool would include adding scenarios and individual sentences, adding and
using the vocabulary notions inside scenarios, and transforming scenarios with
notions into class models. Experience from using a similar tool (see [12]) shows
that developers are reluctant to use “point and click” method for writing scenar-
ios. Instead, they strongly prefer traditional word processor style. Thus, the tool
allows for typing directly all the subjects, verbs and objects in consecutive sen-

426 Micha�l Śmia�lek et al.

Notion

Verb

Notion

Noun

type: NounType

UseCaseTerm

UseCases::
SentenceObject

UseCaseTerm

UseCases::
SentenceSubject

UseCaseTerm

UseCases::
SentenceVerb

NounVerbAssociation

type: NVAType

Kernel::
Classifier

Kernel::
BehavioralFeature

Kernel::Feature

Kernel::
StructuralFeature

DirectedRelationship

NounAssociation

type: NAType

Kernel::
Relationship

1
«map»

0..*

1..**

1
«map»

0..*

0..1

«map»

0..1

1
«map»

0..*

0..1

«map»

0..1

0..1

«map»

0..1

0..1

«map»

0..1

0..1

«map»

0..1

0..1

«map»

0..1

Fig. 17. Transformations between the use case sentence elements, vocabulary
elements and other classifier-based models

a)

b)

c)

Fig. 18. Using the scenario tool for writing scenarios and constructing a vocab-
ulary

tences. However, during typing, the tool checks for appropriate nouns and verbs
from the vocabulary, offering instant verification (see Fig. 18a,b). If a noun or a
verb is not present, the tool introduces the new word into the vocabulary (Fig.
18c). Words can be also introduced directly (outside of typing scenarios).

The scenario tool is closely integrated (as a plug-in) with a UML CASE
tool2, and uses its model repository. Scenarios can be inserted into appropri-
ate use cases as activity diagrams. The vocabularies, according to the proposed
metamodel are kept inside the repository as separate packages. Nouns, verbs and
relationships between them are inserted into these packages as simple classes with
associations. This notion model is the basis for automatic transformation into

2 The base tool is Enterprise Architect from SparxSystems which offers very extensive
and comprehensive programmer’s interface.

Scenario Construction Tool Based on Extended UML Metamodel 427

Fig. 19. Using the scenario tool to create domain class models

scenarios

user
wishes

notions
class
model

sequence
model

code

keeping
consistent
style

supporting
scenario-based
development

Fig. 20. Using the scenario tool in a simple iterative development process

a full class model with nouns transformed to classes or properties, and verbs
transformed into operations (see Fig. 19). With such automatic transformations
possible, we can support the development lifecycle as illustrated on Figure 20.
User wishes can be transformed into a coherent repository of SVO scenarios with
notions. This repository can be transformed into domain level class models, and
then into design and code. This transformation might also involve dynamic mod-
els (transforming scenarios into interaction or activity models), although this is
outside of scope of this paper. A coherent requirements repository unambigu-
ously mapped onto design level models can significantly enhance the capability
to react to changes in user’s needs.

6 Conclusions

The described story writing tool is based on an extended UML metamodel in
the area of use cases. It supports creation of semantically precise models already
on the requirements level. Having precise semantics allows for creating require-
ments models that can be the basis for further transformation during software
development. It might be argued that the proposed formalism constrains the
requirements specifiers by enforcing specific format of their products. However,
experience shows that this constrain leverages discovery and innovation. By writ-

428 Micha�l Śmia�lek et al.

ing simple SVO sentences we are forced to discover notions that could not be
discovered with other techniques. Seeking for appropriate notions facilitates com-
munication between the developers and the users. This communication is well
organized through telling stories and explaining notions used in these stories.

Applicability of the SVO(O) notation with notions has already been verified
in several commercial projects. These include requirements specification for an
economic information system and for a university teaching support system. The
requirements for the currently described tool itself were obviously also prepared
using the SVO(O) format. It has to be noted that there was not even a single sce-
nario that would necessitate some extension to the SVO(O) format of sentences
(i.e. introduction of more complex grammar). It seems (although it would need
some further investigation) that SVO(O) scenarios together with the vocabulary
model capture enough information to be treated as a complete and satisfactory
model of requirements (complemented with non-functional requirements not cov-
ered by this work). There are several important advantages of this model over
free-form requirements. The clients see this model as very clear and easily accept
it as means for communicating requirements (and more importantly - changes
to requirements). We haven’t found a single (yes!) client (out of couple of tens)
that would have any trouble at all with reading and understanding this notation
(even without any initial training). The notation is ready for transformation into
design level models. At the same time, the transformation is not overly complex
and can be easily traced back. There seems to be no need to apply sophisticated
transformations based eg. on general natural language processing, like it would
be needed for traditional requirements specifications.

With the use of the presented tool, the transformation from requirements into
static domain model is automatic but not completely automatic. The designers
still need to support the transformation with certain information that in not
available in SVO stories, like navigability between classess, multiplicities, etc.
However, even with the current level of automation, the transformation gives a
noticeable effect of reduction of time from formulating the requirements (and
most importantly - changes in requirements) to creating a solution (or changes
to the solution). It has to be stressed that the current tool adds to traditional
requirements tools two significant characteristics: coherence of the underlying
metamodel and transformability into other models. With these characteristics,
the tool seems to be able to resolve the problem of detailed specifications that are
too heavy to be effectively used in development. Instead of a typical requirements
tool we have a tool that allows for creating models that can be relatively easy
transformed into analytical domain models and then into design and code. This
means that writing detailed requirements becomes the first step in “real” (in
contrast to “paper based”) software development.

References

[1] Alexander, I., Maiden, N., eds.: Scenarios, Stories, Use Cases. John Wiley (2004)

[2] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley (2000)

Scenario Construction Tool Based on Extended UML Metamodel 429

[3] Cohn, M.: User Stories Applied. Addison-Wesley (2004)
[4] Gelperin, D.: Precise use cases. Technical report, LiveSpecs Software (2004)
[5] Constantine, L.L.: What do users want? Engineering usability into software.

Windows Tech Journal (1995) revised in 2000, http://www.foruse.com/ arti-
cles/whatusers.htm.

[6] Hurlbut, R.R.: A survey of approaches for describing and formalizing use cases.
Technical Report XPT-TR-97-03, Expertech Ltd. (1997)

[7] Śmia�lek, M.: Accommodating informality with necessary precision in use case
scenarios. Journal of Object Technology 4 (2005) – to be published.

[8] Graham, I.: Object-Oriented Methods Principles & Practice. Pearson Education
(2001)

[9] McCoy, J.R.: Requirements use case tool (RUT). In: OOPSLA ’03. (2003)
[10] Alexander, I.: Goal patterns generate scenarios. In: RESG Scenarios Day. (1999)

http://easyweb.easynet.co.uk/ iany/consultancy/goalpatt/goalpatt.htm.
[11] Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D.: Supporting scenario–

based requirements engineering. IEEE Transactions on Software Engineering 24
(1998) 1072–1088

[12] Gryczon, P., Stańczuk, P.: Obiektowy system konstrukcji scenariuszy przypadków
uzycia (Object-oriented use case scenario construction system). Master’s thesis,
Warsaw University of Technology (2002)

[13] Object Management Group: Unified Modeling Language: Superstructure, version
2.0, Revised Final Adopted Specification, ptc/04-10-02. (2004)

[14] Miller, J., Mukerji, J., eds.: MDA Guide Version 1.0.1, omg/03-06-01. Object
Management Group (2003)

[15] van den Berg, K.G., Simons, A.J.H.: Control flow semantics of use cases in UML.
Information and Software Technology 41 (1999) 651–659.

[16] Metz, P., O’Brien, J., Weber, W.: Specifying use case interaction: Types of alter-
native courses. Journal of Object Technology 2 (2003) 111–131

[17] Simons, A.J.H.: Use cases considered harmful. In: Proceedings of the 29th Con-
ference on Technology of Object-Oriented Languages and Systems-TOOLS Eu-
rope’99, Nancy, France, IEEE Computer Society Press (1999) 194–203

[18] Metz, P., O’Brien, J., Weber, W.: Against use case interleaving. Lecture Notes
on Computer Science 2185 (2001) 472–486

[19] Śmia�lek, M.: Profile suite for model transformations on the computation inde-
pendent level. Lecture Notes on Computer Science 3297 (2005) 269–272

[20] Genova, G., Llorens, J., Metz, P., Prieto-Diaz, R., Astudillo, H.: Open issues in
industrial use case modeling. Lecture Notes in Computer Science 3297 (2005)
52–61

Invited Presentation II:

Experiences in Applying Model Based System
Testing Generation

Marlon Vieira

Siemens Corporate Research
marlon.vieira@siemens.com

Abstract

The goal of this presentation is to illustrate the benefits of using an automated,
model-based approach for improving system test design and generation. Our ap-
proach, TDE/UML, automatically generates system tests from behavioral mod-
els of an application using the Unified Modeling Language (UML.). TDE/UML
builds on and combines existing techniques for data coverage and graph cov-
erage. We focus here on the results of applying TDE/UML in diverse Siemens
projects: its cost benefits and its fault detection capabilities.

System testing, which ensures the functional compliance of an application
with its requirements, is a well-defined process within Siemens. However, in
many cases, it remains a manual process. Test designers typically derive their
system input and expected output information from a variety of sources includ-
ing textual use case specification and business process rules. They then create
a set of test procedures comprising of individual test steps, which are executed
manually by test executors against the system under test. Whenever an auto-
mated test environment is available, these test executors are also responsible for
translating these textual test procedures into executable test scripts. To auto-
mate and formalize this process as much as possible, our research uses model
based system test generation.

Our approach makes use of UML Use Case diagrams to describe the rela-
tionship among the diverse use cases implemented by the system and the actors
who interact with the system through those use cases. UML activity diagrams
are used to model the logic captured by a single use case and between use cases.
The set of activity diagrams represents the overall behavior specified for the
system and it is the basis for testing the different functionalities and business
rules described in the use cases specification. Tests are automatically generated
from those models following three phases. During the first phase, a test de-
signer manually annotates the UML models based on SCR Test Specification
Language (TSL), which implements the category-partition methodology. In the
second phase, the test generation tool (TDE/UML) automatically creates a set of
textual test procedures (test cases) or executable test scripts. In the third phase,
a test executor runs these against the system under test using a commercial UI
testing tool.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 430–430, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 431-444, 2005.
 Springer-Verlag Berlin Heidelberg 2005

The Impact of UML 2.0 on Existing UML 1.4 Models

Julie A. Street, Robert G. Pettit IV

The Aerospace Corporation
15049 Conference Center Drive
Chantilly, Virginia 20151 (USA)

[julie.street, rob.pettit]@aero.org

Abstract. The Unified Modeling Language (UML) is the accepted standard for
object-oriented modeling across the software design industry. Version 2.0 of
the UML represents a major new revision to this standard and includes many
changes to the current industry state of the practice (UML 1.4). These revisions
include the removal or renaming of some existing features as well as the
addition of several new capabilities. As tool vendors and software engineers
begin to adopt UML 2.0, there is a potential to greatly impact legacy systems
and practitioners employing UML 1.4. This report aims at providing an
understanding of the changes made in UML 2.0 and their potential impacts,
both positive and negative, to the UML 1.4 modeling community.

1. Overview

The Unified Modeling Language (UML) is the accepted standard for object-oriented
modeling across the software design industry. Since its introduction there have been
many positive reviews as well as criticisms of UML. In 2004, a major new revision
to the UML standard was released to address the problems and limitations reported.
UML version 2.0 consists of many changes and enhancements from the current
industry state of the practice, version 1.4. During the revision of UML 2.0, it was
decided to break the specification up into two complementary parts; the UML 2.0
Infrastructure and the UML 2.0 Superstructure. The infrastructure specification
contains information on the architectural foundations for UML. The user level
constructs are described in the superstructure specification. These two specifications
combined create the complete specification for UML 2.0 [1].

This paper will specifically focus on the changes to the UML constructs in the UML
2.0 Superstructure. These changes include the removal or renaming of some existing
features as well as the addition of several new capabilities. UML 2.0 has the potential
to enhance UML 1.4 models. However, not all changes are backward compatible,
which could potentially cause problems when transiting legacy designs. The changes
made to the UML constructs for modeling the static structure and dynamic behavior
will be examined along with their impacts when migrating legacy UML 1.4 models to
the new UML 2.0 specification. Table 1 contains a summary of the additions,
changes, and deletions in UML 2.0 and each will be addressed in further detail in the
paper.

432 Julie A. Street and Robert G. Pettit IV

Table 1. Summary of UML 2.0 changes from UML 1.4

Construct Additions Changes Deletions
Use Case � None � None � None
Class � Redefinition � Interface notation

� Active class notation
� None

Component � Ports � Component notation
� Connector defined
� Realization defined

� None

Composite � New construct � N/A � N/A
State � Action Blocks

� State Lists
� Terminate

Pseudostates
� Submachines
� Redefinition
� Protocol Conformance

� Protocol state
machine defined

� Multiple Entry/Exit
Points

� None

Sequence � Fragments
� Diagram Name

� Structure Based on
International
Telecommunication
Union Standard

� Arrow head notation

� N/A

Communication � Diagram Name � Name Change From
Collaboration
Diagram to
Communication
Diagram

� Transient
Links

Activity � Pre & Postconditions
� Data Stores
� Activity Groups
� Pins and Parameter Set
� Enhanced Partitioning
� Expansion &

Interruptible Regions

� Petri-Net like
metamodel

� Petri-Net like
semantics

� State
machine
metamodel

� State
machine
semantics

Interaction
Overview

� New construct � N/A � N/A

Timing � New construct � N/A � N/A

2. Structural Impacts

The static model is used to define what entities are participating in the system and the
relationships between them. In UML 1.4, the static model is commonly captured
using use case diagrams, class diagrams, and component diagrams.

Use case diagrams did not receive any changes in UML 2.0, therefore there will be no
impact on existing use case diagrams. Class diagrams, which are used to help define
the structure of the objects in the system, did undergo some modifications in UML

The Impact of UML 2.0 on Existing UML 1.4 Models 433

2.0. A new feature added is the concept of redefinition, which can be applied to
behaviors, classifiers, operations, properties, state machines and templates.
Redefinition is the ability to augment, constrain, or override an element within a
classifier whose context changes in a specialization. In class diagrams, redefinition is
intended to help specialize the properties of a child class when they are originally
defined within the context of the parent class [2]. For example, a child class’s method
can be modified using the redefinition syntax of {redefines method-name}. UML 2.0
also made notational changes to the interfaces and active classes. The short hand
notation for interfaces has changed slightly from lollipop to ball and socket notation
[1, 4]. The active class notation has also changed slightly from a bold border to a
regular border with double vertical lines [3]. To demonstrate the potential impact of
the changes to legacy class diagrams, consider a portion of the static structure for a
temperature control system modeled in UML 1.4 and UML 2.0 shown in Figure 1.

Figure 1. Difference in Class Diagram Notation

The most obvious differences are the notational changes to the interface ‘measure’
and active object ‘Thermostat Controller’. This may cause some initial confusion to
UML 1.4 practitioners, while they are still learning the new notation. Another change
made to the diagram, was the use of redefinition in the ‘Temperature Sensor’.
Redefinition was used to rename the method ‘getValue’ to ‘getTemp’ to help clarify
what the specialized sensor returns. Note that redefinition is not required, however
legacy models may benefit from using redefinition to help create clearer and more
precise visual representations. Redefinition can easily lead to errors and the
specification is not clear how redefinition interacts with association specialization and
subsetting [2]. Therefore redefinition should be used only when necessary and
avoided in designs that use specialization associations and subsetting to prevent
confusion. Overall the changes to class diagrams were relatively minor, however,
making the required notational updates to legacy UML 1.4 models, without automated
CASE tool support, could prove to be an onerous and error prone task.

434 Julie A. Street and Robert G. Pettit IV

Another UML construct used to define the static structure is the component diagram,
which is used to model components with complex implementations. One of the most
noticeable changes to component diagrams is the new notation for components. UML
1.4 used a rectangle with two protruding blocks to represent a component. This
notation, however, did not scale well, therefore it changed in UML 2.0. Components
now use the <<component>> stereotype, the protruding blocks were removed, and a
small icon similar to the UML 1.4 component notation appears in the upper right hand
corner [1]. These differences are shown in Figure 2. Ports are a new concept that can
be used to add a named set of provided and required interfaces to a component. Ports
are created and destroyed with the object that owns them and an object can have any
number of ports.

Figure 2. Component Notation Differences

A port’s behavior depends on its set of required and provided interfaces [1]. To
distinguish between interfaces and ports, a small rectangle is placed on the border of
the port and the component. UML 2.0 also formalizes some commonly accepted
practices used in UML 1.4. The semantics of realization now explicitly include
components and the difference between delegation connectors and assembly
connectors is now official.

When migrating legacy component diagrams, it is important to note that the old
notation for component diagrams is still legal in UML 2.0, therefore making existing
designs backward compatible. The formalizing of semantics for realization and
connectors will not impact legacy models, only clarify and legalize their usage. The
only impact on legacy designs will be if the decision is made to introduce ports,
which has the potential to become a substantial amount of work.

UML 2.0 also introduced a new diagram for modeling static structure called the
composite structure diagram. This diagram shows the internal structure of a
structured object or collaboration. Composite structure diagrams can be used to
replace class diagrams of complex objects, since composite structure can additionally
include collaborations. Using composite structure diagrams, internal structure can be
described with parts, connectors, and ports. It is important to note that structured
classes are not made up of type associations, rather each part has its own context,
usage and relationships to different parts. Parts are the pieces, not necessarily classes,
that a structured class is composed of and each part has a name, type, multiplicity, and
role. Connectors are used to define the communication path between roles. Unlike
associations, connectors between elements are only valid in the context of the
structured class that owns them [2]. To see how this new construct can be utilized
consider an elevator station with four elevators. In UML 1.4 only relationships
between the classes can be modeled in class diagrams, as shown in left portion Figure

The Impact of UML 2.0 on Existing UML 1.4 Models 435

3. It is unclear how many ‘Elevators’ each ‘Elevator Controller’ will control. In
UML 2.0 this can be remedied by using roles and role relationships in a composite
structure diagram as depicted on the right of Figure 3. The roles removed any
ambiguity of the number of elevators each controller is to control.

Figure 3. Class Diagram vs. Composite Structure Diagram

The models can also be augmented with collaborations to show how the
communicating elements collectively accomplish a task or tasks. Collaborations are
a new concept introduced in UML 2.0 and not the same as UML 1.4 collaboration
diagrams. Collaborations are composed of roles and connectors that together provide
a desired functionality [1]. Roles and connectors are only meaningful within the
context of the collaboration that owns them and are not valid for the entire system. A
collaboration may be used to describe an operation, a use case, a behavior, and even
an implementation of a class[2]. Since collaborations define structure and do not use
messages, they are different from interaction diagrams. The introduction of
collaborations as part of a structured object has made parameterization of UML 1.0 no
longer needed. Thus classifier role, association role, and association end role have
been removed from UML 2.0 [2]. Collaborations have the potential to greatly
enhance legacy design. To illustrate this, consider an inventory control system. In
the use case ‘Order Inventory’ an inventory item must be ordered by a company from
another company. This relationship and one to one mapping cannot be captured in
the class diagram. Therefore, a collaboration diagram of this functionality can be
used to define this relationship using roles as on the left side of Figure 4. The roles of

Figure 4. UML 2.0 Collaboration and Collaboration Use

436 Julie A. Street and Robert G. Pettit IV

‘Consumer’ and ‘Supplier’ are both played by the ‘Company’ class and there is one to
one mapping between the roles. To show where the ‘Order Inventory’ collaboration
is used, it can be attached back to its corresponding use case as depicted on the right
of Figure 4.

Composite structure diagrams are a useful new UML construct to clarify and improve
the static designs in legacy models. The use of roles and role relationships has a
distinct advantage over classes and class relationships in complex situations. UML 1.4
models that use parameterization will have to be remodeled when transiting to UML
2.0. Anything that could be modeled using UML 1.4 parameterization can still be
modeled in UML 2.0, so there is no loss of capability. Collaborations are powerful
mechanisms that lend themselves nicely for modeling use cases and design patterns
for reusable designs. They can also be extended or nested to produce more precise
collaborations [2].

3. Behavioral Impacts

The dynamic behavior view of a model defines how the system will behave over time
and in reaction to events. The dynamic behavior is commonly captured using the
UML constructs for state machine diagrams, activity diagrams, and interaction
diagrams.

State machine diagrams are used to define the internal behavior of the object in terms
of its potential states and transition between states. Action blocks were introduced in
UML 2.0 to enable a sequence of actions to be shown in a transition [1]. Action
blocks can be used in conjunction with signals to help model complex transitions with
more precision. UML 2.0 also modified the available pseudostates for modeling
complex transitions. Multiple entry and exit points are now legal, which allows
different places to enter or leave a state machine diagram [1]. Often state machines
can suffer from scalability problems and can have similar states that appear in
multiple diagrams. To help remedy this problem, UML 2.0 introduced state lists in
which multiple states with the same transition to the same target can be modeled
using only one state [1]. This shorthand notation can help simplify state machine
diagrams and make them more scalable. Another feature added to help scalability are
submachines. A submachine is a reference to another state machine diagram which
appears as a regular state block with “state name : diagram referenced name”.

UML 2.0 also enhanced state machine diagrams by allowing redefinition, a new
feature discussed earlier in class diagrams. Redefinition can be applied to transitions,
states, and submachine states of extended state machine diagrams in order to
specialize them with respect to the extended diagram. When a transition is redefined,
only its content or target state can change, its source state or trigger cannot [1].
Although it was not officially part of the specification, in UML 1.4 it was common
practice to use a state machine diagram to create a protocol state machine diagram,
which specifies the legal sequence of events. UML 2.0 formalized and included the
concept of protocol state machine diagrams as part of the specification [2]. Protocol

The Impact of UML 2.0 on Existing UML 1.4 Models 437

conformance is a new concept in UML 2.0 and relates to the idea of specialization.
Protocol conformance exists between the general and specialized protocol state
machine if every rule and constraint in the general case applies to the specialized case
[1]. The UML specification is unclear how to denote protocol conformance, but it
could be captured in a note or in the design document itself.

Since no existing features were removed from the state machine construct, there is
complete backward compatibility to UML 1.4. Therefore there will be no issues
when transitioning UML 1.4 state machine diagrams to UML 2.0. There is an
opportunity to improve legacy diagrams by taking advantage of the new features
available to improve clarity and precision. For example, consider a banking system
with an ATM machine. There is a variety of different states the banking system can
be in, which can result in a very large state machine diagram. The left side of Figure
5 shows some of the states involved in an ATM machine when a customer first begins
to use the ATM machine. In UML 2.0, the details of processing a customer’s input
can be abstracted out into another diagram and referenced via a submachine state as
shown on the right side of Figure 5. The three states involved in processing a
customer input are abstracted into a separate state machine diagram called ‘Processing
Customer Input Diagram’, which has three distinct exit points with unique names to
show the three different possible exits from the abstracted state. Submachine
references such as this can help alleviate the scalability of the large diagram without
losing the necessary details.

Figure 5. Submachine example

Interactions diagram are another means to model dynamic behavior. UML provides
two contracts for this purpose, sequence diagrams and communication diagrams
(formerly known as collaboration diagrams in UML 1.4). The sequence diagram
received significant on improvements in UML 2.0. Sequence diagrams were
modified to be aligned with the structure based on International Telecommunication
Union (ITU) Standard Z.120 – MCS-2000 and most changes made stemmed from
this. A new change to sequence diagrams is the notation of the arrow heads on

438 Julie A. Street and Robert G. Pettit IV

messages. In UML 1.4 asynchronous messages were represent by half stick arrow
heads, but in UML 2.0 they now are represented as full stick arrow heads.
Synchronous message were formerly full stick arrow heads, but are now full filled
arrow heads. Return messages have also changed slightly from having a solid line to
a dashed line [1, 2]. The notational changes may sound small, however they have
significant impact on UML 1.4 designs since this new notation is not backward
compatible.

Sequence diagrams can quickly grow very large and become cumbersome as the
number of objects involved grows. To help combat this problem, UML 2.0 offers the
ability for one sequence diagram to reference another via fragments. A fragment is
inserted into a diagram as a large rectangle spanning the time period it is active. In
order to facilitate fragments, all sequence diagrams are required to have names, which
appear in the top left hand corner and all interaction diagrams are marked with “sd”
next to their name[1]. Fragments can also be used to add complex control structures
such as loops, alternative paths, and concurrent paths. The top left hand of the
fragment will denote which type it is and additional information is captured inside the
rectangle [1]. For example, if it is a loop control structure fragment, the loop
conditional and body are captured inside the rectangle.

Figure 6. Sequence Diagram Comparison

The Impact of UML 2.0 on Existing UML 1.4 Models 439

To demonstrate the impact of the changes to sequence diagrams, consider the banking
system again. An ATM user may choose to transfer, withdraw, or deposit money as
their initial transaction. The steps to process their card must be completed in all
cases. In UML 1.4, the sequence of messages involved in processing their card would
have to appear in the three separate diagrams. In UML 2.0, this could be modeled
more efficiently using a reference fragment, this comparison is shown in Figure 6.
Notice that in UML 2.0 using the reference fragment to another sequence diagram
called ‘Insert Card and Validate PIN’ significantly reduces the overall size and
complexity of the diagram. In addition to reducing size, reference fragments can also
help eliminate redundancy, promote reuse, and consequently ensure consistency
among diagrams. Changes made to the ‘Insert Card and Validate PIN’ will only need
to be made in one sequence diagram rather than in every diagram that uses that the
sequence. The sequence diagram for ‘Insert Card and Validate PIN’ was also
enhanced in UML 2.0 to include an alternate control fragment to model the various
responses possible when validating a PIN number, shown in Figure 7. Notice the
fragment is marked with the key word “alt” and the different alternatives are
separated by a dashed line.

Figure 7. Insert Card and Validate PIN Sequence Diagram in UML 2.0

While using fragments has the potential to greatly enhance designs as outlined above,
they are optional. However, legacy UML 1.4 diagrams must add diagram names and
convert all their arrow heads to the new UML 2.0 semantics. The process of ensuring
that every message arrow head is properly changed is critical to ensuring the model’s
fidelity. Synchronous messages that are not properly updated will be presumed to be
asynchronous messages in UML 2.0, which can result in potentially serious design
flaws. Without automated CASE tool support, the task of correcting the arrow heads
will be tedious and must be done with great diligence.

440 Julie A. Street and Robert G. Pettit IV

Communication diagrams focus on modeling the communication between objects
across multiple scenarios. One of the most noticeable changes to collaboration
diagrams is the name change to communications diagrams. Besides the name change,
communication diagrams did not receive many significant changes. The ability to
create transient links was removed and the same diagram naming notation used for
sequence diagrams was added in UML 2.0 [3, 1]. Communication diagrams did not
receive any of the same new structuring mechanisms as sequence diagrams [1]. This
is unfortunate because it will make sequence diagrams a more appealing choice for
interaction diagrams, so the use of communication diagrams may start to diminish.
Since no major new features were added, updating existing communication diagrams
to UML 2.0 should be a simple process.

Activity diagrams are a construct to help model flow of control among the activities
in a workflow. In UML 1.4 activity diagrams were viewed as a special type of state
machine and the flow of control was limited. In UML 2.0 there was an effort to break
this mentality, so a significant number of changes were made including use of new
metamodel with semantics similar to that of Petri nets. Table 2 shows which new
UML 2.0 metaclasses replace the UML 1.4 metaclasses [1].

Table 2. Activity Diagram Change Summary

UML 1.4 UML 2.0 UML 2.0 Enhancements
State Vertex Activity Node None
Action State, Call State
and Subactivity

Actions Add local pre and
postconditions

Transition and Control
& Data Links

Activity Edge -

Object Flow State Object Node -
Pseudostates Control Node -
Final State Final Nodes Final nodes for individual flows

and diagrams
Decision and Merge Decision Node and

Merge Node
Consolidation allowed

Fork and Join Fork Node and Join
Node

Consolidation allowed

Jump Handler

Exception Handler -

Partitions Partitions Multidimensional & hierarchal

Additionally, activity diagrams were enhanced with several new features to enhance
control flow modeling. Data stores were introduced to show persistent data and
activity groups are a new mechanism that allows modelers to group nodes and edges.
To explicitly show data flows, pin and parameter sets were introduce. Pins represent
connection points where input or output data and are modeled as rectangles attached
to an activity node with their name. Parameter sets provide the modeler with the
ability to group pins to represent various combinations of data flow [1]. Pins and
parameter sets are useful for providing a quick visual differentiation of which
activities require or produce data. To improve the ability of activity diagrams to

The Impact of UML 2.0 on Existing UML 1.4 Models 441

model nested regions, expansion region were introduced. They provide the modeler
the ability to select a collection of elements that will execute multiple times
corresponding to type of region. UML 2.0 introduced the concept of interruptible
regions to increase the flexibility and control of modeling interrupts. Interruptible
regions define the activity nodes and edges that will terminate if an interrupt occurs
and will show where control is reinitiated to handle the interrupt.

Even though the metaclasses and semantics changed, the notation remained the same.
The new metaclasses improve the ability to handle multiple flows and helps establish
activity diagrams as the construct for modeling control flow. To see how the changes
will affect legacy UML 1.4 models, consider an activity diagram for the banking
system with ATM. Figure 8 demonstrates the impacts on an activity diagram where
the user is entering their card and selecting to view transactions made on their
account. Although the notation looks similar it is important to note that meaning is
quite different. In UML 2.0 the initial state creates a token and passes it via the
activity edge. The activities consume tokens when they are active and pass them back
along the activity edge when they are done. A subtle difference in the UML 2.0
model is the combined merge and join nodes. Notice in UML 1.4 two separate nodes
are used, which can clutter the model as the diagram grows. UML 2.0 simplifies this
structure to use only one node, which provide a more visually clear model. The old
notation is still compatible in UML 2.0, but diagrams can be greatly clarified by
combining nodes. Another subtle difference in the two diagrams is the use of pins on
the ‘Get Transactions’ and ‘Display Default Transactions’ activities. The output and
input pins are used to clearly show that data is traversing the edge with the token.
Pins are not required; however they provide a quick visual distinction between
transitions with data and transitions without. Partitioning is another common practice
in activity diagrams. In the UML 1.4 example in Figure 8 swim lane partitioning is
used to group activities by location. Often times swim lane partitioning is not
sufficient, so UML 2.0 introduced multilevel and hierarchal partitioning. The UML
2.0 example in Figure 8 uses hierarchical partitioning to group activities by location
and within each location activities are further grouped by the entities performing the
activities. Figure 8 demonstrates just some of the many enhancements available in
UML 2.0. Although the notation in activity diagrams is similar, all diagrams should
be reviewed to ensure the flow is unaffected. UML 2.0 activity diagrams provide a
lot more flexibility with their enhancements so legacy diagrams can greatly benefit
from taking advantage of the new features.

To enhance UML’s ability to model dynamic behavior, interaction diagrams were
introduced to provide a mix of sequence diagrams and control flow. Interaction
diagrams allow the modeler to model sequence diagram fragments linked using
control nodes found in activity diagrams. Although they are officially interaction
diagrams and should be maked with “sd” in their diagram name, they are tagged with
“intover” [1]. Interaction overview diagrams are an alternative way to show flow of
control and interaction within a system. Since they are a new UML construct, 1.4
practitioners are not required to use them and activity diagrams are probably a better
construct than interaction overview diagrams for representing control flows.

442 Julie A. Street and Robert G. Pettit IV

Figure 8. Activity Diagram Comparison

Timing diagrams are a new type of interaction diagram introduced in UML 2.0. They
are intended to show changes in state of an object over time. They are a special type
of sequence diagram that help modelers analyze timing. Timing diagram have the
same diagram name notation as sequence diagrams; however the objects involved are
modeled as horizontal rows with their name. To see the potential use of timing

The Impact of UML 2.0 on Existing UML 1.4 Models 443

diagrams, consider a temperature control system that receives temperature data every
five seconds as shown in Figure 9. The three participants are listed along the right
with their potential states and the ticks along the bottom of the diagram to represent
time, which runs concurrently through all blocks [1]. The lifeline for each participant
moves vertically up and down to shown a change in state. In Figure 9 it can be seen
that every five seconds the ‘Temperature Sensor’ moves to the sending state to pass a
message to the ‘Thermostat Controller’, which is indicated by the message arrow
‘Temp’. Alternatively states can also be more compactly shown on the lifeline itself,
as done for the ‘Heater’ [1].

Figure 9. Timing Diagram for Temp Control System

Time diagrams also allow time or duration constraints be added, which can be useful
for real-time modeling [2]. In the example, a duration constraint is placed on the
processing time for the ‘Thermostat Controller’, which states that processing must be
competed in less than two seconds. Timing diagrams are a relatively simple concept,
but have the potential to be a powerful construct when modeling real time and
embedded systems. They can provide a different view of the system, that sequence
diagrams alone cannot do.

4. Conclusions

UML 2.0 received many changes and enhancements from the current industry state of
the practice, version 1.4. Legacy UML 1.4 models could be greatly improved by
taking advantage of the numerous enhancements, such as redefinition and fragments.
UML 2.0 also includes several new diagrams that practitioners can take advantage of.
It is unclear how useful or well liked these new modeling constructs will become, but
that should not dissuade practitioners for trying them. However, since some changes
in UML 2.0 are not backward compatible with UML 1.4, they will have direct impact
when converting legacy UML 1.4 models. Before the decision is made to convert
legacy models to UML 2.0, practitioners should consider the amount of time and

444 Julie A. Street and Robert G. Pettit IV

effort required to change the model versus what is truly gained. One factor that will
influence time and effort is the learning curve associated with understanding and
mastering UML 2.0. Extra time and training classes should be allotted to aid in the
smooth transition to UML 2.0. Another equally important factor involved in
converting legacy models is vendor tool support. Practitioners should investigate the
amount of support for UML 2.0 that their current vendor provides. Special attention
needs to be paid to not only support of the UML 2.0 notation, but also the tool’s
ability to convert legacy diagrams. Without automated tool support, the process of
updating all the required notational changes, such as the arrow heads in sequence
diagrams, could be onerous and error prone if done by hand. For example the
original release of Rational Software Architect did not provide a feature for importing
and updating legacy Rational Rose Models. In February of this year IBM released a
new feature which “enables migration of IBM® Rational® Rose® models to the
Unified Modeling Language (UML) 2.0 model format supported in IBM Rational
Software Architect”[7]. Overall, UML 2.0 does provide a significant number of
opportunities to enhance and improve UML 1.4 designs. However, designers should
conduct an assessment of what is gained versus the cost of updating legacy models.
All trademarks, service marks, and trade names are the property of their respective
owners.

5. References

1. OMG. Unified Modeling Language Superstructure Specification, Version 2.0, August 2003.

2. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference

Manual, Second Edition. Boston, MA: Addison-Wesley, 2005.

3. M. Fowler. UML Distilled Third Edition: A Brief Guide to the Standard Object Modeling

Language. Boston, MA: Addison-Wesley, 2004.

4. OMG. Unified Modeling Language Specification, Version 1.4, September 2001.

5. B. Selic. Tutorial 3: An Overview of UML 2.0. UML 2004 Conference. Lisbon, Portugal,

October 2004.

6. B. Selic. Modeling Real-Time System Architectures with UML 2.0. 2nd Estonian Summer

School on Computer and Systems Science (ESSCaSS'03). Taagepera Castle, August 2003
<http://www.cs.ioc.ee/yik/schools/sum2003/lecturenotes/selic3.pdf>

7. “Rational Rose Model Import Feature for Rational Software Architect V6.0” IBM

Downloads and Support, 8 February 2005. <http://www-1.ibm.com/support/
docview.wss?rs=2044&context=SSCM72&dc=D426&uid=swg24008877&loc=en_US&cs=
utf-8&lang=en>

Towards UML2 Extensions for Compact

Modeling of Regular Complex Topologies

Arnaud Cuccuru, Jean-Luc Dekeyser, Philippe Marquet, and Pierre Boulet

Laboratoire d’Informatique Fondamentale de Lille
Université des sciences et technologies de Lille

France

Abstract. The MARTE RFP (Modeling and Analysis of Real-Time
and Embedded systems) was issued by the OMG in February 2005. This
request for proposals solicits submissions for a UML profile that adds ca-
pabilities for modeling Real Time and Embedded Systems (RTES), and
for analyzing schedulability and performance properties of UML specifi-
cations. One of the particular request of this RFP concerns the definition
of common high-level modeling constructs for factorizing repetitive struc-
tures, for software, hardware and allocation modeling of RTES. We pro-
pose an answer to this particular requirement, based on the introduction
of multi-dimensional multiplicities and mechanisms for the description of
regular connection patterns between model elements. This proposition is
domain independent. We illustrate the use of these mechanisms in an in-
tensive computation embedded system co-design methodology. We focus
on what these factorization mechanisms can bring for each of the aspects
of the co-design: application, hardware architecture, and allocation.

1 Introduction

The MARTE RFP [1] (Modeling and Analysis of Real-Time and Embedded
systems) has been recently voted by OMG. This request for proposals solicits
submissions for a UML profile that adds capabilities for modeling real time and
embedded systems, and for analyzing schedulability and performance properties
of UML specifications. MARTE is not the OMG’s first attempt to define a UML
standard for the embedded systems community. The SPT profile (Scheduling,
Performance and Time analysis) has been adopted and in use for 2 years. How-
ever, other OMG standards having significant implications for the SPT profile
(such as UML 2 [2,3,4,5] and QoS [6])) have been adopted during that time.
Moreover, the use of the profile has led to a significant number of suggestions for
improvement and consolidation, that are now part of the MARTE requirements.

Working in the field of intensive computation embedded systems, some re-
quirements expressed in the MARTE RFP are of primary concerns for us. Ap-
plication domains such as signal processing, image processing or mobile devices
usually require intensive data computation to be performed, possibly in paral-
lel, with the help of several computation units. For this kind of applications,

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 445–459, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

446 Arnaud Cuccuru et al.

Fig. 1. Composite structure definition and instance examples

the RFP requires common high-level modeling constructs for factorizing repeti-
tive structures for both hardware (available parallelism) and software (potential
parallelism) and their allocation (temporal and spatial mapping of the software
onto the hardware architecture). This paper addresses this particular require-
ment. Several OMG profiles (already adopted [7] or still under standardization
process [8,9]) are more or less oriented toward the embedded systems domain.
However, none of them proposes particular modeling constructs for factorizing
repetitive structures. UML 2 proposes some mechanisms, though.

We show in this paper that these mechanisms are not suited to the needs
expressed in the MARTE RFP, and that extensions are clearly required. We
believe that the extensions we propose could be useful in other contexts than
the modeling of embedded systems. That’s why we introduce them independently
of any domain consideration. Finally, we illustrate how we have experimented
the use of these extensions in the context of an embedded systems co-design
framework: Gaspard. Particularly, we will show that the same mechanisms are
used for a compact modeling of the software, hardware and software/hardware
allocation parts of the co-design methodology.

2 UML 2 Mechanisms for Compact Structural Modeling

Early versions of UML (1.x) already included such mechanisms enabling to ex-
press in a compact way the structure of a system, and the relations between
entities that compose it. Relationships (associations, compositions and aggrega-
tions) can be specified between entities that exist at design-time (such as classes),
and define the roles that will be played by instances of these entities at run-time
(such as objects) in the context of these relations. Via a multiplicity mechanism,
it also enables to specify in a compact way the potential number of occurrences
concerned by these relations at run-time.

UML 2 goes further, and enables to refine the description of these relations
in the context of composite structures. Composite structures refer to a com-
position of interconnected elements, representing potential run-time instances

Towards UML 2 Extensions for Compact Modeling 447

collaborating over communication links to achieve some common objectives. In
this kind of structures, elements are actually instantiated within the structure
of a containing classifier. The number of potential occurrences of these elements
and the number of communication links can also be specified with multiplicities
(Fig.1).

2.1 Multiplicity UML 2 Metamodel Subset

According to UML 2 infrastructure, a multiplicity is a definition of an inclusive
interval of non-negative integers beginning with a lower bound and ending with
a (possibly infinite) upper bound. It specifies the range of allowable cardinalities
that a set may assume. In the kernel package of UML 2 metamodel (Fig.2), the
abstract concept of MultiplicityElement is introduced to embed this information.

Fig. 2. Multiplicity diagram (from the UML 2 superstructure)

2.2 Limitations

However, this compact way of modeling carries very few (or no) information
concerning topologies of links. In the context of composite structures, this fact
can bring ambiguities in the models. Basically, two kinds of connection patterns
can be considered as deterministic: The “array connector pattern” (Fig.1), or
“one to one pattern”, and the star connector pattern (Fig.3), or “one to all
pattern”. In other words, designers can have a clear idea of the topologies they
are modeling only in the cases where the multiplicities of ends are equal to 1 and
the different roles have the same multiplicity (array connector pattern) or when
they match the multiplicities of the roles they are attached to (star connector
pattern).

The general rule applied is the following: “Links will be created for each
instance playing the connected roles according to their ordering until the min-
imum connector end multiplicity is reached for each end of the connectors”. In

448 Arnaud Cuccuru et al.

/a /b

/b/a

2 b[2]a[2] 2

Fig. 3. Star connector pattern in a composite structure

the case illustrated in Fig.4, connectors are specified between 3 potential in-
stances of “a” and 2 potential instances of “b”. Each “a” is connected to at least
1 “b”, and each “b” is connected to at least 2 “a”. Applying the general rule
for links creation1, we obtain two different topologies whether we start drawing
links from “a” instances or “b” instances. The number appearing on each link
shows the order in which links are created. Note that the two interpretations are
valid.

/a

/a

/b

/a

/a

/a

/a

b[2]a[3] 12

/b

/b

/b

Fig. 4. Ambiguous specification of a composite structure

If we also take into account ports (another essential kind of structural feature
appearing in composite structures) and their associated multiplicities, the prob-
lem is even more ambiguous. Moreover, we have shown that these mechanisms
do not exhibit any topological information. The topologies modeled are a con-
sequence of a building process rather than an identified property of the models.

1 if we have correctly understood the ambiguous sentence that defines it...

Towards UML 2 Extensions for Compact Modeling 449

If a designer wants to specify a particular topology, this information should be
easily extracted from the model.

3 Extensions for Compact Structural Modeling

From the observations done in section 2.2, we propose powerful extensions in-
spired by the Array Oriented Language [10] that delete ambiguity problems and
increase expression power of UML 2 structural modeling mechanisms. The ex-
tensions we propose enable to specify at design time all the links that will exist
at run time in a deterministic way. The basic idea is to identify the relations
between all the potential link ends concerned by each potential link. These ex-
tensions are used for the modeling of complex topologies, and concern basically
multiplicities, connectors and dependencies, in the context of composite struc-
tures. An extension at the level of structured classifiers is also introduced to
simplify the use and understanding of our repetition mechanisms. Even though
the final architecture of the MARTE profile is not yet defined, we suppose that
it will introduce a package containing common mechanisms for RTES model-
ing, such as the GRM (General Resource Modeling) package of the SPT profile.
The extensions presented in the next sections are supposed to be defined in this
package, and to be shared by the other parts of the profile2.

3.1 Multi-dimensional Multiplicities

In section 2.1, we have defined the concept of multiplicity as an inclusive in-
terval of non-negative integers beginning with a lower bound and ending with
an upper bound. In Fig.2, we see that the MultiplicityElement metaclass carries
an IsOrdered attribute which specifies whether the “collection” of elements is
ordered or not. In the case where it is ordered, this “collection” can be seen as
a mono-dimensional array, where elements are implicitly indexed.

The first extension we propose for topology modeling is to take into ac-
count multi-dimensional arrays for the description of “collections”. Multiplicities
UML 2 metamodel subset is extended with the introduction of the MultiDimen-
sionalMultiplicityElement concept (Fig.5). Lower and upper bound attributes
are defined by Vectors instead of Integers3. In other words, the MultiplicityEle-
ment is seen as a particular case of the MultiDimensionalMultiplicityElement
concept: lower and upper bounds attributes contain only one integer value. In
Fig.6, we illustrate the use of multi-dimensional multiplicities to specify a cube
topology (2×2×2). Each potential instance of “a” implicitly owns an index that
identifies its position in the multi-dimensional array described by “a”’s multi-
plicity.

2 such as Analysis
3 The Vector datatype is an ordered set of integer values. Here, each element of the

Vector gives the size of the corresponding dimension of the multi-dimensional array.

450 Arnaud Cuccuru et al.

Fig. 5. Extended Multiplicity UML 2 metamodel subset for multi-dimensional
aspects

/a

/a

a[2;2;2]

/a
/a

/a

/a/a

/a

Fig. 6. Multi-dimensional multiplicities for the specification of a cube topology

3.2 Extended Relationships for Multi-dimensional Multiplicities

In order to handle modeling of links topologies, we introduce the abstract concept
of LinkTopology. The LinkTopology is an optional information set that can be
associated to a relationship between potential instances. It takes into account
the multi-dimensional aspects introduced in the previous section. Two use cases
are identified: links between several potential instances playing the same role, or
playing different roles. These two use cases lead respectively to two refinements
of LinkTopology: InterRepetitionLinkTopology and RepetitiveLinkTopology. Fig.7
is a simplified diagram4 summarizing the extensions introduced.

InterRepetitionLinkTopology. The systems concerned are composed of a
repetition of a single element, such as in a grid or a cube topology. Each po-
4 Only Connectors and Dependencies are concerned by the LinkTopology extensions.

In the context of a Connector, the Elements represent the ConnectorEnds associated
to the Connector. In the context of a Dependency, the Elements represent the source
and target ends of the Dependency.

Towards UML 2 Extensions for Compact Modeling 451

Fig. 7. Simplified diagram of the extensions for link topology description

tential instance of this element is connected to other potential instances of the
same element, in a regular way. For example, in the case of a cyclic grid, each el-
ement instance is connected to neighbors located at north, south, east, and west.
The first extension we propose via the InterRepetitionLinkTopology enables to
specify the relative position of the “neighbors” of each potential instance of an
element that carries a multi-dimensional multiplicity. Each potential instance
is implicitly associated to one point of the multi-dimensional array described
by the multi-dimensional multiplicity of the element. The repetitionSpaceDepen-
dance attribute is a translation vector on the space of the multi-dimensional
array that identifies the position of a given neighbor. The modulo attribute (in-
herited from LinkTopology) indicates if the translation is applied modulo the size
of the multi-dimensional array. If it is not the case, the translation is not applied
on the borders of the array, and the corresponding link will not be created. In
Fig.8, we illustrate the use of this mechanism for the modeling a 2d cyclic grid
topology. Each connection is supposed to be bi-directional5.

RepetitiveLinkTopology. Complex topologies have to be modeled between
different potential instances, playing different roles. Each repeated element typ-
ing each potential instance owns a multi-dimensional multiplicity. Each point
of the multi-dimensional arrays identified by the multi-dimensional multiplici-
ties corresponds to a potential link end. In the case where the repeated element
owns ports and a connection is expressed on one of these ports, the ports are
considered as the link ends and the multi-dimensional array is based both on
the multiplicity of the repeated element and the multiplicity of the port. The
mechanism we introduce via the RepetitiveLinkTopology enables to specify in a
compact way all the correspondences that exist between the ends contained into
two multi-dimensional arrays, and so all the links that will exist at run-time.
Basically, the idea consists in identifying regular patterns inside of each of the

5 That’s why two connectors only are used to specify the relative position of the four
neighbors.

452 Arnaud Cuccuru et al.

Fig. 8. A 3×3 cyclic grid topology modeled with InterRepetitionLinkTopologies

arrays, and to relate the points (and so the link ends) contained in these patterns.
In the general case, a PatternDescription is associated to each of the relation-
ships ends6 to identity the link ends belonging to a pattern. The paving attribute
is a set of vectors that enable to identify the origin of each pattern inside of the
array corresponding to a relationship end. The number of patterns contained
inside of the array is determined by the pavingLimit attribute7. Identifying the
origin of each pattern can be seen as an iterative process, where the iteration
limits are given by the pavingLimit vector. Each pattern origin is computed by
multiplying each iteration index by each paving vector, adding the related origin
vector. From each of the identified origins, the points belonging to the patterns
are identified with the fitting vectors. The fittingLimit attribute determines the
number of points that belong to the patterns, or in other words, the shape and
size of the patterns. Each point belonging to a pattern is computed by multi-
plying the fitting vectors by each index of the iteration space defined by the
fittingLimit attribute, adding the origin of the current pattern.

For a given repetition index, i, 0 ≤ i < pavingLimit , the pattern is composed
of the points indexed by the following set

{origin + paving .i + fitting.j | 0 ≤ j < fittingLimit} (1)

if the modulo attribute is false and by

{origin + paving .i + fitting.j mod shape | 0 ≤ j < fittingLimit} (2)

if modulo is true. In that case, shape is the shape of the multidimensional array
the patterns belong to. The points of the left i pattern are linked to those of the
right i pattern.

6 A particular case is presented in section 3.3.
7 The number of patterns is the same for all the arrays concerned by the relationship.

Towards UML 2 Extensions for Compact Modeling 453

In Fig.9, we illustrate the use of this mechanism with the definition of a
“perfect shuffle connection pattern”8.

Fig. 9. Perfect shuffle modeling via a RepetitiveLinkTopology

3.3 Repetitive Structured Classifiers

To simplify the use of the RepetitiveLinkTopology, we introduce the concept of
RepetitiveStructuredClassifier. It contains a single element with a multi-dimen-
sional multiplicity. This element is connected to ports with multi-dimensional
multiplicities on the boundary of the RepetitiveStructuredClassifier that contains
it9.

In the previous section, we have introduced the concept of repetition (or iter-
ation) space, via the pavingLimit and fittingLimit attributes of RepetitiveLink-
Topology and PatternDescription. The RepetitiveStructuredClassifier represents
a repetition space. The shape and size of the repetition space is determined by
the multi-dimensional multiplicity of the element it contains. In other words,

8 This kind of topology is found in multistage networks such as the Omega intercon-
nection network [11].

9 A RepetitiveStrucuturedClassifier is necessarily strongly encapsulated and requires
the usage of ports.

454 Arnaud Cuccuru et al.

each potential instance of the repeated element is implicitly associated to one
point of the repetition space. Links concern ports on the boundary of the clas-
sifier and ports of each potential instance of the repeated element.

In the context of RepetitiveStructuredClassifiers, RepetitiveLinkTopologies
can own only one PatternDescription, related to the port on the boundary of
the RepetitiveStructuredClassifier. The pavingLimit is given by the multi-dimen-
sional multiplicity of the repeated element and the fittingLimit is given by the
multi-dimensional multiplicity of the concerned port on the repeated element.
Note that InterRepetitionLinkTopologies can still be used in the context of Repet-
itiveStructuredClassifiers. Fig.10 illustrates the use of the RepetitiveStructured-
Classifier.

Fig. 10. RepetitiveStructuredClassifier example

4 Using Extensions for Embedded System Co-design

The extensions presented in the previous sections have been experimented in
the context of a prototype framework: Gaspard [12,13] (Graphical Array Spec-
ification for PARallel and Distributed computing). Gaspard is an MDA (Model
Driven Architecture) oriented environment for computation intensive embed-
ded systems co-design. It follows a “Y” approach, and enables automatic model
to model transformations and code generations, for various abstraction levels,
from high level UML models, through the use of the MDA transformation tool
ModTransf [14].

At the top level of the “Y”, software, hardware architecture and allocation
abstract syntaxes are described by 3 different metamodels. However, these meta-
models share common modeling constructs, such as a component oriented ap-
proach, or especially the mechanism for compact modeling we have introduced
in this paper. After a brief presentation of the Gaspard metamodels and their
implementation in UML profiles, this section illustrates the use of this common
mechanism for the three parts of the co-design, and emphasizes on what it can
bring for each of these aspects.

Towards UML 2 Extensions for Compact Modeling 455

4.1 Gaspard Metamodels and Profiles

Software and hardware architecture metamodels share a common component
oriented approach10 (Fig.11). Components are described by a composition of
other component potential instances (parts), via connections between their ports.
Ports enable to encapsulate the structure and the behavior of a component in
order to make it independent of its environment, and increase its reusability.
Interfaces are associated to ports, and a connection can be expressed between
two ports only if their interfaces are compatible. The ElementaryComponent is
a particular kind of component that does not own any structural or behavioral
description. Its implementation is supposed to be available in the language that
will be targeted by the Gaspard transformations.

Fig. 11. Common component metamodel

In the software metamodel, the Component concept is refined into the Ap-
pComponent concept. Application components can be interpreted as functions,
that performs some computations on data coming from their environment trough
their provided ports11 and sending the results to their environment trough their
required ports12. Computations are delegated to the parts of the components,
or actually performed by the elementary components. Interfaces basically define
the data types that can be handled by an application component.

In the hardware architecture metamodel, the Component concept is refined
into the HwComponent concept. Hardware components are abstractions of phys-
ical hardware resources. Elementary components are refined in three categories,
according to their function. HwPassiveComponent, HwActiveComponent and
HwInterconnectComponent respectively represent resources able to store data

10 The concepts introduced are near to the concepts of UML2 composite structures.
11 e.g ports with provided interfaces
12 e.g. ports with required interfaces

456 Arnaud Cuccuru et al.

(all kind of memories), perform some data transfers with or without data trans-
formation (CPU, DMA...) and interconnect other hardware resources13. Inter-
faces associated to ports define a communication protocol between resources.

The allocation metamodel introduces concepts enabling to express the spatial
mapping of a software onto a hardware architecture14. Some special dependencies
can be expressed between ports of software parts and hardware architecture
passive parts to model a mapping of the data (DataAllocation) and between
software parts and hardware architecture active parts to express a mapping of
computations (TaskAllocation).

The concrete syntax of these metamodels are implemented in UML profiles,
with nearly a “one to one” equivalence between the concepts of the metamodels
and the stereotypes of the profiles. The Component concepts are implemented via
stereotyped StructuredClasses. Components structures are defined via internal
structure diagrams. Application modeling follows a simple design pattern: One
interface for each port, and one signal for each interface. The type of the signal
represents the data type that can be handled by an application component.
Dependencies from the allocation metamodel are implemented in stereotyped
UML dependencies.

4.2 Case Study

In this section, we illustrate the use of the factorization mechanisms presented
in section 3.2 for each part of the co-design modeling. The extensions have been
implemented in a separate UML profile.

Application Example: Contour Detection. An image is an array of ele-
mentary values, named pixels. A contour detection of an image may be realized
with a convolution. A convolution is a simple operation which produces each
pixel of an output image from a linear combination of some pixels of the input
image. The coefficient of the linear combination are given in a coefficient matrix.

The convolution ContourDetection is realized as a RepetitiveStructuredClas-
sifier that can receive from its environment 514×514 signals15 representing the
pixels composing the image, and 2×2 signals16 representing the values of the co-
efficient matrix. It can send to its environment 512×51217 signals representing
the pixels of the computed image. Each potential instance of t is connected to
ports on the boundary of ContourDetection. Basically, each t is able to emit
one pixel via its dataOut port when all its input signals have been received.
The order in which pixels are produced18 is determined by the order in which

13 Refinements of these concepts, with particular attributes, are also defined but will
not be presented in this paper.

14 Temporal aspects are not presented in this paper.
15 from its 514×514 dataIn provided ports.
16 from its 2×2 coeff provided ports
17 via its 512×512 dataOut required ports
18 or The order in which the behavior associated to each t is executed

Towards UML 2 Extensions for Compact Modeling 457

Fig. 12. Repetitive application example

signals are received from ContourDetection provided ports. In opposition to a
classical sequential loop, the specification of ContourDetection does not induce
any artificial execution order for the production of pixels.

Hardware Architecture Example: Bi-SPMD. We target a parallel archi-
tecture made of two sets of PE (processor elements) sharing a global memory
global:RAM (Fig.13). Each set is made of 64 PE linked together in a ring via
east and west communication channels as defined by the InterRepetitionLink-
Topology. Each PE is associated to an element of a set of 2×64 local memories
local:ScratchPad. The use of RepetitiveLinkTopology allows to specify both
the link of each PE with the global memory and the link of each PE with its
particular local memory.

Allocation Example: Bloc Mapping. We specify the distribution of the
512×512 potential instances of t on the 2×64 potential instances of pe so that
each pe receives a bloc of 512×4 t (Fig.14). Note that the RepetitiveLinkTopology
is here applied to a Dependency.

5 Conclusion

We have presented an answer to the MARTE RFP requirement concerning the
definition of common high-level modeling mechanisms for factorizing repetitive
structures. We have illustrated the use of these mechanisms with the embedded

458 Arnaud Cuccuru et al.

Fig. 13. Repetitive hardware architecture example

Fig. 14. Association example

Towards UML 2 Extensions for Compact Modeling 459

systems co-design environment Gaspard, for the modeling of software, hardware
and software/hardware allocation parts of a sample application. The extensions
we have proposed concern only structural aspects of UML 2, and are designed
to be easily integrated in a global answer to the RFP. We are now studying if
the scope of these mechanisms can be extended to behavioral aspects of UML 2
(feasibility, usefulness). This work is in progress in the context of the Carroll
PROTES project [15], which initiated the definition of the MARTE RFP.

References

1. Object Management Group, Inc., ed.: UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE) RFP.
http://www.omg.org/cgi-bin/doc?realtime/2005-02-06 (2005)

2. Object Management Group, Inc., ed.: UML 2 Infrastructure (Final Adopted Specif-
cation). http://www.omg.org/cgi-bin/doc?ptc/2003-09-15 (2003)

3. Object Management Group, Inc., ed.: UML 2 Superstructure (Available Specifi-
cation). http://www.omg.org/cgi-bin/doc?ptc/2004-10-02 (2004)

4. Object Management Group, Inc., ed.: UML 2 Diagram Interchange (final adopted
specification). http://www.omg.org/cgi-bin/doc?ptc/2003-09-01 (2003)

5. Object Management Group, Inc., ed.: UML 2 OCL (Final Adopted specification).
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14 (2003)

6. Object Management Group, Inc., ed.: UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms.
http://www.omg.org/cgi-bin/doc?ptc/2004-09-01 (2004)

7. Object Management Group, Inc., ed.: (UML) Profile for Schedulability, Perfor-
mance, and Time Version 1.1.
http://www.omg.org/technology/documents/formal/schedulability.htm (2005)

8. Object Management Group, Inc., ed.: UML Extension Profile for SoC RFC.
http://www.omg.org/cgi-bin/doc?realtime/2005-03-01 (2005)

9. Object Management Group, Inc., ed.: SysML v0.9.
http://www.omg.org/cgi-bin/doc?ad/05-01-03 (2005)

10. Demeure, A., Lafage, A., Boutillon, E., Rozzonelli, D., Dufourd, J.C., Marro, J.L.:
Array-OL : Proposition d’un formalisme tableau pour le traitement de signal multi-
dimensionnel. In: Gretsi, Juan-Les-Pins, France (1995)

11. D.A., L.: Access and alignment of data in an array processor. IEEE Trans. Comput.
C-24 (1975) 1145–1155

12. Dekeyser, J.L.: Model driven co-design for system on chip. In: MDE for Embedded
System Summer School, Brest, France (2004)

13. Laboratoire d’informatique fondamentale de Lille: Gaspard home page.
http://www.lifl.fr/west/gaspard/ (2005)

14. Dumoulin, C.: ModTransf: A model to model transformation engine (2004)
http://www.lifl.fr/west/modtransf.

15. The Caroll Research Programme: (2005) http://www.carroll-research.org/.

Using UML 2.0 Collaborations for Compositional
Service Specification

Richard Torbjørn Sanders1, Humberto Nicolás Castejón2, Frank Alexander Kraemer2,
and Rolv Bræk2

1 SINTEF ICT, N-7465 Trondheim, Norway
richard.sanders@sintef.no

2 NTNU, Department of Telematics, N-7491 Trondheim, Norway
{humberto.castejon, kraemer, rolv.braek}@item.ntnu.no

Abstract. Collaborations and collaboration uses are features new to UML 2.0.
They possess many properties that support rapid and compositional service en-
gineering. The notion of collaboration corresponds well with the notion of a ser-
vice, and it seems promising to use them for service specification. We present an
approach where collaborations are used to specify services, and show how col-
laborations enable high level feature composition by means of collaboration uses.
We also show how service goals can be combined with behavior descriptions of
collaborations to form what we call semantic interfaces. Semantic interfaces can
be used to ensure compatibility when binding roles to classes and when compos-
ing systems from components. Various ways to compose collaboration behaviors
are outlined and illustrated with telephony services.

1 Introduction

Service development or service engineering is currently receiving considerable atten-
tion and starting to become a discipline in its own right. Driven by the belief that future
revenues will have to come from new services, a tremendous effort is being invested in
new platforms, methods and tools to enable rapid development and incremental deploy-
ment of convergent services, i.e. integrated communication, multimedia and informa-
tion services delivered transparently over a range of access and transport networks. The
Service Oriented Architecture (SOA) and Service Oriented Computing (SOC), building
on web services, are exponents of this trend in the business domain. A general challenge
for service engineering, be it business or ICT applications, is to enable services and
service components to be rapidly developed, and to be deployed and composed dynam-
ically without undesirable service interactions. This is a challenging problem largely
due to fundamental properties of services, i.e.:

– A service is a partial functionality. It can be combined with other services to pro-
vide the full functionality offered to a user.

– A service execution normally involves several collaborating components (i.e. a ser-
vice is not simply an interface to an object).

– Components can participate in several services, simultaneously or alternately.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 460–475, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using UML 2.0 Collaborations for Compositional Service Specification 461

– Services are partially dependent on each other, on shared resources and on user
preferences.

In order to support model driven service engineering, corresponding modeling concepts
are needed. This is where UML 2.0 collaborations come in, since they possess many
properties that make them attractive for this purpose.

First of all the concept of UML collaboration corresponds closely with the concept
of a service as explained above. We actually define a service as a collaboration between
service roles played by objects that deliver functionality to the end users. Note that this
definition is quite general and covers both client-server and peer-to-peer services as
described in [1].

Secondly, UML collaboration uses provide a means to structure complex collabo-
rations and give an overview not provided by other notations, while at the same time
being precise. Collaborations have much the same simplicity and appeal as use cases,
and can be used for the much same purposes, but provide additional benefits for service
engineering, as will be presented in the following. Service specification using collabo-
rations and collaboration uses fits well with the preferred view of marketers and end-
users, while at the same time supporting the difficult engineering tasks of service and
system designers.

Thirdly, a collaboration role can be bound to several different classifiers by means
of collaboration uses. This provides the desired flexibility to bind service roles to com-
ponents, the only UML requirement being that the classifier is compatible with the type
of the role(s) bound to it. A precise definition of compatibility is left as a semantic
variation in UML 2.0, but it is clear that this should entail the observable behavior on
interfaces of a component.

This leads to a fourth motivation for collaborations – they lend themselves nicely to
the definition of so-called semantic interfaces [2]. As we shall see, a two-party collabo-
ration can define a pair of complementary semantic interfaces. Compared to traditional
syntactical interfaces known from web services, CORBA, Java and UML, semantic in-
terfaces also define the visible interface behavior and the goals of the collaboration.
This extends the notion of compatibility beyond static signature matching to include
safety and liveness properties. It also provides an efficient means to perform such com-
patibility checks at design time and even at runtime.

Finally, it may be argued that the crosscutting view of collaborations is valuable in
its own right [3]. It enables us to focus on the joint behavior of objects rather than on
each object individually and, not the least, to focus on the purposes and goals of the
joint behavior in terms of desirable global states, called service goals in [4]. A service
goal can be expressed in OCL, and is a property that identifies essential progress, thus
characterizing a desired or successful outcome of a service invocation. It can be argued
that service goals are closer to capturing and expressing the user needs than specifying
how they are achieved in terms of detailed interactions. Moreover, goal expressions
define liveness properties that must be satisfied by compatible components.

Fig. 1 provides a principal overview of service engineering using collaborations.
Our service engineering approach is both collaboration-oriented and compositional.

It is collaboration-oriented because we model services as collaborations between roles
played by distributed components, and it is compositional because we build services

462 Richard Torbjørn Sanders et al.

service b

service a

r5r4

r1 r2 r3

C1 C2 C3

01:C1 03:C302:C2

system x

service specification
using collaborations
and feature composition;
semantic interface definitions

class design
by composing
collaboration roles
and semantic interfaces

system design
by composing
system components (objects)

Fig. 1. Service engineering overview

from other smaller services. We treat collaborations and collaboration roles as units of
reuse.

We consider the following composition cases:

1. Composition of two-party services and semantic interfaces from two-party collab-
orations.

2. Composition of multi-party services from two-party or n-party collaborations.
3. Class design by composing service roles and semantic interfaces.

Class design is out of the scope of this paper. Here we focus on the use of collaborations
for service specification. It is our belief that class design can become a more mechanical
process supported by tools if it takes collaborations and semantic interfaces as input.
Our experience so far indicates that this is the case [5, 6]. However, further work is still
needed to confirm this with certainty.

1.1 Structure of the Paper

In section 2 we present how service structures can be described in UML, and how ser-
vice behavior can be described. We introduce the concept of service goals, and discuss
how they can be defined in service structures and in the behavioral descriptions. We
introduce what lies in a semantic interface, and discuss compatibility between roles and
classifiers.

In section 3 we discuss the composition of two-party collaborations used for defin-
ing semantic interfaces, as well as composing multi-party services from subordinate
collaborations, and indicate directions toward class design. Finally we conclude.

Using UML 2.0 Collaborations for Compositional Service Specification 463

2 Collaborations, Goals and Semantic Interfaces

2.1 Collaboration Structure

When used for service specification, the structure of a collaboration identifies the ser-
vice roles that collaborate to provide the service, as well as their multiplicity and inter-
connections. Fig. 2 depicts a collaboration called UserCall specifying the structure
of a classical telephone call service. This collaboration diagram tells us that exactly
two roles, A and B, of type Caller and Callee respectively, are needed to provide
a UserCall service, and that a communication path between instances playing those
roles must exist.

A:Caller 1 B:Callee 1

UserCall

{def: goal : Boolean = A.VoiceCntTo(B) and B.VoiceCntTo(A)}

Fig. 2. The UserCall service specified as a collaboration with a goal expression

Specifying a service as a collaboration enables roles to be identified and described
without introducing undue bindings to implementation details. Thus a service can be
specified and understood as a behavioral component of its own, independent of systems
components that implement them.

As we shall see, the behavior of collaborations can be described at several levels of
detail. Furthermore, collaborations can themselves be used as components in collabo-
ration compositions, thus becoming units of reuse.

2.2 Collaboration Goals

The diagram in Fig. 2 also shows a goal that should be reached by the UserCall
collaboration. It is represented by an OCL predicate over properties of the two partici-
pating roles. In this case it is a simple logical addition of the role goals of A and B, to
show that A has a voice connection to B and B has a voice connection to A:

VoiceCnt(A,B) = A.VoiceCntTo(B) and B.VoiceCntTo(A)

Goal expressions like this can be made very high level, protocol independent and close
to the essential purpose of a service as seen from a user point of view. They are actually
formal requirements expressions. In this respect they are not new; the novelty lies in the
natural binding to the different service specification diagrams, such as collaborations
and sequence diagrams. Furthermore, a goal expression represents a liveness property
that should hold in actual collaboration uses and therefore constitutes part of the re-
quired compatibility of role binding. This illustrates one asset of UML collaborations:
they are natural places to express crosscutting properties of services.

464 Richard Torbjørn Sanders et al.

2.3 Collaboration Behavior

Since UML collaborations inherit from both structured classifiers and behaviored clas-
sifiers, they have a large range of expression forms at their disposal. In addition to ex-
pressing structural relationships, it is possible to express all forms of behavioral aspects
of collaborations, such as interactions, activities and state machines. The UML standard
[7] and reference book [8] focus mainly on the structural features of collaborations, and
provide few guidelines on how the behavior of a collaboration is described, nor do they
explain how collaboration behavior is related to the behavior of its constituent parts, i.e.
the roles and role classifiers.

In the following we suggest how the behavior of a collaboration can be described
for the purpose of service specification. We first specify the main states a collaboration
goes through with a state diagram. This helps to abstract away details and focus on
the goal of the collaboration. Thereafter detailed interactions for the collaboration are
provided in the form of sequence diagrams.

Collaboration States. The states (or phases) of a collaboration may be described in a
state diagram (or activity diagram), as illustrated in Fig. 3.

sm UserCall

inviting alerting

talking
assert (goal == True)

busy

disconnecteddisconnected

Fig. 3. State machine diagram for collaboration UserCall

This state diagram describes well known situations in the progress of a basic tele-
phone call. The transitions between the states are represented by arcs, but we have cho-
sen not to define exactly what causes them. For instance the transition from alerting
to disconnected can be due to the caller hanging up, the callee not answering
before a timeout, or the network malfunctioning. Leaving such details undefined can be
desirable in a high level service specification.

But what do states of a collaboration mean? Given that a collaboration is not in-
stantiated as an object, no entity is ever in a collaboration state. Rather, a collaboration
state is a conceptual state expressing certain situations or conditions on the combined
states of the roles A and B during the collaboration, see Fig. 4. It may be considered as
a liveness property of the collaboration.

The possibility to focus on the joint behavior and goals rather than the individual
role behavior is an important asset of collaborations. The role behaviors must somehow
be aligned with each other; we indicate a way of doing so in Fig. 4. One must ensure
that the role behaviors are dual, i.e. they are fully compatible with respect to safety
properties, and that they can reach the joint collaboration states and goals and thereby

Using UML 2.0 Collaborations for Compositional Service Specification 465

satisfy liveness properties. A two-party collaboration satisfying these properties defines
a pair of semantic interfaces [2].

sm UserCall

inviting alerting

talking

assert (goal == True)

busy

disconnecteddisconnected

diallingA diallingA alertingA alertingA ringingB ringingB

talkingA talkingA talkingB talkingB

waitingA waitingA *B *B

-A -A -B -B

Fig. 4. State machine diagram for UserCall with role states and service goal expres-
sion (UML enhancement illustrating role states in collaboration states)

By describing state machines for both the collaboration and the role classifiers, a
certain amount of redundancy is added, and the question of compatibility between them
arises. This can either be considered as a problem to be avoided, or as a feature that
can be put to use. In our view validating consistency between the role behavior and the
collaboration behavior is an opportunity that should not be missed.

Interactions. Interaction diagrams are often partial descriptions that are not meant to
describe complete behavior, unlike state machine diagrams. For the purpose of service
specification interactions for a collaboration should at least focus on the successful
cases, i.e. those that lead to the achievement of service goals.

In Fig. 5 we have described interactions that lead to the achievement of the service
goal of a collaboration called Invite. The goal of this collaboration is to bring the
collaborating instances to the talking state. The goal is indicated by an adornment
in the continuation label talking.

2.4 Semantic Interfaces and Compatibility

In principle, components can participate in any service as long as they can play their part
of the service. Therefore, the specification of a service should not bind the service roles
to specific classifiers [9]. In [10] we used association classes to specify services, but they
fail to meet the requirements for flexible role binding. This is because with associations
the binding is determined by the classifiers at the association ends. Collaborations do
not have this limitation. With the help of collaboration uses, collaborations roles can be
bound to any classifiers that are compatible with the role types. This is shown in Fig. 6,
where the same classifier, UserAgent, is bound to two different roles, A and B. This is
possible as long as the UserAgent class is compatible with both collaboration roles.
Our interpretation of compatibility is that the UserAgent must have visible interface
behavior that is goal equivalent with the behavior of both roles, implying that the roles
of the collaboration can be achieved.

466 Richard Torbjørn Sanders et al.

Busy

Reply

Alert

Invite

alt

inviting

inviteeinviter

talking

alerting

disconnected

alt

Busy
ref

End

sd invite_sd

{invite_goal}

Fig. 5. Sequence diagram for collaboration Invite

A B
uc:UserCallaUA: UserAgent bUA: UserAgent

Fig. 6. Binding roles to component classes in a collaboration use

This can be put to use by defining a pair of semantic interfaces in a two-way col-
laboration like UserCall, as proposed in [2]. The semantic interfaces include goal
expressions and role behaviors for the two collaboration roles. Such role behavior can
be seen as a kind of protocol state machine specifying only the input/output behavior
visible on the interface. It can be derived from a general state machine by making a pro-
jection of its behavior on the interface in question. In the case of the UserAgent in
Fig. 6, compatibility can be checked in two steps. First we verify that the collaboration
goals of UserCall are reachable given the roles A and B. Then we check that the pro-
jected behaviors of UserAgent on each side of the connection defined by UserCall
are goal equivalent to the respective behaviors of A and B. This enables a compositional
and scalable validation approach where the most computation intensive work (making
projections and comparing behaviors) can be done at design time. When dynamically
binding roles to system components at runtime, validation need not be repeated.

The UML standard [7] says that “a collaboration is often defined in terms of roles
typed by interfaces”. Unfortunately an interface typing a role can only describe either
a provided interface, or a required interface, but not a combination. This is a limita-
tion. We want role classifiers to describe both the required and the provided interface
behavior in a single modeling unit. Typing a role by two interfaces, a required and a
provided one, is not legal in the current version of UML, nor would this result in a uni-

Using UML 2.0 Collaborations for Compositional Service Specification 467

fied interface description. Similarly, a protocol state machine attached to an interface
only constrains the sequence of operation calls to a component, and can not be used to
describe a two-way interface.

The limitations of interfaces may be overcome, however, if UML allowed describing
interface behavior in terms of state machines that model the (projected) input/output
behavior of a component on the interface, such as the Port State Machines (PoSM)
proposed by Mencl [11]. This is indeed close to the port state machines of ROOM [12],
and should be included in UML. Goal compatibility between a component and a port
state machine could then be defined in terms of behavior projection.

Given that the behavior of a collaboration role is described in a state machine dia-
gram enriched with service goals, it is relatively straightforward to validate safety and
liveness compatibility between a classifier and a semantic interface to which it is bound
[6, 13, 10], thus ascertaining goal equivalence between objects and roles.

3 Composition from Collaborations

3.1 Composition of Two-Party Services and Semantic Interfaces from
Two-Party Collaborations

With collaboration uses we can express how services can be composed from elementary
service features, as illustrated in Fig. 7.

A:Caller B:Callee

invite:Inviteinvitee inviter

talk:Talktalker talker

User Call

Fig. 7. UserCall composed of elementary features (subordinate collaboration uses)

In Fig. 7 the UserCall collaboration is decomposed into smaller features,
invite and talk, represented as collaboration uses. These are related to the distinct
states of the UserCall service (see Fig. 3) and to the sequence diagram for Invite
(see Fig. 5). To simplify the example, we have grouped the states for UserCall so
that the goal of the invite collaboration is to bring the UserCall collaboration to
the state talking, upon which the talk collaboration use takes over. However, it is
not clear from Fig. 7 what relationship there is between invite and talk, that is, if
their interactions are interleaved or if they represent a sequence.

It is of central importance to service engineering to make the sequence of goals and
the relationships between collaborations explicit. This may be done in several ways.
One possibility is showing dependencies between the subordinate collaboration uses
and/or their roles in the collaboration diagram itself. Another possibility is to utilize

468 Richard Torbjørn Sanders et al.

pre- and post-conditions. A third possibility is to use interaction overview diagrams or
activity diagrams to express goal sequences, as suggested in Fig. 8a below.

Interaction overview diagrams are a form of activity diagram, and thus the token
passing semantics of the latter apply. To express goal relationships, the following in-
terpretation of the tokens is employed: a token being passed represents that a goal is
achieved, while an input token implies that a subsequent collaboration use (i.e. a ser-
vice) is enabled. This can be exploited by mechanisms supporting the dynamic discov-
ery of service opportunities [2, 4]. Note that what happens if the goal is not achieved
is not described – the focus is on the achievement of goals. However, if the goal is not
achieved in a referenced collaboration, the goal sequence is interrupted.

invite.invite_sd
ref

talk.talk_sd
ref

sd UserCall

(a) Interaction overview

A Binvite:Invite
inviter invitee

A Btalk:Talk

invite:Inviteinviter invitee

UserCall_goals

(b) Goal sequence diagram

talker talker

Fig. 8. Overview of the subordinate collaboration uses of UserCall

With this interpretation, Fig. 8a specifies that after invite has achieved its service
goal, the subordinate collaboration use talk is enabled. Note that this relationship
applies in the context of their use, i.e. in the collaboration UserCall. It is not stated
in the specification of the subordinate collaborations Invite and Talk, which are
thus free to be used in other collaboration contexts.

A minor diagrammatic enhancement to UML, which is to include an illustration of
the situation with respect to the involved collaborations (see Fig. 8b), seems attractive.
This is what we have called a goal sequence diagram [10]. The second rectangle in
Fig. 8b illustrates how the roles of Invite and Talk are bound in the context of
UserCall. They are statically bound in the UserCall collaboration of Fig. 7, and
simply referred to in Fig. 8b. Goal sequence diagrams do not change the semantics of
UML, and what is illustrated in Fig. 8b corresponds to what is expressed in Fig. 8a. Goal
sequence diagrams illustrate the evolution of the collaboration structure. For instance,
two shades of coloring are employed for the referenced collaboration uses: black color
(e.g. for talk) illustrates that the collaboration use is active, while grey color (e.g.
for invite) is for preceding collaboration uses that do not have to exist any longer.
For the simple example in Fig. 8 the added value of the goal sequence diagram is not
striking; Fig. 10 is perhaps a more convincing case.

Illustrating situations has been also suggested by Diethelm & al. [14]; they use
communication diagrams to illustrate use cases and to illustrate do-actions in states.

Using UML 2.0 Collaborations for Compositional Service Specification 469

Two-party collaborations can be composed to form semantic interfaces, which de-
fine role behavior and goals of a pair of complementary roles. Limiting such collabora-
tions to a pair of roles is chosen to simplify the validation approach, which is based on
validation of object behavior projections and goals over a binary association, as men-
tioned previously. It also simplifies composition, as components can be composed of
composite states that correspond to the semantic interfaces [15].

This restriction does not hinder multi-party services to be defined; they can be com-
posed from two-party collaborations with semantic interfaces, as well as from subordi-
nate multi-party collaborations, as shown below. However, this complicates the valida-
tion and composition process, as several interfaces have to be validated or composed,
and the relationships between the interfaces must be known. Goal sequence diagrams
seem to be promising when it comes to composition, as illustrated in the next section.

