
Analysis of the Component Architecture
Overhead in Open MPI

B. Barrett1, J.M. Squyres1, A. Lumsdaine1,
R.L. Graham2, and G. Bosilca3

1 Open Systems Laboratory, Indiana University
{brbarret, jsquyres, lums}@osl.iu.edu

2 Los Alamos National Lab
rlgraham@lanl.gov

3 Innovative Computing Laboratory, University of Tennessee
bosilca@cs.utk.edu

Abstract. Component architectures provide a useful framework for de-
veloping an extensible and maintainable code base upon which large-
scale software projects can be built. Component methodologies have
only recently been incorporated into applications by the High Perfor-
mance Computing community, in part because of the perception that
component architectures necessarily incur an unacceptable performance
penalty. The Open MPI project is creating a new implementation of the
Message Passing Interface standard, based on a custom component ar-
chitecture – the Modular Component Architecture (MCA) – to enable
straightforward customization of a high-performance MPI implementa-
tion. This paper reports on a detailed analysis of the performance over-
head in Open MPI introduced by the MCA. We compare the MCA-based
implementation of Open MPI with a modified version that bypasses the
component infrastructure. The overhead of the MCA is shown to be low,
on the order of 1%, for both latency and bandwidth microbenchmarks
as well as for the NAS Parallel Benchmark suite.

1 Introduction

MPI implementations are designed around two competing goals: high perfor-
mance on a single platform and support for a range of platforms. Vendor op-
timized MPI implementations must support ever evolving hardware offerings,
each with unique performance characteristics. Production quality open source
implementations, such as Open MPI [6], LAM/MPI [13], and MPICH [9], face
an even wider range of platform support. Open MPI is designed to run efficiently
on platforms ranging from networks of workstations to custom built supercom-
puters with hundreds of thousands of processors and high speed interconnects.

Open MPI meets the requirements of high performance and portability with
the Modular Component Architecture (MCA), a component system designed
for High Performance Computing (HPC) applications. While component based
programming is widely used in industry and many research fields, it is only
recently gaining acceptance in the HPC community. Most existing component

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 175–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

176 B. Barrett et al.

architectures do not provide the low overheads necessary for use in HPC appli-
cations. Existing architectures are generally designed to provide features such
as language interoperability and to support rapid application development, with
performance as a secondary concern.

In this paper, we show that Open MPI’s MCA design provides a component
architecture with minimal performance implications. Section 2 presents similar
work for other component architectures. An overview of the Open MPI architec-
ture is presented in Section 3, focusing on the component architecture. Finally,
Section 4 presents performance results from our experiments with Open MPI.

2 Related Work

Component architectures have found a large degree of success in commercial
and internet applications. Enterprise JavaBeans, Microsoft COM and DCOM,
and CORBA provide a rich environment for quickly developing a component
based application. These environments focus on industrial applications, provid-
ing reasonable performance for such applications. However, either the languages
supported or the overheads involved make them unsuitable for the high perfor-
mance computing community. Literature on the performance of such component
infrastructures is sparse, most likely due to the fact that performance is not a
concern for the intended uses of these component architectures.

The Common Component Architecture (CCA) [2] is designed to provide a
high performance component architecture for scientific applications. Bernholdt
et. al. [3] study the overheads involved in the CCA design and found them to
be small, on the order of two extra indirect function calls per invocation. CCA
components are designed to be large enough that component boundaries are not
crossed for inner loops of a computation. Therefore, the overhead of CCA is
negligible for most applications. Much of the overhead is due to inter-language
data compatibility, an overhead that is not applicable in Open MPI.

3 Open MPI Architecture

Open MPI is a recently developed MPI implementation, tracing its history to
the LAM/MPI [13], LA-MPI [8], FT-MPI [5], and PACX-MPI [10] projects.
Open MPI provides support for both MPI-1 and MPI-2 [7,12].1 Open MPI is
designed to be scalable, fault tolerant, and provide high performance in a variety
of HPC environments. The use of a component architecture allows for a well
architected code base that is both easy to test across multiple configurations
and easy to integrate into a new platform.

3.1 Component Architecture

The Modular Component Architecture (MCA) is designed to allow users to build
a customized version of Open MPI at runtime using components. The high over-
1 One-sided support is scheduled to be added to Open MPI shortly after the first

public release.

