

Lecture Notes in Computer Science 3666
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Beniamino Di Martino Dieter Kranzlmüller
Jack Dongarra (Eds.)

Recent Advances in
Parallel Virtual Machine
and Message Passing Interface

12th European PVM/MPI Users’ Group Meeting
Sorrento, Italy, September 18-21, 2005
Proceedings

13

Volume Editors

Beniamino Di Martino
Second University of Naples
Dipartimento di Ingegneria dell’Informazione
Real Casa dell’Annunziata, via Roma, 29, 81031 Aversa (CE), Italy
E-mail: beniamino.dimartino@unina.it

Dieter Kranzlmüller
Johannes Kepler University Linz
GUP – Institute of Graphics and Parallel Processing
Altenbergerstr. 69, 4040 Linz, Austria
E-mail: kranzlmueller@gup.jku.at

Jack Dongarra
University of Tennessee
Computer Science Department
1122 Volunteer Blvd., Knoxville, TN 37996-3450, USA
E-mail: dongarra@cs.utk.edu

Library of Congress Control Number: 2005932205

CR Subject Classification (1998): D.1.3, D.3.2, F.1.2, G.1.0, B.2.1, C.1.2

ISSN 0302-9743
ISBN-10 3-540-29009-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29009-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11557265 06/3142 5 4 3 2 1 0

Preface

The message passing paradigm is the most frequently used approach to develop-
ing high performance computing applications on parallel and distributed com-
puting architectures. The Parallel Virtual Machine (PVM) and Message Passing
Interface (MPI) are the two main representatives in this domain.

This volume comprises 61 selected contributions presented at the 12th
European PVM/MPI Users’ Group Meeting, which was held in Sorrento, Italy,
September 18–21, 2005. The conference was organized by the Dipartimento di
Ingegneria dell’Informazione of the Second University of Naples, Italy in collab-
oration with CREATE and the Institute of Graphics and Parallel Processing
(GUP) of the Johannes Kepler University Linz, Austria.

The conference was previously held in Budapest, Hungary (2004), Venice,
Italy (2003), Linz, Austria (2002), Santorini, Greece (2001), Balatonfüred,
Hungary (2000), Barcelona, Spain (1999), Liverpool, UK (1998), and Krakow,
Poland (1997). The first three conferences were devoted to PVM and were held
in Munich, Germany (1996), Lyon, France (1995), and Rome, Italy (1994).

In its twelfth year, this conference is well established as the forum for users
and developers of PVM, MPI, and other message passing environments. Inter-
actions between these groups have proved to be very useful for developing new
ideas in parallel computing, and for applying some of those already existent to
new practical fields. The main topics of the meeting were evaluation and per-
formance of PVM and MPI, extensions, implementations and improvements of
PVM and MPI, parallel algorithms using the message passing paradigm, parallel
applications in science and engineering, and cluster and grid computing.

Besides the main track of contributed papers, the conference featured the
fourth edition of the special session “ParSim 2005 — Current Trends in Nu-
merical Simulation for Parallel Engineering Environments”. The conference also
included two tutorials, one on “Using MPI-2: A Problem-Based Approach” by
William Gropp and Ewing Lusk, and one on “Advanced Message Passing and
Threading Issues” by Graham Fagg and George Bosilea; and invited talks on
“New Directions in PVM/Harness Research” by Al Geist, “Towards a Produc-
tive MPI Environment” by William Gropp, “Components of Systems Software
for Parallel Systems” by Ewing Lusk, and “Virtualization in Parallel Distributed
Computing” by Vaidy Sunderam. These proceedings contain papers on the 61
contributed presentations together with abstracts of the invited and tutorial
speakers’ presentations.

We would express our gratitude for the kind support of our sponsors (see
below) and we thank the members of the Program Committee and the additional
reviewers for their work in refereeing the submitted papers and ensuring the high
quality of Euro PVM/MPI. Finally, we would like to express our gratitude to
our colleagues at the Second University of Naples and GUP, JKU Linz for their

VI Preface

help and support during the conference organization, in particular Bernhard
Aichinger, Valentina Casola, Domenico Di Sivo, Francesco Moscato, Patrizia
Petrillo, Günter Seiringer, Salvatore Venticinque and Mariella Vetrano.

September 2005 Beniamino Di Martino
Dieter Kranzlmüller

Jack Dongarra

Organization

General Chair

Jack Dongarra University of Tennessee,
Knoxville, USA

Program Chairs

Beniamino Di Martino DII, Second University of Naples, Italy
Dieter Kranzlmüller GUP, Joh. Kepler University Linz,

Austria

Program Committee

David Abramson Monash University, Australia
Vassil Alexandrov University of Reading, UK
Ranieri Baraglia Italian National Research Council, Italy
Arndt Bode Technical University of Munich, Germany
Marian Bubak AGH, Cracow, Poland
Barbara Chapman University of Houston, USA
Jacques Chassin LSR-IMAG, France

de Kergommeaux
Yiannis Cotronis University of Athens, Greece
Jose C. Cunha New University of Lisbon, Portugal
Marco Danelutto University of Pisa, Italy
Frederic Desprez INRIA, France
Erik D’Hollander Ghent University, Belgium
Beniamino Di Martino Second University of Naples, Italy
Jack Dongarra University of Tennessee, Knoxville, USA
Graham Fagg University of Tennessee, Knoxville, USA
Thomas Fahringer University of Innsbruck, Austria
Al Geist Oak Ridge National Laboratory, USA
Michael Gerndt Technical University of Munich, Germany
Andrzej Goscinski Deakin University, Australia
William Gropp Argonne National Laboratory, USA
Rolf Hempel DLR, Simulation Aerospace Center, Germany
Ladislav Hluchy Slovak Academy of Sciences, Slovakia
Peter Kacsuk MTA SZTAKI, Hungary
Dieter Kranzlmüller Joh. Kepler University Linz, Austria
Jan Kwiatkowski Wroclaw University of Technology, Poland
Domenico Laforenza Italian National Research Council, Italy
Erwin Laure CERN, Switzerland

VIII Organization

Laurent Lefevre INRIA/LIP, France
Thomas Ludwig University of Heidelberg, Germany
Emilio Luque Universitat Autonoma of Barcelona, Spain
Ewing Lusk Argonne National Laboratory, USA
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Barton Miller University of Wisconsin, Madison, USA
Shirley Moore University of Tennessee, Knoxville, USA
Wolfgang Nagel Dresden University of Technology, Germany
Salvatore Orlando University of Venice, Italy
Benno J. Overeinder Vrije University Amsterdam,

The Netherlands
Raffaele Perego Italian National Research Council, Italy
Neil D. Pundit Sandia National Labs, USA
Rolf Rabenseifner University of Stuttgart, Germany
Andrew Rau-Chaplin Dalhousie University, Canada
Jeff Reeve University of Southampton, UK
Ralf Reussner University of Oldenburg, Germany
Yves Robert ENS Lyon, France
Casiano Rodriguez-Leon Universidad de La Laguna, Spain
Michiel Ronsse Ghent University, Belgium
Wolfgang Schreiner Joh. Kepler University Linz, Austria
Martin Schulz Lawrence Livermore National Lab, USA
Miquel Senar Universitat Autonoma de Barcelona, Spain
Joao Gabriel Silva University of Coimbra, Portugal
Vaidy Sunderam Emory University, USA
Francisco Tirado Universidad Complutense, Spain
Bernard Tourancheau SUN Microsystems Labs, France
Jesper Larsson Träff NEC Europe Ltd., Germany
Pavel Tvrdik Czech Technical University, Czech Republic
Umberto Villano University of Sannio, Italy
Jens Volkert Joh. Kepler University Linz, Austria
Jerzy Wasniewski Danish Technical University, Denmark
Roland Wismüller University of Siegen, Germany
Lawrence T. Yang St. Francis Xavier University, Canada

Organization IX

Organizing Committee

Bernhard Aichinger GUP, Joh. Kepler University Linz, Austria
Valentina Casola University “Frederico II” of Naples, Italy
Beniamino Di Martino DII, Second University of Naples, Italy
Domenico Di Sivo DII, Second University of Naples, Italy
Dieter Kranzlmüller GUP, Joh. Kepler University Linz, Austria
Francesco Moscato DII, Second University of Naples, Italy
Patrizia Petrillo DII, Second University of Naples, Italy
Günter Seiringer GUP, Joh. Kepler University Linz, Austria
Salvatore Venticinque DII, Second University of Naples, Italy
Mariella Vetrano CREATE, Italy

Sponsoring Institutions

HP
IBM
Intel
Microsoft
Myricom
Quadrics
NEC
Centro di Competenza sull’ ICT — Regione Campania

Table of Contents

Invited Talks

New Directions in PVM/Harness Research
Al Geist . 1

Towards a Productive MPI Environment
William D. Gropp . 4

Components of Systems Software for Parallel Systems
Ewing Lusk . 5

Virtualization in Parallel Distributed Computing
Vaidy Sunderam . 6

Tutorials

Advanced Message Passing and Threading Issues
Graham E. Fagg, George Bosilca . 7

Using MPI-2: A Problem-Based Approach
William Gropp, Ewing Lusk . 8

Algorithms

Some Improvements to a Parallel Decomposition Technique for Training
Support Vector Machines

Thomas Serafini, Luca Zanni, Gaetano Zanghirati 9

Nesting OpenMP in MPI to Implement a Hybrid Communication
Method of Parallel Simulated Annealing on a Cluster of SMP Nodes

Agnieszka Debudaj-Grabysz, Rolf Rabenseifner . 18

Computing Frequent Itemsets in Parallel Using Partial Support
Trees

Dora Souliou, Aris Pagourtzis, Nikolaos Drosinos 28

A Grid-Aware Branch, Cut and Price Implementation
Emilio P. Mancini, Sonya Marcarelli, Pierluigi Ritrovato,
Igor Vasil’ev, Umberto Villano . 38

XII Table of Contents

An Optimal Broadcast Algorithm Adapted to SMP Clusters
Jesper Larsson Träff, Andreas Ripke . 48

Efficient Implementation of Allreduce on BlueGene/L Collective
Network

George Almási, Gábor Dózsa, C. Chris Erway,
Burkhardt Steinmacher-Burow . 57

Scalable Fault Tolerant MPI: Extending the Recovery Algorithm
Graham E. Fagg, Thara Angskun, George Bosilca,
Jelena Pjesivac-Grbovic, Jack J. Dongarra . 67

Hash Functions for Datatype Signatures in MPI
Julien Langou, George Bosilca, Graham Fagg,
Jack Dongarra . 76

Extensions and Improvements

Implementing MPI-IO Shared File Pointers Without File System
Support

Robert Latham, Robert Ross, Rajeev Thakur, Brian Toonen 84

An Efficient Parallel File System for Cluster Grids
Franco Frattolillo, Salvatore D’Onofrio . 94

Cooperative Write-Behind Data Buffering for MPI I/O
Wei-keng Liao, Kenin Coloma, Alok Choudhary, Lee Ward 102

Hint Controlled Distribution with Parallel File Systems
Hipolito Vasquez Lucas, Thomas Ludwig . 110

Implementing Byte-Range Locks Using MPI One-Sided
Communication

Rajeev Thakur, Robert Ross, Robert Latham . 119

An Improved Algorithm for (Non-commutative) Reduce-Scatter
with an Application

Jesper Larsson Träff . 129

Collective Error Detection for MPI Collective Operations
Chris Falzone, Anthony Chan, Ewing Lusk, William Gropp 138

Implementing OpenMP for Clusters on Top of MPI
Antonio J. Dorta, José M. Bad́ıa, Enrique S. Quintana,
Francisco de Sande . 148

Table of Contents XIII

Designing a Common Communication Subsystem
Darius Buntinas, William D. Gropp . 156

Dynamic Interoperable Message Passing
Michal Kouril, Jerome L. Paul . 167

Analysis of the Component Architecture Overhead in Open MPI
B. Barrett, J.M. Squyres, A. Lumsdaine, R.L. Graham,
G. Bosilca . 175

A Case for New MPI Fortran Bindings
C.E. Rasmussen, J.M. Squyres . 183

Design Alternatives and Performance Trade-Offs for Implementing
MPI-2 over InfiniBand

Wei Huang, Gopalakrishnan Santhanaraman, Hyun-Wook Jin,
Dhabaleswar K. Panda . 191

Designing a Portable MPI-2 over Modern Interconnects Using uDAPL
Interface

L. Chai, R. Noronha, P. Gupta, G. Brown, D.K. Panda 200

Experiences, Strategies and Challenges in Adapting PVM to
V xWorksTM Hard Real-Time Operating System, for Safety-Critical
Software

Davide Falessi, Guido Pennella, Giovanni Cantone 209

MPJ/Ibis: A Flexible and Efficient Message Passing Platform for Java
Markus Bornemann, Rob V. van Nieuwpoort, Thilo Kielmann 217

Cluster and Grid

The Open Run-Time Environment (OpenRTE): A Transparent
Multi-cluster Environment for High-Performance Computing

R.H. Castain, T.S. Woodall, D.J. Daniel, J.M. Squyres,
B. Barrett, G.E. Fagg . 225

PVM-3.4.4 + IPv6: Full Grid Connectivity
Rafael Mart́ınez Torres . 233

Utilizing PVM in a Multidomain Clusters Environment
Mario Petrone, Roberto Zarrelli . 241

Enhancements to PVM’s BEOLIN Architecture
Paul L. Springer . 250

XIV Table of Contents

Migol: A Fault-Tolerant Service Framework for MPI Applications
in the Grid

André Luckow, Bettina Schnor . 258

Applicability of Generic Naming Services and Fault-Tolerant
Metacomputing with FT-MPI

David Dewolfs, Dawid Kurzyniec, Vaidy Sunderam, Jan Broeckhove,
Tom Dhaene, Graham Fagg . 268

A Peer-to-Peer Framework for Robust Execution of Message Passing
Parallel Programs on Grids

Stéphane Genaud, Choopan Rattanapoka . 276

MGF: A Grid-Enabled MPI Library with a Delegation Mechanism
to Improve Collective Operations

F. Gregoretti, G. Laccetti, A. Murli, G. Oliva,
U. Scafuri . 285

Tools and Environments

Automatic Performance Analysis of Message Passing Applications
Using the KappaPI 2 Tool

Josep Jorba, Tomas Margalef, Emilio Luque . 293

Benchmarking One-Sided Communication with SKaMPI 5
Werner Augustin, Marc-Oliver Straub, Thomas Worsch 301

A Scalable Approach to MPI Application Performance Analysis
Shirley Moore, Felix Wolf, Jack Dongarra, Sameer Shende,
Allen Malony, Bernd Mohr . 309

High-Level Application Specific Performance Analysis Using
the G-PM Tool

Roland Wismüller, Marian Bubak, W�lodzimierz Funika 317

ClusterGrind: Valgrinding LAM/MPI Applications
Brett Carson, Ian A. Mason . 325

MPISH2: Unix Integration for MPI Programs
Narayan Desai, Ewing Lusk, Rick Bradshaw . 333

Ensemble-2: Dynamic Composition of MPMD Programs
Yiannis Cotronis, Paul Polydoras . 343

Table of Contents XV

New User-Guided and ckpt-Based Checkpointing Libraries for
Parallel MPI Applications

Pawe�l Czarnul, Marcin Fr ↪aczak . 351

Performance

Performance Profiling Overhead Compensation for MPI Programs
Sameer Shende, Allen D. Malony, Alan Morris,
Felix Wolf . 359

Network Bandwidth Measurements and Ratio Analysis with the HPC
Challenge Benchmark Suite (HPCC)

Rolf Rabenseifner, Sunil R. Tiyyagura, Matthias Müller 368

A Space and Time Sharing Scheduling Approach for PVM
Non-dedicated Clusters

Mauricio Hanzich, Francesc Giné, Porfidio Hernández,
Francesc Solsona, Emilio Luque . 379

Efficient Hardware Multicast Group Management for Multiple MPI
Communicators over InfiniBand

Amith R. Mamidala, Hyun-Wook Jin, Dhabaleswar K. Panda 388

Assessing MPI Performance on QsNetII

Pablo E. Garćıa, Juan Fernández, Fabrizio Petrini,
José M. Garćıa . 399

Optimised Gather Collectives on QsNetII

Duncan Roweth, David Addison . 407

An Evaluation of Implementation Options for MPI One-Sided
Communication

William Gropp, Rajeev Thakur . 415

A Comparison of Three MPI Implementations for Red Storm
Ron Brightwell . 425

Applications

Probing the Applicability of Polarizable Force-Field Molecular
Dynamics for Parallel Architectures: A Comparison of Digital MPI
with LAM-MPI and MPICH2

Benjamin Almeida, Reema Mahajan, Dieter Kranzlmüller,
Jens Volkert, Siegfried Höfinger . 433

XVI Table of Contents

Symmetrical Data Sieving for Noncontiguous I/O Accesses in Molecular
Dynamics Simulations

M.B. Ibáñez, F. Garćıa, J. Carretero . 441

Simulation of Ecologic Systems Using MPI
D. Mostaccio, R. Suppi, E. Luque . 449

Load Balancing and Computing Strategies in Pipeline Optimization
for Parallel Visualization of 3D Irregular Meshes

Andrea Clematis, Daniele D’Agostino, Vittoria Gianuzzi 457

An Improved Mechanism for Controlling Portable Computers in
Limited Coverage Areas

David Sánchez, Elsa M. Maćıas, Álvaro Suárez . 467

An MPI Implementation for Distributed Signal Processing
J.A. Rico Gallego, J.C. Dı́az Mart́ın, J.M. Álvarez Llorente 475

A Parallel Exponential Integrator for Large-Scale Discretizations of
Advection-Diffusion Models

L. Bergamaschi, M. Caliari, A. Mart́ınez, M. Vianello 483

Parallel Grid Adaptation and Dynamic Load Balancing for a CFD
Solver

Christoph Troyer, Daniele Baraldi, Dieter Kranzlmüller,
Heinz Wilkening, Jens Volkert . 493

Special Session: ParSim 2005

4th International Special Session on: Current Trends in Numerical
Simulation for Parallel Engineering Environments ParSim 2005

Martin Schulz, Carsten Trinitis . 502

Applying Grid Techniques to an Octree-Based CSCW Framework
R.-P. Mundani, I.L. Muntean, H.-J. Bungartz, A. Niggl,
E. Rank . 504

Parallel Modeling of Transient States Analysis in Electrical Circuits
Jaroslaw Forenc, Andrzej Jordan, Marek Tudruj 512

The COOLFluiD Parallel Architecture
Dries Kimpe, Andrea Lani, Tiago Quintino, Stefaan Poedts,
Stefan Vandewalle . 520

Table of Contents XVII

Calculation of Single-File Diffusion Using Grid-Enabled Parallel
Generic Cellular Automata Simulation

Marcus Komann, Christian Kauhaus, Dietmar Fey 528

Harnessing High-Performance Computers for Computational Steering
Petra Wenisch, Oliver Wenisch, Ernst Rank . 536

Author Index . 545

New Directions in PVM/Harness Research

Al Geist

Oak Ridge National Laboratory,
PO Box 2008,

Oak Ridge, TN 37831-6016
gst@ornl.gov

http://www.csm.ornl.gov/∼geist

Abstract. The PVM development team continues to do distributed vir-
tual machine research. Today that research revolves around the PVM
project follow-on called Harness. Every three years the team chooses a
new direction to explore. This year marks the beginning of a new cy-
cle and this talk will describe the new directions and software that the
PVM/Harness research team will developing over the next few years.

The first direction involves the use of Harness technology in a DOE
project to develop a scalable Linux OS suited to petascale computers.
Harness distributed control will be leveraged to increase the fault toler-
ance of such an OS. The second direction involves the use of the Har-
ness runtime environment in the new Open MPI software project. Open
MPI is an integration of several previous MPI implementations, includ-
ing LAM-MPI, the LA-MPI package, and the Fault Tolerant MPI from
the Harness project. The third research direction is called the ”Harness
Workbench” and will investigate the creation of a unified and adap-
tive application development environment across diverse computing plat-
forms. This research effort will leverage the dynamic plug-in technology
developed in our Harness research. Each of these three research efforts
will be described in detail.

Finally the talk will describe the latest news on DOE’s National Lead-
ership Computing Facility, which will house a 100 TF Cray system at
ORNL, and an IBM Blue Gene system at Argonne National Lab. We
will describe the scientific missions of this facility and the new concept
of ”computational end stations” being pioneered by the Facility.

1 Background

The PVM/Harness team has gone through several cycles of research directions
each following logically from the results of the previous cycles.

PVM was first developed as a framework for our team to do research in
heterogeneous distributed machines. We first looked at heterogeneous OS and
CPUs then expanded into heterogeneous parallel architectures: Cray, CM5, clus-
ters, and eventually mixed shared and distributed memories. In the meantime
the parallel computing community found PVM to be very robust and useful
for teaching and solving science problems. PVM’s popularity grew exponentially

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 1–3, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 A. Geist

and the team got many requests to add new features and capabilities into the
software. Often these were conflicting and they often couldn’t be supported in
the broad heterogeneous environment that PVM worked in.

These requests lead the team to develop Harness[1] as a framework to do
research in parallel software plug-ins. This would allow users to customize their
distributed virtual machine with new features or tune existing features by re-
placing standard components with their own hardware-tuned functions.

The Harness project included research on a scalable, self-adapting core called
H2O, and research on fault tolerant MPI. The Harness software framework pro-
vides parallel software ”plug-ins” that adapt the run-time system to changing
application needs in real time. We have demonstrated Harness’ ability to self-
assemble into a virtual machine specifically tailored for particular applications[2].

Harness is a more adaptable distributed virtual machine package than PVM.
To illustrate this, there is a PVM plug-in for Harness that allows Harness to
behave like PVM. PVM is just one of many instantiations of Harness. There is
also an MPI plug-in and an RPC plug-in each instantiating a different parallel
programming environment in Harness.

Many other environments and future uses can be envisioned for the Harness
framework, which can dynamically customize, adapt, and extend a virtual ma-
chine’s features to more closely match the needs of an application or optimize
the virtual machine for the underlying computer resources.

2 New Research Directions

This past year the FastOS project was begun in the USA and several research
teams were funded to create a modular and configurable Linux system that al-
lows customized changes based on the requirements of the applications, runtime
systems, and cluster management software. The teams are also building run-
time systems that leverage the OS modularity and configurability to improve
efficiency, reliability, scalability, ease-of-use, and provide support to legacy and
promising programming models. The talk will describe how the distributed con-
trol and dynamic adaptability features in Harness are being used by one of the
research teams in their OS development[3].

The Open MPI project[4] is developing a completely new open source MPI-
2 compliant implementation. The project combines the technologies and teams
from FT-MPI, LA-MPI, LAM-MPI, and PACX-MPI in order to build the best
MPI library possible. Open MPI offers advantages for system and software ven-
dors, application developers and computer science researchers. The Harness team
is involved in the Open MPI effort through our Fault Tolerant MPI (FT-MPI)
implementation. The runtime system plays a big role in the monitoring and re-
covery of applications that experience faults. The fault tolerance features in the
Harness runtime are being incorporated into the Open MPI runtime environ-
ment. The talk will describe how the new cycle of Harness research is going to
produce a next generation runtime environment that could be used as the Open
MPI runtime.

New Directions in PVM/Harness Research 3

In the USA, the Department of Energy (DOE) has a significant need for high-
end computing, and is making substantial investments to support this endeavor.
The diversity of existing and emerging architectures however, poses a challenge
for application scientists who must expend considerable time and effort dealing
with the requisite development, setup, staging and runtime interfacing activi-
ties that are significantly different on each platform. The Harness workbench
research will provide a common view across diverse HPC systems for application
building and execution. The second, complementary, component of the Harness
workbench is a next generation runtime environment that provides a flexible,
adaptive framework for plugging in modules dealing with execution-time and
postprocessing activities. The talk will briefly describe the plans and goals of
the Harness workbench project, which started in September 2005.

3 DOE National Leadership Computing Facility

For the past year Oak Ridge National Laboratory (ORNL) had been working
to establish the National Leadership Computing Facility (NLCF)[5]. The NLCF
will use a new approach to increase the level of scientific productivity. The NLCF
computing system will be a unique world-class research resource (100 TF Cray
supercomputer by 2007) dedicated to a small number of research teams. This
appraoch is similar to other large-scale experimental facilities constructed and
operated around the world. At these facilities, scientists and engineers make use
of ”end stations”- best-in-class instruments supported by instrument specialists-
that enable the most effective use of the unique capabilities of the facilities. In
similar fashion the NLCF will have ”Computational End Stations” that offer
access to best-in-class scientific application codes and world-class computational
specialists. The Computational End Stations will engage multi-national, multi-
disciplinary teams undertaking scientific and engineering problems that can only
be solved on the NLCF computers and who are willing to enhance the capabili-
ties of the NLCF and contribute to its effective operation. Teams will be selected
through a competitive peer-review process that was announced in July 2005. It
is envisioned that there will be computational end stations in climate, fusion,
astrophysics, nanoscience, chemistry, and biology as these offer great potential
for breakthrough science in the near term.

References

1. G. Geist, et al, ”Harness”, (www.csm.ornl.gov/harness)(2003)
2. D. Kurzyniec, et al, ”Towards Self-Organizing Distributed Computing Frameworks:

The H2O Approach”, International Journal of High Performance Computing (2003).
3. S. Scott, et al, ”MOLAR: Modular Linux and Adaptive Runtime Support for High-

end Computing Operating and Runtime Systems”, (http://forge-fre.ornl.gov/molar)
(2005)

4. E. Gabriel, et al, ”Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation.” , In Proceedings, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, September 2004 (http://www.open-mpi.org)

5. J.Nichols, et al, ”NationalLeadershipComputingFacility” (www.ccs.ornl.gov) (2005)

Towards a Productive MPI Environment

William D. Gropp�

Mathematics and Computer Science Division,
Argonne National Laboratory,

Argonne, IL
gropp@mcs.anl.gov

http://www.mcs.anl.gov/~gropp

Abstract. MPI has revolutionized parallel computing in science and
engineering. But the MPI specification provides only an application pro-
gramming interface. This is merely the first step toward an environment
that is seamless and transparent to the end user as well as the devel-
oper. This talk discusses current progress toward a productive MPI
environment.

To expert users of MPI, one of the major impediments to a seamless
and transparent environment is the lack of a application binary interface
(ABI) that would allow applications using shared libraries to work with
any MPI implementation. Such an ABI would ease the development and
deployment of tools and applications. However, defining a common ABI
requires careful attention to many issues. For example, defining the con-
tents of the MPI header file is insufficient to provide a workable ABI; the
interaction of an MPI program with any process managers needs to be
defined independent of the MPI implementation. In addition, some so-
lutions that are appropriate for modest-sized clusters may not be appro-
priate for massively parallel systems with very low latency requirements
or even for large conventional clusters.

To novice users of MPI, the relatively low level of the parallel ab-
stractions provided by MPI is the greatest barrier to achieving high pro-
ductivity. This problem is best addressed by developing a combination
of compile-time and run-time tools that aid in the development and de-
bugging of MPI programs. One well-established approach is the use of
libraries and frameworks written by using MPI. However, libraries limit
the user to the data structures and operations implemented as part of
the library. An alternative is to provide source-to-source transformation
tools that bridge the gap between a fully compiled parallel language and
the library-based parallelism provided by MPI.

This talk will discuss both the issues in a common ABI for MPI and
some efforts to provide better support for user-defined distributed data
structures through simple source-transformation techniques.

� This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, p. 4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Components of Systems Software
for Parallel Systems�

Ewing Lusk

Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Illinois 60439

Abstract. Systems software for clusters and other parallel systems af-
fects multiple types of users. End users interact with it to submit and
interact with application jobs and to avail themselves of scalable system
tools. Systems administrators interact with it to configure and build soft-
ware installations on individual nodes, schedule, manage, and account for
application jobs and to continuously monitor the status of the system, re-
pairing it as needed. Libraries interact with system software as they deal
with the host environment. In this talk we discuss an ongoing research
project devoted to an architecture for systems software that promotes
robustness, flexibility, and efficiency. We present a component architec-
ture that allows great simplicity and flexibility in the implementation of
systems software. We describe a mechanism by which systems adminis-
trators can easly customize or replace individual components indepen-
dently of others. We then describe the introduction of parallelism into a
variety of both familiar and new system tools for both users and admin-
istrators. Finally, we present COBALT (COmponent-BAsed Lightweight
Toolkit), an open-source, freely available preliminary implementation of
the systems software components and scalable user tools, currently in
production use in a number of environments.

� This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, SciDAC Program, under Contract W-
31-109-ENG-38.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, p. 5, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Virtualization in Parallel Distributed Computing

Vaidy Sunderam

Department of Math & Computer Science,
Emory University, Atlanta, GA 30322, USA

vss@emory.edu
http://www.mathcs.emory.edu/dcl/

Abstract. A decade and a half ago, the Parallel Virtual Machine abstraction
strived to virtualize a collection of heterogeneous components into a generalized
concurrent computing resource. PVM presented a unified programming, model
backed by runtime subsystems and scripts that homogenized machine dependen-
cies. This paradigm has had mixed success when translated to computing environ-
ments that span multiple administrative and ownership domains. We argue that
multidomain resource sharing is critically dependent upon decoupling provider
concerns from client requirements, and suggest alternative methodologies for vir-
tualizing heterogeneous resource aggregates. We present the H2O framework, a
core subsystem in the Harness project, and discuss its alternative approach to
metacomputing. H2O is based on a “pluggable” software architecture to enable
flexible and reconfigurable distributed computing. A key feature is the provision-
ing of customization capabilities that permit clients to tailor provider resources
as appropriate to the given application, without compromising control or security.
Through the use of uploadable “pluglets”, users can exploit specialized features
of the underlying resource, application libraries, or optimized message passing
subsystems on demand. The current status of the H2O system, recent experi-
ences, and planned enhancements are described, in the context of evolutionary
directions in virtualizing distributed resources.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, p. 6, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Advanced Message Passing and Threading Issues

Graham E. Fagg and George Bosilca

Dept. of Computer Science, 1122 Volunteer Blvd., Suite 413,
The University of Tennessee, Knoxville, TN 37996-3450, USA

Tutorial

Today the challenge of programming current machines on the Top500 is a well un-
derstood problem. The next generation of super-computers will include hundreds
of thousands of processors, each one composed of by several semi-specialized
cores. From a pure performance view point such architectures appear very
promising, even if the most suitable programming methods from the users view
point have yet to be discovered. Currently both message passing and threading
techniques each have their own domain and occasionally they are used together.
Future architectures will force users to always combine these programming par-
adigms until new languages or better compilers become available.

The current trend in HPC area is toward clusters of multi-core processors
exhibiting a deep hierarchical memory model. Simultaneously, some classes of
application require a variable number of processors during their execution time.
The latest version of the MPI standard introduces several advanced topics that
fit well in these environments, this includes threading and process management
which when combined allow for much better potential performance in future
systems.

This tutorial will focus from a users perspective on how to extract the best
performance out of different parallel architectures by mixing these MPI-2 capa-
bilities. It will cover new derived data-types, dynamic process management and
multi-threading issues as well as hybrid programming with Open MP combined
with MPI. In particular we will cover:

1. Dynamic process management such as; connect/accept, spawning and dis-
connection issues.

2. Threading issues starting with MPIs threading support, moving onto thread-
ing and dynamic processes for load balancing and server client applications
and then ending with the mixing of MPI and Open MP for real problems
with solutions.

The examples shown will utilize the Open MPI library, and will explicitly
demonstrate the ability of this particular MPI implementation to satisfy the
performance needs of a large variety of parallel applications. However, the tu-
torial will cover only MPI features included in the MPI-2 standard. These fea-
tures are available (at various degrees) on several other commonly available MPI
implementations.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, p. 7, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using MPI-2: A Problem-Based Approach�

William Gropp and Ewing Lusk
{gropp, lusk}@mcs.anl.gov

Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Illinois 60439

Abstract. This tutorial will cover topics from MPI-2, the collection
of advanced features added to the MPI standard specification by the
second instantiation of the MPI Forum. Such topics include dynamic
process management, one-sided communication, and parallel I/O. These
features are now available in multiple vendor and freely available MPI
implementations. Rather than present this material in a standard ”refer-
ence manual” sequence, we will provide details of designing, coding and
tuning solutions to specific problems. The problems will be chosen for
their practical use in applications as well as for their ability to illustrate
specific MPI-2 topics. Familiarity with basic MPI usage will be assumed.

William Gropp and Ewing Lusk are senior computer scientists in the
Mathematics and Computer Science Division at Argonne National Lab-
oratory. They have been involved in both the specification and imple-
mentation of MPI since its beginning, and have written and lectured
extensively on MPI.

� This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, SciDAC Program, under Contract
W-31-109-ENG-38.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, p. 8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Some Improvements to a Parallel Decomposition
Technique for Training Support Vector Machines

Thomas Serafini1, Luca Zanni1, and Gaetano Zanghirati2

1 Department of Mathematics, University of Modena and Reggio Emilia
2 Department of Mathematics, University of Ferrara

Abstract. We consider a parallel decomposition technique for solving
the large quadratic programs arising in training the learning methodol-
ogy Support Vector Machine. At each iteration of the technique a subset
of the variables is optimized through the solution of a quadratic program-
ming subproblem. This inner subproblem is solved in parallel by a special
gradient projection method. In this paper we consider some improve-
ments to the inner solver: a new algorithm for the projection onto the
feasible region of the optimization subproblem and new linesearch and
steplength selection strategies for the gradient projection scheme. The
effectiveness of the proposed improvements is evaluated, both in terms
of execution time and relative speedup, by solving large-scale benchmark
problems on a parallel architecture.

Keywords: Support vector machines, quadratic programs, decompo-
sition techniques, gradient projection methods, parallel computation.

1 Introduction

Support Vector Machines (SVMs) are an effective learning technique [13] which
received increasing attention in the last years. Given a training set of labelled
examples

D = {(zi, yi), i = 1, . . . , n, zi ∈ R
m, yi ∈ {−1, 1}} ,

the SVM learning methodology performs classification of new examples z ∈ R
m

by using a decision function F : R
m → {−1, 1}, of the form

F (z) = sign

(
n∑

i=1

x∗
i yiK(z, zi) + b∗

)
, (1)

where K : R
m × R

m → R denotes a special kernel function (linear, polynomial,
Gaussian, . . .) and x∗ = (x∗

1, . . . , x
∗
n)T is the solution of the convex quadratic

programming (QP) problem

min f(x) =
1
2
xT Gx− xT 1

sub. to yT x = 0, 0 ≤ xj ≤ C, j = 1, . . . , n,
(2)

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 9–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

10 T. Serafini, L. Zanni, and G. Zanghirati

Algorithm PGPDT (Parallel SVM Decomposition Technique)
1. Let x(0) be a feasible point for (2), let nsp and nc be two integer values such that

n ≥ nsp ≥ nc ≥ 2, nc even, and set i = 0. Arbitrarily split the indices {1, . . . , n}
into the set B of basic variables, with #B = nsp, and the set N = {1, . . . , n} \ B of
nonbasic variables. Arrange the arrays x(i), y and G with respect to B and N :

x(i) =
x

(i)
B

x
(i)
N

, y =
yB

yN

, G =
GBB GBN

GNB GNN
.

2. Compute in parallel the Hessian matrix GBB of the subproblem

min
xB∈ΩB

fB(xB) =
1
2
xT

BGBBxB − xT
B(1 − GBNx

(i)
N) (3)

where ΩB = {xB ∈ R
nsp | yT

BxB = −yT
Nx

(i)
N , 0 ≤ xB ≤ C1} and compute in

parallel the solution x
(i+1)
B of the above problem. Set x(i+1) = x

(i+1)
B

T
x

(i)
N

T T

.

3. Update in parallel the gradient ∇f(x(i+1)) = ∇f(x(i))+ [GBB GBN]T (x(i+1)
B −

x
(i)
B) and terminate if x(i+1) satisfies the KKT conditions for problem (2).

4. Update B by changing at most nc elements through the strategy described in [12].
Set i ← i + 1 and go to step 2.

where G has entries Gij = yiyjK(zi, zj), i, j = 1, 2, . . . , n, 1 = (1, . . . , 1)T and
C is a parameter of the SVM algorithm. Once the vector x∗ is computed, b∗ ∈ R

in (1) is easily derived. The matrix G is generally dense and in many real-world
applications its size is very large (n � 104). Thus, strategies suited to exploit the
special features of the problem become a need, since standard QP solvers based
on explicit storage of G cannot be used. Among these strategies, decomposition
techniques are certainly the most investigated (see for instance [1,2,4,5] and the
references therein). They consist in splitting the original problem into a sequence
of QP subproblems sized nsp � n that can fit into the available memory. An
effective parallel decomposition technique is proposed in [14] (see also [11]).
It is based on the Joachims’ decomposition idea [4] and on a special variable
projection method [7,8] as QP solver for the inner subproblems. In contrast with
other decomposition algorithms, that are tailored for very small-size subproblems
(typically less than 102), the proposed technique is appropriately designed to be
effective with subproblems large enough (typically more than 103) to produce
few decomposition steps. Due to the effectiveness of the inner QP solver, this
method is well comparable with the most effective decomposition approaches on
scalar architectures. However, its straightforward parallelization is an innovative
feature. In fact, the expensive tasks (kernel evaluations and QP subproblems
solution) of the few decomposition steps can be efficiently performed in parallel
and promising computational results are reported in [14]. The new version of this
approach, equipped with the gradient projection method GVPM introduced in
[10] as inner QP solver and with the acceleration strategies suggested in [12], is
called Parallel Gradient Projection-based Decomposition Technique (PGPDT)
and its main steps are summarized in Algorithm PGPDT .

Some Improvements to a Parallel Decomposition Technique 11

In this paper we examine two improvements to the PGPDT. The improve-
ments are suggested by the recent work [3] where a new algorithm for computing
the projection of a vector onto the feasible region of the SVM QP problem and
a special nonmonotone gradient projection method for (3) are proposed. We will
show that these strategies give rise to an efficient inner QP solver for the decom-
position techniques and imply better performance for PGPDT, both in terms of
execution time and relative speedup.

2 About Gradient Projection-Type Inner Solvers

In order to explain the PGPDT improvements we are going to introduce, we need
to briefly discuss about the numerical behaviour of the parallel decomposition
technique. To this end, we show the PGPDT performance on two well-known
benchmark problems: the QP problem sized n = 60000 arising when a classifier
for digit “8” is trained through a Gaussian SVM (K(zi, zj) = e−‖zi−zj‖2/(2σ2),
σ = 1800, C = 10) on the MNIST database of handwritten digits1 and the
QP problem sized n = 49749 arising in training Gaussian SVM (σ =

√
10,

C = 5) on the Web data set2. We solve these problems by PGPDT on a IBM
CLX/768, a Linux Cluster equipped with Intel Xeon 3GHz processors and 1GB of
memory per processor. Table 1 shows the results obtained for different numbers
of processing elements (PEs): the time column shows the overall training time,
spr is the relative speedup and it is the number of decomposition iterations.
tprep, tsolv and tgrad are respectively the time for computing the Hessian GBB of
the subproblem (step 2.), to solve the subproblem (step 2.) and to update the
gradient (step 3.). Finally, it in shows the total number of iterations of the inner
QP solver and tfix is the execution time of the non-parallelized code, which is
obtained by tfix = time− tprep − tsolv − tgrad, i.e. by subtracting the execution
time of the parallelized parts from the total execution time. It can be observed
that tfix is very small compared to the total execution time, and this shows that
steps 2 and 3 are the core computational tasks. This table shows satisfactory
speedups on the MNIST data set; for 2 and 4 processing elements we even have

Table 1. PGPDT performance scaling on MNIST (n = 60000) and Web (n = 49749)
data sets

MNIST set, nsp = 2000, nc = 600 Web set, nsp = 1500, nc = 750
PEs time spr it tprep tsolv tgrad tfix itin time spr it tprep tsolv tgrad tfix itin

1 598.2 15 14.6 81.9 501.4 0.3 5961 242.7 23 3.2 182.6 56.6 0.3 17955
2 242.2 2.5 15 13.6 49.0 179.3 0.3 6091 125.3 1.9 26 3.9 90.1 30.8 0.5 18601
4 129.6 4.6 15 10.0 28.8 90.2 0.6 6203 73.2 3.3 25 3.0 53.6 16.1 0.5 18759
8 75.5 7.9 15 7.9 21.3 45.7 0.6 5731 46.4 5.2 22 2.2 35.7 7.9 0.6 17408

16 43.8 13.7 17 5.5 13.7 24.2 0.4 5955 32.8 7.4 25 1.5 25.9 5.0 0.4 17003

1 Available at http://yann.lecun.com/exdb/mnist.
2 Available at http://research.microsoft.com/̃ jplatt/smo.html.

12 T. Serafini, L. Zanni, and G. Zanghirati

a superlinear behaviour due to the increased amount of memory available for
caching the elements of G. For the Web data set, the speedup spr is not as good
as for the MNIST case. This can be explained as follows: the gradient updating
(tgrad) has always a good speedup in both the data sets, while the inner solver is
not able to achieve the same good speedup. In the MNIST-like data sets, where
tgrad � tsolv, the suboptimal speedup of the inner solver is compensated by the
good speedup of the gradient updating, and the overall behaviour is good. On
the other hand, when tgrad < tsolv, as for the Web data set, the speedup of the
inner solver becomes the main bottleneck.

In the following we will introduce an improved inner solver able to reduce
the above drawbacks. The inner QP subproblems (3) have the following general
form:

min
w∈Ω

f̄(w) =
1
2
wT Aw + bT w (4)

where the matrix A ∈ R
nsp×nsp is symmetric and positive semidefinite, w, b ∈

R
nsp and the feasible region Ω is defined by

Ω = {w ∈ R
nsp , 0 ≤ w ≤ C1, cT w = d, d ∈ R}. (5)

We recall that now the size nsp allows the matrix A to be stored in memory. The
special gradient projection method (GVPM) used by PGPDT [10] combines a
monotone linesearch strategy with an adaptive steplength selection based on the
Barzilai–Borwein rules. Gradient projection methods are appealing approaches
for problems (4) since they consist in a sequence of projections onto the feasible
region, that are nonexpensive due to the special constraints (5), as it will be
described in the next section. As a consequence, the main task of each iteration
remains a matrix-vector product for computing ∇f̄(w) that can be straightfor-
wardly parallelized by a row block-wise distribution of the entries of A.

Recently, Dai and Fletcher [3] have proposed a new gradient projection
method for singly linearly constrained QP problems subject to lower and up-
per bounds. In the computational experiments reported in [3], this method has
shown better convergence rate in comparison to GVPM on some medium-scale
SVM test problems.

Here we are interested in evaluating the PGPDT performance improvements
due to this new inner solver. We recall our implementation of the Dai and
Fletcher method in Algorithm DF.

For this method the same considerations given for GVPM about the compu-
tational cost per iteration and the parallelization still hold true. Nevertheless,
the linesearch step and the steplength selection rule are very different.

The algorithm DF uses an adaptive nonmonotone linesearch in order to
allow the objective function value f̄(w(k)) to increase on some iterations. Its main
feature is the adaptive updating of the reference function value fref. The purpose
of the updating rule is to cut down the number of times the linesearch is brought
into play and, consequently, to frequently accept the iterate w(k+1) = w(k)+d(k)

obtained through an appropriate steplength αk.

Some Improvements to a Parallel Decomposition Technique 13

Algorithm DF Gradient Projection Method
1. Initialization. Let w(0) ∈ Ω, 0 < αmin < αmax, α0 ∈ [αmin, αmax], L = 2;

set fref = ∞, fbest = fc = f̄(w(0)), � = 0, k = 0, s(k−1) = y(k−1) = 0.
2. Projection. Terminate if w(k) satisfies a stopping criterion; otherwise compute the

descent direction

d(k) = PΩ(w(k) − αk(Aw(k) + b)) − w(k).

3. Linesearch.
If k = 0 and f̄(w(k) + d(k)) ≥ f̄(w(k)) or k > 0 and f̄(w(k) + d(k)) ≥ fref

then

w(k+1) = w(k) + λkd(k), with λk = arg min
λ∈[0,1]

f̄(w(k) + λd(k));

else
w(k+1) = w(k) + d(k);

end.

4. Update. Compute s(k) = w(k+1) − w(k); y(k) = A(w(k+1) − w(k)).
If s(k)T

y(k) ≤ 0 then
set αk+1 = αmax;

else
If s(k−1)T

y(k−1) ≤ 0 then

set αk+1 = min αmax, max αmin, s(k)T
s(k)

s(k)T
y(k) ;

else
set αk+1 = min αmax, max αmin, s(k)T

s(k) + s(k−1)T
s(k−1)

s(k)T
y(k) + s(k−1)T

y(k−1) ;
end.

end.
If f̄(w(k+1)) < fbest then

set fbest = f̄(w(k+1)), fc = f̄(w(k+1)), � = 0;
else

set fc = max fc, f̄(w(k+1)) , � = � + 1;
If l = L then

set fref = fc, fc = f̄(w(k+1)), � = 0;
end.

end.
Set k ← k + 1, and go to step 2.

For the steplength updating in DF, the rule

αk+1 =
∑m−1

i=0 s(k−i)T
s(k−i)∑m−1

i=0 s(k−i)T
y(k−i)

, m ≥ 1,

is used with the choice m = 2 because it is observed to be the best one for the
SVM QP problems. We conclude the introduction to DF by recalling that its
global convergence can be proved by proceeding as in [9].

14 T. Serafini, L. Zanni, and G. Zanghirati

Table 2. PGPDT performance scaling with DF as inner solver

MNIST set, nsp = 2000, nc = 600 Web set, nsp = 1500, nc = 750
PEs time spr it tprep tsolv tgrad itin time spr it tprep tsolv tgrad itin

1 591.1 15 14.8 73.0 503.0 5254 206.5 24 3.2 145.9 57.0 12247
2 232.4 2.5 15 13.7 38.9 178.2 4937 91.2 2.3 23 3.7 59.0 28.1 12068
4 124.9 4.7 15 10.3 23.8 90.5 5061 59.9 3.4 29 3.3 39.6 16.6 13516
8 70.1 8.4 15 7.6 16.2 45.7 5044 40.6 5.1 26 2.4 29.1 8.8 13554

16 41.4 14.3 15 5.1 11.9 24.0 5062 27.3 7.6 23 1.5 20.7 4.7 12933

In order to analyze the behaviour of this new solver within PGPDT, we can
refer to Table 2 which shows the same test of Table 1 but using DF as the inner
solver, in place of GVPM. Looking at the itin column, one can observe a great
reduction of the overall inner iterations; considering that the cost per iteration
of the DF method is almost the same as for GVPM, this implies a more efficient
solution of the inner subproblem. This fact is confirmed by comparing the tsolv
columns, which report the total execution time of the inner solvers. As a result,
the overall execution time of the PGPDT and its speedup spr are improved by
the introduction of this new inner solver.

3 About the Projection onto the Feasible Region

The gradient projection algorithms used as inner solvers in the PGPDT require
at each iteration to project a vector onto a feasible region Ω of the form (5).
This feasible region has a special structure defined by a single linear equality
constraint and box constraints. This section is about methods for computing
efficiently a projection onto such a feasible region.

The orthogonal projection of a vector z onto Ω is the solution PΩ(z) of the
following separable strictly convex quadratic program:

min 1
2wT w − zT w

sub. to 0 ≤ w ≤ C1, cT w = d.
(6)

By exploiting the KKT conditions of (6) it is possible to prove [3,6] that PΩ(z)
can be derived from the solution of the piecewise linear monotone nondecreasing
equation in one variable

r(λ) = cT w(λ) − d = 0, (7)

where
w(λ) = mid(0, (z + λc), C1)

in which mid(v1, v2, v3) is the componentwise operation that gives the median
of its three arguments. Once the solution λ∗ of (7) is computed, we obtain PΩ(z)
by setting PΩ(z) = w(λ∗).

Thus, the main computational task for computing PΩ(z) consists in solving
the equation (7). The gradient projection methods tested in the previous section
solve this root finding problem by the O(n) bisection-like algorithm proposed

Some Improvements to a Parallel Decomposition Technique 15

Table 3. PGPDT performance scaling with DF and secant-based projector

MNIST set, nsp = 2000, nc = 600 Web set, nsp = 1500, nc = 750
PEs time spr it tprep tsolv tgrad itin time spr it tprep tsolv tgrad itin

1 590.0 15 14.9 67.4 507.5 5107 200.8 23 3.0 143.4 54.1 12824
2 234.1 2.5 16 14.1 39.4 179.2 5432 99.1 2.0 26 4.0 63.7 30.5 14090
4 121.0 4.9 15 10.1 20.1 89.7 4913 46.6 4.3 23 3.0 28.0 15.2 11477
8 67.7 8.7 16 8.1 13.2 46.1 5004 35.5 5.7 25 2.0 24.6 8.3 14500

16 39.2 15.1 15 5.2 9.6 23.9 5476 22.1 9.1 24 1.5 15.1 5.1 13200

in [6]. Here, we consider an alternative approach introduced in [3] based on a
O(n) secant-type method. In particular, we are interested in evaluating how the
use of this new projection strategy within the DF gradient projection method
can improve the PGPDT performance. Our implementation of the secant-type
algorithm for (7) follows the one proposed in [3] and, since the projection is
required at each iteration of the DF scheme, we use to hot-start the algorithm by
providing the optimal λ of the previous projection as the initial approximation.
Finally, we stop the secant-type algorithm if one of the following conditions is
satisfied: |r(λi)| < 10−10

√
Cn or |Δλi| < 10−11(1+|λi|), where λi is the current

approximation and Δλi = λi − λi−1.
Table 3 shows the performance results of the PGPDT equipped with the DF

gradient projection method as inner QP solver and the secant-type algorithm [3]
for computing the projections. By comparing Tables 3 and 2, we can evaluate
the different behaviour due to the new secant-based projector with respect to
the bisection-based projector previously used. First of all, by considering the
total number of the inner solver iterations (itin) we may observe a very similar
behaviour in terms of convergence rate of the DF gradient projection method.
This confirms that the two projectors works with a well comparable accuracy.
Furthermore, by comparing the total scalar time, slightly better results are ob-
tained with the new secant-based projector. In spite of these similarities, since
the projector is not parallelized and, consequently, it gives rise to a fixed time
independent on the number of PEs, the time saving due to the new more effi-
cient projector implies a significantly better speedup of the inner solver and of
the overall PGPDT, especially when many PEs are used.

By comparing Tables 3 and 1 it is possible to evaluate the overall improve-
ments of the new strategies presented in this paper which, especially in the case
of Web-like data sets, consist in a promising reduction of solution times and an
increase of the speedup when many processors are used.

4 Test on a Large Data Set

In this section we briefly present the performance of the improved PGPDT on
a large-size data set: the KDDCUP-99.

The KDDCUP-99 is the Intrusion Detection data set3, used for the Third
International Knowledge Discovery and Data Mining Tools Competition, which
3 Available at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

16 T. Serafini, L. Zanni, and G. Zanghirati

was held in conjunction with KDD-99. The training set consists in binary TCP
dump data from seven weeks of network traffic. Each original pattern has 34
continuous features and 7 symbolic features. We normalize each continuous fea-
ture to the range [0, 1], and transform each symbolic feature to integer data
and then normalize it to the range [0, 1]. The original training set consists
in 4898431 examples containing repeated examples. We removed the duplicate
data and extracted the first 200000 and the last 200000 examples, thus obtain-
ing a training set of size 400000. We used a Gaussian kernel with parameters
σ2 = 0.625, C = 0.5 and 512MB of caching area.

Table 4. Performance of the improved PGPDT on a large-scale data set

KDDCUP-99, nsp = 600, nc = 200
PEs time spr it tprep tsolv tgrad MKer

1 46301 1042 62.0 526.0 45711 170469
2 19352 2.4 1031 56.0 300.0 18994 97674
4 8394 5.5 1003 40.1 177.7 8175 74478
8 4821 9.6 1043 30.4 150.1 4639 77465

16 2675 17.3 1016 27.8 113.6 2532 75423

Table 4 shows the training results using PGPDT algorithm on the IBM Linux
cluster. The column MKer counts the millions of total Kernel evaluations, which
is the total sum of the kernel evaluations over all the processing elements.

A superlinear speedup can be observed also for the largest number of proces-
sors. As we mentioned, this is mainly due to the PGPDT ability to efficiently
exploit the larger amount of memory for caching the G’s entries, which yields
a significant kernel evaluations reduction. The good scalability shown in these
experiments confirms that the proposed improved PGPDT is very suitable to
face in parallel large and even huge data sets.

5 Conclusions

In this paper we presented some improvements to the PGPDT decomposition
algorithm for training large-scale SVMs. The changes concern the solution of
the inner QP subproblems, which is a crucial point for the performance of
the PGPDT. We experimentally show that a new gradient projection scheme,
based on the adaptive nonmonotone linesearch in combination with an averaged
Barzilai-Borwein steplength rule, improves the performance of both the sequen-
tial and the parallel version of the code over the monotone gradient projection
solver previously used by PGPDT. Besides, a secant-based projector gives a fur-
ther improvement with respect to the bisection-based projector currently avail-
able in the PGPDT software. The combination of these new strategies gives rise
to an improved PGPDT version for large-scale SVM problems, which is available
for download at http://dm.unife.it/gpdt.

Some Improvements to a Parallel Decomposition Technique 17

References

1. C.C. Chang, C.J. Lin (2002), LIBSVM: a Library for Support Vector Machines,
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

2. R. Collobert, S. Benjo (2001), SVMTorch: Support Vector Machines for Large-Scale
Regression Problems, Journal of Machine Learning Research 1, 143–160.

3. Y.H. Dai, R. Fletcher (2003), New Algorithms for Singly Linearly Constrained
Quadratic Programs Subject to Lower and Upper Bounds, Research Report
NA/216, Department of Mathematics, University of Dundee.

4. T. Joachims (1998), Making Large-Scale SVM Learning Practical, Advances in
Kernel Methods, B. Schölkopf et al., eds., MIT Press, Cambridge, MA.

5. C.J. Lin (2001), On the Convergence of the Decomposition Method for Support
Vector Machines, IEEE Transactions on Neural Networks 12(6), 1288–1298.

6. P.M. Pardalos, N. Kovoor (1990), An Algorithm for a Singly Constrained Class
of Quadratic Programs Subject to Upper and Lower Bounds, Math. Programming
46, 321–328.

7. V. Ruggiero, L. Zanni (2000), A Modified Projection Algorithm for Large Strictly
Convex Quadratic Programs, J. Optim. Theory Appl. 104(2), 281–299.

8. V. Ruggiero, L. Zanni (2000), Variable Projection Methods for Large Convex
Quadratic Programs, Recent Trends in Numerical Analysis, D. Trigiante, ed., Ad-
vances in the Theory of Computational Mathematics 3, Nova Science Publ., 299–
313.

9. T. Serafini (2005), Gradient Projection Methods for Quadratic Programs and Ap-
plications in Training Support Vector Machines, Ph.D. Thesis, Dept. of Mathe-
matics, University of Modena and Reggio Emilia.

10. T. Serafini, G. Zanghirati, L. Zanni (2005), Gradient Projection Methods for Large
Quadratic Programs and Applications in Training Support Vector Machines, Op-
tim. Meth. and Soft. 20, 353–378.

11. T. Serafini, G. Zanghirati, L. Zanni (2004), Parallel Decomposition Approaches
for Training Support Vector Machines, Parallel Computing: Software Technology,
Algorithms, Architectures and Applications, G.R. Joubert, W.E. Nagel, F.J. Peters
and W.V. Walter, ed., Advances in Parallel Computing 13, Elsevier, Amsterdam,
The Netherlands, 259–266.

12. T. Serafini, L. Zanni (2005), On the working set selection in Gradient Projection-
based Decomposition Techniques for Support Vector Machines, Optim. Meth. and
Soft., to appear. (http://cdm.unimo.it/home/matematica/zanni.luca/).

13. V.N. Vapnik (1998), Statistical Learning Theory, John Wiley and Sons, New York.
14. G. Zanghirati, L. Zanni (2003), A Parallel Solver for Large Quadratic Programs in

Training Support Vector Machines, Parallel Computing 29, 535–551.

Nesting OpenMP in MPI to Implement a
Hybrid Communication Method of Parallel

Simulated Annealing on a Cluster of SMP Nodes

Agnieszka Debudaj-Grabysz1 and Rolf Rabenseifner2

1 Silesian University of Technology, Department of Computer Science,
Akademicka 16, 44-100 Gliwice, Poland
agrabysz@star.iinf.polsl.gliwice.pl

2 High-Performance Computing-Center (HLRS), University of Stuttgart,
Nobelstr 19, D-70550 Stuttgart, Germany

rabenseifner@hlrs.de
www.hlrs.de/people/rabenseifner

Abstract. Concurrent computing can be applied to heuristic methods
for combinatorial optimization to shorten computation time, or equiva-
lently, to improve the solution when time is fixed. This paper presents
several communication schemes for parallel simulated annealing, focus-
ing on a combination of OpenMP nested in MPI. Strikingly, even though
many publications devoted to either intensive or sparse communication
methods in parallel simulated annealing exist, only a few comparisons
of methods from these two distinctive families have been published;
the present paper aspires to partially fill this gap. Implementation for
VRPTW—a generally accepted benchmark problem—is used to illus-
trate the advantages of the hybrid method over others tested.

Keywords: Parallel processing, MPI, OpenMP, communication, sim-
ulated annealing.

1 Introduction

The paper presents a new algorithm for parallel simulated annealing—a heuristic
method of optimization—that uses both MPI [9] and OpenMP [12] to achieve
significantly better performance than a pure MPI implementation. This new
hybrid method is compared to other versions of parallel simulated annealing,
distinguished by varying level of inter-process communication intensity. Defining
the problem as searching for the optimal solution given a pool of processors
available for a specified period of time, the hybrid method yields distinctively
better optima as compared to other parallel methods. The general reader (i.e.,
not familiar with simulated annealing) will find the paper interesting as it refers
to a practical parallel application run on a cluster of SMPs with the number of
processors ranging into hundreds.

Simulated annealing (SA) is a heuristic optimization method used when the
solution space is too large to explore all possibilities within a reasonable amount
of time. The vehicle routing problem with time windows (VRPTW) is an example

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 18–27, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Nesting OpenMP in MPI to Implement a Hybrid Communication Method 19

of such a problem. Other examples of VRPTW are school bus routing, newspaper
and mail distribution or delivery of goods to department stores. Optimization of
routing lowers distribution costs and parallelization allows to find a better route
within the given time constraints.

The SA bibliography focuses on the sequential version of the algorithm
(e.g., [2,15]), however parallel versions are investigated too, as the sequential
method is considered to be slow when compared with other heuristics [16].
In [1,3,8,10,17] and many others, directional recommendations for parallelization
of SA can be found. The only known detailed performance analyses of intensive
versus sparse communication algorithms are in [4,11,13].

VRPTW—formally formulated by Solomon [14], who also proposed a suite of
tests for benchmarking, has a rich bibliography as well (e.g., [16]). Nevertheless,
parallel SA to solve the VRPTW is discussed only in [4,6,7].

The parallel implementation of SA presented in this paper had to overcome
many practical issues in order to achieve good parallel speedups and efficiency.
Tuning of the algorithms for distributed as well as for shared memory environ-
ment was conducted.

The plan of the paper is as follows: Section 2 presents the theoretical basis
of the sequential and parallel SA algorithm. Section 3 describes how the MPI
and OpenMP parallelization was done, while Section 4 presents the results of
the experiments. Conclusions follows.

2 Parallel Simulated Annealing

In simulated annealing, one searches for the optimal state, i.e., the state that
gives either the minimum or maximum value of the cost function. It is achieved
by comparing the current solution with a random solution from a specific neigh-
borhood. With some probability, worse solutions could be accepted as well, which
can prevent convergence to local optima. However, the probability of accepting
a worse solution decreases during the process of annealing, in sync with the
parameter called temperature. An outline of the SA algorithm is presented in

01 S ← GetInitialSolution();
02 T ← InitialTemperature;
03 for i ← 1 to NumberOfTemperatureReduction do
04 for j ← 1 to EpochLength do
05 S′ ← GetSolutionFromNeighborhood();
06 ΔC ← CostFunction(S′) - CostFunction(S);
07 if (ΔC < 0 or AcceptWithProbabilityP(ΔC, T))
08 S ← S′; {i.e., the trial is accepted}
09 end if;
10 end for;
11 T ← λT ; {with λ < 1}
12 end for;

Fig. 1. SA algorithm

20 A. Debudaj-Grabysz and R. Rabenseifner

Figure 1, where a single execution of the innermost loop step is called a trial.
The sequence of all trials within a temperature level forms a chain. The returned
final solution is the best one ever found.

2.1 Decomposition and Communication

Although SA is often considered to be an inherently sequential process since
each new state contains modifications to the previous state, one can isolate
serialisable sets [8]—a collection of rejected trials which can be executed in any
order, and the result will be the same (starting state). Independence of searches
within a serialisable set makes the algorithm suitable for parallelization, where
the creation of random solutions is decomposed among processors. From the
communication point of view SA may require broadcasting when an acceptable
solution is found. This communication requirement suggests message passing as
the suitable paradigm of communication, particularly if intended to run on a
cluster.

2.2 Possible Intensity of Communication in Parallel Simulated
Annealing

Selection of both decomposition and communication paradigms seems to be nat-
urally driven by the nature of the problem, but setting the right intensity of com-
munication is not a trivial task. The universe of possible solutions is spanned by
two extremes: communicating each event, where event means an accepted trial,
and, independent runs method, where no event is communicated. The former
method results in the single chain algorithm—only a single path in the search
space is carried out, while the latter results in the multiple chains algorithm—
several different paths are evaluated simultaneously (see Figure 2). The location
of starting points depends on implementation.

Intensive Communication Algorithm—The Time Stamp Method. In
current research the intensive communication algorithm is represented by its
speed-up optimized version called the time stamp method. The communication
model with synchronization at solution acceptance events proposed in [7] was
the starting point. The main modification, made for efficiency reasons, is to
let processes work in an asynchronous way, instead of frequent computation
interruptions by synchronization requests that resulted in idle time. After finding

Fig. 2. One single chain versus multiple chains

Nesting OpenMP in MPI to Implement a Hybrid Communication Method 21

an accepted trial, the process announces the event and continues its computation
without any synchronization. In the absence of the mechanism which ensures that
all processes are aware of the same, global state and choose the same, accepted
solution, a single process can decide only locally, based on its own state and
information included in received messages. Information about the real time when
the accepted solution was found—the time stamp—is used as the criterion for
choosing among a few acceptable solutions (known locally). The solution with
the most recent time stamp is accepted, while older ones are rejected. From the
global point of view the same solutions will be preferred.

Generally, the single chain approach is believed to have two main drawbacks:
only limited parallelism is exploited due to the reduction to a single search
path and noticeable communication overhead. The second drawback especially
reduces the application of this method to a small number of engaged processes.

Non-communication Algorithm—Independent Runs. The main assump-
tions for independent runs were formulated in [2], where the division algorithm
is proposed. The method uses all available processors to run basically sequential
algorithms, where the original chain is split into subchains of EpochLength (see
Figure 1) divided by the number of processes. At the end, the best solution found
is picked up as the final one; thus the communication is limited to merely one
reduction operation.

Although the search space is exploited in a better way than in the approach
described previously, very likely only a few processes work in the “right” areas
while the rest perform useless computation. Additionally, excessive shortening
of the chain length negatively affects the quality of results, so application of this
method is not suitable for a great number (e.g., hundreds) of engaged processes.

Lightweight Communication—Periodically Interacting Searches. Recog-
nizing the extreme character of the independent runs method, especially when
using a large number of processes, one is tempted to look for the golden mean in
the form of periodic communication. The idea was fully developed in [11]. In that
approach processes communicate after performing a subchain called a segment,
and the best solution is selected and mandated for all of them. In this study a
segment length is defined by a number of temperature decreases. As suggested
in [11] to prevent search paths from being trapped in local minima areas as a
result of communication, the period of the information exchange needs to be
carefully selected. Additionally, the influence of the periodic exchange doesn’t
always result in a positive effect and varies according to the optimized problem.

Hybrid Communication Method—Nesting OpenMP in MPI. In this
study a new approach is proposed, which tries to adopt the advantages of the
methods mentioned above while minimizing their disadvantages. In contrast with
these methods, this implementation is intended to run on modern clusters of
SMP nodes. The parallelization is accomplished using two levels: the outer par-
allelization which uses MPI to communicate between SMP nodes, and the inner

22 A. Debudaj-Grabysz and R. Rabenseifner

parallelization which uses OpenMP for shared memory parallelization within
nodes.

Outer-Level Parallelization. It can be assumed that the choice of an appropriate
algorithm should be made between independent runs or periodically interacting
searches, as they are more suitable for more than few processes. The maximal
number of engaged nodes is limited by reasonable shortening of the chain length,
to preserve an acceptable quality of results.

Inner-Level Parallelization. Within a node a few threads can build one subchain
of a length determined at the outer-level. Negligible deterioration of quality is
a key requirement. If this requirement is met, the limit on the total number of
processors to achieve both speed-up and preserve quality is determined by the
product of the processes number limit at the outer level and the threads number
limit at the inner level. An efficient implementation can also take advantage of
the fact that CPUs on SMP nodes communicate by fast shared memory and
communication overhead should be minimal relative to that between nodes. In
this study a modified version of the simple serialisable set algorithm [8] was
applied (see Section 3). For a small number of processors (i.e., 2 to 8), apart
from preserving the quality of solutions, it should provide speed-up.

3 Implementation of Communication with MPI and
OpenMP

3.1 Intensive Communication Algorithm

Every message contains a solution together with its time stamp. As the assump-
tion was to let the processes work asynchronously polling is applied to detect
moments when data is to be received. An outline of the algorithm is presented
in Figure 3.

In practice, as described in [7], the implementation underwent a few stages
of improvement to yield acceptable speed-up. Among others: a long message
containing a solution was split into two, to test the differences in performance
when sending different types of data, data structure was reorganized—an array
of structures was substituted by a structure of arrays, MPICH2 was used since
there was a bug in MPICH that prevented the program from running.

3.2 Non– and Lightweight Communication Algorithms

In case of both independent runs and periodically interacting searches methods,
MPI reduction instructions (MPI Bcast, MPI Allreduce) are the best tools for
exchanging the data.

3.3 Hybrid Communication Method

The duality of the method is extended to its communication environment: MPI
is used for communication between the nodes and OpenMP for communication

Nesting OpenMP in MPI to Implement a Hybrid Communication Method 23

01 MyData.TimeStamp ← 0;
02 do in parallel
03 do
04 MPI Iprobe(); { check for incoming messages }
05 if (there is a message to receive)
06 MPI Recv(ReceivedData, . . .);
07 if (MyData.TimeStamp < ReceivedData .TimeStamp)
08 update MyData and current TimeStamp;
09 end if;
10 end if;
11 while (there is any message to receive);
12 performTrial();
13 if (an acceptable solution was found, placed in MyData.Solution)
14 MyData .TimeStamp ← MPI Wtime();
15 for all cooperating processors do
16 MPI Send(MyData, . . .);
17 end for;
18 end if;
19 while (not Finish);

Fig. 3. The outline of the intensive communication algorithm

01 for i ← 1 to NumberOfTemperatureReduction do
02 {entering OpenMP parallel region}
03 for j ← 1 to EpochLength do
04 {OpenMP parallel for loop worksharing}
05 for i ← 0 to set of trials size do
06 performTrial();
07 end for;
08 {OpenMP entering master section}
09 select one solution, common for all threads, from all

accepted ones, based on ΔC < 0 or AcceptWithProbabilityP(ΔC, T)
10 j ← j + set of trials size;
11 {OpenMP end of master section}
12 end for;
13 {end of OpenMP parallel region}
14 T ← λT ;
15 end for;

Fig. 4. Parallel SA algorithm within a single node

among processors within a single node. The former algorithm is implemented as
described in the previous section (3.2), whereas an outline of the latter one is
presented in Figure 4.

At the inner-level, the total number of trials (EpochLength from the outer
level) in each temperature step is divided into short sets of trials All trials in
such a set are done independently. This modification is the basis for the OpenMP
parallelization with loop worksharing. To achieve an acceptable speed-up, the
following optimizations are necessary:

24 A. Debudaj-Grabysz and R. Rabenseifner

– The parallel threads must not be forked and joined for each inner loop be-
cause the total execution time for a set of trials can be too short, compared
to the OpenMP fork-join overhead;

– The size of such a set must be larger than the number of threads to minimize
the load imbalance due to the potentially extremely varying execution time
for each trial. Nevertheless, for keeping quality, the size of the set of trials
should be as short as possible to minimize the number of accepted but unused
trials;

– Each thread has to use its own independent random number generator to
minimize OpenMP synchronization points.

4 Experimental Results

In the vehicle routing problem with time windows it is assumed that there is a
warehouse, centrally located to n customers. The objective is to supply goods
to all customers at the minimum cost. The solution with lesser number of route
legs (the first goal of optimization) is better then a solution with smaller total
distance traveled (the second goal of optimization). Each customer as well as
the warehouse has a time window. Each customer has its own demand level and
should be visited only once. Each route must start and terminate at the ware-
house and should preserve maximum vehicle capacity. The sequential algorithm
from [5] was the basis for parallelization.

Experiments were carried out on NEC Xeon EM64T Cluster installed at the
High Performance Computing Center Stuttgart (HLRS). Additionally, for tests
of the OpenMP algorithm, NEC TX-7 (ccNUMA) system was used. The numer-
ical data were obtained by running the program 100 times for Solomon’s [14]
R108 set with 100 customers and the same set of parameters.

The quality of results, namely the number of final solutions with the minimal
number of route legs generated by pure MPI-based algorithms in 100 experiments
is shown in Table 1. Experiments stopped after 30 consecutive temperature de-
creases without improving the best solution. As can be seen in the table, the in-
tensive communication method gives acceptable results only for a small number
of cooperating processes. Secondly, excessively frequent periodical communica-
tion hampers the annealing process and deteriorates the convergence. The best
algorithm for the investigated problem on a large number of CPUs, as far as the
quality of results is concerned, is the algorithm of independent runs, so this one
was chosen for the development of the hybrid method.

The results generated by the hybrid algorithm are shown in Table 2. It com-
pares two methods using the same number of processors, e.g., 20 processor in-
dependent runs (MPI parallelization) versus computation on 10 nodes with 2
CPUs each or on 5 nodes with 4 CPUs each (MPI/OMP parallelization). For
better comparison, a real time limit was fixed for each independent set of proces-
sors. The time limit is the average time needed by the sequential algorithm to
find the minimal-leg solution divided by the number of processors. The hybrid
version of the algorithm with 2 OMP threads per each node ran on NEC Xeon

Nesting OpenMP in MPI to Implement a Hybrid Communication Method 25

Table 1. Comparison of quality results for MPI based methods

No. of Percentage of solutions with minimal no. of route legs

processes Non-comm. Periodic communication with the period of Intensive

1 5 10 20 30 comm.

seq 94 N/A N/A N/A N/A N/A N/A
2 97 95.6 96.2 96.8 94.2 96 91
4 95 93 96 93 93 96 96
8 91 91 82 86 90 91 93

10 94 85 88 85 88 96 82
20 84 70 77 77 74 89 69
40 85 56 60 63 71 74 N/A
60 76 30 46 55 60 68 N/A

100 60 32 38 35 44 55 N/A
200 35 12 23 30 38 37 N/A

Table 2. Comparison of quality results for hybrid and independent runs methods

Hyb., 2 OMP threads Hyb., 4 OMP threads Non-comm.

Total no. Used Speed No. of No. of sol. No. of No. of sol. No. of sol.
of used time -up MPI with min. MPI with min. with min.

processors limit processes no. of route processes no. of route no. of route
[s] legs legs legs

1 1830.0 N/A N/A N/A N/A N/A 97
4 457.5 4 2 92 1 96 95

16 114.4 16 8 93 4 97 93
20 91.5 20 10 93 5 93 94
32 57.2 32 16 90 8 90 85
40 45.8 40 20 92 10 93 85
60 30.5 60 30 86 15 91 76
80 22.9 80 40 78 20 88 69

100 18.3 100 50 87 25 87 64
120 15.3 120 60 67 30 85 62
200 9.2 200 100 55 50 78 34
400 4.6 400 200 27 100 57 9
600 3.1 600 300 9 150 31 0
800 2.3 800 400 N/A 200 13 0

Cluster, while the usage of 4 OMP threads per node was emulated, due to the
lack of access to the desired machine. Because a separate set of experiments
with 4 OMP threads demonstrated the speed-up of 2.7, then the emulation
was carried out by multiplying the applied time limit by the this factor, as if

26 A. Debudaj-Grabysz and R. Rabenseifner

undoing the speed-up to be observed on a real cluster of SMP nodes. The ac-
cumulated CPU time of a real experiment would be shortened by the factor
2.7/4 = 0.67.

It should be noted that both variants of the hybrid method give a distinctively
greater number of solutions with the minimal number of route legs if one uses 32
or more CPUs. Additionally, for smaller number of CPUs, the 4 OMP threads
version could be competitive as well (up to 40 CPUs), despite the loss of CPU-
time due to the limited efficiency of the parallelization inside of each SMP node.
If one can accept a reduced quality, e.g. 85%, then only a speed-up of 40 can be
achieved without SMP parallelization. With hybrid parallelization, the speed-up
can be raised to 60 (with 2 threads) and 120 (with 4 threads), i.e., an interactive
time-scale of about 15 sec can be reached.

5 Conclusions and Future Work

In this study a new implementation of the multiple chain parallel SA that uses
OpenMP with MPI was developed. Additionally, within the framework of the
single chain parallel SA, a time-stamp method was proposed. Based on experi-
mental results the following conclusions may be drawn:

– Multiple chain methods outperform single chain algorithms, as the latter
lead to a faster worsening of results quality and are not scalable. Single
chain methods could be used only in environments with a few processors;

– The periodically interacting searches method prevails only in some specific
situations; generally the independent runs method achieves better results;

– The hybrid method is very promising, as it gives distinctively better results
than other tested algorithms and satisfactory speed-up;

– Emulated results shown need verification on a cluster of SMPs with 4 CPUs
on a single node.

Specifying the time limit for the computation, by measurements of the elapsed
time, gives a new opportunity to determine the exact moment to exchange data.
Such a time-based scheduling could result in much better balancing than the
investigated temperature-decreases-based one (used within the periodically in-
teracting searches method). The former could minimize idle times, as well as
enables setting the number of data exchanges. Therefore, future work will focus
on forcing a data exchange (e.g., after 90% of specified limit time), when—
very likely—the number of route legs was finally minimized (first goal of op-
timization). Then, after selecting the best solution found so far, all working
processes—instead of only one—could minimize the total distance (the sec-
ond goal of optimization), leading to significant improvement of the quality of
results.

Acknowledgment

This work was supported by the EC-funded project HPC-Europa. Computing
time was also provided within the framework of the HLRS-NEC cooperation.

Nesting OpenMP in MPI to Implement a Hybrid Communication Method 27

References

1. Aarts, E., de Bont, F., Habers, J., van Laarhoven, P.: Parallel implementations of
the statistical cooling algorithm. Integration, the VLSI journal (1986) 209–238

2. Aarts, E., Korst, J.: Simulated Annealing and Boltzman Machines, John Wiley &
Sons (1989)

3. Azencott, R. (ed): Simulated Annealing Parallelization Techniques. John Wiley &
Sons, New York (1992)

4. Arbelaitz, O., Rodriguez, C., Zamakola, I.: Low Cost Parallel Solutions for the
VRPTW Optimization Problem, Proceedings of the International Conference on
Parallel Processing Workshops, IEEE Computer Society, Valencia–Spain, (2001)
176–181

5. Czarnas, P.: Traveling Salesman Problem With Time Windows. Solution by Simu-
lated Annealing. MSc thesis (in Polish), Uniwersytet Wroc�lawski, Wroc�law (2001)

6. Czech, Z.J., Czarnas, P.: Parallel simulated annealing for the vehicle routing prob-
lem with time windows. 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Canary Islands–Spain, (2002) 376–383

7. Debudaj-Grabysz, A., Czech, Z.J.: A concurrent implementation of simulated an-
nealing and its application to the VRPTW optimization problem, in Juhasz Z.,
Kacsuk P., Kranzlmuller D. (ed), Distributed and Parallel Systems. Cluster and
Grid Computing. Kluwer International Series in Engineering and Computer Sci-
ence, Vol. 777 (2004) 201–209

8. Greening, D.R.: Parallel Simulated Annealing Techniques. Physica D, 42, (1990)
293–306

9. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard, Parallel Computing
22(6) (1996) 789–828

10. Lee, F.A.: Parallel Simulated Annealing on a Message-Passing Multi-Computer.
PhD thesis, Utah State University (1995)

11. Lee, K.–G., Lee, S.–Y.: Synchronous and Asynchronous Parallel Simulated Anneal-
ing with Multiple Markov Chains, IEEE Transactions on Parallel and Distributed
Systems, Vol. 7, No. 10 (1996) 993–1008

12. OpenMP C and C++ API 2.0 Specification, from www.openmp.org/specs/
13. Onbaoglu, E., Özdamar, L.: Parallel Simulated Annealing Algorithms in Global

Optimization, Journal of Global Optimization, Vol. 19, Issue 1 (2001) 27–50
14. Solomon, M.: Algorithms for the vehicle routing and scheduling problem with

time windows constraints, Operation Research 35 (1987) 254–265, see also
http://w.cba.neu.edu/∼msolomon/problems.htm

15. Salamon, P., Sibani, P., and Frost, R.: Facts, Conjectures and Improvements for
Simulated Annealing, SIAM (2002)

16. Tan, K.C, Lee, L.H., Zhu, Q.L., Ou, K.: Heuristic methods for vehicle routing
problem with time windows. Artificial Intelligent in Engineering, Elsevier (2001)
281–295

17. Zomaya, A.Y., Kazman, R.: Simulated Annealing Techniques, in Algorithms and
Theory of Computation Handbook, CRC Press LLC, (1999)

Computing Frequent Itemsets in Parallel
Using Partial Support Trees

Dora Souliou�, Aris Pagourtzis�, and Nikolaos Drosinos

School of Electrical and Computer Engineering,
National Technical University of Athens,

Heroon Politechniou 9, 15780 Zografou, Greece
{dsouliou, ndros}@cslab.ece.ntua.gr, pagour@cs.ntua.gr

Abstract. A key process in association rules mining, which has at-
tracted a lot of interest during the last decade, is the discovery of frequent
sets of items in a database of transactions. A number of sequential al-
gorithms have been proposed that accomplish this task. In this paper
we study the parallelization of the partial-support-tree approach (Goul-
bourne, Coenen, Leng, 2000). Results show that this method achieves a
generally satisfactory speedup, while it is particularly adequate for cer-
tain types of datasets.

Keywords: Parallel data mining, association rules, frequent itemsets,
partial support tree, set-enumeration tree.

1 Introduction

Mining of association rules between itemsets in transactional data is an impor-
tant and resource demanding computational task, that calls for development of
efficient parallelization techniques. Typically, the problem is described as follows:
a database D of transactions is given, each of which consists of several distinct
items. The goal is to determine association rules of the form A → B, where A
and B are sets of items (itemsets). A fundamental ingredient of this task is the
generation of all itemsets the support (or frequency) of which exceeds a given
threshold t.

Several sequential and parallel methods to tackle this problem have been
proposed in the literature. The most widely known is the “A-priori” algorithm of
Agarwal and Srikant [6] which generates frequent itemsets in order of increasing
size, making use of the fact that supersets of infrequent itemsets cannot be
frequent in order to avoid redundant frequency calculations. Goulbourne, Coenen
and Leng [12] combine the A-priori method with the idea of storing the database
in a structure called Partial Support Tree (P -tree for short) which allows to

� Dora Souliou and Aris Pagourtzis were partially supported for this research by
“Pythagoras” grant of the Ministry of Education of Greece, co-funded by the Eu-
ropean Social Fund (75%) and National Resources (25%), under Operational Pro-
gramme for Education and Initial Vocational Training (EPEAEK II).

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 28–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computing Frequent Itemsets in Parallel Using Partial Support Trees 29

compute the support of an itemset without re-scanning the database, usually
searching a small part of the tree.

In this paper we describe a sequential algorithm for the problem of generat-
ing all frequent itemsets, which we call PS (Partial Support). Our algorithm is
based on the algorithm of [12], augmented with several implementation-oriented
details. We further present a parallel version of PS, which we call PPS (Parallel
Partial Support). We implement PPS using MPI and present experimental re-
sults which show that PPS achieves a satisfactory speedup, especially in cases
where the frequency calculation part is dominant.

2 The Sequential Algorithm

In this section we describe algorithm PS (Partial Support), which makes use of
a special tree structure called the Partial Support Tree (or P -tree for short), in-
troduced in [12]. The P -tree is a set-enumeration tree [14] that contains itemsets
in its nodes. These itemsets represent either transactions of database D or com-

Algorithm PS (* Partial Support *)

Build P -tree from database D;

(* 1st level construction *)
for i := 1 to nitems do (* nitems = number of items *)

get total support({i}) from P -tree;
if total support({i}) ≥ t then append {i} to L1; (* t = support threshold *)

k:=2;
while Lk−1 not empty and k ≤ nitems do

(* k-th level construction *)

set Lk to be the empty list;
for each itemset I ∈ Lk−1 do

(* Generation of all k-element supersets of I that have I as prefix.
Such an itemset, if frequent, can be seen as the union of I and an
itemset I ′ that belongs to Lk−1 and differs from I at the last position. *)
I ′ := next(I);
while I ′ 	= NULL do

if I and I ′ differ only at the last item then
Ik := I ∪ I ′;
if all subsets of Ik of size (k − 1) are in Lk−1 then

get total support({Ik}) from P -tree;
if total support({Ik}) ≥ t then insert Ik to Lk;

I ′ := next(I ′);
else exit while; (* no other k-element superset of I, having

I as prefix needs to be considered *)
k:=k+1;

(* end of while-loop *)

Fig. 1. The Sequential Algorithm

30 D. Souliou, A. Pagourtzis, and N. Drosinos

mon prefices of transactions of D. An integer is stored in each tree node which
represents the partial support of the corresponding itemset I, that is, the num-
ber of transactions that contain I as a prefix. Details of the construction of the
P -tree were given in [12]; a more complete description can be found in [11]. Fig-
ure 2 shows a database with 16 transactions and 6 items, and the corresponding
P -tree.

The partial support tree is constructed during one scan of database D as
follows. For each transaction read, with itemset I, the tree is traversed in order
to find a node with itemset I; if such node exists its partial support counter is
increased by 1, otherwise a new node is created with itemset I and then it is
inserted into the tree at an appropriate point. Supports of all ancestors of the
new node are also increased by 1. For each inserted node, a second node may
have to be created, containing the common prefix of I and some existing node
(this happens if this prefix is not already present).

Once the P -tree is available, it is possible to count the total support of any
itemset by traversing the nodes of P -tree and summing the partial supports of
appropriate nodes. Such a tree traversal is described in detail in [12]. In algorithm
PS we refer to this process for itemset I as ‘get total support(I) from P -tree’.

The algorithm first reads the database and creates the P -tree as described
above. It then starts building lists of frequent itemsets in an a-priori manner
[6], that is, a level-by-level strategy is followed: frequent itemsets with one item
(singletons) are generated first, then frequent 2-itemsets (pairs) are generated,
and so on. The key property is that if an itemset with k items is frequent then
so are all its subsets with k − 1 items; therefore, there is no need to examine a
k-itemset (itemset of size k) a subset of which was not found frequent at level
k − 1. The lists of frequent itemsets for the database of Figure 2 with threshold
t = 4 are shown below. Lists Li, 1 ≤ i ≤ 3, contain frequent itemsets of size i;
there are no frequent itemsets with 4 items.

1 1 1 0 0 1
1 0 1 1 1 0
1 1 1 0 0 1
1 1 1 1 0 0
1 0 1 1 0 1
1 0 1 1 1 1
1 1 1 0 1 1

a b c d e f

0 0 1 1 0 0

a b c d e f

0 0 1 0 1 1
0 1 0 1 1 1
1 0 0 1 0 0
1 0 1 0 1 1
0 1 1 0 0 1
1 0 1 1 0 0
1 0 1 1 1 1
1 0 0 0 1 0

b:2 c:2

bcf:1ac:6abc:4

ae:1ad:1

cef:1cd:1

a:12

acdef:2

abcd:1

abcef:1

abcf:2

acd:5 acef:1

acde:3

acdf:1

bdef:1

root:16

Fig. 2. A database with 16 transactions, which are subsets of {a, b, c, d, e, f}, and the
corresponding tree of partial supports

Computing Frequent Itemsets in Parallel Using Partial Support Trees 31

L1 a:12 b:6 c:13 d:9 e:8 f:10
L2 ac:10 ad:7 ae:6 af:7 bc:5 bf:5 cd:7 ce:6 cf:9 ef:6
L3 acd:6 ace:5 acf:7 cef:5

The difference between algorithm PS and the A-priori algorithm [6] lies in
the generation of candidate itemsets and in the way total support is counted. For
level-k computation, A-priori first generates a list Ck of all candidate itemsets,
based on information of level (k − 1), and then reads the whole database and
for each transaction I that it reads it updates all items in Ck that are subsets
of I; once the total support of each itemset is computed it removes from Ck

all infrequent itemsets, thus obtaining Lk. In contrast, PS generates candidate
itemsets one by one and for each of them it traverses an appropriate part of the
P -tree in order to count its total support; if the itemset is found frequent it is
inserted in Lk, otherwise it is ignored. That is, PS creates Lk directly, without
first creating the intermediate list Ck. This saves some time because no pass of
the (potentially large) list Ck is needed.

A description of the algorithm, together with some implementation details,
is given in Figure 1.

3 The Parallel Algorithm (PPS)

We now present a parallelization of the algorithm described in the previous sec-
tion. Our approach follows the ideas of a parallel version of A-priori, called Count
Distribution, which was described by Agrawal and Shafer [7]; the difference is,
of course, that PPS makes use of partial support trees.

In the beginning, the root process distributes the database transactions to
the processors in a round-robin fashion; then, each of the processors creates
its own local P -tree based on the transactions that it has received. Next, each
processor starts by computing the local support of all singletons (1-itemsets)
by accessing its own P -tree. Then the total support of singletons is computed
from local supports by an appropriate parallel procedure. The result is dis-
tributed to all processors so that each one ends up with the same list L1 of
frequent singletons by removing all infrequent singletons. During k-level compu-
tation (for each k ≥ 2), all processors first generate the same list of candidate
itemsets Ck from the common list Lk−1. Then the same procedure as that fol-
lowed for the first level allows each processor to obtain the total support for
all itemsets of Ck, and finally to derive list Lk by removing infrequent itemsets
of Ck.

Note that here, in contrast to the sequential algorithm, we do not avoid
creation of list Ck; it would be possible to do it but then all processors would
have to synchronize after calculating the support of each itemset, thus resulting
in a high synchronization cost.

A description of the algorithm is given in Figure 3. The lists of candidate item-
sets and the lists of frequent itemsets for the database of Figure 2 are shown be-
low, for threshold t = 4. Lists Ci, 1 ≤ i ≤ 3, contain candidate itemsets of size i.

32 D. Souliou, A. Pagourtzis, and N. Drosinos

Algorithm PPS (* Parallel Partial Support *)

distribute the database D to the processors in a round-robin manner;
let Dj denote the part of D assigned to processor pj ;
in each processor pj in parallel do

build local P -tree from local database Dj ;

(* 1st level construction *)
for i := 1 to nitems do

get local supportj({i}) from local P -tree;

(* Global synchronized computation *)
for i := 1 to nitems do (* nitems = number of items *)

total support({i}):= parallel sumnprocs
j=1 local supportj({i}); (* nprocs =

number of processors *)

(* Local computation continues *)
for i := 1 to nitems do

if total support({i}) ≥ t then append {i} to L1; (* all processors obtain
the same list L1 *)

k:=2;
while Lk−1 not empty and k ≤ nitems do

(* k-th level construction *)

set Lk to be the empty list;
for each itemset I ∈ Lk−1 do

I ′ := next(I);
while I ′ 	= NULL do

if I and I ′ differ only at the last item then
Ik := I ∪ I ′;
if all subsets of Ik are in Lk−1 then insert Ik into Ck;
I ′ := next(I ′);

else exit while;

for all itemsets Ik ∈ Ck do
get local supportj({Ik}) from local P -tree;

(* Global synchronized computation *)
for all itemsets Ik ∈ Ck do

total support(Ik):= parallel sumnprocs
j=1 (local supportj(Ik));

(* Local computation continues *)
for all itemsets Ik ∈ Ck do

if total support({Ik}) ≥ t then insert Ik to Lk;

k:=k+1;
(* end of while-loop *)

Fig. 3. The Parallel Algorithm

Lists Li, 1 ≤ i ≤ 3, contain frequent itemsets of size i. Note that there is no
itemset of size 4 such that all its subsets of size 3 are frequent, therefore C4 is
not created at all.

Computing Frequent Itemsets in Parallel Using Partial Support Trees 33

C1 a:12 b:6 c:13 d:9 e:8 f:10
L1 a:12 b:6 c:13 d:9 e:8 f:10
C2 ab:4 ac:10 ad:7 ae:6 af:7 bc:5 bd:2 be:2 bf:5 cd:7 ce:6 cf:9 de:4 df:4 ef:6
L2 ac:10 ad:7 ae:6 af:7 bc:5 bf:5 cd:7 ce:6 cf:9 ef:6
C3 acd:6 ace:5 acf:7 aef:4 bcf:4 cef:5
L3 acd:6 ace:5 acf:7 cef:5

4 Experimental Results

Our experimental platform is an 8-node Pentium III dual-SMP cluster intercon-
nected with 100 Mbps FastEthernet. Each node has two Pentium III CPUs at
800 MHz, 256 MB of RAM, 16 KB of L1 I Cache, 16 KB L1 D Cache, 256 KB
of L2 cache, and runs Linux with 2.4.26 kernel. We use MPI implementation
MPICH v.1.2.6, compiled with the Intel C++ compiler v.8.1.

We perform two series of experiments. In the first case, we consider randomly
generated datasets, where both the number of transactions and the number of
items are determined as user-defined parameters. Although transactions are gen-
erated in a pseudo-random manner, items are distributed over the various trans-
actions in a reasonably uniform pattern. We consider a relatively low minimum
support threshold value of 5%.

Figure 4 reveals that the speedups attained at the parallel execution of the
algorithm on our SMP cluster are reasonably efficient, particularly in the com-
putationally intensive case of 50K transactions and 500 items. We observe that
the speedup is improved as the number of items increases. This happens be-
cause the parallelized part of the computation (frequency calculation) occupies
a larger part of the whole computation as the number of items increases. We
also observe that efficiency of the computation for the 50K transactions / 50
items dataset drops when transisioning from 8 to 16 processors. This is due to
memory congestion overhead within an SMP node (see also the discussion for
similar slope reduction in Figure 5, below). However, this drop is not obvious
in the slopes corresponding to the two largest datasets (which have either more
transactions or more items), probably because the parallelization gains balance
this speedup loss.

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Processes

Speedup

linear speedup
#transactions=50K, #items=50
#transactions=100K, #items=50
#transactions=50K, #items=500

Fig. 4. Speedup obtained for randomly generated synthetic datasets

34 D. Souliou, A. Pagourtzis, and N. Drosinos

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Processes

UCI datasets speedup

linear speedup
chess, 80%
chess, 70%
connect, 95%
connect, 90%
mushroom, 30%
mushroom, 20%

Fig. 5. Speedup obtained for three UCI datasets (chess, connect, mushroom)

 0

 20

 40

 60

 80

 100

 120

mushroom
 20%

mushroom
 30%

connect
 90%

connect
 95%

chess
 70%

chess
 80%

R
at

io

UCI datasets execution time profiling

itemset generation
frequency calculation

Fig. 6. Sequential execution time profiling for the three UCI datasets (chess, connect,
mushroom)

The satisfactory results for the synthetic datasets have motivated us to ex-
tend the application of the parallel algorithm to widely used datasets, such
as the ones contained in the UC Irvine Machine Learning repository (http:
//www.ics.uci.edu/~mlearn/ MLRepository.html).

We have used three UCI datasets, namely chess, connect and mushroom. The
experimental results for a varying number of processes are depicted in Figure 5.
While the obtained parallel efficiency ranges around 60-80% for connect, it drops
heavily to about 10-20% for mushroom, and even 5-10% for chess. A slight re-
duction in the slope of the parallel efficiency line when transitioning from 8 to 16
processes can be ascribed to the memory congestion overhead inside each SMP
node, which inevitably needs to host two MPI processes, given our experimental
infrastructure. Clearly, the parallel performance achieved is directly associated
with both the input datasets and the minimum support considered. For the lat-
ter, we considered typical suggested values, depending on the specific dataset
(70% and 80% for chess, 90% and 95% for connect, 20% and 30% for mushroom).

In order to demonstrate the effect of the specific dataset on the efficiency
of the proposed parallelization, we performed in each case extensive profiling of
the sequential execution times (Figure 6). We measured the time required for
all component parts of the parallel algorithm; nevertheless, in practice, the total

Computing Frequent Itemsets in Parallel Using Partial Support Trees 35

execution time is exclusively determined by the following parts of the parallel
algorithms:

– the frequency calculation of all itemsets against the local dataset of the
specific process

– given the current list of frequent itemsets, the generation of the list of can-
didate itemsets of the next level

Other component times are essentially much smaller, e.g. the time associated
with the MPI communication for the global frequency reduction, as well as the
time required for the elimination of the infrequent itemsets. The execution time
of connect is obviously dominated by the frequency calculation part, as indicated
by Figure 6. Thus, the fact that the parallelization of the frequency calculation
has proved to be quite beneficial for connect is not surprising. On the other hand,
both chess and mushroom incur a significant overhead on the itemset generation

Dataset Min Support Procs Total execution Frequency calc. Itemsets gen.
(in %) time (in sec) time (in sec) time (in sec)

1 7.21 5.28 1.93
2 5.33 3.37 1.95

80 4 3.87 1.89 1.95
8 2.71 .74 1.94

chess 16 2.50 .25 2.18
1 97.82 28.72 69.09
2 88.57 18.46 69.61

70 4 80.72 10.15 69.67
8 74.11 3.41 70.19
16 82.20 1.43 79.85
1 72.82 72.69 .13
2 37.29 37.16 .13

95 4 19.22 19.05 .13
8 9.87 9.69 .14

connect 16 6.25 5.96 .14
1 880.24 850.29 29.94
2 460.82 430.56 30.13

90 4 249.70 218.96 30.08
8 141.18 110.66 30.26
16 103.78 67.75 34.52
1 1.83 1.60 .22
2 1.52 1.29 .23

30 4 1.13 .89 .23
8 .75 .50 .23

mushroom 16 .55 .24 .25
1 122.69 30.65 92.03
2 112.79 20.86 91.71

20 4 105.58 13.02 92.26
8 99.11 6.33 92.71
16 109.56 2.58 105.25

36 D. Souliou, A. Pagourtzis, and N. Drosinos

process, which has not been parallelized, and is thus sustained as a constant
offset in all parallel execution times. As our parallelization strategy involves the
parallel implementation of certain parts of the algorithm, the maximum efficiency
that can be obtained is limited according to Amdahl’s law.

Conclusively, the experimental evaluation renders our parallelization tech-
nique meaningful in the case of

– relatively high support threshold values,
– relatively large datasets, that is, high number of transactions in respect to

the number of items,
– dataset patterns that result to high frequency calculation needs, in respect

to itemset generation overhead.

Finally, the following table displays the measured times for the three UCI
datasets considered here. Note that the frequency calculation part scales well
with the number of processes, as was anticipated. Note also the increase in the
itemsets generation time from 8 to 16 processes, which reflects the memory
congestion when two processes reside on the same SMP node.

5 Conclusions – Future Work

In this work we have investigated the parallelization of an algorithm for mining
frequent itemsets from a database of transactions. The algorithm is based on the
use of partial support trees that facilitates the process of support (frequency)
calculation. In particular, each processor handles a part of the database and
creates a small local tree that can be kept in memory, thus providing a practicable
solution when dealing with extremely large datasets.

We have implemented the algorithm using message passing, with the help of
MPI. Results show that the above described strategy results in quite satisfac-
tory parallelization of the frequency calculation part of the algorithm; however,
another part of the algorithm, namely that of itemset generation, remains se-
quential.

We are currently considering the parallelization of the itemset generation
part, as well. To this end, we plan to explore the use of hybrid MPI-OpenMP
parallelization; more specifically, MPI will maintain the inter-process communi-
cation, while at the same time OpenMP, which allows inter-thread parallelization
and synchronization within a specific process, will take care of the incremental
parallelization of computationally intensive loops.

References

1. R. Agrawal, C. Aggarwal and V. Prasad. Depth First Generation of Long Patterns.
In KDD 2000, ACM, pp. 108-118.

2. S. Ahmed, F. Coenen, and P.H. Leng: A Tree Partitioning Method for Memory
Management in Association Rule Mining. In Proc. DaWaK 2004, LNCS 3181,
pp. 331-340, 2004.

Computing Frequent Itemsets in Parallel Using Partial Support Trees 37

3. F.Angiulli, G. Ianni, L. Palopoli. On the complexity of inducing categorical and
quantitative association rules, arXiv:cs.CC/0111009 vol 1, Nov 2001.

4. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of
Items in Large Databases. In Proc. of ACM SIGMOD Conference on Management
of Data, Washington DC, May 1993.

5. R. Agrawal, T. Imielinski, and A. Swami. Database mining: a performance perspec-
tive. IEEE Transactions on Knowledge and Data Engineering, 5(6), pp. 914–925,
Dec 1993. Special Issue on Learning and Discovery in Knowledge-Based Databases.

6. R. Agrawal and R. Srikant. Fast Algorithms for mining association rules. In Proc.
VLDB’94, pp. 487–499.

7. R. Agrawal, J.C. Shafer. Parallel Mining of Association Rules. IEEE Trans. Knowl.
Data Eng. 8(6), pp. 962-969, 1996.

8. R. J. Bayardo Jr. and R. Agrawal. Mining the Most Interesting Rules. In Proc. of
the Fifth ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining,
pp. 145–154, 1999.

9. E. Boros, V. Gurvich, L. Khachiyan, K. Makino. On the complexity of generating
maximal frequent and minimal infrequent sets, in STACS 2002.

10. F. Coenen, G. Goulbourne, and P. Leng. Computing Association Rules using Par-
tial Totals. In L. De Raedt and A. Siebes eds, Principles of Data Mining and
Knowledge Discovery (Proc 5th European Conference, PKDD 2001, Freiburg, Sept
2001), Lecture Notes in AI 2168, Springer-Verlag, Berlin, Heidelberg: pp. 54–66.

11. F. Coenen, G. Goulbourne and P. Leng. Tree Structures for Mining Association
Rules. Data Mining and Knowledge Discovery, 8 (2004), pp. 25-51

12. G. Goulbourne, F. Coenen and P. Leng. Algorithms for Computing Associa-
tion Rules using a Partial-Support Tree. Journal of Knowledge-Based Systems 13
(2000), pp. 141–149.

13. J. Han, J. Pei, Y.Yin and R. Mao. Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Dis-
covery, 8 (2004), pp. 53-87.

14. R. Raymon. Search Through Systematic Search Enumeration. In Proc. 3rd Intl
Conf. on Principles of Knowledge Representation and Reasoning, pp. 539-550.

15. A.Savasere, E. Omiecinski and S. Navathe. An Efficient Algorithm for Mining As-
sociation Rules in Large Databases. In VLDB 1995, pp. 432-444.