3.2 Composition of Multi-party Services

An example that illustrates the potential of composing collaborations from subordinate
collaborations is found in Fig. 9, where the UserCall service with the call transfer
feature is described.

A B

C

orig_t:Talk

talker talker
:Hold

holdee holder

inq_i:Invite

invitee

inviter

res:Talk

talker

talker

UserCallWithTransfer

:Transfer

controlleroriginal party

third party

orig_i:Invite

inviteeinviter

inq_t:Talk

talker

talker

Fig. 9. The collaboration UserCallWithTransfer

Fig. 9 demonstrates how subordinate collaborations such as Invite and Talk
may be reused in new settings, due to the flexible role binding of collaboration uses.
Such reuse is a very attractive aspect of collaborations, and can help to give an intuitive
understanding of a complex situation, as illustrated here. Call transfer is a classical
challenge for service designers to understand and describe succinctly. From Fig. 9 it
is apparent that several call invitations are involved. However, the precise ordering of
the subordinate collaboration uses can not be understood from Fig. 9 alone. A goal

470 Richard Torbjørn Sanders et al.

sequence diagram for the UserCallWithTransfer service, as suggested in Fig.
10a, is one possibility of describing this.

Fig. 10a describes the ordering of collaboration uses required for the overall service
goal of the transfer feature to be achieved. The goal sequence diagram combined with
the collaboration diagram of the service (see Fig. 9) provides a compact and fairly
intuitive description of a complex service. It has been common practice among telecom
service engineers to make informal sketches to the same effect as an aid in service
design. UML collaborations provide an opportunity to formalize and better support
this practice. The goal sequence demonstrates how UML promotes reuse of units of
behavior in the form of collaboration uses, and documents the evolution of the static
structure depicted in the collaboration diagram. One particularly interesting aspect of
the goal sequence diagram in Fig. 10a is that it shows situations in which a role, e.g.
B, is simultaneously playing two or more sub-roles, e.g. holder and inviter in the
fourth step of the sequence. Note that the simplicity of collaboration structures may
be deceiving. Call transfer may look simple in Fig. 9, but when fully elaborated the
underlying sequences and role behaviors can be quite complex.

There are limits to what goal sequence diagrams are capable of expressing. For
instance, it is not possible to describe goal dependencies among overlapping collabo-
rations. This is the case, for example, of a log-on collaboration that requires a user
authentication as part of its operation. It is desirable to model log-on and authen-
ticate as separate collaborations to achieve reuse, and allow log-on to be com-
bined with alternative authentication patterns. However, we cannot express with goal se-
quence diagrams that authenticate is enabled when log-on achieves a sub-goal,
and that authenticate must achieve its goal before further progress in log-on
is possible. An alternative notation, Use Case Maps [16], has been shown to have the
necessary expressive power [5].

3.3 Towards Class Design

The specification of service functionality in collaborations is beneficial beyond the
specification phase and can have direct influence on the design of classes and state
machines. Analyzing the collaborations and the goal sequences tells us which roles a
class must play over time, which requests for roles can arrive in which situations and
which connections must be established to reach the goals of the implemented services.
Modeling service specifications can help class design, as we now shall see.

Fig. 10b illustrates the coarse structure of a class Participant that implements
all three roles A, B and C of UserCallWithTransfer. The sub-rolesinvitee and
inviter are implemented as separate state machines, since call requests can arrive at
any time. When a call request from another component is received, invitee creates
a new instance of the state machine callsession to handle the request. The sub-
roles talk, hold and transfer can be implemented by composite states inside
callsession, as these roles are played alternately. The figure also illustrates the
connections between the state machines of the components and how they evolve as the
service progresses towards the achievement of its goal.

To complete class design one must consider all collaboration roles bound to the
class. The Participant class, for example, may take part in several collabora-

Using UML 2.0 Collaborations for Compositional Service Specification 471

UserCallWithTransfer_goals

B:Participant

callsession
[talk]

inviteeinviter
A:Participant

callsession
[talk]

inviteeinviter

talk

B:Participant

callsession
[holder]

inviteeinviter
A:Participant

callsession
[holdee]

inviteeinviter

hold

B:Participant

callsession
[holder]

inviteeinviter
A:Participant

callsession
[holdee]

inviteeinviter

C:Participant
inviteeinviter

hold

B:Participant

callsession
[holder]

inviteeinviter
A:Participant

callsession
[holdee]

inviteeinviter

C:Participant

callsession
[talker]

inviteeinviter

hold

callsession
[talker]

talk

B:Participant

callsession
[controler]

inviteeinviter
A:Participant

callsession
[orig.party]

inviteeinviter

C:Participant

callsession
[third party]

inviteeinviter

hold

B:Participant
inviteeinviter

A:Participant

callsession
[talker]

inviteeinviter

C:Participant

callsession
[talker]

inviteeinviter

(a) Goal sequence diagram (b) Illustrated component structure

transfer

talk

invite

A Borig_i:Inviteinvitee inviter

A B

C
inq_t:Talk

talker

talker

:Transfer
controller

original party

third party

A B

C

:Transfer
controlleroriginal party

third party

:Holdholdee holder

inq_t:Talk

talker

talker

A B

C inq_t:Talk

talker

talker

:Holdholdee holder

inq_i:Inviteinvitee

inviter

A B

C
inq_i:Inviteinvitee

inviter

:Holdholdee holder

A B:Holdholdee holder

orig_t:Talk
talker talker

B:Participant
inviteeinviter

A:Participant
inviteeinviter

invite

A Borig_t:Talk
talker talker

orig_i:Inviteinvitee inviter

Fig. 10. Goal sequence for UserCallWithTransfer with related component
structure

472 Richard Torbjørn Sanders et al.

tions other than UserCallWithTransfer, as it is shown in Fig. 11. In that case
Participant must be compatible with the four roles ua, A, B and ub, and class
design must take this into account.

PeerToPeerCall

t1:Caller
Terminal

Ca1:
Participant

Ca2:
Participant

t2:Callee
Terminal

:UserCall
WithTransfer

:termCall:initCall

A Bta ua tbub

Fig. 11. Service composed of elementary services

4 Discussion

4.1 Related Work

The understanding that services involve collaboration between distributed components
is not new; indeed, this was recognized since the early days of telecommunications.
In terms of modeling the interaction of collaborations, various dialects of interaction
diagrams existed prior to the first standardization of the ITU-T MSC language [17] in
1994. A slightly different approach was taken in the use cases of OOSE [18], where
interactions were described textually. However, interactions alone do not really cover
the structural aspects of the roles and the flexible binding of roles to classifiers.

Collaborative designs such as protocols have traditionally been specified by state
diagrams, using combinations of informal descriptions and formal models, e.g. using
SDL [19] or similar ([20, 21, 12]). But while state diagrams describe complete object
behavior, the overall goals and the joint behavior tend to be blurred.

The concept of role was already introduced in the end of the 70’s in the context of
data modeling [22] and emerged again in the object-oriented literature. Using roles for
functional modeling of collaborations was of primary concern in the OORAM method-
ology [23], and was one of the inputs influencing the UML work on collaborations in
OMG. Within teleservice engineering it has been a long-standing convention to describe
telephone services using role names like A and B. In [9] we classified different uses of
the role concept, and pointed out that UML 1.x was too restrictive, since a Classifier-
Role could bind to only one class, so they were not independent concepts that could be
re-used in different classes.

Rössler & al. [3] suggested collaboration based design with a tighter integration
between interaction and state diagram models, and created a specific language, CoSDL,
to define collaborations [24]. CoSDL was aligned to SDL-96. Floch [6] also proposed
a notation for collaboration structure diagrams, where components were designed in
SDL-2000 [19].

Using UML 2.0 Collaborations for Compositional Service Specification 473

With UML 2.0, it is now possible to model collaborations in a standardized lan-
guage, increasingly supported by tools. Modeling collaborating services with UML 2.0
collaborations has earlier been suggested by Haugen and Møller-Pedersen [25]. They
pointed out that there might be limitations in binding collaboration uses to classifier
parts; these issues must be clarified, and binding to parts should preferably be sup-
ported. In the FUJABA approach described in [26], so-called coordination patterns are
used for similar purposes as our semantic interfaces. They use a model checker to pro-
vide incremental verification based on the coordination patterns.

4.2 Further Work

A number of issues presented in this article need to be clarified and researched, and
experiments in real projects must be undertaken before all problems are solved. We are
currently applying these techniques on several practical service engineering cases in-
cluding access control services, call control, and mobile information services. Compat-
ibility rules between role classifiers and the objects and classes bound by collaboration
uses is a semantic variation point in UML. The research on semantic interfaces [2] is
a promising starting point for compatibility checking between complementary roles.
Additional work on validating compatibility between roles and class designs, with tool
support for composition, is being undertaken.

An experimental tool suite is currently being developed as part of the Teleservice
Lab at the department of Telematics at NTNU, based on the Eclipse platform. The EU
funded project Semantic Interfaces for Mobile Services, SIMS, to commence in 2006,
will develop tool support for designing and validating collaborations, taking existing
prototypes [27] as a starting point and validating the approach among industrial users.

5 Conclusion

This article has suggested ways of exploiting UML 2.0 for service engineering, and has
discussed opportunities and limitations that lie in the current standard [7] in that respect.
Our conclusion is that UML 2.0 collaborations seem to be a very useful expression
form, as it allows one to define pieces of collaborating role behavior that can be bound
to role players in a very flexible way.

Useful validation opportunities arise once criteria for role compatibility have been
defined. Collaborations can be used to define semantic interfaces, which in turn can
be used for compatibility checks and to support composition. We have argued for the
inclusion of port state machines in UML as a more general description of semantic
interface behavior than the existing protocol state machine mechanisms that have been
defined in UML 2.0.

Furthermore we have suggested how minor notational enhancements can be intro-
duced to represent collaboration situations in order to support high level feature com-
position; this is more of a tool issue than a language issue, but has methodological
implications that are important. Finally, we have demonstrated how collaboration uses
provide means to define complex multi-party services on a high level.

474 Richard Torbjørn Sanders et al.

In contrast to the common practice of modeling complete service sequences involv-
ing all participating roles, our approach encourages decomposition into interface behav-
iors represented as two-way collaborations. The result is smaller and more reusable in-
terface behaviors that can be validated separately, thereby addressing compositionality
and scalability. The disadvantage is that behavior composition needs special attention,
e.g. using goal sequences as elaborated in [5].

References

[1] Bræk, R., Floch, J.: ICT convergence: Modeling issues. In: Proc. of the 4th Int. SDL and
MSC (SAM) Workshop, Ottawa, Canada, LNCS 3319, Springer (2004)

[2] Sanders, R.T., Bræk, R., von Bochmann, G., Amyot, D.: Service discovery and component
reuse with semantic interfaces. In: Proc. of the 12th Int. SDL Forum, Grimstad, Norway,
LNCS 3530, Springer (2005)

[3] Rößler, F., Geppert, B., Gotzhein, R.: Collaboration-based design of SDL systems. In:
Proc. of the 10th Int. SDL Forum, Copenhagen, Denmark, LNCS 2078, Springer (2001)

[4] Sanders, R.T., Bræk, R.: Discovering service opportunities by evaluating service goals. In:
Proc. of the 10th EUNICE and IFIP Workshop on Advances in Fixed and Mobile Networks,
Tampere, Finland (2004)

[5] Castejón, H.N.: Synthesizing state-machine behaviour from UML collaborations and Use
Case Maps. In: Proc. of the 12th Int. SDL Forum, Norway, LNCS 3530, Springer (2005)

[6] Floch, J.: Towards Plug-and-Play Services: Design and Validation using Roles. PhD thesis,
Dep. of Telematics, Norwegain Univ. Sci. and Tech., Trondheim, Norway (2003)

[7] Object Management Group: UML 2.0 Superstructure Specification. (2004)
[8] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-

ual. 2nd edn. Addison-Wesley (2004)
[9] Bræk, R.: Using roles with types and objects for service development. In: IFIP 5th Int.

Conf. on Intelligence in Networks (SMARTNET), Pathumthani, Thailand, Kluwer (1999)
[10] Sanders, R.T., Bræk, R.: Modeling peer-to-peer service goals in UML. In: Proc. of the 2nd

Int. Conf. on Soft. Eng. and Formal Methods (SEFM’04), IEEE Computer Society (2004)
[11] Mencl, V.: Specifying component behavior with port state machines. Electr. Notes Theor.

Comput. Sci. 101 (2004) 129–153
[12] Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. John Wiley &

Sons (1994)
[13] Floch, J., Bræk, R.: A compositional approach to service validation. In: Proc. of the 12th

Int. SDL Forum, Grimstad, Norway, LNCS 3530, Springer (2005)
[14] Diethelm, I., Geiger, L., Maier, T., Zündorf, A.: Turning collaboration diagram strips into

storycharts. In: Workshop on Scenarios and state machines: models, algorithms, and tools;
ICSE’02, Orlando, Florida, USA. (2002)

[15] Floch, J., Bræk, R.: Using SDL for modeling behavior composition. In: Proc. of the 11th
Int. SDL Forum, Stuttgart, Germany, LNCS 2708, Springer (2003)

[16] ITU-T Draft Recommendation Z.152: URN - Use Case Maps notation (UCM). (2004)
[17] ITU-T Recommendation Z.120: Message Sequence Charts (MSC). (2004)
[18] Jacobson, I., Christerson, M., Jonsson, P., Øvergaard, G.: Object-Oriented Software Engi-

neering: A Case Driven Approach. Addison-Wesley (1992)
[19] ITU-T Recommendation Z.100: Specification and Description Language (SDL). (2002)
[20] International Organization for Standardization (ISO): Estelle: a formal description tech-

nique based on an extended state transition model. ISO9074. (1989)

Using UML 2.0 Collaborations for Compositional Service Specification 475

[21] Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8
(1987) 231–274

[22] Bachman, C.W., Daya, M.: The role concept in data models. In: Proc. of the 3rd Int.
Conference on Very Large Data Bases, Tokyo, Japan, IEEE Computer Society (1977)

[23] Reenskaug, T., Wold, P., Lehne, O.A.: Working with Objects: The OOram Software Engi-
neering Method. Prentice Hall (1996)

[24] Rößler, F., Geppert, B., Gotzhein, R.: CoSDL: An experimental language for collaboration
specification. In: Proc. of the 3rd Int. SDL and MSC (SAM) Workshop, Aberystwyth, UK,
LNCS 2599, Springer (2002)

[25] Haugen, Ø., Møller-Pedersen, B.: The fine arts of service modeling. Technical report,
Internal report. ARTS (2003) http://www.pats.no/projects/ARTS/arts.html.

[26] Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental design and formal verifi-
cation with UML/RT in the FUJABA real-time tool suite. In: Proc. of the Int. Workshop
on Specification and Vaildation of UML models for Real Time and embedded Systems
(SVERTS), associated with UML2004, Lisbon, Portugal (2004)

[27] Alsnes, R.: Role validation tool. Master’s thesis, NTNU (2004)

Model-Driven Engineering in a Large Industrial

Context — Motorola Case Study

Paul Baker1, Shiou Loh2, and Frank Weil3

1 Motorola Labs, Jays Close, Viables Industrial Estate, Basingstoke, Hampshire,
RG22 4PD, UK

Paul.Baker@motorola.com
2 Motorola Inc, 1301 E. Algonquin Rd., Schaumburg, IL 60196, USA

Shiou.Loh@motorola.com
3 Motorola Global Software, 1303 E. Algonquin Rd., Schaumburg, IL 60196, USA

Frank.Weil@motorola.com

Abstract. In an ongoing effort to reduce development costs in spite of
increasing system complexity, Motorola has been a long-time adopter
of Model-Driven Engineering (MDE) practices. The foundation of this
approach is the creation of rigorous models throughout the development
process, thereby enabling the introduction of automation. In this paper
we present our experiences within Motorola in deploying a top-down
approach to MDE for more than 15 years. We describe some of the key
competencies that have been developed and the impact of MDE within
the organization. Next we present some of the main issues encountered
during MDE deployment, together with some possible resolutions.

1 Introduction

Motorola employs over 13,000 software engineers and has been applying ini-
tiatives such as the Software Engineering Institute Capability Maturity Model
to improve the quality and productivity of software and system development.
However, given increasing system complexity, these initiatives are not enough
by themselves. As a result, Motorola began to deploy Model-Driven Engineer-
ing (MDE) as a means of introducing automation into the development process.
After more than 15 years, Motorola has matured and deployed its MDE process
with impressive results. This paper introduces some of Motorola’s experiences
and issues during MDE usage. We conclude by presenting some high-level strate-
gies Motorola is pursuing to further enhance MDE deployment and success.

2 Experience

Motorola’s experience in MDE crosses a wide spectrum of activities, tools, and
modeling languages in the telecommunications domain. Typical applications
range from protocol implementations on hand-held devices (pagers, cell phones,
etc.) to network controllers in infrastructure components (base stations, radio

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 476–491, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Model-Driven Engineering in a Large Industrial Context 477

network controllers, etc.) This section describes this experience, covering lan-
guages and standards, development processes, and the automatic generation of
tests and application code. In addition, we discuss MDE successes and failures
and the impact that MDE has had.

2.1 Languages and Standards

Motorola began using standard modeling languages over 15 years ago with Struc-
tured Analysis and Structured Design (SA/SD) [9]. This was followed by the
introduction of the Specification and Description Language (SDL) [12] to Mo-
torola Europe for the modeling and validation of the design of communication
protocols. These positive experiences led to the large-scale deployment of an
MDE approach using languages such as Message Sequence Charts (MSC) [11],
SDL, and TTCN-2 [13] for the development of large telecommunication sys-
tems. MSCs were typically used for requirements specification, SDL for design,
and TTCN-2 for test specification.

Following this wider deployment with MSC and SDL, Motorola increased
its involvement and leadership within the standards communities, especially the
International Telecommunications Union (ITU-T), the European Telecommuni-
cation Standards Institute (ETSI), and the Object Management Group (OMG).
For example, the MSC language was extended to allow the parameterization
of any data language, thereby making it possible to develop test models as a
basis for automatic test generation. In general, these languages were very well
suited to the domain of telecommunication systems, and their precise semantic
foundations gave a clear and unambiguous interpretation for users.

To broaden the application domains for MDE, gain wider user acceptance,
and harmonize languages, Motorola pursued the development of UML 2.0 [16]
and testing notations. In doing so, MSC and SDL were incorporated into UML 2.0
to provide a language with a wider application scope which preserves those ca-
pabilities needed for communication system development.

Together with European telecommunication companies, ETSI pursued the
evolution of TTCN-2 to define a test specification language that could be used
in a wider context (e.g., CORBA, web-based systems, etc.). The result was
TTCN-3 [7], a powerful and well defined abstract test specification and exe-
cution framework. Motorola promoted the use of TTCN-3 to harmonize testing
across different engineering teams, thereby leading to transferable skills and tool
reuse. To bridge the gap between TTCN-3 and UML 2.0, Motorola pursued the
development of the UML 2.0 Testing Profile [3] for graphical test modeling.

Motorola is an active participant in the OMG Platform Technology Commit-
tee and in the ITU-T SDL Committee (Study Group 17), including the ITU-T
efforts to unify SDL and UML (Question 13/17 - System Design Languages
Framework and Unified Modeling Language).

478 Paul Baker, Shiou Loh, and Frank Weil

2.2 Process Overview

Since its adoption of MDE, Motorola has followed a rigorous, top-down pro-
cess. Typically, the process starts with the development of requirements using
scenario-based models (defined using MSCs or UML 2.0 Interaction Diagrams),
thereby capturing normative and exception behaviors. Next, architectural re-
quirements are developed to define the main system components and the inter-
actions between them. In addition to refining scenario-based models, interface
specifications detailing the data passed between system components are devel-
oped in either proprietary or standard languages such as ASN.1. Finally, detailed
design models are developed, using either SDL or UML 2.0, for each system com-
ponent. Data from the system or architectural requirements are transformed
either into SDL or UML 2.0 data types. These models are then tested and sub-
sequently transformed into code for the target application.

To support this process, a number of technologies and tools have been de-
veloped and deployed. Firstly, Motorola developed a proprietary specification
technique for data because standard languages such as ASN.1 [10] could not
readily capture the bit-level data layout schemas used in the existing protocols.
In doing so, Motorola also developed automatic code generation tools that would
not only provide efficient data marshaling (see Sect 2.3), but would also facilitate
data reuse between design and testing activities. Motorola also institutionalized
the notion of model testing using co-simulation techniques. For example, an
executable SDL or UML 2.0 design model4 is run as a simulation against an
executable test suite. This has proven to be a very effective means of ensur-
ing the correctness and quality of models, as other verification techniques (e.g.,
model checking) are not tractable for such large-scale models. After the model
correctness has been determined, automatic code generation is used to gener-
ate the necessary code for the target implementation. Finally, for component,
integration, and system testing, Motorola introduced automated test generation
tools [4] that produce test suites from scenario-based requirements.

2.3 Automatic Code Generation

Motorola has been involved in automatic code generation from models for over
15 years [5,6]. The original work was done with Structured Design models, re-
lying on an internally developed action language for the process specifications.
These design models were transformed to code through a transformation sys-
tem written in Smalltalk. While this system worked well for small projects, the
original implementation of the code generator proved not to scale well to large
infrastructure components encompassing many applications each consisting of
several hundred thousand lines of source code and was re-architected.

After the viability of modeling and automatic code generation was estab-
lished, several factors came into play:

4 Most models are currently in SDL or UML 1.x, but a general transition to UML 2.0
is being made, and products have been developed and shipped using UML 2.0.

Model-Driven Engineering in a Large Industrial Context 479

– the desire to use standardized and non-proprietary modeling languages,
– the desire to scale to large projects,
– the desire to target small embedded systems such as pagers and cell phones,
– the desire to fully leverage the models for testing.

Modeling notations such as LOTOS and Z never gained popularity in the
United States, and commercial tool support for them was minimal. In addition,
the telecommunications systems being modeled were largely state-based. The
decision was therefore made to adopt SDL as the primary modeling language.

At this point, the automatic code generation efforts in Motorola split into
three separate but related paths: code for infrastructure components such as
Base Site Controllers, code for subscriber components such as pagers and cell
phones, and code for encoding and decoding communications protocols (also
called packing and unpacking, or marshaling).

Infrastructure and Subscriber Components While the basic modeling
needs for infrastructure and subscriber development are the same (i.e., state
machines, concurrent communicating processes, messages, etc.), the needs of the
generated code are vastly different. Infrastructure components typically have
powerful processors, large amounts of memory, and no power constraints. In
contrast, subscriber components typically have minimal processing power, small
amounts of memory, and severe power and battery life constraints. In addi-
tion, the infrastructure components have strict throughput, latency, capacity,
and reliability requirements, often requiring the simultaneous handling of sev-
eral thousand calls in a fault-tolerant environment. Subscriber components just
have to be fast enough to handle one call, and reliability requirements are not as
strict (that is, an entire cell site cannot go down without major consequences,
but it is not catastrophic if a cell phone drops a call).

For infrastructure components, entire subsystems are modeled in the design
language, including the detailed functionality. The models are tested and de-
bugged (see Sect. 2.4), and complete code is generated. While it is sometimes
the case that the generated code must be debugged, it is expected that the gen-
erated code is never modified—if a defect is found, the model is updated and
the code is generated again from scratch. This follows the full MDE vision.

Subscriber components generally follow more of a “round-trip” approach.
The component is modeled, but the detailed functionality is added to the model
in the target language itself (C, C++, Java, etc.). The code is generated with
the target code left in place, and the testing is done on the resulting code in a
separate application test environment. Changes are never made to the parts of
the code that are actually generated, but may be made to the embedded target
code. Once debugged, these changes are loaded back into the model.

While it could be argued that round-trip development does not truly follow
MDE concepts, there is a fine line between writing target code in a model and
writing the same functionality in a modeling language such as SDL. Often, what
is written is identical except for minor notational changes. Currently, the use of
round-trip versus “full” MDE is more for historical reasons than technical ones.

480 Paul Baker, Shiou Loh, and Frank Weil

Using these techniques, Motorola has shipped many millions of lines of code
generated from SDL and UML models.

Marshaling The common ground in automatic code generation has been pro-
tocol encoding and decoding. This marshaling code entails much low-level bit
manipulation of data to decode a buffer into the realization of the abstract data
types used in the model, and vice versa for the encoding.

These types of algorithms are tedious to represent in most modeling lan-
guages, and implementation-specific details are best left out of the models. We
have found that code generators are much better than humans at finding opti-
mal and correct sequences of bit-manipulation instructions for performing the
marshaling and dealing with data from different endian machines.

Motorola makes extensive use of marshaling code generators based on exter-
nal specifications written in standard languages such as ASN.1 and on internal
specifications using a proprietary language. One major advantage, especially for
internal protocols, is that once a protocol is specified, all components using that
protocol get the generated marshaling code with no additional effort.

Motorola uses generated marshaling code integrated with hand-written C
and C++ code, with application code generated from SDL and UML models
(both from internal tools and from various vendor tools), with TTCN-2, and
with TTCN-3.

Mousetrap Motorola has developed its own automatic code generation tool
suite called Mousetrap. The Mousetrap tool suite takes as input SDL, UML,
ASN.1, and ISL (a proprietary protocol language) and produces highly optimiz-
ing code customized for a product platform and a set of performance constraints.
Mousetrap is a rule-based code transformation system driven by a vast program-
ming knowledge base. Application code has been generated for and shipped in
both infrastructure and subscriber components.

Field data has shown that code generated by Mousetrap has fewer defects
than hand code or code generated by vendor tools. This is largely due to Mouse-
trap’s ability to detect model problems that most vendor tools cannot catch,
and its ability to generate more complete code than vendor tools (e.g., all of
the platform interface code is generated). Code generated by Mousetrap is also
higher performance than code generated by vendor tools. The main reasons for
this are better optimization techniques in Mousetrap and the luxury of knowing
the target platform and being able to customize the code generation for it.

2.4 Automation Test Generation

When Motorola first deployed MDE it was observed that users were taking
scenario-based requirements and manually translating them into conformance
test suites. Hence, an automatic test script generation tool called ptk [4] was de-
veloped that would process system and architectural scenario-based models, de-
scribed using MSCs or UML 2.0 Interactions Diagrams, to generate conformance

Model-Driven Engineering in a Large Industrial Context 481

and load tests. During the development and deployment of requirements-based
test generation a number of factors came into play:

Lack of rigorous models for test generation. Even though it is common
for system architects and designers to use scenario-based notations, they
typically do not contain the rigor needed for machine processing. We also
found that architects and designers were reluctant to invest the extra ef-
fort needed to develop rigorous models since the benefit of automated test
generation did not immediately justify the extra effort within their project
scope. Hence, Motorola has been pursuing a strategy of providing static anal-
ysis and automated construction tools [2,15] for scenario-based models that
help reduce appraisal costs and improve productivity. Specifically, these tools
enable system architects to detect errors, such as pathologies and feature in-
teractions in the designs, and at the same time to infer new and consistent
scenarios.

Correctness of scenario-based models. It was often the case that require-
ments specifications contained semantic inconsistencies leading to tests that
yield invalid results. Subsequently, research effort was directed to tools to
detected these inconsistencies so that they could be corrected before the ap-
plication of ptk. Pathological behaviors caused by inconsistencies in commu-
nication semantics were prevalent among the issues identified during various
Motorola case studies. Hence, it was decided to concentrate research effort
on tools that detected these kinds of pathologies. Initially research was di-
rected at characterizing inconsistencies in terms of standard UML behav-
ioral semantics. However, practitioners often develop systems with implicit
domain-specific communication semantics that are not formally incorporated
within their model. As a result, the initial version of the tool reported many
errors that practitioners regarded as false positives. It became clear that
the understanding of these communication semantics was important. Hence,
research has been directed at automatically inferring semantic constraints
needed to resolve inconsistencies in scenario-based models in a manner that
can be incorporated with little effort from the practitioner. In addition, it is
possible to automatically resolve certain pathological behaviors in the same
way. This allows the practitioner to concentrate more on the conceptual as-
pects of the design and to enable a more agile and lightweight development
process overall.

Test generation versus test specification. During our experience in deploy-
ing test generation, it became very clear that users often did not understand
the differences between test generation and test specification. For example,
even though Motorola practitioners use test generation tools, they typically
use them as test specification tools and hence do not gain the full bene-
fits (improved test coverage, abstraction, etc.). To this end, Motorola pur-
sued the development of the UML 2.0 Testing Profile and the deployment
of TTCN-3. The intention is to provide a well-defined test specification and
execution framework with an optional graphical modeling front-end which

482 Paul Baker, Shiou Loh, and Frank Weil

enhances the distinction between test specification and the generation of
tests from requirements. [1]

In general, test generation has proven to be very successful in: (1) the reduc-
tion of effort in developing tests, either through the use of abstraction and test
generation techniques or through the reuse of test models for different test con-
texts, (2) the improvement of test coverage, and (3) the reduction of In-Process
Faults (IPF) that classifies the number of defects introduced during the test
development process.

2.5 Successes and Failures

The initial roll-out of MDE using SDL and MSC within Motorola Europe proved
to be successful in obtaining an approximate 2.3X reduction in effort through
the use of co-simulation, automatic code generation, and model testing. As a
result, MDE gained traction within other teams within Motorola.

In general, the use of scenario-based test generation tools yields an approx-
imately 33% reduction in the effort required to develop test cases. However, in
some cases where complex modeling has been required, the use of scenario-based
models has not been appropriate. For example, using a scenario to describe the
behavior of a set of concurrent components that form part of a complex and dy-
namic system can be problematic. In such cases, specifying end-to-end scenarios
can tend toward complex scenario specifications, whereas scenarios that specify
single component behavior can lead to better reuse and understanding.

The integrated Dispatch Enhanced Network (iDEN) infrastructure division
has seen a steady trend of MDE adoption over the past nine years. Starting
with the use of SDL for one network element, iDEN has expanded its MDE us-
age to 9 out of 12 major network elements. Most of those network elements have
achieved 65%–85% code-generation, which has contributed to significant produc-
tivity and quality improvement. The degree of modeling maturity has evolved
from informal “whiteboard” modeling to formal modeling with simulation to
code generation to test-case reuse and automated marshaling code generation.
iDEN is now looking into more seamless and integrated MDE approaches with
the emphasis on providing a smoother transition between system engineering
and downstream development. At the same time, iDEN is moving from SDL to
UML 2.0. This move is consistent with tool vendor and industry trends.

In addition to the overall productivity and quality gains, Motorola has seen
tremendous gains in some phases of the development process. For example, it is
not unusual to see a 30X–70X reduction in the time needed to correctly fix a
defect detected during system integration testing. This reduction is attributed
to the ability to add a model test that illustrates the problem, fix the problem
at the model level, test the fix by running a full regression test suite on the
model itself, regenerate the code from scratch, and run the same regression test
suite on the generated code. The time it takes to do this is typically 24 hours
or less, while achieving the same quality with several hundred thousand lines of
hand code can easily take one to two months. The time needed to find the root

Model-Driven Engineering in a Large Industrial Context 483

cause of a defect has been improved in some case and worsened in others. For
example, platform interface issues can be difficult to diagnose since the observed
behavior may have no obvious correlation to the model, but subtle logic problems
in system behavior are easier to uncover in the model simulation.

One pilot project that did not succeed involved an integrated transition from
hand code to automatic code generation. The project looked into the possibility
of “cleaning up” informal SDL models, generating the code for the process and
state machine infrastructure, and directly incorporating the legacy C code for
the state machine transitions. The main reasons that the project did not suc-
ceed is that (1) the hand code made no clear distinction between these behavioral
aspects, so the effort to refactor the hand code far outweighed any potential ben-
efits, and (2) the informal models no longer corresponded to the actual behavior
of the hand code since there was no compelling reason to have kept the model
up to date.

2.6 Impact

Overall, Motorola has seen a positive impact from the adoption of MDE. The
detailed results are mixed, however, and are very difficult to use for planning
purposes. The main issue in determining impact is the lack of a common baseline.
For large-scale development projects, it is unrealistic to try to set up parallel
development environments using code generation and hand coding. Even if the
required resources for this were available, it would be difficult to account for
several factors, including experience levels in the product itself, experience in
the modeling language versus the target language, legacy code that must be
included, learning curves associated with understanding how to model, reuse
of model test cases during product testing, reuse of model components in later
development projects, and maintainability of the model versus the hand code.

In spite of the inability to determine and apply an appropriate normalizing
factor due to the above issues, Motorola has seen consistent benefits from MDE
and code generation. Typical results collected over the past few years have shown
the following benefits when compared to hand code:

Quality: a 1.2X–4X overall reduction in defects and a 3X improvement in phase
containment of defects. Also, more defects are found earlier in the develop-
ment process where they are less costly to fix. The overall Cost of Quality
has also decreased due to a decrease in inspection and testing times.

Productivity: a 2X–8X productivity improvement when measured in terms of
equivalent source lines of code.

3 Issues Encountered

The adoption of MDE within Motorola has not been without challenges. This
section lists some of the main issues encountered and the impacts they have had.

484 Paul Baker, Shiou Loh, and Frank Weil

3.1 Lack of Common Tools

The ready availability of third-party and internal tools for modeling and code
generation has led to a wide diversity of processes, languages, etc. Even within a
“single” language such as UML, there are several issues such as the inability to
completely transfer models between tools, use of vendor-specific extensions, lack
of complete UML support, and code generation support for different subsets of
UML. In practice, models and skills are only marginally transferable between
different development groups.

Our experience is also that testing teams tend toward the development of
their own test tools. This leads to a variety of testing solutions which are often
duplicated, not well defined, and poorly supported. The skills developed are not
always transferable between development groups.

3.2 Lack of Abstraction

During requirements modeling we have encountered three main issues:

Platform Specifics: Often we find that system architects and designers de-
velop requirements that contain either implicit or explicit assumptions about
the implementation. We are addressing this through the promotion of Model
Driven Architecture (MDA) [14] approaches.

Incompleteness: Typically requirements are defined either through use cases
or through scenario-based models. Since only partial models are developed,
there are implications on whether technologies such as model checking can
be used to determine the correctness of requirements.

Quality: Determining the adequacy of requirements is a common concern. We
are addressing this through the promotion of a top-down process and the use
of metrics and reliability models to determine the quality of requirements [8].

3.3 Lack of Well Defined Semantics

Motorola projects have encountered issues with language semantics with virtu-
ally every modeling language used. For example, SA/SD had no defined process
language and advocated natural language, tool vendors have added their own
language extensions, and even UML 2.0 contains semantic variation points. The
situation has improved drastically over the past decade, but local conventions
are still used and the exact meaning of a model often is dependent on the tool
in which it was created.

During the construction of models, implicit assumptions are also made about
domain semantics. For example, the type of semantics given to the communi-
cation between system components may be token passing, First-In First-Out,
synchronous/asynchronous, etc. To this end, a mechanism is needed to allow
the user to define domain-specific communication constraints that are consid-
ered during the construction and transformation of models. An initial UML 2.0
profile, called the Communication constraint UML Profile (CUP) [2], has been

Model-Driven Engineering in a Large Industrial Context 485

developed by Motorola Labs and can be used for specifying domain-specific com-
munication constraints with UML 2.0 Composite Structure Diagrams. CUP is
still being developed, but the intention is to standardize this within the OMG.

3.4 Coupling of Data and Behavior

With modeling languages such as SDL and MSC, the specification of data values
is tightly coupled with the behavior specification. For example, when an SDL
signal is sent between processes, the value of the signal is defined within the
behavior of each process. This means that when the signal type is modified, each
behavior definition must also be modified, resulting in a very large maintenance
burden for engineering teams. This also means that value definitions cannot be
reused between specification, design, and testing. By providing mechanisms for
decoupling data from behavior specification, we have seen very positive results.
With UML 2.0 we promote the use of instance modeling as a key strategy for
data reuse and reduced model maintenance. An instance is a run-time entity
with an identity that is distinguishable from other run-time entities. Hence,
instance modeling refers to the creation of “signal” instances as objects that can
be referenced and defined in an independent manner.

3.5 Poor Performance of Tools and Generated Code

Third-party MDE tools often do not scale well to the sizes needed for modeling
real telecommunications systems. We have encountered issues with the ability
of tools to load, save, compare, and generate code from large models. This has
become less of an issue as computing power increases, but it is far from solved.

We have also encountered performance issues with the generated code. When
using third-party tools with limited ability to customize the code generation, it
can be extremely frustrating to address performance bottlenecks.

3.6 Lack of Integrated Tools

No single tool supports a comprehensive MDE environment, allowing full use of
current tools and processes. To this end, integration of modeling concepts and
tools becomes problematic. For example, during the transformation of models
to code, how is traceability handled if a separate traceability tool is used?

3.7 Team Inexperience

We have observed that many teams encounter major obstacles in adopting MDE
due to the lack of a well defined MDE process, missing skill sets, and inflexibility
in changing the existing culture. Without a well defined MDE process, teams
that adopt MDE tend to use a “trial and error” approach and encounter the
same set of pitfalls others have already experienced. Skill sets related to MDE

486 Paul Baker, Shiou Loh, and Frank Weil

includes mastery of formal languages, modeling, simulation, tools, code gener-
ation, model performance improvement, testing automation, and proper parti-
tioning of architectural and design views (specific MDE training requirements
are being identified as part of the effort described in Sect 4.3). Often the per-
ceived required skill set is daunting for many teams; some do not even attempt
MDE due to lack of the required skill sets. Adopting MDE without an appro-
priate cultural change has also caused many “painful” experiences. While some
development process changes could be documented and enforced, other manage-
ment and development cultural changes are hard to identify and much harder to
enforce. One example of inflexibility in cultural changes is the tendency to tune
performance through embedding pointer-manipulation code in the models, thus
opening the door to the same problems encountered in hand code.

3.8 Lack of Migration Tools

Motorola is migrating from SDL-based modeling to UML-based modeling. How-
ever, a large number of legacy SDL-based models exist from more than a decade
of SDL-based development. To facilitate the move to UML, migration tools are
needed that support not only the main behavioral models, but also the asso-
ciated modeling artifacts such as test cases and MSCs. The current migration
tools are inadequate, and this impacts software development.

There is a significant cost of migration which is difficult to justify in terms of
return on investment (ROI). Migrating existing software already in the field is
in general a risky endeavor with low ROI. The lack of comprehensive migration
tools exacerbates the problem.

There is also a limit to the benefit of MDE under a heterogeneous develop-
ment environment. With large software system consisting of both legacy SDL
and new UML models, there is no tractable way to co-develop the entire system.
Because of this, it is difficult to achieve consistent benefits from simulation and
consistency checking.

3.9 Lack of Scalability

We have observed that the current state of corporate MDE usage is characterized
by isolated models. For example, even in a highly coupled system such as iDEN,
each model exists separately. That is, they interact with each other only in the
target network and are neither currently being modeled as a whole nor being
leveraged for simulation and consistency checking as a whole.

The challenges of MDE with respect to model scalability are:

Distributed development: Almost all large systems are developed by sepa-
rately managed teams that are also geographically separated. MDE adds
another dimension to the distributed development because in order to take
advantage of MDE at the whole system level, one needs to build the sub-
systems interfaces at the model level (not just at the target level). The

Model-Driven Engineering in a Large Industrial Context 487

model-level subsystem interfaces are new and often ill-defined mainly be-
cause of the difficulty in abstracting only model-level messaging without
complications from lower-levels transport and network layers.

Information Overload: Modeling a large system such as the entirety of a
cellular network is usually very complicated mainly because there are no
straightforward ways of hiding detailed information at the right place in
design, simulation, and presentation.

Legacy Software: Modeling a large system often requires the new models to
interact with legacy software. It is normally not feasible to model a whole
system such as cellular network because it is too costly to create stubs that
replace the existing legacy software during modeling.

Tool Performance: Most MDE tools suffer from modeling performance when
the system under development is large. The problem most often appears in
simulating a large system such as an entire cellular network.

4 Addressing the Issues

This section presents some strategies Motorola is pursuing to optimized its use
of MDE while addressing some of the shortcomings presented earlier.

4.1 UML 2.0 Profiles

Profiles provide a powerful tool for the specialization of UML 2.0. In particular,
to address issues raised earlier in the paper, Motorola is currently using and/or
creating several profiles:

SDL Profile This profile fills the semantic variation points in UML 2.0 and
provides continuity with development that has been based on SDL.

Testing Profile (U2TP) This profile provides a means for defining test spec-
ifications that can be mapped onto TTCN-3 and JUnit test cases. In doing
so, our aim is not only to provide testing tools that are tightly integrated
with UML 2.0 model construction tools, but also to enable reuse of UML 2.0
models within the construction of tests.

System Engineering Profile (SysML) This profile provides common nota-
tions for systems engineering applications.5

Domain Specification Communication Constraints (CUP) This profile
allows system architects and designers to specify domain-specific constraints
explicitly as part of their models.

4.2 MDE Technical Advisory Board

The Motorola MDE Technical Advisory Board (MDE TAB) is the leadership
organization for an effort focused on the tool/software development discipline

5 SysML is not (yet) a UML 2.0 Profile in the strict definition.

488 Paul Baker, Shiou Loh, and Frank Weil

deployed within Motorola. The focus of the MDE TAB is to provide a coor-
dinated point of interaction with MDE tool vendors regarding their modeling
and software development tools for Motorola global operations and to provide
a central organization responsible for collecting and distributing MDE-related
standards, metrics, etc.

The purpose of the MDE TAB is to:

– Develop enterprise technical requirements and Motorola-wide solutions.
– Identify and prioritize long-term deployment problems and enhancements.
– Determine the best approaches for addressing problems and requirements.
– Identify training, best practices, policies, and procedures related to MDE

tools and processes.
– Determine business impact metrics to measure the prioritized efforts.
– Identify and prioritize tool integration requirements.
– Coordinate with other Motorola teams related to MDE tool usage.
– Manage the supplier relationships.

4.3 Modeling Challenge Levels

As discussed in Sect. 3, we have encountered many MDE-associated challenges
such as ill-defined process, lack of required skill sets, etc. To overcome the chal-
lenges, an organization needs wide-ranging capabilities. However, it is not realis-
tic for any organization to acquire those capabilities in one single effort. Most, if
not all, development organizations need time to build their maturity with respect
to the deployment of MDE.

Over the years, MDE practitioners have found that they went through dif-
ferent stages of modeling experiences, each stage with its distinctive benefits,
challenges, and opportunities. Most MDE teams go through these stages be-
fore truly mastering MDE and its process. However, the documentation of those
stages is incomplete or nonexistent, causing difficulty in sharing modeling ex-
perience among development organizations across the corporation. The planned
continued growth of MDE in Motorola drives the need to define a framework of
these stages (or levels). This framework must facilitate the sharing of experience,
which includes tools, methodologies, best practices, processes, etc.

The framework Motorola is developing, called Modeling Challenge Levels
(MCL), is created under a task force sponsored by the MDE TAB (see Sect. 4.2).
The main purposes of the MCL are:

– To provide a framework for sharing MDE experience across the corporation.
This is accomplished through defining the levels of modeling maturity based
on the collective recommendation of MDE expert practitioners. The MCL
provides an environment to promote the best practices in MDE, relying on
local innovation for best practices while providing access to a corporate-wide
experience base.

– To provide guidelines for creating a local MDE roadmap.

Model-Driven Engineering in a Large Industrial Context 489

– To serve as a self-assessment tool with respect to an organization’s modeling
maturity. A solid understanding of the current MDE capabilities of an orga-
nization enables it to acquire the right MDE resources, plan improvements
through gap analysis, understand anticipated challenges and benefits, and
share experience effectively with other groups.

MCL describes modeling maturity in six levels (from least to most mature):

1. No Modeling
2. Informal Modeling
3. Formal Modeling
4. Model-Centered Design
5. Model-Driven Engineering
6. Optimized Model-Driven Engineering.

4.4 MDE Qualification

Existing qualification approaches such as UML 2.0 certification only assess a
level of knowledge about a particular modeling language. The purpose behind
MDE qualification is to provide a formal structure, as well as incentives, for
the education and sharing of MDE skills and experience in a more systematic
manner. It attempts to do this in a staged and generic fashion, thereby allowing
managers and developers to learn and practice key skills that are appropriate to
their application and development domain. For example, verifying model correct-
ness is a generic and fundamental MDE activity, but how this is performed can
depend upon the context of a particular development project. Hence, the empha-
sis is to build an appreciation of and experience with the core concepts needed
for successful MDE while at the same time allowing flexibility on the specific
techniques and technologies used. By introducing formality into the education
of MDE, Motorola can build up a network of MDE experts that collectively
provide feedback for future MDE strategies.

The plan is to build formalized MDE expertise through the introduction of
staged MDE qualifications. This provides a formal means for sharing knowledge
and experiences between development teams, thereby reducing the risk in adopt-
ing MDE technologies. For example, it could be that for the first trial of MDE
within a particular development team, the project should be supported by at
least one experienced MDE expert. We do not present a comprehensive list of
ideas in this paper, but we do provide some idea of what we consider important
criteria for the staged qualification of MDE expertise:

Stage 1 Core MDE concept training and experience, including modeling, veri-
fication and validation, and process and measurement.

Stage 2 Further specialized training and experience, including several MDE
languages, hardware and enterprise modeling, formal verification techniques,
transformation techniques, and mentoring of Stage 1 projects.

Stage 3 Advanced training and experience, including demonstrations of model-
ing within different contexts, leadership in evaluating new MDE technologies,
mentoring, and knowledge sharing.

490 Paul Baker, Shiou Loh, and Frank Weil

4.5 Corporate-Level Tool Selection Committee

Motorola formed a one-time tool selection committee to evaluate the UML tools
from third-party vendors and provide a recommendation on which one(s) should
be used within Motorola. Each Motorola group engaging in MDE had represen-
tation on the committee, and it was the responsibility of the representatives to
collect and prioritize the requirements from their respective groups. Based on the
collated requirements, tools from the major vendors were evaluated on how well
they met the few-hundred weighted requirements. The committee was able to
narrow the officially sanctioned modeling tools to two choices. The evaluation of
new and updated MDE tools is initiated through the MDE TAB (see Sect 4.2).

4.6 MDE Technology Improvement

Motorola continues to invest in MDE technology improvement ranging from
automation technologies (including secure code generation, test generation, and
model testing), metrics, profile development, meta-modeling, and analysis tools.

5 Conclusion

We have presented an overview of the MDE-related activities in Motorola. In one
form or another, Motorola has been active in MDE for nearly two decades and
has seen incredible successes and glaring failures. We have found that through the
coordinated and controlled introduction of MDE techniques, significant quality
and productivity gains can be consistently achieved, and the issues encountered
can be handled in a systematic way.

References

1. Baker, P.: Test Generation towards TTCN-3. ETSI TTCN-3 User Conference (2004)

2. Baker, P., Burton, S., Bristow, P., King, D., Jervis, C., Mitchell, B., Thomson, R.:
Detecting and Resolving Semantic Pathologies in UML Sequence Diagrams. ACM
ESEC-Foundations of Software Engineering (2005)

3. Baker, P., Dai, Z., Grabowski, J., Haugen, O., Samuelsson, E., Schieferdecker, I.,
Williams, C.: The UML 2.0 Testing Profile. In: Proc. of the Conf. on Quality Engi-
neering in Software Technology 2004. Nuremberg, Germany (2004)

4. Baker, P., Jervis, C., King, D.: An Industrial use of FP: A Tool for Generating Test
Scripts from System Specifications. In: Trinder, P., Michaelson, G., Loidl, H-W.
(eds.): Trends in Functional Programming, Vol. 1. Intellect (2000) 126-135

5. Boyle, J., Harmer, T., Weigert, T., Weil, F.: Knowledge-Based Derivation of Pro-
grams from Specifications. In: Bourbakis, N. (ed.): Artificial Intelligence And Au-
tomation. World Scientific Press (1996)

6. Dietz, P., Weigert, T., Weil, F.: Formal Techniques for Automatically Generating
Marshalling Code from High-Level Specifications. In: Proc. of the 1998 Workshop
on Industrial-strength Formal Specification Techniques. Boca Raton, FL (1998)

Model-Driven Engineering in a Large Industrial Context 491

7. European Telecommunications Standards Institute: Methods for Testing and Spec-
ification; The Testing and Control Notation version 3 (TTCN-3); Part 1: TTCN-3
Core Language. ETSI ES 201 873-1 (2001)

8. Gras, J., McGaw, D.: End-to-End Defect Prediction. In: IEEE International Sym-
posium on Software Reliability Engineering (ISSRE). Saint Malo, France (2004)

9. Hatley, D., Pirbhai, I.: Strategies for Real-Time System Specification. Dorset House,
New York (1988)

10. International Telecommunications Union: Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. ITU-T Rec. X.680 (2002)

11. International Telecommunications Union: Message Sequence Chart (MSC). ITU-T
Rec. Z.120 (2000)

12. International Telecommunications Union: Specification and Description Language.
ITU-T Rec. Z.100 (2000)

13. International Telecommunications Union: TTCN-2 standard, Conformance Testing
Methodology and Framework: Part 3: The Tree and Tabular Combined Notation
(TTCN). ITU-T Rec. X.292 (1997)

14. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley (2003)

15. Mitchell, B., Thomson, R., Jervis, C.: Phase Automaton for Requirements Scenar-
ios. In: Feature Interactions in Telecommunications and Software Systems VII. IOS
Press (2003) 77–84

16. Object Management Group: Unified Modeling Language (UML): Superstructure,
Version 2.0 (2003)

Using a Domain-Specific Language and Custom

Tools to Model a Multi-tier Service-Oriented
Application — Experiences and Challenges

Marek Vokáč1 and Jens M. Glattetre2

1 Simula Research Laboratory, P.O.Box 134, 1325 Lysaker, Norway
marekv@simula.no,

http://www.simula.no/
2 SuperOffice ASA / ICT Norway��, Drammensveien 211, 0212 Oslo, Norway

jens.2005@superoffice.com,
http://www.superoffice.com

Abstract. A commercial Customer Relationship Management applica-
tion of approx. 1.5 MLOC of C++ code is being reimplemented, in stages,
as a service-oriented, multi-tier application in C# on Microsoft .NET.
We have chosen to use a domain-specific language both to model the
external service-oriented interfaces, and to manage the transition to the
internal, object-oriented implementation. Generic UML constructs such
as class diagrams do not capture enough semantics to model these con-
cepts. By defining a UML Profile that incorporates the concepts we wish
to model, we have in effect created a Domain-Specific Language for our
application. The models are edited using Rational XDE, but we have sub-
stituted our own code generator. This generator is a relatively generic
text-substitution engine, which takes a template text and performs sub-
stitutions based on the model. The generator uses reflection to convert
the UML and Profile concepts into substitution tags, which are in turn
used in the template text. In this way, we can translate the semantics
of the model into executable code, WSDL or other formats in a flexible
way. We have successfully used this approach on a prototype scale, and
are now transitioning to full-scale development.

1 Introduction and Problem Definition

Many companies are faced with a transition from an object-oriented program-
ming model that implements a rich client, to a service-oriented architecture
and an increasing emphasis on Web-based clients. A service-oriented architec-
ture (SOA) requires application components to be structured in a way that is
different from traditional, in-process object-oriented models.

Service-oriented architectures also prescribe a different approach than that of
earlier Remote Object or Remote Procedure Call architectures, such as CORBA

�� Supported by the Norwegian Research Council ICT Programme “FAMILIER”, and
“FAMILIES”, ITEA project ip02009 of the EU Eureka Σ! 2023 Programme.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 492–506, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using a Domain-Specific Language and Custom Tools 493

or DCOM. One of the main tenets of SOA is to make boundaries between sys-
tems and services explicit, to promote interoperability and to encourage their
proper use. Remote invocation is inherently orders of magnitude more expensive
than local execution, and the architecture and granularity of the interfaces and
messages must reflect this.

At the same time, the actual business and data access logic is generally imple-
mented using object-oriented languages such as Java or C#. It may be desirable
to reuse existing code, which typically represents a significant investment by the
organization.

A coherent SOA requires modelling—it is not enough to simply go ahead
and define services freely; this will result in a large set of disparate services that
do not work well together. The design of a large object-oriented implementation
will also benefit from modelling.

We are thus faced not only with the need to separately model a coherent
SOA and an object-oriented implementation, but also to model the transition
between the two—the connection between interfaces and their implementation.
Ultimately, this set of models should result in the generation of executable code
(including service definitions in WSDL or other appropriate description lan-
guages, and at least the skeletons of the implementations), as it will otherwise
be hard to realize benefits that justify the investment in the modelling effort.

This experience report is written from the perspective of an industrial devel-
opment project. We are looking for workable, pragmatic solutions that can be
used in a full scale development project at the present time. Our approach to
related work, tools and methods reflects this perspective.

We have conducted interviews with architects and developers in our organi-
zation to extract the knowledge presented here. The developers’ experience with
modelling ranges from minimal to extensive (more than 5 years), and their time
with the company from 7 years down to just a few months. We are therefore
able to present experience from a number of different viewpoints.

The rest of this experience report is organized as follows: section 2 sum-
marizes the different approaches and tools we have considered. In section 3 we
present our chosen solution, in the form of a Domain-Specific Language and its
related Code Generator. Section 4 reports on our experience from using this
approach for a modest, yet commercial and marketable, Collaborative CRM
product. Finally, section 5 concludes and outlines our future work.

2 Tools and Approaches to Modelling SOA and OO

Several approaches to modelling at roughly the level needed for a Service-Oriented
Architecture and its object-oriented implementation have been presented. A lot
of effort has been spent on the Unified Modelling Language (UML), and Model-
Driven Architecture (MDA) has been pushed as a concept and a trademark of
the Object Management Group (OMG).

From the standpoint of a practitioner facing a choice of approach and a
deadline, good tool support is perhaps the single most important factor. Manual,

494 Marek Vokáč and Jens M. Glattetre

paper-based modelling, or the use of prototype academic tools is not a sufficient
basis for an industrial project of significant size and complexity. For instance,
the MDA specification published by OMG (1) contains a bare three pages on
the subject of transformations from the platform-independent to the platform-
specific models.

Czarnecki (2) has proposed a taxonomy of transformations, as well as an
overview of existing techniques. For our needs, a template-based approach seemed
to provide the optimum balance between flexibility, power and readability (2, Ch.
3.1.2).

Our organization is a fairly small one, with six developers being considered
a fairly large team. Contrary to the practice in many large (especially North
American) companies of having strictly defined roles—such as architect, de-
signer, developer, tester—most of our developers at one time or another assume
almost every role, according to the stage of the development process and per-
sonal competence. This also influences our approach to modelling, since we do
not have a division between modellers and implementers, or between domain
and application engineers (3, Ch. 2).

Our evaluation of the state of the art therefore focused on available tools,
either released or in a late beta stage, rather than on academic publications and
methods therein. In practice, this restricted our choices to UML-based tools such
as Rational XDE (4), Telelogic Tau (5), Borland Together (6), and Microsoft
Visio (7). A further, important constraint is that our future development will be
on the Microsoft .NET platform, using the C# language and Microsoft Visual
Studio as the development environment.

A tempting alternative was to use tools designed for Software Factories (8),
an approach where separate Domain-Specific Languages are used for different
viewpoints within the total model. Transformations from model/viewpoint to
C# code, SQL DDL or other artefacts can then be defined.

However, our search did not turn up any tools that we considered to be
sufficiently advanced, robust and scalable to support the kind of modelling we
wished to undertake. Microsoft’s initiative on Software Factories and extensible
modelers is interesting (9), but it is still at an early stage and not suitable for
production.

Our need was (and still is) for a tool that we can use to span from a data
dictionary, via simple object-oriented counterparts to relational tables, through
composition and business logic up to a service-oriented set of interfaces that
are not merely advanced CRUD operations; and to be able to generate the
interfaces, descriptions and skeletons needed for both local and remote (e.g., via
Web Services) invocations of the interfaces. It follows that reliance on the tools’
built-in code generators would be too restrictive, as the transformations between
the different viewpoints are not trivial.

It bears repetition that good tool support is absolutely essential in an in-
dustrial project; otherwise the model will quickly turn into more bureaucracy
than help. Certainly, if the development process model uses concepts from the
Agile/XP domain, with multiple, short iterations, we must expect the models

Using a Domain-Specific Language and Custom Tools 495

and the transformations to change. An inflexible tool would push the process
towards a more strict waterfall pattern, which we do not desire.

3 A Domain-Specific Language and Code Generator

While UML has become a de facto standard for modelling OO software, the
generic UML constructs such as classes, class diagrams and association have
relatively low semantic content. Simultaneously, there are constraints on what
one can model; for instance, an association cannot be set up between a specific
attribute in one class and an attribute in another class.

For modelling an SOA, we need a modelling language that can capture con-
cepts such as a Data Contract, a Message Contract and a Service Contract. We
need to be able to group these concepts, inherit, extend and reuse them. Our or-
ganization has also made a considerable investment in its data dictionary, which
describes (both at a table and an entity level) the data model underlying the
whole application. When modelling services, we wish to leverage this investment.

At the same time, the service interfaces should not be mere repetitions of
the underlying physical data model. This could very easily lead to a situation
reminiscent of DCE, CORBA or DCOM, where the remoteness of a service
call is hidden—the approach is to conceal the fact that a method invocation
is actually on a remote object. This leads to unwanted dependencies, where
internal behaviour (such as data types) is exposed, and often also to performance
problems, since iteration over remote, low-level CRUD operations is easy to
program but impossible to make fast and reliable.

Service-Oriented Architectures explicitly try to avoid sharing classes, since
there are bound to be platform differences; instead, Data, Message and Service
Contracts are used to specify messages and their associated content. The map-
ping from these types to the platform dependent types at each end is incidental
and may not be predictable.

As an example, a data type specifying an integer with no upper limit may
on some platforms be transformed into a string internally, if the platform lacks
native unlimited-precision data types. Sharing class across platforms would re-
quire the correspondence to be known in advance, which cannot be taken for
granted.

3.1 Using UML Profiles to Define a Domain-Specific Language

UML is a modelling language for which there is quite extensive tool support. In
UML it is possible to define Profiles that add semantic content to the generic
mechanisms of UML itself, effectively making it possible to use it as a platform
for developing Domain-Specific Languages (DSL). This is not the only possible
approach; for instance, van Deursen (10) described a DSL for financial engineer-
ing that was used to generate several different kinds of artefacts (VSAM, CICS
and COBOL items). It uses the MetaEnvironment tools (11) for the transfor-
mation/generation. However, UML and UML Profiles are open standards, and

496 Marek Vokáč and Jens M. Glattetre

therefore attractive by not locking the organization into a particular tool or tool
vendor.

Of course, implementing a profile in a particular tool is dependent on the tool,
but the concepts of the profile can in principle be transferred to another tool if
needed, together with the models. The facilities provided by Rational XDE for
defining profiles are fairly rudimentary, but have so far proven adequate to our
needs.

In order to define our DSL, we have taken the minimum set of concepts
needed to capture our modelling requirements, and translated them into a UML
profile. These concepts cover both the service layer, the data dictionary, and
the transition between the Service-Oriented and Object-Oriented worlds. It is
critical to us that these two viewpoints are well integrated, since we will be
implementing the services using object-oriented languages and tools. Figure 1
shows a simplified example of a service interface and how some of its data fields
are derived from the data dictionary.

3.2 Generation of Code and Other Artefacts

A model is useful in itself, as a design and documentation tool. However, its
value is significantly increased if it can also be used to generate code, tests and
embedded documentation. Such use is also a powerful incentive to keep the model
up to date, as a working tool, and not just as a construct that was made early
on in the development cycle and then quietly abandoned.

By definition, a model is an abstraction, and thus a simplification of the
underlying reality. If a model contains enough information to fully generate the
implementation, its complexity can easily become of the same order of magnitude
as that of the implementation and its usefulness becomes doubtful. We therefore
did not set out to find or create a tool that would generate the content of our
implementations.

However, the structure of the services, the structure and skeleton of the im-
plementation, and the “glue” logic required to technically define, deploy and put
together services and their interfaces and implementations, are prime candidates
for automated generation from models. The fact that these technologies change
significantly over time, as new standards, tools and frameworks are adopted,
provides a further powerful incentive for generating them.

Modelling and managing the transition between services and OO implemen-
tations is important, because best practices for design and grouping of them
can be quite different. From our experience we believe that this is best done at
the modelling level, and that generation of a skeleton for the implementation is
extremely useful.

3.3 Code Generation by Text Substitution

Commercial UML tools such as Borland Together or Rational XDE include code
generators for several languages, such as C++, Java or C#. To a greater or lesser

Using a Domain-Specific Language and Custom Tools 497

degree, architects and developers can influence how the code generator works,
i.e., what the emitted code looks like. Generally, however, what is a class in
the UML diagram becomes a class or class-like construct in the code, and the
adjustments one can make are more in the realm of coding style than semantics.
One is also limited to generating the artefacts for which there is built-in support.

With the addition of semantic content through UML Profiles, this situation
becomes untenable. The whole purpose of the profile is to capture semantics,
that should then be reflected in the code. A UML “class” object that is assigned
to a certain stereotype may not represent a class at all, but rather a service, a
data contract, or a field with many descriptive attributes in a data dictionary.
The standard code generators are not designed to handle this level of content.

Fig. 1. Interface example: The shaded items come from the data dictionary
model, while the clear items are service interfaces. The <<SoArchive>> stereo-
type denotes a list-like data set, while an <<SoArchiveItem>> is a single row in
such a list.

498 Marek Vokáč and Jens M. Glattetre

We have therefore created a generic code generator that works by text sub-
stitution. It takes as its input a template text, and replaces recognized tags in
the text with values from the model. The generator uses reflection on the UML
profile and the UML tools’ data model to define the tags; the (human) template
author can then compose templates that translate into relevant, executable code.
Simple looping and conditional constructs provide additional flexibility, while we
do try to avoid the definition of an entire new programming language and en-
vironment within the code generator itself. Figure 2 shows a simple example,
where we generate a C# object that corresponds to one database table and its
fields; the lower half shows the result for a trivially simple table that has two
fields. Syntax coloring is provided by a custom version of the Notepad++ editor
(12).

Fig. 2. Simple data structure template, and generated result for a table with
two fields

Our guiding principle is, as far as possible, to localize knowledge of the DSL
semantics in the UML Profile and in the code templates. By keeping the actual
code generator generic, we make it easier to extend and adapt the DSL as de-
velopment proceeds: it is not realistic to assume that we will be able to define
a DSL that fully supports all our needs early in the project, and then keep it
constant for the duration.

Changes to the DSL imply changes to the UML Profile, possibly the existing
models, and the code templates. They are therefore not to be undertaken lightly,
but as long as we confine ourselves to extensions the cost is manageable. A
breaking change to existing constructs would be costly; however, this is a problem
common to all DSL tools that we know of—and most do not handle even simple
extensions to the DSL.

Using a Domain-Specific Language and Custom Tools 499

As the problem domain is explored and the language matures, the rate of
change over time decreases and languages become more stable. However, if a
new aspect or a new domain needs to be modelled, we should expect to have to
make changes to the DSL. It is therefore critical that the tool chain supports at
least extensions to the DSL in a straightforward manner.

3.4 Other Uses for “Code” Generation

Having a text-based code generator that works by text substitution opens the
possibility of generating other artifacts than executable code. The generator
effectively becomes a simple transformation engine, and can be used to generate
HTML documentation, WSDL service definitions, or deployment configuration
files.

For instance, we can use the generator, together with a suitable template,
to generate an HTML documentation file that contains service signatures, their
descriptions (from documentation in the model), and cross-referencing tags that
make it possible to seamlessly integrate the documentation into an existing de-
velopment environment such as Visual Studio.

Another use is to generate WSDL service descriptions. Since the UML Profile
contains concepts that make it possible to distinguish a public service from a
private service from a simple RPC interface, it is relatively straightforward to
use these attributes in the template text and generate WSDL only for the model
elements that actually model services at the desired level.

A third use, illustrating the advantages of a template-based approach, is that
we can also generate unit test skeletons from the same model—either in C#, or
in some other language suited to the testing framework used.

3.5 Model Transformation by Code Generation and Reverse
Engineering

A conventional approach in Model-Driven Architecture (MDA) is to start with
a platform-independent model (PIM), transform it through a a set of rules to a
platform-specific model (PSM) and from there to code. Examples can be found
in (13; 14; 15), with some specifications in (1). However, the practical matter
of setting up the transformation rules and tools to manage this in an auto-
mated manner is difficult—and if the transformation is performed manually, the
overhead repeating it whenever the PIM or the transformation changes quickly
becomes prohibitive.

For us, the SOA model, expressed in our DSL is the PIM, while its imple-
mentation in an object-oriented form in C#, and using Web Services (16) as
a technical vehicle, is the corresponding PSM. That is, we define our DSL and
external, service-oriented interface to be “platform-independent”. Note that at
this level we hold no opinion as to the manner in which the service interfaces
are to be accessed. This corresponds to the standard MDA view (1, Ch. 4.1.2).

Changing to use, for instance, Microsoft Indigo as the service access mecha-
nism, would mean changing the transformation from the PIM to the PSM; since

500 Marek Vokáč and Jens M. Glattetre

the underlying C# execution platform is the same, we would expect to be able
to reuse the actual implementations with few changes. A more radical change,
for instance to a Java/Corba platform, would of course involve much more work,
but we would still expect to generate the service definitions, interfaces and im-
plementation skeletons.

Instead of performing a model-to-model transformation at a modelling-lan-
guage level, we have chosen to perform the transformation directly from the
PIM—which primarily models services—to the OO implementation (effectively
the result of generating code from a PSM) directly.

The transformation rules are embedded in the code template that is half
of the input to the code generation, the other half being the model and the
semantics encoded in its use of the concepts from the UML Profile. Effectively,
the template is a transformation rule—and it could have been a model-to-model
transformation by setting up a template whose end product were valid XMI
or some other, relevant metadata format. However, since our emphasis as a
commercial development team is on creating a software product, we chose to
concentrate on generating code.

Thus, our code templates actually combine two roles: transformation of the
model from a platform-independent to a platform-dependent level; and trans-
formation from a model to code (or similar-level artefacts such as WSDL). This
combination is intentional, the main reason being efficiency.

Once the implementation code skeleton has been generated, it can be reverse-
engineered using the standard functionality of the UML tool. The resulting UML
model then becomes the result of applying the semantics of our UML Profile to
our PIM, i.e., the PSM. Since it is reverse-engineered it always reflects the code,
which is what is ultimately shipped to the customer. It therefore becomes a
useful documentation and verification tool, rather than an intermediate step in
the development process. A disadvantage of this approach is that the stereotypes
from the PIM are lost, unless the generated code is somehow tagged, and the
reverse-engineering mechanism recognizes the tags. Such recognition of extra
tags is currently not available in Rational XDE.

4 Practical Experience

Initially, the designer and user of the modelling tools and code generator was the
same person (J. M. G.). As the project matured from a prototype / technology
demonstration project to a full-scale development project with six developers, we
have gathered more experience with both the technology and the organizational
side effects.

We have conducted interviews with all the developers, ranging from the senior
architect (M.V.) to recently hired developers with little modelling experience. In
general, increased modelling experience correlates with an increased perception
of the benefits of the approach.

Using a Domain-Specific Language and Custom Tools 501

4.1 Positive Experiences

Perhaps the single most positive consequence of using a model is to raise the
general consciousness level about the need for well-designed, thought through
interfaces. By making the separation between a service interface and its object-
oriented implementation explicit, the developer is forced to take the difference
into account.

Standardization is also an important benefit. Our code-generation templates
contain and enforce a certain pattern for how a service, its messages and data
should be related, and how they should be implemented for local and remote
calls. Since all of this is generated, it will always be the same and consistent
between services. “Standard” items, such as authentication tickets, are auto-
matically added, again in a consistent way.

When new developers are added to an already established team, it may take
some time to learn all the written and unwritten rules for design and coding
styles. The combination of modelling and generation helps by codifying and
enforcing the “standard” way of doing things.

Simultaneous generation of remote interfaces, local implementations, data
and message contracts as well as unit test skeletons and documentation pages
from a single model ensures that all of these artefacts are actually created. While
we cannot force people to actually write good documentation or comprehensive
tests, there is at least little excuse for not doing so—and empty tests or docu-
mentation pages are highly visible in code reviews. This increases the consistency
of the work across developers

Generation also increases the visibility of “auxiliary” tasks such as documen-
tation and testing. The importance of this rises with the approach of a deadline
and the temptation to skip testing in order to finish in time.

While “local” changes—changes that affect just one or a few interfaces—do
not benefit much from code generation, “global” changes that involve changes
to how all interfaces or implementations are defined become much simpler to
perform, usually by making changes to the template. Since they are applied
equally to all relevant objects, consistency is easier to attain.

The fact that the code generator is an in-house tool is generally considered
to be a positive factor. The tool quickly becomes central to the development
process, and being dependent on a vendor’s release plan for fixes or changes
could easily become a bottleneck. While the availability of the few developers
who can update the tool can also become a limiting factor, it is at least under
the team’s control. Open source tools are a possible alternative in this situation.

4.2 Challenges and Pitfalls

While there are important benefits to be realized from modelling and generation,
there are also costs and challenges involved. We have chosen to divide these
into the purely technical, and those that are more cultural or organizational in
character.

502 Marek Vokáč and Jens M. Glattetre

Technical Challenges Currently, our model resides in a single file, and the
code generator runs on the entire model every time. In practice, this means that
only one developer at a time can have the model locked in the version control
system (merging of multiple versions is not practical). It also means that all
target files are regenerated for every change. While the version control system
will recognize and filter out submissions of files that have not actually changed,
this still causes problems when scaling up to a team of six developers.

The problem is periodic in nature—typically, there is a period in each itera-
tion where new services are designed and defined, followed by a period of actual
implementation. The design period is one of high contention for the model,
while the implementation and testing/debugging is independent of the model
and therefore does not suffer.

The problem can mostly be solved by dividing the model into separately
controlled packages, and by revising the code generator so it can be run on
single packages, instead of the whole model. However, changes to templates or
the UML profile will still force regeneration of the whole system.

To a certain degree, this problem is also related to the way our teams are
organized. A team that has only a few designed architects/interface designers
will have much less contention for the models, and can also afford to increase
the amount of special knowledge and skills required to manipulate the models.
Our teams are organized in the opposite direction, with most of the developers
assuming most of the roles during one complete cycle.

A different challenge is posed by the size and complexity of the entities be-
ing modelled, and the way they are modelled. Since we are using UML as our
basic modelling language, and the Association concept can only connect two
Classes (as opposed to connecting specific attributes within or between classes),
we ended up modelling service interface attributes as separate classes, with spe-
cific stereotypes. This gives us the flexibility and power we need, for instance by
making it possible to reuse an attribute in multiple interfaces.

At the same time, this approach increases the visual complexity of the model
and the screen real estate needed to contain it. When each attribute of an inter-
face becomes a separate box with a line going to it, it is easy to run out of space
on a screen. The model shown in Figure 1 was simplified for this paper, to make
it a reasonable size—in reality, there about three times as many boxes of vari-
ous kinds in the diagram. Even with dual 20-inch displays on each workstation,
this can become an irritating problem. In the near term we do not see any easy
solution; in the longer term, a modelling tool that is not based on UML, but is
instead built to handle DSL’s should provide a solution.

The template language is fairly straightforward, but since it is a proprietary
language there is little tool support for it, in the form of syntax highlighting
or word completion. We are currently looking at ways of adding these features
to Visual Studio, to make template editing easier. Most of the suggestions for
improvements—from the developers using the model—relate to details of the
template language and tool support for editing templates.

Using a Domain-Specific Language and Custom Tools 503

Two of the developers have prior experience using XSLT expressions to trans-
form models. Their perception is that the readability and traceability problems
(which part of the template causes a certain output to appear) were larger in
XSLT, and that they usually had to actually run a transformation or genera-
tion to see the output. With a template language based on simple substitution
of textual tags, it is much easier to predict the output. This agrees with the
experience of others, such as Czarnecki (2).

Tool support for transitioning from one version of the Profile to the next is
largely nonexistent. We have created our own tool to bridge the gap, but serious
use of any kind of DSL will be much hampered by the absence of such support.
Ideally, a tool should provide an analysis of the consequences of a language
change (such as an estimate of the number of modelled entities or associations
affected or made invalid), as well as support for mapping concepts in the two
language versions, and an application of that mapping to models made using the
language.

Organizational Challenges Even though we consider our template language
to be simple, it still is a language, and it raises the learning threshold for new
members of the team. It has to be learned, understood and worked with in order
to be able to realize the full power of the approach. The alternative, where only
one or two “master developers” understand the whole system, is both inefficient
(they can become bottlenecks) and risky (in case they leave). The associated
training costs are significant but acceptable.

The “extra” work involved in modelling an interface—using the Rational
XDE GUI to draw interfaces, create or retrieve attributes and connect them,
and attach the various stereotypes and parameters needed, may seem to be
a drawback. A possible consequence is that this work is postponed, or that
weaknesses in an interface are not corrected because the effort needed to do
so is perceived as excessive. This may not actually be a big drawback: if it is
very easy to change or create service interfaces, they will proliferate, likely with
a decrease in the generality, stability and quality of each interface. Since our
service interfaces will be used by partners, customers and consultants for many
years, they have to be stable and of a high quality.

Generated code will often contain repetitions—the same template is used to
generate skeletons and (partial) implementations for many objects in the model.
At one level this may be considered a disadvantage; after all, refactoring to avoid
repeating an algorithm in multiple places is a well established practice. If we view
template as the “code”, it contains the algorithm only once, and changes to the
algorithm are performed in the template, not the generated code. On the other
hand, tools such as source browsers will show all the repetitions. Whether this
is actually a problem on a significant scale remains to be seen, and we suspect
it to be a matter of personal viewpoint and preference.

Costs and Benefits Since we have not performed parallel development using
models and code generation versus a more traditional approach, we do not have

504 Marek Vokáč and Jens M. Glattetre

hard data on the costs and benefits. However, many of the features developed
by this project have equivalents in existing code in the company, and those were
implemented some time ago, mostly without modelling.

The costs are the most visible—it has taken one senior developer approxi-
mately two years to develop the Profile, the code generator and associated tools,
and implement both a table- and entity-level database abstraction layer, plus
a significant amount of infrastructure code. This is roughly comparable to the
effort required for comparable development when the previous generation of the
system was implemented.

The benefits, in terms of stability, error frequency or functionality, are harder
to characterize. There is no doubt that the model-based approach encourages a
much greater test coverage, and that it automatically leads to a degree of consis-
tency that would otherwise require strict enforcement of the company styleguide
and standards. We believe that the main benefits will accrue as we scale up the
development both in complexity and in volume.

Since the costs associated with this approach are significant, we do believe
that small or one-off projects are not likely to realize a net benefit. Our project
will now scale up to six developers for approximately one year; we expect this
to be large enough to realize a benefit, though we also expect the benefit to be
more in terms of increased code quality and functionality, rather than reduced
cost and time.

5 Conclusions and Future Work

Current modelling tools based on UML reflect the fact that UML semantics are
informal, while specific enough to point clearly in the direction of an object-
oriented target language. Since service-oriented architectures are not necessarily
object-oriented, while their implementations often are, the standard code gener-
ators included in UML tools cannot be used for modelling both SOA interfaces
and OO implementations directly.

At the same time, tools that support the creation of Domain-Specific Lan-
guages, are not yet ready for heavy industrial use. However, we view the DSL
approach as perhaps the most promising to date and have adopted it for our
development project.

Our solution has been to create a simple code generator based on text sub-
stitution, and to use a UML Profile to define the additional semantics we need
in the modelling language. We thus transform our chosen UML tool (Rational
XDE) into a simple DSL tool, albeit with limited functionality. The metadata
that represent the model are reflected into the code generator, and the model-to-
code transformations are provided by writing a code template that incorporates
substitution tags matching the model metadata.

Our experience so far is that the approach works quite well for those lower
layers of the application that express similar functionality repeatedly, such as
Data Access Objects for individual tables. Here, “mass production” of function-
ality based on a template, repeated for each table, makes good sense.

Using a Domain-Specific Language and Custom Tools 505

When modelling more high-level services, the emphasis is more on the stan-
dardization of naming and behaviour, and the generation of skeletons rather
than complete functionality. While the Data Access layer exhibits close to 80%
generated code, the service layer has less than 40% generated content—and this
percentage may decrease as the implementation complexity increases.

However, it is the generated content that defines the interfaces and the im-
plementation patterns, including the particular technology used to implement
services. This is important, since the current emphasis on Web Services will
surely be superseded by some other—hopefully compatible—technology within
a time span that overlaps the lifetime of our product (typically 10 years). When
this happens, regeneration of interfaces and “glue” logic should save a lot of
effort, and provide a faster time to market for solutions compatible with new
standards.

5.1 Future Work

In the near future, our work will concentrate on making the template language
more readable, as well as extending support for it into our development envi-
ronment. Features such as syntax highlighting and auto-completion of reserved
words, variables and other constructs is today taken for granted. The absence of
such support makes editing of the templates unnecessarily tedious. Similarly, ac-
cessing the code generator from within the integrated development environment
is desirable.

Further major development will probably wait for the availability of more
sophisticated tools, for instance the Software Factory modellers announced by
Microsoft. By being designed for customization and implementation of DSL’s
such tools should be more suitable than using profiles to force foreign semantics
into existing UML tools.

We continually strive to find the correct balance between investment in in-
house tools and dependence on external tools. In-house tools offer full control,
at the price of full cost for the tools’ development and maintenance. External
tools reverse the equation, offering low cost but also a lower degree of control.

For a tool that is central to our development process, and using a technology
that is not yet mature, we believe the in-house approach to be the correct one at
this time. In the future, a switch to externally developed tools is quite probable,
when sufficiently mature and well-supported tools are offered. Availability of the
source code will probably be a distinct advantage, since it offers a “safety valve”
in the case of problems that would otherwise threaten a development project.

Acknowledgements

Thanks are due to Guttorm Nielsen, Director of research & development of
SuperOffice ASA for providing the time for writing papers in an otherwise hectic
project timetable. Thomas Schjerpen, Martin Valland, Trond Nilsen and Jørund
Myhre generously shared their insight and experience.