Analysis of the Component Architecture Overhead in Open MPI 177

heads generally associated with CORBA and COM are avoided in the MCA
by not supporting inter-process object communication or cross-language sup-
port – MCA components provide a C interface and interface calls are local to
the MPI process. Components are opened and loaded at runtime on demand,
using the GNU Libtool libltdl software package for portable dynamic shared
object (DSO) handling. Components can also be linked into the MPI library
for platforms that lack support from libltdl or when a static library is de-
sired. Current MPI level component frameworks include point-to-point messag-
ing, collective communication, MPI-2 I/O, and topology support. The runtime
infrastructure for Open MPI include component frameworks for resource discov-
ery, process startup, and standard I/O forwarding, among others.

In order to provide a manageable number of measurements while still mea-
suring the overhead of the MCA design, we focus on the components directly re-
sponsible for MPI point-to-point communication for the remainder of this paper.
Many common MPI benchmarks are based primarily on point-to-point commu-
nication, providing the best opportunities for analyzing the performance impact
of the MCA on real applications.

3.2 MPI Point-to-Point Design

Open MPI implements MPI point-to-point functions on top of the Point-to-point
Management Layer (PML) and Point-to-point Transport Layer (PTL) frame-
works (Fig. 1). The PML fragments messages, schedules fragments across PTLs,
and handles incoming message matching. Currently, there is one PML compo-
nent, TEG [14]. TEG is designed to support message fault tolerance, recovery
from corrupted data, and dropped packets.2 It can also simultaneously use mul-
tiple communication channels (PTLs) for a single message. The PTL provides
an interface between the PML and underlying network devices.

PTL
(e.g., TCP) (e.g., shared memory) (e.g., Infiniband)

PTL

MPI API layer

PML

PTL

Fig. 1. Open MPI component frameworks for MPI point-to-point messages

2 These features remain under active development and may not be available in the
first release of Open MPI.

178 B. Barrett et al.

4 Component Overhead Analysis

The MCA design’s primary source of overhead is the use of indirect calls through
function pointers for dispatching into a component. There are two designs for
calling into components in the MCA, depending on how many component in-
stances (modules) are active within the framework. For frameworks like the PML,
where only one module is active per process, a global structure is used to hold
the set of function pointers. The address of the global structure is known at link
time. In the case of the PTL frameworks, there are multiple components active,
so there is not a single global structure of function pointers. Instead, there are
multiple tables stored by the caller of the framework, the PML in this case. The
PML must compute the address of the function pointer in a PTL structure, load
the value of the function pointer, and make the function call.

To measure the overhead of the component architecture in Open MPI, we
added the ability to bypass the indirect function call overhead inherent in the
MCA design. Calls from the MPI layer into the PML and from PML into the
PTL are made directly rather than using the component architecture. The GM
PTL, supporting the Myrinet/GM interconnect, was chosen because it offered
a low latency, high bandwidth environment best suited for examining the small
overheads involved in the MCA. The ability to “hard code” the PML is available
as part of Open MPI as a configure time option. Bypassing the PTL component
interface is not part of the Open MPI release, as it greatly limits the functionality
of the resulting MPI implementation. In particular, bypassing the PTL compo-
nent interface disables message striping over multiple devices and the ability to
send messages to self. For the majority of the tests discussed in this paper, such
limitations were not relevant to examining the overheads of the MCA.

Two variables relevant to the overhead of the MCA system for point-to-point
communication are how libmpi is built and whether the MCA interface is used
for point-to-point communication. Table 1 describes the MPI configurations used
in testing. Open MPI alpha release r5408 was used for testing Open MPI and
was modified to support bypassing the PTL component overhead. MPICH-GM

Table 1. Build configurations used in performance tests

Configuration Description
MPICH-GM Myricom MPICH-GM 1.2.6..14a, built using the default

build script for Linux with static library
LAM/MPI LAM/MPI 7.1.1, with GM support and static library
Open MPI shared DSO Open MPI, libmpi shared library. Components dynami-

cally loaded at runtime, using the component interface
Open MPI shared direct Open MPI, libmpi shared library. Point-to-point compo-

nents part of libmpi, bypassing the component interface
Open MPI static DSO Open MPI, libmpi static library. Components part of

libmpi, using the component interface
Open MPI static direct Open MPI libmpi static library. Point-to-point compo-

nents part of libmpi, bypassing the component interface

Analysis of the Component Architecture Overhead in Open MPI 179

1.2.6..14a, the latest version of MPICH available for Myrinet,3 and LAM/MPI
7.1.1 were used to provide a baseline performance reference.

