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Abstract. We describe and and evaluate the adaption of a new, opti-
mal broadcast algorithm for “flat”, fully connected networks to clusters
of SMP nodes. The optimal broadcast algorithm improves over other
commonly used broadcast algorithms (pipelined binary trees, recursive
halving) by up to a factor of two for the non-hierarchical (non-SMP)
case. The algorithm is well suited for clusters of SMP nodes, since intra-
node broadcast of relatively small blocks can take place concurrently
with inter-node communication over the network. This new algorithm
has been incorporated into a state-of-the art MPI library. On a 32-node
dual-processor AMD cluster with Myrinet interconnect, improvements
of a factor of 1.5 over for instance a pipelined binary tree algorithm has
been achieved, both for the case with one and with two MPI processes
per node.

1 Introduction

Broadcast is a frequently used collective operation of MPI, the Message Pass-
ing Interface [8], and there is therefore good reason to pursue the most efficient
algorithms and best possible implementations. Recently, there has been much
interest in broadcast algorithms and implementations for different systems and
MPI libraries [2,5,6,9,10], but none of these achieve the theoretical lower bound
for their respective models. An exception is the LogP algorithm in [7], but no
implementation results were given. A quite different, theoretically optimal algo-
rithm for single-ported, fully connected networks was developed by the authors
in [11]. This algorithm has the potential of being up to a factor two faster than
the best currently implemented broadcast algorithms based on pipelined binary
trees, or on recursive halving as recently implemented in mpich2 [9] and else-
where [5,10]. These algorithms were developed on the assumption of a “flat”,
homogeneous, fully connected communication system, and will not perform op-
timally on systems with a hierarchical communication system like clusters of
SMP nodes. Pipelined binary tree algorithms can naturally be adapted to the
SMP case [3], whereas the many of the other algorithms will entail a significant
overhead.

In this paper we present the ideas behind the new, optimal broadcast algo-
rithm; technical details, however, must be found in [11]. We describe how the
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implementation has been extended to clusters of SMP nodes, and compare the
performance of the algorithm to a pipelined binary tree algorithm [3] on a 32-
node dual-processor AMD based SMP cluster with Myrinet interconnect. Very
worthwhile performance improvements of more than a factor of 1.5 are achieved.

2 The Broadcast Algorithm

We first give a high-level description of the optimal broadcast algorithm for
“flat”, homogeneous, fully connected systems. We assume a linear communi-
cation cost model, in which sending m units of data takes time α + βm, and
each processor can both send and receive a message at the same time, possi-
bly from different processors. The p processors are numbered from 0 to p − 1
as in MPI, and we let n = �log p�. Without loss of generality we assume
that broadcast is from root processor 0. Assuming further that the m data
is sent as N blocks of m/N units, the number of communication rounds re-
quired (for any algorithm) to broadcast the N blocks is n − 1 + N , for a time of
(n − 1 + N)(α + βm/N) = (n − 1)α + (n − 1)βm/N + Nα + βm. By balancing
the terms (n − 1)βm/N and αN , the optimal running time can be found as

Topt(m) = (n − 1)α + 2
√

(n − 1)α
√

βm + βm = (
√

(n − 1)α +
√

βm)2 (1)

Proofs of this lower bound can be found in e.g. [4,6].
The optimal broadcast algorithm is pipelined in the sense that all processors

are (after an initial fill phase of n rounds) both sending and receiving blocks
at the same time. For sending data each processor acts as if it is a root of a(n
incomplete, when p is not a power of 2) binomial tree. Each non-root processor
has n different parents from which it receives blocks. To initiate the broadcast,
the root first sends n successive blocks to its children. The root continues in this
way sending blocks successively to its children in a round-robin fashion. The
non-root processors receive their first block from their parent in the binomial
tree rooted at processor 0. The non-roots pass this block on to their children in
this tree. After this initial fill phase, each processor now has a block, and the
broadcast enters a steady state, in which in each round each processor (except
the root) receives a new block from a parent, and sends a previously received
block to a child.

A more formal description of the algorithm is given in Figure 1. The buffer
containing the data being broadcast is divided into N blocks of roughly m/N
units, and the ith block is denoted buffer[i] for 0 ≤ i < N .