506 Marek Vokáč and Jens M. Glattetre

Our work has also been supported by the Norwegian Research Council ICT
Programme “FAMILIER”, and participates in FAMILIES, ITEA project ip02009
of the EU Eureka Σ! 2023 Programme.

References

[1] Object Management Group: Model Driven Arhictecture Home Page (2004)
http://www.omg.org/mda/.

[2] Czarnecki, K., Helsen, S.: Classification of Model Transofrmation Ap-
proaches. In: 2nd OOPSLA’03 Workshop on Generative Techniques
in the Context of MDA, Anaheim, USA (2003)

[3] Czarnecki, K.: Overview of Generative Software Development (2005)
http://www.swen.uwaterloo.ca/ kczarnec/gsdoverview.pdf.

[4] IBM: Rational XDE (2005) http://www-306.ibm.com/software/awdtools/

developer/rosexde/.
[5] Telelogic: Telelogic Tau (2005) http://www.telelogic.com/products/tau/

index.cfm.
[6] Borland Inc: Together (2005) http://www.borland.com/together/.
[7] Microsoft Inc: Visio 2003 (2005) http://office.microsoft.com/en-gb/

FX010857981033.aspx.
[8] Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories. Wiley, Indi-

anapolis, USA (2004) ISBN: 0-471-20284-3.
[9] Microsoft Inc: Microsoft Grows Partner Ecosystem Around Visual Stu-

dio 2005 Team System (2004) http://www.microsoft.com/presspass/press/
2004/oct04/10-26OOPSLAEcosystemPR.asp.

[10] Deursen, A.v.: Using a Domain-Specific Language for Financial Engineer-
ing. ERCIM News (1999)

[11] CWI: ASF+SDF MetaEnvironment (2005) http://www.cwi.nl/htbin/

sen1/twiki/bin/view/SEN1/MetaEnvironment.
[12] Ho, D.: Notepad ++, Version 2.8 (2004) http://notepad-plus.sourceforge.

net/.
[13] Judson, S.R., France, R.B., Carver, D.L.: Specifying Model Transformations

At the Metamodel Level . In: UML 2003 - Workshop in Software Model
Engineering, San Francisco, USA (2003)

[14] Pires, L.A.F., Sinderen, M.v., Farias, C.A.R.G.d., Almeida, J.A.P.A.: Use of
Models and Modelling Techniques for Service Development. In: 3rd
IFIP International Conference on E-Commerce, E-Business and E-
Government (I3E 2003), GuarajÃ, Brazil, Kluwer (2003) 441–456

[15] Solberg, A., Oldevik, J., Aagedal, J..A.: A Framework for QoS-Aware Model
Transformation, Using a Pattern-Based Approach. In Meersman, R., Tari,
Z., eds.: On the Move to Meaningful Internet Systems 2004: CoopIS,
DOA, and ODBASE. Volume 3291., Agia Napa, Cyprus, Publisher: Springer-
Verlag GmbH (2004) 1190

[16] W3C: Web Services Activity (2004) http://www.w3.org/2002/ws/.

Invited Presentation III:

The Architects’ Workbench — Research in the
Trenches

Doug Kimelman

IBM, USA
dnk@us.ibm.com

Abstract

IT architects know how hard it is to collect architectural information in an en-
gagement and keep it all clear and organized in their minds. Transforming that
information into models of a viable architecture and keeping the associated doc-
uments consistent and up to date is an even greater challenge. The Architects’
Workbench (AWB) supports the creative process of architectural thinking and
modeling. With AWB, architects capture informal notes, unstructured informa-
tion and existing documents during customer meetings or at any time throughout
an engagement. They proceed to progressively structure, formalize, and refine
the information using the AWB modeling and refactoring tools. In this way, AWB
users opportunistically build up models to achieve a viable architecture. At any
time, users can automatically generation consistent, up-to-date documents from
customizable templates. Developed by IBM Research in collaboration with IBM
Global Services, AWB has been used in production by IT architecture practition-
ers, and the response has been very enthusiastic. While customizable to other
methods and metamodels, it is tailored to the practice of IBM Global Services.
This talk presents key AWB innovations, along with experience from production
use of the AWB.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 507–507, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 508-521, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Uniform Support for Modeling Crosscutting Structure

Maria Tkatchenko and Gregor Kiczales

University of British Columbia
{tkatch, gregor}@cs.ubc.ca

Abstract. We propose bottom-up support for modeling crosscutting structure in
UML by adding a simple join point model to the meta-model. This supports
built-in crosscutting modeling constructs such as sequence diagrams. It also
facilitates adding new kinds of crosscutting modeling constructs such as role
bindings, inter-type declarations, and advice. A simple weaver produces a
uniform representation of the crosscutting structure, which can then be
displayed or analyzed in a variety of ways.

Introduction

UML provides support for modeling a system from different perspectives [20]. Some
of these perspectives have a hierarchical relationship to each other, such as package
and class diagrams. Others have a crosscutting relationship [14, 18] – a sequence
diagram can crosscut a class diagram, in that it may include calls to methods from
multiple classes [10]; collaboration diagrams can crosscut class and sequence
diagrams [23]; statecharts can crosscut all the others. There have also been proposals
to extend UML with new crosscutting modeling constructs such as advice, inter-type
declarations (ITDs) and role bindings [1, 15, 22, 24, 27].

This paper aims to support modeling of crosscutting relationships by building on
the join point model1 (JPM) mechanism used in aspect-oriented programming [18].
We propose bottom-up support for aspects in UML, by adding a simple JPM to the
UML meta-model. Our enhanced meta-model supports display and analysis of both
pre-existing and new forms of crosscutting structure in UML.

Our work is partly motivated by observing the difficulty of adding pattern
composition support to existing UML tools. Prior work in AOP has shown that many
patterns are easier to implement using AspectJ [8]. We aim to achieve the same kind
of benefits for patterns during modeling by introducing a JPM to the UML meta-
model. We also aim to support other forms of crosscutting structure in UML. So
rather than using modeling to support AOP [11, 12, 20], our focus is on using the
central mechanism of AOP to support modeling.

In aspect-orientation, weaving is defined as coordinating the interaction between
the crosscutting concerns. In AOP languages like AspectJ, this involves ensuring that

1 In the context of this paper, the term join point model can cause confusion with the meta-

model of the modeling language, and the models written in the language. To help avoid
confusion we use the JPM abbreviation throughout the paper.

Uniform Support for Modeling Crosscutting Structure 509

advice runs when it should and defining inter-type declarations. We present a weaver
that provides simple coordination of crosscutting structure in UML models. By
providing a uniform representation of the interactions between crosscutting concerns,
our weaver makes it easier to implement model analysis and display tools. The
weaver records its results by associating with each model element a set of other model
elements with which it crosscuts. Once the pair-wise crosscutting structure is
collected into the sets, it can be analyzed and presented in a variety of ways.

The contributions of this work are to show that (i) the crosscutting structure of
several traditional modeling relationships, as well as newer aspect-oriented modeling
relationships, can be supported by a meta-model enhanced with a simple JPM, (ii)
weaving the model to collect the crosscutting structure is straightforward, and (iii) the
combination of (i) and (ii) makes it easy for modeling tool implementers and
modelers to access, analyze and display crosscutting relationships of interest. We also
present (iv) AOP-like advice and inter-type declaration constructs for UML.

Related Work

There are two streams of research related specifically to our work. The first looks at
explicitly adding aspects or AOP concepts to UML, either by using provided
extension mechanisms, or by changing the UML meta-model. The second looks at
improving the design process by providing means to compose different diagrams,
which helps alleviate problems associated with some forms of crosscutting.

Standard Extension Mechanisms

These proposals use the standard extension mechanisms provided by UML to support
aspects or aspect-oriented extensions.

Stein et al. [24] introduce weaving in UML through the use of stereotypes. As a
result, sequence diagrams that crosscut each other can be merged to display the final
expected behavior (this may require the set of calls in a sequence to be totally
ordered, which is computationally expensive). The modeler has to specify the
crosscutting elements by means of explicit weaving instructions. By contrast, in our
system weaving is implicit and crosscutting is treated on-par with other kinds of
structural relations in the model.

Pawlak presents a notation for designing AO programs [21]. In his work, an
aspect-class is a new element which extends the semantics of base classes, and
contains both regular- and aspect-methods. Pointcut relations link aspect-methods to
points in the base class.

Other work also looks at introducing aspects into UML using extension
mechanisms such as stereotypes [9, 11].

510 Maria Tkatchenko and Gregor Kiczales

Meta-model Changes

The work discussed in this section uses extensions to the UML meta-model to support
aspects or aspect-oriented extensions.

Kande argues that aspects need to be first-class elements in UML [12]. He claims
that the composition of a standard UML model with an aspect model does not do a
good job of modularizing the separate concerns – the elements in the design model
are coupled more than they are in the code. In addition, the model does not
communicate the ability to plug and un-plug aspects from the core functionality. He
shows that some of the concerns which can be well-separated in an AO program
instead end up scattered throughout the design model.

Citing the restrictions that arise when using stereotypes and profiles to extend
UML, Lions proposes introducing AOP into UML using meta-modeling [17].
Coupled with our meta-model’s uniform support for various kinds of crosscutting,
this supports our view that extending the UML meta-model to include AO concepts
should be done from the bottom-up.

Composing Diagrams

Straw et al. look into composing primary and aspect class diagrams [26]. In their
mechanism, conflicts and undesirable emergent properties can be identified during
analysis of the composed model. However, the composition directives require
developers to already be aware of the potential conflicts in the model, instead of
helping them discover this information through analysis of the model.

Clarke and Walker [5] propose the use of composition patterns, which are
implemented using UML templates, to specify crosscutting concerns. This approach
requires explicit identification of aspects and binding specifications, and can produce
composed diagrams, which show the result of bindings applied to the base design.

One important difference between these approaches and our work is that we make
weaving implicit, or automatic, and allow the modeler to select which view to take on
the woven structure.

Stein and Hanenberg use UML collaborations to specify the details of crosscutting
in a given decomposition, which can be either structural or behavioral [25]. The
crosscut and crosscutting elements, the composition strategy, and the join points can
all be specified independently. The modeler is required to explicitly state all the
crosscutting relationships and join points while designing the system.

In Caesar [19] Mezini and Ostermann propose a higher-level module concept on
top of join point interception which allows reuse of aspects. They develop the model
based on aspect collaboration interfaces, which decouple an aspect into independently
specified aspect implementation and aspect binding modules. These two parts must be
composed in a weavlet before the aspect can be deployed, which activates its
pointcuts and advice.

Uniform Support for Modeling Crosscutting Structure 511

Running Example

The paper uses a single running example, adapted from the graphical shapes example
discussed in [13, 14, 18], and shown in Figure 1. Three simple model fragments are
shown. The first two fragments each contain a class and sequence diagram. The top
fragment models the main functionality of Point and Line shapes, including a design
note that makes use of the advice construct we have defined. The middle fragment
models the Observer design pattern [7]. The bottom fragment models the role
bindings between the shape classes and the design pattern.

This model also uses two new kinds of model elements. First, advice [13] makes it
possible to advise model elements – for example, the moveBy and setter methods of
Point and Line. The syntax used in the figure serves only to illustrate the meaning,
and is not a concrete proposal for advice syntax.

Figure 1: Shape example

512 Maria Tkatchenko and Gregor Kiczales

Second, role bindings bind classes to roles they play, and class members to
members of those roles. In the example Point and Line play the Subject role, and the
moveBy and setter methods play the role of the change operation in Subject. The
binding of roles is not the same as the standard concept of binding in UML, where
binding refers to the creation of an element from a template [3].

Note that the class and sequence diagrams crosscut each other in that each
sequence diagram refers to methods in multiple classes in the corresponding class
diagram. The new advice and role binding elements also model crosscutting structure.
Advice can be crosscutting in that it may apply to multiple elements in different
diagrams in the model. Role bindings can be crosscutting in two ways. First, they may
refer to elements in two different class diagrams. Second, they may mention elements
in different classes of a class diagram.

Meta-model

We have developed a simple implementation of our meta-model weaver based on the
Eclipse Modeling Framework (EMF) [6]. The implementation has three main parts.
First, a subset of the UML-based modeling language extended with role bindings,
inter-type declarations and advice. Second, a UML meta-model extended with a JPM.
Finally, a weaver which coordinates crosscutting structure in the model. The
extensions to the meta-model provide the foundation for the weaver to record its
results.

Base Model Elements

A model in our system is formed from class and sequence diagrams. Classes in class
diagrams are extended with role bindings, inter-type declarations and advice.

In class diagrams we support class and interface elements with generalization, each
of which can also have attributes and operations. We do not currently support
relationships such as collaboration, dependency, aggregation, realization, etc. We
allow methods and fields to be inter-type declarations (ITDs) in that they can be
placed in one class, but actually define a member of another class [2, 4].

Advice declarations are based on AspectJ, and consist of a pointcut and a string. A
pointcut is a predicate that matches certain model elements. An advice declares that
elements matched by the pointcut are advised by the advice. This means that the
model element is modeled as being annotated by the string specified in the advice. So
in the example in Figure 1, the advice means that all model elements that match the
pointcut are annotated with the string “should be change”.

Role bindings declare the binding of a class to a role or of a class-method to a role-
method. Roles and role-methods are modeled as ordinary classes and methods. So in
Figure 1 the role bindings mean that Point and Line are modeled as playing the role of
Subject, and all the setter and moveBy methods of Point and Line are modeled as
playing the role of the change method of Subject.

Uniform Support for Modeling Crosscutting Structure 513

A sequence consists of a series of method calls, each of which in turn leads to
another (possibly empty) sequence. We represent the sequence associated with a call
as the focus of control of the target object of the call.

The inclusion of role bindings, inter-type declarations (ITDs) and advice in our
modeling language leads to an interesting semantic question. We would like ITDs and
advice to be able to depend on role bindings when appropriate. Specifically, we would
like an ITD onto a role to have the same effect on classes performing the role as
members defined directly in the role. Similarly, we would like pointcuts to be able to
depend on role bindings and ITDs.

This semantics is easy to achieve with a simple linear weaving of model elements
in which role bindings are handled before ITDs, which are handled before advice. But
if we also wanted role bindings to be able to depend on ITDs, then we would have to
adopt some sort of a fixed-point approach in our weaver. So far, we have been unable
to come up with a sufficiently compelling example that would require the more
complex semantics.

The Join Point Model (JPM)

JPMs are the central mechanism that supports crosscutting in aspect-oriented
programming [18]. A JPM can be described in terms of three characteristics: the
nature of the join points, a means of identifying the join points, and a means of
affecting semantics at join points.

Join Points
The join points of our JPM are the model elements in the various UML diagrams.

From class diagrams the join points are class, method, field, inter-type, advice and
role binding declarations. From sequence diagrams the join points are method call
declarations and sequences. If we extended our meta-model to include method return
or method call reception elements from the sequence diagram, they would be join
points as well. Because our join points are all model elements, we will often refer to a
join point as a model element.

Means of Identifying Join Points
Our system includes several means of identifying join points. In any model element
that includes a signature of some form, that signature serves to identify join points.
For example, a method call element has a signature which includes the object’s type
and the name of the method being called. This signature labels the call itself, and will
be used to match signatures of method, sequence, and other method call model
elements. Similarly, signatures of method model elements identify matching method
call and sequence elements.

Advice declarations include a pointcut construct similar to the pointcuts in AspectJ.
Pointcuts are predicates that match certain join points. We support several primitive
pointcuts, including: class, field, method, call, and sequence, which match the
corresponding kind of model element. We also support contextual pointcuts such as
within, cflow and cflowbelow which correspond in meaning to the pointcuts with the
same name in AspectJ. The syntax and semantics for all the pointcuts we provide are
described in Table 1.

514 Maria Tkatchenko and Gregor Kiczales

Semantic Effect at Join Points
Our system preserves the original declaration semantics of each model element. These
semantics are extended to make crosscutting structure explicit in a woven model.
Each element records all the other model elements which crosscut it.

Because our semantics simply extend the existing meta-model and semantics, it
should be possible to incorporate this proposal into other meta-models, but we have
not done this yet.

Weaver

The weaving process takes the model elements and computes a simple uniform
representation of the crosscutting among them. For this woven structure, we use a
meta-model that incorporates our JPM into the existing UML meta-model. Each
model element is treated as a join point, and for each join point the weaver records a
set of all other join points it crosscuts. We call this the crosscut by set of a join point.
For example, a method in a class diagram will have in its crosscut by set all sequence
and method call elements with a matching signature, as well as any other crosscutting
elements.

Crosscutting is treated symmetrically, so the crosscut by set of a sequence includes
the method declarations it crosscuts and vice versa. Table 2 shows, for each kind of
join point, all join point kinds that it can crosscut.

Using the crosscut by sets, a modeling tool can display crosscutting structure in a
variety of ways. The left side of Figure 2 shows a straightforward visualization of
advice applicability overlaid onto standard UML format, whereas the right side shows

Table 1: Pointcuts

Pointcut Model elements matched
class(class signature)
field(field signature)
method(method signature)
methodCall(method signature)
sequence(method signature)

corresponding type of element by signature
pattern

withinClass(class signature)
withinSequence(method signature)

any element syntactically contained within
model elements that match the signature

withinClassDiagram(name)
withinSequenceDiagram(name)

any element syntactically contained within
diagrams that match the name pattern

cflow(pointcut)
cflowbelow(pointcut)

any element within the control flow of
sequences or method calls matched by the
inner pointcut

pointcut1 && pointcut2 any element that matches both pointcuts
pointcut1 || pointcut2 any element that matches at least one of the

pointcuts
! pointcut any element that doesn’t match the pointcut

Uniform Support for Modeling Crosscutting Structure 515

the internal crosscut by sets produced by the weaver. The complete crosscutting sets
produced by the weaver can be used for different kinds of analysis and display of the
model.

Weaving starts with a representation of the complete model, which includes all the
kinds of model elements discussed above. The weaver processes the model as
follows:

1) Initial inheritance structure. The weaver traverses all class diagrams, using the
class, method and field elements to build up a representation of the inheritance
structure, which will be used later for operation and property lookup. In this stage role
bindings, ITDs, and advice are simply collected into separate lists for later semantic
processing.

2) Role bindings. The role bindings are processed by modifying the inheritance
tables so that classes appear as sub-types of roles they play, and methods match the
signature of the role-method to which they are bound. Each role binding is added to
the crosscut by sets of the classes or methods participating in the binding, and those
classes and methods are added to the crosscut by set of the role binding.

3) Inter-type declarations. New class members are introduced into the model as
specified by the ITDs. The inheritance tables are modified accordingly. The inter-type
declaration elements themselves are added to the crosscut by sets of the target class,
and vice versa.

4) Sequence diagrams. All sequences are traversed, and at each sequence or call
element the class and method specified in the signature of the sequence/call are
looked up in the inheritance tables. If a matching method is found, the sequence/call
is recorded in the crosscut by set of the method, and vice versa. If the sequence/call
matches other sequences/calls, this crosscutting is recorded in their crosscut by sets,
as well.

5) Advice. For each advice, all model elements that match the pointcut specified in
the advice are added to the crosscut by set of the advice, and vice versa.

Declarative Crosscutting and Implicit Weaving

Our system is based on a declarative semantics for crosscutting modeling elements
coupled with implicit weaving.

Table 2: Join points, along with the kinds of join points that each can be in a
crosscutting relationship with

Join point Join points with which it can crosscut
Class Class role binding, advice
Field Advice
Method Method call, sequence, method role binding, advice
Method Call/ Sequence Method, method call, sequence
Class role binding Class
Method role binding Method
ITD Class, advice
Advice Class, method, method call, sequence, advice

516 Maria Tkatchenko and Gregor Kiczales

Classes, sequence diagrams and other model elements simply model structure, and
the weaver runs automatically to compute the crosscut by sets. This is in contrast with
other proposals in which crosscutting model elements have a transformational
semantics [5, 25, 26]. In those approaches, the modeler selects specific crosscutting
model elements to apply, and then explicitly runs the weaver to transform the model.

The declarative semantics and implicit weaving are similar to the semantics of
AOP tools like AspectJ, where aspects have a simple declarative semantics, and
compilation or some other implicit weaving process simply implements that
semantics. The advantage we see for declarative crosscutting semantics in a modeling
tool is that when model elements change (i.e. the Observer design pattern), the new
semantics can be immediately reflected in the model and any views of the model.

Implementation

The prototype implementation of our tool is based on the Eclipse Modeling
Framework (EMF) version 2.0.0 [6], which allows us to create and display class
diagrams. Through extensions to the EMF implementation of the UML meta-model,
we have added support for sequence diagrams, role bindings, inter-type declarations,
and advice, as well as properties to store crosscut by sets. Of the 24 extensions to the
meta-model, over half were simple additions of individual pointcuts elements (one for
each pointcut in Table 1). We also implemented a simple weaver consisting of
approximately 2100 loc in 42 classes.

The weaver runs after changes to the model, and is not currently optimized for
speed. The weaver starts its work by traversing the model and collecting separate lists

Figure 2: The left side of the figure shows a possible visualization of crosscutting
advice structure, while the right side shows the internal crosscut by sets. The ADV
annotation on some elements on the left indicates that advice applies to them. In this
visualization clicking on the ADV would bring up a list of those advice model
elements. This is similar to the support Eclipse AJDT provides for understanding
advice in AspectJ programs.

Uniform Support for Modeling Crosscutting Structure 517

of class diagrams, sequence diagrams, role bindings, ITDs, and advice. This means
that each of the five passes described above only needs to loop through the
appropriate lists to do its work.

To provide feedback about crosscutting structure, we took advantage of an EMF
feature whereby it displays textual properties of every metaobject. Our weaver not
only computes crosscut by sets for model elements, it also computes a textual
summary of each of those crosscut by sets. Since EMF automatically displays textual
properties of model elements, this lets us see whether elements are advised,
participate in role bindings, appear in sequence diagrams, etc.2

Evaluation

Our main goals were to (i) simplify display and analysis of existing crosscutting
structure in UML by a modeling tool, and (ii) make the addition of new kinds of
crosscutting model elements easier. We sought to do this through a UML meta-model
with a built-in JPM, and a weaver that coordinates the crosscutting structure in the
various diagrams comprising the model. In this section we use the example from
Figure 1 to demonstrate the degree to which the enhanced meta-model and weaver
meet these goals.

Display

We first consider implementing the ADV annotations in Figure 2. The following code
implements the underlying test based on our model. It simply walks through the
crosscut by set of an element to see whether it contains any advice. The IDE can call
the predicate when it is displaying a model element to determine whether to display
the annotation.

boolean hasAdvice(Decl decl) {
 for (Decl otherDecl : decl.getCrosscutBySet())
 if (otherDecl instanceof Advice)
 return true;
 return false;
}

A more sophisticated version of this functionality might display the name of the
class enclosing the advice (the aspect in AspectJ terminology), instead of just an
ADV. A version of hasAdvice that returns a set of class names is only slightly more
complex; it must fetch the enclosing class of each advice and return a set of those
classes.

A more complex visualization would be to overlay roles and role members onto
classes and class members that play them. The underlying model query required to
support this functionality is a getRoles method similar to the second version of
hasAdvice.

2 Ideally, EMF would just display the contents of the crosscut by set itself, but

version 2.0.0 does not allow us to do that easily.

518 Maria Tkatchenko and Gregor Kiczales

Analysis

In the running example, one application of the meta-model is to confirm whether the
model elements comply with design specifications. In this case, we would want to
check that all the model elements annotated with the advice were designated as a
change through the role binding, and that the role binding applied only to the elements
to which the advice was attached.

 The simplest implementation for this compares the crosscut by lists of the advice
and the role binding. We need to check for two things. First of all, that all the
elements marked by the advice are bound by the role binding. And second, that no
other elements are bound by the role binding. These two conditions guarantee that the
model exactly satisfies the design specifications laid out by the advice.

Adding New Modeling Constructs

EMF has built-in support for class diagrams, but not sequence diagrams, and certainly
not role bindings, ITDs or advice. Building on EMF, our implementation starts with
just a JPM-enhanced meta-model, class diagrams, and a weaver framework. Sequence
diagrams, role bindings, ITDs, and advice are all extensions to our core
implementation. Because of this, we can use our experience to address how our meta-
model and weaver support our second goal, which was to simplify the addition of new
kinds of crosscutting model elements. We do this by looking at the amount of work
required to implement support for sequence diagrams, role bindings, ITDs, and advice
in our system.

The EMF implementation we started with consisted of approximately 350 classes
and over 80 kloc. The work required to add support for the JPM weaver and new
model elements is modest. The following discussion describes the implementation,
and Table 3 summarizes the discussion. The phases referred to in the discussion are
the ordered phases we have described in the section The Weaver.

The first set of additions is to extend the meta-model with the JPM described above
and implement the core weaver framework.

The second set of additions defines sequence diagrams, which requires new model
elements for sequence diagram, sequence, and method call elements. The weaver is
modified so that phase 1 collects these elements. A new phase weaves sequence and
class diagrams by recording the sequences and calls in the crosscut by sets of methods
and vice versa (the final phase 4). It also weaves all the sequence diagrams by
recording crosscutting among calls and sequences.

The third set of additions defines role bindings, with new model elements to
represent class and method bindings. It requires modifications to the class model
element to allow role bindings as class members. Phase 1 is modified to collect role
binding elements. A new weaver phase records the effects of role bindings in the
inheritance tables (phase 2). The results of a role binding will affect matching in other
stages as well.

Support for ITDs requires changes to the existing field and method model
elements, in order to allow a target class which may differ from the containing class.
Phase 1 of the weaver is modified to collect ITDs. A new weaver phase implements
the addition of ITDs to the target class (phase 3).

Uniform Support for Modeling Crosscutting Structure 519

The final set of additions defines advice and pointcuts, with new model elements to
represent advice, as well as each of the pointcuts. It also requires modifying the class
element to add advice as a class member. Phase 1 is modified to collect advice, and a
new weaver phase records advice at each element to which it applies (phase 5). The
implementation of pointcut matching is well decoupled from the core of the weaver.

In general, the addition of a new kind of crosscutting model element requires a new
phase of processing if the element is not subsumed by any of the above phases. In
addition, the position of the new phase in the ordering has to be determined. However,
only the first phase of the weaver needs to be modified in order to collect all the new
model elements into a list. None of the other existing phases should need to be
modified to accommodate this change.

Future Work

Our first priority is to develop a more sophisticated role binding construct. Mezini et.
al. have developed a set of mechanisms for binding aspects to classes that may
provide a good basis for our next role binding design [19].

We also want to add other kinds of crosscutting model elements to test the
flexibility of our meta-model. In particular, we would like to add statecharts and
collaboration diagrams. Statecharts model class states and transitions, which can
crosscut the methods of the class. The structure and messages modeled by
collaboration diagrams crosscut classes much as sequence diagrams do [7].

Table 3: New code required to add support for sequence diagrams, role bindings,
ITDs and advice to the meta-model and weaver. (loc numbers represent non-blank,
non-commented lines of code)

Construct loc New
classes

Edits to EMF meta-
model

Edits to weaver

Initial weaver with
class diagrams

1094 17 0 n/a

Sequence diagrams 1323 21 4 (create sequence
diagram, sequence
and method call
elements, sequence
diagram to model)

2 (add collector,
add new
processing phase)

Role bindings 119 4 3 (create role binding
elements, add role
binding to class)

2 (add collector,
add new
processing stage)

ITDs 43 0 2 (add target property
to field, method)

2 (add collector,
add new
processing phase)

Advice

Pointcuts

52

538

3

14

2 (create advice
element, add advice
to class)
14 (pointcuts)

2 (add collector,
add new
processing phase)

520 Maria Tkatchenko and Gregor Kiczales

Currently, our weaver needs to run over the complete model in order to build up
the crosscut by sets, and must run again completely after even small changes to the
model. In order for our approach to scale we will have to develop an incremental
weaver instead. This problem is similar to the problem of incremental weaving for
AspectJ, and incremental model-checking [16], so we hope to be able to apply similar
techniques to develop an incremental model weaver.

Summary

We propose bottom-up support for crosscutting structure in UML by adding a simple
JPM to the UML meta-model. This meta-model simplifies implementation of tool
support for working with crosscutting structure, addition of new kinds of crosscutting
structure, and also makes models of crosscutting structure more declarative.

Using our meta-model, adding new role binding, ITD and advice constructs is a
relatively simple task, and those constructs integrate smoothly into the JPM. This
makes us optimistic that we will be able to support statecharts, collaboration
diagrams, and other kinds of crosscutting model structure, as well.

Acknowledgments

Thanks to Marcellus Mindel, Branislav Selic, Paul Elder, Charles Riballe and other
participants of the IBM Ottawa CASTLE Poster Session for their feedback on this
work. We would also like to thank the participants of the AOM workshop at
AOSD’05 for their ideas for future directions of this work. Finally, we would like to
thank Gail Murphy and the anonymous reviews for their comments and suggestions.

This work is partially supported by IBM Center for Advanced Studies and the
Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. Andersen, E.P. and Reenskaug, T., System Design by Composing Structures of
Interacting Objects. in Proceedings of ECOOP, (London, UK, 1992), Springer-
Verlag, 133 - 152.

2. AspectJTeam. The AspectJ Programming Guide, http://eclipse.org/aspectj/.
3. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language User

Guide. Addison-Wesley, 1999.
4. Cannon, H. Flavors: A non-hierarchical approach to object-oriented programming,

Symbolics Inc, 1982.
5. Clarke, S. and Walker, R.J., Composition patterns: an approach to designing reusable

aspects. in Proceedings of the 23rd International Conference on Software
Engineering, (Toronto, Ontario, Canada, 2001), 5-14.

6. EclipseProject Eclipse Modeling Framework.
http://download.eclipse.org/tools/emf/scripts/home.php.

7. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

Uniform Support for Modeling Crosscutting Structure 521

8. Hannemann, J. and Kiczales, G., Design Pattern Implementation in Java and AspectJ.
in, (2002), ACM, 161-173.

9. Ho, W.-M., Jezequel, J.-M., Pennaneac'h, F. and Plouzeau, N., A toolkit for weaving
aspect oriented UML designs. in Proceedings of the 1st international conference on
Aspect-oriented software development, (Enschede, The Netherlands, 2002), ACM
Press, 99-105.

10. Jacobson, I. and Ng, P.-W. Aspect-Oriented Software Development with Use Cases.
Addison Wesley Professional, 2004.

11. Jezequel, J., Plouzeau, N., Weis, T. and Geihs, K., From Contracts to Aspects in
UML Designs. in Aspect-Oriented Modeling with UML workshop at AOSD, (2002).

12. Kande, M.M., J. Kienzle and A. Strohmeier From AOP to UML - A Bottom-Up
Approach. Aspect-Oriented Modeling with UML workshop at the 1st International
Conference on Aspect-Oriented Software Development.

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.G., An
Overview of AspectJ. in European Conference on Object-Oriented Programming
(ECOOP), (Budapest,Hungary, 2001), Springer, 327-355.

14. Kiczales, G. and Mezini, M., Aspect-Oriented Programming and Modular Reasoning.
in ACM International Conference on Software Engineering, (2005 (to appear)).

15. Kim, D.-K., France, R., Ghosh, S. and Song, E., A role-based metamodeling
approach to specifying design patterns. in Proceedings of COMPSAC, (2003),
COMPSAC 2003, 452-457.

16. Krishnamurthi, S., Fisler, K. and Greenberg, M. Verifying aspect advice modularly.
Foundations of Software Engineering (FSE). 137 - 146.

17. Lions, J.M., Simoneau, D., Pitette, G. and Moussa, I., Extending OpenTool/UML
Using Metamodeling: An Aspect Oriented Programming Case Study. in Workshop on
Aspect-Oriented Modeling with UML at the UML Conference, (2002).

18. Masuhara, H. and Kiczales, G., Modeling crosscutting in aspect-oriented
mechanisms. in European Conference on Object-Oriented Programming (ECOOP),
(2003), Springer, 2-28.

19. Mezini, M. and Ostermann, K., Conquering aspects with Caesar. in International
Conference on Aspect-Oriented Software Development (AOSD), (2003), ACM Press,
90-100.

20. OMG, T. Unified Modeling Language (UML), Version 1.5. www.uml.org.
21. Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L. and Martelli, L.,

A UML Notation for Aspect-Oriented Software Design. in Aspect-Oriented modeling
with UML workshop at AOSD, (Enschede, The Netherlands, 2002).

22. Reifer, D. Doubts and hopes for AOP. COMMUNICATIONS OF THE ACM, 45 (3).
11-12.

23. Selic, B., Using UML for Modeling Complex Real-Time Systems. in Languages,
Compilers, and Tools for Embedded Systems: ACM SIGPLAN Workshop LCTES,
(Montreal, Canada, 1998).

24. Stein, D., Hanenberg, S. and Unland, R., Designing Aspect-Oriented Crosscutting in
UML. in Workshop on Aspect-Oriented Modeling with UML at AOSD, (Enschede,
The Netherlands, 2002).

25. Stein, D., Hanenberg, S. and Unland, R., Position Paper on Aspect-Oriented
Modeling: Issues on Representing Crosscutting Features. in Workshop on Aspect-
Oriented Modeling at AOSD, (2003).

26. Straw, G., Georg, G., Song, E., Ghosh, S., France, R.B. and Bieman, J.M., Model
Composition Directives. in Conference on the Unified Modeling Language, (Lisbon,
Portugal, 2004).

27. Tamai, T., Ubayashi, N. and Ichiyama, R. An adaptive object model with dynamic
role binding. http://www.graco.c.u-tokyo.ac.jp/~tamai/pub/epsilon/rolemodel.pdf.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 522-536, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Modeling Crosscutting Services with UML Sequence
Diagrams

Martin Deubler1, Michael Meisinger1, Sabine Rittmann1, and Ingolf Krüger2

1 Technische Universität München
Boltzmannstr. 3

85748 Garching, Germany
{deubler, meisinge, rittmann}@in.tum.de

2 Department of Computer Science
University of California, San Diego

La Jolla, CA 92093-0404, USA
ikrueger@cs.ucsd.edu

Abstract. Current software systems increasingly consist of distributed interact-
ing components. The use of web services and similar middleware technologies
strongly fosters such architectures. The complexity resulting from a high degree
of interaction between distributed components – that we face with web service
orchestration for example – poses severe problems. A promising approach to
handle this intricacy is service-oriented development; in particular with a do-
main-unspecific service notion based on interaction patterns. Here, a service is
defined by the interplay of distributed system entities, which can be modeled
using UML Sequence Diagrams. However, we often face functionality that af-
fects or is spanned across the behavior of other services; a similar concept to
aspects in Aspect-Oriented Programming. In the service-oriented world, such
aspects form crosscutting services. In this paper we show how to model those;
we introduce aspect-oriented modeling techniques for UML Sequence Dia-
grams and show their usefulness by means of a running example.

1 Introduction

Today’s software systems get increasingly complex. Complexity is observed in all
software application domains: In business information systems, technical and admin-
istrative systems, as well as in embedded systems such as in avionics, automotive and
telecommunications. Often, major sources of the complexity are interactions between
system components. Current software architectures increasingly use distributed com-
ponents as for instance seen when using web services [11] and service-oriented archi-
tectures [7].

Traditionally, system design focuses on the components that structure the system
physically or logically. Components are modeled and implemented in their entirety
and mostly independent from each other; they are integrated in subsequent steps. In
situations as we face them today with large distributed systems composed of a multi-
tude of interacting components, significant portions of the components’ functionality

Modeling Crosscutting Services with UML Sequence Diagrams 523

are determined by handling these interactions appropriately. Specifying separate
components correctly and completely is a very difficult task. Additionally, when it
comes to expressing system-wide concerns like certain Quality-of-Service properties
such as end-to-end timing deadlines, component oriented models fall short.

More appropriate for the development of interaction intensive distributed systems
are therefore approaches which put interaction modeling in the center of concern.
Viewing systems entirely and explicitly modeling the interactions between the com-
ponents that constitute the system addresses the before mentioned issues with arbi-
trary and exceptional interaction combinations and overarching system aspects. In in-
teraction centric system specifications, the components are described by the
interactions they have to provide; a black-box view that hides internal component
complexity. Considering the different functions, features, or services that the system
offers provides a straightforward structuring of such interaction models. For today’s
large multi-functional distributed systems, such approaches provide the necessary
flexibility in decoupling the separate functions while still modeling systems in their
entirety.

We strongly propose service-oriented software development approaches that place
the different functions or services of a system in the center of interest – as for in-
stance introduced by [14] or in [13]. We combine this with an interaction-centric de-
velopment approach and specify the system services in terms of the interactions be-
tween the components involved [21]. We in particular use interaction-centric
description techniques such as UML Sequence Diagrams or Message Sequence
Charts [19], [22].

Problem Statement. When specifying a system in terms of services, it is often desir-
able to specify certain aspects of behavior contributing to or overlapping several ex-
isting services. We view such behavior again as services of the system, namely as
crosscutting services or aspects. Examples for such crosscutting services are authen-
tication, logging and synchronization. It is highly desirable to specify these crosscut-
ting services separately in order to ensure a better comprehensibility, reusability,
traceability and evolvability of the software models.

We achieve this by specifying each spread concern within one single unit, called
aspect. These aspects – or crosscutting services – can then be modified independently
from the rest of the system specification. These concepts are directly based on aspect-
oriented programming and modeling techniques [18], [35].

Currently, UML sequence diagrams do not provide such aspect-oriented modeling
techniques and are therefore not fully suited for systematic service-based software
development. If a system needs to be specified precisely and without redundancy,
more powerful notations and description techniques are required.

Contribution. In this paper, we address the mentioned problem by introducing an
extension of UML Sequence Diagrams motivated by the ideas of aspect-orientation.
We model a system based on interaction-based services using UML Sequence Dia-
grams. We extend the UML 2.0 Sequence Diagram Notation to enable the modeling
of crosscutting behavior that is spread over the basic system interactions (services).
Our approach is independent of a specific domain. We use a running example to ex-

524 Martin Deubler et al.

plain and evaluate our notation. A more extensive version of this material can be
found in [33].

In this paper, we initially assume a control-flow oriented, RPC-style (remote pro-
cedure call) communications paradigm for the execution of system services. This is a
very common communication scenario that can be often observed for instance when
using web services. We have shown in [19], [21] that our service-oriented approach
also generalizes for asynchronous communication.

Outline. The remainder of the paper is structured as follows. In Section 2 we intro-
duce our service notion and the sequence diagram based description techniques we
use. Section 3 introduces our modeling approach and explains the extensions to the
UML we propose. Section 4 discusses our approach in the context of related work. In
Section 5, we present a conclusion and give an outlook on further steps.

2 Service-Oriented Development

In this section we briefly introduce our notion of service and service-oriented devel-
opment. We specify services in terms of interaction patterns between system compo-
nents and model those using UML Sequence Diagrams. Our UML extensions for
specifying service aspects on top of existing system services are based thereon.

2.1 Services and Service Notion

We define a service as follows:
“A service is defined by the interaction among entities involved in establishing a

particular functionality.”
A service therefore is a piece of behavior or functionality which is provided by the

collaborative inter-working of system entities. Hereby, an entity is an abstract, logi-
cal, structural part of the system. Depending on the level of detail it can stand for a
component, module, package, or class. The interaction is described by interaction
patterns that capture the message exchange between the system entities involved in
establishing the service. As a consequence of the definition above, a service – and
therefore functionality – can be spread across several entities or components. Note
that in this paper we use the terms entity and component equivalently. Analogously,
we speak of functionality or behavior when referring to a service.

Consider for instance the central locking system of a modern luxury car. It pro-
vides the service of unlocking the car remotely by pressing on the open button of the
remote key. On doing so, the doors are unlocked, the alarm device and the anti-theft
device are disabled, the exterior lights flash, the interior lights are turned on, the
driver’s seat is positioned, etc. As we can see, the remote unlocking service is pro-
vided by the collaborative work between the entities remote key, the door locks, the
security devices, the exterior lights, the interior lights and the motor managing the
driver’s seat. They communicate with each other using messages.

Modeling Crosscutting Services with UML Sequence Diagrams 525

In addition to capturing interactions between system entities, we also specify local
actions of entities – for instance a computation of a certain result in reaction to the re-
ceipt of a message, to be sent to another entity. Note that a simple form of a service
might not involve an interaction of multiple entities; services can be provided by just
one entity. For instance, consider the service of adjusting the front seats individually
by moving them forth and back.

Because our interaction-based service definition is founded only on the abstract in-
teraction relationship between entities, we profit from the following advantages:

� Our service notion can be used independently from a specific domain. A single
methodology and supporting tool set can be applied in many different contexts.

� Our service notion can be used throughout the overall development process – from
requirements elicitation to implementation. Services are first class modeling ele-
ments that drive the entire process and that can be traced from requirements to im-
plementation.

� Our service notion goes beyond notions that define services by a callable list of
procedures only. This is often seen when defining web services or network proto-
col stack service access points (SAPs). Our service notion instead enables elabo-
rate behavioral specifications containing quality-of-service attributes.

2.2 Service Specification with UML Sequence Diagrams

In this section we show how services can be modeled by means of UML sequence
diagrams. These and similar graphical notations and languages such as Message Se-
quence Charts and variants are well-suited ways of modeling interactions, by which
our services are specified.

The Unified Modeling Language (UML) [42] has become the de-facto standard for
modeling systems. The version 2.0 of the UML enhances the possibility of modeling
complex and hierarchical interactions. It provides flexible and powerful constructs
and operators to express conditions, parallel execution, repetition and hierarchy. We
use UML Sequence Diagrams, to specify our services.

Figure 1 shows the simplified specification of a service of an automotive central
locking system. The service is responsible for locking the trunk and all four doors.
After pressing the central lock button (which is located inside the car), messages are
sent to the trunk lock and the door locks, respectively. The figure shows the applica-
tion of operators within the sequence diagram to express more complex interactions.
In the example, locking the trunk happens in parallel (par) to locking the door. By
design choice, all doors are locked in sequence. We could also have applied another
parallel operator here. The service is established by the inter-working of the compo-
nents CenterLockButton, TrunkLock and the four doors locks which communicate
with each other by exchanging messages. The interaction between these system enti-
ties is captured in the interaction pattern that makes up the service.

We interpret the sequence diagram that is assigned to the service universally. This
means, once the service is executed, the specified pattern of interactions must occur.
In case of alternatives, the respective operator (alt) must be applied. Besides sequen-
tial and parallel composition of messages and alternatives, there are also loops, op-

526 Martin Deubler et al.

tional interactions and references to other interaction diagrams that can be expressed.
More complex services can be composed by the use of interaction overview dia-
grams.

DoorLock4
DoorLock3

DoorLock2
TrunkLockCenterLockButton DoorLock1

lock()

lockTrunk()

lockDoor
lockDoor
lockDoor()

lockDoor()

par

Figure 1: LockDoorsService

Note that with the UML 2.0 [42], sequence diagrams have converged much closer
to the ITU standard of MSCs which have the advantage to be precisely defined; there
is work existing that associates formal semantics to MSCs as well as distinct exten-
sions that make MSCs even more suitable to service-based development approaches
[19], [20], [22]. In this work, we focus on UML 2.0 Sequence Diagrams, because
UML is more popular than MSCs in the context of modeling object-oriented systems,
web services and synchronously communicating systems. Besides, there are many
similarities and notational elements are directly transferable.

In this section we presented the notion of service we use as basis of our work.
Methodological work around this notion of service can be found in [23], [33]. A for-
malization of services and service-oriented software architectures based on the
mathematical model of streams can be found in [9].

3 Modeling Crosscutting Services with Aspects

Well structured software is usually divided into modules with certain responsibilities.
This is in accordance with the separation of concerns principle simplifying reusability
and a better maintenance of design and implementation. However, some behavior
crosscuts these so-called primary modules as it affects several modular entities. In ob-
ject-oriented programming, the units of modularity for example are classes; a cross-
cutting concern is spanned across several classes. If the implementation of such a
concern is scattered and tangled up with the core functionality, it is difficult to reason
about, implement and change. This problem is called the tyranny of the dominant de-
composition [39].

Aspect-oriented programming (AOP, cf. [1], [8]) is an implementation level tech-
nology that allows to isolate pieces of behavior into single units – called aspects; it al-
lows to specify at which locations in the code the aspects should later be inserted.

Modeling Crosscutting Services with UML Sequence Diagrams 527

This ensures the encapsulation of cross-cutting behavior, such as logging or synchro-
nization and therefore results in a better comprehensibility, reusability, traceability
and evolvability of the code.

Aspect-oriented modeling (AOM) is a consequence of aspect-oriented program-
ming; it raises the ideas of separation of concerns to the level of software models. To
date, most of the work on aspect-orientation has concentrated on the implementation
level. How aspects can be modeled appropriately is still not investigated sufficiently.
This is particularly true in the area of service-oriented modeling where we face the
before mentioned problems. However, in order be able to create more powerful, more
elaborate system models, it is inevitable to also model crosscutting services. There-
fore it is necessary to have a way to apply aspect-orientation in models.

In the following we explain what aspects are in the service-oriented world; we list
the goals and principles that are relevant when modeling aspects. In Section 3.3 we
introduce our approach to model crosscutting services using an extended Sequence
Diagram notation.

3.1 Crosscutting Services

The notion of aspect has emerged during the last years (cf. [3], [4], [5]). E.g. in [27]
an informal definition for the term aspect is given. The author describes an aspect as a
“crosscutting concern”. Here, a concern is a “property of interest to a stakeholder”
and crosscutting means “intertwining, interdependent, interacting, [or] overlapping”.

In component-based software development approaches, the modular entities are
components (or classes, packages, etc. depending on the level of examination). A
crosscutting concern therefore is overlapping or affecting several components. In our
service-oriented point of view, services are by definition overlapping several compo-
nents. Therefore, each service would be an aspect, which renders the above definition
of crosscutting concerns impractical. Instead, in the service-oriented world, the basic
building blocks are services. Consequently, an aspect – or crosscutting service – is a
service that is spanned across or that influences the behavior of other services.

It shows that our definition of crosscutting concerns in the context of service-
oriented development follows a similar idea as aspects in a component-oriented ap-
proach. We allow specification of modular pieces of behavior and separate crosscut-
ting concerns in aspects. However, our approach retains all before mentioned advan-
tages and benefits from interaction based modeling.

In the following we distinguish between crosscutting and crosscut behavior.
Crosscutting behavior is the functionality that is spread over several services. It af-
fects behavior of existing services which in turn are the crosscut functionality.

3.2 Principles and Goals for Modeling Crosscutting Services

Introducing a notation for modeling of crosscutting services should comply with the
following principles and goals:

� Model crosscutting services like basic services with additional characteristics: A
crosscutting service is a service that affects the behavior of other services. There-

528 Martin Deubler et al.

fore, it is suggestive to model crosscutting behavior similar to basic services: with
Sequence Diagrams. However, we have to take additional care of the special char-
acteristics that make up the nature of service aspects.

� Cleanly modularize crosscutting services: In order to enable reuse and a better
maintenance of design (and later: implementation) we have to cleanly modularize
the crosscutting service. Each aspect needs to be located within one model.

� Leave crosscut service untouched: An aspect might affect several services. How-
ever, if a crosscut service should be reused in another system or configuration
without the crosscutting service, it will not be influenced by the crosscutting ser-
vice anymore. Therefore, the specification of the crosscut service must remain in-
dependent and unchanged by the aspect. The dependency is unidirectional: the
crosscutting service depends on the execution context of the crosscut service.

� Attend to clear illustration of crosscutting relationships: Crosscutting relationships
can be very complex. For example, if several services are affected by several other
services or aspects that are crosscut by aspects in turn. A modeling technique to
capture/specify aspects must illustrate these complex dependencies concisely.

Additionally, a good modeling approach should provide both a coarse-grained (more
abstract) and a fine-grained (more concrete) view on crosscutting relationships. In the
next section we will introduce a modeling approach that is in accordance with the
listed principles. However, we will not show how aspects can be incorporated in
structural diagrams such as UML Class Diagrams; the focus of our work lies on the
behavioral part.

3.3 Modeling Crosscutting Services with Sequence Diagrams

Crosscutting services differ from basic services as explained before. We need to spec-
ify additional characteristics when modeling aspects. Plain sequence diagrams do not
provide enough flexibility and expressiveness. Consequently, we have to introduce
additional modeling elements that provide the required expressiveness. In the follow-
ing we will introduce our modeling elements step by step by means of an example.

Modeling Join Points
In contrast to basic services, crosscutting services model when the crosscutting be-

havior takes place in reference to the behavior of affected services. We have to spec-
ify the points in the system execution where an aspect starts, affects and ends.

In order to define the places where two concerns crosscut one another, we intro-
duce elementary join points. We adapt AspectJ [2] nomenclature here. Nonetheless,
the concept used permits the use of various AOP flavors. We do not show how our
modeling concepts can be translated into AspectJ as they are independent of a par-
ticular programming language. Join points mark well-defined, single points in the
execution flow at which two concern models are (inter)connected with each other.
Join points correspond to messages and local activities of sequence diagrams.

Modeling Crosscutting Services with UML Sequence Diagrams 529

GUI Connection

useTelephone()

displayTelephoneMenu()
enterTelephoneNr(n)

dial()
connect()

displayStatus()
hangUp()

disconnect()

displayStatus()

Figure 2: UseTelephoneService

In particular, we specify when a crosscutting concern should be executed. We face
the following possibilities: Before, After, Around or Instead of a certain action. Ac-
tions can be local activities or message send or receive events. We introduce graphi-
cal elements to specify when an aspect is invoked – namely before, after, wrapping
and overriding join points. In the following we will explain them with the aid of ex-
amples: Figure 2 shows a simple telephone service which can be found for instance in
a modern luxury car. When the telephone menu is selected via the car’s user interface
(MMI), the user can enter a phone number, and connect to this number. The system
establishes the connection and displays the call status until the user hangs up. The
system disconnects the call and updates the status display.

Now assume that the telephone costs should be charged to individual users. This
can be done by enabling an AccountService. An account has to be chosen before the
actual TelephoneMenu can be used. How can this be realized? One possibility would
be to insert the new behavior – the choice of a specific account prior to the use of the
telephone – directly in the UseTelephoneService. However, it is better to modularize
the account service in a separate module as it can be enabled and disabled.

Before Join Points. We have to model the point in the execution flow where the
behavior is affected. For our example, we choose to insert the new behavior when the
telephone service is called, but before it is actually performed. Figure 3 shows the in-
troduction of the before join point symbol. The message useTelephone() is divided by
an axis starting from a before join point (a circled “B”). The semantics is that the
message useTelephone() is not delivered to the axis GUI. Instead, the crosscutting
behavior is performed: The current display settings are saved (saveSettings()) and an
account menu is shown (displayAccountMenu()). After an account has been chosen
(chooseAccount()), the display is reset to the saved settings (resetDisplay()). The very
last, unlabeled arrow indicates that the control flow is given back to the before join
point. This means that the afore interrupted message useTelephone() is now actually
delivered to the GUI. That is the point in the execution where the crosscutting behav-
ior ends and the crosscut behavior is continued.

530 Martin Deubler et al.

GUI Account

useTelephone()
B

saveSettings()

displayAccount()

displayAccountMenu()chooseAccount(a)
account(a)

account:= a;

resetDisplay()

Figure 3: AccountService

BillingHandler
connect()

B

startTimer()

start()

disconnect()

A

stopTimer()

stop()

Calculate()

Connection

Figure 4: BillingService

After and Wrapping Join Points. The BillingService (see Figure 4) shows the mod-
eling elements for after and wrapping join points. This service has two parts:
(1) When a connection is requested (connect()), a timer is started, and (2) When the
connection is closed (disconnect()), the timer is stopped. Then, some calculation is
performed.

In the first part we again make use of a before join point. In the second part we in-
troduce an after join point having the following semantics: After the message discon-
nect() is sent to Connection, the message stopTimer() is sent. When the timer is
stopped, the control flow is returned to the after join point. The behavior being cross-
cut continues its execution.

In the above example we introduced not only before and after join points. In fact
we specified a wrapping aspect which has defined start and end points, respectively.
The issue of modeling overriding join points is currently being investigated. Affect-
ing local activities can be obtained similarly to messages.

Combination of Join Points – Point Cuts
Of course, we also could have modeled the crosscutting behavior as part of the

UseTelephone service. However, we cleanly isolated the aspect in a separate model.
The advantage is evident if we also introduce an internet service (cf. Figure 5).

Applying the account service also to the internet service is now simple by adding a
combination of join points (point cuts in AspectJ nomenclature) to the aspect specifi-
cation. Figure 6 shows how the account service is specified so that it is applicable to
either the telephone or the internet service. The alt-box defines a logical combination
of join points – to be more precise: the logical “OR” between two before join points.
Either before the message useTelephone() or before the message useInternet() is sent
to the GUI, the behavior is interrupted.

Another possibility for the specification of point cuts (combinations of join points)
is the use of parallel-boxes, etc. The concept of point cuts allows us to model the
logical combination of several points in order to specify more complex points in the
program execution. Point cuts pick out certain join points in the program flow and
values at those points. Investigating this in more detail is one of our next goals.

Modeling Crosscutting Services with UML Sequence Diagrams 531

Connection
useInternet()

displayInternetMenu()
connect()

displayStatus()

endInternetSession() disconnect()

displayStatus()

enterURL()

enter()

loop

…….

GUI

Figure 5: UseInternetService

GUI Account

useTelephone()

B

saveSettings()

displayAccount()

displayAccountMenu()
chooseAccount(a)

account(a)

account:= a;

resetDisplay()

useInternet()

alt

Figure 6: AccountService w. Join Point

Modeling of Execution Context
To provide aspect services with higher flexibility and expressiveness, we expose

the execution context of the affected services in point cuts. The aspect thus can make
use of it. In the sequence diagrams, we add OCL-style notes to the arrows. Figure 7
shows a report service that reports how much an account has to be charged for. For
this purpose, the sum (which are the costs of the internet or telephone session) and the
account (which is to be charged for) are available to the reporting service. They can
be seen as parameters being provided to the report service.

ReporterA

{context: sum, account}

Billing

Calculate()

Figure 7: Report Service

Name-Based and Property-Based Specification
In the examples above, we explicitly specified concrete message and activity

names when determining the crosscut behavior. We call this name-based crosscut-
ting. Sometimes, crosscutting behavior affects many other services. In this case it
would mean much effort to specify all places where the aspect makes an appearance.
A more powerful way to specify the location of join points within sequence diagrams
is property-based crosscutting. For example we can use wildcards to specify a group
of messages, activities or even axes. Instead of using the alternative-box in Figure 6,
we could just write use*(). A property-based crosscutting service can be seen as a

532 Martin Deubler et al.

template which is instantiated by each message fulfilling the property. Another possi-
bility is to use parameterized messages. Then a set of possible messages substituting
the parameters would be specified.

GUIB

() =: a(*)

println("In Method:" + a.name);

Figure 8: Trace Service

This mechanism is especially useful if some crosscutting behavior affects many
services at different points. Let us assume that we want to trace the execution of a
program for example. To that end, we define an aspect that prints the name of each
method call. In Figure 8 the method name of each method (having an arbitrary num-
ber of arguments) called to GUI is printed before the method is actually executed.

4 Discussion and Related Work

In this section, we put the service notion and our introduced aspect-oriented descrip-
tion techniques that we have presented in the preceding sections into perspective; in
particular, we discuss our approach in relation to others known from the literature.

As noted in [40], the term service is used in a variety of meanings, and on various
levels of abstraction in the Software Engineering community. The notion and model
of service we use in this document captures the interplay of multiple components col-
laborating to achieve a particular function or feature of the system under considera-
tion. This encompasses the various “traditional” notions of service used in the tele-
communications [41] and business information systems domains, but also the
emerging uses of the term service in the context of “web services” [11], and service-
oriented architectures (SOAs) [7].

In the telecommunications domain, the notion of feature is well established and re-
searched – as pointed out in [41]. Features can be defined as “reusable, self-contained
services” [30]; they encapsulate individual pieces of functionality of limited scope,
typically used to structure the interfaces or internals of components. Feature-oriented
software design and development [31] makes use of features as principal modeling
elements. According to [17] features are units of “observable behavior”, and “re-
quirements modules” serving as “units of incrementation as systems evolve.”

On the other hand, web services [11], [34] at first glance define simple call/reply
relationships between the consumer and the provider of the web service. At closer in-
spection, however, it becomes apparent that web services and their supporting archi-
tectures are more loosely-coupled than traditional layered architectures. In particular,
web-services typically emerge from the interplay of multiple components – a call
upon one web service, in general, results in calls upon multiple other (web) services
provided by other components or applications. A web service thus acts as an orches-
trator for the collaboration of the components implementing the functionality “be-

Modeling Crosscutting Services with UML Sequence Diagrams 533

hind” the service. This view of services as orchestrators of collaboration is becoming
increasingly popular [28], [14]; it transcends the realm of web services – where it is
prominently recognized, for instance, by the business process execution language for
web services (BPEL4WS) and takes root also in the domain of complex embedded
systems as found in the automotive [6] and avionics domains [32].

We have demonstrated the use of UML Sequence Diagrams as graphical descrip-
tion techniques for services. Because Sequence Diagrams capture interaction behav-
iors that cut across multiple components, we view services and their graphical repre-
sentations in the form of UML Sequence Diagrams as modeling aspects in analogy to
the implementation aspects captured by aspect-oriented programming languages such
as AspectJ [18], [2]. In fact, we have shown in [21] that services can be translated
immediately into corresponding AspectJ programs; the weaving mechanism of As-
pectJ can then be exploited to integrate the services defined as Sequence Diagrams
into a correct set of component implementation.

Unfortunately, the modeling of aspects is not supported by MSCs or UML se-
quence diagrams. Although work on including aspect-oriented concepts in the UML
has recently been published (cf. [8], [9], [10], [35], [12] and [36]), no elaborate nota-
tional elements exist in order to model aspect-orientation adequately. Furthermore,
the cited work mainly introduces concepts for class diagrams. Therefore, we give
some first ideas on how the modeling of cross-cutting services by means of interac-
tion diagrams can be done.

Recent work has been published that relates aspect-orientation to requirements en-
gineering and design phases, and modeling, cf. [1], [26], [43], [36], [37]. Our service
notion can be seen as precisely formulated requirements specified as sequence dia-
grams. We put our focus in particular on the architecture definition and design phase.
The work in [1] mainly sees aspects as crosscutting non-functional requirements or in
particular quality attributes [26], while we show how to model crosscutting functional
behavior (services) in a similar way to basic services, using cautiously extended se-
quence diagrams. Similar to [43], we see aspects as interaction patterns. However, we
focus on service executions with RPC-style communication semantics which are of-
ten used for web service combinations; we also introduce explicit notations to model
before, after, around and instead join points within sequence diagrams. In this way we
differ from [36] that uses standard UML concepts to represent basic and crosscutting
behavior, which we consider too limiting and less intuitive for our purposes. The
work in [37] focuses on structural concerns in aspect-oriented design with UML and
aspect information interchange using XML, while we focus on behavior models and
put the notion of service in the center of concern.

Our approach is related to Model-Driven Architecture (MDA) [25], Model-
Integrated Computing [38], aspect-oriented modeling (AOM) [15] and architecture-
centric software development (ACD) [42]; similar to MDA and ACD we also sepa-
rate the software architecture into abstract and concrete models, as for instance shown
in [21]. In contrast to the cited model-driven development approaches, however, we
consider services and their defining interaction patterns as first-class modeling ele-
ments of all our models throughout the different development phases.

In Section 3.2 we mentioned the importance of having both a coarse-grained (more
abstract) and a fine-grained (more concrete) view on crosscutting relationships. In
this paper we only showed the detailed view of the intertwined relationships. The

534 Martin Deubler et al.

other case can for instance be achieved by introducing additional stereotypes for
UML Use Case Diagrams (cf. [33] for more information).

5 Summary and Outlook

In this paper we have shown the significance of an interaction-oriented development
approach to address the always increasing complexity of current software systems.
Because significant sources of software complexity stem from the interactions among
interacting components, an interaction-based model targets the problem at its source.
We explained service-oriented development as an approach to specify and develop
systems in terms of services as first class modeling elements. Services are defined in
terms of interaction patterns between components that participate in the service. Ser-
vices as such realize crosscutting behavior that spans multiple components.

In analogy to the introduction of aspect-oriented technologies for component or
object-oriented software development approaches, we showed its usefulness also for
service-oriented development. Retaining all advantages of system specifications using
services, we provide means to separate specific pieces of behavior that affect multiple
services into aspects. Aspects again are services: crosscutting services. We introduced
a notation as an extension to UML 2.0 Sequence Diagrams to model services and ser-
vices that cross-cut services using aspect-oriented techniques.

We have explained our notation using a running example that is representative for
many different domains, including telecommunications, automotive and web service
based applications. It is representative for similar situations such as the composition
of systems out of interacting web services. We showed that our approach is well suit-
able to model the traditional RPC-style interactions that occur when composing a sys-
tem out of a number of separate services.

In the future, further investigations have to be done in how to specify non-
functional crosscutting concerns, such as performance or timing constraints. Also, we
want to investigate how to identify and resolve contradictory aspect specifications. To
prove the value and efficacy of our approach, we plan to apply it to case studies of
significant size within the automotive domain as well as in the web services area.

In our work, we concentrate on the behavioral part of aspects. The structural
part – for instance how aspects can be modeled in class diagrams – is not focus of our
work. However, the relation between behavioral and structural modeling of aspects
has to be investigated in the future, too.

Acknowlegements

Our work was partially supported by the Deutsche Forschungsgemeinschaft (DFG)
within the project InServe and by the Bavarian high-tech funding program (High-
Tech Offensive) within the project MEWADIS. Further funds were provided by the
UC Discovery Grant and the Industry-University Cooperative Research Program, as
well as by the California Institute for Telecommunications and Information Technol-
ogy (Calit2). We are grateful to the anonymous reviewers for insightful comments.

Modeling Crosscutting Services with UML Sequence Diagrams 535

References

[1] J. Araujo, A. Moreira, I. Brito, A. Rashid: Aspect-oriented requirements with UML. In
Proceedings of the Workshop on Aspect-oriented Modeling with UML, UML 2002, Dres-
den, Germany, October 2002.

[2] AspectJ Team: The AspectJ Programming Guide. Available at http://eclipse.org/aspectj/.
[3] Aspect-Oriented Software Development. Proceedings of the 1st international conference

on Aspect-oriented software development. ACM Press, 2002.
[4] Aspect-Oriented Software Development. Proceedings of the 2nd international conference

on Aspect-oriented software development. ACM Press, 2003.
[5] Aspect-Oriented Software Development. Proceedings of the 3rd international conference

on Aspect-oriented software development. ACM Press, 2004.
[6] Automotive Open System Architecture, www.autosar.org
[7] L. Baresi, R. Heckel, S. Thone, D. Varro: Modeling and validation of service-oriented ar-

chitectures: Application vs. style. In Proc. of ESEC/FSE, 2003.
[8] M. Basch, A. Sanchez: Incorporating aspects into the UML. In Proceedings of the Interna-

tional Conference on Aspect-Oriented Software Development, March 2003.
[9] M. Broy, I. Krüger, M. Meisinger: Services and service-oriented software architectures –

methodological foundations. To appear.
[10] S. Clarke , R.J.Walker. Composition patterns: An approach to designing reusable aspects.

In Proceedings of the 23rd International Conference on Software Engineering, pp. 5–14,
May 2001.

[11] A. Colin: Why web services? The Web Services Industry Portal, February 2002. Avail-
able at http://www.webservices.org/index.php/article/articleprint/75/-1/61/.

[12] C.A. Constantinides. A case study on making the transition from functional to fine-
grained decomposition. In Proc. of ECOOP 2003 Workshop on Analysis of Aspect-
Oriented Software (AAOS 03), July 2003.

[13] M. Deubler, J. Grünbauer, G. Popp, G. Wimmel, C. Salzmann. Tool Supported Develop-
ment of Service Based Systems. In 11th Asia-Pacific Software Engineering Conference
(APSEC 2004), IEEE Computer Society, Korea, 2004.

[14] E. Evans: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addi-
son-Wesley, 2003.

[15] G. Georg, R. France, and I. Ray: Composing Aspect Models. The 4th AOSD Modeling
With UML Workshop, 2003.

[16] C. Ghezzi, M. Jazayeri, R. France. Fundamentals of Software Engineering. Prentice Hall,
1991.

[17] P. Gibson, D. Méry: Formal Modelling of Services for Getting a Better Understanding of
the Feature Interaction Problem. In Bjorner, Broy, Zamulin (eds): Perspectives of System
Informatics, Lecture Notes in Computer Science. Volume 1755, Springer, 2000.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold: An overview of
AspectJ. In Proceedings of the 15th European Conference on Object-Oriented Program-
ming ECOOP 2001, LNCS vol. 2072, pp. 327–353, Springer, June 2001.

[19] I. Krüger. Specifying services with UML and UML-RT. In Electronic Notes in Theoreti-
cal Computer Science, volume 65 (7). Elsevier Science B. V., 2002.

[20] I. Krüger: Service specification with MSCs and roles. In Proceedings of IASTED Interna-
tional Conference on Software Engineering, Innsbruck, 2004.

[21] I. Krüger, R. Mathew: Systematic development and exploration of service-oriented soft-
ware architectures. In Proceedings of the 4th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2004), 2004.

[22] I. Krüger: Towards precise service specification with UML and UML-RT. In Proceedings
of the Workshop at UML, Critical Systems Development with UML (CSDUML), 2002.

536 Martin Deubler et al.

[23] R. Mathew: Systematic definition, implementation and evaluation of service-oriented
software architectures. Master Thesis at University of San Diego, California, 2004.

[24] Message Sequence Chart (MSC 96), ITU-T. Recommendation Z.120. ITU-T, 1996.
[25] Model Driven Architecture. Object Management Group. Available at

http://www.omg.org/mda/, 2003.
[26] A. Moreira, J. Araujo, and I. Brito: Crosscutting Quality Attributes for Requirements En-

gineering. Software Engineering and Knowledge Engineering Conference (SEKE), 2002.
[27] B. Nuseibeh: Crosscutting Requirements. AOSD 2004, The Open University, UK, 2004.
[28] C. Peltz: Web Services Orchestration and Choreography. IEEE Computer 36(10): pp. 46-

52, 2003.
[29] D.S. Platt, K. Ballinger: Introducing Microsoft .NET. Microsoft Press, 2001.
[30] C. Prehofer: Plug-and-Play Composition of Features and Feature Interactions with State-

chart Diagrams. In Proc. of the Seventh International Workshop on Feature Interactions in
Telecommunications and Software Systems, Ottawa, 2003.

[31] C. Prehofer: Feature Oriented Programming: A fresh look at objects, In Proceedings of
ECOOP 1997, Springer LNCS 1241, 1997.

[32] Realtime CORBA Joint Revised Submission, Object Management Group, OMG Docu-
ment orbos/99-02-12 ed., March 1999.

[33] S. Rittmann: Exploring Service-Oriented Software Development for Automotive Systems.
Diplomarbeit, Technische Universität München, 2004.

[34] J. Snell, D. Tidwell, P. Kulchenko: Programming Web Services with SOAP. O’Reilly,
2002.

[35] G. Sousa, S. Soares, P. Borba, J. Castro: Separation of crosscutting concerns from re-
quirements to design: Adapting an use case driven approach. In Proc. of Early Aspects
2004: Aspect-Oriented Requirements Engineering and Architecture Design. Workshop at
AOSD 2004, March 2004.

[36] D. Stein, S. Hanenberg, R. Unland: Designing aspect-oriented crosscutting in UML. In
Proceedings of Aspect-Oriented Modeling with UML. As part of the 1st International
Conference on Aspect-Oriented Software Development, April 2002.

[37] J. Suzuki, and Y. Yamamoto: Extending UML with Aspects: Aspect Support in the De-
sign Phase. AOP Workshop at ECOOP’99, Lisbon, Portugal, 1999.

[38] J. Sztipanovits, and G. Karsai: Model-Integrated Computing. IEEE Computer, Apr. 1997,
pp. 110-112.

[39] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton: N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of the 21st International Conference
on Software Engineering, May 1999.

[40] D. Trowbridge, U. Roxburgh, G. Hohpe, D. Manolescu, E.G. Nadhan: Integration Pat-
terns. Patterns & Practices. Available at www.microsoft.com, 2004.

[41] K. J. Turner: Relating Services and Features in the Intelligent Network. In Proc. of the 4th
International Conference on Telecommunications, pp. 235-243, Zagreb, June 1997

[42] UML 2.0. Object Management Group. Available at http://www.omg.org/uml.
[43] J. Whittle, and J. Araujo: Scenario Modeling with Aspects. IEE Proceedings - Software,

Special Issue on Early Aspects: Aspect-Oriented Requirements Engineering and Architec-
ture Design, August 2004.

A Formal Enforcement Framework for

Role-Based Access Control Using
Aspect-Oriented Programming

Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

Department of Computer Science & Engineering, The University of Connecticut,
Unit-2155, 371 Fairfield Road, Storrs, CT 06269- 2155

jaime.pavlich@uconn.edu, {ldm,steve}@engr.uconn.edu

Abstract. Many of today’s software applications require a high-level of
security, defined by a detailed policy and attained via mechanisms such
as role-based access control (RBAC), mandatory access control, digital
signatures, etc. The integration of the design/implementation processes
of access-control policies with runtime enforcement mechanisms is crucial
to achieve an acceptable level of security for a software application. Our
prior research focused on formalizing the concept of a role slice, which is a
unified modeling language (UML) artifact that captures RBAC security
requirements by defining permissions in the form of allowable or prohib-
ited methods, and by specifying roles as specialized class diagrams that
contain those methods. This paper augments this effort by introducing a
formal framework for the security of software applications that supports
the automatic translation of a role-slice access-control policy (RBAC re-
quirements) into aspect-oriented programming (AOP) enforcement code
that is seamlessly integrated with the application. The formal framework
provides the necessary underpinnings to automate the integration of se-
curity policies into software. A prototyping effort based on Borland’s
UML tool Together Control Center for defining role-slice diagrams and
the associated AOP code generator is under development.

1 Introduction

Security has become a very important issue in the development of software ap-
plications. Definition and realization of access control policies, along with other
security requirements, must be an integral part of the development process,
to ensure that the proper level of security in an application is attained. Since
access-control requirements tend to change across the entire life-time of a soft-
ware system, it is very important to have mechanisms that allow the developers
or the security administrators to understand and evolve the policies seamlessly.
To realize the integration of security in an application, it is necessary to con-
sider several key elements: the access-control approach, the means to represent
the access-control information during the analysis and design of the system, and

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 537–552, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

538 Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

the access-control mechanisms to translate those specifications to enforcement
code during the implementation (or update them after deployment).

In terms of access control, there are several popular approaches: mandatory
access control (MAC) [1, 2], discretionary access control (DAC) [3], and role-
based access control (RBAC) [4, 5, 6]. In MAC, permissions are assigned to
users based on the objects they can access in a system. Each object is labeled
with a classification level (e.g., top secret, secret, confidential, and unclassified)
that represents the sensitivity of their information. To constrain the access to
information, each user has a clearance level that defines the access to objects
based on its relative order with the classification level of each object. In DAC,
permissions are defined between users and objects, but there are also privileges
to delegate rights to other users, i.e. a user can be granted the permission to
delegate a subset of its own permissions to another user. RBAC is a more general
approach where permissions are grouped in independent units called roles, which
represent the role that a user assumes in an organization. Thus, roles, rather than
permissions, are assigned to users when they initiate an interactive session with
the software system. The set of privileges granted to a user is defined by the set
of permissions assigned to its corresponding role.

To represent access-control information, regardless of the approach utilized, it
is crucial to use a formalism that allows developers to clearly understand the
security policies that they are defining, and to evolve them easily as require-
ments change. In this regard, visual languages can be very powerful tools; a
well-designed visual representation can conceptualize the security information
to developers in an intuitive fashion, facilitate changes, and hopefully reduce er-
rors in the definition of the policy. A CASE tool that incorporates that notation
for modeling, and that can automatically check the consistency of the generated
models is also critical to ensure a proper security definition. Ongoing work by
Doan et al. [7, 8, 9] is focusing on creating a framework for the definition of secu-
rity policies by enhancing UML to support RBAC and MAC, and defining rules
for checking the consistency of the models as an application and its security are
defined and changed over time. Their focus is on extending use-case, class and se-
quence diagrams with tagged values representing access-control attributes, such
as classification and clearance levels, lifetimes (legal time intervals for accessing
elements in the model), etc. Their work associates roles with UML actors, and
defines permissions as actor-use-case associations, actor-object associations, and
actor-method associations (in sequence diagrams).

While their approach utilizes a visual modeling language to represent security
policies, it does not provide a global view of the permissions. A security policy
modeled by this method can be hard to understand by developers and security
administrators, since such a policy is distributed across many UML elements
rather than organized in a single UML artifact. To complement this work, and
to provide a more seamless transition from an access-control policy definition to
its implementation, a new visual notation was introduced, the role slice [10], that
can be used to represent roles and their permissions for RBAC. The underlying

A Formal Enforcement Framework for Role-Based Access Control 539

premise is to define permissions as the ability to invoke a method of a class.
Roles are represented as stereotyped packages, and their permission assignment is
represented by a specialized class diagram containing the assigned methods. Role
hierarchies are also supported; they are represented by stereotyped dependency
arrows, using model composition[11] to obtain the permissions of each role based
on its position in the hierarchy.

The purpose of this paper is to detail and formalize the process that translates
an access-control policy into code, via an architecture that emphasizes separation
of concerns to reduce software complexity, significantly extending our prior work
on the definition of a role slice [10]. To do so, this paper introduces a specialized
formalism for representing security policies which is instrumental in modularizing
security concerns at design time. One contribution of this paper is to separate, at
development time and through the use of aspect-oriented programming (AOP),
the security enforcement code from the rest of the application. Without this
type of support, access-control enforcement code is often scattered and tangled
in the application’s code, making it difficult to track an entire policy as a logical
entity. For example, using a traditional object-oriented decomposition, access
control code may be added at the beginning of every method, which results in
modifications to many classes that are otherwise unrelated to security issues.
Using aspects, that code can be isolated, resulting in a complete modularization
of the security concern. The transition from security specifications to code is
automated with aspect-oriented security code generation. In this regard, a second
contribution of this paper is the formalization of this compilation process, where
AOP generated security code is included as part of an application’s software.
The formalisms that we present utilize a functional notation based on structural
operational semantics [12].

This paper is organized into five sections. Section 2 explains background concepts
on RBAC and AOP. Section 3 formalizes the elements needed for implementing
access control: the underlying object-oriented and aspect-oriented models, and
role slices. Section 4 formalizes the generation of aspect-oriented access control
code from a role-slice specification. Section 5 summarizes related work. Section
6 concludes the paper and reviews on-going prototyping and future work.

2 Background on RBAC and AOP

This section provides background information about the integration of access
control into software applications by using RBAC, and AOP to create a soft-
ware architecture that modularizes security. To begin, role-based access control
(RBAC) assumes that an organization itself owns the data and not the users
(who require access to the data). Access control can be established with respect
to the tasks that each user performs inside the organization [13]. Thus, in RBAC
permissions are assigned to roles that exist within an organization. A user can
assume a role and utilize its permissions for the duration of the authorization.

540 Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

Since in an organization, the set of functions associated with each role is much
more stable than the users who are assigned to those roles[5], the approach limits
changes to the security policy and the impact on end-user authorizations. The
basic RBAC concepts used in this paper are:

Permissions represent the ability to perform a task over some part of the sys-
tem. The NIST standard[6, 14] deliberately leaves them as uninterpreted
symbols, allowing the developers to decide the chosen interpretation accord-
ing to a particular realization of the security policy. A positive (negative)
permission explicitly grants (denies) the right to perform an action over the
system. Our approach uses negative permissions only to provide overriding
capabilities to the role hierarchies.

Methods of an object-oriented application are the unit of permission for our
approach, allowing each role to be statically associated with the methods that
are positive permissions and negative permissions. The use of methods as the
level of privilege assignment has been utilized as part of our foundational
security work on the object-oriented paradigm [15], our efforts on security
for distributed environments [16, 17], and for the integration of MAC and
RBAC into UML [7, 8, 9].

Roles are the entities that represent the set of permissions to perform task in a
system. Users represent individuals who interact with a system. To initiate
an interaction, a user obtains a role and all its associated permissions. Roles
are organized in hierarchies similar to class hierarchies in object-oriented
systems; each role is associated to a set of parent roles and inherits all the
permissions from them. Role hierarchies can be used for classifying roles, i.e.
grouping them according to common sets of permissions. For that purpose
abstract roles can be used, which in a role hierarchy cannot be assigned to
any user. Concrete roles represent roles that can be assigned to a user, and
are normally associated to organizational roles.

Aspect-oriented programming (AOP) is an approach for isolating crosscutting
concerns, i.e., requirements orthogonal to the application structure whose im-
plementations are invariably scattered and tangled throughout the entire ap-
plication. An AOP aspect is a code fragment that modularizes the orthogonal
concern. An aspect weaver is a compiler that integrates the aspects with the rest
of the application. Each aspect specify where and how to inject its own code in
the application. Standard terminology includes:

Advices An advice is a code fragment that implements a part of an aspect
(e.g., access control), and is intended to be woven with the main program.

Join Points A join point is a location within a program where the aspect
weaver integrates an advice.

Pointcuts A pointcut is a set of join points sharing specific static properties.
For instance, in AspectJ [18], pointcuts are defined with quantified boolean
formulas over method names, class names, control flow or lexical scopes and
capture specific event occurrences such as method calls, access to attributes
or exceptions to name a few.

A Formal Enforcement Framework for Role-Based Access Control 541

Aspect Weaving is a compilation technique that identifies join points in point
cuts and modifies the code at that site according to the specified advice.

3 Formal Definitions

In this section, we detail a formal framework for modeling an object-oriented
application (Section 3.1), role slices (Section 3.2), and aspect-oriented concepts
(Section 3.3). The formalism employs a functional notation based on [12] to
specify the operational semantics of the program transformation. The functional
notation used for the program transformation is structure-driven and promotes
a concise, yet precise, specification of the compilation process. For uniformity,
the following conventions are used throughout the section:

– Most of the definitions use records of the form 〈l1 = v1, l2 = v2, ..., ln = vn〉,
where each li is the label of the ith field of the record and vi is its value.