All MPI tests were performed on a cluster of 8 dual processor machines
connected using Myrinet. The machines contain 2.8 GHz Intel Xeon processors
with 2 GB of RAM. A Myricom PCIX-D NIC is installed in a 64 bit 133 MHz
PCI-X slot. The machines run Red Hat 8.0 with a Linux 2.4.26 based kernel
and Myricom’s GM 2.0.12. Additional CPU overhead tests were performed on a
dual 2.0 GHz AMD Opteron machine with 8 GB of RAM running Gentoo Linux
and the 2.6.9 kernel and an Apple Power Mac with dual 2.0 GHz IBM PPC 970
processors and 3.5 GB of memory running Mac OS X 10.4.

4.1 Indirect Function Call Overhead

Fig. 2 presents the overhead, measured as the time to make a call to a function
with no body, for different call methods. A tight loop is used to make the calls, so
all loads should be satisfied from L1 cache, giving a best case performance. The
direct call result is the time to call a function in a static library, a baseline for
function call overheads on a particular platform. The function pointer result is
the cost for calling the same function, but with a load dependency to determine
the address of the function. As expected, the cost is approximately the cost of
a load from L1 cache plus the cost of a direct function call. Calling a function
in a shared library directly (the shared library call result) requires indirect ad-
dressing, as the location of a function is unknown until runtime. There is some
additional overhead in a shared library call due to global offset table (GOT)
computations, so a direct call into a shared library is generally more expensive
than an indirect call into a static library [11]. The unusually high overhead for
the PPC 970 when making shared library calls is due to the Mach-O ABI used
by Mac OS X, and not the PPC 970 hardware itself [1].

Function calls into a DSO are always made through a function pointer, with
the address of the function explicitly determined at runtime using dlsym() (or
similar). In modern DSO loader implementations, GOT computations are not
required. The cost of calling a function in a DSO is therefore much closer to the
cost of an indirect function call into a static library than a direct function call into
a shared library. From this result, it should be expected that the performance
impact of the component architecture in Open MPI will be more from the use
of shared libraries than from the component architecture itself.

4.2 Component Effect on Latency and Bandwidth

MPI latency for zero byte messages using a ping-pong application and band-
width using NetPIPE are presented in Fig. 3. All builds of Open MPI exhibit
performance differences of less than 2%, with most of the performance differ-
ence related to whether Open MPI used shared or static libraries. Bypassing
the component infrastructure for point-to-point messages shows little impact on
3 At the time of writing, Myricom does not provide an MPICH-2 based implementation

of MPICH-GM.

180 B. Barrett et al.

0.000

0.002

0.004

0.006

0.008

0.010

2.0Ghz Opteron2.8Ghz Xeon2.0Ghz PPC 970

C
al

l O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Platform

Direct Call
Function Pointer

Shared Library Call
Function Pointer into DSO

Fig. 2. Time to make a call into an empty function for a number of common
architectures

Implementation Latency
Open MPI shared DSO 7.21us
Open MPI shared direct 7.17us
Open MPI static DSO 7.13us
Open MPI static direct 7.12us
MPICH-GM 6.93us
LAM/MPI 7.55us

(a)
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

Open MPI shared DSO
Open MPI shared direct
Open MPI shared DSO
Open MPI static direct

MPICH-GM 1.2.6
LAM 7.1.1

(b)

Fig. 3. Latency of zero byte messages and NetPIPE bandwidth for component and
direct call configurations of Open MPI

either latency or bandwidth. In the worst case, the MCA overhead was .04 mi-
croseconds, which is a fraction of the end-to-end latency for the GM software
stack. The bandwidth results show Open MPI is comparable to MPICH-GM and
LAM/MPI for small messages. For large messages, Open MPI is comparable to
MPICH-GM and approximately 70 Mbps faster than LAM/MPI. Open MPI
suffers a slight performance drop for messages between 32 KB and 256 KB when
compared to LAM/MPI and MPICH-GM. The performance drop appears to be
caused by our wire protocol, and should be solved through further tuning.

4.3 Component Effect on NAS Parallel Benchmarks

To approximate real application performance impact from Open MPI’s use of
components, the NAS Parallel Benchmark suite version 2.4 [4] was run with
the build configurations described in Table 1. The results in Table 2 are for
four processes, using the B sized benchmarks. Each process was executed on a

Analysis of the Component Architecture Overhead in Open MPI 181

Table 2. NAS Parallel Benchmark results for Open MPI, MPICH-GM, and LAM/MPI
using 4 processors and the B sized tests

Implementation BT CG EP IS LU MG SP
Open MPI shared DSO 471.16s 95.58s 77.20s 4.37s 297.06s 12.12s 422.43s
Open MPI shared direct 475.91s 95.82s 77.33s 4.34s 298.49s 13.54s 422.16s
Open MPI static DSO 472.48s 95.08s 77.17s 4.35s 297.26s 12.96s 416.76s
Open MPI static direct 477.21s 95.15s 77.21s 4.28s 299.35s 13.50s 421.19s
MPICH-GM 475.63s 96.83s 77.14s 4.22s 296.98s 13.74s 421.95s
LAM/MPI 473.93s 99.54s 75.98s 4.01s 298.14s 13.69s 420.70s

separate node, to prevent use of the shared memory communication channel by
configurations that support multiple interconnects. Each test was run five times,
with the lowest time given. Variance between runs of each test was under 2%.