16. H. Toivonen. Sampling Large Databses for Association Rules. In VLDB 1996,
pp. 1-12.

A Grid-Aware Branch, Cut and Price
Implementation

Emilio P. Mancini1, Sonya Marcarelli1, Pierluigi Ritrovato2,
Igor Vasil’ev3, and Umberto Villano1

1 Università del Sannio, Dipartimento di Ingegneria, RCOST, Benevento, Italy
{epmancini, sonya.marcarelli, villano}@unisannio.it

2 Centro di Ricerca in Matematica Pura ed Applicata, Università di Salerno,
Fisciano (SA), Italy

ritrovato@crmpa.unisa.it
3 Institute of System Dynamics and Control Theory, SB RAS,

Irkutsk, Russia
vil@icc.ru

Abstract. This paper presents a grid-enabled system for solving large-
scale optimization problems. The system has been developed using
Globus and MPICH-G2 grid technologies, and consists of two BCP
solvers and of an interface portal. After a brief introduction to Branch,
Cut and Price optimization algorithms, the system architecture, the
solvers and the portal user interface are described. Finally, some of the
tests performed and the obtained results are illustrated.

1 Introduction

Most exact solution approaches to optimization problems are based on Branch
and Bound, which solves optimization problems by partitioning the solution
space. Unfortunately, most of the practical problems that can be solved by
Branch and Bound are NP-hard, and, in the worst case, may require searching
a tree of exponential size. At least in theory, Branch and Bound lends itself well
to parallelization. Therefore, the use of a sufficiently high number of processors
can make the solution of large-scale problems more practical.

Among the possible implementation methods for Branch and Bound, a pow-
erful technique is Branch, Cut, and Price (BCP). BCP is an implementation of
Branch and Bound in which linear programming is used to derive valid bounds
during the construction of the search tree. Even if the parallelization of BCP
is considerably more complex than basic Branch and Bound, currently there
are many existing and widely known parallel BCP implementations, along with
frameworks that allows quick development of customized code.

While parallel BCP solvers for “traditional” parallel systems are rather cus-
tomary, the potential of computing Grids [1,2] seems to have been only partially
exploited at the state of the art [3,4,5]. This paper represents a step in this direc-
tion, since it describes our experience in developing a grid-enabled platform for
solving large-scale optimization problems. The developed system is composed of

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 38–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Grid-Aware Branch, Cut and Price Implementation 39

two solvers, BCP-G and Meta-PBC, and of a web portal, SWI-Portal. BCP-G is
a customized version of COIN/BCP, an open source framework developed within
the IBM COIN-OR project [6]. The original COIN/BCP framework, based on
the use of PVM libraries, has been provided with a new MPI communication
API able to exploit the MPICH-G2 system, a grid-enabled MPI implementa-
tion [7, 8]. MetaPBC is instead a brand new solver that we have developed,
implementing a decentralized master-worker schema [9]. In order to make the
system as user-friendly as possible, we have also developed a web portal (SWI-
Portal) that manages users and jobs. All of them will be described here. The
paper also presents two example solvers that have been developed for testing
purposes, a solver of the p-median problem [10], and a solver of mixed integer
programming problems.

In the next section, we introduce the Branch, Cut and Price algorithms and
the COIN/BCP framework. Then, in section 3, we present the architecture of
our grid-enabled system. Next, several case studies and the obtained results
are presented. The paper closes with a discussion on our future work and the
conclusions.

2 Branch, Cut and Price Algorithms and Frameworks

Branch and Bound algorithms are the most widely used methods for solving
complex optimization problems [6]. An optimization problem is the task of min-
imizing (maximizing) an objective function, a function that associates a cost to
each solution. Branch and Bound is a strategy of exploration of solution space
based on implicit enumeration of solutions. Generally, it is an exact method, but
it is also possible to stop the search when some prefixed condition is reached.
As is well known, it is made up of two phases: a branching one, where disjoint
subsets of solutions are examined, and a bounding one, where they are evaluated
using an objective function and the subsets not including the optimal solution
are deleted.

Branch and Cut algorithms use a hybrid approach, joining the Branch and
Bound method, used to explore the solution space, and the method of cutting
planes, used for the bounding phase. The cutting planes method finds the optimal
solution introducing a finite number of cuts, that is, inequalities satisfied by all
the feasible solutions, but not by the optimal current solution of the problem
with some relaxed constraints (relaxed problem) [11, 12].

Branch and Price algorithms are instead based on column generation. This
method is used to solve problems with a very large number of variables. It
uses initially only a small subset of the problem variables and of the respective
columns in the constraints matrix, thus defining a reduced problem. In fact, in
the original problem, there are too many columns and great part of them will
have the respective variables equal to zero in an optimal solution.

Branch, Cut and Price joins the two methods used by Branch and Cut and
Branch and Price, producing dynamically both cutting planes and variables [6].

40 E.P. Mancini et al.

2.1 COIN/BCP

COIN/BCP is an open-source framework that implements the Branch, Cut and
Price algorithms for solving mixed integer programming problems, a class of
problems where some of the variables must be integer [13]. It offers a paral-
lel implementation of the algorithm using the message-passing library PVM
(Parallel Virtual Machine). All its functions are grouped in four independent
computational modules:

– Tree Manager (TM), which is the master process. It is responsible for the
entire search process, starts new processes and checks their status, sends
the problems to the slave processes and stores the best solutions. Finally, it
recognizes the end of the search, stopping all processes.

– Linear Programming (LP), which is a slave process. It performs the most
complex computational work, since it is responsible for the branching and
bounding phases. It uses a sequential solver to solve the LP relaxation
through the Open Solver Interface (OSI). This is a uniform API to vari-
ous LP solvers, such as Ilog Cplex, used in the tests that will be presented
next.

– Cut Generator (CG), a slave process that creates globally-valid inequalities
not satisfied by the current solution of LP relaxation, sending them to the
LP that requested them.

– Variable Generator (VG), which performs the Cut Generation. It creates
variables with reduced costs, and sends them to the requester LP.

COIN/BCP implements a Branch, Cut and Price single-node pool algorithm,
where there is a single central list of candidate sub-problems to be processed,
owned by the tree manager. The modules communicate with each other by ex-
changing messages through a message-passing protocol defined in a separate
communications API. In the standard version of the framework, this exploits
the PVM run-time system. The first phase of our work was to implement a
new parallel interface based on MPI, in order to make it possible the use of the
framework in a grid environment using the Globus Toolkit and MPICH-G2 [7,8].

3 System Description

The architecture of the grid-enabled platform developed is shown in Fig. 1. In
the figure, the upper layer is the portal interface, in the middle there are the two
solvers BCP-G and MetaPBC, all of which rely on the lower layer (the Globus
and MPICH-G2 frameworks).

3.1 BCP-G

BCP-G is the optimization solver that we have implemented extending COIN/
BCP. As mentioned before, this required the development of a new commu-
nication interface written in MPI. The new interface is implemented by the

A Grid-Aware Branch, Cut and Price Implementation 41

Fig. 1. System architecture

two classes BCP mpi environment and BCP mpi id, which manage the commu-
nications between computational modules and the process ids, respectively. In
particular, we have added new functions to the old system, to initialize the MPI
environment and to determine the number of processes started by mpirun. The
MPI interface differs from the PVM one, since it includes no spawn functional-
ity to start dynamically new processes. If the number of started processes is not
equal to the number of processes requested by the user, an exception is raised.

BCP-G takes trace of all processes started by mpirun and assigns a type to
each of them. It assigns to the master TM a pid equal to zero; higher pids are
assigned to the slaves. For example, if the user wants to start 3 LP, 2 VG and 3
CG processes, the system will give type LP to the processes with pid from 1 to
3, type VG to the pid from 4 to 5 and type CG to the pid from 6 to 8. With this
new interface, which is now integrated in the COIN-OR framework, the solver
can run in a Globus grid environment using the grid-enabled implementation of
MPI, MPICH-G2. The user has simply to write a Globus rsl script and, through
the globusrun command, he can start the solver execution [14].

3.2 Meta-PBC

Meta-PBC is a parallel solver for solving optimization problems using the Branch
and Cut algorithm. It is not the porting of existing software, but it has been
developed from scratch for this research project. Our idea in designing this li-
brary was to create a parallel implementation, which would take advantage of
the best sequential B&C solvers, such as commercial solvers ILOG CPLEX or
Dashoptimization Xpress-MP. These sequential solvers are therefore executed on
a purposely-developed parallel layer, which manages their workload. Meta-PBC
consists of three modules: manager, worker and tree monitor [9]. The manager
is the master process. It is responsible for the initialization of the problem and
I/O, and manages the message handling between the workers. The worker is
a sequential solver of Branch and Cut, with some additional functionality to
communicate in the parallel layer. The workers communicate with each other
through the parallel API to know the state the overall solution process. The
parallel interaction between modules is achieved by a separate communication

42 E.P. Mancini et al.

API. In particular, an abstract message environment is used, which can be im-
plemented on the top of any communication protocol supporting basic message
passing functions. The current version is implemented in MPI. In this way, the
processes can be executed on the Grid with MPICH-G2. The tree monitor col-
lects information about the search tree, storing it in a format that can be handled
by a program that can display it in graphical form (GraphViz).

3.3 SWI-Portal

SWI-Portal is the interface to our system (Fig. 2). Users interact with the portal,
and, hence, with the solvers and the grid, through this interface. This allows
them to submit a new job and, hence, to solve an optimization problem, to
monitor their job, to view their output and to download the results. SWI-Portal
is implemented using the Java Server Pages technology (JSP). It consists of an
user interface, and a set of Java classes, wrapping of the most important and
useful Globus functions. Furthermore, it interacts with a database collecting
information on users, job and resources.

SWI-Portal is composed of four subsystems. The first is the account sub-
system, responsible for managing user access in conjunction with the users DB.
This subsystem allows a user to register in the system, and to enter in the portal
giving his login and password. The second one is the scheduling subsystem. SWI-
Portal currently supports explicit scheduling; the user has to specify the hosts
on which he wishes to run his jobs. He must insert a set of parameters describing
his problem, and the scheduling system invokes the Globus system to start the
run. The subsystem also records information about the runs in the database.
It creates automatically the parameter file necessary for the solver, using the
information supplied by the user, and creates a Globus rsl script describing the
running job. The Grid layer is responsible for the transfer of the files to all the
hosts selected to execute the job. From the pages of the Monitoring subsystem,
an user can check the status of the search, and consult any other information
about all the started processes (such as output, error, rsl, and search tree).
Users can download through the Download Subsystem all information regarding
his jobs and/or cancel them from the server.

Fig. 2. A screenshot of the SWI-Portal

A Grid-Aware Branch, Cut and Price Implementation 43

4 Case Studies

To test the developed software we have firstly built a test environment using
Globus and MPICH-G2. This test environment is not, strictly speaking, a Grid,
i.e., a geographically-distributed set of high performance computing facilities,
but rather a cluster of Globus nodes on a LAN. This was chosen purposely to
stress the developed framework by adopting a fairly low-grain decomposition
and to compare its performance results to the MPI-only version, where the grid
middleware overheads are absent. In particular, we used 9 workstations equipped
with Pentium Xeon, 2.8 GHz CPU and 1 GB of RAM over 100 GigaEthernet,
and as LP solver, Ilog Cplex version 9.0. The test performed are relative to the
solution of two well-known problems, p-median and MIP, briefly described in
the following.

The P-median problem is a classic NP-hard problem introduced by K. Hakimi
in 1979 and widely studied in the literature. The p-median problem can be eas-
ily formulated as a mixed integer linear programming. For solving this problem,
we implemented a Branch, Cut and Price algorithm with a simple procedure
choosing the core problem, a preprocessing procedure fixing some variables, a
procedure of column and rows generation solving the LP relaxed problem, and
a procedure of separation of valid cuts violated by the current solution. In the
computational experiments of BCP-G with the p-median problem, we used sev-
eral instances of the OR-Library, a collection of instances for a large variety of
problems of OR [15]. To test Meta-PBC, we implemented a generic MIP solver.
In particular we take advantage from the MIPLIB library [16] that, since its
introduction, has become a standard test set, used to compare the performance
of mixed integer optimizers.

The primary objective of our tests was not to obtain absolute performance
measurements of the solvers, but to detect possible performance losses due to
the use of the grid environment. The interest reader is referred for COIN/BCP
and Meta-PBC absolute performance figures to [13] and to [9], respectively.

Fig. 3. Comparison between PVM, MPICH and MPICH-G2 response times for the
pmed26 problem of the OR-Library, using BCP-G on a variable number of hosts

44 E.P. Mancini et al.

Fig. 4. Comparison between MPICH and MPICH-G2 response times for the misc07,
problem of the MIPLIB Library, using Meta-PBC on a variable number of hosts

Fig. 3 shows that the performance of the MPICH porting of BCP-G is slightly
better than that of the “original” PVM implementation. The MPICH-G2 ver-
sion, being affected by the grid overheads, performs instead in a very similar way
to the latter. Fig. 4 shows a similar behavior using the new Meta-PBC solver.

In fact, our tests have shown that the grid layer introduces a reasonable per-
formance penalty, which is higher than 10 % only for very small-scale problems
and becomes negligible as problem size increases. However, this is not sufficient
to deduce that the use of a grid environment, particularly on a geographical
and/or loaded network, is always satisfactory as far as performance figures are
concerned. The topic is too wide to be dealt with in the scope of this paper, and
should be suitably supported by extensive testing. However, just to alert the
reader on this issue, Fig. 5 compares the response times of COIN/BCP for the
pmed26 and pmed39 problem in a LAN and a geographical grid environment
under heavy network load, using 1, 2 and 3 host nodes. The bar diagrams show
that, unlike what happens on a LAN, where response times decrease with the
number of hosts, the exploitation of parallelism is not necessarily convenient in
a geographical LAN. In fact, the best response times on a geographical LAN
under heavy load are obtained using a single processor. Fortunately, this is just
a limit case, and the use of grid environments remains nevertheless appealing
for more coarse-grained problems and on fast networks.

5 Related Work

In the last years, many software packages implementing parallel branch and
bound have been developed. SYMPHONY [6] is a parallel framework, similar to
COIN/BCP, for solving mixed integer linear programs. COIN/BCP and SYM-
PHONY are combined in a new solver under development, ALPS [17]. Some
other parallel solver are PUBB [18], PPBB-Lib [19] and PICO [20]. PARINO [21]

A Grid-Aware Branch, Cut and Price Implementation 45

Fig. 5. Response times of the pmed26 and pmed39 problem in a LAN and a geograph-
ical grid environment for 1, 2 and 3 grid nodes

and FATCOP [22,4] are generic parallel MIP solvers, and the second one is de-
signed for Grid systems.

The grid portals allows users to access grid facilities by a standard Web
Browser. A grid portal offers an user interface to the functionalities of a Grid
system. Currently there are many grid portals, including the Alliance Portal [23],
the NEESgrid Portal [24], the Genius Portal [25] and the IeSE Portal [26]. Also,
there are many Grid portal development frameworks including the Gridsphere
Portal [27], the GridPort Portal [28] and the Grid Portal Development Toolkit
(GPDK) [29].

6 Conclusions and Future Work

In this paper, we have described a grid-enabled system for solving large-scale
optimization problems made up of two solvers and a portal interface. The two
case studies used to test it in a small LAN-based grid led to satisfactory results,
in that the measured response times are comparable with the MPI version. The
overhead due to grid middleware is higher than 10 % only for small scale prob-
lems. However, this does not guarantee reasonable performance in a geographical
grid, especially under heavy network load. In these cases, the characteristics of
the problem and of the host environment have to be suitably taken into account,
to avoid disappointing performance losses.

Currently, in Meta-PBC a checkpointing technique is used to recover the
computation if some system component fails. Our intention for future research
is to implement also dynamic process generation and task reassignment. Another
issue is to implement a global cut pool, studying different ways of sharing the
cutting planes between the solvers. As regards the SWI-Portal, we want to ex-
tend its functionalities adding implicit scheduling, and a system for monitoring

46 E.P. Mancini et al.

available resources. Implicit scheduling will make the system capable of choosing
automatically the best set of hosts where to submit the user’s job. On the other
hand, monitoring will make it possible to obtain, for each resource in the Grid,
information about architecture type, CPU clock frequency, operating system,
memory configuration, local scheduling system and current workload.

References

1. Baker, M., Buyya, R., Laforenza, D.: Grids and grid technologies for wide-area
distributed computing. Software: Practice and Experience Journal 32 (2002)

2. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid. Enabling Scalable
Virtual Organizations. Intl J. Supercomputer Applications (2001)

3. Aida, K., Osumi, T.: A case study in running a parallel branch and bound ap-
plication on the grid. In: Proc. of the The 2005 Symposium on Applications and
the Internet (SAINT’05), Washington, DC, USA, IEEE Computer Society (2005)
164–173

4. Chen, Q., Ferris, M., Linderoth, J.: Fatcop 2.0: Advanced features in an oppor-
tunistic mixed integer programming solver. Annals of Op. Res. (2001) 17–32

5. Drummond, L.M., Uchoa, E., Goncalves, A.D., Silva, J.M., Santos, M.C.,
de Castro, M.C.S.: A grid-enabled distributed branch-and-bound algo-
rithm with application on the steiner problem in graph. Technical re-
port, Universidade Federal Fluminense, Instituto de Computacao (2004)
http://www.ic.uff.br/PosGrad/RelatTec/Download/rt 02-05.pdf.gz.

6. Ralphs, T., Ladanyi, L., Saltzman, M.: Parallel Branch, Cut, and Price for Large-
Scale Discrete Optmization. Mathematical Programming 98 (2003) 253–280

7. Ferreira, L., Jacob, B., Slevin, S., Brown, M., Sundararajan, S., Lepesant, J., Bank,
J.: Globus Toolkit 3.0 Quick Start. IBM. (2003)

8. Karonis, N., Toonen, B., Foster, I.: MPICH-G2: A Grid-Enabled Implementation
of the Message Passing Interface. J. of Parallel and Dist. Comp. 63 (2003) 551–563

9. Vasil’ev, I., Avella, P.: PBC: A parallel branch-and-cut framework. In: Proc. of
35th Conference of the Italian Operations Res. Society, Lecce, Italy (2004) 138

10. Avella, P., Sassano, A.: On the p-median polytope. Mathematical Programming
(2001) 395–411

11. Margot, F.: BAC: A BCP Based Branch-and-Cut Example. (2003)
12. Cordiery, C., Marchandz, H., Laundyx, R., Wolsey, L.: bc-opt: a Branch-and-Cut

Code for Mixed Integer Programs. Mathematical Programming (1999) 335–354
13. Ralphs, T., Ladanyi, L.: COIN/BCP User’s Manual. (2001) http://www.

coin-or.org/Presentations/bcp-man.pdf.
14. Globus Alliance: WS GRAM: Developer’s Guide. (2005) http://

www-unix.globus.org/toolkit/docs/3.2/gram/ws/developer.
15. Beasley, J.: OR-Library: distributing test problems by electronic mail. Journal of

the Operational Research Society 41 (1990) 1069–1072
16. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed

integer programming library MIPLIB 3.0. Optima (1998) 12–15
17. Ralphs, T.K., Ladanyi, L., Saltzman, M.J.: A library hierarchy for implementing

scalable parallel search algorithms. J. Supercomput. 28 (2004) 215–234
18. Shinano, Y., Higaki, M., Hirabayashi, R.: Control schemas in a generalized utility

for parallel branch and bound. In: Proc. of the 1997 Eleventh International Parallel
Processing Symposium, Los Alamitos, CA, IEEE Computer Society Press (1997)

A Grid-Aware Branch, Cut and Price Implementation 47

19. Tschoke, S., Polzer, T.: Portable Parallel Branch-And-Bound Library PPBB-Lib
User Manual. Department of computer science Univ. of Paderborn. (1996)

20. Eckstein, J., Phillips, C., Hart, W.: Pico: An object-oriented framework for parallel
branch and bound. Technical report, Rutgers University, Piscataway, NJ (2000)

21. Linderoth, J.: Topics in Parallel Integer Optimization. PhD thesis, School of
Industrial and Systems Engineering, Georgia Inst. of Tech., Atlanta, GA (1998)

22. Chen, Q., Ferris, M.C.: Fatcop: A fault tolerant condor-pvm mixed integer pro-
gramming solver. Technical report, University of Wisconsin CS Department Tech-
nical Report 99-05, Madison, WI (1999)

23. Alliance Portal Project: Scientific Portals. Argonne National Labs. (2002) http://
www.extreme.indiana.edu/alliance/docandpres/SC2002PortalTalk.pdf.

24. Brown, G.E.: Towards a Vision for the NEES Collaboratory. NEES
Consortium Development Project. (2002) http://www.curee.org/
projects/NEES/docs/outreach/VisionWhitePaperV3.pdf.

25. Barbera, R., Falzone, A., Rodolico, A.: The genius grid portal. In: Proc. of Com-
puting in High Energy and Nuclear Physics, La Jolla, California (2003) 24–28
https://genius.ct.infn.it.

26. Kleese van Dam, K., Sufi, S., Drinkwater, G., Blanshard, L., Manandhar, A., Tyer,
R., Allan, R., O’Neill, K., Doherty, M., Williams, M., Woolf, A., Sastry, L.: An
integrated e-science environment for environmental science. In: Proc. of Tenth
ECMWF Workshop, Reading, England (2002) 175–188

27. Novotny, J., Russell, M., Wehrens:, O.: Gridsphere: An advanced portal framework.
In: Proc. of 30th EUROMICRO Conf., Rennes, Fr., IEEE (2004) 412–419 http://
www.gridsphere.org/gridsphere/wp-4/Documents/France/gridsphere.pdf .

28. Thomas, M., Mock, S., Boisseau, J., Dahan, M., Mueller, K., Sutton., D.: The
gridport toolkit architecture for building grid portals. In: Proc. of the 10th IEEE
Intl. Symp. on High Perf. Dist. Comp. (2001) http://gridport.net.

29. Novotny, J.: The grid portal development kit. Grid Computing (2003) 657–673
http://doesciencegrid.org/projects/GPDK.

An Optimal Broadcast Algorithm Adapted
to SMP Clusters

Jesper Larsson Träff and Andreas Ripke

C&C Research Laboratories, NEC Europe Ltd.,
Rathausallee 10, D-53757 Sankt Augustin, Germany

{traff, ripke}@ccrl-nece.de

Abstract. We describe and and evaluate the adaption of a new, opti-
mal broadcast algorithm for “flat”, fully connected networks to clusters
of SMP nodes. The optimal broadcast algorithm improves over other
commonly used broadcast algorithms (pipelined binary trees, recursive
halving) by up to a factor of two for the non-hierarchical (non-SMP)
case. The algorithm is well suited for clusters of SMP nodes, since intra-
node broadcast of relatively small blocks can take place concurrently
with inter-node communication over the network. This new algorithm
has been incorporated into a state-of-the art MPI library. On a 32-node
dual-processor AMD cluster with Myrinet interconnect, improvements
of a factor of 1.5 over for instance a pipelined binary tree algorithm has
been achieved, both for the case with one and with two MPI processes
per node.

1 Introduction

Broadcast is a frequently used collective operation of MPI, the Message Pass-
ing Interface [8], and there is therefore good reason to pursue the most efficient
algorithms and best possible implementations. Recently, there has been much
interest in broadcast algorithms and implementations for different systems and
MPI libraries [2,5,6,9,10], but none of these achieve the theoretical lower bound
for their respective models. An exception is the LogP algorithm in [7], but no
implementation results were given. A quite different, theoretically optimal algo-
rithm for single-ported, fully connected networks was developed by the authors
in [11]. This algorithm has the potential of being up to a factor two faster than
the best currently implemented broadcast algorithms based on pipelined binary
trees, or on recursive halving as recently implemented in mpich2 [9] and else-
where [5,10]. These algorithms were developed on the assumption of a “flat”,
homogeneous, fully connected communication system, and will not perform op-
timally on systems with a hierarchical communication system like clusters of
SMP nodes. Pipelined binary tree algorithms can naturally be adapted to the
SMP case [3], whereas the many of the other algorithms will entail a significant
overhead.

In this paper we present the ideas behind the new, optimal broadcast algo-
rithm; technical details, however, must be found in [11]. We describe how the

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 48–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Optimal Broadcast Algorithm Adapted to SMP Clusters 49

implementation has been extended to clusters of SMP nodes, and compare the
performance of the algorithm to a pipelined binary tree algorithm [3] on a 32-
node dual-processor AMD based SMP cluster with Myrinet interconnect. Very
worthwhile performance improvements of more than a factor of 1.5 are achieved.

2 The Broadcast Algorithm

We first give a high-level description of the optimal broadcast algorithm for
“flat”, homogeneous, fully connected systems. We assume a linear communi-
cation cost model, in which sending m units of data takes time α + βm, and
each processor can both send and receive a message at the same time, possi-
bly from different processors. The p processors are numbered from 0 to p − 1
as in MPI, and we let n = �log p�. Without loss of generality we assume
that broadcast is from root processor 0. Assuming further that the m data
is sent as N blocks of m/N units, the number of communication rounds re-
quired (for any algorithm) to broadcast the N blocks is n− 1 + N , for a time of
(n− 1 + N)(α + βm/N) = (n− 1)α + (n− 1)βm/N + Nα + βm. By balancing
the terms (n− 1)βm/N and αN , the optimal running time can be found as

Topt(m) = (n− 1)α + 2
√

(n− 1)α
√

βm + βm = (
√

(n− 1)α +
√

βm)2 (1)

Proofs of this lower bound can be found in e.g. [4,6].
The optimal broadcast algorithm is pipelined in the sense that all processors

are (after an initial fill phase of n rounds) both sending and receiving blocks
at the same time. For sending data each processor acts as if it is a root of a(n
incomplete, when p is not a power of 2) binomial tree. Each non-root processor
has n different parents from which it receives blocks. To initiate the broadcast,
the root first sends n successive blocks to its children. The root continues in this
way sending blocks successively to its children in a round-robin fashion. The
non-root processors receive their first block from their parent in the binomial
tree rooted at processor 0. The non-roots pass this block on to their children in
this tree. After this initial fill phase, each processor now has a block, and the
broadcast enters a steady state, in which in each round each processor (except
the root) receives a new block from a parent, and sends a previously received
block to a child.

A more formal description of the algorithm is given in Figure 1. The buffer
containing the data being broadcast is divided into N blocks of roughly m/N
units, and the ith block is denoted buffer[i] for 0 ≤ i < N .

As can be seen each processor receives N blocks of data. That indeed N
different blocks are received and sent is determined by the recvblock(i, r) and
sendblock(i, r) functions which specify the block to be received and sent in round
i for processor r (see Section 2.2). The functions next and prev determine the
communication pattern (see Section 2.1). In each phase the same pattern is used,
and the n parent and child processors of processor r are next(j, r) and prev(j, r)
for j = 0, . . . n−1. The parent of processor r for the fill phase is first(r), and the
first round for processor r is likewise first(r). With these provisions we have:

50 J.L. Träff and A. Ripke

Root processor 0:

/* fill */
for i ← 0, n − 1 do

send(buffer[sendblock(i, 0)], next(i, 0))
/* steady state */
for i ← 1, N do

j ← (i − 1) mod n
send(buffer[sendblock(n − 1 + i, 0)], next(j, 0))

Non-root processor r:

/* fill */
i ← first(r)
recv(buffer[recvblock(i, r)], prev(i, r))
for i ← first(r) + 1, n − 1

send(buffer[sendblock(i, r)], next(i, r))
/* first block received, steady state */
for i ← 1, N

j ← (i − 1) mod n
if next(j, r) 	= 0 then /* no sending to root */

send(buffer[sendblock(n − 1 + i, r)], next(j, r))
‖ /* send and receive simultaneously */
recv(buffer[recvblock(n − 1 + i, r)], prev(j, r))

Fig. 1. The optimal broadcast algorithm

Theorem 1. In the fully-connected, one-ported, bidirectional, linear cost com-
munication model, N blocks of data can be broadcast in n−1+N rounds reaching
the optimal running time (1).

The algorithm is further simplified by the following observations. First, the
block to send in round i is obviously

sendblock(i, r) = recvblock(i, next(i, r))

so it will suffice to determine a suitable recvblock function. Actually, we can
determine the recvblock function such that for any processor r = 0 it holds that

{recvblock(0, r), recvblock(1, r), . . . , recvblock(n− 1, r)} = {0, 1, . . . , n− 1}

that is the recvblock for a phase consisting of rounds 0, . . . n−1 is a permutation
of {0, . . . , n− 1}. For such functions we can take for i ≥ n

recvblock(i, r) = recvblock(i mod n, r) + n(�i/n� − 1 + δfirst(r)(i mod n))

where δj(i) = 1 if i = j and 0 otherwise. Thus in rounds i + n, i + 2n, i +
3n, . . . for 0 ≤ i < n, processor r receives blocks recvblock(i, r), recvblock(i, r) +
n, recvblock(i, r)+2n, . . . (plus n if i = first(r)). We call such a recvblock function

An Optimal Broadcast Algorithm Adapted to SMP Clusters 51

a full block schedule, and to make the broadcast algorithm work we need to show
that a full block schedule always exists, and how it can be computed. Existence
is proved in [11], while the construction is outlined in the following sections.

When N = 1 the algorithm is just an ordinary binomial tree broadcast, which
is optimal for small m. The number of blocks N can be chosen freely, e.g. to
minimize the broadcast time under the linear cost model, or, which is relevant
for some systems, to limit the amount of communication buffer space.

2.1 The Communication Pattern

When p is a power of two the communication pattern of the allgather algorithm
in [1] can be used. In round j for j = 0, . . . , n − 1 processor r receives a block
from processor (r− 2j) mod p and sends a block to processor (r + 2j) mod p, so
for that case we take

next(j, r) = (r + 2j) mod p

prev(j, r) = (r − 2j) mod p

With this pattern the root successively sends n blocks to processors 1, 2, 4, . . . , 2j

for j = 0, . . . n−1. The subtree of child processor r = 2j consists of the processors
(r+2k) mod p, k = j+1, . . . , n−1. We say that processors 2j , . . . 2j+1−1 together
form group j, since these processors will all receive their first block in round j.
The group start of group j is 2j, and the group size is likewise 2j . Note that
first(r) = j for a processor in group j.

For the general case where p is not a power of two, the processors are di-
vided into groups of size approximately 2j. To guarantee existence of the full
block schedule, the communication pattern must satisfy that the total number
of processors in groups 0, 1, . . . , j − 1 plus the root processor must be at least
the number of processors in group j, so that all processors in group j can receive
their first block in round j. Likewise, the size of the last group n − 1 must be
at least the size of groups 0, 1, . . . , n− 2 for the processors of the last group to
deliver a block to all previous processors in round n−1. To achieve this we define
for 0 ≤ j < n

groupsize(j, p) =
{

groupsize(j, �p/2�) if j < �log p� − 1
�p/2� if j = �log p� − 1

and

groupstart(j, p) = 1 +
j−1∑
i=0

groupsize(j, p)

When p is a power of two this definition coincides with the above definition, eg.
groupsize(j, p) = 2j.

We now define the next and prev functions analogously to the powers-of-two
case:

next(j, r) = (r + groupstart(j, p)) mod p

prev(j, r) = (r − groupstart(j, p)) mod p

52 J.L. Träff and A. Ripke

We note that this communication pattern leads to an exception for the
fill phase of the algorithm in Figure 1, since it may happen that next(j, r) =
groupstart(j + 1, p) = r′ and prev(first(r′), r′) = 0 = next(j, r). Such a send has
no corresponding recv, and shall not be performed.

2.2 Computing the Full Block Schedule

The key to the algorithm is the existence and construction of the full block sched-
ule given the communication pattern described in the previous section. Existence
and correctness of the construction is discussed in [11]. For the construction it-
self a greedy algorithm almost suffices. Based on what we call the first block
schedule which determines the first block to be received by each processor r, the
construction is as follows.

1. Construct the first block schedule schedule:
set schedule[groupstart(j, p)] = j, and schedule[groupstart(j, p) + i] =
schedule[i] for i = 1, . . . , groupstart(j, p)− 1.

2. Scan the first block schedule in descending order i = r−1, r−2, . . .0. Record
in block[j] the first block schedule[i] different from block[j− 1], block[j−
2], . . .block[0], and in found[j] the index i at which block[j] was found.

3. If prev(j, r) < found[j] either
– if block[j] > block[j − 1] then swap the two blocks,
– else mark block[j] as unseen,

and continue scanning in Step 2.
4. Set block[first(r)] = schedule[r]
5. Find the remainder blocks by scanning the first block schedule in the order

i = p− 1, p− 2, . . . r + 1, and swap as in Step 3.

For each r take
recvblock(i, r) = block[i]

with block as computed above.
Space for the full block schedule is O(p log p), and as described above the

construction takes O(p2) time. However, by a different formulation of the al-
gorithm, the computation time can be reduced to O(p log p) steps [11]. The
correctness proof can also be found in [11]; as anecdotal evidence we mention
that we computed and verified all schedules up to 100 000 processors on a 2GHz
AMD Athlon PC. Construction time for the largest schedule was about 225ms.
This is of course prohibitive for on-line construction of the schedule at each
MPI Bcast operation. Instead, a corresponding schedule must be precomputed
for each MPI communicator. In applications with many communicators the space
consumption of O(p log p) can become a problem. Fortunately, it is possible to
store the full block schedule in a distributed fashion with only O(log p) space for
each processor: essentially each processor i needs only its own recvblock(i, j) and
sendblock(i, j) functions, assuming that process 0 is the broadcast root (if this
is not the case, the trick is that some other processor sends the needed schedule
to processor 0, so each processor has to store schedules for two processors which
is still only O(log p) space. The sending of the schedule to processor 0 can be
hidden behind the already started broadcast operation and thus does not cost
extra time).

An Optimal Broadcast Algorithm Adapted to SMP Clusters 53

2.3 Properties

We summarize the main properties of the broadcast algorithm as described above
for flat systems.

1. The algorithm broadcasts N blocks in n − 1 + N communication rounds,
which is best possible.

2. The number of blocks can be chosen freely. In the linear cost communication
model, the best block size is

√
(mα)/((n− 1)β) resulting in optimal running

time (1).
3. The number of rounds can also be chosen such that a given maximum block

size, eg. internal communication buffer, is not exceeded.
4. Small messages should be broadcast in N = 1 rounds, in which case the

algorithm is simply a binomial tree algorithm.
5. The required full block schedule can be computed in O(p log p) time.
6. Space for the full block schedule is likewise O(p log p) which can be stored

in a distributed fashion with O(log p) space per processor.

2.4 Adaption to Clusters of SMP Nodes

The flat broadcast algorithm can be adapted to systems with a hierarchical
communication structure like clusters of SMP nodes as follows. For each node
a local root processor is chosen. The flat broadcast algorithm is run over the
set of local root processors. In each communication round each root processor
receives a new block which is broadcast locally over the node. For SMP clusters
a simple shared memory algorithm can be used. Furthermore, the steady-state
loop of the algorithm in Figure 1 can easily be rewritten such that in each round
a) a new block is received, b) an already received block is sent, and c) the block
received in the previous round is broadcast locally. This makes it possible –
for communication networks supporting this – to hide the local, shared memory
broadcast completely behind the sending/receiving of new blocks. Only the node
local broadcast of the last block cannot be hidden in this fashion, which adds
time proportional to the block size

√
(mα)/((n− 1)β) to the total broadcast

time. For broadcast algorithms based on recursive halving [2,9,10], the size of
the “last block” received may be proportional to m/2 causing a much longer
delay.

3 Performance

Both the flat and the SMP cluster broadcast algorithms have been implemented
in a state-of-the art MPI implementation for PC clusters. We give results for a
dual-processor AMD cluster with Myrinet interconnect.

Figure 2 compares the performance of various broadcast algorithms for the
flat case with one MPI process per SMP node. The new, optimal algorithm is
compared to an algorithm based on recursive halving [10], a pipelined binary tree
algorithm (with a binomial tree for short messages), and a binomial tree algo-
rithm. The theoretical bandwidth improvement over both the recursive halving

54 J.L. Träff and A. Ripke

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

MPI_Bcast, 22 nodes

MPI_Bcast (optimal)
MPI_Bcast (halving)
MPI_Bcast (binary)

MPI_Bcast (binomial)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

MPI_Bcast, 30 nodes

MPI_Bcast (optimal)
MPI_Bcast (halving)
MPI_Bcast (binary)

MPI_Bcast (binomial)

Fig. 2. Bandwidth of 4 different “flat” broadcast algorithms for fixed number of proces-
sors p = 22 (left) and p = 30 (right), one MPI process per node, and data size m up
to 64MBytes

and the pipelined binary tree algorithm is a factor of 2, over the binomial tree
algorithm a factor �log2 p�. The actual improvement is more than a factor 1.5
even for messages of only a few K bytes. It should be noted that to obtain the
performance and relatively smooth bandwidth growth shown here, the simple,
linear cost model is not sufficient. Instead a piecewise linear model with up to 4
different values of α and β is used for estimating the best block size for a given
message size m.

Figure 3 compares the new SMP-adapted broadcast algorithm to a pipelined
binary tree algorithm likewise adapted to SMP clusters with two MPI processes
per node. For both algorithms, lower bandwidth than in the one process/node
case is achieved, but also in the SMP case the new broadcast algorithm achieves
about a factor 1.4 higher bandwidth than the pipelined binary tree.

 0

 10

 20

 30

 40

 50

 60

 70

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

MPI_Bcast, 22 nodes, 2 proc/node

MPI_Bcast (optimal)
MPI_Bcast (binary)

 0

 10

 20

 30

 40

 50

 60

 70

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

MPI_Bcast, 30 nodes, 2 proc/node

MPI_Bcast (optimal)
MPI_Bcast (binary)

Fig. 3. Bandwidth of optimal and pipelined binary tree with two MPI processes per
node, p = 22 (left) and p = 30 (right), and data size m up to 64MBytes

Finally, Figure 4 illustrates the SMP-overhead of the current implementation.
The flat version of the algorithm is compared to the SMP-algorithm with one
process/node and to the SMP-algorithm with two processes/node. Even with one
process/node, the SMP-adapted algorithm (in the current implementation) has

An Optimal Broadcast Algorithm Adapted to SMP Clusters 55

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

MPI_Bcast, 22 nodes

MPI_Bcast (flat)
MPI_Bcast (smp 1 proc/node)
MPI_Bcast (smp 2 proc/node)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

MPI_Bcast, 30 nodes

MPI_Bcast (flat)
MPI_Bcast (smp 1 proc/node)
MPI_Bcast (smp 2 proc/node)

Fig. 4. New broadcast algorithm for the flat case vs. the SMP algorithm with one
process/node vs. the SMP-algorithm with two processes/node, p = 22 (left) and p = 30
(right), and data size m up to 64MBytes. Note that the SMP algorithm even for the
one process/node case performs an extra memory copy compared to the flat algorithm.

to perform an extra memory copy compared to the flat algorithm, and Figure 4
estimates the cost of this. Up to about 100KBytes the performance of the three
versions is similar, after that the cost of the extra copying and node-internal,
shared memory broadcast becomes visible, and degrades the performance. How-
ever, improvements in the implementation are still possible to overlap intra-node
communication and node-internal broadcast as described in Section 2.4.

4 Conclusion

We described the main ideas behind a new, theoretically optimal broadcast al-
gorithm for “flat”, homogeneous, fully connected networks, and discussed an
easy adaption to hierarchical systems like clusters of SMP nodes. On a small
Myrinet cluster significant bandwidth improvements over other, commonly used
broadcast algorithm were demonstrated, both for the “flat” case with one MPI
process/node, and for the case with more than one process per node. Further
implementation improvements to better overlap network communication and
intra-node communication are still possible, and will be pursued in the future.

References

1. J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient algorithms
for all-to-all communications in multiport message-passing systems. IEEE Trans-
actions on Parallel and Distributed Systems, 8(11):1143–1156, 1997.

2. E. W. Chan, M. F. Heimlich, A. Purkayastha, and R. A. van de Geijn. On opti-
mizing collective communication. In Cluster 2004, 2004.

3. M. Go�lebiewski, H. Ritzdorf, J. L. Träff, and F. Zimmermann. The MPI/SX
implementation of MPI for NEC’s SX-6 and other NEC platforms. NEC Research
& Development, 44(1):69–74, 2003.

56 J.L. Träff and A. Ripke

4. S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized communi-
cation in hypercubes. IEEE Transactions on Computers, 38(9):1249–1268, 1989.

5. S. Juhász and F. Kovács. Asynchronous distributed broadcasting in cluster envi-
ronment. In Recent Advances in Parallel Virtual Machine and Message Passing
Interface. 11th European PVM/MPI Users’ Group Meeting, volume 3241 of Lecture
Notes in Computer Science, pages 164–172, 2004.

6. P. Sanders and J. F. Sibeyn. A bandwidth latency tradeoff for broadcast and
reduction. Information Processing Letters, 86(1):33–38, 2003.

7. E. E. Santos. Optimal and near-optimal algorithms for k-item broadcast. Journal
of Parallel and Distributed Computing, 57(2):121–139, 1999.

8. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The
Complete Reference, volume 1, The MPI Core. MIT Press, second edition, 1998.

9. R. Thakur, W. D. Gropp, and R. Rabenseifner. Improving the performance of
collective operations in MPICH. International Journal on High Performance Com-
puting Applications, 19:49–66, 2004.

10. J. L. Träff. A simple work-optimal broadcast algorithm for message passing parallel
systems. In Recent Advances in Parallel Virtual Machine and Message Passing
Interface. 11th European PVM/MPI Users’ Group Meeting, volume 3241 of Lecture
Notes in Computer Science, pages 173–180, 2004.

11. J. L. Träff and A. Ripke. Optimal broadcast for fully connected networks. In
High Performance Computing and Communications (HPCC’05), Lecture Notes in
Computer Science, 2005.

Efficient Implementation of Allreduce on
BlueGene/L Collective Network

George Almási1, Gábor Dózsa1, C. Chris Erway2,
and Burkhardt Steinmacher-Burow3

1 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
{gheorghe, gdozsa}@us.ibm.com

2 Dept. of Comp. Sci, Brown University Providence, RI 02912
cce@cs.brown.edu
3 IBM Germany

Boeblingen 71032, Germany
steinmac@de.ibm.com

Abstract. BlueGene/L is currently in the pole position on the Top500
list [4]. In its full configuration the system will leverage 65,536 compute
nodes. Application scalability is a crucial issue for a system of such size.
On BlueGene/L scalability is made possible through the efficient ex-
ploitation of special communication. The BlueGene/L system software
provides its own optimized version for collective communication routines
in addition to the general purpose MPICH2 implementation. The col-
lective network is a natural platform for reduction operations due to its
built-in arithmetic units. Unfortunately ALUs of the collective network
can handle only fixed point operands. Therefore efficient exploitation of
that network for the purpose of floating point reductions is a challenging
task. In this paper we present our experiences with implementing an ef-
ficient collective network algorithm for Allreduce sums of floating point
numbers.

1 Introduction

The BlueGene/L supercomputer is a new massively parallel system being de-
veloped by IBM in partnership with Lawrence Livermore National Laboratory
(LLNL). BlueGene/L uses system-on-a-chip integration [3] and a highly scal-
able architecture [1] to assemble a machine with 65,536 dual-processor compute
nodes.

BlueGene/L compute nodes can address only its local memory, making mes-
sage passing the natural programming model. The machine has 5 different net-
works, 3 of which are used by message passing software. In this paper we con-
centrate one the collective network and its use for reduction operations in mes-
sage passing. We describe an optimized algorithm for performing floating point
Allreduce operations of small- to mid-size data buffers, minimizing latency and
maximizing bandwidth; we describe how we used the dual-processor layout of
BlueGene/L to our advantage, almost doubling the algorithm’s throughput. We

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 57–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

58 G. Almási et al.

present performance figures collected by running MPI micro-benchmarks. We
are in the process of integrating and deploying our new algorithm into the Blue-
Gene/L MPI library.

The rest of this paper is organized as follows. Section 2 presents an overview
of the hardware and software architecture of BlueGene/L. Section 3 discusses the
implementation of reduction operations using the collective network. Section 4
presents our network-optimized dual-processor floating-point Allreduce sum
algorithm. Section 5 is a discussion of our experimental results; finally Section 6
talks about conclusions and plans for future work.

2 BlueGene/L Overview

The BlueGene/L hardware [1] and system software [2] have been exhaustively
described in other papers. In this section we present a cross-section of the hard-
ware and software that is relevant to our particular pursuit in this paper, i.e.
the optimizing the use of the collective network.

The 65,536 compute nodes of BlueGene/L feature dual PowerPC 440 proces-
sors running at 700 MHz, each with their own L1 cache but sharing a small 2 kB
L2 prefetch buffer, a 4 MB L3 cache and 512 MBytes of DDR memory. Because
the PowerPC 440 architecture is not designed for multiprocessor applications,
the L1 caches are not coherent; software has to provide coherency for correct op-
eration of the processors. To aid this process the hardware provides specialized
SRAM memory, called the lockbox, that supports atomic test-and-set primitives
and even inter-processor barrier operations. The hardware also provides a blind
device, which can be used to force-clean a processor’s cache by evicting dirty
lines. Our optimized algorithm will be using the blind device for inter-processor
cache coherence.

Each processor has a dual SIMD floating point unit with 16 Byte wide reg-
isters. This allows the processor to access the networks with 128 bit reads and
writes, resulting in increased bandwidth.

The machine has five different networks, three of which are used for userspace
communication. The network of interest to us is the collective network, a config-
urable network for high performance broadcast and reduction operations span-
ning all compute nodes. It provides a latency of 2.5 microseconds for a 65,536-
node system. It also provides point-to-point capabilities that can be used for
system file I/O; however, in this paper we will be concentrating on the collective
capabilities of the network.

The collective network features two virtual channels. Channel 0 is used by
system software for I/O; channel 1 is available to user programs, including MPI.
Network packets cannot cross virtual channels, ensuring the safety of the system
channel.

User application processes run on compute nodes under the supervision of a
custom Compute Node Kernel (CNK). The CNK is a simple, minimalist run-
time system written in approximately 5000 lines of C++ that supports a single
application running by a single user in each BlueGene/L node, reminescent of

Efficient Implementation of Allreduce on BlueGene/L Collective Network 59

PUMA [5]. It provides exactly two threads, one on each PowerPC 440 processor.
The CNK does not require or provide scheduling and context switching. Physical
memory is statically mapped, protecting kernel regions from user applications.
Porting scientific applications to run on this new kernel has been a straightfor-
ward process because we provide a standard glibc runtime system with most
of the Posix system calls.

To alleviate problems with the lack of hardware cache coherency, the Blue-
Gene/L system software provides a special cache inhibited memory region called
scratchpad for data exchange between processors on the same node.

3 Allreduce Operation on the Collective Network

Reductions play a central role in many distributed applications, used in many
cases in the result accumulation phase. The reduction has to scale up as the ma-
chine size grows; on machines like BlueGene/L with tens of thousands of nodes,
old-style reduction algorithms require a significant computational effort. Blue-
Gene/L addresses this performance bottleneck with the collective communica-
tion network, which provides limited hardware support for reduction operations.

The collective network spans all compute nodes. It appears to each processor
as a set of memory-mapped FIFOs. The processors read and write fixed-size
packets (256 bytes per packet). Each packet has an attached 32 bit descriptor
that determines the reduction operation to be performed on the packet (allow-
able operations include fixed-point sum, the MAX operation and various bitwise
operations). The operation’s data width can be varied in 16 bit increments.

The collective network is designed to be used as follows: software breaks
up the user’s input data buffer into 256 byte packets and feeds the packets to
the network on every compute node. The network combines the packets and
broadcasts the result to every node, where software has to read out the result
and store it into the output buffer.

Latency: The collective network’s latency is around 2.5 usecs. Software more
than doubles this latency to 6.5 usecs for short MPI Allreduce operations.

Bandwidth: The collective network is synchronized with the CPU clock, de-
livering 4 bits of data per CPU cycle, or approximatively 350 MBytes/s for the
BlueGene/L core CPU frequency of 700 MHz. A network packet with 256 bytes
of payload is approximately 265 bytes on the wire; therefore a fully utilized col-
lective network both reads and delivers 256 bytes of payload every 530 or so
cycles. Software has this much time to store a packet into the network and to
read a reply packet.

The collective network’s FIFOs are fed and emptied by special 128 bit
(“quad”) loads and stores that were originally designed for the SIMD float-
ing point unit. The quad loads and stores allow for faster access to the network
FIFOs, but restrict the range of addresses: every load and store must be to a 16
byte aligned address. Quad loads and stores also limit the granularity of access,
rather complicating access to the network.

60 G. Almási et al.

Complex Reduction Operations: Unfortunately the collective network does
not support a number of reduction operations that are part of the MPI standard.
For example, while the MAX operation is supported in hardware there is no
corresponding MIN operation. The obvious solution is to negate (using a 2’s
complement operation) the input data before network injection and to again
negate the results before storage in the result buffer. Here the granularity of
network access comes into play; since we cannot perform 32 bit negations on
the SIMD floating point registers, we are forced to store the results extracted
from the network, load them back into fixed-point registers and then store the
negated values into memory. To do this both on the outgoing and on the incoming
packet takes about 825 cycles even when the multiple store and load streams are
interleaved. Under these circumstances the CPU becomes a bottleneck, reducing
bandwidth to 256 Bytes

825 cycles = 0.3 Bytes/cycle, or 210 Mbytes/s. To achieve full
bandwidth on MIN operations we need to deploy both CPUs in the compute
node, one feeding the network and the other reading out results.

The MIN operation is a good introductory example for the rest of this pa-
per, which deals with a truly complicated reduction algorithm: floating point
Allreduce using the fixed-point operations available in the collective network.

4 Floating Point Allreduce

We implement floating point Allreduce sums in terms of the fixed point oper-
ations available on the network. In order to describe the Allreduce algorithm
we need to introduce some notation. We assume that each processor P (j)| 0 ≤
j < Nprocs has a buffer of N floating point numbers D(j) = {d(j)

i | 0 ≤ i < N}.
An Allreduce SUM operation calculates the following array:

R = {ri|0 ≤ i < N, ri =
∑

j

d
(j)
i }

on each processor. Using the notation we just introduced, the summation of
IEEE single- or double-precision floating point numbers can be broken down
into a multi-stage algorithm as follows:

– Find a common exponent: The participating nodes extract exponents
E(j) = {e(j)

i |0 ≤ i < N} from their respective input buffers and insert them
into the network. The collective network performs a fixed-point Allreduce
MAX on the exponents, returning an array of maximum exponents Emax =
{emax

i |0 ≤ i < N} to each node.

– Line up the mantissas: The nodes extract mantissas M (j) = {m(j)
i |0 ≤ i <

N} from the input and shift them to correspond to the maximum exponents
Emax. At the end of this stage the mantissa arrays M (j) are element-wise
compatible with each other and can be added with a fixed-point operation.

– Mantissa Allreduce: The collective network performs the fixed point All-
reduce sum on the aligned mantissas. This operation results in a new array
of summed mantissas M sum = {msum

i |0 ≤ i < N} on all participating nodes.

Efficient Implementation of Allreduce on BlueGene/L Collective Network 61

– Re-normalize result: The nodes IEEE-normalize incoming mantissas
M sum and exponents Emax to produce the final result. IEEE normaliza-
tion entails multiple steps, including the calculation of 2’s complements if
the mantissa is negative and handling de-normalized IEEE numbers.

Unlike the simple cases of Allreduce where the processors’ roles is simply
to feed and read the collective network, the algorithm outlined above is fairly
compute intensive. An earlier implementation of the algorithm resulted in a rel-
atively low performance of 0.06 Bytes/cycle or 42 Mbytes/s, indicating that the
processor spends 256

0.06 = 4266 cycles processing each packet. Our main purpose
in this paper is to improve this result by (a) pipelining the computational phases
of the algorithm and (b) by using both processors in the compute nodes to help
with the computation.

A symmetric data parallel algorithm would have been the most obvious so-
lution for deploying both processors in a node. However, the BlueGene/L hard-
ware/software architecture poses substantial challenges to this approach. There
is only one collective network channel available for use by user code, making the
symmetric use of network hardware cumbersome and expensive. Fine grain syn-
chronization of this channel would have been prohibitively expensive; to avoid
this problem we carefully distributed the algorithm’s tasks between the proces-
sors, putting one CPU in charge of creating and sending packets and letting
the other read out and post-process all results. We deal with the remaining
synchronization issues by using buffers of non-cached memory.

4.1 An Interleaved Dual-Processor Allreduce

The algorithm we are about to describe interleaves the two kinds of fixed point
allreduce operations: maximum selection on the exponents and summing up of
the mantissas. Figures 1 and 2 depict the hardware resources involved in the
process and the flow of data.

In each figure the compute node is represented as a large rectangle. The
processors are represented by circles; various memory buffers are represented
by rectangles. Rounded rectangles represent the collective network’s memory-
mapped FIFOs. The arrows represent load and store operations and they are
numbered to show the logical order of data movement.

Processing Exponents: Figure 1 shows the movement of exponent information
during the algorithm. Processor #1 extracts the exponents of the input values
from the user supplied input buffer SendBuf and stores them as 16 bit values in
the ExpBuf buffer. This buffer is then loaded into the SIMD floating point unit’s
registers with quad load instructions and stored in the network FIFOs with quad
stores.

The collective network processes the exponent packets from all compute
nodes, and returns a sequence of maximum exponents to the network receive
FIFO on each node. Processor #2 removes these packets from the FIFO and
stores two copies of the quad values into buffers called MaxExpBuf and
MaxExpCopy (the reasons for this seeming redundancy will become apparent
later).

62 G. Almási et al.

"exp" packets

Collective network

Proc1

(Sender) MaxExpBuf
Proc2

(Receiver)

2: short int

3: quad

4: quad

6: quad

5: quad
6: quad

SendBuf

1: int

Send FIFO Recv FIFO

Compute Node

ExpBuf MaxExpCopy

Fig. 1. Floating-point Allreduce: exponent processing

Collective network

"man" packets

1: (int,int)

Proc1

(Sender) MaxExpBuf
Proc2

(Receiver)

3: quad

4: quad

SendBuf

Send FIFO Recv FIFO

Compute Node

2: int

RecvBuf

ManBuf MaxExpCopy

6: (int,int)

1: short int

5: quad

5: short int

Fig. 2. Floating-point Allreduce: mantissa processing

Processing Mantissas: Figure 2 shows the processing of mantissa data. Proces-
sor #1 reads the input values again from SendBuf this time extracting the man-
tissa part and the sign information. Mantissas are right-shifted to match the
maximum exponent value from the MaxExpBuf buffer. The mantissa’s implicit
leading “1” bit is restored; if the input value was negative it is replaced by its
2’s complement. The result is stored in a temporary buffer called ManBuf; next,
the processor reads this buffer and stores in the collective network’s send FIFO
using quad loads.

The collective network processes mantissa packets by adding them up as
fixed-point numbers.

Processor #2 reads arriving packets of summed mantissas from the network
FIFOs into a temporary buffer. The mantissas are then re-loaded into fixed-
point registers together with corresponding exponent values from the MaxExp
buffer. Each mantissa-exponent pair is normalized to an IEEE compliant floating

Efficient Implementation of Allreduce on BlueGene/L Collective Network 63

point/double precision number. This last operation is fairly complicated, as it
has to pay attention to negative and de-normalized IEEE numbers. The results
are stored in memory.

Synchronizing the Processors: Using one processor to feed the network and
another to read it creates a simple producer-consumer relationship that would
seem to make other synchronization devices superfluous. Unfortunately in our
algorithm the mantissa processing phase depends on results obtained from the
exponent processing phase, making it necessary to synchronize the processors
with a reverse producer-consumer relationship from processor #2 to processor
#1. This relationship is mediated by MaxExpBuf.

Because there is no inter-processor cache coherency on BlueGene/L, we use
the non-L1-cached (and therefore expensive to access) scratchpad memory area
for the purpose of storing MaxExpBuf. However, maximum exponents are needed
by both processors for further processing, and it is cheaper for processor #2 to
make two copies of it than to read back data from non-cached memory - hence
the redundant store to MaxExpCopy in the exponent processing phase.

MaxExpBuf synchronization is achieved with two counters. One of the coun-
ters is allocated in non-cached memory and updated by Processor #2 to keep
track of the number of packets inserted into MaxExpBuf; the second is private
to Processor #1 and counts packets extracted from MaxExpBuf. Processor #2
must ensure that the second counter’s value never exceeds the first one. Because
the first counter’s value increases monotonically through the process additional
synchronization devices (e.g. atomic access to the counters) are not necessary.

Interleaving algorithm phases is important for two reasons. First, the non-
cached memory area on BlueGene/L (and hence MaxExpBuf) is of limited size
and cannot be allowed to grow indefinitely. Thus, processing of mantissas has to
start before the processing of all exponents is done.

The second argument for interleaving is that processing mantissas is more
processor intensive than processing exponents. Since the algorithm’s perfor-
mance is limited by CPU processing power rather than the network band-
width it makes sense to distribute mantissa processing evenly throughout the
algorithm.

Thus the Allreduce algorithm we deployed starts with sending a number of
exponent packets, filling up MaxExpBuf, and then proceeds to alternate mantissa
and exponent packets at the correct ratio.

Network Efficiency: An 8-byte double precision IEEE number consists of 11
bits of exponent and 53 bits of mantissa. Hence a fixed point sum on 216 nodes
requires 53+16=69 bits of precision. Given the granularity of network operations
we have the choice of using 64 bits for the mantissa (at a potential loss of 5
bits of precision), 80 bits or 96 bits. We use 16 bits for each exponent. We
end up with 64+16=80 or 96+16=112 bits on the network for every 64 bits of
payload, resulting in a net efficiency of 57% to 80%. Payload bandwidth decreases
accordingly from 350 MBytes/s to 280 and 200 MBytes/s respectively.

64 G. Almási et al.

5 Performance Analysis

We obtained our performance figures by running a very simple micro-benchmark
that calls several implementations of the double precision floating point
MPI Allreduce sum operation. We tested three implementations, the default
MPICH2 implementation and two versions of our collective network optimized
floating point algorithm, with 64 bit and 96 bit mantissas respectively.

We ran measurements on a variety of BlueGene/L systems ranging from 32
to 1024 nodes. Due to the extremely good scaling properties of the collective
network performance variations are below the noise level. Therefore only 1024
node measurements are presented in this paper.

Figure 4 shows the measured bandwidth of the three implementations for mes-
sage sizes ranging from1 to 107doubles.While theMPICH2 implementation (using
the torus network) reaches less than 40 MBytes/s, the collective network assisted
implementation reach 100 to 140 MBytes/s, handily beating the default as well as
our non-overlapped old collective assisted implementation (not shown here).

The 100 and 140 MBytes/s figures are essentially half of the collective net-
work’s bandwidth limit (200 and 280 MBytes/s respectively). It is thus clear
that the collective network based algorithm are CPU limited rather than net-
work limited.

Figure 3 shows the cycles taken by several phases of the algorithm. The main
obstacle to bandwidth turns out to be the mantissa post-processing phase of the
algorithm, which takes more than 1100 cycles per mantissa packet. It is evident
that the two processors do unequal amounts of work, resulting in load imbalance
that degrades performance.

On Figure 4 the message size corresponding to 50% of the maximum band-
width is around 1000 doubles or 8 Kbytes. On BlueGene/L N

2 values of more
than 1 Kbyte usually indicate a latency problem. Figure 5 confirms this by com-
paring the small-message latencies of the single- and dual-performance optimized
Allreduce implementations. MPICH2 latencies are also shown for comparison.
The latency of the dual processor algorithm is around 30 microseconds, almost
double the latency of the single-processor algorithm. The latency increase is
caused by software cache coherence code executed at the beginning and end of the
function and inter-processor communication in the setup phase of the algorithm.

quad mem memory compute Total
exp pre 110 603 - 637
exp post 241 271 - 269
man pre 124 339 672 815
man post 198 370 945 1141

Fig. 3. Cycle breakdown of the algorithm’s phases: exponent and mantissa pre- and
postprocessing. The first column lists the cycles spent processing quad loads and stores.
The second column lists all cycles spent accessing memory or network. The third column
lists all instructions other than loads and stores. The last column lists the grand total
of cycles spent per packet in each phase. The memory and non-memory cycles do not
add up because there is a certain amount of overlap between them.

Efficient Implementation of Allreduce on BlueGene/L Collective Network 65

 1 10 100 1000 10K 100K 1M
0

20

40

60

80

100

120

140

Message size (doubles)

B
an

dw
id

th
 (

M
B

/s
)

Standard MPICH2 Allreduce
Optimized w/ 96 bit mantissa
Optimized w/ 64 bit mantissa

Fig. 4. Bandwidth of Allreduce algo-
rithms

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

180

200

Message size (doubles)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Standard MPICH2 Allreduce
Optimized 1−CPU w/ 64 bit mantissa
Optimized 2−CPU w/ 64 bit mantissa

Fig. 5. Latency comparison of single- and
dual-processor optimized algorithms

The cross-over point for the two algorithms is at the message size of approx-
imatively 850 doubles. At this stage the better bandwidth of the dual-processor
algorithm overcomes the higher initial latency.

6 Conclusions and Future Work

The development of this collective network algorithm was made harder by as-
pects of the code development not discussed in this paper. E.g. the mantissa pre-
and postprocessing sequences were written in PowerPC assembler. They are 50
and 76 lines long respectively, and together they cost more than a man-month
of sustained work to develop and debug. Another aspect is the development of
parallel code on a non-cache-coherent platform.

With careful coding of the assembler functions, software cache coherence
and interprocessor communication we were able to more than double the band-
width of the pre-existing collective network-assisted implementation, at the cost
of additional latency. For very short messages a single-core implementation is
preferable; for medium size messages the dual-core interleaved implementation
is more than twice faster.

In the near future we intend to deploy these algorithms as part of the standard
MPI library that is shipped with BlueGene/L.

References

1. N. R. Adiga et al. An overview of the BlueGene/L supercomputer. In SC2002 –
High Performance Networking and Computing, Baltimore, MD, November 2002.

2. G. Almási, R. Bellofatto, J. Brunheroto, C. Caşcaval, J. G. C. nos, L. Ceze, P. Crum-
ley, C. Erway, J. Gagliano, D. Lieber, X. Martorell, J. E. Moreira, A. Sanomiya,
and K. Strauss. An overview of the BlueGene/L system software organization.
In Proceedings of Euro-Par 2003 Conference, Lecture Notes in Computer Science,
Klagenfurt, Austria, August 2003. Springer-Verlag.

66 G. Almási et al.

3. G. Almasi et al. Cellular supercomputing with system-on-a-chip. In IEEE Interna-
tional Solid-state Circuits Conference ISSCC, 2001.

4. J. Dongarra, H.-W. Meuer, and E. Strohmaier. TOP500 Supercomputer Sites.
Available in Web page at: http://www.netlib.org/benchmark/top500.html.

5. L. Shuler, R. Riesen, C. Jong, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M.
Stallcup. The PUMA operating system for massively parallel computers. In In
Proceedings of the Intel Supercomputer Users’ Group. 1995 Annual North America
Users’ Conference, June 1995.

Scalable Fault Tolerant MPI: Extending the
Recovery Algorithm

Graham E. Fagg, Thara Angskun, George Bosilca,
Jelena Pjesivac-Grbovic, and Jack J. Dongarra

Dept. of Computer Science, 1122 Volunteer Blvd., Suite 413,
The University of Tennessee, Knoxville, TN 37996-3450, USA

Abstract. Fault Tolerant MPI (FT-MPI)[6] was designed as a solution
to allow applications different methods to handle process failures beyond
simple check-point restart schemes. The initial implementation of FT-
MPI included a robust heavy weight system state recovery algorithm
that was designed to manage the membership of MPI communicators
during multiple failures. The algorithm and its implementation although
robust, was very conservative and this effected its scalability on both
very large clusters as well as on distributed systems. This paper details
the FT-MPI recovery algorithm and our initial experiments with new
recovery algorithms that are aimed at being both scalable and latency
tolerant. Our conclusions shows that the use of both topology aware
collective communication and distributed consensus algorithms together
produce the best results.

1 Introduction

Application developers and end-users of high performance computing systems
have today access to larger machines and more processors than ever before. Ad-
ditionally, not only the individual machines are getting bigger, but with the
recently increased network capacities, users have access to higher number of
machines and computing resources. Concurrently using several computing re-
sources, often referred to as Grid- or Metacomputing, further increases the num-
ber of processors used in each single job as well as the overall number of jobs,
which a user can launch.

With increasing number of processors however, the probability, that an ap-
plication is facing a node or link failure is also increasing. The current de-facto
means of programming scientific applications for such large and distributed sys-
tems is via the message passing paradigm using an implementation of the Mes-
sage Passing Interface (MPI) standard [10,11]. Implementations of MPI such as
FT-MPI [6] are designed to give users a choice on how to handle failures when
they occur depending on the applications current state.

The internal algorithms used within FT-MPI during failure handling and
recovery are also subject to the same scaling and performance issues that the rest
of the MPI library and applications face. Generally speaking, failure is assumed
to be such a rare event that the performance of the recovery algorithm was

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 67–75, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 G.E. Fagg et al.

considered secondary to its robustness. The system was designed originally for
use on LAN based Clusters where some linear performance was acceptable at up
to several hundred nodes, its scaling is however become an issue when FT-MPI is
used on both larger MPP which are becoming more common and when running
applications in a Meta/Grid environment.

This paper describes current work on FT-MPI to make its internal algorithms
both scalable on single network (MPP) systems as well as more scalable when
running applications across the wide area on potentially very high latency links.

This paper is ordered as follows: Section 2 detailed related work in fault
tolerent MPIs, collective communication and distributed algorithms, section 3
details HARNESS/FT-MPIs architecture and the current recovery algorithm,
section 4 the new methods togther with some initial experiment results (including
transatlantic runs) and section 5 the conclusions and future work.

2 Related Work

Work on making MPI implementations both fault tolerant and scalable can
be split into the different categories based on the overall goals, either usually
fault tolerance or scalablity [8] but rarely both. On the scalability front, related
work includes both collective communication tuning and the development of
distributed consensus algorithms though various schemes.

Most other fault tolerant MPI implementations support checkpoint and
restart models, with or with various levels of message logging to improve per-
formance. Coordinated checkpoint restart versions of MPI include: Co-Check
MPI [12], LAM/MPI[14]. MPICH-V [4] uses a mix of uncoordinated check-
pointing and distributed message logging. More relevant work includes: Starfish
MPI [1] which uses low level atomic communications to maintain state and
MPI/FT [2] which provides fault-tolerance by introducing a central co-ordinator
and/or replicating MPI processes. Using these techniques, the library can detect
erroneous messages by introducing a voting algorithm among the replicas and
can survive process-failures. The drawback however is increased resource require-
ments and partially performance degradation. Finally, the Implicit Fault Toler-
ance MPI project MPI-FT [9] supports several master-slave models where all
communicators are built from grids that contain ’spare’ processes. These spare
processes are utilized when there is a failure.

Starfish and MPI-FT are interesting in that they use classical distributed
system solutions such as atomic communications and replication [17] to solve
underlying state management problems.

3 Current Algorithm and Architecture of Harness and
FT-MPI

FT-MPI was built from the ground up as an independent MPI implementation
as part of the Department of Energy Heterogeneous Adaptable Reconfigurable
Networked SyStems (HARNESS) project [3]. HARNESS provides a dynamic

Scalable Fault Tolerant MPI: Extending the Recovery Algorithm 69

framework for adding new capabilities by using runtime plug-ins. FT-MPI is
one such plug-in. A number of HARNESS services are required both during
startup, failure-recovery and shutdown. This services are built in the form of
plug-ins that can also be compiled as standalone daemons. The ones relevant to
this work are:

– Spawn and Notify service. This service is provided by a plug-in which allows
remote processes to be initiated and then monitored. The service notifies
other interested processes when a failure or exit of the invoked process occurs.
The notify message is either sent directly to all other MPI tasks directly
or more commonly via the Notifier daemon which can provide additional
diagnostic information if required.

– Naming services. These allocate unique identifiers in the distributed envi-
ronment for tasks, daemons and services (which are uniquely addressable).
The name service also provides temporary internal system (not application)
state storage for use during MPI application startup and recovery, via a
comprehensive record facility.

An important point to note is that the Spawn and Notify Service together with
the Notifier daemons are responsible for delivering Failure/Death events. When
the notifier daemon is used it forces an ordering on the delivery of the death
event messages, but it does not impose a time bounding other than that provided
by the underlying communication system SNIPE [7]. i.e. it is best effort, with
multiple retries. Processes can be assumed to be dead when either their Spawn
service detects their death (SIGCHLD etc), another MPI process cannot contact
them or their Spawn service is unreachable.

It is useful to know what exactly the meaning of state is. The state in the
context of FT-MPI is which MPI processes make up the MPI Communicator
MPI COMM WORLD. In addition, the state also contains the process connec-
tion information, i.e. IP host addresses and port numbers etc. (FT-MPI allows
processes the right to migrate during the recovery, thus the connection informa-
tion can change and needs to be recollected). The contact information for all
processes is stored in the Name Service, but during the recovery each process
can receive a complete copy of all other processes contact information, reducing
accesses to the Name Service at the cost of local storage within the MPI runtime
library.

Current Recovery Algorithm. The current recovery algorithm is a multi-
stage algorithm that can be viewed as a type of conditional ALL2ALL commu-
nication based on who failed and who recovered. The aim of the algorithm is
to build a new consistent state of the system after a failure is detected. The
algorithm itself must also be able to handle failures during recovery (i.e. recur-
sive failures). The overall design is quite simple, first we detect who failed and
who survived, then we recover processes (if needed), verify that the recovery
proceeded correctly, build a new consistent state, disseminate this new state and
check that the new state has been accepted by all processes. The following is a
simple outline:

70 G.E. Fagg et al.

– State Discovery (initial)
– Recovery Phase
– State Discovery (verification if starting new processes or migration)
– New State Proposal
– New State Acceptance
– Continue State if accepted, or restart if not accepted

The current implementation contains the notion of two classes of partici-
pating processes within the recovery; Leaders and Peons. The leader tasks are
responsible for synchronization, initiating the Recovery Phase, building and dis-
seminating the new state atomically. The peons just follow orders from the lead-
ers. In the event that a peon dies during the recovery, the leaders will restart the
recovery algorithm. If the leader dies, the peons will enter an election controlled
by the name service using an atomic test and set primitive. A new leader will be
elected, and this will restart the recovery algorithm. This process will continue
until either the algorithm succeeds or until everyone has died.

As mentioned previously the delivery of the death events is ordered but not
time bounded. This is the reason why the Initial and verification State Discovery
and New State Acceptance phases exist. The leader processes cannot rely on only
the death events to know the current state of the system. In the case of bust
failures, the death events may not all arrive at the same time. A consequence
of this could be that the leader recovers only a single failed process and either
completes the algorithm only to immediately have to restart it, or it discovers at
the end of a recovery that the one of processes in the final state has also failed.
The Acceptance phase prevents some processes from receiving the New State
and continuing, while other processes receive a late death event and then restart
the recovery process. This is essential as the recovery is collective and hence
synchronizing across MPI COMM WORLD and must therefore be consistent.

Implementation of Current Algorithm. Each of the phases in the recov-
ery algorithm are implemented internally by the Leaders and Peons as a state
machine. Both classes of processes migrate from one state to another by send-
ing or receiving messages (i.e. a death event is receiving a message). The Leader
processes store a copy of the state in the Name Service. This assists new processes
in finding out what to do in the case that they were started after a particular
state has already been initialized.

The State Discovery phase is implemented by the Leader telling all Peons
that they need to send him an acknowledgment message (ACK). The Peons reply
back to the Leader by sending a message which contains their current contact
information, thus combining two messages into one slightly larger message. The
Leader then waits for the number of replies plus the number of failures (m) plus
one (for themselves) to equal the number of total processes (n) in the origi-
nal MPI COMM WORLD. As the recovery system does not have any explicit
timeouts, it relies on the conservation of messages, i.e. no ACK or death event
messages are lost.

The Recovery phase involves the leaders using their copy of the current state
and then building a new version of MPI COMM WORLD. Depending on the

Scalable Fault Tolerant MPI: Extending the Recovery Algorithm 71

FT-MPI communicator mode [6] used this could involve rearranging processes
ranks or spawning new processes. The phase starts with the Leaders telling
their existing Peons to WAIT via a short message broadcast. (This is an artifact
left over from an earlier version that used polling of the Name Service). If new
processes are started, they discover from the Name Service that they need to
ACK the Leaders, without the Leaders needing to send the ACK requests to the
new processes directly. After this the Leaders again perform a State Discovery
to ensure that any of the new (and current) processes have not since failed. If
no new processes are required, the Leaders build the new state and then move
to the New State Proposal phase.

The New State Proposal phase is where the Leaders propose the new state
to all other processes. During the Acceptance phase, all processes get the chance
to reject the new state. This currently only occurs if they detect the death of a
processes that is included in the new state otherwise they automatically accept
it. The Leader(s) collect the votes and if ALL voted YES it sends out a final
STATE OK message. Once this message has started to be transmitted, any
further failures are IGNORED until a complete global restart of the algorithm
by the Leader entering State Discovery phase again. This is implemented by
associating each recovery with a unique value (epoch) assigned atomically by
the Name Service. A Peon may detect the failure of a process, but will follow
instructions from the Leaders, in this case STATE OK. The failure will however
still be stored and not lost. This behavior prevents some processes from exiting
the recovery while other processes continue to attempt to recover again.

Cost of Current Algorithm. The current algorithm can be broken down into
a number of linear and collective communication patterns. This then allows us to
both model and then predict the performance of the algorithm for predetermined
conditions such as a burst of m failures.

– Discovery phases can be viewed and as a small message broadcast (request
ACK) followed by a larger message gather (receive ACK).

– Recovery phase is first a small message broadcast (WAIT) followed by a
series of sequential message transfers between the Leader, Spawn & Notify
service, Name Server etc to start any required new processes.

– New State Proposal phase is a broadcast of the complete state (larger mes-
sage).

– New State Acceptance phase is a small message reduce (not a gather).
– OK State phase is a small message broadcast.

Assuming a time per operation of Top(n) where n is the participants (includ-
ing the root), the current algorithm would take:

Ttotal=Tbcast ack(n-m)+Tgather ack(n-m)+Tbcast wait(n-m)+Tspawn(m)
+ Tbcast ack(n) + Tgather ack(n) + Tbcast state(n) + Treduce accept(n) +
Tbcast ok(n)

As some message sizes are identical for a number of operations we can replace
them with an operator based solely on their message size. Also if we assume that
n > m (which typically is true as we have single failures) we can simplify the
cost to:

72 G.E. Fagg et al.

Ttotal=4 Tbcast small(n)+2 Tgather large(n)+Tspawn(m) + Tbcast large(n)
+ Treduce small(n)

The initial implementation for LAN based systems used simple linear fault tol-
erant algorithms, as any collective communication had to be fault tolerant itself.
Take for example the initial ACK broadcast. The Leader only potentially knows
who some of the failed tasks might be, but the broadcast cannot deadlock if
unexpected tasks are missing.

Assuming the cost of spawning is constant, and that all operations can be
performed using approximately n messages then the current algorithm could be
further simplified if we consider the time for sending only small Tsmall or larger
messages Tlarge to:

Ttotal = 5n Tsmall + 3n Tlarge + Tspawn or O(8n)+Tspawn.

4 New Scalable Methods and Experimental Results

The aim of any new algorithm and implementation is to reduce the total cost
for the recovery operation on both large LAN based systems as well for Grid
and Metacomputing environments where the FT-MPI application is split across
multiple clusters (from racks to continents).

Fault Tolerant Tuned Collectives. The original algorithm is implemented by
a number of broadcast, gather and reduce operations. The first obvious solution
is to replace the linear operations by tuned collective operations using a variety
of topologies etc. This we have done using both binary and binomial trees. This
work was not trivial for either the LAN or wide area cases simply due to the fault
tolerant requirements placed on the operations being able to handle recursive
failures (i.e. nodes in any topology disappearing unexpectedly). This has been
achieved by the development of self healing tree/mesh topologies. Under normal

Fig. 1. Recovery time of the original algorithm when using various combinations of
tuned collective operations

Scalable Fault Tolerant MPI: Extending the Recovery Algorithm 73

Fig. 2. Recovery time of various algorithms operating across a very high latency link

conditions they operate by passing message as expected in static topologies. In
the case of a failures they use neighboring nodes to reroute the messages.

Figure 1 shows how the original algorithm performs when using various com-
binations of linear and tuned FT-collectives. As can be expected the tree based
(Binary Tree (Tr) / Binomial Tree (Bm)) implementations out performed the
Linear (Li) versions. The results also clearly show that the implementation is
more sensitive to the performance of the broadcast operations (Bc) than the
gather/reduce (Ga) operations. This is to be expected as the previous section
showed that algorithm contains five broadcasts verses three gather/reduce oper-
ations. The best performing implementation used a binary tree broadcast and a
linear gather, although we know this not to be true for larger process counts [13].

Multi-zone Algorithms. For the wide area we have taken two approaches.
The first is to arrange the process topologies so that they minimize the wide
area communication, much the same as Magpie [16].

The second is to develop a multi-zone algorithm. This is where there is a
leader process per zone. The lowest MPI ranked Leader becomes the master
leader for the whole system. This leader synchronizes with the other zone leaders,
who in turn execute the recovery algorithm across their zones. Unfortunately this
algorithm does not benefit us much more than the latency sensitive topology
algorithms due to the synchronizing nature of the New State Proposal and New
State Acceptance phases, unless there are additional failures during the recovery.

Figure 2 shows how the original algorithm and the new multi-zone algorithm
performs when executed between two remote clusters of various sizes. One clus-
ter is located at the University of Tennessee USA, and the other is located at the
University of Strasbourg France. A size of eight refers to four nodes at each site.
The labels SZ indicate Single-Zone and MZ indicates Multi-Zone algorithms.
Single-Zone Linear is the normal algorithm without modification, which per-
formed badly as expected. Single-Zone Tree1 is the single leader algorithm but

74 G.E. Fagg et al.

using a binary tree where the layout of the process topology reducing the number
of wide area hops. This algorithm performs well. Single-Zone Tree2 is the single
leader algorithm using a binary tree topology where no changes have been made
to the layout to avoid wide area communication. Multi-Zone Linear is a multi
leader algorithm using linear collectives per zone, and Multi-Zone OpColl uses
the best FT-tuned collective per zone. The two multi-zone algorithms perform
best, although the node count is so low that it hides any advantage of the in-
ternal tree collectives within each individual zone. Overall the multi-zone tuned
collective method perform the best as expected.

5 Conclusions and Future Work

The current FT-MPI recovery algorithm is robust but also heavyweight at ap-
proximately O(8n) messages. Although FT-MPI has successfully executed fault
tolerant applications on medium sized IBM SP systems of up to six hundred
processes its recovery algorithm is not scalable or latency tolerant. By using a
combination of fault tolerant tree topology collective communications and a more
distributed multi-coordinator (leader) based recovery algorithm, these scalability
issues have been overcome.

Work is continuing on finding better distributed coordination algorithms and
reducing the amount of state exchanged at the final stages of recovery. This is
the first stage in moving FT-MPIs process fault tolerant model into the ultra
scale arena. A latter stage will involve taking FT-MPIs recovery algorithm and
adding it to the community Open MPI implementation [15].

Acknowledgments. This material is based upon work supported by the De-
partment of Energy under Contract No. DE-FG02-02ER25536 and 8612-001-
0449 through a subcontract from Rice University No. R7A827-792000. The NSF
CISE Research Infrastructure program EIA-9972889 supported the infrastruc-
ture used in this work.

References

1. A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic mpi programs on
clusters of workstations. In In 8th IEEE International Symposium on High Per-
formance Distributed Computing, 1999.

2. R. Batchu, J. Neelamegam, Z. Cui, M. Beddhua, A. Skjellum, Y. Dandass, and
M. Apte. Mpi/ftTM: Architecture and taxonomies for fault-tolerant, message-
passing middleware for performance-portable parallel computing. In In Proceedings
of the 1st IEEE International Symposium of Cluster Computing and the Grid held
in Melbourne, Australia., 2001.

3. Beck, Dongarra, Fagg, Geist, Gray, Kohl, Migliardi, K. Moore, T. Moore, Pa-
padopoulous, Scott, and Sunderam. HARNESS:a next generation distributed vir-
tual machine. Future Generation Computer Systems, 15, 1999.

4. G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fédak, C. Germain, T. Hérault,
P. Lemarinier, O. Lodygensky, F. Magniette, V. Néri, and A. Selikhov. MPICH-
v: Toward a scalable fault tolerant MPI for volatile nodes. In SuperComputing,
Baltimore USA, November 2002.

Scalable Fault Tolerant MPI: Extending the Recovery Algorithm 75

5. G. Burns and R. Daoud. Robust MPI message delivery through guaranteed re-
sources. In MPI Developers Conference, June 1995.

6. G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HARNESS and fault tolerant MPI.
Parallel Computing, 27:1479–1496, 2001.

7. G. E. Fagg, K. Moore, and J. J. Dongarra. Scalable networked information process-
ing environment (SNIPE). Future Generation Computing Systems, 15:571–582,
1999.

8. R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E. Ras-
mussen, L. D. Risinger, and M. W. Sukalski. A network-failure-tolerant message-
passing system for terascale clusters. In ICS. New York, USA, June. 22-26 2002.

9. S. Louca, N. Neophytou, A. Lachanas, and P. Evripidou. Mpi-ft: Portable fault
tolerance scheme for MPI. In Parallel Processing Letters, Vol. 10, No. 4, 371-382,
World Scientific Publishing Company., 2000.

10. Message Passing Interface Forum. MPI: A Message Passing Interface Standard,
June 1995. http://www.mpi-forum.org/.

11. Message Passing Interface Forum. MPI-2: Extensions to the Message Passing In-
terface, July 1997. http://www.mpi-forum.org/.

12. G. Stellner. Cocheck: Checkpointing and process migration for MPI. In Proceedings
of the 10th International Parallel Processing Symposium (IPPS ’96), Honolulu,
Hawaii, 1996.

13. S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra. Performance modeling for self-
adapting collective communications for MPI. In LACSI Symposium. Springer,
Eldorado Hotel, Santa Fe, NM, Oct. 15-18 2001.

14. Sriram Sankaran and Jeffrey M. Squyres and Brian Barrett and Andrew Lums-
daine and Jason Duell and Paul Hargrove and Eric Roman. The LAM/MPI Check-
point/Restart Framework: System-Initiated Checkpointing. In LACSI Symposium.
Santa Fe, NM. October 2003.

15. E. Gabriel and G.E. Fagg and G. Bosilica and T. Angskun and J. J. Dongarra
J.M. Squyres and V. Sahay and P. Kambadur and B. Barrett and A. Lumsdaine
and R.H. Castain and D.J. Daniel and R.L. Graham and T.S. Woodall. Open
MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. In
Proceedings 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungry,
2004.

16. Thilo Kielmann and Rutger F.H. Hofman and Henri E. Bal and Aske Plaat and
Raoul A. F. Bhoedjang. MagPIe: MPI’s collective communication operations for
clustered wide area systems. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’99), 34(8), pp131–140, May 1999.

17. Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms, Prentice Hall, 2002.

Hash Functions for Datatype Signatures in MPI

Julien Langou, George Bosilca, Graham Fagg, and Jack Dongarra

Dept. of Computer Science, The University of Tennessee, Knoxville, TN 37996

Abstract. Detecting misuse of datatypes in an application code is a
desirable feature for an MPI library. To support this goal we investigate
the class of hash functions based on checksums to encode the type signa-
tures of MPI datatype. The quality of these hash functions is assessed in
terms of hashing, timing and comparing to other functions published for
this particular problem (Gropp, 7th European PVM/MPI Users’ Group
Meeting, 2000) or for other applications (CRCs). In particular hash func-
tions based on Galois Field enables good hashing, computation of the
signature of unidatatype in O(1) and computation of the concatenation
of two datatypes in O(1) additionally.

1 Introduction

MPI datatypes are error prone. Detecting such errors in the user application
code is a desirable feature for an MPI library and can potentially provide an
interesting feedback to the user. Our goal is to detect when the type signature
from the sender and the receiver do not respect the MPI standard. The cost of
doing so should be negligible with respect to the cost of the communication.

The idea was previously mentioned by Gropp [3] and we merely agree with
his solution and specifications that we recall in Section 2. In Section 3, we give a
more general framework to his study that enables us to rederive his solution but
also create new solutions. In particular, our hash functions have the property
of being O(1) time to solution for computing the signature of an unidatatype.
We conclude with some experimental results that assess the quality of our hash
functions in term of hashing and timing. The codes to reproduce the experiments
are available online [7].

2 Specifications of the Problem

The MPI standard [1,2] provides a full set of functions to manipulate datatypes.
Using the basic datatypes predefined by the standard, these functions allow
the programmer to describe most of the datatypes used in parallel applications
from regular distributions in memory (i.e. contiguous, vector, indexed) to more
complex patterns (i.e. structures and distributed arrays). The type signature of a
datatype is defined as the (unique) decomposition of a datatype in a succession
of basic datatypes. From the MPI standard point of view, a communication
is correct if and only if the type signature of the sender exactly matches the

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 76–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hash Functions for Datatype Signatures in MPI 77

beginning of the type signature of the receiver. For the remaining of this paper
we consider that the type signature of the sent datatype exactly matches the type
signature of the received datatype (in its whole). (The case of a type signature
of the datatype of the receiver longer than the one of the sender is dealt in the
last paragraph of the paper.)

In the framework developed by Gropp [3], a hash function is used to create a
signature for the type signature of the datatype of the sender, the receiver then
checks whether the signature of the sender matches the signature of the type
signature of its datatype. Note that some errors might still be unnoticed when
two type signatures have the same hash value.

At this point of the specification, any hash functions existing in the literature
would be adequate. However, the fact that MPI datatypes can be combined to-
gether implies that we would like to be able to efficiently determine the signature
of the concatenatenation of two datatypes. (Note that this is not only a desirable
feature but also mandatory since we want to check the datatype when the count
of the sender and the receiver mismatch.) The datatype signature function σ
shall be such that the signature of the concatenation of two datatypes can be
obtained from the signatures of the two datatypes, we therefore need an operator
� such that:

σ([α1, α2]) = σ(α1)� σ(α2).

If there exists such a � for σ, we call σ assossiative.
We call unidatatype a derived datatype made of just one datatype (derived

or not). This type or class of datatype is fairly frequent in user application codes
and we therefore also would like to be able to efficiently compute their signature.

3 Some Associative Hash Functions

3.1 Properties of Checksum-Based Hash Functions

Considering a set of elements, E, and two binary operations in E, ⊕ (the ad-
dition, required to be associative) and ⊗ (the multiplication), the checksum of
X = (xi)i=1,...,n ∈ En is defined as

f(X) = f((xi)i=1,...,n) =
n⊕

i=1

(xi ⊗ αi), (1)

where αi are predefined constants in E.
Let us define the type signature of the datatype X , σ(X), as the tuple

σ(X) = (f(X), n). (2)

In this case, we can state the following theorem.

Theorem 1. Given (E,⊕,⊗) and an α ∈ E, defining the checksum function,
f , as in Equation (1), and the type signature σ as in Equation (2) and providing
that

78 J. Langou et al.

⊕ and ⊗ are associative , (3)

the αi are chosen such that αi =
⊗

j=1,...,i

α = αi, (4)

for any x, y ∈ E, (x⊗ α)⊕ (y ⊗ α) = (x⊕ y)⊗ α, (5)

then the concatenation datatype operator, �, is defined as

σ(X)� σ(Y) = ((f(X)⊗ αm)⊕ f(Y), n + m), (6)

and satisfies
σ([X, Y]) = σ(X)� σ(Y). (7)

for any X ∈ En and Y ∈ Em.

Proof. The proof is as follows, let us define X = (xi)i=1,...,n, Y = (yi)i=1,...,m

and Z = [X, Y] = (zi)i=1,...,n+m, then

f(Z) =
n+m⊕
i=1

(zi ⊗ αi) = (
n⊕

i=1

xi ⊗ αm+i)⊕ (
m⊕

i=1

yi ⊗ αi)

= (
n⊕

i=1

(
(xi ⊗ αi)⊗ αm

)
)⊕ (

m⊕
i=1

yi ⊗ αi)

= (

(
n⊕

i=1

(xi ⊗ αi)

)
⊗ αm)⊕ (

m⊕
i=1

yi ⊗ αi)

= (f(X)⊗ αm)⊕ f(Y)

The equality of the first line is the consequence of the associativity of ⊕ (3), the
second line is the consequence of the associativity of ⊗ (3) and the definition
of the αi (4), the third line is the consequence of the distributivity of ⊕ versus
⊗ (5).

In our context, E is included in the set of the integers ranging from 0 to
2w − 1 (i.e. E represents a subset of the integers that we can be encoded with
w bits). In the next three sections we give operators, ⊕ and ⊗ that verifies (3),
(4) and (5) over E.

Any binary operations over E, ⊕ and ⊗, such that (E,⊕,⊗) is a ring verifies
the necessary properties (3), (4) and (5), therefore our study will focus on rings
over E.

3.2 Checksum mmm-bs1

Given any integer a, (E,⊕,⊗) where E is the set of integer modulo a, ⊕ the
integer addition modulo a and ⊗ the integer multiplication modulo a defines a
ring. (Even a field iff a is prime.)

A natural choice for α and a is α = 2 and a = 2w − 1 which defines the
signature mmm-bs1.

The multiplication of integers in E by power of 2 modulo 2w−1 corresponds
to a circular leftshift over w bits, �c,w. This operation as well as the modulo
2w − 1 operation can both be efficiently implemented on a modern CPU.

Hash Functions for Datatype Signatures in MPI 79

Remark 1. Note that the type signature is encoded on w bits but only 2w − 1
values are taken.

Remark 2. The computation of the signature of a unidatatype, X , that is com-
posed of n identical datatypes x, costs as much as a single evaluation thanks to
the formula:

f(X) = f([x, .., x]) = (x⊗ 20)⊕ ...⊕ (x⊗ 2n−1) = x⊗ (2n � 1), (8)

where � denotes the substraction operation in the group (E,⊕). The evaluation
of 2n in formula (6) is efficiently computed thanks to 1�c,w n.

Remark 3. In [3], ⊕ is set to the integer addition modulo 2w and ⊗ is set to
the circular leftshift over w bits (that is the integer multiplication by power of 2
modulo 2w−1 for numbers between 0 to 2w−2 and the identity for 2w−1). This
mix of the moduli breaks the ring property of (E,⊕,⊗), (the distributivity rela-
tion (5) is not anymore true,) and consequently the Equation (6) is not true. We
definitely do not recommend this choice since it fails to meet the concatenation
requirement.

3.3 Checksum xor-bs1

Gropp [3] proposed to use the xor operation, ∧, for the addition and a circular
leftshift over w bits by one, �c,w, for the multiplication operation. E represents
here the integers modulo 2w. The condition of the Theorem 1 holds and thus
this represents a valid choice for (E,⊕,⊗).

Note that in this case, we can not evaluate in O(1) time the checksum of
unidatatype datatype. (See [3, §3.1], for a O(log(n)) solution.)

3.4 Checksum gfd

Another ring to consider on the integers modulo 2w is the Galois field GF(2w).
(A comprehensive introduction to Galois field can be found in [4].)

The addition in GF(2w) is xor. The multiplication in GF(2w) is performed
thanks to two tables corresponding to the logarithms, gflog, and the inverse
logarithms, gfilog in the Galois Field thus

a⊗ b = gfilog(gflog[a] + gflog[b]).

where + is the addition modulo 2w. This requires to store the two tables gflog
and gfilog of 2w words of length w bits.

Since (E,⊕,⊗) is a ring, the Theorem1 applies and thus the signature of the
concatenation of two datatypes can be computed thanks to formula (6). Note
that the value 2n in the formula (6) is directly accessed from the table of the
inverse logarithms since 2n = gfilog[n− 1] (see [4]).

Finally since we have a field, we can compute type signatures of unidatatype
in O(1) time via

80 J. Langou et al.

x⊗ 20 ⊕ . . .⊕ x⊗ 2n = x⊗ (2n+1 � 1)� (2 � 1) = x⊗ (2n+1 � 1)� (3), (9)

where � denotes the division operation in the field (E,⊕,⊗).
gfd needs to store two tables of 2w word each of length w therefore we do

not want w to be large. (A typical value would be w = 8.) In this case to encode
the derived datatype on 32 bits, we would use m = 4 checksums in GF(2w=8).

3.5 Cyclic Redundancy Check crc

Since we are considering hash functions, we also want to compare to at least one
class of hash functions that are known to be efficient in term of computation
time and quality. We choose to compare with the cyclic redundancy check.

Stating briefly if we want to have a w-bit CRC of the datatype X , we interpret
X as a binary polynomial and choose another binary polynomial C of degree
exactly equal to w (thus representing a number between 2w and 2w+1− 1). The
CRC, R, is the polynomial X × xw modulo C, that is to say:

X.xw = Q.C + R.

For a more detailed explanations we refer to [5]. Various choices for C are given
in the literature, we consider in this paper some standard value, for more about
the choice of C, we referred to [6].

The concatenation operation is possible with CRC signatures. If
X = (xi)i=1,...,n and Y = (yi)i=1,...,m are two datatypes and we have computed
their signatures σ(X) = (RX , n) σ(Y) = (RY , m), then

σ([X, Y]) = (RZ , n + m)

where RZ is RXxm + RY modulo Q.
Even though it is possible given the signatures of two datatypes to compute

the signature of the concatenation, the cost of this operation is proportional to
the size of the second data-type (in our case m). This is an important drawback
in comparison with the checksum where the cost of a concatenation is O(1).
Although, it is not possible to compute quickly the signatures of a datatype
composed of all the same datatype.

4 Experimental Validation of the Hash Functions to
Encode MPI Datatype

4.1 Software Available

Our software is available on the web [7]. We believe it is high quality in the sense
of efficiency, robustness and ease of use. It is provided with a comprehensive set of
testing routines, timing routines and hash function quality assessment routines.
The experimental results presented thereafter are based on this software and
thus are meant to be easily reproducible. We can also verify the correctness of
the theoretical results in part 3 through the software.

Hash Functions for Datatype Signatures in MPI 81

4.2 Quality of the Hash Functions

To evaluate the quality of a hash function we consider a sample of datatypes
and check how often collisions appear. (Note, that since the number of values
taken by the hash function is finite (encoded on 16 or 32 bits) and the number of
datatypes is infinite, collisions in the value of the hash functions are unavoidable.)
Considering the fact that we are interested in the quality of the hash function
when applied to MPI datatypes, it makes sense to have a sample that reflects
what an MPI library might encounter in an application code. In this respect, we
follow the experimental method of Gropp [3]. In our experiments, we consider
6994 datatypes that are made of wg = 13 different pre-defined datatypes. (We
refer to [7] for the exact description of the datatypes.)

The results of the hash functions are given in Table 1. Two quantities are
given: the percentage of collisions and the percentage of duplicates. A collision is
when a type signature has its hash value already taken by another type signature
in the sample. A duplicate is a hash value that has strictly more than one type
signature that maps to it in the sample.

Since we are mapping 6994 words on 216 value, it is possible to give a perfect
hash function for our sample example. (That is to say a function where no
collision happens.) However this is not the goal. We recall the fact that if we
apply a random mapping to m out of n possible states. Then we expect that
this mapping will produce about

n/(n/m + (1/2) +O(m/n)) (10)

distinct results providing
√

n < m. Thus, a random mapping from m = 6994
to n = 216 shall give about 5.07% collisions. This number is representative of a
good hash functions.

We considered three different CRCs (namely 16-bit CRC/CCITT,XMODEM
and ARC) but only report the one of CRC/CCITT that is best suited to the
considered panel.

Table 1. Percentage of collisions and duplications for some 16-bit and 32-bit hash
functions. We have used the panel of 6994 type-signatures described in [7].

16 bit type signature 32 bit type signature
CollisionsDuplicates CollisionsDuplicates

16-bit CRC/CCITT 4.76 % 4.88 % CRC-04C11DB7 0.00 % 0.00 %
xor-bs1(w=16,m= 1) 61.10 % 26.75 % xor-bs1(w=16,m= 2) 37.32 % 15.76 %
mmm-bs1(w=16,m= 1) 52.03 % 19.67 % mmm-bs1(w=16,m= 2) 23.29 % 11.48 %
gfd (w=16,m= 1) 12.65 % 8.48 % gfd (w=16,m= 2) 0.00 % 0.00 %
xor-bs1(w= 8,m= 2) 64.40 % 23.04 % xor-bs1(w= 8,m= 4) 60.71 % 13.65 %
mmm-bs1(w= 8,m= 2) 51.44 % 27.47 % mmm-bs1(w= 8,m= 4) 30.08 % 14.91 %
gfd (w= 8,m= 2) 3.73 % 3.77 % gfd (w= 8,m= 4) 0.00 % 0.00 %

From Table 1, gfd performs fairly well, it is as good as 16-bit CRC-CCITT
or a random mapping (5.07%). To have a better hash function, one can simply

82 J. Langou et al.

increase the number of bits on which the data is encoded. In Table 1, we also
give the percentage of collisions and duplications for 32-bit signatures, we obtain
a perfect hash function for gfd and CRC-04C11DB7. In conclusion, gfd has the
same quality of hashing as some well known CRCs on our sample and is much
better than xor-bs1 and mmm-bs1.

4.3 Timing Results for the Hash Functions

We present timing results of optimized routine for crc and gfd. The code is
compiled with GNU C compiler with -O3 flag and run on two architectures:
torc5.cs.utk.edu a Pentium III 547 MHz and earth.cs.utk.edu an Intel
Xeon 2.3 GHz, both machines are running Linux OS. Results are presented
in Table 2. signature represents the time to encode a word of length nx,
concatsignature represents the time to encode the concatenation of two words
of size nx/2, unisignature represents the time to encode a word of length nx
with all the same datatype (basic or derived). Either for crc or for gfd, the com-
putation of a signature lasts O(n) time. The O(1) time for the concatsignature
and unisignature is an obvious advantage of gfd over crc. Note that in Ta-
ble 2, the encoding with gfd is done by a pipeline algorithm (O(n) work) whereas
encoding with a tree algorithm by using concatsignature. Such an algorithm
should have given us better performance for gfd signature (see Gropp [3, §]).
Table 2. Time in μs to compute the datatype signatures of different MPI datatype
type signatures. for gfd(w = 8, m = 2) and w = 16 for crc(w = 16).

Pentium III (547 MHz)
nx = 100 nx = 1000

gfd crc gfd crc
signature 17.80μs 11.68μs signature 176.88μs 114.87μs

concatsignature 0.30μs 5.95μs concatsignature 0.34μs 57.48μs
unisignature 0.36μs 11.68μs unisignature 0.37μs 114.87μs

nx = 100 Intel Xeon 2.392 GHz
nx = 100 nx = 1000

gfd crc gfd crc
signature 4.60μs 2.04μs signature 48.26μs 20.21μs

concatsignature 0.09μs 1.12μs concatsignature 0.10μs 10.07μs
unisignature 0.09μs 2.04μs unisignature 0.10μs 20.21μs

5 Conclusions

In this paper, we assess that checksums based on Galois field provide a quality
of hashing comparable to CRCs (on our test problem). The big advantage of
gfd is that the computation of signatures of unidatatypes is O(1) work and the
computation of concatenations of two datatypes is O(1) work (CRCs are O(n)
for those two special cases). In a typical application, having concatsignature
and unisignature in O(1) leads to the computation of most signatures in O(1)
times as well.

Hash Functions for Datatype Signatures in MPI 83

Notes and Comments. The MPI standard requires the type signature (datatype,
count) of the sender to fit in the first elements of the type signature
(datatype, count) of the receiver. When the number of basic datatypes in the
(datatype, count) of the receiver is longer than the number of basic datatypes in
the (datatype, count) of the sender, the receiver needs to look inside the struc-
ture of its datatype to find the point when the number of basic datatypes is the
same as the one sent. The MPI correctness of the communication can then be
assessed by checking if the signature of this part of the datatype matches the
signature of the sender.

Special care has to be taken for the datatypes MPI PACKED and MPI BYTE
(see Gropp [3]).