– The dot operator (“.”) is used with the label name to project on the corre-
sponding value. For example, for a record person = 〈name = Joe, age = 20〉,
the expression person.name denotes the value Joe

In addition, some definitions, such as the composition function (see Def. 11),
or the weaving function (see Def 15), use higher-order functions such as map
and foldl. For completeness, the specification of map and foldl are: Foldl
is a higher-order function that takes a function of two arguments, an initial
value, and a list, and returns the result of applying the function recursively over
every element of the list, in a left-associative way; and, Map is a function that
takes a rewriting function and a list, and returns a list that consists of all the
transformed elements.

foldl = λf.λv.λl. if nil l then v else (foldl f (f v (head l)) (tail l))
map = λf.λl. if nil l then nil else (f (head l)) :: (map f (tail l)))

3.1 Object-Oriented Definitions

This section formalizes an object-oriented application via an abstraction of a full
blown object-oriented language that only retains features that are relevant to
the discussion of security concerns. The top-level element application, contains
classes and inheritance relationships. Each class contains a set of methods, and
each method contains an implementation, which is a sequence of method invoca-
tions. A subsystem is a subset of the classes and will be used to separate secure
and non-secure portions of the system.

The execution of a program is carried out by an interpreter that chains method
invocations on object instances. One important element of the execution schema

542 Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

is that for every method executed, an extra argument representing an environ-
ment function is passed to every method invocation. The environment keeps the
state of variables, such as the return value of a method, the credentials for the
authenticated (active) role, the access control policy (available roles and role
hierarchy), and the exit value of the program.

Definition 1 (Interpreter Function). An interpreter I : M → S → Arg →
N is a function that, given a method, an environment (see Def. 2), and a method
argument, performs a sequence of method invocations (reduction steps) and ter-
minates with the output of an exit status (natural number):

I = λm.λs.λarg. (evalCall 〈m, s, arg〉) ′exit′

To define its behavior the interpreter uses the auxiliary function evalCall that,
given a method invocation (see Def. 4), recursively evaluates the implemen-
tation of the method, executing control flow statements, performing method
invocations, and altering the environment. At the end it returns a new environ-
ment. We deliberately avoid a more detailed definition of this function, because
it would unnecessarily increase the complexity of our definitions, and because
the interpreter and its semantics are not affected by techniques proposed herein.

Definition 2 (Environment Function). An environment S : Id → T is a
function that tracks global information during the execution of the application,
by associating an identifier of type Id (e.g. a string) to an object of type T .

Note that T is a sum type capable to hold a value of any type that exist within the
application. An example of the values that S can assume during the execution of a
program is [‘exit′ �→ 0, ‘activeRole′ �→ R, ‘policy′ �→ P], where ‘exit’ represents
the exit value of the execution of the application (see Def. 1), ‘activeRole’ is
mapped to the object representing the active role of the application (see Eq. 3
and Eq. 7), and ‘policy’ is mapped to the access control policy (see Def. 10 and
Eq. 3). The environment is also used to store the return value of a method after
its invocation (e.g. [‘returnV alue′ �→ 5]). For convenience, the auxiliary function

set = λs.λi.λv.λx.if x = i then v else s x

will be used to update the environment. It takes an environment s, an identifier
i and a value v, and returns a new environment that contains the association
i �→ v in addition to the original ones.

Definition 3 (Method). A method is a record 〈name, impl〉, where name is
the name of the method and impl is the implementation of the method.

When the method is evaluated, the interpreter obtains the functional implemen-
tation of the method, which is of the form λs.λarg.b, where s is the environment

A Formal Enforcement Framework for Role-Based Access Control 543

function, arg is the argument passed to the method 1 and b is the method imple-
mentation. This function returns a new environment containing the changes done
by the execution of the method. During compilation time, the implementation
of the method is treated as a sequence of the form shown in Def. 5.

Definition 4 (Method Invocation). A method invocation is a record of the
form 〈m, s, arg〉, where m is the invoked method, s is the environment, and arg
its argument.

The interpreter function evalCall is responsible for the evaluation of a method
and returns a new environment that reflects all the changes and side effects re-
sulting from the execution of the method. For example, a Java method invocation
of the form a.method(p1,p2,p3); is expressed as 〈method, s, 〈a, p1, p2, p3〉〉.

Definition 5 (Implementation). An implementation (inv1, ..., invn) is a se-
quence of method invocations.

This definition purposefully abstracts away several elements from a real imple-
mentation (e.g., control flow statements, builtin instructions or side-effects op-
erations such as assignments) that would add complexity to the formalization
but do not affect the framework.

Definition 6 (Class). A class is a set of methods. Because attributes are not
necessary to explain our approach, we do not include them in the definition of
class.

Definition 7 (Application). An application is a record 〈C, H〉, where C is
the set of classes and H ⊆ C × C is the inheritance relation between classes in
C, with each pair 〈a, b〉 ∈ H indicates that a is a subclass of b.

Definition 8 (Subsystem). A subsystem of an application 〈C, H〉 is a record
〈SC, SH〉, where SC ⊆ C and SH is the projection of H onto SC.

3.2 Role Slices

In this section, we review and formalize the role-slice artifact as it relates to
RBAC and permission assignment, using a university application illustrated in
Figure 1, that depicts a simplified class model that manages information about
courses and students, providing access for different types of users (e.g., teach-
ers, students, administrators, etc.). The Course class stores information about
syllabus, credits, and enrolled students, while StudentRecord stores the infor-
mation about a student’s id number, name, and enrolled courses. The Catalog

1 An argument can also be a tuple of values

544 Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

class shows all of the public information on the courses offered. To grant access
through RBAC, we define two roles: Teacher is able to manage a course, define its
syllabus, and obtain the list of enrolled student names; and, Student is able to get
the basic information on a courses s/he is enrolled in, obtain their syllabus, and
the number of credits. A role slice is used to define an access-control policy. A role

StudentRecord

getSsn()

getName()

getEnrolledCourses()

Course

getSyllabus()

setSyllabus(syllabus)

setCredits(numOfCredits)

getCredits()

getEnrolledStudents()

Catalog

getCoursesOffered()

*

-enrolledStudents

*

-enrolledCourses

*

-courses

Fig. 1. Class diagram of the Courseware Application

slice denotes the set of class methods that a given role can access, and represents
the separate concern that captures permissions for roles. Since a role may not
require access to every class, the role-slice permission assignment is defined with
respect to a subsystem. Pictorially, a role slice is represented in UML as a stereo-
typed package containing a specialized class diagram (see Fig. 2), that is a subset
of the class model; each class present in the role slice has only the methods that
are assigned to the corresponding role as positive or negative permissions. The
diagram in Fig. 2 is defined over the subsystem 〈{Course,StudentRecord}, {}〉.
Catalog represents publicly-accessible information and does not appear in any
role slice. The two concrete role slices are Teacher and Student. Each inherit
permissions from the abstract role slice AcademicPeople that holds the com-
mon set of permissions. Note that positive and negative permissions (methods)
are represented, respectively, with the stereotype � pos � and � neg �. The
role-slice composition relationship captures inheritance among roles in a role hi-
erarchy. Visually, it is represented as a stereotyped dependency arrow that starts
from the child and points to the parent. To obtain the complete set of permissions
for a role in a hierarchy, a specialized version of the composition with override
integration defined by Clarke [11] composes two class diagrams by unifying their
classes and methods. For role slices, the names of the classes are matched (i.e.,
classes with the same name in both role slices compose into one class in the final
diagram), and the child overrides any permission definition in the parent. For
the role-slice diagram in Fig. 2, a full composition operation produces the dia-
gram shown in Fig. 3. In this new role-slice diagram, only concrete role slices are
shown. To illustrate overriding, the method getEnrolledStudents is positive in
AcademicPeople, and negative in Student. The composed role slice for Student
shows this method as negative. Formally, a role-slice is defined as follows.

A Formal Enforcement Framework for Role-Based Access Control 545

Definition 9 (Role Slice). A role slice is a record 〈PP, NP, abstract〉, where
PP is the set of methods with positive permissions, NP is the set of methods with
negative permissions, and abstract indicates whether the role slice is abstract or
concrete (see definition of Roles in section 2).

Definition 10 (Access-Control Policy). An access-control policy represents
the sets of roles and permissions for a specific subsystem containing the classes
requiring access control, and is a record 〈RS, CR, S〉, where RS is the set of
role slices defined over the subsystem S, and CR ⊆ RS × RS is the role-slice
composition relation that defines the role hierarchy. Each pair in CR is of the
form 〈a, b〉, where a is the child role slice and b is the parent role slice.

Definition 11 (Full composition). Full composition fc : RS → CR → RS
is a function that takes a role slice and a composition relation as arguments,
traversing the role-slice hierarchy to return the role slice composed with all its
ancestors. For space reasons, no further details are given for this function.

<<RoleSlice>>

AcademicPeople

Course

+<<pos>> getSyllabus()

+<<pos>> getCredits()

+<<pos>> getEnrolledStudents()

StudentRecord

+<<pos>> getName()

<<RoleSlice>>

Teacher

Course

+<<pos>> setSyllabus(syllabus)

<<RoleSlice>>

Student

StudentRecord

+<<pos>> getEnrolledCourses()

<<RoleSliceComposition>>

<<RoleSliceComposition>>

<<RoleSlice>>

AcademicPeople

{abstract}

Course

+<<neg>> getEnrolledStudents()

Fig. 2. Role Slice Diagram

<<RoleSlice>>

Teacher

Course

+<<pos>> setSyllabus(syllabus)

+<<pos>> getEnrolledStudents()

+<<pos>> getSyllabus()

+<<pos>> getCredits()

<<RoleSlice>>

Student

StudentRecord

+<<pos>> getEnrolledCourses()

+<<pos>> getName()

StudentRecord

+<<pos>> getName()

Course

+<<pos>> getSyllabus()

+<<pos>> getCredits()

+<<neg>> getEnrolledStudents()

Fig. 3. Composed Role Slice Dia-
gram

546 Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

3.3 Aspect-Oriented Definitions

This section details the formal definitions of the aspect-oriented elements needed
for specifying access-control code. The concepts that are introduced are abstrac-
tions of real AOP constructions that only capture the features necessary to
describe the compilation of the security design. For example, join points only
reference method calls initiated in specific methods, and there are no attribute-
based join points and advices only represent the around construct.2

Definition 12 (Point Cut). A point cut represents a set of specific locations
in the code of the application that are used to integrate the aspect code. It is repre-
sented as a record 〈caller, callee〉, where caller is a method where all invocations
of callee must be modified to include the aspect code.

Definition 13 (Advice). An advice is a record 〈PC, T 〉, where PC is a set
of point cuts and T is a rewriting function that modifies the method invocations
specified in PC.

Definition 14 (Aspect). An aspect is a set of advices.

Definition 15 (Weaving). Weaving W : App → A → App is a function that
takes an application and an aspect as arguments, and outputs an application with
all the advices of the aspect woven to its structure.

Fig. 4 details the algorithm for weaving using λ-calculus notation. The aspect-
weaving function W uses three auxiliary functions. WC weaves one advice adv to
the set of classes C of the application. WM weaves one advice adv to the methods
of each class. WIMPL modifies the implementation of the current method by
weaving the advice adv to each method invocation inv whenever 〈m, inv.m〉 is
a point cut in the advice, with m the caller obtained from WM and inv.m the
callee. The rewrite simply replaces the invocation inv by the invocation of a new
function generated by the advice. Typically, the method invoked performs some
access control and delegates back to the callee when the access is granted and
raises an exception otherwise.

4 Enforcing RBAC Using AOP

Once an access-control policy is defined by using role slices, it is necessary to
translate that specification to enforcement code. This process is done automati-
cally by a code generator, currently under development at UConn. This program
takes as input a role-slice access-control policy (see Def. 10) and outputs:
2 before and after constructs can easily be emulated in the rewriting function

A Formal Enforcement Framework for Role-Based Access Control 547

WIMPL = λm.λinv.λadv. if 〈m, inv.m〉 ∈ adv.PC
then adv.T inv
else inv

WM = λm.λadv.〈m.name,map (WIMPL m) m.impl〉
WC = λc.λadv.map WM c
W = λapp.λa.〈foldl (λc.λadv. map WC c adv) app.C a, app.H〉

Fig. 4. Weaving Algorithm

– A policy database, containing the access control policy, and an authorization
schema to store user instances and their assigned roles. The assumption is
that every user is assigned only one role per session with the system. In our
example, this information is accessed through the environment using the id
string ‘policy’.

– An access-control aspect that intercepts every call to the set of classes which
access needs to be controlled and grants or deny access depending on the
permissions stored in the policy database.

Formally, to implement access control for an application app, a subsystem subs
is defined for controlling access, i.e., for the university application in Sec. 3.2
subs = 〈{StudentRecord, Course}, {}〉. The access-control aspect is defined as:

ac = {advlogin, advenf} (1)

To enforce access control, the aspect uses the active role of the user currently
logged in. The method that obtains the active role remains application depen-
dent. In this example assume that when a user initiates a session in the system,
a login method is invoked to obtain a tuple 〈u, r〉 representing an instance of
the logged user (u) and his/her active role (r). The advlogin advice intercepts
the login method and stores the active role in the environment.

advlogin = 〈{〈m, login〉 : m ∈ (
⋃

c∈app.C

c)\{login}}, Tlogin〉 (2)

The pointcut of advlogin references all calls to the loginmethod that do not occur
within the login method itself. Tlogin is the rewriting function that retrieves the
user’s role from the return value of the login method, applies full composition
to it (see Def. 11), and stores it into the environment as the ‘activeRole’.

Tlogin = λinv.〈 (λs.λarg.let y = ((inv.m s arg) ‘returnV alue′) in
set s ‘activeRole′ (fc y.r (s ‘policy′).CR)), inv.s, inv.arg〉

(3)

The advenf advice enforces the security policy. It intercepts external calls to the
subsystem subs (calls to methods in subs originating outside subs).

advenf = 〈{〈a, b〉 : a ∈ Mext, b ∈ Min}, Tenf〉 (4)

548 Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

Mext is the set of methods outside the subsystem subs, and Min is the set of
methods within subsystem subs.

Mext =
⋃

c∈(app.C\subs.SC)

c (5)

Min =
⋃

c∈subs.SC

c (6)

Tenf is the method invocation rewriting function that checks positive permissions.
It receives a method invocation inv and produces a new invocation record whose
first member m is a new function that performs the access control and possibly
delegates to the original function implementation when the access is granted.

Tenf = λinv.〈(λs.λarg.if inv.m ∈ (s ‘activeRole’).PP
then (inv.m s arg)
else Exception), inv.s, inv.arg〉

(7)

Notice that negative permissions are not checked explicitly, because they are
implicitly enforced by this implementation; the main purpose of negative per-
missions is to provide overriding when doing role slice composition.

To illustrate the ideas discussed above, we first model the university application
and a secure subsystem:

app = 〈{StudentRecord, Course, Catalog}, {}〉 (8)

subs = 〈{StudentRecord, Course}, {}〉 (9)

The security policy for the subsystem subs is defined by the composed role slices
Teacher and Student (see Fig. 3); the Student role slice is:

Student =
〈{

getEnrolledCourses, getName
getSyllabus, getCredits

}
, {getEnrolledStudents}

〉

(10)
Security enforcement of the university application is implemented by an access
control aspect as shown in Eq. 1. For space reasons, we only give details of the
advice advenf (Eq. 4), defined with respect to the sets of external and internal
methods, as:

Mext = {getCoursesOffered} (11)

Min = {getSsn, getName, getEnrolledCourses, getSyllabus, setSyllabus,
getCredits, setCredits, getEnrolledStudents}

(12)
To illustrate the effects of the weaving function, we show the details of the
method getCoursesOffered:

〈
getCoursesOffered,

(
〈getSyllabus, s, 〈thecourse〉〉,
〈getCredits, s, 〈thecourse〉〉

)〉
(13)

A Formal Enforcement Framework for Role-Based Access Control 549

For brevity, assume that its implementation has only two method invocations,
which are executed over an instance of Course, called thecourse. Since the
method getCoursesOffered is external, all its invocations to internal methods
are woven to advice advenf . The functional implementation of the invocation to
getSyllabus after the weaving is:

〈(λs.λarg. if getSyllabus ∈ (s ‘activeRole’).PP (14)
then (getSyllabus s arg)
else Exception), s, 〈thecourse〉〉

This woven invocation now calls getSyllabus only if the active role has permis-
sions to do it.

5 Related Work

There have been previous attempts to use AOP for enforcing access control. One
such approach is [19], which contains an example of composition of access-control
behavior into an application by using aspect-oriented modeling techniques, with
the aim of integrating security into a class model that allows designers to verify
its access-control properties. Their approach takes a generic security design and
instantiates it in a model tied to the domain of the application. In contrast,
our code generation also requires the instantiation of the design, but only the
access control aspect has dependencies with the domain class model. In addition,
the role-slice notation provides a language to represent the policy that can be
implemented using the aspect-oriented paradigm.

Another effort is [20] that provides a general framework for incorporating secu-
rity into software via AOP, presenting a particular example access control via
aspects. Their approach is similar to ours in the way they constrain method in-
vocations based on permissions, but it differs in permission definition; in theirs,
each permission is represented as a specific method tied to a framework of server
objects that define them and a set of client objects that invoke them, while in
ours, permissions are defined over any method in the class diagram, with a for-
mal mapping between policy definition and code to set the base for automatic
code generation. In terms for formalizing AOP, [21] proposes a monadic formal
model for dynamic join points and AOP. Their notation is complete and general
enough for representing AOP. Our approach is simpler (sufficient for our needs)
and with the specific purpose of representing access-control enforcement.

Regarding the UML notation, [22] has proposed a Network Enterprise Frame-
work using UML for representing RBAC requirements without separation of
duty. Permissions are represented using UML packages and interfaces; role hi-
erarchies are achieved by interface inheritance. This approach inspired the role-
slice model, which in contrast uses classes, supports permission overriding, and
role hierarchies, which are defined over a special grouping unit (the role slice).

550 Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

Another effort that relates to role slices is [23], which defines a metamodel to
generate security definition languages. SecureUML [23] is an instance defined by
this approach; a platform-independent security definition language for RBAC.
The syntax of SecureUML has two parts: an abstract syntax independent from
the modeling notation; and, a concrete syntax which can be used as an exten-
sion to a modeling language, such as UML. The abstract syntax defines basic
elements to represent RBAC: roles, which can be assigned to users or groups
of users; permissions, which are assigned to roles based on specific associated
constraints ; and, actions, which are associated with permissions, where a role
can have a permission to execute one or more actions. SecureUML’s concrete
syntax is defined by mapping elements in the abstract syntax to concrete UML
elements [23]. We note that our role-slice diagram and associated concepts can
be an instance of the concrete-syntax of the SecureUML notation, and that our
syntax and associated mappings to UML elements differ from their approach.
We also note that the role-slice diagram is only one component of our overall
research. Specifically, our usage of composition in the role-slice diagram and the
subsequent transition of the composed diagram into AOP enforcement code, is
significantly different than the approach in SecureUML.

6 Conclusions and Future Work

This paper has formalized a compilation mechanism for security specification,
that is able to support the automatic transition of a new UML artifact, the role
slice (based on our previous work), into aspect-oriented code for security en-
forcement. Based on background on RBAC and AOP in Section 2, we have pre-
sented a formal functional model that captured an object-oriented application,
aspect-oriented modeling, and role slices (see Section 3). This model facilitates
the formalization of aspect-oriented access control generation from role slices,
as presented in Section 4. Overall, we believe that our efforts to formalize the
security definition and enforcement processes can be instrumental in attaining
precise and accurate security specifications that can be evolved over time.

In terms of ongoing research, the effort presented in this paper is occurring
concurrently with work underway at UConn to extend UML with MAC and
RBAC [7, 8, 9], as mentioned in the introduction. As part of this effort, a team of
graduate students has been integrating both that work and the work presented
herein as part of Borland’s UML tool Together Control Center (TCC). TCC
has an open API and plug in architecture that has allowed us to extend UML
diagrams to support security definition, and to define a new role-slice diagram.
In addition to this prototyping effort, we are continuing our research into the
role-slice model as presented in this paper. Specifically, we are interested in
enhancing our model with additional security concerns, including: MAC to be
able to handle security against methods based on classification and clearance;
delegation to provide the ability to pass on authority (role) from one user to
another; and, instance-based security that expands our work to control access

A Formal Enforcement Framework for Role-Based Access Control 551

to methods based on object instances in addition to our current class-based
approach. Our intent is to extend the formalisims of Sections 3 and 4 with each
additional access control capability.

References

[1] Bell, D., LaPadula, L.: Secure computer systems: Mathematical foundations
model. Technical report, Mitre Corporation (1975)

[2] Biba, K.: Integrity considerations for secure computer systems. Technical report,
Mitre Corporation (1977)

[3] DoD: Trusted Computer System Evaluation Criteria. 5200.28-STD. DoD (1985)

[4] Ting, T.C.: A user-role based data security approach. In Landwehr, C., ed.:
Database Security: Status and Prospects. (1988)

[5] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access
control models. IEEE Computer 29 (1996) 38–47

[6] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4 (2001)
224–274

[7] Doan, T., Demurjian, S., Ting, T., Phillips, C.: RBAC/MAC security for UML.
In Farkas, C., Samarati, P., eds.: Research Directions in Data and Applications
Security XVIII. (2004)

[8] Doan, T., Demurjian, S., Ting, T., Ketterl, A.: MAC and UML for secure software
design. In: Proc. of 2nd ACM Wksp. on Formal Methods in Security Engineering,
Washington D.C. (2004)

[9] Doan, T., Demurjian, S., Ammar, R., Ting, T.: UML design with security in-
tegration as a first class citizen. In: Proc. of 3rd Intl. Conf. on Computer Sci-
ence, Software Engineering, Information Technology, e-Business, and Applications
(CSITeA’04), Cairo (2004)

[10] Pavlich-Mariscal, J.A., Doan, T., Michel, L., Demurjian, S.A., Ting, T.C.: Role
slices: A notation for rbac permission assignment and enforcement. In: Proceed-
ings of 19th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security. (2005)

[11] Clarke, S.: Composition of object-oriented software design models. PhD thesis,
Dublin City University (2001)

[12] Plotkin, G.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, CS Department, University of Aarhus (1981)

[13] Ferraiolo, D., Kuhn, R.: Role-based access controls. In: 15th NIST-NCSC National
Computer Security Conference. (1992) 554–563

[14] Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST model for role-based access control:
Towards a unified standard. (2000) 47–64

[15] Demurjian, S.A., Ting, T.C.: Towards a definitive paradigm for security in object-
oriented systems and applications. Journal of Computer Security 5 (1997)

[16] Phillips, C., Demurjian, S., Ting, T.: Security assurance for an rbac/mac security
model. In: Proc. of 2003 IEEE Info. Assurance Workshop, West Point, NY (2003)

[17] Phillips, C., Demurjian, S., Ting, T.C.: Safety and liveness for an rbac/mac
security model. In di Vimercati, S., Ray, I., eds.: Database and Applications
Security XVII: Status and Prospects. (2004)

552 Jaime Pavlich-Mariscal, Laurent Michel, and Steven Demurjian

[18] AspectJ-Team: The aspectj programming guide. http://dev.eclipse.org/viewcvs/
indextech.cgi/ checkout /aspectj-home/doc/progguide/index.html (2003)

[19] Song, E., Reddy, R., France, R., Ray, I., Georg, G., Alexander, R.: Verifiable
composition of access control features and applications. In: Proceedings of 10th
ACM Symposium on Access Control Models and Technologies (SACMAT 2005).
(2005)

[20] Win, B.D., Vanhaute, B., Decker, B.D.: Security through aspect-oriented pro-
gramming. In: Proceedings of the IFIP TC11 WG11.4 First Annual Working
Conference on Network Security, Kluwer, B.V. (2001) 125–138

[21] Wand, M., Kiczales, G., Dutchyn, C.: A semantics for advice and dynamic join
points in aspect-oriented programming. In Leavens, G.T., Cytron, R., eds.: FOAL
2002 Proceedings. (2002)

[22] Epstein, P., Sandhu, R.: Towards a uml based approach to role engineering. In:
Proceedings of the fourth ACM workshop on Role-based access control. (1999)
135–143

[23] Basin, D., Doser, J., Lodderstedt, T.: Model driven security, Engineering Theories
of Software Intensive Systems. (2004)

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 553-567, 2005.
 Springer-Verlag Berlin Heidelberg 2005

A Domain Model for Dynamic System Reconfiguration

D’Arcy Walsh, Francis Bordeleau, Bran Selic

Carleton University, Ottawa, Canada
{jdwalsh@acm.org, francis@zeligsoft.com, bselic@ca.ibm.com}

Abstract. In this paper, a domain model of dynamic system reconfiguration is
presented. The intent of this model is to provide a comprehensive conceptual
framework within which to address problems and solutions related to
dynamically reconfigurable systems in a systematic and consistent manner. The
model identifies and categorizes the various types of change that may be
required, the relationship between those types, and the key factors that need to
be considered and actions to be performed when such changes take place. A
rigorous formal methodology, based on the Alloy language and tools, is
employed to specify precisely and formally the detailed relationships between
various parts of the model.

1 Introduction

Predicting future user requirements or anticipating changing domain imposed
requirements for software systems [1, 2] is extremely difficult and error prone, often
resulting in over- or under-engineered solutions. This leads to the notion of software
systems that can evolve dynamically [3]. This paper describes a domain model of
dynamic system reconfiguration that provides a well-defined context for a systematic
treatment of different approaches to the problem of evolving software systems.

 The proposed domain model defines the core concepts that make up a
reconfigurable system. It is component based since it represents a software system as
a configuration of autonomous cooperating components [6,7]. Dynamic
reconfiguration is therefore viewed as a run-time realignment of that configuration [3,
8-11]. The particular kinds of realignment are represented as types of change.

 A change to a system may be either user driven or domain imposed. In either
case, there will be new or augmented functional and non-functional requirements on
the system. Importantly, it may be required that the functional change must not violate
the original non-functional conditions (e.g., response time, availability) or vice-versa.
A change may either be expected, and therefore planned for within the design of the
system, or unexpected, and therefore involving more fundamental and possibly more
pervasive behavioral and structural changes. Finally, the time to enact the required
change may be bounded or unbounded compared to other conditions for evolution [4,
5].

 The essentials of the proposed domain model are first expressed in the form of a
conceptually simple feature model [12, 13]. This is used as a basis for deriving a more
refined formal model expressed using the Alloy language [14-18]. This allows the

554 D'Arcy Walsh, Francis Bordeleau, and Bran Selic

proposed domain model to be formally validated for consistency. Finally, the feature
and Alloy models are used to produce a UML class model [13, 19-21] that combines
the various aspects into a single comprehensive metamodel of dynamic
reconfiguration.

 The rest of this paper first identifies the types of change that occur in a
dynamically evolving system. Section 3 describes the feature model, while the Alloy
model is described in section 4. Finally, the main elements of the UML class model
are described in section 5.

2 Types of Change

The type of a change defines, at an abstract level, how a system evolves to adapt to
new conditions. The evolution of a particular system conforms to one or more of these
general types but within the context of the particular conditions that motivated the
change and the concrete representations of that system.

to affect
structural

change

to affect
behavioral

change

C
ascades

governed by:
global consistency and
local consistency
management

governed by:
active component

reference,
global consistency, and

local consistency
management

governed by:
conponent state,

active component
reference,

global consistency, and
local consistency

management

governed by:
global consistency and
local consistency management

to affect
inter-

component
change

to affect
intra-

component
change

governed by:
global consistency and
local consistency
management

governed by:
composite component, dependent operation,
constrained operation, component state,
global consistency and
local consistency management

Architectural Change

Topology Change

Substitution

Protocol Change

Interface Change

Internal Change

Fig. 1. Types of change and their dependencies

 Figure 1 shows the six types of change that could be applied to a running system
and their mutual relationships. Together they provide a comprehensive dynamic
reconfiguration capability. Each type is described below in terms of whether
structural or behavioral change is affected, whether inter-component or intra-
component change is required, and its dependencies on other change types. The types
of change determine whether the behavioral or structural signature of a system must
change, which in turn determines whether a system’s internal behavior or external
interactions need to be realigned.
 The diagram also identifies the system integrity characteristics that govern each
change type and which ensure global and local consistency across the system in the

A Domain Model for Dynamic System Reconfiguration 555

face of change. Depending upon the combination of change types needed, the same
integrity characteristics may apply for different types of change (such as global and
local consistency constraints).

 The types of system change are the following:

 Substitution replaces a particular component by another within a given system
topology. This is a structural intra-component change. It does not require any other
types of change;

 Internal Change changes the internal implementation of a component. This is an
intra-component type of change that can be either behavioral, structural, or both. It
does not require any other types of change;

 Interface Change changes the externally observable behavior of a component. It is
a behavioral intra-component change. Ultimately, it may require internal change of
one or more components to realize the new behavior;

 Protocol Change changes the control flow and/or data flow of components. This is
a behavioral inter-component change. Ultimately, it may require a topology change
or an interface change;

 Topology Change changes the topology of a system through component addition
and/or removal. This is a structural inter-component change. Ultimately, it may
drive substitution or protocol changes; and

 Architectural Change changes global and/or local system properties. It is an inter-
component change that may be structural, behavioral, or both. Ultimately, it may
require topology and/or protocol changes.

The system integrity characteristics are:

 Active Component References ensure that any active client that is bound to a
changing component has a valid binding after the change is completed (the binding
may have to be dynamically updated);

 Component State indicates that any needed transfers of state from the changing
component to its replacement component(s) occurred through appropriate
mechanisms;

 Constrained Operations ensure that any operation with a dependency on a
component’s state element would not be enacted until the given state element’s life
cycle was restored as necessary after its component’s change;

 Dependent Operations ensure that any change to a given operation was valid with
respect to any client operations that had a direct dependency on the operation about
to change;

 Composite Components ensure that any change to a given component was valid
with respect to any composed components that had a direct dependency on the
changing component;

 Global Consistency ensures the preservation of any global architectural invariants
of a system, as implied by its specification; and

 Local Consistency ensures the preservation of any local architectural invariants of
a system, as implied by its specification.

The change types and system integrity characteristics are more fully described in
[22], including case studies.

556 D'Arcy Walsh, Francis Bordeleau, and Bran Selic

3 The Feature Model

A dynamically re-configurable component-based system must provide adequate
capability to:

 Respond to run time change stimuli;
 Identify the nature of change that would be required as global or local properties

(including their reconciliation);
 Enact the types of change that may be required; and
 Govern the change to ensure overall system integrity.

 The extent to which these capabilities are provided depends on the particular
environment in which the system is running.

 To understand how to do this, a domain model of dynamic reconfiguration is
defined in three steps. First, a model of the primary concepts of a component-based
system is defined. Next, a model of the primary concepts of the context of dynamic
change is defined. Finally, the two models are combined to produce the desired
domain model of dynamic reconfiguration. The feature modeling technique [12] was
chosen for these models because of its conceptual simplicity and ease of mapping to
an Alloy representation. In this formalism, a complex feature is decomposed into one
or more sub-features. The sub-features can be designated as being mandatory,
mandatory-and, mandatory-or, optional, optional-and, or optional-or.

3.1 Component-Based System Feature Model

Figure 2 shows the decomposition of the concept of a Component-Based System.
External Interactions is an example of a mandatory feature. Required Service and
Provided Service are examples of mandatory-and features. Connection is an example
of an optional feature.
 This separation of features is intended to ease the understanding of a complex
system from the viewpoint of dynamic reconfiguration. It allows, at the modeling
level, the internal implementation of components to be viewed independently of
component interactions, and it enables dependencies that drive internal
implementations to be considered separately from those that drive external
interactions. There are, of course, dependencies between the various sub-features, but
this decomposition enables better focus on the areas most directly related to dynamic
reconfiguration. As one example of a sub-feature dependency not shown, a
component may be recursively composed of other components. Dependencies
between the various sub-features are represented in the Alloy specification.

A Component-Based System is decomposed into:

 External Interactions that represent the cooperating components of a system;
 Internal Behavior that represents the encapsulated implementation of capabilities

required to satisfy a component’s external interaction obligations; and
 Dependencies that represent the configuration of a component with respect to other

components.

A Domain Model for Dynamic System Reconfiguration 557

Component-Based System

DependenciesExternal
Interactions

Internal
Behavior

Service
Protocol

Component Communication
Path

ConnectionRequired
Service

Provided
Service

Operation Thread

State
Element

Local
Properties

System
Signature

System
Properties

Structural
Signature

Behavioral
Signature

Global
Properties

Reconciliation
Policy

Fig. 2. Feature model of a component-based system

 External Interactions is further decomposed into components and
communication paths that connect required services to provided services and which
conform to service interaction protocols. This decomposition is consistent with the
concepts found in various architecture description languages (ADLs) [23].

 Internal Behavior is further decomposed to enable modeling of internal
computation (as operations, state elements, and threads), systematic management of
system integrity (by managing dependencies between operations, state elements, and
threads) and mapping of internal behavior to external interactions (by linking certain
operations to required or provided services).

 Dependencies is further decomposed to allow the specification of global or local
system properties as constraints [18], the reconciliation of these constraints, and the
specification of system profiles that constrain external interactions and internal
behavior.

 The following sequence determines the constraints hierarchy in a component-
based system:

 The system specification constrains System Properties;
 System Properties constrain the System Signature;
 The Structural Signature constrains External Interactions; and
 The Behavioral Signature constrains Internal Behavior.

3.2 Context of Change Feature Model

Figure 3 shows the decomposition of the concept Context of Change. The specific
system integrity characteristics are examples of optional-and features.
 This separation of features allows different aspects of the context of change to vary
independently and causal flow to be modeled in a fashion more easily understood.

558 D'Arcy Walsh, Francis Bordeleau, and Bran Selic

C o nte xt o f C h a ng e

C o n d ition
C h an g e C rite ria

T yp e o f
C ha n ge

S ys tem
In teg rity

C ha ra c te ris tic s

L oc a l
P ro p e rt ie s

C h a ng e
P ro pe rties

G lo b a l
P rop e rtie s

U s er-D riven
C h a ng e

D om a in
Im p o se d
C h a n ge

O rig in o f
C h a n ge

R e co n c ilia tio n
P o lic y

A rc h ite c tu ra l
C h a ng e

P ro toc o l
C ha n g e

T o p o lo gy
C ha n g e

S u b s titu tio n

In te rfa ce
C h a ng e

In te rn a l
C h a ng e

C om p o s ite
C o m p on e n ts

D e p e nd e n t
O pe ra tion s

C om p o n en t
S ta te

C o n s tra in ed
O p era tion s

A c tive
C o m po n e n t
R e fe re nc e s

Lo c a l
C o n s is te nc y

G lo b a l
C o n s is te nc y

Fig. 3. Feature model of context change

 Context of Change represents software evolution as a feature that will enable the
system model to be dynamically reconfigurable. It is decomposed into:

 Condition Change Criteria that represent conditions under which a system evolves;
 Type of Change that represents the different kinds of dynamic reconfiguration

already noted in Figure 1; and
 System Integrity Characteristics that represent the different system characteristics

that must be managed to help ensure overall system integrity.

 Condition Change Criteria is further decomposed to indicate that a change may
be user driven and/or domain imposed and to allow a direct mapping of change
properties to system properties when changing a running system. Type of Change is
further decomposed to represent the six types of change defined in section 2. System
Integrity Characteristics is further decomposed to represent the seven system
integrity characteristics described in section 2.

 The following sequence determines how a context of change is defined:

 Changing the system specification determines the Origin of Change;
 User-Driven and/or Domain Imposed Change determine Change Properties;
 Change Properties determine Type of Change; and
 Type of Change determines System Integrity Characteristics.

3.3 Dynamic Reconfiguration Feature Model

The two previous models are combined to produce the overall domain model of a
dynamically reconfigurable component-based system, by adding Context of Change
as a feature of a component based system, as shown in Figure 4.

A Domain Model for Dynamic System Reconfiguration 559

D yna m ica lly R e con figu rab le
C o m p on en t-B ase d S ys te m

D e pe nd en c iesE xte rna l
In te ra c tion s

In te rn a l
B eha v io r

C o n text o f
C ha ng e

Fig. 4. Feature model of a dynamically reconfigurable component-based system

 The process of dynamic reconfiguration progresses as follows (see Figure 5):

1. Determine whether User-Driven Changes and/or Domain Imposed Changes are
required;

2. Interpret the particular Origin of Change and represent it as appropriate Global
Properties and/or Local Properties with an associated Reconciliation Policy (this
would include reconciliation with existing System Properties);

3. Determine what feasible subsets of Type of Change (if any) would satisfy the
Condition Change Criteria;

4. If necessary, realign Dependencies and, possibly, External Interactions and
Internal Behavior; and, finally, ensure System Integrity Characteristics are
maintained when enacting change.

S ys te m M o de l

C o n text o f C h a ng e

O rig in o f
C h a ng e

C ha n ge
P ro pe rtie s

T yp e o f
C ha n ge

S ys tem
In teg rity

S ys te m
P ro pe rtie s

S ys te m
S ig na tu re

E xte rn a l
In te rac tio n s

In te rna l
B e h av io r

re co n c ile d
w ith

re p re se n te d
b y

d e te rm in e s d e te rm in e s

g lo b a l o r
lo ca l

p ro p e rtie s

s tru c tu ra l
s ig n a tu re

b e h a v io ra l
s ig n a tu re

d e te rm in e s
sys tem

co n s tru c ts
re a lig n e d

co n s tra in s
sys te m

co n s tru c ts
re a lig n e d

fu rthe r dyna m ic re con fig u ra tio n

Fig. 5. Primary feature interactions of dynamic reconfiguration

 The diagram in Figure 5 also shows that further dynamic reconfiguration may
occur after a given kind of change has been enacted. For example, architectural
change may lead to topology change and so on. Depending upon the change type,
different aspects of the system model would be realigned, constrained by different
subsets of integrity characteristics that help ensure overall system consistency. The
complete description of the feature model including a description of change groupings
and change sequences is given in [22].

560 D'Arcy Walsh, Francis Bordeleau, and Bran Selic

4 The Alloy Model

In [22], the intent of formulating a more formal model is to refine the feature model in
a precise way and to use this formal model as a bridge to a UML Platform
Independent Model (PIM) of dynamic reconfiguration.
 A rigorous methodology is employed to specify the primary feature interactions
among the context of change and the system model. Alloy, a purely relation-oriented
language, is used to describe the feature model as a formal specification. The Alloy
Analyzer is then used to automatically validate its consistency, generate snapshots,
execute operations, and check various properties of the model. Alloy was chosen
because it is a relatively simple yet powerful language for expressing executable
specifications. At the time of writing, Alloy version 2.1 was used [14-17].
 The following outlines the general approach taken:

 Each feature defined in the feature model is specified as a signature in Alloy;
 Based upon these signatures, containment relations are then specified to formally

relate these features to each other;
 Based upon these containment relations, Alloy facts and assertions are specified as

further constraints; and
 Based upon these facts and assertions, Alloy checks and functions are specified to

generate snapshots, execute operations, or check properties.

 With this approach, the feature model is transformed to a semantically richer
Alloy model that specifies many constraints.

 The complete model, given in [22], is partitioned into separate Alloy modules
based upon dependencies (for example, the condition change criteria module is
dependent upon the properties module, and so on). These dependencies build until the
highest-level Alloy module specifies a dynamically reconfigurable system as fully
constrained by the signatures, facts, and assertions defined in constituent modules.
With this approach, each module may be independently checked for consistency
representing well-formed building blocks of the complete specification.

 At the root of the Alloy model is the assumption that a system specification may
be represented by a set of constraints [18]. Given this, global or local system or
change properties can be specified as constraints. The following Alloy signatures are
used to specify system or change properties:

sig SpecificationAsConstraint {}

sig Property {constraint: SpecificationAsConstraint}

disj sig GlobalProperty, LocalProperty extends Property {}

sig ReconciliationPolicy {disj compatibleProperties,
incompatibleProperties: Property -> Property}

 This means that SpecificationAsConstraint is contained by Property. Global
Property and Local Property are specified as extensions to Property as disjoint
signatures. Reconciliation Policy is specified as containing the disjoint relations

A Domain Model for Dynamic System Reconfiguration 561

compatibleProperties and incompatibleProperties. These relations specify compatible
or incompatible properties as Property to Property relations.
 The following are some example Alloy facts from the complete model related to
properties:

fact{no p: Property | some rp: ReconciliationPolicy | p -> p
in rp.compatibleProperties || p -> p in
rp.incompatibleProperties}

fact{no p1, p2: Property | some rp: ReconciliationPolicy | p1
-> p2 in rp.compatibleProperties && p1 -> p2 in
rp.incompatibleProperties}

fact{no p1, p2: Property | some rp: ReconciliationPolicy | p1
-> p2 in rp.compatibleProperties && p2 -> p1 in
rp.incompatibleProperties}

 These particular facts indicate: (i) a given property may not be related to itself as
compatible or incompatible properties, (ii) if p1 is related to p2 as a compatible
property, p1 may not be related to p2 as an incompatible property, and (iii) if p1 is
related to p2 as a compatible property, p2 may not be related to p1 as an incompatible
property.

 Figure 6 shows a visual representation generated by the Alloy Analyzer when run
for three properties. This represents one valid solution.

Fig. 6. Example visual representation generated by the Alloy analyzer

Figure 7 shows the Change Properties feature model fragment:

562 D'Arcy Walsh, Francis Bordeleau, and Bran Selic

L o c a l
P r o p e r t i e s

C h a n g e
P r o p e r t i e s

G l o b a l
P r o p e r t i e s

R e c o n c i l i a t i o n
P o l i c y

Fig. 7. Change properties feature model fragment

 Dependent upon the properties module, the following Alloy signature specifies
Change Properties:

sig ChangeProperties {globalProperties: set GlobalProperty,
localProperties: set LocalProperty, reconciliationPolicy:
ReconciliationPolicy}

 If, for example, ReconciliationPolicy was an optional sub-feature (which it is
not) it would be specified as optional in the Alloy model:

sig ChangeProperties {globalProperties: set GlobalProperty,
localProperties: set LocalProperty, optional
reconciliationPolicy: ReconciliationPolicy}

The following is a fact from the complete model related to change properties:
fact{all p: Property | some cp: ChangeProperties | p in
cp.globalProperties || p in cp.localProperties}

 This particular fact indicates that all properties exist as global or local properties of
some change properties.

 As an example of a higher-level of dependency, reconsider the Context of
Change feature model shown in Figure 3. The following Alloy signatures specify the
concept:

sig ContextOfChange {context: ConditionChangeCriteria ->
ChangeType -> SystemIntegrityCharacteristics}

sig ChangeType {}

disj sig TopologyChange, InternalChange, Substitution,
InterfaceChange, ProtocolChange, ArchitecturalChange extends
ChangeType {}

sig SystemIntegrityCharacteristics {integrityCharacteristics:
set SystemIntegrityCharacteristic}

sig SystemIntegrityCharacteristic {}

disj sig ActiveReference, ComponentState,
ConstrainedOperation, DependentOperation, CompositeComponent,
LocalConsistency, GlobalConsistency extends
SystemIntegrityCharacteristic {}

A Domain Model for Dynamic System Reconfiguration 563

 The Alloy model fragment above specifies Context of Change as containing a
ConditionChangeCriteria to ChangeType to SystemIntegrityCharacteristics relation.
ConditionChangeCriteria is defined in a separate module (not shown). Types of
change are specified as disjoint signatures, one for each of the six kinds of change
described previously. Specific system integrity characteristics are each specified as
disjoint signatures one for each of the seven kinds of system integrity previously
described.

 When analyzed, ContextOfChange resolves to a relation that associates particular
instances of OriginOfChange (which itself contains particular instances of user-driven
and/or domain-imposed change related to an instance of ChangeProperties) with a
particular change type with a set of system integrity characteristics (which may be
empty since its sub-features are optional-or).

 Based on the information shown in Figure 1 (see [22] for details), the following
is a fact, related to context of change, that constrains certain integrity characteristics
from being related to certain change types:

fact{all c: ContextOfChange | some ccc:
ConditionChangeCriteria | some ac: ArchitecturalChange | some
si: SystemIntegrityCharacteristics | no ar: ActiveReference |
c.context = ccc -> ac -> si && ar in
si.integrityCharacteristics}

 This particular fact indicates that active references are excluded from being an
integrity characteristic of architectural change.

 As a final example, consider Figure 8 showing the feature model fragment of the
concept Dependencies:

D e p e n d e n c ie s

L o c a l
P r o p e r t i e s

S y s t e m
S ig n a t u r e

S y s t e m
P r o p e r t i e s

S t r u c t u r a l
S i g n a t u r e

B e h a v i o r a l
S i g n a t u r e

G l o b a l
P r o p e r t i e s

R e c o n c i l i a t i o n
P o l i c y

Fig. 8. Feature model of dependencies

The following Alloy signature specifies the concept:
sig Dependencies {systemProperties: SystemProperties,
systemSignature: SystemSignature}

 Similar to the concept ChangeProperties, discussed above, the following Alloy
signature specifies SystemProperties:

564 D'Arcy Walsh, Francis Bordeleau, and Bran Selic

sig SystemProperties {globalProperties: set GlobalProperty,
localProperties: set LocalProperty, reconciliationPolicy:
ReconciliationPolicy}

 The following Alloy signatures specify SystemSignature:
sig SystemSignature {structuralSignature:
StructuralSignature, behavioralSignature:
BehavioralSignature}

sig StructuralSignature {requiredDependencies: Operation ->
RequiredService, providedDependencies: Operation ->
ProvidedService}

sig BehavioralSignature {operationDependencies: Operation ->
Operation, stateElementDependencies: Operation ->
StateElement, compositeComponentDependencies: Operation ->
Service}

 In this example, beyond the straightforward feature-to-signature mapping, the
Alloy specification formally constrains the structural and behavioral profile of a
system. StructuralSignature is specified as relations between operation and required
or provided service. BehavioralSignature is specified as relations between an
operation and another operation, an operation and a state element, or an operation and
a service (in this context provided by a composite component).
 The following is a fact from the complete model related to dependencies:

fact{some op1, op2: Operation | some b: BehavioralSignature |
op1 in op2.operations || op2 in op1.operations => op1 -> op2
in b.operationDependencies}

This particular fact indicates: if op1 relies on op2 or op2 relies op1, this implies that
op1 is related to op2 as an operation dependency.

5 The UML Model

As further information, Figure 9 shows a basic class model representation of the
domain concepts as classes. The intent is to represent visually all the concepts
previously described in one convenient diagram and to highlight the importance of
change properties reconciliation, change enactment, and further dynamic
reconfiguration concerns. As a work in progress, this model will be further
constrained when the UML model more completely represents the Alloy
specification.

 With respect to change properties reconciliation, the classes SystemProperties
and ChangeProperties represent the current system properties and (new) change
properties, respectively, as global and local constraints. Each grouping of properties is
internally reconciled according to reconciliation policies. In addition, these groupings
are reconciled with respect to each other. The overall reconciliation is modeled as a
binary association linking SystemProperties and ChangeProperties. The reconciled
change properties in turn determine which subsets of change types are required to
perform the necessary system reconfiguration.

A Domain Model for Dynamic System Reconfiguration 565

 With respect to change enactment, the association class ChangeEnactment
specifies how the required change types, as constrained by system integrity
characteristics, realign the system model. Depending upon the types of change
required, the structural and/or behavioral signature of the system may have to be re-
aligned, which, in turn, may impact its internal behavior or external interactions.

ContextOfChange

activeComponentReference
componentState
constrainedOperations
dependentOperations
compositeComponents
globalConsistency
localConsistency

SystemIntegrityCharacteristics
ConditionChangeCriteria

globalProperties
localProperties
reconciliationPolicy

ChangeProperties

internalChange
interfaceChange
protocolChange
topologyChange
architecturalChange
substitution

ChangeType
C

ha
ng

eE
na

ct
m

en
t

DynamicReconfiguration

userDriven
domainImposed

OriginOfChange

globalProperties
localProperties
reconciliationPolicy

SystemProperties
structuralSignature
behavioralSignature

SystemSignature

Dependencies

SystemModel

emergentProperties
FaultToleranceMode

ExternalInteractions
operations
stateElements
threads

InternalBehavior

serviceProtocol
connections

CommunicationPath
providedServices
requiredServices

Component

1

1

1

* *

1
*

1

1

1

*

*

1

1

* 1

1

1

* 1 *

* 1 1
1

*

1

*

1 1

1 * *

1

*

* *
1

1

1

1

Fig. 9. Domain concepts as UML classes

 With respect to further dynamic reconfiguration, given the internal behavior or
external interactions of a system have changed, the system may reach a failure state or
require further change based upon emergent properties. This is represented by the
group of classes ExternalInteractions, InternalBehavior, FaultToleranceMode, and

566 D'Arcy Walsh, Francis Bordeleau, and Bran Selic

OriginOfChange. ExternalInteractions and InternalBehavior are related to
FaultToleranceMode upon failure (or emergent properties). FaultToleranceMode then
drives OriginOfChange (which ultimately may be user driven or domain imposed)
which in turn indicates needed change properties. This completes the cycle of system
dynamic reconfiguration described by this domain model.

6 Summary and Future Work

This paper presents a domain model of dynamic reconfiguration for component-based
software systems. Its purpose is to provide a well-formed and comprehensive
conceptual framework (i.e., a reference model) within which it is possible to study
various problems and solutions related to dynamic software evolution in a systematic
manner.

 First, the full set of domain-independent types of change and their
interdependencies is identified. They define, at an abstract level, which factors need to
be considered and what needs to be done in a dynamically reconfigurable system for a
particular type of change. These types are factored into a feature model of dynamic
change that is combined with a general model of component-based software systems.
The resulting model of dynamically reconfigurable component-based systems is then
converted into a formal Alloy model and refined further. This allows much more
precise specification of the semantics of the domain model whose consistency is
formally validated. Finally, for convenience, the domain model is also rendered in the
form of a single comprehensive UML model. Size and scope limitations preclude a
more complete reporting on the results of this research. However, [22] provides a
more complete description.
 Continuing work is investigating a model execution environment that encodes the
PIM at the meta-level within a reflective substrate and then demonstrates domain-
specific base-level dynamic reconfiguration using a number of case studies from three
diverse domains. The model execution environment serves to validate the PIM to
determine if it is comprehensive and/or explicit in its coverage. Ultimately, this
indicates whether the feature model significantly characterized a dynamically
reconfigurable system or not.

References

1. Jarke, M., Meta models for requirements engineering. 1996.
2. Jarke, M., Requirements Tracing (Introduction). Communications of the ACM, 1998.

41(12): p. 32-36.
3. Georgiadis, I., J. Magee, and J. Kramer. Self-Organising Software Architectures for

Distributed Systems. in ACM WOSS '02. 2002. Charleston, SC: ACM.
4. Oreizy, P., Issues in Modeling and Analyzing Dynamic Software Architectures. 1999,

Information and Computer Science, University of California, Irvine: Irvine, California.
5. Oreizy, P., N. Medvidovic, and R.N. Taylor. Architecture-Based Runtime Software

Evolution. in Proceedings of the International Conference on Software Engineering. 1998.

A Domain Model for Dynamic System Reconfiguration 567

6. Szyperski, C., Component Software: Beyond Object-Oriented Programming Second Edition.
Component Software Series. 2002, New York, N. Y.: Addison-Wesley.

7. Deployment-and-Configuration-Draft-Adopted-Specification, Deployment and
Configuration Draft Adopted Specification. 2003, OMG: Needham, MA.

8. Oreizy, P., et al., An Architecture-Based Approach to Self-Adaptive Software. IEEE
Intelligent Systems, 1999: p. 54-62.

9. Appavoo, J., et al., Enabling automatic behavior in systems software with hot swapping.
IBM Systems Journal, 2003. 42(1): p. 60-76.

10. Lopes, A., M. Wermelinger, and J.L. Fiadeiro, Higher-Order Architectural Connectors.
ACM Transactions on Software Engineering and Methodology, 2003. 12(1): p. 64-104.

11. Whisnant, K., Z.T. Kalbarczyk, and R.K. Iyer, A system model for dynamically
reconfigurable software. IBM Systems Journal, 2003. 42(1): p. 45-59.

12. Czarnecki, K. and U.W. Eisennecker, Generative Programming: Methods, Tools, and
Applications. 2000, New York, N.Y.: Addison-Wesley.

13. Gomaa, H., Designing Software Product Lines with UML From Use Cases to Pattern-Based
Software Architectures. Object Technology Series, ed. G. Booch, I. Jacobson, and J.
Rumbaugh. 2004, New York, N.Y.: Addison-Wesley.

14. Jackson, D., I. Schechter, and I. Shlyakhter, Alcoa: The Alloy Constraint Analyzer. 1999,
Massachusetts Institute of Technology: Cambridge, Massachusetts.

15. Jackson, D., Alloy: A Lightweight Object Modelling Notation. 2001, Massachusetts
Institute of Technology: Cambridge, Massachusetts. p. 32.

16. Jackson, D., Micromodels of Software: Ligthweight Modelling and Analysis with Alloy.
2002, MIT Lab for Computer Science: Cambridge, Mass. p. 1-58.

17. Vaziri, M. and D. Jackson, Some Shortcomings of OCL, the Object Constriant Language of
UML. 1999, MIT Laboratory for Computer Science: Cambridge, Mass. p. 1-17.

18. Marriott, K. and P.J. Stuckey, Programming with Constraints An Introduction. 1998,
Cambridge, Mass.: MIT Press.

19. Duffy, D.J., Domain Architectures Models and Architectures for UML Applications. 2004,
Hoboken, N.J.: John Wiley and Sons.

20. Fowler, M., UML Distilled Third Edition A Brief Guide to the Standard Object Modeling
Language. Object Technology Series. 2004: Addison-Wesley.

21. Warmer, J. and A. Kleppe, The Object Constraint Language Second Edition Getting Your
Models Ready for MDA. Object Technology Series. 2003, New York, N.Y.: Addison-
Wesley.

22. Walsh, D., Ph.D. Work in Progress, in School of Computer Science, Carleton University.
2005, Ottawa-Carleton Institute for Computer Science: Ottawa, Canada.

23. Medvidovic, N. and R.N. Taylor, A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions on Software Engineering, 2000.
26(1): p. 70-93.

Exceptional Use Cases

Aaron Shui1, Sadaf Mustafiz1, Jörg Kienzle1, and Christophe Dony2

1 School of Computer Science, McGill University, Montreal, Canada
aaron@rome.com, sadaf@cs.mcgill.ca, Joerg.Kienzle@mcgill.ca

2 LIRMM, Université de Montpellier, Montpellier, France
dony@lirmm.fr

Abstract. Many exceptional situations arise during the execution of an
application. When developing dependable software, the first step is to
foresee these exceptional situations and document how the system should
deal with them. This paper outlines an approach that extends use case
based requirements elicitation with ideas from the exception handling
world. After defining the actors and the goals they pursue when inter-
acting with the system, our approach leads a developer to systematically
investigate all possible exceptional situations that the system may be ex-
posed to: exceptional situations arising in the environment that change
user goals and system-related exceptional situations that threaten to
fail user goals. Means are defined for detecting the occurrence of all ex-
ceptional situations, and the exceptional interaction between the actors
and the system necessary to recover from such situations is described
in handler use cases. To conclude the requirements phase, an extended
UML use case diagram summarizes the standard use cases, exceptions,
handlers and their relationships.

1 Introduction

Most main stream software development methods define a series of development
phases – requirements elicitation, analysis, architecture and design, and finally
implementation – that lead the development team to discover, specify, design
and finally implement the main functionality of a system, which dictates the
system’s behavior most of the time. However, there are also many exceptional
situations that may arise during the execution of an application. When using
a standard software development process there is no guarantee that such situ-
ations are considered during the development. Whether the system can handle
these situations or not depends highly on the imagination and experience of the
developers. As a result, the final application might not function correctly in all
possible situations.

When developing dependable systems, i.e. mission- or safety-critical systems
where a malfunction can cause significant damage, nothing should be left to
chance. Following the idea of integrating exception handling into the software
life cycle [1, 2], this paper describes an extension to standard use case-based
requirements elicitation that leads the developers to consider all possible excep-
tional situations that the system under development might be exposed to. We

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 568–583, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exceptional Use Cases 569

believe that thinking about exceptional behavior has to start at the requirements
phase, because it is up to the users of the system to decide how they expect the
system to react to exceptional situations. Only with exhaustive and detailed user
feedback is it possible to discover and then specify the complete system behav-
ior in a subsequent analysis phase, and decide on the need for employing fault
masking and fault tolerance techniques for achieving run-time reliability during
design.

The rest of the paper is structured as follows. Section 2 provides background
information on use cases and exceptions. Section 3 defines some terminology and
outlines the proposed extensions to standard UML use cases. Section 4 describes
our proposed process, and illustrates the ideas by means of an elevator control
case study. Section 5 presents related work in this area, and the last section
draws some conclusions.

2 Background

2.1 Exceptions

An exceptional situation, or short exception, describes a situation that, if encoun-
tered, requires something exceptional to be done in order to resolve it. Hence,
an exception occurrence during a program execution is a situation in which the
standard computation cannot pursue. For the program execution to continue,
an extraordinary computation is necessary [3].

A programming language or system with support for exception handling,
subsequently called an exception handling system (EHS) [4], provides features
and protocols that allow programmers to establish a communication between a
piece of code which detects an exceptional situation while performing an opera-
tion (a signaler) and the entity or context that asked for this operation. An EHS
allows users to signal exceptions and to define handlers. To signal an exception
amounts to:

1. identify the exceptional situation,
2. to interrupt the usual processing sequence,
3. to look for a relevant handler and
4. to invoke it while passing it relevant information about the exception.

Handlers are defined on (or attached to, or associated with) entities, such as data
structures, or contexts for one or several exceptions. According to the language,
a context may be a program, a process, a procedure, a statement, an expression,
etc. Handlers are invoked when an exception is signaled during the execution or
the use of the associated context or nested context. To handle means to set the
system back to a coherent state, and then:

1. to transfer control to the statement following the signaling one (resumption
model [1]), or

2. to discard the context between the signaling statement and the one to which
the handler is attached (termination model [1]), or

3. to signal a new exception to the enclosing context.

570 Aaron Shui et al.

2.2 UML and Use Cases

The Unified Modeling Language (UML) [5] defines a notation for specifying,
constructing, visualizing, and documenting the artifacts of a software-intensive
system. UML is intentionally process-independent. However, it offers a variety
of diagrams that unify the scores of graphical modeling notations that existed
in the software development industry in the 80’s and 90’s. The diagram we are
focussing on in this work is the use case diagram.

Since their introduction in the late 80’s [6], use cases are a widely used formal-
ism for discovering and recording behavioral requirements of software systems
[7]. A use case describes, without revealing the details of the system’s internal
workings, the system’s responsibilities and its interactions with its environment
as it performs work in serving one or more requests that, if successfully com-
pleted, satisfy a goal of a particular stake-holder. The external entities in the
environment that interact with the system are called actors.

In short, use cases are stories of actors using a system to meet goals. The
standard way of achieving a goal is described in the main success scenario.
Alternatives or situations in which the goal is not achieved are usually described
in extensions. Use cases are in general text-based, but their strength is that they
both scale up or scale down in terms of sophistication and formality, depending
on the need and context. They can be effectively used as a communication means
between technical as well as non-technical stake-holders of the software under
development.

Use cases can be described at different levels of granularity [8]. User-goal level
use cases describe how individual user goals are achieved. Optional summary
level use cases provide a general overview of how the system is used. Finally,
subfunction level use cases can be written that encapsulate subgoals of higher
level use cases.

Some development methods, for example the object-oriented, UML-based
development method Fondue [9], define a textual template that developers fill
out when elaborating a use case. Using a predefined template forces the developer
to document all important features of a use case, e.g. the primary actor (the
one that wants to achieve the goal), the level, the main success scenario and the
extensions. Fig. 1 shows an example Fondue use case.

Whereas individual use cases are text-based, the UML use case diagram
provides a concise high level view of all (or a set of) use cases of a system. It
allows the developer to graphically depict the use cases, the actors that interact
with the system, and the relationships between actors and use cases.

3 Terminology and Proposed Extensions

3.1 Goals, Exceptional Goals and Failure to Achieve Goals

Each user-level use case describes a unit of useful functionality that the system
under development provides to a particular actor. It details all interaction steps
that an actor has to perform in order to achieve his / her goal. Typical goals

Exceptional Use Cases 571

are, for instance, withdrawing money from a bank account, placing an order for
a book on an online store, or using an elevator to go to a destination floor (see
Fig. 1).

Sometimes, however, exceptional situations arising in the environment, i.e.,
situations that cannot be detected by the system itself, might cause actors to
interact with a system in an exceptional way. The situations are exceptional in
the sense that they occur only rarely, and they change the goals that actors have
with the system, either temporarily or permanently. Sometimes even new actors
– exceptional actors – start interacting with the system in case of an exceptional
situation.

Very often, such situations are related to safety issues. In an elevator sys-
tem, for example, a fire outbreak in the building causes the elevator operator,
an exceptional actor, to activate the fire emergency mode (see Fig. 5), in which
all elevator cabins go down to the lowest floor to prevent casualties or physi-
cal damage in case the ropes break. Activating the emergency behavior is an
exceptional goal for the elevator operator, since this happens only in very rare
occasions.

But even if all actors interact with the system in a normal way, system-related
exceptional situations might prevent the system from providing the desired func-
tionality to the actor. For example, insufficient funds can prevent a successful
withdrawal, an order might not be fulfillable because the book is currently out
of stock, or a motor failure might prevent a user from taking the elevator. In
such cases, the goal of the actor cannot be fulfilled.

In general, the exceptional situation triggers some exceptional interaction
steps with the environment. One of the steps is (or should be!) to inform the
actor of the impossibility to achieve the goal. Once informed, the actor can decide
how to react to the situation. The system itself might also be capable of handling
the problem, for instance by suggesting to withdraw a smaller amount of money,
or by suggesting to buy some other book, or by activating the emergency brakes
and calling the elevator operator (see Fig. 6).

3.2 Exceptions in Use Cases

It is important to discover and then document all possible exceptional situations
that can interrupt normal system interaction. Any exceptional situation that is
not identified during requirements elicitation might potentially lead to an incom-
plete system specification during analysis, and ultimately in an implementation
that lacks certain functionality, or even behaves in an unreliable way.

Use cases describe the interaction that happens between actors and the sys-
tem under development to achieve the primary actor’s goal. In Fondue, the
standard way of achieving the goal is called the main success scenario. Use cases
also offer the possibility to add extensions to the main success scenario in case
the interaction takes a different route. Certain extensions can still be considered
“normal” behavior, since they represent alternate ways of achieving the actor’s
goal.

572 Aaron Shui et al.

Exceptional situations in use cases are situations that interrupt the flow of
interaction leading to the fulfillment of the actor’s goal. From now on, we’ll use
the word exception to refer to such exceptional situations3. An exception oc-
currence endangers the completion of the actor’s goal, suspending the normal
interaction temporarily or for good. We propose to give names to all exceptions
that can occur while interacting with the system under development, and to doc-
ument them in a table together with a small textual description. As mentioned
in section 3.1 we will distinguish between exceptions arising in the environment,
subsequently called actor-signaled exceptions, and exceptions internal to the sys-
tem that prevent the system from providing the requested service, subsequently
called system-detected exceptions.

3.3 Handler Use Cases

Just like it is possible to encapsulate several steps of normal interaction in a sep-
arate subfunction-level use case, an exceptional interaction that requires several
steps of handling can be described separately from the normal system behavior
in a handler use case. The major advantage of doing this is that from the very
beginning, exceptional interaction and behavior is clearly identified and sepa-
rated from the normal behavior of the system. This distinction is even more
interesting if it can be extracted at a glance from the use case diagram.

In a use case diagram, standard use cases appear as ellipses (see Fig. 10),
associated to the actors whose goals they describe. We propose to identify han-
dler use cases with a < <handler>> stereotype, which differentiates them from
the standard use cases. To allow developers to identify exceptional behavior at
a glance, handler use cases can be represented in the use case diagram with a
special symbol or using a different color. Handler use cases for actor-signaled
exceptions, i.e. handlers that describe exceptional goals, are self-contained, just
like standard use cases. Handlers that address system-detected exceptions on the
other hand may not necessarily be meaningful by themselves, but only within
the context of a normal use case. However, handlers are full-fledged use cases
in the sense that they can include sub-level handler use cases, or have them-
selves associated handlers that address exceptions that might occur during the
processing of an exception.

Separation of handlers also enables subsequent reuse of handlers. Just like a
subfunction-level use case can encapsulate a subgoal that is part of several user
goals, a handler use case can encapsulate a common way of handling exceptions
that might occur while processing different user goals. Sometimes even, different
exceptions can be handled in the same way. Associating handler use cases to
other use cases is described in section 3.4.

3 It is important to point out that the meaning of exception at the requirements level
is not directly related to exceptions as defined by modern programming languages.
The term exception is used at a higher level of abstraction here.

Exceptional Use Cases 573

3.4 Linking Exception, Handlers and Use Cases

Just like in standard exception handling, where exception handlers are associated
to exception handling contexts, handler use cases apply to a base use case, in
this case any standard use case or other handler use case. We suggest to depict
this association in the use case diagram by a directed relationship (dotted arrow)
linking the handler use case to its base use case.

This relationship is very similar to the standard UML < <extends>> rela-
tionship. It specifies that the behavior of the base use case may be affected by
the behavior of the handler use case in case an exception is encountered. Similar
to the explicit extension points introduced in UML 2.0, the base use case can
specify the specific steps in which the exception might occur (see Fig. 7 step 4a),
but does not need to. In the latter case, the exceptional situation can affect the
base processing at any time.

In case of an occurrence of an exceptional situation, the base behavior is put
on hold or abandoned, and the interaction specified in the handler is started.
A handler can temporarily take over the system interaction, for instance to
perform some compensation activity, and then switch back to the normal inter-
action scenario. In this case, the relationship is tagged with a < <interrupt &
continue>> stereotype. Some exceptional situations, however, cannot be han-
dled smoothly, and cause the current goal to fail. Such dependencies are tagged
with < <interrupt & fail> >. This is similar to the resumption and termination
models reviewed in section 2.1.

The < <interrupt & continue>> and < <interrupt & fail> > relation-
ships also differ from the < <extends>> relationship in the sense that they apply
also to all sub use cases of a base use case. In the elevator example presented in
the next section, for instance, an Emergency Override can interrupt Take Ele-
vator, and therefore also any of the included use cases of Take Elevator, namely
Call Elevator, Ride Elevator and Elevator Arrival.

Finally, the exceptions that activate the handler use case are added to the
interrupt relationship in a UML comment. The notation follows the notation that
was introduced in UML 2.0 to specify extension points for use cases. An example
of an extended use case diagram for the elevator system with all exceptions,
handler use cases and relationships is shown in Fig. 10.

4 Exception-Aware Process and Elevator Case Study

This section introduces our exception-aware requirements elicitation process and
illustrates it based on a case study, a reliable and safe elevator system. For the
sake of simplicity, there is only one elevator cabin that travels between the floors.
There are two buttons on each floor (except for the top and ground floors) to
call the lift, one for going up, one for going down. Inside the elevator cabin, there
is a series of buttons, one for each floor.

The job of the development team is to decide on the required hardware, and
to implement the elevator control software that processes the user requests and

574 Aaron Shui et al.

Use Case: TakeElevator
Scope: Elevator Control System
Primary Actor: User
Intention: The intention of the User is to take the elevator to go to a destination

floor.
Level: User Goal
Frequency & Multiplicity: A User can only take one elevator at a time. However,

several Users may take the elevator simultaneously.
Main Success Scenario:

1. User CallsElevator.
2. User RidesElevator.

Extensions:
1a. The cabin is already at the floor of the User and the door is open. User enters
elevator; use case continues at step 2.
1b. The user is already inside the elevator. Use case continues at step 2.

Fig. 1. TakeElevator Use Case

coordinates the different hardware devices. So far, only “mandatory” elevator
hardware has been added to the system. The approaching of the cabin at a floor
is detected by a sensor. The elevator control software may ask the motor to go
up, go down or stop, and the cabin door to open or close.

4.1 Describing Normal Interaction

To start off the requirements elicitation phase, the use cases that describe the
interaction with the system under normal conditions are elaborated. In the ele-
vator system there is initially only one primary actor, the User. A user has only
one goal with the system, namely to take the elevator to go to a destination
floor, described in the user-goal level use case TakeElevator shown in Fig. 1.

As we can see from the main success scenario, the User first calls the ele-
vator (step 1), and then rides it to the destination floor (step 2). The potential
concurrent use of the elevator is documented in the Frequency & Multiplicity
section [10].

The CallElevator and RideElevator use cases are shown in Fig. 2. To call the
elevator the User pushes the up or down button and waits for the elevator cabin
to arrive. To ride the elevator the User enters the cabin, selects a destination
floor, waits until the cabin arrives at the destination floor and finally exits the
elevator.

CallElevator and RideElevator both include the Elevator Arrival use case
shown in Fig. 3. It is a subfunction level use case that describes how the system
directs the elevator to a specific floor: once the system detects that the elevator
is approaching the destination floor, it requests the motor to stop and opens the
door.

The use cases that describe the normal interaction between the user and the
elevator control system can be summarized in a standard UML use case diagram
as shown in Fig. 4.

Exceptional Use Cases 575

Use Case: CallElevator
Primary Actor: User
Intention: User wants to call the elevator to the floor that he / she is currently on.
Level: Subfunction
Main Success Scenario:

1. User pushes button, indicating in which direction he / she wants to go.
2. System acknowledges request.
3. System schedules ElevatorArrival for the floor the User is currently on.

Extensions:
2a. The same request already exists. System ignores the request. Use case ends in
success.

Use Case: Ride Elevator
Primary Actor: User
Intention: The User wants to ride the elevator to a destination floor.
Level: Subfunction
Main Success Scenario:

1. User enters elevator.
2. User selects a destination floor.
3. System acknowledges request and closes the door.
4. System schedules ElevatorArrival for the destination floor.
5. User exits the elevator at destination floor.

Extensions:
1a. User does not enter elevator. System times out and closes door. Use case ends
in failure.
2a. User does not select a destination floor. System times out and closes door.
System processes pending requests or awaits new requests. Use case ends in failure.
5a. User selects another destination floor. System acknowledges new request and
schedules ElevatorArrival for the new floor. Use case continues at step 5.

Fig. 2. CallElevator and RideElevator Use Case

Use Case: ElevatorArrival
Primary Actor: N/A
Intention: System wants to move the elevator to the User ’s destination floor.
Level: Subfunction
Main Success Scenario:

1. System detects elevator is approaching destination floor.
2. System requests motor to stop.
3. System opens door.

Fig. 3. ElevatorArrival Use Case

Elevator Control System

Take Elevator

Call Elevator

Ride Elevator

Elevator
Arrival

<<include>>

<<include>> <<include>>

<<include>>

User

Fig. 4. Standard Elevator Use Case Diagram

576 Aaron Shui et al.

4.2 Actor-Signaled Exceptions

The next step in our process consists in identifying exceptional situations that
arise in the environment that make actors deviate from their initial goal, or
change their goals completely. Sometimes actors change their goals spontaneously,
sometimes changes in the environment influence the behavior of actors. In any
case, the system has to interrupt its current processing and try to fulfill the new
goal.

Exceptions arising in the environment are communicated to the system by
special actions of actors – hence their name actor-signaled exceptions. A depend-
able system must react to actor-signaled exceptions in a well-specified way. If the
handling requires exceptional interaction steps with the primary actor or other
secondary actors, then a handler use case must be defined. The handler is then
linked to the context, i.e. the use case in which th exception can occur.

Actor-Signaled Exceptions in the Elevator Case Study In the elevator
case study we identified two actor-signaled exceptions. EmergencyStop is sig-
naled by the User actor pushing the emergency button in the elevator in case he
wants to interrupt the movement of the cabin. EmergencyOverride is signaled
by an exceptional actor, the elevator operator, using the emergency override key
on the ground floor in case of an emergency, for example a fire outbreak in the
building. In our case, both exceptions can interrupt the normal system operation
at any time, so their context is TakeElevator.

Fig. 5 shows the handler UserEmergency that handles the exception Emer-
gencyStop. The system immediately activates the emergency brakes. Subse-
quently, the User can toggle off the emergency button to reactivate the elevator.
The system then resumes the original use case because the relation between
TakeElevator and UserEmergency is < <interrupt & continue>>.

The EmergencyOverride exception is handled by the ReturnToGroundFloor
handler use case, also shown in Fig. 5. ReturnToGroundFloor interrupts and fails
the TakeElevator use case.

4.3 System-Detected Exceptions

Each use case must now be examined to see if there are any system-related ex-
ceptional situations that can make the use case goal fail. Up to now we have
assumed that actors are reliable, that hardware never fails, and that communi-
cation with hardware and actors is reliable as well. However, this is an unrealistic
assumption that a safety-critical application such as the elevator control software
cannot make.

Each use case must be looked at step by step, and every interaction classi-
fied into input and output interactions. Inputs and outputs may fail, and the
consequences and ways of dealing with such a failure must be identified. If the
consequences endanger the accomplishment of the user goal, then the system
must detect the failure – hence the name system-detected exception – and ad-
dress the situation. Detection might require additional hardware or timeouts.

Exceptional Use Cases 577

Use Case: UserEmergency < <handler> >
Contexts & Exceptions: TakeElevator{EmergencyStop}
Primary Actor: User
Intention: User wants to stop the movement of the cabin.
Level: User Goal
Frequency & Multiplicity: Since there is only one elevator cabin, only one User

can activate the emergency at a given time.
Main Success Scenario:

1. System initiates EmergencyBrake.
2. User toggles off emergency stop button.
3. System deactivates brakes and continues processing requests.

Use Case: ReturnToGroundFloor < <handler> >
Contexts & Exceptions: TakeElevator{EmergencyOverride}
Primary Actor: Elevator Operator
Intention: Elevator Operator wants to call the elevator to the ground floor because

the elevator operation is too dangerous.
Level: User Goal
Frequency & Multiplicity: Only one ReturnToGroundFloor use case can be active

at a given time.
Main Success Scenario:

1. System clears all requests and requests motor to go down.
2. System detects that elevator is approaching the ground floor and requests motor
to stop.
3. System opens elevator door.

Fig. 5. UserEmergency and ReturnToGroundFloor Handler Use Case

Once the exception is detected, ways of addressing the exception have to
be investigated. Very often, actors – especially humans – are “surprised” when
they encounter an exceptional situation, and are subsequently more likely to
make mistakes when interacting with the system. Exceptional interactions during
exception handling must therefore be as intuitive as possible, and respect the
actor’s needs. Again, all interaction steps addressing an exception have to be
recorded in handler use cases.

Input Problems If omission of input from an actor can cause the goal to fail,
then, once the omission has been detected, different options of handling the
situation have to be considered. For instance, prompting the actor for the input
again after a given time has elapsed, or using default input are possible options.
Safety considerations might make it even necessary to temporarily shutdown the
system in case of missing input. Invalid input data is another example of input
problem that might cause the goal to fail. Since most of the time the actors are
aware of the importance of their input, a reliable system should also acknowledge
input from an actor, so that the actor realizes that she is making progress in
achieving her goal.

Output Problems Whenever an output triggers a critical action of an actor, then
the system must make sure that it can detect eventual communication problems
or failure of an actor to execute the requested action. For example, the elevator

578 Aaron Shui et al.

Use Case: RedirectElevator < <handler> >
Context & Exception: ElevatorArrival{MissedFloor}
Primary Actor: N/A
Intention: System redirects the elevator to a different floor because the destination

floor is unreachable.
Level: Subfunction
Main Success Scenario:

1. System cancels request to stop at destination floor.
2. System detects elevator is approaching a floor.
3. System requests the motor to stop.
4. System detects elevator is stopped at floor.

Use Case: EmergencyBrake < <handler> >
Context & Exception: TakeElevator{MotorFailure}
Primary Actor: N/A
Intention: System wants to stop operation of elevator and secure the cabin.
Level: Subfunction
Main Success Scenario:

1. System stops motor.
2. System activates the emergency brakes.
2. System turns on the emergency display.

Fig. 6. RedirectElevator and EmergencyBrake Handler Use Case

control software might tell the motor to stop, but a communication failure or a
motor misbehavior might keep the motor going. Again, additional hardware, for
instance, a sensor that detects when the cabin stopped at a floor, or timeouts
might be necessary to ensure reliability.

System-Detected Exceptions in the Elevator Case Study To illustrate
the process, let us go step by step through the use case ElevatorArrival (see
Fig. 3). The first step involves the floor sensor informing the system that the
elevator is approaching a floor. A floor sensor defect might cause the elevator to
miss a destination floor. In this case, the corresponding handler RedirectElevator,
shown in Fig. 6, stops the cabin at the next floor.

In Step 2 of ElevatorArrival the system requests the motor to stop. In case
the motor malfunctions and does not stop, the emergency brakes have to be
activated immediately. This is done by the EmergencyBrake handler, also shown
in Fig. 6.

Finally, in step 3 of ElevatorArrival, the system requests the door to open.
This output can only be sent after a successful stop of the motor. For relia-
bility reasons, a “stop detection” mechanism, such as an additional sensor that
monitors the cabin speed, must be added to the system. Additionally the door
might fail to open in step 3. In this case, the elevator could move to a different
floor and try to open the door there. Without threatening reliability, we can also
choose to ignore the failure and continue processing the next request, and hence
leave it up to the user in the elevator to decide to either retry the floor, go to a
different floor or push the emergency button. Fig. 7 shows the updated, reliable
version of the ElevatorArrival use case.

Exceptional Use Cases 579

Use Case: ElevatorArrival
Primary Actor: N/A
Intention: System wants to move the elevator to the User ’s destination floor.
Level: Subfunction
Main Success Scenario:

1. System detects elevator is approaching destination floor.
2. System requests motor to stop.
3. System detects elevator is stopped at destination floor.
4. System opens door.

Extensions:
4a. Exception{DoorStuckClosed}
System continues processing the next request (it is up to the user to select a new
destination floor or press the emergency button). Use case ends in failure.