The CG and MG tests invoke MPI communication that requires sending a
message to self. Due to the design of Open MPI, this requires multiple PTL
components be active, which is disabled in the direct call PTL configuration.
Therefore, the CG and MG direct call results are with only the PML component
interface bypassed. Performance of the Open MPI builds is generally similar,
with variations under 3% in most cases. Similar to Section 4.2, the NAS Parallel
Benchmarks show that there is very little measurable overhead in utilizing the
MCA in Open MPI. Open MPI performance is comparable to both LAM/MPI
and MPICH-GM for the entire benchmark suite.

5 Summary

Open MPI provides a high performance implementation of the MPI standard
across a variety of platforms through the use of the Modular Component Ar-
chitecture. We have shown that the component architecture used in Open MPI
provides negligible performance impact for a variety of benchmarks. Further, the
Open MPI project provides performance comparable to existing MPI implemen-
tations, and has only recently begun optimizing performance. The component
architecture allows users to customize their MPI implementation for their hard-
ware at run time. Only features that are needed by the application are included,
removing the overhead introduced by unused features.

Acknowledgments

This work was supported by a grant from the Lilly Endowment and National
Science Foundation grants NSF-0116050, EIA-0202048 and ANI-0330620. Los
Alamos National Laboratory is operated by the University of California for the
National Nuclear Security Administration of the United States Department of
Energy under contract W-7405-ENG-36. This paper was reviewed and approved
as LA-UR-05-4576. Project support was provided through ASCI/PSE and the

182 B. Barrett et al.

Los Alamos Computer Science Institute, and the Center for Information Tech-
nology Research (CITR) of the University of Tennessee.

References

[1] Apple Computer, Inc. Mach-O Runtime Architecture for Mac OS X version 10.3.
Technical report, August 2004.

[2] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott R. Kohn, Lois
McInnes, Steve R. Parker, and Brent A. Smolinski. Toward a common component
architecture for high-performance scientific computing. In HPDC, 1999.

[3] D. E. Bernholdt et al. A component architecture for high-performance scientific
computing. to appear in Intl. J. High-Performance Computing Applications.

[4] Rob F. Van der Wijngaart. NAS Parallel Benchmarks version 2.4. Technical
Report NAS Technical Report NAS-02-007, NASA Advanced Supercomputing
Division, NASA Ames Research Center, October 2002.

[5] G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HARNESS and fault tolerant MPI.
Parallel Computing, 27:1479–1496, 2001.

[6] E. Garbriel et al. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
2004.

[7] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir,
T. Skjellum, and M. Snir. MPI-2: Extending the Message-Passing Interface. In
Euro-Par ’96 Parallel Processing, pages 128–135. Springer Verlag, 1996.

[8] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E. Ras-
mussen, L. D. Risinger, and M. W. Sukalksi. A network-failure-tolerant message-
passing system for terascale clusters. International Journal of Parallel Program-
ming, 31(4), August 2003.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Computing,
22(6):789–828, September 1996.

[10] Rainer Keller, Edgar Gabriel, Bettina Krammer, Matthias S. Mueller, and
Michael M. Resch. Towards efficient execution of parallel applications on the
grid: porting and optimization issues. International Journal of Grid Computing,
1(2):133–149, 2003.

[11] John R. Levine. Linkers and Loaders. Morgan Kaufmann, 2000.
[12] Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of

Supercomputing ’93, pages 878–883. IEEE Computer Society Press, November
1993.

[13] J.M. Squyres and A. Lumsdaine. A Component Architecture for LAM/MPI. In
Proceedings, 10th European PVM/MPI Users’ Group Meeting, Lecture Notes in
Computer Science, Venice, Italy, September 2003. Springer-Verlag.

[14] T.S. Woodall et al. TEG: A high-performance, scalable, multi-network point-to-
point communications methodology. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 2004.

	Introduction
	Related Work
	Open MPI Architecture
	Component Architecture
	MPI Point-to-Point Design

	Component Overhead Analysis
	Indirect Function Call Overhead
	Component Effect on Latency and Bandwidth
	Component Effect on NAS Parallel Benchmarks

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