As can be seen each processor receives N blocks of data. That indeed N
different blocks are received and sent is determined by the recvblock(i, r) and
sendblock(i, r) functions which specify the block to be received and sent in round
i for processor r (see Section 2.2). The functions next and prev determine the
communication pattern (see Section 2.1). In each phase the same pattern is used,
and the n parent and child processors of processor r are next(j, r) and prev(j, r)
for j = 0, . . . n−1. The parent of processor r for the fill phase is first(r), and the
first round for processor r is likewise first(r). With these provisions we have:
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Root processor 0:

/* fill */
for i ← 0, n − 1 do

send(buffer[sendblock(i, 0)], next(i, 0))
/* steady state */
for i ← 1, N do

j ← (i − 1) mod n
send(buffer[sendblock(n − 1 + i, 0)], next(j, 0))

Non-root processor r:

/* fill */
i ← first(r)
recv(buffer[recvblock(i, r)], prev(i, r))
for i ← first(r) + 1, n − 1

send(buffer[sendblock(i, r)], next(i, r))
/* first block received, steady state */
for i ← 1, N

j ← (i − 1) mod n
if next(j, r) �= 0 then /* no sending to root */

send(buffer[sendblock(n − 1 + i, r)], next(j, r))
‖ /* send and receive simultaneously */
recv(buffer[recvblock(n − 1 + i, r)], prev(j, r))

Fig. 1. The optimal broadcast algorithm

Theorem 1. In the fully-connected, one-ported, bidirectional, linear cost com-
munication model, N blocks of data can be broadcast in n−1+N rounds reaching
the optimal running time (1).

The algorithm is further simplified by the following observations. First, the
block to send in round i is obviously

sendblock(i, r) = recvblock(i, next(i, r))

so it will suffice to determine a suitable recvblock function. Actually, we can
determine the recvblock function such that for any processor r �= 0 it holds that

{recvblock(0, r), recvblock(1, r), . . . , recvblock(n − 1, r)} = {0, 1, . . . , n − 1}

that is the recvblock for a phase consisting of rounds 0, . . . n−1 is a permutation
of {0, . . . , n − 1}. For such functions we can take for i ≥ n

recvblock(i, r) = recvblock(i mod n, r) + n(�i/n� − 1 + δfirst(r)(i mod n))

where δj(i) = 1 if i = j and 0 otherwise. Thus in rounds i + n, i + 2n, i +
3n, . . . for 0 ≤ i < n, processor r receives blocks recvblock(i, r), recvblock(i, r) +
n, recvblock(i, r)+2n, . . . (plus n if i = first(r)). We call such a recvblock function
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a full block schedule, and to make the broadcast algorithm work we need to show
that a full block schedule always exists, and how it can be computed. Existence
is proved in [11], while the construction is outlined in the following sections.

When N = 1 the algorithm is just an ordinary binomial tree broadcast, which
is optimal for small m. The number of blocks N can be chosen freely, e.g. to
minimize the broadcast time under the linear cost model, or, which is relevant
for some systems, to limit the amount of communication buffer space.

2.1 The Communication Pattern

When p is a power of two the communication pattern of the allgather algorithm
in [1] can be used. In round j for j = 0, . . . , n − 1 processor r receives a block
from processor (r − 2j) mod p and sends a block to processor (r + 2j) mod p, so
for that case we take

next(j, r) = (r + 2j) mod p

prev(j, r) = (r − 2j) mod p

With this pattern the root successively sends n blocks to processors 1, 2, 4, . . . , 2j

for j = 0, . . . n−1. The subtree of child processor r = 2j consists of the processors
(r+2k) mod p, k = j+1, . . . , n−1. We say that processors 2j , . . . 2j+1−1 together
form group j, since these processors will all receive their first block in round j.
The group start of group j is 2j, and the group size is likewise 2j . Note that
first(r) = j for a processor in group j.