Fig. 7. Updated ElevatorArrival Use Case

Use Case: DoorAlert < <handler> >
Primary Actor: N/A
Context & Exception: TakeElevator{DoorStuckOpen}
Intention: System wants to alert the passengers that there is an obstacle preventing

the door from closing.
Level: Subfunction
Main Success Scenario:

1. System displays “door open”.
2. System turns on the buzzer.
3. System requests the door to close.
Step 3 is repeated until the door closes.
4. System detects that the door is now closed.
5. System turns off the buzzer.
6. System clears the display.

Use Case: OverweightAlert < <handler> >
Primary Actor: N/A
Context & Exception: RideElevator{Overweight}
Intention: System wants to alert the passengers that there is too much weight in the

elevator.
Level: Subfunction
Main Success Scenario:

1. System displays “overweight”.
2. System turns on the buzzer.
3. System detects that the weight is back to normal.
4. System turns off buzzer.
5. System clears display.

Fig. 8. DoorAlert and OverweightAlert Handler Use Case

Looking at the CallElevator and RideElevator use case, we can detect a
common problem that might prevent the goals from succeeding: the elevator
door might be stuck open, for instance because an obstacle prevents it from
closing. This case is handled by the DoorAlert handler use case. Another ex-
ceptional situation occurs when there are too many passengers in the elevator.
The OverweightAlert handler addresses this exception. The DoorAlert and Over-
weightAlert handlers are shown in Fig. 8.

580 Aaron Shui et al.

Use Case: CallElevatorOperator < <handler> >
Context & Exception: EmergencyBrake{ElevatorStoppedTooLong], Overweigh-

tAlert{OverweightTooLong}, DoorAlert{DoorStuckOpenTooLong}
Intention: The system wants to alert the elevator operator, so that the elevator op-

erator can come and assess the damage.
Level: Subfunction
Main Success Scenario:

1. System cancels all pending requests.
2. System displays “calling operator “.
3. System calls operator.

Fig. 9. CallElevatorOperator Handler Use Case

The step-by-step analysis of the use cases must then be recursively applied to
all the handlers, because handlers may themselves be interrupted by exceptions.
In our system, the EmergencyBrake, OverweightAlert and DoorAlert handler
use cases all wait until the situation is resolved. In case the problem persists for
a certain amount of time, the elevator control system should notify an elevator
operator. The elevator operator can then evaluate the situation and, if necessary,
call a service person. This functionality is described in the handler use case
CallElevatorOperator shown in Fig. 9.

4.4 Requirements Elicitation Summary

In parallel to the elaboration of the individual use cases and handlers, we pro-
pose to build an extended exception-aware use case diagram providing a detailed
and precise summary of the partitioning of the system into normal and excep-
tional interactions. The diagram follows the syntax described in sections 3.3
and 3.4. User expectations of handling exceptional situations are documented in
handler use cases identified with the < <handler>> stereotype, and attached to
their respective contexts with < <interrupt & continue>> or < <interrupt &
fail>> relationships. For traceability and documentation reasons, the diagram
should also be accompanied with a table that records all discovered exceptions,
together with a small textual description of the situation, the exception context,
the associated handler, and the mechanism of detecting the situation.

The extended use case diagram for the elevator control system is shown in
Fig. 10. The aforementioned exception table for the elevator system with the
detailed descriptions of each exception is not shown here for space reasons.

5 Related Work

Main stream software development methods currently deal with exceptions only
at late design and implementation phases. However, several approaches have
been proposed that extend exception handling ideas to other parts of the software
development cycle.

De Lemos et al. [2] emphasize the separation of the treatment of requirements-
related, design-related, and implementation-related exceptions during the soft-
ware life-cycle by specifying the exceptions and their handlers in the context

Exceptional Use Cases 581

Elevator Control System

Take Elevator
<<handler>>

ReturnTo
GroundFloor

<<handler>>
User

Emergency

<<handler>>
DoorAlert

<<handler>>
CallElevator

Operator

Call Elevator Ride Elevator

Elevator
Arrival

<<handler>>
Redirect
Elevator

<<include>>

<<include>>

<<
in

cl
ud

e>
><<include>>

<<interrupt &
continue>>

<<interrupt & fail>> <<interrupt & continue>>

<<interrupt & continue>>

<<interrupt & fail>>

<<include>>

UserElevatorOperator

Exception:
{EmergencyOverride} Exception:

{EmergencyStop}

Exception:
{DoorStuckOpenTooLong}

<<handler>>
Overweight

Alert

<<interrupt & continue>>

Exception:
{Overweight}

Exception:
{MissedFloor}

<<handler>>
Emergency

Brake

<<interrupt & fail>>

Exception:
{DoorStuckOpen}

Exception:
{MotorFailure}

<<interrupt & fail>>

<<interrupt & fail>>
Exception:
 {OverweightTooLong}

Exception:
 {ElevatorStoppedTooLong}

Fig. 10. Reliable Elevator Use Case Diagram

where faults are identified. The description of exceptional behavior is supported
by a cooperative object-oriented approach that allows the representation of col-
laborative behavior between objects at different phases of the software develop-
ment.

Rubira et al. [11] present an approach that incorporates exceptional behavior
in the development of component-based software by extending the Catalysis
software development method. The requirements phase of Catalysis is also based
on use cases, and the extension augments them with exception handling ideas.

Our approach is different from the above for several reasons. Firstly, we help
the requirements engineers to discover exceptions and handlers by providing a
detailed process that they can follow. Without a process, the only way a de-
veloper can discover exceptions is based on her imagination and experience.
Secondly, our process increases reliability even more by helping the developers
detect the need for adding “feedback” and “acknowledgement” interaction steps
with actors to make sure that there were no communication problems. Addition-
ally, the process recommends adding of hardware to monitor request execution of
secondary actors when necessary. Finally, our handler use cases are stand-alone,
and can therefore be associated with multiple exceptions and multiple contexts.

6 Conclusion

We believe that when developing reliable systems, exceptional situations that
the system might be exposed to have to be discovered and addressed at the
requirements elicitation phase. Exceptional situations are less common and hence
the behavior of the system in such situations is less obvious. Also, users are more
likely to make mistakes when exposed to exceptional situations.

582 Aaron Shui et al.

In this paper we propose an approach that extends use case based require-
ments elicitation with ideas from the exception handling world. We define a
process that leads a developer to systematically investigate all possible excep-
tional situations that the system may be exposed to, and to determine how the
users of the system expect the system to react in such situations. The discov-
ery of all exceptional situations and detailed user feedback at an early stage is
essential, saves development cost, and ultimately results in a more dependable
system.

We also show how to extend UML use case diagrams to separate normal
and exceptional behavior. This allows developers to model the handling of each
exceptional situation in a separate use case, and to graphically show the depen-
dencies among standard and handler use cases.

Based on our exception-aware use cases, a specification that considers all
exceptional situations and user expectations can be elaborated during a subse-
quent analysis phase. This specification can then be used to decide on the need
for employing fault masking and fault tolerance techniques when designing the
software architecture and during detailed design.

For more information on our exception-aware process, and for details on
how we extended the UML 2.0 metamodel to incorporate our extensions, the
interested reader is referred to [12].

References

[1] Goodenough, J.B.: Exception handling: Issues and a proposed notation. Commu-
nications of the ACM 18 (1975) 683 – 696

[2] de Lemos, R., Romanovsky, A.: Exception handling in the software lifecycle.
International Journal of Computer Systems Science and Engineering 16 (2001)
167 – 181

[3] Knudsen, J.L.: Better exception-handling in block-structured systems. IEEE
Software 4 (1987) 40 – 49

[4] Dony, C.: Exception handling and object-oriented programming: Towards a syn-
thesis. In Meyrowitz, N., ed.: 4th European Conference on Object–Oriented Pro-
gramming (ECOOP ’90). ACM SIGPLAN Notices, (ACM Press)

[5] Object Management Group: Unified Modeling Language: Superstructure. (2004)

[6] Jacobson, I.: Object-oriented development in an industrial environment. In:
Conference proceedings on Object-oriented programming systems, languages and
applications, ACM Press (1987) 183 – 191

[7] Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. 2nd edn. Prentice Hall (2002)

[8] Cockburn, A.: Writing Effective Use Cases. Addison–Wesley (2000)

[9] Sendall, S., Strohmeier, A.: Uml-based fusion analysis. In: UML’99, Fort Collins,
CO, USA, October 28-30, 1999. Number 1723 in Lecture Notes in Computer
Science, Springer Verlag (1999) 278–291

[10] Kienzle, J., Sendall, S.: Addressing concurrency in object-oriented software devel-
opment. Technical Report SOCS-TR-2004.8, McGill University, Montreal, Canada
(2004)

Exceptional Use Cases 583

[11] Rubira, C.M.F., de Lemos, R., Ferreira, G.R.M., Fliho, F.C.: Exception handling
in the development of dependable component-based systems. Software — Practice
& Experience 35 (2004) 195 – 236

[12] Shui, A.: Exceptional use cases - Master Thesis, School of Computer Science,
McGill‘ University (2005)

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 584-600, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Modeling Turnpike Frontend System: A Model-Driven
Development Framework Leveraging UML

Metamodeling and Attribute-Oriented Programming*

Hiroshi Wada and Junichi Suzuki

Department of Computer Science
University of Massachusetts, Boston

hiroshi_wada@otij.org and jxs@cs.umb.edu

Abstract. This paper describes and empirically evaluates a new model-driven
development framework, called Modeling Turnpike (or mTurnpike). It allows
developers to model and program domain-specific concepts (ideas and
mechanisms specific to a particular business or technology domain) and to
transform them to the final (compilable) source code. By leveraging UML
metamodeling and attribute-oriented programming, mTurnpike provides an
abstraction to represent domain-specific concepts at the modeling and
programming layers simultaneously. The mTurnpike frontend system
transforms domain-specific concepts from the modeling layer to programming
layer, and vise versa, in a seamless manner. Its backend system combines
domain-specific models and programs, and transforms them to the final
(compilable) source code. This paper focuses on the frontend system of
mTurnpike, and describes its design, implementation and performance
implications. In order to demonstrate how to exploit mTurnpike in application
development, this paper also shows a development process using an example
DSL (domain specific language) to specify service-oriented distributed systems.

1. Introduction

Modeling technologies have matured to the point where they can offer significant
leverage in all aspects of software development. Given modern modeling
technologies, the focus of software development has been shifting away from
implementation technology domains toward the concepts and semantics in problem
domains. The more directly application models can represent domain-specific
concepts, the easier it becomes to specify applications. One of the goals of modeling
technologies is to map modeling concepts directly to domain-specific concepts [1].

Domain Specific Language (DSL) is a promising solution to directly capture,
represent and implement domain-specific concepts [1, 2]. DSLs are the languages
targeted to particular problem domains, rather than general-purpose languages that are
aimed at any software problems. Several experience reports have demonstrated that
DSLs can improve the productivity in implementing domain-specific concepts [3].

*
 Research supported in part by OGIS International, Inc. and Electric Power Development Co., Ltd.

Modeling Turnpike Frontend System 585

This paper proposes a new model-driven development framework, called Modeling
Turnpike (or mTurnpike), which aids modeling and programming domain-specific
concepts with DSLs. mTurnpike allows developers to model and program domain-
specific concepts in DSLs and to transform them to the final (compilable) source code
in a seamless and piecemeal manner. Leveraging UML metamodeling and attribute-
oriented programming, mTurnpike provides an abstraction to represent domain-
specific concepts at the modeling and programming layers simultaneously. At the
modeling layer, domain-specific concepts are represented as a Domain Specific Model
(DSM), which is a set of UML 2.0 diagrams described in a DSL. Each DSL is defined
as a UML metamodel that extends the UML 2.0 standard metamodel [4]. At the
programming layer, domain-specific concepts are represented as a Domain Specific
Code (DSC), which consists of attribute-oriented programs. Attributes are declarative
marks, associated with program elements (e.g. classes and interfaces), to indicate that
the program elements maintain application-specific or domain-specific semantics [5].
The frontend system of mTurnpike transforms domain-specific concepts from the
modeling layer to programming layer, and vise versa, by providing a seamless
mapping between DSMs and DSCs without any semantics loss.

The backend system of mTurnpike transforms a DSM and DSC into a more
detailed model and program by applying a given transformation rule. mTurnpike
allows developers to define arbitrary transformation rules, each of which specifies
how to specialize a DSM and DSC to particular implementation and deployment
technologies. For example, a transformation rule may specialize them to a database,
while another rule may specialize them to a remoting system. mTurnpike combines
the specialized DSM and DSC to generate the final (compilable) source code.

This paper focuses on the frontend system of mTurnpike, and describes its design,
implementation and performance implications. In order to demonstrate how to exploit
mTurnpike in application development, this paper also shows a development process
using an example DSL to specify service-oriented distributed systems.

2. Contributions

This section summarizes the contributions of this work.

 UML 2.0 support for modeling domain-specific concepts. mTurnpike accepts
DSLs as metamodels extending the UML 2.0 standard metamodel, and uses UML
2.0 diagrams to model domain-specific concepts (as DSMs). This work is one of
the first attempts to exploit UML 2.0 to define and use DSLs.

 Higher abstraction for programming domain-specific concepts. mTurnpike offers
a new approach to represent domain-specific concepts at the programming layer,
through the notion of attribute-oriented programming. This approach provides a
higher abstraction for developers to program domain-specific concepts, thereby
improving their programming productivity. Attribute-oriented programming makes
programs simpler and more readable than traditional programming paradigms.

 Seamless mapping of domain-specific concepts between the modeling and
programming layers. mTurnpike maps domain-specific concepts between the
modeling and programming layers in a seamless and bi-directional manner. This

586 Hiroshi Wada and Junichi Suzuki

mapping allows modelers1 and programmers to deal with the same set of domain-
specific concepts in different representations (i.e. UML models and attribute-
oriented programs), yet at the same level of abstraction. Thus, modelers do not
have to involve programming details, and programmers do not have to possess
detailed domain knowledge and UML modeling expertise. This separation of
concerns can reduce the complexity in application development, and increase the
productivity of developers in modeling and programming domain-specific
concepts.

 Modeling layer support for attribute-oriented programs. Using the bi-directional
mapping between UML models and attribute-oriented programs, mTurnpike
visualizes attribute-oriented programs in UML. This work is the first attempt to
bridge a gap between UML modeling and attribute-oriented programming.

3. Background: Attribute-Oriented Programming

Attribute-oriented programming is a program-level marking technique. Programmers
can mark program elements (e.g. classes and methods) to indicate that they maintain
application-specific or domain-specific semantics [5]. For example, a programmer
may define a “logging” attribute and associate it with a method to indicate the method
should implement a logging function, while another programmer may define a “web
service” attribute and associate it with a class to indicate the class should be
implemented as a web service. Attributes separate application’s core (business) logic
from application-specific or domain-specific semantics (e.g. logging and web service
functions). By hiding the implementation details of those semantics from program
code, attributes increase the level of programming abstraction and reduce
programming complexity, resulting in simpler and more readable programs. The
program elements associated with attributes are transformed to more detailed
programs by a supporting tool (e.g. pre-processor). For example, a pre-processor may
insert a logging program into the methods associated with a “logging” attribute.

The notion of attribute-oriented programming has been well accepted in several
languages and tools, such as Java 2 standard edition (J2SE) 5.0, C# and XDoclet2. For
example, J2SE 5.0 implements attributes as annotations, and the Enterprise Java
Beans (EJB) 3.0 extensively uses annotations to make EJB programming simpler.
Here is an example using an EJB 3.0 annotation.

@entity class Customer{
 String name;}

The @entity annotation is associated with the class Customer. This annotation
indicates that Customer will be implemented as an entity bean. A pre-processor in
EJB, called annotation processor, takes the above annotated code and applies a
certain transformation rule to generate several interfaces and classes required to
implement Customer as an entity bean (i.e. remote interface, home interface and

1
 This paper assumes modelers are familiar with particular domains but may not be programming experts.

2
 http://xdoclet.sourceforge.net/

Modeling Turnpike Frontend System 587

implementation class). The EJB annotation processor follows the transformation rules
predefined in the EJB 3.0 specification.

In addition to predefined annotations, J2SE 5.0 allows developers to define their
own (user-defined) annotations. There are two types of user-defined annotations:
marker annotations and member annotations. Here is an example marker annotation.

public @interface Logging{ }

In J2SE 5.0, a marker annotation is defined with the keyword @interface.
public class Customer{
 @Logging public void setName(...){...} }

In this example, the Logging annotation is associated with setName(), indicating
the method logs method invocations. Then, a developer specifies a transformation rule
for the annotation, and creates a user-defined annotation processor that implements
the transformation rule. The annotation processor may replace each annotated method
with a method implementing a logging function.

A member annotation, the second type of user-defined annotations, is an
annotation that has member variables. It is also defined with @interface.

public @interface Persistent{
 String connection();
 String tableName(); }

The Persistent annotation has the connection and tableName variables.
@Persistent(
 connection = “jdbc:http://localhost/”,
 tableName = “customer”)
public class Customer{}

Here, the Persistent annotation is associated with the class Customer,
indicating the instances of Customer will be stored in a database with a particular
database connection and table name. A developer who defines this annotation
implements a user-defined annotation processor that takes an annotated code and
generates additional classes and/or methods implementing a database access function.

4. Design and Implementation of mTurnpike

mTurnpike consists of the frontend and backend systems (Fig. 1). The frontend
system is implemented as DSC Generator, and the backend system is implemented as
DSL Transformer. Every component in mTurnpike is implemented with Java.

The frontend system transforms domain-specific concepts from the modeling layer
to programming layer, and vise versa, by providing a seamless mapping between
DSMs and DSCs. In mTurnpike, a DSL is defined as a metamodel that extends the
UML 2.0 standard (superstructure) metamodel with UML’s extension mechanism3.
The UML extension mechanism provides a set of model elements such as stereotype
and tagged-value in order to add application-specific or domain-specific modeling
semantics to the UML 2.0 standard metamodel [6]. In mTurnpike, each DSL defines a
set of stereotypes and tagged-values to express domain-specific concepts. Stereotypes

3
 An extended metamodel is called a UML profile. Each DSL is defined as a UML profile in mTurnpike.

588 Hiroshi Wada and Junichi Suzuki

are specified as metaclasses extending UML’s standard metaclasses, and tagged-
values are specified as properties of stereotypes (i.e. extended metaclasses).

Given a DSL, a DSM is represented as a set of UML 2.0 diagrams (class and
composite structure diagrams). Each DSC consists of Java interfaces and classes
decorated with the J2SE 5.0 annotations. The annotated code follows the J2SE 5.0
syntax to define marker and member annotations.

The backend system of mTurnpike transforms a DSM and DSC into a more
detailed model and program that specialize in particular implementation and
deployment technologies. Then, it combines the specialized DSM and DSC to
generate the final (compilable) code (Fig. 1).

In mTurnpike, the frontend and backend systems are separated by design.
mTurnpike clearly separates the task to model and program domain-specific models
(as DSMs and DSCs) from the task to transform them into the final compilable code.
This design strategy improves separation of concerns between modelers/programmers
and platform engineers 4 . Modelers and programmers do not have to know how
domain-specific concepts are implemented and deployed in detail. Platform engineers
do not have to know the details of domain-specific concepts. As a result, mTurnpike
can reduce the complexity in application development, and increase the productivity
of developers in modeling and programming domain-specific concepts.

This design strategy also allows DSMs/DSCs and transformation rules to evolve
independently. Since DSMs and DSCs do not depend on transformation rules,
mTurnpike can specialize a single set of DSM and DSC to different implementation
and deployment technologies by using different transformation rules. When it comes
time to change a running application, modelers/programmers make the changes in the
application’s DSM and DSC and leave transformation rules alone. When retargeting
an application to a different implementation and/or deployment technology, e.g. Java
RMI to Java Messaging Service (JMS), platform engineers define (or select) a
transformation rule for the new target technology and regenerate the final compilable

4
 Platform engineers possess expertise in platform technologies on which DSMs and DSCs are deployed.

They are responsible for defining transformation rules applied to DSMs and DSCs.

DSM

Final
Code

Transformation rules

DSC

Visual Models Textual Code

DSC
Generator

A
bs

tra
ct

io
n

le
ve

l

Representation

H
ig

he
r

A
bs

tra
ct

io
n

Le
ve

l

Lo
w

er

A
bs

tra
ct

io
n

Le
ve

l

Fig. 1. mTurnpike Architecture and its Key Components.

DSC
Transformer

Skeleton Code
Generator

DSM
Transformer

Plain
UML

Models

DSL Transformer

Programmers Modelers

Describe models Write method code Application Developers

mTurnpike
Frontend

mTurnpike
Backend

Modeling Turnpike Frontend System 589

source code. As such, mTurnpike can make domain-specific concepts (i.e. DSMs and
DSCs) more reusable and extend their longevity, thereby improving productivity and
maintainability in application development.

4.1. Mapping Between DSMs and DSCs in the mTurnpike Fontend System

mTurnpike implements the mapping rules shown in Table 1 to transform DSMs to
DSCs, and vice versa. Fig. 2 shows an example DSM, the class Customer
stereotyped as <<entitybean>> with a tagged-value. mTurnpike transforms the
UML class (DSM) to the following Java class and member annotation (DSC).

Table 1. Mapping rules between DSMs and DSCs.

UML Elements in DSM Java Elements in DSC
Definition of a stereotype that has no
tagged-values Definition of a marker annotation

Definition of a stereotype that has
tagged-values Definition of a member annotation

DSL
or

Profile
 (M2)

Definition of a tagged-value Definition of a member variable in a
member annotation

Package Package
Class and interface Class and interface
Method and data field Method and data field
Modifier and visibility Modifier and visibility
Primitive type Primitive type
Stereotype that has no tagged-values Marker annotation
Stereotype that has tagged-values Member annotation

DSM
(M1)

Tagged-value Member annotation’s member variable

(1) Java class Customer (DSC)
@entitybean(
 jndi-name = “ejb/Customer”)
public class Customer{
 public String getName(){} }

(2) Member annotation entitybean (DSC)
@interface entitybean{
 String jndi-name(); }

4.2. Design and Implementation of the mTurnpike Frontend System

The mTurnpike frontend system is implemented by DSC Generator (Fig. 1). It
performs transformations between DSMs and DSCs based on the mapping rules
described in Section 4.1. The following five steps involve in the transformation.

(1) Loading a DSM to build a UML tree: DSC Generator imports a DSM as a
representation of the XML Metadata Interchange (XMI) 2.0 [7]. Developers can

Fig. 2. UML Class Customer (DSM)

<<entitybean>>
Customer

{j di ” jb/C ”}
+ getName() : String

Fig. 2. UML Class Customer (DSM)

<<entitybean>>
Customer

{jndi-name=”ejb/Customer”}

+ getName() : String

590 Hiroshi Wada and Junichi Suzuki

generate XMI descriptions of their DSMs using any UML tools that support XMI 2.0.
Here is an example XMI description showing the class Customer in Fig. 2.

<UML:Class xmi.id=“id_class” owner=“id_project” name=“Customer”
 appliedSteotype= “profile.xmi#//*[@xmi.id="id_profile"]”>
<UML:Element.ownedElement>
 <UML:Operation xmi.id=“id_operation”
 name=“getName” owner=“id_class”>
 <UML:Element.ownedElement>
 <UML:Parameter xmi.id=“id_param” type=“id_string”
 name=“Unnamed” direction=“result” owner=“id_operation”/>
 </UML:Element.ownedElement>
 </UML:Operation>
 <UML:TaggedValue xmi.id=“id_taggedvalue”
 name=“jndi-name” owner=“id_class”>
 <UML:TaggedValue.dataValue>
 ejb/Customer
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
</UML:Element.ownedElement>
</UML:Class>
<UML:DataType xmi.id=“id_string” owner=“id_project” name=“String”/>

The <UML:Class> tag defines a class, and its attribute appliedStereotype
references, with XPath directives, a stereotype defined in another XMI file
(profile.xmi). In this example, the stereotype <<entitybean>> is referenced
with its identifier id_profile. The <UML:TaggedValue> tag defines a tagged-
value associated with the class Customer.

When accepting a DSM, DSC Generator identifies a DSL that the input DSM
follows. DSLs are also represented as XMI descriptions. In the above example, a DSL
is defined in a file named profile.xmi. DSC Generator parses a DSM and its
corresponding DSL, as XMI files, to build an in-memory tree structure, called UML
tree. A UML tree is an instance of the UML standard metamodel. For building UML
trees, DSC Generator follows the data structures provided by the Eclipse Modeling
Framework (EMF)5 and Eclipse-UML26.

Once a UML tree is constructed, DSC Generator validates the UML tree (i.e. an
input DSM) against the standard UML metamodel. It examines if the DSM follows
the syntax and semantics defined in the standard UML metamodel. DSC Generator
also validates the UML tree (i.e. an input DSM) against a corresponding DSL. For
example, it checks if the DSM uses appropriate stereotypes and tagged-values defined
in the DSL. The validation of UML trees (DSMs) is performed by traversing the trees
using a visitor class, named UML2Switch provided by Eclipse-UML2.

(2) Building a JAST for a DSL: Once a UML tree is built and validated, DSC
Generator constructs a Java Abstract Syntax Tree (JAST) corresponding to a DSL
represented in the UML tree. DSC Generator traverses a UML tree, using
UML2Switch in Eclipse-UML2, and constructs a JAST node corresponding to each
node in the UML tree based on the mapping rules described in Section 4.1.

5 www.eclipse.org/emf/
6
 www.eclipse.org/uml2/. Eclipse-UML2 implements the UML metamodel as a set of Java objects on EMF.

Modeling Turnpike Frontend System 591

Fig. 3 shows some key data structures to construct JASTs. Annotation
represents an annotation. In order to represent a member annotation, Annotation
has an association with AnnotationMembers, each of which represents its
member variable. AnnotationMember keeps a value of member variable.
AnnotationDefinition and AnnotationMemberDefinition represent
the definitions of an annotation and an annotation’s member variable. They are
powertypes Annotation and AnnotationMember, respectively.

(3) Building a JAST for a DSC: After constructing a JAST corresponding to a DSL
represented in a UML tree, DSC Generator completes the JAST by transforming the
rest of the UML tree into JAST nodes. Transformations are performed with the JAST
data structures shown in Fig. 3, following the mapping rules described in Section 4.1.
In Fig. 3, AnnotatableElement is the root interface for the Java program
elements that can be decorated by J2SE 5.0 annotations.

The following code fragment shows how DSC Generator transforms a stereotyped
UML class (i.e. a class in DSM) to an annotated Java class (i.e. a class in DSC). The
method convertClass() takes a UML class and instantiates the class Class in a
JAST, which represents a Java class (see also Fig. 3). Then, the method transforms
the stereotypes applied to the UML class to Java annotations by instantiating the class
Annotation in resolveStereotypes() and convertStereotype().

import edu.umb.cs.dssg.mturnpike.java.ast.*;
Class convertClass(org.eclipse.uml2.Class c_) {
 Class c = new Class(); // create a Java class as a JAST node
 resolveStereotypes(c, c_);// create a Java annotation(s), if a UML class is stereotyped.
 return c;
}
void resolveStereotypes(AnnotatableElement annotatableElement,
org.eclipse.uml2.Element element) {
 foreach(Stereotype s in element.getAppliedStereotypes()){
 Annotation annot = convertStereotype(element, s);
 annotatableElement.addAnnotation(annot); }
}

<< interface >>
Element

Type

DataType
Class Interface

PrimitiveTypeEnum

Property

*

Operation

Field

<< interface >>
AnnotationMemberType

AnnotationMemberDefinition AnnotationDefinition

type+

Annotation

meta+

AnnotationMember

-value:Object

*

meta+

*

parent+

*

parent+

*implements

type+

<< interface >>
AnnotatableElement

Classifier << enumeration >>
VisibilityKind

visibility+

visibility+

annotations+

Package

*

Fig. 3. Key data structures to construct Java Abstract Syntax Trees

592 Hiroshi Wada and Junichi Suzuki

Annotation convertStereotype(org.eclipse.uml2.Element element,
org.eclipse.uml2.Stereotype stereotype) {
 Annotation annotation = new Annotation();
 String name = stereotype.getName();
 annotation.setName(name);
 AnnotationDefinition annotDefinition = getAnnotDefinition(name);
 annotation.setMeta(annotationDefinition);
 foreach(Property p in stereotype.getAttributes()){
 AnnotationMember annotMember = new AnnotationMember();
 ... // set the name, type and definition of the created annotation member.
 annotation.addMember(annotationMember); }
 return annotation;
}

(4) Building a DSC (annotation definitions): Once a JAST is constructed, DSC
Generator generates annotation definitions in a DSC. Each JAST node has the
toString() method, which generates Java source code corresponding to the JAST
node. DSC Generator traverses a JAST and calls the method on instances of
AnnotationDefinition and AnnotationMemberDefinition (Fig. 3).

(5) Building a DSC: Once generating annotation definitions, DSC Generator
generates the rest of annotated code in a DSC. DSC Generator traverses a JAST and
calls the toString() method on each node in the JAST.

After DSC Generator generates a DSC (i.e. annotated code), programmers write
method code in the generated DSC in order to implement dynamic behaviors for
domain-specific concepts7. Please note that the methods in the generated DSC are
empty because DSMs specify only the static structure of domain-specific concepts
(using UML class diagrams and composite structure diagrams).

In addition to transformations from DSMs to DSCs, mTurnpike can perform
reverse transformations from DSCs to DSMs. In a reverse transformation, mTurnpike
parses a DSC (i.e. annotated Java code) with a J2SE 1.5 lexical analyzer (J2SE 1.5
parser) 8, and builds a JAST following the data structure shown in Fig. 3. The JAST is
transformed to a UML tree and an XMI file using Eclipse-UML2

4.3. Design and Implementation of the mTurnpike Backend System

The mTurnpike backend system consists of three components: DSM Transformer,
Skeleton Code Generator and DSC Transformer (Fig. 1).

DSM Transformer: DSM Transformer accepts a DSM as a UML tree built by DSC
Generator, and transforms it to a more detailed model (Fig. 1). Given a transformation
rule that a platform engineer defines, DSM Transformer transforms (or unfolds) DSM
model elements associated with stereotypes and tagged-values into plain UML model
elements that do not have any stereotypes and tagged-values. In this transformation, a
DSM is specialized to particular implementation and deployment technologies. For

7
 Please note that the methods in DSC are empty because both DSMs and DSCs only specify the static

structure of domain-specific concepts (a DSM consists of class and composite structure diagrams).
8
 mTurnpike’s lexical analyzer is implemented with JavaCC (http://javacc.dev.java.net/).

Modeling Turnpike Frontend System 593

example, if a transformation specializes an input DSM to Java RMI, the classes in the
DSM are converted to the classes implementing the java.rmi.Remote interface.

DSM Transformer is implemented with the Model Transformation Framework
(MTF) 9 , which is implemented on EMF and Eclipse-UML2. MTF provides a
language to define transformation rules between EMF-based models. mTurnpike
follows the syntax of MTF’s transformation rule language to specialize DSMs. Each
transformation rule consists of conditions and instructions. DSM Transformer
traverses a DSM (i.e. a UML tree built by DSC Generator), identifies the DSM model
elements that meet transformation conditions, and applies transformation instructions
to them. This process generates another UML tree that represents a model specializing
in particular implementation and deployment technologies. The following is an
example transformation rule.
relate class2class(
uml:Class src when equals(match over src.stereotypes.name, “Service”),
uml:Class tgt,
uml:Interface tgt2 when equals(tgt2.name, “Remote”)
) when equals(src.name, tgt.name){

 implementation(tgt, tgt2)
}
relate implementation(uml:Class c1, uml:Interface c2){
 realize(over c1.implementation, c2)
}
relate realize(uml:Implementation i, uml:Interface c){
 check interfaces(g.contract, c)
}
relate interfaces(uml:Interface c1, uml:Interface c2)
 when equals(c1.name, c2.name)

The keyword relate is used to define a transformation rule. This example defines
four transformation rules. Each rule accepts model elements as parameters and
instructs how to transform them. For example, the first rule (class2class) accepts
the classes stereotyped with <<Service>>, and transform each of them to two
classes. One of the two classes has the same name as an input <<Service>> class,
and it extends an interface whose name is Remote.

Skeleton Code Generator: Skeleton Code Generator takes a UML tree created by
DSM Transformer, and generates skeleton code in Java (Fig. 1). It traverses an input
UML tree, builds a JAST corresponding to the UML tree using the JAST package
shown in Fig. 3, and generates Java code from the JAST. Since the mTurnpike
frontend system only supports structural UML diagrams (class and composite
structure diagrams), the methods in the generated code are empty.

DSC Transformer: DSC Transformer accepts a DSC generated by DSC Generator,
method code written on the generated DSC by programmers, and skeleton code
generated by Skeleton Code Generator. Then, DSC Transformer combines them to
generate the final compilable code (in Java). DSC Transformer extracts method code
embedded in an input DSC, and copies the method code to an input skeleton code.
DSC Transformer analyses a transformation rule, which is used by DSM Transformer,
in order to determine where each method code is copied in an input skeleton code.

9 http://www.alphaworks.ibm.com/tech/mtf/

594 Hiroshi Wada and Junichi Suzuki

5. An Example DSL

This section describes an example DSL to develop service-oriented distributed
systems, and overviews a development process using the DSL with mTurnpike.

5.1. SOA DSL

Service Oriented Architecture (SOA) is a distributed systems architecture that
connects and operates network services in a platform independent manner. SOA
models a distributed system as a collection of services. It abstracts distributed systems
using two concepts, service interface and connections between services, and hides the
details of implementation and deployment technologies, such as programming
languages used to implement services and remoting infrastructures used to operate
services. In SOA, each service maintains its own interface that makes its functionality
accessible to other services via network. Each connection between services is an
abstraction to specify how to interact (or exchange messages) between services.

The proposed SOA DSL focuses on connectivity between services, and allows
developers to visually design the connections between services as UML diagrams. It

is defined as a UML profile extending the standard UML metamodel. Fig. 4 shows
the core part of the proposed SOA DSL.
Service and Message are stereotypes used to specify network services and

messages exchanged between services. They are defined as a metaclass extending the
Class metaclass in the standard UML metamodel.
Connector is used to represent connections between services. It is a stereotype

extending the Class metaclass in the InternalStructures package (Fig 4).
This metaclass defines a model element used in the UML composite structure
diagram. It allows developers to define nested model structures, such as a class
composed of several internal (nested) classes. Connector maintains two different
semantics: connection semantics and invocation semantics (Fig. 5).
ConnectionSemantics is used to specify how to establish a connection between
services. It defines four different semantics (Fig. 5). The Reliability option
guarantees that messages are delivered to destinations. The Encryption option

0..*
1

1

0..*
1..* 1..*

UML 2.0
metamodel

InternalStructures::StructuredClassifier

input

output
1

1 1..*

1

Ports::EncapsulatedClassifier Ports::Port

0..1 *

InternalStructures::Property

Kernel::Class

part

1..* 1..*

source

sink

InternalStructures::Class

0..1 *

Fig. 4. The proposed SOA DSL

<<stereotype>>
Filter

<<stereotype>>
Connector

<<stereotype>>
Service

<<stereotype>>
Message

Modeling Turnpike Frontend System 595

instructs that messages are encrypted on a connection. The Stream option enables
streaming messages. The Queuing option deploys a message queue between
services to enable a store-and-forward messaging policy. InvocationSemantics
is used to specify how to invoke a service through a connection. Supported invocation
semantics include synchronous, asynchronous and oneway invocations.

A Connector can contain Filters to customize its behavior (Fig. 4). The proposed
SOA DSL currently defines four different filters (Fig. 6). MessageConverter converts
the schema of messages exchanged on a connection. MessageAggregator
synchronizes multiple invocations and aggregates their messages. Multicast
simultaneously sends out a message to multiple filters or services. Interceptor is a
hook to intercept invocations and examine messages.

5.2. Development Process Using mTurnpike and SOA DSL

Using a SOA DSL described in Section 5.1, this section overviews an application
development process with mTurnpike.

(1) Defining a DSM. Modelers define a DSM in the UML 2.0 class diagrams or
composite structure diagrams. Fig. 7 shows an example DSM using the SOA DSL
described in Section 5.1. Customer orders a product to Supplier by sends out an
OrderMessage. If a Supervisor approves the order by issuing an
Authorization, Aggregator aggregates the OrderMessage and
Authorization, and sends an aggregated message to Supplier. Connection
is responsible for connecting services and delivering messages between them. It
establishes a synchronous and secure connection between services.

(2) Generating a DSC from a DSM. DSC Generator takes a DSM and generates a
DCS (Fig. 1). The following is a DSC (annotated code) for Supplier.
@Service

public class Supplier{ public onMessage(OrderMessage message){} }

(3) Writing Method Code. Programmers write method code in the generated DSC
in Java (Fig. 1). For example, they write onMessage()in the Supplier class.

Fig. 5. Connector stereotypes

<<enumeration>>
InvocationSemantics

Sync
Async
Oneway

<<enumeration>>
ConnectionSemantics

Reliability
Encryption
Stream
Queuing

1
1

InvocationSematics

1

0..*

ConnectionSemantics

<<stereotype>>
Filter

Fig. 6. Filter stereotypes

<<stereotype>>
Multicast

<<stereotype>>
MessageAggregator

<<stereotype>>
MessageConverter

<<stereotype>>
Interceptor

<<stereotype>>
Connector

596 Hiroshi Wada and Junichi Suzuki

(4) Defining Transformation Rules. Platform engineers define a transformation
rule to specialize a DSM in particular implementation and deployment technologies
(Fig. 1). For example, if a DSM specifies a synchronous connection, a transformation
rule may transform a UML class stereotyped with <<service>> into several UML
interfaces and classes that are required to implement the <<service>> class as a
Java RMI object (Fig. 8). If a DSM specifies an asynchronous connection, a
transformation rule may specialize the <<service>> class to a JMS object (Fig. 8).
The transformation rule also may specialize a <<Message>> class (e.g.
OrderMessage) to implement the interface javax.jms.Message.

(5) Generate Final Code. DSL Transformer takes a DSM and a DSC as inputs, and
generates the final (compilable) code (Fig. 1). It applies a transformation rule
described in the step (4) to an input DSM to specialize the DSM. Then, it generates
skeleton code in Java from the specialized DSM. Finally, DSL Transformer extracts
method code from a DSC, and copies the method code to the generated skeleton code.

6. Preliminary Performance Evaluation

This section empirically evaluates the efficiency and memory footprint of the
mTurnpike frontend system. Measurements are obtained with nine configurations
(Table 2). For example, in the A1 configuration, mTurnpike loads a DSM that
contains 10 classes, each of which has five data fields, one stereotype and five tagged-

Fig. 8. Service implementations with JavaRMI and JMS

+ onMessage(javax.jms.Message)

javax.jms.MessageListener

<<Service>> Supplier

+onMessage(OrderMessage)

Supplier

+ onMessage(OrderMessage)

javax.rmi.Remote

JavaRMI model JMS model

Supplier

<<Service>>
Customer

<<Service>>
Supplier

<<Service>>
Supervisor

<<Interceptor>>
: Logger <<Message>>

Authorization

<<MessageAggregator>>
: Aggregator

<<Connector>> Connection

input

source

output

InvocationSemantics = Sync
ConnectionSemantics = Encryption

source sink

input

Fig. 7. An example DSM using the proposed SOA DSL

<<Message>>
OrderMessage

+onMessage(
OrderMessage)

Modeling Turnpike Frontend System 597

values (120 model elements in total). Measurements uses a Sun J2SE 5.0.2 VM
running on a Windows 2000 PC with an Athlon 1.7 Ghz CPU and 512MB memory.

In order to evaluate the efficiency of the mTurnpike frontend system, Fig. 9 shows

the time for mTurnpike to execute each of the five functional steps to transform a
DSM to a DSC (see Section 4.2). The numbers placed in the figure depicts how long
it takes for mTurnpike to execute functional steps 1, 3 and 5. Fig. 9 shows mTurnpike
is efficient enough in the configurations A1 to B2 (its overhead is up to 5 seconds).
The transformation overhead is acceptable in small-scale to mid-scale application
development. mTurnpike does not interrupt developers’ modeling and programming
work severely. Fig. 9 also shows that it takes 8 up to 33 seconds for mTurnpike to
execute its frontend process in the C1 to C3 configurations. Several optimization
efforts are currently underway, and they are expected to reduce the latency.

In order to examine the memory footprint of the mTurnpike frontend system, Fig.
10 shows how much memory space mTurnpike consumes to transform a DSM to a
DSC. mTurnpike consumes no more than 15MB memory to handle models produced
in small-scale up to large-scale projects (in the configurations A1 to C2). Since the
memory utilization of mTurnpike is fairly small, it is not necessary for developers to
upgrade their development environments (e.g. memory modules in their PCs).

5.87

11.78

14.62

0.58 0.96 0.96 1.14 1.63 2.030.52 1.92
0.67 1.28 1.20 1.52 2.16 3.070.58 3.63
0.69 1.33 1.42 1.74 3.31 4.25

0.61
4.21

0

10

20

30

A1 A2 A3 B1 B2 B3 C1 C2 C3
measurement configurat ions

tim
e

(s
)

5) Generat ing a DSC
4) Generat ing a DSC (annotat ion definit ions)

3) Building a JAST for a DSC
2) Building a JAST for a DSL
1) Loading a DSM to build a UML tree

Fig. 9. Overhead of mTurnpike to transform a DSM to a DSC.

Table 2. Measurement configurations.

1 0 1 0 0 5 0 0

A 1 B1 C1
(1 2 0) (1 2 0 0) (6 0 0 0)

A 2 B2 C2
(2 3 0) (2 3 0 0) (1 1 5 0 0)

A 3 B3 C3
(1 1 1 0) (1 1 1 0 0) (5 5 5 0 0)

5 0 dat a f ie lds an d 1 0 st ereo t y p es (5
t agged-v alues fo r each st ereo t y p e)

5 dat a f ie lds an d 1 st ereo t y p e (5
t agged-v alues fo r each st ereo t y p e)
1 0 dat a f ie lds an d 2 st ereo t y p es (5
t agged-v alues fo r each st ereo t y p e)

T h e n um ber o f classes
T h e n um ber o f m o del e lem en t s

defin ed in each class

598 Hiroshi Wada and Junichi Suzuki

7. Related Work

mTurnpike reuses the J2SE 5.0 syntax to write annotated code (i.e. marker and
member annotations). However, mTurnpike and J2SE 5.0 follow different approaches
to define transformation rules between annotated code and compilable code. In J2SE
5.0, transformation rules are defined in a procedural manner (i.e. as programs). It
allows developers to define arbitrary transformation rules in user-defined annotation
processors (see Section 2). A user-defined annotation processor examines annotated
code using the Java reflection API, and generates compilable code based on a
corresponding transformation rule. Although this transformation mechanism is
generic and extensible, it tends to be complicated and error-prone to write user-
defined annotation processors. Also, transformation rules are difficult to maintain in
annotation processors, since updating a transformation rule requires modifying and
recompiling the corresponding annotation processor.

In contrast, mTurnpike allows developers to define transformation rules in a
declarative manner. Declarative transformation rules are more readable and easier to
maintain than procedural ones. It is not required to recompile mTurnpike when
updating transformation rules. Also, transformation rules are defined at the modeling
layer, not the programming layer. This raises the level of abstraction for handling
transformation rules, resulting in higher productivity of users in managing them.

mTurnpike has some functional commonality with existing model-driven
development (MDD) tools such as OptimalJ10, Rose XDE11, Together12, UMLX [8]
and KMF [9] They usually have two functional components: Model Transformer and
Code Generator (Fig. 11). Similar to DSM Transformer in mTurnpike, Model
Transformer accepts UML models that modelers describe with UML profiles, and
converts them to more detailed models in accordance with transformation rules.
Similar to Skeleton Code Generator in mTurnpike, Code Generator takes the UML
models created by Model Transformer, and generates source code.

A major difference between existing MDD tools and mTurnpike is the level of
abstraction where programmers work. In existing MDD tools, programmers and
modelers work at different abstraction levels (Fig. 11). Although modelers work on
UML modeling at a higher abstraction level, programmers need to handle source
code, at a lower abstraction level, which is generated by Code Generator (Fig. 11).

10

 http://www.compuware.com/products/optimalj/
11

 http://www.ibm.com/software/awdtools/developer/rosexde/
12

 http://www.borland.com/together/architect/

Fig. 10. Memory footprint of mTurnpike to transform a DSM to a DSC.

0
10
20
30
40
50

10 100 500
t he num ber o f classes

m
em

or
y

ut
ili

za
tio

n
(M

B) A1 -B1-C1
A2-B2-C2
A3-B3-C3

Modeling Turnpike Frontend System 599

The generated source code is often hard to read and understand. It tends to be
complicated, time consuming and error-prone to modify and extend the source code.

Unlike existing MDD tools, mTurnpike allows both programmers and modelers to
work at a higher abstraction level (Fig. 1). Programmers implement behavioral
functionalities (i.e. method code) in DSCs, before DSL Transformer transforms DSCs
to more detailed programs that specialize in particular implementation and
deployment technologies. This means that programmers can focus on coding
application’s core logic (or business logic) without handling the details in
implementation and deployment technologies. Also, DSCs (i.e. annotated code) are
much more readable and easier to maintain than the source code generated by Code
Generators in existing MDD tools (see Sections 2 and 3.1). Therefore, mTurnpike
provides a higher productivity of programmers in implementing their applications.

8. Conclusion

This paper describes and empirically evaluates a new model-driven development
framework called mTurnpike. In addition to an overview of architectural design, this
paper focuses on the frontend system of mTurnpike and describes its design,
implementation and performance implications. In order to demonstrate how to exploit
mTurnpike in application development, this paper also shows a development process
using an example DSL to specify service-oriented distributed systems.

References

1. G. Booch, A Brown, S Iyengar, J. Rumbaugh and B. Selic, “An MDA Manifesto,” In The
MDA Journal: Model Driven Architecture Straight from the Masters, Chapter 11, Meghan-
Kiffer Press, December 2004.

2. S. Cook, “Domain-Specific Modeling and Model-driven Architecture,” In The MDA
Journal: Model Driven Architecture Straight from the Masters, Chapter 3, Meghan-Kiffer
Press, December 2004.

3. S. Kelly and J. Tolvanen, “Visual Domain-specific Modeling: Benefits and Experiences of
using metaCASE Tools,” In Proc. of Int’l workshop on Model Engineering, ECOOP, 2000.

4. Object Management Group, UML 2.0 Superstructure Specification, Otober, 2004.

Final
Code

Transformation rules

Visual Models Textual Code
Representation

Fig. 11. Development process using traditional model-driven development tools.

Code
Generator

Model
Transformer

Folded Model
(Platform independent)

Unfolded Model
(Platform specific)

Programmers

Modelers Describe
models

Write
method code

Platform Engineers

Define
rules

A
bs

tra
ct

io
n

le
ve

l

H
ig

he
r

A
bs

tra
ct

io
n

Le
ve

l

Lo
w

er

A
bs

tra
ct

io
n

Le
ve

l

600 Hiroshi Wada and Junichi Suzuki

5. D. Schwarz, “Peeking Inside the Box: Attribute-Oriented Programming with Java 1.5,” In ON
Java.com, O’Reilly Media, Inc., June 2004.

6. L. Fuentes, A. Vallecillo. “An Introduction to UML Profiles”. UPGRADE, The European
Journal for the Informatics Professional, 5 (2): 5-13, April 2004.

7. Object Management Group, MOF 2.0 XML Metadata Interchange, 2004.
8. E. Willink, “UMLX: A Graphical Transformation Language for MDA,” In Proc. of OOPSLA,

2002.
9. O. Patrascoiu, “Mapping EDOC to Web Services using YATL,” In Proc. of the 8th IEEE

International Enterprise Distributed Object Computing Conference, September 2004.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 601-615, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Simplifying Autonomic Enterprise Java Bean
Applications Via Model-Driven Development:

A Case Study

Jules White, Douglas C. Schmidt, Aniruddha Gokhale

Vanderbilt University, Department of Electrical Engineering and Computer Science,
Box 1679 Station B, Nashville, TN, 37235

{jules, Schmidt, gokhale}@dre.vanderbilt.edu
http://www.dre.vanderbilt.edu

Abstract. Autonomic computer systems aim to reduce the configuration, op-
erational, and maintenance costs of distributed applications by enabling them to
self-manage, self-heal, self-optimize, self-configure, and self-protect. This pa-
per provides two contributions to the model-driven development (MDD) of
autonomic computing systems using Enterprise Java Beans (EJBs). First, we
describe the structure and functionality of an MDD tool that formally captures
the design of EJB applications, their quality of service (QoS) requirements, and
the autonomic properties applied to the EJBs to support the rapid development
of autonomic EJB applications via code generation, automatic checking of
model correctness, and visualization of complex QoS and autonomic properties.
Second, the paper describes how MDD tools can generate code to plug EJBs
into a Java component framework that provides an autonomic structure to
monitor, configure, and execute EJBs and their adaptation strategies at run-
time. We present a case study that evaluates how these tools and frameworks
work to reduce the complexity of developing autonomic applications.

1 Introduction

Autonomic computing challenges. Developing and maintaining enterprise appli-
cations is hard, due in part to their complexity and the impact of human operator
error, which have shown to be a significant contributor to distributed system repair
and down time [2]. The aim of autonomic computing is to create distributed applica-
tions that have the ability to self-manage, self-heal, self-optimize, self-configure, and
self-protect [1], thereby reducing human interaction with the system to minimize
down-time from operator error. Although the benefits of autonomic computing are
significant [1], the pressures of limited development timeframes and inher-
ent/accidental complexities of large-scale software development have discouraged the
integration of sophisticated autonomic computing functionality into distributed appli-
cations. Some enterprise application platforms offer limited autonomic features, such
as such as Enterprise Java Bean (EJB) [3] application servers clustering capabilities,
though they tend to have large development teams and long development cycles.

A key challenge limiting the use of autonomic features in enterprise applications is
the lack of design tools and frameworks that can (1) alleviate the complexities stem-

602 Jules White, Douglas C. Schmidt, and Aniruddha Gokhale

ming from the use of ad hoc methods and (2) generate code that is correct-by-con-
struction. Some infrastructure does exist, such as IBM’s Autonomic Computing Tool-
kit [4], which focuses on system-level logging and management. System-level auto-
nomic toolkits are inadequate, however, for fine-grained autonomic capabilities,
which fix problems early before an entire application must be restarted.

To address the limitations with system-level autonomic toolkits, component-level
autonomic frameworks are needed to reduce the effort of developing autonomic ap-
plications. Component-level autonomic properties support more fine-grained healing,
optimization, configuration, monitoring, and protection than system-level toolkits.
For example, a mission-critical command and control system for emergency re-
sponders should be able to shutdown/restart application component logic selectively
as it fails, rather than shutdown/restart the entire application. With existing autonomic
infrastructure based on the system-level , the failure of a key component triggers a
restart of the entire application [5]. In contrast, a component-level autonomic frame-
work could provide mechanisms to restart only the point of failure.

Simplifying autonomic system development via MDD techniques. Model-
driven development (MDD) [6] tools are a promising means of reducing the cost
associated with these activities. Models of autonomic systems developed with MDD
tools can be constructed and checked for correctness (semi-)automatically to ensure
that application designs meet autonomic requirements. Tools can also generate the
various capabilities to move data, coordinate actions, and perform other autonomic
functions.

To address the need for component-level autonomic computing – and to avoid ad
hoc techniques that manually imbue autonomic qualities into distributed applications
– we have created the J3 Toolsuite, which is an open-source MDD environment that
supports the design and implementation of autonomic applications. J3 consists of
several MDD tools and autonomic computing frameworks, including (1) J2EEML,
which captures the design of EJB applications, their quality of service (QoS) [6] re-
quirements, and the autonomic adaptation strategies of their EJBs via a domain-spe-
cific modeling language (DSML) [7], (2) Jadapt, which is a J2EEML model inter-
preter that analyzes the QoS and autonomic properties of J2EEML models, and (3)
JFense, which is an autonomic framework for monitoring, configuring, and resetting
individual EJBs [8].

This paper describes the structure and functionality of J2EEML and shows how it
simplifies autonomic system development by providing notations and abstractions
that are aligned with autonomic computing, QoS, and EJB terminology, rather than
low-level features of operating systems, middleware platforms, and third-generation
programming languages. We also describe how (1) Jadapt generates EJB and Java
code from J2EEML models to ensure that autonomic applications meet their specifi-
cations and to reduce implementation time and (2) JFense provides a set of reusable
autonomic components that allow developers to plug-in EJB applications and focus
on autonomic logic, rather than the glue for constructing autonomic systems. Finally,
we evaluate how the J3 Toolsuite reduces the complexity of developing an autonomic
EJB application used as a case study to evaluate our MDD tools and processes.

Our case study centers on an EJB-based system that schedules highway freight
shipments using the multi-layered autonomic architecture shown in Figure 1. The sys-

Simplifying Autonomic Enterprise Java Bean Applications 603

tem has a list of freight shipments that it must schedule. It uses a constraint-optimi-
zation engine to find a cost effective assignment of drivers and trucks to shipments.

Freight Scheduling
System

Pickup
Requests

Truck
Locations

Scheduler JFense

Next Pickup Location

Route Time
Module

JFense
Autonomic
Guardian

Route Time
Calculation
Algorithm

Monitors
R

ou
te

 T
i m

e
C

al
cu

la
t io

ns

Response
Time QoS
Assertion

Route
Time

Module

Fig. 1. A Multi-Layered Autonomic Architecture for Scheduling Highway Freight Shipments

A central component in Figure 1 is the Route Time Module (RTM), which deter-
mines the route time from a truck’s current location to a shipment start or end point.
The RTM uses a geo-database and the GPS coordinates from the truck to perform the
calculation. This module is critical to the proper operation of the optimization engine.
A heavy load is placed on the RTM, so it is crucial that it maintains its QoS asser-
tions, such as maintaining a maximum response time for the RTM of 100 millisec-
onds. QoS assertions are properties that the system can introspectively measure about
itself to determine whether the measured value for the property is beneficial to the
system. These measured QoS goals allow the system to decide whether it is in a good
state and predict whether it will continue to remain in a good state.

Paper organization. The remainder of this paper is organized as follows: Section
2 describes the MDD J3 Toolsuite for developing autonomic EJB applications; Sec-
tion 3 gives an overview of J2EEML and describes key challenges we faced when
developing it; Section 4 quantifies the reduction in manual effort achieved by using
the J3 Toolsuite on our highway freight shipment case study; Section 5 compares our
work with related research; and Section 6 presents concluding remarks.

2 Modeling Autonomic EJB Applications with J2EEML

J2EEML is a DSML that enables EJB developers to construct models that incorporate
autonomic and QoS concepts as first-class entities. J2EEML itself is developed using
the Generic Modeling Environment (GME) [9], which is a general-purpose MDD

604 Jules White, Douglas C. Schmidt, and Aniruddha Gokhale

environment that we use to simplify the creation of metamodels that characterize the
roles and relationships in the autonomic computing domain, and model interpreters
that generate many artifacts required to implement autonomic EJB applications.
J2EEML captures the relationship between QoS assertions and application compo-
nents to address key design challenges of developing autonomic applications. For
example, J2EEML helps developers understand which components to monitor in their
EJB applications by enabling them to visualize and analyze the relationships between
components and QoS assertions.

Developers use J2EEML to capture the design of autonomic systems and the map-
ping of components to QoS assertions in four phases: (1) they create a structural
model of the EJBs composing an autonomic system, (2) they create models of the
QoS properties that the system is attempting to maintain, (3) they map these QoS
properties to the specific beans within the system that the properties are measured
from, and (4) they design courses of action to take when the desired QoS properties
are not maintained. This modeling process captures the structure of the system, how
the QoS properties are related to the structure, and what adaptation should occur if a
QoS property is not within an acceptable range.

Fig. 2. J2EEML Remote Interface Composition Model for the TruckStatusModule

2.1 Modeling EJB Structures with J2EEML

The first piece of a J2EEML model is its EJB structural model, which describes the
components of the system that will be managed autonomically. This model defines
the beans that compose the system and captures the EJB specifics of each bean, in-
cluding JNDI names, transactional requirements, security requirements, package
names, descriptions, remote and local interface composition, and bean-to-bean inter-
actions. An EJB structural model is constructed via the following steps:
1. Each session bean is added to the model by dragging and dropping session bean

atoms into the J2EEML model. Developers then provide the Java Naming and Di-
rectory Interface (JNDI) name of the bean, its description, and its state type (i.e.,
stateful or stateless).

2. For each session bean, a model is constructed of the business methods and creators
supported by the bean by dragging and dropping method and creator atoms. Figure
2 shows a model of the remote interface composition of the TruckStatusModule
from the case study described in Section 1.

Simplifying Autonomic Enterprise Java Bean Applications 605

3. Entity beans are dragged and dropped into the model to construct the data access
layer. These beans are provided a JNDI name/description and properties indicating
if they use container managed persistence (CMP) or bean managed persistence
(BMP).

4. Persistent fields, methods, and finders are dragged and dropped into the entity
beans. Each persistent field has properties for setting visibility, type, whether it is
part f the primary key, and its access type (i.e., read-only or read-write).

5. Relationship roles are dragged and dropped into the entity beans and connected to
persistent fields. These relationship roles can be connected to other relationship
roles to indicate entity bean relationships.

6. Connections are made between beans to indicate bean-to-bean interactions. Captur-
ing these interactions allows Jadapt to later generate the required JNDI lookup code
for a bean to obtain a reference to another bean.
After these six steps have been completed, the J2EEML model contains enough in-

formation to represent the composition of the EJBs.
Figure 3 shows a J2EEML structural model of the highway freight scheduling sys-

tem. In this figure, each bean within the freight scheduling system has been modeled
via J2EEML. Interactions between the beans are also modeled, thereby allowing de-
velopers to understand which beans interact with one another. Figure 3 also illustrates
snippets of the XML deployment descriptor and Java class generated for the Sched-
uler.

To support decomposition of complex architectures into smaller pieces, J2EEML
allows EJB structural models to contain child EJB models. Beans within the these
children show up as ports that can receive connections from the parent solution. This
design allows developers to decompose models into manageable pieces and enables
different developers to encapsulate their designs.

Fig. 3. J2EEML Structural Model Showing Bean-to-Bean Interactions

For our highway freight scheduling example, we constructed a structural model of
each bean required for the Route Time Module, constraint-optimization engine, truck
status system, and incoming pickup request system, as shown in Figure 3. The model
also includes information on the entity beans used to access the truck location and
pickup request databases.

Using J2EEML provides several advantages in the design phase, including (1)
visualization of beans and their interactions, component security requirements, system
transactional requirements, and interactions between beans, (2) enforcement of EJB
best practices, such as the Session Façade pattern [10], which hides Entity beans from
clients through Session beans , and (3) model correctness checking, including checks

606 Jules White, Douglas C. Schmidt, and Aniruddha Gokhale

for proper JNDI naming. J2EEML’s visualization benefits significantly decreased the
difficulty of understanding system structure and interactions. The correctness check-
ing and enforcement of best design practices facilitated rapid creation of both a cor-
rect-by-construction and well-designed solution.

3 Designing J2EEML to Address Key Concerns of Autonomic
Computing

Autonomic applications require four elements to achieve their assertions: monitoring,
analysis, planning, and execution [1]. These elements form a controller that observes
and adapts the application to maintain its assertions. This section describes how the
monitoring, analysis, and planning aspects of autonomic systems present unique chal-
lenges when designing and building the J2EEML and shows how we addressed each
challenge. To focus the discussion, we use the Route Time Module (RTM) shown in
Figure 1 as a case study to illustrate key design challenges associated with autonomic
systems.

3.1 Monitoring

Monitoring is the phase in autonomic systems where applications observe their own
state. Since this state information is used in later phases to control system behaviors it
is crucial that the right information be collected at the right times without adversely
impact system functionality and QoS. The following are key design challenges faced
when developing the monitoring aspects of autonomic systems:

Challenge 3.1.1: Providing the ability to specify the large range of data that
can be monitored by the system. Developers of autonomic systems must address
how to self-monitor key data, e.g., by capturing CPU and memory utilization, excep-
tions thrown by the applacation, or error messages in a log. The model for specifying
what information to capture from the system must be flexible and support a range of
data types. The model must also be extensible and support unforeseen future data
types that might be needed later.

A core concept behind J2EEML is that an autonomic EJB application can measure
properties of its current state introspectively and determine if the property values
indicate the application is in a beneficial state. J2EEML models the properties it
measures via QoS assertions, which determine which properties an autonomic system
can measure about itself introspectively and analyze to determine if the properties are
in an acceptable assertion range. Each assertion provides properties for setting its
name and description. Developers can drag and drop these assertions into J2EEML
models.

The J2EEML QoS assertions model is critical for understanding an autonomic sys-
tem’s QoS properties, how they can be measured, what their values should be, and
how degradations in them can be corrected. Understanding QoS assertions is also
crucial to designing the structural architecture of EJB applications and understanding
how they meet those assertions. Capturing and mapping QoS requirements to the ap-
propriate structural architecture have traditionally used natural language descriptions,
such as “the service must support 1,000 simultaneous users with a good response

Simplifying Autonomic Enterprise Java Bean Applications 607

time.” Due to the lack of an unambiguous formal notation, such descriptions are
prone to different interpretations, which result in architectures that do not meet the
QoS requirements. Choosing an EJB architecture that best fits the QoS requirements
can be complex and error-prone since specification ambiguity and hidden architec-
tural trade-offs make it hard to choose the appropriate design.

For example, deciding whether to use remote interfaces for a J2EE implementation
of a service can have a substantial impact on end-to-end system QoS. Remote inter-
faces allow distribution of beans across servers, which can increase scalability. Distri-
bution can also increase latency, however, since requests must travel across a network
or virtual machine boundaries.

With the RTM in our case study, one QoS assertion is the average response time.
This QoS assertion states that the system will measure all requests to the RTM and
track the average time required to service each request. If the calculated average re-
sponse time exceeds 50 milliseconds, the assertion is false, indicating that the RTM is
taking too long to respond, otherwise the assertion is true, indicating that the RTM is
responding properly.

Fig. 4. J2EEML Model Associating the ResponseTime QoS Assertion with the RouteTi-
meModule

Figure 4 illustrates a J2EEML model of the scheduling system and the association
of the RTM to the ResponseTime QoS property. This model shows J2EEML’s ability
to model QoS properties as aspects [15] that are applied to a component. When the
model is interpreted and the Java implementation generated, the association between
the RTM and ResponseTime assertion will lead to the appropriate monitoring code
being generated in the RTM’s implementing class.

Challenge 3.1.2: Building a system to specify where monitoring logic should

reside in the system. The decision of what to monitor directly affects where the
monitoring logic will reside. To monitor a log for errors, the logic could be at any
level of the application, such as a central control level. For observing exceptions or
the load on a specific subcomponent of the application, the monitoring logic must be
embedded more deeply. In particular, developers must position the monitoring ca-

608 Jules White, Douglas C. Schmidt, and Aniruddha Gokhale

pability precisely so that it is close enough to capture the needed information, but not
so deeply entangled in the application logic that it adversely affects performance and
separation of concerns.

In our freight scheduling case study, we must ensure separation of concerns in the
application design and find an efficient means of monitoring. The monitoring logic
for the RTM, however, should not be entangled with the route time calculation logic.
Moreover, the time to monitor each request should be insignificant compared to the
time to fulfill each route request.

After the structural and assertion models are completed, developers can use
J2EEML to map QoS assertions to EJBs in the structural model. This mapping docu-
ments which QoS assertions should be applied to each component. It also indicates
where monitoring, analysis, and adaptation should occur for an autonomic system to
maintain those assertions. For example, to determine the average response time of the
RTM, calls to the RTMs route time calculation method must be intercepted to calcu-
late their servicing time. The relationship between the RTM bean and average re-
sponse time assertion in the model indicates that the RTM bean must be able to moni-
tor its route time calculation requests.

Fig. 5. J2EEML Mapping of QoS Assertions to EJBs

J2EEML supports aspect-oriented modeling [11] of QoS assertions, i.e., each QoS
assertion in J2EEML that crosscuts component boundaries can be associated with
multiple EJBs. For example, maintaining a maximum response time of 100 millisec-
onds is crucial for both the RTM and the Scheduler bean. Connecting multiple com-
ponents to a QoS assertion, rather than creating a copy for each component, produces
clearer models. It also clearly shows the connections between components that share
common QoS assertions. Figure 5 shows a mapping from QoS assertions to EJBs.
Both the RTM and the Scheduler in this figure are associated with the QoS assertions
ResponseTime and AlwaysAvailable. The ResourceTracker and ShipmentSchedule
components also share the AlwaysAvailable QoS assertion in the model.

Components can have multiple QoS assertion associations, which J2EEML sup-
ports by either creating a single assertion for the component that contains sub-asser-
tions or by connecting multiple QoS assertions to the component. If the combination

Simplifying Autonomic Enterprise Java Bean Applications 609

of assertions produces a meaningful abstraction, hierarchical composition is pre-
ferred. For example, the RTM is associated with a QoS assertion called “Alway-
sAvailable” constructed from the sub-assertions “No Exceptions Thrown” and “Never
Returns Null.” Combining “Minimum Response Time” and “No Exceptions
Thrown,” however, would not produce a meaningful higher-level abstraction, so the
multiple connection method is preferred in this case.

3.2 Analysis

Analysis is the phase in autonomic systems that takes state information acquired by
monitoring and reasons about whether certain conditions have been met. For exam-
ple, analysis can determine if an application is maintaining its QoS requirements. The
analysis aspects of an autonomic system can be (1) centralized and executed on the
entire system state or (2) distributed and concerned with small discrete sets of the
state. The following are key challenges faced when developing an autonomic analysis
engine:

Challenges 3.2.1: Building a model to facilitate choosing the type of analysis
engine and Challenge 3.2.2: Building a model to facilitate choosing how the en-
gine should be decomposed and/or distributed. To choose a distributed vs. mono-
lithic analysis engine, the tradeoffs of each must be understood. Concentration of
analysis logic into a single monolithic engine enables more complex calculations.
However, for simple calculations, such as the average response time of the RTM com-
ponent, a monolithic engine requires more overhead to store/retrieve state information
for individual components than an analysis engine dedicated to a single component. A
monolithic analysis engine also provides a central point of failure. A key design ques-
tion is thus where analysis should be done and at what granularity.

A model to facilitate choosing the appropriate type of analysis engine must enable
developers to identify what data types are being analyzed, what beneficial informa-
tion about the system state can be gleaned from this information, and how that bene-
ficial information can most easily be extracted. It is important that the model enable a
standard process for examining the required analyses and determining the appropriate
engine type.

To create an effective analysis engine, developers must determine the appropriate
number of layers. A key issue to consider is whether an application should have a
single-layer vs. multi-layered analysis engine. At each layer, the original monitoring
design questions are applicable, i.e., what should be monitored and how should it be
monitored? A model to enable these decisions must clearly convey the layers com-
posing the system. It also must capture what analysis takes place at each layer and
how each layer of analysis relates with other layers.

Developers can use J2EEML to design hierarchical QoS assertions to divide-and-
conquer complex QoS analyses. A hierarchical QoS assertion is a assertion that is
only met if all its child assertions are met. In terms of QoS assertions, this means that
all the child QoS assertions must hold for the parent QoS assertion to hold. With
respect to the RTM, the QoS assertion GoodResponseTime only holds if both the child
QoS assertions AverageResponseTime and MaximumResponseTime also hold. This
hierarchical composition is illustrated in Figure 6, where GoodResponseTime is an
aggregation of several properties of the response time.

610 Jules White, Douglas C. Schmidt, and Aniruddha Gokhale

Modeling QoS assertions hierarchically enhances developer understanding of what
type of analysis engine to choose. A small number of complex QoS assertions that
cannot be broken into smaller pieces imply the need for a monolithic analysis engine.
A large number of assertions – especially hierarchical QoS assertions – imply the
need for a multi-layered analysis engine.

Fig. 6. J2EEML Hierarchical Composition of ResponseTime QoS Assertion J2EEML Hierar-
chical Composition of ResponseTime QoS Assertion

Modeling QoS assertions hierarchically also enhances developer understanding of

how to decompose the analysis engine into layers. The hierarchical model of the QoS
assertions corresponds directly to the decomposition of the analysis engine into lay-
ers. Developers can use J2EEML to first add complex QoS assertions to their models
and then determine if the complex assertion can be accomplished by combining the
results of several smaller analyses. If so, developers can add these smaller QoS asser-
tions as children of the original QoS assertion to represent the smaller analyses and
then apply this iterative process to the new children.

3.3 Planning

Planning is the phase in autonomic systems where applications examine the results of
their analysis and decide what actions to take to reach their assertions. For our high-
way freight scheduling example, this could involve changing the RTM to use a less
precise but faster algorithm that maintains the minimum response time as demand
grows. A typical autonomic application may have hundreds of assertions and plan-
ning the correct actions in the face of QoS failures is critical to an autonomic applica-

Simplifying Autonomic Enterprise Java Bean Applications 611

tion. The following are key challenges faced when developing an autonomic analysis
engine:

Challenge 3.3.1 Designing a means to specify layered adaptation plans. As
with monitoring and analysis, planning can be implemented with a layered archi-
tecture. A simple, one-layer architecture would monitor, reason, and react to all sys-
tem events at one level, which works well for macro-level events and actions. This
simple approach is less suitable for applications that need more flexible and fine-
grained control of their behavior. To increase flexibility and fine-grained control,
therefore, more layers can be integrated into the system. Layers distribute intelligence
throughout the system and support a divide-and-conquer approach to planning.

After the planning is provisioned into layers, each layer must be assigned a respon-
sibility to react to and recover from QoS failures. In our highway freight scheduling
example, one layer might ensure that the RTM is always available and the next layer
down might ensure that a minimum response time is maintained. Intelligent separa-
tion of responsibilities can produce hierarchical chains of command that reduce the
complexity of accomplishing the overall assertion. Finding these well-proportioned
divisions of labor is hard.

J2EEML models adaptation by specifying the actions the system should take when
a QoS assertion fails. Each application component may have a group of assertions
associated with it. If one assertion does not hold for the component, it indicates a QoS
failure that must be fixed. Developers can use J2EEML to specify groups of actions
that must be taken to correct these failures.

Once an assertion has failed to hold for a specific component, the application must
determine how to fix the problem. To model the appropriate course of action,
J2EEML uses the concept of adaptation plans, which are groups of actions that can
be performed to fix a specific type of QoS assertion failure. For example, if the aver-
age response time assertion fails, the RTM must change its calculation algorithms to
be less precise but run faster.

Figure 7 shows a J2EEML model that associates the ResponseTime QoS assertion
with the ChangeAlgorithms single-layered adaptation plan.

Figure 7: J2EEML Model Associating the ResponseTime QoS Assertion with the ChangeAl-
gorithms Adaptation Plan J2EEML Model Associating the ResponseTime QoS Assertion with
the ChangeAlgorithms Adaptation Plan

612 Jules White, Douglas C. Schmidt, and Aniruddha Gokhale

3.4 Reducing the Complexity of Developing Autonomic Systems with JFense and
Jadapt

JFense is a component-level framework that performs autonomic functions, such as
monitoring the QoS of EJBs, analyzing system state, communicating between auto-
nomic layers, determining how to adapt to QoS failures, and executing adaptation
plans. Jadapt is a J2EEML model interpreter that supports rapid development and
verification of autonomic code by generating implementations of EJBs from a struc-
tural model. It serves as a bridge between a J2EEML model and the JFense frame-
work, i.e., it generates Java code for (1) a J2EEML structural model and (2) plugging
the generated EJBs into the JFense framework. Jadapt generates configurations for
JFense to mirror the J2EEML model, stubs for the EJBs, EJB deployment descriptors,
and monitoring, analysis, planning, and execution class stubs, which relieves de-
velopers from tedious and error-prone coding tasks. Moreover, Jadapt ensures that the
code mirrors the system architecture in J2EEML implementation, which reduces
problems stemming from misinterpretation of the specification and inconsistencies
between interfaces and their implementations.

4 Evaluating Development Effort Savings of the J3 Toolsuite

We developed the highway freight scheduling system case study to illustrate the ad-
vantages of using the J3 Toolsuite to develop autonomic EJB applications. The initial
implementation of this case study required several thousand lines of Java code. The
generated EJB implementations accounted for nearly 75% of the complete code base,
the test framework accounted for 20%, and the JFense glue code accounted for 5%.
Using a traditional development approach, much of this code would have been de-
veloped manually. With the J3 Toolsuite, in contrast, all code except for the business
logic and testing logic was generated initially by Jadapt from our J2EEML speci-
fication, which accounted for approximately one-third of the code required to imple-
ment the Java classes for the application.

 Using our highway freight scheduling case study, we evaluated the impact of add-
ing new sources of information that required monitoring and where the logic would
reside. In our initial design, only response times of the Scheduling component were
monitored. We then refactored the design to monitor response times of the RTM com-
ponent, as well. Adjusting the design using J2EEML and re-generating the implemen-
tation took approximately five mouse clicks and resulted in the generation of ~20 new
lines of source code that correctly mirrored the specification and was correct-by-con-
struction.

To evaluate the impact of design refactoring on the analysis and planning layers of
the highway freight system, we modified its initial design by changing its response
time analysis and adaptation into a hierarchy of average and maximum response
times. The refactoring in J2EEML was straightforward and took ~12 mouse clicks.
The change generated ~75 new lines of code, which minimized the complexity of the
design change and implementation update. Again, for large development projects
without MDD tool support, many such changes would occur and hence the manual
redevelopment effort would be much higher.

Simplifying Autonomic Enterprise Java Bean Applications 613

To evaluate the development effort associated with sharing adaptation plans be-
tween QoS assertions, we refactored our highway freight system to share the im-
proved response time adaptation plan between both the average response time QoS
assertion and the maximum response time QoS assertion. After this change was made
to the model and Jadapt regenerated the model artifacts, 36 new lines of code were
present that updated the existing adaptation plan to include the new adaptations and
changed the adaptation plan of the maximum response time to use its modified adap-
tation plan. As with other refactorings we analyzed, adjusting the J2EEML model and
regenerating the code required ~12 mouse clicks, while developing the equivalent
functionality manually required significantly more effort.

As with the autonomic modeling and generation capabilities of the J3 Toolsuite,
significant reductions in development complexity were yielded by applying MDD to
the implementation of the structural model. For example, when a single Session-
Bean with one method was added to the J2EEML model, the resulting bean, inter-
faces, deployment descriptor, and helper classes generated 116 lines of Java code and
80 lines of XML. The model change in J2EEML required two drag and drop opera-
tions. As with the autonomic code generated by Jadapt, the code was correct-by-con-
struction and the JNDI name of the bean was also correct. Adding two interactions
from existing beans to the new bean generated another ~12 lines of error-prone JNDI
lookup/narrowing code that was automatically generated by Jadapt, thereby simplify-
ing developer effort and enhancing confidence in the results.

5 Related Work

An increasing number of MDD tools exist for modeling component-based systems.
Cadena [16] is an MDD tool for building and modeling component-based DRE sys-
tems, with the goal of applying static analysis, model-checking, and lightweight for-
mal methods to enhance these systems. Other tools, such as Rational Rose, provide
UML modeling capabilities for component-based systems. In contrast to J2EEML,
these tools are not tailored to the domain of modeling autonomic functionality in
component-based systems. For example, they lack the ability to establish the critical
mapping between QoS properties, components, and adaptations, which forces devel-
opers to (1) resort to traditional textual descriptions for specifying QoS properties and
(2) maintain separate models for understanding how the QoS, adaptation, and compo-
nents in the system interrelate. As a result, it is hard to understand how an application
will monitor itself and how it will react to QoS failures.

IBM’s Autonomic Toolkit [4] addresses the issues of monitoring, analysis, plan-
ning, and executing autonomic applications. It includes the Autonomic Management
Engine, which monitors events, analyzes them, then plans and executes corrective
action on a computing resource; the Generic Log Adapter [13] for Autonomic Com-
puting, which converts existing log files to the Common Base Event format [14]; and
the Log and Trace Analyzer for Autonomic Computing, which reads logs in the Com-
mon Base Event format, correlates the logs based on different criteria, and displays
the correlated log records. These tools do not, however, address the complexity of
integrating autonomic functionality into applications, i.e., they do not help developers
design their autonomic applications or implementing the logic required by them. In

614 Jules White, Douglas C. Schmidt, and Aniruddha Gokhale

contrast, the J3 Toolsuite is specifically tailored to reducing design and implementa-
tion complexity, as well as providing a runtime framework.

6 Concluding Remarks

In theory, autonomic systems can minimize the impact of human error in develop-
ment and management. In practice, however, it is hard to develop the monitoring,
analysis, planning, and execution aspects required for autonomic systems reliably and
productively. In particular, developers must reason about complex sets of QoS asser-
tions and ensure that applications meet them. Autonomic capabilities provide a means
for EJB applications to self-manage and attempt to maintain the QoS assertions. To
facilitate self-management, the structure of EJB applications and their QoS assertions
must be captured formally so applications can reason about themselves.

The bridge between the QoS assertions of autonomic systems and their structural
designs involves mapping these assertions to specific system components. Without
this mapping, applications cannot use introspection to determine whether their QoS
assertions are being met. The J3 Toolsuite described in this paper provides MDD
tools and an autonomic computing framework to support these capabilities to simplify
the development of autonomic EJB applications.

The J2EEML MDD tool helps link assertions and structure by allowing developers
to specify this mapping via a DSML. J2EEML also includes mechanisms for mod-
eling complex EJB structures, interactions, and architectures and using these models
to generate code that is correct-by-construction, which frees developer from reinvent-
ing complex autonomic frameworks.

After capturing structural properties, QoS assertions, and assertion to structure
mapping in J2EEML, developers still must integrate autonomic features into their -
distributed EJB applications. This integration is often complicated due to the lack of
component-level frameworks for autonomic systems. To address these concerns, we
have developed the Jadapt code generation tool and the JFense autonomic framework.
Jadapt allows developers to generate the code needed to plug their application’s EJBs
into JFense. JFense provides a comprehensive and flexible framework for multi-lay-
ered autonomic monitoring, analysis, planning, and execution architectures, which
allows developers to focus on the system’s business logic and QoS analysis logic.