More information theory could have been exploited, for example, gfd(w =
8, m = 2) guarantees that any swap between two basic datatypes is detected
as long as there is less than 253 basic datatypes in the two derived datatypes
considered. These considerations are out of the scope of this paper.

References

1. Message Passing Interface Forum: MPI: A message-passing interface standard.
http://www.mpi-forum.org

2. Message Passing Interface Forum: MPI: A message-passing interface standard. In-
ternational Journal of Supercomputer Applications 8 (1994) 165–414

3. Gropp, W.D.: Runtime checking of datatype signatures in MPI. In Dongarra,
J., Kacsuk, P., Podhorszki, N., eds.: Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Number 1908 in Springer Lecture Notes in Com-
puter Science (2000) 160–167. 7th European PVM/MPI Users’ Group Meeting,
http://www-unix.mcs.anl.gov/~gropp/bib/papers/2000/datatype.ps

4. Plank, J.S.: A tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems. Software – Practice & Experience 27 (1997) 995–1012.
http://www.cs.utk.edu/~plank/plank/papers/CS-96-332.html

5. Knuth, D.E.: The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series
in Computer Science and Information). Addison-Wesley Longman Publishing Co.,
Inc. (1978)

6. Koopman, P., Chakravarty, T.: Cyclic redundancy code (CRC) polynomial selec-
tion for embedded networks. IEEE Conference Proceeding (2004) 145–154. 2004
International Conference on Dependable Systems and Networks (DSN’04)

7. Langou, J., Bosilca, G., Fagg, G., Dongarra, J.: TGZ for hash functions of MPI
datatypes (2004)
http://www.cs.utk.edu/~langou/articles/LBFD:05/2005-LBFD.html

Implementing MPI-IO Shared File Pointers
Without File System Support

Robert Latham, Robert Ross, Rajeev Thakur, and Brian Toonen

Mathematics and Computer Science Division,
Argonne National Laboratory,

Argonne, IL 60439, USA
{robl, rross, thakur, toonen}@mcs.anl.gov

Abstract. The ROMIO implementation of the MPI-IO standard pro-
vides a portable infrastructure for use on top of any number of different
underlying storage targets. These targets vary widely in their capabil-
ities, and in some cases additional effort is needed within ROMIO to
support all MPI-IO semantics. The MPI-2 standard defines a class of
file access routines that use a shared file pointer. These routines require
communication internal to the MPI-IO implementation in order to allow
processes to atomically update this shared value. We discuss a technique
that leverages MPI-2 one-sided operations and can be used to implement
this concept without requiring any features from the underlying file sys-
tem. We then demonstrate through a simulation that our algorithm adds
reasonable overhead for independent accesses and very small overhead
for collective accesses.

1 Introduction

MPI-IO [1] provides a standard interface for MPI programs to access storage in a
coordinated manner. Implementations of MPI-IO, such as the portable ROMIO
implementation [2] and the implementation for AIX GPFS [3], have aided in the
widespread availability of MPI-IO. These implementations include a collection of
optimizations [4,3,5] that leverage MPI-IO features to obtain higher performance
than would be possible with the less capable POSIX interface [6].

One feature that the MPI-IO interface provides is shared file pointers. A
shared file pointer is an offset that is updated by any process accessing the file
in this mode. This feature organizes accesses to a file on behalf of the application
in such a way that subsequent accesses do not overwrite previous ones. This is
particularly useful for logging purposes: it eliminates the need for the application
to coordinate access to a log file.

Obviously coordination must still occur; it just happens implicitly within
the I/O software rather than explicitly in the application. Only a few historical
file systems have implemented shared file pointers natively (Vesta [7], PFS [8],
CFS [9], SPIFFI [10]) and they are not supported by parallel file systems being
deployed today. Thus, today shared file pointer access must be provided by the
MPI-IO implementation.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 84–93, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Implementing MPI-IO Shared File Pointers Without File System Support 85

This paper discusses a novel method for supporting shared file pointer access
within a MPI-IO implementation. This method relies only on MPI-1 and MPI-2
communication functionality and not on any storage system features, making it
portable across any underlying storage. Section 2 discusses the MPI-IO interface
standard, the portions of this related to shared file pointers, and the way shared
file pointer operations are supported in the ROMIO MPI-IO implementation.
Section 3 describes our new approach to supporting shared file pointer operations
within an MPI-IO implementation. Two algorithms are used, one for independent
operations and another for collective calls. Section 4 evaluates the performance
of these two algorithms on synthetic benchmarks. Section 5 concludes and points
to future work in this area.

2 Background

The MPI-IO interface standard provides three options for referencing the loca-
tion in the file at which I/O is to be performed: explicit offsets, individual file
pointers, and shared file pointers. In the explicit offset calls the process provides
an offset that is to be used for that call only. In the individual file pointer calls
each process uses its own internally stored value to denote where I/O should
start; this value is referred to as a file pointer. In the shared file pointer calls
each process in the group that opened the file performs I/O starting at a single,
shared file pointer.

Each of these three ways of referencing locations have both independent (non-
collective) and collective versions of read and write calls. In the shared file pointer
case the independent calls have the shared suffix (e.g., MPI File read shared),
while the collective calls have the ordered suffix (e.g., MPI File read ordered).
The collective calls also guarantee that accesses will be ordered by rank of the
processes. We will refer to the independent calls as the shared mode accesses and
the collective calls as the ordered mode accesses.

2.1 Synchronization of Shared File Pointers in ROMIO

The fundamental problem in supporting shared file pointers at the MPI-IO layer
is that the implementation never knows when some process is going to perform a
shared mode access. This information is important because the implementation
must keep a single shared file pointer value somewhere, and it must access and
update that value whenever a shared mode access is made by any process.

When ROMIO was first developed in 1997, most MPI implementations pro-
vided only MPI-1 functionality (point-to-point and collective communication),
and these implementations were not thread safe. Thread safety makes it easier
to implement algorithms that rely on nondeterministic communication, such as
shared-mode accesses, because a separate thread can be used to wait for com-
munication related to shared file pointer accesses. Without this capability, a
process desiring to update a shared file pointer stored on a remote process could
stall indefinitely waiting for the remote process to respond. The reason is that
the implementation could check for shared mode communication only when an

86 R. Latham et al.

MPI-IO operation was called. These constraints led the ROMIO developers to
look for other methods of communicating shared file pointer changes.

Processes in ROMIO use a second hidden file containing the current value for
the shared file pointer offset. A process reads or writes the value of the shared
file pointer into this file before carrying out I/O routines. The hidden file acts
as a communication channel among all the processes. File system locks serialize
access and prevent simultaneous updates to the hidden file. This approach works
well as long as the file system meets two conditions:

1. The file system must support file locks
2. The file system locks must prevent access from other processes, and not just

from other file accesses in the same program.

Unfortunately, several common file systems do not provide file system locks
(e.g., PVFS, PVFS2, GridFTP) and the NFS file system provides advisory lock
routines but makes no guarantees that locks will be honored across processes.
On file systems such as these, ROMIO cannot correctly implement shared file
pointers using the hidden file approach and hence disables support for shared
file pointers. For this reason a portable mechanism for synchronizing access to
a shared file pointer is needed that does not rely on any underlying storage
characteristics.

3 Synchronization with One-Sided Operations

The MPI-2 specification adds a new set of communication primitives, called the
one-sided or remote memory access (RMA) functions, that allow one process
to modify the contents of remote memory without the remote process inter-
vening. These passive target operations provide the basis on which to build a
portable synchronization method within an MPI-IO implementation. This gen-
eral approach has been used in a portable atomic mode algorithm [11]. Here we
extend that approach to manage a shared file pointer and additionally to address
efficient ordered mode support.

MPI-2 one-sided operations do not provide a way to atomically read and
modify a remote memory region. We can, however, construct an algorithm based
on existing MPI-2 one-sided operations that lets a process perform an atomic
modification. In this case, we want to serialize access to the shared file pointer
value.

Before performing one-sided transfers, a collection of processes must first
define a window object. This object contains a collection of memory windows,
each associated with the rank of the process on which the memory resides. Af-
ter defining the window object, MPI processes can then perform put, get, and
accumulate operations into the memory windows of the other processes.

MPI passive target operations are organized into access epochs that are
bracketed by MPI Win lock and MPI Win unlock calls. Clever MPI implemen-
tations [12] will combine all the data movement operations (puts, gets, and ac-
cumulates) into one network transaction that occurs at the unlock. The MPI-2

Implementing MPI-IO Shared File Pointers Without File System Support 87

standard allows implementations to optimize RMA communication by carrying
out operations in any order at the end of an epoch. Implementations take ad-
vantage of this fact to achieve much higher performance [12]. Thus, within one
epoch a process cannot read a byte, modify that value, and write it back be-
cause the standard makes no guarantee about the order of the read-modify-write
steps. This aspect of the standard complicates, but does not prevent, the use of
one-sided to build our shared file pointer support.

. . .

sharedfp

waitflag[N]

Process 0 Process 1 Process N−1

. . .

shfp window
object

Fig. 1. Creation of MPI windows

Our algorithms operate by using the following data structure. We define a
window object with an N-byte waitflag array and an MPI Offset-sized
sharedfp, both residing on a single process (Figure 1). In our discussion we
will assume that this data structure is stored on process 0, but for multiple files
being accessed in shared file pointer mode, these structures could be distributed
among different processes. This data structure is used differently for shared mode
than for ordered mode access. We will discuss each in turn.

3.1 Shared Mode Synchronization

The MPI-2 standard makes no promises as to the order of concurrent shared
mode accesses. Additionally, the implementation does not need to serialize access
to the file system, only the value of the shared file pointer. After a process updates
the value of the file pointer, it can carry out I/O while the remaining processes
attempt to gain access to the shared file pointer. This approach minimizes the
time during which any one process has exclusive access to the shared file pointer.

In our shared mode approach, we use the waitflag array to synchronize
access to the shared file pointer. Figure 2 gives pseudocode for acquiring the
shared file pointer, and Figure 3 demonstrates how we update the shared file
pointer value.

Each byte in the waitflag array corresponds to a process. A process will
request a lock by putting a 1 in the byte corresponding to its rank in the com-
municator used to open the file. Doing so effectively adds it to the list of processes
that want to access the shared file pointer. In the same access epoch the process
gets the remaining N-1 bytes of waitflag and the sharedfp value. This com-
bination effectively implements a test and set. If a search of waitflag finds no
other 1 values, then the process has permission to access the shared file pointer,
and it already knows what that value is without another access epoch.

88 R. Latham et al.

val = 1; /* add self to waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, waitlistwin);
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE , homerank , FP_SIZE , 1,

waitlisttype , waitlistwin);
MPI_Put (&val , 1, MPI_BYTE , homerank , FP_SIZE + myrank , 1, MPI_BYTE ,

waitlistwin);
MPI_Get(fpcopy , 1, fptype , homerank , 0, 0, fptype , waitlistwin);
MPI_Win_unlock(homerank , waitlistwin);

/* check to see if lock is already held */
for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

/* wait for notification */
MPI_Recv (&fpcopy , 1, fptype , MPI_ANY_SOURCE , WAKEUPTAG , comm ,

MPI_STATUS_IGNORE);
}

Fig. 2. MPI pseudocode for acquiring access to the shared file pointer

val =0; /* remove self from waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, waitlistwin);
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE , homerank , FP_SIZE , 1,

waitlisttype , waitlistwin);
MPI_Put (&val , 1, MPI_BYTE , homerank , FP_SIZE + myrank , 1,

MPI_BYTE , waitlistwin);
MPI_PUT (&fpcopy , 1, fptype , homerank , 0, 1, fptype , waitlistwin);
MPI_Win_unlock(homerank , waitlistwin);

for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

int nextrank = myrank;

/* find the next rank waiting for the lock */
while (nextrank < nprocs -1 && waitlistcopy [nextrank] == 0) nextrank ++;
if (nextrank < nprocs - 1) {

nextrank ++; /* nextrank is off by one */
}
else {

nextrank = 0;
while (nextrank < myrank && waitlistcopy[nextrank] == 0) nextrank ++;

}
/* notify next rank with new value of shared file pointer */
MPI_Send (&fpcopy , 1, fptype , nextrank , WAKEUPTAG , comm);

}

Fig. 3. MPI pseudocode for updating shared file pointer and (if needed) waking up the
next process

In this case the process saves the current shared file pointer value locally
for subsequent use in I/O. It then immediately performs a second access epoch
(Figure 3). In this epoch the process updates sharedfp, puts a zero in its cor-
responding waitflag location, and gets the remainder of the waitflag array.
Following the access epoch the process searches the remainder of waitflag. If
all the values are zero, then no processes are waiting for access. If there is a 1
in the array, then some other process is waiting. For fairness the first rank after
the current process’s rank is selected to be awakened, and a point-to-point send
(MPI Send) is used to notify the process that it may now access the shared file
pointer. The contents of the send is the updated shared file pointer value; this

Implementing MPI-IO Shared File Pointers Without File System Support 89

optimization eliminates the need for the new process to reread sharedfp. Once
the process has released the shared file pointer in this way, it performs I/O using
the original, locally-stored shared file pointer value. Again, by moving I/O after
the shared file pointer update, we minimize the length of time the shared file
pointer is held by any one process.

If during the first access epoch a process finds a 1 in any other byte, some
other process has already acquired access to the shared file pointer. The re-
questing process then calls MPI Recv with MPI ANY SOURCE to block until the
process holding the shared file pointer notifies it that it now has permission to
update the pointer and passes along the current value. It is preferable to use
point-to-point operations for this notification step, because they allow the un-
derlying implementation to best manage making progress. We know, in the case
of the sender, that the process we are sending to has posted, or will very soon
post, a corresponding receive. Likewise, the process calling receive knows that
very soon some other process will release the shared file pointer and pass it to
another process. The alternative, polling using one-sided operations, has been
shown less effective [11].

3.2 Ordered Mode Synchronization

Ordered mode accesses are collective; in other words, all processes participate
in them. The MPI-IO specification guarantees that accesses in ordered mode
will be ordered by rank for these calls: the I/O from a process with rank N
will appear in the file after the I/O from all processes with a lower rank (in the
write case). However, the actual I/O need not be carried out sequentially. The
implementation can instead compute a priori where each process will access the
file and then carry out the I/O for all processes in parallel.

MPI places several restrictions on collective I/O. The most important one,
with regard to ordered mode, is that the application ensure all outstanding inde-
pendent I/O (e.g. shared mode) routines have completed before initiating collec-
tive I/O (e.g. ordered mode) ones. This restriction simplifies the implementation
of the ordered mode routines. However, the standard also states that

in order to prevent subsequent shared offset accesses by the same processes
from interfering with this collective access, the call might return only
after all the processes within the group have initiated their accesses.
When the call returns, the shared file pointer points to the next etype
accessible.

This statement indicates that the implementation should guarantee that changes
to the shared file pointer have completed before allowing the MPI-IO routine to
return.

Figure 4 outlines our algorithm for ordered mode. Process 0 uses a single
access epoch to get the value of the shared file pointer. Since the value is stored
locally, the operation should complete with particularly low latency. It does not
need to access waitlist at all, because the MPI specification leaves it to the
application not to be performing shared mode accesses at the same time. All

90 R. Latham et al.

Process 0 Process 1 through (N minus 2) Process (N minus 1)
Lock
MPI Get
Unlock
MPI Scan MPI Scan MPI Scan

Lock
MPI Put
Unlock

MPI Bcast MPI Bcast MPI Bcast
perform collective I/O perform collective I/O perform collective I/O

Fig. 4. Synchronizing in the ordered mode case. Process 0 acquires the current value
for the shared file pointer. After the call to MPI Scan, process (N − 1) knows the final
value for the shared file pointer after the I/O completes and can MPI Put the new value
into the window. Collective I/O can then be carried out in parallel with all processes
knowing their appropriate offset into the file. An MPI Bcast ensures that the shared
file pointer value is updated before any process exits the call, and imposes slightly less
overhead than an MPI Barrier.

processes can determine, based on their local datatype and count parameters,
how much I/O they will carry out. In the call to MPI Scan, each process adds
this amount of work to the ones before it. After this call completes, each process
knows its effective offset for subsequent I/O. The (N−1)th process can compute
the new value for the shared file pointer by adding the size of its access to the
offset it obtained during the MPI Scan. It performs a one-sided access epoch to
put this new value into sharedfp, again ignoring the waitlist.

To ensure that a process doesn’t race ahead of the others and start doing I/O
before the shared file pointer has been updated, the (N−1)th process performs a
MPI Bcast of one byte after updating the shared file pointer. All other processes
wait for this MPI Bcast, after which they may all safely carry out collective I/O
and then exit the call. If we used an MPI Barrier instead of an MPI Bcast, the
(N − 1)th process would block longer than is strictly necessary.

4 Performance Evaluation

We simulated both algorithms (independent and collective) with a test program
that implemented just the atomic update of the shared file pointer value. We
ran tests on a subset of Jazz, a 350-node Linux cluster at Argonne National
Laboratory, using the cluster’s Myrinet interconnect.

Earlier in the paper we laid out the requirements for the hidden file approach to
shared file pointers. On Jazz, none of the available clusterwide file systems meet
those requirements. In fact, the NFS volume on Jazz has locking routines that
not only fail to enforce sequential access to the shared file pointer but fail silently.
Thus, we were unable to compare our approach with the hidden file technique.

This silent failure demonstrates another benefit of the RMA approach: if an
MPI-I/O implementation tests for the existence of RMA routines, it can assume

Implementing MPI-IO Shared File Pointers Without File System Support 91

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

av
er

ag
e

up
da

te
 ti

m
e

(m
se

c)

nprocs

shared mode
ordered mode

(a) Average update time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1 10 100

av
er

ag
e

up
da

te
 ti

m
e

(m
se

c)

nprocs

ordered mode

(b) Focusing on ordered mode (log
scale)

Fig. 5. Average time to perform one update of the shared file pointer

they work (otherwise the MPI-2 implementation is buggy). Tests for file locks,
especially testing how well they prevent concurrent access, are more difficult,
because such tests would have to ensure not just that the locking routines exist,
but that they perform as advertised across multiple nodes.

4.1 Shared Mode Synchronization

In our simulation, processes repeatedly perform an atomic update of the shared
file pointer in a loop. We measured how long processes spent updating the shared
file pointer and then computed the average time for one process to carry out
one shared file pointer update. Figure 5(a) shows how the number of processes
impacts the average update time and gives an indication of the scalability of our
algorithm.

All the independent I/O routines leave little room for the implementation
to coordinate processes, so when N processes attempt to update the shared file
pointer, we have to carry out O(N) one-sided operations. Only one process can
lock the RMA window at a time. This serialization point will have more of an
impact as the number of processes — and the number of processes blocking —
increases. The shared mode graph in Figure 5(a) confirms linear growth in time
to update the shared file pointer value.

When considering performance in the independent shared file pointer case,
one must bear in mind the nature of independent access. As with all independent
MPI routines, the implementation does not have enough information to optimize
accesses from multiple processes. Also, the simulation provides a worst-case sce-
nario, with multiple processes repeatedly updating the shared file pointer as
quickly as possible. In a real application, processes would perform some I/O
before attempting to update the shared file pointer again.

4.2 Ordered Mode Synchronization

Implementations have more options for optimizing collective I/O, especially
when performing collective I/O with a shared file pointer. As outlined in Sec-
tion 3.2, N processes need only perform two access epochs — one for reading

92 R. Latham et al.

the current shared file pointer value, one for writing the updated value — from
two processes. Our algorithm does use two collective routines (MPI Scan and
MPI Bcast), so we would expect to see roughly O(log(N)) increase in time to
update the shared file pointer using a quality MPI implementation. Figure 5(a)
compares update time for the ordered mode algorithm with that of the shared
mode algorithm. The ordered mode algorithm scales quite well and ends up be-
ing hard to see on the graph. Figure 5(b) shows the average update time for just
the ordered algorithm. The graph has a log scale X axis, emphasizing that the
ordered mode algorithm is O(log(N)).

5 Conclusions and Future Work

We have outlined two algorithms based on MPI-2 one-sided operations that an
MPI-IO implementation could use to implement the shared mode and ordered
mode routines. Our algorithms rely solely on MPI communication, using one-
sided, point-to-point, and collective routines as appropriate. This removes any
dependency on file system features and makes shared file pointer operations an
option for all file systems. Performance in the shared mode case scales as well as
can be expected, while performance in the ordered mode case scales very well.

We designed the algorithms in this paper with an eye toward integration into
ROMIO. At this time, one-sided operations make progress only when the target
process hosting the RMA window is also performing MPI communication. We
will have to add a progress thread to ROMIO before we can implement the shared
file pointer algorithms. In addition to their use in ROMIO, the primitives used
could be made into a library implementing test-and-set or fetch-and-increment
for other applications and libraries.

The simulations in this paper focused on relatively small numbers of proces-
sors (128 or less). As the number of processors increases to thousands, we might
need to adjust this algorithm to make use of a tree. Leaf nodes would synchro-
nize with their parents before acquiring the shared file pointer. Such an approach
reduces contention on the process holding the memory windows, but it also in-
troduces additional complexity.

Our synchronization routines have been used for MPI-IO atomic mode as
well as MPI-IO shared file pointers. In future efforts we will look at using these
routines to implement extent-based locking and other more sophisticated syn-
chronization methods.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-
109-Eng-38.

Implementing MPI-IO Shared File Pointers Without File System Support 93

References

1. The MPI Forum: MPI-2: Extensions to the Message-Passing Interface (1997)
2. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with

high performance. In: Proceedings of the Sixth Workshop on Input/Output in
Parallel and Distributed Systems. (1999) 23–32

3. Prost, J.P., Treumann, R., Hedges, R., Jia, B., Koniges, A.: MPI-IO/GPFS, an
optimized implementation of MPI-IO on top of GPFS. In: Proceedings of SC2001.
(2001)

4. Thakur, R., Gropp, W., Lusk, E.: A case for using MPI’s derived datatypes to
improve I/O performance. In: Proceedings of SC98: High Performance Networking
and Computing, ACM Press (1998)

5. Latham, R., Ross, R., Thakur, R.: The impact of file systems on MPI-IO scalability.
In: Proceedings of EuroPVM/MPI 2004. (2004)

6. IEEE/ANSI Std. 1003.1: Portable operating system interface (POSIX)–Part 1:
System application program interface (API) [C language] (1996 edition)

7. Corbett, P.F., Feitelson, D.G.: Design and implementation of the Vesta parallel file
system. In: Proceedings of the Scalable High-Performance Computing Conference.
(1994) 63–70

8. Intel Supercomputing Division: Paragon System User’s Guide. (1993)
9. Pierce, P.: A concurrent file system for a highly parallel mass storage system.

In: Proceedings of the Fourth Conference on Hypercube Concurrent Computers
and Applications, Monterey, CA, Golden Gate Enterprises, Los Altos, CA (1989)
155–160

10. Freedman, C.S., Burger, J., Dewitt, D.J.: SPIFFI — a scalable parallel file system
for the Intel Paragon. IEEE Transactions on Parallel and Distributed Systems 7
(1996) 1185–1200

11. Ross, R., Latham, R., Gropp, W., Thakur, R., Toonen, B.: Implementing MPI-IO
atomic mode without file system support. In: Proceedings of CCGrid 2005. (2005)

12. Thakur, R., Gropp, W., Toonen, B.: Minimizing synchronization overhead in the
implementation of MPI one-sided communication. In: Proceedings of the 11th
European PVM/MPI Users’ Group Meeting (Euro PVM/MPI 2004). (2004) 57–67

An Efficient Parallel File System
for Cluster Grids

Franco Frattolillo and Salvatore D’Onofrio

Research Centre on Software Technology,
Department of Engineering, University of Sannio, Italy

frattolillo@unisannio.it

Abstract. ePVM is an extension of the well known PVM program-
ming system, whose main goal is to enable PVM applications to run on
computing nodes belonging to non-routable private networks, but con-
nected to the Internet through publicly addressable IP front-end nodes.
However, in order to enable large-scale PVM applications to effectively
manage the enormous volumes of data they usually generate, ePVM
needs a parallel file system. This paper presents ePIOUS, the optimized
porting of the PIOUS parallel file system under ePVM. ePIOUS has
been designed so as to take into account the two-levels physical network
topology characterizing the “cluster grids” normally built by ePVM. To
this end, ePIOUS exploits the ePVM architecture to implement a file
caching service that is able to speed up file accesses across clusters.

1 Introduction and Motivations

Cluster grids [1,2] are nowadays considered a promising alternative to both grid
computing systems [3,4,5] and traditional supercomputing systems and clusters
of workstations exploited as a unique, coherent, high performance computing
resource. ePVM [6,7] is an extension of PVM [8], whose main goal is to enable
PVM applications to run on cluster grids made up by computing nodes belonging
to non-routable private networks, but connected to the Internet through publicly
addressable IP front-end nodes. In fact, ePVM enables the building of “extended
virtual machines” (EVMs) made up by sets of clusters. Each cluster can be a
set of interconnected computing nodes provided with private IP addresses and
hidden behind a publicly addressable IP front-end node. During computation,
it is managed as a normal PVM virtual machine where a master pvmd daemon
is started on the front-end node, while slave pvmds are started on all the other
nodes of the cluster. However, the front-end node is also provided with a specific
ePVM daemon, called epvmd, which allows the cluster’s nodes to interact with
the nodes of all other clusters of the EVM, thus creating a same communication
space not restricted to the scope of the PVM daemons belonging to a single
cluster, but extended to all the tasks and daemons running within the EVM. In
fact, due to ePVM, both publicly addressable IP nodes and those ones hidden
behind publicly addressable IP front-end nodes of the clusters in the EVM can
be directly referred to as hosts. This means that all the hosts belonging to an

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 94–101, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Parallel File System for Cluster Grids 95

EVM, even though interconnected by a two-levels physical network, can run
PVM tasks as in a single, flat distributed computing platform.

However, in order to enable large-scale PVM applications to efficiently run
on such cluster grids and to effectively manage the enormous volumes of data
they usually generate, ePVM needs a parallel file system (PFS) [9]. To this end,
it is worth noting that, in the past, a PFS, called PIOUS (Parallel Input/OUtput
System) [10], was specifically designed to incorporate parallel I/O into existing
parallel programming systems and has also been widely used as a normal parallel
application within PVM. Therefore, PIOUS could be directly exploited within
ePVM. However, its execution results in being penalized by the two-levels net-
work topology characterizing the cluster grids normally built by ePVM, and this
ends up also penalizing the applications exploiting ePVM and PIOUS.

This paper presents ePIOUS, the optimized porting of PIOUS under ePVM.
The porting has been carried out taking into account the two-levels physical
network topology characterizing the cluster grids built by ePVM. To this end,
the porting exploits the basic ePVM ideas and architecture to provide ePIOUS
with a file caching service that is able to speed up file accesses across clusters.

The outline of the paper is as follows. Section 2 describes the software archi-
tecture of ePIOUS. Section 3 describes the file operations supported by ePIOUS,
while Section 4 describes the implemented file caching service. Section 5 reports
on some preliminary experimental results. In Section 6 a conclusion is available.

2 The Software Architecture of ePIOUS

ePIOUS preserves as much as possible the original behavior, semantics and soft-
ware architecture of PIOUS. It supports a coordinated access to parafile objects.
In particular, the access is characterized by a sequential consistency semantics
and a dynamically-selectable fault tolerance level, while parafile objects are
logically single files composed of one or more physically disjoint segments, which
are data units stored by hosts.

The software architecture of ePIOUS (Figure 1), replicated on each cluster
taking part in an EVM, consists of a set of parallel data servers (PDSs), a service
coordinator (PSC), a data cache server (CPDS), and a software library, called
libepious, linked to tasks and comprising all the routines implemented by PIOUS.
As in ePVM, PDSs, CPDS and PSC are all implemented as normal PVM tasks,

HOST

T

T

T

HOST

T

T

T

HOST

T

T

T

T

T

T

T epvmd

FRONT END

pds
pvmd M

pds

pvmd Spvmd S pvmd S

pcspds pds cpds

HOST

T

T

T
pds

pvmd S

Fig. 1. The software architecture of ePIOUS

96 F. Frattolillo and S. D’Onofrio

and so they can communicate by exploiting the standard PVM communication
routines, such as pvm send and pvm receive.

One PDS has to reside on each host over which files are ”declustered”, i.e.
over hosts that store physical segments of files. It provides transaction-based
access to its local portions of files. On the contrary, a PSC is unique within each
cluster of an EVM. It participates in the high level operations involving files,
such as open and close operations, while it does not participate in general file
access. In fact, PSCs are contacted by tasks upon file openings to obtain file
descriptors and to ensure the correct semantics in file access.

A CPDS is unique within each cluster of an EVM. It implements a file caching
service in order to speed up file accesses that require inter-cluster operations,
thus taking into account the particular network topology characterizing the clus-
ter grids built by ePVM. Therefore, a CPDS is always involved in “remote” file
accesses, i.e. whenever a task belonging to a cluster wants to access a file declus-
tered within a different cluster. To this end, ePIOUS assumes that files created
by tasks belonging to a cluster may be stored only onto hosts within the cluster,
even though they can be opened and written by tasks running on hosts belong-
ing to any cluster composing the EVM. To implement this, file descriptors have
been modified: each descriptor now includes the “cluster identifier” (CID) [7]
specifying the cluster whose hosts store the file’s physical segments. Thus, if a
task within a cluster wants to open a file created within a different cluster, it has
to specify the pair (CID, pathname), which becomes the “filename” in the open
routine, so as to unambiguously identify the file within the EVM. However, the
task, once obtained the file descriptor, can exploit it to transparently access the
file, without having to specify the CID or any other information about the file.

3 Operations on Files

Parallel operations on files are performed within the context of transactions,
transparently to the user, to provide sequential consistency of access and toler-
ance of system failures. In particular, the libepious routines behave as in PIOUS
and act as transaction managers for coordinator and data servers participating
in a distributed transaction across the EVM clusters satisfying a user request.

Two user-selectable transaction types are supported: “stable” and “volatile”.
Both transaction types ensure serializability of access. However, the former is a
“traditional” transaction based on logging and synchronous disk write opera-
tions, while the latter is a “lightweight” transaction that does not guarantee
fault-tolerance to the file access.

Three file access types are supported: “global”, “independent” and “seg-
mented”. In particular, tasks accessing a file declared as “global” view it as a
liner sequence of bytes and share a single file pointer. On the contrary, tasks
accessing a file declared as “independent” view it as a liner sequence of bytes,
but maintain local file pointers. Finally, tasks accessing a file declared as “seg-
mented” view the actual segmented file structure exposed by the associated
parafile object and can access segments via local file pointers.

An Efficient Parallel File System for Cluster Grids 97

HOST HOSTHOST

pds

T

T

T

T

T

T

T

T

T

FRONT END

pds
epvmd

T T

pvmd M

cpds pdspcs

pvmd S pvmd S pvmd S

12
43

pds

(a)

HOST HOSTHOST

pds

T

T

T

T

T

T

T

T

T

FRONT END

pds
epvmd

T T

pvmd M

cpds pdspcs

pvmd S pvmd S pvmd S

1
2

pds

(b)

Fig. 2. The scheme of local PSC-PDSs (a) and PDSs (b) interactions

HOST HOSTHOST

pds

T

T

T

T

T

T

T

T

T

HOST HOSTHOST
pvmd Spvmd S

pds cpds

T

T

T

T

T

T

T

T

T

FRONT END

pds
T

T

T

T

epvmd

pvmd M

FRONT END

pds
epvmd

T T

pvmd M

pds cpds pdspcs

pvmd S pvmd S pvmd S

pds pcs

pvmd S

pds

12
11 12

3

4

9 5

8

7

6

Cluster 1

Cluster 2

10

Fig. 3. The scheme of a remote PSC-PDSs interaction

Two types of file operations are supported: those involving PSC and PDSs,
and those solely involving PDSs. The former includes the open and close oper-
ations as well as the operations that change file attributes. The latter includes
the read and write operations. In fact, both types of operations involve CPDSs,
when they require inter-cluster actions to be performed.

The scheme of PSC-PDSs operations is depicted in Figures 2(a) and 3. In
particular, when a task allocated onto a host of a cluster invokes an ePIOUS
routine to perform a PSC-PDSs operation, the libepious library contacts the PSC
running within the cluster, which decides whether the actions to be performed
are “local” or “remote”, i.e. if the actions can be confined to the cluster or involve
other clusters of the EVM. In fact, such a decision can be taken by examining
the file descriptor, which specifies the CID of the cluster within which the file
has been created. If the required actions are “local”, the routine is served as in
PIOUS (Figure 2(a)), i.e. the task wanting to access the file contacts the PSC
running within its cluster, which takes charge of completing the routine service
by accessing the PDSs managing the file. On the contrary, if the required actions

98 F. Frattolillo and S. D’Onofrio

HOST HOSTHOST

pds

T

T

T

T

T

T

T

T

T

HOST HOSTHOST
pvmd Spvmd S

pds cpds

T

T

T

T

T

T

T

T

T

FRONT END

pds
T

T

T

T

epvmd

pvmd M

FRONT END

pds
epvmd

T T

pvmd M

pds cpds pdspcs

pvmd S pvmd S pvmd S

pds pcs

pvmd S

pds

1
8

7

2

3

6
4

5

Cluster 1

Cluster 2

Fig. 4. The scheme of a remote PDSs interaction

are “remote” (Figure 3), the PSC contacts the local CPDS. If the required data
are already in cache, the CPDS returns them to the PSC, which delivers them
to the user task. This means that only the interactions 1, 2, 11 and 12 shown
in Figure 3 are performed. Otherwise, the CPDS has to contact the epvmd
managing its cluster, which takes charge of serving the routine within the EVM.
This means that the epvmd of the local cluster sends the file access request to the
epvmd of the remote cluster, which serves the request as if it were issued within
its cluster. Once the file has been accessed, the required data are returned to the
remote epvmd, which sends them back to the local epvmd. Then, the data are
sent to the CPDS, which, after having stored them in its cache memory, returns
them to the PSC, which takes charge of delivering them to the user task.

The PDSs operations follow a scheme similar to PSC-PDSs operations (Fig-
ures 2(b) and 4). In particular, when the file access requires “remote” interactions
(Figure 4), the task wanting to access the file first contacts the CPDS, which can
directly return the required data if they are available in its cache. In this case,
only the interactions 1 and 8 are performed. Otherwise, the CPDS has to start
the “remote” interaction scheme by involving the local and remote epvmds. In
this case, the remote epvmd behaves as the task wanting to access the file, thus
interacting with the PDSs local to its cluster, as depicted in Figure 2(b).

4 The File Caching Service

ePIOUS supplies a file caching service able to speed up file accesses involving
different clusters of an EVM. The service is implemented by the CPDS servers,
each of which may be allocated on any host of a cluster.

A CPDS implements a “segmented least-recently used” (SLRU) caching pol-
icy. However, it has been designed so as to be able to exploit different caching
algorithms that can be selected by users at ePIOUS start-up. In fact, a CPDS
behaves as a normal PDS, even though it takes charge of managing the interac-

An Efficient Parallel File System for Cluster Grids 99

HOST HOSTHOST

pds

T

T

T

T

T

T

T

T

T

FRONT END

pds
epvmd

T T

pvmd M

pdspcs

pvmd S pvmd S pvmd S

HOST HOSTHOST

pds

T

T

T

T

T

T

T

T

T

FRONT END

pds
epvmd

T T

pvmd M

pds cpds pdspcs

pvmd S pvmd S pvmd S

HOST HOSTHOST

pds

T

T

T

T

T

T

T

T

T

FRONT END

pds
epvmd

T T

pvmd M

pds cpds pdspcs

pvmd S pvmd S pvmd S

3.N

2.N

cpds pds

1

2.1

filename list of CIDs

file 1 CID 1, CID 2, ... CID N

......

file M CID 1, CID 2, ... CID K

3.1
Cluster 1

Cluster N

Cluster

Fig. 5. The multicast messages invalidating the CPDSs’ cache memories

tions solely involving remote files. To this end, it has to update its cache memory
whenever: (1) a cache miss is generated in a remote file access (Figures 3 and 4);
(2) a file, declustered within a cluster but whose segments have been cached by
the CPDSs of other clusters of an EVM, is updated. In fact, to easily invalidating
the cache memories of the CPDSs in the latter case, each PDS manages a table
in which each entry is associated to a file locally declustered and refers to the list
of the clusters whose CPDSs have cached segments of the file. Thus, when a file
included in the table is updated, a specific invalidating message is multicasted
to all the CPDSs belonging to the clusters reported in the list (Figure 5).

5 Experimental Results

Preliminary tests have been conducted on two PC clusters connected by a Fast
Ethernet network. The first cluster is composed of 4 PCs interconnected by a
Fast Ethernet hub and equipped with Intel Pentium IV 3 GHz, hard disk EIDE
60 GB, and 1 GB of RAM. The second cluster is composed of 4 PCs connected
by a Fast Ethernet switch and equipped with Intel Xeon 2.8 GHz, hard disk
EIDE 80 GB, and 1 GB of RAM. All the PCs run Red Hat Linux rel. 9.

The benchmark applications implement two parallel file access patterns, de-
fined as “partitioned” and “self-scheduled” [11]. The former divides a file into
contiguous blocks, with each block accessed sequentially by a different process.
The latter results when a linear file is accessed sequentially by a group of tasks
via a shared file pointer. In fact, partitioned and self-scheduled access correspond
to the “independent” and “global” file access types, respectively. Furthermore,
the files used in the tests are characterized by a number of segments equal to the
number of the PDSs employed, while the number of the tasks performing the
read and write file operations may vary from 4 to 12. The tasks are all allocated
on the hosts belonging to the first cluster according to a round-robin strategy,

100 F. Frattolillo and S. D’Onofrio

 1

 2

 3

 4

 5

 6

 7

 8

 4 6 8 10 12

T
ra

ns
fe

r
R

at
e

(M
B

yt
e/

se
c)

Number of tasks

Test 1

Read (Buffer size 1 KB, cache miss)
Read (Buffer size 4 KB, cache miss)

Read (Buffer size 1 KB, cache hit)
Read (Buffer size 4 KB, cache hit)

 1

 2

 3

 4

 5

 6

 7

 8

 4 6 8 10 12

T
ra

ns
fe

r
R

at
e

(M
B

yt
e/

se
c)

Number of tasks

Test 2

Write (Buffer size 1 KB, cache miss)
Write (Buffer size 4 KB, cache miss)

Write (Buffer size 1 KB, cache hit)
Write (Buffer size 4 KB, cache hit)

 0.5

 1

 1.5

 2

 2.5

 3

 4 6 8 10 12

T
ra

ns
fe

r
R

at
e

(M
B

yt
e/

se
c)

Number of tasks

Test 3

Read (Buffer size 1 KB, cache miss)
Read (Buffer size 4 KB, cache miss)

Read (Buffer size 1 KB, cache hit)
Read (Buffer size 4 KB, cache hit)

 0.5

 1

 1.5

 2

 2.5

 3

 4 6 8 10 12

T
ra

ns
fe

r
R

at
e

(M
B

yt
e/

se
c)

Number of tasks

Test 4

Write (Buffer size 1 KB, cache miss)
Write (Buffer size 4 KB, cache miss)

Write (Buffer size 1 KB, cache hit)
Write (Buffer size 4 KB, cache hit)

Fig. 6. Some preliminary tests conducted on ePIOUS

while the PDSs accessed during the tests are allocated on the hosts belonging
to the second cluster. Finally, files are always accessed in “volatile” mode.

Test 1 in Figure 6 depicts read performance achieved by a test application
that accesses a file according to a “partitioned” access pattern. The test has been
conducted with two sizes of the transfer buffer used by each task: 1 KB and 4
KB. The file segment size is 1 KB. Despite both the high latency induced by
the PVM transport layer in the intra-cluster communications and the overhead
induced by the inter-cluster operations managed by epvmds, Test 1 shows a good
performance of the ePIOUS implementation. This is due both to the excess of
parallelism developed by the application tasks and to the internal structure of
the epvmds, which makes them able to serve in parallel many remote file access
requests. Furthermore, the caching service significantly improves the observed
bandwidth, thus diminishing the effects of the two-levels network topology char-
acterizing the cluster grid. However, performance does not scale well as the
number of tasks is increased, and this is due to an increased number of message
interrupts at the server transport layer and to the not particularly optimized
original implementation of PIOUS, which is largely preserved in ePIOUS.

Test 2 in Figure 6 depicts write performance obtained by the test application
implementing a “partitioned” access pattern. In particular, data caching results
in being effective for write access among different clusters, even though aggregate
performance is not much sensitive to a continued increase in the number of tasks.

Finally, Test 3 and 4 in Figure 6 depict the read and write performance ob-
tained by the test application that accesses a file according to a “self-scheduled”

An Efficient Parallel File System for Cluster Grids 101

access pattern. The achieved results show that this access pattern does not scale
in performance beyond the number of PDSs, and this because the use of a shared
file pointer forces a serialized file access.

6 Conclusions

ePIOUS is the PIOUS porting under ePVM, a PVM extension that enables PVM
applications to run on cluster grids. The limited modifications to the PIOUS li-
brary and the addition of a caching service able to speed up file accesses involving
different clusters have enabled ePIOUS to achieve a good performance in all the
executed tests, and this demonstrates that existing large-scale PVM applica-
tions can exploit ePVM together with ePIOUS to run on cluster grids built by
harnessing high performance/cost ratio computing platforms widely available
within localized network environments and departmental organizations without
having to be rearranged or penalized by the use of complex software systems
for grid computing. In particular, the preliminary tests have been performed for
a caching service implementing an SLRU policy. However, further tests will be
performed under different cache algorithms and several file access patterns.

References

1. Springer, P.L.: PVM support for clusters. In: Procs of the 3rd IEEE Int Conf. on
Cluster Computing, Newport Beach, CA, USA (2001)

2. Stefán, P.: The hungarian clustergrid project. In: Procs of the MIPRO’2003,
Opatija, Croatia (2003)

3. Berman, F., Fox, G., Hey, T., eds.: Grid Computing: Making the Global Infrastruc-
ture a Reality. Wiley & Sons (2003)

4. Foster, I., Kesselman, C., eds.: The Grid: Blueprint for a New Computing In-
frastructure. 2nd edn. Morgan Kaufmann (2004)

5. Joseph, J., Fellenstein, C.: Grid Computing. Prentice Hall PTR (2003)
6. Frattolillo, F.: A PVM extension to exploit cluster grids. In: Procs of the 11th

EuroPVM/MPI Conference. Volume 3241 of Lecture Notes in Computer Science.,
Budapest, Hungary (2004) 362–369

7. Frattolillo, F.: Running large-scale applications on cluster grids. Intl Journal of
High Performance Computing Applications 19 (2005) 157–172

8. Geist, A., Beguelin, A., et al.: PVM: Parallel Virtual Machine. A Users’ Guide and
Tutorial for Networked Parallel Computing. MIT Press (1994)

9. Frattolillo, F., D’Onofrio, S.: Providing PVM with a parallel file system for cluster
grids. In: Procs of the 9th World Multi-Conference on Systemics, Cybernetics and
Informatics, Orlando, Florida, USA (2005)

10. Moyer, S.A., Sunderam, V.S.: PIOUS: a scalable parallel I/O system for distributed
computing environments. In: Procs of the Scalable High-Performance Computing
Conference. (1994) 71–78

11. Crockett, T.W.: File concepts for parallel I/O. In: Procs of the ACM/IEEE
Conference on Supercomputing, Reno, Nevada, USA (1989) 574–579

Cooperative Write-Behind Data Buffering for MPI I/O

Wei-keng Liao1, Kenin Coloma1, Alok Choudhary1, and Lee Ward2

1 Electrical and Computer Engineering Department, Northwestern University
2 Scalable Computing Systems Department, Sandia National Laboratories

Abstract. Many large-scale production parallel programs often run for a very
long time and require data checkpoint periodically to save the state of the compu-
tation for program restart and/or tracing the progress. Such a write-only pattern
has become a dominant part of an application’s I/O workload and implies the im-
portance of its optimization. Existing approaches for write-behind data buffering
at both file system and MPI I/O levels have been proposed, but challenges still ex-
ist for efficient design to maintain data consistency among distributed buffers. To
address this problem, we propose a buffering scheme that coordinates the com-
pute processes to achieve the consistency control. Different from other earlier
work, our design can be applied to files opened in read-write mode and handle
the patterns with mixed MPI collective and independent I/O calls. Performance
evaluation using BTIO and FLASH IO benchmarks is presented, which shows a
significant improvement over the method without buffering.

Keywords: Write behind, MPI I/O, file consistency, data buffering, I/O thread.

1 Introduction

Periodical checkpoint write operations are commonly seen in today’s long-running pro-
duction applications. Checkpoint data typically are snapshot of the current computation
status to be used for progress tracking and/or program restart. Once written, files created
by checkpointing are usually not touched for the rest of the run. In many large-scale ap-
plications, such write-once-never-read patterns are observed to dominate the overall I/O
workload and, hence, designing efficient techniques for such operations becomes very
important. Write-behind data buffering has been known to operating system designers
as a way to speed up sequential writes [1]. Write-behind buffering accumulates multi-
ple writes into large contiguous file requests in order to better utilize the I/O bandwidth.
However, implementing the write-behind strategy requires the support of client-side
caching which often complicates the file system design due to the cache coherence is-
sues. System-level implementations for client-side caching often hold dedicated servers
or agents to be responsible for maintaining the coherence. In the parallel environment,
this problem gets even obvious since processes running the same parallel application
tends to operate their I/O on shared files concurrently. User-level implementation of
write-behind data buffering has been proposed in [2] which demonstrated a significant
performance improvement when the buffering scheme is embedded in ROMIO [3], an
I/O library implementation for Message Passing Interface [4]. However, due to the pos-
sible file consistency problem, it is limited to MPI collective write operations with the
file opened in write-only mode.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 102–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cooperative Write-Behind Data Buffering for MPI I/O 103

We propose cooperative write-behind buffering, a scheme that can benefit both MPI
collective and independent I/O operations. To handle the consistency issue, we keep
tracking the buffering status at file block level and at most one copy of the file data can
be buffered among processes. The status metadata is cyclically distributed among the
application processes such that processes cooperate with each other to maintain the data
consistency. To handle MPI independent I/O, each process must respond to the queries,
remote and local, to the status assigned without explicitly stopping the program’s main
thread. Thus, we create an I/O thread in each process to handle the requests to the
status as well as the buffered data. Our implementation requires every process first look
up the buffering status for file blocks covered by the read/write request to determine
whether the request should create a new buffer or overwrite the existing buffers (locally
or remotely). To ensure I/O atomicity, a status-locking facility is implemented and locks
must be granted prior to the read/write calls. We evaluate the cooperative buffering on
the IBM SP at San Diego supercomputing center using its GPFS file system. Two sets
of I/O benchmarks are presented: BTIO, and FLASH I/O. Compared with the native I/O
method without data buffering, cooperative buffering shows a significant performance
enhancement for both benchmarks.

The rest of the paper is organized as follows. Section 2 discusses the background
information and related works. The design and implementation for cooperative buffer-
ing is presented in section 3. Performance results are given in section 4 and the paper is
concluded in section 5.

2 Background

Message passing interface (MPI) standard defines two types of I/O functions: collective
and independent calls [4]. Collective I/O must be called by all processes that together
opened the file. Many collective I/O optimizations take advantage of this synchroniza-
tion requirement to exchange information among processes such that I/O requests can be
analyzed and reconstructed for better performance. However, independent I/O does not
require process synchronization, which makes existing optimizations difficult to apply.

2.1 Active Buffering and ENWRICH Write Caching

Active buffering is considered an optimization for MPI collective write operations [2].
It buffers output data locally and uses an I/O thread to perform write requests at back-
ground. Using I/O threads allows to dynamically adjust the size of local buffer based
on available memory space. Active buffering creates only one thread for the entire run
of a program, which alleviates the overhead of spawning a new thread every time a
collective I/O call is made. For each write request, the main thread allocates a buffer,
copies the data over, and appends this buffer into a queue. The I/O thread, running at
background, later retrieves the buffers from the head of the queue, issues write calls to
the file system, and releases the buffer space. Although write behind enhances paral-
lel write performance, active buffering is applicable if the I/O patterns only consist of
collective writes. Lacking of consistency control, active buffering could not handle the
operations mixed with reads and writes as well as independent and collective calls.

104 W.-k. Liao et al.

Similar limitations are observed in ENWRICH write caching scheme which is a
system-level optimization [5]. The client-side write caching proposed in ENWRICH
can only handle the files that are opened in write-only mode. For I/O patterns mixed
with reads and writes, caching is performed at I/O servers due to the consistency con-
cern. Similar to active buffering, ENWRICH also appends each write into a write queue
and all files share the same cache space. During the flushing phase, the I/O threads on
all processes coordinate the actual file operations.

2.2 I/O Thread in GPFS

IBM GPFS parallel file system performs the client-side file caching and adopts a strat-
egy called data shipping for file consistency control [6,7]. Data shipping binds each
GPFS file block to a unique I/O agent which is responsible for all the accesses to this
block. The file block assignment is made in round-robin striping scheme. Any I/O op-
erations on GPFS must go through the I/O agents which will ship the requested data to
appropriate processes. To avoid incoherent cache data, a distributed file locking is used
to minimize the possibility of I/O serialization that can be caused by lock contention.
I/O agents are multi-threaded residing in each process and are responsible for combin-
ing I/O requests in collective operations. I/O thread also performs advanced caching
strategies at background, such as read ahead and write behind.

3 Design and Implementation

The idea of cooperative buffering is to let application processes cooperate with each
other to manage a consistent buffering scheme. Our goals are first to design a write-
behind data buffering as an MPI I/O optimization at client side without adding overhead
to I/O servers. Secondly, we would like to support read-write operations in arbitrary
orders, which implies the incorporation of consistency control. Thirdly, the buffering
scheme would benefit both MPI collective and independent I/O.

3.1 Buffering Status Management and Consistency Control

We logically divide a file into blocks of the same size and buffering status of these blocks
is assigned in a round-robin fashion across the MPI processes that together open the
file. Our consistency control is achieved by tracking the buffering status of each block
and keeps at most one copy of file data in the buffers globally. As illustrated in Figure
1(a), the status for block i is held by the process of rank (i mod nproc), where nproc
is the number of processes in the MPI communicator supplied at file open. The status
indicates if the block is buffered, its file offset, current owner process id, a dirty flag,
byte range of the dirty data, and the locking mode. Note that buffering is performed
for all opened files, but buffering status is unique to each file. An I/O request begins
with checking the status of the blocks covered by the request. If the requested blocks
have not been buffered by any process, the requesting process will buffer them locally
and update the status. Otherwise, the request will be forwarded to the owner(s) of the
blocks and appropriate reads or over-writes from/to the remote buffer are performed.
Unlike active buffering and ENWRICH appending all writes into a queue, cooperative

Cooperative Write-Behind Data Buffering for MPI I/O 105

end threadfile close

remote
fromremote request

probe for

request
check local

thread
I/O

thread
main

(b)(a)

yes
no

close last file

to remote
read/write

sh
ar

ed
 v

ar
ia

bl
es

start thread
open first file

file open

Distributed buffering status
1P 2P 3P0P

File logical paritition

block 4block 3block 2block 1block 0

processes

block 9 status

block 5 status

block 1 status

block 10 status

block 6 status

block 2 status

block 11 status

block 7 status

block 3 status

block 8 status

block 4 status

block 0 status

Fig. 1. (a) The buffering status is statically distributed among processes in a round-robin fashion.
(b) Design of the I/O thread and its interactions with the main thread and remote requests.

buffering writes to existing buffers whenever possible. Since at most one copy of the file
data can be buffered in the process memory at any time, data consistency is maintained.
In addition, a status locking facility is implemented, in which locks to the file blocks
covered by an I/O request must be all granted before proceeding with any operation on
the blocks. To enforce MPI sequential consistency and atomicity, the locks to multiple
blocks are granted in an increasing order. For example, if an I/O request covers file
blocks from i to j, where i≤ j, lock request for block k, i≤ k≤ j, will not be issued until
lock to block (k−1) is granted. This design is similar to the two-phase locking method
[8] used to serialize multiple overlapping I/O requests to guarantee the I/O atomicity.

3.2 I/O Thread

Since buffered data and buffering status are distributed among processes, each process
must be able to respond to remote requests for accessing to the status and buffered data
stored locally. For MPI collective I/O, remote queries can be fulfilled through inter-
process communication during the process synchronization. However, the fact that MPI
independent I/O is asynchronous makes it difficult for one process to explicitly receive
remote requests. Our design employs an I/O thread in each process to handle remote re-
quests without interrupting the execution of the main thread. To increase the portability,
our implementation uses the POSIX standard thread library [9]. Figure 1(b) illustrates
the I/O thread design from the viewpoint of a single process. Details of the I/O thread
design are described as follows.

– The I/O thread is created when the application opens the first file and destroyed
when the last file is closed. Each process can have multiple files opened, but only
one thread is created.

– The I/O thread performs an infinite loop to serve the local and remote I/O requests.
– All I/O and communication operations are carried out by the I/O thread only.
– A conditional variable protected by a mutual exclusion lock is used to communicate

the two threads.
– To serve remote requests, the I/O thread keeps probing for incoming I/O requests

from any process in the MPI communicator group. Since each opened file is asso-
ciated with a communicator, the probe will check for all the opened files.

106 W.-k. Liao et al.

– The I/O thread manages the local memory space allocation which includes creat-
ing/releasing buffers and resizing the status data.

3.3 Flushing Policy

Since our file consistency control ensures that only one copy of the file data can be
buffered globally among processes and any read/write operations must check the status
first, it is not necessary to flush buffered data prior to end of the run. In our implemen-
tation, buffered data can be explicitly flushed when file is closed or the file flushing call
is made. Otherwise, implicit data flushing is needed only when the application runs out
of memory, in which the memory space management facility handles the space over-
flow. Our design principle for data flushing includes: 1) declining buffering for overly
large requests exceeding one-forth of entire memory size (direct read/write calls are
made for such requests); 2) least-recent-used buffered data is flushed first (an accessing
time stamp is associated with each data buffer); and 3) when flushing, all buffers are
examined if any two buffers can be coalesced to reduce the number of write calls. For
file systems that do not provide consistency automatically, we mimic the approach used
in ROMIO that wraps byte-range file locking around each read/write call to disable
client-side caching [10].

3.4 Incorporate into ROMIO

We place cooperative buffering at the ADIO layer of ROMIO to catch every read/write
system call and determines whether the request should access the existing buffers or cre-
ate a new buffer. ADIO is an abstract-device interface providing uniform and portable
I/O interfaces for parallel I/O libraries [11]. This design preserves the existing opti-
mizations used by ROMIO, such as two-phase I/O and data sieving, both implemented
above ADIO [3,12]. In fact, cooperative buffering need not know if the I/O operation is
collective or independent, since it only deals with system read/write calls.

4 Experimental Results

The evaluation of cooperative buffering implementation was performed using BTIO
benchmark and FLASH I/O benchmark on the IBM SP machine at San Diego Su-
percomputing Center. The IBM SP contains 144 Symmetric Multiprocessing (SMP)
compute nodes and each node is an eight-processor shared-memory machine. We use
the IBM GPFS file system to store the files. The peak performance of the GPFS is 2.1
GBytes per second for reads and 1 GBytes per second for writes. The I/O will approxi-
mately max out at about 20 compute nodes. In order to simulate a distributed-memory
environment, we ran the tests using one processor per compute node.

4.1 BTIO Benchmark

BTIO is the I/O benchmark from NASA Advanced Supercomputing (NAS) parallel
benchmark suite (NPB 2.4) [13]. BTIO uses a block-tridiagonal (BT) partitioning

Cooperative Write-Behind Data Buffering for MPI I/O 107

64

3625 36 49

16

644964 16

16

2599 16

cooperative buffering
no buffering

no buffering
cooperative buffering

no buffering
cooperative buffering

no buffering
cooperative buffering

8 8 3232

 200

 1200

 1000

 800

 600

 400

 0

Number of nodes

4

I/
O

 b
an

dw
id

th
 in

 M
B

/s

 0
4

 200

 0

 1200

FLASH I/O: 8 x 8 x 8 sub−arrays

I/
O

 b
an

dw
id

th
 in

 M
B

/s

 50

4

 600

 400

 200

Number of nodes

FLASH I/O: 16 x 16 x 16 sub−arrays

 1000

 800

I/
O

 b
an

dw
id

th
 in

 M
B

/s

Number of nodes

BTIO Class B

I/
O

 b
an

dw
id

th
 in

 M
B

/s

 0

 200

 400

 600

 800

BTIO Class A

Number of nodes

 1000

 100

 150

4

Fig. 2. I/O bandwidth results for BTIO and FLASH I/O benchmarks

pattern on a three-dimensional array across a square number of compute nodes. Each
processor is responsible for multiple Cartesian subsets of the entire data set, whose
number increases as the square root of the number of processors participating in the
computation. BTIO provides four types of evaluations, each with different I/O im-
plementations, including MPI collective I/O, MPI independent I/O, Fortran I/O, and
separate-file I/O. In this paper, we only present the performance results for the type
of using MPI collective I/O, since collective I/O generally results in the best perfor-
mance [14]. The benchmark performs 40 collective MPI writes followed by 40 collec-
tive reads. We evaluated two I/O sizes: classes A and B, which generate I/O amount of
800 MBytes and 3.16 GBytes, respectively. Figure 2 compares the bandwidth results of
using cooperative buffering with the native approach (without buffering.) We observe
that cooperative buffering out-performs the native approach in most of the cases. Es-
pecially, when the number of compute nodes becomes large, cooperative buffering can
achieve bandwidth near the system peak performance. The main contribution to this
performance improvement is due to the effect of write behind and read from buffered
data.

4.2 FLASH I/O Benchmark

FLASH is an AMR application that solves fully compressible, reactive hydrodynamic
equations, developed mainly for the study of nuclear flashes on neutron stars and white
dwarfs [15]. The FLASH I/O benchmark [16] uses HDF5 for writing checkpoints, but
underneath is using MPI I/O for performing parallel reads and writes. The in-memory
data structures are 3D sub-arrays of size 8× 8× 8 or 16× 16× 16 with a perimeter
of four guard cells that are left out of the data written to files. In the simulation, 80

108 W.-k. Liao et al.

of these blocks are held by each processor. Each of these data elements has 24 vari-
ables associated with it. Within each file, the data for the same variable must stored
contiguously. The access pattern is non-contiguous both in memory and in file, making
it a challenging application for parallel I/O systems. Since every processor writes 80
FLASH blocks to file, as we increase the number of clients, the dataset size increases
linearly as well.

Figure 2 compares the bandwidth results between the I/O implementation with and
without cooperative buffering. The I/O amount is proportional to the number of com-
pute nodes, ranging from 72.94 MBytes to 1.14 GBytes for the case of 8×8×8 arrays
and from 573.45 MBytes to 4.49 GBytes for the case of 16×16×16 arrays. In the case
of using 8×8×8 array size, we can see that the I/O bandwidth for both implementations
is far from the system peak performance. This is because FLASH I/O generates many
non-contiguous and small I/O requests and the system peak performance can only be
achieved by large contiguous I/O requests. The bandwidth improves significantly when
we increase the array size to 16× 16× 16. Similar to the BTIO benchmark, the I/O
performance improvement demonstrates the effect of write behind.

4.3 Sensitivity Analysis

Due to the consistency control, cooperative buffering bears the cost of remotely and.or
locally buffering status inquiry each time an I/O request is made. For the environment
with a relative slow communication network or the I/O patterns with many small re-
quests, this overhead may become significant. Another parameter that may affect the
I/O performance is the file block size. The granularity of file block size determines the
number of local/remote accesses generated from an I/O request. For different file access
patterns, one file block size cannot always deliver the same performance enhancement.
For the patterns with frequent and small amounts of I/O, using a large file block can
cause contention when multiple requests access to the same buffers. On the other hand,
if small file block size is used when the access pattern is less frequent and with large
amount of I/O, a single large request can result in many remote data accesses. In most
cases, such parameters can only be fine-tuned by the application users. In MPI, such
user inputs usually are implemented through MPI Info objects which, in our case, can
also be used to activate or disable cooperative buffering.

5 Conclusions

Write-behind data buffering is known to be able to improve I/O performance by combin-
ing multiple small writes into large writes to be executed later. However, the overhead
for write behind is the cost of maintaining file consistency. The cooperative buffer-
ing proposed in this paper addresses the consistency issue by coordinating application
processes to manage buffering status data at file block level. This buffering scheme can
benefit both MPI collective and independent I/O while the file open mode is no longer
limited to write-only. The experimental results have shown a great improvement for two
I/O benchmarks. In the future, we plan to investigate in depth the effect of the file block
size and study irregular access patterns from scientific applications.

Cooperative Write-Behind Data Buffering for MPI I/O 109

Acknowledgments

This work was supported in part by Sandia National Laboratories and DOE under Con-
tract number 28264, DOE’s SCiDAC program (Scientific Data Management Center),
award number DE-FC02-01ER25485, NSF’s NGS program under grant CNS-0406341,
NSF/DARPA ST-HEC program under grant CCF-0444405, and NSF through the SDSC
under grant ASC980038 using IBM DataStar.

References

1. Callaghan, B.: NFS Illustrated. Addison-Wesley (2000)
2. Ma, X., Winslett, M., Lee, J., Yu, S.: Improving MPI-IO Output Performance with Active

Buffering Plus Threads. In: the International Parallel and Distributed Processing Symposium
(IPDPS). (2003)

3. Thakur, R., Gropp, W., Lusk, E.: Users Guide for ROMIO: A High-Performance, Portable
MPI-IO Implementation. Technical Report ANL/MCS-TM-234, Mathematics and Computer
Science Division, Argonne National Laboratory. (1997)

4. Message Passing Interface Forum: MPI-2: Extensions to the Message Passing Interface.
(1997) http :// www.mpi-forum.org / docs / docs.html.

5. Purakayastha, A., Ellis, C.S., Kotz, D.: ENWRICH: A Compute-Processor Write Caching
Scheme for Parallel File Systems. In: the Fourth Workshop on Input/Output in Parallel and
Distributed Systems (IOPADS). (1996)

6. Prost, J., Treumann, R., Hedges, R., Jia, B., Koniges, A.: MPI-IO/GPFS, an Optimized
Implementation of MPI-IO on top of GPFS. In: Supercomputing. (2001)

7. Schmuck, F., Haskin, R.: GPFS: A Shared-Disk File System for Large Computing Clusters.
In: the Conference on File and Storage Technologies (FAST’02). (2002) 231–244

8. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database
Systems. Addison-Wesley (1987)

9. IEEE/ANSI Std. 1003.1: Portable Operating System Interface (POSIX)-Part 1: System Ap-
plication Program Interface (API) [C Language]. (1996)

10. Thakur, R., Gropp, W., Lusk, E.: On Implementing MPI-IO Portably and with High Perfor-
mance. In: the Sixth Workshop on I/O in Parallel and Distributed Systems. (1999) 23–32

11. Thakur, R., Gropp, W., Lusk, E.: An Abstract-Device Interface for Implementing Portable
Parallel-I/O Interfaces. In: the 6th Symposium on the Frontiers of Massively Parallel Com-
putation. (1996)

12. Thakur, R., Gropp, W., Lusk, E.: Data Sieving and Collective I/O in ROMIO. In: the 7th
Symposium on the Frontiers of Massively Parallel Computation. (1999)

13. Wong, P., der Wijngaart, R.: NAS Parallel Benchmarks I/O Version 2.4. Technical Report
NAS-03-002, NASA Ames Research Center, Moffet Field, CA (2003)

14. Fineberg, S., Wong, P., Nitzberg, B., Kuszmaul, C.: PMPIO - A Portable Implementation of
MPI-IO. In: the 6th Symposium on the Frontiers of Massively Parallel Computation. (1996)

15. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P.,
Rosner, R., Tufo, H.: FLASH: An Adaptive Mesh Hydrodynamics Code for Modelling As-
trophysical Thermonuclear Flashes. Astrophysical Journal Suppliment (2000) 131–273

16. Zingale, M.: FLASH I/O Benchmark Routine – Parallel HDF 5 (2001)
http://flash.uchicago.edu/∼zingale/flash benchmark io.

Hint Controlled Distribution with Parallel
File Systems

Hipolito Vasquez Lucas and Thomas Ludwig

Parallele und Verteilte Systeme, Institut für Informatik,
Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany

{hipolito.vasquez, thomas.ludwig}@informatik.uni-heidelberg.de

Abstract. The performance of scientific parallel programs with high
file-I/O-activity running on top of cluster computers strongly depends
on the qualitative and quantitative characteristics of the requested I/O-
accesses. It also depends on the corresponding mechanisms and policies
being used at the parallel file system level. This paper presents the moti-
vation and design of a set of MPI-IO-hints. These hints are used to select
the distribution function with which a parallel file system manipulates
an opened file. The implementation of a new physical distribution func-
tion called varstrip dist is also presented in this article. This function
is proposed based upon spatial characteristics presented by I/O-access
patterns observed at the application level.

1 Introduction

Hard disks offer a cost effective solution for secondary storage, but mainly due
to mechanical reasons their access time has not kept pace with the speed de-
velopment of processors. Disk and microprocessor performance have evolved at
different rates [1]. This difference of development at the hardware level is one
of the main causes of the so-called I/O-bottleneck problem [3] in disk-based
computing systems.

The performance of I/O intensive scientific applications, which convey huge
amounts of data between primary and secondary storage, suffers heavily due to
this bottleneck. The performance of such an application depends on the I/O-
subsystem architecture and on the corresponding usage of it, which is inherent
to the application’s nature.

In order to design computing systems with the cost effective advantages of
hard disks and at the same time favor I/O intensive scientific applications, which
run on top of such systems, the parallel I/O approach [4] has been adopted. This
consists in arranging a set of disks over which files are striped or declustered [2].
By applying this mechanism, the applications take advantage of the resulting
aggregated throughput.

A Beowulf cluster computer [5] in which many nodes have their own hard
disk device inherently constitutes an appropriate hardware testbed for support-
ing parallel I/O. In order to make this parallelism, at the hardware level, visible
to the applications, corresponding parallel I/O operations at the file system and

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 110–118, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hint Controlled Distribution with Parallel File Systems 111

middleware level must be supported. Two implementations which fullfill these
tasks are the PVFS2 [6] parallel file system and the ROMIO [7] library, an imple-
mentation of MPI-2[16]. ROMIO accepts so-called hints that are communicated
via the info argument in the functions MPI File open, MPI File set view, and
MPI File set info. Their purpose is mainly to communicate information, which
may improve the I/O-subsystem’s performance. A hint is represented by a key-
value pair mainly concerning parameters for striping, collective I/O, and access
patterns.

In this work we propose a set of hints, which we call distribution hints. This
set gives the user the opportunity to choose the type of physical distribution func-
tion [20] to be applied by the PVFS2 parallel file system for the manipulation of
an opened file. After choosing the type of distribution function, the user can set
its corresponding parameters. Assigning a value to the strip size, for example,
requires information on the type of distribution function to which this parame-
ter belongs. To augment the set of distribution functions, which can be manipu-
lated via distribution hints, we also propose the new varstrip dist distribution
for PVFS2. We propose this distribution function taking into consideration the
characteristics of spatial I/O access patterns generated from scientific paral-
lel applications. Through the usage of the varstrip distribution the programers
can control the throughput or the load balancing degree in a PVFS2-ROMIO-
based I/O subsytem, thus influencing the performance of their MPI-IO-based
application.

2 Parallel I/O Access Patterns

2.1 Introduction

Our objective in this section is to present an abstract set of spatial I/O access
patterns at the application level and their parameters. These patterns represent
the assignation of storage areas of a logical file to monothreaded processes of a
parallel program. This assignation is known as logical file partitioning [8]. The
logical file can be interpreted as a one dimensional array of data blocks, whose
smallest granularity is one byte. We use this set of patterns as a reference model,
in order to propose distribution functions for the PVFS2 parallel file system.

We have summarized these characteristics based upon studies, which have
been done on I/O intensive parallel scientific applications running mainly on mul-
tiprocessor systems [10], [12], [14]. These patterns depend on the application’s
nature [15], but they are also conditioned by the kind of application program-
ming interface being used and furthermore by the way this interface is used.
ROMIO’s interface, for example, offers four different levels to communicate a
request pattern to the I/O subsystem. Each of these levels might have different
performance implications for the application [13].

2.2 Parameters

We use the following parameters to characterize a spatial I/O access pattern:
request size, type of operation, and sequentiality.

112 H. Vasquez Lucas and T. Ludwig

Table 1. Relative Sizes of R

Condition Relative Size
R < Msize ∗ 0.5 Small
Msize ∗ 0.5 < R < Msize Medium
R > Msize Big

We differentiate between absolute and relative request sizes. An absolute re-
quest size, R, is the requested number of bytes from the perspective of each
involved process within a parallel program. R can be uniform or variable across
processes. In order to express the relative size of R, we define Msize as the main
memory size of the compute node, where the accessing process runs. Taking
Msize as reference we distinguish the types of relative sizes shown in Table 1.
Requests are also characterized by the type of operations they make. In this
work we consider basically read and write operations.

The main criterion that we use to characterize the set of spatial access pat-
terns used in this work is the sequentiality from the program’s perspective. We
consider especially two types: partitioned and interleaved [11]. A partitioned
sequentiality appears when the processes collectively access the entire file in dis-
joint sequential segments. There is no common area in the file being used by
two processes. The interleaved sequentiality appears when the accesses of every
process are strided, or noncontiguous, to form a global sequential pattern.

2.3 Spatial Patterns

Figure 1 shows snapshots of five spatial patterns. The circles represent processes
running within a common program that are accessing a common logical file, and
the arrows mean any type of operation.

Pattern 0 represents a non-MPI parallel I/O to multiple files where every
process is sequential with respect to I/O. This pattern has drawbacks such as a
non-one logical view of the entire data set, a difficulty to manage the number
of files, and a dependency on the number of original processes. Since it can be
generated using language I/O [17], it will often be applied.

Patterns 1 through 4 are MPI parallel I/O variants. Their main advantage
consists in offering the user a one logical view of the file. Patterns 1 and 3 fall into
the category of global partitioned sequentiality, whereas 2 and 4 are variants of
interleaved global sequentiality. Pattern 4 appears when each process accesses the
file in a noncontiguous manner. This happens when parallel scientific applications
access multidimensional data structures. It can be generated through calling the
darray or the subarray function of the MPI-2 interface. We call Pattern 4 ir-
regular because it is the result of irregularly distributed arrays. In such a pattern
each process has a data array and a map array, which indicates the position in the
file of the corresponding data in the data array. Such a pattern can be expressed
using the MPI-2 interface through the MPI Type create indexed block. It can
also unknowingly be generated by using darray in the cases where the size of

Hint Controlled Distribution with Parallel File Systems 113

1

0

3

2

4

Fig. 1. Parallel I/O Application Patterns

the array in any dimension is not evenly divisible by the number of processes in
that dimension. For this kind of access load balancing is an issue.

3 Distribution Functions in PVFS2

File distribution, physical distribution or simply distribution, is a set of methods
describing a mapping from a logical sequence of bytes to a physical layout of bytes
on PVFS2 I/O servers, which we here simply call I/O nodes. These functions
are similar to declustering or striping methods used to scatter data across many
disks such as in RAID 0 systems [18]. One of these functions is the round robin
scheme, which is implemented in PVFS2.

In the context of PVFS2, the logical file consists of a set of strip sizes, ss,
which are stored in a contiguous manner on I/O servers [9]. These strips are
stored in datafiles [19] on I/O nodes through a distribution function.

4 A Set of Distribution Hints

To ease our discussion in this section we define an I/O cluster as a Beowulf
cluster computer where every physical node has a secondary storage device.

The default distribution function in PVFS2 is the so called simple stripe,
which is a round robin mechanism, that uses a fixed value of 64KB for ss.

Suppose that PVFS2 is configured on an I/O cluster such that each node
is a compute and I/O node at the same time and on top of this configuration
an application generates pattern 1. Under these circumstances the simple stripe
might penalize some strips by sending them over the network, thus slowing down
I/O operations.

In this work we propose the varstrip distribution. Our approach consists
in reproducing pattern 1 at each level of the software stack down to the raw
hardware, thus the varstrip distribution does not scatter strips over I/O nodes
in a RAID 0 manner, but instead it guarantees that each compute node accesses

114 H. Vasquez Lucas and T. Ludwig

MPI−IO

PVFS2

I/O−Hardware

MPI

Parallel I/O Intensive Applications

Fig. 2. Software Stack Environment for Distribution Hints

only its own local hard disk. Furthermore the strip size to be stored or retrieved
on an I/O node can be defined. The varstrip distribution allows the definition
of flexible strip sizes that can be assigned to a defined datafile number, thus
influencing the load balancing degree among the different I/O servers.

In order to control the parameters of any distribution function from an MPI-
Program, running on a similar software stack as that shown in figure 2, we intro-
duce distribution hints. The purpose of such a hint is to select not only a type of
distribution function, but also its parameters. The hint-key must have the follow-
ing format: <distribution name>:<parameter type>:<parameter name>.

At the moment the user can choose, using this format, the following func-
tions: basic dist, simple stripe, and varstrip dist. By choosing the first
one, the user saves the data on one single I/O node. The second applies the
round robin mechanism with a strip size of 64 KB. These functions are already
part of the standard set of distributions in PVFS2. By selecting our proposed
varstrip dist function the user can influence the throughput or the amount of
data to be assign to the I/O nodes when manipulating an opened file.

In the hint-key the parameter name must be given with its type, in order for
ROMIO and PVFS2 to manipulate it. Currently the strip size, type int64,
parameter for the simple stripe is supported. The parameter strips is sup-
ported for varstrip dist. This parameter represents the assignation between
datafile numbers and strip sizes. The following piece of code shows the usage of
varstrip dist.

MPI_Info_set(theinfo,
‘‘distribution_name’’, ‘‘varstrip_dist’’)

/*Throughput */
MPI_Info_set(theinfo,

‘‘varstrip_dist:string:strips’’,‘‘0:1000;1:1000’’)

/*Load Balancing*/
MPI_Info_set(theinfo,

‘‘varstrip_dist:string:strips’’, ‘‘0:8000;1:1000’’)

Hint Controlled Distribution with Parallel File Systems 115

5 Experiments

5.1 Testbed

The hardware testbed used for the implementation and tests was an I/O cluster
consisting of 5 SMP nodes (master1, node01..node04). Each node had two Xeon
hyper-threaded processors running at 2 Ghz, a main memory size of 1 GB, and
an 80 GB hard disk. These nodes were networked using a store-and-forward
Gigabit Ethernet switch.

The used operating system was linux with kernel 2.6.8. On top of this op-
erating system we installed version 1.0.1 of PVFS2 and MPICH2. PVFS2 was
running on top of an ext3 file system and every node was configured both as
client and server. The node called master1 was configured as the metadata server.

5.2 Objective

The purpose of the measurements was to compare the bandwidth observed at
the nodes when using the varstrip distribution with the bandwidth observed
when using pattern 0 or two variants of the round robin PVFS2 distribution:
the default distribution function with a strip size of 64KB and a variant which
we called simple stripe with fitted strip size. This variant resulted from setting
the same value for R, ss, and datafile. When using the fitted simple stripe a
compute node did not necessarily access its own secondary storage device.

5.3 Measurements

Figures 3, 4, and 5 show the bandwidths, y-axes, calculated from the measured
times before and after MPI File write or MPI File read operations. One single
process was started per node. Each process made small, medium, read, and
write R requests following pattern 1. The requests (R < 1GB) are shown on the
x-axes.

Reads

Writes

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Fig. 3. Measured Bandwidth: Pattern 1, varstrip dist

116 H. Vasquez Lucas and T. Ludwig

Reads

Writes

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Fig. 4. Measured Bandwidth: Pattern 1, simple stripe, fitted strip size

Writes

Reads

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Fig. 5. Measured Bandwidth: Pattern 1, simple stripe

For comparison purposes the same type of operations and values of R were re-
quested at the application level using the unix write and read functions. The data
was saved or retrieved to/from the local ext3 file system directly on the involved
nodes following pattern 0. The corresponding values are presented in Figure 6.

For pattern 0 the measured bandwidth at the nodes approximately was of 50
MB/s and 40 MB/s for read and write operations respectively. The bandwidth
for write operations of node01’s hard disk was 30 MB/s. These results correlate
with similar tests made with the bonnie++ benchmarking program.

Using the values obtained for pattern 0 as reference, we obtained only 55%
and 40% of performance for write and read accesses respectively when using the
default function simple stripe as presented in figure 5. It was the only case
where the bandwidht of write was better than that for read operations.

With the fitted strip size for the simple stripe function performances of
approximately 75% and 80% were measured for write and read operations re-

Hint Controlled Distribution with Parallel File Systems 117

Reads

Writes

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

M
B

/s

MBytes

master1
node01
node02
node03
node04

Fig. 6. Bandwidth obtained using the UNIX interface

spectively. Since the compute nodes were not necessarily using their own local
hard disks, node04 accessed the hard disk of node01 during reading operations
as shown in figure 4. The node master1, also the metadata server, used its own
local disk during read operations.

Figure 3 presents the performance observed when using our proposed varstrip
distribution. The bandwidth reached 80% and 100% of the reference bandwidth
for write and read operations respectively.

6 Conclusion and Future Work

In this paper we have described a set of MPI-IO-hints, which the user can choose
to select a certain distribution function of the PVFS2 parallel file system and
its corresponding parameters. We have also described the varstrip distribution
function. This function is proposed taking into consideration pattern 1, a parallel
I/O spatial pattern, which appears at the application level. For this type of
workload the varstrip distribution performs better than the other distribution
functions, as shown through the experiments. Furthermore, by selecting varstrip
the user can manipulate the load balancing degree among the I/O servers.

Our future work consists in implementing other distribution functions and
constructing a matrix with pattern-distribution pairs, which will provide in-
formation about the functions best suited for particular application patterns.
During this process we shall find out for which pattern and configuration the
simple stripe performs best and how well varstrip dist performs with some
other patterns as workload.

Acknowledgment

We thank Tobias Eberle and Frederik Grüll for the implementations, and Sven
Marnach, our cluster administrator.

118 H. Vasquez Lucas and T. Ludwig

Additionally, we would like to acknowledge the Department of Education of
Baden Württemberg, Germany, for supporting this work.

References

1. Patterson, David A., Chen, Peter M.: Storage Performance - Metrics and Bench-
marks. http://citeseer.ist.psu.edu/91919.html. (1998)

2. Patterson, David A., Chen, Peter M.: Maximizing Performance in a Striped Disk
Array. Proc. 17th Annual Symposium on Computer Architecture (17th ISCA’90),
Computer Architecture News. (1990) 322–331

3. Hsu, W. W., Smith, A. J.: Characteristics of I/O traffic in personal computer and
server workloads. IBM Syst. J. 42 (2003) 347–372

4. Hsu, W. W., Smith, A. J.: The performance impact of I/O optimizations and disk
improvements. IBM Journal of Research and Development. 48 (2004) 255–289

5. Sterling, T.: An Overview of Cluster Computing. Beowulf Cluster Computing with
Linux. (2002) 015–029

6. PVFS2 URL: http://www.pvfs.org/pvfs2/
7. ROMIO URL: http://www-unix.mcs.anl.gov/romio/
8. Ligon, W.B., Ross, R.B.: Implementation and Performance of a Parallel File System

for High Performance Distributed Applications. Proceedings of the Fifth IEEE
International Symposium on High Performance Distributed Computing. (1996)
471–480

9. Ross, Robert B., Carns, Philip H., Ligon III, Walter B., Latham, Robert: Using the
Parallel Virtual File System. http://www.parl.clemson.edu/pvfs/user-guide.html
(2002)

10. Madhyastha, Tara M.: Automatic Classification of Input/Output Access Patterns.
PhD Thesis. (1997)

11. Madhyastha, Tara M., Reed, Daniel A.: Exploiting Global Input/Output Access
Pattern Classification. Proceedings of SC97: High Performance Networking and
Computing. (1997)

12. Thakur, Rajeev, Gropp, William, Lusk, Ewing: On implementing MPI-IO portably
and with high performance. Proceedings of the 6th Workshop on I/O in Parallel
and Distributed Systems (IOPADS-99). (1999) 23–32

13. Thakur, Rajeev S., Gropp, William, Lusk, Ewing: A Case for ung MPI’s derived
datatypes to improve I/O Performance. Proceedings of Supercomputing’98 (CD-
ROM)”. (1998)

14. Rabenseifner, Rolf, Koniges, Alice E., Prost, Jean-Pierre, Hedges, Richard: The
Parallel Effective I/O Bandwidth Benchmark: b eff io. Parallel I/O for Cluster
Computing. (2004) 107–132

15. Miller, Ethan L., Katz, Randy H.: Input/output behavior of supercomputing ap-
plications . SC. (1991) 567–576

16. MPI-2 URL: http://www.mpi-forum.org
17. Gropp, William, Lusk, Ewing, Thakur Rajeev: Using MPI-2: Advanced Features

of the Message-Passing Interface. (1999) 15–16
18. Patterson, David, Gibson, Garth, Katz Randy: A case for redundant arrays of inex-

pensive disks (RAID). Proceedings of the ACM SIGMOD International Conference
on Management of Data. (1988) 109–116

19. PVFS Development Team: PVFS 2 Concepts: the new guy’s guide to PVFS. PVFS
2 Documentation (2004)

20. PVFS Development Team: PVFS 2 Distribution Design Notes. PVFS 2 Documen-
tation. (2004)

Implementing Byte-Range Locks Using MPI
One-Sided Communication

Rajeev Thakur, Robert Ross, and Robert Latham

Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL 60439, USA

{thakur, rross, robl}@mcs.anl.gov

Abstract. We present an algorithm for implementing byte-range locks
using MPI passive-target one-sided communication. This algorithm is
useful in any scenario in which multiple processes of a parallel program
need to acquire exclusive access to a range of bytes. One application
of this algorithm is for implementing MPI-IO’s atomic-access mode in
the absence of atomicity guarantees from the underlying file system.
Another application is for implementing data sieving, a technique for
optimizing noncontiguous writes by doing an atomic read-modify-write
of a large, contiguous block of data. This byte-range locking algorithm
can be used instead of POSIX fcntl file locks on file systems that do not
support fcntl locks, on file systems where fcntl locks are unreliable,
and on file systems where fcntl locks perform poorly. Our performance
results demonstrate that the algorithm has low overhead and significantly
outperforms fcntl locks on NFS file systems on a Linux cluster and on
a Sun SMP.

1 Introduction

Often, processes must acquire exclusive access to a range of bytes. One appli-
cation of byte-range locks is to implement the atomic mode of access defined
in MPI-IO, the I/O interface that is part of MPI-2 [7]. MPI-IO, by default,
supports weak consistency semantics in which the outcome of concurrent over-
lapping writes from multiple processes to a common file is undefined. The user,
however, can optionally select stronger consistency semantics on a per file basis
by calling the function MPI File set atomicity with flag=true. In this mode,
called the atomic mode, if two processes associated with the same open file write
concurrently to overlapping regions of the file, the result is the data written by
either one process or the other, and nothing in between.

In order to implement the atomic mode, either the underlying file system
must provide functions that guarantee atomicity, or the MPI-IO implementation
must ensure that a process has exclusive access to the portion of the file it
needs to access [13]. Many POSIX-compatible file systems support atomicity for
contiguous reads and writes, such as those issued by a single read or write
function call, but some high-performance parallel file systems, such as PVFS [1]
and PVFS2 [9], do not. MPI-IO’s atomic mode supports atomicity even for
noncontiguous file accesses that are made with a single MPI function call by using

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 119–128, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

120 R. Thakur, R. Ross, and R. Latham

noncontiguous file views. No file system supports atomicity for noncontiguous
reads and writes. For such accesses, the MPI-IO implementation must explicitly
acquire exclusive access to the byte range being read or written by a process.

Another use of byte-range locks is to implement data sieving [14]. Data siev-
ing is a technique for optimizing noncontiguous accesses. For reading, it involves
reading a large chunk of data and extracting the necessary pieces from it. For
writing, the process must read the large chunk of data from the file into a tem-
porary buffer, copy the necessary pieces into the buffer, and then write it back.
This read-modify-write must be done atomically to prevent other processes from
writing to the same region of the file while the buffer is being modified in mem-
ory. Therefore, the process must acquire exclusive access to the range of bytes
before doing the read-modify-write.

POSIX defines a function fcntl by which processes can acquire byte-range
locks on an open file [5]. However, many file systems, such as PVFS [1],
PVFS2 [9], some installations of NFS, and various research file systems [2,4,8],
do not support fcntl locks. On some file systems, for example, some installa-
tions of NFS, fcntl locks are not reliable. In addition, on some file systems, the
performance of fcntl locks is poor. Therefore, one cannot rely solely on fcntl
for file locking.

In this paper, we present an algorithm for implementing byte-range locks that
can be used instead of fcntl. This algorithm extends an algorithm we described
in an earlier work [12] for acquiring exclusive access to an entire file (not a
range of bytes). Both algorithms have some similarities with the MCS lock [6],
an algorithm devised for efficient mutex locks in shared-memory systems, but
differ from it in that they use MPI one-sided communication (which does not
have atomic read-modify-write operations) and can be used on both distributed-
and shared-memory systems. Byte-range locks add significant complications to
the algorithm for exclusive access to an entire file [12], which is essentially just
a mutex. Byte-range locks are an important improvement because they enable
multiple processes to perform I/O concurrently to nonoverlapping regions of the
file, a feature whole-file locks preclude.

The rest of this paper is organized as follows. In Section 2, we give a brief
overview of MPI one-sided communication, particularly those aspects used in
our algorithm. In Section 3, we describe the byte-range locking algorithm. In
Section 4, we present performance results. In Section 5, we conclude with a brief
discussion of future work.

2 One-Sided Communication in MPI

To enable one-sided communication in MPI, a process must first specify a con-
tiguous memory region, called a window, that it wishes to expose to other
processes for direct one-sided access. Each process in the communicator must
call the function MPI Win create with the starting address of the local mem-
ory window, which could be NULL if the process has no memory to expose to
one-sided communication. MPI Win create returns an opaque object, called a
window object, which is used in subsequent one-sided communication functions.

Implementing Byte-Range Locks Using MPI One-Sided Communication 121

Process 0 Process 1 Process 2
MPI_Win_create(&win)
MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

MPI_Win_create(&win)

MPI_Win_free(&win)

MPI_Win_create(&win)
MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

Fig. 1. An example of MPI one-sided communication with passive-target synchroniza-
tion. Processes 0 and 2 perform one-sided communication on the window memory of
process 1 by requesting shared access to the window. The numerical arguments indicate
the target rank.

Three one-sided data-transfer functions are provided: MPI Put (remote
write), MPI Get (remote read), and MPI Accumulate (remote update). In ad-
dition, some mechanism is needed for a process to indicate when its window
is ready to be accessed by other processes and to specify when one-sided com-
munication has completed. For this purpose, MPI defines three synchronization
mechanisms. The first two synchronization mechanisms require both the origin
and target processes to call synchronization functions and are therefore called
active-target synchronization. The third mechanism requires no participation
from the target and is therefore called passive-target synchronization. We use
this method in our byte-range locking algorithm because a process must be able
to acquire a lock independent of any other process.

2.1 Passive-Target Synchronization

In passive-target synchronization, the origin process begins a synchronization
epoch by calling MPI Win lock with the rank of the target process and indi-
cating whether it wants shared or exclusive access to the window on the tar-
get. After issuing the one-sided operations, it calls MPI Win unlock, which ends
the synchronization epoch. The target does not make any synchronization call.
When MPI Win unlock returns, the one-sided operations are guaranteed to be
completed at the origin and the target. Figure 1 shows an example of one-sided
communication with passive-target synchronization.

An implementation is allowed to restrict the use of this synchronization
method to window memory allocated with MPI Alloc mem. MPI Win lock is not
required to block until the lock is acquired, except when the origin and target
are one and the same process. In other words, MPI Win lock does not establish
a critical section of code; it ensures only that the one-sided operations issued
between the lock and unlock will be executed on the target window in a shared
or exclusive manner (as requested) with respect to the one-sided operations from
other processes.

2.2 Completion and Ordering

MPI puts, gets, and accumulates are nonblocking operations, and an imple-
mentation is allowed to reorder them within a synchronization epoch. They are

122 R. Thakur, R. Ross, and R. Latham

guaranteed to be completed, both locally and remotely, only when the synchro-
nization epoch has ended. In other words, a get operation is not guaranteed to see
the data that was written by a put issued before it in the same synchronization
epoch. Consequently, it is difficult to implement an atomic read-modify-write
operation by using MPI one-sided communication [3]. One cannot simply do a
lock-get-modify-put-unlock because the data from the get is not available until
after the unlock. In fact, the MPI Standard defines such an operation to be er-
roneous (doing a put and a get to the same location in the window in the same
synchronization epoch). One also cannot do a lock-get-unlock, modify the data,
and then do a lock-put-unlock because the read-modify-write is no longer atomic.
This feature of MPI complicates the design of a byte-range locking algorithm.

3 Byte-Range Locking Algorithm

In this section, we describe the design of the byte-range locking algorithm to-
gether with snippets of the code for acquiring and releasing a lock.

3.1 Window Layout

The window memory for the byte-range locking algorithm is allocated on any one
process—in our prototype implementation, on rank 0. Other processes pass NULL
to MPI Win create. All processes needing to acquire locks access this window
by using passive-target one-sided communication. The window comprises three
values for each process, ordered by process rank, as shown in Figure 2. The three
values are a flag, the start offset for the byte-range lock, and the end offset. In
our implementation, for simplicity, all three values are represented as integers.
The window size, therefore, is 3 * sizeof(int) * nprocs. In practice, the flag
could be a single byte, and the start and end offsets may each need to be eight
bytes to support large file sizes.

for rank 0 for rank 1 for rank 2

F S E F F F F FS S S S SE E E E E

F = flag S = start offset E = end offset

Fig. 2. Window layout for the byte-range locking algorithm

3.2 Acquiring the Lock

The algorithm for acquiring a lock is as follows. The pseudocode is shown in
Figure 3. The process wanting to acquire a lock calls MPI Win lock with the
lock type as MPI LOCK EXCLUSIVE, followed by an MPI Put, an MPI Get, and
then MPI Win unlock. With the MPI Put, the process sets its own three values
in the window: It sets the flag to 1 and the start and end offsets to those needed

Implementing Byte-Range Locks Using MPI One-Sided Communication 123

Lock_acquire(int start , int end)
{

val[0] = 1; /* flag */ val[1] = start; val[2] = end;

while (1) {
/* add self to locklist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank , 0, lockwin);
MPI_Put (&val , 3, MPI_INT , homerank , 3*(myrank), 3, MPI_INT , lockwin);
MPI_Get (locklistcopy , 3*(nprocs -1), MPI_INT , homerank , 0, 1, locktype1 ,

lockwin);
MPI_Win_unlock(homerank , lockwin);

/* check to see if lock is already held */
conflict = 0;
for (i=0; i < (nprocs - 1); i++) {

if ((flag == 1) && (byte ranges conflict with lock request)) {
conflict = 1; break;

}
}

if (conflict == 1) {
/* reset flag to 0, wait for notification, and then retry the lock */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank , 0, lockwin);
val[0] = 0;
MPI_Put (val , 1, MPI_INT , homerank , 3*(myrank), 1, MPI_INT , lockwin);
MPI_Win_unlock(homerank , lockwin);

/* wait for notification from some other process */
MPI_Recv (NULL , 0, MPI_BYTE , MPI_ANY_SOURCE , WAKEUP , comm ,

MPI_STATUS_IGNORE);
/* retry the lock */

}
else {

/* lock is acquired */
break;

}
}

}

Fig. 3. Pseudocode for obtaining a byte-range lock. The derived datatype locktype1

is created at lock-creation time and cached in the implementation.

for the lock. With the MPI Get, it gets the three values for all other processes
(excluding its own values) by using a suitably constructed derived datatype,
for example, an indexed type with two blocks. After MPI Win unlock returns,
the process goes through the list of values returned by MPI Get. For all other
processes, it first checks whether the flag is 1 and, if so, checks whether there is a
conflict between that process’s byte-range lock and the lock it wants to acquire.
If there is no such conflict with any other process, it considers the lock acquired.
If a conflict (flag and byte range) exists with any process, it considers the lock
as not acquired.

If the lock is not acquired, the process resets its flag in the window to 0
by doing an MPI Win lock–MPI Put–MPI Win unlock and leaves its start and
end offsets in the window unchanged. It then calls a zero-byte MPI Recv with
MPI ANY SOURCE as the source and blocks until it receives such a message from
any other process (that currently has a lock; see the lock-release algorithm be-
low). After receiving the message, it tries again to acquire the lock by using the
above algorithm (further explained below).

124 R. Thakur, R. Ross, and R. Latham

Lock_release(int start , int end)
{

val[0] = 0; val[1] = -1; val[2] = -1;

/* set start and end offsets to -1, flag to 0, and get everyone else ’s status*/
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank , 0, lockwin);
MPI_Put (val , 3, MPI_INT , homerank , 3*(myrank), 3, MPI_INT , lockwin);
MPI_Get (locklistcopy , 3*(nprocs -1), MPI_INT , homerank , 0, 1, locktype2 ,

lockwin);
MPI_Win_unlock(homerank , lockwin);

/* check if anyone is waiting for a conflicting lock. If so , send them a
0-byte message , in response to which they will retry the lock. For
fairness , we start with the rank after ours and look in order. */

i = myrank ; /* ranks are off by 1 because of the derived datatype */
while (i < (nprocs - 1)) {

/* the flag doesn ’t matter here. check only the byte ranges */
if (byte ranges conflict) MPI_Send (NULL , 0, MPI_BYTE , i+1, WAKEUP, comm);
i++;

}
i = 0;
while (i < myrank) {

if (byte ranges conflict) MPI_Send (NULL , 0, MPI_BYTE , i, WAKEUP, comm);
i++;

}
}

Fig. 4. Pseudocode for releasing a byte-range lock. The derived datatype locktype2

is created at lock-creation time and cached in the implementation.

3.3 Releasing the Lock

The algorithm for releasing a lock is as follows. The pseudocode is shown in
Figure 4. The process wanting to release a lock calls MPI Win lock with the
lock type as MPI LOCK EXCLUSIVE, followed by an MPI Put, an MPI Get, and
then MPI Win unlock. With the MPI Put, the process resets its own three values
in the window: It resets its flag to 0 and the start and end offsets to −1. With
the MPI Get, it gets the start and end offsets for all other processes (excluding its
own values) by using a derived datatype. This derived datatype could be different
from the one used for acquiring the lock because the flags are not needed. After
MPI Win unlock returns, the process goes through the list of values returned by
MPI Get. For all other processes, it checks whether there is a conflict between the
byte range set for that process and the lock it is releasing. The flag is ignored in
this comparison. For fairness, it starts with the next higher rank after its own,
wrapping back to rank 0 as necessary. If there is a conflict with the byte range
set by another process—meaning that process is waiting to acquire a conflicting
lock—it sends a 0-byte message to that process, in response to which that process
will retry the lock. After it has gone through the entire list of values and sent
0-byte messages to all other processes waiting for a lock that conflicts with its
own, the process returns.

3.4 Discussion

In order to acquire a lock, a process opportunistically sets its flag to 1, before
knowing whether it has got the lock. If it determines that it does not have the

Implementing Byte-Range Locks Using MPI One-Sided Communication 125

lock, it resets its flag to 0 with a separate synchronization epoch. Had we chosen
the opposite approach, that is, set the flag to 0 initially and then set it to 1
after determining that the lock has been acquired, there could have been a race
condition because another process could attempt the same operation between
the two distinct synchronization epochs. The lack of an atomic read-modify-write
operation in MPI necessitates the approach we use.

When a process releases a byte-range lock, multiple processes waiting on a
conflicting lock may now be able to acquire their lock, depending on the byte
range being released and the byte ranges those processes are waiting for. In the
lock-release algorithm, we use the conservative method of making the processes
waiting on a conflicting lock retry their lock instead of having the releasing
process hand the lock to the appropriate processes directly. The latter approach
can get fairly complicated for byte-range locks, and in Section 5 we describe
some optimizations that we plan to explore.

If processes are multithreaded, the current design of the algorithm requires
that either the user must ensure that only one thread calls the lock acquisition
and release functions (similar to MPI THREAD SERIALIZED), or the lock acquisi-
tion and release functions themselves must acquire and release a thread mutex
lock. We plan to extend the algorithm to allow multiple threads of a process to
acquire and release nonconflicting locks concurrently.

The performance of this algorithm depends on the quality of the implemen-
tation of passive-target one-sided communication in the MPI implementation.
In particular, it depends on the ability of the implementation to make progress
on passive-target one-sided communication without requiring the target process
to call MPI functions for progress. On distributed-memory environments, it is
also useful if the implementation can cache derived datatypes at the target, so
that the derived datatypes need not be communicated to the target each time.

4 Performance Evaluation

To measure the performance of our algorithm, we wrote two test programs:
one in which all processes try to acquire a conflicting lock (same byte range)
and another in which all processes try to acquire nonconflicting locks (different
byte ranges). In both tests, each process acquires and releases the lock in a loop
several times. We measured the time taken by all processes to complete acquiring
and releasing all their locks and divided this time by the number of processes
times the number of iterations. This measurement gave the average time taken
by a single process for acquiring and releasing a single lock. We compared the
performance of our algorithm with that using fcntl locks. We ran the tests on
a Myrinet-connected Linux cluster at Argonne and on a 24-CPU Sun SMP at
the University of Aachen in Germany.

On the Linux cluster, we used a beta version of MPICH2 1.0.2 with the
GASNET channel running over GM. To measure the performance of fcntl locks,
we used an NFS file system that mounted a GFS [10] backend. This is the only
way to use fcntl locks on this cluster; the parallel file system on the cluster,
PVFS, does not support fcntl locks. On the Sun SMP, we could not use Sun

126 R. Thakur, R. Ross, and R. Latham

MPI because of a bug in the implementation that caused one of our tests to
hang when run with more than four processes. We instead used a beta version
of MPICH2 1.0.2 with the sshm (scalable shared-memory) channel. For fcntl
locks, we used an NFS file system. When we ran our test for conflicting locks
with more than 16 processes, fcntl returned an error with errno set to “no
record locks available.” This is an example of the unreliability of fcntl locks
with NFS, mentioned in Section 1.

On the Linux cluster, this version of MPICH2 has two limitations that can
affect performance of the byte-range locking algorithm. One limitation is that
MPICH2 requires the target process to call MPI functions in order to make
progress on passive-target one-sided communication. This restriction did not
affect our test programs because the target (rank 0) also tried to acquire byte-
range locks and therefore made MPI function calls. Furthermore, all processes
did an MPI Barrier at the end, which also guaranteed progress at the target. The
other limitation is that MPICH2 does not cache derived datatypes at the target
process, so they need to be communicated each time. Both these limitations will
be fixed in a future release of MPICH2. These limitations do not exist on the
Sun SMP because when the window is allocated with MPI Alloc mem, the sshm
channel in MPICH2 allocates the window in shared memory and implements
puts and gets by directly copying data to/from the shared-memory window.

Figure 5 shows the average time taken by a single process to acquire and
release a single lock on the Linux cluster and the Sun SMP. On the Linux clus-
ter, for nonconflicting locks, our algorithm is on average about twice as fast as
fcntl, and the time taken does not increase with the number of processes. For
conflicting locks, the time taken by our algorithm increases with the number of
processes because of the overhead induced by lock contention. In Section 5, we
describe some optimizations we plan to incorporate that will reduce communi-
cation traffic in the case of conflicting locks and therefore improve performance
and scalability. The graph for conflicting locks with fcntl on NFS on the Linux

 1000

 500

 100

 50

 10
 24 20 16 12 8 4

T
im

e
(m

ic
ro

se
c)

Processes

Myrinet Linux Cluster

our algorithm, nonconflicting locks
our algorithm, conflicting locks

fcntl on NFS, nonconflicting locks

 2000

 1000

 500

 100

 50

 10
 24 20 16 12 8 4

T
im

e
(m

ic
ro

se
c)

Processes

Sun SMP

our algorithm, nonconflicting locks
our algorithm, conflicting locks

fcntl on NFS, nonconflicting locks
fcntl on NFS, conflicting locks

Fig. 5. Average time for acquiring and releasing a single lock on a Myrinet-connected
Linux cluster (left) and a Sun SMP (right). The graph for conflicting locks with fcntl

on the Linux cluster is not shown because the time was three orders of magnitude
higher than the other results. On the Sun SMP, when run on more than 16 processes,
fcntl on NFS for conflicting locks failed.