For the general case where p is not a power of two, the processors are di-
vided into groups of size approximately 2j. To guarantee existence of the full
block schedule, the communication pattern must satisfy that the total number
of processors in groups 0, 1, . . . , j − 1 plus the root processor must be at least
the number of processors in group j, so that all processors in group j can receive
their first block in round j. Likewise, the size of the last group n − 1 must be
at least the size of groups 0, 1, . . . , n − 2 for the processors of the last group to
deliver a block to all previous processors in round n−1. To achieve this we define
for 0 ≤ j < n

groupsize(j, p) =
{

groupsize(j, �p/2�) if j < �log p� − 1
�p/2� if j = �log p� − 1

and

groupstart(j, p) = 1 +
j−1∑

i=0

groupsize(j, p)

When p is a power of two this definition coincides with the above definition, eg.
groupsize(j, p) = 2j.

We now define the next and prev functions analogously to the powers-of-two
case:

next(j, r) = (r + groupstart(j, p)) mod p

prev(j, r) = (r − groupstart(j, p)) mod p
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We note that this communication pattern leads to an exception for the
fill phase of the algorithm in Figure 1, since it may happen that next(j, r) =
groupstart(j + 1, p) = r′ and prev(first(r′), r′) = 0 �= next(j, r). Such a send has
no corresponding recv, and shall not be performed.

2.2 Computing the Full Block Schedule

The key to the algorithm is the existence and construction of the full block sched-
ule given the communication pattern described in the previous section. Existence
and correctness of the construction is discussed in [11]. For the construction it-
self a greedy algorithm almost suffices. Based on what we call the first block
schedule which determines the first block to be received by each processor r, the
construction is as follows.

1. Construct the first block schedule schedule:
set schedule[groupstart(j, p)] = j, and schedule[groupstart(j, p) + i] =
schedule[i] for i = 1, . . . , groupstart(j, p) − 1.

2. Scan the first block schedule in descending order i = r−1, r−2, . . .0. Record
in block[j] the first block schedule[i] different from block[j − 1], block[j −
2], . . .block[0], and in found[j] the index i at which block[j] was found.

3. If prev(j, r) < found[j] either
– if block[j] > block[j − 1] then swap the two blocks,
– else mark block[j] as unseen,

and continue scanning in Step 2.
4. Set block[first(r)] = schedule[r]
5. Find the remainder blocks by scanning the first block schedule in the order

i = p − 1, p − 2, . . . r + 1, and swap as in Step 3.

For each r take
recvblock(i, r) = block[i]

with block as computed above.
Space for the full block schedule is O(p log p), and as described above the

construction takes O(p2) time. However, by a different formulation of the al-
gorithm, the computation time can be reduced to O(p log p) steps [11]. The
correctness proof can also be found in [11]; as anecdotal evidence we mention
that we computed and verified all schedules up to 100 000 processors on a 2GHz
AMD Athlon PC. Construction time for the largest schedule was about 225ms.
This is of course prohibitive for on-line construction of the schedule at each
MPI Bcast operation. Instead, a corresponding schedule must be precomputed
for each MPI communicator. In applications with many communicators the space
consumption of O(p log p) can become a problem. Fortunately, it is possible to
store the full block schedule in a distributed fashion with only O(log p) space for
each processor: essentially each processor i needs only its own recvblock(i, j) and
sendblock(i, j) functions, assuming that process 0 is the broadcast root (if this
is not the case, the trick is that some other processor sends the needed schedule
to processor 0, so each processor has to store schedules for two processors which
is still only O(log p) space. The sending of the schedule to processor 0 can be
hidden behind the already started broadcast operation and thus does not cost
extra time).
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2.3 Properties

We summarize the main properties of the broadcast algorithm as described above
for flat systems.

1. The algorithm broadcasts N blocks in n − 1 + N communication rounds,
which is best possible.

2. The number of blocks can be chosen freely. In the linear cost communication
model, the best block size is

√
(mα)/((n − 1)β) resulting in optimal running

time (1).
3. The number of rounds can also be chosen such that a given maximum block

size, eg. internal communication buffer, is not exceeded.
4. Small messages should be broadcast in N = 1 rounds, in which case the

algorithm is simply a binomial tree algorithm.
5. The required full block schedule can be computed in O(p log p) time.
6. Space for the full block schedule is likewise O(p log p) which can be stored

in a distributed fashion with O(log p) space per processor.