The following are our lessons learned thus far by developing and using the J3
Toolsuite:
 Developing adaptations for an application is hard. Most developers do not think

about designing components that can be adapted, swapped, restarted, or reconfig-
ured to handle errors. Providing a DSML to aid developers in seeing the crosscut-
ting adaptive concerns was hard.

 Creating a model of the mapping from components to QoS properties and adaptive
behavior greatly enhances the ability of developers to understand the complex be-
havior of autonomic systems that would ordinarily be buried in hundreds of source
files.

 Constraint checking and code generation can greatly reduce and/or eliminate hard-
to-debug JNDI naming errors. Constraint checking of JNDI allows these errors to
be detected at design time rather than runtime.

Simplifying Autonomic Enterprise Java Bean Applications 615

In future work, we are developing increasingly sophisticated autonomic distributed
applications using our J3 Toolsuite to serve as a testbed for investigating various
autonomic architectures, monitoring strategies, and planning strategies. We are also
enhancing these tools to increase their expressive and code generation capabilities.
We plan to integrate our MDD tools with CIAO [6], which is an open-source, QoS-
enabled CORBA Component Model (CCM) implementation.

The J3 Toolsuite DSMLs, tools, and frameworks are available at www. source-
forge.net/projects/j2eeml.

References

1. Kephart, J., O., Chess, D., M.: The Vision of Autonomic Computing. IEEE Computer. (Janu-
ary 2003).

2. Oppenheimer, D., Ganapathi, A., Patterson, D.: Why do Internet services fail, and what can
be done about it?. In: Proc. USENIX Symposium on Internet Technologies and Systems
(March 2003)

3. Matena, V., Hapner, M.: Enterprise Java Beans Specification, Version 1.1. Sun Microsys-
tems (Dec. 1999)

4. Autonomic Computing Toolkit, IBM, www106.ibm.com/developerworks/auto-
nomic/overview.html.

5. Candea, G., Fox, A.: Designing for High Availability and Measurability. In: Proc. of the 1st
Workshop on Evaluating and Architecting System Dependability (2001)

6. Wang, N., Schmidt, D., Gokhale, A., Rodrigues, C., Natarajan, B., Loyall, J., Schantz, R.,
Gill, C.: QoS-enabled Middleware. In Middleware for Communications, edited by Q. Mah-
moud, Wiley and Sons, New York, (2003)

7. Ledeczi, A., Bakay, A., Maroti, M., Volgysei, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing Domain-Specific Design Environments. IEEE Computer (Nov. 2001)

8. Eymann, T., Reinicke, M., et al.: Self-Organizing Resource Allocation for Autonomic Net-
works. In: Proc. DEXA Workshops (2003)

9. Ledeczi, A., The Generic Modeling Environment. In: Proc. Workshop on Intelligent Signal
Processing, Budapest, Hungary (2001)

10. Alur, D., Crupi, J., Malks, D.: J2EE Core Patterns. Sun Microsystems Press (2003)
11. Gray, J., Roychoudhury, S.: A Technique for Constructing Aspect Weavers Using a Program

Transformation Engine. In: Proc. of AOSD '04, Lancaster, UK, (March 22-26, 2004)
12. Gamma, E., Helm, R. Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley (1995)
13. Giguere, E.: Create GLA components using Release 2 of the Autonomic Computing Toolkit.

IBM Developerworks, (www106.ibm.com/ developerworks/edu/ac-dw-ac-glacomp2i.html?
TACT=104AHW20&S_CMP=HP)

14. Specification: Common Base Event. IBMDeveloperworks, (www106.ibm.com/ developer-
works/webservices/library/ws-cbe/).

15. Loyall, J., Bakken, D., Schantz, R., Zinky, J., Karr, D., Vanegas, R.: QoS Aspect Languages
and Their Runtime Integration. In: Proc. of the Fourth Workshop on Languages, Compilers
and Runtime Systems for Scalable Components (1998)

16. Hatcliff, J., Deng, W., Dwyer, M., Jung, G., Prasad, V.: Cadena: An Integrated Develop-
ment, Analysis, and Verification Environment for Component-based Systems. In: Proc. of
the 25th International Conference on Software Engineering, Portland, OR (2003)

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 616-632, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Automated Invariant Maintenance Via OCL Compilation

Kurt Stirewalt1 and Spencer Rugaber2

1 Computer Science and Engineering
Michigan State University

2 College of Computing
Georgia Institute of Technology

Abstract. UML design models, specifically their declarative OCL invariants,
must be refined into delivered code. A key problem is the need to integrate this
logic with programmer-written code in a non-intrusive way. We recently
developed an approach, called mode components, for compiling OCL con-
straints into modules that implement logic for transparently maintaining these
constraints at run time. Specifically, mode components are implemented as
nested C++ class template instantiations. The approach makes use of a key
device—status variables. The attributes of a component to which other
components are sensitive are called its status. A status variable is a lightweight
wrapper on a status attribute that detects changes to its value and transparently
invokes a method to handle announcements to dependent components. A mode
component is a wrapped code unit containing one or more status variables. The
contribution of this paper is a technique for achieving this integration using
metaprogramming techniques.

1 Problem Statement

Component-based software development attempts to gain productivity and quality
benefits by making use of existing code resources. But even if the existing
components are themselves reliable, the resulting assembly might not be. We would
like to find ways to improve our confidence in the assembly, while retaining the
leveraging benefits. Assume that we start with a specified set of behavioral
guarantees, called invariants, for the target system. Our quality goal is ensure that the
invariants are maintained throughout execution. Moreover, we want to achieve this
goal while satisfying the following additional, non-functional properties.

 Transparency: The solution should refrain from intruding into the
components themselves. Transparency separates reasoning about invariants
from the details of the components’ implementations. Also, it reduces the need
to modify the code of the components, thereby lessening the risk of
introducing defects.

 Flexibility: There are a variety of architectural approaches for combining
components. A flexible solution is one in which an architectural approach can
be selected by the designer based on other desirable system properties.
Moreover, flexibility supports reuse, enabling components to be packaged in
various ways.

Automated Invariant Maintenance Via OCL Compilation 617

 Economy: A goal of the composition process is to avoid additional run-time
costs over an ad hoc implementation. As a general rule, the more encapsulated
and self- contained the components are, the more complex is the composition
mechanism required to integrate them. With complexity comes run-time
overhead. An economical solution supports collaboration without additional
run-time cost.

 Intentionality: In order to reason about system behavior, it should be possible
to relate the behavioral specification of a desired invariant to its
implementation directly. In particular, each invariant should be traceable to the
code mechanism responsible for guaranteeing it. Intentionality also supports
maintainability— changes to system functional requirements often mean
altering system invariants. Invariants implemented intentionally are easier to
alter.

This paper describes a mechanism for assembling components into a system
whose behavior is guaranteed. The composition and its invariant properties are
specified by a designer using a subset of UML and OCL. The specified model is
automatically compiled into a set of wrappers that enforce the desired invariant
properties. The wrappers make use of the metaprogramming features of C++ to
achieve the non-functional goals of transparency, flexibility, economy, and
intentionality.

2 Solution Approach

2.1 Modeling

The component assembly process described in this paper is called DYNAMO, short for
Dynamic Assembly from Models. DYNAMO supports model-based specification of
component assemblies. What this means is that a designer specifies an assembly in a
high-level, declarative notation rather than operationally in a programming language.
The notation we have used is the Unified Modelling Language1 (UML) [12] including
the Object Constraint Language (OCL) [21]. Moreover, we have interpreted UML
class model constructs in terms of the vocabulary of software architecture2. (See
Table 1.) Annotations to the class model, in the form of OCL constraints, provide
semantics. In particular, handlers for external system events (stimuli) are ultimately
modelled as methods in a component. OCL pre- and post- condition constraints
specify the effect of events on the system. Invariants, initially indicated with natural
language annotations, are first translated by the designer into OCL annotations to
associations. (The UML rule restricting invariants to classifiers is relaxed for this step
only.) As the architecture is refined, associations are subsumed by DYNAMO’s layered
architecture. At this point, each constraint is assigned to the component responsible
for maintaining it.

1 Specifically, UML v1.4.
2 See [11] for a discussion of the use of UML for modelling software architecture.

618 Kurt Stirewalt and Spencer Rugaber

Table 1. DYNAMO UML Interpretation

UML Concept DYNAMO
Interpretation

 System Assembly
 Package Layer
 Class Component
 Attribute Percept
 Association Invariant
 Dependency Event

2.2 Design Method

A designer using the DYNAMO method constructs a declarative model of the assembly
expressed using a graphical UML CASE tool. The DYNAMO design method comprises
three phases that refine a conceptual model of a proposed assembly into interrelated
components organized into layers. In Phase 0, the environment in which the assembly
executes is described in terms of external actors, the assembly itself, and the
behavioral properties that the assembly guarantees to maintain. Phase 1 partitions the
assembly into its constituent components, assigning responsibility for handling
external stimuli and invariant- maintenance to the components appropriately. Finally,
Phase 2 asks the designer to layer the constituents, where lower-level components
communicate status changes upward, and higher-level components make specific
service requests of lower-level components. For more details of the DYNAMO design
process and a complete elaboration of an example, refer to [10].

2.3 Architecture

In DYNAMO, desired system properties are expressed as invariants using OCL. When
an external stimulus perturbs the state of the system, invariants must be re-
established. We also wish the process to satisfy the non-functional constraints
(transparency, flexibility, economy, and intentionality) described above. We call this
process invariant maintenance. DYNAMO addresses the invariant-maintenance
problem by compiling the OCL invariants into wrappers that transparently notify
dependent components when they need to take action to re-establish an invariant. In
particular, DYNAMO components are organized into a layered, implicit-invocation
architecture. The order of layers is determined by the navigation paths occurring in
the OCL constraints, thereby improving intentionally. Implicit invocation, because it
is provided by wrappers, enhances transparency. Both improvements add to
flexibility and reusability. The implementation approach described in the next section
addresses the issue of economy.

A DYNAMO design comprises a layered set of components. For each component,
event-handling methods, percepts3, and OCL constraints are identified. The compila-
tion process takes these three elements as input and produces wrapper code as output.

3 A percept is a unit of presentation that communicates system state to the end user.

Automated Invariant Maintenance Via OCL Compilation 619

At run-time, the wrappers detect and propagate events and update dependent compo-
nents, thereby maintaining system invariants.

3 Metaprogramming Implementation

DYNAMO implementation takes advantage of the metaprogramming features of C++.
Specifically, component wrappers are implemented as layered C++ class template in-
stantiations. A class template is a parameterized class definition, where the parameter
is usually another class. Moreover, the parameter can be used as the base class of the
template class thereby enabling components to be stacked into layers. When
combined with C++’s compile-time inlining mechanism, much run-time overhead can
be avoided. This section describes how OCL constraints are realized as generated
C++ wrappers. To do so, DYNAMO makes use of two devices—status variables and
mode components.

3.1 Status Variables

A key concept in our approach to solving the invariant-maintenance problem is that
of a status variable. The attributes of a component to which other components are
sensitive are called its status. A status variable is a lightweight wrapper on a status
attribute that detects changes to its value and announces them to dependent
components.

To illustrate how status variables work, consider the trivial example of two
components, A and B, with integer status attributes a and b, respectively, such that
variable a must hold exactly twice the value of variable b, regardless of how b
changes. That is, there is an invariant between A and B such that a = 2 * b.
Expressed in OCL, this invariant is {context A inv: a = 2 * B.b}. It is
assumed that the value of b can change in arbitrary ways. Hence, a C++ schematic for
component B is shown in Figure 1, where tweak is an arbitrary method
representative of the various ways in which the value of b might be altered. When
tweak is called, b’s status changes, thereby requiring an update to a. A solution to
the invariant-maintenance problem requires a means of updating component A
whenever tweak is invoked.

class B {
 protected:
 int b;
 public:
 ...
 void tweak(const int& x) {
 b = x;
 }
 ...
};

Figure 1. Schematic class template for an independent component

620 Kurt Stirewalt and Spencer Rugaber

(1) template <typename T>
(2) class StatusVariable {
(3) public:
(4) StatusVariable() {}
(5) StatusVariable(const T& t) : data(t) {}
(6) virtual T& operator= (const T& t) {data = t;}
(7) virtual operator T() {return data;}
(8) protected:
(9) T data;
(10) };

We implement a status variable’s update behavior by wrapping the definition of

the variable’s class with a listening agent, such as is described in [18], that exports
the same abstract interface as the existing class. To do this, status variables take
advantage of several C++ features, including its ability to overload the assignment
operator. That is, when an overloaded assignment is made to a C++ variable, a
programmer-provided method is invoked to perform additional activities. The power
of status variables is their use of assignment overload to transparently detect changes
of status.

Each status variable has its own class that is produced by instantiating the class
template StatusVariable<T> shown in Figure 2. The template parameter T is
the type of the attribute to be wrapped. In the case of attribute b, the type is int.
Status variable classes have one attribute of their own, named data (line 9),
protected from external access. This attribute holds the actual value being wrapped.
Changes to b are trapped by the assignment overload method (operator=) on line
6. This method is virtual (polymorphic) and will be extended in the derived class by a
method that notifies component A that b has been altered. The only responsibility
that the assignment overload operator has in the StatusVariable class is to
assign the new value to data.

Clients of status variables, such as component A, do not know that attribute b has
been wrapped. Hence, when they request the value of b, they must be provided an
int, not a StatusVariable<int>. C++ provides a supporting mechanism,
called a user-defined conversion, as illustrated on line 7 by operator T(). In the
example, T is int, and the int() method is invoked whenever the value of b is
requested, either explicitly within the code of B, or implicitly, via compiler-generated
conversions. Hence, the int value of data is returned whenever the value of the
status variable wrapping b is requested. The StatusVariable<T> class also
provides constructors (lines 4 and 5) useful both for initially establishing invariants or
in case class B provides an externally visible way to initialize b.

Figure 2. StatusVariable class

Automated Invariant Maintenance Via OCL Compilation 621

3.2 Using Status Variables

Given a constraint, its dependent and independent variables can be determined4.
Changes to the independent variables must be detected and the associated dependent
variables adjusted to reflect the change. That is, each independent variable in each
constraint must be wrapped as an instance of a class derived from
StatusVariable<T>. The name of the class is formed from the name of the
status variable and the component containing it, thereby ensuring uniqueness. For
variable b of component B, the generated template class has the name SV_B_b.
SV_B_b has the form illustrated in Figure 3.

 Note that SV_B_b derives from StatusVariable (line 2) and overrides the
assignment operator (lines 9-13). The override invokes the assignment operator in
StatusVariable, thereby storing the assigned value. It then invokes an update
method (update1). The update method, which also must be generated, lives in
component A, as wrapped, and contains the code to retrieve the new value of b and
update a accordingly. When SV_B_b is generated, it must know the name of the
update method (update1) and which component it lives in (A). It obtains this
information when the setUpdater1 method (lines 6-8) is called by the component
containing the status variable (B, as wrapped).

4 There are some non-constructive constraints for which this may not be possible. They are

discussed in section 4.5.

(1) template <typename T>
(2) class SV_B_b : public StatusVariable<T> {
(3) public:
(4) SV_B_b() {}
(5) SV_B_b(const T& x) : StatusVariable<T>(x) {}
(6) void setUpdater1(Updaters* sc1P) {
(7) updater1P = sc1P;
(8) }
(9) T& operator=(const T& d) {
(10) StatusVariable<T>::operator=(d);
(11) if (updater1P)
(12) updater1P->update1();
(13) }
(14) protected:
(15) Updaters* updater1P;
(16) };

Figure 3. Status change announcement mechanism

622 Kurt Stirewalt and Spencer Rugaber

3.3 Mode Components

It remains to describe how dependent components (such as A) are bound to
independent components (such as B). In the example, A is responsible for updating
the value of a when b is changed. It does this in a generated method, update1 (line
6 of Figure 5) That is, a new method for A (update1) is generated, which is called
when b changes. Its responsibility is to request the new value of b and, using it, to
recompute the value of a. This raises several questions: Where does the code for
update1 live? How does b know to call update1? And how does A know how to
obtain the value of b?

The update1 method logically lives in component A. However, as we wish to
leave existing components untouched to the extent possible, we generate a new
wrapper that extends A with the update method. The other two questions can be
resolved by further wrapping B in such a way that the required information is
available. Once B is wrapped, it becomes a mode component. A mode component is a
wrapped component containing one or more status variables. The mode component
wrapper for B is named B_Top (shown in Figure 4), and it is generated based on the
status variables and invariants specified for the assembly5.

B_Top is a class template. Moreover, it is a mixin class template [2]. This means
that its template parameter is a class, and that B_Top derives from that class. That is,
B_Top is a subclass of the class bound to the template parameter T. Mixins are used
as a way to provide behavior to a class in addition to that derived from its normal
base class. In the case of B_Top, its parameter is B. If A then refers to B_Top instead
of B, it will obtain the extended behavior.

5 Note that the _Top and _Bot suffixes on template class names refer to their roles in the

layered architecture and not to their roles in the inheritance hierarchy. That is, the _Top
wrapper provides services that communicate with a component above it in the layered
architecture. The relative nesting of the templates is actually in the inverse order to their
position in the layering.

(1) template <typename T>
(2) class B_Top : public T {
(3) public:
(4) B_Top() {};
(5) B_Top(const int& x) : T(x) {}
(6) int getValue_b(void) {return(b);}
(7) void bind_b_1(Updaters* scP) {
(8) b.setUpdater1(scP);
(9) }
(10) };

Figure 4. Mode component wrapper for component B

Automated Invariant Maintenance Via OCL Compilation 623

B_Top adds two methods to those available in B. Method getValue_b

provides access to the status variable b’s value. It can be called by A when A is
alerted to changes in b. Method bind_b_1 illustrates the mechanism whereby A can
inform B of any invariant re-establishment methods that must be called when B’s
status changes. Specifically, bind_b_1 is the means by which changes to b are
communicated in order to maintain the first invariant (1). Its argument is a pointer to
the update method in A (update1) responsible for maintaining the invariant.
bind_b_1’s responsibility is to communicate this pointer to the status-variable
wrapper for b (line 8 of Figure 4).

The binding between components related by invariants is complex. Dependent
components like A must be able to request status variable values, such as b. To do
this, A must have access to B, the component that contains b. A straightforward way
to do this is to have A contain a pointer to B. But pointers are costly, each access
requiring the dereferencing of the pointer. The C++ template mechanism can
sometimes avoid this overhead by having A derive from B as a mixin. Then A can
have direct access to b, just like it can to its own instance variables.

To summarize: A has four responsibilities that arise due to its interaction with B:
1) It must derive from B in order to access it efficiently; 2) it must let B know how to
alert it when changes occur; 3) once alerted, it must access the value of b; and 4) it
must re- establish the invariant by recomputing the value of a.

To discharge these responsibilities while maintaining transparency, another wrap-
per is used (Figure 5). A_Bot is a mixin class template. Its template parameter is the
component upon which it is dependent, B (as wrapped by B_Top). A_Bot mixes B
in via private inheritance, thereby hiding B from subsequent classes derived from A.
This inheritance discharges responsibility 1. In addition, A_Bot inherits publicly
from two other classes, A and Updaters. Updaters is an interface class
containing declarations for the types of updater methods.

The key feature of A_Bot is the update1 method on line 6. This is the method
called by the status variable b when it detects a change to its own value. Notice that
update1 accesses the value of b by using the getValue_b member function of
component B. This method discharges responsibility 3. Line 6 also illustrates how the
invariant is re-established to discharge responsibility 4.

(1) template <typename T>
(2) class A_Bot : public A,
(3) public Updaters, private T {
(4) public :
(5) A_Bot() {myB.bind_b_1(this);}
(6) void update1() {a = 2 * myB.getValue_b();}
(7) protected :
(8) T myB;
(9) };

Figure 5. Wrapping dependent components

624 Kurt Stirewalt and Spencer Rugaber

B

A

Notifies

b

BindsUpdater

update1() : void

«interface»
Updater

operator=() : int
operator int()

d : int

StatusVariable<int>

operator=() : int
setUpdater1() : void

updater1P : Updater

SV_B_b<int>

getValue_b() : int
bind_b_1(in scp : int) : void

B_Top

update1() : void

myB : B_Top

A_Bot<B _Top>

Responsibility 2 is handled by the wrapper’s constructor shown on line 5. When
component A is instantiated, the method bind_b_1 is called in component B,
passing the address of component A itself as an argument. The address is passed in
turn to the setUpdater1 method of SV_B_b, where it is stored for use when b
changes value.

Putting the pieces of the example together requires a nested template
instantiation, such as A_Bot<B_Top> myA; which declares an assembly myA as
the composition of A (as wrapped) with B as wrapped. Notice that stacking
components in this fashion easily generalizes. If B itself was dependent on a status
variable in component C, another level of nesting could be used.

 The overall mode-component architecture is presented in Figure 66. Status-
Variable<int> contains space for the actual value being monitored and provides
default operations for assignment override and type conversion. Actual status variable
classes, such as SV_B_b<int>, override the assignment operation to invoke any lis-
teners, such as update1. Updater is an abstract class containing pure virtual
methods for each of the constraint update methods. B and A are the original
components containing, respectively, attributes b and a. They both must be wrapped
in order to become mode components. Because A contains a dependent status
variable, a, it is above B in the component layering. Its wrapper, A_Bot, must
therefore provide a downward-looking service, update1, for updating status

6 To simplify the diagram, the template classes themselves and the corresponding «bind»

dependencies are not shown.

Figure 6. Mode component implementation architecture

Automated Invariant Maintenance Via OCL Compilation 625

variable a. Conversely, B’s wrapper, B_Top, must provide upward looking services,
such as getValue_b and bind_b_1. GetValue_b enables A to retrieve the
updated value of b; bind_b_1 provides a way for letting B know which update
service in A to invoke.

3.4 Fine Print

In order to clearly explain status variables and mode components, several details of
the invariant maintenance process have been glossed over in the description above.
Foremost among them is the seeming separation of A’s invariant re-establishment
wrapper (A_Bot) from B’s announcement wrapper (B_Top). In reality, A itself may
contain independent status variables participating in other invariants. For example,
component Z might depend on variable a of component A. This would imply the need
to generate an A_Top wrapper similar to B_Top. Because of the nesting enabled by
C++ templates, both A_Top and A_Bot can be used to wrap A.

Other details not discussed are status variable initialization and the initial
establishment of any relevant invariants. If, for example, component B provides a
way to initialize the value of variable b, then the generated code has to include a
memberwise initializer for it that incorporates a call to any relevant updaters. The
actual compilation process also includes generating several include files providing
access to required names.

Another issue concerns OCL collection classes. The example elaborated on in this
section does not make use of any of collections. Actually, collection classes
themselves are just another form of value that can serve either a dependent or
independent role in an invariant. But we do not want a change to a single element of a
collection to alert all components dependent on the collection, but only those
dependent on the altered element. C++ template nesting can help address this issue as
well. We have experimented with inserting intermediate template class instantiations,
called data transformers, that can optimize certain invariant-reestablishment
operations on collections by intercepting and mediating the corresponding update
requests.

The example also made only fleeting use of OCL navigation. In actual practice,
OCL constraints can included a cascade of classifier names to relate topologically dis-
tant components. Navigation such as this can be handled in DYNAMO by using C++’s
name scoping operator (::) to directly access variables in nested components.

3.5 Extending the Example

The approach described above illustrated how an invariant dependent on a single
status variable can be maintained. Real systems are more complex. This section
describes how the example can be generalized.

Multiple status variables. For each status variable x of type Tx aggregated by a
component K, there is a corresponding generated class SV_K_x. Each x must be de-
fined within K as a normal instance variable, but with type SV_K_x<Tx>. There is no

626 Kurt Stirewalt and Spencer Rugaber

limit to how many such variables K can have. Note that it is the responsibility of each
component to maintain its own intracomponent invariants.

Multiple constraints. A given independent status variable, x, belonging to compo-
nent K, may be involved in multiple constraints (Ci). Hence, multiple updates may
have to be performed when the value of x changes. For each such constraint, an
update method (updateCi) and a bind method (bind_x_Ci) must be generated.
Moreover, the code in the SV_K_x class must invoke each of the updater methods
(updateCi). Finally, the addresses of the updater methods must be remembered in
the SV_K_x class with function pointers (updaterCiP).

Circularities. In the example above, component A is notified of changes to compo-
nent B and then requests new values from it. The mode component mechanism for ac-
complishing this takes advantage of the C++ ability to nest templates. That is, compo-
nent A as wrapped has as a template parameter component B as wrapped. This mecha-
nism is inherently asymmetric. That is, it cannot be used to have component A notify
component B because of the resultant circularity in the template instantiation
ordering.

Several things should be noted about a circular dependency such as this. First,
there is no reason why components A and B cannot use traditional intercomponent
messaging when A needs to notify B of a change. That is, B can provide an update
method that A can call directly. The second observation is that a circularity is often a
symptom of a design problem. One manifestation of the problem is an endless loop—
B notifying A which notifies B, repeatedly. Hence, any circularity in the dependency
graph may be a sign of a design problem and should be carefully examined.

Multiple components per layer. Sometimes circular dependencies are inherent but
do not lead to an endless loop. This can occur when a status variable (p) in one com-
ponent depends on a status variable (q) in another, and q depends on a different
status variable (r) in the first. While this situation is circular as far as template
nesting is concerned, it does not lead to infinite update when one of the variables is
changed. As an alternative to the asymmetric mechanism of mode components, both
components can be configured as nested classes contained within a single mode
component class, such as with mixin layers [16].

3.6 Tool Support

DYNAMO designs are expressed using an OCL-capable UML modeling tool such as
Rational/IBM [8] or ArgoUML [19]. These tools support the export of diagram
content and associated OCL annotations in the industry-standard XMI CASE-data
interchange format [13]. We have written tools for extracting relevant information
from XMI, representing it in a target-independent abstract syntax tree (AST) and
generating code from the AST. Code generation consists of two steps: conversion to
an internal representation (IR) and traversal of the IR to generate C++ wrapper
templates. Further details concerning the compilation process can be found in
reference [14].

Automated Invariant Maintenance Via OCL Compilation 627

4 Evaluation

4.1 Transparency

What alterations to the source code of existing components are required in order to
make them into mode components? Only one change is necessary on the part of a
programmer—the types of status variables must be adjusted. That is, member
variables of components upon which other components are dependent must be so
designated. Two scenarios can be imagined. In the first, the original designer of a
component library is seriously concerned with reuse. Components are developed, and
potentially interesting status is declared as such in the component code. The second
scenario is the adaptation of an existing component into a mode component. In this
case, the adaptor must not only decide what facilities of the component are required
of other components, but must also locate the definitions of these variables in the
code, so that their types may be altered. In both scenarios, the coding effort required
of the developer consists of adding some #include statements and changing the
types of the status variable declarations. Any scheme for intercomponent invariant
maintenance must provide access to the constituent state. Hence, we judge the mode
component approach to be adequately transparent.

4.2 Flexibility

The DYNAMO approach is flexible in several senses. First is the fact that alternative
components with the same APIs can be substituted for each other. Moreover,
additional component can be inserted to provide optimizations and other
enhancements. These added or substituted components simply amount to interpolated
templates in the C++ code. DYNAMO is also flexible in a different sense. Mode
components are not the only scheme for maintaining invariants. For example,
mediators [17] provide many of the same features. More conventional approaches to
invariant maintenance in C++, such as aggregated components with embedded
pointers and explicit delegation can also be used. The DYNAMO compilation
architecture has been successfully applied to these alternative approaches. That is, the
DYNAMO compilation approach is flexible with respect to the specific mechanism for
updating status to maintain invariants.

4.3 Economy

Flexibility normally leads to overhead. Typically, flexibility is achieved by using
indirection through pointers. Using pointers implies dereferencing, which, in turn,
means an extra operation on every access. Our approach reduces overhead by making
use of two features of C++: template classes and inlining.

Components are normally constructed independently and encapsulated in their
own classes. This reduces coupling and enhances maintainability. But, because
components need to interact, they often hold pointers to each other. Another approach
is to have one component be a subclass of another. Then the subordinate can directly
access the features of the superordinate component without the pointer overhead. But
such an approach is intrusive and unnatural. Mixin inheritance is an alternative to

628 Kurt Stirewalt and Spencer Rugaber

subtyping—a mixin adds a feature to a class without requiring that the mixin be an
explicit subtype.

The other C++ feature that can reduce overhead is inlining. Normally, the
compilation of a method call introduces significant overhead at the calling site. The
C++ compiler can detect situations where a copy of the code for the called method
can be inserted directly at the call site without the associated overhead. This
technique is particularly applicable when the method code is short, such as obtains
with instance-variable access routines (getters and setters). In this way, components
can retain their encapsulation without engendering normal intercomponent
communication overhead. Templates and inlining enable our approach to provide low
overhead invariant maintenance.

4.4 Intentionality

The overarching goal of the DYNAMO work on component assembly is to increase as-
surance. It accomplishes this by providing an invariant-maintenance mechanism.
Invariants are directly manifest in the code. In particular, each independent variable in
each invariant results in the generation of a status-variable wrapper to provide change
notification and an update method to re-establish the invariant when one of its
constituents changes. Because this code is generated, it is possible for the designer to
have confidence that the specification is being met. Hence, the approach is
intentional7.

4.5 Limitations

The DYNAMO approach, while satisfying the above-described non-functional goals, is
not without limitations. Some of these are described here.

• Loss of symmetry: Components nested as template mixins are inherently
asymmetric. This loss of flexibility is compensated for by the reduced overhead
they require.

• Constructiveness: Not every invariant can be expressed as a mode component
constraint. Constraints in which a single variable appears on the left hand side8

are called constructive. This is a theoretical limitation of the approach that has
not proven a problem in practice.

• Circularities: More serious are cyclically dependent constraints, as for
example, happens if variable a depends on variable b in one constraint, and
variable b depends on variable a in another. Run-time update of one variable
can lead to an infinite cascade of invariant re-establishments. In DYNAMO, such
co-dependencies can be grouped into the same mixin layer, providing a
symmetric solution.

7 Intentional Programming [4] is an alternative metaprogramming approach that provides

intentionality.
8 Some constraints may be algebraically manipulated to solve for a target independent

variable.

Automated Invariant Maintenance Via OCL Compilation 629

• Code obfuscation: The DYNAMO metaprogramming approach generates C++.
Several difficulties arise if this code needs to be maintained. First, the generated
code comprises deeply nested class templates; reading and understanding it re-
quires in-depth knowledge of C++. Also, should the code ever have to be edited
and recompiled, any ensuing compiler error messages will be hard to interpret.

5 Related Work

There are a variety of design strategies for maintaining invariants among an assembly
of components. At one extreme, an invariant can be implemented as an explicit
integration component, distinct from the components it integrates (hereafter referred
to as its integrands). Under this approach, the integration component might be a peer
of its integrands, as is the case with mediators [17], or it might encapsulate its
integrands, as with GenVoca layers [1]. Some designs even employ a hybrid of these
approaches. For example, Java AWT programmers define containers, which (like
layers) encapsulate GUI components but which (like mediators) listen for events from
these components [7]. At the other extreme, an invariant can be implemented as a
collaboration [20], which distribute the responsibilities for maintaining the invariants
among the integrands. An alternative to choosing an invariant maintenance
mechanism at the time when the code is written is delaying the decision until
assembly time. This has been called the flexible- packaging problem, and an approach
to providing it is described in [5].

DYNAMO makes use of the template processing mechanism of the C++ compiler
to obtain its metaprogramming functions. An alternative approach is provided by the
Open C++ project [3]. Open C++ adds the meta-object protocol to the C++ compiler.
That is, programmer have the ability to reprogram the compiler by, for example,
telling it what to do when it sees a new construct, such as a MonitoredClass.
This construct might be realized with code that counts method calls or variable
updates. The metaprogrammer is responsible for using available features of the Open
C++ API to write metaprograms for doing the counting. We have successfully
applied this tool to generate DYNAMO status variable updates, so it would seem to
provide a viable alternative to the template program approach described in this paper.
A survey of other work on invariant maintenance can be found in reference [15].

On the issue of implementation, currently, the most complete OCL compiler
comes from the Dresden University of Technology and supports OCL 1.4. To support
OCL 2.0, the Dresden development team is redesigning their compiler as described in
reference [9]. The Dresden compiler features a MOF (Meta Object Facility)
Repository that manages models and metamodels by providing interfaces for their
access. The code generator itself is designed to take instances of the OCL metamodel
as input and output Java code without altering the state of the environment.

630 Kurt Stirewalt and Spencer Rugaber

6 Summary and Conclusions

A high-assurance system behaves as you expect it to and, just as importantly, you
know that it does so. The enemy of assurance is complexity, and the main weapons in
fighting complexity are abstraction, transparency and intentionality. DYNAMO uses
model-based specifications written in OCL to express system properties at a high
level of abstraction. Wrapper code is then generated in such a way that each of the
specified invariants are mapped transparently and intentionally into self-contained
classes without compromising existing code. Two additional benefits accrue from the
DYNAMO approach: flexibility and economy. The code generation architecture and the
design of the wrapper code are such that the choice of collaboration mechanism can
be made flexibly at assembly time. And the generated code avoids much of the costly
indirection common in alternative invariant-maintenance mechanisms.

The DYNAMO approach is one of invariant maintenance. That is, critical system
properties are expressed as assembly invariants. An assembly invariant relates aspects
of one component with those of others. When the state of the former component
changes in such a way that a participant in the invariant is altered, dependent
components must be notified and the invariant re-established.

A variety of approaches have been developed for invariant maintenance, and DY-
NAMO introduces another, called a mode component. Mode components are wrapped
components organized into a layered, implicit-invocation architecture. The wrapping
is such that changes to the state of the underlying component are detected and
notification made to dependent components without explicit coupling to those
components.

DYNAMO code generation makes use of the metaprogramming capabilities of the
C++ language and compiler. Specifically, DYNAMO expresses the various invariant
maintenance mechanisms as templates that are processed at compile time, rather than
run-time. Moreover, the templates are organized as mixins, thereby reducing the need
for indirection. The resulting code provides a low-overhead approach to solving the
invariant-maintenance problem.

Acknowledgments

The PIs on this project wish to thank the following student participants: Jonathan
Gdalevich, Corinne McNeely, Terry Shikano, Patrick Yaner, and David Zook from
Georgia Tech and Reimer Behrends and AliReza Namvar from Michigan State. We
also wish to thank colleague Laura Dillon from Michigan State. This effort was
sponsored by the Defense Advanced Research Projects Agency, and the United States
Air Force Research Laboratory, under agreement number F30602-00-2-0618. Other
support was provided by Office of Naval Research grant N00014-01-1-0744 and by
NSF grants EIA-0000433 and CCR-9984726.

Automated Invariant Maintenance Via OCL Compilation 631

References

1. D. Batory and S. O’Malley. “The Design and Implementation of Hierarchical Software
Systems with Reusable Components.” ACM Transactions on Software Engineering and
Methodology, 1(4):355–398, October 1992.

2. Gilad Bracha and William Cook. “Mixin-based Inheritance.” Proceedings ECOOP/
OOPSLA '90, October 21-25, 1990, 303-311.

3. Shigeru Chiba. OpenC++ Home Page. http://www.csg.is.titech.ac.jp/~chiba/
openc++.html.

4. Krzysztof Czarnecki and Ulrich W. Eisenecker. “Intentional Programming” Chapter 11 in
Generative Programming. Addison Wesley, 2000.

5. R. DeLine. “Avoiding Packaging Mismatch with Flexible Packaging.” Proceedings IEEE
International Conference on Software Engineering, pp. 97–106, 1999.

6. David Garlan and Curtis Scott. “Adding Implicit Invocation to Traditional Programming
Languages.” International Conference on Software Engineering, 1993, pp. 447-453.

7. J. Gosling and F. Yellin. The Java Application Programming Interface, Volume 2:
Window Toolkit and Applets. Addison-Wesley, 1996.

8. International Business Machine Corp. “Rational Software.” http://www-306.ibm.com/
software/rational/.

9. Loecher, Sten and Ocke, Stefan. “A Metamodel-Based OCL-Compiler for UML and
MOF.” Department of Computer Science. Dresden University of Technology. September
2003.

10. Corinne McNeely, Spencer Rugaber, Kurt Stirewalt, and David Zook. “DYNAMO Design
Guidebook.” Technical Report GIT-CC-02-37, College of Computing, Georgia Institute of
Technology, June 27, 2002, ftp://ftp.cc.gatech.edu/pub/coc/tech_reports/2002/GIT-CC-
02-37.ps.Z.

11. N. Medvidovic, D. S. Rosenblum, D. F. Redmiles and J. E. Robbins. “Modeling Software
Architectures in UML.” ACM Transactions on Software Engineering and Methodology,
11(1):2-57, January, 2002.

12. Object Management Group. “Unified Modeling Language, Version 1.4.” OMG Document
Number 01-09-67, Chapter 6, http://www.omg.org/cgi-bin/apps/doc?formal/01-09- 67.pdf.

13. Object Management Group. “XML Metadata Interchange (XMI).” http://www.omg.org/
technology/documents/formal/xmi.htm.

14. Spencer Rugaber and Kurt Stirewalt. “Metaprogramming Compilation of Invariant Main-
tenance Wrappers from OCL Constraints.” Technical Report GIT-CC-03-46, College of
Computing, Georgia Institute of Technology, October 28, 2003, http://www.cc.gate-
ch.edu/dynamo/papers/compile.pdf.

15. Spencer Rugaber and Kurt Stirewalt. “Final Project Report / Dynamic Assembly from
Models (DYNAMO)”. Technical Report, GIT-CC-05-03, College of Computing, Georgia
Institute of Technology, March 2005, ftp://ftp.cc.gatech.edu/pub/coc/tech_reports/2005/
GIT-CC-05-03.pdf.

16. Y. Smaragdakis and D. Batory. “Implementing Layered Designs with Mixin Layers.” Pro-
ceedings of the 12th European Conference on Object-oriented Programming, 1998.

17. K. Sullivan and D. Notkin. “Reconciling Environment Integration and Software Evolu-
tion.” ACM Transactions on Software Engineering and Methodology, 1(3):229–268, July
1992.

632 Kurt Stirewalt and Spencer Rugaber

18. R. N. Taylor et al. “Chiron-1: A Software Architecture for User Interface Development,
Maintenance, and Run-Time Support.” ACM Transactions on Computer-Human Interac-
tion, 2(2):105–144, June 1995.

19. Tigris.org. “Welcome to ArgoUML.” http://argouml.tigris.org/.
20. M. VanHilst and D. Notkin. “Using Role Components to Implement Collaboration-Based

Designs.” Proceedings of OOPSLA 1996, pp. 359–369, 1996.
21. Jos Warmer and Anneke Kleppe. The Object Constraint Language. Addison Wesley,

1999.

SelfSync: A Dynamic Round-Trip Engineering

Environment

Ellen Van Paesschen1, Wolfgang De Meuter2, and Maja D’Hondt2

1 Programming Technology Laboratory
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium
evpaessc@vub.ac.be

2 Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille
59655 Villeneuve d’Ascq, Cédex, Lille, France
wdmeuter@vub.ac.be, maja.d-hondt@lifl.fr

Abstract. Model-Driven Engineering (MDE) advocates the generation
of software applications from models, which are views on certain aspects
of the software. In this paper, we focus on a particular setup which con-
sists of a graphical data modeling view and a view on an object-oriented
implementation, which can be either textual or graphical. A challenge
that arizes in the context of MDE is the notion of Round-Trip Engineer-
ing (RTE), where elements from both views can be manipulated and
thus need to be synchronized. We systematically identify four funda-
mental RTE scenarios. In this paper, we employ the framework of these
scenarios for explaining SelfSync, our approach and tool for providing
dynamic support for RTE. In SelfSync, the entities of the data model-
ing view and the corresponding implementation objects are one and the
same. Additionally, we present a comparison with related work accom-
panied by an extensive discussion.

1 Introduction

Model-Driven Engineering (MDE) advocates generating software applications
from models, which are views on certain aspects of the software. One commonly
found approach is to support one or more graphical modeling views on the one
hand and an implementation view on the other, which can be either textual,
i.e. the actual source code, or graphical. In this paper, we focus on a particular
setup which consists of a data modeling view and a view on an object-oriented
implementation.

An important issue that arizes in the context of MDE is the notion of Round-
Trip Engineering (RTE). Several definitions exist of RTE, but all boil down to
the following: when there exist at least two views on a software artefact, each
view can be used to manipulate the artefact and all the other views need to be
synchronized accordingly [1], [6], [12], [20]. RTE often considers a setup similar
to the one we outlined above. Therefore, the challenge in this setup is that both

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 633–647, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

634 Ellen Van Paesschen, Wolfgang De Meuter, and Maja D’Hondt

the data modeling view and the object-oriented implementation (view) can be
manipulated and thus need to be synchronized. In this paper, we identify four
fundamental RTE scenarios that cover the range of possible changes to both
views.

We provide a very dynamic approach to RTE, where the entities of the data
modeling view and the corresponding implementation objects are one and the
same [17], [16]. This contrasts with other approaches, which usually employ a
synchronization strategy based on transformation [12], [20], [28]. In this paper,
we first present our approach and accompanying tool, SelfSync, in Section 2. We
then present the four identified RTE scenarios in Section 3. Next we show how
our approach and tool address these four scenarios in Sections 4 to 7. We present
and discuss related work in Section 8. Finally, we conclude in Section 9.

2 SelfSync

SelfSync supports data modeling in an Extended Entity-Relationship (EER) dia-
gram [4] and object-oriented programming in the prototype-based language Self
[21], [26]. In this section we elaborate on these two parts while introducing an
example (sections 2.1 and 2.2). We then explain how SelfSync is used to proto-
type applications rapidly (section 2.3). Finally, we describe the three views that
SelfSync synchronizes during Round-Trip Engineering (section 2.4).

2.1 EER Modeling

EER diagrams consist of the typical data modeling elements, similar to Class
Diagrams in the Unified Modeling Language (UML) [9]: entities (classes in the
UML), attributes and operations3 in entities, and association and inheritance
relations between entities. The associations can be 1-to-1, 1-to-many, and many-
to-many. There are some variants of the typical data modeling elements, such as
entities and weak entities, and simple, primary and derived attributes. The EER
notation we use combines existing approaches: Chen’s boxes [4], the relations of
the crow’s feet notation and the cardinalities of [7] 4. We use different colours
to denote the differences between entities and weak entities, and between sim-
ple, primary and derived attributes. We want to stress that our new combined
notation is merely a consequence of our choice of development platform.

In Figure 1 an EER model of a moderate banking system is shown. This
example is used throughout the paper. A Customer has a primary attribute
customerID and simple attributes customerName, customerStreetand custom-
erCity. Customer is in a many-to-many relation with Loan (role borrows) and
with Account (role accounts), and in a many-to-one relation with Employee
(role banker). Payment is a weak entity that is dependent of Loan. An Account
can be specialized into a SavingsAccount or a CheckingsAccount.

3 We extended the standard EER diagram with operations in addition to attributes.
4 The order of cardinalities is reversed, as in the Object Modeling Technique

SelfSync: A Dynamic Round-Trip Engineering Environment 635

Fig. 1. An EER diagram for a moderate banking system.

2.2 Self

The object-oriented implementation language we employ is the prototype-based
language Self. In general, prototype-based languages can be considered object-
oriented languages without classes. As such, a prototype is used for sharing data
between objects and new objects can be created by cloning a prototype. Self,
however, introduces another programming idiom, traits, which share behavior
among objects and let objects inherit from them, which allows for simulating
classes [3]. Note that in Self everything is an object, more specifically prototypes,
traits and cloned objects, which can again be prototypes.

The Self development environment provides support for visual programming
using outliners, graphical views on objects. Objects, attributes and methods can
be created and initialized using menus of the outliners. This is depicted in Figure
2 by the two boxes on the top left, labeled Self code and Self outliners.

Fig. 2. The setup of our tool for supporting Round-Trip Engineering.

636 Ellen Van Paesschen, Wolfgang De Meuter, and Maja D’Hondt

2.3 Two-Phased Approach

We distinguish two phases when using SelfSync, which are typically but not
necessarily executed subsequently. For each phase we indicate how this setup
is implemented and provide terminology that is used in the remainder of this
paper.

In the first, active modeling phase a user draws an EER diagram while corre-
sponding Self objects are automatically created. In reality, these objects are the
modeled entities: drawing a new EER entity automatically results in an EER
entity view being created on a new object. Hence, we support incremental and
continuous synchronization per entity and per object : changes to an EER en-
tity are in fact changes to the outliner of an object and thus are automatically
propagated to the object via Self’s reflection mechanism. Similarly, changes to
an object, made via the object’s outliner, are automatically propagated to the
corresponding EER entity. View-dependent information, such as relationships
constraints in the EER diagram and method bodies in the Self objects, is pre-
served during changes and subsequent synchronization.

Our implementation strategy consists of generating per entity a prototype
for sharing the entity’s data and a traits object for sharing its behavior. This
results in the following setup, again depicted in Figure 2: the top right-hand box
in this figure is the EER diagram, whose entities are mapped to the corresponding
Self outliners. Each entity corresponds to a prototype-traits pair, bounded in a
dashed box. This is denoted by the arrow from the entity in the EER model
to the dashed box containing prototype and traits outliners. We refer to the
prototype-traits pair that implements a certain entity from the EER diagram as
an implementation object.

The second phase of our approach is an interactive prototyping process5.
This phase allows a user to create and initialize ready-to-use objects from each
implementation object created in the previous phase, thus populating the appli-
cation. With the notion of a population object we distinguish the objects that
result from this phase with the implementation objects that are created in the
previous phase.

This phase cannot be supported in a fully automatic way, because choices
need to be made that depend on the preferences of the user of the program. For
example, when an actual Customer object is created and initialized, our system
asks the user how many Account objects this Customer is to refer to, which can
be any number or unlimited.

2.4 One Repository – Three Views

Performing the two-phase approach described above results in a setup that con-
sists of one common repository, the actual Self code, and three views on it:

5 Note that a prototype is a special object in prototype-based languages for supporting
data sharing of several objects whereas prototyping is the activity of instantiating
and initializing a program into a ready-to-use, running system.

SelfSync: A Dynamic Round-Trip Engineering Environment 637

– the EER data modeling view: consists of all the information pertaining to
entities (attributes and operations) as well as inheritance between entities
and associations with multiplicities between entities

– a code-time implementation view: the outliners on the implementation ob-
jects, which show everything related to object-oriented programs; program-
mers can enrich the implementation objects with additional attribute slots,
fill in the method bodies, create new implementation objects manually, etc.
Note that relations in the implementation view are implicit since these occur
when a certain object has one or more objects as attribute.

– a run-time implementation view: (the outliners on) the population objects,
which contain actual data for running the application

SelfSync synchronizes the three views, which is partly facilitated because the
objects in the three views are actually different views on the same Self code.
On the other hand, view-dependent information is not visible in all the views.
For example, multiplicities in EER diagrams are not visible in the population
objects but are nevertheless enforced by SelfSync.

3 Round-Trip Engineering Scenarios

Round-Trip Engineering is especially crucial in the context of MDE, where mul-
tiple views of a software application can in principle be manipulated and the
other views need to be synchronized accordingly [1], [6], [12], [20]. When consid-
ering a graphical model as one view and the (graphical or textual) source code
as another, Round-Trip Engineering typically considers forward and a backward
activities. The former consists of changing the graphical model after which the
source code needs to be synchronized with the model. The latter denotes changes
to the source code and subsequent synchronization steps to the graphical model.

Based on the direction of synchronization we make a distinction between the
views the changes take place in: 1) the EER data modeling view and 2) the code-
time object-oriented implementation view both described at the end of Section
2.4. The data modeling view represents synchronization in the forward direction,
whereas the code-time implementation view represents the inverse. All elements
contained in these views can evolve, which we use in this paper as a collective
term for being created, changed or deleted.

Based on which kinds of elements evolve in a view, we make another dis-
tinction in Round-Trip Engineering: 1) changes to entities, attributes and oper-
ations in the data modeling view, and changes to implementation objects, data
and method slots in the code-time implementation view and 2) changes to as-
sociation and inheritance relations in the data modeling view, and changes to
relations between implementation objects in the code-time implementation view.

Each of the four scenarios corresponds to a particular direction of Round-
Trip Engineering and particular elements that are changed and subsequently
synchronized as summarized in Table 1:

638 Ellen Van Paesschen, Wolfgang De Meuter, and Maja D’Hondt

Table 1. The four scenarios that cover synchronization between a graphical data
modeling view and an OO code-time implementation view.

Entities Relations

Data modeling view Scenario 1 Scenario 2

OO code-time implementation view Scenario 3 Scenario 4

scenario 1: changes to entities, attributes and operations in the data model-
ing view, which are synchronized in both the code-time and the run-time
implementation view

scenario 2: changes to association and inheritance relations in the data mod-
eling view, which are synchronized in both the code-time and the run-time
implementation view

scenario 3: changes to implementation objects, data and method slots in the
implementation view, which are synchronized in the data modeling view

scenario 4: changes to (implicit) relations in the implementation view, which
are synchronized in the data modeling view

Note that in scenario 1 and 2 when operations or relations in the data model
evolve, this can impact the population objects in the run-time implementation
view. In Figure 2 the four scenarios are situated in the different views of the
SelfSync architecture.

4 Scenario 1: Entity Evolution from Model to Code

We use the banking system EER model (see Figure 1) as an example. This
model is extended to support simple insurances. We illustrate the scenario with
the following steps:

1. Add two new entities insurance and insurer to the banking system model
2. Add a new attribute policyNr to insurance
3. Add a new attribute insuredObject to insurance
4. Add a new operation checkClaim to insurance

To realize the entity evolution scenario, the following actions are performed
in SelfSync at code-time, by the user followed by our automated synchronization
mechanism:

1. Add a new blank entity view to the EER diagram via the appropriate menu
and name it insurer. Synchronization steps: First, a new blank entity view
becomes graphically visual; since this is a new view on a new implementation
object, a new implementation object is automatically created. This newly
created implementation object contains no public data slots and an empty
traits object to contain methods. The implementation object is automatically
saved in the banking schema object. The name of the graphical entity view
in the diagram is changed to insurer, this is propagated automatically onto
the viewed implementation object.

SelfSync: A Dynamic Round-Trip Engineering Environment 639

2. Analoguously to step 1, the entity view insurance is added.
3. Next, we add a new attribute to the graphical entity view insurance via

the appropriate menu, and name it policyNr. Synchronization steps: First
a blank attribute (dark/light blue) becomes graphically visual inside the
insurance entity view. Automatically, a new data slot is added to the
insurance implementation object. The renaming is propagated to the imple-
mentation object by renaming the original data slot in the implementation
object. This implies that changes to the contents of the data slot in the
implementation object are not lost when the corresponding attribute in the
entity view is renamed.

4. Similarly, a new operation is added to the insurance entity view via the
appropriate menu, and is named checkClaim. Synchronization steps: First a
blank operation (red) becomes graphically visual inside the insurance entity
view. Automatically, a new method slot is added to the traits object of the
insurance implementation object. The renaming is propagated to the traits
object by renaming the original method slot. The body of the method can be
viewed and edited from inside the entity view: the changes are propagated
to the method body in the implementation object.

Deleting attributes and operations automatically results in deleting the corre-
sponding data or method slot in the implementation object. Deleting an entire
entity view automatically results in deleting the implementation object from the
banking schema object.

By adding, removing, renaming, and changing an operation to an entity
view, all run-time population objects that are created from the entity view’s
code-time implementation object, are affected. This is a consequence of adding
corresponding method slots in the traits object of the code-time implementation
objects, that are shared by the code-time implementation object as well as by
all its run-time population objects.

5 Scenario 2: Relationship and Specialization Evolution
from Model to Code

We use the banking system EER model (see Figure 1) as an example. This
model is extended to support simple insurances. We illustrate the scenario with
the following steps:

1. Specialize the entity employee into insurer in the banking system model
2. Add a new 1-to-n relation between the entities customer and insurance in

the banking system model

To realize the entity evolution scenario, the following actions are performed
in SelfSync at code-time, by the user followed by our automated synchronization
mechanism:

1. Add a new specialization to the EER diagram from the entity view insurer
to the entity view employee, via the appropriate menu. Synchronization

640 Ellen Van Paesschen, Wolfgang De Meuter, and Maja D’Hondt

steps: Automatically, the insurer implementation object inherits from the
employee implementation object. Deleting the specialization in the EER
model automatically results in removing the inheritance between the two
implementation objects.

2. Add a new 1-to-n relationship between the entity views insurer and custom-
er, via the appropriate menu. Synchronization steps: Automatically a slot
called 1 to n relation insurer customer is added to both viewed imple-
mentation objects insurer and customer. This slot contains a reference to
the other partner entity object. Deleting the relationship in the EER model
automatically results in deleting the slot.

After the interactive prototyping phase a 1-to-1 or 1-to-n relationship be-
tween two entity views also results in satisfying the cardinality constraints im-
posed by these relations. When two entity views are in a relationship in which
the first one has a single reference (one or zero) to the second one, the unique-
ness of this reference is enforced in the run-time population objects in two ways.
First we ensure that all run-time population objects (i.e. the clones) of the first
code-time implementation object’s type (i.e. the prototype) have at most one ref-
erence to run-time population objects of the second code-time implementation
object’s type. Secondly, we also ensure that only one run-time population object
of the second code-time implementation object’s type refers to run-time popu-
lation objects of the first type. If two entity views are in a 1-to-1 relationship,
this is enforced in the two directions. Our system checks for violation of these
constraints, each time the slots of a run-time population object are updated.

Adding dependencies between two entity views results in another kind of
enforcement. In this case we ensure that when a run-time population object
is deleted, all run-time population objects whose corresponding entity view is
dependent of the entity view of the deleted run-time population object, are
deleted also.

Note that since the multiplicity and dependency information is stored in the
traits objects shared by both code-time implementation and run-time population
objects, changing relationships and multiplicities or dependencies in the EER
diagram affects also existing run-time population objects.

6 Scenario 3: Object Evolution from Code to Model

We use the banking system EER implementation as an example. When a new
code-time implementation objects is created it is installed in the schema object
and its entity view becomes visual. When an entire code-time implementation
object is deleted, the entity view automatically dissapears from the EER dia-
gram. The other cases are illustrated with the following steps:

1. Add a new attribute insurer to the implementation object insurance in
the banking system implementation

2. Rename the attribute insurer in the implementation object insurance to
myInsurer

SelfSync: A Dynamic Round-Trip Engineering Environment 641

3. Add a new method extendPolicy = (‘to be implemented’) to the im-
plementation object insurance

4. Change the body of extendPolicy in the implementation object insurance
to (numberOfInsuredObjects:(numberOfInsuredObjects + 1))

To realize the entity evolution scenario, the following actions are performed
in SelfSync at code-time, by the user followed by our automated synchronization
mechanism:

1. Add a new data slot to the insurance implementation object via the main
Self object menu and name it insurer. Synchronization steps: Automatically,
the insurance entity view in the EER model is extended with a new at-
tribute insurer. Note that deleting a data slot in an implementation object
automatically results in deleting the corresponding attribute in the entity
view.

2. Rename the insurer data slot in the insurance implementation object
to myInsurer by double-clicking it. Synchronization steps: Automatically,
the insurer attribute in the insurance entity view in the EER model is
renamed to myInsurer.

3. Add a new method slot extendPolicy = (‘to be implemented’) to the
implementation object insurance. Synchronization steps: Automatically,
the insurance entity view in the EER model is extended with a new method
attribute extendPolicy. When this method body is viewed or edited in the
insurance entity view in the EER model via the operation menu, the text
‘to be implemented’ becomes visible. Note that deleting a method slot in
an implementation object automatically results in deleting the corresponding
operation in the entity view.

4. Change the body of extendPolicy to (numberOfInsuredObjects:(number-
OfInsuredObjects + 1)) by clicking the method body symbol in the insur-
ance implementation object. Synchronization steps: When the method body
of the extendPolicy operation is viewed or edited in the insurance entity
view in the EER model via the operation menu, the new body (numberOfIns-
uredObjects: (numberOfInsuredObjects + 1)) becomes visible.

When these changes are applied to run-time population objects, the entity views
of the corresponding code-time implementation objects are not affected.

7 Scenario 4: Reference and Inheritance Evolution from
Code to Model

We use the banking system EER implementation as an example. We illustrate
the scenario with the following steps:

1. Change the contents of the attribute myInsurer in the implementation ob-
ject insurance to contain the insurer implementation object.

2. Create a new child of the implementation object insurance

642 Ellen Van Paesschen, Wolfgang De Meuter, and Maja D’Hondt

To realize the entity evolution scenario, the following actions are performed
in SelfSync at code-time, by the user followed by our automated synchronization
mechanism:

1. Set the contents of the myInsurer data slot in the insurance implementa-
tion object to contain the insurer implementation object either via the ap-
propriate Self menu, a user action, or at run-time. Synchronization steps: Au-
tomatically, a one-to-one relationship link is drawn between the insurance
entity view and the insurer entity view in the EER model, given no 1-to-
1 link is drawn between them currently. This synchronization is performed
dynamically: when we manually remove the 1-to-1 link in the EER model,
it is automatically re-drawn, each time the Self system updates the slots of
the insurance implementation object and discovers that it (still) contains
a reference to the insurer implementation object

2. Create a new child of the implementation object insurance via the Self
main menu. Synchronization steps: Automatically, a new entity view is added
to the EER model. Simultaneously, a new implementation object has been
created, inheriting the slots of the insurance implementation object. Next
a new “is-a” link is drawn between the new entity view and the insurance
entity view in the EER model.

When these changes are applied to run-time population objects, the entity views
of the corresponding code-time implementation objects are not affected.

8 Related Work and Discussion

We situate our approach in the intersection of three domains: Round-Trip En-
gineering, visual programming and agile development. We discuss Borland’s To-
gether (section 8.1) and the Naked Objects approach (section 8.2), respectively,
as representatives for the first two domains. A concrete instance of agile modeling
and other related work can be found in Section 8.3. In Section 8.4 we compare
SelfSync to the related approaches.

8.1 Round-Trip Engineering

The state-of-the-art in RTE includes application such as Rational XDE [25],
Borland Together [28], and FUJABA [22]. One of the leaders in this domain is
Borland’s Together. This set of commercial tools provides support for modeling,
designing, implementing, debugging, and testing applications. The synchroniza-
tion mechanism between UML class diagrams and implementation is realized by
the LiveSource technology. More specifically, the implementation model (i.e. the
source code) is parsed and rendered as two views: a UML class diagram and in a
formatted textual form. LiveSource is in fact a code parsing engine. The user can
manipulate either view and even the implementation model. However, all user
actions are translated directly to the implementation model and then translated
back to both views. We discuss the relation to SelfSync in Section 8.4.

SelfSync: A Dynamic Round-Trip Engineering Environment 643

Other related work in RTE, is mostly concerned with characterizing RTE
rather than providing concrete tool support. In [1], RTE is described as a system
with at least two views that can be manipulated. Applying the inverse trans-
formation f−1 on a view that is transformed using f , should again yield the
same view. The Automatic Roundtrip Engineering [1] approach advocates the
automatic derivation of this inverse transformation function based on the orig-
inal transformation function. Our approach is based on Model-View-Controller
(MVC) [10]. Therefore, a change initiated in a view is not actually performed
in the view, but in the underlying implementation element, which results in the
relevant views being automatically updated.

In [20] RTE is connected to inconsistency handling. In SelfSync, MVC makes
inconsistency handling superfluous since no inconsistencies are introduces for the
same reasons explained above. The same work states that RTE is not merely
a combination of forward and backward engineering since there is not always a
one-to-one mapping between similar elements in different views. In contrast, we
deliberately assume such a mapping in order to automate the synchronization
bidirectionally.

8.2 Visual Programming

At the level of visual programming we compare SelfSync to the Naked Objects
[18], [24] approach that also applies MVC, but in one direction: from code to
model. Building a business system consists solely of defining the domain business
objects (i.e. code-time implementation objects) in Java, which immediately are
made visible to and manipulable by the user in a business object model. The
Naked Objects Java framework represents classes as icons and uses Java inter-
faces to determine the methods of any business object and render them visible
on the screen by means of a generic viewing mechanism.

With respect to run-time support, the user can visually create new business
objects, specify their attributes, add associations between them, or invoke meth-
ods on them. The ready-to-use objects are visually represented and automatically
created and updated in the Java program.

8.3 Other Related Work

In this section we describe other related work that is not discussed in detail but
included for completeness.

Since the late eighties, it has been encouraged to combine (E)ER models and
object-orientation (OO) [5], [15]. Various approaches and techniques exist for
translating EER into object-orientation [8], [14], [11], [13]. Such mappings can
be used in the domain of object-relational (O/R) mappers [29], [23], [27]. These
tools generate an object implementation from a data model such as (E)ER, and
possibly support synchronization of both models. Some of them generate code to
enforce constraints on relationships and dependencies between implementation
objects, based on the data model. However, these applications do not consider
behavior at the level of the datamodel.

644 Ellen Van Paesschen, Wolfgang De Meuter, and Maja D’Hondt

Finally, since SelfSync allows rapid prototyping, we consider a concrete ex-
ample of agile modeling [2]. In this case the stress is less on synchronization and
more on rapid prototyping and testing. In [2] applying eXtreme programming to
modeling is realized by making UML diagrams executable. Different UML dia-
grams are translated into Petri-Nets and interpreted by a Petri-Net engine. This
engine can be seen as a UML Virtual Machine and contains a Java parser. The
precise evolution support in this case depends on the environment in which the
UML models are created and in which the UML Virtual Machine is integrated.
As is, as far as we know, no support for RTE is provided.

8.4 Discussion

The ensuing discussion compares SelfSync to the related work introduced above.
We distinguish four tracks: (1) UML versus EER, (2) forward RTE support
(scenarios 1 and 2), (3) backward RTE support (scenarios 3 and 4), and (4)
run-time RTE support.

UML Versus EER. There is an almost religious discussion between the (E)ER
and the UML communities as to which approach is better. Typical claims are
that (E)ER modeling is more formally funded but that the UML is more open
[19], [9]. In our work, however, the use of EER does not exclude the transfer
of our conceptual results to an UML-based context. In this paper, we describe
Round-Trip Engineering on the data modeling level in terms of entities, at-
tributes and operations, and association and inheritance relations. These EER
modeling elements have equivalent modeling elements in Class Diagrams of the
UML.

Forward RTE Support. Forward RTE support, embodied by scenarios 1 and
2, is provided by Together’s LiveSource. Naked Objects only provides backward
RTE support and some run-time support. We first mention the similarities with
SelfSync, and then discuss the differences.

Similarities. Both LiveSource and SelfSync provide forward RTE support
when evolving the following data modeling elements: entities or classes, at-
tributes, operations, relations and specializations. In LiveSource this is supported
by first propagating the changes to the implementation model and then updat-
ing the views, i.e. the class diagram and the formatted source code. In SelfSync
this is supported because these data modeling elements and the corresponding
implementation elements are in reality the same. Although LiveSource uses Java
as implementation language, which is class-based, and SelfSync uses Self, orig-
inally a prototype-based language, this is not the fundamental difference here.
Indeed, a mapping needs to be devized between data modeling and implemen-
tation elements, whether this is entities on classes or entities on prototypes and
traits.

Differences. The only other support offered for cardinalities and dependencies
in Together is not inherent to LiveSource but a consequence of the fact that To-
gether supports the technology of Enterprise Java Beans (EJB), the component

SelfSync: A Dynamic Round-Trip Engineering Environment 645

model for J2EE. EJB 2.0’s container-managed persistence specification allows
fine-grained control over entity bean relationships. When we add an association
between two container-managed entity beans in a class diagram, parameters
such as relation name and multiplicities need to be supplied. Automatically a
new container-managed relationship is created. To the best of our knowledge,
the actual enforcement of cardinalities is only limited and only due to the static
typing that is provided by Java. In particular, an attribute cannot contain an
object of another type than declared with the attribute. Although we employ
a dynamically typed implementation language, we provide this level of enforce-
ment, and more. For example, we also ensure that only one population object of
a certain type refers to another population object if the latter is allowed to have
a single reference to the first type.

To enforce dependencies using EJB a cascade-deleteXML tag is used in the
description of relationships: when the entity bean is deleted, all its dependents it
is in a relationship with, are deleted as well. The difference with SelfSync is that,
although we provide similar support for enforcing dependencies, we provide it in
the context of an RTE tool and not solely in the implementation technology.

Backward RTE Support. Backward RTE support, embodied by scenarios 3
and 4, is provided by Together’s LiveSource and Naked Objects. We first mention
the similarities with SelfSync, and then discuss the differences.

Similarities. LiveSource and SelfSync provide backward RTE support when
evolving the following object-oriented implementation elements: classes in the
class-based approaches and prototypes or traits in our prototype-based approach,
attributes, methods, references between classes or prototypes, and inheritance
between classes or traits. Naked Objects support the same except for references
and inheritance. In Together’s LiveSource and SelfSync the backward RTE sup-
port is enabled in an analogous way to the forward RTE support. Naked Objects’
support for backward RTE is similar to ours, i.e. through MVC, but an additional
compilation step of the changed Java code is necessary.

Differences. LiveSource and SelfSync do not differ in the kind of backward
RTE support provided, only in the internal strategy, as explained earlier. Naked
Objects, however, does not provide support for synchronizing evolving references
and inheritance in the Java code.

Run-Time RTE Support. Run-time RTE support only makes sense in the
forward direction, more specifically changes to the data model are reflected in
the run-time population objects. It is nonsensical to automatically synchronize a
data model when changes are made to instantiated and initialized objects. Espe-
cially since most statically typed, class-based implementation languages such as
Java would restrict the possible changes that can be made based on the source
code. In dynamically typed languages or prototype-based languages (or both)
there are less restrictions to changing the run-time population objects, but even
in these cases it is undesirable to reflect them in the data model.

Only SelfSync provides full forward run-time RTE support. This means that
evolution of attributes, operations, relations, specializations, cardinalities and

646 Ellen Van Paesschen, Wolfgang De Meuter, and Maja D’Hondt

dependencies are reflected in the run-time population objects. The main reason
SelfSync supports this is primarily due to the dynamic character of the imple-
mentation language, Self. Using another dynamically typed language, such as
Smalltalk, would allow us to achieve similar results. In a context where a stati-
cally typed implementation language is used, such as Java, one would have much
less flexibility in changing the data model (or even the source code directly) and
synchronizing the corresponding ready-to-use population objects. Another rea-
son why this is supported in SelfSync, is that Self separates state sharing and
behavior sharing.

In the Naked Objects approach there is only support at the level of adding
associations between instantiated business objects, which is reflected in the cor-
responding Java objects.

9 Conclusion

This paper presents three contributions with respect to Round-Trip Engineer-
ing (RTE) in a particular Model-Driven Engineering setup consisting of a data
modeling view and a view on an object-oriented implementation. First of all, we
identify and describe fundamental set of four Round-Trip Engineering scenarios.
These scenarios distinguish between direction, from model to code or vice versa,
and kind of elements that evolve, entity views and implementation objects and
their elements on the one hand, or relations between them on the other. A second
contribution is our tool, SelfSync, which provide very dynamic support for these
four RTE scenarios, not only at code-time but in relevant run-time situations
as well. This is a direct result of the entities of the data modeling view and
the corresponding implementation objects being one and the same in SelfSync.
Finally, we describe related work and present a comparison accompanied by an
extensive discussion.

References

[1] U. Assman. Automatic roundtrip engineering. Electronic Notes in Theoretical
Computer Science, 82.

[2] M. Boger, T. Baier, F. Wienberg, and W. Lamersdorf. Extreme modeling. pages
175–189, 2001.

[3] C. Chambers, D. Ungar, B.-W. Chang, and U. Holzle. Parents are shared parts of
objects: Inheritance and encapsulation in SELF. Lisp and Symbolic Computation,
4(3):0–, 1991.

[4] P. P. Chen. The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst., 1(1):9–36, 1976.

[5] P. P. Chen. Er vs. oo. In Entity-Relationship Approach - ER’92, 11th International
Conference on the Entity-Relationship Approach, Karlsruhe, Germany, October
7-9, 1992, Proceedings, volume 645 of Lecture Notes in Computer Science, pages
1–2. Springer, 1992.

[6] S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is not universal? In
UML’99, Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume 1723
of LNCS, pages 630–644. Springer, 1999.

SelfSync: A Dynamic Round-Trip Engineering Environment 647

[7] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-
Wesley World Student Series, 3 edition, 1994.

[8] J. Fong. Mapping extended entity relationship model to object modeling tech-
nique. SIGMOD Record, 24(3):18–22, 1995.

[9] M. Fowler and K. Scott. UML distilled: a brief guide to the standard object
modeling language. Addison-Wesley Longman Publishing, Boston, MA, USA,
2000.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, Mass., 1995.

[11] M. Gogolla, R. Herzig, S. Conrad, G. Denker, and N. Vlachantonis. Integrating
the er approach in an oo environment. In Entity-Relationship Approach - ER’93,
12th International Conference on the Entity-Relationship Approach, Arlington,
Texas, USA, December 15-17, 1993, Proceedings, volume 823 of Lecture Notes in
Computer Science, pages 376–389. Springer, 1993.

[12] A. Henriksson and H. Larsson. A definition of round-trip engineering. Technical
report, Linkopings Universitet, Sweden, 2003.

[13] R. Herzig and M. Gogolla. Transforming conceptual data models into an object
model. In ER’92, Karlsruhe, Germany, October 1992, Proceedings, volume 645 of
Lecture Notes in Computer Science, pages 280–298. Springer, 1992.

[14] C.-T. Liu, S.-K. Chang, and P. K. Chrysanthis. Database schema evolution using
EVER diagrams. In Advanced Visual Interfaces, pages 123–132, 1994.

[15] S. B. Navathe and M. K. Pillalamarri. Ooer: Toward making the e-r approach
object-oriented. In Entity-Relationship Approach: A Bridge to the User, Proceed-
ings of the Seventh International Conference on Enity-Relationship Approach,
Rome, Italy, November 16-18, 1988, pages 185–206. North-Holland, 1988.

[16] E. V. Paesschen, M. D’Hondt, and W. D. Meuter. Rapid prototyping of extended
entity relationship models. In ISIM 2005, Hradec Nad Moravici, Czech Republic,
April 2005, Proceedings, pages 194–209. MARQ, 2005.

[17] E. V. Paesschen, W. D. Meuter, and T. D’Hondt. Domain modeling in self yields
warped hierarchies. In Workshop Reader ECOOP 2004, Oslo, Norway, June 2004,
volume 3344 of Lecture Notes in Computer Science, page 101, 2004.

[18] R. Pawson and R. Matthews. Naked objects: a technique for designing more
expressive systems. ACM SIGPLAN Notices, 36(12):61–67, Dec. 2001.

[19] K.-D. Schewe. UML: A modern dinosaur? In Proc. 10th European-Japanese
Conference on Information Modelling and Knowledge Bases, Saariselkä (Finland),
2000. IOS Press, Amsterdam, 2000.

[20] S. Sendall and J. Kuster. Taming model round-trip engineering. In Proceedings
of the Workshop on Best Practices for Model-Driven Software Development at
OOPSLA 2004, Vancouver, Canada, 2004.

[21] D. Ungar and R. B. Smith. Self: The power of simplicity. In OOPSLA ’87,
Orlando, Florida, USA, pages 227–242, New York, NY, USA, 1987. ACM Press.

[22] Fujaba: http://wwwcs.uni-paderborn.de/cs/fujaba/.
[23] Llblgen: http://www.llblgen.com/.
[24] Naked objects framework: http://www.nakedobjects.org.
[25] Rational: http://www-306.ibm.com/software/awdtools/developer/rosexde/.
[26] Self: http://research.sun.com/self/.
[27] Simpleorm: http://www.simpleorm.org/.
[28] Together: http://www.borland.com/together/.
[29] Toplink: http://www.oracle.com/technology/products/ias/toplink/index.html.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 648-660, 2005.
 Springer-Verlag Berlin Heidelberg 2005

UML for Document Modeling:
Designing Document Structures for Massive and

Systematic Production of XML-based Web Contents

Alejandro Bia1 and Jaime Gómez2

1 Miguel Hernández University, Spain
abia@umh.es

2 University of Alicante, Spain
jgomez@dlsi.ua.es

Abstract. This paper discusses the applicability of modeling methods originally
meant for business applications, on the design of the complex markup
vocabularies used for XML Web-content production.

We are working on integrating these technologies to create a dynamic and
interactive environment for the design of document markup schemes.
This paper focuses on the analysis, design and maintenance of XML
vocabularies based on UML. It considers the automatic generation of Schemas
and DTDs from a visual UML model of the markup vocabulary, as well as
pieces of software, like input forms. Additionally, we integrate these UML
design capabilities with other handy tools like automatic Schema simplification
and multilingual markup.

Introduction

Most authors that treated the relationship between UML and XML [1,2] only targeted
business applications and did not consider the kind of complex document-structure
and metadata modeling required for massive and systematic production of XML
contents for the Web. Text digitization projects, like most digital libraries, produce
thousands of XML documents for Web publication, accompanied by complex
metadata that include bibliographic, historical, processing and format descriptions.
This is the case of text based digital library projects like those carried out by the
History of Art Department at the University of Malaga1, and the Miguel de Cervantes
Digital Library2 of the University of Alicante, where we applied UML for XML
Schema design and maintenance.

 This work is part of the METASIGN project, and has been supported by the Ministry of
Education and Science of Spain through the grant number: TIN2004-00779.

1 Development of a Terminological and Conceptual Thesaurus (TTC) of Spanish Artistic
Treatises of the Modern Age, including a database of digitized texts (ATENEA).

2 http://cervantesvirtual.com/

UML for Document Modeling 649

Digital Library XML documents that model the structure of literary texts and
include bibliographic information (metadata) plus processing and formatting
instructions are by far much more complex than the XML data we usually find in
business applications. Figure 1 shows a small document model based on the TEI3.
Although it may seem complex, it is just a very small TEI subset.

Figure 1: a small document model based on the TEI

3 The TEI (Text Encoding Initiative) is a very complete as well as powerful markup

vocabulary, both for text and metadata, originally based on SGML but now available in
XML format. Different subsets of this markup vocabulary expressed in DTD, Relax NG or
W3C Schema formats, can be obtained from a service called “Roma” at he TEI website:
http://www.tei-c.org/

650 Alejandro Bia and Jaime Gómez

This type of markup is not as simple and homogeneous as the typical structured
data we find in business applications. In these documents we usually find a wide
variety of elements nested up to deep levels, and there are many exceptional cases that
can lead to unthinked-of markup situations that also need to be covered. Markup
schemes like TEI [3] and DocBook [4] are good examples of this kind of complexity
and versatility.

However, no matter how heterogeneous and unpredictable the nature of humanities
markup could get to be, software engineers have to deal with it in a systematic way,
so that automatic processes can be applied to these texts in order to produce useful
output for Web publishing, indexing and searching, pretty printing, and other end user
facilities and services. There is also a need to reduce content production times and
costs by automating and systematizing content production. For these, software,
documentation and guides of good practice have to be developed.

The building of all these automation, methods and procedures to deal with complex
content structures can be called Document Engineering. The purpose is to reduce
costs, and facilitate content production by setting constraints, rules, methods and
implementing automation wherever and whenever is possible.

XML, DTDs or Schemas, XSL transforms, CSS stylesheets and Java programming
are the usual tools to enforce the rules, constraints and transformations necessary to
turn the document structuring problem to a systematic automated process that lead to
useful Web services. But the wide variety of Schema types (DTD, W3C Schema,
RelaxNG, to name a few), and the individual limitations/advantages of each of them,
make the task of making a standardized production environment like this very
difficult.

On one hand we need a markup vocabulary that can cover all document structuring
requirements, even the most unusual and complex, but that is simple enough for our
purposes. In other words, we need the simplest DTD/Schema that fits our needs. We
previously treated the problem of DTD/Schema simplification in [5, 6].

But DTD/Schema simplification, although useful, doesn't solve all the problems of
Document Engineering, like building transformations to obtain useful output or
assigning behavior to certain structures (like popup notes, linking, and triggering
services). Environments of this kind are usually built incrementally. The design
information, if any, is dispersed into many pieces of software (Schemas,
transformation, Java applets and servlets), or does not exist at all. A system like this
includes document design (DTD/Schemas), document production techniques and
tools (XSL and Java), document exploitation tools (indexing, searching, metadata,
dictionaries, concordances, etc.) and Web design altogether.

UML modeling may be the answer to join all those bits and pieces into a coherent
design. The objectives are: to reduce design cost, improve the quality of the resulting
products, provide documentation, and finally to simplify maintenance. UML
modeling for massive Web content production may also lead to automatic generation
of some of components needed. J. Gomez et al [7, 8] have successfully built a CASE
tool (VisuaWADE) that allows the modeling of web navigation for web applications,
and also generates usable web interfaces.

UML for Document Modeling 651

Previous Related Work

According to David Carlson [1], the eXtensible Markup Language (XML) and the
Unified Modeling Language (UML) are two of the most significant advances from the
fields of Web application development and object-oriented modeling. As Kimber and
Heintz define it [2], the problem is how we integrate traditional system engineering
modeling practice (nowadays based on UML) with traditional SGML and XML
document analysis and modeling.

Martin Bernauer et al [9], presented an interesting survey of approaches for
representing XML Schema in UML at the ICWE 2004 conference, which they used
for comparison to their own approach [10]. According to them, existing work on
representing XML Schema in UML has emerged from approaches to platform
specific modeling in UML and the transformation of these models to XML Schema,
with the recognized need for UML extensions to specify XML Schema peculiarities.

A White Paper from Rational, in 1999 [11] may be the first approach of this kind
to model XML schemas using UML. Although it deals with an old version of XML
Schema, it introduces UML extensions that address modeling of elements, attributes,
model groups, and enumerations, which can also be found in the following
approaches. The approach by Carlson [1], which we used as a guide for our current
work, uses XMI4 rules for transforming UML to XML Schema. It defines a UML
profile that handles almost all XML Schema components, with some exceptions5.
Some weaknesses are attributed to the profile concerning its representation of model
groups, i.e., sequence, choice, and all. In spite of these limitations, a commercial tool
called “hypermodel”6 has been built based on this profile, which includes a two-way
transformation between XML Schema and UML.