Implementing Byte-Range Locks Using MPI One-Sided Communication 127

cluster is not shown because the time taken was on the order of seconds—about
three orders of magnitude higher than any of the other results!

On the Sun SMP, for nonconflicting locks, our algorithm is about 10 times
faster than fcntl, and the time taken does not increase with the number of
processes. For conflicting locks, our algorithm is 5–9 times faster than fcntl. As
mentioned above, fcntl on NFS for conflicting locks failed when run on more
than 16 processes on the Sun SMP.

5 Conclusions and Future Work

We have presented an efficient algorithm for implementing byte-range locks using
MPI one-sided communication. We have shown that our algorithm has low over-
head and outperforms NFS fcntl file locks on the two environments we tested.
We plan to use this algorithm for byte-range locking in our implementation of
MPI-IO, called ROMIO [11].

This algorithm requires that the MPI implementation handle passive-target
one-sided communication efficiently, which is not the case in many MPI im-
plementations today. For example, with IBM MPI on the IBM SP at the San
Diego Supercomputer Center, we observed wide fluctuations in the performance
of our algorithm. We hope that such algorithms that demonstrate the useful-
ness of passive-target one-sided communication will spur MPI implementers to
optimize their implementations.

While we have focused on making the algorithm correct and efficient, it can
be improved in several ways. For example, in our current implementation of the
lock-release algorithm, we make the processes waiting for conflicting locks retry
their lock, instead of having the releasing process grant the locks directly. We
chose this approach because, in general, the analysis required to determine which
processes can be granted their locks is tricky. For special cases, however, such as
processes waiting for a byte range that is a subset of the byte range being held
by the releasing process, it is possible for the releasing process to grant the lock
directly to the other process. With such an approach, the releasing process could
grant the lock to processes for which it can easily determine that the lock can
be granted, deny it to processes for which it can determine that the lock cannot
be granted, and have others retry their lock. Preventing too many processes
from retrying conflicting locks will improve the performance and scalability of
the algorithm significantly. Another optimization for scalability is to replace the
linear list of values with a tree-based structure, so that a process does not have
to fetch and check the values of all other processes. We plan to explore such
optimizations to the algorithm.

Acknowledgments

This work was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Com-
puting Research, Office of Science, U.S. Department of Energy, under Contract

128 R. Thakur, R. Ross, and R. Latham

W-31-109-ENG-38. We thank Chris Bischof for giving us access to the Sun SMP
machines at the University of Aachen.

References

1. Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS:
A parallel file system for Linux clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, Atlanta, pages 317–327, October 2000.

2. Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. ACM
Transactions on Computer Systems, 14(3):225–264, August 1996.

3. William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features
of the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

4. Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and David S.
Blumenthal. PPFS: A high performance portable parallel file system. In Proceed-
ings of the 9th ACM International Conference on Supercomputing, pages 385–394.
ACM Press, July 1995.

5. IEEE/ANSI Std. 1003.1. Portable Operating System Interface (POSIX)–Part 1:
System Application Program Interface (API) [C Language], 1996 edition.

6. J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 1991.

7. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997. http://www.mpi-forum.org/docs/docs.html.

8. Nils Nieuwejaar and David Kotz. The Galley parallel file system. Parallel Com-
puting, 23(4):447–476, June 1997.

9. PVFS2: Parallel virtual file system. http://www.pvfs.org/pvfs2/.
10. Red Hat Global File System. http://www.redhat.com/software/rha/gfs.
11. ROMIO: A high-performance, portable MPI-IO implementation. http://www.mcs.

anl.gov/romio.
12. Robert Ross, Robert Latham, William Gropp, Rajeev Thakur, and Brian Toonen.

Implementing MPI-IO atomic mode without file system support. In Proceedings of
CCGrid 2005, May 2005.

13. Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO
portably and with high performance. In Proceedings of the 6th Workshop on I/O
in Parallel and Distributed Systems, pages 23–32. ACM Press, May 1999.

14. Rajeev Thakur, William Gropp, and Ewing Lusk. Optimizing noncontiguous ac-
cesses in MPI-IO. Parallel Computing, 28(1):83–105, January 2002.

An Improved Algorithm for (Non-commutative)
Reduce-Scatter with an Application

Jesper Larsson Träff

C&C Research Laboratories, NEC Europe Ltd,
Rathausallee 10, D-53757 Sankt Augustin, Germany

traff@ccrl-nece.de

Abstract. The collective reduce-scatter operation in MPI performs an
element-wise reduction using a given associative (and possibly commuta-
tive) binary operation of a sequence of m-element vectors, and distributes
the result in mi sized blocks over the participating processors. For the
case where the number of processors is a power of two, the binary opera-
tion is commutative, and all resulting blocks have the same size, efficient,
butterfly-like algorithms are well-known and implemented in good MPI
libraries.

The contributions of this paper are threefold. First, we give a sim-
ple trick for extending the butterfly algorithm also to the case of non-
commutative operations (which is advantageous also for the commutative
case). Second, combining this with previous work, we give improved al-
gorithms for the case where the number of processors is not a power of
two. Third, we extend the algorithms also to the irregular case where
the size of the resulting blocks may differ extremely.

For p processors the algorithm requires log2 p�+(log2 p�−�log2 p�)
communication rounds for the regular case, which may double for the
irregular case (depending on the amount of irregularity). For vectors
of size m with m = p−1

i=0 mi the total running time is O(log p + m),
irrespective of whether the mi blocks are equal or not. The algorithm
has been implemented, and on a small Myrinet cluster gives substantial
improvements (up to a factor of 3 in the experiments reported) over other
often used implementations. The reduce-scatter operation is a building
block in the fence one-sided communication synchronization primitive,
and for this application we also document worthwhile improvements over
a previous implementation.

1 Introduction

MPI Reduce scatter is the slightly exotic collective reduction operation of the
MPI standard [8]. Each involved MPI process contributes an m-element vector
which is element-wise reduced using a given, associative (and possibly commu-
tative) binary reduction operation with the result scattered in blocks of given
(possibly different) sizes of mi elements across the processes. The involved p
processes are numbered from 0 to p−1, and process i receives the ith mi-element
block of the m-element result vector with m =

∑p−1
i=0 mi. The associative, binary

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 129–137, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

130 J.L. Träff

reduction operation can be either an MPI predefined operation (like MPI SUM),
in which case it is (mathematically) commutative, or a user-defined operation,
in which case the user must inform the MPI library whether it is commutative
or only associative. In an MPI Reduce scatter call each process must specify
the same reduction operation.

In order to ensure consistent results with finite-precision arithmetic MPI
poses certain requirements to the collective reduction operations which in turn
have consequences for the algorithms that can be used. A canonical reduction
order is defined for associative operations, and preferred even for commutative
operations [8, p. 228]. A natural (but not explicitly stated) requirement is that
all elements of the result vector are computed in the same way, that is with the
same order and bracketing. The algorithm presented in this paper meets both
these requirements (as do the reduction algorithms in [7]), and in fact does not
distinguish between commutative and non-commutative operations. Since it is
at least as good as all previously published results (in the same cost model),
we claim that commutativity gives no advantage to the implementer of the MPI
reduction operations. The reduce-scatter algorithm has the following properties:

– It has the same complexity for commutative and non-commutative (associa-
tive) binary reduction operations, and reduction is performed in canonical
order with the same bracketing for each result vector element.

– It provides an efficient solution also for the case where the number of
processes is not a power of two.

– As the first, it solves the reduce-scatter problem efficiently also for the ir-
regular case where the size of the result blocks differs.

The algorithm requires �log2 p�+(�log2 p�−�log2 p�) communication rounds for
the regular case, where the (�log2 p�−�log2 p�) term accounts for an extra round
needed to send the result to processes in excess of 2�log2 p� (for the non-power
of two case). Each process sends and receives less than m vector elements, and
the total computation effort is O(m). For the irregular case where the mis are
different, the number of communication rounds may double, depending on the
amount of irregularity, and another m elements may have to be sent and received.
Overall, the time taken by the reduce-scatter algorithm is O(log p+m), assuming
a linear communication cost model in which sending and receiving m elements
takes time α + βm, as well as linear time for performing a binary reduction of
two m-element vectors.

Recent work [9] on implementing MPI Reduce scatter for mpich2 in the
same cost model uses a “recursive halving” algorithm which works only for com-
mutative operations. The irregular case is not addressed – in that case the run-
ning time becomes O(m log p) – and a less efficient solution for the non-power of
two case is used. An algorithm that is optimal in the more refined LogGP cost
model for the regular case with commutative reduction operations is developed,
analyzed and implemented in [1,5]. For non-commutative operations a (theoret-
ically) significantly less efficient algorithm is provided, and the irregular case is
not addressed at all. It is by the way curious that the MPI standard defines only

An Improved Algorithm for Reduce-Scatter with an Application 131

an irregular version of the reduce-scatter collective, and not a regular and an
irregular version as for most other collectives [8, Chapter 4].

The reduce-scatter operation is convenient for computing vector-matrix prod-
ucts for distributed matrices and vectors. The reduce-scatter operation is also
used for MPI internal purposes, for instance for fence synchronization in the
MPI-2 one-sided communication model [3, Chapter 4], see [10,12] and Section 4.
Another recent application is generation of file recovery data as described in [4].
In both of these applications a regular reduce-scatter computation is called for.

2 The Algorithm

We first describe a standard butterfly algorithm for the reduce-scatter collective
for the case where p is a power of two, assuming furthermore that each result
block mi has the same size. We denote m-element vectors divided into p blocks
of mi elements by B = (B0, B1, . . . , Bp−1). Each process maintains a reduction
buffer B which during any stage of the algorithm will contain a partial result
for some of the p blocks. Initially, each process copies its input vector into its
reduction buffer. The algorithm runs in log2 p rounds. In round k, k = 0, . . . , p−1
each process i exchanges data with process j = i ⊕ 2k, where ⊕ denotes the
exclusive-or operation. If bit k of i is 0 (and bit k of j is therefore 1), process i
sends the upper half of its reduction buffer to process j, and receives the lower
half of process js reduction buffer. After the exchange each process invokes the
binary reduction operation on the upper/lower half of its reduction buffer; to
ensure canonical order, reduction is performed as f(B, R) if i < j, and as f(R, B)
if i > j, where R are the elements received. Thus, if process i had a partial result
of p/2k blocks before round k, it has a partial result of p/2k+1 blocks after round
k, and thus exactly one block of mi elements after the log2 p rounds, which is
the result for process i.

Let the blocks of process i before round k be (Ba, Ba+1, . . . , Ba+p/2k−1).
After round k, process i has the lower blocks (Ba, Ba+1, . . . , Ba+p/2k+1−1) of the
partial result if bit k of i is 0, and the upper blocks (Ba+p/2k+1 , . . . , Ba+p/2k−1)
if bit k of i is 1. As can be seen, process i receives upper/lower blocks in the
reverse order of the bits of i. Thus, after the log2 p rounds the block of process
i is Bσlog2 p(i) where σn(i) denotes the reverse (or mirror) permutation of an
n-bit number i: bit 0 (least significant bit) of i becomes bit n − 1, bit 1 of i
becomes bit n − 2 and so on. Note that the mirror permutation is idempotent,
eg. σn(σn(i)) = i. It is also used in eg. FFT [6].

An example showing the result after 3 rounds for p = 8 is given in Figure 1.
Each process ends up with one block of m/2log2 p = mi elements of the result,
each computed in canonical order and with the same bracketing, but for some
of the processes the resulting block is not the block intended for that process:
instead of block Bi for process i, process i has block Bσ3(i).

To remedy this situation and get the correct result the blocks that are at
their incorrect positions have to be permuted. In Figure 1, processes 1 and 4,
and processes 3 and 6 must exchange their blocks. The permutation to be used
is σ3. This costs (for some of the processes) an extra communication round.

132 J.L. Träff

P7

round 1

round 0

round 2

P6P5P4P3P2P1P0

B7

B6

B5

B4

B3

B2

B1

B0 B0

B4

B2

B6

B1

B5

B3

B7

Input vector

Fig. 1. Result of the butterfly reduce-scatter algorithm for p = 8 without permutation.
Double arrows show the exchanges performed by process 2. The result blocks B4 and
B1, and B6 and B3 are at incorrect processes.

P7P6P5P4P3P2P1P0

B0

B2

B5

B7

B4

B1

B3

B6

B7

B5

B2

B0

B6

B1

B3

B4

Permuted Input vector

σ3(3) = 6

σ3(1) = 4

σ3(6) = 3

σ3(4) = 1

Fig. 2. Result of the butterfly reduce-scatter algorithm for p = 8 with mirror permu-
tation before reduction. All result blocks end at their correct processes.

It is now easy to see that the following trick resolves the situation without
extra communication. Instead of doing the mirror permutation after the reduc-
tion, the blocks can be permuted into their right order before the reduction
starts: each processor puts block k in position σlog2 p(k). So instead of running
the butterfly algorithm on input buffers B = (B0, B1, . . . , Bp−1), the algorithm
is run on the permuted buffer B′ = (Bσ(0), Bσ(1), Bσ(2), . . . , Bσ(p−1)). This is
illustrated for p = 8 in Figure 2.

To avoid having to compute σlog2 p repeatedly, a permutation table can be
precomputed whenever a new MPI communicator is created. For the regular
reduce-scatter problem where the mis are (roughly) equal, the running time is
O(log p + m).

2.1 The Non-power of Two Case

The butterfly exchange scheme above assumes that p is a power of two. A simple
way of handling the non-powers of two case is to first eliminate processes in excess

An Improved Algorithm for Reduce-Scatter with an Application 133

of 2�log2 p� by letting such processes send their input to neighboring processes.
The 2�log2 p� remaining processes then perform the butterfly algorithm, and at
the end some send a result back to the eliminated processes. This simple solution
has the drawback that the eliminated processes stay idle for most of the reduce-
scatter computation, and that some processes reduce an extra full m element
vector. Furthermore, the size of the blocks Bi of processes that are neighbors
to eliminated processes double. Thus, from a regular reduce-scatter problem, an
irregular problem arises when p is not a power of two!

By using the reduction order and handling of excess processes as described
in [7], the amount of extra reduction work can be reduced by at least a factor
of 2, and the excess processes can be kept busy with useful work much longer.
Finally, the increase in block size can be reduced from a factor of two to a factor
of 3/2. Due to space limitations, the exact details are not given here.

The number of rounds for the improved algorithm is �log2 p� + (�log2 p� −
�log2 p�), and the total number of elements to be reduced by any process is
< 3/2m (down from 2m for the naive solution) when p is not a power of two,
and m for the power-of-two case.

2.2 The Irregular Case

The mirror permutation idea can also be used for the irregular reduce-scatter
problem where the block sizes mi differ to ensure that each process ends up with
its correct result block without extra communication rounds. However, since
the blocks Bi are treated as atomic entities that are not divided, the running
time can be severely affected. In the extreme case where one only process gets
a result block (mi = 0 for all except one process) the running time of the
algorithm is O(m log p), which is not acceptable for large p. We are striving for
an improvement from O(max(log2 p + m, maxi(mi log2 p))) to O(log2 p + m).

To achieve this, a new, regular problem B′ is created with m′
i roughly equal

to m/p. To get as many elements to end up at their correct processes (without
extra communication) the elements of the blocks of the original problem B =
(B0, B1, . . . , Bp−1) are assigned to the blocks of the regular problem as far as
possible: for blocks with mi > m′

i the excess elements will be assigned later to
other blocks B′

j for which mj < m′
j , and for these excess elements some rerouting

at the end of the butterfly algorithm will be necessary.
After filling the blocks B′

i of the regular problem, these blocks are permuted
according to the mirror permutation σ as described in Section 2. The excess ele-
ments are assigned to the permuted input vector B′ = (B′

σ(0), B
′
σ(1), . . . , Bσ(p−1))

with the kth excess element put into the kth free slot. This is illustrated in
Figure 3. The butterfly algorithm is then executed to bring all result elements
in blocks with mi ≤ m/p to their correct processes. To reroute the excess ele-
ments, the butterfly communication pattern is used in reverse. In step k with
k = �log2 p�−1, . . . , 0, a process j which has excess elements decides how to route
as follows: if excess element x belongs to block Bi, and the kth bit of i equals
the kth bit of j ⊕ 2k, then x is sent to the process j ⊕ 2k with which j commu-
nicates in step k (the reverse butterfly pattern). The rerouting for the irregular

134 J.L. Träff

B0 B1 B2 B3 B4 B6 B7

B′

0

x0
2x0

1x0
0 x5

5x5
4 x7

6x7
7

x0
0 x0

1 x0
2 x3

3 x5
4 x5

5 x7
6 x7

7

B′

4 B′

2 B′

6 B′

1 B′

5 B′

3 B′

7

x3
3

B5

Fig. 3. Permuted blocks and excess elements of the new regular problem B′ =
(B′

0, B
′
4, B

′
2, B

′
6, B

′
1, B

′
5, B

′
3, B

′
7) (bottom) created to solve the original, irregular prob-

lem B = (B0, B1, B2, B3, B4, B5, B6, B7) (top) with minimal rerouting. Excess element
k belonging to block Bi is denoted by xi

k.

P0 P1 P2 P3 P4 P5 P6 P7

After butterfly x7
6, x

7
7 x0

1, x
0
2, x

3
3 x0

0 x5
4, x

5
5

After step 2 x0
0 x7

6, x
7
7

After step 1 x0
1,x0

2 x5
4, x

5
5 x7

6,x7
7

After step 0 x3
3 x5

4,x5
5

Fig. 4. Rerouting of excess elements of the irregular reduce-scatter problem of Figure 3.
When excess elements have reached their final destination they are shown in bold.

problem of Figure 3 is shown in Figure 4. It is clear that at most �log2� extra
communication rounds are needed, and that in total O(m) data are exchanged.
It can furthermore be proved that in each communication step a process either
sends or receives excess elements (or does nothing), that the excess elements end
up at their correct processes at the end of the rerouting phase, and that excess
elements are received in consecutive segments, so that no further reorganization
is needed at any step of the rerouting.

3 Performance

The new reduce-scatter algorithm, including the handling of non-power of two
number of processors and the possibly extra routing for the irregular case has
been implemented in a state-of-the-art MPI implementation [2]. Since rerouting
is expensive, this takes effect only from a certain message threshold, and only
from a certain degree of irregularity.

Experiments have been carried out on a 32-node AMD Athlon based cluster
with Myrinet interconnect. We compare three implementations of MPI Reduce -
scatter:

1. The first, trivial implementation is an MPI Reduce (to intermediate root 0)
followed by an MPI Scatterv, using a simple binomial tree algorithm for
reduce and a linear MPI Scatterv algorithm.

2. The second implementation is also reduce followed scatter, but with opti-
mized algorithms for both MPI Reduce [7] and MPI Scatterv [11].

3. The third algorithm is the direct algorithm described in this paper.

An Improved Algorithm for Reduce-Scatter with an Application 135

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
(m

ic
ro

se
co

nd
s)

Total data size (bytes)

MPI_Reduce_scatter, 16 nodes

MPI_Reduce_scatter (direct)
MPI_Reduce_scatter (reduce+scatter)

MPI_Reduce_scatter (trivial)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
(m

ic
ro

se
co

nd
s)

Total data size (bytes)

MPI_Reduce_scatter, 30 nodes

MPI_Reduce_scatter (direct)
MPI_Reduce_scatter (reduce+scatter)

MPI_Reduce_scatter (trivial)

Fig. 5. Performance of the three reduce-scatter algorithms on a regular problem, 16
nodes (left) and 30 nodes (right). Plot is doubly logarithmic.

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
(m

ic
ro

se
co

nd
s)

Total data size (bytes)

MPI_Reduce_scatter, 16 nodes

MPI_Reduce_scatter (load balanced)
MPI_Reduce_scatter (reduce+scatter)

MPI_Reduce_scatter (unbalanced)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
(m

ic
ro

se
co

nd
s)

Total data size (bytes)

MPI_Reduce_scatter, 30 nodes

MPI_Reduce_scatter (load balanced)
MPI_Reduce_scatter (reduce+scatter)

MPI_Reduce_scatter (unbalanced)

Fig. 6. Irregular problem with whole result at one process, 16 nodes (left) and 30 nodes
(right). Plot is doubly logarithmic.

In Figure 5 the performance of the three algorithms for regular reduce-scatter
problems, ie. equal block sizes mi, is shown. Running time is given as a function
of the total problem size m =

∑p−1
i=0 mi for p = 16 and p = 30 processes with

one process per node. For the non-power of two case p = 30 the new algorithm
is a factor 3 faster than the trivial solution for both small (latency) and large
data (bandwidth). Compared to the second implementation, the new algorithm
is almost a factor 1.5 faster for large data, and again a factor 3 faster for small
data. The results for p = 16 are similar.

To test the performance in the irregular case we consider for total problem
size m an extreme case with mp/2 = m and all other mi = 0. The results
are shown in Figure 6 again for p = 16 and p = 30. We compare the new
algorithm with rerouting to the new algorithm without rerouting, and to the
second algorithm listed above. For the extreme case where one process (different
from 0) receives all data, this algorithm requires only one more communication
round than the new algorithm, namely for sending the resulting m-vector from
process 0 to process mp/2. As can clearly be seen, rerouting is too expensive for
small data: up to about m = 60KBytes the new algorithm without rerouting is

136 J.L. Träff

fastest, for small data (up to a few hundred Bytes per process) by more than a
factor 3. As problem size grows beyond the 60KByte threshold rerouting starts
to pay off. For the very large problem the algorithm with rerouting is about twice
as fast as the version without rerouting. For the extreme case the reduce+scatter
algorithm also does well for large data, but the difference caused by the extra
communication step is noticeable and makes for a difference of about 10%.

4 An Application: One-Sided Fence Synchronization

A common, MPI internal application of MPI Reduce scatter is for fence syn-
chronization in the MPI-2 one-sided communication model [3, Chapter 4]. The
MPI Win fence synchronization primitive must ensure for each process that all
one-sided communication operations with that process as target has been com-
pleted. One way of doing this is to count, per process, the number of pending op-
erations to be processed at the MPI Win fence call, and then wait for completion
of these requests. For the counting a reduce-scatter operation can be used with
each process supplying as input vector the number of one-sided communication
operations issued to each of the other processes. For the MPI/SX implementa-
tion of one-sided communication [12] a special-purpose reduce-scatter operation
is used, which is now implemented by the algorithm described in this paper. Also
in the recent implementation of one-sided communication for mpich2 in [10], the
MPI Reduce scatter collective is used for completion (message) counting.

In Table 1 the cost of the MPI Win fence call with the implementation de-
scribed in [12] and using the new reduce-scatter algorithm is given. An improve-
ment of up to 20% over the previous MPI Win fence implementation using a
different reduce-scatter implementation is achieved.

Table 1. Time for MPI Win fence operations opening and closing an epoch for varying
number of processes

Processes: 4 8 12 16 20 24 28 30
Old 65.95 104.08 120.89 136.89 164.91 165.93 180.01 182.98
New 49.11 78.05 110.99 110.11 141.95 142.01 148.97 150.08

5 Concluding Remarks

We gave a new, scalable, more efficient algorithm for the collective reduce-scatter
operation for both commutative and non-commutative (associative) binary re-
duction operations. The algorithm is the first to address efficiently the irregular
case in which the size of the resulting blocks differ (substantially). The trick
underlying the algorithm was a reordering of the blocks to fit the butterfly com-
munication pattern. An open question is whether this trick can also be of use
for the LogGP algorithms in [5].

An Improved Algorithm for Reduce-Scatter with an Application 137

References

1. M. Bernaschi, G. Iannello, and M. Lauria. Efficient implementation of reduce-
scatter in MPI. Technical report, University of Napoli, 1997.

2. M. Go�lebiewski, H. Ritzdorf, J. L. Träff, and F. Zimmermann. The MPI/SX
implementation of MPI for NEC’s SX-6 and other NEC platforms. NEC Research
& Development, 44(1):69–74, 2003.

3. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
and M. Snir. MPI – The Complete Reference, volume 2, The MPI Extensions.
MIT Press, 1998.

4. W. D. Gropp, R. Ross, and N. Miller. Providing efficient I/O redundancy in MPI
environments. In 11th European PVM/MPI Users’ Group Meeting, volume 3241
of Lecture Notes in Computer Science, pages 77–86, 2004.

5. G. Iannello. Efficient algorithms for the reduce-scatter operation in LogGP. IEEE
Transactions on Parallel and Distributed Systems, 8(9):970–982, 1997.

6. F. T. Leighton. Introduction to Parallel Algorithms and Architechtures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, 1992.

7. R. Rabenseifner and J. L. Träff. More efficient reduction algorithms for message-
passing parallel systems. In 11th European PVM/MPI Users’ Group Meeting,
volume 3241 of Lecture Notes in Computer Science, pages 36–46, 2004.

8. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The
Complete Reference, volume 1, The MPI Core. MIT Press, second edition, 1998.

9. R. Thakur, W. D. Gropp, and R. Rabenseifner. Improving the performance of
collective operations in MPICH. International Journal on High Performance Com-
puting Applications, 19:49–66, 2004.

10. R. Thakur, W. D. Gropp, and B. Toonen. Minimizing synchronization overhead in
the implementation of MPI one-sided communication. In 11th European PVM/MPI
Users’ Group Meeting, volume 3241 of Lecture Notes in Computer Science, pages
57–67, 2004.

11. J. L. Träff. Hierarchical gather/scatter algorithms with graceful degradation. In
International Parallel and Distributed Processing Symposium (IPDPS 2004), 2004.

12. J. L. Träff, H. Ritzdorf, and R. Hempel. The implementation of MPI-
2 one-sided communication for the NEC SX-5. In Supercomputing, 2000.
http://www.sc2000.org/proceedings/techpapr/index.htm#01.

Collective Error Detection for MPI
Collective Operations�

Chris Falzone1, Anthony Chan2, Ewing Lusk2, and William Gropp2

1 University of Pennsylvania at Edinboro, Edinboro, Pennsylvania 16444
2 Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, Illinois 60439

Abstract. An MPI profiling library is a standard mechanism for in-
tercepting MPI calls by applications. Profiling libraries are so named
because they are commonly used to gather performance data on MPI
programs. Here we present a profiling library whose purpose is to detect
user errors in the use of MPI’s collective operations. While some errors
can be detected locally (by a single process), other errors involving the
consistency of arguments passed to MPI collective functions must be
tested for in a collective fashion. While the idea of using such a profiling
library does not originate here, we take the idea further than it has been
taken before (we detect more errors) and offer an open-source library
that can be used with any MPI implementation. We describe the tests
carried out, provide some details of the implementation, illustrate the
usage of the library, and present performance tests.

Keywords: MPI, collective, errors, datatype, hashing.

1 Introduction

Detection and reporting of user errors are important components of any soft-
ware system. All high-quality implementations of the Message Passing Interface
(MPI) Standard [6,2] provide for runtime checking of arguments passed to MPI
functions to ensure that they are appropriate and will not cause the function to
behave unexpectedly or even cause the application to crash. The MPI collective
operations, however, present a special problem: they are called in a coordinated
way by multiple processes, and the Standard mandates (and common sense re-
quires) that the arguments passed on each process be consistent with the argu-
ments passed on the other processes. Perhaps the simplest example is the case
of MPI Bcast:

MPI_Bcast(buff, count, datatype, root, communicator)

in which each process must pass the same value for root. In this case, “con-
sistent” means “identical,” but more complex types of consistency exist. No
� This work was supported by the Mathematical, Information, and Computational Sci-

ences Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, SciDAC Program, under Contract W-
31-109-ENG-38.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 138–147, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Collective Error Detection for MPI Collective Operations 139

single process by itself can detect inconsistency; the error check itself must be a
collective operation.

Fortunately, the MPI profiling interface allows one to intercept MPI calls
and carry out such a collective check before carrying out the “real” collective
operation specified by the application. In the case of an error, the error can be
reported in the way specified by the MPI Standard, still independently of the
underlying MPI implementation, and without access to its source code.

The profiling library we describe here is freely available as part of the
MPICH2 MPI-2 implementation [4]. Since the library is implemented entirely
as an MPI profiling library, however, it can be used with any MPI implementa-
tion. For example, we have tested it with the IBM MPI implementation for Blue
Gene/L [1].

The idea of using the MPI profiling library for this purpose was first pre-
sented by Jesper Träff and Joachim Worringen in [7], where they describe the
error-checking approach taken in the NEC MPI implementation, in which even
local checks are done in the profiling library, some collective checks are done
portably in a profiling library as we describe here, and some are done by making
NEC-specific calls into the proprietary MPI implementation layer. The datatype
consistency check in [7] is only partial, however; the sizes of communication
buffers are checked, but not the details of the datatype arguments, where there
is considerable room for user error. Moreover, the consistency requirements are
not on the datatypes themselves, but on the datatype signatures; we say more
about this in Section 3.1.

To address this area, we use a “datatype signature hashing” mechanism, de-
vised by William Gropp in [3]. He describes there a family of algorithms that
can be used to assign a small amount of data to an MPI datatype signature in
such a way that only small messages need to be sent in order to catch most user
errors involving datatype arguments to MPI collective functions. In this paper
we describe a specific implementation of datatype signature hashing and present
an MPI profiling library that uses datatype signature hashing to carry out more
thorough error checking than is done in [7]. Since extra work (to calculate the
hash) is involved, we also present some simple performance measurements, al-
though one can of course use this profiling library just during application devel-
opment and remove it for production use.

In Section 2 we describe the nature and scope of the error checks we carry
out and compare our approach with that in [7]. Section 3 lays out details of our
implementation, including our implementation of the hashing algorithm given
in [3]; we also present example output. In Section 4 we present some performance
measurements. Section 5 summarizes the work and describes future directions.

2 Scope of Checks

In this section we describe the error checking carried out by our profiling library.
We give definitions of each check and provide a table associating the checks made
on the arguments of each collective MPI function with that function. We also
compare our collective error checking with that described in [7].

140 C. Falzone et al.

2.1 Definitions of Checks

The error checks for each MPI(-2) collective function are shown in Table 1. The
following checks are made:

call checks that all processes in the communicator have called the same col-
lective function in a given event, thus guarding against the error of calling
MPI Reduce on some processes, for example, and MPI Allreduce on others.

root means that the same argument was passed for the root argument on all
processes.

datatype refers to datatype signature consistency. This is explained further in
Section 3.1.

MPI IN PLACE means that every processes either did or did not provide
MPI IN PLACE instead of a buffer.

op checks operation consistency, for collective operations that include compu-
tations. For example, each process in a call to MPI Reduce must provide the
same operation.

local leader and tag test consistency of the local leader and tag arguments.
They are used only for MPI Intercomm create.

high/low tests consistency of the high argument. It is used only for
MPI Intercomm merge.

dims checks for dims consistency across the communicator.
graph tests the consistency of the graph supplied by the arguments to

MPI Graph create and MPI Graph map.
amode tests for amode consistency across the communicator for the function

MPI File open.
size, datarep, and flag verify consistency on these arguments, respectively.
etype is an additional datatype signature check for MPI file operations.
order checks for the collective file read and write functions, therefore ensuring

the proper order of the operations. According to the MPI Standard [2], a
begin operation must follow an end operation, with no other collective file
functions in between.

2.2 Comparison with Previous Work

This work can be viewed as an extension of the NEC implementation of collective
error checking via a profiling library presented in [7]. The largest difference
between that work and this is that we incorporate the datatype signature hashing
mechanism described in Section 3, which makes this paper also an extension
of [3], where the hashing mechanism is described but not implemented. In the
NEC implementation, only message lengths, rather than datatype signatures,
are checked. We do not check length consistency since it would be incorrect
to do so in a heterogeneous environment. We also implement our library as a
pure profiling library. This precludes us from doing some MPI-implementation-
dependent checks that are provided in the NEC implementation, but allows our
library to be used with any MPI implementation. In this paper we also present
some performance tests, showing that the overhead, even of our unoptimized
version, is acceptable. Finally, the library described here is freely available.

Collective Error Detection for MPI Collective Operations 141

Table 1. Checks performed on MPI functions

MPI Barrier call
MPI Bcast call, root, datatype
MPI Gather call, root, datatype
MPI Gatherv call, root, datatype
MPI Scatter call, root, datatype
MPI Scatterv call, root, datatype
MPI Allgather call, datatype, MPI IN PLACE
MPI Allgatherv call, datatype, MPI IN PLACE
MPI Alltoall call, datatype
MPI Alltoallw call, datatype
MPI Alltoallv call, datatype
MPI Reduce call, datatype, op
MPI AllReduce call, datatype, op, MPI IN PLACE
MPI Reduce scatter call, datatype, op, MPI IN PLACE
MPI Scan call, datatype, op
MPI Exscan call, datatype, op
MPI Comm dup call
MPI Comm create call
MPI Comm split call
MPI Intercomm create call, local leader, tag
MPI Intercomm merge call, high/low
MPI Carte create call, dims
MPI Carte map call, dims
MPI Graph create call, graph
MPI Graph map call, graph
MPI Comm spawn call, root
MPI Comm spawn multiple call, root
MPI Comm connect call, root
MPI Comm disconnect call
MPI Win create call
MPI Win fence call
MPI File open call, amode
MPI File set size call, size
MPI File set view call, datarep, etype
MPI File set automicity call, flag
MPI File preallocate call, size
MPI File seek shared call, order
MPI File read all begin call, order
MPI File read all call, order
MPI File read all end call, order
MPI File read at all begin call, order
MPI File read at all call, order
MPI File read at all end call, order
MPI File read ordered begin call, order
MPI File read ordered call, order
MPI File read ordered end call, order
MPI File write all begin call, order
MPI File write all call, order
MPI File write all end call, order
MPI File write at all begin call, order
MPI File write at all call, order
MPI File write at all end call, order
MPI File write ordered begin call, order
MPI File write ordered call, order
MPI File write ordered end call, order

142 C. Falzone et al.

3 Implementation

In this section we describe our implementation of the datatype signature match-
ing presented in [3]. We also show how we use datatype signatures in coordination
with other checks on collective operation arguments.

3.1 Datatype Signature Matching

An MPI datatype signature for n different datatypes typei is defined to ignore
the relative displacement among the datatypes as follows [6]:

Typesig = {type1, type2, . . . , typen}. (1)

A datatype hashing mechanism was proposed in [3] to allow efficient compar-
ison of datatype signature over any MPI collective call. Essentially, it involves
comparison of a tuple (α, n), where α is the hash value and n is the total number
of basic predefined datatypes contained in it. A tuple of form (α, 1) is assigned
for each basic MPI predefined datatype (e.g. MPI INT), where α is some cho-
sen hash value. The tuple for an MPI derived datatype consisting of n basic
predefined datatypes (α, 1) becomes (α, n). The combined tuple of any two MPI
derived datatypes, (α, n) and (β, m), is computed based on the hashing function:

(α, n)⊕ (β, m) ≡ (α ∧ (β
 n), n + m), (2)

where ∧ is the bitwise exclusive or (xor) operator,
 is the circular left shift
operator, and + is the integer addition operator. The noncommutative nature of
the operator ⊕ in equation (2) guarantees the ordered requirement in datatype
signature definition [1].

One of the obvious potential hash collisions is caused by the
 operator’s
circular shift by 1 bit. Let us say there are four basic predefined datatypes
identified by tuples (α, 1), (β, 1), (γ, 1), and (λ, 1) and that α = λ
 1 and
γ = β
 1. For n = m = 1 in equation (2), we have

(α, 1)⊕ (β, 1) ≡ (α ∧ (β
 1), 2)
≡ ((β
 1) ∧ α, 2)
≡ (γ ∧ (λ
 1), 2)
≡ (γ, 1)⊕ (λ, 1),

(3)

If the hash values for all basic predefined datatypes are assigned consecutive
integers, there will be roughly a 25 percent collision rate as indicated by equation
(3). The simplest solution for avoiding this problem is to choose consecutive
odd integers for all the basic predefined datatypes. Also, there are composite
predefined datatypes in the MPI standard (e.g., MPI FLOAT INT), whose hash
values are chosen according to equation (2) such that

MPI FLOAT INT = MPI FLOAT ⊕MPI INT.

The tuples for MPI UB and MPI LB are assigned (0, 0), so they are essentially
ignored. MPI PACKED is a special case, as described in [3].

Collective Error Detection for MPI Collective Operations 143

More complicated derived datatypes are decoded by using
MPI Type get envelope() and MPI Type get content() and their hashed tuple
computed during the process.

3.2 Collective Datatype Checking

Because of the different comunication patterns and the different specifications of
the send and receive datatypes in various MPI collective calls, a uniform method
of collective datatype checking is not attainable. Hence five different procedures
are used to validate the datatype consistency of the collectives. The goal here is
to provide error messages at the process where the erroneous argument has been
passed. To achieve that goal, we tailor each procedure to match the communi-
cation pattern of the profiled collective call. For convenience, each procedure is
named by one of the MPI collective routines being profiled.

Collective Scatter Check

1. At the root, compute the sender’s datatype hash tuple.
2. Use PMPI Bcast() to broadcast the hash tuple from the root to other

processes.
3. At each process, compute the receiver’s datatype hash tuple locally and

compare it to the hash tuple received from the root.

A special case of the collective scatter check is when the sender’s datatype signa-
ture is the same as the receiver’s. This special case can be refered to as a collec-
tive bcast check. It is used in the profiled version of MPI Bcast(), MPI Reduce(),
MPI Allreduce(), MPI Reduce scatter(), MPI Scan(), and MPI Exscan().

The general collective scatter check is used in the profiled version of
MPI Gather() and MPI Scatter().

Collective Scatterv Check

1. At the root, compute the vector of the sender’s datatype hash tuples.
2. Use PMPI Scatter() to broadcast the vector of hash tuples from the root to

the corresponding process in the communicator.
3. At each process, compute the receiver’s datatype hash tuple locally and

compare it to the hash tuple received from the root.

The collective scatterv check is used in the profiled version of MPI Gatherv()
and MPI Scatterv().

Collective Allgather Check

1. At each process, compute the sender’s datatype hash tuple.
2. Use PMPI Allgather() to gather other senders’ datatype hash tuples as a

local hash tuple vector.
3. At each process, compute the receiver’s datatype hash tuple locally, and

compare it to each element of the hash tuple vector received.

144 C. Falzone et al.

The collective allgather check is used in the profiled version of MPI Allgather()
and MPI Alltoall().

Collective Allgatherv Check

1. At each process, compute the sender’s datatype hash tuple.
2. Use PMPI Allgather() to gather other senders’ datatype hash tuples as a

local hash tuple vector.
3. At each process, compute the vector of the receiver’s datatype hash tuples

locally, and compare this local hash tuple vector to the hash tuple vector
received element by element.

The collective allgatherv check is used in the profiled version of MPI Allgatherv().

Collective Alltoallv/Alltoallw Check

1. At each process, compute the vector of the sender’s datatype hash tuples.
2. Use PMPI Alltoall() to gather other senders’ datatype hash tuples as a

local hash tuple vector.
3. At each process, compute the vector of the receiver’s datatype hash tuples

locally, and compare this local hash tuple vector to the hash tuple vector
received element by element.

The difference between collective alltoallv and collective alltoallw checks is that
alltoallw is more general than alltoallv; in other words, alltoallw accepts a vector
of MPI Datatype in both the sender and receiver.

The collective alltoallv check is used in the profiled version of MPI Alltoallv(),
and the collective alltoallw check is used in the profiled version of MPI Alltoallw().

3.3 Example Output

In this section we illustrate what the user sees (on stderr) when a collective
call is invoked incorrectly.

Example 1. In this example, run with five processes, all but the last process call
MPI Bcast; the last process calls MPI Barrier.

aborting job:
Fatal error in MPI_Comm_call_errhandler:

VALIDATE BARRIER (Rank 4) --> Collective call (BARRIER) is Inconsistent with Rank 0’s (BCAST).

rank 4 in job 204 ilsig.mcs.anl.gov_32779 caused collective abort of all ranks
exit status of rank 4: return code 13

Example 2. In this example, run with five processes, all but the last process give
MPI CHAR; but the last process gives MPI INT.
aborting job:
Fatal error in MPI_Comm_call_errhandler:

VALIDATE BCAST (Rank 4) --> Datatype Signature used is Inconsistent with Rank 0s.

rank 4 in job 205 ilsig.mcs.anl.gov_32779 caused collective abort of all ranks
exit status of rank 4: return code 13

Collective Error Detection for MPI Collective Operations 145

Example 3. In this example, run with five processes, all but the last process use
0 as the root parameter; the last process uses its rank.
aborting job:
Fatal error in MPI_Comm_call_errhandler:

VALIDATE BCAST (Rank 4) --> Root Parameter (4) is inconsistent with rank 0 (0)

rank 4 in job 207 ilsig.mcs.anl.gov_32779 caused collective abort of all ranks
exit status of rank 4: return code 13

4 Experiences

Here we describe our experiences with the collective error checking profiling
library in the areas of usage, porting, and performance.

After preliminary debugging tests gave us some confidence that the library
was functioning correctly, we applied it to the collective part of the MPICH2 test
suite. This set of tests consists of approximately 70 programs, many of which
carry out multiple tests, that test the MPI-1 and MPI-2 Standard compliance for
MPICH2. We were surprised (and strangely satisfied, although simultaneously
embarrassed) to find an error in one of our test programs. One case in one
test expected a datatype of one MPI INT to match a vector of sizeof(int)
MPI BYTEs. This is incorrect, although MPICH2 allowed the program to execute.

To test a real application, we linked FLASH [5], a large astrophysics applica-
tion utilizing many collective operations, with the profiling library and ran one
of its model problems. In this case no errors were found.

A profiling library should be automatically portable among MPI implemen-
tations. The library we describe here was developed under MPICH2. To check
for portability and to obtain separate performance measurements, we also used
it in conjunction with IBM’s MPI for BlueGene/L [1], without encountering any
problems.

Table 2. The maximum time taken (in seconds) among all the processes in a 32-
process job on BlueGene/L. Count is the number of MPI Doubles in the datatype, and
Nitr refers to the number of times the MPI collective routine was called in the test.
The underlined digits indicates that the corresponding digit could be less in one of the
processes involved.

Test Name count×Nitr No CollChk With CollChk
MPI Bcast 1×10 0.000269 0.002880
MPI Bcast 1K×10 0.000505 0.003861
MPI Bcast 128K×10 0.031426 0.135138

MPI Allreduce 1×1 0.000039 0.000318
MPI Allreduce 1K×1 0.000233 0.000586
MPI Allreduce 128K×1 0.022263 0.032420
MPI Alltoallv 1×1 0.000043 0.000252
MPI Alltoallv 1K×1 0.000168 0.000540
MPI Alltoallv 128K×1 0.015357 0.035828

146 C. Falzone et al.

We carried out performance tests on two platforms. On BlueGene/L, the col-
lective and datatype checking library and the test codes were compiled with xlc
with -O3 and linked with IBM’s MPI implementation available on BlueGene/L.

The performance of the collective and datatype checking library of a 32-
process job is listed in Table 2, where each test case is linked with and without
the collective and datatype checking library.

Similarly on a IA32 Linux cluster, the collective and datatype checking library
and the test codes were compiled with gcc with -O3 and linked with MPICH2-
1.0.1. The performance results of the library are tabulated in Table 3.

Table 3. The maximum time taken (in seconds) on a 8-process job on Jazz, an IA32
Linux cluster. Count is the number of MPI Double in the datatype, and Nitr refers to
the number of times the MPI collective routine has been called in the test.

Test Name count×Nitr No CollChk With CollChk
MPI Bcast 1×10 0.034332 0.093795
MPI Bcast 1K×10 0.022218 0.069825
MPI Bcast 128K×10 1.704995 1.730708

MPI Allreduce 1×1 0.000423 0.006863
MPI Allreduce 1K×1 0.003896 0.005795
MPI Allreduce 128K×1 0.233541 0.236214
MPI Alltoallv 1×1 0.000320 0.009682
MPI Alltoallv 1K×1 0.002415 0.003593
MPI Alltoallv 128K×1 0.271676 0.355068

Both Tables 2 and 3 indicate that the cost of the collective and datatype
checking library diminishes as the size of the datatype increases. The cost of
collective checking can be significant when the datatype size is small. One would
like the performance of such a library to be good enough that it is convenient
to use and does not affect the general behavior of the application it is being
applied to. On the other hand, performance is not absolutely critical, since it is
basically a debug-time tool and is likely not to be used when the application is
in production. Our implementation at this stage does still present a number of
opportunities for optimization, but we have found it highly usable.

5 Summary

We have presented an effective technique to safeguard users from making easy-
to-make but hard-to-find mistakes that often lead to deadlock, incorrect results,
or worse. The technique is portable and available for all MPI implementations.
We have also presented a method for checking datatype signatures in collective
operations. We intend to extend the datatype hashing mechanism to point-to-
point operations as well.

This profiling library is freely available as part of MPICH2 [4] in the MPE
subdirectory, along with other profiling libraries.

Collective Error Detection for MPI Collective Operations 147

References

1. G. Almási, C. Archer, J. G. Casta nos, M. Gupta, X. Martorell, J. E. Moreira,
W. D. Gropp, S. Rus, and B. Toonen. MPI on BlueGene/L: Designing an efficient
general purpose messaging solution for a large cellular system. In Jack Dongarra,
Domenico Laforenza, and Salvatore Orlando, editors, Recent Advances in Paral-
lel Virtual Machine and Message Passing Interface, number LNCS2840 in Lecture
Notes in Computer Science, pages 352-361. Springer Verlag, 2003.

2. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPIThe Complete Reference: Volume
2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.

3. William D. Gropp. Runtime checking of datatype signatures in MPI. In Jack Don-
garra, Peter Kacsuk, and Norbert Podhorszki, editors, Recent Advances in Parallel
Virutal Machine and Message Passing Interface, number 1908 in Springer Lecture
Notes in Computer Science, pages 160-167, September 2000.

4. MPICH2 Web page. http://www.mcs.anl.gov/mpi/mpich2.
5. R. Rosner, A. Calder, J. Dursi, B. Fryxell, D. Q. Lamb, J. C. Niemeyer, K. Olson, P.

Ricker, F. X. Timmes, J. W. Truran, H. Tufo, Y. Young, M. Zingale, E. Lusk, and
R. Stevens. Flash code: Studying astrophysical thermonuclear flashes. Computing
in Science and Engineering, 2(2):33, 2000.

6. Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack
Dongarra. MPIThe Complete Reference: Volume 1, The MPI Core, 2nd edition.
MIT Press, Cambridge, MA, 1998.

7. Jesper Larsson Träff and Joachim Worringen. Verifying collective MPI calls. In
Dieter Kranslmuller, Peter Kacsuk, and Jack Dongarra, editors, Recent Advances in
Parallel Virutal Machine and Message Passing Interface, number 3241 in Springer
Lecture Notes in Computer Science, pages 18-27, 2004.

Implementing OpenMP for Clusters
on Top of MPI�

Antonio J. Dorta1, José M. Bad́ıa2, Enrique S. Quintana2,
and Francisco de Sande1

1 Depto. de Estad́ıstica, Investigación Operativa y Computación,
Universidad de La Laguna, 38271, La Laguna, Spain

{ajdorta, fsande}@ull.es
2 Depto. de Ingenieŕıa y Ciencia de Computadores,

Universidad Jaume I, 12.071, Castellón, Spain
{badia, quintana}@icc.uji.es

Abstract. llc is a language designed to extend OpenMP to distributed
memory systems. Work in progress on the implementation of a compiler
that translates llc code and targets distributed memory platforms is
presented. Our approach generates code for communications directly on
top of MPI. We present computational results for two different bench-
mark applications on a PC-cluster platform. The results reflect similar
performances for the llc compiled version and an ad-hoc MPI imple-
mentation, even for applications with fine-grain parallelism.

Keywords: MPI, OpenMP, cluster computing, distributed memory,
OpenMP compiler.

1 Introduction

The lack of general purpose high level parallel languages is a major drawback
that limits the spread of High Performance Computing (HPC). There is a divi-
sion between the users who have the needs of HPC techniques and the experts
that design and develop the languages as, in general, the users do not have the
skills necessary to exploit the tools involved in the development of the parallel
applications. Any effort to narrow the gap between users and tools by providing
higher level programming languages and increasing their simplicity of use is thus
welcome.

MPI [1] is currently the most successful tool to develop parallel applications,
due in part to its portability (to both shared and distributed memory architec-
tures) and high performance. As an alternative to MPI, OpenMP [2] has emerged
in the last years as the industry standard for shared memory programming. The
OpenMP Application Programming Interface is based on a small set of compiler
directives together with some library routines and environment variables.
� This work has been partially supported by the Canary Islands government, contract

PI2003/113, and also by the EC (FEDER) and the Spanish MCyT (Plan Nacional
de I+D+I, contracts TIC2002-04498-C05-05 and TIC2002-04400-C03-03).

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 148–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Implementing OpenMP for Clusters on Top of MPI 149

One of the main drawbacks of MPI is that the development of parallel ap-
plications is highly time consuming as major code modifications are generally
required. In other words, parallelizing a sequential application in MPI requires
a considerable effort and expertise. In a sense, we could say that MPI repre-
sents the assembler language of parallel computing: you can obtain the best
performance but at the cost of quite a high development investment.

On the other hand, the fast expansion of OpenMP comes mainly from its sim-
plicity. A first rough parallel version is easily built as no significative changes are
required in the sequential implementation of the application. However, obtaining
the best performance from an OpenMP program requires some specialized effort
in tuning.

The increasing popularity of commodity clusters, justified by their better
price/performance ratio, is at the source of the recent efforts to translate
OpenMP codes to distributed memory (DM) architectures, even if that implies
a minor loss of performance. Most of the projects to implement OpenMP in
DM environments employ software distributed shared memory systems; see, e.g.,
[3,4,5]. Different approaches are developed by Huang et al. [6], who base their
strategy for the translation in the use of Global Arrays, and Yonezawa et al. [7],
using an array section descriptor called quad to implement their translation.

In this paper we present the language llc, designed to extend OpenMP to
DM systems, and the llc compiler, llCoMP, which has been built on top of MPI.
Our own approach is to generate code for communications directly on top of MPI,
and therefore does not rely on a coherent shared memory mechanism. Through
the use of two code examples, we show the experimental results obtained in a
preliminary implementation of new constructs which have been incorporated into
the language in order to deal with irregular memory access patterns. Compared
to others, the main benefit of our approach is its simplicity. The use of direct
generation of MPI code for the translation of the OpenMP directives conjugates
the simplicity with a reasonable performance.

The remainder of the paper is organized as follows. In Section 2 we outline the
computational model underlying our strategy. We next discuss some implemen-
tation details of the llc compiler in Section 3. Case studies and the experimental
evaluation of a preliminary implementation of the new constructs are given in
Section 4. Finally, we summarize a few concluding remarks and future work in
Section 5.

2 The llc Computational Model

The llCoMP compiler is a source-to-source compiler implemented on top of MPI.
It translates code annotated with llc directives into C code with explicit calls
to MPI routines. The resulting program is then compiled using the native back-
end compiler, and properly linked with the MPI library. Whenever possible, the
llc pragmas are compatible with their counterparts in OpenMP, so that minor
changes are required to obtain a sequential, an MPI, or an OpenMP binary from
the same source code.

150 A.J. Dorta et al.

The llc language follows the One Thread is One Set of Processors (OTOSP)
computational model. Although the reader can refer to [8] for detailed informa-
tion, a few comments are given next on the semantics of the model and the
behaviour of the compiler.

The OTOSP model is a DM computational model where all the memory
locations are private to each processor. A key concept of the model is that of
processor set. At the beginning of the program (and also in the sequential parts
of it), all processors available in the system belong to the same unique set. The
processor sets follow a fork-join model of computation: the sets divide (fork)
into subsets as a consequence of the execution of a parallel construct, and they
join back together at the end of the execution of the construct. At any point
of the code, all the processors belonging to the same set replicate the same
computation; that is, they behave as a single thread of execution.

When different processors (sub-)sets join into a single set at the end of a
parallel construct, partner processors exchange the contents of the memory areas
they have modified inside the parallel construct. The replication of computations
performed by processors in the same set, together with the communication of
modified memory areas at the end of the parallel construct, are the mechanisms
used in OTOSP to guarantee a coherent image of the memory.

Although there are different kinds of parallel constructs implemented in the
language, in this paper we focus on the parallel for construct.

3 The llCoMP Compiler

The simplicity of the OTOSP model greatly eases its implementation on DM
systems. In this section we expose the translation of parallel loops performed
by llCoMP. For each of the codes in the NAS Parallel Benchmark [9] (columns
of the table), Table 1 indicates the number of occurrences of the directive in
the corresponding row. All the directives in Table 1 can be assigned a semantic
under the premises of the OTOSP model. Using this semantic, the directives and
also the data scope attribute clauses associated with them can be implemented
using MPI on a DM system. For example, let us consider the implementation

Table 1. Directives in the NAS Parallel Benchmark codes

BT CG EP FT IS LU MG SP
parallel 2 2 1 2 2 3 5 2
for 54 21 1 6 1 29 11 70
parallel for 3 1
master 2 2 1 10 4 2 1 2
single 12 5 2 10
critical 1 1 1 1 1
barrier 1 2 3 1 3
flush 6
threadprivate 1

Implementing OpenMP for Clusters on Top of MPI 151

of a parallel directive: since all the processors are running in parallel at the
beginning of a computation, in our model the parallel directive requires no
translation.

Shared memory variables (in the OpenMP sense) need special care, though.
Specifically, any shared variable in the left-hand side of an assignment statement
inside a parallel loop should be annotated with an llc result or nc result
clause. Both clauses are employed to notify the compiler of a region of the
memory that is potentially modifiable by the set of processors which execute
the loop. Their syntax is similar: the first parameter is a pointer to the memory
region (addr), the second one is the size of that region (size), and the third
parameter, only present in nc result, is the name of the variable holding that
memory region. Directive result is used when all the memory addresses in the
range [addr, addr+size] are (potentially) modified by the processor set. This
is the case, for example, when adjacent positions in a vector are modified. If
there are write accesses to non-contiguous memory regions inside the parallel
loop, these should be notified with the nc result clause.

llCoMP uses Memory Descriptors (MD) to guarantee the consistency of mem-
ory at the end of the execution of a parallel construct. MD are data structures
based on queues which hold the necessary information about memory regions
modified by a processor set. The basic information holded in MD are pairs (ad-
dress, size) that characterize a memory region. Prior to their communication
to other processor sets, these memory regions (pairs) are compacted in order
to minimize the communication overhead. In most of the cases, the commu-
nication pattern involved in the translation of a result or nc result is an
all-to-all pattern. The post-processing performed by a processor receiving a MD
is straightforward: it writes the bytes received in the address annotated in the
MD. In section 4 we present an experiment that has been designed to evaluate
the overhead introduced in the management of MDs.

In [8] we presented several examples of code with the result directive. In
this paper we focus in the implementation of non-contiguous memory access
patterns, the most recent feature incorporated into llCoMP.

1 #pragma omp paral le l for private (ptr , temp , k , j)
2 for (i=0; i<Blks−>size1 ; i++) {
3 ptr = Blks−>ptr [i] ;
4 temp = 0 . 0 ;
5 k = index1_coordinate (ptr) ; // F i r s t e lement in i−th row
6 for (j=0; j<elements_in_vector_coordinate (Blks , i) ; j++) {
7 temp += value_coordinate (ptr) ∗
8 x [index2_coordinate (ptr) ∗incx] ;
9 inc_coordinate (ptr) ;

10 }
11 #pragma llc nc_result(&y [k∗incy] , 1 , y)
12 y [k∗incy] += alpha ∗ temp ;
13 }

Listing 1. A parallelization of the usmv operation

152 A.J. Dorta et al.

In particular, consider the code in Listing 1, which shows the paralleliza-
tion using llc of the main loop of the sparse matrix-vector product operation
y = y + αAx, where x and y are both vectors and A is a sparse matrix (this
is known as operation usmv in the Level-2 sparse BLAS). Matrix elements are
stored using a rowwise coordinate format, but we also store pointers to the
first element on each row in vector ptr. In the code, each iteration of the ex-
ternal loop in line 2 performs a dot product between a row of the sparse ma-
trix and vector x, producing one element of the solution vector y. The code
uses three C macros (index1 coordinate(ptr), index2 coordinate(ptr) and
value coordinate(ptr)) in order to access to the row index, column index and
value of an element of the sparse matrix pointed by ptr. A fourth macro, namely
inc coordinate, moves the pointer to the next element in the same row. Values
incx and incy allow the code to access to vectors x and y with strides different
from 1.

A direct parallelization of the code can be obtained having into account
that different dot products are fully independent. Therefore, a parallel for
directive is used in line 1 to indicate that the set of processors executing the loop
in line 2 has to fork to execute the loop. The llc specific directive nc result in
line 11 indicates to the compiler that the value of the y[k*incy] element has to
be “annotated”.

4 Experimental Results

The experiments reported in this section were obtained on a cluster composed
of 32 Intel Pentium Xeon processors running at 2.4 GHz, with 1 GByte of RAM
memory each, and connected through a Myrinet switch. The operating system
of the cluster was Debian Sarge Testing Linux. We used the mpich [10] imple-
mentation on top of the vendor’s communication library GM-1.6.3.

In order to evaluate the performance of the llCoMP translation we have used
two benchmarks: the sparse matrix-vector product usmv, and a Molecular Dynam-
ics (md) simulation code [11]. These benchmarks were selected because they are
composed of irregular, non-contiguous accesses to memory, and also because they
are simple codes representative for a much larger class. Besides, the usmv opera-
tion is a common operation in sparse linear algebra, extremely useful in a a vast
amount of applications arising, among many others, in VLSI design, structural
mechanics and engineering, computational chemistry, and electromagnetics.

Using MPI and llCoMP we developed two parallel versions of the usmv code.
Consider first the parallelization using MPI. For simplicity, we assume vectors
x and y to be both replicated. With A distributed by rows, the matrix-vector
product is performed as a series of inner products which can proceed in parallel.
An all-to-all communication is required at the final stage to replicate the result
y onto all nodes. On the other hand, using llc to implement the product, we
parallelize the external for loop, so that each thread deals with a group of inner
products (see Listing 1). As all threads share vectors x and y, it is not necessary
to perform any additional gathering of partial results in this case.

Implementing OpenMP for Clusters on Top of MPI 153

Table 2. Execution time (in secs.) for the ad hoc MPI vs. llCoMP parallel versions of
the usmv code. Problem sizes of 30000 and 40000 are employed with sparsity degrees
of 1% and 2%.

ad hoc MPI llCoMP
30000 40000 30000 40000

#Proc. 1% 2% 1% 2% 1% 2% 1% 2%

SEQ 11.09 21.55 26.67 45.16 11.09 21.55 26.67 45.16
2 5.85 11.99 11.59 30.11 8.24 15.15 21.70 34.08
4 3.64 6.65 8.26 16.72 4.85 8.18 10.34 21.34
8 2.23 3.33 4.44 11.39 2.93 4.23 6.42 10.57
16 1.62 2.13 2.86 6.76 1.86 2.68 3.48 6.57
24 1.45 1.82 2.43 6.15 1.80 2.32 3.29 6.23
32 1.27 1.55 2.00 5.25 1.94 2.40 3.02 4.35

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

S
pe

ed
up

Processors

PC Cluster. llCoMP (result, nc_result) vs. MPI

llCoMP - result
llCoMP - nc_result

MPI

Fig. 1. MPI and llCoMP (result and nc result) speedups for the MD code

Table 2 compares the accumulated execution time of 100 runs for the usmv
code using an ad hoc MPI implementation and the translation produced by
llCoMP. The executions correspond to square sparse random matrices of dimen-
sions 30000, 40000 and sparsity factors of 1% and 2%.

The fine-grain parallelism present in the usmv code and the small amount
of computations performed by this operation are at the source of the limited
speed-up reported in the experiment. Not surprisingly, coarse-grain algorithms
are the best scenario to achieve high performance for the translations provided
by llCoMP. Nevertheless, if we compare the results obtained from an ad hoc
program using MPI with those produced by the llc variant, we can expect
this overhead to be compensated in some situations by the much smaller effort
invested in the development of the parallel code.

154 A.J. Dorta et al.

The source code for the md code written in OpenMP can be obtained from
the OpenMP Source Code Repository [12,13]; translation of this code using llc is
straight-forward. With this experiment our aim is to evaluate the overhead intro-
duced by llCoMP in the management of non-regular memory access patterns. The
md code exhibits a regular memory access pattern, but as the nc result clause
is a general case of result, we have implemented it using both clauses. Figure 1
shows the speedup achieved by the md code for three different implementations:
and ad hoc MPI implementation and two different llc implementations using
result and nc result. We observe an almost linear behaviour for all the im-
plementations. For this particular code, no relevant differences are appreciated
when using regular and non-regular memory access patterns.

5 Conclusions and Future Work

We believe that preserving the sequential semantics of the programs is a major
key to achieve the objective of alleviating the difficulties in the development of
parallel applications. Surely the extension of the OpenMP programming para-
digm to the DM case is a desirable goal. At the present time the technology and
the ideas are not mature enough as to show a clear path to the solution of the
problem and, in this line, our own approach does not intend to compete with
other authors’ work. We show that a compiler working under the premises of
the OTOSP computational model and using direct generation of MPI code for
communications can produce acceptable results, even in the case of fine-grain
parallel algorithms.

Work in progress in our project includes the following issues:

– To unburden the final user of the specification of memory regions to be
communicated (using the result clauses).

– To explore the potential sources of improvement for the compiler prototype.
– To collect OpenMP applications suitable to be targeted by the llCoMP com-

piler.

Acknowledgments

We wish to thank the anonymous reviewers for their suggestions on how to
improve the paper.

References

1. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
University of Tennessee, Knoxville, TN, 1995 http://www.mpi-forum.org/.

2. OpenMP Architecture Review Board, OpenMP Application Program Interface v.
2.5, electronically available at
http://www.openmp.org/drupal/mp-documents/spec25.pdf (May 2005).

Implementing OpenMP for Clusters on Top of MPI 155

3. S.-J. Min, A. Basumallik, R. Eigenmann, Supporting realistic OpenMP applica-
tions on a commodity cluster of workstations, in: Proc. of of WOMPAT 2003,
Workshop on OpenMP Applications and Tools, Toronto, Canada, 2003, pp. 170–
179.

4. M. Sato, H. Harada, A. Hasegawa, Cluster-enabled OpenMP: An OpenMP com-
piler for the SCASH software distributed shared memory system., Scientific Pro-
gramming, Special Issue: OpenMP 9 (2-3) (2001) 123–130.

5. Y. C. Hu, H. Lu, A. L. Cox, W. Zwaenepoel, OpenMP for Networks of SMPs,
Journal of Parallel and Distributed Computing 60 (12) (2000) 1512–1530.

6. L. Huang, B. Chapman, Z. Liu, Towards a more efficient implementation of openmp
for clusters via translation to global arrays, Tech. Rep. UH-CS-04-05, Department
of Computer Science, Univeristy of Houston, electronically available at
http://www.cs.uh.edu/docs/preprint/2004 11 15.pdf (dec 2004).

7. N. Yonezawa, K. Wada, T. Ogura, Quaver: OpenMP compiler for clusters based
on array section descriptor, in: Proc. of the 23rd IASTED International Multi-
Conference Parallel and Distributed Computing and Networks, IASTED /Acta
Press, Innsbruck, Austria, 2005, pp. 234–239, electronically available at
http://www.actapress.com/Abstract.aspx?paperId=6530.

8. A. J. Dorta, J. A. González, C. Rodŕıguez, F. de Sande, llc: A parallel skeletal
language, Parallel Processing Letters 13 (3) (2003) 437–448.

9. D. H. Bailey et al., The NAS parallel benchmarks, Technical Report RNR-94-007,
NASA Ames Research Center, Moffett Field, CA, USA, electronically available at
http://www.nas.nasa.gov/News/Techreports/1994/PDF/RNR-94-007.pdf (Oct.
1994).

10. W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable imple-
mentation of the message passing interface standard, Parallel Computing 22 (6)
(1996) 789–828.

11. W. C. Swope, H. C. Andersen, P. H. Berens, K. R. Wilson, A computer simulation
method for the calculation of equilibrium constants for the formation of physical
clusters of molecules: Application to small water clusters, Journal of Chemical
Physics 76 (1982) 637–649.

12. OmpSCR OpenMP Source Code Repository
http://www.pcg.ull.es/ompscr/ and http://ompscr.sf.net.

13. A. J. Dorta, A. González-Escribano, C. Rodŕıguez, F. de Sande, The OpenMP
source code repository, in: Proc. of the 13th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing (PDP 2005), Lugano, Switzerland, 2005,
pp. 244–250.

Designing a Common Communication
Subsystem�

Darius Buntinas and William Gropp

Mathematics and Computer Science Division,
Argonne National Laboratory

{buntinas, gropp}@mcs.anl.gov

Abstract. Communication subsystems are used in high-performance
parallel computing systems to abstract the lower network layer. By us-
ing a communication subsystem, an upper middleware library or run-
time system can be more easily ported to different interconnects. By
abstracting the network layer, however, the designer typically makes the
communication subsystem more specialized for that particular middle-
ware library, making it ineffective for supporting middleware for other
programming models. In previous work we analyzed the requirements of
various programming-model middleware and the communication subsys-
tems that support such requirements. We found that although there are
no mutually exclusive requirements, none of the existing communication
subsystems can efficiently support the programming model middleware
we considered. In this paper, we describe our design of a common com-
munication subsystem, called CCS, that can efficiently support various
programming model middleware.

1 Introduction

Communication subsystems are used in high-performance parallel computing
systems to abstract the lower network layer. By using a communication sub-
system, an upper middleware library or runtime system can be ported more
easily to different interconnects. By abstracting the network layer, however, the
designer typically makes the communication subsystem less general and more
specialized for that particular middleware library. For example, a communica-
tion subsystem for a message-passing middleware might have been optimized for
transferring data located anywhere in a process’s address space, whereas a com-
munication subsystem for a global address space (GAS) language might have
been better optimized for transferring small data objects located in a specially
allocated region of memory. Thus, the communication subsystem designed for
a GAS language cannot efficiently support the message-passing middleware be-
cause, for example, it cannot efficiently transfer data that is located on the stack
or in dynamically allocated memory.
� This work was supported by the Mathematical, Information, and Computational Sci-

ences Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 156–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Designing a Common Communication Subsystem 157

Despite their differences, communication subsystems have many common fea-
tures, such as bootstrapping and remote memory access (RMA) operations. In
[1] we analyzed the requirements of various programming model middleware
and the communication subsystems that support them. We found that although
there are no mutually exclusive requirements, none of the existing communica-
tion subsystems can efficiently support the programming-model middleware we
considered. In this paper, we describe our design of a common communication
subsystem, called CCS, that can efficiently support various programming-model
middleware. We specifically targeted CCS to efficiently support the requirements
of MPICH2 [2,3], the Global Arrays (GA) toolkit [4,5], and the Berkeley UPC
runtime [6,7]; however, we believe that CCS is general enough to efficiently sup-
port any message-passing, global address space, or remote-memory middleware.

The rest of this paper is organized as follows. In Section 2 we briefly describe
the critical design issues necessary to support the various programming models.
In Section 3 we present our design for a common communication subsystem. In
Section 4 we show performance results from our preliminary implementation of
CCS. In Section 5 we conclude and present future work.

2 Design Issues for Communication Subsystems

In this section, we briefly describe the important issues for designing a common
communication subsystem. These design issues are covered in more detail in [1].
We divide the design issues into required features and desired features. A required
feature is a feature that, if lacking, would prevent the communication subsystem
from effectively supporting a particular programming model. Desired features
are features that, when implementing a programming model on top of the com-
munication subsystem, make the implementation simpler or more efficient.

2.1 Required Features

Remote Memory Access Operations. RMA operations allow a process to
transfer data between its local memory and the local memory of remote process
without active participation of the remote process. RMA operations are impor-
tant for global address space and remote-memory programming models, as well
as for message-passing applications that have irregular communication patterns.

In order to allow better overlap of communication and computation, non-
blocking RMA operations should be provided. A mechanism is then needed to
check whether the operation has completed.

MPI-2 RMA Support. In order to support MPI-2 [8] active-mode RMA oper-
ations, the communication subsystem must be able to perform RMA operations
between any memory location in the process’s address space. In order to support
passive-mode RMA operations, the communication subsystem need only be able
to perform RMA operations on memory that has been dynamically allocated
using a special allocation function.

158 D. Buntinas and W. Gropp

GAS Language and Remote-Memory Model Support. GAS language
and remote-memory model runtime systems need to be able to perform con-
current conflicting RMA operations to the same memory region. Similarly, they
require the ability to perform local load/store operations concurrently with RMA
operations, possibly to the same memory location. While the result of such con-
flicting operations may be undefined, the communication subsystem must not
consider it an error to perform them. RMA operations also must be very light-
weight, since typical RMA operations in these programming models are single-
word operations.

Efficient Transfer of Large MPI Two-Sided Messages. MPI and other
message-passing interfaces provide two-sided message passing, where the sending
process specifies the source buffer, and the receiving process specifies the desti-
nation buffer. Typically, in message-passing middleware, large data is transferred
by using a rendezvous protocol, where one process sends the address of its buffer
to the other process, so that one process has the location of both the source
and destination buffers. Once one process has the location of both buffers, it
can use RMA operations to transfer the data. In MPI, the source and destina-
tion buffers can be located anywhere in the process’s address space. In order to
support transferring large two-sided messages in this way, the communication
subsystem must be able to perform RMA operations on any memory location in
the process’s address space.

2.2 Desired Features

Active Messages. Active messages [9] allow the sender to specify a handler
function that is executed at the receiver when the message is received. This
function can be used, for example, to match an incoming message with a pre-
posted receive in MPI or to perform an accumulate operation in Global Arrays.

In order to support multiple middleware libraries at the same time, active
messages from one middleware library must not interfere with those of another
middleware library. One solution is to ensure that each library uniquely specifies
its own handlers.

In-Order Message Delivery. In-order message delivery is a requirement for
many message-passing programming models. If the communication subsystem
provides this feature, the middleware doesn’t have to deal with reordering mes-
sages. However, in other programming models such as GAS languages, message
ordering is not required, and in some cases performance can be improved by
reordering or coalescing messages. A common communication subsystem should
be able to provide FIFO ordering when it is required, and allow messages to be
reordered otherwise.

Noncontiguous Data. Programming model instances such as MPI and Global
Arrays have operations for specifying the transfer of noncontiguous data. Further-
more, modern interconnects such as InfiniBand (IBA) [10], support noncontiguous
data transfer. Hence, a common communication subsystem needs to support the
transfer of noncontiguous data in order to take advantage of such functionality.

Designing a Common Communication Subsystem 159

Table 1. Feature summary of the communication subsystems

RM
A

op
era

tio
ns

M
PI

-2
ac
tiv

e-m
od

e RM
A

M
PI

-2
pa

ssi
ve

-m
od

e RM
A

GAS
lan

gu
ag

e su
pp

or
t

Tr
an

sfe
r of

lar
ge

M
PI

mess
ag

es

Acti
ve

mess
ag

es

In
-or

de
r mess

ag
e de

liv
ery

Non
co
nt
igu

ou
s da

ta
*

Po
rta

bil
ity

ARMCI • • V, S •
GASNet • • • • •
LAPI • • • • • • V
Portals • • • • • • •
MPI-2 • • • • • V, S, B •

* V = I/O vector; S = strided; B = blockindexed

2.3 Feature Support by Current Communication Subsystems

In [1] we examined several communication subsystems and evaluated how well
each addresses the features described above. Table 1 summarizes the results.
We evaluated ARMCI [11], GASNet [12], LAPI [13], Portals [14], and MPI-
2 [8] as communication subsystems. We can see from this table that none of the
communication subsystems we studied supports all of the features necessary for
message-passing, remote-memory, and GAS language programming models.

3 Proposed Communication Subsystem

In this section we describe our design for a common communication subsystem,
called CCS, that addresses the issues identified in the previous section. The
CCS communication subsystem is based on nonblocking RMA operations, with
active messages used to provide for control and remote invocation of operations.
Active messages could be used to implement an operation to deliver the message
in message passing middleware or to perform an accumulate operation in remote
memory middleware.

3.1 Remote Memory Access Operations

CCS provides nonblocking RMA operations. It is intended that RMA operations
be implemented by using the interconnect’s native RMA operations in order to
maximize performance. If an interconnect does not natively provide all or some
of the required RMA operations, active messages can be used to implement
the missing RMA operations. For example, if an interconnect has a native Put
operation but not a Get operation, the Get can be implemented with an active
message in which the handler performs a Put operation.

CCS uses a callback mechanism to indicate the completion of RMA opera-
tions. A callback function pointer is specified by the upper layer as a parameter

160 D. Buntinas and W. Gropp

to the RMA function. Then, when an RMA operation completes remotely, CCS
calls the callback function. This can be used to implement fence and global fence
operations.

Because the user-level communication libraries of most interconnects require
memory to be registered before RMA operations can be performed on that mem-
ory, CCS also requires memory registration. The upper layer is responsible for
ensuring that any dynamically allocated memory is deregistered before it is freed.
The current design is to limit the amount of memory that a process can register
to the amount that can be registered with the interconnect. A future design
is to lift this restriction. If the upper layer registers more memory with CCS
than the interconnect can register, CCS would handle deregistering and rereg-
istering memory with the interconnect as needed. A mechanism similar to the
firehose [15] mechanism used in GASNet could be employed.

Registering and deregistering memory with a network library usually involve
a system call, which makes them costly operations. In order to reduce the over-
head of registering and deregistering memory, CCS implements a registration
cache and uses lazy deregistration. CCS keeps track of which pages have already
been registered, to avoid registering pages twice. CCS also does not immediately
deregister memory when the upper layer calls the CCS deregistration function.
Instead, CCS simply decrements the usage count and deregisters pages once the
number of unused pages reaches a certain threshold. This scheme reduces the
number of network library registration and deregistration calls.

CCS RMA operations can access all of the process’s memory and have no
restrictions on concurrent access to memory. While this feature simplifies im-
plementing upper layers on CCS, it can impact performance on machines that
are not cache coherent and on interconnects that do not have byte granularity
for their RMA operations. In these cases, CCS will have to handle the RMA
operations in software taking care of cache coherence and data transfer.

3.2 Efficient Transfer of Large MPI Two-Sided Messages

CCS nonblocking RMA operations are to be used for transferring large mes-
sages. CCS RMA operations are intended to be implemented by using native
interconnect RMA operations to maximize throughput. Because the operations
are nonblocking, the communication can be overlapped with computation.

As described in the previous section, large MPI messages are typically trans-
ferred by using a rendezvous operation. In CCS, the rendezvous operation can
be performed with active messages. Once the exchange of buffer locations has
been done, the data can be transferred with RMA operations. When the RMA
operations have completed, another active message would be sent to notify the
other side of completion.

A future design is to implement a large data active message operation, which
would function similar to the LAPI active messages using the header handler.
The large data active message would be nonblocking. The sender would specify
an active message handler and a local completion handler. The active message
handler would be executed at the receiver before any data has been transferred.

Designing a Common Communication Subsystem 161

The handler would specify the receive buffer and its local completion handler.
Once the data had been transferred, the completion handlers on the sender and
receiver would be called. A mechanism would be needed for the receiver to abort
or delay the operation in the active message handler if it was not ready to receive
the data yet.

3.3 Active Messages

We are including active messages in CCS because of the flexibility they provide
to upper-layer developers. In our design, active messages are intended to be
used for small message sizes, so the implementation should be optimized for low
latency.

When an active message is received and the handler is executed, the handler
gets a pointer to a temporary buffer where the received data resides. The handlers
are responsible for copying the data out of the buffer. Noncontiguous source data
will be packed contiguously into the temporary buffer. If the final data layout is
to be noncontiguous, the message handler will have to unpack the data.

Depending on the implementation, the active message handlers will be called
either asynchronously or from within another CCS function. CCS provides locks
that are appropriate to be called from within the handler and includes a mech-
anism to prevent a handler from interrupting a thread.

To allow multiple upper layer libraries to use CCS at the same time, we in-
troduce the notion of a context. Each separate upper layer library, or module,
allocates its own context. Active message handlers are registered with a par-
ticular context. When an active message handler is registered, the upper layer
provides the handler function pointer along with an ID number and the context.
The ID number must be unique within that context. When an active message is
sent, the context is specified along with the handler ID to uniquely identify the
active message handler at the remote side.

3.4 In-Order Message Delivery

In order to support the message-passing programming model, CCS guarantees
in-order delivery of active messages. However, RMA operations are not guar-
anteed to be completed in order. This approach allows CCS, or the underlying
interconnect, to reorder messages in order to improve performance.

3.5 Noncontiguous Data

CCS supports noncontiguous data in active messages and RMA operations. CCS
uses datadescs to describe the layout of noncontiguous data. Datadescs are simi-
lar to MPI datatypes and are, in fact, implemented by using the same mechanism
that MPICH2 uses for datatypes [16]. Datadescs are defined recursively like MPI
datatypes; however, datadescs do not currently store information about the na-
tive datatype (e.g., double or int) of the data. Because datadescs do not keep
track of native datatypes, datadescs CCS cannot be used on heterogeneous sys-
tems, where byte-order translation would need to be done. We will address this
situation in future work.

162 D. Buntinas and W. Gropp

While datadescs are defined recursively, they need not be implemented re-
cursively. In the implementation the datadesc can be unrolled into a set of com-
ponent loops, rather than use recursive procedure calls that would affect perfor-
mance. These unrolled representations can be used to efficiently and concisely
describe common data layouts such as ARMCI strided layouts.

MPI datatypes can be implemented by using datadescs having the upper
layer keep track of the native datatypes of the data. I/O vector and strided data
layouts in LAPI and ARMCI can also be represented with datadescs. An im-
plementation optimization would be to include specialized operations to create
datadescs quickly from the commonly used I/O vector and strided representa-
tions in LAPI and ARMCI.

3.6 Summary of Proposed Communication Subsystem

Our proposed communication subsystem addresses all of the issues raised in the
previous section. Active messages can be used by GAS language and remote-
memory copy middleware for remote-memory allocation and locking operations
and by message-passing middleware for message matching. Because CCS sup-
ports multiple contexts for active messages, it can be used for hybrid program-
ming models, for example, where an application uses both MPI-2 and UPC.

CCS provides RMA operations that are compatible with MPI-2 RMA opera-
tions, as well as GAS language and remote memory copy RMA operations. CCS
has primitives that can be used to implement fence and global fence operations.
With the addition of a symmetric allocation function, GAS language and remote
memory copy RMA support can be implemented very efficiently. The CCS RMA
operations can also be used for transferring large messages in message-passing
middleware.

CCS also provides in-order message delivery for active messages but does not
force RMA operations to be in order. This feature allows active messages to be
used for MPI-2 message-passing, while allowing RMA operations to be reordered
for efficiency.

CCS supports transfer of noncontiguous data. The data layout is described
in a recursive manner but can be internally represented compactly and effi-
ciently. CCS’s datadescs are compatible with MPI-2 datatypes. Strided and IOV
data descriptions used in Global Arrays can also be efficiently represented with
datadescs.

Our design of using RMA operations with active messages was inspired by
LAPI and GASNet. But, as we showed in [1], LAPI and GASNet do not support
all of the key features necessary to efficiently support all of the programming
models we targeted. LAPI does not guarantee in-order message delivery, supports
only I/O vector style of noncontiguous data, and is not portable. GASNet does
not support MPI-2 active-mode RMA operations, the efficient transfer of large
MPI messages, in-order message delivery, or noncontiguous data.

We note that the lack of some of the features we described does not necessarily
mean that a middleware cannot be implemented over a particular communication
subsystem. In fact, MPI has been implemented over LAPI [17], UPC has been

Designing a Common Communication Subsystem 163

void get_callback (void *arg) {
++gets_completed;

}
#define NEW_MSG_HANDLER_ID 0
void new_msg_handler (CCS_token_t token, void *buffer, unsigned buf_len,

void *remote_buf, int remote_buflen) {
int sender;
CCS_sender_rank (token, &sender);
CCS_get (sender, remote_buf, remote_buflen, CCS_DATA8, buf, buflen,

CCS_DATA8, get_callback, 0 /* callback argument */);
}
int main (int argc, char **argv) {

CCS_init();
CCS_new_context (&context);
CCS_register_handler (context, NEW_MSG_HANDLER_ID, new_msg_handler);
buf = malloc (buflen);
CCS_register_mem (buf, buflen);
CCS_barrier();
...
CCS_amrequest (context, other_node, NULL, 0, CCS_DATA_NULL,

NEW_MSG_HANDLER_ID, 2, buf, buflen);
...
CCS_finalize();

}

Fig. 1. Sample CCS code

implemented over MPI [7], and MPI-2 has been implemented over GASNet [2].
But the lack of these features makes these implementations less efficient and more
difficult. By implementing all of the key features, CCS can efficiently support all
of the programming-model middleware.

Figure 1 shows some sample code using CCS. The code sends an active
message, using CCS amrequest(), to another node with no data, but with the
pointer and length to its local buffer as parameters to the message handler. The
message handler on the receiving side calls CCS get() to get the data stored in
the buffer specified by the sender. When the Get operation completes CCS will
call the callback function get callback() specified in the call to CCS get().

4 Preliminary Performance Results

In this section we present performance results for our preliminary implementa-
tion of CCS over GM2 [18]. We performed latency and bandwidth tests on two
dual 2 GHz Xeon nodes running Linux 2.4.18 and connected with a Myrinet2000
network [19] using Myricom M3F-PCI64C-2 NICs through a 16-port switch.

Figure 2 shows the latency results for CCS as well as for GASNet 1.3 and
ARMCI 1.2B. For CCS and GASNet, we performed the test using active mes-
sages. Because ARMCI supports only RMA operations, we performed the test
using Put. The results are averaged over 1,000 iterations. The 4-byte latency for
GASNet is 8.8 μs, for CCS is 9.6 μs, and for ARMCI is 10.8 μs. We see from
these numbers and Figure 2 that CCS performs better than ARMCI but not as
well as GASNet.

Figure 3 shows the bandwidth results. We used nonblocking Put operations
to perform the test. In this test, for each message size, we performed 10,000
Put operations, then waited for the operations to complete. We see that CCS

164 D. Buntinas and W. Gropp

 8

 10

 12

 14

 16

 18

 20

 1 4 16 64 256 1024

La
te

nc
y

(μ
se

c)

Message Size (Byte)

CCS
GASNet
ARMCI

Fig. 2. Latency

 0

 50

 100

 150

 200

 250

100,00010,0001,000100101

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Byte)

CCS
GASNet
ARMCI

Fig. 3. Bandwidth

performs better than ARMCI for all message sizes and better than GASNet for
messages larger than 4 KB. For messages smaller than 4 KB, CCS performs only
slightly worse than GASNet. The maximum bandwidth for CCS was 244 MBps,
for GASNet was 242 MBps, and for ARMCI was 238 MBps.

The performance of CCS is comparable to the other communication sub-
systems. The additional functionality of CCS does not have a large impact on
performance. We have not yet tuned the CCS source code for performance and
expect that that with some performance tuning, we can further improve the
performance of CCS.

We note that ARMCI over GM is implemented by using a server thread on
each node. In ARMCI, RMA operations from remote processes are performed by
the server thread. While using a server thread may affect performance compared
to CCS and GASNet, it does allow RMA operation to complete asynchronously,
independent of what the application thread is doing. We intend to evaluate such
functionality for CCS.

5 Discussion and Future Work

In this paper we have presented our design for a common communication sub-
system, CCS. CCS is designed to support the middleware libraries and runtime
systems of various programming models efficiently by taking advantage of the
high-performance features of modern interconnects. We evaluated a preliminary
implementation of CCS and found the performance to be comparable to that of
ARMCI and GASNet.

In the future, we intend to address thread safety, RMA Accumulate oper-
ations, and collective communication operations. We also intend to implement
atomic remote memory operations, such as compare-and-swap and fetch-and-
add, as well as more complex operations like an indexed Put, where the address
of a Put operation is specified by a pointer at the destination process, and the
pointer is incremented after the Put completes. Such operations can be used to
efficiently implement remote queues on shared memory architectures.

We are also investigating using CCS to support a hybrid UPC/MPI program-
ming model. In such a hybrid programming environment, a process can perform

Designing a Common Communication Subsystem 165

both UPC and MPI operations. By porting both the Berkeley UPC runtime and
MPICH2 over CCS, CCS would perform the communication operations for both
paradigms, allowing both paradigms to benefit from CCS’s high-performance
implementation.

In remote-memory model and GAS language middleware, when a process ac-
cesses a remote portion of a shared object distributed across different processes,
the virtual address of that portion at the remote process needs to be computed.
This operation can be simplified by allocating shared memory regions symmet-
rically across all processes; that is, the address of the local portion of the shared
object is the same at each process. This also improves the scalability of the
operation because less information needs to be kept for each remote memory re-
gion. We intend to address this issue, perhaps by including a special symmetric
allocation function.

Acknowledgments

We thank Rusty Lusk, Rajeev Thakur, Rob Ross, Brian Toonen, and Guillaume
Mercier for their valuable comments and suggestions while we were designing
and implementing CCS.

References

1. Buntinas, D., Gropp, W.: Understanding the requirements imposed by program-
ming model middleware on a common communication subsystem. Technical Report
ANL/MCS-TM-284, Argonne National Laboratory (2005)

2. Argonne National Laboratory: MPICH2. (http://www.mcs.anl.gov/mpi/mpich2)
3. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-

mentation of the MPI message passing interface standard. Parallel Computing 22
(1996) 789–828

4. Nieplocha, J., Harrison, R.J., Littlefield, R.L.: Global Arrays: A portable shared
memory programming model for distributed memory computers. In: Supercom-
puting 94. (1994)

5. Pacific Northwest National Laboratory: Global arrays toolkit. (http://www.emsl.
pnl.gov/docs/global/ga.html)

6. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.:
Introduction to UPC and language specification. Technical Report CCS-TR-99-
157, Center for Computing Sciences, IDA, Bowie, MD (1999)

7. Lawrence Berkeley National Laboratory and University of California, Berkeley:
Berkeley UPC runtime. (http://upc.lbl.gov)

8. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing In-
terface. (1997)

9. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages: A
mechanism for integrated communication and computation. In: Proceedings of the
19th International Symposium on Computer Architecture. (1992) 256–266

10. InfiniBand Trade Association: (InfiniBand Architecture Specification) http://
www.infinibandta.com.

166 D. Buntinas and W. Gropp

11. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library for
distributed array libraries and compiler run-time systems. 3rd Workshop on Run-
time Systems for Parallel Programming (RTSPP) of International Parallel Process-
ing Symposium IPPS/SPDP ’99 (1999)

12. Bonachea, D.: GASNet specification, v1.1. Technical Report CSD-02-1207, Uni-
versity of California, Berkeley (2002)

13. International Business Machines: RSCT for AIX 5L LAPI Programming Guide.
Second edn. (2004) SA22-7936-01.

14. Brightwell, R., Riesen, R., Lawry, B., Maccabe, A.B.: Portals 3.0: Protocol building
blocks for low overhead communication. In: Proceedings of the 2002 Workshop on
Communication Architecture for Clusters (CAC). (2002)

15. Bell, C., Bonachea, D.: A new DMA registration strategy for pinning-based high
performance networks. In: Workshop on Communication Architecture for Clusters
(CAC03) of IPDPS’03. (2003)

16. Ross, R., Miller, N., Gropp, W.D.: Implementing fast and reusable datatype
processing. In Dongarra, J., Laforenza, D., Orlando, S., eds.: Recent Advances
in Parallel Virtual Machine and Message Passing Interface. Number LNCS2840 in
Lecture Notes in Computer Science, Springer Verlag (2003) 404–413

17. Banikazemi, M., Govindaraju, R.K., Blackmore, R., Panda, D.K.: Implementing
efficient MPI on LAPI for IBM RS/6000 SP systems: Experiences and performance
evaluation. In: Proceedings of the 13th International Parallel Processing Sympo-
sium. (1999) 183–190

18. Myricom: The GM-2 message passing system – The reference guide to the GM-2
API. (http://www.myri.com/scs/GM-2/doc/refman.pdf)

19. Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.,
Su, W.: Myrinet - A gigabit per second local area network. In: IEEE Micro. (1995)
29–36

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 167 – 174, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Dynamic Interoperable Message Passing

Michal Kouril1 and Jerome L. Paul2

Department of ECECS, University of Cincinnati,
Cincinnati, OH 45221-0030, USA

{mkouril, jpaul}@ececs.uc.edu

Abstract. In this paper we present two solutions to dynamic interoperable MPI
communication. These solutions use the Inter-Cluster Interface library that we
have developed. The first solution relies on the MPI-2 Standard; specifically on
general requests, threads and “external32” encoding. The second solution dis-
cusses adjustments to the first solution that allow its implementation in envi-
ronments where some parts of the MPI-2 Standard are not implemented, and
can even work independently of MPI. We have successfully implemented these
solutions in a number of scenarios, including parallelizing SAT solvers, with
good speedup results.

1 Introduction

When connecting multiple clusters there are two main paradigms and concomitant
programming environments, static versus dynamic. In the static environment, all
participating processes are captured at the outset. In the dynamic environment, proc-
esses can join and leave during the execution of the computation. Using the Inter-
Cluster Interface (ICI) library [13] that we have developed, we have applied this dy-
namic environment to computationally intensive, hard problems (such as NP com-
plete problems) with good speedup results. In particular, we have parallelized some
SAT solvers, including SBSAT [15, 17] and zChaff [3], as well as our own special
solver. The latter solver was targeted to determine exact values or improved lower
bounds for van der Waerden numbers W(k,n) [16]. Amongst other results, we have
almost doubled the previously known lower bound on W(2,6) from 696 to 1132. ICI
together with our backtracking framework BkFr [9] is being used in an attempt to
establish that this bound is sharp. The computation is estimated to take a several
months, but it is critical that we use all available computing resources, including us-
ing heterogeneous clusters dynamically.

There is a large problem domain for which it is extremely advantageous to have
both interoperability and dynamic cluster participation available to the programmer.
Grid computing and the heterogeneity of the current grid make yet another case for
having an interoperable way to dynamically connect running MPI programs. Current
MPI standards do not explicitly support interoperability (communication between two
different MPI implementations). On the other hand, the IMPI Standard, while it sup-
ports interoperability, it is limited to the static environment.

1 Partially supported by DoD contract MDA-904-02-C-1162 and a fellowship grant of the Ohio

Board of Regents.
2 Partially supported by NSF Grant No. 9871345.

168 M. Kouril and J.L. Paul

In the next section we summarize the existing implementations available for static
and dynamic message passing programming environments. We then introduce our
methods of solving the interoperability issue in the dynamic setting and discuss the
performance data that we obtained.

2 Current Static and Dynamic Message Passing Environments

In our scenario we assume that the applications we wish to connect are started inde-
pendently, as opposed to being spawned from the currently running task. In other
words, there is no previous connection between the running tasks. We also assume
that the applications are compiled by different MPI implementations, therefore mak-
ing it impossible to directly use the existing functions introduced in MPI-2. In Table 1
we list the dynamic/interoperability status of the current standards. Although using
compatible MPI implementations on both ends of intercluster communication is an
option, usually every cluster has an optimized MPI implementation installed and
compatible implementations might not be available. The user should not be expected
to recompile MPI implementation on each cluster. Our intercluster interface library is
small and provides the bare minimum for the intercluster communication, so that
applications can take advantage of the optimized intracluster communication. ICI
does not include collective communication functions at this time, since many applica-
tions, including those discussed in this paper, do not require this functionality.

Table 1. Dynamicity and interoperability supported by the current MPI Standards

Standard Participating nodes Interoperability status
IMPI Static3 Interoperable

MPI-1 Static Non-interoperable
MPI-2 Dynamic Non-interoperable
Not currently available Dynamic Interoperable

Spreading static MPI-1 computations among multiple clusters without changing
the source code has been addressed by PACX-MPI [6], PLUS [18], MPI-Glue [20]
and MPICH-Madeleine [1]. The number of nodes for such computation is statically
preallocated and no new dynamic connections are possible. The project StaMPI [19]
also allows the spawning of new processes, but does not allow connecting independ-
ent processes. Additional projects touching on the subjects are MagPIe [12] and
MPICH-G2 [11]. None of these projects cover dynamic connections of independent
MPI implementations.

Interoperable MPI (IMPI) [10] addressed the problem of interconnecting different
MPI implementations, but it is done statically on a group of preallocated nodes with-
out the possibility of connecting additional nodes or clusters using the IMPI protocol.

Relative to the dynamic environment, MPI_Connect [4] allowed dynamic connec-
tions between clusters by forming inter-communicators. This project had similar goals

3 Number of nodes participating over IMPI connections is static.

 Dynamic Interoperable Message Passing 169

as our project, but it is no longer supported. MPI_Connect implementation was based
on MetaComputing system SNIPE. MPI_Connect was succeeded by Harness/FT-MPI
[2] which is a light-weight MPI implementation with a focus on fault tolerance, which
retained the dynamic communication capabilities from MPI_Connect. Harness/FT-
MPI has its own MPI implementation, and therefore is not interoperable.

3 The MPI Standards Needed for Our Solutions

We now briefly describe the parts of the MPI Standards necessary to implement our
solutions given in section 4 (see the MPI Standards [14, 7] for additional details).
MPI-2 extends the existing MPI-1 Standard by adding a number of new functions. In
particular, communication functions were added between two sets of MPI processes
that do not share a communicator, but no standard was mandated for interoperable
communication. However, the new functions for establishing communication, such
as MPI_Comm_connect and MPI_Comm_join, have a few associated specifics
that are not interoperable, such as port names, MPI_Info parameters, and communi-
cation protocols. Thus, implementers must decide how to communicate (no protocol
specification is given), thereby effectively making any communication implementa-
tion specific, i.e., not interoperable.

The MPI-2 Standard defines MPI_Init_thread (to be used instead of
MPI_Init) specifically targeted towards threaded applications. This function returns
the highest level of thread safety the implementation can provide.

Three functions (MPI_Pack_external, MPI_Pack_external_size and
MPI_Unpack_external) were added that allow conversion of the data stored in
the internal format to a portable format "external32". This format ensures that all MPI
implementations will interpret the data the same way. For example "external32" uses
big-endian for storing integral values, big-endian IEEE format for floating point val-
ues, and so forth. The MPI-2 Standard mentions that this could be used to send typed
data in a portable way from one MPI implementation to another. In both of our solu-
tions, ICI allows the utilization of these functions when they are available.

Finally, MPI-2 added a group of functions called generalized requests allowing for
the definition of additional non-blocking operations and their integration into MPI.
These functions are MPI_Grequest_start and MPI_Grequest_complete.
MPI_Grequest_start returns a handle that can be used in MPI functions such as
MPI_Test and MPI_Wait. The completion of the operation is signaled to MPI
using MPI_Grequest_complete. Typically the non-blocking operation runs in a
separate thread, so that it is only usable in a sufficiently thread-safe environment.

While MPI-2 also added functions for spawning new processes, they are not con-
sidered in this paper, since in our problem domain parallel applications are typically
started independently.

4 Two Solutions for Dynamic Interoperable Communication

We will describe two solutions to the problem of establishing interoperable dynamic
connections, where the first solution assumes the relevant functions from the MPI-2
Standard are available, and the second is suitable for environments in which some of

170 M. Kouril and J.L. Paul

the relevant functions in this standard are missing. In fact, the second solution creates
a communication layer that is independent of MPI and is usable with other communi-
cation libraries. In the both solutions, a user could choose to call ICI functions di-
rectly and thereby explicitly recognize when the communication is with a process of
another MPI implementation. On the other hand, a user could use the profiling inter-
face where interoperable communication is hidden from the user.

4.1 A Solution That Assumes a Thread-Safe Implementation of MPI-2

Together with ICI, the following set of functions from the MPI-2 Standard can be
used to create dynamic interoperable MPI communication:

1. Canonical MPI_Pack_external and MPI_Unpack_external for interop-

erability.
2. Generalized requests for integration with MPI.
3. Full thread-safeness.
4. Profiling interface for transparent integration with MPI (optional).

The ICI library has to be used on both ends of the communication. The library uses
the existing MPI implementations and ICI low level functions (such as recv_data,
send_data and so on). The ICI functions use the Berkeley TCP/IP API interface,
which is available on the majority of platforms.

In Table 2 we list the basic ICI communication functions required to support dy-
namic interoperable communication. These functions are counterparts to MPI func-
tions having the same arguments, with the possibility of using the profiling interface.
In Table 2 we only show a sample set of MPI functions and their ICI counterparts.
The full set would contain all MPI functions that allow communication using point-
to-point communicators.

Table 2. A sample set of ICI functions

MPI ICI counterpart Description
MPI_Send ICI_Send Send data, blocking
MPI_Recv ICI_Recv Receive data, blocking
MPI_Isend ICI_Isend Send data, non-blocking
MPI_Irecv ICI_Irecv Receive data, non-blocking
MPI_Probe ICI_Probe Blocking wait for message
MPI_Comm_connect ICI_Connect Initiate connection, blocking
- ICI_Iconnect Initiate connection, non-blocking

4.2 A Solution for Implementations Missing Some Functionality of the MPI-2
Standard

For interoperability, we encode the data using the MPI-2 "external32" format by
MPI_Pack_external and MPI_Unpack_external. This encoding incurs

 Dynamic Interoperable Message Passing 171

overhead during sending and receiving data, but guaranties interoperability not only
among implementations, but also among platforms and used high-level languages.

Generalized requests are used to integrate inter-cluster communication into the ex-
isting MPI code. Non-blocking ICI_Isend and ICI_Irecv calls setup a request
handle using MPI_Grequest_start, execute in a separate thread and call
MPI_Grequest_complete once the operation is complete. It is therefore possible
to use ICI just like MPI for point-to-point communication; that is, analogous to com-
munication using an inter-communicator. Since the ICI communication happens in a
separate thread, MPI_Grequest_complete is called in a separate thread and
therefore the MPI implementation has to be fully thread-safe (see Section 5).

We chose not to use the MPI profiling interface to create a uniform API interface
for intra-cluster and inter-cluster communication, since its use would negatively im-
pact performance. However, it could be added in future ICI implementations.

In addition to dynamic interoperability, the ICI library allows implementing prop-
erties such as encryption, authentication, tunneling, and so forth.

Although some of the MPI implementations comply with the MPI-2 Standard, at
the time of writing this paper the implementation level and thread safety is low (see
Section 5). We now discuss how the solution in Section 4.1 can be adjusted for the
current state of the implementations when one or more of the following functionalities
are missing. In the special case where MPI is not even available, the missing MPI
functionality can be easily obtained by substituting appropriate ICI functions.

1. Implementations missing the canonical MPI_Pack_external and
MPI_Unpack_external functions. These functions are not only platform de-
pendent but also language dependent. However, it is feasible to implement them
using MPI_Type_get_envelope and MPI_Type_get_contents which
are generally available.

2. Implementations missing generalized requests. Instead of integrating ICI commu-
nication with MPI, we substituted blocking functions that potentially use both MPI
and ICI communication, such as using MPI_WaitAny with a polling loop of non-
blocking tests of ICI and MPI communication. In our applications the communica-
tion is not the critical component, and therefore the polling overhead is acceptable.

3. Implementations missing thread–safety. This can be overcome by implementing
not only blocking ICI communication within ICI function calls, but also enabling
progress checks on non-blocking ICI communication within all ICI function calls.
In our pseudocode this is called the do_background_ops function.

This solution was implemented as part of the BkFr project [9], and tested with MPI-1
implementations MPICH [8] and LAM [5] with good results.