2.4 Adaption to Clusters of SMP Nodes

The flat broadcast algorithm can be adapted to systems with a hierarchical
communication structure like clusters of SMP nodes as follows. For each node
a local root processor is chosen. The flat broadcast algorithm is run over the
set of local root processors. In each communication round each root processor
receives a new block which is broadcast locally over the node. For SMP clusters
a simple shared memory algorithm can be used. Furthermore, the steady-state
loop of the algorithm in Figure 1 can easily be rewritten such that in each round
a) a new block is received, b) an already received block is sent, and c) the block
received in the previous round is broadcast locally. This makes it possible –
for communication networks supporting this – to hide the local, shared memory
broadcast completely behind the sending/receiving of new blocks. Only the node
local broadcast of the last block cannot be hidden in this fashion, which adds
time proportional to the block size

√
(mα)/((n − 1)β) to the total broadcast

time. For broadcast algorithms based on recursive halving [2,9,10], the size of
the “last block” received may be proportional to m/2 causing a much longer
delay.

3 Performance

Both the flat and the SMP cluster broadcast algorithms have been implemented
in a state-of-the art MPI implementation for PC clusters. We give results for a
dual-processor AMD cluster with Myrinet interconnect.

Figure 2 compares the performance of various broadcast algorithms for the
flat case with one MPI process per SMP node. The new, optimal algorithm is
compared to an algorithm based on recursive halving [10], a pipelined binary tree
algorithm (with a binomial tree for short messages), and a binomial tree algo-
rithm. The theoretical bandwidth improvement over both the recursive halving
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Fig. 2. Bandwidth of 4 different “flat” broadcast algorithms for fixed number of proces-
sors p = 22 (left) and p = 30 (right), one MPI process per node, and data size m up
to 64MBytes

and the pipelined binary tree algorithm is a factor of 2, over the binomial tree
algorithm a factor �log2 p�. The actual improvement is more than a factor 1.5
even for messages of only a few K bytes. It should be noted that to obtain the
performance and relatively smooth bandwidth growth shown here, the simple,
linear cost model is not sufficient. Instead a piecewise linear model with up to 4
different values of α and β is used for estimating the best block size for a given
message size m.

Figure 3 compares the new SMP-adapted broadcast algorithm to a pipelined
binary tree algorithm likewise adapted to SMP clusters with two MPI processes
per node. For both algorithms, lower bandwidth than in the one process/node
case is achieved, but also in the SMP case the new broadcast algorithm achieves
about a factor 1.4 higher bandwidth than the pipelined binary tree.
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Fig. 3. Bandwidth of optimal and pipelined binary tree with two MPI processes per
node, p = 22 (left) and p = 30 (right), and data size m up to 64MBytes

Finally, Figure 4 illustrates the SMP-overhead of the current implementation.
The flat version of the algorithm is compared to the SMP-algorithm with one
process/node and to the SMP-algorithm with two processes/node. Even with one
process/node, the SMP-adapted algorithm (in the current implementation) has
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Fig. 4. New broadcast algorithm for the flat case vs. the SMP algorithm with one
process/node vs. the SMP-algorithm with two processes/node, p = 22 (left) and p = 30
(right), and data size m up to 64MBytes. Note that the SMP algorithm even for the
one process/node case performs an extra memory copy compared to the flat algorithm.

to perform an extra memory copy compared to the flat algorithm, and Figure 4
estimates the cost of this. Up to about 100KBytes the performance of the three
versions is similar, after that the cost of the extra copying and node-internal,
shared memory broadcast becomes visible, and degrades the performance. How-
ever, improvements in the implementation are still possible to overlap intra-node
communication and node-internal broadcast as described in Section 2.4.

4 Conclusion

We described the main ideas behind a new, theoretically optimal broadcast al-
gorithm for “flat”, homogeneous, fully connected networks, and discussed an
easy adaption to hierarchical systems like clusters of SMP nodes. On a small
Myrinet cluster significant bandwidth improvements over other, commonly used
broadcast algorithm were demonstrated, both for the “flat” case with one MPI
process/node, and for the case with more than one process per node. Further
implementation improvements to better overlap network communication and
intra-node communication are still possible, and will be pursued in the future.
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