Provost [12] has addressed some of the limitations of Carlson’s work [1], including
the representation of enumerations and other restriction constraints, and of list and
union type constructors7. Eckstein’s approach ([13], in German, based on [14]) also
defines a profile similar to Carlson's [1], with some enhancements regarding simple
types and notations. Goodchild et al [15] point out the importance of separating the
conceptual schema, i.e., the platform independent model, from the logical schema,
i.e., the platform specific model (following the guidelines of MDA8 [16]), a separation
that is not considered in the other approaches. In this approach, the logical schema is
a direct, one-to-one representation of the XML schema in terms of a UML profile.
The profile9 covers almost all concepts of XML Schema, but several of its
representations are not UML conformant.

4 XML Metadata Interchange
5 Exceptions are: simple content complex types, global elements and attributes, and identity

constraints.
6 http://xmlmodeling.com/hyperModel/
7 The latter doesn’t conform to UML
8 In the model driven architecture (MDA), a two step integration is assumed, comprising a

platform specific model which abstracts from implementation language details, and a
platform independent model which abstracts from technology details.

9 http://titanium.dstc.edu.au/papers/xml-schema-profile.pdf

652 Alejandro Bia and Jaime Gómez

Bernauer’s own approach [10] resembles Goodchild’s [15] by aiming at a one-to-
one representation of XML schemas in a UML profile. It builds on the existing UML
profiles for XML Schema, with some improvements and extensions.

A recent online article by Benoît Marchal [17] also served as an inspiration for our
work.

Other related work on mapping conceptual models expressed in UML or EER to
XML Schema or DTD, has also identified various options for transforming
conceptual-level concepts to XML Schema concepts [1,14,18,19,12]. Most of the
transformations are, however, not unambiguously applicable in the reverse direction
and would thus only be useful in an interactive transformation process, requiring a
user’s knowledge of the XML schema to be transformed to UML.

Advantages of Modeling XML Documents with UML

As a modeling tool,

- UML applies to several technologies: Python, Java, PHP, SQL, C++, Web
design, etc.

- Its widespread use reduces the training needs, allowing for easy design
sharing.

- UML diagrams can show as much or as little information as needed, so it is
possible to build several models with different degrees of sophistication.

Apart from modeling the structure of a class of documents (as DTDs and Schemas
do), UML can capture other properties of document elements:

- Behavior: this is related to event oriented functions (e.g. popup notes)
- Additional powerful validation features (e.g. validating consistency of certain

fields like author name against a database.)
- Customization of document models to provide different views or subsets of the

markup scheme to different users (e.g. DTDs for development of different
types of documents)

We believe that the dynamic and interactive environment described here will be
very useful to professionals responsible for designing and implementing markup
schemes for Web documents and metadata. Although XML standards for text markup
(like TEI and DocBook) and metadata markup (e.g. MODS, EAD, RDF, METS) are
readily available [20], tools and techniques for automating the process of customizing
DTD/Schemas and adding postprocessing functionality are not.

Description of the Project

We are working on integrating these technologies to create a dynamic and interactive
environment for the design and maintenance of document markup schemes (see figure

UML for Document Modeling 653

2). Our approach is to expand the capabilities of Visual Wade10 to obtain a tool that
allows the visual analysis, design and maintenance of XML vocabularies based on
UML. Among the targets we are working on, we can mention the automatic
generation of different types of DTD/Schemas from a visual UML model of the
markup vocabulary, code generation whenever possible (like generating HTML forms
or XSLT), generation of documentation, and special enhanced validators that can
perform verifications beyond those allowed by DTDs or Schemas (like verification of
certain element content or attribute values against a database).

Many mappings are possible between an XML schema and a UML model. UML
supports several types of diagram. The most commonly used are class diagrams, use
case diagrams, package diagrams, sequence diagrams, and activity diagrams. The
most suitable diagram for our purposes is the class diagram, which can represent an
object-oriented model. Carlson [1] suggests a method based on UML class diagrams
and use case analysis for business applications which we adapted for modeling
document markup vocabularies.

A UML class diagram can be constructed to visually represent the elements,
relationships, and constraints of an XML vocabulary (see figure 3 for a simplified
example). Then all types of Schemas can be generated from the UML diagrams by
means of simple XSLT transformations applied to the corresponding XMI
representation of the UML model.

Figure 2: integrated environment for the design of document markup schemes

The UML model information can be stored in an XML document according to the
XMI standard as described by Hayashi and Hatton [21]: “Adherence to the [XMI]

10 VisualWade is a tool for software development based on UML and extensions. It was

developed by our research group, named IWAD (Ingeniería Web y Almacenes de Datos -
Web Engineering and Data-Warehousing), at the University of Alicante. This group also
developed the OOH Method (for more information see http://www.visualwade.com/)

654 Alejandro Bia and Jaime Gómez

standard allows other groups to easily use our modeling work and because the format
is XML, we can derive a number of other useful documents using standard XSL
transformations”. In our case, these documents are schemas of various types as well
as DTDs. Like Schemas, DTDs can be also generated from the XMI representation of
the UML model (doted line), but as DTDs are simpler than Schemas, and all types of
Schemas contain at least the same information as a DTD, DTDs can also be directly
generated from them.

We choose W3C Schema as the central format for our set of tools. DTDs were
discarded as the central format, since they have their own non-XML syntax, which
makes them unsuitable for XSTL conversion, and they are the poorest of all the
current document validation formats, lacking new features like types.

We use XSLT for round-trip W3C Schema derivation from XMI. We use Trang
and some other XSLT (xsd2dtd) to convert the generated W3C Schema to and from
DTDs, and RelaxNG (both compact and extended notation). In this way, our set of
tools is capable of handling four types of schema notations: W3C, RelaxNG (normal
and compact), and the old and widespread DTDs.

Figure 3: a simplified example of a UML class diagram to visually represent the elements,
relationships, and constraints of an XML vocabulary

Postprocessing and Presentational Issues

In many cases, code generation from a high level model is also possible. Code
generation may include JavaScript code to implement behavior for certain elements
like popup notes, hyperlinks, image display controls, etc. This is the case of HTML
input forms that can easily be generated from Schemas as done by Suleman [22].

We have successfully experimented on the generation of XSLT skeletons for XML
transformation. Usually XSL transforms produce fairly static output, like nicely
formatted HTML with tables of contents and hyperlinks, but not much more. In
exceptional cases we can find examples of more sophisticated interaction.

This high level of flexible interactivity is the real payoff from the UML-XML-
XSLT-browser chain. This sort of functionality is usually programmed specifically

UML for Document Modeling 655

for individual projects, given that it's highly dependent on the nature of the markup in
any given document. We aim to provide the ability to specify this at the UML level.
For instance, a note could be processed differently according to its type attribute and
then be displayed as a footnote, a margin note, a popup note, etc. In certain cases it
can be associated to a JavaScript function to be popped up in a message window or in
a new browser instance according to attribute values. In this sense, we could provide a
set of generic JavaScript functions which could retrieve content from elements and
display it in various ways (popup, insertions, etc.) or trigger events (like a dictionary
lookup).

We should look for document models that allow al kinds of presentation,
navigation and cognitive metaphors.

- Sequential reading
- Text reuse (links and includes)
- Non-sequential reading
- Hyperlinks
- Collapsible text
- Foot notes, margin notes, popup notes
- The folder metaphor
- TOCs, indexes and menus

All the elements in a structured document have an associated semantic and a

behavior or function (as in the above example, a popup note must appear on a popup
window when a link to it is pressed). This is not reflected in conventional document
models: a DTD/Schema may say that a note is a popup note: <note
type=popup>...</note> but the behavior of this note is not stated at all. Some
postprocessing must be implemented for the popup effect to happen. A UML based
document model can incorporate the expected behavior like methods in a class
diagram.

Other Auxiliary Tools for Document Design and Optimization

As additional aiding tools for this project we have incorporated two of our earlier
developments:
- First the automatic simplification of DTDs or Schemas based on sample sets of

files [5, 6]. This tool can be applied to obtain simplified DTDs and Schemas
customized to fit exactly a collection of documents.

- Second, multilingual vocabulary capability: automatic element-name and
attribute-name translation to be applied when multilingual markup is required. A
detailed explanation of the multilingual markup project can be found in [23].

See figure 2 for an idea of how these tools interact with the UML document
modeling. The techniques described here can also be used for modeling metadata
markup vocabularies.

656 Alejandro Bia and Jaime Gómez

DTD Simplification by Example

We designed and implemented a method for the automatic generation of simplified
Schemas from a complex source Schema and a set of sample marked-up files. The
purpose is to create the minimum Schema that the sample set of files complies. In this
way, new files can be created and parsed using this simplified Schema but still being
compliant to the original, more general one. The simplified Schema can be used to
make the task of markup easier, especially for non-experienced XML writers.

Our approach is to automatically select only those Schema features that are used by
a set of valid documents (validated against the more general Schema) and eliminate
the rest of them (the unused ones), obtaining a narrow scope Schema which defines a
subset of the original markup scheme. This "pruned" Schema can be used to build
new documents of the same markup subclass, which in turn would still comply with
the original general Schema.

Using this automated method, the simplified Schema can be updated immediately
in the event that new features are added to (or eliminated from) the sample set of
XML files (modifications to files of the sample-set must be done using the general
Schema for validation). This process can be repeated to incrementally produce a final
narrow-scope or customized Schema.

Figure 4: Interface of the Schema/DTD simplification module

In this way, we use a complex Schema as a general markup-design frame to build a
simpler working-Schema that suits a specific project's markup needs. Another use of
this technique is to build a one-document Schema, i.e. the minimum Schema that a
given XML document would comply.

Another benefit of this tool is that it produces statistical data that may help markup
designers improve their markup schemes like the frequency of use of certain elements
within others which is helpful to detect unusual structures that could reflect mark-up
mistakes, misuse of the Schema, or Schema features that may allow unwanted
generalization.

UML for Document Modeling 657

The user interface of the Schema simplification tool is shown as in figure 4. Two
of the five processing rules are chosen by default. The user can then change this
initial setup and choose the simplification rules to apply.

Multilingual Markup Translation Engine

Markup is based on mnemonics (i.e. element names, attribute names and attribute
values). These mnemonics have meaning, being this one of the most interesting
features of markup. Human understanding of this meaning is lost when the encoder
doesn't have a good command of the language the mnemonics are based on. By
“multilingual markup” we refer to the use of tags built with mnemonics in one's own
language, but still following the rules of the original markup vocabulary. We have
built a set of tools to automate the use of multilingual vocabularies, including the
translation of Dublin Core and TEI to Catalan, French, German and Spanish. This set
of tools translates both XML document instances, and XML document validators
(Schemas and DTDs).

We started by defining the set of possible translations of element names, attribute
names, and attribute values to different target languages. We stored this information
in an XML multilingual translation mapping document.

Figure 5: Schema translation using XSLT.

658 Alejandro Bia and Jaime Gómez

This mapping document which contains all the necessary structural information to
develop the language converters is read by the transformations generator, which was
built as an XSLT script. XSL can be used to process XML documents in order to
produce other XML documents or a plain text document. As XSL stylesheets are
XML, they can be generated as an XSL output. We used this feature to automatically
generate both an English-to-local-language XSL transformation and a local-language
to English XSL transformation for each of the languages contained in the multilingual
translation mapping file. In this way we assured both ways convertibility for XML
documents.

For each target language we also generate a DTD or a Schema translator. In our
first attempts, this took the form of a C++ and Lex parser. Later, we changed the
approach. Now we first convert the DTD to a W3C Schema, then we translate the
Schema to the local language, and finally we can (optionally) generate an equivalent
translated DTD. This approach has the advantage of not using complex parsers (only
XSLT) and also solves the translation of Schemas as well, which is an interesting goal
in itself (see figure 5). In our latest implementation, the user can freely choose
amongst DTD, W3C Schema and RelaxNG, both for input and output, allowing for a
format conversion during the translation process.

Many other markup translators can be built to other languages in the way described
here, as demonstrated by our tests with Catalan and French.

Conclusions

Concerning the described set of DTD/Schema design tools, the integration of UML
design with example based automatic simplification and multilingual vocabulary
capabilities, proved to be a very useful and practical design aid.

However, we experienced some limitations in the use of UML. While commercial
non UML products like XML Spy or TurboXML use custom graphical tree
representation to handle XML schemas, comprising very handy collapsing and
navigating capabilities, most general purpose UML design environments lack these
specialized features.

One of the downsides of UML is that it is less friendly when working with the low-
level aspects of modeling [17]. For instance, it is easy to order the elements of a
sequence in a tree, but it is very tricky to do so in UML.

Although UML proves very useful for modeling document structures of small to
medium complexity (metadata applications and simple documents), UML models for
medium to big sized schemas (100 to 400 elements), like those used for complex DL
documents, become practically unmanageable11. The diagrams become overloaded
with too many class boxes and lines, which end up being unreadable. This problem
could be solved, or at least mitigated, by enhancing the interfaces of UML design
programs with newer and more powerful display functions. Facilities like intelligent
collapsing or hiding of diagram parts or elements, overview maps (see figure 6),

11 The DTD used by the Miguel de Cervantes DL for its literary documents contains 139

different elements. The “teixlite” DTD, a simple and widely used XML-TEI DTD, contains
144 elements.

UML for Document Modeling 659

zooming, 3-D layouts, partial views, and other browsing capabilities would certainly
help to solve the problem.

Figure 6: A class diagram of the TEI metadata section, the teiHeader. The overview map
(bottom left) helps to locate the partial view of the diagram.

References

[1] D. Carlson, Modeling XML Applications with UML. Object Technology Series. Addison-
Wesley, 2001.

[2] W. Eliot Kimber and John Heintz. Using UML To Define XML Document Types. In
Extreme Markup Languages 2000, Montreal, Canada, 15-18 August 2000.

[3] Michael Sperberg-McQueen, Lou Burnard, Syd Bauman, Steven DeRose, and Sebastian
Rahtz. Text Encoding Initiative: The XML Version of the TEI Guidelines. http://www.tei-
c.org/P4X/, 2001. Copyright 2001 TEI Consortium (TEI P4, Guidelines for Electronic
Text Encoding and Interchange, XML-compatible edition).

[4] T. Allen, E. Maler, and N. Walsh. DocBook DTD. Copyright 1992-1997 HaL Computer
Systems, Inc., O'Reilly & Associates, Inc., Fujitsu Software Corporation, and ArborText,
Inc. URL: http://www.ora.com/davenport/

[5] A. Bia, R. C. Carrasco, and M. Sánchez-Quero. A Markup Simplification Model to Boost
Productivity of XML Documents. In Digital Resources for the Humanities 2002
Conference (DRH2002)}, pages 13-16, {University of Edinburgh, George Square,
Edinburgh EH8 9LD - Scotland - UK, 8-11 September 2002.

660 Alejandro Bia and Jaime Gómez

[6] A. Bia and R. C. Carrasco. Automatic DTD simplification by examples. In ACH/ALLC

2001. The Association for Computers and the Humanities, The Association for Literary
and Linguistic Computing, The 2001 Joint International Conference, pages 7-9, New York
University, New York City, 13-17 June 2001.

[7] C. Cachero, J. Gómez, and O. Pastor. Object-Oriented Conceptual Modeling of Web
Application Interfaces: the OO-HMethod Presentation Abstract Model. In EC-Web 2000.
1st International Conference on Electronic Commerce and Web Technologies. Springer-
Verlag. Lecture Notes in Computer Science, 09 2000.

[8] J. Gómez, C. Cachero, and O. Pastor. Conceptual Modeling of Device-Independent Web
Applications. IEEE Multimedia 8(2): 20-32. 2001.

[9] M. Bernauer, G. Kappel, and G. Kramler. Representing XML Schema in UML - A
Comparison of Approaches. In N. Koch, P. Fraternali, and M. Wirsing (eds.): ICWE 2004,
LNCS 3140, pp. 440-444, Springer-Verlag 2004.

[10] M. Bernauer, G. Kappel, and G. Kramler. A UML Profile for XML Schema. Technical
Report, 2003. http://www.big.tuwien.ac.at/research/publications/2003/1303.pdf

[11] G. Booch, M. Christerson, M. Fuchs, and J. Koistinen. UML for XML Schema Mapping
Specification. Rational White Paper, December 1999.

[12] W. Provost. UML for W3C XML Schema Design.
http://www.xml.com/lpt/a/2002/08/07/wxs_uml.html, August 2002.

[13] R. Eckstein and S. Eckstein. XML und Datenmodellierung. dpunkt.verlag, 2004.
[14] R. Conrad, D. Scheffner, and J. C. Freytag. XML Conceptual Modeling Using UML. In

19th International Conference on Conceptual Modeling (ER), Salt Lake City, Utah, USA,
volume 1920 of Springer LNCS, pages 558–571, 2000.

[15] A. Goodchild N. Routledge, L. Bird. UML and XML Schema. In 13th Australian Database
Conference (ADC2002), pages 157–166. ACS, 2002.

[16] OMG. MDA Guide Version 1.0.1. OMG Document omg/2003-06-01,
http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

[17] B. Marchal. Design XML vocabularies with UML tools. March 31st, 2004, http://www-
128.ibm.com/developerworks/xml/library/x-wxxm23/ or
ftp://www6.software.ibm.com/software/developer/library/x-wxxm23.pdf

[18] R. Elmasri, Y. Wu, B. Hojabri, C. Li, and J. Fu. Conceptual Modeling for Customized
XML Schemas. In 21st International Conference on Conceptual Modeling (ER), Tampere,
Finland, volume 2503 of Springer LNCS, pages 429–443. Springer, 2002.

[19] T. Krumbein and T. Kudrass. Rule-Based Generation of XML Schemas from UML Class
Diagrams. In Proceedings of the XML Days at Berlin, Workshop on Web Databases
(WebDB), pages 213–227, 2003.

[20] D. Megginson. Structuring XML Documents. Charles Goldfarb Series. Prentice Hall, 1998.
[21] L. S. Hayashi and J. Hatton. Combining UML, XML and Relational Database

Technologies. The Best of All Worlds For Robust Linguistic Databases. In Proceedings of
the IRCS Workshop on Linguistic Databases, pages 115--124, University of Pennsylvania,
Philadelphia, USA, 11-13 December 2001. SIL International.

[22] H. Suleman. Metadata Editing by Schema. In Traugott Koch and Ingeborg Solvberg,
editors, Research and Advanced Technology for Digital Libraries: 7th European
Conference, ECDL 2003, volume 2769, pages 82-87, Trondheim, Norway, August 2003.
Springer-Verlag.

[23] A. Bia, M. Sánchez-Quero, and R. Déau. Multilingual Markup of Digital Library Texts
Using XML, TEI and XSLT. In XML Europe 2003 Conference and Exposition, page 53,
Hilton Metropole Hotel, London, 5-8 May 2003. IDEAlliance, 100 Daingerfield Road,
Alexandria, VA 22314.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 661-675, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Metamodel Reuse with MOF

Xavier Blanc, Franklin Ramalho1 and Jacques Robin2

Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie (LIP6-UMPC)
8, Rue du Capitaine Scott, 75015 Paris, France

xavier.blanc@lip6.fr, franklin.ramalho@gmail.com,
robin.jacques@gmail.com

Abstract. As model-driven development promotes metamodels as key assets it
raises the issue of their reuse throughout a model-driven product line life cycle.
One recurrent reuse need occurs when metamodeling integrated multi-language
platforms: one construct from one language is integrated to constructs from
other languages by generalizing it, making it more expressive. None of the
metamodel assembly facilities provided by MOF and UML (import, merge
and combine) or others proposed in previous work adequately addresses this
need. We thus propose a new reuse and generalize facility for such
purpose.

1 Introduction

Model Driven Development (MDD) raises the level of abstraction of the development
life cycle by shifting its emphasis from code to models, metamodels and model
transformations. It views any software artifact produced at any step of the
development process as a valuable asset by itself to reuse across different applications
and implementation platforms so as to cut the cost of future development efforts.
Since they drive much of the MDD process, metamodels are the first artifact to reuse
when an MDD team extends its portfolio of application domains, product
requirements or target implementation platforms. However, the issue of metamodel
reuse has not yet received much attention in the MDD literature. The reuse facilities
provided by standards such as MOF 2.0 [11] and UML 2.0 [12] [13] or proposed in
previous research on the topic [5][6][9][10] are essentially limited to two simple reuse
needs. The first is reuse as is through inter-package visibility facilities such as
package import in MOF or copy and paste transformations such as package
combine in MOF. The second is reuse as specialization through inheritance
facilities such as package merge in UML 2.0. As larger, more complex metamodels
get constructed and then incrementally extended during their lifecycle, a diversity of

1 Now at Departamento de Sistemas de Computação, Universidade Federal de Campina Grande (DSC-

UFCG) Campina Grande, PB, Brazil and Centro de Informática, Universidade Federal de Pernambuco
(CIn-UFPE), Recife, PE, Brazil.

2 Now at Centro de Informática, Universidade Federal de Pernambuco (CIn-UFPE), Recife, PE, Brazil.

662 Xavier Blanc, Franklin Ramalho, and Jacques Robin

more sophisticated metamodel reuse needs is emerging. They prompt the definition of
new metamodeling assembly facilties to address them and proposals to incorporate
these facilities in MOF.

In this paper, we identify one such more sophisticated metamodel reuse need that
we call reuse and generalize, and we propose a new metamodeling assembly facility
that addresses it. This need is pervasive for various classes of metamodeling tasks.
One such class is metamodeling multi-paradigm languages that historically result
from successive extensions of a mono-paradigm core with constructs imported from
other paradigms and adapted from integration. Another such class is metamodeling
integrated multi-language platforms that support development in several languages
that are conceptually integrated (as opposed to just loosely coupled through
communication interfaces). In such cases, constructs from different languages have
been extended or integrated by generalizing them so as to subsume constructs from
other languages. Historically, such situation occurred many times over for example
when defining concurrent or object-oriented extensions of imperative, functional or
logic programming languages. It is currently occurring again as distributed, XML-
based extensions of many languages are being defined.

The paper is organized as follows. In the next section, we advocate a compositional
approach to metamodeling multi-paradigm languages or integrated multi-language
platforms. With such an approach, metamodels of minimal size with potential for
reuse are first built separately and then assembled in a way that mirrors how
constructs from each paradigm or language are reused in the integrated whole. We
identify and discuss five general benefits of such an approach in subsection 2.3. To
make our points concrete, we illustrate these benefits, as well as all the subsequent
points we make throughout the paper, on a specific case study: metamodeling the
Flora platform [18]. Prior to discussing these points, we thus have to introduce the
necessary background on Flora and then motivate having chosen it for the case study.
We respectively do so in subsections 2.1 and 2.2. Briefly, metamodeling Flora is an
interesting illustrative case study because it supports in an integrated way several
languages and paradigms and it is a versatile platform that supports programming,
meta-programming, reasoning, meta-reasoning as well as data and metadata
definition, updates and queries.

Since Flora is such a comprehensive platform that results from a long, multi-step
integration process, starting from section 3, we focus the scope of our illustrative
examples on only one such step: the integration of first-order logic programming in
Prolog with meta-programming based on high-order variables, resulting in HiLog.
Subsections 3.1 and 3.2 thus respectively present simplified metamodels of these two
languages supported by Flora. Subsection 3.3 then further zooms on only the relevant
elements of theses two metamodels that we use to illustrate the general need to reuse
and generalize metamodel elements. This example involves reusing elements
metamodeling first-order predicates to metamodel their generalization as high-order
predicates. In the subsequent subsections 3.4 to 3.6 we explain in detail why none of
the three package assembly facilities provided the MOF 2.0 and UML 2.0 standard
(import, merge and combined) can be used to address such reuse need. In
subsection 3.7, we propose a fourth package assembly specifically designed for such
need that we thus call reuse and generalize. In section 4, we review the

Metamodel Reuse with MOF 663

literature in metamodel reuse and show that none of the proposals put forward to date
address such a need. In section 5, we conclude by summarizing our contributions.

2 Metamodeling Integrated Multi-language Platforms

In this section, we first present the main characteristics and historical genesis of the
Flora multi-language, multi-paradigm and multi-purpose platform. Metamodeling
Flora is the larger case study from which we extracted the examples that we use
throughout the paper to illustrate the general points that we make on metamodel
reuse. We then motivate the choice of such metamodeling task as illustrative case
study. We take the opportunity to point out the mutual synergy that exists between
MDD and platforms integrating multiple concepts and services such as Flora. Finally,
we advocate a compositional approach to metamodeling such platforms by identifying
five benefits that it provides and illustrating each of them on the Flora metamodeling
case study.

2.1 Flora: An Integrated Multi-language, Multi-purpose Platform

Flora implements a subset of the language Concurrent Transaction Frame Logic
(CTFL). Syntactically, CTFL integrates constructors from: (a) logic programming, (b)
object-oriented programming, (c) imperative programming and (d) concurrent
programming. Semantically, it provides declarative formal accounts of all these
constructs by way of logical model theories. Historically, CTFL and Flora result from
a 15 year research effort to overcome the failings of ISO Prolog to fulfill the original
logic programming ideal: a language with declarative logical semantics that is
simultaneously (a) a practical Turing-complete programming language, (b) an
expressive knowledge representation language and (c) a concise data definition,
update and query language. From its root in Prolog, CTFL evolved incrementally, as
a series of largely orthogonal extensions, each one providing a semantically well-
founded logical alternative to the extra-logical predicates of Prolog that betrayed the
original logic programming ideal. This evolution had six main steps:

1. Extending Prolog with the logically Well-Founded Negation as Failure
(WFNAF) connective;

2. HiLog (HL), extending Prolog with high-order syntax inspired from functional
programming for meta-level programming, reasoning and querying but with first-
order logical semantics [4]

3. Transaction Logic (TL), extending Prolog with logically well-founded
backtrackable knowledge base updates and procedural constructs such as
conditionals and loops [2];

4. Frame Logic (FL), extending HiLog with an object-oriented syntax [8] and
logical semantics for single-source multiple structural and behavioral inheritance
integrated with deduction [17];

5. Concurrent Transaction Logic (CTL), extending Transaction Logic with multiple
threads, critical sections and inter-thread messages [3].

664 Xavier Blanc, Franklin Ramalho, and Jacques Robin

The Flora platform implements extensions 1-4 above, i.e., Sequential Transaction
Frame Logic (STFL). It does so reusing the XSB Prolog platform that already
implements extensions 1-2. Flora has two main components: the Flora Compiler that
transforms an STFL program onto an optimized XSB Prolog program, and the Flora
Shell, a front-end for queries in STFL that transforms STFL queries into semantically
equivalent XSB queries, calls XSB to answer them and passes the answers back to the
user in STFL syntax.

2.2 The Synergy Between MDD and Integrated Multi-language Platform

From an MDD perspective, a platform such as Flora that is multi-language, multi-
paradigm and multi-purpose is very interesting in that it raises the possibility to rely
on a single platform to (a) run a prototype to validate functional requirements of an
application with the users, (b) run the same prototype to test its correctness on a set of
specific cases, but also (c) query the same prototype to formally verify general
properties that abstract from any set of specific cases, thus providing stronger
robustness guarantees. Performing such verification on an implementation allows
circumventing the major loophole of traditional formal development that relies on two
different languages (one formal but non-executable for modeling and one executable
but with no clear semantics for programming) and two different platforms (one for
model validation and verification, and one for implementation execution and testing):
namely the reintroduction of semantic errors while programming a verified model.
We are currently exploring this possibility in the on-going MODELOG project [15]
which investigates the development of a CASE tool for MDD providing a variety of
services. Chief among these services is the fully automated generation of Flora code
from UML models that consist of OCL annotated class and activity diagrams linked
together through object flows. In order to develop this CASE tool for MDD using
MDD itself, the first two steps of the MODELOG project are (1) developing a
metamodel of the target platform Flora and (2) specify model transformations as
QVT[14] relations between elements of this target metamodel and the source UML
and OCL metamodels made available by the OMG. It is while carrying out the first
task that we identified and addressed the metamodeling reuse issues presented in this
paper.

2.3 Compositional Metamodeling and Its Benefits

For metamodeling languages and platforms that tightly integrate multiple paradigms
and purposes, we advocate a compositional approach that faithfully mirrors their
structure as a simple core and a set of largely orthogonal and complementary
extensions. With such an approach, one starts by independently metamodeling the
core and each extension in a separate package, to then assemble them together. So for
example, when we applied this approach to the case of Flora, we developed one
separate metamodel package for (1) First-order logical terms that are common to
Prolog and many other logic and rule-based languages, (2) Prolog programs and
clauses that reuses the logical terms package, and (3) each orthogonal extension of
either logical terms or Prolog clauses used in CTFL programs. From such minimal

Metamodel Reuse with MOF 665

metamodel units, larger metamodels for HL, STL, CTL, FL, SFTL (i.e., for Flora) and
CTFL can then be obtained through assembly. This compositional approach brings
five clear benefits. The first is cognitive complexity management for such large meta-
modeling tasks. For example, the fully assembled Flora metamodel contains over 275
elements. Hence, much simplicity was gained by decomposing it into nine packages.
The second benefit is the creation of valuable course didactic assets that visually
contrast basic language concepts and platform services and clarify the many different
ways in which they can be integrated. For example, the compositional Flora
metamodel is such an asset for teaching the distinct principles and complementary
strengths of logic, object-oriented and imperative language concepts for
programming, knowledge representation and data manipulation. The third benefit is
the reusability of minimal metamodel units for other languages or platforms. For
example, we have already reused the first-order logical term package of the Flora
metamodel to build a metamodel of the language Constraint Handling Rules [7]. The
fourth benefit is to provide a sound basis for representing integration semantics in
UML and OCL which are more accessible than the mathematical notations generally
used for such task. In the case of Flora, while each of its sub-language possesses
denotational and operational semantics, the unification of theses into a single
framework is still incomplete; metamodeling the semantics of each sub-language
should bring valuable insights towards such unification. The fifth benefit of
compositional metamodeling is compiler MDD based on model transformations. For
example the Flora to XSB compiler could be specified as a set of declarative QVT
relations [14] between elements of the STFL and HiLog metamodels.

These benefits are pervasive since many modern, powerful languages result, like
Flora does, from successive and partially orthogonal extensions from an initial simple
core. For example, the semantic web language standards put forward by the World
Wide Web consortium (W3C) also evolved this way: an initial core, RDF [1] was
successively extended to yield RDFS, DAML, DAML-OIL, and finally OWL [16]. In
addition, all these languages reuse the syntactic core XML syntax, and DAML-OIL
itself resulted from the integration of DAML with OIL.

3 Illustrative Case-Study: HiLog as an Extension of Prolog

While we assembled the minimal unit metamodel packages into the whole Flora
metamodel, we were confronted several times with the need to reuse metamodel
elements from one package while generalizing them in the package assembly. We
now explain why such reuse need cannot be addressed by the facilities currently
provided by the MOF 2.0 and UML 2.0 standards by focusing on a single assembly
step: the one that takes as input the Prolog metamodel and a metamodel of high-order
predicates and that results in the HiLog metamodel. We first present (simplified) non-
compositional versions of the Prolog and HiLog metamodels and explain their main
concepts. We then further zoom on only the relevant elements in these metamodels
necessary to illustrate the reuse and generalize need, and successively show that
elements from the Prolog metamodel for first-order predicates cannot be reused and
generalized to define high-order predicates in the HiLog metamodel by using either

666 Xavier Blanc, Franklin Ramalho, and Jacques Robin

import, merge or combine. We then specify a new reuse and generalize
package facility and illustrate its use for such case.

3.1 A Non-compositional Simplified Metamodel of Prolog

The non-compositional, simplified Prolog metamodel is shown in Fig. 1. It shows that
a Prolog program is a set of clauses, with each clause consisting of a premise that is a
Prolog query and a single conclusion that is a first-order logic atom. A Prolog query is
a tree of arbitrary depth which leaves are first-order logic atoms and which non-leaf
nodes are one of the two logical connectives and or or. A first-order logic atom is
also a tree of arbitrary depth which leaves are either constant symbols or first-order
variables, and which non-leaf nodes can only be constant symbols. Each sub-tree is a
called a logical term, which root is called the functor of the term and which depth one
sub-trees are called its arguments. Non-functional terms are depth zero sub-trees and
opposed to functional terms which depth is at least one. A ground term is a sub-tree of
arbitrary depth that is free of variables.

3.2 A Non-compositional, Simplified Metamodel of HiLog

High-Order Logic (HiLog) extends Prolog with high-order syntactic sugar while
semantically remaining first-order. At the program, clause and query levels, HiLog
follows exactly the same construction rules as Prolog. The former extends the latter
only at the lower logical atom level. The extension is twofold: (1) HiLog, allows
programs in addition to terms as arguments, and (2) HiLog allows arbitrary terms
(functional or not, ground or not) as functors instead of restricting them to constant
symbols (i.e., non-functional ground terms) as Prolog does.

For example, P(f(X))(G(Y), (G, c :- X, p(Y(P)))). is a valid HiLog term but not a
Prolog term for three reasons: (1) its functor is a compound term P(f(X)), (2) its first
argument's functor is a variable G and (3) its second argument is a program made of
two clauses, G. and c :- X, p(Y(P)). HiLog extends Prolog with meta-programming,
meta-reasoning and metadata definition and query facilities within the logical
paradigm under well-defined first-order declarative semantics. It brings to logic
programming the high-order syntax that is key to the versatility of functional
programming. In the HiLog metamodel of Fig. 2 the first of the two ways in which
HiLog extends Prolog is reflected by the fact that the functor meta-association
outgoing from the FunctionalTerm meta-class targets the Term meta-class,
instead of the Constant meta-class as in the Prolog metamodel. The second
extension is reflected by the introduction of the new meta-class LogicalArgument
as the target of the arg meta-association outgoing from the LogicalAtom meta-
class. This new LogicalArgument meta-class generalizes the two meta-classes
FunctionalTerm and Program.

Metamodel Reuse with MOF 667

3.3 Reusing and Generalizing Metamodel Elements from Prolog in HiLog

The relation between HiLog and Prolog can be summarized as follows: “A HiLog
program is a Prolog program, except that, (a) the functor of the atoms of its clauses
can recursively be compound and/or non-ground terms and (b) the arguments of the
atoms of its clauses can recursively be HiLog programs.” As a language, HiLog thus

Fig. 1. Non-compositional, simplified Prolog metamodel

Fig. 2.Non-compositional simplified HiLog metamodel.

668 Xavier Blanc, Franklin Ramalho, and Jacques Robin

reuses Prolog in three ways. First it reuses its lexical categories constant and
variable. Second it reuses its functional roles functor, argument and
connective. Third it reuses its syntactic rules to build clauses from terms and
connectives and to build programs from clauses. However, HiLog reuses Prolog by
generalizing it: the HiLog syntactic rules to build terms from constants, variables and
programs fulfilling the functor and argument roles of a term are less restrictive than
the corresponding rules in Prolog. Thus, every Prolog term (respectively clause and
program) is also a HiLog term (respectively clause and program), but the converse is
false. Focusing for the sake of clarity at the term level, this reuse and generalize
relation between HiLog and Prolog is summarized in Fig. 3. What we want to
precisely capture is the following:

1. Each element E (meta-class or meta-association) in the Prolog metamodel
package that represents a construct that is exactly the same in Prolog and HiLog
shall be available from the HiLog metamodel without need for redefinition;

2. Each element E (meta-class or meta-association) defined in the HiLog metamodel
package that was already defined in the Prolog package is a new element
HiLog::E that generalizes Prolog::E.

3. A new element G (meta-class or meta-association) defined in the Hilog
metamodel package can generalize an element S (meta-class or meta-association)
already defined in the Prolog package, i.e, HiLog::G can generalize
Prolog::S.

So in the example of Fig. 3, we want:

 The Term, NonFunctionalTerm, Constant and Program3 meta-
classes of the Prolog package to be reusable “as is” by elements of the HiLog
package;

 The LogicalAtom meta-class and the arg and functor meta-associations
of the Prolog package to be become specializations of the new LogicalAtom
meta-class and the arg and functor meta-associations of the HiLog package
(respectively).

 The LogicalArgument meta-class can generalize the meta-classes Term and
Program already defined in Prolog package.

In the following subsections, we examine whether any of the three metamodel
package composition facilities provided by MOF 2.0 can capture such relation.

3.4 Should the HiLog Metamodel Import the Prolog Metamodel?

In the MOF standard [11] the package import mechanism is defined as “a
relationship that allows the use of unqualified names to refer to package members
from other namespaces”. It is a one-way relationship: when a package P imports a

3 Omitted from Fig. 3 but linked to LogicalAtom through association navigation in Fig. 1

and Fig. 2.

Metamodel Reuse with MOF 669

package Q, the elements of P can be linked to the elements of Q but not vice-versa.
In our case, since we want to reuse Prolog package elements in the HiLog package,
the only possible direction is to import the Prolog package from the HiLog
package. In that direction, import fulfills the reuse part of our reuse and generalize
need. However it then also prevents the fulfillment of the generalize part. This is
illustrated in Fig. 4. The Term meta-class of the Prolog package cannot be linked as
needed to the LogicalArgument of the HiLog package meta-class by a
specialization association, for it would break the unidirectionality of the import
dependency between the two packages.

TermLogicalAtom

Constant

1

+functor

1

1

+arg

*

NotFunctionalTerm

LogicalArgumentLogicalAtom

1

+arg

1
1

+functor

*

Term Program

Prolog

Hilog

Reuse and Generalize

Fig. 3. Reuse and Generalize relationship between HiLog and Prolog

Fig. 4. Import cannot stand for reuse and generalize.

670 Xavier Blanc, Franklin Ramalho, and Jacques Robin

3.5 Should the Prolog Metamodel Be Merged Within the HiLog Metamodel?

The merge mechanism has been first defined in the UML2.0 Infrastructure [12].
Merging a package Q within a package P can be understood as an “alias” equivalent
to the following action sequence: (1) for each element (meta-class or meta-
association) E of the merged package Q, create a copy E’ of E in the merging package
P; (2) Import Q from P; and (3) for each copied element E, create an inheritance
association that states that its copy E’ specializes E.

In our case, since we want to reuse the Prolog package in the HiLog package, our
only option is to merge the Prolog package within the HiLog package. The result of
doing so is illustrated in Fig. 5. Let us now examine whether it fulfills the two
requisites for our reuse and generalize need. Just as import (that merge in effect
extends), merge fulfills the reuse part but it fails to fulfill the generalize part. For
example, in the merged metamodel, the HiLog::Term meta-class specializes the
Prolog::Term meta-class. But in fact it should generalize it since everywhere a HiLog
term can appear in a HiLog program, a Prolog term is also valid, but some HiLog
terms are not valid in some places where a Prolog term can appear in a Prolog
program. In fact, merge can only be used to fulfill a reuse and specialize need, but not
a reuse and generalize need as in the case of Prolog and HiLog.

3.6 Should the Prolog Metamodel Be Combined with the HiLog Metamodel?

As the merge relationship defined in the UML2.0 Infrastructure brings a lot of
inheritance between elements of the merging and merged packages, MOF2.0 defined
a variant relationship, historically named combine [11]. This relationship is also
defined in the latest UML2.0 Superstructure [13], under a different name: package
merged. To distinguish it more clearly from merge, we will use its historical
combined name in the rest of the paper. In the previous section, we saw that merge
is a complex operation that can be decomposed in three basic steps: (a) copy, (b)
import and (c) inherit. Combine differs from merge in that it only performs the first
“copy” step. At first, it seems adequate to fulfill our reuse and generalize need, since
we saw that with merge, the reuse part was fulfilled by the “copy” step but the
generalize part was made impossible by the “inherit” step that was in the wrong
direction. However, consider the situation where a meta-association A occurs both (a)
between meta-classes C and D in the package Q to reuse and (b) between C and a
generalization G of D in receiving package P. This a standard situation when using
combine to fulfill a reuse and generalize need. It is illustrated in Fig. 6. where the
same meta-association arg links the meta-class LogicalAtom to the meta-class
Term in the Prolog package to reuse, while it links the same meta-class
LogicalAtom to the meta-class LogicalArgument that generalizes Term in the
receiving HiLog package. In such cases, the package resulting from combining Q
with P is not a valid MOF 2.0 metamodel since it includes two meta-associations with
the same name A that links the same meta-class C to two distinct meta-classes G and
D. This is illustrated in Fig. 7 that shows the package resulting from combining the
Prolog and HiLog packages. In this example, two copies of the arg meta-association
link the meta-class LogicalAtom to two distinct meta-classes,

Metamodel Reuse with MOF 671

LogicalArgument and Term, and two copies of the functor meta-association
also link of LogicalAtom to both the Term and Constant meta-classes. The
resulting metamodel is thus invalid.

3.7 Our Proposal: A New Metamodel Assembly Facility

Since none of the three metamodel package assembly facilities currently provided
either MOF 2.0 or UML 2.0 can satisfactorily fulfill a pervasive need for
compositional metamodeling, we propose a fourth one that we call reuse and
generalize. It is based on combine but corrects the flaw that we identified in the
latter for reusing while generalizing elements of a metamodel package Q into another
package P. This facility creates a new resulting package that assembles elements from
P and Q by the following action sequence:

1. For each element (meta-class or meta-association) E appearing in either packages
Q and P, create a copy E’ of E in the resulting package R.

2. Whenever this results in conflicting pairs of meta-associations with the same
name, one linking a meta-class C to a meta-class G and another linking a meta-
class C to specialization D of G, delete the latter.

TermLogicalAtom

Constant

1

+functor

1

1

+arg

*

NotFunctionalTerm

LogicalArgumentLogicalAtom

1

+arg

1
1

+functor *

Term

Program

Prolog

Hilog

« import »

1

+arg

1

Constant

NotFunctionalTerm

1

+functor

*

Fig. 5. Merge cannot stand for reuse and generalize.

672 Xavier Blanc, Franklin Ramalho, and Jacques Robin

Fig. 6. Input packages of combine and of reuse and generalize.

LogicalArgumentLogicalAtom

1

+arg

11

+functor

*
Term Program

Hilog

Constant

NotFunctionalTerm

1

+arg *

1

+functor

1

Fig. 7. Resulting package of combine and of reuse and generalize.

Metamodel Reuse with MOF 673

The result of reuse and generalize the Prolog package in the HiLog
package in shown in the same Fig. 7, together with the result of combined. The
difference is the crossed-over links, present with combined but absent with reuse
and generalize. The latter thus contains only a single arg meta-association that
links the LogicalAtom meta-class to the LogicalArgument meta-class and a
single functor meta-association that links LogicalAtom to the Term meta-class.
It is thus a valid MOF 2.0 metamodel that reuses the Prolog metamodel while
generalizing it elements in the resulting HiLog metamodel. Note that the HiLog
package that forms the second input to this reuse and generalize
transformation is not a HiLog metamodel for it captures only the constructs proper to
HiLog that define how it extends Prolog. The current version of the whole Flora
metamodel was assembled from nine packages and sub-packages linked together by
two instances of import and seven instances of reuse and generalize.

4 Related Work

Using a subset of the UML structural infrastructure similar to MOF, Clark et al. [5]
proposed two new package assembly facilities. The first that they call “merge”, but
that is distinct from the merge of MOF, addresses the case of the same meta-class
occurring in the two packages to assemble. In the “merging” package, the meta-
attributes and meta-associations of such meta-class becomes the union of those in its
occurrences in the two “merged” packages. The second facility, called renaming
allows equating the names of two elements with two distinct names in the two
packages prior to a “merge”. Later, the same authors [6] proposed a Metamodeling
Framework using a language that is distinct from MOF and that allows the definition
of parametric model elements templates. This framework includes package
specialization assembly facilities that deal with such templates.

Addressing the same issue, Ledeczi [9] proposed three assembly facilities: one that
is much similar to Clark et al.’s “merge”, one that restricts the union of the meta-class
elements in the “merging” package to its attributes and containment associations in
the “merged” package, and one that restricts it to its complementary non-containment
associations.

Mens et al. [10] proposed package assembly facilities for collaborative diagrams.
Since such diagrams are not used at the metamodeling level, these facilities do not
seem to be easily applicable to metamodel assembly issues.

In short, none of the facilities proposed in these works addresses the specific reuse
and generalize need that we identified.

5 Conclusion

Many powerful computational languages and platforms result from a historical
process of gradually extending an initial core with largely orthogonal and
complementary constructs inspired from other languages. There are great benefits to
metamodeling such languages and platforms in a compositional way that reflects this

674 Xavier Blanc, Franklin Ramalho, and Jacques Robin

historical maturation and clearly separates concerns. When doing so, one immediately
feels the need for a metamodel package assembly facility that allows both reusing the
elements of two basic packages, each one focused on a single concern, and
generalizing them in a resulting package that captures their integration. In this paper,
we have shown that none of the three metamodel assembly facilities currently
provided by MOF and UML fulfills such need:

 Import because it prohibits imported elements to specialize elements of the
importing package;

 Merge because it implicitly makes the reused elements generalizations instead of
specializations of the new ones;

 Combine because when a reused meta-class is generalized, its meta-associations
are not generalized, but instead duplicated at the level of its generalization,
resulting in an invalid model.

We thus proposed a new reuse and generalize facility that is inspired
from combine but that correctly generalizes instead of duplicating meta-associations
in such cases. The ever widening scope of MDD is likely to reveal many other
metamodel reuse needs beyond the “reuse as is” and “reuse and specialize” currently
provided by MOF and the “reuse and generalize” addressed in this paper. In future
work, we intend to create a catalog of metamodel reuse needs and to identify how
these needs can be addressed by a minimal set of primitive reuse operators together
with an algebra that defines semantically sound complex compositions of such
operators.

Acknowledgements

The research presented in this paper was sponsored by research grant 371/01 from CAPES-
COFECUB, by one doctoral research fellowship from CNPq, by the ModelWare project co-
funded by the European Commission under the "Information Society Technologies" Sixth
Framework Programme (2002-2006), and by the “Model Driven Development Integration”
(MDDi) project from the Eclipse Foundation. We would like to thank Marie-Pierre Gervais for
her insightful feedback on a preliminary version of this paper.

References

[1] Birbeck, M., Ozu, N. et al.: Professional XML. 2nd Ed. Wrox (2001)
[2] Bonner, A. and Kifer, M.: Transaction Logic Programming. Technical Report CSRI-323.

Computer Systems Research Institute, University of Toronto (1995)
[3] Bonner, A. and Kifer, M.: Concurrency and Communication in Transaction Logic. Joint

International Conference and Symposium on Logic Programming. Bonn, MIT Press (1996).
[4] Chen, W., Kifer, M. and Warren, D.S.: HiLog: A Foundation for High-Order Logic

Programming. Journal of Logic Programming. 15(3) (1993) 187-230
[5] Clark, T., Evans, A. and Kent, S.: A Metamodel for Package Extension with Renaming.

International Conference on the Unified Modeling Language (2002) 305-320

Metamodel Reuse with MOF 675

[6] Clark, T., Evans, A. and Kent, S.: Engineering Modelling Languages: A Precise
Metamodeling Approach. Fundamental Approaches to Software Engineering (FASE)
International Conference. Lecture Notes in Computer Science, Vol. 2306. Springer-Verlag
(2002) 159-173

[7] Frühwirth, T. and Abdennadher, S.: Essentials of Constraint Programming. Series:
Cognitive Technologies.Springer. (2003)

[8] Kifer, M., Lausen, G. and Wu, J.: Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of the ACM 42(4). (1995) 741-843.

[9] Ledeczi A, Nordstrom, G., Karsai, G., Volgyesi, P. And Maroti, M.: On Metamodel
Composition. Conference Control Applications, IEEE Press. Mexico City, Mexico (2001)
84-90

[10] Mens, T., Lucas, C. and Steyart, P.: Supporting Disciplined Reuse and Evolution of UML
Models. PSMT – Workshop on Precise Semantics for Software Modeling Techniques in
UML Conference. (1998) 378-392

[11] OMG.: The MOF 2.0 specification. http://www.omg.org/mof (2003)
[12] OMG.: The UML 2.0 Infrastructure specification. http://www.omg.org/uml (2003)
[13] OMG.: The UML 2.0 Superstructure specification. http://www.omg.org/uml (2003)
[14] The QVT-Merge Group. QVT 1.8.: Revised submission for OMG MOF 2.0

Query/Views/Transformations Request For Proposal. 2004.
[15] Ramalho, F., Robin, J. and Schiel, U.: Concurrent Transaction Frame Logic Formal

Semantics for UML Activity and Class Diagrams. Electronic Notes in Theoretical Computer
Science, 95(17). (2004)

[16] The World-Wide Web Consortium. Web Ontology Language.
http://www.w3.org/2004/OWL. 2004 (2004)

[17] Yang, G.: A Model Theory for Nonmonotonic Multiple Value and Code Inheritance in
Object-Oriented Knowledge Bases. PhD. Thesis, Computer Science Department, Stony
Brook University of New York. (2002)

[18] Yang, G., Kifer, M. and Zhao, C. FLORA-2: A Rule-Based Knowledge Representation
and Inference Infrastructure for the Semantic Web. 2nd International Conference on
Ontologies, Databases and Applications of Semantics (ODBASE), Catania, Italy. (2003)
671-688.

Modeling the User Interface of

Multimedia Applications

Andreas Pleuß

Institut für Informatik, Ludwig-Maximilians-Universität München
Munich, Germany

andreas.pleuss@ifi.lmu.de

http://www.medien.ifi.lmu.de

Abstract. Multimedia applications are a branch of software develop-
ment with growing importance. Typical application areas are training
applications and simulations, infotainment systems - e.g. in cars - or
computer games. However, there is still a lack of tailored concepts for
a structured development of this kind of application. The current pa-
per proposes a modeling approach for the user interface of multimedia
applications with the goal of a model-driven development. We identify
the special properties of multimedia application development and the
resulting aspects to be covered by the user interface model. Existing
conventional user interface modeling approaches are not sufficient, as
they do not cover the media-specific aspects of the application. However,
a multimedia application usually includes conventional user interface el-
ements as well. Thus, we first propose a solution for the media-specific
part. Second, we elaborate an integration of our approach with existing
conventional approaches. Finally, we discuss the overall model-driven de-
velopment approach and outline its benefits.

1 Introduction

Multimedia applications are an application domain with still growing impor-
tance. In typical application areas, like training and simulation software or com-
puter games, the intensive usage of multimedia is already established since many
years. Additionally, in the last years the production of sophisticated user inter-
faces became more and more common even in other applications areas. Often
cited examples are information systems with an emphasis on a pleasing and en-
tertaining user interface, so called infotainment systems. Modern cars contain
such applications to provide integrated access on the car’s entertainment, com-
fort and navigation functionality. For a classification of multimedia applications
see e.g. [1], [2].

The extract of the most common definitions of the term multimedia appli-
cation postulates an interactive application integrating at least a temporal and
a discrete media type. Discrete media refers to media which does not change
over time, like a still image, while temporal media is time dependent like audio
or video. As today a high amount of software is compliant to this definition we

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 676–690, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modeling the User Interface of Multimedia Applications 677

restrict this for the purpose of this paper: First, the usage of media objects is
a core feature of the application, including also complex media types like video
and animation. (Animation refers here to graphics which changes over the time
in any way). Second, the application provides sophisticated interaction associ-
ated with application logic. Purely document-oriented software, i.e. a (static)
hypertext document, is not in the main focus of this paper.

The development of multimedia applications is characterized by the integra-
tion of knowledge, tools, and experts from two different areas: software engineer-
ing and media design. While requirements analysis is performed analogously to
conventional software and the implementation phase is supported by powerful
multimedia authoring tools (e.g. Macromedia Flash [3]), there is still a lack of
concepts to bridge the gap between analysis and implementation. Current multi-
media development methods, like described in [4], use mainly informal methods
with emphasis on media production and design. Concepts for the structured in-
tegration of the application logic and the consideration of software engineering
principles are still missing, although they are heavily claimed by various research
contributions like [5], [6], [7], [8]. This results in badly structured applications,
where maintenance and extension requires exceeding effort, although changes of
requirements are also common for this type of application [9]. Common software
engineering methods, like UML-based design methods, are not sufficient, as they
do not cover media integration and user interface design [2], [10], [11].

Early approaches to address this problem focus on single specific aspects
of a multimedia application, in particular synchronization (see [12], [13]), or
very specific application domains like [14]. The first comprehensive approach is
OMMMA (Object-oriented Modeling of Multimedia Applications, [10], [15]) which
provides a design model for multimedia applications based on UML. Based on
OMMMA, we propose in [16] further refinements and enhancements enabling a
model-driven development of multimedia applications.

The current paper continues the research in [16], where we described an
overall frame for model-driven development of multimedia applications and the
relationships between the different views of a multimedia application model.
These views are the static structure (i.e. the domain model), the user interface,
the interaction, and the overall temporal structure (i.e. coarse-grained program
flow). The current paper takes one of these views – the user interface, which is
probably the most important and extensive view – and goes into the details.

We first discuss in detail the required aspects to be covered by a user inter-
face model for multimedia applications. While existing work focuses only on the
media-specific user interface elements, we take into account, that usually also
conventional user tasks are part of a multimedia application. Thus, we consider
in addition the existing task-based user interface modeling approaches for con-
ventional widget based applications. On that base we first propose a detailed and
platform-independent modeling approach for the media-specific modeling part.
Afterwards, we elaborate the integration with the required parts from conven-
tional task-based user interface models. Finally, we discuss the resulting overall
model-driven development approach for multimedia applications.

678 Andreas Pleuß

The paper is structured as follows: section 2 introduces conventional ap-
proaches for user interface modeling. In section 3 we discuss in detail the re-
quirements for multimedia applications and how they affect the concepts from
conventional user interface modeling. On that base, we discuss in section 4 the
required model elements for the media-specific part and propose a notation. In
section 5 the media-specific part of section 4 is integrated with the required
elements from conventional task-based modeling. We discuss the overall model-
driven approach in section 6. Section 7 provides the conclusions and the outlook.

2 Conventional User Interface Modeling

There is already a good understanding of the basic principles for modeling user
interfaces. This section briefly describes the basic concepts based on the detailed
overview provided in [17], followed by the introduction of a concrete approach,
UMLi [18], which we use as base for the further work in this paper.

First work on user interface modeling started already in the 1980’s, e.g. [19].
The main problem of early approaches was that they emerged either from the
engineering domain or from the UI designer domain (see [11]) – a similar problem
as addressed in this paper for multimedia applications. Advanced approaches
integrate the both views. They usually base on a conventional domain model,
like UML class diagrams, as well as on a task model, like ConcurTaskTrees [20].
The task model has its origins in the human-computer-interaction community.
It represents the user’s tasks and decomposes them hierarchically into subtasks,
down to primitive actions on the user interface. Task and domain model are
usually modeled during analysis.

The abstract UI model describes the user interface in an abstract and platform-
independent way. It consists of three different kinds of elements: Abstract inter-
action objects allow primitive user actions like invoking an action or selecting
an element from a list. Information elements present information to the user,
which can be either from the domain model or additional information like a label
text. Interaction objects and information elements are assigned to presentation
units, which represent an abstraction of windows on the screen. The elements
are derived from the task model and are related to the domain model either by
invoking actions or by presenting or manipulating information.

Finally, a concrete UI model is derived from the abstract UI model. It con-
tains concrete user interface elements, usually widgets, and their concrete layout.
Often the concrete UI model is realized by specialized implementation tools like
user interface builders. The transformation from abstract to concrete UI model
can be done semi-automatically, e.g. rule-based like in [21].

In the following we briefly sketch a concrete approach, UMLi [18]. It applies
the mentioned principles of UI modeling and realizes them as an extension of
UML. As today UML is a de-facto standard and widely understood, we use this
approach for the further work in this paper.

A presentation unit in the abstract UI model in UMLi contains the following
elements: inputters, which receive information from the user, displayers, which

Modeling the User Interface of Multimedia Applications 679

�����

��	
�
��������

���

�����

Fig. 1. UMLi diagram for the racing game example

provide information to the user, editors, which are simultaneously inputters and
displayers, and action invokers, which receive events from the user (e.g. like a
button).

Figure 1 shows an UMLi diagram for the race screen of a racing game applica-
tion. We use this example, as on the one hand it demonstrates all characteristics
of a multimedia application and on the other hand its requirements are easy to
understand without specific domain knowledge. During the race the user has to
steer the car over the track. In addition to the car and the track the application
displays information about the current status, like the car’s speed and damage,
and the number of completed rounds. Moreover, the user can leave the race to
view the application’s help. The UMLi diagram consists of a presentation unit
representing the race window (dashed lines). It contains the required user in-
terface elements. To display information about the car status and the current
round, we use displayers (represented by upward triangles). For the invocation
of the help window we use an action invoker (represented by the semi-overlapped
triangles). As the user constantly modifies the car’s position and orientation, we
decide to represent it by an editor (notated as a diamond) and the track by a dis-
player. (Another decision is also possible, as actually the car stays always in the
center of the screen while the track moves, but probably such decisions belong
rather to the concrete layout than to the task-based abstract layout modeled
with UMLi).

The behavior of the user interface elements, i.e. the dialogue, is modeled in
UMLi using UML activity diagrams. To describe the relationships between ac-
tions and user interface elements they use Object Flows. The difference between
plain UML and UMLi activity diagrams are stereotypes which mainly aim for a
more compact notation of constructs frequently occurring for user interfaces.

3 Required Aspects to Model

The foregoing section describes the established concepts for modeling a user
interface. The focus of those approaches lies only in user interfaces for ”conven-
tional” applications, like database applications. Their user interface objects are
restricted to standard objects, usually widgets, as explicitly stated e.g. in [17],
[18]. As this focus is not sufficient for multimedia applications we discuss in the
following section the required aspects for this specific domain.

680 Andreas Pleuß

Section 3.1 discusses the aspects directly related to the heavy usage of media
objects. On that base, section 3.2 comes back to the aspects of conventional task
based user interfaces and examines whether and how they change in multimedia
applications.

3.1 Multimedia-Specific Aspects

The requirements are derived from the existing multimedia related modeling
approaches described in section 1, as well as from the methods and artifacts
mentioned in multimedia development related work like [4], [9].

Integration of Specific Media Types. The core characteristic of a multime-
dia application is the integration of different media types. The choice of a media
type specifies, on which perception channels information is presented to the user
and how the user can interact with it. Thus, it is a fundamental decision which
media type is used to achieve the optimal transmission of a given piece of infor-
mation to the user. Often the choice of media type is a basic requirement from
the customer, e.g. in a medical training application the customer may postulate
to have a human organ presented by a 3D animation. It may also be possible
that the choice of media type is already obliged by circumstances, like restriction
of resources or the media objects available from third parties.

The usage of the complex media types should also be specified as soon as
possible within the development process, as the production of media content
often takes much effort and time. Dependent on the chosen type of media, the
respective experts and tools need to be available.

The media type affects the other parts of the application, e.g. because of
its specific interaction behavior. In summary, the model should allow to specify
which concrete media objects to use in the application. We propose a solution
for this requirement in section 4.

Inner Structure of Media Objects. Complex media types often consist of
several sub-objects. For example an animation representing a car may consist of
sub-animations for doors and wheels, which may move independently. Besides,
also the whole car can move. Dependent of the sub-objects, they contain sub-
objects themselves.

A user interface model should allow specifying such an inner structure, when
the sub-objects have to be accessed by the program code of the application.
On the one hand, the media designer has to take into account which parts of a
media object should be accessed from code. Typically these parts are designed
as sub-components. In the example above typically the wheels themselves are
also designed as animations contained within the car animation. On the other
hand, the application code programmer has to know how to access the required
parts, e.g. their name and their path within the hierarchy of sub-objects. In
summary, the specification of the inner structure of media objects is required
to define the interface between application code and media objects and should

Modeling the User Interface of Multimedia Applications 681

thus be supported by the modeling approach. We propose a solution for this
requirement in section 4.

Spatial User Interface Layout. An issue to discuss is the spatial user in-
terface layout. A vision of the layout can be the basic motivation for the whole
multimedia application. It can be the core of the customer’s requirements. For
example a customer has the idea of a racing game application, where the screen
shows a view on the track and in the foreground a specific instrument board.

On the other hand, it is contentious whether to include the spatial user inter-
face layout into a model. Clearly, the structure of the user interface is important,
e.g. which window contains which elements. This aspect is already covered by
conventional user interface models in an abstract way. Spatial layout would add
information about the size and position of elements. But this information can
lead to platform dependent models, as the screen size of the target platforms can
change significantly. Moreover, as demonstrated by conventional user interface
models, interaction objects are implemented for different platforms using differ-
ent widgets or probably different modes (e.g. on some devices auditory instead
of graphical messages).

Moreover, it is not clear, whether the (semi-)formal specification of size and
position adds valuable information to the model. To capture the vision of a
screen layout, usually no exact and absolute values are required. Quite contrary,
the final pixel precise adjustment is better performed in the implementation tool
anyway. To sketch the idea of the layout, informal and quickly to handle methods
are more suitable.

In summary, there is no urgent need for specifying the spatial layout in the
model. As it usually adds no further (formal) information, it can be viewed as
an additional optional view on the existing model. This additional view can be
addressed e.g. by layout sketches. The quick creation of optional layout sketches
can probably also be supported by an advanced modeling tool.

Synchronization. The temporal behavior of different time-dependent media
objects can be related to each other. An example is an animation which should
be synchronous with sound or a video which should start after another video has
finished. Such synchronization issues often affects other parts of the application
– e.g. other media objects or the program code – and should therefore be part
of the model.

In the meanwhile, UML offers various mechanisms to model temporal behav-
ior. Also activity diagrams, used for behavior modeling in UMLi, are suitable
to denote the order of media objects and whether they can be interrupted by
events. UML 2.0 also enables an advanced specification of temporal constraints.

3.2 Task-Related Aspects

Based on the media-specific requirements, the following section discusses the
consequences for the conventional task-based user interface elements from sec-
tion 2.

682 Andreas Pleuß

Interaction Objects. Media objects can act as interaction objects, e.g. the
user can click on an animation. However, there is still the need for conventional
interaction objects. A multimedia application usually contains also conventional
tasks. For example in the racing game application the user should be able to input
his name, invoke the help or cancel the application. Such tasks are often outside
the customer’s media-specific vision of the application. They also usually require
no specific media-type. In that case, conventional abstract interaction objects are
useful to stay independent of the target platform and even the modality. The
interaction may even be without any graphical design, e.g. just pressing a key on
the keyboard. The designer should not be forced to make such decisions when it
is not mandatory.

Another issue is that time-dependent media objects can invoke actions inde-
pendently from the user. They can trigger time-related events, e.g. when they are
interrupted or have finished. Dependent from the media type additional events
are possible, e.g. a moving animation can trigger an event when it touches an-
other animation or reaches a specific region on the screen.

In summary, abstract interaction objects should be part of the model. As
media objects may also act as interaction objects, the model must integrate
these two kinds of elements. Additionally, it must be considered that media
objects can invoke actions independently from the user. We propose a possible
solution in section 5.

Information Elements. All media objects present information to the user,
which can be static or derived from the domain model. Thus, media objects
act as information elements. To some extent, all information elements are also
media objects, as they provide their information of course using any media type
(e.g. text). However, for the same reasons as for interaction objects (see 3.2), the
model should also provide abstract information elements. Likewise, the model
must integrate media objects and abstract information objects in a consistent
way. In section 5 we propose a possible solution for those requirements.

Presentation Units. A multimedia application will usually show different pre-
sentation units, similar to conventional applications. An extension arises from
the dynamic nature of time-dependent media types like animation or video: they
add an internal state to the presentation unit. This takes effect, if for example
the presentation of the presentation unit is interrupted, e.g. to show a help win-
dow, and should be continued afterwards. A video or an animation should then
potentially resume the state which it had before the interruption.

A solution for this problem is already proposed in [16]: an extended presen-
tation unit is called scene. A scene can have attributes and methods like usual
classes in UML diagrams. Attributes are used to realize the internal state of
a scene. The methods include special entry-methods, which are invoked when
the scene is entered. The initialization of a scene depends on the invoked entry-
method and the method’s parameters, which allow resuming the internal state.

Modeling the User Interface of Multimedia Applications 683

4 Modeling the Media Objects

In section 3 we discussed the required aspects for the modeling approach. This
section discusses the different model elements (denoted in italics) to model these
aspects for the media-specific part.

4.1 Media Objects

As introduced in section 1 media types are classified into temporal media and
discrete media. Some properties, like synchronization, occur only for temporal
media objects. Discrete media types are images, graphics and text. The basic
temporal media types are audio, video and animation. Further we distinguish 2D
animation and 3D animation, because of their different structure. The produc-
tion of 3D graphics and animation usually requires specialized tools and experts
while 2D graphic creation is much simpler and even part of several multimedia
authoring tools (e.g. Macromedia Flash).

4.2 Inner Structure

According to section 3 it is necessary to define the inner structure of media ob-
jects, to enable their manipulation through program code. By definition, only
temporal media types can have a dynamic, code controlled inner structure. In
particular (interactive) animations are usually closely linked to program code.
Due to the complexity of 3D animation, several approaches to describe its struc-
ture already exist. We take them as base to derive the general concepts for our
purpose. Afterwards we briefly sketch the structure of 2D animation, audio, and
video.

Inner Structure of 3D Animation. A common concept in the 3D community
for the description of 3D animation is the so-called scene graph (it is important to
note that there is no direct relation to the scene concept described in 3.1). In the
following we base on our work in [22] where we describe a platform-independent
scene graph approach.

The nodes of a scene graph represent the visible, material 3D objects them-
selves as well as components affecting their appearance. The latter ones are light,
the current position of the viewer (referred to as camera), and predefined further
possible viewer positions (viewpoints). The spatial information itself is also rep-
resented by a node: a transformation node performs one or more transforming
operations – i.e. translation, scale, or rotation – to all its assigned sub-nodes.
The nodes are connected by directed relationships which define the object hier-
archy (usually as a tree). A transformation is always relative to its parent node,
i.e. if the parent node is moved, its inner transformations are still valid.

It is important for our purpose that only nodes, which have to be accessed
by application logic, are (explicitly) specified in our models. All other parts of
the inner structure are omitted as implicit parts of the nodes.

If a node has multiple identical children (i.e. a car owns several wheels),
it can be denoted in a compact way by just specifying one of the child nodes

684 Andreas Pleuß

together with the actual number of children. Moreover, a keyword assigned to
the relationship denotes whether the multiple children nodes are separate copies
(keyword copy), i.e. can be modified separately, or whether they reference only
the same single object (keyword ref), i.e. they are always exactly identical.

Inner Structure of 2D Animation. The structure of 2D animations can be
derived from the 3D animations. Light, camera and viewpoints are not relevant
for 2D level. The remaining elements are 2D objects and transformations. The
shapes contained in an animation can be animations themselves or static graph-
ics. The latter ones are not relevant for our purpose, as we here specify only
nodes which are manipulated through code.

Figure 2 shows the main model elements for the inner structure of 2D and
3D animations.

3DAnimation

Light

Viewpoint

Camera3DObject

3DTransformation

2DAnimation 2DTransformation

3DPart 2DPart

+child

+parent+parent

+child

Fig. 2. Simplified metamodel for inner structure of 2D and 3D animation

Inner Structure of Audio and Video. The content of audio and video
is rarely directly manipulated by program code. The general concepts can be
summarized as follows: Audio can be composed of several tracks, e.g. for a left
and a right speaker. Typical manipulations are the application of filters or the
change of volume for one or more tracks. Moreover, an audio object can be
composed of several samples, i.e. parts within its local timeline. Most actions
on audio are time-related, e.g. jumping to a specific point on the timeline (cue
point). To be independent from concrete audio objects we specify cue points
by the semantics of their name (instead of defining concrete time values). The
mapping from a cue point to a concrete time value can then be done during the
deployment of the audio object, e.g. by the audio designer. Video can be handled
in analogous way.

4.3 Example

Figure 3 shows the media-specific part of the racing game example from section
2. The track is represented by an animation. It contains additional animations

Modeling the User Interface of Multimedia Applications 685

for obstacles and for the car. We clearly indicate the inner sub-objects here in the
diagram by placing them within their topmost parent object. The car animation
contains two front wheels. The inner structure is only specified insofar as required
for the application code. For example the front wheels should be moved whenever
the car drives through a corner. The annotations at the relationship between
Car and FrontWheels specify that there are two front wheels which behave
identically (and have thus not to be implemented as two independent objects).

Additionally the application should provide a cockpit view for the user dis-
playing the current status of the car. This is realized by animations for the
speedometer and the damage control. Moreover, the car is represented by sound.
The other user interface objects of this screen are not contained in the diagram,
as they require no specific media type.

���������

���

�������������

�����

�������������

�
���

�������������

���

�������������

���������	

�������������

������	��

�������������

�����

 ����!��

Fig. 3. Media-specific user interface elements of a racing game application

5 Integration of Media-Specific Aspect and Task-Based
Aspects

In this section we integrate the media-specific part of the model from section
4 with the conventional task-based elements from section 2. In particular, we
discuss how to fulfill the requirements of section 3.

5.1 Media-Objects as Interaction Objects and Information
Elements

According to section 3 media objects are related to the conventional task-based
user interface elements. All of them act as information elements.

Whether and how a media object can act as interaction element depends on
the media type. Audio can usually not act as an interaction object, as it can
not be manipulated. Of course it is possible to record and parse audio using a
microphone as accomplished at speech recognition. However, this does not relate
to playing an auditory media object, and is therefore not discussed in this paper.

686 Andreas Pleuß

The same holds for video, where a camera and gesture recognition are necessary
for user inputs.

However, all visual elements, including video, appear on the screen and can
therefore receive user events, e.g. when selected by a pointing device. Thus,
all visual objects can act as action invokers. As animations can dynamically
change their content dependent on the application logic, they can additionally
act as editors. An example is the car animation which represents e.g. the current
rotation of the car. The user manipulates the animation to edit the rotation
value.

5.2 Media-Objects as Trigger

As mentioned in section 3, temporal media objects can also invoke actions with-
out direct intervention from the user. It depends on the media type which types
of triggers are possible. The triggers can be derived from the 3D domain, where
they are represented by sensors. According to [22] common sensor types are
touch, proximity, visibility, collision, and time. Touch and proximity sensors are
not relevant here, because they describe events related to interaction with the
user.

Visibility sensors trigger an event when objects became visible for the user.
Collision sensors react, if two objects collide with each others. Both can occur
for moving objects, i.e. (2D and 3D) animations.

Time events can occur for every temporal media type, namely when it reaches
a specific point on its local timeline. This can be the end of the timeline or a
specified cue point. All sensors can be assigned to a whole media object as well
as to sub-objects from its inner structure.

TimeSensor

TemporalMedia

VisiblitySensor CollisionSensor

Animation

Fig. 4. Simplified metamodel for sensors

5.3 Modeling Example

The example shows the integration of the task-based user interface elements from
figure 1 and the media objects specified in figure 3. The dashed arrows denote
that a media object realizes an abstract user interface element. An abstract
user interface element can be realized by multiple media objects. If required for
clarity, abstract editor elements can be decomposed in inputter and displayer.
In the diagram, this would be possible for the car editor (but not shown here in

Modeling the User Interface of Multimedia Applications 687

���������

	
�

�����
�����

�
�
��

�����
�����

�����

�����
�����

	
�

�����
�����

����������

�����
�����

����
����

�����
�����

��
��

��������

	������

��
��

 ���

�����

�
�
��

	
�

!����

Fig. 5. Integration of task-based and media-specific user interface elements for
the racing game example

the diagram). Abstract user interface elements, which are not realized by media
objects, have to be realized during the implementation phase by appropriate
platform specific solutions (e.g. widgets).

To describe the behavior of the user interface elements, the UMLi activity
diagrams (see section 2) can used in the same way as before. The only differ-
ence are the sensors from media objects. They can be represented by UML Ac-
ceptEventActions to be used in the activity diagram. For example in figure 5 the
Obstacles animation provides a collision sensor, which waits for the occurrence
of collision events on the obstacles.

6 Model-Driven Development

In [16] we proposed the overall framework for a model-driven approach for mul-
timedia applications. The current paper extends it by a platform-independent
user interface model. It can be transformed into platform-specific models, using
the concepts of model driven development (e.g. [23]).

Typically, multimedia applications are implemented using authoring tools
like Macromedia Flash, which emphasize powerful support for the creation, in-
tegration, and deployment of media objects. However, they poorly support con-
cepts for structuring the application logic and control. For example, interactive
user interface elements often require the assignment of a script snippet to the
respective element. As a result, script snippets are scattered all over the appli-
cation. The consistent application of established software engineering concepts,
like e.g. the Model-View-Controller paradigm [24], is often only possible with
deep experience and under consideration of implementation ”tricks”.

Considering the mentioned strength and weaknesses of multimedia authoring
tools, they seem to be dedicated to a model-driven approach. The model is much
better suited to design the overall application structure and behavior. On the

688 Andreas Pleuß

other hand, the authoring tools are suited best for realizing the media objects
and the concrete user interface implementation. As a consequence, we transform
the platform-independent models directly into code skeletons for the authoring
tools and omit platform-specific models. The code skeletons contain placeholders
(gaps or default objects) for those parts of the application, which are not specified
in the platform-independent model. The placeholders have then to be filled out
or replaced within the authoring tool.

The models proposed in [16] allow generating code for the complete overall
structure of the application. The structural model specifies classes, attributes,
and method signatures. The abstract user interface model allows the definition
of the relationships between user interface elements and the structural model.
The interaction model (corresponding to activity diagrams in UMLi) allows the
generation of event handling code for the user interface elements.

The implementation of the methods from the structural model (i.e. the
method bodies) is not part of the model. In multimedia applications methods
often affect the user interface. Thus, the purposes of those methods are not only
”hard” goals, like the correct computation of a value, but also ”soft” goals, like
esthetics. For example in a racing game a class Car provides methods which
are responsible for the user’s driving experience. Values and parameters often
have to be found out by ”trial and error” and should be optimized for the target
platform. Thus, the methods are implemented directly within the authoring tool.

The media objects in the model are transformed into placeholders (e.g.
bounding boxes), which have then to be replaced in the authoring tool. The
abstract user interface objects can be transformed into widgets for the respec-
tive target platform. A rule based transformation, like in [21], is well supported
by the MDA concepts for transformations, like parameters and constraints, as
explained e.g. in [25].

7 Conclusion and Outlook

The approach described in this paper proposes a contribution for the model-
driven development of multimedia applications. As the user interface is usually
the core feature of this type of application, the concepts described in the paper
can constitute the basement of multimedia modeling.

Beside the contributions to our modeling approach, the main contributions
presented here lie in the general results for multimedia user interfaces. It is not
contentious that multimedia applications require specific solutions addressing
the heavy usage of media objects, as described by the existing research work.
But in addition, the user also has to perform conventional tasks for controlling
the application and its content. As a consequence we take here into account the
results from conventional user interface modeling and integrate them with the
media-specific aspects.

As a second general contribution we provide a fundamental discussion about
the involved requirements for modeling user interfaces containing media objects.

Modeling the User Interface of Multimedia Applications 689

On that base we propose an abstract and platform-independent modeling ap-
proach for media objects and their inner structure.

As a consequence, the whole multimedia application models are platform-
independent. We propose a model-driven approach generating directly code
skeletons from the platform-independent models. The code skeletons contain
gaps which are completed in the authoring tool. It is fundamental that the
completion requires only tool abilities which the authoring tools are best in:
the creation and deployment of media objects, the user interface layout and
the platform specific definition of code on well-defined places predefined by the
platform-independent model.

We have specified a MOF-compliant metamodel for our approach. On that
base we have built a modeling tool for our models implemented on Eclipse [26]
and related technologies like the Eclipse Modeling Framework. The tool provides
simple tree-editors to create and edit models according to the metamodel. More
sophisticated graphical diagram editors are currently under development. More-
over, we have a code generator producing SVG/JavaScript code skeletons from
our models. At the moment we develop further generators, especially for Flash.
For the Flash authoring tool we currently develop a plug-in to provide additional
support for processing the generated code skeletons, e.g. navigation between the
gaps in the generated skeletons and support for a round-trip engineering.

We are preparing the evaluation of our approach in student projects. In
particular we provide an annual teaching course ”Multimedia-Programmierung”
(multimedia programming) where students have to develop in teamwork multi-
media applications of middle size, e.g. in the last year a multiplayer racing game
application implemented with Flash.