5 Feasibility of Each Solution in Current Implementations

The first solution places the most requirements on the implementation level of the
MPI-2 Standard. Moreover, this solution requires full thread-safety, which renders it
unusable for the widely available MPI implementations shown in Table 3.

172 M. Kouril and J.L. Paul

Table 3. MPI-2 implementation level in various MPI implementations

 Thread safety MPI_Grequests MPI_Pack_external
MPICH 1.2.7 FUNNELED N N4
MPICH2 1.0.2 FUNNELED Y Y
MPICH G2 1.2.5.3 SINGLE N N4
LAM 7.1.1 SERIALIZED N N4
SUN HPC 5.0 SINGLE Y Y

Fig. 1. Performance data for small and midsize messages

Our tests of the second solution show a comparison of MPICH 1.2.7, LAM 7.1.1
with our implementation of the ICI communication with and without encoding the
messages into an interoperable format “external32.” The data were measured on
AMD MP-1800+ cluster connected by 1000Base-T adapters using modified perftest
1.3a (performance testing tool included with MPICH). MPICH and LAM data were
measured using perftest as a communication performance between two nodes of the
cluster during intracluster communication. ICI data we measured also using perftest
as a communication performance between the same two computers as with LAM and
MPICH but the ICI library as described in the Section 4.2 was used. In the prototype
the exchanged messages were MPI_INT type typed arrays.

Figure 1 shows the performance for small and midsize messages up to 8K. LAM
outperforms both ICI and MPICaH and ICI with and without “external32” outper-
forms MPICH for small messages (size < 1k). Figure 2 shows performance for long
messages. The overhead of “external32” encoding is obvious and ICI with the “exter-
nal32” encoding is outperformed by LAM and MPICH. Although the performance
was not our primary goal for small and large messages (size<1000 and size>32K), the
ICI implementation without “external32” encoding outperforms MPICH 1.2.7. For
small messages the “external32” encoding poses only negligible overhead, which
increases with the increasing message size up to 58%, after which it remains constant
(see Figure 3).

4 MPI_Type_get_contents and MPI_Type_get_envelope are available.

 Dynamic Interoperable Message Passing 173

Table 4. Performance comparisons of typical instances run on the BkFr with and without ICI

 One node One cluster 2 clusters5 connected via ICI
Sum of subsets 1:13:27 9:04 3:36
BkFr SAT SBSAT 1:07:13 7:14 5:06
BkFr SAT zChaff 50:59 4:13 2:35

Fig. 2. Performance data for long messages Fig. 3. Perf. data for encoding overhead

The performance of the BkFr[9] project utilizing ICI is shown in the Table 4 and
further described in [9].

6 Conclusion

There are many MPI applications where it would be very advantageous to dynamically
add clusters, with possibly varying MPI implementations, to an ongoing computation.
Using resources dynamically as they become available is currently possible, but the
MPI-2 Standard lacks interoperability. We presented two solutions to the dynamic
interoperable problem, both of which isolate inter-cluster communication within a
separate library layer (ICI), thereby possibly introducing stronger fault tolerant capa-
bilities for inter-cluster communication. The first solution utilizes MPI-2 general re-
quests, threads and "external32" encoding. The second solution provides adjustments
to the first solution assuming that some parts of the MPI-2 Standard are not imple-
mented, including the absence of thread safeness. We have implemented a prototype
version of the second solution, and successfully utilized it in a general backtracking
framework BkFr [9] over multiple clusters, as well as verifying its feasibility in various
environments and implementations. The results show that ICI efficiently handles inter-
cluster communication, and that BkFr running SAT instances that scale well within the
cluster continue to scale well into multiple clusters. We hope that dynamic interoper-
able communication will eventually become part of the MPI Standard.

5 16 node AMD 1800+ and 32 node PIII-450 clusters.

174 M. Kouril and J.L. Paul

References

1. Aumage, O., Mercier, G. and Namyst, R., MPICH/Madeleine: a True Multi-Protocol MPI
for High Performance Networks. IPDPS, 2001.

2. Dongarra, J., Fagg, G.E., Geist, G.A., Kohl, J.A., Papadopoulos, P.M., Scott, S.L., Sun-
deram, V. and Magliardi, M. HARNESS: Heterogeneous Adaptable Reconfigurable NEt-
worked SystemS. HPDC, 1998.

3. Moskewicz, M.W., C. Madigan, Zhao, Y., Zhang, L., and Malik, S., Engineering an Effi-
cient SAT Solver. Proceedings of the 38th ACM/IEEE Design Automation Conference
(2001).

4. Fagg, G. E, London, K.S., and Dongarra, J., MPI_Connect Managing Heterogeneous MPI
Applications Interoperation and Process Control. Proc. of the 5th European PVM/MPI
Users' Group, Springer-Verlag, 1998.

5. Squyres, J.M. and Lumsdaine, A., A Component Architecture for LAM/MPI. Proceedings
of 10th European PVM/MPI Users' Group Meeting, Springer-Verlag, 2003.

6. Gabriel, E., Resch, M., Beisel, T. and Keller, R., Distributed Computing in a Heterogene-
ous Computing Environment. Proc. of the 5th European PVM/MPI Users' Group Meeting,
Springer-Verlag, 1998.

7. Message Passing Interface Forum. MPI-2: A Message-Passing Interface Standard. The
International Journal of Supercomputer Applications and High Performance Computing,
12(1-2), 1998.

8. Gropp, W., Lusk, E. Doss, N., and Skjellum, A., A High-Performance, Portable Imple-
mentation of the MPI Message-Passing Interface Standard. Parallel Computing, 1996.

9. Kouril, M. and Paul, J.L., A Parallel Backtracking Framework (BkFr) for Single and Mul-
tiple Clusters. Conf. Computing Frontiers, ACM Press, 2004.

10. IMPI Steering Committee: IMPI - Interoperable Message-Passing Interface, 1998.
http://impi.nist.gov/IMPI/.

11. Karonis N., Toonen B. and Foster I., MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface. Journal of Parallel and Distributed Computing, 2003.

12. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A. and Bhoedjang, R.A.F., MagPIe:
MPI's Collective Communication Operations for Clustered Wide Area Systems. ACM
SIG-PLAN Notices, 1999.

13. Kouril, M, Paul, J.L., Dynamic Interoperable Point-to-Point Connection of MPI Imple-
mentations. Brief Announcement. Twenty-Fourth Annual ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, 2005.

14. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. Interna-
tional Journal of Supercomputer Applications, 8(3/4), 1994. Special issue on MPI

15. Franco, J., Kouril, M., Schlipf, J. S., Ward, J., Weaver, S., Dransfield, M., Vanfleet, W.
M., SBSAT: a state-based, BDD-based Satisfiability solver. LNCS 2919, Springer, 2004.

16. Kouril, M., Franco, J., Resolution Tunnels for Improved SAT Solver Performance. Eighth
International Conference on Theory and Applications of Satisfiability Testing, 2005.

17. Franco, J., Kouril, M., Schlipf, J. S., Weaver, S., Dransfield, M., Vanfleet, W. M., Func-
tion-complete lookahead in support of efficient SAT search heuristics. Journal of Univer-
sal Computer Science, Know Center and IICM, Graz University, Austria, 2004.

18. Brune, M., Gehring, J., Reinefeld, A.: A Lightweight Communication Interface for Paral-
lel Programming Environments. HPCN’97, Springer-Verlag, 1997.

19. Imamura, T., Tsujita, Y., Koide, H., and Takemiya, H. 2000. An Architecture of Stampi:
MPI Library on a Cluster of Parallel Computers. Proc. of the 7th European PVM/MPI Us-
ers' Group Meeting, 2000.

20. Rabenseifner, R., MPI-GLUE: Interoperable High-Performance MPI Combining Different
Vendor's MPI Worlds. Euro-Par, 1998.

Analysis of the Component Architecture
Overhead in Open MPI

B. Barrett1, J.M. Squyres1, A. Lumsdaine1,
R.L. Graham2, and G. Bosilca3

1 Open Systems Laboratory, Indiana University
{brbarret, jsquyres, lums}@osl.iu.edu

2 Los Alamos National Lab
rlgraham@lanl.gov

3 Innovative Computing Laboratory, University of Tennessee
bosilca@cs.utk.edu

Abstract. Component architectures provide a useful framework for de-
veloping an extensible and maintainable code base upon which large-
scale software projects can be built. Component methodologies have
only recently been incorporated into applications by the High Perfor-
mance Computing community, in part because of the perception that
component architectures necessarily incur an unacceptable performance
penalty. The Open MPI project is creating a new implementation of the
Message Passing Interface standard, based on a custom component ar-
chitecture – the Modular Component Architecture (MCA) – to enable
straightforward customization of a high-performance MPI implementa-
tion. This paper reports on a detailed analysis of the performance over-
head in Open MPI introduced by the MCA. We compare the MCA-based
implementation of Open MPI with a modified version that bypasses the
component infrastructure. The overhead of the MCA is shown to be low,
on the order of 1%, for both latency and bandwidth microbenchmarks
as well as for the NAS Parallel Benchmark suite.

1 Introduction

MPI implementations are designed around two competing goals: high perfor-
mance on a single platform and support for a range of platforms. Vendor op-
timized MPI implementations must support ever evolving hardware offerings,
each with unique performance characteristics. Production quality open source
implementations, such as Open MPI [6], LAM/MPI [13], and MPICH [9], face
an even wider range of platform support. Open MPI is designed to run efficiently
on platforms ranging from networks of workstations to custom built supercom-
puters with hundreds of thousands of processors and high speed interconnects.

Open MPI meets the requirements of high performance and portability with
the Modular Component Architecture (MCA), a component system designed
for High Performance Computing (HPC) applications. While component based
programming is widely used in industry and many research fields, it is only
recently gaining acceptance in the HPC community. Most existing component

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 175–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

176 B. Barrett et al.

architectures do not provide the low overheads necessary for use in HPC appli-
cations. Existing architectures are generally designed to provide features such
as language interoperability and to support rapid application development, with
performance as a secondary concern.

In this paper, we show that Open MPI’s MCA design provides a component
architecture with minimal performance implications. Section 2 presents similar
work for other component architectures. An overview of the Open MPI architec-
ture is presented in Section 3, focusing on the component architecture. Finally,
Section 4 presents performance results from our experiments with Open MPI.

2 Related Work

Component architectures have found a large degree of success in commercial
and internet applications. Enterprise JavaBeans, Microsoft COM and DCOM,
and CORBA provide a rich environment for quickly developing a component
based application. These environments focus on industrial applications, provid-
ing reasonable performance for such applications. However, either the languages
supported or the overheads involved make them unsuitable for the high perfor-
mance computing community. Literature on the performance of such component
infrastructures is sparse, most likely due to the fact that performance is not a
concern for the intended uses of these component architectures.

The Common Component Architecture (CCA) [2] is designed to provide a
high performance component architecture for scientific applications. Bernholdt
et. al. [3] study the overheads involved in the CCA design and found them to
be small, on the order of two extra indirect function calls per invocation. CCA
components are designed to be large enough that component boundaries are not
crossed for inner loops of a computation. Therefore, the overhead of CCA is
negligible for most applications. Much of the overhead is due to inter-language
data compatibility, an overhead that is not applicable in Open MPI.

3 Open MPI Architecture

Open MPI is a recently developed MPI implementation, tracing its history to
the LAM/MPI [13], LA-MPI [8], FT-MPI [5], and PACX-MPI [10] projects.
Open MPI provides support for both MPI-1 and MPI-2 [7,12].1 Open MPI is
designed to be scalable, fault tolerant, and provide high performance in a variety
of HPC environments. The use of a component architecture allows for a well
architected code base that is both easy to test across multiple configurations
and easy to integrate into a new platform.

3.1 Component Architecture

The Modular Component Architecture (MCA) is designed to allow users to build
a customized version of Open MPI at runtime using components. The high over-
1 One-sided support is scheduled to be added to Open MPI shortly after the first

public release.

Analysis of the Component Architecture Overhead in Open MPI 177

heads generally associated with CORBA and COM are avoided in the MCA
by not supporting inter-process object communication or cross-language sup-
port – MCA components provide a C interface and interface calls are local to
the MPI process. Components are opened and loaded at runtime on demand,
using the GNU Libtool libltdl software package for portable dynamic shared
object (DSO) handling. Components can also be linked into the MPI library
for platforms that lack support from libltdl or when a static library is de-
sired. Current MPI level component frameworks include point-to-point messag-
ing, collective communication, MPI-2 I/O, and topology support. The runtime
infrastructure for Open MPI include component frameworks for resource discov-
ery, process startup, and standard I/O forwarding, among others.

In order to provide a manageable number of measurements while still mea-
suring the overhead of the MCA design, we focus on the components directly re-
sponsible for MPI point-to-point communication for the remainder of this paper.
Many common MPI benchmarks are based primarily on point-to-point commu-
nication, providing the best opportunities for analyzing the performance impact
of the MCA on real applications.

3.2 MPI Point-to-Point Design

Open MPI implements MPI point-to-point functions on top of the Point-to-point
Management Layer (PML) and Point-to-point Transport Layer (PTL) frame-
works (Fig. 1). The PML fragments messages, schedules fragments across PTLs,
and handles incoming message matching. Currently, there is one PML compo-
nent, TEG [14]. TEG is designed to support message fault tolerance, recovery
from corrupted data, and dropped packets.2 It can also simultaneously use mul-
tiple communication channels (PTLs) for a single message. The PTL provides
an interface between the PML and underlying network devices.

PTL
(e.g., TCP) (e.g., shared memory) (e.g., Infiniband)

PTL

MPI API layer

PML

PTL

Fig. 1. Open MPI component frameworks for MPI point-to-point messages

2 These features remain under active development and may not be available in the
first release of Open MPI.

178 B. Barrett et al.

4 Component Overhead Analysis

The MCA design’s primary source of overhead is the use of indirect calls through
function pointers for dispatching into a component. There are two designs for
calling into components in the MCA, depending on how many component in-
stances (modules) are active within the framework. For frameworks like the PML,
where only one module is active per process, a global structure is used to hold
the set of function pointers. The address of the global structure is known at link
time. In the case of the PTL frameworks, there are multiple components active,
so there is not a single global structure of function pointers. Instead, there are
multiple tables stored by the caller of the framework, the PML in this case. The
PML must compute the address of the function pointer in a PTL structure, load
the value of the function pointer, and make the function call.

To measure the overhead of the component architecture in Open MPI, we
added the ability to bypass the indirect function call overhead inherent in the
MCA design. Calls from the MPI layer into the PML and from PML into the
PTL are made directly rather than using the component architecture. The GM
PTL, supporting the Myrinet/GM interconnect, was chosen because it offered
a low latency, high bandwidth environment best suited for examining the small
overheads involved in the MCA. The ability to “hard code” the PML is available
as part of Open MPI as a configure time option. Bypassing the PTL component
interface is not part of the Open MPI release, as it greatly limits the functionality
of the resulting MPI implementation. In particular, bypassing the PTL compo-
nent interface disables message striping over multiple devices and the ability to
send messages to self. For the majority of the tests discussed in this paper, such
limitations were not relevant to examining the overheads of the MCA.

Two variables relevant to the overhead of the MCA system for point-to-point
communication are how libmpi is built and whether the MCA interface is used
for point-to-point communication. Table 1 describes the MPI configurations used
in testing. Open MPI alpha release r5408 was used for testing Open MPI and
was modified to support bypassing the PTL component overhead. MPICH-GM

Table 1. Build configurations used in performance tests

Configuration Description
MPICH-GM Myricom MPICH-GM 1.2.6..14a, built using the default

build script for Linux with static library
LAM/MPI LAM/MPI 7.1.1, with GM support and static library
Open MPI shared DSO Open MPI, libmpi shared library. Components dynami-

cally loaded at runtime, using the component interface
Open MPI shared direct Open MPI, libmpi shared library. Point-to-point compo-

nents part of libmpi, bypassing the component interface
Open MPI static DSO Open MPI, libmpi static library. Components part of

libmpi, using the component interface
Open MPI static direct Open MPI libmpi static library. Point-to-point compo-

nents part of libmpi, bypassing the component interface

Analysis of the Component Architecture Overhead in Open MPI 179

1.2.6..14a, the latest version of MPICH available for Myrinet,3 and LAM/MPI
7.1.1 were used to provide a baseline performance reference.

All MPI tests were performed on a cluster of 8 dual processor machines
connected using Myrinet. The machines contain 2.8 GHz Intel Xeon processors
with 2 GB of RAM. A Myricom PCIX-D NIC is installed in a 64 bit 133 MHz
PCI-X slot. The machines run Red Hat 8.0 with a Linux 2.4.26 based kernel
and Myricom’s GM 2.0.12. Additional CPU overhead tests were performed on a
dual 2.0 GHz AMD Opteron machine with 8 GB of RAM running Gentoo Linux
and the 2.6.9 kernel and an Apple Power Mac with dual 2.0 GHz IBM PPC 970
processors and 3.5 GB of memory running Mac OS X 10.4.

4.1 Indirect Function Call Overhead

Fig. 2 presents the overhead, measured as the time to make a call to a function
with no body, for different call methods. A tight loop is used to make the calls, so
all loads should be satisfied from L1 cache, giving a best case performance. The
direct call result is the time to call a function in a static library, a baseline for
function call overheads on a particular platform. The function pointer result is
the cost for calling the same function, but with a load dependency to determine
the address of the function. As expected, the cost is approximately the cost of
a load from L1 cache plus the cost of a direct function call. Calling a function
in a shared library directly (the shared library call result) requires indirect ad-
dressing, as the location of a function is unknown until runtime. There is some
additional overhead in a shared library call due to global offset table (GOT)
computations, so a direct call into a shared library is generally more expensive
than an indirect call into a static library [11]. The unusually high overhead for
the PPC 970 when making shared library calls is due to the Mach-O ABI used
by Mac OS X, and not the PPC 970 hardware itself [1].

Function calls into a DSO are always made through a function pointer, with
the address of the function explicitly determined at runtime using dlsym() (or
similar). In modern DSO loader implementations, GOT computations are not
required. The cost of calling a function in a DSO is therefore much closer to the
cost of an indirect function call into a static library than a direct function call into
a shared library. From this result, it should be expected that the performance
impact of the component architecture in Open MPI will be more from the use
of shared libraries than from the component architecture itself.

4.2 Component Effect on Latency and Bandwidth

MPI latency for zero byte messages using a ping-pong application and band-
width using NetPIPE are presented in Fig. 3. All builds of Open MPI exhibit
performance differences of less than 2%, with most of the performance differ-
ence related to whether Open MPI used shared or static libraries. Bypassing
the component infrastructure for point-to-point messages shows little impact on
3 At the time of writing, Myricom does not provide an MPICH-2 based implementation

of MPICH-GM.

180 B. Barrett et al.

0.000

0.002

0.004

0.006

0.008

0.010

2.0Ghz Opteron2.8Ghz Xeon2.0Ghz PPC 970

C
al

l O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Platform

Direct Call
Function Pointer

Shared Library Call
Function Pointer into DSO

Fig. 2. Time to make a call into an empty function for a number of common
architectures

Implementation Latency
Open MPI shared DSO 7.21us
Open MPI shared direct 7.17us
Open MPI static DSO 7.13us
Open MPI static direct 7.12us
MPICH-GM 6.93us
LAM/MPI 7.55us

(a)
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

Open MPI shared DSO
Open MPI shared direct
Open MPI shared DSO
Open MPI static direct

MPICH-GM 1.2.6
LAM 7.1.1

(b)

Fig. 3. Latency of zero byte messages and NetPIPE bandwidth for component and
direct call configurations of Open MPI

either latency or bandwidth. In the worst case, the MCA overhead was .04 mi-
croseconds, which is a fraction of the end-to-end latency for the GM software
stack. The bandwidth results show Open MPI is comparable to MPICH-GM and
LAM/MPI for small messages. For large messages, Open MPI is comparable to
MPICH-GM and approximately 70 Mbps faster than LAM/MPI. Open MPI
suffers a slight performance drop for messages between 32 KB and 256 KB when
compared to LAM/MPI and MPICH-GM. The performance drop appears to be
caused by our wire protocol, and should be solved through further tuning.

4.3 Component Effect on NAS Parallel Benchmarks

To approximate real application performance impact from Open MPI’s use of
components, the NAS Parallel Benchmark suite version 2.4 [4] was run with
the build configurations described in Table 1. The results in Table 2 are for
four processes, using the B sized benchmarks. Each process was executed on a

Analysis of the Component Architecture Overhead in Open MPI 181

Table 2. NAS Parallel Benchmark results for Open MPI, MPICH-GM, and LAM/MPI
using 4 processors and the B sized tests

Implementation BT CG EP IS LU MG SP
Open MPI shared DSO 471.16s 95.58s 77.20s 4.37s 297.06s 12.12s 422.43s
Open MPI shared direct 475.91s 95.82s 77.33s 4.34s 298.49s 13.54s 422.16s
Open MPI static DSO 472.48s 95.08s 77.17s 4.35s 297.26s 12.96s 416.76s
Open MPI static direct 477.21s 95.15s 77.21s 4.28s 299.35s 13.50s 421.19s
MPICH-GM 475.63s 96.83s 77.14s 4.22s 296.98s 13.74s 421.95s
LAM/MPI 473.93s 99.54s 75.98s 4.01s 298.14s 13.69s 420.70s

separate node, to prevent use of the shared memory communication channel by
configurations that support multiple interconnects. Each test was run five times,
with the lowest time given. Variance between runs of each test was under 2%.

The CG and MG tests invoke MPI communication that requires sending a
message to self. Due to the design of Open MPI, this requires multiple PTL
components be active, which is disabled in the direct call PTL configuration.
Therefore, the CG and MG direct call results are with only the PML component
interface bypassed. Performance of the Open MPI builds is generally similar,
with variations under 3% in most cases. Similar to Section 4.2, the NAS Parallel
Benchmarks show that there is very little measurable overhead in utilizing the
MCA in Open MPI. Open MPI performance is comparable to both LAM/MPI
and MPICH-GM for the entire benchmark suite.

5 Summary

Open MPI provides a high performance implementation of the MPI standard
across a variety of platforms through the use of the Modular Component Ar-
chitecture. We have shown that the component architecture used in Open MPI
provides negligible performance impact for a variety of benchmarks. Further, the
Open MPI project provides performance comparable to existing MPI implemen-
tations, and has only recently begun optimizing performance. The component
architecture allows users to customize their MPI implementation for their hard-
ware at run time. Only features that are needed by the application are included,
removing the overhead introduced by unused features.

Acknowledgments

This work was supported by a grant from the Lilly Endowment and National
Science Foundation grants NSF-0116050, EIA-0202048 and ANI-0330620. Los
Alamos National Laboratory is operated by the University of California for the
National Nuclear Security Administration of the United States Department of
Energy under contract W-7405-ENG-36. This paper was reviewed and approved
as LA-UR-05-4576. Project support was provided through ASCI/PSE and the

182 B. Barrett et al.

Los Alamos Computer Science Institute, and the Center for Information Tech-
nology Research (CITR) of the University of Tennessee.

References

[1] Apple Computer, Inc. Mach-O Runtime Architecture for Mac OS X version 10.3.
Technical report, August 2004.

[2] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott R. Kohn, Lois
McInnes, Steve R. Parker, and Brent A. Smolinski. Toward a common component
architecture for high-performance scientific computing. In HPDC, 1999.

[3] D. E. Bernholdt et al. A component architecture for high-performance scientific
computing. to appear in Intl. J. High-Performance Computing Applications.

[4] Rob F. Van der Wijngaart. NAS Parallel Benchmarks version 2.4. Technical
Report NAS Technical Report NAS-02-007, NASA Advanced Supercomputing
Division, NASA Ames Research Center, October 2002.

[5] G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HARNESS and fault tolerant MPI.
Parallel Computing, 27:1479–1496, 2001.

[6] E. Garbriel et al. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
2004.

[7] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir,
T. Skjellum, and M. Snir. MPI-2: Extending the Message-Passing Interface. In
Euro-Par ’96 Parallel Processing, pages 128–135. Springer Verlag, 1996.

[8] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E. Ras-
mussen, L. D. Risinger, and M. W. Sukalksi. A network-failure-tolerant message-
passing system for terascale clusters. International Journal of Parallel Program-
ming, 31(4), August 2003.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Computing,
22(6):789–828, September 1996.

[10] Rainer Keller, Edgar Gabriel, Bettina Krammer, Matthias S. Mueller, and
Michael M. Resch. Towards efficient execution of parallel applications on the
grid: porting and optimization issues. International Journal of Grid Computing,
1(2):133–149, 2003.

[11] John R. Levine. Linkers and Loaders. Morgan Kaufmann, 2000.
[12] Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of

Supercomputing ’93, pages 878–883. IEEE Computer Society Press, November
1993.

[13] J.M. Squyres and A. Lumsdaine. A Component Architecture for LAM/MPI. In
Proceedings, 10th European PVM/MPI Users’ Group Meeting, Lecture Notes in
Computer Science, Venice, Italy, September 2003. Springer-Verlag.

[14] T.S. Woodall et al. TEG: A high-performance, scalable, multi-network point-to-
point communications methodology. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 2004.

A Case for New MPI Fortran Bindings

C.E. Rasmussen1 and J.M. Squyres2

1 Advanced Computing Lab, Los Alamos National Laboratory
crasmussen@lanl.gov

2 Open Systems Laboratory, Indiana University
jsquyres@open-mpi.org

Abstract. The Fortran language has evolved substantially from the
Fortran 77 bindings defined in the MPI-1 (Message Passing Interface)
standard. Fortran 90 introduced interface blocks (among other items);
subsequently, the MPI-2 standard defined Fortran 90 bindings with ex-
plicit Fortran interfaces to MPI routines. In this paper, we describe the
Open MPI implementation of these two sets of Fortran bindings and
point out particular issues related to them. In particular, we note that
strong typing of the Fortran 90 MPI interfaces with user-choice buffers
leads to an explosion of interface declarations; each choice buffer must be
expanded to all possible combinations of Fortran type, kind, and array
dimension. Because of this (and other reasons outlined in this paper),
we propose a new set of Fortran MPI bindings that uses the intrinsic
ISO C BINDING module in Fortran 2003. These new bindings will al-
low MPI interfaces to be defined in Fortran that directly invoke their
corresponding MPI C implementation routines – no additional layer of
software to marshall parameters between Fortran and C is required.

1 Introduction

The MPI-1 (Message Passing Interface) standard [5] has been very successful, in
part, because it provided MPI bindings in both C and Fortran. Thus, program-
mers were able to write parallel message passing applications in the language
of their choice. Most implementations of MPI are written in C (or C++) and
provide a thin translation layer to effect the Fortran bindings.

The MPI-2 standard [4] continued this successful treatment of language in-
teroperability by tracking the Fortran standard as it evolved by defining Fortran
90 bindings using explicit interfaces. Similar to the benefits enjoyed by C and
C++ programmers, these new Fortran bindings allow the Fortran compiler to
fail to compile a program if actual procedure arguments do not conform to the
dummy arguments specified by the standard. This level of type safety (at the
procedure call) is not possible with the original implicit Fortran 77 bindings.

Section 2 provides a brief overview of common implementation techniques
and problems associated with the Fortran 77 bindings. Section 3 discusses the
Open MPI [3] approach to implementing the Fortran 90 MPI bindings. It also
includes details of automatic code generation techniques as well as practical prob-
lems that arise from the Fortran 90 MPI bindings specification. In particular,
the strong typing of the Fortran 90 explicit interfaces require the specification

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 183–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 C.E. Rasmussen and J.M. Squyres

of a separate interface for each potential type, kind, and array dimension that
could be specified by a user for an MPI user-choice buffer argument. This in-
terface explosion for generic MPI procedures with choice buffer arguments is
unattractive and can lead to extremely long build times for the MPI library. In
response to new advances in the Fortran language standard [2], and to specific
problems with the existing Fortran bindings discussed in Section 3, new Fortran
MPI bindings are proposed in Section 4.

2 Open MPI Fortran 77 Bindings

Before the 1990 Fortran standard was introduced, Fortran did not provide the
ability to explicitly define interfaces describing external procedures (functions
and subroutines). In Fortran 77, external interfaces must be inferred from the
parameters provided in the call to the external procedure. Thus, while the MPI
Fortran 77 bindings define standard Fortran interfaces for calling the MPI li-
brary, the Fortran compiler does not check to ensure that correct types are
supplied to the MPI routines by the programmer.

This lack of type safety actually makes it easier for an MPI implementation
to provide a layer of code bridging between user Fortran and an MPI C imple-
mentation. Many MPI routines take the address of a data buffer as a parameter
and a count, representing the length of the buffer (e.g., MPI SEND). Since the
Fortran convention is to pass arguments by address, virtually any Fortran type
can be supplied as the data buffer, including basics scalar types (e.g., real) and
arrays of these types.

In most MPI implementations, the Fortran bindings are a thin translation
layer that marshals parameters between Fortran and C and invokes correspond-
ing back-end C MPI functions. For scalar types, this only requires dereferencing
pointers from Fortran before passing to the C implementation routines; array-
valued parameters may be passed directly. MPI handle parameters must also
be converted (typically either by pointer dereferencing or table lookup) to the
back-end C MPI objects.

2.1 Issues

The primary difficulty in developing MPI Fortran 77 bindings is that Fortran
does not define a standard for compiler generated symbols, For example, the
symbol for MPI SEND may be MPI SEND or mpi send, followed by one or two un-
derscores (it will likely not be the C symbol MPI Send). However this uncertainty
is relatively easy to overcome and various strategies have evolved over time.

While type safety is still an issue (a programmer may mistakenly supply a
real type for a buffer count parameter, for example), the Fortran 77 bindings have
been successfully used in practice for many years. However, it should be noted
that these bindings are implemented outside of the Fortran language specification
and may fail in future compiler versions. For example, an MPI subroutine with
choice arguments may be called with different arguments types. This violates the
letter of the Fortran standard, although such a violation is common practice [5].

A Case for New MPI Fortran Bindings 185

3 Open MPI Fortran 90 Bindings

Several enhancements were made to Fortran in the 1990 standard. MPI-2 defined
a Fortran 90 module and support for additional Fortran intrinsic numeric types.
MPI interfaces could therefore both be defined for and expressed in Fortran.
High-quality MPI implementations are encouraged to provide strong type check-
ing in the MPI module, allowing the compiler to enforce consistency between the
parameters supplied by the programmer and those defined in the MPI standard.

While this enhances type safety, there is no Fortran equivalent of the C
(void *) data type used by the MPI C standard to declare a generic data
buffer. Every data type that could conceivably be used as a data buffer must
be declared in an explicit Fortran interface. The only fallback, for instance for
user-defined data types, is for the programmer to resort to the older Fortran 77
implicit interfaces.

Not only must interfaces be defined for arrays of each intrinsic data type,
but for each array dimension as well. Depending on the compiler, there may be
approximately 15 type / size combinations.1 Each of these combinations can be
paired with up to seven array dimensions. With approximately 50 MPI functions
that have one choice buffer, this means that 5,250 interface declarations must be
specified (i.e., 15 types × 7 dimensions × 50 functions). Note that this does not
include the approximately 25 MPI functions with two choice buffers. This leads
to an additional 6.8M interface declarations (i.e., (15× 7× 25)2). Currently, no
Fortran 90 compiler can compile a module with this many interface functions.

3.1 Code Generation

Because of the large number of separate interfaces that the MPI standard re-
quires, automatic generation of this code is an attractive option. Chasm [6] was
used to accomplish this task.

Chasm is a toolkit providing language interoperability between Fortran 90
and C / C++. It uses static analysis to produce a translation layer between
language pairs by first parsing source files to produce an XML representation of
existing interfaces and then using XSLT stylesheets to generate the final bridging
code. Fig. 1 depicts the code generation process.

There are several different types of files generated by the Chasm XSLT
stylesheets. The primary file is the MPI module declaring explicit Fortran inter-
faces for each MPI function. Similar to a C header file, this file allows the Fortran
compiler to check the actual parameter types supplied by user applications to
make sure they conform to the interface. The actual Open MPI implementation
of these interfaces is the Fortran 77 binding layer (see Section 2). In addition,
there are separate files generated to test each MPI function.

MPI functions with choice parameters are handled somewhat differently.
They require an additional translation layer to convert Fortran array-valued
parameters to C pointers when invoking the corresponding Fortran 77 binding.
1 Assuming the compiler supports CHARACTER, LOGICAL{1,2,4,8}, INTEGER{1,2,4,8},
REAL{4,8,16}, and COMPLEX{8,16,32}.

186 C.E. Rasmussen and J.M. Squyres

Fig. 1. Code generation for Fortran 90 MPI bindings in Open MPI

All of the XSLT stylesheets take the XML file mpi.h.xml as input. This file
was created by the Chasm tools from the Open MPI mpi.h header file and sub-
sequently altered slightly by hand to add additional information. An example of
the annotations made to mpi.h.xml was the addition of the name ierr to MPI
functions returning an error parameter. This gave notice to the Chasm XSLT
stylesheets to create an interface for a subroutine rather than a function, with the
ierr return value as the last parameter to the procedure (Fortran intent(out))
as defined by the MPI Fortran bindings. Another example of the modifications
to mpi.h.xml was the “choice” tag, added to specify MPI choice (void *) ar-
guments. This allowed the XSLT stylesheets to create explicit interfaces for each
possible type provided by the programmer.

3.2 Issues

While the Fortran 90 MPI bindings allow explicit type checking, there are a
number of issues with these bindings and with the Open MPI implementation.
No explicit interfaces were created for MPI functions with multiple choice pa-
rameters (e.g., MPI ALLREDUCE), because this would have exploded the type
system to unmanageable proportions. User application utilizing these functions
access the Fortran 77 layer directly with no type checking.

4 Proposed MPI Fortran BIND(C) Interfaces

The Fortran 2003 standard [2] contains a welcome addition that vastly improves
language interoperability between Fortran and C. These additions are summa-
rized in this section and a new set of Fortran MPI bindings based on this standard
is proposed.

A Case for New MPI Fortran Bindings 187

4.1 Fortran 2003 C Interoperability Standard

The Fortran 2003 standard includes the ability to declare interfaces to C pro-
cedures within Fortran itself. This is done by declaring procedure interfaces
as BIND(C) and employing only interoperable arguments. It allows C func-
tion names to be given explicitly and removes the mismatch between proce-
dure symbols generated by the C and Fortran compilers. Fortran BIND(C) in-
teroperable types include primitive types, derived types or C structures (if all
attributes are interoperable), C pointers, and C function pointers. BIND(C) in-
terfaces are callable from either Fortran or C and may be implemented in either
language.

This standard greatly simplifies language interoperability because it places
the burden on the Fortran compiler to marshall procedure arguments and to
create interoperable symbols for the linker, rather than placing the burden on
the programmer. This includes the ability to use pass arguments by value. For
MPI, this means that MPI C functions may be called directly from Fortran
rather than from an intermediate layer. No additional work is needed other than
to declare Fortran interfaces to the MPI C functions.

4.2 MPI C Type Mappings

The intrinsic ISO C BINDING module in the Fortran 2003 standard provides map-
pings between Fortran and C types. This mapping includes Fortran equivalents
for the C types commonly used in MPI functions. For example, C integers, null-
terminated character strings, and function pointers are declared in Fortran as
INTEGER(C INT), CHARACTER(C CHAR), and TYPE(C FUNPTR), respectively.

Most importantly, the ISO C BINDING module defines a Fortran equivalent
to MPI choice (void *) buffers (TYPE(C PTR)). This directly solves the interface
explosion problem. It also allows interfaces to be declared for MPI functions
with multiple choice buffers. In addition, the ISO C BINDING module provides
functions for converting between Fortran pointers (including pointers associated
with arrays) and the C PTR type.

4.3 MPI Send Example

An example of the proposed BIND(C) interface for MPI SEND is shown in Fig. 2.
Note the explicit name attribute given to the BIND(C) declaration in line 3

of Fig. 2. This attribute instructs the Fortran compiler to create the equivalent
C symbol of the provided name. The MPI C BINDING module name is proposed
in line 5 to distinguish it from the Fortran 90 MPI module name. The value
attribute used in lines 6-11 instructs the Fortran compiler to use pass-by-value
semantics and means that no dereferencing of the arguments need be done on
the C side.

The TYPE(C PTR) declaration in line 6 is the Fortran BIND(C) equivalent
of a C (void *) parameter. The usage of this generic C pointer declaration
removes the interface explosion for the Fortran 90 MPI SEND implementation,
as described in the previous section. A C PTR can be obtained from a Fortran

188 C.E. Rasmussen and J.M. Squyres

Fig. 2. BIND(C) interface declaration for MPI SEND

scalar or array variable that has the TARGET attribute via the C LOC() intrinsic
function. The TARGET attribute must be used in Fortran to specify any variable
to which a Fortran pointer may be associated.

The Fortran equivalent of MPI handle types are declared in lines 8 and 11.
The MPI HANDLE KIND attribute must be defined by the MPI implementation
and allows flexibility in specifying the size of an MPI handle. At this point it
is uncertain if MPI handle types declared in this way will work across all MPI
implementations without the need for extra marshalling by the MPI library. The
form proposed here should be considered tentative until MPI implementors can
consider the consequences of this choice.

While not shown here, there are also interoperable equivalents for null termi-
nated C strings (CHARACTER(C CHAR), DIMENSION(*)) and C function pointers
(C FUNPTR). In addition, variables defined in the scope of the MPI C BINDING
module may interoperate with global C variables, further merging the Fortran
bindings with the MPI C implementations.

4.4 Issues

Unlike the MPI Fortran 77 and 90 bindings, the proposed bindings describe
language interoperability within the Fortran language. Therefore the proposed
bindings are guaranteed to work by the Fortran compiler (and companion C
compiler) and are not just expected to work for a particular Fortran compiler
vendor and version. Users will be expected to do some parameter conversions
themselves, as noted above in regards to the use of the C LOC intrinsic function.

In addition, the Fortran 2003 standard is new and vendors are just coming
out with ISO C BINDING module implementations. Therefore, a period of time
will be needed before one can test the proposed features against existing MPI
implementations.

A Case for New MPI Fortran Bindings 189

5 Conclusions

Because of evolving Fortran language standards and limitations in the MPI
Fortran 77 and 90 bindings, we have proposed a new set of Fortran MPI bindings
based on the intrinsic ISO C BINDING module. These new bindings have several
distinct advantages:

1. They solve the interface explosion problem of the Fortran 90 bindings through
the use of TYPE(C PTR). This new type allows a direct mapping to and from
the C (void *) choice buffers.

2. They allow direct calls to the MPI C implementation from Fortran. This is
more efficient and is less error prone, as the MPI implementor does not need
to maintain and test an extra binding layer. The Fortran compiler is respon-
sible for marshalling between C and Fortran data types, not the MPI library.

3. The names of the C functions implementing the MPI procedures can be
specified in Fortran. This means that the tricks required to create common
symbols between compilers are no longer needed.

4. The proposed bindings are defined entirely within the Fortran language and
are guaranteed to work by the Fortran compiler. The proposed bindings are
not compiler dependent. While not likely, Fortran 77 bindings are imple-
mented outside of the Fortran language specification and may fail in future
compiler versions.

It should be pointed out that as of this writing, only two major compiler vendors
support the Fortran 2003 ISO C BINDING module (others will likely do so by the
fall of 2005 [1]). However, even this support is partial. Thus, there exists a window
of opportunity to consider and modify the proposed bindings before widespread
adoption.

To this end, we will post the full set of new Fortran bindings and a reference
implementation on the Open MPI web site (http://www.open-mpi.org/) and
solicit comments and feedback (at mpi-comments@www.mpi-forum.org) from the
Fortran HPC community.

Acknowledgments

This work was supported by a grant from the Lilly Endowment and National
Science Foundation grants EIA-0202048 and ANI-0330620.

Los Alamos National Laboratory is operated by the University of California
for the National Nuclear Security Administration of the United States Depart-
ment of Energy under contract W-7405-ENG-36.

References

1. Personal communication with compiler vendors. Meeting 168 of the J3 Fortran
Standards Committee, August 2004.

2. Fortran 2003 Final Committee Draft, J3/03-007R2. see www.j3-fortran.org.

190 C.E. Rasmussen and J.M. Squyres

3. E. Garbriel, G.E. Fagg, G. Bosilica, T. Angskun, J. J. Dongarra J.M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L.
Graham, and T.S. Woodall. Open mpi: Goals, concept, and design of a next gener-
ation mpi implementation. In Proceedings, 11th European PVM/MPI Users’ Group
Meeting, 2004.

4. A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir, T. Skjel-
lum, and M. Snir. MPI-2: Extending the Message-Passing Interface. In Euro-Par
’96 Parallel Processing, pages 128–135. Springer Verlag, 1996.

5. Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of
Supercomputing ’93, pages 878–883. IEEE Computer Society Press, November 1993.

6. Craig E Rasmussen, Matthew J. Sottile, Sameer Shende, and Allen D. Malony.
Bridging the language gap in scientific computing: The Chasm approach. Concur-
rency and Computation: Practice and Experience, 2005.

Design Alternatives and Performance Trade-Offs
for Implementing MPI-2 over InfiniBand�

Wei Huang, Gopalakrishnan Santhanaraman,
Hyun-Wook Jin, and Dhabaleswar K. Panda

Department of Computer Science and Engineering,
The Ohio State University

{huanwei, santhana, jinhy, panda}@cse.ohio-state.edu

Abstract. MPICH2 provides a layered architecture to achieve both
portability and performance. For implementations of MPI-2 over Infini-
Band, it provides the flexibility for researchers at the RDMA channel,
CH3 or ADI3 layer. In this paper we analyze the performance and com-
plexity trade-offs associated with implementations at these layers. We
describe our designs and implementations, as well as optimizations at
each layer. To show the performance impacts of these design schemes
and optimizations, we evaluate our implementations with different micro-
benchmarks, HPCC and NAS test suite. Our experiments show that al-
though the ADI3 layers adds complexity in implementation, the benefits
achieved through optimizations justify moving to the ADI layer to ex-
tract the best performance.

Keywords: MPI-2, InfiniBand, RDMA channel, CH3, ADI3.

1 Introduction

In the last decade, MPI (message passing interface) has become the de facto
standard for programming parallel applications. MPI-1 standard [12] was pro-
posed by the MPI forum to provide a uniform standard for MPI developers. As
a follow-up, MPI-2 [9] standard aims to extend MPI-1 in the areas of one sided
communication, I/O and dynamic process management.

MPICH2 [10] from Argonne National Laboratory is one popular implemen-
tation of the MPI-2 standard. It aims to combine performance with portability
over different interconnects. It tries to achieve this by maximal sharing of plat-
form independent code like MPI datatypes, groups, and communicators, etc.,
and calls the Abstract Device Interface (ADI3) for platform dependent code.
The porting to different interconnects is achieved by having a separate ADI im-
plementation for each interconnect. To further ease the porting, the ADI itself
is also layered and can be implemented in terms of lower level interfaces.

� This research is supported in part by Department of Energy’s Grant #DE-FC02-
01ER25506, National Science Foundation’s grants #CNS-0204429, and #CUR-
0311542, and a grant from Intel.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 191–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

192 W. Huang et al.

In the field of High Performance Computing, InfiniBand [5] is emerging as
a strong player. InfiniBand supports several advanced hardware features includ-
ing RDMA capability. To implement MPI-2 on InfiniBand, MPICH2 provides
the flexibility to implement the ADI3, or its lower level interfaces like CH3 and
RDMA channel layers. Understanding the benefits and limitations of implement-
ing at each layer (ADI3, CH3, and RDMA channel) is very important to come
up with an efficient design. The lower layer interfaces are easier to port at the
cost of some performance penalties. This is rather expected, but it would be of
more interest to quantitatively understand the performance impact and try to
come up with different levels of optimizations at each layer. To the best of our
knowledge, there is no literature that does an in-depth study on this topic.

In this paper, we attempt to do an detailed analysis of the performance and
complexity trade-offs for implementing MPI-2 over InfiniBand at the RDMA
channel, CH3, and ADI3 layer. We focus on the point to point and one sided
operations in the current work. For fair comparison, we provide our design and
implementation at each of these layers. In the rest of the paper, Section 2 intro-
duces the background of our work. Section 3 describes and analyzes our design
choices and optimizations. In Section 4 we conduct performance evaluations.
Conclusions and future work are presented in Section 5.

2 Background

2.1 InfiniBand Architecture

The InfiniBand Architecture (IBA) [5] defines a System Area Network (SAN)
to interconnect processing nodes and I/O nodes. In addition to send/receive
semantics it also provides RDMA semantics which can be used to directly ac-
cess/modify the contents of the remote memory. RDMA operations are one sided
and do not incur software overhead on remote side. Further, InfiniBand verbs
provide scatter/gather features to handle non contiguity. InfiniBand verbs spec-
ification also provides useful features like atomic operations and multi-cast, etc.

2.2 Layered Design of MPICH2 and MVAPICH2

MPICH2 supports both point to point and one sided operations. Figure 1 de-
scribes the layered approach provided by MPICH2 for designing MPI-2 over

2: CH3 Level Design
3: RDMA Channel

Level Design

1: ADI3 level Design

1

2

3
ChannelChannel

CH3

ADI3

TCP Socket SHMEM
Channel
RDMA

SHMEM Shared Memory
Sys V InfiniBand

MPI 2

Fig. 1. Layered Design of MPICH2

RDMA capable networks like Infini-
Band. Implementation of MPI-2 on In-
finiBand can be done at one of the
three layers in the current MPICH2
stack: RDMA channel, CH3 or ADI3.
One of the objectives of such kind of
design is to get a better balance be-
tween performance and complexity.

RDMA channel is at the bottom
most position in the hierarchical struc-
ture. All communication operations

Design Alternatives and Performance Trade-Offs for Implementing MPI-2 193

that MPICH2 supports are mapped to just five functions at this layer. Among
them only two (put and read) are communication functions, thus the porting
overhead is minimized. The interface needs to conform to stream semantics. It is
especially designed for the architectures with RDMA capabilities, which directly
fits with the InfiniBand’s RDMA semantics.

The CH3 provides a channel device that consists of a dozen functions. It
accepts the communication requests from the upper layer and informs the upper
layer once the communication has completed. It is responsible to make commu-
nication progress, which is the added complexity associated with the implemen-
tations at this layer. From a performance perspective, it has more flexibility to
improve the performance since it can access more performance oriented features
than the RDMA channel layer. Argonne National Lab[10] and the University of
Chemnitz[3] have both developed their CH3 devices for Infiniband.

The ADI3 is a full featured, abstract device interface used in MPICH2. It is
the highest portable layer in MPICH2 hierarchy. A large number of functions
must be implemented to bring out an ADI3 design, but meanwhile it provides
flexibility for many optimizations, which are hidden from lower layers.

MVAPICH2 is a high performance implementation of MPI-2 over InfiniBand
[6] from the Ohio State University. The latest release version implements the
point to point communication at the RDMA channel layer [8] and also optimizes
the one sided communication at the ADI3 level [7,4]. The continuous research
progress of this project has further motivated us to carry out the proposed in-
depth study of design alternatives and performance trade-offs.

3 Designs and Implementations at Different Layers

For an implementation over InfiniBand, MPICH2 design provides choices at
three different layers. In this sense, understanding the exact trade-offs of the
performance constraints and implementation complexity at each layer will be
critical to have an efficient design. To study these issues and to carry out a fair
comparison, we have designed and implemented MPI2 over InfiniBand at each
of the MPICH2 hierarchy: RDMA channel, CH3 and ADI3, respectively. We
present our strategies in the following subsections.

3.1 RDMA Channel Level Design and Implementation

At RDMA channel, as mentioned in Section 2.2, all architecture dependent com-
munication functionalities are encapsulated into a small set of interfaces. The
interface needs to provide only stream semantics and the communication progress
of MPI messages are left to the upper layers.

Our design is purely based on the RDMA capability of InfiniBand [8]. Fig. 2
illustrates the design issues at this layer. For short messages, the eager protocol
is used to achieve good latency. It copies messages to pre-registered buffers and
sends them through RDMA write. For large messages, using the eager protocol
will introduce high copy overhead, so a zero-copy rendezvous protocol is used.

194 W. Huang et al.

ADI 3

CH3

Read_data_v

Buffer Management

Registration Cache

IBA − VAPI

RDMA CHANNEL IMPLEMENTATION

RDMA CHANNEL INTERFACE

Rendezvous Protocol

Flow Control

Put_data_v

Fig. 2. RDMA Channel level design
and implementation

ADI 3

Buffer Management

Progress Engine Datatype (Vectors)

Rendezvous Protocol

Registration Cache Flow Control

CH3 CHANNEL INTERFACE
Eager Protocol:

CH3_iStartMsgv, ...
Rendezvous Protocol:

CH3_iStartRndvMsg, ...

CH3_Progress

CH3 CHANNEL IMPLEMENTATION

IBA − VAPI

Fig. 3. CH3 level design and imple-
mentation

User buffer is registered on the fly and sent through RDMA. Registration cache
[13] is implemented to reduce the registration overhead.

The RDMA channel receives the communication requests from the CH3 layer
above it. In the current stack, the CH3 layer makes only one outstanding request
to the RDMA channel and will not issue the next request until the previous one
has completed. This results in the serialization of the communication requests,
which causes inefficient utilization of the network. For small messages, an opti-
mization would be to copy the message to the pre-registered buffer and imme-
diately report completion to the CH3 layer. By this early completion method,
the CH3 layer can issue the next communication request so that multiple re-
quests can be issued to the RDMA layer. But for large messages which are sent
through the rendezvous protocol, we can only report completion after the whole
rendezvous process finishes since we need to hold the user buffer for zero-copy
send, making it difficult to obtain higher bandwidth for medium-large messages
at the RDMA layer. We show this performance impact in Section 4.

3.2 CH3 Level Design and Implementation

Fig. 3 shows the basic function blocks in our CH3 level design. Messages can
be sent through eager or rendezvous protocols similar to the approach taken by
the RDMA channel implementation. Hence functionalities such as buffer man-
agement, registration cache, etc., need to be also implemented at the CH3 layer.

The need to implement progress engine is a significant difference between
the CH3 level and the RDMA channel design. The CH3 layer must keep track
of all the communication requests coming from the ADI3 layer, finish them and
report completions. ADI3 can keep sending requests but the underlying network
resources are limited. So we implement a queue to buffer the requests which
cannot be finished immediately due to the lack of network resources. Requests
in the queue will be retried when resources become available again. The benefit of
implementing the progress engine is obvious. We can get access to all the requests
at the sender side. Now for large messages we can start multiple rendezvous
progresses at the same time so that the throughput is expected to be greatly
improved as compared to the RDMA channel level design.

Design Alternatives and Performance Trade-Offs for Implementing MPI-2 195

Datatype communication can also be optimized at this layer. ADI3 flattens
the datatype and provides the datatype information to the CH3 layer as a vector
list. With this information, a CH3 level design can have a global picture of all the
buffer vectors that need to be sent in a particular MPI message. So optimizations
such as zero-copy datatype [11,14] can be applied at this level.

3.3 ADI3 level Design and Implementation

Compared to the CH3 and RDMA channel, the ADI3 interface is full-featured.
This allows the implementations to take opportunities for more efficient commu-
nication. To re-implement the whole ADI3 is very complicated, so we decided to
reuse most of the CH3 level implementation described in Section 3.2 and perform
several optimizations at the ADI3 layer, shown in Fig 4. These optimizations are
possible at the ADI3 layer since it is allowed direct access to several global data
structures which are abstracted out for the lower layers.

ADI 3

Header Caching One Sided Communication
Scheduling

Extended CH3 Interface
For One Sided Operations
Communication Progress

Buffer Management

Registration Cache

Flow Control
Implementation

CH3

IBA − VAPI

Fig. 4. Optimizations at ADI3 layer

Header caching is an optimization
that can be implemented at the ADI3
to reduce the small message latency.
The basic idea is to cache some fields
of the MPI header for each connection
at the receiver side. So that if the next
message between this connection has
the same header information in those
cached fields, we can reduce the size of
MPI header being sent. If these fields
differ, there is a copy overhead at the
receiver for the header caching, which

is quite negligible according to our experience. It is be noted that MPI header
caching cannot be performed at lower layers since only ADI3 is supposed to
know the contents in a MPI header.

Another significant optimization is in the area of one-sided communication.
Originally in MPICH2, one sided operations are implemented by the point to
point interfaces provided by CH3. Our previous work [7] has shown that by di-
rectly using the RDMA features provided by InfiniBand instead of going through
the point to point path, the performance for the one-sided operations can be
greatly enhanced. We can also schedule one sided operations to achieve much
better latency and throughput. The scheduling schemes are described in detail
in [4]. These optimizations are done by extending the CH3 interface [7]. At the
CH3 layer we cannot distinguish between data for two sided and one sided opera-
tions and hence cannot perform such optimizations. The latest MPICH2 also has
extended the CH3 one sided interface for shared memory architectures, which
reflects the potential to optimize one sided operations at the ADI3 layer.

4 Performance Evaluation
In this section we evaluate our implementations at RDMA channel, CH3 and
ADI3 layers by a set of micro-benchmarks, HPC Challenge Benchmark [2] and

196 W. Huang et al.

NAS test suite [1]. Tests are conducted on on two different clusters. The first
cluster (Cluster A) consists of computing nodes with dual Intel Xeon 3.0 GHz
processors, 2GB memory, and MT23108 PCI-X HCAs. They are connected by
an InfiniScale MTS2400 switch. The second cluster (Cluster B) is equipped with
dual Intel Xeon 2.66 GHz processors, 2GB memory, and MT23108 PCI-X HCAs,
connected through an InfiniScale MTS14400 switch.

4.1 Point to Point Communication

Point to point communication test are conducted on Cluster A. Fig. 5 shows the
uni-directional bandwidth test results for our implementation at RDMA channel,
CH3 and ADI3 layers. For medium-large messages, the bandwidth is significantly
improved by up to 28% by moving from RDMA channel to CH3 layer, because
CH3 handles multiple send requests simultaneously. ADI3 layer shows similar
numbers as CH3 layer. It is to be noted that all bandwidth numbers in this
paper are reported in MillionBytes/Sec (MB/s).

Fig. 6 shows the ping-pong latency. By getting rid of the stack overhead,
the one byte message latency drops from 5.6us at RDMA layer to 5.3us at CH3
layer. By performing header caching at ADI3 layer, the number drops further to
4.9us. Header caching technique is applied to messages smaller than 256 bytes.
So for this range the ADI3 level numbers consistently outperform CH3 numbers.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 16 64 256 1k 4k 16k 64k256k 1M

B
an

dw
id

th
 (M

B
/s

)

Message Size (Bytes)

RDMA Channel
CH3

ADI-3

Fig. 5. Unidirectional bandwidth

 0

 2

 4

 6

 8

 10

 12

 14

 1 4 16 64 256 1k

La
te

nc
y

(u
s)

Message Size (Bytes)

RDMA Channel
CH3
ADI3

Fig. 6. Point to point latency

 0

 5

 10

 15

 20

 1 4 16 64 256 1k 4k

La
te

nc
y

(u
s)

Message Size (Bytes)

RDMA Channel
CH3
ADI3

Fig. 7. MPI Put latency

 0

 200

 400

 600

 800

 1000

 1 4 16 64 256 1k 4k 16k 64k256k 1M

B
an

dw
id

th
 (M

B
/s

)

Message Size (Bytes)

RDMA Channel
CH3

ADI-3

Fig. 8. One sided throughput test

4.2 One Sided Operations

Evaluation with one sided operations are also conducted on Cluster A. The
results for MPI Put test are shown in Fig. 7. The test times the ping-pong

Design Alternatives and Performance Trade-Offs for Implementing MPI-2 197

latency for performing the put operation followed by synchronization. For the
CH3 and the RDMA Channel level design, one sided operations are implemented
based on point to point communication. Their numbers are similar, with the CH3
level design performing slightly better because point to point communication is
optimized. By optimizing one sided operation at ADI3, we observe 30% reduction
in MPI Put latency as compared to the CH3 level design.

We also measure the throughput of one sided communication. Here the origin
process issues 16 MPI Put and 16 MPI Get operations of the same size. The tar-
get process just starts an exposure epoch. We measure the maximum throughput
we can achieve (MillionBytes/sec) for multiple iterations of the above sequence.
Fig. 8 shows the results. The improvement on point to point bandwidth makes
the CH3 level design outperform the RDMA channel level design by up to 49%.
And with one sided scheduling at the ADI3 layer, the peak throughput can
reach around 920MB/s, which is another 8.1% higher than the CH3 level design
numbers.

PP−min PP−avg PP−max NOR ROR
0

1

2

3

4

5

6

7

8

9

La
te

nc
y

(u
s)

RDMA Channel
CH3
ADI−3

Fig. 9. HPCC 8 bytes latency. PP-min:
minimum ping-pong latency; PP-avg: av-
erage ping-pong latency; PP-max: max-
imum ping-pong latency; NOR: Natural
ordered ring access latency; ROR: ran-
dom ordered ring access latency.

IS.B.8 IS.C.8 IS.B.16 IS.C.16
0

2

4

6

8

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

RDMA Channel
CH3
ADI−3

Fig. 10. NAS (IS) results on Cluster B

4.3 HPC Challenge (HPCC) Suite

The HPCC suite [2] contains tests which evaluate the latency for different types
of communication patterns. It performs the ping-pong tests between all possible
different pairs of processors. It also uses two different ring types of communica-
tion patterns to evaluate latency: Naturally Ordered Ring and Randomly Or-
dered Ring. HPCC tests were performed on 16 nodes of Cluster B and we report
8 bytes latency numbers. As shown in Fig. 9, we clearly observe an performance
improvement up to 7% for the CH3 level design over the RDMA Channel level
design; and the benefit from header caching at the ADI3 layer enhances the
performance by up to another 6%.

4.4 NAS Integer Sort

In this section we show the performance evaluation for the NAS-IS benchmark
[1]. IS is an integer sort benchmark kernel that stresses the communication aspect

198 W. Huang et al.

of the network. The experiments were conducted for classes B and C on 8 nodes
and 16 nodes of Cluster B. The results are shown in Fig. 10. The ADI3 level
implementation here shows up to 7% improvement comparing with the RDMA
channel level design. The ADI3 level optimizations does not directly help the
communication pattern that is observed in NAS-IS. Hence the performance seen
at the CH3 level is the same as that of the ADI3 level.

5 Conclusions and Future Work

In this paper we have analyzed the trade-offs associated with implementing MPI-
2 over InfiniBand at the RDMA channel, CH3 and ADI3 layer of MPICH2. We
have also described the various optimizations that are possible at each level.

With respect to design complexity, a CH3 level design needs to implement the
progress engine, which is the main cause of added complexity. A fully featured
ADI3 level design is very complicated but optimizations like header caching, one
sided communication scheduling can be done at this level.

With respect to performance, the CH3 and ADI3 level design can increase
the bandwidth significantly, up to 28% for bandwidth test comparing with the
RDMA channel level design. Header caching at the ADI3 can lower the small
message latency to 4.9 us, a 12.5% improvement comparing with 5.6 us achieved
by the RDMA channel level design. One sided scheduling at the ADI3 level also
greatly improves the performance. We see an enhancement up to 30% in MPI Put
latency and 8.1% in throughput test compared with the CH3 level design, which
in turn shows 49% improvement on throughput over the RDMA channel level
design. Effects of these optimizations also show benefits at the application level
evaluation of HPCC and NAS suite. As a conclusion, although the ADI3 layers
adds complexity in implementation, the benefits achieved through optimizations
justify moving to the ADI layer to extract the best performance.

As a part of future work we would like to come up with a full fledged
MPI-2 design over InfiniBand at the ADI3 layer to deliver good performance. We
are planning to support communication through shared memory, and optimize
collective operations using InfiniBand’s RDMA and multi-cast features.

References

1. D. H. Bailey, E. Barszcz, L. Dagum, and H.D. Simon. NAS Parallel Benchmark
Results. Technical Report 94-006, RNR, 1994.

2. HPC Challenge Benchmark. http://icl.cs.utk.edu/hpcc/.
3. R. Grabner, F. Mietke, and W. Rehm. An MPICH2 Channel Device Implemen-

tation over VAPI on InfiniBand. In Proceedings of the International Parallel and
Distributed Processing Symposium, 2004.

4. W. Huang, G. Santhanaraman, H. W. Jin, and D. K. Panda. Scheduling of MPI-2
One Sided Operations over InfiniBand. Workshop On Communication Architecture
on Clusters (CAC), in conjunction with IPDPS’05, April 2005.

5. InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.2.
6. Network Based Computing Laboratory. http://nowlab.cis.ohio-state.edu/.

Design Alternatives and Performance Trade-Offs for Implementing MPI-2 199

7. J. Liu, W. Jiang, H. W. Jin, D. K. Panda, W. Gropp, and R. Thakur. High Per-
formance MPI-2 One-Sided Communication over InfiniBand. International Sym-
posium on Cluster Computing and the Grid (CCGrid 04), April 2004.

8. J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp, and
B. Toonen. Design and Implementation of MPICH2 over InfiniBand with RDMA
Support. In Proceedings of the International Parallel and Distributed Processing
Symposium, 2004.

9. Message Passing Interface Forum. MPI-2: A Message Passing Interface Standard.
High Performance Computing Applications, 12(1–2):1–299, 1998.

10. MPICH2. http://www-unix.mcs.anl.gov/mpi/mpich2/.
11. G. Santhanaraman, J. Wu, and D. K. Panda. Zero-Copy MPI Derived Datatype

Communication over InfiniBand. EuroPVM-MPI 2004, September 2004.
12. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI–The Com-

plete Reference. Volume 1 - The MPI-1 Core, 2nd edition. The MIT Press, 1998.
13. H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down cache: A virtual

memory management technique for zero-copy communication. In Proceedings of
the 12th International Parallel Processing Symposium, 1998.

14. J. Wu, P. Wyckoff, and D. K. Panda. High Performance Implementation of MPI
Datatype Communication over InfiniBand. In Proceedings of the International
Parallel and Distributed Processing Symposium, 2004.

Designing a Portable MPI-2 over Modern
Interconnects Using uDAPL Interface�

L. Chai, R. Noronha, P. Gupta, G. Brown, and D. K. Panda

Department of Computer Science and Engineering,
The Ohio State University, USA

{chail, noronha, guptapr, browngre, panda}@cse.ohio-state.edu

Abstract. In the high performance computing arena, there exist several
implementations of MPI-1 and MPI-2 for different networks. Some imple-
mentations allow the developer to work with multiple networks. However,
most of them require the implementation of a new device, before they can
be deployed on a new networking interconnect. The emerging uDAPL in-
terface provides a network-independent interface to the native transport
of different networks. Designing a portable MPI library with uDAPL
might allow the user to move quickly from one networking technology to
another. In this paper, we have designed the popular MVAPICH2 library
to use uDAPL for communication operations. To the best of our knowl-
edge, this is the first open-source MPI-2 compliant implementation over
uDAPL. Evaluation with micro-benchmarks and applications on Infini-
Band shows that the implementation with uDAPL performs comparably
with that of MVAPICH2. Evaluation with micro-benchmarks on Myrinet
and Gigabit Ethernet shows that the implementation with uDAPL de-
livers performance close to that of the underlying uDAPL library.

Keywords: MPI-1, MPI-2, uDAPL, InfiniBand, Myrinet, Gigabit
Ethernet, Cluster.

1 Introduction

Message Passing is a popular paradigm for writing parallel applications. Appli-
cation written with Message Passing Interface (MPI) libraries like MPICH and
MPICH2 [2] from Argonne National Labs may be run on a wide variety of archi-
tectures and networks. This is easily achieved by relinking the application with
the appropriate library for that architecture or network.

Modern interconnection technologies like InfiniBand [5], 10 GigE, Myrinet [9]
and Quadrics [11] offer improved performance. This is both in terms of lower
latency of the order of a few micro-seconds and higher bandwidth. Applications
may also take advantage of the RDMA capabilities of these networks to read
and write data with low overhead from each other’s memory.
� This research is supported in part by Department of Energy’s Grant #DE-FC02-

01ER25506; National Science Foundation’s Grants #CCR-0204429, #CCR-0311542,
#CNS-0403342; grants from Mellanox, Intel, and SUN MicroSystems; and equipment
donations from Intel, Mellanox, Ammasso, AMD, Apple, and SUN.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 200–208, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Designing a Portable MPI-2 over Modern Interconnects 201

Though most high-speed networks offer user-level communication interfaces
that are similar in semantics, they usually differ syntactically from each other.
To avoid being tied down to a particular network, most application writers use
a communication library abstraction such as MPICH. This approach allows the
application writer to exploit highly optimized libraries such as MVAPICH [10],
MPICH-GM [8] and MPI/Elan4 [11]. While this approach works well, it might
cause delays when a new networking technology gets introduced. The MPI library
needs to be implemented on that network before the application can be moved.

The emerging User Direct Access Programming Library (uDAPL) [4] defines
a standard and device independent interface for accessing the transport mecha-
nisms of RDMA capable networks. This allows developers to design applications
in a network independent fashion. Depending on the design of the underlying
uDAPL, the performance impact of using the underlying uDAPL might be neg-
ligible.

With the development of uDAPL providers for a variety of networks, it is
natural to ask whether a MPI library can be designed with an uDAPL inter-
face. This might potentially have advantages at many levels. It would allow an
application using an MPI library designed with an uDAPL transport to move
seamlessly from one network to another. In addition, an extensively deployed and
tested library may inspire more confidence than a newer implementation. Finally,
depending on the performance of the underlying uDAPL provider library, there
may be little degradation in performance compared with an application designed
with a native interface. Thus, the open challenges are: 1. How to design such an
MPI-2 library over the uDAPL interface, and 2. How much performance degra-
dation this approach will lead to compared with an MPI-2 implementation over
the native interface.

In this paper, we take on these challenges and design a portable MPI-2
with uDAPL and evaluate the performance trade-offs. We first present some
background information on high-performance networks, uDAPL and MPI in
section 2. Following that in section 3, challenges and design alternatives are
presented. In section 4, the performance in terms of micro-benchmarks and ap-
plications is presented. Finally we provide conclusions in section 5.

2 Background

2.1 Overview of Interconnects

In the area of high performance computing, InfiniBand and Myrinet are popular
and established technologies. These technologies support Remote Direct Memory
Access (RDMA) [12]. The Ammasso 1100 is a relatively new entry. It is a RDMA-
enabled Gigabit Ethernet adapter [1].

The InfiniBand Architecture (IBA) [5] defines a System Area Network with
a switched, channel-based interconnection fabric. IBA 4X has bandwidth up to
10 Gbps. The Myrinet [9] network technology utilizes programmable network
interface cards (NIC) and cut-through crossbar switches with operating system

202 L. Chai et al.

bypass techniques for full-duplex 4Gbps data rates. The Gigabit Ethernet used
is a full-duplex 1Gbps Ethernet adapter that also supports RDMA.

The native programming interfaces of the networking technologies are VAPI,
GM, and ccil for IBA, Myrinet, and Gigabit Ethernet, respectively. OpenIB is
proposed as the next-generation software stack over InfiniBand, which is cur-
rently under development.

2.2 uDAPL

User Direct Access Programming Library (uDAPL) is a lightweight, transport-
independent, platform-independent user-level library that provides a common
API for all RDMA-enabled modern interconnects. The uDAPL library is defined
by DAT (Direct Access Transport) Collaborative.

2.3 Message Passing Interface

MPI (Message Passing Interface) [13] is a standard library specification for
message passing in parallel applications. MPI-2 [7] is an extension to MPI-1
standard. MPI-2 supports several new types of functionalities, including one-
sided communication. One-sided communication requires only one process to
specify all communication parameters, and ideally the other process is not in-
volved at all. The two processes need explicit synchronization. We focus on ac-
tive one-sided communication defined by MPI-2, which includes three functions:
MPI Put, MPI Get, and MPI Accumulate.

MVAPICH2 [6] [10] is a high-performance MPI-2 implementation over Infini-
Band. It is an implementation of MPICH2’s [2] RDMA channel. MVAPICH2 is
implemented on top of VAPI. MVAPICH2 together with MVAPICH is currently
being used by more than 230 organizations worldwide [10] to extract the benefits
of InfiniBand for MPI applications.

3 Design Issues

Our design is adapted from MVAPICH2. As can be seen from Figure 1, MVA-
PICH2 has four major components: connection management, communication,

Server−Client
Connection
Model

RDMA
Read

RDMA
Write

Send
Receive

Memory
Registration

MVAPICH2 RDMA Channel

Two Sided One Sided

Adaptation

uDAPL

Memory
Management Management

Connection
Management Communication Descriptor

Fig. 1. Design for MVAPICH2 communi-
cation interfaces with uDAPL

memory management, and descriptor
management. In the mean time, uDAPL
provides many features. Our goal is
to design an adaptation layer to al-
low MVAPICH2 to run smoothly over
uDAPL interface for both two-sided and
one-sided communication.

In this section we discuss in detail
about connection and descriptor man-
agement. The design of communication
and memory management is inherited
from MVAPICH2.

Designing a Portable MPI-2 over Modern Interconnects 203

3.1 Connection Management

MPI communication assumes a fully connected topology. Since MVAPICH2 is
based on Reliable Connection (RC) service of InfiniBand, every process needs to
establish a connection with every other process in the initialization phase.

Figure 2(a) shows the InfiniBand/VAPI model of establishing a connection
between two processes. The detailed discussion is in [5]. Both processes first cre-
ate Queue Pairs (QPs), and then exchange QPs and Local IDentifiers (LIDs)
through the Process Management Interface (PMI) [2]. Then both processes ini-
tialize QPs and transit to Ready-To-Receive (RTR) state. After a barrier through
the PMI, both processes transit to Ready-To-Send (RTS) state. And after an-
other barrier through the PMI, a connection is established between these two
processes. The uDAPL library provides a server-client model for connection
establishment which is totally different from InfiniBand/VAPI’s peer-to-peer
model, as shown in Figure 2(b). Both processes first create communication End-
points (EPs). Then the server process creates a Public Service Point (PSP) which
is a listen handle. Each PSP is associated with a system-wide unique Connection
Qualifier. The server then gives the Connection Qualifier to the client through
the PMI. After that the server listens on the PSP handle to wait for connection
requests. The client issues a connection request (EP Connect) to the PSP. Once
the request is accepted by the server, a connection is established between the
server and the client.

In order to achieve efficient connection establishment, we need to consider two
issues. One is to avoid retransmission. When a client tries to connect to a server,
the server should already be listening there, otherwise the connection request
will get rejected. The other issue is performance. Since every two processes need
to establish a connection, we want this whole process to take place concurrently.

Having these two issues in mind, we propose the following approach, as shown
in Figure 3. Every process acts as a server for processes which have higher global
rank. At the same time, it also acts as a client for processes with lower global
rank. This means a process must listen persistently on the PSP handle while
actively issuing connection requests. In order to achieve this, we use a separate

RTS

Process 2

PMI Channel

RTR

Process 1

PMI Channel

RTR

RTS

QP2, LID2QP1, LID1

Create QP2

TRANS_INIT

Barrier

Barrir

Create QP1

TRANS_INIT

Barrier

Barrier

(a) VAPI

EP_Connect

Create EP

Issue Connection

Establishment

PMI Channel PMI Channel

Client ProcessServer Process

Create EP

Create PSP

Requests

Accept Request
Connection

Connection Qualifier

Connection

EventEvent
Establishment

Wait for
Connection Request

(b) uDAPL

Fig. 2. Connection Establishment Models in VAPI and uDAPL

204 L. Chai et al.

Process 1 Process 2

EP_Connect EP_Connect EP_Connect

Server Thread

Process 3 Process 4

(a) Process 1 is the
server for Process 2,
3, and 4

Process 1 Process 2

EP_Connect EP_Connect

Process 3 Process 4

Server Thread

(b) Process 2 is the
server for Process 3
and 4

Process 1 Process 2

EP_Connect

Process 3 Process 4

Server Thread

(c) Process 3 is the
server for Process 4

Fig. 3. Proposed Thread-based Connection Establishment Scheme. Actions shown in
Figures (a), (b), and (c) take place concurrently.

thread for server functionality. Every process first spawns a server thread, then
after a synchronization, processes can request connections to their corresponding
servers. The server thread exits once it has accepted the correct number of
requests so that it will not affect any communication performance later. Using
this approach, we can establish connections between every two processes in a
reliable and efficient manner.

3.2 Descriptor Management

Both MVAPICH2 and MVAPICH2 with uDAPL use RDMA Write for eager
protocol and RDMA Read for rendezvous protocol. When a RDMA operation
is posted, information such as local address, segment length, remote address,
etc. is encapsulated in a descriptor, and the descriptor is passed as an argument
to the underlying VAPI or uDAPL functions. However, VAPI and uDAPL have
different requirements for descriptor management.

There is no explicit descriptor management in MVAPICH2. Once a RDMA
operation is posted, the descriptor is internally copied by VAPI. But for designing
MVAPICH2 with uDAPL, we must carefully manage the descriptors because
according to the uDAPL specification, descriptors should not be modified until
the corresponding RDMA operation has finished.

For using InfiniBand, buffers used for communication must be registered with
InfiniBand Host Channel Adaptor (HCA). Since the registration process is time
consuming, MVAPICH2 uses a set of pre-registered buffers for eager protocol.
This allows us to use a simple and efficient method for descriptor management.
We associate each buffer with a descriptor. Whenever a buffer can be reused -
which means the previous RDMA Write associated with this buffer has finished -
the corresponding descriptor can be safely reused. For rendezvous protocol, the
communication buffer is registered on the fly. A descriptor is dynamically al-
located for each buffer. The address of the descriptor is saved as a cookie. An
uDAPL cookie is a user-supplied identifier for a Data Transfer Operation (DTO),
which allows a user to uniquely identify the DTO when it completes. The cookie
is passed as an argument to the uDAPL post-RDMA-Read function. When a
RDMA Read completes, we can use the cookie to retrieve the corresponding

Designing a Portable MPI-2 over Modern Interconnects 205

descriptor and free it. This descriptor management approach adds almost no
overhead to the overall performance.

3.3 Design Issues in One-Sided Communication

The design issues discussed above also exist in one-sided communication. For
connection management, we setup a separate set of EPs for one-sided commu-
nication, and connections are established in a similar manner as described in
section 3.1. For descriptor management, since buffers are also pre-registered for
eager protocol, and registered on the fly for rendezvous protocol, we use the
same descriptor management scheme as described in section 3.2.

4 Performance Evaluation

4.1 Experimental Setup

Two clusters are used for the evaluation. Cluster A has 8 nodes. Each node is
equipped with dual 3.0 GHz processors and 64-bit 133 MHz PCI-X interfaces. It
is connected through MT23108 HCA’s to a MT2400 switch. The uDAPL library
from IBGD 1.7.0 is used. Each node also has a Myrinet E-card connected to a
Myrinet-2000 switch. The uDAPL library 0.94+2 with GM 2.1.9 is used. Am-
masso Gigabit Ethernet cards are also present on each node. They are connected
to a Foundry switch. The uDAPL library provided by Ammasso Inc. is used.

Cluster B has 32 nodes connected with InfiniBand. Each node has dual 2.6
GHz processors. Other configurations are similar to Cluster A.

4.2 Performance Evaluation over InfiniBand

Micro-benchmark Level Evaluation: Micro-benchmark performance is eval-
uated on Cluster A. Figure 4 shows the uDAPL-level and MPI-level ping-pong
latency results. Small message latency of MVAPICH2/uDAPL/VAPI is around
6.7μs. It is 1μs higher than the latency of MVAPICH2/VAPI for messages smaller
than 256 bytes.This is because MVAPICH2 utilizes inline data transfer scheme,
where small data is sent in one message with the request, while uDAPL/VAPI
doesn’t utilize inline data transfer. For messages larger than 256 bytes, MVA-
PICH2/uDAPL and MVAPICH2 have comparable latency performance. The
latency of MVAPICH2/uDAPL/VAPI is also close to that of uDAPL/VAPI for
messages smaller than 256 bytes. After 256 bytes, the latency of both MVA-
PICH2 and MVAPICH2/uDAPL/VAPI goes up, because MPI-level messages
need to be copied from user buffers to pre-registered RDMA buffers, and copy
time goes up as message size grows.

From Figure 5 we can see that MVAPICH2/uDAPL/VAPI achieves the
same bandwidth capability compared with MVAPICH2. The peak bandwidth
is around 867 MillionBytes/second (MB/s).

Figure 6 shows the latency comparison of active one-sided communication.
The small message latency of MVAPICH2/uDAPL/VAPI is 8.9μs for MPI Put,

206 L. Chai et al.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16 32 64 128 256 512 1k 2k 4k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

MVAPICH2/uDAPL/VAPI
MVAPICH2/VAPI

RDMA Write uDAPL/VAPI

Fig. 4. Small Message Latency Compar-
ison

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4k 8k 16k 32k 64k 128k 256k 512k 1M

B
an

dw
id

th
 (

M
ill

io
nb

yt
es

/S
ec

on
d)

Message Size (Bytes)

MVAPICH2/uDAPL/VAPI
MVAPICH2/VAPI

RDMA Write uDAPL/VAPI
RDMA Read uDAPL/VAPI

Fig. 5. Large Message Bandwidth Com-
parison

 0

 5

 10

 15

 20

 1 2 4 8 16 32 64 128 256 512 1k 2k 4k

L
a
te

n
cy

 (
M

ic
ro

se
co

n
d
s)

Message Size (Bytes)

MVAPICH2/uDAPL/VAPI
MVAPICH2/VAPI

(a) Put

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32 64 128 256 512 1k 2k 4k

L
a
te

n
cy

 (
M

ic
ro

se
co

n
d
s)

Message Size (Bytes)

MVAPICH2/uDAPL/VAPI
MVAPICH2/VAPI

(b) Get

 0

 5

 10

 15

 20

 25

 4 8 16 32 64 128 256 512 1k 2k 4k
L
a
te

n
cy

 (
M

ic
ro

se
co

n
d
s)

Message Size (Bytes)

MVAPICH2/uDAPL/VAPI
MVAPICH2/VAPI

(c) Accumulate

Fig. 6. Latency Comparison of Active One-sided Communication

20.5μs for MPI Get, and 8.9μs for MPI Accumulate. MPI Put and MPI Get la-
tency is about 8% higher than that of MVAPICH2/VAPI, and MPI Accumulate
latency is about 6% higher. This overhead can be associated with the two small
synchronization messages needed for one-sided operations which are not inlined.

Application Level Evaluation: In this section, we evaluate the implementa-
tion of MVAPICH2/uDAPL/VAPI against MVAPICH2 using some of the NAS
Parallel [3] and ASCI Blue [14] benchmarks. To evaluate MVAPICH2/uDAPL
and MVAPICH2, the class A size of the applications FT, CG, LU and MG
and class C size of IS were used. These are denoted by FT(A), CG(A), LU(A),
MG(A) and IS(C), respectively. For the application Sweep3D, the large size 150
was used. This is denoted by S3D(150). All runs were with 64 processes on 32
nodes (Cluster B).

Figure 7 shows the execution time of the applications. For FT(A), CG(A)
and S3D(150), MVAPICH2/uDAPL performs slightly worse than MVAPICH2
by approximately 6%, 2.5% and 7%, respectively. FT(A), CG(A) and S3D(150)
use small messages in the range of 0-256 bytes. As discussed in section 4.2,
uDAPL/VAPI has approximately 1μs higher latency for the small message
range of 0-256 bytes compared with the native VAPI. This difference in la-
tency is reflected in the MVAPICH2/uDAPL timing. For the other applica-
tions, MG(A), LU(A) and IS(C), MVAPICH2/uDAPL performs comparably
with MVAPICH2.

Designing a Portable MPI-2 over Modern Interconnects 207

FT(A) CG(A) MG(A)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Application

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

MVAPICH2/uDAPL/VAPI
MVAPICH2

LU(A) IS(C) S3D(150)
0

2

4

6

8

10

12

14

16

18

Application

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

MVAPICH2/uDAPL/VAPI
MVAPICH2

Fig. 7. Execution times of different applications with InfiniBand with 64 processes on
32 nodes using MVAPICH2/uDAPL and MVAPICH2

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64 128 256 512 1k 2k 4k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

MVAPICH2/uDAPL/GM
RDMA Write uDAPL/GM

(a) Small Message Latency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

4k 8k 16k 32k 64k 128k 256k 512k 1M

B
an

dw
id

th
 (

M
ill

io
nb

yt
es

/S
ec

on
d)

Message Size (Bytes)

MVAPICH2/uDAPL/GM
RDMA Write uDAPL/GM
RDMA Read uDAPL/GM

(b) Large Message Bandwidth

Fig. 8. Latency and Bandwidth Performance on Myrinet

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64 128 256 512 1k 2k 4k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

MVAPICH2/uDAPL/ccil
RDMA Write uDAPL/ccil

(a) Small Message Latency

 0

 20

 40

 60

 80

 100

 120

4k 8k 16k 32k 64k 128k 256k 512k 1M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

MVAPICH2/uDAPL/ccil
RDMA Write uDAPL/ccil
RDMA Read uDAPL/ccil

(b) Large Message Bandwidth

Fig. 9. Latency and Bandwidth Performance on Gigabit Ethernet

4.3 Performance Evaluation on Myrinet and Gigabit Ethernet

As can be seen from Figure 8, MVAPICH2/uDAPL/GM and uDAPL/GM have
comparable latency for messages smaller than 1KB, around 8.3μs. After 1KB,
copy overhead makes MVAPICH2/uDAPL/GM latency go higher. With respect
to bandwidth, MVAPICH2/uDAPL/GM achieves the same peak bandwidth
with uDAPL/GM, which is around 480MB/s.

208 L. Chai et al.

From Figure 9(a), we can see that the MVAPICH2/uDAPL/ccil latency per-
formance is relatively close to uDAPL/ccil RDMA Write latency. Small message
latency is around 21μs. The bandwidth of MVAPICH2/uDAPL/ccil also closely
matches with that of the uDAPL/ccil RDMA bandwidth. Peak bandwidth is
about 110 MB/s.

5 Conclusions and Future Work

In this paper, we have designed a high-performance implementation of MVA-
PICH2 with uDAPL. The performance evaluation has been done on three differ-
ent interconnects using both micro-benchmarks and applications. For InfiniBand,
the implementation of MVAPICH2 with uDAPL performs comparably with that
of MVAPICH2 on micro-benchmarks as well as applications. For Myrinet and
Gigabit Ethernet (Ammasso), the MVAPICH2 with uDAPL performs compara-
bly with the uDAPL layer in terms of micro-benchmarks.

In the current implementation, MPI collective operations are based on point-
to-point communication. We plan on investigating how to efficiently support
collective operations using uDAPL. In addition, we plan on studying the impact
of moving our current design from the RDMA channel to the ADI3 layer.

References

1. Ammasso, Inc. TheAmmasso 1100HighPerformanceEthernetAdapterUserGuide.
http://www.ammasso.com/amso1100 usersguide.pdf, February 2005.

2. Argonne National Laboratory. MPICH - A Portable Implementation of MPI.
http://www-unix.mcs.anl.gov/mpi/mpich.

3. D. H. Bailey, E. Barszcz, L. Dagum, and H.D. Simon. NAS Parallel Benchmark
Results. Technical Report 94-006, RNR, 1994.

4. DAT Collaborative. uDAPL: User Direct Access Programming Library Version
1.2. http://www.datcollaborative.org/udapl.html, July 2004.

5. Infiniband Trade Association. http://www.infinibandta.org/.
6. J. Liu, W. Jiang, Pete Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp,

and B. Toonen. Design and Implementation of MPICH2 over InfiniBand with
RDMA Support. In International Parallel and Distributed Processing Symposium,
2004.

7. Message Passing Interface Forum. MPI-2: A Message Passing Interface Standard.
High Performance Computing Applications, 12(1–2):1–299, 1998.

8. MPICH-GM Software. www.myrinet.com/scs.
9. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C.L. Seitz, J. Seizovic,

and W. Su. Myrinet - a gigabit per second local area network., February 1995.
10. Network-Based Computing Laboratory. MPI over InfiniBand Project. http://

nowlab.cis.ohio-state.edu/projects/mpi-iba/index.html.
11. Quadrics Ltd. www.quadrics.com.
12. RDMA Consortium. RDMA Protocol Verb Specification. http://www.rdmacon

sortium.com/home, April 2003.
13. Marc Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI–The

Complete Reference. Volume 1 - The MPI-1 Core, 2nd edition. The MIT Press,
1998.

14. The ASCI Blue Benchmarks. http://www.llnl.gov/asci benchmarks.

Experiences, Strategies and Challenges in
Adapting PVM to V xWorksTM Hard

Real-Time Operating System,
for Safety-Critical Software

Davide Falessi1, Guido Pennella2, and Giovanni Cantone1

1 University of Rome ”Tor Vergata”, DISP, Italy
2 MBDA Italia SpA, Rome, Italy

falessi@ing.uniroma2.it, guido.pennella@mbda.it, cantone@uniroma2.it

Abstract. The role performed by Open Source Software in safety-
critical systems is growing and gaining importance. Due to many, and
large variety of, hard real-time constraints and functional requirements
that safety-critical applications have to meet, these applications are
nowadays composed by logical and physical components, deployed on
heterogeneous distributed platforms. This paper is part of a still ongo-
ing project, and is concerned with exploring experimentally the port-
ing of PVM to V xWorksTM : the latter has an internal architecture
very different from the Unix standard OS(s) (like for example Linux or
SolarisTM), which in turn is the reference OS platform for PVM.

Keywords: Open Source Software (OSS), Safety-Critical Software
(SCS), Embedded Hard Real-Time (HRT) Distributed Systems, Parallel
Virtual Machine (PVM), Experimental Software Engineering (ESE).

1 Goal and Problem Definition

The role performed by Open Source Software (OSS) is growing and gaining
importance in the industrial field. One key factor is the high level of maintain-
ability that OSS offers: in fact, OSS places all the code in the complete control
of the software engineer. OSS is hence becoming a key factor in certain areas,
due to the need of safety, and the necessity of fixing defects at home, quickly
and effectively, whatever their software level might be. Due to the large variety
of hard real-time (HRT) constraints and functional requirements that indus-
trial safety-critical applications have to meet, these applications are nowadays
composed by logical and physical components, deployed on heterogeneous, dis-
tributed platforms. The Parallel Virtual Machine (PVM) [1, 2] provides a conve-
nient, open-source, computational architecture for supporting communication in
heterogeneous distributed applications through message passing paradigm. The
family of standard Unix Operating Systems (OS) constitutes the reference OS
platform for PVM. V xWorksTM , in its turn, is an OS that is able to provide
many advantageous HRT features, and it is widely used by industrial organi-
zations, including the MBDA Italy. This is the Italian site of a multinational

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 209–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

210 D. Falessi, G. Pennella, and G. Cantone

company that works in the domain of electronics real time systems; its name
comes from the initials of the founding companies (Matra, BAE, Dynamics, and
Alenia); MBDA use V xWorksTM for controlling some actuator devices of the
systems that it produces. For those reasons, and in order to have a common, open
model of interaction between the actuating platforms (built on V xWorksTM)
and the Human Machine Interface (HMI) that performs control and command
of the system (built on Linux), the Software Research Lab of MBDA took de-
cision to launch experimentation with PVM on V xWorksTM . We preferred to
start experimentation by using PVM rather than MPI [3] because the former,
as required by the application domain, integrates node management and fault-
tolerance features, which the latter insufficiently provides (however, in order to
give empirical evidence to such our conjecture, we are thinking to conduct a
systematic comparison of PVM and MPI for usage in the specific domain). This
paper is focused on issues encountered during the first, functional adaptation
of PVM to V xWorksTM . In the remaining, Section 2 briefly recalls on terms
of reference. Section 3 is concerned with the work we made for adapting PVM
to V xWorksTM , the software process that we enacted, the resulting prototype
PVMVX, and its functionality. Section 4 describes in some details the experimen-
tal infrastructure and the effort enacted. Section 5 reports on testing PVMVX,
and sketches on the analysis of results. One further section presents conclusive
remarks and future works.

2 Terms of Reference

Hard Real-Time Systems: It is crucial to distinguish time-critical events from
remaining ones, assign each critical event a level of criticality, and evaluate as
precisely as possible the handling time of any time-critical event in the worst
case [4, 5, 6, 7]. However, the following should be noted: (i) missing a deadline
implies a failure in hard real-time systems. Such a failure might have a strong
impact on individual or social life when safety-critical systems are concerned;
(ii) generally, time duration of software computation is really not predictable
with enough precision (approx by a Gaussian), eventually it is not decidable;
(iii) increasing speed of computation (i.e.: processor clock) might help, but can
be expensive and does not ensure strict determinism. In our reference appli-
cations, the overall system is composed by different subsystems, connected via
an Ethernet network, where each subsystem has its own real-time constraints
(e.g.: the Human/Computer interface subsystem need to react with human re-
sponse time, while pure algorithm calculation subsystems need to react with
much shorter time-frame). Hence we have heterogeneous requirements that lead
to heterogeneous software and hardware platforms.

Embedded Systems: Each embedded system is a logical-physical unit, which
works inside a larger system and, in the most common case, is not visible to
clients of that system [7]. Embedded systems usually do not support desktop
I/O devices but provide environment-specific devices.

Experiences, Strategies and Challenges in Adapting PVM to V xWorksTM 211

Fig. 1. Computational architecture of a software component for a typical application
in the safety-critical domain of reference

Computational Unit: Our reference applications execute on heterogeneous
networks of computers, and can be seen as composed by a set of computational
units CU(s). This set operates like an orchestra, where each CU collaborates with
other CU(s) and performs some specific basic functions (in our case: mathemat-
ical computation). The application behavior results from the CU(s) functions
available. Figure 1 shows the computational architecture of a typical applica-
tion in our safety-critical domain, in which: (a) the computational path of the
data is selected based on the meaning achieved at run-time, (b) the data is ex-
changed among CU(s) using a message passing mechanism, (c) the output data
of a component could be the input data of other components.

Those CU(s) can be implemented in different languages; they can be modeled
by heavy processes or just threads [8, 9]. Each CU runs on any of the suitable
computers in the network, and a CU has its own set of data, program code
and stack; the scheduler of the OS is responsible for CU management. In order
to enhance flexibility, software instructions should refer logical addresses rather
than physical ones; the Paging Unit is the hardware unit responsible for mapping
the former to the latter. In fact, when a Unix process forks itself, a new CU is
born with the forker’s logical address; however, variables are not shared because
the Paging Unit translates differently the logical addresses of different CU(s).

2.1 Brief Introduction to the V xWorksTM OS

V xWorksTM [10] is a HRT operating system from WindRiverTM , and
TornadoTM [11] is its integrated development environment, required to build any
V xWorksTM application. V xWorksTM has been bred specifically for Embed-
ded HRT applications. TornadoTM is not a native tool; it needs: (i) a software
development stations (host); (ii) a direct link to a machine configured as the
final computational node, where the application will execute (a.k.a. the target).

212 D. Falessi, G. Pennella, and G. Cantone

The V xWorksTM scheduler is multitasking, interrupt-driven, priority-based and
pre-emptive. V xWorksTM is the market leader for hard real-time embedded ap-
plications; it is used in a large variety of domains included aerospace: for instance,
the rover Spirit on Mars uses V xWorksTM . TornadoTM allows programmers to
include reusable software parts of many types, like device drivers (cache supports,
usb devices etc.), advanced functionality (DHCP server, ping client etc.), kernel
components (exceptions handlers, environment variables etc.), standard soft-
ware libraries (POSIX semaphores, ANSI STDIO etc.) and behaviors (POSIX
and other schedulers etc.). The high level of modularity that TornadoTM allows,
also supports the creation of essential kernels, which include only those compo-
nents that are strictly necessary to satisfy the functionality of the system. Thus
it is possible to create a very small kernel, required by the a resource-limited
embedded application.

2.2 V xWorksTM with Respect to Unix

V xWorksTM names task its basic CU. A task is an active computation en-
tity; its context includes private (not shared) attributes for storing values of
program counter, CPU registers and timers, an optional data structure for de-
bugging purposes, standard input and output devices. Let us highlight that
V xWorksTM tasks share the same address space. Moreover, V xWorksTM uses
physical-memory addresses, while Unix manages physical and logical address.
The use of logical memory allows implicit protection of data, while addressing
memory directly in physical mode exposes software to data access errors that
can lead to fatal failure of the system. Pros of using physical addressing relates
to performance: it is much faster than logical access because of the absence of ad-
dress translation. Other main non-Unix V xWorksTM ’s characteristics are: (a)
V xWorksTM does not provide copy-constructors for tasks; hence, clients cannot
create new computational units by coping data from another computational unit
(in Unix, the system call fork() provides such a functionality), (b) V xWorksTM

computational units are flat; application system programmers cannot structure
those units hierarchically, (c) V xWorksTM allows complete control at applica-
tion level over the existing CU(s) through proprietary API, (d) the context of
any V xWorksTM computational unit can be allowed to maintain data for de-
bugging purposes. Thus the V xWorksTM ’s tasks are extremely different form
Unix processes, but have similarities with Unix threads.

3 Adapting PVM to V xWorksTM

Let us focus now on showing the problems that we faced, and explaining the
solutions that we adopted to allow communication, in heterogeneous computer
networks, between Unix and V xWorksTM OS, using PVM as a middleware. In
order to meet such a goal, we had one reasonable chance, which is trying to
enhance the last available version of PVM (i.e. v. 3.4.4), in the aim of adapt-
ing PVM to deal with the last version of V xWorksTM OS (i.e. v. 5.5). Let
us highlight that the resulting product, PVMVX, is not to consider as a new

Experiences, Strategies and Challenges in Adapting PVM to V xWorksTM 213

middleware but just a PVM extension in terms of portability. In relation to
changes that we applied to PVM source code, we defined two different compi-
lation directives to encapsulate all the modifications done: (a) VXWORKS, for
including the portions of code that is developed specifically for V xWorksTM ,
(b) CUTFORVXWORKS, for detecting PVM functionality not yet adapted to
V xWorksTM .

3.1 The Process

We used an evolutionary maintenance process, with each iteration structured
in three main phases: 1) Analyzing for detecting the remaining most critical
changes to enact in the current iteration; 2) Understanding for Maintaining;
3) Analyzing, designing, enacting, and testing the effects of, the maintenance
intervention.

3.2 Analysis

The prospected high level of diversity between V xWorksTM and Unix made the
analysis phase very significant. This phase was focused on the following activities:
(a) identifying priority changes; (b) understanding the PVM software context for
the change, and identifying the affected functionality; (c) configuring the kernel
options; (d) locating the identified PVM key functionality in the source code;
(e) finding the path, if any, of the system calls required by PVM; (f) setting up
the required environment variables. The remaining sub-sections synthesize on
changes that we applied.

3.3 Encapsulating PVM Communication Protocol in PVMVX

The key step was to analyze the PVM network communication protocol. To enact
that step we used Ethereal (v. 0.10.10) [12], which is an open source sniffer; we
preferred such a black box approach, both to have a direct view of what was
passing through the net, and in the reasonable expectation of saving with effort
to spend. The result was that PVM uses the Remote Shell (RSH) [13] for virtual
machine initialization and task spawning, while V xWorksTM does not provide
RSH server daemons. Consequently, in order to proceed with our work, we had
to port RSH toV xWorksTM .

3.4 Forking Computation Units

Adapting the Unix primitive fork() to V xWorksTM resulted in a work-task
quite strong to enact. As previously mentioned, Unix allows copy-constructors
for tasks through the system call fork(), which uses logical addresses; unfortu-
nately, these features are not supported by V xWorksTM . Since fork() is utilized
by PVM as the key mechanism to create distributed computational units, we
had to develop a similar mechanism by using V xWorksTM features. Concern-
ing this point, let us recall that V xWorksTM does not implement the concept
of logical-address. However, we noted that it has so called private variables; dif-
ferently from other V xWorksTM variables, the private variables refer different

214 D. Falessi, G. Pennella, and G. Cantone

addresses while using common variable names in different CU(s). In order to
simulate logical addressing mechanism in V xWorksTM , our first approach was
hence to use extensively such a feature: defining private variables and linking
them dynamically to tasks eventually allowed us to simulate fork() mechanism
in V xWorksTM . Unfortunately, a testing time, we had to verify that such a so-
lution was not sufficient because private variables cause significant performance
overheads; in fact, the V xWorksTM scheduler loads all the private variables
every time a task-context change occurs. We estimated in one millisecond the
loading time for each private variable. Moreover, we realized that PVM utilizes
about one-hundred variables of type global which need to be privatized. Con-
sequently, in such a preliminary PVMVX, performance overheads resulted in
0.1 seconds for every change of context, which is not acceptable for any HRT
system; so we had to reject that approach. The subsequent approach consisted
in compacting all unshared variables in one large private structure. Concerning
implementation, once created the structure of private variables, we proceeded to
map unshared variables through that new structure. Since the number of neces-
sary private variables became one, i.e. the base address of that private structure,
the actual lost of performance dropped down up to 1%; however, an overheads of
1 millisecond for every context change seems us still quite a strong charge, and
further improvements should be provided by next iterations of the adaptation
work.

3.5 Other Implemented Functionality

Others things that we implemented, which are mandatory for PVM usage and
V xWorksTM does not provide, are: (a) the User concept at application level,
(b) pipe functionality, which is the local communication channel that PVM es-
tablishes between the PVM-daemon and the remaining PVM local tasks, (c)
parameter passing from the command shell, which PVM uses to set starting pa-
rameters of all the PVM CU(s). We implemented all those things by using some
V xWorksTM environment variables.

3.6 Not Implemented Functionality

Two PVM functionality are not yet provided by PVMVX: executing Master
and Debugger processes. Our plan is to implement these functionalities in a
next iteration of our development.

4 Experimental Laboratory, Software Process, and Effort

The hardware equipment that we used for developing and testing PVMVX in-
cludes: (a) one desktop host computer, suitable for developing/modifying the
PVMVX source code by using TornadoTM ; (b) one target computer, for ex-
ecuting PVMVX on V xWorksTM OS; a COTS Single Board Computer we
utilized as target, which is produced by Dy4[14], based on PowerPCTM and
AltivecTM technology, and names SV ME/DMV − 181TM ; (c) four desktop

Experiences, Strategies and Challenges in Adapting PVM to V xWorksTM 215

computers running PVM, three of them with Linux RedHatTM 9.0, and one
with SolarisTM 9 OS. All those computers were interconnected through a LAN
(see Figure 2); the connection of five computers, the ones described at points
(b) and (c) above, constitutes a heterogeneous network that truly replicates the
hardware architecture which is common in our safety-critical applications.

The software process that we enacted is Evo (Evolutionary) [15], as ideated
by T. Gilb. Evo is utilized by the production lines of the reference company;
based on their experience, Evo is a suitable process when requirements are not
stable. In fact, when we started this project, requirements were quite vague, we
did not know if PVM was adaptable to V xWorksTM , and what amount of work
we would be enacting. In order to develop this project up to the status described
above, we spent an effort of 1.580 man-hours; their split through different phases
is: 505 for analysis, 331 for development, 395 for test, and 349 for documentation.
PVM understanding for adaptation maintenance involved reading 55 KLOC,
while adaptation maintenance involved the development of 3 KLOC.

5 Testing, and Analysis of Results

As already mentioned, we tested PVMVX on the architecture in Figure 2. In or-
der to evaluate performance and some fault-tolerant features, we run three types
of tests, as in the followings: (a) measuring the computational time required to
send and receive up to two-thousands messages of type int from the target sys-
tem to SolarisTM desktop; (b) measuring the computational time required to
send and receive up to two-thousands messages of type int from the target sys-
tem to one Linux desktop; (c) evaluating some fault tolerant features by using
a particular distributed application, which involved all the networked systems in
Figure 2. The analysis of results shows that: (i) mean time to transfer one of the
test messages is approximately 0.033 seconds, (ii) PVMVX is able to tolerate
at least one non master fault by reconfiguring the parallel virtual machine, as
typical for PVM behaviors.

Fig. 2. The PVMVX development and testing architecture

216 D. Falessi, G. Pennella, and G. Cantone

6 Conclusions and Future Works

Based on experience gained in developing a prototypic adapter, this paper pre-
sented and discussed the experiences, strategies and challenges in adapting PVM
to the hard real-time operating system V xWorksTM . Results from this ex-
ploratory experimental study seem to confirm that PVM is a promising solution
for distributed embedded hard real-time applications. In order to employ PVM
in the development lines of safety-critical software at our reference organization,
further work is needed, aimed to improve performances of the prototype that we
realized. Based on the experience that we gained while conducting the present
study, the next step will concern re-engineering again PVM with a more precise
focus on V xWorksTM : this, in fact, is absolutely not compatible with Unix,
which call for further specific PVM modelling.

References

[1] Al Geist, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy Sunderam,
PVM: Parallel Virtual Machine A User’s Guide and Tutorial for Networked Par-
allel Computing, The MIT Press, 1994.

[2] William Gropp and Ewing Lusk, Goals Guiding Design: PVM and MPI, Proceed-
ings of the IEEE International Conference on Cluster Computing 2002.

[3] Introduction to MPI. www.mpi-forum.org/docs/mpi-11-html/node1.html.
[4] Jane W. S. Liu, Real-Time Systems, Prentice Hall 2000.
[5] Giorgio C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications, Springer 1997.
[6] John A. Stankovic, Krithi Ramamritham Hard Real-Time Systems, IEEE SCP,

1988.
[7] Qing Li and Caroline Yao, Real-Time Concepts for Embedded Systems, CMP,

2003.
[8] Jean Bacon and Tim Harris, Operating Systems: Concurrent and Distributed Soft-

ware Design, Addison Wesley 2003.
[9] Daniel Bovet and Marco Cesati, Understanding the LINUX Kernel, O’Reilly 2002.

[10] Wind River, VxWorks programmers guide, 2003.
[11] Wind River,Tornado users guide windows, 2003.
[12] http://www.ethereal.com/
[13] http://stuff.mit.edu/afs/athena/astaff/reference/4.3network/rshd/rshd.c
[14] Dy4, DPK-TechDoc-CD 602716-001 Disk 1, 2004.
[15] T. Gilb, Evo: The evolutionary Project Managers Handbook.

MPJ/Ibis: A Flexible and Efficient Message
Passing Platform for Java

Markus Bornemann, Rob V. van Nieuwpoort, and Thilo Kielmann

Vrije Universiteit, Amsterdam, The Netherlands
http://www.cs.vu.nl/ibis

Abstract. The MPJ programming interface has been defined by the
Java Grande forum to provide MPI-like message passing for Java appli-
cations. In this paper, we present MPJ/Ibis, the first implementation of
MPJ based on our Ibis programming environment for cluster and grid
computing. By exploiting both flexibility and efficiency of Ibis, our MPJ
implementation delivers high-performance communication, while being
deployable on various platforms, from Myrinet-based clusters to grids.
We evaluated MPJ/Ibis on our DAS-2 cluster. Our results show that
MPJ/Ibis’ performance is competitive to mpiJava on Myrinet and Fast
Ethernet, and to C-based MPICH on Fast Ethernet.

1 Introduction

In recent years, Java has gained increasing interest as a platform for high perfor-
mance and Grid computing [1]. Java’s “write once, run anywhere” property has
made it attractive, especially for high-performance grid computing where many
heterogeneous platforms are used and where application portability becomes an
issue with compiled languages like C++ or Fortran.

In previous work on our Ibis programming environment [2], we showed that
parallel Java programs can run and communicate efficiently. Ibis supports object-
based communication: method invocation on remote objects and object groups,
as well as divide-and-conquer parallelism via spawned method invocations [2].
The important class of message-passing applications was not supported so far.

To enable message passing applications, the Java Grande Forum proposed
MPJ [3], the MPI language bindings to Java. So far, no implementation of MPJ
has been made available. In this paper, we present MPJ/Ibis, our implementa-
tion of MPJ on top of the Ibis platform. Being based in Ibis, MPJ/Ibis can be
deployed flexibly and efficiently, on machines ranging from clusters with local,
high-performance networks like Myrinet or Infiniband, to grid platforms in which
several, remote machines communicate across the Internet.

In this paper, we discuss our design choices for implementing the MPJ API.
As evaluation, we run both micro benchmarks and applications from the Java-
Grande benchmark suite [1]. Micro benchmarks show that on a Myrinet cluster,
MPJ/Ibis communicates slower than C-based MPICH, but outperforms MPI-
Java, an older Java wrapper for MPI. Using TCP on Fast Ethernet shows that

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 217–224, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

218 M. Bornemann, R.V. van Nieuwpoort, and T. Kielmann

Fig. 1. Design of Ibis. The various modules can be loaded dynamically.

MPJ/Ibis is significantly faster than C-based MPICH. (Unfortunately, MPI-
Java does not run at all in this configuration.) With the JavaGrande bench-
mark applications, MPJ/Ibis is either on-par with MPIJava or even outper-
forms it. MPJ/Ibis can thus be considered as a message-passing platform for
Java that combines competitive performance with portability ranging from high-
performance clusters to grids.

2 Related Work

Many attempts were made to bind MPI to Java. MpiJava [4] is based on wrap-
ping native methods like the MPI implementation MPICH with the Java Native
Interface (JNI). The API is modeled very closely on the MPI standard provided
by the MPI Forum. Due to limitations of the Java language (primitive type ar-
guments cannot be passed as reference), small changes to the original standard
had been made. JavaMPI [5] also uses JNI to wrap native methods to Java. It
overcomes the argument passing problems using automatically generated C-stub
functions and JNI method declarations. The MPIJ [6] implementation is written
in pure Java and runs as a part of the Distributed Object Group Metacomput-
ing Architecture (DOGMA) [7]. If available on the running platform, MPIJ uses
native marshaling of primitive types instead of Java marshaling.

The first two approaches provide fast message passing, but do not match
Java’s ”write once, run anywhere” property. JavaMPI and mpiJava are not
portable enough, since a it requires a native MPI library and the Java binding
must be compiled on the target system. MPIJ is written in Java and addresses
the conversion of primitive datatypes into byte arrays. However, it does not solve
the more general problem of Object serialization, which is a bottleneck.

MPJ [3] proposes MPI language bindings to Java. These bindings merge the
earlier proposals mentioned above. In this paper, we present MPJ/Ibis, which
is the first available implementation of MPJ. MPJ/Ibis features a pure Java
implementation, but can also use high speed networks using some native code.
Moreover, MPJ/Ibis uses Ibis’ highly efficient object serialization, greatly speed-
ing up the sending of complex data structures.

3 Ibis, Flexible and Efficient Grid Programming

Our MPJ implementation runs on top of Ibis [2]. The structure of Ibis is shown
in Figure 1. A central part of the system is the Ibis Portability Layer (IPL) which

MPJ/Ibis: A Flexible and Efficient Message Passing Platform for Java 219

m = sendPort.getMessage();
m.writeInt(3);
m.writeIntArray(a);

m.writeObject(o);
m.send();

m.writeIntSlice(b, 0, 100);

i = m.readInt();

o = m.readObject();

a = m.readIntArray();

m = receivePort.receive();

m.finish();

m.readIntSlice(b, 0, 100);

m.finish();

receive portsend port

Fig. 2. Send ports and receive ports

consists of a small number of well-defined interfaces. The IPL can have different
implementations, that can be selected and loaded into the application at run
time. The IPL defines both serialization (the conversion of objects to bytes) and
communication. Ibis also provides more high-level programming models, see [2].
In this paper, we focus on the MPJ programming model.

A key problem in making Java suitable for grid programming is designing
a system that obtains high communication performance while retaining Java’s
portability. Current Java runtime environments are heavily biased to either
portability or performance. The Ibis strategy to achieve both goals simulta-
neously is to develop reasonably efficient solutions that work “anywhere”, sup-
plemented with highly optimized solutions for increased performance in special
cases. With Ibis, grid applications can run simultaneously on a variety of differ-
ent machines, using optimized software where possible (e.g., Myrinet), and using
standard software (e.g., TCP) when necessary.

3.1 Send Ports and Receive Ports

The IPL provides communication primitives using send ports and receive ports.
A careful design of these ports and primitives allows flexible communication
channels, streaming of data, efficient hardware multicast and zero-copy transfers.
The layer above the IPL creates send and receive ports, which are connected
to form a unidirectional message channel, see Figure 2. New (empty) message
objects can be requested from send ports, and data items of any type can be
inserted. Both primitive types and arbitrary objects can be written. When all
data is inserted, the send primitive can be invoked on the message.

The IPL offers two ways to receive messages. First, messages can be received
with the receive port’s blocking receive primitive (see Figure 2). It returns a
message object, from which the data can be extracted using the provided set of
read methods. Second, the receive ports can be configured to generate upcalls,
thus providing the mechanism for implicit message receipt. An important insight
is that zero-copy can be made possible in some important special cases by care-
fully designing the port interfaces. Ibis allows native implementations to support
zero-copy for array types, while only one copy is required for object types.

3.2 Efficient Communication

The TCP/IP Ibis implementation is using one socket per unidirectional channel
between a single send and receive port, which is kept open between individual

220 M. Bornemann, R.V. van Nieuwpoort, and T. Kielmann

messages. The TCP implementation of Ibis is written in pure Java, allowing
to compile an Ibis application on a workstation, and to deploy it directly on a
grid. To speedup wide-area communication, Ibis can transparently use multiple
TCP streams in parallel for a single port. Finally, Ibis can communicate through
firewalls, even without explicitly opened ports.

The Myrinet implementation of the IPL is built on top of the native GM
library. Ibis offers highly-efficient object serialization that first serializes objects
into a set of arrays of primitive types. For each send operation, the arrays to be
sent are handed as a message fragment to GM, which sends the data out without
copying. On the receiving side, the typed fields are received into pre-allocated
buffers; no other copies need to be made.

4 MPJ/Ibis

MPJ/Ibis is written completely in Java on top of the Ibis Portability Layer. It
matches the MPJ specification mentioned in [3]. The architecture of MPJ/Ibis,
shown in Figure 3, is divided into three layers. The Communication Layer
provides the low level communication operations. The MPJObject class stores
MPJ/Ibis messages and the information needed to identify them, ie. tag and
context id. To avoid serialization overhead the MPJObject is not sent directly,
but is split into a header and a data part. When header and message arrive at the
destination, MPJ/Ibis decides either to put the message directly into the receive
buffer or into a queue, where the retrieved message waits for further processing.

The Base Communication Layer takes care of the basic sending and receiving
operations in the MPJ specification. It includes the blocking and nonblocking
send and receive operations and the various test and wait statements. It is also
responsible for group and communicator management. The Collective Commu-
nication Layer implements the collective operations on top of the Base Commu-
nication Layer. The algorithms realizing the collectives are shown in table 1.

Fig. 3. Design of MPJ/Ibis

4.1 MPJ/Ibis Implementation

MPJ/Ibis tries to avoid expensive operations like buffer copying, serialization
and threads where it is possible. On the sender side, MPJ/Ibis analyses the

MPJ/Ibis: A Flexible and Efficient Message Passing Platform for Java 221

Table 1. Algorithms used in MPJ to implement the collective operations

Collective Operation Algorithm
allgather double ring
allgatherv ring
alltoall flat tree
alltoallv flat tree
barrier flat tree
broadcast binomial tree
gather binomial tree
gatherv flat tree
reduce binomial tree
reduceScatter phase 1:reduce; phase 2: scatterv
scan flat tree
scatter phase 1: broadcast; phase 2: filter
scatterv flat tree

message to find out if there is a need to copy it into a temporary buffer. This
is necessary when using displacements, for example. If no copy is required, the
message will be written directly to the Ibis send port.

On the receiver side MPJ/Ibis has to decide to which communicator the
message is targeted. The receive operation uses a blocking downcall receive to the
Ibis receive port, where it waits for a message to arrive. When the message header
comes in MPJ/Ibis determines if this message was expected. If it was not (a rare
event), the whole message including the header will be packed into a MPJObject
and then moved into a queue, copying then is mandatory. Otherwise MPJ/Ibis
decides either to receive the message directly into the user’s receive buffer or into
a temporary buffer from where it will be copied to it’s final destination (when
displacements are used, for instance). There is no need to use threads for the
blocking send and receive operations in MPJ/Ibis, which saves a lot of processor
time. In many simple but often occurring cases zero-copying is possible as well.
MPJ supports non-blocking communication operations, such as isend and irecv.
These are built on top of the blocking operations using Java threads.

4.2 Open Issues

Since Java provides derived datatypes natively there is no real need to implement
derived datatypes in MPJ/Ibis. Nevertheless contiguous derived datatypes are
supported by MPJ/Ibis to achieve the functionality of the reduce operations
MINLOC and MAXLOC, which need at least a pair of values inside a given
one-dimensional array. At the moment MPJ supports one-dimensional arrays.
Multidimensional arrays can be sent as an object. In place receive is not possible
in this case. MPJ/Ibis supports creating and splitting of new communicators,
but intercommunication is not implemented yet. At this moment, MPJ/Ibis does
not support virtual topologies.

5 Evaluation

We evaluated MPJ/Ibis on the DAS-2 cluster in Amsterdam, which consists of
72 Dual Pentium-III nodes with 1 GByte RAM, connected by Myrinet and Fast
Ethernet. The operating system is Red Hat Enterprise Linux with kernel 2.4.

222 M. Bornemann, R.V. van Nieuwpoort, and T. Kielmann

Table 2. Low-level performance. Latencies in microseconds, throughputs in MByte/s.

network / Myrinet Fast Ethernet
implementation latency array object latency array object

throughput throughput throughput throughput
MPICH / C 22 178 N.A. 1269 10.6 N.A.
mpiJava / SUN JVM 84 86 1.2 N.A. N.A. N.A.
mpiJava / IBM JVM 41 178 2.7 N.A. N.A. N.A.
Ibis IPL / SUN JVM 56 80 4.8 146 11.2 3.0
Ibis IPL / IBM JVM 46 128 12.8 144 11.2 4.4
MPJ / SUN JVM 98 80 4.6 172 11.2 3.0
MPJ / IBM JVM 58 128 12.4 162 11.2 4.4

5.1 Low-Level Benchmarks

Table 2 shows low-level benchmark numbers for the IPL, MPJ/Ibis, MPICH
and mpiJava. For the Java measurements, we used two different JVMs, one
from Sun and one from IBM, both in version 1.4.2. For C, we used MPICH/GM
for Myrinet and MPICH/P4 for Fast Ethernet. MpiJava uses MPICH/GM, we
were unable to run it with MPICH/P4. First, we measured the roundtrip latency
by sending one byte back and forth. On Myrinet, Java has considerably higher
latencies than C. This is partly caused by switching from Java to C using the
JNI. On Fast Ethernet MPJ is faster than MPICH/P4 (the latency is more than
7 times lower). In this case, only Java code is used, the JNI is not involved.

Next, we measured the throughput for 64 KByte arrays of doubles. The data
is received in preallocated arrays, no new objects are allocated and no garbage
collection is done by the JVM. The numbers show that the IBM JVM is much
faster than the SUN JVM in this case, because the SUN JVM makes a copy of
the array when going through the JNI. This almost halves the throughput. When
we compare the mpiJava results on the IBM JVM and Myrinet with MPICH,
we see that performance is the same. Ibis and MPJ are somewhat slower, but
still achieve 128 MByte/s. On Fast Ethernet, all Java implementations are able
to fill the network. MPICH/P4 is marginally slower.

Finally, we use a throughput test that sends binary trees of 1023 nodes, with
four integer values payload per node. We show the throughput of the payload.
In reality, more data is sent, such as type information and the structure of the
tree (pointers to the left and right children). The tree is reconstructed at the
receiving side, in newly allocated objects. It is not possible to express this test in
C in this way. Ibis and MPJ are much more efficient than mpiJava when sending
objects, resulting in a 4.5 times higher throughput, thanks to Ibis’ highly efficient
serialization implementation. This result is significant, because in Java programs
typically send complex graphs of objects.

5.2 Application Performance

Figure 4 shows the speedups achieved with three applications from the Java
Grande MPJ benchmarks using the Sun JVM (we found that mpiJava is unstable
in combination with the IBM JVM). We also show an additional application,
ASP, which is not part of the Java Grande set.

MPJ/Ibis: A Flexible and Efficient Message Passing Platform for Java 223

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60

S
pe

ed
up

CPUs

ASP

MPJ GM
MPJ TCP

MPIJava GM
perfect

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60

S
pe

ed
up

CPUs

Molecular Dynamics

MPJ GM
MPJ TCP

MPIJava GM
perfect

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60

S
pe

ed
up

CPUs

MonteCarlo

MPJ GM
MPJ TCP

MPIJava GM
perfect

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60

S
pe

ed
up

CPUs

RayTracer

MPJ GM
MPJ TCP

MPIJava GM
perfect

Fig. 4. Speedup of MPJ/Ibis and MPIJava applications

ASP All-pairs Shortest Paths (ASP) computes the shortest path between
any two nodes of a given 5952-node graph. In ASP one machine broadcasts an
array of data each iteration. Both the MPJ/Ibis and mpiJava obtain excellent
speedups, but MPJ/Ibis scales better to larger number of CPUs.

MolDyn is an N-body code. For each iteration, six reduce-to-all summation
operations update the atoms. We enlarged the problem size to 19 (27436 parti-
cles). Both MPJ/Ibis and mpiJava perform well on this application. Only on 64
machines, mpiJava slightly outperforms MPJ/Ibis.

The MonteCarlo application is a financial simulation. Each node generates
an array of Vector objects. These arrays of complex objects are sent to CPU 0
by individual messages. We cannot make the problem larger than size B due to
memory constraints. With this problem size, neither mpiJava nor MPJ/Ibis scale
well. However, MPJ/Ibis clearly is more efficient: it outperforms mpiJava with
more than a factor of two, thanks to Ibis’ highly efficient serialization mechanism.

Ray Tracer renders a scene of 64 spheres. Each node calculates a checksum
over its part of the scene, and a reduce operation is used to combine these
checksums into a single value. The machines send the rendered pixels to machine
0 by individual messages. We enlarged the problem to an image of 2000x2000
pixels. MPJ/Ibis and mpiJava perform almost perfectly on this application.

The measurements in this section show that MPJ/Ibis achieves similar per-
formance as mpiJava. In one case (MonteCarlo), MPJ/Ibis outperforms mpiJava
by a large margin. The results indicate that the flexibility provided by the MPJ
implementation on top of Ibis does not come with a performance penalty.

224 M. Bornemann, R.V. van Nieuwpoort, and T. Kielmann

6 Conclusions

We presented MPJ/Ibis, our implementation of the Java language binding of
MPI. Our implementation is based on our Ibis grid programming environment.
Putting a message-passing layer like MPJ on top of Ibis provides an efficient
environment, allowing message-passing applications in Java. Ibis’ flexibility then
allows to run these applications on clusters and on grids, without recompilation,
merely by loading the respective communication substrate at run time.

We have evaluated MPJ/Ibis using micro benchmarks and applications from
the JavaGrande benchmark suite. Our results show that MPJ/Ibis shows com-
petitive or better performance than MPIJava, an older MPI language binding.
Comparing to C-based MPICH, MPJ/Ibis is somewhat slower using Myrinet,
but outperforms its competitor when using TCP/IP over Fast Ethernet.

To summarize, MPJ/Ibis can be considered as a message-passing platform
for Java that combines competitive performance with portability ranging from
high-performance clusters to grids. We are currently investigating the use of both
MPJ and shared-object communication, paralleling single-sided communication
as introduced in MPI-2.

References

1. The JavaGrande Forum: www.javagrande.org (1999)
2. van Nieuwpoort, R.V., Maassen, J., Hofman, R., Kielmann, T., Bal, H.E.: Ibis: an

Efficient Java-based Grid Programming Environment. In: Joint ACM Java Grande
- ISCOPE 2002 Conference, Seattle, Washington, USA (2002) 18–27

3. Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox, G.: MPJ: MPI-like Message
Passing for Java. Concurrency: Practice and Experience 12 (2000) 1019–1038

4. Baker, M., Carpenter, B., Fox, G., Ko, S.H., Lim, S.: mpiJava: An Object-Oriented
Java interface to MPI. In: Intl. Workshop on Java for Parallel and Distributed
Computing, IPPS/SPDP, LNCS, Springer Verlag, Heidelberg, Germany (1999)

5. Mintchev, S., Getov, V.: Towards portable message passing in Java: Binding MPI.
In: Recent Advances in PVM and MPI. Number 1332 in Lecture Notes in Computer
Science (LNCS), Springer-Verlag (1997) 135–142

6. Judd, G., Clement, M., Snell, Q., Getov, V.: Design issues for efficient implementa-
tion of mpi in java. In: ACM 1999 Java Grande Conference. (1999) 58–65

7. Judd, G., Clement, M., Snell, Q.: DOGMA: Distributed Object Group Metacom-
puting Architecture. Concurrency: Practice and Experience 10 (1998) 977–983

The Open Run-Time Environment (OpenRTE):
A Transparent Multi-cluster Environment for

High-Performance Computing

R.H. Castain1, T.S. Woodall1, D.J. Daniel1

J.M. Squyres2, B. Barrett2, and G.E. Fagg3

1 Los Alamos National Lab
2 Indiana University

3 University of Tennessee, Knoxville

Abstract. The Open Run-Time Environment (OpenRTE)—a spin-off
from the Open MPI project—was developed to support distributed high-
performance computing applications operating in a heterogeneous en-
vironment. The system transparently provides support for interprocess
communication, resource discovery and allocation, and process launch
across a variety of platforms. In addition, users can launch their applica-
tions remotely from their desktop, disconnect from them, and reconnect
at a later time to monitor progress. This paper will describe the capa-
bilities of the OpenRTE system, describe its architecture, and discuss
future directions for the project.

1 Introduction

The growing complexity and demand for large-scale, fine-grained simulations
to support the needs of the scientific community is driving the development of
petascale computing environments. Achieving such a high level of performance
will likely require the convergence of three industry trends: the development of
increasingly faster individual processors; integration of significant numbers of
processors into large-scale clusters; and the aggregation of multiple clusters and
computing systems for use by individual applications.

Developing a software environment capable of supporting high-performance
computing applications in the resulting distributed system poses a significant
challenge. The resulting run-time environment (RTE) must be capable of sup-
porting heterogeneous operations, efficiently scale from one to large numbers of
processors, and provide effective strategies for dealing with fault scenarios that
are expected of petascale computing systems [7]. Above all, the run-time must
be easy to use, providing users with a transparent interface to the petascale
environment in a manner that avoids the need to customize applications when
moving between specific computing resources.

The Open Run-Time Environment (OpenRTE) has been designed to meet
these needs. Originated as part of the Open MPI project [3]—an ongoing col-
laboration to create a new open-source implementation of the Message Passing

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 225–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

226 R.H. Castain et al.

Interface (MPI) standard for parallel programming on large-scale distributed
systems [1,8]—the OpenRTE project has recently spun-off into its own effort,
though the two projects remain closely coordinated. This paper describes the
design objectives that under-pin the OpenRTE and its architecture.
Terminology. The concepts discussed in the remainder of this paper rely on
the prior definition of two terms. A cell is defined as a collection of computing
resources (nodes) with a common point-of-contact for obtaining access, and/or a
common method for spawning processes on them. A typical cluster, for example,
would be considered a single cell, as would a collection of networked computers
that allowed a user to execute applications on them via remote procedure calls.
Cells are assumed to be persistent—i.e., processors in the cell are maintained in
an operational state as much as possible for the use of applications.

In contrast, a local computer is defined as a computer that is not part of a
cell used to execute the application, although application processes can execute
on the local computer if the user so desires. Local computers are not assumed
to be persistent, but are subject to unanticipated disconnects. Typically, a local
computer consists of a user’s notebook or desktop computer.

2 Related Work

A wide range of approaches to the problem of large scale distributed comput-
ing environments have been studied, each primarily emphasizing a particular
key aspect of the overall problem. LAM/MPI, for example, placed its empha-
sis on ease of portability and performance [9], while LA-MPI and HARNESS
FT-MPI focused on data and system fault tolerance (respectively) [4,5]. Simi-
larly, the Globus program highlighted authentication and authorization to allow
operations across administrative zones [6].

The OpenRTE project has drawn from these projects, as well as other similar
efforts, to meet objectives designed to broaden the petascale computing user
community.

3 Design Objectives

The OpenRTE project embraces four major design objectives: ease of use, re-
silient operations, scalability, and extensibility.
Ease of Use. Acceptance of a RTE by the general scientific community (i.e., be-
yond that of computer science) is primarily driven by the system’s perceived ease
of use and dependability. While both of these quantities are subjective in nature,
there are several key features that significantly influence users’ perceptions.

One predominant factor in user acceptance is transparency of the RTE—i.e.,
the ability to write applications that take advantage of a system’s capabilities
without requiring direct use of system-dependent code. An ideal system should
support both the ability to execute an application on a variety of compute re-
sources, and allow an application to scale to increasingly larger sizes by drawing

The Open Run-Time Environment (OpenRTE) 227

resources from multiple computational systems, without modification. This level
of transparency represents a significant challenge to any RTE in both its ability
to interface to the resource managers of multiple cells, and the efficient rout-
ing of shared data between processes that may no longer be collocated within
a highly-interconnected cell (e.g., a cluster operating on a high-speed network
fabric).

Several desirable system features also factor into users’ perceptions of a RTE’s
ease of use. These include the ability to:

– Remotely launch an application directly from the user’s desktop or notebook
computer—i.e., without requiring that the user login to the remote comput-
ing resource and launch the application locally on that system. Incorporated
into this feature is the ability to disconnect from an application while it con-
tinues to execute, and then reconnect to the running application at a later
time to monitor progress, potentially adjust parameters “on-the-fly”, etc.

– Forward input/output to/from remote processes starting at the initiation of
the process, as opposed to only after the process joins the MPI system (i.e.,
calls MPI INIT).

– Provide support for non-MPI processes, including the ability to execute
system-level commands on multiple computing resources in parallel.

– Easily interface applications to monitoring and debugging tools. Besides di-
rectly incorporating support for the more common tools (e.g., TotalView),
the RTE should provide interfaces that support integration of arbitrary in-
strumentation (e.g., those custom developed by a user).

Finally, the RTE should operate quickly (in terms of startup and shutdown) with
respect to the number of processes in an application, and should not require mul-
tiple user commands to execute. Ideally, the run-time will sense its environment
and take whatever action is required to execute the user’s application.
Resilient. Second only to transparency in user acceptance is dependability. The
RTE must be viewed as solid in two key respects. First, the run-time should not
fail, even when confronted with incorrect input or application errors. In such
cases, the run-time should provide an informational error message and, where
appropriate, cleanly terminate the offending application.

Secondly, the RTE should be capable of continuing execution of an appli-
cation in the face of node and/or network failures. Current estimates are that
petascale computing environments will suffer failure of a node every few hours
or days [7]. Since application running times are of the same order of magnitude,
an acceptable RTE for petascale systems must be capable of detecting such fail-
ures and initiating appropriate recovery or shutdown procedures. User-definable
or selectable error management strategies will therefore become a necessity for
RTE’s in the near future.
Scalable. A RTE for distributed petascale computing systems must be capa-
ble of supporting applications spanning the range from one to many thousands
of processes, operating across one to many cells. As noted earlier, this should
be accomplished in a transparent fashion—i.e., the RTE should automatically

228 R.H. Castain et al.

scale when adding processes. This will require that users either provide binary-
compatible images for each machine architecture in the system, pre-position files
and libraries as necessary—or that the run-time be capable of providing such
services itself.
Extensible. The design objectives presented thus far have all dealt with the
RTE from the user’s perspective. However, there are also significant require-
ments in relation to both developers and the larger computer science community.
Specifically, the RTE should be designed to both support the addition of further
features and provide a platform for research into alternative approaches for key
subsystems.

This latter element is of critical importance but often overlooked. For ex-
ample, the possible response of the run-time to non-normal termination of a
process depends somewhat on both the capabilities of the overall computing en-
vironment, the capabilities of the RTE itself, and the nature of the application.
The responses can vary greatly, ranging from ignoring the failure altogether to
immediate termination of the application or restarting the affected process in
another location. Determining the appropriate response for a given situation
and application is a significant topic of research and, to some extent, personal
preference.

Supporting this objective requires that the RTE allow users and developers
to overload subsystems—i.e., overlay an existing subsystem with one of their
own design, while maintaining the specified interface, in a manner similar to
that found in object-oriented programming languages.

4 Architecture

The OpenRTE is comprised of several major subsystems that collectively form
an OpenRTE universe, as illustrated in Figure 1. A universe represents a single
instance of the OpenRTE system, and can support any number of simultaneous
applications. Universes can be persistent – i.e., can continue to exist on their
own after all applications have completed executing – or can be instantiated for
a single application lifetime. In either case, a universe belongs to a specific user,
and access to its data is restricted to that user unless designated otherwise.

Implementation of the OpenRTE is based upon the Modular Component
Architecture (MCA) [3] developed under the Open MPI project. Use of compo-
nent architectures in high-performance computing environments is a relatively
recent phenomenon [2,9,10], but allows the overlay of functional building blocks
to dynamically define system behavior at the time of execution. Within this ar-
chitecture, each of the major subsystems is defined as an MCA framework with a
well-defined interface. In turn, each framework contains one or more components,
each representing a different implementation of that particular framework.

Thus, the behavior of any OpenRTE subsystem can be altered by simply
defining another component and requesting that it be selected for use, thereby
enabling studies of the impact of alternative strategies for subsystems with-
out the burden of writing code to implement the remainder of the system.

The Open Run-Time Environment (OpenRTE) 229

Fig. 1. The OpenRTE architecture

Researchers wishing to study error response strategies, for example, can over-
lay the standard error manager with their own implementation while taking full
advantage of the system-level support from the process launch, state-of-health
monitor, and other OpenRTE subsystems.

This design also allows users to customize the behavior of the run-time at the
time of application execution. By defining appropriate parameters, the user can
direct the OpenRTE system to select specific subsystem components, thus effec-
tively defining system behavior for that session. Alternatively, the user can allow
the system to dynamically sense its environment and select the best components
for that situation.

OpenRTE’s subsystems can be grouped into four primary elements.

General Purpose Registry. At the core of the OpenRTE system is a general
purpose registry (GPR) that supports the sharing of data (expressed as key-value
pairs) across an OpenRTE universe. Information within the GPR is organized
into named segments, each typically dedicated to a specific function, that are
further subdivided into containers, each identified by a set of character string
tokens. Collectively, the container tokens, segment names, and data keys provide
a searchable index for retrieving data. Users have full access to the system-level
information stored on the GPR, and can define their own segments/containers
to support their applications.

The GPR also provides a publish/subscribe mechanism for event-driven ap-
plications. Users can specify both the data to be returned upon an event, the
process(es) and function(s) within the process(es) to receive the specified data,
and combinations of actions (e.g., modification, addition, or deletion of data
entries) that define the event trigger. Notification messages containing the spec-
ified data are sent to the recipients as asynchronous communications via the
OpenRTE messaging layer (described below).

230 R.H. Castain et al.

Resource Management. Four independent, but mutually supportive, subsys-
tems collectively operate to manage the use of resources by applications within
the OpenRTE system. Together, these subsystems provide services for resource
discovery, allocation, mapping, and process launch.

True to its name, the Resource Discovery Subsystem (RDS) is responsible
for identifying the computational resources available to the OpenRTE system
and making that information available to other subsystems. The RDS currently
contains two components: one for reading hostfiles in several formats covering
the common MPI implementations. Hostfiles are typically generated by a specific
user and contain information on machines that might be available to that user;
and another that obtains its information from a system-level resource file con-
taining an XML-based description of the cells known to the OpenRTE system.
Information from each component in the RDS is placed on the GPR for easy
retrieval by other subsystems within that universe.

The Resource Allocation Subsystem(RAS) examines the environment and the
command line to determine what, if any, resources have already been allocated
to the specified application. If resources have not been previously allocated, the
RAS will attempt to obtain an allocation from an appropriate cell based on
information from the RDS. Once an allocation has been determined, the RAS
constructs two segments on the GPR – a node segment containing information on
the nodes allocated to the application, and a job segment that holds information
on each process within the application (e.g., nodename where the application is
executing, communication sockets, etc.).

Once resources have been allocated to an application, the application’s processes
must be mapped onto them. In environments where the cell’s resource man-
ager performs this operation, this operation does not require any action by the
OpenRTE system. However, in environments that do not provide this service,
OpenRTE’s Resource Mapping (RMAP) subsystem fills this need.

Finally, the Process Launch Subsystem (PLS) utilizes the information pro-
vided by the prior subsystems to initiate execution of the application’s processes.
The PLS starts by spawning a head node process (HNP) on the target cell’s fron-
tend machine. This process first determines if an HNP for this user already exists
on the target cell and if this application is allowed to connect to it – if so, then
that connection is established. If an existing HNP is not available, then the new
HNP identifies the launch environment supported by that cell and instantiates
the core universe services for processes that will operate within it. The applica-
tion processes are then launched accordingly.

Error Management. Error management within the OpenRTE is performed
at several levels. Wherever possible, the condition of each process in an appli-
cation is continuously monitored by the State-of-Health Monitor (SOH)1. The
SOH subsystem utilizes its components to field instrumentation tailored to the
local environment. Thus, application processes within a BProc environment are
monitored via the standard BProc notification service. Similarly, the SOH might

1 Some environments do not support monitoring. Likewise, applications that do not
initialize within the OpenRTE system can only be monitored on a limited basis.

The Open Run-Time Environment (OpenRTE) 231

monitor application processes executing on standalone workstations for abnor-
mal termination by detecting when a socket connection unexpectedly closes.

Once an error has been detected, the Error Manager (EMGR) subsystem
is called to determine the proper response. The EMGR can be called in two
ways: locally, when an error is detected within a given process; or globally, when
the SOH detects that a process has abnormally terminated. In both cases, the
EMGR is responsible for defining the system’s response. Although the default
system action is to terminate the application, future EMGR components will
implement more sophisticated error recovery strategies.
Support Services. In addition to the registry, resource management, and error
management functions, the OpenRTE system must provide a set of basic services
that support both the application and the other major subsystems. The name
services (NS) subsystem is responsible for assigning each application, and each
process within each application, a unique identifier. The identifier, or process
name, is used by the system to route inter-process communications, and is pro-
vided to the application for use in MPI function calls.

Similarly, the Run-time Messaging Layer (RML) provides reliable adminis-
trative communication services across the OpenRTE universe. The RML does
not typically carry data between processes – this function is left to the MPI
messaging layer itself as its high-bandwidth and low-latency requirements are
somewhat different than those associated with the RML. In contrast, the RML
primarily transports data on process state-of-health, inter-process contact infor-
mation, and serves as the conduit for GPR communications.

Finally, the I/O Forwarding (IOF) subsystem is responsible for transporting
standard input, output, and error communications between the remote processes
and the user (or, if the user so chooses, a designated end-point such as a file).
Connections are established prior to executing the application to ensure the
transport of all I/O from the beginning of execution, without requiring that the
application’s process first execute a call to MPI INIT, thus providing support
for non-MPI applications. IOF data is usually carried over the RML’s channels.

5 Summary

The OpenRTE is a new open-source software platform specifically designed for
the emerging petascale computing environment. The system is designed to al-
low for easy extension and transparent scalability, and incorporates resiliency
features to address the fault issues that are expected to arise in the context
of petascale computing. A beta version of the OpenRTE system currently ac-
companies the latest Open MPI release and is being evaluated and tested at a
number of sites.

As an open-source initiative, future development of the OpenRTE will largely
depend upon the interests of those that choose to participate in the project.
Several extensions are currently underway, with releases planned for later in the
year. These include several additions to the system’s resource management and
fault recovery capabilities, as well as interfacing of the OpenRTE to the Eclipse

232 R.H. Castain et al.

integrated development environment to allow developers to compile, run, and
monitor parallel programming applications from within the Eclipse system.

Interested parties are encouraged to visit the project web site at
http://www.open-rte.org for access to the code, as well as information on par-
ticipation and how to contribute to the effort.

Acknowledgments

This work was supported by a grant from the Lilly Endowment, National Science
Foundation grants 0116050, EIA-0202048, EIA-9972889, and ANI-0330620, and
Department of Energy Contract DE-FG02-02ER25536. Los Alamos National
Laboratory is operated by the University of California for the National Nu-
clear Security Administration of the United States Department of Energy under
contract W-7405-ENG-36. This paper was reviewed and approved as LA-UR-
05-2718. Project support was provided through ASCI/PSE and the Los Alamos
Computer Science Institute, and the Center for Information Technology Research
(CITR) of the University of Tennessee.

References

1. A. Geist et all. MPI-2: Extending the Message-Passing Interface. In Euro-Par ’96
Parallel Processing, pages 128–135. Springer Verlag, 1996.

2. D. E. Bernholdt et. all. A component architecture for high-performance scientific
computing. to appear in Intl. J. High-Performance Computing Applications.

3. E. Gabriel et all. Open MPI: Goals, concept, and design of a next generation mpi
implementation. In 11th European PVM/MPI Users’ Group Meeting, 2004.

4. R.T. Aulwes et all. Architecture of LA-MPI, a network-fault-tolerant mpi. In 18th
Intl Parallel and Distributed Processing Symposiun, 2004.

5. G. Fagg and J. Dongarra. HARNESS Fault Tolerant MPI Design, Usage and
Performance Issues. Future Generation Computer Systems, 18(8):1127–1142, 2002.

6. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl
J. Supercomputer Applications, 11(2):115–128, 1997.

7. E.P. Kronstadt. Petascale computing. In 19th IEEE Intl Parallel and Distributed
Processing Symposium, Denver, CO, USA, April 2005.

8. Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of
Supercomputing ’93, pages 878–883. IEEE Computer Society Press, November
1993.

9. J.M. Squyres and A. Lumsdaine. A Component Architecture for LAM/MPI. In
10th European PVM/MPI Users’ Group Meeting, 2003.

10. V. Sunderam and D. Kurzyniec. Lightweight self-organizing frameworks for meta-
computing. In 11th International Symposium on High Performance Distributed
Computing, Edinburgh, UK, July 2002.

PVM-3.4.4 + IPv6: Full Grid Connectivity

Rafael Martínez-Torres

Departamento de Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Spain

rafael.martinez@novagnet.com

Abstract. Protocol IPv4 32 bits address space introduces some well
known problems when dealing with local intra-networks: internal pvm
nodes could reach external ones, while the reverse is not always true.
Hence, the PVM-GRID is not entirely deployable around the Internet
as expected. New version of IP protocol, IPv6 (RFC-2460) provides full
connectivity to achieve it. Other properties as multicast contribute to
increase performance, and together with mobility and embedded security
they yield a new concept: a trusted grid of roaming nodes.

1 Introduction

Some Beowulf clusters are designed so that not all nodes are visible to the
external world. This is commonly known as the NAT[2] problem and it is in-
herently bound to the IPv4 protocol address space of 32 bits. Lacking a wider
one, networks administrators are usually forced to setup a front end, masquera-
ding node which connects to the world, while the rest of the nodes are kept on
an internal network, running private, non-reachable addresses (192.168.0.x). As
a transient patch, this allow internal users to run typical client-server services
(http, ftp, ssh...) in a relatively transparent manner1. However, this approach
has the disadvantage for PVM users running on an outside computer who want
to add the Beowulf computer to their configuration: the PVM code on their
computer will be unable to communicate with the Beowulf nodes on the internal
network.

Some time ago, the BEOLIN port [4] of PVM was introduced in order to solve
this problem by making the parallelism of the Beowulf computer transparent to
the user. This is done in a way similar to the MPP ports of PVM for parallel
computers such as the IBM SP2, Cray T3D and others.

Today we present a new way to solve this problem based on the new network-
ing protocol: IPv6 [5]. Among new features, address space is virtually increased
into "infinite" (128 bits vs. 32 bits). This will eventually enable not only com-
puters, but even cellular phones and any sort of electronic devices to connect
the Internet sharing a common address space. Therefore, NAT strategy is to be-
come pointless, and the so called collaborative technologies ("groupware", P2P,
GRID...) are expected to be the main beneficiaries of it.

1 Firewall and proxy’s policies are not covered here obeying a didactical strategy.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 233–240, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

234 R. Martínez-Torres

As additional advantage, IPv6 provides the GRID with mobile computing,
as a complement to mobile computation supplied by PVM. Former refers to the
fact of the nodes of a network moving about, while latter highlights rather the
notion that running programs need not to be forever tied to single network node.
These concepts are widely explained at [10].

This paper is organized as follows: In second section we will show briefly how
IPv6 technology can be integrated into PVM’s architecture. Those interested
on a fully detailed description can download the code from the pointed URL
[12]. Next section shows the feasibility of the experiment, and advanced readers
will find usefull notes regarding an hypothetic hybrid space IPv4-IPv6. A new
emerging GRID paradigm based on addtional IPv6 services is introduced at
fourth section, before the final summary of the paper.

2 Porting PVM into IPv6

Porting an application into IPv6 is rather a trivial task [7], provided a layered
system such as PVM. Note that two steps are involved (see Fig. 1): the PVM’s
runtime-system (2.1), and the end user’s application (2.2).

Application code

PVM interface

PVM runtime system

Operating System

POSIX, BSD interface

PVM (Application protocol)

UDP (Message Control protocol)

IP (Networking Protocol)

802.11 (Link protocol)

Fig. 1. PVM’s Software Layout and Network Layout

2.1 PVM Runtime-System

PVM architecture is explained in detail at [6]. Essentially it relies on the next
points:

– A pvmd daemon runs on UDP protocol serving as a message router2 and
controller for application tasks on the upper level, while UDP runs in time
on the underlying protocol IP.

2 Other further added optimizations, as pvmd-pvmd’ split and message direct routing
among tasks, are intentionally excluded here to focus on an more abstract approach.
See 4.3 for more implications on performance.

PVM-3.4.4 + IPv6: Full Grid Connectivity 235

IPv4 IPv6 Protocol Independent (IPv4-IPv6)
struct sockadddr_in struct sockadddr_in6 struct sockaddr_storage

gethostbyname() gethostbyname2() getaddrinfo()
gethostbyaddr() – getnameinfo()

Fig. 2. Some basic structures and functions and their new counterparts in IPv6

– Interface between the task and the daemon is provided by the library (namely
pvm.h for compilation and libpvm.a for linking issues).

Given such scenario, all we have to do is just to arrange the runtime system’s
code asking the O.S for IPv6 network services. To achieve this, the socket API
has been extended (see Fig. 2) to support the new version and most UNIX
kernels variants have yet implemented it3. Both structure and methods have
been introduced to fit the wider address space (128 bits) as well as support for
straight and reverse DNS resolution.

In general terms, main changes affecting PVM source code are:

1. Redefining the network address structure, according to Fig. 2, for each host
setting up the PVM cluster, namely struct hostd at host.h.

2. Every time we make a socket() call, either to bind the socket as a UDP
daemon, or to send a datagram packet trough it, we have to claim explicitly
the PF_INET6 protocol for it.

3. The code must be ready to parse the new URL format the nodes exchange
among them (see [2001:470:1f01:ffff::8e9]:32770 on the context of
Fig. 3)

4. A curious situation: Initially written not to consume network sockets, but
UNIX ones, further portability reasons across diverse platforms forced the in-
terface among tasks and daemon to use a TCP/IP socket on loop-back inter-
face (127.0.0.1); its counterpart IPv6 loop-back (::1) fulfills its original
purpose.

Those interested on a deeper understanding of the code can find at [12] a
patch and detailed instructions to make your PVM run on IPv6 .

2.2 End User’s Applications

Having PVM’s runtime system adapted and ready for IPv6, we focus on parti-
cular application’s code.

As Fig. 1 suggests, PVM interface was designed to avoid application pro-
grammer getting involved with low-level networking issues like connectivity,
packet formatting, sending and/or receiving, in order to concentrate in par-
allelism aspects. As previously pointed, the programmer asks PVM runtime for
services through pvm.h interface.

Surprisingly, this interface - their function prototypes, strictly speaking -
keeps unchanged, meaning this in practical terms you have not to modify at all
3 Linux, Solaris, FreeBSD, Mac OS, HP are known to.

236 R. Martínez-Torres

your original application source code, but just only to re-compile and link it
against the new library you get in the previous phase, namely libpvm.a, taking
care of the new environment variable:

$ export PVM_ROOT=/path/to/pvm/ipv6/patch

This implies a fast, cheap and easy way to deploy your GRID/PVM applications
around a sort of “world wide grid”, by means of IPv6 technology.

3 Deployment and Running: Advanced Topics

Fig. 3 shows the fragment of a trace file generated by a PVM-IPv6 cluster of six
i386-unknown-linux nodes. Tests were run within the framework of research
initiatives promoted by Euro6IX project[14].

Nevertheless, some additional services required by the cluster were not fully
available on IPv6 yet, thus we were forced to import them via conventional IPv4
(3.2). Following lines are intended to explain how PVM software interacts on
an hybrid network space IPv4-IPv6, contributing to solve potential problems
beyond PVM software.

[pvmd pid4781] 04/23 12:08:47 version 3.4.4
[pvmd pid4781] 04/23 12:08:47 ddpro 2316 tdpro 1318
[pvmd pid4781] 04/23 12:08:47 main() debug mask is 0xff (pkt,msg,tsk,slv,hst,sel,net,mpp)
[pvmd pid4781] 04/23 12:08:47 master_config() null host file
[pvmd pid4781] 04/23 12:08:47 master_config() host table:
[pvmd pid4781] 04/23 12:08:47 ht_dump() ser 1 last 1 cnt 1 master 1 cons 1 local 1 narch 1
[pvmd pid4781] 04/23 12:08:47 hd_dump() ref 1 t 0x0 n "pvmd’" a "" ar "LINUX" dsig 0x4 08841
[pvmd pid4781] 04/23 12:08:47 lo "" so "" dx "" ep "" bx "" wd "" sp 1000
[pvmd pid4781] 04/23 12:08:47 sa [2001:470:1f01:ffff::8e9]:0 mtu 4080 f 0x0 e 0 txq 0
[pvmd pid4781] 04/23 12:08:47 tx 1 rx 1 rtt 1.000000 id "(null)"
[pvmd pid4781] 04/23 12:08:47 hd_dump() ref 1 t 0x40000 n "linux" a "" ar "LINUX" dsig 0x408841
[pvmd pid4781] 04/23 12:08:47 lo "" so "" dx "" ep "$HOME/pvm3/bin/$PVM_ARCH:$PVM_ROOT
[pvmd pid4781] 04/23 12:08:47 sa [2001:470:1f01:ffff::8e9]:0 mtu 4080 f 0x0 e 0 txq 0
[pvmd pid4781] 04/23 12:08:47 tx 1 rx 1 rtt 1.000000 id "(null)"
[t80040000] 04/23 12:08:47 linux ([2001:470:1f01:ffff::8e9]:32770) LINUX 3.4.4
[t80040000] 04/23 12:08:47 ready Sat Apr 23 12:08:47 2005

Fig. 3. A trace ("-d255" flag) of PVM-IPv6 execution

3.1 Can an IPv4 Node Join an IPv6 PVM Cluster?

PVM was initially designed to support heterogeneity at application, machine and
network level [6]. Additionally, as the transition to IPv6 occurs, it is unlikely
that IPv4 will be discarded (see Fig. 4). Instead, an hybrid system running both
IPv4-IPv6, would be preferable [3].

So the things, the question is how to organize the transition for IPv4 nodes
joining the incoming technology PVM-IPv6:

Dual stack approach, i.e., running both IPv4 and IPv6 servers at different
ports. Unfortunately, host-table configuration is not shared by both processes
unless exported via an IPC mechanism. Indeed, keeping such an heterogeneous
table of connectivity complicates its update-maintenance: GRID IPv6-only
nodes are not reachable by IPv4-only ones, and viceversa.

PVM-3.4.4 + IPv6: Full Grid Connectivity 237

Tunneling. A sysadmin can take IPv4’s backbone itself as a medium to gain
access into IPv6’s native world. Given a public IPv4 address and a tunnel
provider [11], system will be assigned a virtual IPv6 address and integrated
via a tunnel connection in a transparent manner for PVM applications.

6to4 relay router. A variant on the previous one, this formula enables you to
setup a complet IPv6 network from an only IPv4 given address, should you
export a whole cluster.

3.2 Additional Network Services

In a distributed GRID computation, PVM does not run alone on network space,
but occasionally getting support from auxiliary network protocols, as network
file systems, authentication services, name resolution and remote execution.

Some of named services are not fully available for IPv6 yet; others, though
implemented, are not recommended in terms of performance, or just not feasible
in the context of a local cluster. Following notes are intended as a reference
covering such topics:

NFS. A network shared file-system is certainly not a pre-requisite to deploy
PVM, and rather discouraged in terms of performance when trying to dis-
patch the tasks among distant nodes. In a local context, however, it makes
easier its scalability as more and more nodes are added to it, having to
compile your application once and the rest of the nodes mirroring it.
To our knowledge4, no distro was available with NFS/IPv6 support, hence
every cluster node ran on dual stack mode: IPv6 for PVM and IPv4 for NFS.
Note that a network interface can hold both types of connectivity.

DNS. Dealing with chunks like 2a05:8004:30a7:231d:1142:2bc4::15 is error-
prone and oftenly cause of typos. DNS is ready to manage IPv6 addresses
(the so called AAAA registers), no matter what transport protocol used,
TCP/IPv6 or TCP/IPv4. Optionally, /etc/host file accepts also entries on
such format, should you fail to register all private nodes contributing to the
GRID.

RSH. PVM’s startup system relies on RSH protocol, which in turn is managed
by inetd super-daemon. Somewhat deprecated, this protocol enables remote
execution, provided exchange of passwords in plain text. Of course, this is
not acceptable in the context of a "world wide grid". Anyway, both RSH and
its secure counterpart SSH are known to be ready on IPv6.

4 Towards a Trusted Grid of Roaming Nodes

In addition to the new 128-bits address space, IPv6 covers a range of other com-
plex subjects actually being developed at a considearable rate[9], involving other

4 Date when this report was closed 2005/04/26.

238 R. Martínez-Torres

Fig. 4. Transition from IPv4 to IPv6

agents as hardware manufacturers, kernel-module developers, and telecom oper-
ators. Let’s see how PVM-GRID systems can benefit of it on a medium term:

4.1 Security for the GRID: IPsec

Though SSH (3.2) provides a secure framework for authentication, once pvmd
daemons have been booted further PVM messages are exchanged in plain format,
at risk of interception or forgery by third parts while in transit.

As it was the case for many other application protocols (http, ftp), a classi-
cal solution is to implement a SSL-variant of PVM, let’s say pvms; indeed,
this implies a great effort to reprogram PVM’s runtime, including libraries like
OpenSSL[13] to support strong cryptography. Fortunately, IPsec provides secu-
rity services embedded at network level, like data integrity and confidentiality,
requiring no extra effort on PVM side. As a result, we get a trustable environment
for the GRID, a desirable feature on some reserved contexts.

4.2 Roaming and Mobile IP

One of strongest points in PVM’s design is fault detection and possible recovery.
When a pvmd determines a peer is no longer reachable (i.e., network link become
down), it deletes the node from its host-table, alerting the rest of the grid for
that. This strategy, programmed at application level, is reinforced at network
layer with Mobile IP, designed to enable a node moving from one IPv6 subnet
to another, preserving the ability to be reached at its permanent address and
keeping continuity of its ongoing computations.

This feature increases the number of possibilities for deployment, eventually
enabling any moving vehicle (let it be a plane, a ship or a car) to host some nodes
contributing to GRID computation. Under certain circumstances, this may be an
essential requirement, should any nodes be forced to roam (i.e., those in charge
of sampling tasks ad hoc).

PVM-3.4.4 + IPv6: Full Grid Connectivity 239

4.3 Multicast and Performance

In order to increase performance, PVM provides a flag (PvmRouteDirect) to ex-
change a message among tasks through a TCP link, avoiding the overhead caused
by pvmds. Of course, this rationale is kept at IPv6 version. A more sophisticated
idea is implemented by an interesting function, namely pvm_mcast(), designed
to send a message to multiple destinations simultaneously, hopefully in less time
than several calls to pvm_send(). This is done via a two-steps protocol:

– Origin task sends its pvmd a control message containing a list of destination
tasks; this, in turn, will alert each pvmd-peer hosting those tasks.

– Next, it sends one only data message. As it is processed by pvmd, routing
layer replicates it, once per each destination pvmd.

Note that this only implements multicasting at application level, saving dupli-
cate transmission for tasks eventually hosted on the same node. Indeed, several
packets with identical data content are sent, should the destiny tasks allocated
at different nodes.

Thanks to IPv6 multicast, the sender must inject the whole content only once
into the network, while network itself handles duplication and transport to the
receivers, which have explicitly joined a so-called “multicast ip group” in order
to receive this special content. Such an approach results very efficient in terms
of network usage and bandwidth requirements.

5 Summing Up

IPv4 address space limits the possibility of deploying a GRID platform around
Internet. Network Address Translation provides a transient solution for client-
server applications, but clearly inefficient for GRID paradigm.

Once described PVM’s main design lines, we have explained how to support
IPv6 technology, designed to provide an "infinite" address space. The final a-
rrangement is available as a source-code patch, and has been successfully tested.
Additional notes are given to support future users deploying the new system in
the context of an hybrid network space IPv6-IPv4.

Other complementary services provided by IPv6 are embedded security, mo-
bility and multicast. Nowadays subjects of intensive research, they will contribute
in medium-term to enrich GRID paradigm, deriving a new formula we have de-
signated as “the trusted grid of roaming nodes”.

References

1. LONG Lab. "Over Next Generation Networks", IST-1999-20393.
http://www.ist-long.com/

2. IETF, NAT: Network Address Translator http://www.ietf.org/rfc/rfc1631.txt
3. J. Kennedy, An introduction to Writing Protocol Independent Code.

http://www.gmonline.demon.co.uk/cscene/CS6/CS6-03.html

240 R. Martínez-Torres

4. Readme.Beolin File describing the Beolin port of PVM, shipped with pvm source
distribution. http://www.pvm.org/download/pvm3.4.4.tar.gz

5. IETF, Neighbor Discovery for IP version 6 (IPv6).
http://www.ietf.org/rfc/rfc2460.txt

6. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy
Sunderman. PVM 3 USER’S GUIDE AND REFERENCE MANUAL. Edited by
Oak Ridge National Laboratory .ORNL/TM-121187

7. Eva Castro, Tomas P. de Miguel. Guidelines for migration of collaborative work
applications. LONG D3.2 v2, July 15 2002.

8. Juan Quemada. Hacia una Internet de Nueva Generación. 2003. Universidad
Politécnica de Madrid-Telefónica. ISBN: 84-608-0066-0

9. IPv6 Cluster. Moving to IPv6 in Europe. Edited by 6LINK with the support of the
European Commission and the EC IPv6 cluster. ISBN: 3-00-011727-X

10. Luca Cardelli. Mobility and Security. Microsoft Research. http://www.luca.
demon.co.uk

11. Hurricane tunnel broker. http://tunnelbroker.net
12. Rafael Martínez Torres. IPv6 patch for PVM-3.4.4. http://www.ngn.euro6ix.org/

IPv6/pvm
13. OpenSSL http://www.openssl.org
14. Euro6IX project http://www.euro6ix.org

Utilizing PVM in a Multidomain
Clusters Environment

Mario Petrone and Roberto Zarrelli

University of Molise, Italy
petrone@unimol.it

Abstract. A cluster is often configured with computational resources
where there is only one IP visible front-end machine that hides all its
internal machines from the external world. Considering clusters located
in different network domains to be used in a computation, it is difficult
to exploit all the internal machines of each cluster. This paper presents a
PVM extension that enables us to exploit clusters in a multidomain envi-
ronment so that each clustered machine can take part in a PVM compu-
tation. To improve the system performance, the PVM inter-task standard
communications has been replaced by a method based on UDP sockets.
Moreover, the existing code written for PVM can easily be ported to use
these features.

1 Introduction

Recently, cluster architectures are always more used to solve large computational
problems since they are constituted by thousands of computational nodes that
provide a high performance computing [1]. In addition, it is possible to increase
this computational power by joining clusters among themselves and forming
a cluster grid [2]. In this approach, the resources are located across multiple
networks that are geographically and administratively separate. This usually
entails that some parts of the resources are on a non-routable private network
and are not available to external clusters.

Among the different distributed programming technologies, such as Web Ser-
vices [3], problem solving environments [4], Grid enabled software toolkits [5,6,7]
or distributed metacomputing frameworks [8,9,10], PVM [11,12] remains a de
facto standard programming paradigm for high performance applications. In
the PVM model, a collection of heterogeneous machines are viewed and used as
a single virtual parallel machine; in fact, PVM transparently handles all message
routing, data conversion, and task scheduling across a network of incompatible
computer architectures. However, PVM requires that all the computing nodes
making up a virtual machine are IP addressable in the same domain and this
appears as a serious limitation in a multidomain clusters environment, where
each cluster is often configured with only one IP visible front-end machine that
hides from the external world all its internal machines.

In this paper a PVM extension is presented, called MD-PVM (Multidomain
PVM), which is able to manage computational resources in a multidomain clus-
ters environment through an inter-task communication method based on UDP
sockets, that improves the system performance.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 241–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

242 M. Petrone and R. Zarrelli

2 Background and Related Work

The Beolin [13] extension of PVM is a solution to exploit cluster resources, in
fact, in this architecture, a Linux cluster can be added to the virtual machine
and the parallel tasks can consequently be spawned onto the individual nodes
of the cluster that are on a private network. This port sees a Linux cluster as
a single host image, where the PVM daemon starts up on the front-end node.
An environment variable is read by pvmd that tells it what cluster nodes are
available for use. Each subsequent spawning request that arrives causes a node
to be allocated to a single task, then the pvmd daemon marks the target nodes
as busy, so that two tasks cannot share the same node. If the user attempts to
spawn more tasks than the available nodes, PVM will return an error. Once a
task starts on a node, it makes a TCP socket connection to the pvmd daemon,
then PVM messages are transferred back and forth through this connection.
There are several disadvantages to this architecture, related with the existence
of one only pvmd daemon. In fact, the number of machines that can be grabbed
in a Linux cluster is limited by the number of connections that the operating
system can support. From the PVM user’s point of view, the limits are due to the
fact that you cannot know how many computational resources are available and,
consequently, you cannot allocate tasks on particular nodes inside the cluster.
However, the maximum number of tasks that can be spawned is the same as the
number of hosts that compose the cluster; in fact, it is possible to create only
one task per host.

ePVM [14,15] is a valid PVM extension that solves the problem of managing
computational resources in a multidomain clusters environment; in fact, it can
build an Extended Virtual Machine (EVM) composed of clusters. In contrast to
Beolin, in the EVM each node of a cluster can take part in a PVM computation
as host. The communications in the same cluster are made through the pvmd
daemons while the communications among clusters are made through the epvmd
daemons. Each epvmd is a multi-process daemon composed of a Manager Task
(MT), a Dispatcher Task (DT) and a pool of Workers (Ws). Consequently, when
a message must reach a remote cluster, it passes through these special tasks.
However, before a message arrives at destination, it suffers the overhead due to
the interaction with the pvmd daemons. In addition, the overhead is increased
when we consider messages addressed to remote clusters because MT, DT and
the Ws are PVM tasks that communicate in the standard PVM manner.

MD-PVM is a PVM extension that transfers from ePVM the concept of
EVM and improves the communication performance through an architecture
that avoids the passage of messages through the pvmd daemons.

3 The MD-PVM Architecture

MD-PVM transfers from ePVM the concept of the EVM; in fact, it permits
a set of clusters, connected by an IP network, to be used as one only parallel
calculator.

Utilizing PVM in a Multidomain Clusters Environment 243

IP Network

Cluster Host Task pvmd master pvmd slave md-proxy master md-proxy slave I-Task

PVM standard communications Reliable UDP communications

Fig. 1. The MD-PVM architecture

The messages that circulate in MD-PVM can be local or remote to a cluster
and using the Virtual Task Identifier (VTID), as in ePVM, it is possible to
know their characteristics. A VTID is a 32 bit integer that identifies a task in
the EVM. It is an extension of the original Task Identifier (TID) that contains
the Hostid, the Taskid and the Cluster Identifier (CID) fields. The CID is used
to identify a cluster in the EVM.

In MD-PVM, each task sends and receives messages through a reliable com-
munication protocol based on UDP sockets. When a task starts, it creates an
UDP server on the port K + Taskid field (where K is a global constant) then
each task knows the ports of every other task in the system. In addition, each
task remains in communication both with the pvmd daemon through the TCP
socket and both on the UDP socket just created. Consequently, the communica-
tion model of MD-PVM is composed of two types of communication mechanisms:
PVM standard communications and reliable UDP communications.

The PVM standard communications are only used to manage PVM com-
mands that do not concern exchange of messages among tasks (for example a
pvm spawn); in fact, when a task wants to send a message to another task in
the same cluster, it sends the message directly with the reliable UDP communi-
cation protocol. This protocol permits direct communications among tasks and,
in contrast with the PVM route direct directive, is more scalable when many
tasks communicate among themselves. Consequently, the work of the pvmd dae-
mons, in comparison with PVM, is lighter because they are only responsible for
managing the virtual machine configuration of a cluster.

When a task wants to communicate with another task in a remote cluster, it
sends a PVM message directly to a proxy module called md-proxy, through the
reliable UDP communication protocol. This module is responsible for sending

244 M. Petrone and R. Zarrelli

messages among clusters and acts in conjunction with the libmd-pvm library.
This library contains the functions that permits transparent communications
based on UDP sockets.

Finally, if a task wants to send a PVM command to a remote cluster, the
command is sent through the md-proxy and then, when it arrives at the desti-
nation cluster, it is sent to the Interface Task (I-Task) module. This task is a
special PVM task that interacts with the virtual machine of a cluster.

The modules that compose MD-PVM are: the md-proxy daemon, the libmd-
pvm library and the I-task. Thanks to these modules, the reliable UDP protocol
implemented and some changes to the original libpvm3 PVM library (described in
detail in the next sections), MD-PVM is able to manage efficiently computational
resources in a multidomain clusters environment.

3.1 The Md-Proxy Daemon

The md-proxy is a multi-thread daemon, independent of PVM, composed of a
receiver thread and a pool of sender threads. The receiver thread intercepts
messages that come from: (1) PVM tasks that want to communicate by external
clusters; (2) external md-proxies located on other clusters. The sender threads
are dynamically activated during the sending of a message and their job is to
send messages to remote clusters or local tasks in the same cluster.

When an application starts, a master md-proxy daemon is created on the
front-end node of the cluster from which the application is started, while the
slave md-proxies are started dynamically on the front-end node of each grabbed
cluster. In addition, all md-proxies perform the same actions, but only the master
can manage the global configuration of the EVM.

Pool of Sender Threads

Receiver ThreadMessages from remote md-proxies (2)

Messages to local tasks (2)

Messages from local tasks (1)

Messages to remote md-proxies (1)

Reliable UDP communications

Fig. 2. The md-proxy architecture

3.2 The Libmd-Pvm Library

The library performs a wrap between the “old” PVM functions and the “new”
one provided by MD-PVM so that a program written for PVM can easily be
ported in this new environment. The PVM code is changed into MD-PVM at
the macro compiler level that operates a textual substitution through the macro
definitions contained inside the file md-pvm.h. Then, the only changes to apply
to a PVM application to be set up in MD-PVM, is to replace the pvm3.h include

Utilizing PVM in a Multidomain Clusters Environment 245

PVM source code

application

Substitution of

pvm3.h with

md-pvm.h

Macro compiler

phase

MD-PVM source

code application

Compilation phase

Linking phase

including the

libmd-pvm library

MD-PVM executable

Fig. 3. Porting of a PVM application to MD-PVM

directive with the new md-pvm.h. Finally, at the compiler linking phase the
libmd-pvm library must be included. Moreover, to manage the clusters added
to the EVM, the additional functions exported by this library are the same as
ePVM (for example pvm mycid, pvm addcluster, etc.).

3.3 The I-Task

The I-Task is a special PVM task that is located on the front-end node of a
cluster. It executes remote PVM commands coming from external clusters (for
example a pvm spawn). The commands that the I-Task execute do not concern
the communication primitives among tasks; in fact, they are directly managed
by the md-proxies. After a PVM command is executed through the interaction
between the I-Task and the pvmd master daemon, the results will be sent to the
destination cluster that requested the remote operation.

I-Task
Pvmd master

daemon

Messages from the local md-proxy PVM commands

Results of PVM commandsMessages to the local md-proxy

Reliable UDP communications PVM standard communications

Fig. 4. Interactions between the I-Task and the pvmd daemon

3.4 The Reliable UDP Protocol

The reliable UDP protocol implemented is a connectionless variant based on
the selective repeat algorithm with a congestion control method and has a dy-
namic packet retransmission system with cumulative acknowledgement features.
It permits direct communications among tasks and has been developed as an in-
dependent library that we have called Communication Network library (CNET
library).

The functions exported by the CNET library are: cnet init that is used to
initialize a reliable UDP server and to enable a task to send / receive mes-
sages; cnet close that is used to stop a reliable UDP server created with the

246 M. Petrone and R. Zarrelli

cnet init function; cnet send msg that is used to send a message to a receiver;
cnet recv msg that is used to receive a message from a sender.

The CNET library permits a receiver to manage multiple messages that come
from different senders. In a typical scenario, the sequence of actions that take
place when messages are sent using the CNET library functions is as follows: (1)
the senders execute the cnet send msg function; (2) the CNET library fragments
the messages into small packets and tries to send these packets to the receiver.
If the retry timeout associated to a sending message expires, the cnet send msg
function returns an error code otherwise it returns a success code; (3) the re-
ceiver receives the packets from the network through the cnet recv msg function
and reassembles the original messages in dedicated memory buffers. When all
the packets related to a message are correctly received, the function returns the
message to the caller. In addition, to remove messages that are not completely
received because, for example, a sender goes down or there is a network failure
between a sender and the receiver, to each dedicated buffer is associated a time-
out. So, if one or more of these timeouts expire, the related buffers are freed
from the memory.

The reliability is assured by the selective repeat algorithm that associates
sequence numbers and timeouts to each packet.

The congestion control algorithm implemented is controlled by two variables:
sfrag and maxfrag. The sfrag variable indicates how many fragments have been
sent but not yet acknowledged while the maxfrag variable indicates the maximum
number of packets that can be sent without waiting for an acknowledgment. If
a sender wants to send a message, maxfrag is initialized to WIN SIZE (it is a
constant that indicates the number of packets that can be sent without waiting
for an acknowledgment) and sfrag to 0. In general, a packet can be sent, if the
sfrag value is minor than maxfrag. If it is true, the sfrag value is incremented
by 1. On the contrary, when an acknowledgment packet is received or a timeout
associated to a packet expires, the sfrag value is decremented by 1. If the sender
receives a cumulative acknowledgment, the sfrag value is decremented by the
number of packets acknowledged. The maxfrag value is incremented by 1 every
time an acknowledgement packet is received, otherwise if the timeout associated
to a sent packet expires, the maxfrag value is divided by 2. However, the range
within which the maxfrag value can fluctuate is 1 to MAX WIN SIZE (it is a
constant that delimits the maximum number of packets that can be sent without
waiting for an acknowledgment).

The acknowledgment system implemented is based on two types of acknowl-
edgement packets: the Single Acknowledgement Packet (SAP) used to acknowl-
edge single packets and the Cumulative Acknowledgement Packet (CAP) used
to acknowledge multiple in-order packets. When a receiver receives a packet, it
waits up to WAIT TMOUT milliseconds for the arrival of other in-order pack-
ets related to the same message. So, the following events can occur: (a) if the
timeout does not expire and all the packets are received in the in-order mode,
the receiver sends a CAP packet that acknowledges all these packets; (b) if the
timeout expires and no other packets are received, the receiver sends a packet

Utilizing PVM in a Multidomain Clusters Environment 247

that acknowledges the last in-order packets received; (c) if a non in-order packet
related to the same message is received, the receiver sends a packet containing
the acknowledgement of the last in-order packets received; (d) if a packet re-
lated to a different message is received, the receiver sends a packet containing
the acknowledgement of the last in-order packets received related to the previous
message. In the events (b)(c)(d), the acknowledgement packets generated can be
of CAP or SAP type.

3.5 Changes to the Original Libpvm3 Library

The main updates to the libpvm3 library are the two new functions:
pvm getRawMessage and pvm setRawMessage. The first returns a PVM message,
identified by a buffer identifier, as an array of byte. The second executes the
opposite work, in fact, it converts a previously saved PVM message through
the pvm getRawMessage function in the form of standard PVM message. In
addition, the pvm setRawMessage function stores the converted message in the
message queue of the PVM task so that the standard PVM functions of message
manipulation can work correctly. In MD-PVM these two functions allow the
sending of a PVM message through the UDP sockets, bypassing the standard
PVM communication protocol.

4 Performance Results

We performed a comparison experiment on two clusters, each composed of 10
nodes, equipped with Pentium 4 2.0 Ghz and interconnected by a 100 Mbit/s
Ethernet switch. The machines had 512 MB RAM each and were running Fedora
Core Linux 3.

In Test 1 of Figure 5 the round trip delay between two tasks located on two
hosts of the same cluster was measured. This test shows the improvement of the
MD-PVM architecture through the reliable UDP protocol. In fact, MD-PVM
and PVM configured with the route direct directive exhibited almost the same
behaviour, with differences fluctuating from 5% to 10%. PVM configured with
the standard communication system resulted slower, owing to the passage of
messages through the pvmd daemons.

Test 2 of Figure 5 shows the round trip delay in a remote task-task com-
munication, where two tasks were located in the front-end machines of the two
clusters. MD-PVM has better performances than ePVM, thanks to the direct
path communications between tasks and md-proxies through UDP socket com-
munications. Moreover, in this test, in comparison with ePVM, we measured an
improvement of about 15% for small messages and an improvement of about
50% for messages up to 1MB.

Test 3 of Figure 5 has been conducted taking into consideration an appli-
cation that was communication and CPU intensive that solves differential heat
equations. In this test we spawned 20 tasks, where each task was located on
a computational node of the two clusters. In this test, MD-PVM resulted, in
the computation time, better than ePVM. Moreover, with the increasing of the

248 M. Petrone and R. Zarrelli

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
 (

S
e
c
o
n
d
s
)

Problem Size

Test 3

MD-PVM

ePVM

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Message size (Kbyte)

Test 2

MD-PVM

ePVM

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Message size (Kbyte)

Test 1

MD-PVM

PVM

PVM direct route

Fig. 5. Comparison tests on MD-PVM, PVM and ePVM

problem size, MD-PVM in comparison with ePVM resulted from 15% to 20%
faster.

5 Conclusions

This paper presents MD-PVM, a PVM extension, that is able to manage com-
putational resources in a multidomain clusters environment. MD-PVM, through
a communication model based on UDP sockets, avoids the passage of messages
through the pvmd daemons and improves the system communication perfor-
mance. In comparison with the ePVM architecture, MD-PVM results from 15%
to 50% faster in the test cases executed. In addition, the existing code written
for PVM can easily be ported to use the MD-PVM features.

Acknowledgments

Special thanks to Eugenio Pasquariello, Angelo Iannaccio and Carmelina Del
Busso for their useful suggestions in implementing MD-PVM.

References

1. Top 500 supercomputer site. http://www.top500.org.
2. W. Gentzsch, “Grid Computing, A Vendor’s Vision”, Procs of the 2nd IEEE/ACM

Intl. Symposium on Cluster Computing and the Grid, Berlin, Germany, May 2002.
3. W3C Consortium, Web Services activity. http://www.w3c.org/2002/ws.

Utilizing PVM in a Multidomain Clusters Environment 249

4. S. Agrawal, J. Dongarra et al., “NetSolve: Past, Present, and Future - a Look
at a Grid Enabled Server”, Grid Computing: Making the Global Infrastructure a
Reality, Edited by F. Berman, G. Fox, and A. Hey, Wiley Publisher, 2003.

5. I. Foster, N. Karonis, “A grid-enabled MPI: Message passing in heterogeneous
distributed computing systems”, In Supercomputing 98, Orlando, FL, 1998.

6. N. Karonis, B. Toonen and I. Foster, “MPICH-G2: A grid-enabled implementation
of the Message Passing Interface”, Journal of Parallel and Distributed Computing,
May 2003.

7. R. Keller, B. Krammer et al., “MPI development tools and applications for the
grid”, In Workshop on Grid Applications and Programming Tools, Seattle, WA,
June 2003.

8. D. Kurzyniec, T. Wrzosek et al., “Towards Self-Organizing Distributed Computing
Frameworks: The H2O Approach”, Parallel Processing Letters, 2003.

9. P. Hwang, D. Kurzyniec and V. Sunderam, “Heterogeneous parallel computing
across multidomain clusters”, Procs of the 11th EuroPVM/MPI Conference, Bu-
dapest, Hungary, September 2004.

10. D. Kurzyniec, P. Hwang and V. Sunderam, “Failure Resilient Heterogeneous Par-
allel Computing Across Multidomain Clusters”, International Journal of High Per-
formance Computing Applications, Special Issue: Best Papers of EuroPVM/MPI
2004, 2005.

11. Al Geist, A. Beguelin et al., “PVM: Parallel Virtual Machine. A Users’ Guide and
Tutorial for Networked Parallel Computing”, The MIT Press, 1994.

12. A. Beguelin, J. Dongarra et al., “Recent Enhancements to PVM”, Intl. Journal for
Supercomputer Applications, 1995.

13. P. L. Springer, “PVM Support for Clusters”, IEEE 3rd Intl. Conf. on Cluster
Computing, Newport Beach, California, USA, October 2001.

14. F. Frattolillo, “A PVM Extension to Exploit Cluster Grids”, Procs of the 11th
EuroPVM/MPI Conference, Budapest, Hungary, September 2004.

15. F. Frattolillo, “Exploiting PVM to Run Large-Scale Applications on Cluster
Grids”, International Journal of High Performance Computing Applications, Spe-
cial Issue: Best Papers of EuroPVM/MPI 2004, 2005.

Enhancements to PVM’s BEOLIN Architecture

Paul L. Springer

California Institute of Technology, Jet Propulsion Laboratory,
4800 Oak Grove Drive, Pasadena CA 91109, USA

Abstract. Version 3.4.3 of PVM had previously been enhanced by the
addition of a new architecture, BEOLIN, which allowed a PVM user to
abstract a Beowulf class computer with a private network to appear as
a single system, visible to the outside world, which could spawn tasks on
different internal nodes. This new enhancement to PVM handles the case
where each node on the Beowulf system may be composed of multiple
processors. In this case, the software will, at the user’s request, spawn
multiple jobs to each node, to be run on the individual processors.

1 Introduction

The BEOLIN architecture support was added to PVM in version 3.4.3. The
motivation for this addition was the limitation PVM had before that time in
dealing with Beowulf clusters. Prior to that version, a PVM user of a heteroge-
neous system that included a Beowulf cluster was unable to treat that cluster as
a single system image. If the Beowulf nodes were on an internal network, they
were invisible to the rest of the PVM system. The only way the nodes could be
used was to treat them as individual computers, provided they were visible to
the entire PVM system. The disadvantage to this approach was that the user’s
application was forced to issue PVM addhost and spawn commands to each in-
dividual node. Furthermore, each node incurs the overhead of running the PVM
daemon.

The special architecture support that had been added on earlier versions
of PVM for individual parallel machines, such as IBM’s SP2, Intel’s Paragon,
and others, provided the inspiration to add the BEOLIN architecture support,
to handle Beowulf clusters running Linux. By means of the BEOLIN support,
PVM can spawn tasks to a single machine target for the Beowulf cluster. That
target knows about, but hides the details of the machine, such as the numbers of
nodes available, and the individual IP address of each node. The target handles
the details of spawning the tasks onto individual Beowulf nodes for execution.

Since that time hardware enhancements have been made to Beowulf systems,
and one such enhancement is the availability of multiple processors per node,
where those processors share the node’s IP address. The initial BEOLIN re-
lease could only handle a single processor per node. This paper describes a new
enhancement that supports multiple processors per node.

No paper was presented describing the original BEOLIN release, and so in-
formation on that release will be included in this paper to provide the necessary
background.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 250–257, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Enhancements to PVM’s BEOLIN Architecture 251

2 Design

Of the Massively Parallel Processor (MPP) architectures previously supported,
BEOLIN is most similar to the SP2MPI port, which supported the SP2, using
MPI as the underlying message passing protocol. BEOLIN, however, uses sockets
instead of MPI.

The following description of the initiation of tasks onto a BEOLIN machine
assumes the cluster has a front-end: a node that is visible to the rest of the PVM
system, and can itself communicate to the individual nodes that comprise the
BEOLIN computer. PVM can begin running on the cluster in different ways, for
example by a user logging on to the front-end and running the pvm command on
that front-end, or by running a pvm application on an external computer that
issues a pvm addhosts command, targeting the cluster. (See figure 1.)

When PVM is initiated on the cluster, the first thing that happens is that
the PVM daemon (pvmd) begins running on the front-end. The daemon reads
an environment variable to discover the names of the nodes in the cluster, and
forms a node pool for later use. The variable in question specifies the initial order
of node allocations, as well as the number of tasks that can be executed on a
given node. Subsequent spawning requests cause the daemon to allocate nodes
from the pool and initiate the requested tasks onto them. As tasks complete,
their corresponding nodes are freed back into the pool for future use.

At the time the pvmd daemon on the front-end initiates a task on a cluster
node, it forks a copy of itself, with both child and parent running on the front-
end. The child’s standard output and error are connected to the just-started
task. Each child process so generated is visible to pvmd, and the pvm monitor
will show the child as a task with the suffix “.host” appended to its name. No
copy of the daemon runs on the targeted node.

Fig. 1. Beowulf Block Diagram

252 P.L. Springer

When the remote task begins execution, it examines a shared file space
(/tmps) for a file name beginning with “pvmd” and ending with the user id.
That file contains the necessary addressing information for the task to make a
connection with the pvmd daemon. PVM messages and commands are relayed
through the resulting connection.

3 Installing and Using the BEOLIN Port of PVM

As of version 3.4.3, BEOLIN is a defined architecture for PVM. However, to force
the build process to use the BEOLIN files, the environment variable PVM ARCH
must be set to the value BEOLIN –don’t rely on the pvmgetarch command for
this. If this is not done properly, the build will probably produce a plain LINUX
version instead. Once the architecture variable is properly set, build PVM as
described in Chapter 9 of [1].

Before the resulting BEOLIN build can be run, a shared file space with the
name /tmps must be set up in such a way that any file in this subdirectory is
accessible by the front-end as well as the cluster nodes on which tasks may be
run by PVM.

In the previous version of BEOLIN, there was a requirement that the nodes
had to be able to connect to the front-end using the address returned by the
gethostname() Linux call on the front-end. In the current version that require-
ment has been relaxed by the use of an existing command line parameter for
PVM. When starting either pvm or pvmd, using the command line parameter -n
< hostname > tells the BEOLIN code that pvmd should write the IP address
of < hostname > in the /tmps file it creates, informing the cluster nodes what
address they should use in making their connection to the daemon.

The BEOLIN daemon code looks for the environment variable PROC LIST
when it starts up on the front-end. This should be defined in the environment
used by pvmd when it is running, and is typically set in the .cshrc (or equivalent)
file. The value of the variable should be set to a colon separated list of the names
of the cluster nodes available for pvmd to use. If multiple processors exist on
the node, and it is desirable to use them when spawning tasks, the node name
can appear multiple times in PROC LIST. For example, a line in the .cshrc file
that read setenv PROC LIST n0:n1:n1:n2:n3 would allow pvmd to spawn 1 task
onto node n0, 2 onto n1, 1 onto n2 and 1 onto n3.

Note that the user can not designate which processor in a node a task is to
be run on. The assignment of the specific processor is left up to the O/S. If more
nodes are required by the spawn request than there are slots available in the
node pool, PVM will return an “Out of Resources” error.

If all messages between cluster nodes are forced to pass through the pvmd
on the front-end, the job will not scale well, and the front-end will become a
communication bottleneck. To avoid this situation, it is strongly recommended
that PVM’s direct message routing be used. This can be accomplished by the
application calling the pvm setopt() routine, with the PVMRouteDirect para-
meter. This forces messages from one node to another to go directly, instead of
being routed through the daemon.

Enhancements to PVM’s BEOLIN Architecture 253

3.1 Restrictions and Limitations

The BEOLIN version of the PVM monitor or pvmd can be run on the front-end
node, but starting either one on one of the other nodes of the cluster has not
been well tested, and is advised against.

When the application calls pvm addhosts() from an external computer, to
add the cluster, it should only specify the front-end node of the cluster as an
argument. The command should not be used to add the other cluster nodes to
the virtual machine. Similarly, the add command of the PVM monitor should
not be used to add individual nodes. Avoid including individual node names in
the PVM hostfile. The purpose of this BEOLIN port is to treat the entire cluster
as a single machine, to be addressed only by the name of the front-end.

PVM uses its TID (task ID) word to uniquely identify each task running on
the virtual machine. To distinguish different tasks running on the same node,
the BEOLIN code uses the three bit partition field in the TID. This limits the
maximum number of child tasks able to run on a single cluster node to eight.

Even if all the cluster nodes have a direct connection to the external network,
this BEOLIN port can still be used to treat the cluster as a single PVM machine.
In this particular case, any node can be arbitrarily designated as the front-end.

4 Internals

The bulk of the BEOLIN code is in the pvmdmimd.c file in the BEOLIN source
code subdirectory in the PVM package. This section will give an overview of the
BEOLIN program code.

4.1 Initialization

When the pvmd daemon starts up on the cluster front-end, the main() routine
in pvmd.c calls mpp init(), passing it the argc and argv parameters, in order
to initialize the BEOLIN part of PVM. The mpp init() routine first parses the
environment variable PROC LIST, and calls gethostbyname() for each entry in
the list, storing the resulting addressing information internally. The number of
times each node is referenced in the list is tracked, and the reference number is
stored in the partNum[] array.

Several arrays are created in the BEOLIN initialization process, with entries
in the arrays corresponding to entries in PROC LIST. The nodepart array holds
the partition number for the entry, the nodeaddr array contains the IP address,
the nodeconn array is initialized to 0, and the nodelist array carries the name as
it appears in PROC LIST.

4.2 Spawning

When the cluster’s pvmd receives a command to start the spawned tasks on its
nodes (by means of a call to pvm spawn(), for example), control is passed to
the BEOLIN routine mpp load(). The first thing mpp load() does is to check to

254 P.L. Springer

see if there are enough node slots in its free node pool, by calling mpp new().
If there are enough slots, mpp new() allocates and returns the set of slots that
will be used to spawn the tasks; otherwise it will report an error. As part of the
allocation process, mpp new() generates an identifier called ptype that is unique
to the set of nodes allocated for this set of tasks, and puts this set of nodes into
its busynodes list, marking each node with the ptype value.

Once the node slots are allocated, mpp load() iterates a set of actions for
each of the new tasks, whereby it sets up a task structure for that task, and
calls forkexec() in the main body of PVM to actually start the task running by
means of an rsh command, on the appropriate node. Before forkexec() runs the
rsh command, it first forks to produce the previously described “host” task. The
“host” task then executes the rsh command. (See figure 2.)

When first started on the target node, each spawned task must connect with
its corresponding “host” task on the front-end. This action is triggered by the
first PVM call the spawned task makes, and the action takes place inside the
routine pvmbeatask(), contained in the lpvm.c module which is part of the PVM
code linked to the application. To open a socket connection with pvmd, pvm-
beatask() calls the version of the mksocs() routine in the lpvm.c module. The
connection is made by searching for a file name with the pattern pvmd.userid,
in the /tmps file space shared by the front-end and the nodes. The file is read
and the information within it is used to make the connection.

Once the socket connection is made, the spawned task sends a TM CONNECT
message to the pvmd. The pvmd’s routine tm connect() sends an acknowledg-
ment back to the task, which then causes the task to respond with a TM CONN2
message back to the pvmd. The pvmd code enters the tm conn2() routine, which
in turn calls the BEOLIN mpp conn() code to determine which of the task spawn
requests this current connection process matches. When the match is made, the
corresponding entry in the BEOLIN nodeconn array is set true.

Front-end Nodes

pvmd

.host

task

/tmps

rsh

IP address

TM_CONNECT, TM_CONN2

Fig. 2. Task Spawning

Enhancements to PVM’s BEOLIN Architecture 255

4.3 Communication

When the application wants to send a message from one node to another, the
routine pvm send() is called. Once the message is constructed, mroute() is called
to determine the routing and send the message. It first determines whether the
direct routing option has been set, allowing the message to bypass the pvmd. If
so, and if this is the first time the destination has been requested by this task, it
opens a socket to the destination task, and makes an entry (ttpcb) in the task
process control block list. The entry includes the socket information, to be used
the next time a message is sent to the same destination.

4.4 Task Termination

Task termination is triggered by the application’s call to pvm exit(), done for
each spawned task that is part of the application. When the pvmd receives the
exit request, it calls task free(), which in turn calls BEOLIN’s mpp free() routine,
passing each task as the argument. The mpp free() routine first finds a match
for this task, based on node number and partition number, and then shuts down
the “host” task corresponding to the spawned task that was passed, sets a flag to
indicate that this task is done executing, and returns. The pvmd code later calls
BEOLIN’s mpp output() routine, as it does on a regular basis. As mpp output()
cycles through each task that has been spawned and is still alive, it checks to
see if the “host” task corresponding to this task is still alive. If not, it then takes
responsibility for shutting down the spawned task, and returns its nodes to the
free pool.

5 Performance

In allowing the use of multiple processors on a node, this latest enchancement to
the BEOLIN architecture focuses on increasing the computing power available to
a PVM application. It is appropriate, then, to evaluate this version by choosing
a benchmark that is computationally intensive, rather than one that relies on
communication speed. One benchmark that meets this criteria is based on the
POV-Ray program[2]. POV-Ray is a multi-platform program that creates an
image of a scene using a ray tracing technique. It uses as its input a POV format
text file that describes the objects in the scene as well as the camera and lighting
and other effects.

POV-Ray was not originally written to run under PVM, but there is a patch
available to do this. The patch was downloaded from [3], and applied to version
3.5 of POV-Ray. As patched, the program runs in a master-slave configuration,
with the work parceled out to the slaves whenever a slave has completed its
previous work. The number of slaves is configurable at startup.

For the purposes of benchmarking, a standard benchmark.pov file is available
as input to the program, as well as a standard initialization file[4]. A large number
of both sequential and parallel benchmark numbers have been published. The
benchmark was run on a Beowulf cluster composed of 800 MHz dual Pentium

256 P.L. Springer

100

1000

10000

1 10 100

Time (seconds)

N
o

d
e
 C

o
u

n
t

1 proc

2 proc

Ideal

Fig. 3. BEOLIN Performance

100

1000

10000

1 10 100

Processor Count

T
im

e
 (

s
e
c
o

n
d

s
)

1 proc

Best

Fig. 4. Comparative Performance

III nodes. PVM was configured to run on 2, 4, 8 and 16 nodes, using both 1 and
2 processors per node. The results can be seen in the accompanying figures.

Figure 3 shows the improvement in computing power enabled by the new
BEOLIN version. The upper trace shows the benchmark times with the old lim-
itation of running just 1 processor per node. In the middle trace, both processors
on the node are put to use, and the run times are faster, close to the ideal of be-
ing twice as fast (as shown in the bottom trace). The ideal might be missed not
because of the BEOLIN implementation, but because the problem itself doesn’t
scale well. The true explanation can best be determined by looking at figure 4.
The two processors per node trace is shown as before. The trace labeled “best”
indicates how well the problem scales with the when using the same number of
total processors (one per node) as the two processors per node case. It can be
seen that run times are identical whether the processors used are on the same
node or not. This indicates that the slight lack of scaling shown in figure 3 is
not the result of using two processors on the same node.

As shown in figure 4, performance falls off slightly when 32 processors are
used, in the two processors per node case. The computer used did not have 32
nodes, so the equivalent time for the 1 processor per node case could not be
measured. But the benchmark produces a number of statistics, including load
balancing information, and analysis of that showed that the run time was slower
in this case because work was not evenly distributed, and near the end of the
run only a few nodes had work to do.

6 Future Work

The largest number of nodes used so far with this port of PVM has been 31. The
software needs to be run on much larger machines in order to characterize its
performance at the high end. It is unclear what bottlenecks and limitations exist,
and how they will manifest themselves, when one pvmd daemon is controlling
a large number of tasks. Changes in the pvmd code to accommodate very large
systems may be necessary. One particular area to examine is the way that a host
task is forked off on the front-end for each spawned task. This will not scale as

Enhancements to PVM’s BEOLIN Architecture 257

the number of tasks becomes very large. To support larger number of tasks, it
will be necessary to change the way this is done, or perhaps to spawn limited
numbers of additional pvmds on the other nodes.

7 Conclusion

The BEOLIN architecture described here offers new capabilities to the PVM
applications programmer. A Linux PC cluster can now be added to the virtual
machine, and parallel tasks spawned onto the cluster, even when the individual
nodes are on a private network. Clusters with multiple processors on a single
node can have tasks spawned to each processor on the node.1

References

1. Geist, Al, et al: PVM: Parallel Virtual Machine. The MIT Press, Cambridge, Massa-
chusetts (1996)

2. “POV-RAY - The Persistence of Vision Raytracer.” 25 Mar. 2005. Persistence of
Vision Raytracer Pty. Ltd. 3 Jul. 2005. < http : //www.povray.org >

3. “PVM patch for POV-RAY.” 2003. SourceForge. 3 Jul. 2005. < http :
//pvmpov.sourceforge.net >

4. “Haveland-Robinson Associates - Home Page.” 5 Mar. 2004. Haveland-Robinson
Associates. 3 Jul. 2005. < http : //haveland.com/povbench >

1 This research was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Admin-
istration. The funding for this research was provided for by the Defense Advanced
Research Projects Agency under task order number NM0715612, under the NASA
prime contract number NAS7-03001.

Migol: A Fault-Tolerant Service Framework
for MPI Applications in the Grid

André Luckow and Bettina Schnor

Institute of Computer Science,
University Potsdam, Germany

{schnor, drelu}@cs.uni-potsdam.de

Abstract. In a distributed, inherently dynamic Grid environment the
reliability of individual resources cannot be guaranteed. The more
resources and components are involved the more error-prone is the
system. Therefore, it is important to enhance the dependability of the
system with fault-tolerance mechanisms. In this paper, we present Migol,
a fault-tolerant, self-healing Grid service infrastructure for MPI
applications.

The benefit of the Grid is that in case of a failure an application
may be migrated and restarted from a checkpoint file on another site.
This approach requires a service infrastructure which handles the neces-
sary activities transparently for an application. But any migration frame-
work cannot support fault-tolerant applications, if it is not fault-tolerant
itself.

Keywords: Grid computing, fault-tolerance, migration, MPI, Globus.

1 Introduction

The Grid is dynamic by nature, with nodes shutting down respectively coming
up again. The same holds for connections. For long running compute-intensive
applications fault-tolerance is a major concern [2,17]. A benefit of the Grid is that
in case of a failure an application may be migrated and restarted on another site
from a checkpoint file. But a migration framework cannot support fault-tolerant
applications, if it is not fault-tolerant itself.

Here, we present a fault-tolerant infrastructure, i.e. without any single point
of failure, conforming to the Open Grid Service Architecture (OGSA) [13] for
supporting the migration of parallel MPI applications. OGSA builds upon open
Web service technologies to uniformly expose Grid resources as Grid services.
The Open Grid Services Infrastructure (OGSI) [30] is the technical specification
of extensions to the Web services technology fulfilling the requirements described
by OGSA. An implementation of the OGSI is provided by the Globus Toolkit 3
(GT3) [15]. Migol services are built on top of GT3.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 258–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Migol: A Fault-Tolerant Service Framework for MPI Applications 259

2 Related Work

Migration and migration strategies were well studied in the context of cycle-
stealing clusters in the mid 90s (see for example [25,3]).

Approaches for fault tolerance in MPI applications are discussed in [17].
MPI-FT [11], CoCheck [29], Starfish [1] and MPICH-V [5] provide fault toler-
ance for MPI applications based on different fault diagnostics. checkpointing,
and message logging. These systems operate on a lower level within a MPI ap-
plication. Therefore, they are for the most part restricted to homogenous cluster
environments and are not capable of handling multi-institutional Grids.

Recently, migration frameworks were also developed for Grid environments.
The Condor/PGRADE system [20] consists of a checkpointing mechanism for
PVM applications and uses Condor-G [10] for scheduling. Fault-tolerance of the
service infrastructure is not supported.

In [16] a fault-tolerant mechanism to support divide-and-conquer applications
in the Grid is presented. The solution exploits special characteristics of these
applications and cannot be generalized.

GridWay [31] and GrADS [24] provide migration capabilities to MPI ap-
plications based on the GT and application-level checkpoints. These systems
are primarily performance-oriented. Fault-tolerance and OGSI-compliance of the
components is not within the focus of these projects.

3 Migol Architecture

The main features of Migol are scheduling, monitoring, and, if necessary, mi-
grating applications in the Grid. The Grid is assumed to be a loosely coupled
organization: each site has its own administration and resource management
system (for example Condor [22], PBS [18], ...).

The Migol framework builds upon the standard open source solution provided
by the Globus Toolkit 3.2.1. The key concepts for achieving failure-tolerance are:

– Clear separation of services with no state, transient and persistent state.
– Replication of persistent services.
– Support for recovery of transient Grid service instances.
– Reuse of services provided by GT3, e. g. security and persistence services.

Fundamental part of Migol is the Grid Object Description Language (GODsL),
which defines a generic and extensible information model for describing different
aspects of the Grid, e. g. hardware, applications, services or data [21]. For exam-
ple, when an application is started, a Grid Service Object is created which stores
all relevant information of the application: resource requirements, location of bi-
naries and checkpoint files, global unique identifier, etc. Every resource, service
or application is associated with a Grid object.

At any time, the currently used Grid objects represent the state of the Grid. A
special information service was developed, the Application Information Service
(AIS), to store Grid objects. The AIS contains substantial information about

260 A. Luckow and B. Schnor

GridServiceObject

Grid site

Grid site

Job Broker
Service

Grid site Grid site

startJobstartMigration

Service
Migration getAllResources

reg
ist

erS
erv

ice

getServices

checkService

changeService

st
ar

tM
ig

ra
tio

n

startJob

ge
tC

re
de

nt
ia

l

Information Service
Application

Grid Execution Site

Migol WS GRAM

subm
it

create

start

Connector ServiceService
Monitoring Restart

Information Service
Migration

MPI Application

checkpoint/destroy

Fig. 1. Migol Service Architecture

running services and available resources. Applications can register and deregister
services, files, machines etc. through Grid objects. To avoid a single point of
failure the AIS is replicated using a ring-based replication protocol, which ensures
the consistency of the stored data (see [23] for more details).

Obviously, a monitoring service is necessary to monitor the status of appli-
cations, i.e., active, pending, staging, inactive, terminated. In case the monitor
service discovers an application to be inactive, it initiates a restart respectively
a migration. Hence, we call it Monitoring and Restart Service (MRS). The MRS
monitors all applications which have registered themselves at the AIS. The MRS
is also a critical component. But replication of the MRS is complicated: This
would mean that the monitoring traffic is also replicated and even worse, in case
of a failure the different monitoring services would initiate migrations concur-
rently. Hence, the MRS has to be replicated, but only one instance, e. g. the one
with the lowest ID, may be active. The remaining instances operate in stand-by
mode.

All other Migol services which are necessary for scheduling and migration
are created on demand. Figure 1 shows the Migol services and their interactions.
The services will be explained in more detail in the next sections.

3.1 Migration Information Service

The Migration Information Service (MIS) collects static and dynamic data about
the Grid. For that purpose the MIS aggregates data of different services, e. g. the
Network Weather Service (NWS) [27]. The NWS provides latency and bandwidth
information, which are not available through the Globus information services.

Migol: A Fault-Tolerant Service Framework for MPI Applications 261

There can be multiple deployments of the MIS in a Grid to improve availability.
The state of the MIS can be completely re-collected after a failure.

3.2 Connector Service: Grid Services and MPI Applications

At the moment a gap between high performance applications and Grid services
exists. There are several approaches for exposing a MPI application as OGSI-
compliant Grid service [12,26].

We decided to use a general approach using a Grid service to monitor ap-
plications submitted via the Globus Resource Allocation Manager (GRAM) [9].
GRAM provides a standardized interface to different local resource management
systems (e. g. PBS, LSF, Condor). Extensions to the WS GRAM service were
necessary, as the supplied mechanisms for management and monitoring of appli-
cations were not sufficient. For example, there is no possibility to communicate
with an application, e. g. to trigger the writing of a checkpoint.

Further, we observed that job states reported by GRAM are partly incor-
rect. Thus, it is impossible to determine whether a job exited normally or failed
and therefore must be recovered. To fill this gap the Connector Service (CS)
was developed. The CS is a standard OGSI Grid service, which can be used to
virtualizes any MPI application. This approach enables the seamless integration
of MPI applications within the service infrastructure and provides a standard
Grid service interface for starting, monitoring and controlling.

The communication between Grid service and application is implemented
through sockets and transparently encapsulated in a vendor-independent, user-
level MPI library which is similar to the approach in CUMULVS and other sys-
tems (e.g. [31,24,19]). The user must include the Migol header and link against
the library. Library functions are provided via a special API. The application
must make an initialization and finalization call to the library.

The Migol library depends on application-level checkpointing. The applica-
tion is responsible for writing checkpoints. Our first prototype depends on locally
stored checkpoints, which have to be accessible to enable auto-recovery. Future
versions will support replicated checkpoints.

For every GRAM job one CS instance has to be created. This is done by the
Migol WS GRAM service, which transparently extends the WS GRAM of the
GT3 and can be plugged in at deployment time.

3.3 Job Broker Service

The Job Broker Service (JBS) integrates different computing resources, making
them available to the user as a single point of entry (submit & forget). The JBS
performs resource discovery through the AIS. Resources are matched according
to the requirements specified by a Grid Service Object. The scheduler module
ranks the matched resources based upon the following heuristic:

– The computation time is estimated upon a speed factor (currently the nor-
malized cpu speed).

262 A. Luckow and B. Schnor

– The waiting time for a job is evaluated based on the queue lengths of the
local resource management systems.

– The proximity between the source and selected hosts has to be considered
to avoid the selection of a difficult-to-reach or disruption-prone site. This is
done by using a configurable bandwidth-threshold.

The dynamic attributes needed for scheduling are collected from the MIS.
The resulting prioritized list is used to dispatch the jobs.

Because of the highly dynamic and complex Grid environment and the lack of
local control (site autonomy) this metric can only be considered a rough approxi-
mation. Especially the waiting time for a job is, due to different resource require-
ments of the individual jobs, hardly predictable. In future advanced reservation
may fill this gap. At the moment we use a very simple but practical approach to
minimize the waiting time. The job is submitted to the top three sites through
the Migol WS GRAM service. When one of these jobs gets active all other jobs
are canceled. This approach avoids orphan jobs and ensures that the overhead
caused by allocation of more than necessary resources will be minimized.

The Community Scheduler Framework (CSF) [28] also provides a framework
for meta-scheduling. In practice the CSF proved to be not robust and flexible
enough. The available round-robin scheduler plug-in does not suit our needs. A
dynamic scheduling mechanism based on GODsL with submission to multiple
sites is not feasible with the CSF plug-in mechanism. Furthermore, important
features like advanced reservations are only operable in conjunction with LSF.

3.4 Migration Service: Fault-Tolerance of MPI Applications

The Migration Service (MS) is responsible for the automatic relocation of already
running MPI applications. A migration can be initiated on user request, on behalf
of a self-adaptive application or for recovery.

Migol defines a Monitorable port type with a checkService() operation,
which has to be implemented by the application. The Connector Service and the
Migol MPI library provide a default implementation of this port type. A Grid
service call to the checkService() operation of the CS will initiate a socket
ping to all nodes of a MPI application. If all nodes are reachable the CS will
return a successful response.