References

[1] Tannenbaum, R.S.: Theoretical Foundations of Multimedia. Freeman, New York
(1998)

[2] Hannington, A., Karl, R.: Towards a Taxonomy for Guiding Multimedia Applica-
tion Development. In: 9th Asia-Pacific Software Engineering Conference (APSEC
2002), 4-6 December 2002, Gold Coast, Queensland, Australia. IEEE Computer
Society (2002)

[3] Macromedia: Macromedia, http://macromedia.com/ (2004)
[4] Mallon, A.: The Multimedia Development Process, http://ourworld.

compuserve.com/homepages/adrian mallon multimedia/devmtpro.htm (1995)
[5] Hirakawa, M.: Do Software Engineers Like Multimedia? In: IEEE International

Conference on Multimedia Computing and Systems (ICMCS) 1999 Proceedings.
Volume 1. IEEE Computer Society (1999) 85–90

[6] Arndt, T.: The Evolving Role of Software Engineering in the Production of Mul-
timedia Applications . In: IEEE International Conference on Multimedia Com-
puting and Systems (ICMCS) 1999 Proceedings. 1 edn. IEEE Computer Society
(1999)

[7] Rahardja, A.: Multimedia Systems Design: A Software Engineering Perspective.
In: International Conference on Computers and Education (ICCE) 95 Proceed-
ings. IEEE Computer Society (1995)

690 Andreas Pleuß

[8] Bianchi, A., Bottoni, P., Mussio, P.: Issues in Design and Implementation of
Multimedia Software Systems. In: Proceedings of IEEE International Conference
on Multimedia Computing and Systems (ICMCS ’99), Florence, Italy, Volume I.
IEEE Computer Society (1999) 91–96

[9] Osswald, K.: Konzeptmanagement - Interaktive Medien - Interdisziplinäre Pro-
jekte. Springer, Berlin (2002)

[10] Engels, G., Sauer, S.: Object-oriented Modeling of Multimedia Applications. In
Chang, S.K., ed.: Handbook of Software Engineering and Knowledge Engineering.
Volume 2. World Scientific, Singapore (2002) 21–53

[11] Trætteberg, H.: Model-based User Interface Design. PhD thesis, Norwegian Uni-
versity of Science and Technology, Oslo (2002)

[12] Hirzalla, N., Falchuk, B., Karmouch, A.a.: A Temporal Model for Interactive
Multimedia Scenarios. IEEE MultiMedia 2 (1995) 24–31

[13] Bertino, E., Ferrari, E.: Temporal Synchronization Models for Multimedia Data.
IEEE Transactions on Knowledge and Data Engineering 10 (1998) 612–631

[14] Arya, A., Hamidzadeh, B.: Face Animation: A Case Study for Multimedia Mod-
eling and Specification Languages . In Deb, S., ed.: Multimedia Systems and
Content-Based Image Retrieval. Information Science Publishing (2003)

[15] Sauer, S., Engels, G.: Extending UML for Modeling of Multimedia Applications.
In Hirakawa, M., Mussio, P., eds.: IEEE Symposium on Visual Languages 1999
Proceedings. IEEE Computer Society (1999)

[16] Hußmann, H., Pleuß, A.: Model-Driven Development of Multimedia Applications.
In: Talk at ’The Monterey Workshop 2004 - Workshop on Software Engineering
Tools: Compatibility and Integration’, Submitted for Proceedings. (2004)

[17] Szekely, P.: Retrospective and Challenges for Model-Based Interface Development.
In Vanderdonckt, J., ed.: Computer-Aided Design of User Interfaces. Presses
Universitaires de Namur, Namur, Belgium (1996)

[18] da Silva, P.P., Paton, N.W.: UMLi: The Unified Modeling Language for Interactive
Applications. In Evans, A., Kent, S., Selic, B., eds.: UML 2000 - The Unified
Modeling Language. Advancing the Standard. Third International Conference,
York, UK, October 2000, Proceedings. Volume 1939. Springer (2000) 117–132

[19] Wiecha, C., Bennett, W., Boies, S.J., Gould, J.D.: Generating Highly Interactive
User Interfaces . In Bice, K., Lewis, C.H.a., eds.: Proceedings of the ACM CHI
89 Human Factors in Computing Systems Conference. April 30 - June 4, 1989,
Austin, Texas, New York (1989)

[20] Paternó, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic No-
tation for Specifying Task Models. In Howard, S., Hammond, J., Lindgaard, G.,
eds.: Proceedings Interact’97. Chapman & Hall (1997)

[21] Vanderdonckt, J.: Automatic generation of a user interface for highly interactive
business-oriented applications. In Plaisant, C., ed.: Companion Proceedings of
CHI’94. ACM Press, New York (1994)

[22] Vitzthum, A., Pleuß, A.: SSIML: Designing Structure and Application Integration
of 3D Scenes. In: Proceedings of the tenth international conference on 3D Web
technology. ACM Press, New York (2005)

[23] Frankel, D.S.: Model Driven Architecture. John Wiley (2003)
[24] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-

Oriented Software Architecture: A System Of Patterns. Volume 1. John Wiley,
West Sussex, England (1996)

[25] Kleppe, A., Warmer, J., and, B.W.: MDA Explained. Addison-Wesley (2003)
[26] Eclipse: The Eclipse Project, http://www.eclipse.org/ (2004)

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 691-705, 2005.
 Springer-Verlag Berlin Heidelberg 2005

An Ontology-Based Approach for Evaluating the Domain
Appropriateness and Comprehensibility Appropriateness of

Modeling Languages

Giancarlo Guizzardi, Luís Ferreira Pires, Marten van Sinderen

Centre for Telematics and Information Technology,
University of Twente, Enschede, the Netherlands

{guizzard, pires}@cs.utwente.nl, sinderen@ctit.utwente.nl

Abstract. In this paper we present a framework for the evaluation and
(re)design of modeling languages. We focus here on the evaluation of the suit-
ability of a language to model a set of real-world phenomena in a given domain.
In our approach, this property can be systematically evaluated by comparing the
level of homomorphism between a concrete representation of the worldview
underlying the language (captured in a metamodel of the language), with an ex-
plicit and formal representation of a conceptualization of that domain (a refer-
ence ontology). The framework proposed comprises a number of properties that
must be reinforced for an isomorphism to take place between these two entities.
In order to illustrate the approach proposed, we evaluate and extend a fragment
of the UML static metamodel for the purpose of conceptual modeling, by com-
paring it with an excerpt of a philosophically and cognitive well-founded refer-
ence ontology.

1 Introduction

The objective of this paper is to discuss the design and evaluation of artificial model-
ing languages for capturing phenomena in a given domain according to a conceptuali-
zation of that domain. In particular, we focus on two properties of a modeling lan-
guage w.r.t. a given real-world domain [1]: (i) domain appropriateness, which refers
to truthfulness of the language to the domain; (ii) comprehensibility appropriateness,
which refers to the pragmatic efficiency of the language to support communication,
understanding and reasoning in the domain.

The elements constituting a conceptualization of a given domain are used to articu-
late abstractions of certain state of affairs in reality. We name them here domain ab-
stractions. Domain conceptualizations and abstractions are intangible entities that
only exist in the mind of the user or a community of users of a language. In order to
be documented, communicated and analyzed these entities must be captured in terms
of some concrete artifact, namely a model. Moreover, in order to represent a model, a
modeling language is necessary. Figure 1 depicts the relation between a conceptuali-
zation, domain abstraction, model and modeling language.

692 Giancarlo Guizzardi, Luís Ferreira Pires, and Marten van Sinderen

ModelDomain
Abstraction

interpreted as

represented by

Modeling
Language

Domain
Conceptualization

interpreted as

represented by

used to
compose instance of used to

compose

Figure 1. Relation between conceptualization, abstraction, modeling language and model.

In this paper, we propose a framework to evaluate the suitability of a language to
model a set of real-world phenomena in a given domain. In our approach, domain and
comprehensibility appropriateness can be systematically evaluated by comparing the
level of homomorphism between a concrete representation of the worldview underly-
ing the language (captured in a metamodel of the language), with an explicit and for-
mal representation of a conceptualization of that domain (a reference ontology [8]).
Our framework comprises a number of properties that must be reinforced for an iso-
morphism to take place between these two entities. If an isomorphism can be guaran-
teed, the implication for the human agent who interprets a diagram (model) is that his
interpretation correlates precisely and uniquely with an abstraction being represented.
By contrast, in case the correlation is not an isomorphism there may be multiple unin-
tended abstractions that match the interpretation.

The framework presented here builds on existing work in the literature. In particu-
lar, it considers the frameworks proposed in [2], which focus on evaluating the match
between individual diagrams and the state of affairs they represent, and the approach
of [3], which focuses on the system of representations as a whole, i.e., a language. Al-
though our approach is also centered in the language level, we show that, by consider-
ing desirable properties of the mapping of individual diagrams onto what they repre-
sent, we are able to account for desirable properties of the diagrams’ modeling
languages. In this way, we extend the original proposal presented in [3]. We also
build here on the work of the philosopher of language H.P.Grice [4] and his notion of
conversational maxims that states that a speaker is assumed to make contributions in a
dialogue which are relevant, clear, unambiguous, and brief, not overly informative
and true according to the speaker’s knowledge. Finally, in comparison to [2] and [3],
by presenting a formal elaboration of the nature of the entities depicted in Figure 1 as
well as their interrelationships, we manage to present a more general and precise
characterization of the characteristics that a language must have to be considered
truthful to a given domain.

The remaining of this paper is structured as follows. Section 2 introduces the
evaluation framework proposed here. Section 3 presents a formal characterization of
the notions of domain conceptualization and their representing ontologies, as well as
their relations to modeling languages and particular models. In order to illustrate our
approach, we evaluate and extend a fragment of the UML static metamodel for the
purpose of conceptual modeling, by comparing it with an excerpt of a philosophically

An Ontology-Based Approach for Evaluating Modeling Languages 693

and cognitive well-founded reference ontology. Section 4 discusses the foundational
ontology employed for this purpose. Section 5 discusses the evaluation of the UML
metamodel, and the extensions that we propose in order to enforce suitability to con-
ceptual modeling. Section 6 presents some final considerations.

2 A Framework for Language Evaluation

Following [2], we define four properties that should hold for an isomorphic correla-
tion to take place: lucidity, soundness, laconicity and completeness (see Figure 2).
Each of these properties is discussed below.

Abstraction Model

(a)
Abstraction Model

(b)

ModelAbstraction
(c)

ModelAbstraction
(d)

Figure 2. Examples of Lucid (a) and Sound (b) representational mappings from Abstraction to
Model; Examples of Laconic (c) and Complete (d) interpretation mappings from Model to Ab-
straction.

2.1 Lucidity and Construct Overload

A model M is called lucid w.r.t. a domain abstraction A if a (representation) mapping
from A to M is injective, i.e., iff every construct in the model M represents at most one
(although perhaps none) concept of the domain abstraction A. An example of an injec-
tive mapping is depicted in Figure 2(a).

The notion of lucidity at the level of individual diagrams is strongly related to the
notion of ontological clarity at the language level [3]. The ontological clarity of a
modeling grammar is undermined by what is termed in [3] a construct overload. A
construct overload occurs when a single language construct is used to represent two or
more domain concepts. These notions albeit related are not identical. A construct can
be overloaded at the language level, i.e., it can be used to model different concepts,
but every manifestation of this construct in individual models is used to represent only
one of the possible concepts. Figure 3 exemplifies a non-lucid representation. In this
case, the construct X is used to represent two entities of the abstraction, namely the
numbers 2 and 3. In this case, although the representation system does not have a case
of construct overload (since labeled boxes only represent numbers and arcs only rep-
resent the less-than relation between numbers) the resulting model is non-lucid. In

694 Giancarlo Guizzardi, Luís Ferreira Pires, and Marten van Sinderen

summary, the absence of construct overload in a language does not directly prevent
the construction of non-lucid representations in this language. Additionally, construct
overload does not entail non-lucidity. Nevertheless, non-lucidity can also be mani-
fested at a language level. We say that a language is non-lucid according to a concep-
tualization if there is a construct of the language that when used in a model of an ab-
straction (instantiation of this conceptualization) stands for more than one entity of
the represented abstraction. Non-lucidity at the language level can be considered as a
special case of construct overload that does entail non-lucidity at the model level.

A X D

{1} {2,3} {4}
Figure 3. Example of a Non-Lucid Diagram.

Construct overload is an undesirable property of a modeling language since it causes
ambiguity and, hence, undermines clarity. When a construct overload exists, users
have to bring additional knowledge not contained in the model to understand the phe-
nomena which is being represented. Additionally, a non-lucid representation language
entails non-lucid representations which clearly violate the Gricean conversational
maxim that requires contributions to be neither ambiguous nor obscure. In summary,
a modeling language should not contain construct overload and every instance of a
modeling construct of this language should represent only one individual of the repre-
sented domain abstraction.

2.2 Soundness and Construct Excess

A model M is called sound w.r.t. a domain abstraction A if a (representation) mapping
from A to M is surjective, i.e., iff every construct in the model M represents at least
one (although perhaps several) concept of the domain abstraction A. An example of a
surjective representation mapping is depicted in Figure 2(b).

An example of an unsound diagram is illustrated in Figure 4. The arc connecting
the labeled boxes D and A does not correspond to any relation in the represented
world. Unsoundness at the model level is strongly related to unsoundness at language
level, a property that is termed construct excess in [3]. Construct excess occurs when
a language construct does not represent any domain concept. Although construct ex-
cess results in the creation of unsound models, soundness at the language level does
not prohibit the creation of unsound models. For example, there is no construct excess
in the language used to produce the model of Figure 4.

A B C D

{1} {2} {3} {4}

Figure 4. Example of an Unsound Diagram.

An Ontology-Based Approach for Evaluating Modeling Languages 695

An unsound diagram violates the Gricean cooperative principle because any repre-
sented construct will be assumed to be meaningful by users of the language. Since no
mapping is defined for the exceeding construct, its meaning becomes uncertain,
hence, undermining the clarity of the model. Users of modeling language must be able
to make a clear link between a modeling construct and its interpretation in terms of
domain concepts. Otherwise, they will be unable to articulate precisely the meaning
of the models they generate using the language [3]. Therefore, a modeling language
should not contain construct excess and every instance of its modeling constructs
must represent an individual in the domain.

2.3 Laconicity and Construct Redundancy

A model M is called laconic w.r.t. a domain abstraction A if an interpretation mapping
between M and A is injective, i.e., iff every concept in the abstraction A is represented
by at most one (although perhaps none) construct in the representation M. An exam-
ple of an injective interpretation mapping is depicted in Figure 2(c).

The notion of laconicity at the model level is related to the notion of construct re-
dundancy at the language level in [3]. Construct redundancy occurs when more than
one language construct can be used to represent the same domain concept. Once
again, despite of being related, laconicity and construct redundancy are two different
(even opposite) notions. On one hand, construct redundancy does not entail non-
laconicity. For example, a language can have two different constructs to represent the
same concept, however, in every situation the construct is used in particular models it
only represents a single domain element. On the other hand, the lack of construct re-
dundancy in a language does not prevent the creation of non-laconic models in that
language. An example of a non-laconic diagram is illustrated in Figure 5. In this pic-
ture, the same domain entity (the number 3) is represented by two different constructs
(C1 and C2) although the representation language used does not contain construct re-
dundancy.

A B

C1

D

C2
{1} {2}

{3}

{3}

{4}

Figure 5. Example of a Non-laconic Diagram.

Non-laconicity can also be manifested at the language level. We say that a language is
non-laconic if it has a construct that when used in a model of a domain abstraction,
causes an entity of this abstraction to be modeled more than once in the resulting rep-
resentation. For instance, take a version of the labeled boxes language used so far and
let the less-than relation between numbers be represented both as the transitive clo-
sure of the is-arrow-connected and by the is-smaller-than relation between labeled
boxes. All models using this representation (e.g., Figure 6) are deemed non-laconic.
Non-laconicity at the language level can be considered as a special case of construct
redundancy that does entail non-laconicity at the model level.

696 Giancarlo Guizzardi, Luís Ferreira Pires, and Marten van Sinderen

A B C
D

{1} {2} {3} {4}
Figure 6. Example of a Non-laconic Diagram generated by a Non-Laconic Language.

In [3], the author claims that construct redundancy “adds unnecessarily to the com-
plexity of the modeling language”, possibly confusing the users. Therefore, construct
redundancy can also be considered to undermine representation clarity. Non-
laconicity also violates the Gricean principle, since a redundant representation can be
interpreted as standing for a different domain element. In sum, a modeling language
should not contain construct redundancy, and elements in the represented domain
should be represented by at most one instance of the language modeling constructs.

2.4 Completeness

A model M is called complete w.r.t. a domain abstraction A if an interpretation map-
ping between M and A is surjective, i.e., if each concept in a domain abstraction (in-
stance of the domain conceptualization) is represented by at least one (although per-
haps many) construct in the representation M. An example of a surjective
interpretation mapping is depicted in Figure 2(d).

The notion of completeness at the model level is related to the notion of ontologi-
cal expressiveness and, more specifically, completeness at the language level, which
is perhaps the most important property that should hold for a representation system. A
modeling language is said to be complete if every concept in a domain conceptualiza-
tion is covered by at least one modeling construct of the language. Language incom-
pleteness entails lack of expressivity, i.e., there can be phenomena in the considered
domain that cannot be represented by the language. Alternatively, users of the lan-
guage can choose to overload an existing construct in order to represent concepts that
originally could not be represented, thus, undermining clarity. Thus, unless some ex-
isting construct is overloaded, an incomplete modeling language is bound to produce
incomplete models. However, the converse is not true, i.e., a complete modeling lan-
guage can still be used to produce incomplete models (see example in Figure 7). In
Figure 7, a domain element (the 3 < 4 relation) is omitted in the representation.

A B C D

{1} {2} {3} {4}
Figure 7. Example of an Incomplete Diagram.

In accordance with the detailed account of Grice’s cooperative principle (specifically,
that all necessary information is included), model and language designers should at-
tempt to ensure completeness. In summary, a modeling language should be complete
w.r.t. a domain conceptualization and every element in a domain abstraction (instance
of this domain conceptualization) must be represented by an element of a model built
using this language.

An Ontology-Based Approach for Evaluating Modeling Languages 697

3 Conceptual Modeling, (Meta) Conceptualization and Ontology

According to Figure 1, a modeling language delimits all possible specifications1 that
can be constructed using this language, i.e., it determines all grammatically valid
specifications of the language. Likewise, a conceptualization delimits all possible
domain abstractions (representing state of affairs) that are admissible in that domain
[5]. Therefore, for example, in a conceptualization of the domain of genealogy, there
cannot be a domain abstraction in which a person is his own biological parent, be-
cause such a state of affairs cannot happen in reality. Accordingly, we can say that a
modeling language is truthful to this domain if it has as valid (i.e., grammatically cor-
rect) specifications only those that represent state of affairs deemed admissible by a
conceptualization of that domain. In the sequel, following [5], we present a formaliza-
tion of this idea. This formalization compares conceptualizations as intentional struc-
tures and meta-models as represented by logical theories:

Let us first define a conceptualization C as an intentional structure W, D, such
that W is a (non-empty) set of possible worlds, D is the domain of individuals and
is the set of n-ary relations (concepts) that are considered in C. The elements
are intentional relations with signatures such as n:W (Dn), so that each n-ary re-
lation is a function from possible worlds to n-tuples of individuals in the domain. For
instance, we can have accounting for the meaning of the natural kind apple. In this
case, the meaning of apple is captured by the intentional function , which refers to
all instances of apples in every possible world. For every world w W, according to
C we have a intended world structure SwC as a structure D,RwC such that RwC =
{ (w) | }. More informally, we can say that every intended world structure SwC
is the characterization of some state of affairs in world w deemed admissible by con-
ceptualization C. From a complementary perspective, C defines all the admissible
state of affairs in that domain, which are represented by the set Sc = {SwC | w W}.

Let us consider now a language L with a vocabulary V that contains terms to repre-
sent every concept in C. A logical model for L can be defined as a structure S,I : S is
the structure D,R , where D is the domain of individuals and R is a set of extensional
relations; I:V D R is an interpretation function assigning elements of D to con-
stant symbols in V, and elements of R to predicate symbols of V. A model, such as
this one, fixes a particular extensional interpretation of language L. Analogously, we
can define an intentional interpretation by means of the structure C, , where C =
W, D, is a conceptualization and :V D is an intentional interpretation func-

tion which assigns elements of D to constant symbols in V, and elements of to
predicate symbols of V. This intentional structure is named the ontological commit-
ment of language L to a conceptualization C. A model S,I of L is said to be com-
patible with ontological commitment K = C, if: (i) S Sc; (ii) for each constant c,
I(c) = (c); (iii) there exists a world w such that for every predicate symbol p, I maps
such a predicate to an admissible extension of (p), i.e. there is an intentional relation

1 We have so far used the term model instead of specification since it is the most common term in concep-
tual modeling. In this section, exclusively, we adopt the latter in order to avoid confusion with the term
(logical) model as used in logics and tarskian semantics. A specification here is a syntactic notion; a logical
model is a semantic one.

698 Giancarlo Guizzardi, Luís Ferreira Pires, and Marten van Sinderen

 such that (p) = and (w) = I(p). The set Ik(L) of all models of L that are com-
patible with K is named the set of intended models of L according to K.

In order to exemplify these ideas let us take the example of a very simple concep-
tualization C such that W = {w,w’}, D = {a,b,c} and = {person, father}. Moreover,
we have that person(w) = {a,b,c}, father(w) = {a}, person(w’) = {a,b,c} and fa-
ther(w’) = {a,b}. This conceptualization accepts two possible state of affairs, which
are represented by the world structures SwC = {{a,b,c}, {{a,b,c},{a}} and Sw’C =
{{a,b,c}, {{a,b,c},{a,b}}. Now, consider a language L whose vocabulary consists of
the terms Person and Father with an underlying metamodel that poses no restric-
tions on the use of these primitives. In other words, the metamodel of L has the fol-
lowing logical rendering2 (T1): { x Person(x), x Father(x)}. Clearly, we can
produce a logical model of L (i.e., an interpretation that validates the logical rendering
of L) but that is not an intended world structure of C. For instance, the model
D’={a,b,c}, person = {a,b}, father = {c}, and I(Person) = person and I(Father) =
father. This means that we can produce a specification using L whose model is not an
intended model according to C.

We now extend the metamodel of language L by adding one specific axiom and,
hence, producing the metamodel (T2): { x Person(x), x Father(x), x Fa-
ther(x) x Person(x)}. In comparison with L, the resulting language L’ with
the amended metamodel T2 has the desirable property that many more of its valid
specifications have logical models that are intended world structures of C.

A domain conceptualization C describes the set of all possible state of affairs that
are considered admissible in the subject domain D. A representation O that has as
valid specifications only those which represent admissible state of affairs according to
conceptualization C is named an Ontology of domain D according to C. With an ex-
plicit representation of a conceptualization in terms of a domain ontology, one can
measure the truthfulness (or domain appropriateness) of a language L to domain D,
by observing the difference between the set of valid models of the metamodel M of L
and the set of valid models of the ontology O of D (see Figure 8). In the best case,
these two specifications are isomorphic and, thus, they share the same set of logical
models. Therefore, not only every entity in conceptualization C must have a represen-
tation in the metamodel M of language L, but these representations must obey the
same axiomatization.

In the example above, we address the domain of genealogical relations. This ex-
emplifies what is named a material domain in the literature. Accordingly, a modeling
language designed to represent phenomena in this domain is named a Domain-
Specific Modeling Language [7]. However, we illustrate our approach here by consid-
ering a (domain-independent) general conceptual modeling language (e.g., EER,
ORM, UML). What should be real-world conceptualization that this language should
commit to? We argue that it should be a system of general categories and their ties,
which can be used to articulate domain-specific common sense theories of reality.
This meta-conceptualization should comprise a number of domain-independent theo-
ries (e.g., theory of parts and wholes, types and instantiation, identity, existential de-
pendence, etc.), which are able to characterize aspects of real-world entities irrespec-

2 Given a specification S in a modeling language L, the logical rendering of S is defined as the logical the-

ory T that is the first-order logic description of that specification [12].

An Ontology-Based Approach for Evaluating Modeling Languages 699

tive of their particular nature. The development of such general theories of reality is
the business of the philosophical discipline of Formal Ontology [8]. A concrete arti-
fact representing this meta-conceptualization is named a Foundational Ontology [9].

State of Affairs represented by
the valid models of metamodel

M1 of language L1

Admissible state of affairs
according to

conceptualization C

State of Affairs represented by
the valid models of Ontology

O of C

State of Affairs represented by
the valid models of metamodel

M2 of language L2

Figure 8. Measuring the degree of domain appropriateness of modeling languages via an on-
tology of a conceptualization of that domain.

4 The Unified Foundational Ontology (UFO-A)

In this section, we present a fragment of a philosophically and cognitively well-
founded reference ontology (foundational ontology) that has been developed in [10,
12, 13, 14]. In particular, in [14], this ontology is named UFO (Unified Foundational
Ontology) and is presented in three compliance sets. Here, we focus the first one
(UFO-A), which is an ontology of endurants. In the sequel, we restrict ourselves to a
fragment of UFO-A, depicted in Figure 9. Moreover, due to space limitations and the
focus of the paper we briefly present the ontological categories comprising UFO-A
(see aforementioned articles for details).

A fundamental distinction in this ontology is between the categories of Individual
and Universal. Individuals are entities that exist in reality possessing a unique iden-
tity. Universals, conversely, are space-time independent pattern of features, which can
be realized in a number of different individuals. The core of this ontology exemplifies
the so-called Aristotelian ontological square comprising the category pairs Substan-
tial-Substantial Universal, Moment-Moment Universal. From a metaphysical point
of view, this choice allows for the construction of a parsimonious ontology, based on
the primitive and formally defined notion of existential dependency.

Definition 1 (existential dependence): We have that an individual x is existentially
dependent of another individual y iff, as a matter of necessity, y must exist whenever
x exists.

Existential dependence is a modally constant relation, i.e., if x is dependent of y,
this relation holds between these two specific individuals in all possible worlds that x
exists.

Substances are existentially independent individuals. Examples of Substances in-
clude ordinary mesoscopic objects such as an individual person, a dog, a house, a
hammer, a car, Alan Turing and The Rolling Stones but also the so-called Fiat Ob-
jects such as the North-Sea and its proper-parts, postal districts and a non-smoking
area of a restaurant.

700 Giancarlo Guizzardi, Luís Ferreira Pires, and Marten van Sinderen

Entity

Universal Individual

Substance Moment

Quality Relator

Monadic Universal Relation

Substance Universal Quality Universal Relator Universal

Kind Role characterization Mediation

Existential Dependency

Figure 9. Excerpt of the Foundational ontology UFO-A.

The word Moment denotes, in general terms, what is sometimes named trope, ab-
stract particular, individualized property or property in particular [9]. Therefore, in the
scope of this work, the word bears no relation to the notion of time instant in collo-
quial language. A moment is an individual that can only exist in other individuals.
Typical examples of moments are a color, a connection and a purchase order. Mo-
ments have in common that they are all dependent of other individuals (their bearers).
Some moments are one-place Qualities (e.g., a color, a headache, a temperature); oth-
ers are relational moments or Relators (e.g., a kiss, a handshake, a medical treatment,
a purchase order), which depend on several substances.

A Substantial Universal is a universal whose instances are substances (e.g., the
universal Person or the universal Apple). Within the category of substantial univer-
sals, we make a further distinction based on the formal notions of rigidity and anti-
rigidity:

Definition 2 (Rigidity): A universal U is rigid if for every instance x of U, x is
necessarily (in the modal sense) an instance of U. In other words, if x instantiates U in
a given world w, then x must instantiate U in every possible world w’.

Definition 3 (Anti-rigidity): A universal U is anti-rigid if for every instance x of U,
x is possibly (in the modal sense) not an instance of U. In other words, if x instantiates
U in a given world w, then there must be a possible world w’ in which x does not in-
stantiate U.

A substantial universal which is rigid is named here a Kind. In contrast, an anti-
rigid substantial universal is termed a Role. The prototypical example highlighting the
modal distinction between these two categories is the difference between the universal
(Kind) Person and the (Role) universal Student, both instantiated by the individual
John in a given circumstance. Whilst John can cease to be a Student (and there were
circumstances in which John was not one), he cannot cease to be a Person. In other
words, in a conceptualization that models Person as a Kind and Student as a Role,
while the instantiation of the role Student has no impact on the identity of an individ-
ual, if an individual ceases to instantiate the kind Person, then it ceases to exist as the
same individual. Moreover, in [13], we have formally proved that a rigid universal
cannot have as its superclass an anti-rigid one. Consequently, a Role cannot subsume
a Kind in our theory.

A Quality Universal is a universal whose instances are individual qualities (e.g.,
the objectified color of this apple is an instance of the universal color), and a Relator
Universal is one whose instances are individual relational moments (e.g., the particu-
lar enrollment connecting John and a certain University is an instance of the universal
Enrollment). Both quality and relator universals are moment universals. The relation

An Ontology-Based Approach for Evaluating Modeling Languages 701

between a substantial universal and quality universal is one of Characterization. If a
quality universal Q characterizes a substantial universal S, then every instance of Q is
existentially dependent of an instance of S. Likewise, a relation between a set of sub-
stantial universals and a relator universal is one of Mediation. If a relator universal R
mediates the substantial universals S1…Sn, then every instance of R is existentially
dependent of a plurality of entities, namely, particular instances of S1…Sn.

Relations are entities that glue together other entities. In the philosophical litera-
ture, two broad categories of relations are typically considered, namely, material and
formal relations [15,16]. Formal relations hold between two or more entities directly,
without any further intervening individual. The only formal relations considered in
this article are the existential dependence relations aforementioned. Other examples
include relations such as part-of, subset-of, instantiation, among others not discussed
here [10]. Material relations, conversely, have material structure on their own and in-
clude examples such as kisses, conversations, fights and commitments. The relata of a
material relation are mediated by relators. For example, an individual purchase is a
relator that connects a customer and a supplier, and a treatment is a relator which
connects a patient with a medical unit. The notion of relational moments is supported
in several works in the philosophical literature (e.g., [15,16,17]) and, the position ad-
vocated here is that, relators play an important role in answering questions of the sort:
what does it mean to say that John is married to Mary? Why is it true to say that Bill
works for Company X but not for Company Y?

In this paper, we only countenance as relations those of existential dependency dis-
cussed above, i.e., characterization and mediation. Thus, by a relation here we mean a
formal relation of existential dependency. Material relations are represented by ex-
plicitly representing their founding relators. Therefore, according to this theory, for-
mal and material relations are entities of different ontological nature. Whilst a formal
relation such as the one between John and his knowledge x of Greek holds directly
and as soon as John and x exist, the relation of John being treated in a particular
Medical Unit MU1 is a contingent one, and must rely on the existence of a founding
entity, such as, for instance, a treatment t in which both John and MU1 participate.

5 Evaluating and Extending UML for Conceptual Modeling

In this section we start by constructing representation and interpretation mappings be-
tween the concrete metaclasses of the UML metamodel presented in the UML 2.0 Su-
perstructure Specification and the ontological categories comprising the foundational
ontology employed here.

We start our discussion by focusing on the meta-construct Class. We assume for
now a specific notion of class, namely one whose instances are single objects (as op-
posed to tuples of objects). In this sense, the ontological interpretation of a UML
Class is that of a monadic universal. However, by carrying on this process, we realize
that in UML there are no modeling constructs that represent the leaf ontological cate-
gories specializing monadic universal, namely, kind, role, quality and relator. In other
words, there are ontological concepts prescribed by our reference ontology that are
not represented by any modeling construct in the language. This is a case of construct
incompleteness at the modeling language level.

702 Giancarlo Guizzardi, Luís Ferreira Pires, and Marten van Sinderen

In UML, the association meta-construct is used to represent both formal and mate-
rial relations. As discussed in Section 4, formal and material relations are considered
here as entities belonging to disjoint ontological categories. Therefore, the representa-
tion mapping from both formal and material relations to associations in UML can be
considered a case of construct overload. However, in a different perspective, there are
refinements on the category of relations in UFO-A that have no representation in the
UML metamodel (characterization and mediation). Here, we have another case of
construct incompleteness at the modeling language level.

According to the UML specification, an interface is a declaration of a coherent set
of features and obligations. It can be seen as a kind of contract that partitions and
characterizes groups of properties that must be fulfilled by any instance of a classifier
that implements that interface. In an interpretation mapping from the UML meta-
model to the ontology of Figure 9, an interface qualifies as a case of construct excess.
This means that since the UML interface is merely a design and implementation con-
struct, there is no category in the conceptual modeling ontology proposed here that
serve as the ontological interpretation for this construct.

In order to solve the cases of construct incompleteness in reference to the category
of monadic universals, we propose a (lightweight) extension to the UML class meta-
construct by introducing the stereotypes « kind », « role », « quality » and « relator »,
representing the respective ontological finer-grained distinctions. The profile formed
by these newly introduced stereotypes must also contain a number of constraints that
restrict the way the modeling constructs can be related. The goal is to have a meta-
model such that all syntactically correct specifications using the profile have logical
models that are intended world structures of the conceptualizations they are supposed
to represent. Thus, for instance, in a conceptual model using this profile, a class
stereotyped as « kind » must not include in its superclass collection one class stereo-
typed as « role », since it is a postulate of our theory that anti-rigid universals cannot
subsume rigid ones.

In general, qualities can be atomic or complex. Atomic quality universals are typi-
cally not represented in a conceptual model explicitly but via attribute functions that
map each of their instances to points in a given quality dimension. For example, sup-
pose we have the universal Apple (a substantial universal), characterized by the uni-
versal Weight. Thus, for an arbitrary instance x of Apple there is a quality w (instance
of the quality universal Weight) that is existentially dependent of x. Associated with
the universal Weight, and in the context of a given measurement system (e.g., the
human perceptual system), there is a quality dimension weightValue, which is a set
isomorphic to the half line of positive integers, obeying the same ordering structure.
In this case, we can define an attribute function weight(Kg) which maps for every in-
stance of apple (and in particular x) to a point in a quality dimension, i.e., its quality
value. Due to space limitations we do not discuss here the case of atomic qualities and
related notions3. A formal treatment of this subject can be found in [12].

An example of a complex quality universal is the universal Symptom, characteriz-
ing the role Patient: every individual Symptom is existentially dependent of an indi-
vidual patient. Thus, even if the patients John and Paul experience headaches which

3 We emphasize, nonetheless, that the same ontological concept of attribute functions is represented in the

UML grammar both by the constructs of attributes and navigable end names, thus, amounting to a case
of construct redundancy in the language.

An Ontology-Based Approach for Evaluating Modeling Languages 703

are qualitatively indistinguishable, the headache of John is an individual which is only
dependent of John. A complex quality universal is the ontological counterpart of the
concept of Weak entity types in EER diagrams. We propose that they should be ex-
plicitly represented in class diagrams (via a class stereotyped as « quality »), or, to use
an object-orientation term, objectified.

We advocate that associations in UML for the purpose of conceptual modeling
should only represent formal relations. Consistently, we extend this construct in the
UML metamodel by proposing the stereotypes « characterization » and « mediation »
representing the two types of existential dependency considered here. Associations
stereotyped as « characterization » must have in one of its association ends a class
stereotyped as « quality » representing the characterizing quality universal.

In contrast, we propose to express relational properties explicitly via classes stereo-
typed as « relator », representing the ontological category of relator universals. The
formal relation of mediation that takes place between the relator universal and the
universals it mediates is explicitly represented by an association stereotyped as « me-
diation ». In addition, associations stereotyped as « mediation » must have in one of
its association ends a class stereotyped as « relator ».

By representing relational properties explicitly via their founding relator univer-
sals, we not only remove the case of construct overload related to associations, but we
also produce a representation that is more expressive, conceptually clear and semanti-
cally unambiguous. Consider, for example, the models depicted in Figure 10. In the
standard UML representation of associations, the cardinality multiplicity of one-to-
many between GraduateStudent to Supervisor is ambiguous and can be interpreted in
a multitude of incompatible ways. For example, when stating that “a supervisor su-
pervises one to many student” what exactly is being stated? (i) that in a given assign-
ment there is one supervisor advising many students?, or (ii) that only one supervisor
and one student are involved, but a supervisor can supervise many assignments? An
analogous situation takes place when trying to interpret this association in the con-
verse direction. In particular, due to the lack of expressivity of the traditional UML
association, the model of Figure 10(a) cannot differentiate the two different conceptu-
alizations, which are explicitly modeled in Figures 10(b) and 10(c). Finally, as dis-
cussed in [12], the problem of ambiguity of multiplicity constraints exemplified in
these models only takes place in the case of material relations, in which two different
types of constraints are collapsed.

Both characterization and mediation are directed relations. In the case of the for-
mer, the source is a quality universal, and in the case of the latter, the source is a rela-
tor universal. In both cases, the target is a substantial universal. Moreover, these two
relations are mapped at the instance level to an existential dependency relation be-
tween the corresponding source individuals and their bearer objects. This has the fol-
lowing consequences for the extended UML metamodel: (i) the association end con-
nected to the target (substantial) universal must have the minimum cardinality
constraint of at least one, since moments are dependent entities; (ii) In the case of a
« characterization » relation, the association end connected to the target (substantial)
universal must have the maximum cardinality constraints of at most one, since quali-
ties inhere in a unique bearer [10]; (iii) the association end connected to the target
(substantial) universal must have the meta-attribute isreadOnly = true, since existen-
tial dependency is modally constant; and (iv) existential dependency relations are al-
ways binary relations. Finally, since a relator individual is dependent (mediates) on at

704 Giancarlo Guizzardi, Luís Ferreira Pires, and Marten van Sinderen

least two numerically distinct entities, we have the following additional constraint: (v)
let R be a relator universal, let {C1…C2} be a set of substantial universals mediated
by R (related to R via a « mediation » relation) and let lowerCi be the value of the
minimum cardinality constraint of the association end connected to Ci in a « media-
tion » relation to R, then (

n

i 1

lowerCi) 2.

1..* 1..*(a)

«role»
GraduateStudent

«role»
Supervisor

supervised-by

«role»
GraduateStudent

«role»
Supervisor

1..* 1..*

«mediation»
«relator»

Assignment
1..* 1

«mediation»

«role»
GraduateStudent

«role»
Supervisor

1 1..*

«mediation»
«relator»

Assignment
1..* 1

«mediation»
(b)

(c)
Figure 10.(a) Ambiguous representation of material relations using the standard UML notation
(b)(c) Exemplification of how relators can disambiguate two conceptualizations that in the
standard UML notation would have the same representation.

In order to solve the problem of construct excess in the case of UML interface meta-
class, we propose to remove this construct from the extended UML metamodel, im-
plying that the use of this construct would be prohibited in order to ensure that the re-
sulting models are ontologically well-founded.

6 Final Considerations

In this paper, we present an ontology-based framework for evaluating the domain and
comprehensibility appropriateness of modeling languages. The framework defines a
systematic method for comparing the metamodel of a language with a concrete repre-
sentation of a conceptualization of a given subject domain, termed a reference ontol-
ogy. Moreover, the paper illustrates the application of the method by evaluating and
extending a fragment of the UML metamodel. This has been achieved by comparing
this metamodel with a foundational ontology that is considered as a suitable meta-
conceptualization for domain independent conceptual modeling, and proposing
stereotypes and usage constraints that make the metamodel isomorphic with the foun-
dational ontology.

The framework presented here builds on existing work in the literature, extending
them in important ways. For instance, the approaches of [2] and [3] address solely the
relation between ontological categories and the modeling primitives of a language,
paying no explicit attention to the possible constraints governing the relation between
these categories. Moreover, it does not consider the necessary mapping from these
constraints to equivalent ones, to be established between the language constructs rep-
resenting these ontological categories. Additionally, [3] addresses only the design of
general conceptual modeling languages. In contrast, the framework and the principles
proposed here can be applied to the design of conceptual modeling languages irre-
spective to each generalization level they belong, i.e., they can be applied both the
level of material domains and corresponding domain-specific modeling languages,

An Ontology-Based Approach for Evaluating Modeling Languages 705

and the (meta) level of a domain-independent (meta) conceptualization that underpins
a general conceptual modeling language. Finally, as discussed in [11], by explicitly
representing the subject domain of a language in terms of a well-founded ontology,
we can account for important pragmatic aspects that should be preserved in the design
of concrete visual syntaxes.

Acknowledgements. This work is part of the Freeband A-MUSE Project (contract BSIK
03025). We would like to thank Gerd Wagner, Nicola Guarino and Chris Vissers for
fruitful discussions and for providing valuable input to the issues of this article.

References

1. Krogstie, J. (2001): Using a Semiotic Framework to Evaluate UML for the Develop-
ment of Models of High Quality, Idea Publishing Group.

2. Gurr, C.A. (1999): Effective Diagrammatic Communication: Syntatic, Semantic and
Pragmatic Issues, Journal of Visual Languages and Computing, 10, 317-342.

3. Weber, R. (1997). Ontological Foundations of Information Systems. Coopers & Ly-
brand, Melbourne.

4. Grice, H.P. (1975): Logic and conversation. In: Syntax and Semantics: Vol 3, Speech
Acts (P. Cole & J. Morgan, eds). Academic Press, New York, pp. 43-58.

5. Guarino, N. (1998): Formal Ontology and Information Systems, Formal Ontology in
Information Systems. Proceedings (FOIS), Italy.

6. Ciocoiu, M., Nau D. (2000): Ontology-Based Semantics. 7th International Conference
on Principles of Knowledge Representation and Reasoning (KR'2000), USA.

7. Tolvanen, J.-P., Gray, J., Rossi, M., editors (2004): Domain-Specific Modeling with
Visual Languages, Journal of Visual Languages and Computing, Elsevier Science.

8. Husserl, E. (1970): Logical Investigations, London: Routledge & Kegan Paul.
9. Masolo, C.; Borgo, S.; Gangemi, A.; Guarino, N.; Oltramari, A. (2003): Ontology Li-

brary, WonderWeb Deliverible D18.
10. Guizzardi, G., Herre, H., Wagner G. (2002): On the General Ontological Founda-

tions of Conceptual Modeling, 21st Intl. Conf. on Conceptual Modeling (ER),
Finland, LNCS 2503, Springer-Verlag.

11. Guizzardi, G.; Ferreira Pires, L.; van Sinderen, M. (2002): On the role of Domain
Ontologies in the Design of Domain-Specific Visual Languages, 2nd Workshop on
Domain-Specific Visual Languages, 17th OOPSLA, USA.

12. Guizzardi, G.; Wagner, G.; Herre, H. On the Foundations of UML as an Ontology
Representation Language, 14th Intl Conference on Knowledge Engineering and
Knowledge Management (EKAW), UK, LNCS 3257, Springer-Verlag.

13. Guizzardi, G.; Wagner, G.; Guarino, N.; van Sinderen, M. (2004): An Ontologically
Well-Founded Profile for UML Conceptual Models, 16th Intl.Conference on Ad-
vances in Inf. Systems Eng. (CAiSE), Latvia, LNCS 3084, Springer-Verlag.

14. Guizzardi, G.; Wagner, G. (2005): On a Unified Foundational Ontology and some
Applications of it in Business Modeling, Ontologies and Business Systems Analysis,
Michael Rosemann and Peter Green (Eds.), IDEA Publisher.

15. Heller, B., Herre, H. Ontological Categories in GOL. Axiomathes 14: 71-90, Kluwer
Academic Publishers, 2004.

16. Smith, B.; Mulligan, K (1986): A Relational Theory of the Act, Topoi (5/2), 115-30.
17. Schneider, L. (2003): Designing Foundational Ontologies: The Object-Centered

High-Level Reference Ontology OCHRE as a Case Study, 22nd Intl. Conference on
Conceptual Modeling (ER), LNCS 2813, Springer-Verlag.

Workshops at the MODELS 2005 Conference

Jean-Michel Bruel

LIUPPA
Université de Pau et des Pays de l’Adour

64000 Pau, France
Jean-Michel.Bruel@univ-pau.fr

1 Introduction

It was a tradition in the previous UML series to host a number of workshops.
Workshops provide the opportunity for a small group of people to exchange
recent or preliminary results and to conduct intensive discussions on a particular
topic. They complement in a sense the main conference and are generally very
appreciated by attendees, most of them also attending the main conference.

For this new 2005 edition, it has been decided to host 12 one-day satellite
events, during the 3 first days of the conference. The 2003 conference held 9
workshops, last year one held 9 workshops and a new Doctorial Symposium.
This year, we have chosen to hold the successful Doctorial Symposium and to
add a novelty, mainly related to the broader scope of the new series, a Symposium
dedicated to models education.

The selection committee that helped me reviewing the proposals was formed
by the following researchers:

– Elisa Baniassad (Chinese University of Hong Kong)
– Siobhán Clarke (Trinity College Dublin, Ireland)
– Gregor Engels (U. of Paderborn, Germany)
– Ana Moreira (Universidade Nova de Lisboa, Lisbon, Portugal)
– Ivan Porres (Åbo Akademi University, Turku, Finland)
– Ambrosio Toval (U. of Murcia, Spain)

We have selected 10 workshops which are detailed in the following section.
Among the selected workshops, four have been previously held in the previous
edition of the conference, one is the merging of two successful workshops from last
year, and five are new to the conference series. This novelty has been particularly
interesting and we hope that the community will also appreciate it. It reflects
the changes at the main conference level itself.

At the time of writing those lines (end of June 2005) we of course have no
information in terms of registration or success of each of these 12 events. The
reader will find a brief overview of each of them in the following section, and we
also invite her/him to consult the Satellite Events Proceedings that is expected
to be published and that will contain, among others materials, an abstract of
each workshops, written by their organizers, as well as an improved version of a
selection of the 2 best papers of each workshops. We hope that this will provide
a good idea of the workshops discussions and results.

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 706–714, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Workshops at the MODELS 2005 Conference 707

2 Detailed List of Workshops

W1: Tool Support for OCL and Related Formalisms - Needs and
Trends

Organizers: Thomas Baar (EPFL Lausanne, Switzerland), Dan Chiorean (Uni-
versity of Cluj-Napoca, Romania), Alexandre Correa (University of Rio de
Janeiro, Brazil), Martin Gogolla (University of Bremen, Germany), Heinrich
Hußmann (University of Munich, Germany), Octavian Patrascoiu (Univer-
sity of Kent, United Kingdom), Peter H. Schmitt (Universität Karlsruhe,
Germany), Jos Warmer (Ordina, The Netherlands)

URL: See the main conference web site.

Abstract: Model-centric methodologies and new technologies such as MDA,
MDSE, LDD, or DSL attract now a lot of attention both in academia and
in industry. Since they propagate a shift from the implementation code to
more abstract but nevertheless detailed and precise models, their successful
application in industrial projects heavily depends on matured tools support.
The traditional way to make a model more precise is by using a textual
constraint language such as OCL. Recently, an increasing amount of work has
been spent on OCL tools by various organizations so that software developers
has today the choice among more than 10 academic and commercial tools.
However, compared to similar tools supporting other textual languages, e.g.
integrated development environments (IDEs) for Java, tools for OCL are still
rather archaic.
The increasing importance of OCL for model-centric methodologies on one
hand and the improving but not perfect tool support for OCL on the other
hand naturally raise a lot of questions. Which features should an OCL tool
offer to encourage the usage of OCL in practice? Is it feasible to make OCL
more executable and to provide an animator for OCL? Which consequences
for future tools have the fact that OCL is incorporated in a number of other
formalisms? Should we strive for a common architecture of OCL tools which
would enable us to reuse standard components? What is the relationship
between OCL and similar formalisms such as JML, SQL, or graph-grammar
based formalisms? Are there unclear issues in the OCL language descriptions
that still prevent a smooth tool support?

W2: MoDeVA – Model Design and Validation

Organizers: Benoit Baudry (INRIA, France), Christophe Gaston CEA/LIST,
France), Sudipto Ghosh (Colorado State University, USA)

URL: http://www.irisa.fr/manifestations/2005/MODEVA2005/

708 Jean-Michel Bruel

Abstract: Design and validation methods appear to be more and more nec-
essary in an industrial context. This fact is due to several actors. Software
systems are more and more complex and cannot be understood by a stand-
alone human without a proper standardisation. MDA(Model Driven Archi-
tecture) or more generally object/component oriented design methods have
been defined in order to overcome a part of this problem. Moreover, systems
large scale and complexity induce important risks of bugs or unpredicted
behaviours resulting from interactions between subsystems. Formal meth-
ods have been intensively applied to evaluate reliability of systems. These
methods generally require adequate specification and structuring languages
to describe (a part of) the system under validation. For instance, modular
first order languages are suitable for this purpose. One of the main prob-
lem encountered when trying to combine design and validation features, is
that structuring languages suitable for one of the features are generally not
suitable for the other. In this way, object-oriented paradigm is suitable for
large scale system design, since it allows anthropomorphic design based on
services exchanges of basic entities. However, this paradigm is not suitable
(without restriction) for validation activities, since any enrichment of a sys-
tem is likely to cause loss of global properties. In the opposite way, modular
paradigm ensures properties preservation but the price to pay is an amount
of design difficulties.
The MoDeVa (Model Design and Validation) workshop aims at being a fo-
rum for researchers and practitioners with varying backgrounds to discuss
new ideas concerning links between model-based design and model-based
validation. More precisely, topics of interest include design processes that
support complex system modelling and formal or semi-formal refinement
mechanisms. In the frame of validation methodology, model-based testing
will be considered as ”first-class-citizen” since testing is the primary used
technique in the industrial context. Design methodologies including consid-
erations on properties preservation (non-regression testing for example) will
be appreciated. Languages to describe or validate models include UML and
its MDE (Model Driven Engineering) and MDA aspects, algebraic languages,
automata-based language, first order language, propositional languages...
The considered design paradigm may be inherited from programming lan-
guage field, like object oriented design, or more abstract, like component or
feature based modelling.

W3: MARTES – Modeling and Analysis of Real-Time and Embedded
Systems

Organizers: Sebastien Gerard (CEA, France), Susanne Graf (Verimag, Greno-
ble, France), Øystein Haugen (Univ. of Oslo, Norway), Iulian Ober (Verimag,
Grenoble, France), Bran Selic (IBM, Canada)

URL: http://www.martes.org/

Workshops at the MODELS 2005 Conference 709

Abstract: This workshop is a merge of the former workshop series SIVOES and
SVERTS. The concern of this workshop is the use of MDA in the context of
Real-time, distributed and embedded systems, where a particular emphasis
is put on modeling, semantic issues and methods and tools for analysis.

W4: Aspect Oriented Modeling

Organizers: Omar Aldawud (Lucent Technologies, USA), Tzilla Elrad (Illinois
Institute of Technology, USA), Jeff Gray (University of Alabama at Birm-
ingham, USA), Mohamed Kandé (Condris Technologies, Switzerland), Jörg
Kienzle (McGill University, Canada), Dominik Stein (University of Duisburg-
Essen, Germany)

URL: http://dawis.informatik.uni-essen.de/events/AOM_MODELS2005/

Abstract: Aspect-orientation is a rapidly advancing technology. New and pow-
erful aspect-oriented programming techniques are presented at the Inter-
national Conference on Aspect-Oriented Software Development every year.
However, it is not clear what features of such techniques are ”common aspect-
oriented concepts” and what features are rather language-specific specialties.
Research in Aspect-Oriented Modeling (AOM) has the potential to help
find such common characteristics from a perspective that is at a more ab-
stract level (i.e., programming language-independent). The ultimate goal of
research in AOM is to provide aspect-oriented software developers with gen-
eral means to express aspects and their crosscutting relationships onto other
software artifacts.
This workshop aims to identify and discuss the impacts of aspect-oriented
technologies on software modeling, and to set up a shared agenda for future
research in aspect-oriented modeling of software systems. To achieve these
goals, we invite the participants to present new ideas and discuss the state
of research and practice in modeling different kinds of crosscutting concerns
at multiple levels: software architecture, detailed design, testing, and map-
ping models onto aspect-oriented programs. The results of the workshop are
expected to contribute towards answering the following key questions:
– How do aspects emerge and appear in models?
– In what respect do they help to understand the problem domain? And

how do they help to find ”better” software solutions?
– In what regards are current modeling techniques suitable to design as-

pects?
– In what respect do they fail to do so?
– How could those deficiencies be resolved?

W5: Model Transformations in Practice

Organizers: Jean Bezivin (University of Nantes), Bernhard Rumpe (TU Braun-
schweig), Andy Schuerr (TU Darmstadt), Laurence Tratt (King’s College
London)

710 Jean-Michel Bruel

URL: http://sosym.dcs.kcl.ac.uk/events/mtip/

Abstract: Model Transformations in Practice is a workshop to be held at the
upcoming MoDELS 2005 conference. It aims to provide a forum for the
model transformation community to discuss practical model transformation
issues. Currently, many different model transformation approaches have been
proposed and explored, but there has been too little work on comparing and
contrasting various approaches. Without such comparisons, it is hard to
assess new model transformation approaches, or to discern sensible future
paths and upcoming standards such as the upcoming OMG MOF/QVT
recommendation.
The aim of this workshop is to lead to an increased understanding of the
relative merits of different model transformation techniques and approaches.
A more advanced understanding of such merits is of considerable benefit to
both the model transformation and wider modelling communities.

W6: WiSME – Workshop in Software Model Engineering

Organizers: Krzysztof Czarnecki (University of Waterloo), Jean-Marie Favre
(University of Grenoble), Martin Gogolla (University of Bremen), Tom Mens
(University of Mons-Hainaut)

URL: http://planetmde.org/wisme-2005

Abstract: Model-Driven Engineering is a form of generative engineering, by
which all or at least central parts of a software application are generated
from models. Model Driven Engineering should be seen as an integrative
approach combining existing software engineering techniques (e.g., testing
and refinement) and technical spaces (e.g., ’ModelWare’ and ’XmlWare’)
that have usually been studied in separation. The goal of the workshop is to
improve common understanding of these techniques across technical spaces
and create bridges and increase the synergies among the spaces. This year’s
WiSME workshop will concentrate on two complementing themes: Bridging
Technical Spaces and Model-Driven Evolution.

W7: Model Driven Development of Advanced User Interfaces

Organizers: Jan Van den Bergh, Hasselt University, Belgium, Heinrich Huss-
mann, University of Munich, Germany, Andreas Pleuss, University of Mu-
nich, Germany, Stefan Sauer, University of Paderborn, Germany

URL: http://www.edm.uhasselt.be/mddaui2005/

Abstract: The user interface of an application is often one of the core factors de-
termining its success. While model-driven development is gaining popularity
in the software engineering community, model-based user interface develop-
ment is an important line of research in the human-computer interaction

Workshops at the MODELS 2005 Conference 711

community. Both approaches make extensive use of models to develop soft-
ware, but currently they are still vastly independent. This workshop aims at
integrating the knowledge from both domains, leading to a model-driven de-
velopment of user interfaces. In particular the focus lies on advanced user in-
terfaces corresponding to the current state-of-the-art in human-computer in-
teraction, such as interfaces supporting complex interactions, visualizations,
multimedia representations, multimodality, adaptability, or customization.

W8: NfC – Models for Non-functional Aspects of Component-Based
Software

Organizers: Jan Øyvind Aagedal (SINTEF ICT, Norway), Geri Georg (Col-
orado State University, USA), Raffaela Mirandola (University of Roma
”TorVergata”, Italy), Ileana Ober (IRIT, France), Dorina Petriu (Carleton
University, Canada), Wolfgang Theilmann (SAP Research Belfast, Ireland),
Jon Whittle (George Mason University, USA), Steffen Zschaler (Technische
Universität Dresden, Germany)

URL: http://www.comquad.org/nfc05/

Abstract: Developing reliable software is a complex, daunting, and error-prone
task. Therefore, many researchers are interested in improving the support
for developers creating such software. Component-based software engineer-
ing has emerged as an important paradigm for handling complexity. In par-
allel, raising the level of abstraction when reasoning about systems, thus
using models, is another technique for lowering the complexity. The goal of
this workshop is to look at issues related to the integration of non-functional
property expression, evaluation, and prediction in the context of component-
based software engineering and finding the best techniques to deal-with non-
functional aspects in a model based approach, such as, but not limited to,
UML-based approaches. This includes semantic issues, questions of mod-
elling language definition, but also support for automation, such as analysis
algorithms, MDA-based approaches, or tool-support for refinement steps.
As models are only really meaningful if used in the context of a software
development process, we also welcome work in this area.
We expect the workshop to foster cooperation between the various research
groups in the field. One important expected outcome is a joint workshop
report as well as ongoing discussions, e.g., on a workshop mailing list. The
aim of this workshop is to bring together practitioners and academics that
are currently working around these topics to highlight the ongoing solutions
and the problems encountered. The workshop is organized on two half-day
sessions: The morning session is dedicated to invited talks and presentations;
followed in the afternoon by working sessions. The number and subject of
these sessions will be decided by the organizers depending on the position
papers.

712 Jean-Michel Bruel

W9: MDD for Software Product-lines: Fact or Fiction?

Organizers: Dr. Douglas C. Schmidt (Vanderbilt University, Tennessee),
Andrey Nechypurenko (Siemens), Egon Wuchner (Siemens)

URL:
http://www.geocities.com/andreynech/MDDandProductLinesWorkshop.
html

Abstract: key advantages of using model-driven development in conjunction
with commonalityvariability analysis (CVA) are (1) rigorously capturing the
key roles and responsibilities in a CVA and (2) helping automate repetitive
tasks that must be accomplished for each product instance. Often, however,
new customer requirements invalidate the results of earlier CVAs, such that
a CVA and its derived meta-models, DSMLs, and generators must be modi-
fied invasively and intrusively to reflect these new requirements. The primary
scope of this workshop will be on theory and methods to reduce the impact
of the new unanticipated requiremetns on the (meta)models and model in-
terpretes in order to improve the usability of model-based technologies in
real-life large scale applications.

W10: Use Cases in Model-Driven Software Engineering

Organizers: Hernán Astudillo (Universidad Técnica Federico Santa Maŕıa,
Valparáıso, Chile), Gonzalo Génova (Universidad Carlos III de Madrid,
Spain), Michal Smialek (Warsaw University of Technology, Poland), Juan
Llorens (Universidad Carlos III de Madrid, Spain), Pierre Metz (Darmstadt
University of Applied Sciences, Germany), Rubén Prieto-Dı́az (James Madi-
son University, USA)

URL: http://www.ie.inf.uc3m.es/wuscam-05/index.htm

Abstract: The integration of use cases within Model Driven Software Engineer-
ing requires a better definition of use case contents, in particular use case
description of behavior through sequences of action steps, use case pre- and
post- conditions, and relationship between use case model and conceptual
model. The UML2 specification allows for several textual and graphical rep-
resentations of use case behavior, but does not provide any rules for transfor-
mations between different representations at the same level of abstraction. It
does not provide either any rules for transformations of these representations
to other artifacts at levels closer to implementation. With this workshop we
hope to show how the resourceful application of use case models help to fill
the ”requirements gap” in the current resarch and practice of model-driven
methodologies.

Workshops at the MODELS 2005 Conference 713

W11: Educator’s Symposium

Organizers: Holger Giese, University of Paderborn, Germany, Pascal Roques,
Valtech Training, France, Omar Aldawud, Lucent Technologies, USA, Balbir
Barn, Thames Valley University, UK, Leonor Barroca, Open University, UK,
Francis Bordeleau, Carleton University Canada, Jean-Michel Bruel, Univer-
sity of Pau, France, Doris Carver, Louisiana State University, USA, Betty
H.C. Cheng, Michigan State University, USA, Kendra Cooper, University of
Texas at Dallas, USA, Peter Dolog, L3S Research Center, Germany, Robert
B. France, Colorado State University, USA, Haim Kilov, Stevens Institute
of Technology, USA, Timothy C. Lethbridge, University of Ottawa, Canada,
Bruce R. Maxim, University of Michigan-Dearborn, USA, Hossein Saiedian,
University of Kansas, USA, Justo N. Hidalgo Sanz, Denodo Technologies,
Spain, Perdita Stevens, University of Edinburgh, UK, Xudong He, Florida
International University, USA

URL: See the main conference web site.

Abstract: Model-driven development approaches and technologies for software-
based systems, in which development is centered round the manipulation
of models, raise the level of abstraction and thus, improve our abilities to
develop complex systems. Therefore, a number of approaches and tools have
been proposed for the model-driven development (MDD) of software-based
systems. Examples are UML, model-driven architecture (MDA), and model-
integrated computing (MIC).
Putting the model-driven development vision into practice requires not only
sophisticated modeling approaches and tools, but also considerable training
and education efforts. To make people ready for model-driven development,
its principles and applications need to be taught to practitioners in indus-
try, incorporated in university curricula, and probably even introduced in
schools.
The educator’s symposium at the MoDELS conference, the premier con-
ference devoted to the topic of model-driven engineering of software-based
systems, was intended as a forum in which educators and trainers could meet
to discuss pedagogy, use of technology, and share their experience pertaining
to teaching modeling techniques and model-driven development.

W12: Doctoral Symposium

Organizers: Jeff Gray, University of Alabama at Birmingham, USA, Aditya
Agrawal, IBM TJ Watson Research, USA, Jean Bézivin, University of Nantes,
France, Betty Cheng, Michigan State University, USA, Emanuel Grant, Uni-
versity of North Dakota, USA, Jörg Kienzle, McGill University, Canada, Ana
Moreira, Universidade Nova de Lisboa, Portugal, Kerry Raymond, DSTC,
Australia

714 Jean-Michel Bruel

URL: See the main conference web site.

Abstract: The Doctoral Symposium at the MoDELS conference provided an
international forum for doctoral students to interact with other students and
faculty mentors. The Doctoral Symposium brings together PhD Students
working in areas related to modeling and model-driven engineering. Selected
students had the opportunity to present and to discuss their research goals,
methods and results within a constructive and international atmosphere.
The Symposium organizers provided useful guidance for completion of the
dissertation research and initiation of a research career. The symposium was
intended for students who had already settled on a specific research proposal
and have some preliminary results, but still have enough time remaining be-
fore their final defense so that they can benefit from the Symposium discus-
sions. Due to the mentoring aspect of the event, the Symposium was open
only to those students and mentors participating directly in the event.

Acknowledgements

I would like to thank the members of the selection committee who not only
spontaneously accepted my invitation, but also provided helpful comments in
the selection process. I also would like to thank Geri Georg for her countless
time and help in many aspects of the organization of the Satellite events.

Tutorials at the MODELS 2005 Conference

Gianna Reggio

DISI - University of Genova
Genova, Italy

reggio@disi.unige.it

Abstract. The MoDELS 2005 conference provides six half-day tutorials
on advanced topics related to model-driven engineering, presented by
recognized worldwide experts. Here, there is a short summary of each
tutorial and the list of presenters.

1 Introduction

Tutorials will give conference attendees the opportunities to acquire new knowl-
edge, to get some different insights, and to develop abilities on key subjects and
related up to date techniques. The tutorial program of the MoDELS 2005 confer-
ence seeks to continue this tested tradition. This program is intended for prac-
titioners, reaearchers, educators and students looking for a better and deeper
understanding of topics related to the model-driven engineering. It will cover
both languages and systems used to create complex applications.

For this conference, we received a very large number of high quality tutorial
proposals, but unfortunately we had space only for six. As a result, a large
number of good proposals were not accepted as we sought to mantain a strong
attendance at each tutorial. In the six that we selected there is a good mixture
of tutorials covering areas that are topical and have great appeal and relevance
to the modelling community.

We summarize these tutorials in the following section; further details can be
accessed at the MoDELS 2005 conference web site:

http://www.modelsconference.org

2 Detailed List of Tutorials

Tutorial T1: Model Driven Development with Eclipse Modeling
Framework (EMF)

Presenters: Vladimir Bacvanski and Petter Graf (InferData, Austin, USA)

This tutorial teaches the participants how to use and extend the Eclipse
Modeling Framework (EMF). Using a case study and numerous examples, the
participants master the EMF framework as a generative tool for model driven

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 715–718, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

716 Gianna Reggio

development. The tutorial explores all aspects of EMF development, from cre-
ation of models for EMF, use of generators, Java Emitter Templates, concluding
with an overview of model transformation technologies for EMF.

The conceptual but also non-trivial practical skills gained in this tutorial
will enable participants to effectively start developing their model driven appli-
cations. The skills apply both to practitioners who need to develop Eclipse tools,
as well to researchers who will use Eclipse and EMF as a foundation for their
experiments.

Tutorial T2: Language-Driven Development

Presenters: Tony Clark and Andy Evans (Xactium Limited, Sheffield, UK)

Languages provide a unifying and ubiquitous abstraction for systems devel-
opment. Just as Booch argued that Object-Orientation is based on the things we
learn in Kindergarten, we argue that Languages are a more intuitive and pow-
erful representation than Objects. We propose that the Language abstraction is
set to become the next major paradigm shift in software development.

In this tutorial we describe how developers can gain siginificant productvity
increases in the way they build systems by identifying, capturing and deploying
tools that support the right languages for their business domain.

The ideas presented in this tutorial are based on many years experience of
contributing to language standards within the Object Management Group, and
experience of applying the ideas to large scale industrial projects.

Tutorial T3: Designing Software Product Lines with UML 2.0: From
Use Cases to Pattern-Based Software Architectures

Presenter: Hassan Gomaa (George Mason University, Fairfax, USA)

This tutorial addresses how to develop object-oriented requirements, analysis,
and design models for software product lines (SPL) using the UML 2.0 notation.

The emphasis throughout is on modeling commonality and variability among
the family members of the product line. During requirements modeling, kernel,
optional, and alternative use cases define the software functional requirements
of the SPL. The feature model is developed to capture common and variable
product line requirements, and how they relate to the use case model. During
analysis, static models define kernel, optional, and variant classes and their rela-
tionships. In dynamic modeling, statecharts define the state dependent aspects
of the SPL and interaction models describe the dynamic interaction between the
objects that participate in each kernel, optional, and alternative use case.

The tutorial then covers how to develop the component-based SPL archi-
tecture using the new UML 2.0 notation for structured classes and composite
structure diagrams, which allows components, ports, and connectors to be de-
picted. The SPL architecture is built using software architectural structure and
communication patterns.

Tutorials at the MODELS 2005 Conference 717

The tutorial is based on the prresenter latest book, “Designing Software Prod-
uct Lines with UML: From Use Cases to Pattern-Based Software Architectures”,
Addison Wesley, 2005.

Tutorial T4: Modeling and Analysis of Aspectual Requirements

Presenters: Awais Rashid (Lancaster University, UK) and Ana Moreira (Uni-
versidade Nova de Lisboa, Lisbon, Portugal)

Aspect-oriented software development (AOSD) techniques have shown
promise in dealing with broadly-scoped, crosscutting properties, i.e., the aspects.
However, to date, most techniques have focused on design modelling of aspects
and aspect-oriented programming technologies. Aspects, however, exist from the
very early stages of problem analysis and hence, should be addressed during
requirements engineering. This tutorial highlights the need to identify, model
and analyse aspects during requirements engineering. It shows, with the help of
practical examples, how to extend existing requirements models, e.g., use-case or
viewpoint based models, with abstraction and composition support for aspects.
The tutorial also describes how to analyse such models as well as the key role
they play in a model-driven development (MDD) lifecycle.

At the end of the tutorial, participants will have a clear understanding of:

– the importance of aspects in the software development process;
– the role of aspect-oriented concepts in requirements modelling and analysis;
– techniques, tools and good practice guidelines for identifying, modelling,

composing and analysing crosscutting properties at the requirements-level;
– how aspect-oriented requirements models and their analysis drive develop-

ment of solution domain models in a model-driven development approach.

Tutorial T5: An Overview of UML 2.0

Presenter: Bran Selic (IBM Software Group - Rational Software, Canada)

The first major revision of the UML standard, UML 2.0, has recently
been adopted by the Object Management Group. This version of the language
was strongly influenced by the recent maturation of model-driven development
(MDD) methods and technologies. The tutorial describes the major new features
and capabilities of UML 2.0 with a full explanation of the rationale and design
philosophy for each.

The presenter is currently chairing the OMG team responsible for maintain-
ing the standard.

718 Gianna Reggio

Tutorial T6: Software Factories: Using Domain Specific Languages,
Patterns, Frameworks and Tools to Assemble Applications

Presenter: Steve Cook (Microsoft Corporation, Cambridge, UK)

Increasingly complex and rapidly changing requirements and technologies are
making application development increasingly difficult.

This tutorial explores this phenomenon, and presents the Software Fac-
tory pattern for building languages, patterns, frameworks and tools for specific
domains, such as user interface construction or database design. We discuss
the forces acting towards increasing industrialization of software development
through delivery of knowledge and automation in context. We explore inno-
vations, such as software product lines and model driven development, which
reduce the cost of implementing the pattern, making it cost effective for nar-
rower and more specialized domains, such as B2C application development and
business process automation. We introduce the concept of the software schema, a
network of viewpoints describing artifacts comprising the members of a family of
software products, and we show how mappings between these viewpoints can be
used to provide constraints supporting model transformation and self organizing
processes.

Examples and demonstrations are used throughout to illustrate the concepts.

Acknowledgements

I would like to thank Bran Selic and João Araújo for their contributions during
the selection process.

Panels at the MODELS 2005 Conference

Siobhán Clarke

Trinity College, Ireland
siobhan.clarke@cs.tcd.ie

Panel P1: What Would Be the Ideal Meta-modeling Infrastructure?

Chair: Pierre-Alain Muller, University of Haute Alsace, France

The goal of this panel is to discuss the requirements for an ideal meta-
modeling architecture. The panel will address the following points:

– What is the scope of meta-modeling?
– How to reconcile domain-oriented meta-hierarchies with language-oriented

meta-hierarchies?
– What would be a minimal core meta-language?
– What kind of tool support should be available for meta-modeling?

Panel P2: A DSL or UML Profile. Which Would You Use?

Chair: Stuart Kent, Microsoft, Cambridge, UK

In implementing model driven approaches to software development, there is
some debate about the languages to use for modelling. On one side, there is the
UML, advocates of which might argue that it has everything you’ll need and
its profiling mechanisms are quite adequate to cope with any customization or
specialization you might need. On the other side are those advocating domain
specific languages, who might argue that most of the time you’re going to need
to specialize and customize the language you use for modelling, that UML is
not a good starting point for such specialization, and UML profiles are weak
mechanism for extensibility anyway. Let’s instead put together technology ap-
propriate for building DSLs, they’d say. Of course, within the DSL camp, there’s
further debate about what is the right technology, but perhaps that’s the topic
of another panel... we’ll see.

Panel P3: Building Better Systems: Modeling, Verification, and
Testing

Chair: Clay Williams (Moderator, IBM Watson Research Center, USA)

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 719–720, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

720 Siobhán Clarke

Panelists: Paul Baker (Motorola Research, UK), Lionel Briand (Carleton Uni-
versity, Canada and Simula Research Labs, Norway) and Sudipto Ghosh (Col-
orado State University, USA)

A stated goal of model-based software development is that software quality
will drastically improve as a result of the use of modeling methods. This hope
has been held out repeatedly in the past by other software development move-
ments, including formal methods, computer aided software engineering (CASE),
and various process movements, such as the Cleanroom approach to building
software. The participants in this panel will explore whether we are reasonable
in hoping that modeling as we know it today will significantly assist with quality
issues. In doing so, they will discuss what the major technical issues are that
need to be addressed in order to achieve higher quality software, and propose
a research agenda for addressing these issues. The panelists will pay particular
attention to the use of modeling languages to facilitate better testing, as well as
how modeling languages can be used as a basis for verification approaches such
as model checking and theorem proving.

Author Index

Atkinson, Colin, 398

Baar, Thomas, 280
Baker, Paul, 476
Bendraou, Reda, 17
Berenbach, Brian, 324
Bia, Alejandro, 648
Blanc, Xavier, 17, 661
Bojarski, Jacek, 414
Bondi, Andre, 355
Bordbar, Behzad, 382
Bordeleau, Francis, 553
Boulet, Pierre, 445
Bræk, Rolv, 460
Breu, Ruth, 39
Bruel, Jean-Michel, 706

Castejón, Humberto Nicolás, 460
Chauvel, Franck, 54
Cheng, Betty H.C., 324
Clarke, Siobhán, 719
Crane, Michelle L., 97
Cruz-Lemus, José A., 113
Cuccuru, Arnaud, 445

D’Hondt, Maja, 633
De Meuter, Wolfgang, 633
Dekeyser, Jean-Luc, 445
Demurjian, Steven, 537
Deubler, Martin, 522
Dijkman, Remco, 232
Dingel, Juergen, 97
Dony, Christophe, 568
Draheim, Dirk, 382

El-Boussaidi, Ghizlaine, 186
Engels, Gregor, 2
Estublier, Jacky, 69

Ferreira Pires, Lúıs, 691
Fleurey, Franck, 264
Foerster, Alexander, 2

Genero, Marcela, 113
Gervais, Marie-Pierre, 17
Giese, Martin, 309

Glattetre, Jens M., 492
Gokhale, Aniruddha, 295, 601
Gokhale, Swapna, 295
Gómez, Jaime, 648
Gray, Jeff, 295
Guizzardi, Giancarlo, 691

Hafner, Michael, 39
Hettish, Mark, 355
Horn, Matthias, 382
Houmb, Siv Hilde, 142

Ionita, Anca Daniela, 69

Jézéquel, Jean-Marc, 54, 84, 264
Jonckers, Viviane, 367
Jürjens, Jan, 142

Kiczales, Gregor, 508
Kienzle, Jörg, 217, 568
Kimelman, Doug, 507
Kraemer, Frank Alexander, 460
Krikorian, Haig F., 397
Krüger, Ingolf, 522
Kühne, Thomas, 398
Kuzniarz, Ludwik, 201

Larsson, Daniel, 309
Lin, Yuehua, 295
Loh, Shiou, 476

Manso, M. Esperanza, 113
Marich, Michael J., 397
Marković, Slavǐsa, 280
Marquet, Philippe, 445
Masticola, Steve, 355
Mei, Hong, 248
Meisinger, Michael, 522
Michel, Laurent, 537
Mili, Hafedh, 186
Muller, Pierre-Alain, 264
Mustafiz, Sadaf, 217, 568

Neema, Sandeep, 295
Nordstrom, Steve, 295
Nowakowski, Wiktor, 414

722 Author Index

Pavlich-Mariscal, Jaime, 537
Petriu, Dorina C., 156
Pettit IV, Robert G., 431
Piattini, Mario, 113
Pleuß, Andreas, 676
Prenninger, Wolfgang, 126
Pretschner, Alexander, 126

Quartel, Dick, 232

Ramalho, Franklin, 661
Reggio, Gianna, 715
Rittmann, Sabine, 522
Robin, Jacques, 661
Rodrigues, Genáına N., 339
Rosenblum, David S., 339
Rugaber, Spencer, 616

Sanders, Richard Torbjørn, 460
Schattkowsky, Tim, 2
Schmidt, Douglas C., 1, 601
Schulz, Ina, 382
Selic, Bran, 553
Shen, Hui, 156
Shui, Aaron, 568
Śmia�lek, Micha�l, 414
Staron, Miroslaw, 201
Steel, Jim, 84
Steimann, Friedrich, 171
Stephenson, Ryan, 324

Stirewalt, Kurt, 616
Straszak, Tomasz, 414
Street, Julie A., 431
Suzuki, Junichi, 584

Tkatchenko, Maria, 508
Tolvanen, Juha-Pekka, 279

Uchitel, Sebastian, 339

Van Paesschen, Ellen, 633
van Sinderen, Marten, 232, 691
Vangheluwe, Hans, 217
Vega, German, 69
Vieira, Marlon, 430
Vokáč, Marek, 492

Wada, Hiroshi, 584
Wagelaar, Dennis, 367
Walsh, D’Arcy, 553
Weber, Gerald, 382
Weil, Frank, 476
White, Jules, 601

Yang, Jie, 248

Zhang, Jing, 295
Zhang, Wei, 248
Zhao, Haiyan, 248
Zia, Miriam, 217

	Frontmatter
	Keynote Address I
	Keynote Address I: Model Driven Development for Distributed Real-Time and Embedded Systems

	Process
	Activity Diagram Patterns for Modeling Quality Constraints in Business Processes
	UML4SPM: A UML2.0-Based Metamodel for Software Process Modelling
	Realizing Model Driven Security for Inter-organizational Workflows with WS-CDL and UML 2.0

	Product Families, Reuse
	Code Generation from UML Models with Semantic Variation Points
	Composing Domain-Specific Languages for Wide-Scope Software Engineering Applications
	Model Typing for Improving Reuse in Model-Driven Engineering

	State/Behavioral Modeling
	UML Vs. Classical Vs. {\sc Rhapsody} Statecharts: Not All Models Are Created Equal
	Evaluating the Effect of Composite States on the Understandability of UML Statechart Diagrams
	Computing Refactorings of Behavior Models

	Aspects
	Dynamic Secure Aspect Modeling with UML: From Models to Code
	Performance Analysis of UML Models Using Aspect-Oriented Modeling Techniques
	Domain Models Are Aspect Free

	Design Strategies
	Representing and Applying Design Patterns: What Is the Problem?
	Properties of Stereotypes from the Perspective of Their Role in Designs
	A Modelling and Simulation Based Approach to Dependable System Design

	Model Transformations
	Extending Profiles with Stereotypes for Composite Concepts
	Transformation from CIM to PIM: A Feature-Oriented Component-Based Approach
	Weaving Executability into Object-Oriented Meta-languages

	Keynote Address II
	Keynote Address II: Domain-Specific Modeling: No One Size Fits All

	Model Refactoring
	Refactoring OCL Annotated UML Class Diagrams
	Replicators: Transformations to Address Model Scalability
	Simplifying Transformations of OCL Constraints

	Quality Control
	Lessons Learned from Automated Analysis of Industrial UML Class Models (An Experience Report)~~
	Reliability Prediction in Model-Driven Development
	Model-Based Scalability Estimation in Inception-Phase Software Architecture

	MDA I
	Explicit Platform Models for MDA
	Integrated Model-Based Software Development, Data Access, and Data Migration
	Invited Presentation I: Lessons Learned, New Directions, and Migration Plans for Model-Driven Development of Large Scale Software Based Systems

	Automation I
	Concepts for Comparing Modeling Tool Architectures
	Scenario Construction Tool Based on Extended UML Metamodel
	Invited Presentation II: Experiences in Applying Model Based System Testing Generation

	UML 2.0
	The Impact of UML 2.0 on Existing UML 1.4 Models
	Towards UML 2 Extensions for Compact Modeling of Regular Complex Topologies
	Using UML 2.0 Collaborations for Compositional Service Specification

	Industrial Experience
	Model-Driven Engineering in a Large Industrial Context --- Motorola Case Study
	Using a Domain-Specific Language and Custom Tools to Model a Multi-tier Service-Oriented Application --- Experiences and Challenges
	Invited Presentation III: The Architects' Workbench --- Research in the Trenches

	Crosscutting Concerns
	Uniform Support for Modeling Crosscutting Structure
	Modeling Crosscutting Services with UML Sequence Diagrams
	A Formal Enforcement Framework for Role-Based Access Control Using Aspect-Oriented Programming

	Modeling Strategies I
	A Domain Model for Dynamic System Reconfiguration
	Exceptional Use Cases

	MDA II
	Modeling Turnpike Frontend System: A Model-Driven Development Framework Leveraging UML Metamodeling and Attribute-Oriented Programming
	Simplifying Autonomic Enterprise Java Bean Applications Via Model-Driven Development: A Case Study

	Automation II
	Automated Invariant Maintenance Via OCL Compilation
	SelfSync: A Dynamic Round-Trip Engineering Environment
	UML for Document Modeling: Designing Document Structures for Massive and Systematic Production of XML-based Web Contents

	Modeling Strategies II
	Metamodel Reuse with MOF
	Modeling the User Interface of Multimedia Applications
	An Ontology-Based Approach for Evaluating the {\itshape Domain Appropriateness} and {\itshape Comprehensibility Appropriateness} of Modeling Languages

	Workshops, Tutorials and Panels
	Workshops at the MODELS 2005 Conference
	Tutorials at the MODELS 2005 Conference
	Panels at the MODELS 2005 Conference

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