The MRS periodically checks all registered services using the Monitorable
interface. In case of a failure, the condition is reported to the AIS. After a
threshold of failures is reached the recovery of the job is initiated through the
Migration Service.

The state of the application is saved in a checkpoint. We use an application-
level approach for checkpointing, i. e. applications have to be specially written
to accommodate checkpointing and restart. A system-level or user-level check-
pointing mechanism cannot be provided due to the great heterogeneity of the
Grid. The application developer must implement the checkpoint() operation
of the Monitorable port type.

Migol: A Fault-Tolerant Service Framework for MPI Applications 263

After checkpointing the application can be securely stopped. The service is
then restarted using the JBS. To accommodate an automatic migration the MS
uses the AIS to obtain the credentials of the service owner.

3.5 Fault-Tolerance of Migol Services

The Migol services are designed with special regard to fault-tolerance. The MRS
as well as the AIS are critical to the Grid. Therefore, these services are replicated.
For both services, Migol uses a a ring-based replication strategy to guarantee
data consistency (see [23] for more details).

The MIS and the factory services for the JBS and MS are stateless. The
availability of these services can therefore be enhanced by deploying these ser-
vices on multiple, independent sites without any replication protocol for data
consistency. While the MIS caches different information about the Grid, this
information can be completely rebuild after failure.

The JBS and MS instances created by the factory services are transient
and therefore need special treatment. GT3 provides a hosting environment with
improved fault-tolerance via a persistence API. JBS and MS instances use this
API to record critical internal state information. In the event of a container
crash or an instance failure, the container can recreate existing instances. The
JBS and MS instances query the persistent attributes at startup in order to
determine whether they are a new or restarted instance. If indeed a persistent
state is discovered, this state information is utilized to recover the service.

CS and Migol WS GRAM instances represent the MPI application. In case
of a failure a migration of these service instances is triggered by the MRS.

3.6 Security

Grid resources are potentially shared among many different virtual organiza-
tions, which leads to special security requirements. The Grid Security Infrastruc-
ture (GSI) addresses issues like single sign on and provides a certificate based
security infrastructure [14]. Migol services extensively use GT3 security services
such as authentication, authorization, message protection and credential delega-
tion. All important messages are encrypted. Delegation enables services to act
on behalf of a user. The MS and JBS can conduct critical operations, e. g. a job
submission, using the delegated credential of a user.

Further, credentials are stored encrypted in the AIS to allow the recovery of
failed services. The main reason for incorporating these features into the AIS
is that existing solutions are not reliable and flexible enough. For example the
MyProxy server [4] cannot be replicated and therefore is a single point of failure.
Credentials can only be retrieved using encrypted communication.

4 Measurements

First measurements were conducted to analyze the performance of the imple-
mentation. The testbed consisted of two machines with AMD Athlon XP 2000+

264 A. Luckow and B. Schnor

 0

 10

 20

 30

 40

 50

 60

 70

 80

MSJBSGRAM 4GRAM 3
(average)

GRAM 3
(first)

GRAM 2

T
im

e
(s

ec
)

Migration and Job Broker Service Overhead

Fig. 2. Migration and Job Broker Service Overhead

and 256 MB memory connected by Fast Ethernet. The GT3 container was run
using Sun Java 1.4.2 on Mandrake Linux 10.0.

The MS and JBS were deployed on machine 1, the AIS on machine 2. On
both machines the Migol executing environment, consisting of the WS GRAM
with fork jobmanager and the CS, was installed. Our test application is a simple
9-point stencil simulation called cellular automat. We compared the submission
times to the JBS and MS against the different Globus GRAM implementations.
Measurements have been carried out using the corresponding command line
tools.

Figure 2 presents the results of these experiments. The performance of the
GT3 GRAM has a clear disadvantage against its GT2 and GT4 counterpart.
Since the Migol framework depends on the GT3 GRAM we will focus our ex-
amination on this service. We noticed a difference between an initial submission
to GT3 GRAM and subsequent job submissions. This behavior is a result of
the GT3 GRAM architecture: For each user a new container, the user hosting
environment, is started.

We observed an overhead of about 22 s of the JBS compared to GT3 GRAM.
This overhead occurs due to the necessary interactions with other Migol services.
The scheduler obtains e. g. information from the MIS. Further, the submission of
the job to the GT3 GRAM service is very time-consuming (∼11 s). Also enabled
security has a major impact on performance [6].

The performance of the MS was determined by measuring the time for stop-
ping and restarting the service through the JBS. As we were primarily interested
in the overhead imposed by the Grid service environment, the checkpointing time
and the transfer time of the checkpoint was not measured. Since the migration
service uses the JBS for job submission, the JBS overhead also applies to the
MS. In addition, several Grid service calls are necessary, e. g. to authorize users

Migol: A Fault-Tolerant Service Framework for MPI Applications 265

(delegation of credentials), to trigger checkpointing, and to update the corre-
sponding Grid object at the AIS.

In order to assess the future direction of our work we conducted a first eval-
uation of the GT4 GRAM implementation. Due to a major refactoring the GT4
GRAM provides a much better performance, which is comparable to the perfor-
mance of the GT2 GRAM.

5 Conclusions and Future Work

We presented a fault-tolerant service infrastructure for MPI applications. The
key concept of our approach is a replicated information service (AIS) and a
replicated monitoring service (MRS). It is the task of the MRS to monitor the
state of the applications and to initiate a restart or migration using the JBS and
MS in case of a failure.

Migol’s security model is based on GSI of the GT3, which provides a set of
security services to implement authentification, authorization, credential delega-
tion and secure conversation.

While the measurements show a substantial overhead for the interaction of
the services in case of a migration, we think that this is acceptable compared to
the benefits a fault-tolerant self-healing infrastructure offers.

Further studies regarding the performance and scalability especially of the
AIS will be necessary. Future work is also the investigation of new schedul-
ing strategies within the Migol Job Broker Service (JBS). Currently, we use an
heuristic to determine the best destination. Advanced reservation mechanisms
could significantly enhance the capabilities of the JBS.

Further, we are going to evaluate more transparent and reliable solutions for
creating and storing checkpoints, e. g. user-level checkpoints and replication of
checkpoints as provided by the Replica Location Service [7].

With ongoing standardization in the GGF and OASIS we will evaluate pro-
posed standards on their usability in context of Migol. For example, the Web
Service Resource Framework (WSRF), which evolved from OGSI, incorporates
Web service standards as WS-Addressing to model stateful Web services. The
Globus Toolkit 4 provides a WSRF implementation [8]. Due to the flexible design
of Migol the transition to GT4 will be straightforward.

References

1. Adnan Agbaria and Roy Friedman. Starfish: Fault-tolerant dynamic mpi programs
on clusters of workstations. In HPDC ’99: Proceedings of the The Eighth IEEE
International Symposium on High Performance Distributed Computing, page 31,
Washington, DC, USA, 1999. IEEE Computer Society.

2. Anh Nguyen-Tuong and Andrew S. Grimshaw and Glenn Wasson and Marty
Humphrey and John C. Knight. Towards Dependable Grids. Available at:
http://www.cs.virginia.edu/∼techrep/CS-2004-11.pdf.

266 A. Luckow and B. Schnor

3. A. Barak, A. Braverman, I. Gilderman, and O. Laaden. Performance of PVM
with the MOSIX Preemptive Process Migration. In Proceedings of the 7th Israeli
Conference on Computer Systems and Software Engineering, pages 38–45, Herzliya,
June 1996.

4. Jim Basney, Marty Humphrey, and Von Welch. The myproxy online
credential repository. Available at: http://www.ncsa.uiuc.edu/∼jbasney/
myproxy-spe.pdf, 2005.

5. George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak,
Cecile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic
Magniette, Vincent Neri, and Anton Selikhov. Mpich-v: toward a scalable fault
tolerant mpi for volatile nodes. In Supercomputing ’02: Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages 1–18, Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

6. D. Chen et al. OGSA Globus Toolkit 3 evaluation activity at CERN. Nucl. Instrum.
Meth., A534:80–84, 2004.

7. Ann L. Chervenak, Naveen Palavalli, Shishir Bharathi, Carl Kesselman, and
Robert Schwartzkopf. Performance and scalability of a replica location ser-
vice. Available at: http://www.globus.org/alliance/publications/papers/
chervenakhpdc13.pdf, 2004.

8. Karl Czajkowski, Donald F Ferguson, Ian Foster, Jeffrey Frey, Steve Graham,
Igor Sedukhin, David Snelling, Steve Tuecke, and William Vambenepe. The WS-
Resource Framework. Available at: http://www.oasis-open.org/committees/
download.php/6796/ws-wsrf.pdf, 2005.

9. Karl Czajkowski, Ian T. Foster, Nicholas T. Karonis, Carl Kesselman, Stuart Mar-
tin, Warren Smith, and Steven Tuecke. A resource management architecture for
metacomputing systems. In IPPS/SPDP ’98: Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, pages 62–82, London, UK, 1998.
Springer-Verlag.

10. T. Tannenbaum D. Thain and M. Livny. Condor and the grid. In Fran Berman and
A.J.G. Hey, editors, Grid Computing: Making the Global Infrastructure a Reality.
John Wiley, 2003.

11. Graham E. Fagg and Jack Dongarra. Ft-mpi: Fault tolerant mpi, supporting
dynamic applications in a dynamic world. In Proceedings of the 7th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 346–353, London, UK, 2000. Springer-Verlag.

12. E. Floros and Yannis Cotronis. Exposing mpi applications as grid services. In
Marco Danelutto, Marco Vanneschi, and Domenico Laforenza, editors, Euro-Par,
volume 3149 of Lecture Notes in Computer Science, pages 436–443. Springer, 2004.

13. Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiol-
ogy of the Grid – An Open Grid Services Architecture for Distributed Systems
Integration. Available at: http://www-unix.globus.org/toolkit/3.0/ogsa/
docs/physiology.pdf, 2002.

14. Ian T. Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security archi-
tecture for computational grids. In ACM Conference on Computer and Commu-
nications Security, pages 83–92, 1998.

15. Globus Homepage. Available at: http://www.globus.org, 2005.
16. Jason Maassen Thilo Kielmann Gosia Wrzesinska, Rob V. van Niewpoort and

Henri E. Bal. Fault-tolerant scheduling of fine-grained tasks in grid environments.
In Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium(IPDPS’05), Denver, Colorado, USA, April 2005.

Migol: A Fault-Tolerant Service Framework for MPI Applications 267

17. William Gropp and Ewing Lusk. Fault tolerance in mpi programs. High Perfor-
mance Computing and Applications, 2002.

18. R. Henderson and D. Tweten. Portable Batch System: External reference specifi-
cation. Technical report, NASA Ames Research Center, 1996.

19. James Arthur Kohl and Philip M. Papadopoulos. Cumulvs version 1.0. Available
at http://www.netlib.org/cumulvs/, 1996.

20. Jozsef Kovacs and Peter Kacsuk. A migration framework for executing parallel
programs in the grid. In Proceedings of the 2nd European Across Grids Conference,
Nicosia, Cyprus, January 2004.

21. Gerd Lanfermann, Bettina Schnor, and Ed Seidel. Grid object description: Char-
acterizing grids. In Eighth IFIP/IEEE International Symposium on Integrated
Network Management (IM 2003), Colorado Springs, Colorado, USA, March 2003.

22. Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of idle
workstations. In Proceedings of the 8th International Conference of Distributed
Computing Systems, June 1988.

23. Michael Mihahn and Bettina Schnor. Fault-tolerant grid peer services. Technical
report, University Potsdam, 2004.

24. Rubén S. Montero, Eduardo Huedo, and Ignacio Mart́ın Llorente. Grid resource se-
lection for opportunistic job migration. In Harald Kosch, László Böszörményi, and
Hermann Hellwagner, editors, Euro-Par, volume 2790 of Lecture Notes in Com-
puter Science, pages 366–373. Springer, 2003.

25. S. Petri and H. Langendörfer. Load Balancing and Fault Tolerance in Workstation
Clusters – Migrating Groups of Communicating Processes. Operating Systems
Review, 29(4):25–36, October 1995.

26. Diego Puppin, Nicola Tonellotto, and Domenico Laforenza. Using web services to
run distributed numerical applications. In Dieter Kranzlmüller, Péter Kacsuk, and
Jack Dongarra, editors, PVM/MPI, volume 3241 of Lecture Notes in Computer
Science, pages 207–214. Springer, 2004.

27. Neil Spring Rich Wolski and Jim Hayes. The network weather service: A distributed
resource performance forecasting service for metacomputing. Journal of Future
Generation Computing Systems, 15(5-6):757–768, 1999.

28. C. Smith. Open source metascheduling for virtual organizations with the com-
munity scheduler framework (csf). Technical report, Platform Computing Inc.,
2003.

29. Georg Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Pro-
ceedings of the 10th International Parallel Processing Symposium (IPPS ’96), Hon-
olulu, Hawaii, 1996.

30. Steven Tuecke, Ian Foster, and Carl Kesselman. Open Grid Ser-
vice Infrastructure. Available at: http://www-unix.globus.org/toolkit/
draft-ggf-ogsi-gridservice-33 2003-06-27.pdf, 2003.

31. Sathish S. Vadhiyar and Jack J. Dongarra. A performance oriented migration
framework for the grid. In Proceedings of the 3rd IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, page 130. IEEE Computer Society,
2003.

Applicability of Generic Naming Services and
Fault-Tolerant Metacomputing with FT-MPI

David Dewolfs, Dawid Kurzyniec, Vaidy Sunderam, Jan Broeckhove,
Tom Dhaene, and Graham Fagg

Depts. of Math and Computer Science, University of Antwerp,
Belgium and Emory University, Atlanta, GA, USA

{David.Dewolfs, Jan.Broeckhove, Tom.Dhaene}@ua.ac.be
{dawidk, vss}@mathcs.emory.edu

Abstract. There is a growing interest in deploying MPI over
multiple, heterogenous and geographically distributed resources for per-
forming very large scale computations. However, increasing the amount
of geographical distribution and resources creates problems with
interoperability and fault-tolerance. FT-MPI presents an interesting so-
lution for adding fault-tolerance to MPI, but suffers from interoperability
limitations and potential single points of failure when crossing multiple
administrative domains. We propose to overcome these limitations by
adding “pluggability” for one potential single point of failure - the name
service used by FT-MPI - and combining FT-MPI with the H2O meta-
computing framework.

Keywords: FT-MPI, H2O, metacomputing, fault-tolerance, hetero-
geneity.

1 Introduction

Cluster systems have rapidly grown into one of the most popular approaches to
supercomputing. Traditionally, these clusters are built within strongly controlled
environments, using homogenous resources within a single administrative domain
(AD). However, there is a growing interest in clustering resources that feature
high levels of geographical distribution across multiple ADs to perform large
scale collaborative computations.

MPI is arguably the most popular approach to programming parallel appli-
cations on cluster systems. Projects like MPICH-G2 [9] give response to a rising
demand to adapt MPI to higher levels of heterogeneity and geographical distri-
bution than those available in traditional cluster systems. These initiatives have
proven to be quite successful at the user level [8,9,10]. However, they create a
number of issues at the administrative level as resources in different adminis-
trative domains must all use common policies and be properly synchronized [5].
Also, these systems lack fault-tolerance features. A number of solutions have
been developed to address this issue [2,3,4,6,13]. One such solution is FT-MPI
[7]. FT-MPI roughly divides fault recovery into two major phases : MPI level

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 268–275, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Applicability of Generic Naming Services 269

recovery and application level recovery. After a failure, FT-MPI makes sure that
the MPI environment is correctly restored to a functioning state (automatic
MPI-level recovery). From there on, it is up to the application itself to restore
it’s own state instead of relying on automated but potentially unscalable solu-
tions like global distributed checkpointing. This makes FT-MPI an interesting
solution for highly geographically distributed, heterogenous resources.

However, FT-MPI is currently confined to single ADs. Also, bottlenecks and
potential single points of failure (SPoFs) become an issue when deploying it on
multiple ADs, connected by less reliable (WAN) networks than those available
within a single AD (LAN, specialized infrastructure). One of the points where
such problems might occur is the FT-MPI name service (NS). We address these
issues, not by directly providing “yet another NS”, but rather by making the
NS “pluggable”, allowing deployers of FT-MPI to use an existing and generic,
potentially “off-the-shelf” NS of their own choice (e.g. ActiveDirectory, OpenL-
DAP, HDNS[14], ...). Such products often provide built-in fault-tolerance and
performance enhancing features, as well as other capabilities that might be of
interest to the operator of an FT-MPI system. The goal is to enable an oper-
ator to choose an NS that corresponds best to his specific needs and available
resources, instead of being bound to a single, custom-made NS as is currently
the case. The design includes a hierarchical message delivery mechanism which
allows for setting up FT-MPI with only a single connection to the NS per AD.
This greatly reduces the network bottlenecks that might occur when massive
amounts of machines spread over multiple ADs all have to connect to the NS
concurrently. We use the features of the H2O [11] metacomputing framework to
address the interoperability issues. H2O gives us the capability to set up, run
and use an FT-MPI environment spanning multiple ADs without the need for
system accounts - as long as they are accessible via the H2O framework. H2O
allows operators to do this in a centralized, transparent and generic manner,
hiding the heterogeneity of the underlying systems.

2 Design Overview

2.1 Basic FT-MPI Architecture

FT-MPI offers the user a virtual machine (VM) built around the interactions
of the MPI library with three different types of daemons. Roughly speaking :
the MPI library takes care of the message-passing and other MPI-related issues.
The startup daemons start up processes on the individual nodes on which they
run, and keep a handle for each of those for the duration of the job. The notifier
daemons are non-critical processes that marshal and manage failure notification.

For the work described in this paper, we focus on the third : the naming
daemon. Each VM runs exactly one such daemon. The naming daemon provides
a NS, which functions as a repository for contact information of nodes in the VM
as well as a general data repository. It also plays a crucial role in the recovery
mechanism. It is used during VM buildup, job startup and job recovery for set-
ting and determining the currently active nodes within a job or VM. Currently,

270 D. Dewolfs et al.

the naming daemon constitutes a potential SPoF, as it is highly state-retaining
and critical in the general functioning of the VM. It is also a possible choke-
point when communicating between different ADs, as these are most probably
connected by slower, higher latency networks (WAN/internet) than available
within a single AD (LAN). Finally, the naming daemon does not support fea-
tures like replication and load balancing. These features would be desirable to
improve scalability at very large VM sizes.

2.2 Extensions to the FT-MPI Architecture

Extended Design. As stated in the introduction, we have decided not to ad-
dress these issues with the NS by providing a completely new one. Rather, we
enable an operator of an FT-MPI VM to use an NS of his own choice. There
is a wide range of “off the shelf” NS systems available, ranging from commer-
cially available solutions by major vendors like Sun or Microsoft to open source
alternatives like OpenLDAP or research project like HDNS[14]. These provide
a wide range of fault-tolerance and performance features like load distribution,
replication, checkpointing etc.

Our intent is to enable the operator to choose an NS that is most appropriate
w.r.t. his performance and fault tolerance requirements. The ultimate goal is to
move all state-retaining functionality away from FT-MPI and into this pluggable
NS, thus using any fault-tolerance features in the “plugged” NS to remove the
potential SPoF. In order to accomplish this goal, we expanded on the basic
FT-MPI design as follows :

– instead of directly contacting the NS, components of FT-MPI now contact
a proxy server which resides on the gateway between the single AD and
the “outside world”; this proxy server acts as a “front-end” to the real NS,
translating the internal FT-MPI protocol calls to a format that is understood
by the real, “back-end” name service; the front-end does not retain internal
state - thus, failures can be handled through simple measures like a trivial
replication scheme or a restart

– all nodes on a single AD retain an open connection to the NS front-end for
that AD, and each NS front-end retains a single connection with the NS
back-end (hierarchical message forwarding)

– the NS front-end is implemented as a H2O “pluglet” making it fully remotely
deployable by operators on any machine that runs an H2O kernel

The front-end services all of the nodes within the single AD - posing as the
real NS - while retaining only a single connection with the back-end. This hi-
erarchical message forwarding approach significantly cuts down the number of
connections that would have to cross multiple ADs. On top of this, it poten-
tially enables us to resolve certain calls to the NS locally at the proxy through
caching, without having to pass on every call to the back-end. Thus, this ap-
proach drastically reduces the chance of bottlenecks on in-transit calls between
multiple ADs, and offers room for improvements to scalability. This also solves

Applicability of Generic Naming Services 271

issues with AD-specific configuration schemes like network address translation
(NAT) for the NS (these issues were already addressed in [1] for computational
nodes). With the front-end situated on the gateways, it can take in messages
from the nodes at the internal interface using virtual IP addresses, and transfer
them over the “outside” interface using real IP addresses, or potentially even
through a completely different communication fabric (JXTA, ...).

More importantly, this enables the NS to be FT-MPI “agnostic”. All FT-
MPI related logic is encapsulated within the front-end. Communications be-
tween proxy and back-end are done through a generic interface (more on this
under “approach”), making the NS back-end fully pluggable. Using proxies also
enables us to integrate this design change without a recompile of the FT-MPI
sources. Basically, it suffices to start up the proxy and an appropriate back-end
instead of the original NS, and then run the rest of FT-MPI without further
modifications. Last, but not least, using H2O to implement this design enables
us to take away any extra overhead in setting up this scheme from the individ-
ual AD administrators. Given that the necessary resources run a H2O kernel,
operators of an FT-MPI VM can now deploy this complete setup remotely and
in a transparent manner. For remote setup, H2O provides the necessary features
to manage the whole process from code staging up to setup and running of the
whole mechanism.

Approach. For the implementation of this design we opted for the use of Java.
This decision was motivated by a) it being used for H2O, of which we wanted to
inherit the useful features described above, b) its own inherent qualities for imple-
menting server-side solutions across heterogenous resources and c) its powerful
API. Specifically, we make use of JNDI, the Java Naming and Directory Inter-
face. JNDI provides uniform access to a diverse range of NS solutions, ranging
from LDAP (the Lightweight Directory Access Protocol) to DNS (the Domain
Name Service). Any provider can make a NS “JNDI-enabled” by implementing a
Service Provider Interface (SPI). All of this is fully transparent to the user. Thus,
using JNDI allows us to make access to the backend generic towards different
NS implementations. The only backend-specific code which needs to be written
concerns naming conventions. These widely differ between different NS imple-
mentations. Impact of this issue is minimized by separating this functionality
into a very basic pluggable name resolver. Providing an implementation of this
for the specific back-end is enough to make the whole scheme work transparently
for the rest of the process. A basic resolver for LDAP has been implemented,
and others are currently in the pipeline.

Extending Upon JNDI. Though it can solve the problems regarding SPoF,
decoupling the NS from FT-MPI introduces new issues concerning concurrency.
FT-MPI assumes a centralized NS. This NS is basically single-threaded and
queues all incoming requests on receive. Thus, it never poses a problem w.r.t.
multiple requests accessing the same data resource. However, the new design we

272 D. Dewolfs et al.

propose has the front-ends running and accessing the back-end in parallel. This
introduces the issue of atomicity.

To enable for genericity, JNDI assumes a base level, lowest common de-
nominator approach to accessing a NS. However, the calls in the protocol which
FT-MPI uses to access its NS are quite high-level in nature, requiring compound
operations like atomic increment, atomic compare and set etc. to be resolved in
a single call. FT-MPI is highly dependent upon atomicity of these calls. This
results in a necessity to resolve certain protocol calls to the NS through multi-
ple primitives in JNDI, requiring separate lookups and subsequent binds. This
makes potential concurrent access to shared data resources, and potential re-
sulting problems (e.g. race conditions), an important issue.

We have tackled these issues by building an unreliable named locking scheme
on top of JNDI. This locking scheme allows us to acquire named locks, thus giving
individual front-ends exclusive access to a given shared resource when needed.
Locks are given a limited lease time, and must be retained by the current lock
owner. If a lock is not properly retained, it grows stale and can be forcefully
taken by another contender for the same resource. By using an abstract inter-
face for the implementation, NS providers are able to supply native locking to
the user if it is supported in their product, simply by offering their own exten-
sion of the interface. For NS systems that do not support native locking, we
offer our own implementation of the interface which provides locks using basic
primitives of JNDI (natively implemented locking, of course, potentially yields
better performance).

This is accomplished as follows. JNDI guarantees atomicity of bind. There-
fore, binding a new named object into the NS will either completely succeed, or
completely fail, without leaving the NS in an inconsistent state. On top of this,
a regular bind will not succeed if the object to be bound is already present in
the NS (using the same name) - you’d have to use a rebind operation to do that.
We can use these features to bind a “lock” object with a given name into the
NS. If the bind succeeds, the lock has been acquired and further operations can
proceed. If the bind does not succeed, this means that a lock with that name
was already bound by another agent. In this case, a repetitive retry scheme with
graceful back-off is used to wait until the lock becomes either available (the
owner un-binds it), or stale (the owner does not renew the lease in time). If the
lock has grown stale, it is forcefully transferred on the next attempt to acquire it.

However, the locking scheme we use is necessarily unreliable, due to the na-
ture of the intervening medium between the front-ends and the back-end (the
network). This could potentially lead to inconsistencies in the state of the back-
end when a failure occurs or a lock grows stale, somewhere in the middle of the
compound update process.

To overcome this issue, we have adopted an approach to the design of our up-
date algorithms which enables for consistent state up to and until the last bind-
operation for a given protocol call. Failure in any phase before the final bind
can simply be solved by applying a garbage-collection operation to the back-
end. Garbage collection can potentially be piggybacked on other operations for

Applicability of Generic Naming Services 273

performance gain. On top of this, to make certain that no state-changing oper-
ations from a previous lock owner come through after a stale lock was forcefully
transferred, the state-changing bind is only done when the remaining lease time
on the remote lock is higher than the socket time out. In this way, we can be
certain that the “final” bind has either succeeded or failed before we lose the
lock, as the socket will have timed out and the bind will have returned an error
before expiration of the lease. This does require resetting the socket time-out to
more reasonable levels than the default, which is trivial in Java.

3 Evaluation

To evaluate communication overhead generated by the new design in compari-
son to the old, we created a proof-of-concept implementation of the front-end.
We performed a comparison experiment on two nodes : one in Atlanta (Geor-
gia), USA, the other situated in Antwerp, Belgium. The node in Atlanta is a 2.4
GHz Pentium 4 with 1GB memory running Mandrake Linux 10.0. The node in
Antwerp is a 1.90GHz Pentium 4 with 256MB memory running Suse Linux 7.
Both nodes are connected to the internet through a broadband internet provider,
and communicate through plain, unencrypted TCP sockets. This setup was used
in order to simulate the conditions which the design is aimed at : geographically
distributed, heterogenous resources. For the back-end in the new design, we used
a standard installation OpenLDAP version 2.1.25 with BDB (Berkeley Data
Base) for storage. The node in Atlanta ran the original FT-MPI NS or OpenL-
DAP depending on the case being tested. The node in Antwerp ran a basic client
program in both cases, plus the front-end in the case of the new design.

We ran two experiments : in the first, we first inserted and then read entries
with progressively growing payloads (10-900 B, using 100 B steps from 100 to
900 B) and measured wall-clock time for both insertion and read. In the second,
we inserted and read batches with a progressively growing amount of equal-sized

Fig. 1. Evolution of wall-clock time as the payload per transaction (graph) and the
amount of operations increase

274 D. Dewolfs et al.

entries into the NS and again, measured wall-clock time for both cases. These
experiments evaluate scalability in terms of transaction size and transaction
frequency. They were primarily geared towards testing feasibility, scalability and
stability of the new design. Ultimately, we want the new NS to behave as scalable
and stable as the original. When it comes to raw performance however, it is to
be expected that the original NS will outperform the new design in its current
state. This is because a) the original NS was implemented using RAM-based
data storage only and b) the original NS uses purely static memory structures
as well. Of course, this is not the case with the OpenLDAP backend. On top
of this, OpenLDAP will show a heavy bias towards retrieval operations as it
optimizes these over modification/insertion.

The experiment successfully ran to completion leaving the backend in a fully
consistent state, proving the feasibility of the new design. The results of our
experiment are shown in figure 1. As expected, the numbers show a performance
advantage for the original NS on insert vs. our new design. Read operations
though are almost on an equal level for both cases. The figure also clearly shows
that in both cases, the evolution of the measured wall clock time remains linear.
This confirms that, despite the need to replace the monolithic features of the
original NS by several aggregated operations in the backend (especially on in-
sert), the system remains scalable and delays remain predictable. On top of this,
performance remains more than acceptable for regular jobs, as the NS overhead
only comes into account at job startup and during fault recovery. Regular job
performance will not be hindered by the performance loss on the NS. Even when
taking into account the factor 9 performance hit on insert, operation timings
remain below 1 second.

4 Conclusions

In this paper, we have discussed issues concerning the deployment of FT-MPI
for large scale computations on highly geographically distributed, heterogenous
resources. We have shown that “vanilla” FT-MPI poses some limitations in this
area due to the nature of the naming service which is used internally by FT-MPI.

We have worked out a design which address these issues by enabling op-
erators of an FT-MPI setup to a) transparently set up and run an FT-MPI
system across multiple administrative domains and b) “plug in” their own name
services. This feature is highly desirable as existing off-the-shelf name services
often provide numerous features for improved fault tolerance and performance
(e.g. distribution, redundancy, replication, checkpointing, journalling, automated
management and restart etc.). The proposed design does not require changes to
the FT-MPI source. To accomplish all of this , we use the features of the H2O
metacomputing framework and leverage the features of JAVA and its component
for name service management, JNDI. Also, the staging mechanism employed in
the design reduces the nr. of connections to the name service to one per admin-
istrative domain, thereby reducing bottlenecks on potentially slower network
connections between multiple administrative domains and allowing for local op-
timization through caching.

Applicability of Generic Naming Services 275

References

1. D. Kurzyniec and V. Sunderam. Combining FT-MPI with H20: Fault-tolerant MPI
across administrative boundaries. In Proceedings of th HCW 2005-14th Heteroge-
neous Computing Workshop, (accepted), 2005

2. A. Agbaria, R. Friedman. Starfish: Fault-tolerant dynamic MPI programs on clus-
ters of workstations. In Eighth IEEE International Symposium on High Perfor-
mance Distributed Computing, 1999, pp. 31

3. A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier and F. Mag-
niette. MPICH-V2: a fault tolerant MPI for volatile nodes based on pessimistic
sender based message logging. In ACM/IEEE SC2003 Conference, 2003, pp. 25

4. Y. Chen, K. Li, J.S. Plank. CLIP : A checkpointing tool for message-passing parallel
programs. 1997. Available at http://citeseer,ist.psu.edu/chen97clip.html

5. J. Chin and P.V. Coveney. Towards tractable toolkits for the Grid : a plea for light-
weight, usable middleware. Available at http://www.realitygrid.org/lgpaper21.pdf

6. E. Elnozahy and W. Zwaenepoel. Manetho : Transparent rollback-recovery with low
overhead, limited rollback and fast output. In IEEE Transactions on Computers,
Special Issue on Fault-Tolerant Computing, 41(5), May 1992, pp.526-531

7. G. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, J. Pjesivac-Grbovic and
J. Dongarra. Process fault-tolerance : Sematics, design and applications for high-
performance computing. In International Journal for High Performance Applica-
tions and Supercomputing. 2004.

8. T. Imamura, Y. Tsujita, H. Koide and H. Takemiya. An architecture of Stampi :
MPI library on a cluster of parallel computers. In 7th European PVM/MPI Users’
Group Meeting, 2000, pp. 4-18

9. N. Karonis, B. Toonen and I Foster. MPICH-G2 : A grid-enabled implementation
of the Message Passing Interface. In Journal of Parallel and Distributed Computing
(JPDC), 63(5), May 2003, pp. 551-563

10. R. Keller, B. Krammer, M.S. Mueller, M.M. Resch and E. Gabriel. MPI develop-
ment tools and applications for the grid. In Workshop on Grid Applications and
Programming Tools, 2003

11. D. Kurzyniec, T. Wrzosek, D. Drzewiecki and V. Sunderam. Towards self-
organising distributed computing frameworks : The H2O approach. In Parallel
Processing Letters, 13(2), 2003, pp. 273-290

12. S. Louca, N. Neophytou, A. Lachanas and P. Eviripidou. MPI-FT: Portable fault-
tolerance scheme for MPI. In Parallel Processing Letters, 10(4), 2000, pp. 371-382.

13. G. Stellner. CoCheck: Checkpointing and process migration for MPI. In 10th In-
ternational Parallel Processing Symposium, 1996, pp. 526-531

14. T. Tyrakowski, V. S. Sunderam, M. Migliardi. Distributed Name Service in Har-
ness. In Proceedings of the international Conference on Computational Sciences -
Part 1(LNCS Vol. 2073), 2001, pp. 345-354

A Peer-to-Peer Framework for Robust Execution
of Message Passing Parallel Programs on Grids

Stéphane Genaud and Choopan Rattanapoka

ICPS-LSIIT - UMR CNRS-ULP 7005
Université Louis Pasteur, Strasbourg

{genaud, rattanapoka}@icps.u-strasbg.fr

Abstract. This paper presents P2P-MPI, a middleware aimed at com-
putational grids. From the programmer point of view, P2P-MPI provides
a message-passing programming model which enables the development
of MPI applications for grids. Its originality lies in its adaptation to un-
stable environments. First, the peer-to-peer design of P2P-MPI allows
for a dynamic discovery of collaborating resources. Second, it gives the
user the possibility to adjust the robustness of an execution thanks to
an internal process replication mechanism. Finally, we measure the mid-
dleware performances on two NAS benchmarks.

Keywords: Grid, Middleware, Peer-to-peer, MPI, Java.

1 Introduction

Grid computing offers the perspective of solving massive computational problems
using a large number of computers. It involves sharing heterogeneous resources
located in different places, belonging to different administrative domains over a
network. When speaking of computational grids, we must distinguish between
grids involving stable resources (e.g. a supercomputer) and grids built upon
versatile resources, that is computers whose configuration or state changes fre-
quently. The latter are often referred to as desktop grids and may in general
involve any unused connected computer whose owner agrees to share its CPU.
Thus, provided some magic middleware glue, a desktop grid may be seen as
a large-scale computer cluster allowing to run parallel application traditionally
executed on parallel computers. However, the question of how we may program
such an heterogeneous cluster remains unclear. Most of the numerous difficulties
that people are trying to overcome today fall in two categories.

– Middleware. The middleware management of tens or hundreds grid nodes
is a tedious task that should be alleviated by mechanisms integrated to the
middleware itself. These can be fault diagnostics, auto-repair mechanisms,
remote update, resource scheduling, data management, etc.

– Programming model. Many projects propose a client/server (or RPC)
programming style for grid applications (e.g. JNGI [17], DIET [4] or XtremWeb
[8]). However, the message passing and data parallel programming model are
the two models traditionally used by parallel programmers.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 276–284, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Peer-to-Peer Framework for Robust Execution 277

MPI [13] is the de-facto standard for message passing programs. Most MPI
implementations are designed for the development of highly efficient programs,
preferably on dedicated, homogeneous and stable hardware such as supercom-
puters. Some projects have developed improved algorithms for communications
in grids (MPICH-G2 [10], PACX-MPI [9], MagPIe [11] for instance) but still,
assume hardware stability. This assumption allows for a simple execution model
where the number of processes is static from the beginning to the end of the
application run1. This design means no overhead in process management but
makes fault handling difficult: one process failure causes the whole application
to fail. This constraint makes traditional MPI applications unadapted to run on
grids. Moreover, MPI applications are OS-dependent binaries which complicates
execution in highly heterogeneous environments.

If we put these constraints altogether, we believe a middleware should provide
the following features: a) self-configuration (system maintenance autonomy, dis-
covery), b) data management, c) robustness of hosted processes (fault detection
and replication), and d) abstract computing capability. The rest of the paper
shows how P2P-MPI fulfills these requirements. We first describe (section 2) the
P2P-MPI middleware through its modules, so as to understand the protocols de-
fined to gather collaborating nodes in order to form a platform suitable for a job
request. In section 3 we explain the fault-detection and replication mechanisms in
the context of message-passing programs. We finally discuss P2P-MPI behavior
in section 4, at the light of experiments carried out on two NAS benchmarks.

2 The P2P-MPI Middleware

2.1 Modules Organization

Fig. 1 depicts how P2P-MPI modules are organized in a running environment.
P2P-MPI proper parts are grayed on the figure. On top of diagram, a message-
passing parallel program uses the MPI API (a subset of the MPJ specification

Fig. 1. P2P-MPI structure

1 Except dynamic spawning of process defined in MPI-2.

278 S. Genaud and C. Rattanapoka

[5]). The core behind the API implements appropriate message handling, and
relies on three other modules. The Message Passing Daemon (MPD) is respon-
sible for self-configuration, as its role is either to search for participating nodes
or to act as a gate-keeper of the local resource. The File Transfer Service (FT)
module handles the data management by transferring executable code, input and
output files between nodes. The Fault Detection Service (FD) module is neces-
sary for robustness as the application needs to be notified when nodes become
unreachable during execution.

In addition, we also rely on external pieces of software. The abstract com-
puting capability is provided by a Java Virtual Machine and the MPD module
uses JXTA [1] for self-configuration.

2.2 Discovery for An Execution Platform

In the case of desktop grids, the task of maintaining an up-to-date directory of
participating nodes is a so tedious task that it must be automated. We believe
one of the best options for this task is discovery, which has proved to work well
in the many peer-to-peer systems developed over the last years for file shar-
ing. P2P-MPI uses the discovery service of JXTA. The discovery is depicted in
JXTA as an advertisement publication mechanism. A peer looking for a partic-
ular resource posts some public advertisement (to a set of decentralized peers
called rendez-vous) and then waits for answers. The peers which discover the
advertisement directly contact the requester peer.

In P2P-MPI, we use the discovery service to find the required number of
participating nodes at each application execution request. Peers in P2P-MPI are
the MPD processes. When a user starts up the middleware it launches a MPD
process which publishes its pipe advertisement. This pipe can be seen as an open
communication channel that will be used to transmit boot-strap information.

When a user requests n processors for its application, the local MPD begins
to search for some published pipe advertisements from other MPDs. Once at
least n peers have reported their availability, it connects to the remote MPDs
via the pipe to ask for their FT and FD services ports. The remote MPD acts
as a gate-keeper in this situation and it may not return these service ports if the
resource had changed its status to unavailable in the meantime. Once enough
hosts have sent their service ports, we have a set of hosts ready to execute a
program. We call this set an execution platform since the platform lifetime is
not longer than the application execution duration.

2.3 Job Submission Scenario

We now describe the steps following a user’s job submission to a P2P-MPI grid.
The steps listed below are illustrated on Figure 2.

(1) The user must first join the grid. By invoking mpiboot, it spawns the MPD
process which makes the local node join the P2P-MPI group if it exists, or
creates it otherwise.

A Peer-to-Peer Framework for Robust Execution 279

MPD MPD

FT FT

FD FD

MPI program MPI program

(2)

(5)

(9)

(9)

(9)

(3)

(1) (1)
(3)

(4)
(7)

(8)

(5)
(6)

P2P−MPI Peer Group

Fig. 2. A submission where the submitter finds one collaborating peer

(2) The job is then submitted by invoking a run command which starts the
process rank 0 of the MPI application on local host.

(3) Discovery: the local MPD issues a search request to find other MPDs pipe
advertisements. When enough advertisements have been found, the local
MPD sends into each discovered pipe, the socket where the MPI program
can be contacted.

(4) Hand-shake: the remote peer sends its FT and FD ports directly to the
submitter’s MPI process.

(5) File transfer: program and data are downloaded from the submitter host via
the FT service.

(6) Execution Notification: once transfer is complete the FT service on remote
host notifies its MPD to execute the downloaded program.

(7) Remote executable launch: MPD executes the downloaded program to join
the execution platform.

(8) Execution preamble: all processes in the execution platform exchange their
IP addresses to construct their local communication table.

(9) Fault detection: MPI processes register in their local FD service and starts.
Then FD will exchange their heart-beat message and will notify MPI pro-
cesses if they become aware of a node failure.

3 Replication for Robustness

3.1 Replication

Though absolutely transparent for the programmer, P2P-MPI implements a
replication mechanism to increase the robustness of an execution platform. When
specifying a desired number of processors, the user can request that the system
run for each process2 an arbitrary number of copies called replicas. In practice,
it is shorter to request the same number of replicas per process, and we call this
2 Except for rank 0 process. We assume a failure on the submitter host is critical since

the user would lose the control on the application.

280 S. Genaud and C. Rattanapoka

Backup

Log Master

Fig. 3. A message sent from logical process P0 to P1

constant the replication degree. In the following we name a “usual” MPI process
a logical process, noted Pi when it has rank i in the application. A logical process
Pi is thus implemented by one or several replicas, noted P 0

i , . . . , Pn
i . The replicas

are run in parallel on different hosts since the goal is to allow the continuation
of the execution even if one host fails.

Of course, replicas behavior must be coordinated to insure that the communi-
cation scheme is kept coherent with the semantics of the original MPI program.
Ad hoc protocols have been proposed, and our solution follows the active repli-
cation [6] strategy in which all replicas of the destination group receive the sent
message except that we impose coordination on the sender side to limit the
number of sent messages.

In each logical process, one replica is elected as master of the group for
sending. Fig. 3 illustrates a send instruction from P0 to P1 where replica P 0

0 is
assigned the master’s role. When a replica reaches a send instruction, two cases
arise depending on the replica’s status:

– if it is the master, it sends the message to all processes in the destination
logical process. Once the message is sent, it notifies the other replicas in its
logical process to indicate that the message has been correctly transmitted.

– if the replica is not the master, it first looks up a journal containing the
identifiers of messages sent so far (log on Fig. 3) to know if the message has
already been sent by the master. If it has already been sent, the replica just
goes on with subsequent instructions. If not, the message to be sent is stored
into a backup table and the execution continues. (Execution only stops in a
waiting state on a receive instruction.) When a replica receives a commit, it
writes the message identifier in its log and if the message has been stored,
removes it from its backup table.

3.2 Fault Detection and Recovery

To become effective the replication mechanism needs to be notified of processes
failures. The problem of failure detection has received much attention in the
literature and we have adopted the gossip-style protocol described by [14] for
its scalability. In this model, failure detectors are distributed and reside at each
host on the network. Each detector maintains a table with one entry per detec-
tor known to it. This entry includes a counter called heartbeat counter. During
execution, each detector randomly picks a distant detector and sends it its ta-
ble after incrementing its heartbeat counter. The receiving failure detector will
merge its local table with the received table and adopts the maximum heartbeat

A Peer-to-Peer Framework for Robust Execution 281

counter for each entry. If the heartbeat counter for some entry has not increased
after a certain time-out, the corresponding host is suspected to be down.

When the local instance of the MPI program is notified of a node failure by
its FD service, it marks the node as faulty and no more messages will be sent to
it. If the faulty node hosts a master process then a new master is elected in the
logical process. Once elected, it sends all messages left in its backup table.

4 Experiments

4.1 Experimental Context

Experiment Setup. Though we claim P2P-MPI is designed for heterogeneous
environments, a precise assessment of its behavior in terms of performance is
difficult because we would have to define representative configurations for which
we can reproduce the experiments. Before that, we measure the gap between
P2P-MPI and some reference MPI implementations in an homogeneous envi-
ronment so as to identify potential weaknesses. The hardware platform used is
a student computers room (24 Intel P4 3GHz, 512MB RAM, 100 Mbps Eth-
ernet, Linux kernel 2.6.10). We compare P2P-MPI using java J2SE-5.0, JXTA
2.3.3 to MPICH-1.2.6 (p4 device) and LAM/MPI-7.1.1 (both compiled with
gcc/g77-3.4.3). We have chosen two test programs with opposite characteristics
from the NAS benchmarks [2] (NPB3.2)3. The first one is IS (Integer Sorting)
which involves a lot of communications since a sequence of one MPI Allreduce,
MPI Alltoall and MPI Alltoallv occurs at each iteration. The second program
is EP (Embarrassingly Parallel). It does independent computations with a final
collective communication. Thus, this problem is closer to the class of applications
usually deployed on computational grids.

Expected Behavior. It is expected that our prototype achieves its goals at the
expenses of an overhead incurred by several factors. First the robustness requires
extra-communications: regular heart-beats are exchanged, and the number of
message copies increase linearly with the replication degree as can be seen on Fig.
3. Secondly, compared to fine-tuned optimizations of communications of MPI
implementation (e.g. in MPICH-1.2.6 [16]), P2P-MPI has simpler optimizations
(e.g. binomial trees). Last, the use of a virtual machine (java) instead of processor
native code leads to slower computations.

4.2 Performances

Benchmarks. Fig. 4 plots results for benchmarks IS (left) and EP (right) with
replication degree 1. We have kept the same timers as in the original benchmarks.
Values plotted are the average total execution time. For each benchmark, we
have chosen two problem sizes (called class A and B) with a varying number of
processors. Note that IS requires that the number of processors be a power of
two and we could not go beyond 16 PCs.
3 We have translated IS and EP in java for P2P-MPI from C and Fortran respectively.

282 S. Genaud and C. Rattanapoka

 0

 10

 20

 30

 40

 50

 60

 70

 80

 16 8 4

T
ot

al
 ti

m
e

(s
)

Number of processes

P2P-MPI (CLASS A)
LAM/MPI (CLASS A)

MPICH (CLASS A)
P2P-MPI (CLASS B)
LAM/MPI (CLASS B)

MPICH (CLASS B)

 0

 10

 20

 30

 40

 50

 60

 70

 24 20 16 12 8

T
ot

al
 ti

m
e

(s
)

Number of processes

P2P-MPI (CLASS A)
LAM/MPI (CLASS A)

MPICH (CLASS A)
P2P-MPI (CLASS B)
LAM/MPI (CLASS B)

MPICH (CLASS B)

Fig. 4. Comparison of MPI implementations performance for IS (left) and EP (right)

For IS, P2P-MPI shows an almost as good performance as LAM/MPI up to
16 processors. The heart-beat messages seem to have a negligible effect on overall
communication times. Surprisingly, MPICH-1.2.6 is significantly slower on this
platform despite the sophisticated optimization of collective communications
(e.g. uses four different algorithms depending on message size for MPI Alltoall).
It appears that the MPI Alltoallv instruction is responsible for most of the
communication time because it has not been optimized as well as the other
collective operations.

The EP benchmark clearly shows that P2P-MPI is slower for computations
because it uses Java. In this test, we are always twice as slow as EP programs
using Fortran. EP does independent computations with a final set of three
MPI Allreduce communications to exchange results in short messages of con-
stant size. When the number of processors increases, the share of computations
assigned to each processor decreases, which makes the P2P-MPI performance
curve tends to approach LAM and MPICH ones.

Replication Overhead. Since replication multiplies communications, the EP test
shows very little difference with or without replication, and we only report mea-
sures for IS. Figure 5 shows the performances of P2P-MPI for IS when each

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

T
ot

al
 ti

m
e

(s
)

Replication degree

Class A, 4 procs
Class A, 8 procs
Class B, 4 procs
Class B, 8 procs

Fig. 5. Performance (seconds) for IS depending on replication degree

A Peer-to-Peer Framework for Robust Execution 283

logical process has one to four replicas. For example, for curve “Class B, 8
processors”, 3 replicas per logical process means 24 processors were involved.
We have limited the number of logical processes so that we have at most one
replica per processor to avoid load-imbalance or communications bottlenecks. As
expected, the figure shows a linear increase of execution time with the replica-
tion degree, with a slope depending on the number of processors and messages
sizes.

5 Related Work

Since the deployment of message passing applications in unstable environments is
challenging, fault-tolerance of MPI has been well studied. Most works are devoted
to check-point and restart methods (e.g. [3, 7, 12]) in which the application is
restarted from a given recorded state. The replication approach is an alternative
which does not require any specific reliable resource to store system states.

The work closest to ours is the P3 project [15], which share common charac-
teristics with P2P-MPI. First, JXTA discovery is also used for self-configuration:
hosts entities automatically register in a peer group of workers and accept work
requests according to the resource owner policy. Secondly, both a master-worker
and message passing paradigm are proposed. Unlike P2P-MPI, P3 also uses
JXTA for its communications. This allows to communicate without consider-
ation of the underlying network constraints (e.g. firewalls) but incurs perfor-
mance overhead when the logical route established goes through several peers.
In addition, P3 has no integrated fault-tolerance mechanism for message passing
programs.

6 Conclusion and Future Work

We have described in this paper the design of a grid middleware offering a
message-passing programming model. The middleware integrates fault-detection
and replication mechanisms in order to increase robustness of applications execu-
tion. Two NAS parallel benchmarks with opposite behavior have been run on a
small configuration and compared with performances obtained with LAM/MPI
and MPICH. The results show good performance and are encouraging for exper-
iments at large scale on the opening Grid5000 testbed4 to study the scalability
of the system. In-depth study of replication and robustness is also under work.
Next developments should also concern strategies for mapping processes onto re-
sources. Though the peer-to-peer model abstracts the network topology, we could
use some network metrics (e.g. ping time) to choose among available resources.
Also, the mapping of replicas could be based on information about resources
capability and reliability.

4 http://www.grid5000.org

284 S. Genaud and C. Rattanapoka

References

[1] JXTA. http://www.jxta.org.
[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The
Intl. Journal of Supercomputer Applications, 5(3):63–73, 1991.

[3] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P. Lemarinier, and F. Mag-
niette. MPIch-V2: a fault tolerant MPI for volatile nodes based on the pessimistic
sender based message logging. In SuperComputing 2003, Phoenix USA, Nov. 2003.

[4] E. Caron, F. Deprez, F. Frédéric Lombard, J.-M. Nicod, M. Quinson, and F. Suter.
A scalable approach to network enabled servers. In 8th EuroPar Conference,
volume 2400 of LNCS, pages 907–910. Springer-Verlag, Aug. 2002.

[5] B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. Fox. Mpj: Mpi-like message
passing for java. Concurrency: Practice and Experience, 12(11), Sept. 2000.

[6] F. Schneider. Replication Management Using State-Machine Approach. In S. Mul-
lender, Distributed Systems, chapter 7, pages 169–198. Addison Wesley, 1993.

[7] G. Fagg and J. Dongarra. FT-MPI: Fault tolerant MPI, supporting dynamic
applications in a dynamic world. In EuroPVM/MPI 2000. Springer, 2000.

[8] G. Fedak, C. Germain, V. Néri, and F. Cappello. XtremWeb : A generic global
computing system. In CCGRID, pages 582–587. IEEE Computer Society, 2001.

[9] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed Computing in an
Heterogeneous Computing Environment. In EuroPVM/MPI. Springer, 1998.

[10] N. T. Karonis, B. T. Toonen, and I. Foster. MPICH-G2: A Grid-enabled imple-
mentation of the Message Passing Interface. Journal of Parallel and Distributed
Computing, special issue on Computational Grids, 63(5):551–563, May 2003.

[11] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang. Mag-
PIe: MPI’s collective communication operations for clustered wide area systems.
ACM SIGPLAN Notices, 34(8):131–140, Aug. 1999.

[12] S. Louca, N. Neophytou, A. Lachanas, and P. Evripidou. MPI-FT: Portable fault
tolerenace scheme for MPI. Parallel Processing Letters, 10(4):371–382, 2000.

[13] MPI Forum. MPI: A message passing interface standard. Technical report, Uni-
versity of Tennessee, Knoxville, TN, USA, June 1995.

[14] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service.
Technical report, Ithaca, NY, USA, 1998.

[15] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2P-based middleware enabling
transfer and aggregation of computational resource. In 5th Intl. Workshop on
Global and Peer-to-Peer Computing, in conjunc. with CCGrid05. IEEE, May 2005.

[16] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communi-
cation operation in mpich. International Journal of High Performance Computing
Applications, 19(1):49–66, Feb. 2005.

[17] J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov. Framework for peer-to-peer
distributed computing in a heterogeneous, decentralized environment. In GRID
2002, volume 2536 of LNCS, pages 1–12. Springer, Nov. 2002.

MGF: A Grid-Enabled MPI Library with a
Delegation Mechanism to Improve Collective

Operations�

F. Gregoretti1, G. Laccetti2, A. Murli1,2, G. Oliva1, and U. Scafuri1

1 Institute of High Performance Computing and Networking ICAR-CNR,
Naples branch, Naples, Italy

2 University of Naples Federico II, Naples, Italy

Abstract. The success of Grid technologies depends on the ability of li-
braries and tools to hide the heterogeneous complexity of Grid systems.
MPI-based programming libraries can make this environment more ac-
cessible to developers with parallel programming skills. In this paper we
present MGF, an MPI library which extends the existing MPICH-G2. MGF
aims are: to allow parallel MPI applications to be executed on Grids with-
out source code modifications; to give programmers a detailed view of the
execution system network topology; to use the most efficient channel avail-
able for point-to-point communications and finally, to improve collective
operations efficiency introducing a delegation mechanism.

Keywords: MPI, message passing, collective operations, Grid comput-
ing, MPICH-G2.

1 Introduction

Computational Grids [1] have increased computational power more than ever be-
fore, supplying HW/SW resources at low-cost. The present and future success of
Computational Grids depends on the ability of libraries and tools to hide archi-
tectural issues from users. MPI-based programming environments can make this
technology more accessible for end-users with parallel programming skills because
MPI is the widely used de-facto standard for parallel applications development.

Developing Grid-enabled applications is a complex issue. However, by taking
advantage of existing parallel/MPI tools and applications developed for low-cost
high performance machines such as clusters, it is possible to tackle some of these
issues. As many of these tools are already available in Grid environments, the
focus of our work was to develop an MPI implementation with inner devices to
simplify the extension of MPI applications to the Grids.

Previous work [2] shows that topology-aware communication patterns can
improve the efficiency of MPI collective operations in Grid environments. Fur-
thermore the use of communication daemons on the front-end nodes of clusters,
� This work has been partially supported by Italian Ministry of Education,University

and Research (MIUR) within the activities of the WP9 workpackage “Grid Enabled
Scientific Libraries”, part of the MIUR FIRB RBNE01KNFP Grid.it project.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 285–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

286 F. Gregoretti et al.

like those provided by the PACX-MPI library [3], enables transparent interclus-
ter communications, thus increasing portability of MPI codes from traditional
parallel machines to metacomputers and Grids. The use of a delegation mech-
anism to avoid needless message passing through these daemons is a further
improvement for intercluster communications in collective operations.

We have developed a library called MGF based on MPICH-G2, which im-
plements the communications daemons on the PACX-MPI model with the del-
egation mechanism mentioned above. The use of MGF is transparent to the
user in the sense that no modification of the source code is required. Moreover
MGF expands the topology description provided by MPICH-G2 by including
information about existing private networks.

In section 2 we briefly review the state of the art in Grid-enabled MPI im-
plementations; in section 3 we give a detailed description of MGF architecture;
in section 4 we describe experimental results and illustrate the benefits of the
delegation mechanism by comparing it with the PACX-MPI daemons implemen-
tation; in section 5, finally, we conclude with a discussion of future work.

2 State of the Art

There are several projects for the realization of MPI libraries for Grids [4]: Mag-
PIe, MPICH-G2, MPI Connect, MetaMPICH, Stampi, PACX-MPI, etc. Many
of these implementations allow to couple multiple machines potentially based
on heterogeneous architecture for MPI programs execution and to use vendor-
supplied MPI libraries over high performance networks for intramachine mes-
saging. The most widespread and complete are MPICH-G2 and PACX-MPI.

– MPICH-G2 [5] is a grid-enabled implementation of the MPI v1.1 standard
which uses grid services provided by the Globus Toolkit for user authenti-
cation, resources allocation, file transfer, I/O management, process control
and monitoring. MPICH-G2 is based on the MPICH library, which is devel-
oped and distributed by the Mathematics and Computer Science Division at
Argonne National Laboratory. MPICH-G2 implements topology-aware col-
lective operations that minimize communications over the slowest channels.

– PACX-MPI [3] is a complete MPI-1 standard implementation and sup-
ports some routines of the MPI-2 standard. PACX-MPI is developed by
the Parallel and Distributed Systems working group of The High Perfor-
mance Computing Center in Stuttgart. PACX-MPI uses daemon processes
executing on the front-end nodes of each parallel computer for intermachine
communications.

We chose to base our work on MPICH-G2 because we believe that many
of its features are very useful in Grid environment. For instance, MPICH-G2
provides the user with an advanced interconnecting topology description with
multiple levels of depth, thus giving a detailed view of the underlying executing
environment. It uses the Globus Security Infrastructure [6] for authorization and
authentication and the Grid Resource Allocation and Management protocol [7]

MGF: A Grid-Enabled MPI Library with a Delegation Mechanism 287

for resources allocation. Further, MPICH-G2 is not cluster-specific and hence
enables the use of any type of grid resource (e.g. single hosts) for MPI process
execution. Finally it implements multilevel topology-aware collective commu-
nications, which have been proven [2] to perform better than the PACX-MPI
two-level approach.

However, MPICH-G2 usage becomes complicated for application developers
in the presence of clusters where only the front-end node is provided with a
public IP address. This is due to the fact that unlike PACX-MPI, MPICH-
G2 doesn’t provide any routing mechanism among networks. Therefore, MPI
processes started on computing nodes belonging to different private networks
are unable to contact one another. This prevents the transparent porting of
MPI application to Grids where clusters with private networks are used.

3 MGF Library

MGF (MPI Globus Forwarder) is an MPI library based on MPICH-G2 that
enables the transparent coupling of multiple Grid resources for the execution of
MPI programs. In particular, communication is made possible between clusters
with private networks. The principal aims of the library are to allow parallel MPI
applications to be executed on Grids without modification of the source code; to
give a programmer a detailed view of the underlying network topology of system
during execution; to use the most efficient channel available for any point-to-
point communication and finally, to implement efficient collective operations.

3.1 Communication Channels

In this context we define a communication channel as the network path that
a message needs to follow from a source MPI process to a destination. MGF
distinguishes between two communication channels classes:

– direct channels - implemented by exclusively using network devices
– indirect channels - implemented using intermediary processes

MPI processes executing on hosts of the same network use direct channels to
communicate (i.e. nodes of the same cluster using its interconnection or front-
ends of different clusters using Internet). MPI processes executing on hosts be-
longings to different private networks use indirect channels. Inside indirect chan-
nels one or more processes take care of routing messages between networks. MGF
uses MPICH-G2 to handle communication on direct channels and manages in-
direct communications with the help of the Forwarders.

3.2 Forwarders

Forwarders are service processes executed on the front-end nodes of clusters with
private networks. Users enable the execution of the Forwarders by defining an

288 F. Gregoretti et al.

environment variable named MGF PRIVATE SLAN in the rsl [8] used for the
MPICH-G2 job start-up.

MGF introduces a new “world communicator” called MGF COMM WORLD,
which includes all MPI processes except Forwarders. When compiling an MPI
application with MGF, the new communicator is automatically substituted to
MPI COMM WORLD in the preprocessing phase. Therefore MPI routines that
access communicators (like MPI Comm Size and MPI Comm Rank) invoked
with the MPI COMM WORLD argument, will return information about
MGF COMM WORLD hiding the presence of Forwarders to the program.

3.3 Physical Topology

Executing an MPI program on a complex system like a computational Grid
involves different types, levels and topologies of interconnection. It is therefore
useful if the programmer has access to a representation of the underlying physical
topology.

MPICH-G2 describes a topology with a four level array where each level
represents a communication channel: TCP over WAN (level 0), TCP over LAN,
TCP over machine networks and vendor MPI library over high performance
networks (level 3). MPICH-G2 assigns a non-negative integer named “color” to
every process at each level; processes with same colors can communicate over
the corresponding channel [2].

Since MPICH-G2 doesn’t support private networks, it is assumed that all
processes must be able to communicate over WAN and hence all have the same
color at level 0. However, this is not true for processes executing on cluster
internal nodes. To overcome this limitation, MGF provides a new data structure
for WAN topology description. This structure is an array of N integers, where N
is the number of computing processes. The i-th array’s component describes the
i-th process WAN access: if its value is 0, it means that the process is running on
a host with direct WAN connection; if its value is -1, it means that the process
is running on a cluster internal node. The array can be accessed by the users as
a MGF COMM WORLD communicator attribute.

3.4 Point-to-Point Communications

In a point-to-point communication, MGF detects the availability of direct chan-
nels by looking up MPICH-G2’s topology table and MGF’s WAN topology array.
If two processes have the same color at levels 2 or 3 of the MPICH-G2 topol-
ogy table it means that they belongs to the same cluster and hence they can
communicate over a direct channel. Otherwise the MGF WAN table is accessed:
if both processes have value 0 they can use a direct channel as they both have
direct access to Internet, otherwise an indirect channel is needed.

If the processes can communicate over a direct channel, MGF invokes the
corresponding MPICH-G2 routines (which automatically select the most efficient
channel available between vMPI or TCP).

If the processes are not executing on hosts in the same network, MGF uses
Forwarders to build indirect channels. Forwarders use the native MPI library

MGF: A Grid-Enabled MPI Library with a Delegation Mechanism 289

(when available) to handle intracluster communications and TCP for commu-
nication over LAN and WAN. When the sender/receiver is an internal node of
a private network cluster, the message and the destination rank are sent to its
cluster Forwarder which takes care of message delivery.

If one of the two processes has direct access to WAN one Forwarder will be
used. If both sender and receiver do not have direct access to WAN, that is, they
both have value -1 in the MGF WAN table, two Forwarders are needed. The
forwarding process is embedded in the point-to-point routines and is completely
transparent to the user.

3.5 Delegation Strategy for Collective Communications

MGF inherits the MPICH-G2 topology-aware multi-level implementation of col-
lective operations and introduces two improvements: it enables the execution of
collective operations when not possible with MPICH-G2, and it implements a
delegation mechanism: collective operations functionalities are delegated to the
Forwarders to avoid needless message passing, thus improving performance.

Consider MPICH-G2’s broadcast implementation. It follows three steps [2]:

1. The root process sends the message to the master process of each LAN,
2. the LAN master processes then send the message to all machines master

processes in the local network.
3. Finally, each machine master process starts a local broadcast operation.

MPICH-G2 broadcast fails when the root process is running on a cluster node,
or the communicator encloses any private node of a cluster without containing
its front-end.

MGF implementation overcomes these limitations by using Forwarders. When
a root process is an internal node of a private network cluster it cannot send
messages over WAN, hence the MPICH-G2 broadcast algorithm fails on the
first step. However, when using MGF the root process sends its message to the
cluster Forwarder together with the ranks of the master processes at level 0.
The Forwarder receives the message and performs an unblocking send to each
LAN master process. Hence there is no repetition of message passing through
the Forwarder for each communication from the root to a every LAN master
process.

When a LAN master process is running on a private node, the second step
of the broadcast algorithm is completed by its Forwarder, which takes care of
sending the message to the other machine master processes in the LAN. This
means that there is no repetition of the message passing through the Forwarder
for each communication from LAN masters to machines masters processes.

When the broadcast communicator encloses some private nodes of a cluster
without containing the front-end, MPICH-G2 fails because the machine mas-
ter process which is a private node, cannot receive the message from its own
LAN master. MGF point-to-point routines ensure that the broadcast message is
always delivered.

290 F. Gregoretti et al.

4 Experimental Results

To evaluate the benefits introduced by using the delegation strategy we compared
the efficiency of the MGF broadcast routine to the PACX-MPI implementation
which doesn’t provide delegation. We used the broadcast round and the OLi

benchmark methods [9] to perform this comparison. The former measures the
time to complete some large number M of broadcast rounds, each consisting of
one broadcast by each possible root. The latter measures the operation latency
OLi to each destination i of the broadcast and uses the largest measurement as
an estimate of the operation latency OL. Each OLi is computed by executing
M broadcasts. After each broadcast, process i sends an acknowledgement to the
root. The root does not start the next broadcast until it receives the acknowl-
edgement. As the overhead of the acknowledgement is the latency of a single
point-to-point message from process i to the root, it can be easily measured and
subtracted.

As a testbed we used four Beowulf class clusters: Vega (20 nodes Pentium 4
with Fast Ethernet), Beocomp (16 nodes Pentium II with Fast Ethernet), Altair
(16 nodes Pentium PRO with two Fast Ethernet networks) and ClusterPC (8
nodes Pentium 4 cluster with Gigabit Ethernet). Only front-end nodes were
provided with a public IP address.

All clusters run Red Hat Linux 7.3, with kernel 2.4.20 and GNU libc 2.2.4.
The local version of MPI is MPICH 1.2.5.2 with the ch p4 device. The Globus
Toolkit 2.4.3 is used as Grid middleware and the version of MPICH-G2 is 1.2.5.2
while the version of PACX-MPI is 5.0.0rc1. Vega is located at the Naples Branch
of the Institute of High Performance Computing and Networking (ICAR-Na
CNR), while Altair, Beocomp and ClusterPC are located on the same LAN
at the Department of Mathematics and Applications “R. Caccioppoli” of the
University of Naples Federico II.

We ran several batteries of tests with various M values. The rsl files used for
the tests didn’t contain any LAN topology information for MPICH-G2, therefore
all clusters were seen as belonging to different LANs. We used this configuration
to measure the effects of the delegation strategy without considering the benefits
of the MPICH-G2 multi-level topology awareness.

In Figures 1 and 2 we show results from just one experiment for each bench-
mark method; results in other test cases are similar.

Fig. 1 shows the results obtained by executing the OLi benchmark with one
computing process running on a private node for each of the four clusters. In
each broadcast all communications occurred on the WAN/TCP channel. The
aim of this test was to measure the effects of the delegation strategy over the
WAN/TCP channel.

In Fig. 2 we show results obtained by executing the broadcast round method
with four computing process running on private nodes on three clusters (Vega,
Beocomp and Altair). In each broadcast both intercluster and intracluster com-
munications occurred. This test aimed to show the overall improvement of the
delegation mechanism on the broadcast algorithm.

MGF: A Grid-Enabled MPI Library with a Delegation Mechanism 291

0

1

2

3

4

5

1000 10000 100000

Ti
m

e
(s

ec
)

Message Size (Bytes)

Operation Latency Benchmark Method (4 clusters - 1 proc per cluster - 50 repetitions)

’MGF’ ’PACX-MPI’

Fig. 1. PACX-MPI/MGF OLi benchmark comparison, data points are the mean of
ten measurements

The results demonstrate the advantages of the delegation strategy. Note in
particular that the the benefits are more pronounced as the message size and
the number of clusters involved increase.

0

500

1000

1500

2000

1000 10000 100000

Ti
m

e
(s

ec
)

Message Size (Bytes)

Broadcast Round (3 clusters - 4 procs per cluster - 50 repetitions)

’MGF’ ’PACX-MPI’

Fig. 2. PACX-MPI/MGF broadcast round test comparison, data points are the mean
of ten measurements

292 F. Gregoretti et al.

5 Conclusions

We have developed a library called MGF based on MPICH-G2 that allows the
transparent use of coupled Grid resources to run MPI applications in presence of
private network clusters. It implements communications daemons on the PACX-
MPI model but introduces a novel delegation strategy to improve collective op-
eration performance. We have shown the benefits of the delegation strategy in
the execution of collective operations for the broadcast routine by comparing
the performance of MGF with that of PACX-MPI.

Collective operations could be further improved by introducing some kind
of network evaluation and by varying the point-to-point fixed communication
scheme over a wide area with one based on network performances.

References

1. Foster, I., Kesselman, C.: Computational grids. In Foster, I., Kesselman, C., eds.:
The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann (1998)
15–51

2. Karonis, N.T., de Supinski, B.R., Foster, I., Gropp, W., Lusk, E., Bresnahan, J.:
Exploiting hierarchy in parallel computer networks to optimize collective operation
performance. In: Proceedings of the 14th International Symposium on Parallel and
Distributed Processing, IEEE Computer Society (2000) 377

3. Gabriel, E., Resch, M., Beisel, T., Keller, R.: Distributed computing in a hetero-
geneous computing environment. In: Proceedings of the 5th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Springer-Verlag (1998) 180–187

4. Laforenza, D.: Grid programming: some indications where we are headed. Parallel
Comput. 28 (2002) 1733–1752

5. Karonis, N.T., Toonen, B., Foster, I.: Mpich-g2: a grid-enabled implementation of
the message passing interface. J. Parallel Distrib. Comput. 63 (2003) 551–563

6. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for com-
putational grids. In: Proceedings of the 5th ACM conference on Computer and
communications security, ACM Press (1998) 83–92

7. Czajkowski, K., Foster, I., Kesselman, C.: Resource co-allocation in computational
grids. In: HPDC ’99: Proceedings of the The Eighth IEEE International Sympo-
sium on High Performance Distributed Computing, Washington, DC, USA, IEEE
Computer Society (1999) 37

8. Czajkowski, K., Foster, I.T., Karonis, N.T., Kesselman, C., Martin, S., Smith, W.,
Tuecke, S.: A resource management architecture for metacomputing systems. In:
IPPS/SPDP ’98: Proceedings of the Workshop on Job Scheduling Strategies for
Parallel Processing, London, UK, Springer-Verlag (1998) 62–82

9. de Supinski, B.R., Karonis, N.T.: Accurately measuring mpi broadcasts in a com-
putational grid. In: HPDC ’99: Proceedings of the The Eighth IEEE International
Symposium on High Performance Distributed Computing, Washington, DC, USA,
IEEE Computer Society (1999) 4

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 293 – 300, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Performance Analysis of Message Passing
Applications Using the KappaPI 2 Tool*

Josep Jorba, Tomas Margalef, and Emilio Luque

Computer Architecture & Operating Systems Departement,
Universidad Autónoma de Barcelona,

08193 Bellaterra, Spain
{josep.jorba, tomas.margalef, emilio.luque}@uab.es

Abstract. Message passing libraries offer the programmer a set of primitives
that are not available in sequential programming. Developing applications using
these primitives as well as application performance tuning are complex tasks for
non-expert users. Therefore, automatic performance analysis tools that help the
user with performance analysis and tuning phases are necessary. KappaPI 2 is a
performance analysis tool designed openly to incorporate parallel performance
knowledge about performance bottlenecks easily. The tool is able to detect and
analyze performance bottlenecks and then make suggestions to the user to im-
prove the application behavior.

1 Introduction

Applications running in parallel/distributed environments must achieve certain per-
formance indexes to fulfill the objectives of high performance computing systems. So
performance analysis becomes a very significant task in carrying out applications.
However, there are still very few really useful performance analysis tools and the
most popular approach to carrying out performance analysis is to use visualization
tools [1, 2, 3]. These tools provide a set of views of the application execution. The
user must carry out the performance analysis process manually. This is a difficult and
time consuming task that requires a high degree of expertise to overcome the per-
formance bottlenecks and reach the performance expectations.

To tackle all these problems and help the user in the analysis phase there needs to
be more user-friendly tools. In this context, automatic performance analysis tools, like
Expert [4], Scalea [5] and KappaPI [6], have been developed.

These tools take a trace file from the application execution, and try to detect per-
formance bottlenecks using performance patterns. This automatic post-mortem ap-
proach has the advantage of being able to consider all detailed information gathered
while executing the application and, moreover, the analysis phase does not introduce
any overheads while the application is being executed; only the application tracing

* This work has been supported by the MCyT under contract number TIN 2004-03388 and

partially funded by the Generalitat de Catalunya – Grup de recerca consolidat 2001-SGR-
00218.

294 J. Jorba, T. Margalef, and E. Luque

introduces some overheads which can be minimized by various techniques [7]. How-
ever, current tools have some limitations that must be solved to become useful tools:

• The performance bottleneck specification is hard-coded in the tool or has
several constraints. These performance tools cannot be easily extended to
detect (or analyze) a larger set of bottlenecks.

• Detecting bottlenecks is quite significant but the precise point where the
bottleneck is detected is not identified.

• The information provided to the user does not indicate the actions that
should be carried out to overcome the bottlenecks.

 In this context our goal is to design and implement a new tool that solves all these
difficulties by automatically analyzing trace files from message passing applications
carried out using PVM or MPI. The paper is organized as follows: Section 2 presents
the basic concepts and the general structure of Kappa-Pi 2. Section 3 introduces the
specification of the performance bottleneck knowledge. In Section 4 the internal
mechanisms for bottleneck detection and analysis are shown. Some experimental
results are shown in Section 5. Section 6 presents some related work. Finally,
section 7 summarizes and concludes our work.

2 KappaPI 2

Our goal is to design and implement an automatic performance analysis tool that has
the following features:

• Performance knowledge specification: Independent specification mecha-
nisms to introduce new performance bottlenecks.

• The performance bottleneck detection engine must read the performance
knowledge specification.

• Independence of the background message passing system: The tool builds
abstract entities that are independent from the particular trace file format or
the message passing primitives.

• Relate bottlenecks to the source code of the application: one set of quick
parsers to search for dependences in the source code must be included to de-
termine why the bottleneck appears.

In KappaPI 2 (Fig. 1), the first step is to execute the application under the control
of a tracing tool (for PVM or MPI environments) that captures all the events related to
the message passing primitives that occur while carrying out the application. Our tool
uses the trace and performance bottleneck knowledge base as inputs to detect the
performance bottleneck patterns defined from a structural point of view. Then, it sorts
the performance bottlenecks it has found according to some indexes. It carries out a
bottleneck cause analysis, based on the application source code analysis, and finally
provides a set of recommendations to the user, indicating how to modify the source
code to overcome the detected bottlenecks.

 Automatic Performance Analysis of Message Passing Applications 295

Pattern
Matching
Engine

Source
Analysis

Hints
to users

List of
Detected
Problems

Evaluator
Engine

Problem
causes

Trace

Problem
specs Problem

Analysis
specs

Source
Code

Hints
specs

Analysis specs

Fig. 1. Structure of the KappaPI 2 automatic performance analysis tool

3 Bottleneck Specification

Performance analysis is an evolving field which must take into account the program-
ming environments, operating systems, and network and hardware facilities currently
used. It is not a closed knowledge set, but rather it has to be adapted to the new situa-
tions that appear. Therefore, it is important that automatic performance analysis tools
are designed openly so that the knowledge related to new performance bottlenecks
can be introduced into the tool knowledge base. An open specification is required to
add new bottlenecks. In this context it is necessary to develop a specification lan-
guage that allows us to define new performance bottlenecks. ASL (APART Specifica-
tion Language) is a good example of this approach [8]. In our case the bottlenecks are
specified in a structural way, defining the events involved, the time and location con-
straints, and some computations to evaluate the “importance” of the bottleneck.

3.1 Bottleneck Specification Language

The specification language used in KappaPI 2 is a simplified XML translation of
ASL, using the compound events extensions [4] to describe performance bottlenecks.
The specification is based on the event structure of the performance bottleneck, with
an initial event (Root event, the first event detected in the root task), followed by
some event instances (INSTANTIATION section), and some constraints, such as time
considerations or related tasks.

The next example shows a part of the specification code corresponding to the
Blocked Sender performance bottleneck (see Figure 2, for a graphical representation).
In this bottleneck one task is waiting in a receive operation because its sender task is
blocked in another previous communication.

296 J. Jorba, T. Margalef, and E. Luque

<PATTERN Name="Blocked Sender">
 <ROOTTYPE>RECV</ROOTTYPE>
 <INSTANCES>
 <EVENT NAME="S1" TYPE="SEND" TO="ROOT"></EVENT>
 <EVENT NAME="S2" TYPE="SEND" TO="R2"></EVENT>
 <EVENT NAME="R2" TYPE="RECV" FROM="S2"></EVENT>
 ...
 </INSTANCES>
 <CONSTRAINT>
 ...
 <COND TYPE=">" OP1="E2.stamp" OP2="E1.stamp"></COND>
 <COND TYPE=">" OP1="E2.stamp" OP2="E3.stamp"></COND>
 <COND TYPE="=" OP1="E3.taskId" OP2="E2.taskId"></COND>
 </CONSTRAINT>
 <EXPORT>
 <COMPUTE NAME="idle_time" AS="-" OP1="E2.stamp" OP2="E1.stamp"></COMPUTE>
 </EXPORT>

time

P
ro

ce
ss

TRACE_SEND

TRACE_RECV

e4 s2

ROOTe1

TRACE_RECV

r2e3

TRACE_SEND

e2 s1

wasted time ROOT process

Fig. 2. Graphical structure of a Blocked Sender performance bottleneck

Three tasks participate in this bottleneck and four events are involved. The third
task has an idle time due to a blocked receive from a non-initiated sending operation
in the second task. This send is not reached because this task is blocked in a receive
operation from the first task.

3.2 Performance Bottleneck Catalogue

Our performance Bottleneck catalogue contains a set of bottlenecks defined in the
related literature [8][9][10]. The knowledge base includes communication bottlenecks
in message passing systems related to point to point communications, and collec-
tive/group communications and synchronization.

Point to point communication bottlenecks include: Late Sender (LS), Late Receiver
(LR), Blocked Sender (BS), Multiple Output (MO), and Wrong Order (WO). These

 Automatic Performance Analysis of Message Passing Applications 297

bottlenecks appear when: one operation is posted later than it is needed (LS and LR);
one task delays a second task because it is blocked by a third task (BS); one task
sends messages to several tasks (MO); the messages are sent in a different order than
expected (WO).

Collective communication bottlenecks include 1-to-N, N-to-1, and N-to-N com-
munications with different collective primitives such as scatter, gather, reduce and All
primitives. All these bottlenecks are commonly caused by delays in posting a process
involved in the collective operation, or the inherent delays involved in entering (or
leaving) tasks between the first task and the last one.

In synchronization, Block at Barrier (BB), is a typical bottleneck when a set of
tasks are waiting at the barrier, until the last one reaches it.

4 Detection and Analysis

The mechanism to detect performance bottlenecks is based on searching for patterns
that describe the bottlenecks and then classifying them according to importance
(number of instances found, global idle time balanced by processors/tasks affected).

KappaPI 2 starts by reading the specification of performance bottlenecks included
in the knowledge base then it creates a search tree that is used to detect bottlenecks in
trace files. Once the search tree has been created, KappaPi 2 is ready to start the proc-
essing trace. The trace streams are processed by matching the events in the search tree
and detecting the corresponding bottlenecks.

4.1 Generating Search Trees

Each bottleneck specification includes a set of events which defines its structure in the
trace. Each bottleneck has a root event and a set of instances of other related events. A
search tree is built by parsing the list of performance bottlenecks. Each bottleneck is a
path in the tree from the root node to one particular leaf node.

However, there are some points that must be taken into account:

 It is possible that several bottlenecks share an initial set of common events.
 One bottleneck can be an extension of another one. In this case, the bottleneck
has a final node that indicates that the bottleneck has been detected and the in-
dexes can be evaluated, but events related to the extended second bottleneck can
appear in the trace, and in this case, it is necessary to continue the process to de-
tect the second bottleneck. If finally the second bottleneck is detected, the in-
dexes must be calculated and the first one should not be shown.
 Some bottlenecks involve an indeterminate number of events of the same type.
To solve this problem, it is necessary to create nodes in the tree that can record
information about a varying number of events of the same type.

4.2 Detection Engine

Once the search tree has been created it is possible to start reading the trace files from
the application execution process. Examples of tracing tools are TapePVM tracer [7]
and MPITracer [11] which is based on the DyninstAPI [12] interface.

298 J. Jorba, T. Margalef, and E. Luque

One key aspect is that the tracing tools must be able to record message passing
calls, including the line number and source code file where the events occurred.

When the application trace has been read, an application model is built, taking into
account the tasks and execution hosts involved.

The detection engine starts reading the events ordered according to their global
time-stamp. Each event is matched in the search tree moving to the next node in the
tree. When the leaf node is reached a bottleneck is detected, and the indexes are
evaluated and included in the table of detected bottlenecks. The detected bottleneck
has all the information needed in order to relate it to the execution history of the ap-
plication, and the source code lines where the message passing calls can be found.

4.3 Cause Analysis

Once the bottleneck is detected, it is necessary to carry out an analysis to determine
its main cause. This cause analysis is carried out using knowledge about the use cases
of the bottleneck. Each bottleneck can have various cases, and it is necessary to exam-
ine the source code related with the calls to reach a conclusion. This analysis uses a
template file of use cases as input, with the suggested recommendation about the
code. In each case, the tool must evaluate some simple conditions, such as the data
dependence between two variables, or for example if a parameter of a call is a con-
stant, a variable, etc... These analyses are carried out using a set of small parsers to
search for the source code.

5 Experimentation

We carried out some tests of our tool to validate the bottleneck detection mechanisms.
The tool has been tested on some synthetic applications, some standard benchmarks,
and one real application. In table 1 we summarize the test results.

Table 1. Summary of application test suite

Bench Bottlenecks found
Apart LS (mpi) 1 LS
Apart LR (mpi) 0
Apart BS (mpi) 1 BS
pvmLR (pvm) 1 LR
PingPong (pvm) 5 LS
NAS IS (pvm) 27 LS, 18 BS
IMB-MPI1 p2p (mpi) 3LS, 1BB
Xfire (pvm) 17 LS, 6 BS

The test suite is a set of MPI and PVM applications. We have used some synthetic
benchmarks to detect a particular performance bottleneck, or repetitions of the same
bottleneck or some simple combinations. These benchmarks (LS, LR and BS) are
based on the ATS (APART Test Suite) [13] which is a flexible construction kit for
synthetic benchmarks in MPI. Other tests are classic simple benchmarks, like

 Automatic Performance Analysis of Message Passing Applications 299

pingpong, or IS (Integer Sort) from NAS benchmarks. The recent Intel benchmark
(IMB) suite includes benchmarks considering p2p communication primitive calls.
Finally Xfire [14] is a real PVM Application, used for forest fire propagation simula-
tions.

The first series of experiments with APART synthetic benchmarks were used to
validate the search for particular bottlenecks. In the LR test no bottleneck was found
because the bottlenecks depend on the particular MPI implementation.

In Intel benchmark (IMB) for p2p communications, some tests only use a small set
of processors, the others wait at a Barrier.

In bigger applications more bottlenecks are found. Usually, the user does not cor-
rectly understand the complexity of the interrelations between tasks, processors, net-
work and communication patterns and this fact causes many bottlenecks.

6 Related Work

Some existing tools related to KappaPI 2 include several automatic performance
tools, such as the first version of KappaPI [9], Expert [4] and Scalea [5].

In the first version of KappaPI, detecting performance bottlenecks was focused on
idle intervals in the global computation affecting the biggest number of tasks. Proces-
sor efficiency was used to measure the execution quality, and idle processor intervals
represented performance bottlenecks. The tool examined the intervals to find the
causes of the inefficiency. The tool had a closed “hard-coded” set of bottlenecks, and
no mechanisms for new bottleneck specification was included. The same limitation
also affects root cause analysis.

The Expert [4, 10] tool allows us to specify performance properties using a script
language based on an internal API. This API allows us to examine the trace and to
look for relations between events. Expert summarizes the indexes of each bottleneck
defined in its list of bottlenecks. Expert tries to answer the question: where is the
application spending time? It summarizes the performance bottlenecks found and
accumulates their times to compare their impact on the total execution time.

Scalea [5] is used with the Aksum tool [15] for multi-experiment performance
analysis. This tool uses an interface called JavaPSL to specify the performance prop-
erties by using syntax and semantic rules of the Java programming language. The user
can specify new properties and formats without changing the implementation of the
search tool that uses JavaPSL API.

7 Conclusions

We have discussed a new automatic performance analysis tool oriented towards the
end user to avoid the high degree of expertise needed to improve message passing
applications. Our KappaPI 2 tool is open to introducing new models for performance
bottlenecks. It is able to make suggestions about the source code to improve the appli-
cation execution time and therefore avoid performance bottlenecks. The experiments
carried out, show that the tool detects specified bottlenecks which can be related to
the source code.

300 J. Jorba, T. Margalef, and E. Luque

References

1. W.E. Nagel, A. Arnold, M. Weber, H.C. Hoppe, K. Solchenbach. VAMPIR: Visualization
and Analysis of MPI Resources, In Supercomputer 63, vol XII, number 1, Jan. 1996.

2. T. Cortes, V. Pillet, J. Labarta, S. Girona. Paraver: A tool to visualize and analyze parallel
code. In WoTUG-18, pages 17-31, Manchester, April 1995.

3. L. De Rose, Y. Zhang, D.A. Reed, SvPablo: A Multilanguage Performance Analysis sys-
tem. LNCS, 1469 pp352-99, 1998.

4. F. Wolf, B. Mohr, J. Dongarra, S Moore, Efficient Pattern Search in Large Traces Through
Successive Refinement, In Euro-Par 2004, LNCS 3149, 2004.

5. HL.Truong, T. Fahringer, G. Madsen, AD. Malony, HMoritsch, S. Shende, On using
SCALEA for Performance Analysis of Distributed and Parall el Programs, Supercomput-
ing 2001 Conference (SC2001), Denver, Colorado, USA. November 10-16,2001

6. A. Espinosa, T. Margalef, E. Luque, Automatic Performance Evaluation of Parallel Pro-
grams. In IEEE Proceedings of the 6th Euromicro Workshop on Parallel and Distributed
Processing. Jan. 1998.

7. E. Maillet, TAPEPVM an efficient performance monitor for PVM applications - user
guide. Technical report, LMCIMAG,University of Grenoble, 1995.

8. T. Fahringer., M. Gerndt, G. Riley, J. Larsson, Specification of Performance bottlenecks in
MPI Programs with ASL. Proceedings of ICPP, pp. 51-58. 2000.

9. A. Espinosa, T. Margalef, E. Luque. Automatic Performance Analysis of PVM applica-
tions. EuroPVM/MPI 2000, LNCS 1908, pp. 47-55. 2000.

10. F. Wolf, B. Mohr, Automatic Performance Analysis of MPI Applications Based on Event
Traces, In EuroPar 2000, LNCS, 1900, pp123-132, 2000.

11. V.J. Ivars, Monitor de Aplicaciones MPICH Basado en Dyninst (in spanish), Master The-
sis, Universidad Autónoma de Barcelona, 2004.

12. Hollingsworth, J.K., Buck, B. DyninstAPI Programmer’s Guide. Release 3.0. University of
Maryland, January 2002.

13. M. Gerndt, B. Mohr, JL. Träff, Evaluating OpenMP Performance Analysis Tools with the
APART Test Suite, In Euro-Par 2004, LNCS 3149, 2004.

14. J. Jorba, T.Margalef, E.Luque, J.Andre, D.Viegas, Application of Parallel Computing to
the Simulation of Forest Fire Propagation. Proceedings of International Conference in For-
est Fire Propagation, Vol 1, pp 891-900, Portugal, Nov. 1998.

15. C. Seragiotto, M. Geisller, et al: On Using Aksum for Semi-Automatically Searching of
Performance Problems in Parallel and Distributed Programs. Procs. Of 11th Euromicro
Conference on Parallel Distributed and Network based Processing (PDP) 2003.

Benchmarking One-Sided Communication
with SKaMPI 5

Werner Augustin1, Marc-Oliver Straub2, and Thomas Worsch3

1 IZBS, Universität Karlsruhe, Germany
augustin@ira.uka.de

2 IAKS, Universität Karlsruhe, Germany
straub@sb-software.de

3 IAKS, Universität Karlsruhe, Germany
worsch@ira.uka.de

Abstract. SKaMPI is now an established benchmark for MPI imple-
mentations. Two important goals of the development of version 5 of
SKaMPI were the extension of the benchmark to cover more functional-
ity of MPI, and a redesign of the benchmark allowing it to be extended
more easily. In the present paper we give an overview of the extension
of SKaMPI 5 for the evaluation of one-sided communication and present
a few selected results of benchmark runs, giving an impression of the
breadth and depth of SKaMPI 5. A look at the source code, which is
available under the GPL, reveals that it was easy to extend SKaMPI 5
with benchmarks for one-sided communication.

Keywords: SKaMPI, MPI benchmark, extensibility, one-sided commu-
nication.

1 Introduction

SKaMPI measures the performance of an MPI implementation on a specific
hardware and is known for a comprehensive set of benchmarks and advanced
methods for measurements, especially for collective operations [12]. By providing
not simply one number, but detailed data about the performance of each MPI
operation, a software developer can judge the consequences of design decisions
regarding the performance of the system to be built.

The recent version 5 of SKaMPI offers two major new features: a signifi-
cantly improved extension mechanism and support for all aspects of one-sided
communication in MPI-2.

In Section 2 we briefly describe some features of SKaMPI 5. Section 3 dis-
cusses related work. Section 4 is concerned with simple standard pingpong and
related measurements. In Section 5 we give an overview of the more complex
measurements SKaMPI 5 provides for one-sided communication and present
some example results. The main part of the results of this paper is based on
the diploma thesis of the second author [9]. Section 6 concludes the paper.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 301–308, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

302 W. Augustin, M.-O. Straub, and T. Worsch

2 SKaMPI 5

SKaMPI 5 is a major redesign and reimplementation of its predecessors. The
main objectives were a much increased flexibility and extensibility. To demon-
strate the ease of implementing a measurement function, let’s have a look at the
complete code in C needed for something like MPI_Bcast:

void init_Bcast(int count, MPI_Datatype dt, int root) {
set_send_buffer_usage(get_extent(count, dt));
set_recv_buffer_usage(0);
set_reported_message_size(get_extent(count, dt));
init_synchronization();
}
double measure_Bcast(int count, MPI_Datatype dt, int root) {
double start_time, end_time;
start_time = start_synchronization();
MPI_Bcast(get_send_buffer(), count,dt,root,get_measurement_comm());
end_time = stop_synchronization();
return end_time - start_time;
}

Apart from a small initialization function which does some administrative stuff
like telling SKaMPI about buffer usage there is a small measurement function
which has to return the time associated with a particular measurement. start_
synchronization() and stop_synchronization() define a synchronous time
slot which is reserved for the measured operation [12]. All times are obtained by
calls to MPI_Wtime() since this is portable.

Now let’s have look at measurement specifications in the configuration file
which make use of the above defined measure_Bcast() function:

begin measurement "MPI_Bcast-procs-length"
for procs = 2 to get_comm_size(MPI_COMM_WORLD) do

for count = 1 to ... step *sqrt(2) do
measure comm(procs) Bcast(count, MPI_INT, 0)

od
od

end measurement

The configuration file is now actually a program which is interpreted at run-
time and therefore much more flexible than before. Loops can be nested allowing
multi-dimensional measurements. Besides the standard data-types int, double
and string MPI specific data-types like MPI_Comm, MPI_Datatype or MPI_Info
are provided. A “...” limit allows to measure with message sizes as large as fit
in the specified buffer. Additional functions can be added easily by the user,
allowing to construct derived data types, topologies etc.

This extensibility makes SKaMPI much more valuable for actual front line
research, where one doesn’t have established measurement functions in advance
and doing many experiments is inevitable.

Benchmarking One-Sided Communication with SKaMPI 5 303

3 Benchmarking One-Sided Communication in MPI

SKaMPI 5 offers more than 60 different functions for investigating different per-
formance aspects of one-sided communication routines in an MPI-2 library. Sev-
eral groups of functions can be identified.

– Functions for measuring the amount of time needed for calls to synchroniza-
tion functions like MPI_Win_fence. This includes more complicated cases
where for example MPI_Win_wait is delayed by a specified amount of time
after another process has called MPI_Win_complete.

– Functions for measuring the amount of time needed for calls to communi-
cation functions like MPI_Put. Latency and bandwidth of simple pingpong
communications implemented with one-sided communication are also easily
determined.

– Functions for measuring the amount of time needed for more complex com-
munication patterns, e.g. the shift and exchange patterns mentioned above,
one-sided implementations of collective operations, exchange of “ghost cells”
etc.

We have chosen a few interesting aspects with an emphasis on those not covered
by other benchmarks, e.g. those mentioned next.

3.1 Related Other MPI Benchmarks

There are some benchmarks which offer latency and bandwidth measurements.
The following ones are available on the WWW and they are all similar in the
sense, that they produce data with running times for message exchange opera-
tions. Benchmarks like PPerfMark [7] take a different approach.

The MBL library [11] measures the following communication patterns: ping,
pingpong, shift and exchange. For the first two one can choose between MPI_Get,
MPI_Put and MPI_Accumulate for the communication. In the shift pattern each
process i sends to i + 1 mod P . Thus a total of P messages is exchanged. The
exchange pattern realizes a kind of MPI_Alltoall with a total of P (P − 1) mes-
sages. MBL always uses MPI_Win_fence, dedicated and passive synchronization
not considered.

NetPIPE [8] is a benchmark measuring latency and bandwidth for a va-
riety of communication mechanisms, including MPI2’s one-sided communica-
tion. One can choose between uni- or bi-directional communication and between
MPI_Put and MPI_Get. The end of the communication is usually ensured using
MPI_Win_fence. When using MPI_Put one can alternatively request, that the
target process watches the last memory location to be written for a specific byte
to arrive. This violates the requirements of the MPI standard.

More comprehensive than the above was the Pallas MPI benchmark (PMB)
which has been replaced by the Intel MPI benchmark (IMB) [4]. For the bench-
marking of one-sided communication a variable number of M messages are sent.
One can choose whether MPI_Win_fence is called after each message or only

304 W. Augustin, M.-O. Straub, and T. Worsch

after the last one. In the latter case it is ensured that for each message a different
part of the target buffer is accessed. Furthermore the user may select MPI_Get or
MPI_Put and uni- or bi-directional communication. There are also a few further
possibilities, but measurements using dedicated or passive synchronization are
not possible.

3.2 Related Papers

Gabriel et al. [3] report latency and bandwidth numbers for several MPI imple-
mentations. They also show the influence of using MPI_Alloc_mem. The authors
sound somewhat reluctant when it comes to recommending one-sided commu-
nication. On the other hand Matthey et al. [6] show that there are situations
where significant speedups can be obtained by replacing two-sided by one-sided
communication.

Träff et al. [10] differs from the above mentioned papers in that it emphasizes
that pingpong measurements are definitely not the only way to assess the quality
of an implementation of one-sided communication, but more complex communi-
cation patters should be considered, too. SKaMPI 5 offers this possibility.

The paper by Luecke et al. [5] compares implementations of collective oper-
ations using SHMEM and MPI-2 one-sided communication. The broadcast al-
gorithm in this paper violates the MPI-2 standard: data retrieved with MPI_Get
are accessed locally before the communication epoch is closed.

The same problem is present in the paper by Desplat [2]. It describes the dif-
ferences between SHMEM and MPI-2 one-sided communication (blocking versus
non-blocking) and how to make the transition from the first to the second.

In the following sections we will report on some results from benchmark runs
of SKaMPI 5. Of course it is possible to do the standard latency and bandwidth
measurements. But in order to stress the much greater breadth and depth of
what is possible with SKaMPI 5 we will spend some space on results which
can (to the best of our knowledge) not be obtained with the other benchmarks
mentioned above. And what really has to be emphasized here is the fact, that

SKaMPI 5 allows to provide and use such measurements very easily.

4 Latency and Bandwidth

Though it is probably not the most important aspect of one-sided communication
[10], we start with a simple pingpong measurement in Section 4.1. But SKaMPI
5 allows to do much more; because of the very strict page limit for the paper
only one example can be presented in Section 4.2.

4.1 Pingpong Using MPI_Put

The code for the standard bandwidth benchmark looks like this:

Benchmarking One-Sided Communication with SKaMPI 5 305

Process 0 Process 1

MPI_Win_fence(...); MPI_Win_fence(...);
t1=start_synchronization(); t1=start_synchronization();
MPI_Put(...,1,...);
MPI_Win_fence(...); MPI_Win_fence(...);

MPI_Put(...,0,...);
MPI_Win_fence(...); MPI_Win_fence(...);
time=stop_synchronization()-t1; time=stop_synchronization()-t1;

Putting the calls to MPI_Put in above code in if statements checking the rank
of the process already gives the complete code one has to write in order to have
SKaMPI 5 provide the measurement [1]. The rest is provided by the SKaMPI 5
framework.

Figure 1 shows some results on a NEC SX6 and an HP XC6000. Surprisingly
on the latter for large messages staying inside a node is slower than going outside.
(All times reported in this paper have been obtained with the vendor supplied
MPI libraries.)

 0.01

 0.1

 1

 10

 100

 1000

 10000

25 210 215 220 225

ba
nd

w
id

th
 (

M
B

/s
)

message length (bytes)

rank 0−>1, 0−>2, 8−>9
rank 0−>8, 1−>8, 1−>9

 0.01

 0.1

 1

 10

 100

 1000

 10000

25 210 215 220 225

ba
nd

w
id

th
 (

M
B

/s
)

message length (bytes)

rank 0−>1, 2−>3
rank 1−>3
rank 1−>2

rank 0−>2, 0−>3

Fig. 1. Bandwidth achieved with pingpong of messages using MPI_Put on a NEC SX6
(8 processors per node, left) an HP XC6000 (2 processors per node, right)

4.2 Call Duration of MPI_Put

The code for determining the duration of a call to MPI_Put is basically a

t1 = MPI_Wtime(); MPI_Put(...,1,...); time = MPI_Wtime() - t1;

on process 0. Obviously this method can’t be more precise than the resolution
of MPI_Wtime, but we don’t know of any other portable, more accurate method
of time measurement. Results for an NEC SX6 are shown in Figure 2. In the
first case processes with ranks 0 and 1 (on the same node) communicate, in
the second case process 0 and 8 (on different nodes). In each figure there are
four lines: MPI_Put is compared with MPI_Isend for the cases where message
buffers were allocated using MPI_Alloc_mem and where they were allocated us-
ing malloc. The large variations of times spent in calls to MPI_Put for different

306 W. Augustin, M.-O. Straub, and T. Worsch

 1

 10

 100

20 25 210 215 220

tim
e

(m
ic

ro
se

co
nd

s)

message length (bytes)

rank 0 −> 1, MPI_Alloc_mem
rank 0 −> 1

MPI_Isend, 0 −> 1, MPI_Alloc_mem
MPI_Isend, 0 −> 1

 1

 10

 100

20 25 210 215 220

tim
e

(m
ic

ro
se

co
nd

s)

message length (bytes)

rank 0 −> 8, MPI_Alloc_mem
rank 0 −> 8

MPI_Isend, 0 −> 8, MPI_Alloc_mem
MPI_Isend, 0 −> 8

Fig. 2. Time needed for calling MPI_Put on a NEC SX6 compared to MPI_Isend for
intra-node (left) and extra-node (right) communication. Data are shown for the case of
message buffers allocated using MPI_Alloc_mem and the case when that was not done.

message lengths (with MPI_Alloc_mem) can be explained as follows: If the mes-
sage length is exactly a multiple of 4, MPI_Put blocks and immediately does
the communication; if the message length is different, MPI_Put only makes some
arrangements for the transmission to be carried out later. (This explanation can
be confirmed by additional measurements, which were enabled by some minor
changes in the configuration file).

This characteristic may not be disclosed by a benchmark which only uses
message lengths which are a power of two.

5 More Complex Measurements

In the last section we deal with measurements which are more complicated.
SKaMPI 5 includes functions for investigating the following questions:

– Does the MPI implementation delay the actual data transfer triggered by
e.g. an MPI_Put and when? Does it try to combine several small messages
into a larger one and transmit that?

– How do simple self-made “one-sided collective operations” perform compared
to the built-ins like MPI_Bcast?

– What happens in the case of high network load? How much bandwidth per
processor is still available?

– What happens if several processes want to access the same window and
request an MPI_LOCK_EXCLUSIVE?

– How is the performance of one-sided (versus two-sided) communication in
simple applications, where dynamic load balancing is to be achieved by split-
ting the local work and giving part of it to other processors upon request?

– How fast can the exchange of border (“ghost” or “halo”) cells in one- or
higher-dimensional grid decompositions be realized using one-sided (versus
two-sided) communication?

Benchmarking One-Sided Communication with SKaMPI 5 307

As one example we now have a look at some interesting results from measure-
ments of a self-made “one-sided Alltoall”.

Sometimes it is clear, that there will be a communication epoch for some one-
sided communication operations. If in addition there is the need for an alltoall
exchange of data whose results will only be needed after the end of the epoch,
it may be feasible not to use the built-in MPI_Alltoall but realize it using one-
sided communication, too. For example, a simple variant of one-sided alltoall
might be implemented like this:
void onesided_alltoall(void* buffer, int count, MPI_Datatype datatype,

int displacement, MPI_Win win) {
[... declarations and initializations ...]
displacement = displacement + myrank * count;

for(i = 1; i <= size; i++) {
rank = (myrank + i) % size;
rank_buffer = buffer + rank * (count * datatype_size);
MPI_Put(rank_buffer, count, datatype, rank, displacement, count,

datatype, win);
}

}

Figure 3 shows the running times for this operation on a NEC SX6 for different
sizes of the communicator and for four different lengths of messages exchanged
between any two processes. For comparison the time needed by MPI_Alltoall
for 1 kb messages is also presented. As one can see the self-made implementation
is faster if the communicator is larger than one node (with 8 processors). When
increasing the data size from 1 kByte by a factor of 256, the running time
increases by a factor of 10 on the NEC, but by a factor of 160 on a HP XC6000.

 1

 10

 100

 1000

 10000

 100000

 4 8 12 16 20 24 28 32

tim
e

(m
ic

ro
se

co
nd

s)

number of processes

256 kb per proc.
1 kb

1 byte
1 kb MPI_Alltoall

 1

 10

 100

 1000

 10000

 100000

 4 8 12 16 20 24 28 32

tim
e

(m
ic

ro
se

co
nd

s)

number of processes

256 kb
1 kb

1 byte per processor
1 kb MPI_Alltoall

Fig. 3. Measurements of a “one-sided alltoall” and MPI_Alltoall on a NEC SX6 (left)
and on a HP XC6000 (right)

6 Conclusion

Recently the number of MPI implementations providing the full MPI-2 standard
has grown considerably, i.e. a growing number of machines allow the use of one-

308 W. Augustin, M.-O. Straub, and T. Worsch

sided communication operations. While this gives the application developer more
freedom to implement his program as he thinks it would be appropriate (and
“look fast”) it also makes it considerably harder to aim for peak performance
because it makes the performance model of the machine much more complicated.
Therefore the results of a tool like SKaMPI 5 are essential for learning what’s
going on. In addition to the many already provided measurement methods it is
very easy to write some new ones, which are specifically tailored and focused to
the individual problems an application developer might face.

References

1. W. Augustin, M. Haller, M.-O. Straub, and T. Worsch. SKaMPI — towards version
5. In E. Krause, W. Jäger, and M. Resch, editors, High Perf. Comp. in Science
and Engineering ’04, pages 371–382. Springer-Verlag, 2005.

2. J.-C. Desplat. Porting SHMEM codes to MPI-2. Technical Report EPCC-TR01-01,
EPCC, Univ. of Edinburgh, 2001.

3. E. Gabriel, G. Fagg, and J. Dongarra. Evaluating the performance of MPI-2 dy-
namic communicators and one-sided communication. In J. Dongarra, D. Laforenza,
and S. Orlando, editors, Proc. EuroPVM/MPI, LNCS 2840. Springer-Verlag, 2003.

4. Intel. MPI benchmarks 2.3 distribution. Available at: http://www.intel.com/
software/products/cluster/downloads/IMB_2.3.tar.gz, 2004.

5. G. R. Luecke, S. Spanoyannis, and M. Kraeva. The performance and scalability of
SHMEM and MPI-2 one-sided routines on a SGI Origin 2000 and a Cray T3E-600.
Concurrency and Computation: Practice and Experience, 16:1037–1060, 2004.

6. T. Matthey and J. P. Hansen. Evaluation of MPI’s one-sided communication
mechanism for short-range molecular dynamics on the Origin2000. In Proc. PARA
2000, LNCS 1947, pages 356–365, 2001.

7. K. Mohror and K. L. Karavenic. Performance tool support for MPI-2 on Linux.
In Proc. Supercomputing, 2004.

8. Scalable Computing Laboratory. Netpipe. Available at:
http://www.scl.ameslab.gov/Projects/NetPIPE/, 2004.

9. M.-O. Straub. Leistungsmessung einseitiger Kommunikation in MPI-Bibliotheken.
Diploma thesis (in German), Fakultät für Informatik, University of Karlsruhe,
2004.

10. J.L. Träff, H. Ritzdorf, and R. Hempel. The implementation of MPI–2 one-sided
communication for the NEC SX. In Proc. Supercomputing, 2000.

11. H. Uehara, M. Tamura, and M. Yokokawa. An MPI benchmark program library and
its application to the Earth Simulator. In Proc. Int. Symp. on High Performance
Computing, LNCS 2327, pages 219–230, 2002.

12. T. Worsch, R. Reussner, and W. Augustin. On benchmarking collective MPI op-
erations. In D. Kranzlmüller, P. Kacsuk, J. Dongarra, and J. Volkert, editors,
Proc. EuroPVM/MPI, LNCS 2474, pages 271–279, 2002.

A Scalable Approach to MPI Application
Performance Analysis

Shirley Moore1, Felix Wolf1, Jack Dongarra1,
Sameer Shende2, Allen Malony2, and Bernd Mohr3

1 Innovative Computing Laboratory, University of Tennessee,
Knoxville, TN 37996-3450 USA

{shirley, fwolf, dongarra}@cs.utk.edu
2 Computer Science Department, University of Oregon,

Eugene, OR 97403-1202 USA
{malony, sameer}@cs.uoregon.edu

3 Forschungszentrum Jülich, ZAM, 52425 Jülich, Germany
b.mohr@fz-juelich.de

Abstract. A scalable approach to performance analysis of MPI applications is
presented that includes automated source code instrumentation, low overhead
generation of profile and trace data, and database management of performance
data. In addition, tools are described that analyze large-scale parallel profile and
trace data. Analysis of trace data is done using an automated pattern-matching ap-
proach. Examples of using the tools on large-scale MPI applications are
presented.

1 Introduction

Parallel computing is playing an increasingly critical role in advanced scientific re-
search as simulation and computation are becoming widely used to augment and/or
replace physical experiments. However, the gap between peak and achieved perfor-
mance for scientific applications running on large parallel systems has grown consid-
erably in recent years. The most common parallel programming paradigm for these
applications is to use Fortran or C with MPI message passing to implement parallel
algorithms. The complex architectures of large parallel systems present difficult chal-
lenges for performance optimization of such applications. Tools are needed that col-
lect and present relevant information on application performance in a scalable manner
so as to enable developers to easily identify and determine the causes of performance
bottlenecks.

Performance data encompasses both profile data and trace data. Profiling involves
the collect of statistical summaries of various performance metrics broken down by
program entities such as routines and nested loops. Performance metrics include time
as well as hardware counter metrics such as operation counts and cache and memory
event counts. Tracing involves collection of a timestamped sequence of events such as
entering and exiting program regions and sending and receiving messages. Profiling
can identify regions of a program that are consuming the most resources, while detailed

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 309–316, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

310 S. Moore et al.

tracing can help identify the causes of performance problems. On large parallel systems,
both profiling and tracing present scalability challenges.

Collecting either profile or trace data requires the application program to be instru-
mented. Instrumentation can be inserted at various stages of the program build process,
ranging from source code insertion to compile time to link time to run time options.
Although many tools provide an application programmer interface (API), manual in-
sertion of instrumentation library calls into application source code is too tedious to
be practical for large-scale applications. Thus our tools support a range of automated
instrumentation options. Once an instrumented version of the program has been built,
only a few environment variables need to be set to control runtime collection of profile
and/or trace data.

Collecting profile data for several different metrics on a per-process and per-routine
basis, possibly for several runs with different numbers of processors and/or different test
cases and/or on different platforms results in a data management problem as well as a
presentation and analysis problem. Similar profile data may be collected by different
tools but be incompatible because of different data formats. Our solution to the data
management problems is a performance data management framework that sits on top
of a relational database and provides a common profile data model as well as interfaces
to various profile data collection and analysis tools. For presentation of profile data we
have developed graphical tools that display the data in 2-dimensional and 3-dimensional
graphs. Our tools also support multi-experiment analysis of performance data collected
from different runs.

Event tracing is a powerful method for analyzing the performance behavior of
parallel applications. Because event traces record the temporal and spatial relation-
ships between individual runtime events, they allow application developers to ana-
lyze dependencies of performance phenomena across concurrent control flow. While
event tracing enables the identification of performance problems on a high level of
abstraction, it suffers from scalability problems associated with trace file size. Our ap-
proach to improving the scalability of event tracing uses call-path profiling to determine
which routines are relevant to the analysis to be performed and then traces only those
routines.

Graphical tools such as Vampir, Intel Trace Analyzer, and Jumpshot are available to
view trace files collected for parallel executions. These tools typically show a time-line
view of state changes and message passing events. However, analyzing these views for
performance bottlenecks can be like searching for a needle in a haystack. Our approach
searches the trace file using pattern-matching to automatically identify instances of in-
efficient behavior. The performance bottlenecks that are found and related to specific
program call-paths and node/process/thread locations can then be focused on using one
of the previously mentioned trace file viewing tools.

The remainder of this paper is organized as follows. Section 2 describes our auto-
mated approach to insertion of performance instrumentation and collection of perfor-
mance data. Section 3 describes our performance data management framework. Section
4 describes our scalable approaches to analyzing profile data, including techniques for
multi-experiment analysis. Section 5 describes our scalable automated approach to trace
file analysis. Section 6 contains conclusions and directions for future research.

A Scalable Approach to MPI Application Performance Analysis 311

2 Automated Performance Instrumentation

TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toolkit for paral-
lel threaded and or message-passing programs written in Fortran, C, C++, or Java, or a
combination of Fortran and C [3]. TAU can be configured to do either profiling or trac-
ing or to do both simultaneously. Instrumentation can be added at various stages, from
compile-time to link-time to run-time, with each stage imposing different constraints
and opportunities for extracting program information. Moving from source code to bi-
nary instrumentation techniques shifts the focus from a language specific to a more
platform specific approach.

Source code can be instrumented by manually inserting calls to the TAU instrumen-
tation API, or by using the Program Database Toolkit (PDT) and/or the Opari OpenMP
rewriting tool to insert instrumentation automatically. PDT is a code analysis framework
for developing source-based tools. It includes commercial grade front end parsers for
Fortran 77/90, C, and C++, as well as a portable intermediate language analyzer, data-
base format, and access API. The TAU project has used PDT to implement a source-to-
source instrumentor (tau instrumentor) that supports automatic instrumentation
of C, C++, and Fortran 77/90 programs.

The TAU MPI wrapper library uses the MPI profiling interface to generate pro-
file and/or trace data for MPI operations. TAU MPI tracing produces individual node-
context-thread event traces that can be merged to produce SLOG, SDDF, Paraver,
VTF3, or EPILOG trace formats.

TAU has filtering and feedback mechanisms for reducing instrumentation overhead.
The user can specify routines that should not be instrumented in a selective instrumen-
tation file. The tau reduce tool automates this specification using feedback from
previously generated profiling data by allowing the user to specify a set of selection
rules that are applied to the data.

3 Performance Data Management Framework

TAU includes a performance data management framework, called PerfDMF, that is ca-
pable of storing parallel profiles for multiple performance experiments. The perfor-
mance database architecture consists of three components: performance data input,
database storage, database query, and analysis. The performance profiles resident in the
database are organized in a hierarchy of applications, experiments, and trials. Applica-
tion performance studies are seen as constituting a set of experiments, each representing
a set of associated performance measurements. A trial is a measurement instance of an
experiment. Raw TAU profiles are read by a profile translator and stored in the database.
The performance database is an object-relational DBMS specified to provide a standard
SQL interface for performance information query. MySQL, PostgreSQL, or Oracle can
be used for the database implementation. A performance database toolkit developed
with Java provides commonly used query and analysis utilities for interfacing perfor-
mance analysis tools. ParaProf (described in the next section) is one of the tools capable
of using this high-level interface for performance database access. Other performance
analysis tools that have been interfaced with PerfDMF include mpiP, Dynaprof, HPM,
gprof, and KOJAK.

312 S. Moore et al.

4 Scalable Display and Analysis of Profile Data

ParaProf is a graphical parallel profile analyzer that is part of the TAU toolkit. Figure 1
shows the ParaProf framework architecture. Analysis of performance data requires rep-
resentations from a very fine granularity, perhaps of a single event on a single node, to
displays of the performance characteristics of the entire application. ParaProf’s current
set of displays range from purely textual based to fully graphical. Many of the display
types are hyper-linked enabled, allowing selections to be reflected across currently open
windows.

(Java event model)

Event System

A
cc

es
s Profile Management

Displays

Profile Data Model

(node, context, thread)

D
at

ab
as

e
Fi

le
 S

ys
te

m
A

cc
es

s
D

ir
ec

t f
ro

m
A

pp
lic

at
io

n

A
P

I

Fig. 1. ParaProf Architecture

Fig. 2. Scalable Miranda Profile Display

A Scalable Approach to MPI Application Performance Analysis 313

Fig. 3. 3-D Scatter Plot of Performance Metrics for 32K Miranda Processes

Recently, the TAU project has focused on how to measure and analyze larg-scale ap-
plication performance data. A significant amount of performance data can be generated
for large processor runs. We have been experimenting with three-dimensional displays
of large-scale performance data. For instance, Figure 2 shows the entire parallel pro-
file measurement for a 32K processor run. The performance events (i.e., functions) are
along the x-axis, the threads are along the y-axis, and the performance metric (in this
case, the exclusive execution time) is along the z-axis. This full performance view en-
ables the user to quickly identify major performance contributors. Figure 3 is of the
same dataset, but in this case each thread is shown as a sphere at a coordinate point
determined by the relative exclusive execution time of three significant events. The vi-
sualization gives a way to see clustering relationships.

5 Automated Analysis of Trace Data

KOJAK is an automatic performance evaluation system for parallel applications that
relieves the user from the burden of searching large amounts of trace data manually by
automatically looking for inefficient communication patterns that force processes into
undesired wait states. KOJAK can be used for MPI, OpenMP, and hybrid applications
written in C/C++ or Fortran. It includes tools for instrumentation, event-trace genera-
tion, and post-processing of event traces plus a generic browser to display the analysis
results. The instrumentation tools complement those supplied by TAU.

After program termination, the trace file is analyzed offline using EXPERT [5],
which identifies execution patterns indicating low performance and quantifies them ac-
cording to their severity. These patterns target problems resulting from inefficient com-
munication and synchronization as well as from low CPU and memory performance.

314 S. Moore et al.

Fig. 4. KOJAK analysis results on 192 CPUs

The analysis process automatically transforms the traces into a compact call-path profile
that includes the time spent in different patterns.

Finally, the analysis results can be viewed in the CUBE performance browser [4],
which is depicted in Figure 4. CUBE shows the distribution of performance problems
across the call tree and the parallel system using tree browsers that can be collapsed and
expanded to meet the desired level of granularity. TAU and KOJAK interoperate in that
TAU profiles can be read by CUBE, and CUBE profiles can be read by ParaProf and
exported to PerfDMF.

We recently used KOJAK to investigate scalability problems observed in running
the GYRO MPI application [1] on the SGI Altix platform using a specific input data
set. We used TAU in combination with PDT to automatically insert appropriate EPI-
LOG API calls into the GYRO source code to record entries and exits of user func-
tions. Unfortunately, non-discriminate instrumentation of user functions can easily lead
to significant trace-file enlargement and perturbation: A TAU call path profile taken of
a fully-instrumented run with 32 processes allowed us to estimate the trace file size
above 100 GB.

As a first result, we present an automated strategy to keep trace-file size within man-
ageable bounds. It was notable that shortly-completed function calls without involving
any communication accounted for more than 98 % of the total number of function-call
events. Since the intended analysis focuses on communication behavior only, we auto-
matically generated a so-called TAU include list from the call path profile using a script.
The include list allowed us to instrument only user functions directly or indirectly per-
forming MPI operations. Based on this include list we took trace files of with 32, 64,
128, and 192 processes. Trace file sizes varied between 94 and 562 MB and did not
present any obstacles to our analysis.

GYRO’s communication behavior is dominated by collective operations - in par-
ticular n-to-n operations, where every process sends to and receives from every other
process. Due to their inherent synchronization, these operations often create wait states
when processes have to wait for other processes to begin the operation. KOJAK defines

A Scalable Approach to MPI Application Performance Analysis 315

Fig. 5. Differences between the 128- and the 192-processor run

a pattern called Wait at N × N that identifies this situation and calculates the time spent
in the operation before the last participant has reached it.

Figure 4 shows the KOJAK result display for the 192-processor trace. All numbers
shown represent percentages of the execution time accumulated across all processes
representing the total CPU-allocation time consumed. The left tree contains the hierar-
chy of patterns used in the analysis. The numeric labels indicate that 21.3 % was spent
waiting as a result of Wait at N × N as opposed to 27.7 % spent in actual collective
communication. The middle tree shows the distribution of this pattern across the call
tree. Thus, about 1/2 of the collective communication time is spent in wait states, a
diagnosis that is hard to achieve without using our technique.

To better understand the evolution of these phenomena as processor counts increase,
we compared the analysis output of the 128-processor run against the 192-processor run
using KOJAK’s performance algebra utilities [4]. The difference-operator utility com-
putes the difference between the analysis results belonging to two different trace files.
The difference can be viewed using the KOJAK GUI just in the same way the orig-
inal results can be viewed. Figure 5 shows the 128-processor results subtracted from
the 192-processor results. According to our measurements with KOJAK, the total ac-
cumulated execution time grows by 72.3 % when scaling from 128 to 192 processes,
indicating a significant decrease in parallel efficiency. Figure 5 (left tree) shows the
composition of the difference classified by performance behavior with all numbers be-
ing percentages of the total time difference. About 2/3 can be attributed to waiting in
all-to-all operations, while about 1/3 can be attributed to the actual communication in
collective operations. The increase in computation is negligible.

After writing short script for EARL [2], a high-level read interface to KOJAK
event traces, we found that the performance problems observed when running with

316 S. Moore et al.

192 CPUs happen in relatively small communicators not exceeding a size of 16. Al-
though this information was not yet sufficient to remove the performance problem, it
allowed us to pose the question about it more clearly by showing the evolution of hard-
to-diagnose performance behavior (i.e., wait states) in a way that cannot be done using
traditional tools.

Future work will investigate the reason for the increased waiting and communica-
tion times and try to clarify whether there is a relationship between both phenomena.
Since the code scales well on other platforms, platform rather than application charac-
teristics might play a role.

6 Conclusions and Future Work

TAU provides an extensible framework for performance instrumentation, measurement,
and analysis. KOJAK provides an automated approach to analysis of large-scale event
traces. The benefits of our research include automated trace-size reduction and auto-
mated analysis of hard-to-diagnose performance behavior. However, further work is
needed on integrating profile and trace data analysis and on supporting additional tools
such as multivariate statistical analysis tools. Further work is also needed to process the
trace files in a distributed parallel manner in order to scale to terascale and petascale
systems of the future.

Acknowledgements

This research is supported at the University of Tennessee by the U.S. Department of En-
ergy, Office of Science contract DE-FC02-01ER25490, and at the University of Oregon
by the U.S. Department of Energy, Office of Science contract DE-FG02-05ER25680.

References

1. J. Candy and R. Waltz. An Eulerian gyrokinetic Maxwell solver. J. Comput. Phys., 186:545,
2003.

2. N. Bhatia F. Wolf. EARL - API Documentation. Technical Report ICL-UT-04-03, University
of Tennessee, Innovative Computing Laboratory, October 2004.

3. S. S. Shende. The Role of Instrumentation and Mapping in Performan ce Measurement. PhD
thesis, University of Oregon, August 2001.

4. F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An Algebra for Cross-Experiment
Performance Analys is. In Proc. of the International Conference on Parallel Processing (
ICPP), Montreal, Canada, August 2004.

5. F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient Pattern Search in Large Traces through
Successive Refinement. In Proc. of the European Conference on Parallel Computing (Euro-
Par), Pisa, Italy, August - September 2004.

High-Level Application Specific Performance Analysis
Using the G-PM Tool�

Roland Wismüller1, Marian Bubak2,3, and Włodzimierz Funika2

1 University of Siegen, Hölderlinstr. 3, D-57068 Siegen, Germany
2 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
3 Academic Computer Centre – CYFRONET, Nawojki 11, 30-950 Kraków, Poland

roland.wismueller@uni-siegen.de
{bubak, funika}@agh.edu.pl

Abstract. The paper presents an approach to overcome a traditional problem
of parallel performance analysis tools: performance data often is too low level
and cannot easily be mapped to the application, e.g. its execution phases. The
G-PM tool offers the user an easy but flexible means to define his own high-level,
application specific metrics based on existing metrics and application events. In a
case study based on a real world medical application from the CrossGrid project,
we demonstrate this concept as well as its usefulness in practice.

1 Introduction

Today, most of the applications that require high computing performance are based on
parallel programming using the message passing paradigm, as it is supported by MPI.
For this class of applications, tools that allow to measure and improve their performance
characteristics are vital for the application’s success. Generally, performance analysis
tools can be based on three different techniques: tracing, profiling, and on-line analysis.
The latter can be viewed as a compromise between tracing and profiling, since – as with
profiling – the tool computes performance metrics (e.g. time spent in the MPI Send
routine) during the program’s execution, instead of storing all communication events.
On the other hand, – as with tracing – the information is still resolved in time, instead
of just summarizing the whole execution. Different from both other approaches, on-line
analysis tools present the performance metrics while the application is executing.

Although a number of sophisticated performance tools exists1, it is still difficult for
programmers to optimize their applications based on the provided information. This has
two major reasons: First, the information is often too low-level, since it is usually related
to communication or even hardware events. Second, linking the displayed performance
data to the source code and the programmer’s mental model of the application is rather
difficult. The latter includes the structuring of the application’s execution in well defined
phases, e.g., iterations of a numerical solver, different phases within one iteration, etc.
While tracing has some advantage here, since the traced events can contain a link to the

� Partially funded by the European Commission (project IST-2001-32243, CrossGrid) and KBN
(grant 4 T11C 032 23).

1 See e.g. [5] for a summary of tools in the context of Grid computing.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 317–324, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

318 R. Wismüller, M. Bubak, and W. Funika

source code, it suffers the problem of extreme amounts of data, which need to be stored
and analyzed.

An ambitious approach to solve these problems is automatic performance analysis,
which points the programmer to the exact cause and location of a bottleneck. Research
in this field is done in e.g., the APART2, KappaPi [2], Paradyn [8], PERIDOT [6],
and SCALEA [10] projects. A more pragmatic solution is the provision of higher-level
metrics. E.g., the EXPERT tool [15] computes reasons for performance loss and repre-
sents them in a three-dimensional hierarchy, which the user can navigate. Ideally, these
higher-level metrics should not be hard-coded in the tool, but definable by the user.
The G-PM tool presented in this paper exploits this idea. It features the Performance
Metrics Specification Language PMSL to allow users to create high-level, application
specific metrics, which also can relate performance data to program phases. The main
contribution of this paper is a case study, which shows the usefulness of PMSL for the
analysis of a real world application from the medical domain.

Configurable metrics have already been used in related tools: Paradyn uses the lan-
guage MDL [7] to define all the on-line metrics it allows to measure. In a similar spirit,
but using a trace based approach, EXPERT supports configurable metrics via the EARL
language [14]. In both cases, however, metrics are defined at a low implementation-
oriented level, unsuitable for supporting user-defined metrics. A high-level specifica-
tion of performance properties used for automatic bottleneck detection is supported by
ASL [3] and JavaPSL [4]. Although performance properties are different from metrics,
some features of PMSL have their roots in ASL. Like G-PM, also Paraver3 and Pablo4

support user defined data analysis. In contrast to G-PM, these tools are based on off-line
processing of trace data and offer weaker support for application specific metrics.

In the next section, we outline the main concepts of user defined metrics in G-PM.
Section 3 then presents the mentioned case study on G-PM and PMSL. For details on
the syntax, semantics, and implementation of PMSL we refer the reader to [12,11,1].

2 User Defined Metrics in G-PM

G-PM is an on-line performance analysis tool for parallel MPI applications on the Grid.
It can measure a wide range of predefined metrics, mostly related to MPI usage (such as
communication volume and delay). Metrics can be measured for the whole application,
but can also be narrowed down along the three dimensions “location in the system”,
“location in the code” and “location in time”. E.g., metrics can be measured for all
processes, a single process, or a set of processes running on given hosts, for the whole
program or just selected functions, and as an aggregate over the whole execution or
as a time series. The necessary instrumentation for these measurements is performed
automatically; the application just needs to be relinked with additional libraries (see
[12] for details). As a pure on-line tool, G-PM performs a measurement only after the
user explicitly requested it by specifying the metrics, the measurement parameters, and

2 http://www.fz-juelich.de/apart/
3 http://www.cepba.upc.es/paraver/
4 http://www-pablo.cs.uiuc.edu/Project/Pablo/PabloDataAnalysis.htm

High-Level Application Specific Performance Analysis 319

the required visualization. The measurement results can be displayed in various ways,
e.g., bar graphs (c.f., Fig 1), multi-curve plots (c.f., Fig. 2), or matrix diagrams.

Besides predefined metrics, the G-PM tool also offers user-defined metrics in order
to face the problems stated in Sect. 1. The ingredients of such a metrics are (1) exist-
ing metrics, (2) application specific events (which optionally can provide application
specific performance data), and (3) numerical operations, including set operations for
data aggregation in space and time. User defined metrics thus can interrelate and/or
aggregate any already existing metrics. The important feature, however, is that they
can interrelate performance metrics with application events. The key to this feature is
a special operator (AT), which takes the value of a metrics when a specified event oc-
curs. This allows to determine performance indicators at specific points in the program
execution, and in turn to measure performance for program phases. It also allows to
compute completely new metrics, which are derived from application events.

Naturally, the necessary instrumentation for application specific events can not be
done fully automatically. In G-PM, the programmer has to insert special function calls
(probes) at those places in the code where an event should be raised. The probe func-
tions are generated automatically by the G-PM environment and are linked to the ap-
plication. Each probe receives a virtual time and, optionally, application specific per-
formance data as its parameters. The virtual time is an arbitrary, but monotonically
increasing integer value, which can be used to determine associations between corre-
sponding events in different processes, but also between different kinds of events, like
the beginning and the end of a program phase.

Although inserting probes requires to recompile the application, it does not contra-
dict G-PM’s philosophy of on-line measurements, since a probe just marks an important
place in the code; it does not yet define any metrics or measurements. Usually, a large
variety of different metrics can be defined at run-time, based on the very same instru-
mentation. Via the PMSL language, these metrics are specified either interactively or by
reading them from a file containing a previously assembled metrics library for a partic-
ular application. Unlike MDL and EARL, PMSL is purely functional and declarative,
i.e., users do not need to care about complex implementation details, like combining
data that originates from different hosts at different times. This makes PMSL rather in-
tuitive to understand, thus, in the next section we will just present examples instead of
a full description. A second attractive consequence of a functional language is the fact
that it can easily be translated to a data-flow graph representation. This in turn allows an
automatic, distributed evaluation of user defined metrics, as outlined in [11] and [13].

The use case in the next section shows that G-PM’s combination of user-defined
metrics and application specific events enables the creation of high-level, application
oriented metrics, which are meaningful for application domain specialists and even ap-
plication users, as well as a phase-based performance analysis of parallel programs.

3 A Use Case

Within the international Grid project CrossGrid5, we analyzed the performance of a
parallel application for pretreatment planning in vascular interventional and surgical

5 http://www.crossgrid.org

320 R. Wismüller, M. Bubak, and W. Funika

procedures6 [9]. It uses an iterative solver based on the Lattice Boltzmann method to
simulate the blood flow in a patient’s arteries (and envisioned bypasses). The applica-
tion is based on a one-dimensional decomposition of the simulation volume. In each
iteration of the solver, neighboring processes exchange their intermediate results using
MPI Sendrecv. Thus, the communication pattern is a bidirectional ring, which leads to
a (loose) synchronization of the iterations in all processes.

The application is clearly structured into phases: First, each iteration itself is a rel-
evant phase, second, the iterations are again structured into phases. Most importantly
there is a compute phase which calculates one time step of the blood flow and an out-
put phase which stores the flow data for subsequent visualization. In order to take this
structure into account for the performance analysis, we inserted three probes into the
solver’s source code: one at the beginning of an iteration, one at the transition from
compute to output phase, and a last one at the end of the iteration. All probes receive
the iteration count as virtual time.

After this preparation it was possible to create several metrics useful for a domain
specialist. A rather simple metrics computes the number of iterations executed so far:

 PROBE iteration_end(Process, VirtualTime);
 VirtualTime vt; Value[] val;
 val[vt] = 1 AT iteration_end(p,vt);
 return SUM(val[vt] WHERE val[vt].time IN t);
}

{
Loop_Executions(Process p, TimeInterval t) : Unit("iterations")

It simply produces a constant “1” at the end of each iteration and computes their sum
over the measurement interval. This allows to display the application’s progress in terms
of the number of executed iterations. Fig. 1 shows the result of an experiment where we
started the simulation on two different sites of the CrossGrid testbed. We can immedi-
ately see that on the Slovak site (labeled SK), the simulation runs more than twice as fast
than on the Polish one (PL). This is mostly because of different hardware performance.

In this experiment, we also assessed the influence of load imbalance on the sim-
ulation performance. Originally, the simulation volume was distributed evenly among
the processes. This may result in load imbalance, because the amount of computation
depends on the actual geometry of the arteries. Since the iterations of the simulation
synchronize via MPI Sendrecv communication, the following metrics could be used:

Load_imbalance(Process[] procs, TimeInterval t) : Unit("s")
{
 Process p; Value[] imbal; VirtualTime vt;
 imbal[vt] = MAX(Waiting_Time_in_Iteration(p, vt) WHERE p IN procs)
 − MIN(Waiting_Time_in_Iteration(p, vt) WHERE p IN procs);
 return SUM(imbal[vt] WHERE imbal[vt].time IN t);
}

Waiting_Time_in_Iteration(Process p, VirtualTime vt) : Unit("s")
{
 PROBE iteration_begin(Process, VirtualTime);
 PROBE iteration_end(Process, VirtualTime);
 return Sendrecv_delay(p, [START,NOW]) AT iteration_end(p, vt)
 − Sendrecv_delay(p, [START,NOW]) AT iteration_begin(p, vt);
}

6 http://www.crossgrid.org/products/applications/medical.html

High-Level Application Specific Performance Analysis 321

iterations

iterations

%

%

Fig. 1. Simulation progress and load imbalance on two different sites

The first metrics computes the waiting time in one iteration of a given process by
subtracting the current total waiting time at the end of an iteration from the one at the
beginning. The second metrics determines (for each iteration) the maximum and min-
imum waiting time among all processes, takes the difference, and then aggregates the
result over the measurement interval. For the experiment in Fig. 1 we used a measure-
ment mode that divides the result by the length of the measurement interval, thus, the
result is the performance loss in percent caused by load imbalance. We realized that the
original version had a performance loss of over 20% (bar labeled with PL). For com-
parison, we used an optimized data distribution in Slovakia (SK), which lead to a much
better load balance with only 6% performance loss.

Although creating own metrics requires some skills, even end users from the ap-
plication domain can use G-PM to check the performance of their simulations, since
metrics, measurements and displays can also be loaded from a pre-assembled configu-
ration file. The results are easy to understand, thanks to the high-level metrics.

In addition, user-defined metrics also allow to inspect the performance behavior
in more detail. In Fig. 2, we used the Waiting Time in Iteration metrics and a
similarly defined one to measure the elapsed time and the waiting time for each iteration
of the solver. In this graph, where each displayed value comprises exactly one iteration,
we can see three effects: First, we see the load imbalance again (different waiting time
in the four processes). Second, we realize that regularly, some iterations take more time
to complete than usual. It turned out that this is due to some extra statistics computed
in every 20th iteration. Finally, we can also see increased times in random iterations,
which coincide with increased waiting time in all processes but one. This is caused
by OS background activities on the compute nodes, which delay one of the simulation
processes. As a result of the synchronous operation, all other processes have to wait
for the delayed one. With a larger number of processes this effect can easily result in
a notable performance degradation. Thus, we will try to loosen the synchronization
between the simulation processes.

322 R. Wismüller, M. Bubak, and W. Funika

Elapsed time per iteration

Waiting time (in MPI_Sendrecv) per iteration
(one curve for each process)

Fig. 2. Elapsed time and waiting time per iteration

In Fig. 3, we finally investigated the behavior of the compute and output phases in
the solver’s iterations via user-defined metrics similar to the ones shown before. We
can see that the output phase is active only in the last iterations of a simulation, but
then largely dominates the time and communication requirements. The output phases
actually account for about 20% of the solver’s total execution time. It turned out that this
performance problem has two reasons: First, all the output is written by process 0 (this
also causes the high amount of communication), second, the output is ASCII formatted,
which makes it rather compute intensive.

phase in each iteration
Time spent in compute

Total communication volume of
output phase in each iteration

Time spent in output
phase in each iteration

Total communication volume of
compute phase in each iteration

Fig. 3. Behavior of compute and output phase in each iteration

By enabling an already available binary output format and using an optimized data
decomposition, we were finally able to speed up the solver by 14%. Further improve-
ments will be possible by writing the output in parallel using, e.g., MPI-I/O.

High-Level Application Specific Performance Analysis 323

1 instance 3 instances

Fig. 4. Overhead of the measurements in Fig. 2

To complete our case study, we finally assessed the overhead induced in the applica-
tion by the phase-based measurements of G-PM. For this purpose, we first measured the
processing speed of the undisturbed application (in iterations per second) using G-PM.
Then, after three minutes, we defined the measurements from Fig. 2. The result is shown
in Fig. 4. In order to increase the measurement accuracy, we later defined another two
instances of the same measurements. Now the performance decreased by about 6%
(from 8.5 to 8 iterations/s), which shows that the overhead of one instance of the mea-
surements is just 2%. While this is quite acceptable, it is nevertheless noticeable. The
main reason for the overhead is the fact that the current version of G-PM evaluates user-
defined metrics centrally, which requires each probe event to be sent to G-PM. We have
recently implemented a distributed evaluation [13], which will considerably reduce this
overhead in future versions of G-PM.

4 Conclusion and Future Work

The G-PM tool provides user defined metrics, which are based on existing metrics, but
can also take into account application specific events. Case studies have shown that this
concept allows to overcome two traditional problems of performance analysis tools.
Firstly, the application programmer can define high-level metrics, which have a strong
meaning in the application domain and thus are easy to understand by domain special-
ists. Second, they support the mapping between performance data and the application,
by enabling measurements for specific, relevant phases of an application.

The current version of G-PM for MPI programs on the Grid is available under GNU
Public License, together with extensive documentation. An adaptation of G-PM to sup-
port distributed Java/RMI applications is currently being prepared. In a recently finished
prototype, an efficient, distributed evaluation of user-defined metrics has been imple-
mented. Out next steps will be the further development of the distributed evaluation
scheme, as well as the improvement of the metrics specification language PMSL.

324 R. Wismüller, M. Bubak, and W. Funika

References

1. CrossGrid User Manual Guide: G-PM, Nov. 2004. http://www.eu-crossgrid.
org/user manuals/CG2.4.1-v0.1-CYF-G-PMUserManual.pdf.

2. A. Espinosa, T. Margalef, and E. Luque. Automatic Performance Analysis of PVM Applica-
tions. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, Proc.
7th European PVM/MPI Users Group Meeting, pages 47–55, Balatonfüred, Hungary, 2000.
Springer Verlag. LNCS 1908.

3. T. Fahringer, M. Gerndt, G. Riley, and J. L. Träff. Knowledge Specification for Automatic
Performance Analysis. APART Technical Report, ESPRIT IV Working Group on Automatic
Performance Analysis, Nov. 1999.
http://www.fz-juelich.de/apart-1/reports/wp2-asl.ps.gz.

4. T. Fahringer and C. Seragiotto. Modeling and Detecting Performance Problems for Distrib-
uted and Parallel Programs with JavaPSL. In 9th IEEE High-Performance Networking and
Computing Conference, SC’2001, Denver, CO, Nov. 2001.

5. M. Gerndt et al. Performance Tools for the Grid: State of the Art and Future. Shaker Verlag,
Aachen, Jan. 2004. http://www.lpds.sztaki.hu/˜zsnemeth/apart/
repository/gridtools.pdf.

6. M. Gerndt, A. Schmidt, M. Schulz, and R. Wismüller. Automatic Performance Analysis on
Hitachi SR8000. In S. Wagner et al., editors, High Performance Computing in Science and
Engineering, pages 443–452, Munich, Germany, 2003. Springer Verlag.

7. J. R. Hollingsworth, B. P. Miller, M. J. R. Gonçalves, Z. Xu, O. Naim, and L. Zheng. MDL:
A Language and Compiler for Dynamic Program Instrumentation. In Proc. International
Conference on Parallel Architectures and Compilation Techniques, San Francisco, CA, USA,
Nov. 1997. ftp://grilled.cs.wisc.edu/technical papers/mdl.ps.gz.

8. B. P. Miller et al. The Paradyn Parallel Performance Measurement Tools. IEEE Computer,
28(11):37–46, Nov. 1995.
http://www.cs.wisc.edu/paradyn/papers/overview.ps.gz.

9. P. Sloot, A. Tirado-Ramos, A. Hoekstra, and M. Bubak. An Interactive Grid Environment for
Non-Invasive Vascular Reconstruction. In 2nd Intl. Workshop on Biomedical Computations
on the Grid (BioGrid’04), Chicago, Illinois, USA, Apr. 2004. IEEE.

10. H.-L. Truong and T. Fahringer. SCALEA: A Performance Analysis Tool for Distributed
and Parallel Programs. In Euro-Par 2002 Parallel Processing, 8th International Euro-Par
Conference, pages 75–85, Paderborn, Germany, Aug. 2002. Springer-Verlag. LNCS 2400.

11. R. Wismüller, M. Bubak, W. Funika, T. Arodz, and M. Kurdziel. Support for User-Defined
Metrics in the On-line Performance Analysis Tool G-PM. In Grid Computing – Second Eu-
ropean AcrossGrids Conference AxGrids2004, pages 159–168, Nicosia, Cyprus, Jan. 2004.
Springer-Verlag. LNCS 3165.

12. R. Wismüller, M. Bubak, W. Funika, and B. Balis. A Performance Analysis Tool for Inter-
active Applications on the Grid. Intl. Journal of High Performance Computing Applications,
18(3):305–316, Fall 2004.

13. R. Wismüller, H. Mehammed, M. Gerndt, and A. Bode. Performance Monitoring and Analy-
sis for the Grid. In B. D. Martino et al., editors, Engineering the Grid. American Scientific
Publishers, 2005. In print.

14. F. Wolf and B. Mohr. EARL - A Programmable and Extensible Toolkit for Analyzing Event
Traces of Message Passing Programs. In A. Hoekstra and B. Hertzberger, editors, Proc. of
the 7th International Conference on High- Performance Computing and Networking (HPCN
99), pages 503–512, Amsterdam, The Netherlands, 1999.

15. F. Wolf and B. Mohr. Automatic Performance Analysis of MPI Applications Based on Event
Traces. In Euro-Par 2000 Parallel Processing, 6th International Euro-Par Conference, pages
123–132, Munich, Germany, Aug. 2000. Springer Verlag. LNCS 1900.

ClusterGrind: Valgrinding LAM/MPI
Applications

Brett Carson and Ian A. Mason

School of Mathematics,
Statistics and Computer Science, University of New England

Abstract. Debugging distributed applications using message passing li-
braries can be extremely difficult. We have implemented a set of tools
collectively called ClusterGrind which interface to a GNU licensed de-
bugger, valgrind, to ease the debugging process. By generating useful,
customisable reports, we believe the time spent debugging large distrib-
uted Linux applications can be reduced significantly. Profiling the run-
ning programs is also possible to find coding inefficiencies, to aid in im-
proving the overall application performance.

Keywords: valgrind, debugging, profiling, message passing, reporting.

1 Introduction

Debugging parallel applications is notoriously difficult, especially in distributed
environments like the cluster. The same problems exist with distributed appli-
cations that are rampant in any other piece of software, but there is also an
added level of complexity and difficulty. Errors can be difficult to reproduce,
and the sources and locations of such errors troublesome to find. On occasion,
said problems can be solved by reducing the number processors or cluster nodes,
and reducing the size of the problem. However, this approach does not always
reproduce the specific error(s) and can lead to time and effort being wasted. It
is therefore desirable to maintain the conditions as close as possible to those
causing the abnormal or unwanted behaviour, and debugging the application
appropriately. Debugging may not be the only application monitoring required,
performance profiling is also a serious issue that often requires attention.

This paper outlines a set of tools collectively called ClusterGrind [1] that
can be used to enable valgrind [2,3] for debugging LAM/MPI [4,5] as well as
PVM [5] applications on a cluster, and generate meaningful reports. Some past
experiences and difficulties are discussed in section 2, along with a brief look at
available commercial packages for distributed debugging. Section 3 provides a
brief overview of valgrind, including its various functions, examples of its use,
and the output reports that it can generate. This is followed by a walk-through
of ClusterGrind in section 4, and examples of its use with LAM/MPI on the
cluster. The examples focus on setting up the cluster environment for operation,
collecting valgrind output, and generating meaningful reports based upon this
output.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 325–332, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

326 B. Carson and I.A. Mason

2 Debugging Message Passing Applications

Past experience in debugging applications [6,7] using message passing libraries
including LAM/MPI as well as PVM has resulted in many hours spent bug-hunting
for what are the majority of the time, very small errors in the code. Often one
process out of hundreds distributed across a cluster will die silently, and logging
facilities may not provide any clues as to how or why the process died. This can
result in the use of debugging print statements littered throughout code, and
then further sifting through the output generated in an attempt to find the code
location where a crash has occurred. Such a tedious approach does not reveal
the reason for the crash, or how it actually happened. Single program multiple
data, SPMD, applications can be even more troublesome, as the different nature
of the data on different processes can cause unpredictable outcomes.

Currently, the two leading debuggers/profilers for cluster computing are To-
talview [8] and Distributed Debugging Tool, DDT [9]. Both packages provide
debugging and profiling options for multiple programming languages including
C and C++, MPI programs, and multi-threaded programs. Unfortunately both of
these packages are commercially licensed, and limitations apply to the number
processors/processes that can be operated under each environment depending
on the chosen licensing scheme. It is this limitation that has led our work in
adding functionality to a GNU licensed debugger and profiler, valgrind. Whilst
valgrind does not natively support cluster applications, it does contain func-
tionality that can be adapted to the distributed environment.

3 Valgrind - An x86 Profiling and Debugging Tool

Valgrind is a programmable framework for creating program supervision tools
such as bug detectors and profilers [2]. Although originally designed for the
Linux/x86 platform, recent development has been aimed toward architecture
abstraction. Reasonably stable ports to FreeBSD have been produced, and sup-
port for 64-Bit AMD processors and PowerPC/Linuxwill appear in future versions.

3.1 Basic Features of Valgrind

Based upon a virtual CPU approach, valgrind is designed to instrument bi-
nary code and emulate various operations such as tracking the malloc/new and
free/delete memory operations. This method does tend to slow down the ex-
ecution of programs being debugged/profiled, but the benefits of error detec-
tion may reduce total debugging time. These operations are performed by the
valgrind core, but to produce meaningful information about the execution of a
process special tools need to be used, some of which are described in section 3.2.

Highly detailed verbose analysis is provided by valgrind and its various
tools. The output of the analysis can be managed using valgrind’s logging
functionality, by using either log files for each process, or sending the messages
across the network to a listener on a remote host. These methods for logging

ClusterGrind: Valgrinding LAM/MPI Applications 327

can be used to reduce the cluttered output that can be produced when many
processes are being traced by valgrind.

Whilst valgrind is first and foremost a serial debugger, support is provided
for tracing and profiling different thread implementations and child processes
created by the clone and fork system calls. Tracing multiple processes in such
a way is what allows us to use valgrind on the cluster for different message
passing implementations.

These are some of the features that make valgrind an attractive free package
for debugging distributed applications on clusters. By utilizing the available
tools, cluster applications using message passing libraries can be debugged and
profiled without too much difficulty on the user’s behalf.

3.2 Valgrind Tools

The key to producing results with valgrind is the use of tools. Each tool inter-
acts with the valgrind core to gain meaningful information about the program
being profiled. The interaction will usually consist of the tool registering events
that it is interested in, and the core subsequently providing information to the
tool when the events occur. The events could be the application allocating mem-
ory via the calloc or malloc system calls, signals being delivered, or various
thread operations. Some of the tools useful for debugging and profiling distrib-
uted software with the valgrind core are:

– Memcheck - a memory debugger, tracks allocations and deallocations, reads
and writes to the heap, and can perform leak analysis.

– Cachegrind - a detailed cache profiler, emulates the various CPU caches to
detect cache misses in code.

– Massif - a heap profiler, it monitors the program’s heap at various stages of
execution, and in doing so is able to provide graphs of memory usage over
time.

3.3 Valgrind Examples

Programs that require debugging or profiling under valgrind are passed to it
as an argument, along with a number of options including the tool to be used.
There may also be some specific tool options, for example, one may turn the
leak checking option on when using the memcheck tool. Here is a simple example
using the memcheck tool with leak checking enabled and verbose output on the
program memerror:

valgrind -v --tool=memcheck --leak-check=yes memerror 5 10

During execution, valgrind will report any errors generated by the applica-
tion, as well as any errors that occur within the shared libraries that the program
links to. This can result in a lot of errors being reported, but it is possible to
suppress certain errors. For the developer this is often a necessity, as they may
not have the ability to fix the errors in the shared libraries. Valgrind is capable

328 B. Carson and I.A. Mason

of generating very detailed reports depending on the tool being used. The output
generated by the command given above would produce output including some
useful error messages:

==4490== 10 errors in context 8 of 9:
==4490== Invalid write of size 4
==4490== at 0x80495C5: main (memerror.c:59)
==4490== Address 0x1B92F094 is 4 bytes after a block of size 80 alloc’d
==4490== at 0x1B9053FD: calloc (vg_replace_malloc.c:176)
==4490== by 0x804956F: main (memerror.c:52)

The offending piece of code causing the error can be seen in Fig 1. Here we can
see that the write error is happening because the assignment is going beyond the
end of the array, which can be easily fixed by changing the stopping condition
to j<dim.

for(i=0;i<dim;i++){
v = (double*)calloc(sizeof(double), dim); //creates leaks
if(v == NULL){
fprintf(stderr,"calloc failed: v\n");
exit(1);

}
for(j=0;j<=dim;j++)
v[j] = 0; //write errors

}

Fig. 1. Troublesome code of the memerror program

Included with the valgrind command was the option --leak-check=yes.
This option will keep track of mallocs and frees, and report on any memory
leaks found during the execution of the program, marking memory as definitely
lost, possibly lost, or still reachable (there is still a pointer to the allocated
memory). This information is included as part of the leak check summary:

==4490== LEAK SUMMARY:
==4490== definitely lost: 720 bytes in 9 blocks.
==4490== possibly lost: 4096 bytes in 1 blocks.
==4490== still reachable: 29248 bytes in 8 blocks.

The sources of the listed leaks are also supplied:

==4502== 720 bytes in 9 blocks are definitely lost in loss record 7 of 10
==4502== at 0x1B9053FD: calloc (vg_replace_malloc.c:176)
==4502== by 0x804956F: main (memerror.c:52)

The v array is reallocated at the beginning of each iteration but never freed, so
pointers to the allocated blocks will no longer exist.

ClusterGrind: Valgrinding LAM/MPI Applications 329

4 ClusterGrind

Whilst valgrind is a very useful debugging and profiling package, using it on the
cluster can be somewhat cumbersome. Tedious setup of scripts and configuration
may be required, which is dependent on the message passing software used. Such
setup needs to be performed when any of the options to valgrind change, such
as the tool being used, general options, or tool-specific options. Collecting and
reporting on the output can also be difficult, as there are many sources for
it distributed across a number of hosts. These inconveniences have led to the
development of ClusterGrind, a set of tools designed for dealing with the issues
described. There are three distinct parts of ClusterGrind:

1. Setup and configuration of the message passing environment for valgrind.
This tends to vary depending on the message passing software used, so there
are a number of different implementations of the setup tool. The task of
this tool is to take a user’s valgrind options, and any configuration for
their message passing software, and combine the two in such a way that
any processes using the particular message passing software will be running
under valgrind. An implementation of this utility for LAM is discussed in
greater detail in section 4.1.

2. Collection of valgrind output. This involves a simple listener running on a
single host, which will collect and store output sent to it across the network.
The setup tool forces any process to send valgrind output to the listener.
The listener sorts the output it receives and stores it in a way to make
reporting much simpler.

3. Reporting on the valgrind output. This tool enables the user to look for
specific errors, or generate summaries of all errors found. It also allows the
user to locate a particular error of interest, without having to search through
the output of every process.

The goal of ClusterGrind is not to necessarily create a free clone of the ear-
lier mentioned commercial debuggers, but to provide a method for using the
valgrind framework with LAM/MPI programs. This allows specific functionality
to be provided by tools that can be implemented when required.

4.1 Setup Tools

For valgrind to operate on LAM/MPI processes, the LAM environment needs to be
specially configured. Ideally, this configuration should be transparent to the user
so as to be able to minimise any possible changes an application programmer
has to make to the code in order for it to undergo debugging or profiling. It
is necessary to run valgrind on the new processes at time of creation, which
normally means the daemon has to have some method for invoking valgrind.

As mentioned in section 3.1, valgrind can trace children created by the
fork() and clone() system calls. In LAM processes are created in this way by
daemons, whether they be on the local node or a remote node. The idea is then,
that the daemons be run under valgrind as no option exists for the processes
to be started under valgrind.

330 B. Carson and I.A. Mason

Setting Up the LAM/MPI Environment. LAM allows MPI tasks to be spawned
under a debugger. This functionality is enabled when processes are invoked with
the mpirun command. The debugger will be the process spawned by mpirun, and
it must at some stage start a MPI program [10]. Unfortunately, this does not cover
any processes started with the MPI_Comm_spawn or MPI_Comm_spawn_multiple
functions. The solution to this issue is to run valgrind on the LAM daemon,
lamd, with the option enabled to trace its children so that both dynamically
spawned processes and processes started via mpirun will start under
valgrind.

Lamboot. The LAM universe or environment is created by running the lamboot
command. Given a file containing a list of hosts and possible options, lamboot
will add the hosts to the universe, allowing any processes to be created on those
hosts. This works by lamboot executing a LAM program called hboot on each
host it encounters in the hostfile. The hboot program is used to start lamd with
options set in a configuration file called lam-conf.lamd. A default configuration
is located in /etc/lam-conf.lamd, but an instance of the file in the user’s home
directory will be given precedence. It is this configuration file which is manip-
ulated to enable all lamds in the universe to be executed under valgrind. The
lam-conf.lamd file used with valgrind looks like:

/tmp/vg_wrapper/valgrind-wrapper.pl lamd $inet_topo \
$debug $session_prefix $session_suffix

This single line tells hboot to run a valgrind wrapper script on lamd and it’s
arguments, which are the variables identified with the $ prefix. These variables
are known to hboot, and are substituted when the valgrindwrapper is executed.
It is possible to run valgrind directly, however this is not feasible as valgrind’s
command line options would conflict with the hboot options.

After executing lamboot, each of the daemons in the LAM universe will be run-
ning under valgrind. The --trace-children=yes option for valgrind is auto-
matically set so that any applications started by either mpirun, MPI_Comm_spawn
and MPI_Comm_spawn_multiple will also be running under valgrind.

Generating Valgrind Scripts. The valgrind wrapper discussed in the pre-
vious section is dynamically generated when the LAM universe is setup. From the
user-provided options, the script is generated along with the required options:

--trace-children=yes this enables all processes started by the daemons to
be traced by valgrind.
--log-socket this option will write the valgrind output to a socket, given
as host:port.

The wrapper script is then copied to all hosts in the universe, and this script
will be pointed to in the lam-conf.lamd file, which is copied to the user’s home
directory on all nodes.

ClusterGrind: Valgrinding LAM/MPI Applications 331

4.2 Collecting and Reporting Debugging Information

Depending upon the options passed to valgrind, a great amount of detailed
debugging output can be generated. Under normal use, this information will be
printed to the terminal where valgrind was launched from. However, in cases
where many processes are involved, and where the processes are distributed
across a network as when MPI is involved, different measures must be taken to
collect and organise the debugging information in a meaningful way.

Recall from section 4.1 that the --log-socket option is included in the
valgrind wrapper script. This option redirects debugging output to be written
across the network, to an address where a listener is running. The listener is
a simple server which waits for running valgrind processes to send it large
chunks of debugging text. The listener sorts the text by host origin, and creates
an output file for each process.

After collecting and sorting the debugging output from the various processes
distributed across the cluster, reports can be generated to facilitate easier naviga-
tion through the files of process information. By examining each process output
file one at a time, eXtensible Markup Language, XML, documents are produced.
This allows custom-formatting of the reports to be generated. Currently, the
most user-friendly form of report based on the generated XML is a HTML docu-
ment. Each node of the cluster is represented in a tree, with each tree element
being able to be expanded to display the list of processes that were run under
valgrind on that node, as seen in Figure 2. When the report is generated, the
user is able to specify certain errors of interest which will be highlighted like the
first error in the example shown. Beside each process is a number in parentheses,
this relates to the number of errors of interest found for that particular process.

Fig. 2. The ClusterGrind HTML report - cluster nodes are represented as elements
in a tree menu

The valgrind output for each process can be viewed by choosing the desired
process from the list. Output shown will be filtered to show error contexts and
the counts of each error, and the various summaries which are provided by the

332 B. Carson and I.A. Mason

specific tool being used. To provide specific information on process interaction,
a tool for monitoring MPI function calls is required, which is currently in early
stages of developement.

5 Conclusions and Future Directions

Early development versions of ClusterGrind have proven very useful in min-
imising the amount of setup required by the user to perform debugging and
profiling using valgrind on LAM/MPI applications. The collection and reporting
functions work well, with some customisation available for reports, to highlight
specific errors occurring in processes. ClusterGrind is available at:

http://mcs.une.edu.au/~bcarson/ClusterGrind/,

and all feedback is certainly welcomed.
Possible future improvements include integration into one or more of the

graphical user interfaces available to valgrind. Support for different MPI imple-
mentations will also be considered if there is demand for it. Supporting different
cluster configurations is desirable, as at this stage testing has only been per-
formed on a homogeneous Beowulf cluster.

References

1. Brett Carson, B., Mason, I.A.: ClusterGrind.
http://mcs.une.edu.au/∼bcarson/ClusterGrind/ (2005)

2. Nethercote, N., Seward, J.: Valgrind: A Program Supervision Framework. Elec-
tronic Notes in Theoretical Computer Science 89 (2003)

3. Seward, J.: The Valgrind Homepage. http://valgrind.org/ (2005)
4. Burns, G., Daoud, R., Vaigl, J.: LAM: An Open Cluster Environment for MPI.

Proceedings of Supercomputing Symposium (1994) 379–386
5. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. Pro-

ceedings of the 10th European PVM/MPI Users’ Group Meeting (2003) 379–387
6. Carson, B., Murison, R., Mason I.A.: Computational Gains Using RPVM on a

Beowulf Cluster. R News 3 (2003) 21-26,
7. Carson, B., Murison, R., Mason I.A.: Estimating Breeding Values on a Beowulf

Cluster. Technical Report, School of Mathematics, Statistics and Computer Sci-
ence, University of New England (2005)

8. Etnus LLC: The Totalview Debugger. http://www.etnus.com (2005)
9. Allinea Software: Distributed Debugging Tool. http://www.absoft.com/ (2005)

10. Open Systems Lab: LAM/MPI User’s Guide (2004)

MPISH2: Unix Integration for MPI Programs

Narayan Desai, Ewing Lusk, and Rick Bradshaw

Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL 60439

Abstract. While MPI is the most common mechanism for expressing
parallelism, MPI programs remain poorly integrated in Unix environ-
ments. We introduce MPISH2, an MPI process manager analogous to
serial Unix shells. It provides better integration capabilities for MPI pro-
grams by providing a uniform execution mechanism for parallel and serial
programs, exposing return codes and standard I/O stream information.

1 Introduction

The shell is the most familiar interface to Unix systems. In general, it is the first
contact that users have with Unix systems. Its ubiquity makes it the dominant
mechanism through which command execution occurs.

Unix shells provide a rich environment for task automation, exposing com-
mand exit codes, providing control flow constructs, and organizing disparate
programs into complex command pipelines. Users are familiar with the decom-
position of complex tasks into the invocation of single-function utilities using
these mechanisms.

While MPI is not as ubiquitous as Unix shells, it is the dominant mechanism
used to express parallelism in scalable applications. Many high-performance im-
plementations of MPI exist; indeed, MPI is so pervasive that a good MPI im-
plementation is frequently cited as one of the requirements for new large-scale
computational science machines.

Unfortunately, process management systems that can start MPI programs
have not provided or exposed sufficient information for their composition with
their serial analogues or even with each other. To address this issue, we have
implemented MPISH2, a MPI process manager that provides a user interface and
composition capabilities nearly identical to the Bourne shell.

2 Related Work

Unix shells have long been studied. Starting with the original shell included with
early Unix systems [14], shells have been augmented into relatively full-featured
programming languages, including data types [9]. Because of the familiarity of
the shell interface to Unix users, many attempts have been made to present a
shell-like interface for program execution on parallel systems.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 333–342, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

334 N. Desai, E. Lusk, and R. Bradshaw

– PDSH [12] is a program that uses rsh or ssh to execute tasks in parallel on
many systems.

– The C3 tools [8] provide a similar execution mechanism that also runs tasks
through rsh.

– Gridshell [15] provides a shell-like interface that enables access to Grid re-
sources, including the queueing of jobs. It doesn’t natively support the execu-
tion of parallel process; rather, it is subject to the limitations of the underlying
resource management system used to implement this functionality.

These tools do an admirable job of starting processes scalably; however, they
do not expose any of the Unix process information needed to embed parallel
commands in more complex execution units. Discrete exit statuses are not re-
turned for each process executed. Most important, none of these tools supports
MPI process startup.

Historically, MPI startup mechanisms have scaled poorly and performed
badly overall [5]. Two systems have addressed these issues over the past sev-
eral years.

– MPD [4] uses a group of daemons, arranged in a ring topology, to scalably
start MPICH2 processes.

– YOD [2] provides similar capabilities in the Cplant software stack.

Both of these process management systems provide highly scalable process
startup services needed to start MPI processes, but neither system provides
adequate information for use in shell-style programming. MPD provides access
to all exit statuses and to standard I/O multiplexed into single streams. YOD
provides similar access to standard I/O but fails to provide any access to return
codes.

The work we present here has been motivated largely by the gains in sys-
tem software scalability afforded by the use of MPI in system tools [6,7]. This
approach also has proven quite positive in terms of overall performance gains.
More surprising, tools implemented by using MPI-based scalable components
have proved far easier to troubleshoot and debug than their ad hoc analogues.
The need to execute large numbers of small scalable tools brings execution issues
clearly into focus.

3 Design

When we were considering how to integrate MPI programs into a Unix envi-
ronment, our highest priority was to retain standard Unix shell semantics. The
overall goal was to support the execution of parallel programs using an inter-
face indistinguishable from that used for serial programs. With such a uniform
execution interface, parallel reimplementations of serial utilities could be auto-
matically used by existing scripts.

Our initial implementation of MPISH [7] had all of the startup functions re-
quired to natively execute MPICH2 programs, however, the specification of ex-
ecution locations was unwieldy. For that reason, we redesigned in the interface
and input language for MPISH2.

MPISH2: Unix Integration for MPI Programs 335

The Bourne shell [1] was chosen as the language basis for our shell. Two
major aspects of the Bourne shell are important: process semantics and control
flow constructs. Unix process semantics provide access to information about child
processes, including access to return codes, the ability to setup child process envi-
ronment variables, and the ability to arrange commands into command pipelines
that run concurrently. However, this data is available only for child processes that
have been directly started. Without the existence of a Unix parent/child rela-
tionship, this information is not available and cannot be influenced in any way.
Hence, the preservation of this relationship was an important design goal.

The control flow constructs available in the Bourne shell are fairly standard,
including while, if, for, and case. Since these are the real workhorses of shell
scripting, we attempted to keep their semantics as close as possible to the Bourne
shell. However, minor enhancements were required in order to support startup
of parallel processes.

3.1 MPISH2: A Parallel Shell

The difference between a normal shell and MPISH2 is that MPISH2 is a parallel pro-
gram, consisting of multiple communicating Unix programs. A shell script, given
to MPISH2, is executed by all of the MPISH2 processes. The MPISH2 processes com-
municate with each other (in a scalable fashion) using MPI. That is, MPISH2 is
itself an MPI program. Therefore, MPISH2 must be started by the startup mech-
anism of the proper MPI implementation. We assume in this paper that mpiexec
invokes this mechanism. Thus, a 100-process instance of MPISH2 is started by a
command line something like the following.

mpiexec -n 100 mpish2

In a cluster environment, the specification of which nodes MPISH2 is run
on depends on the particular MPI implementation being used. We have used
MPICH2 [11], but MPISH2—being an MPI program—can be run by using any
MPI implementation. Note, however, that because of the nonstandard nature of
MPI startup, programs started by MPISH2 must use MPICH2.

MPISH2 scripts are Bourne-shell scripts (with some extensions described in
Section 3.2) that are presented to the standard input of each MPISH2 process.
MPISH2 must be parallel in order to properly provide all information about child
processes. For example, using a traditional MPI process manager to run two
parallel programs in a pipeline would look like the following.

mpiexec -np 10 prog1 | mpiexec -np 10 prog2

This command runs prog1 and sends the standard output of the first mpiexec
to the second invocation of mpiexec. Handling of standard output is not specified
by the MPI standard; however, many MPI process managers provide multiplexed
standard output from all processes to the standard output of mpiexec. Likewise,
mpiexec typically, though not universally, sends standard input of mpiexec to
some number of the parallel process instances.

336 N. Desai, E. Lusk, and R. Bradshaw

Under MPISH2, a similar command is used, together with a process manage-
ment system for MPISH2 startup.

mpiexec -np 10 mpish2

Once MPISH2 is running, a command pipeline can be executed by using the
following script.

prog1 | prog2

This script is run by every MPISH2 instance, resulting in 10 instances of both
prog1 and prog2, connected rankwise into a pipeline. That is, standard output
produced by the rank 0 instance of prog1 is fed into the standard input of the
rank 0 instance of prog2, and so forth. Additional utilities are provided, allowing
interrank manipulation of I/O streams. These execution semantics provide more
flexibility than those afforded by traditional process management systems.

3.2 Enabling Parallelism

Parallel process managers work in much the same way as serial process man-
agers. They are responsible for post-fork/pre-exec process setup and the setup
of standard I/O. The main difference between serial and parallel process man-
agers is the need for parallel library bootstrapping. This bootstrapping consists
of two main parts: the description of the parallel process topology and the com-
munication setup.

Many mechanisms describe initial process topology at the time of parallel
process startup. Typically, the topology specification consists of process count
and some set of resources, usually a list of nodes on which the processes should be
executed. This corresponds closely to the common arguments to mpirun. Alter-
natively, one can use mpiexec, specified by the MPI standard [10], for supplying
the same data. Whatever the input format, this information is used for the same
purpose: the description of MPI COMM WORLD for the new process. Each
communicator has a specific size, and each component process has a specified
rank in that communicator. This initial topology description is what differenti-
ates one 32-node program from thirty-two 1-node programs.

MPISH2 describes the initial communicator in terms of the parallel execution
context of the client program. The notion of control flow groupings is maintained
across the parallel shell. For example, if a parallel program is run on the first
line of a script, it will be run on all processors, with an initial communicator
identical to MPI COMM WORLD of the parent shell. Control flow constructs
all affect this execution context for parallel programs. Their behavior can be
most easily described in terms of MPI Comm split:

– if performs a two-way split, corresponding to the truth value of the predicate.
Programs run in either branch will be grouped into parallel processes with
the other processes executed in the same branch. For example, when if is
executed in an 8-process context, resulting in a 4-node true, 4-node false

MPISH2: Unix Integration for MPI Programs 337

split, processes run in the true branch will be grouped into 4-node parallel
processes with the other processes executed on the true branch. Similarly,
the processes executed on the false branch will be grouped into a 4-process
parallel process with the others started on the false branch.

– case performs an N-way split, operating similarly to if.
– while creates an execution context corresponding to all ranks for which

the condition evaluates as true. All programs run in each iteration will be
grouped according to this initial evaluation. The condition will be evaluated
at the start of each iteration, continuing until all ranks evaluate false.

– for has no effect on parallel execution context because it is not conditional.

Note that each control flow statement now implicitly includes a synchro-
nization barrier at its conclusion. This approach has the distinct advantage of
retaining the character of serial Bourne shell control flow operations. In fact, for
one-node executions of MPISH2, the behavior is precisely that of a serial Bourne
shell.

The second important aspect of parallel process startup is communication
bootstrapping. For disparate processes to begin acting as a single parallel entity,
communication must be established. This is accomplished in different ways with
different parallel libraries. MPICH2 uses an interface called PMI, or Process
Manager Interface, to provide this information to client programs. PMI takes the
form of a distributed database, providing standard put, get and fence operations.
The client program is provided with connection information for its PMI instance
and can use that data to connect to other processes.

4 Implementation

The implementation of MPISH2 is based on a modified version of the Minix [13]
shell, included with Busybox [3]. Three main modifications have been made.

The first was driven by the fact that MPISH2 is a parallel, not serial, process.
A parallel execution context—that is, a grouping of discrete processes in order to
form a parallel process—must be tracked on each instance of MPISH2. Initially, it
corresponds to MPI COMM WORLD; however, as the script executes, the exe-
cution context is modified by control flow constructs, as described in Section 3.2.
Changes in the parallel execution context are tracked by using an MPI commu-
nicator. This communicator is passed to any new PMI instances created, thereby
maintaining cohesion between parallel processes executed in the same context.

The second modification was the creation of a PMI implementation to service
requests from client processes. In order to support parallel library bootstrapping,
a discrete PMI implementation is provided for each program started by the shell.
Setup of this instance consists of initial data structure creation and socket setup.
During client execution, the client program will connect and submit commands.
Many of the commands, like put, which stores a value in a distributed database,
will be serviced locally; however, some, like get, or fence may require communi-
cation with other parts of the same PMI instance. All communication operations
are implemented by using MPI collective and asynchronous operations. Fence is

338 N. Desai, E. Lusk, and R. Bradshaw

implemented by using MPI Barrier. The implementation of get is more compli-
cated. When a PMI instance receives a get request, it checks whether the value
is already stored locally. If it is, the request is immediately serviced. If not, a
message is sent to the PMI instance with the next higher rank. Each process
also receives queries for unknown values asynchronously. If the local process has
the value, it responds to the querier; otherwise, it forwards the request to the
next rank in the PMI instance. Disparate PMI instances in the same MPISH2 in-
stance are differentiated based on a private communicator. This communicator
is MPI Comm dup’ed at PMI instance initiation time, so each PMI instance has a
unique one.

The third, and perhaps most complex, modification was to the control flow
construct to provide topology descriptions for client processes. In a typical serial
shell, control flow constructs use only return codes and have no side effects. In
MPISH2, however, control flow constructs also affect the parallel execution context
by calling MPI Comm Split after predicate execution. For example, in serial shells,
the shell executes the if predicate and either the true or false branch depending on
a zero or nonzero return code, respectively. MPISH2 executes the same operations,
but with the addition of a call to MPI Comm Split using zero/nonzero exit status.
Other control flow constructs were similarly modified.

None of these modifications proved complicated, and the overall semantics of
the MPISH2 remains very close to the semantics of the Bourne shell. At the same
time, these modifications provide a wealth of new capabilities to Unix users.

4.1 Utilties

A parallel execution environment isn’t really complete without a set of parallel
programs useful for writing basic programs. These programs are analogous to
test or wc for serial shells. We have implemented a variety of small utilities,
suffixed with the .mpi extension, to address this issue. The following is a list of
basic parallel commands, with a short description of each.

– rank.mpi displays the process’s rank in the current execution context.
– size.mpi displays the size of the current execution context.
– once.mpi exits with a return code of 0 once per physical node present.
– zoom.mpi provides access to scalable numeric reductions for the provided

argument.
– pflatten.mpi sends all stdout streams to process 0.
– ptee.mpi forwards stdin from process 0 to all processes. It functions like a

parallel version of tee.
– pcoalesce.mpi coalesces stdout from all nodes, producing rank delimited

lines on processor 0.
– bcast.mpi broadcasts the data from one process, specified as an argument,

to all other processes. This data is produced on stdout.
– stagein.mpi downloads a file from a http server and broadcasts to all nodes,

eventually writing it to disk on each.
– stageout.mpi uploads files, tagged with rank, to the fileserver from all

clients.

MPISH2: Unix Integration for MPI Programs 339

– rsync.mpi synchronizes files from process 0 to all other processes. This pro-
gram can handle all regular and special files.

– time.mpi times the execution of a parallel program, producing a single wall
time result.

Each of these programs is a simple MPI program. Nothing special is required
to write a utility, as MPISH2 can run arbitrary MPI programs.

5 Usage Examples

MPISH2 is useful across the same broad range of problems as are standard shell
scripts, with the added ability to run concurrent, parallel programs. It can easily
be used for tasks ranging from the most trivial to those that can strongly benefit
from access to parallelism and scalable tools.

5.1 Job Script

This example is a job script for a queueing system. This script runs the prologue,
epilogue and file staging commands once per physical node (hostname). Of these
commands, the prologue and epilogue are serial, while the file staging commands
are parallel. Once setup has completed, the user job is run (under the user’s
UID), and cleanup is performed. Not only can serial and parallel programs be
interchanged, but standard shell scripting mechanisms (like the use of su) can
also be used with parallel programs.

#!/usr/bin/env_mpish2
user="${1}"
userscript="${2}
indir}="${3}"
outdir}="${4}

once.mpi
once=’ ’${?}’’
if[‘‘${once}’’-eq 0] ; then

#_run_the_prologue_once_per_node
/usr/sbin/prologue
if [! -z "${indir}"] ; then

su"${user}" stagein.mpi "${indir}"
fi

fi

su "${user}" mpish2 "${userscript}"

if [‘‘${once}’’ -eq 0]; then
if[! --z " ${outdir}"]; tnen

su "${user}" stageout.mpi "${outdir}"

340 N. Desai, E. Lusk, and R. Bradshaw

fi
/usr/sbin/epilogue

fi

Several active execution contexts are used in this program. Two instances of
a context containing each physical node are created by the script. The first is
used for job setup (e.g., prologue and file staging), and the second is used for
job cleanup. The user’s job script is executed in the global execution context.

5.2 Benchmarking Scripts

This example provides a basic illustration of concurrency. Benchmarking scripts
are often implemented as a for loop that sequentially executes program runs
with different sizes, for example, a script such as the following.

#!/bin/sh
for i in 2 4 8 16 32; do
time mprium -np $i program
done

Such a script does a reasonable job of running benchmarks; however, numer-
ous processor resources are wasted in the first few iterations of the loop if the
full number of nodes is reserved for the full duration of the execution.

This process can be run far more efficiently if test cases are executed concur-
rently. First, the application is run on all nodes. Second, the nodes are grouped
into partitions, each with a different power of two size, up to half the total num-
ber of nodes. Each of these partitions runs a different size test case concurrently.
The following example is a concurrent benchmarking script. It is assumed that
the script is run on largest size being benchmarked, in this case 32 nodes.

#!\usr/bin/env mpish2
rank=‘rank.mpi’

slot="0"
basenum="2"
count="1"

time.mpi -t "size=32" progname
while ["$slot" -eq "0"]; do

remainder=’expr "$rank" - "$basenum"’
if["$remainder" -lt "$basenum"] ; then

slot="$count"
else

basenum=‘expr "$basenum" "*" "2"’
count=’expr $count + 1’

fi
done

MPISH2: Unix Integration for MPI Programs 341

case $slot
1)
time.mpi -t "size=2" progname
;;
2)
time.mpi -t "size=4" progname
;;
3)
time.mpi -t "size=8" progname
;;
4)
time.mpi -t "size=16" progname
;;

esac

6 Conclusions and Further Work

We have presented MPISH2, a parallel process manager for MPI programs that
provides an interface almost indistinguishable from the standard Unix Bourne
shell. It enables the use of MPI in Unix environments in a seamless manner not
previously possible. The addition of scalable utilities and simple, Bourne shell
style control to Unix environments enables a variety of system and user tasks to
be implemented in a scalable and elegant fashion.

The current design and implementation have two main limitations. The first
is that all control flow constructs now impact parallel execution context, so serial
conditional execution must be separated from parallel conditional execution. The
second limitation is that control flow constructs have implicit barriers around
them. This can reduce the amount of concurrency available to users. Both of
these issues bear further examination.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-
109-ENG-38.

References

1. S. R. Bourne. An introduction to the unix shell. Bell System Technical Journal,
57(2):2797–2822, Jul-Aug 1978.

2. Ron Brightwell and Lee Ann Fisk. Scalable parallel application launch on cplant.
In Proceedings of SC 2001, 2001.

3. Busybox home page. http://www.busybox.net.

342 N. Desai, E. Lusk, and R. Bradshaw

4. R. Butler, N. Desai, A. Lusk, and E. Lusk. The process management component
of a scalable system software environment. In Proceedings of IEEE International
Conference on Cluster Computing (CLUSTER03), pages 190–198. IEEE Computer
Society, 2003.

5. R. Butler, W. Gropp, and E. Lusk. A scalable process-management environment
for parallel programs. In Jack Dongarra, Peter Kacsuk, and Norbert Podhorszki,
editors, Recent Advances in Parallel Virutal Machine and Message Passing Inter-
face, number 1908 in Springer Lecture Notes in Computer Science, pages 168–175,
September 2000.

6. Narayan Desai, Rick Bradshaw, Andrew Lusk, and Ewing Lusk. MPI cluster system
software. In Dieter Kranzlmuller, Peter Kacsuk, and Jack Dongarra, editors, Recent
Advances in Parallel Virutal Machine and Message Passing Interface, number 3241
in Springer Lecture Notes in Computer Science, pages 277–286. Springer, 2004.
11th European PVM/MPI Users’ Group Meeting.

7. Narayan Desai, Andrew Lusk, Rick Bradshaw, and Ewing Lusk. MPISH: A parallel
shell for MPI programs. In Proceedings of the 1st Workshop on System Management
Tools for Large-Scale Parallel Systems (IPDPS ’05), Denver, Colorado, USA, april
2005.

8. R. Flannery, A. Geist, B. Luethke, and S. L. Scott. Cluster command & control
(c3) tools suite. In Proceedings of the Third Distributed and Parallel Systems
Conference. Kluwer Academic Publishers, 2000.

9. David G. Korn, Charles J. Northrup, and Jeffery Korn. The new Korn shell. The
Linux Journal, 27, July 1996.

10. Message Passing Interface Forum. Document for a standard message-passing inter-
face. Technical Report CS-93-214 (revised), University of Tennessee, April 1994.
Available on netlib.

11. MPICH2. http://www.mcs.anl.gov/mpi/mpich2.
12. Pdsh:parallel distributed shell. http://www.llnl.gov/linux/pdsh/pdsh.html.
13. Andrew Tannenbaum. Operating Systems, Design and Implementation. Prentice

Hall, 1987.
14. K. Thompson. The unix command language. Structured Programming, pages 375–

384, 1975.
15. E. Walker, T. Minyard, and J. Boisseau. Gridshell: A login shell for orchestrating

and coordinating applications in a grid enabled environment. In Proceedings of the
International Conference on Computing, Communications and Control Technolo-
gies, pages 182–187, 2004.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 343 – 350, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Ensemble-2: Dynamic Composition of MPMD Programs

Yiannis Cotronis and Paul Polydoras

Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens,

Panepistimioupolis, 15784 Athens, Greece
{cotronis, p.polydoras}@di.uoa.gr

Abstract. Ensemble-1 has been proposed for composing applications, consist-
ing of MPI based components and external composition directives. Composed
applications may be executed on any MPI distribution. Ensemble-1 followed
the “static” principles of MPI-1; there is no dynamic process creation or de-
struction. In this paper, we propose Ensemble-2 supporting the composition of
dynamically created processes following MPI-2 standard. The composition is
based on construction of intercommunicators and establishing communication
channels using either the parent/child or the client/server process relationship
model.

1 Introduction

MPI [4, 5] has been become the de-facto standard for parallel distributed memory ap-
plications such as simulations and modeling of physical phenomena, molecular struc-
tures, etc. Due to the advanced complexity of these models, the respective programs
are developed by different research teams; they focus on specific aspects of their sci-
entific area and are designed, primarily, to run individually. However, in order to pro-
duce more accurate results and explore new areas of interest, these programs need to
be composed. In order to accomplish a successful result, the programs interaction
must be flexible, easily maintainable and should respect research teams’ reluctance to
share their code.

Ensemble-1 has been proposed [1, 2] for MPI code coupling. Applications in En-
semble-1 consist of MPI based components which may be composed in various con-
figurations following external directives and executed directly on any MPI distribu-
tion, such as MPICH [6, 7]. However, in Ensemble-1 there is no dynamic process
creation or destruction. In this paper, we propose Ensemble-2 supporting the composi-
tion of dynamically created processes, following MPI-2 standard. The composition is
based on construction of intercommunicators and establishing communication chan-
nels using either the parent/child or the client/server process relationship model.

The structure of the paper is as follows: In section 2, we outline the composition
principles of Ensemble. In section 3, we describe the core of Ensemble-2, which sup-
ports composition of dynamically spawned processes, communicating within par-
ent/child or client/server intercommunicators. Finally, in section 4 we present our
conclusions and future work.

344 Y. Cotronis and P. Polydoras

2 Ensemble Principles

Program composition in Ensemble-1 separates programming into external directives
and codes to be composed. Directives are passed to each process by command line ar-
guments (CLAs). Upon process spawning, a routine interprets the directives and es-
tablishes the composition by controlling two aspects of MPI: (i) the construction of
communicators (intra, inter or topology), the processes of which may have been
spawned from different executables (constructing MPMD intra or topology communi-
cators) and (ii) the communication between processes. In traditional programming a
decision has to be made on which type of communicator is to be used, which is then
hard coded. Components in Ensemble-1 do not need any explicit communicator con-
structors and only involve point-point and collective communication (data movement,
reduction and synchronization). Components are neutral to the communicator type
(intra, inter, topology); a process spawned from such a component may be placed in a
topology or in an inter-communicator according to the composition directives.

Let us outline the basic mechanics of Ensemble-1. We associate with each process
a unique integer, called Unique Ensemble Rank (UER). MPI ranks are obtained from
UERs: we construct the Ensemble_Comm_World (ECW) communicator by “split-
ting” all processes in MPI_COMM_WORLD with a common color using local
key=UER. The new communicator just reorders processes, with MPI ranks equal to
UERs. For constructing other communicators we pass an integer indicating the color
for splitting ECW. To find the rank of a process in a constructed communicator we
use MPI_Group_translate_ranks and its UER in ECW. We use UERs in CLAs to
specify “actual communication parameters” for point-to-point operations and roots.

Each process parses its CLAs by calling SetEnvPars function and constructs the
communicators, translates UERs into ranks and generally interprets CLAs to construct
MPI bindings, which are stored in a structure, called EnvPars. Formal communication
parameters in MPI communication calls (ranks, tags and communicators) are referring
to elements of EnvPars. For point-to-point communication, the concept of port is in-
troduced. A port is an abstract representation of the triplet: communicator, rank and
tag. Ports which refer to a common communicator, they form multiports.

EnvPars is, actually, an array of contexts, where each context represents a specific
intracommunicator that a particular process belongs to. The process rank is stored in
the field MyRank. Each context includes an array of roots, which holds the ranks of
root processes for collective calls in this intracommunicator, and an array of multi-
ports. This array includes an array of ports and an AnyTypeComm field. The array of
ports contains the remote process rank and the message tag used in point-to-point
communication. The AnyTypeComm field represents a possible distinct communica-
tor of the one which multiport refers to, either an intra or an intercommunicator.

In order to reduce software engineering effort and make the code more readable,
we employ virtual names for contexts, multiports and roots, which can be used in MPI
calls. These macros are expanded into the proper MPI bindings, before they are used.
For example, the macro ENSRoot(Ocn,RootA) is expanded into: EnvPars[1].
Roots[0]. Root, EnvPars[1].IntraComm.ActualComm. The expansion assumes that 1
is the position of Ocn in the array of EnvPars, while RootA is the in the first position
of the array of roots in the Ocn context. This macro can be use in collective commu-
nication function calls, e.g. MPI_Bcast.

 Ensemble-2: Dynamic Composition of MPMD Programs 345

3 External and Port Inter-communicators in Ensemble-2

3.1 Categorization of Intercommunicators

Ensemble-2 makes extensive use of intercommunicators. According to our terminol-
ogy, intercommunicators may be distinguished into three categories based on the
method they are established:

1. Internal intercommunicators: they are communicators being created by two in-
tracommunicators within the same MPI_COMM_WORLD.

2. External intercommunicators: they are constructed between parent and child
processes. They do not belong to the same MPI_COMM_WORLD.

3. Port intercommunicators: they refer to a special communication domain which is
constructed asymmetrically, in a server/client fashion.

3.2 Avoiding Deadlocks Upon Creation of Communicators

In constructing intercommunicators there are three deadlock situations, caused by the
possible wrong order of communicator construction, as specified in CLA directives.
This problem however, is inherent to MPI programming and is not caused by Ensem-
ble. Even in SPMD programming the designer has to be careful on specifying the or-
der of splits. In MPMD applications, where codes are developed by different teams,
we cannot assume a universal “safe” order, as different composition requirements
may demand different orders of communicator constructions. We may distinguish
three deadlocking situations.

The first deadlocking situation may occur when trying to construct intracommuni-
cators which have common processes. Suppose that intracommunicators Intra1 and
Intra2 both contain processes A and B. Process A may try to construct Intra1 and then
Intra2, whilst B Intra2 and then Intra1. We avoid the deadlock by reordering split di-
rectives by their color.

The second deadlocking situation may occur when trying to construct intercommu-
nicators. Suppose that process A participates in Intra1 and Intra2, while process C in
Intra3 and Intra4. There are two intercommunicators: Inter1 between Intra2 and In-
tra3, and Inter2 between Intra1 and Intra4. A deadlock occurs as A constructs Intra1
and waits for the remote communicator of Inter2 (requiring Intra4); D constructs In-
tra2 and waits for the remote communicator of Inter1 (requiring Intra3). We avoid the
deadlock by constructing intercommunicators after intracommunicators.

The third deadlocking situation is caused when trying to construct intercommuni-
cators which have common intracommunicators. The situation is similar to the first
case. Suppose that processes A and B participate in intercommunicators Inter1 and In-
ter2. A may try to construct Inter1 and then Inter2, whilst B first Inter2 and then In-
ter1. We avoid the deadlock by forcing an ordering on the construction of intercom-
municators based on the respective construction tag value.

The three policies for avoiding deadlocks have been implemented in SetEnvPars
routine. Consequently, CLAs specify the creation of communicators and not their or-
der of creation.

346 Y. Cotronis and P. Polydoras

3.3 Methodology Analysis by Example

We demonstrate Ensemble-2 methodology using an example, the objective of which
is to create an environmental simulation program. The participant programs are: a ge-
neric atmospheric model that computes environmental quantities, such as wind veloc-
ity, temperature and humidity, and also simulates the rain model, if calculations indi-
cate rain occurrence; an ocean model which is combined with the atmospheric one in
computing these quantities; a snow model, used if atmospheric calculations indicate
snow, which simulates the snow phenomenon and computes the water quantity being
accumulated to the ground, due to snow; a hydrologic model, which receives water
amounts from either snow or atmospheric model. In the rest of the paper we will fo-
cus on how model coupling procedure is accomplished, examining each coupling con-
figuration individually. The following figure depicts the model interaction scenario:

 SendRecv(X1)

 SendRecv(V1)
 if(humidity>humidity_threshold){
 if(temperature>snow_threshold){
 spawn(“interaction1.txt”)
 spawn(“interaction2.txt”)
 }else{
 spawn(“interaction3.txt”)
 }
 if(interaction2 OR interaction3){
 if(interaction1)
 SendRecv(V3)
 SendRecv(V2)
 }

SendRecv(W1)
SendRecv(W2)

UER 0UER 1

UER 2

Ocean

Atmospheric

If(communicate_with(Snow))
 SendRecv(A2)
SendRecv(A1)

Hydrologic

 SendRecv(B1)
 SendRecv(B2)

Snow

UER 0

UER 0

Exte
rna

l In
ter

co
mmun

ica
tor

Initial Ocean’s CLAs
MyUER 2 color 2 X1(Inter Remote 1 Tag 1)

Initial Snow’s CLAs - Snow
MyUER 2 color 1

B1(ExtInter Remote 0 Tag 6)
B2(PortInter Server Remote 0 Tag 2)

Initial Hydrolics’s CLAs – Hydro1
MyUER 0 color 1

A1(ExtInter Remote 0 Tag 5)
 A2(PortInter Client Remote 0 Tag 2)

Initial Atmospheric’s CLAs
MyUER 0 color 1

V1(Intra Remote 1 Tag 0)
MyUER 1 color 1

W1(Intra Remote 0 Tag 0)
W2(Inter Remote 2 Tag1)

Atmospheric’s CLAs – Atm-Hydro
MyUER 0 V2(ExtInter Remote 0 Tag 5)

Atmospheric’s CLAs – Atm-Snow
MyUER 0 V3(ExtInter Remote 0 Tag 6)

Internal
Intercommunicator

Intracomm

External Intercommunicator

Port Intercommunicator

Initial Hydrolics’s CLAs – Hydro2
MyUER 0 color 1

A1(ExtInter Remote 0 Tag 5)

Fig. 1. Each square section indicates a common MPI_COMM_WORLD. Each arrow symbol-
izes a communication channel. We note that the pseudo code of the two atmospheric processes
is not the component’s source code, since it should be the same, but the code being actually
executed by each process.

In the figure there are five components, one for each model, which establish a
number of communication channels, using all three types of intercommunicators,
along with an intracommunicator. We depict two processes from the atmospheric
program, and one process from each of the others. Atmospheric with UER=1 and the
ocean process communicate through the W2-X1 internal intercommunicator channel.
Atmospheric processes communicate with each other through the intra channel W1-
V1. In the atmospheric process with UER=0 we show the code for spawning proc-
esses from hydrologic and snow models. It communicates with the snow process
through the external intercommunication channel V3-B1, and with the hydrologic

 Ensemble-2: Dynamic Composition of MPMD Programs 347

process through the external inter channel V2-A1. Snow and hydrologic processes
communicate through the port channel A2-B2.

Since the decision of process spawning from snow and hydrologic components is
made by the atmospheric process at runtime, the communication establishment infor-
mation being delivered to it, through CLAs, should not be predefined. So, we cannot
use a single CLA set. In general, in order to solve this problem, we should first be
able to numerate all possible child components. Then we describe the communication
configuration for each possible child component into separate CLA sets, just as in
other process communication cases. Each parent/child interaction is assigned with a
unique id. In our example, the atmospheric process with UER=0, may spawn proc-
esses from the hydrologic and snow components. The atmospheric-hydrologic inter-
action is assigned with “Atm-Hydro” id and the atmospheric-snow interaction with
“Atm-Snow” id. When certain criteria are satisfied the atmospheric process spawns a
process from either component, using the respective set of CLAs.

However, the child processes should be provided with their own initial CLAs,
something that is responsibility of the parent process. So, if we come up with rain,
then only one hydrologic process is spawned, using the “Hydro2” set of CLAs. Alter-
natively, if snow phenomenon occurs, then the snow process establishes its communi-
cation channels, described in “Snow” set of CLAs, whereas the hydrologic process
uses the “Hydro1” set of CLAs. The difference between “Hydro1” and “Hydro2” is
that in the first case, since a snow process also partixipates, an additional communica-
tion channel is described, with that process, through a port intercommunicator.

However, the code presented in figure 1 does not contain any hard coded informa-
tion about any kind of CLAs or children components. When the atmospheric process
0 spawns child processes, it uses the spawn function, actually a wrapper of
MPI_Comm_spawn, but instead of passing the child executable name as the first
function’s argument, it uses a different configuration file for every possible case. For
example, if only the hydrologic process should be spawned, then the “interac-
tion3.txt” file is employed. This file contains the “Hydro” child component name, the
“Hydro2” child CLA set and the “Atm-Hydro” parent CLA set, which should be used
in this interaction scheme. Similarly, the “interaction2.txt” contains the same infor-
mation, except from the “Hydro1” child CLA set. Finally, “interaction1.txt” defines
“Snow” as the child component, with “Snow” as its CLA set and “Atm-Snow” as the
parent CLA set. So, the atmospheric parent process can spawn children processes, es-
tablishing any desirable connection pattern, coded in a respective configuration file.

3.4 Support of External Intercommunicators

In Ensemble-2, communication among dynamically created processes is handled by
the external intercommunicators. In our example, the atmospheric processes commu-
nicate with hydrologic and snow processes through two separate external intercom-
municators. As far as their construction is concerned, a number of problems arise,
particularly due to the asymmetric nature of the whole procedure; parent and child
processes do not coexist under a common MPI_COMM_WORLD, the splitting of
which would construct new communicators. However, there is a common communi-
cator which comes from the MPI_Comm_spawn, on the parent part, and the

348 Y. Cotronis and P. Polydoras

MPI_Get_parent, on the children part. This communicator is an external one and is
the construction basis of any new communicator between parent and child processes.

In Ensemble-1 all communicators are constructed in SetEnvPars, called after
MPI_Init. In Ensemble-2 parent processes construct new external intercommunicators
by calling our External_intercomm_create function, after MPI_Comm_spawn, while
child processes construct them by calling SetEnvPars after MPI_Init, as in Ensemble-
1. In order to pass communication establishment information, described in CLAs, to
this function, we employ a temporary structure which stores this piece of information,
just as in the case of internal intercommunicators. This structure is also used for
eliminating deadlock situations, examined in section 3.2, by being ordered based on
the construction tag of each external intercommunicator.

For constructing of external intercommunicators, a complex mechanism is adopted:
In order for parent processes to calculate the ranks of the remote child processes, they
use their ECW, translate UERs to actual process ranks and then inform them of their
own ranks. This is done because child processes do not have access to their parent
ECW, something that does not stand for the parent side.

The additions to CLAs, in order to support construction of external intercommuni-
cators are: (i) the symbolic intercommunicator name, (ii) a tag for the construction of
intercommunicator and (iii) the UERs of local and remote group leaders. However,
the CLAs of child processes do not include the UER of remote group leader, since
they do not have access to the parent ECW, in order to make the translation from
UER to the actual process rank. The communication CLAs are exactly the same as in
other communicator types. As shown in figure 1, the atmospheric process with
UER=0 communicates with the hydrologic one, through local port V2 with message
tag 5. On the other side, snow process uses local port A1 with the same message tag.

3.5 Support of Port Intercommunicators

Another important feature of MPI-2 specification is the communication establishment
between pairs of process groups that do not share a communicator, through MPI ports,
in a client/server manner. In our example of figure 1, these two groups are the hydro-
logic and the snow. The server component (in our case, snow) opens the port and
waits for the client component (hydrologic) to request a connection. Then a new in-
tercommunicator is created, upon which the two groups interact. This procedure is
cloaked under Ensemble methodology, according to which programmers just describe
which two parts participate and the rest is done automatically and in a transparent
way. Apart from their creation method, port intercommunicators are the same as other
intercommunicators and therefore are handled by our methodology similarly.

The construction mechanism of port intercommunicators is much simpler that these
of other communicators, but also much more time demanding. The time consuming
part of this procedure is not for constructing communicators, but that of determining
remote process ranks. In all other communicator constructions, there was always a
way for determining remote ranks from UERs. However, in this case, the two process
groups, which share a port intercommunicator, do not have access to the remote
ECW, in order to perform calculations concerning remote process ranks. The only so-
lution is all processes from one group send messages with data their ranks and tag
their UERs to all processes of the other group, through the new port intercommunica-
tor. Then each process receives the rank-UER pairs and does the matching.

 Ensemble-2: Dynamic Composition of MPMD Programs 349

The additions to CLAs, in order to support port intercommunicators construction
are (i) the symbolic intercommunicator name, (ii) a client/server indication and (iii) a
unique service name that refers to each port intercommunicator. Due to the asymmet-
ric nature of the construction of these communicators, the server group of processes
opens a connection port, through MPI_Open_port, publishes this port with a specific
service name and waits for any connection. The client group of processes looks up for
this service name and tries to connect to server port. The communication CLAs are
exactly the same as in other communicator types. As shown in figure 1, the hydro-
logic process communicates with the snow one, through local port A2 with message
tag 2. On the other side, snow process uses local port B2 with the same message tag.

Similar to the construction of the other types of communicators, there is possibility
for deadlocks. The solution we employed is a temporary structure that stores all con-
struction data of the port intercommunicators, ordered by the service name.

4 Conclusions and Future Work

In this paper, we propose Ensemble-2 which supports composition of dynamically
created processes, following MPI-2 standard. The Ensemble mechanism, described
above, has been developed and tested under Linux environment using LAM-MPI li-
brary [9], but can be ported to any programming environment that supports MPI-2.
Ensemble alleviates a number of complexities and offers new possibilities for MPMD
programming:

1. MPMD intracommunicators may be constructed. Intercommunicators are designed
for establishing point-point communication between process groups spawned by
different executables. Ensemble demonstrates that SPMD intracommunicators are
not an essential aspect of MPI, but just a matter of programming convenience. In
Ensemble it is simple to construct MPMD intracommunicators taking advantage of
the use of collective communications, if necessary.

2. Processes spawned from any number of executables may be grouped in any con-
figuration of communicators (intra, inter or topology) transparently, as directed by
external directives. We have proved that all deadlocking situations are avoided.

3. Application performance depends on specific characteristics of machines. The
choice of the communication context(s) may be important. In Ensemble this choice
could be specified in the external directives in accordance with the mapping of
processes, specified outside MPI programs. If an application is executed on an in-
homogeneous environment, such as a grid, it is possible to group processes in dif-
ferent communicator types, best suited to the host machine.

4. In Ensemble, the communication data are not hard coded but can be controlled ex-
ternally by directives. Components may specify only the possibility of communica-
tion not the actual communication, opening the possibility for using processes in
any communication pattern.

5. We have extended Ensemble to support dynamically created processes. We com-
pose applications based on external and port intercommunicators. Ensemble-2 con-
stitutes a powerful software package that provides the possibility for composing
components dynamically, creating complex MPMD applications.

350 Y. Cotronis and P. Polydoras

Up to now we have focused our effort on the basic low level mechanisms for sup-
porting dynamic MPMD applications. We plan to develop a high level interface ab-
stracting tedious low level details, based on the High Level Composition Environment
of Ensemble-1 which has been recently implemented in Python [10]. A programmer
may use the Ensemble-API within standard Python scripts to specify process compo-
sitions and machine mappings. All necessary scripts and files incorporating the low
level directives (CLAs) for composing MPI programs are generated.

We also plan to introduce into Ensemble-2 a level of abstraction of low-level ports,
by using data quantities in meshes, used successfully in MpCCI [6] for MPI-1 appli-
cations. Programmers may design dynamic compositions by defining data-meshes and
the physical quantities, which may be either required or produced by components.
Composition couples required and produced quantities. We have already applied this
coupling in the virtualization of MPI components as grid OGSA services [3]. We are
currently redesign and extend this virtualization using WSRF services.

Acknowledgement

We like to thank Special Accounts of National and Kapodistrian University of Athens
for the financial support.

References

1. Cotronis, J.Y, Composition of Message-Passing Interface Applications Over MPICH-G2,
The International Journal of High Performance Computing Applications, Vol. 18, No. 3,
Fall 2004, pp. 327-339.

2. Cotronis, J.Y., Application Composition in Ensemble using Intercommunicators and Proc-
ess Topologies PVM/MPI’03, LNCS 2840, pp. 482-490, Springer.

3. E. Floros, Y. Cotronis, Exposing MPI Applications as Grid Services, Euro-Par 2004,
LNCS Vol. 3149 Springer 2004, pp. 436-443.

4. Message Passing Interface Forum MPI: A Message Passing Interface Standard. Interna-
tional Journal of Supercomputer Applications, 8(3/4): 165-414, 1994.

5. Message Passing Interface Forum. MPI-2: Extensions to the Message Passing Interface,
July 1997, www.mpi-forum.org.

6. Ahrem, Regine; Post, Peter; Steckel, Barbara; Wolf, Klaus. MpCCI: A Tool for Coupling
CFD with Other Disciplines. In Proceedings of the 5th World Conference in Applied Fluid
Dynamics, CFD-Efficiency and the Economic Benefit in Manufacturing (June 17-21,
2001),

7. Gropp, W. and Lusk, E. 2001. Installation and User’s Guide for MPICH, A Portable im-
plementation of MPI, ANL-01/x. Argonne National Laboratory.

8. Gropp, W. and Lusk, E. March 2005. Installation and User’s Guide for MPICH2. Mathe-
matics and Computer Division. Argonne National Laboratory.

9. Greg Burns and Raja Daoud and James Vaigl, LAM: An Open Cluster Environment for
MPI, Proceedings of Supercomputing Symposium, 379-386, 1994.

10. G. Van Rossum, F. L. Drake, Python Reference Manual Release 2.4.1, March 2005,
www.python.org.

New User-Guided and ckpt-Based Checkpointing
Libraries for Parallel MPI Applications�,��

Paweł Czarnul and Marcin Frączak

Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology, Poland

pczarnul@eti.pg.gda.pl, marcin.f@wp.pl
http://fox.eti.pg.gda.pl/∼pczarnul

Abstract. We present design and implementation details as well as performance
results for two new parallel checkpointing libraries developed by us for paral-
lel MPI applications. The first one, a user-guided library requires from the pro-
grammer to support packing and unpacking code with an easy-to-use API using
MPI constants. It uses MPI-2 collective I/O calls or a dedicated master process
for checkpointing. The other version is a technically advanced parallel imple-
mentation of checkpointing based on the user-level ckpt library. It uses wrap-
pers for MPI calls in the user program which enables to run a shadow MPI
application just for communication purposes. Communication between original
processes and the shadow MPI code is done via shared memory segments to
which communication buffers are mapped. We present checkpoint/restart times
for the two approaches and subversions proposed by us compared to an available
LAMMPI/BLCR checkpointing solution for MPI applications. The performance
of all the versions and I/O optimizations are discussed for a 4-node, 16-processor
cluster with NFS and specifically for single SMP nodes with a local file system.

1 Introduction and Goals

Checkpointing of applications can allow an application to be checkpointed periodically
to be restarted after a system crash. Secondly, it enables a process migrate to another
node to balance load or make some nodes available to the user. For checkpointing of par-
allel MPI programs, the solution must either handle all pending communication at the
time a checkpoint signal is issued or assume a simplified model in which checkpoints
are generated at designated points where there is no application data in the buffers and
the network. The following checkpointing methods can be distinguished:

1. user guided ([1], [2], [3]) – programmer specifies what data needs to be included or
excluded in/from the checkpoint,

2. user level libraries like ckpt ([4]), Condor ([5]) and Libckpt ([6]) – usually require
linking a library to a program with slight or no modifications to the code. Do not
require root privileges but are often limited in handling system calls, threads etc.
[7] announces Hector (alpha version) – checkpointing for MPI with Dynamite 2.0,

� Task WP.13 of 6 T11 2003 C/06098 “CLUSTERIX - The National Linux Cluster”. Calcula-
tions carried out at the Academic Computer Center in Gdansk, Poland.

�� Partially covered by the Polish National Grant KBN No. 4 T11C 005 25.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 351–358, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

352 P. Czarnul and M. Frączak

3. hybrid approaches – [8] presents an interesting work in which the programmer
inserts calls to PotentialCheckpoint in the code where checkpoint can be
invoked. The whole memory space is saved automatically though.

4. modifications or extensions of existing implementations e.g.: LAM MPI/BLCR
(LAM – [9] coupled with kernel-level BLCR – [10]) or MPICH-V ([11], MPICH
coupled with Condor – [5]). This solution is especially attractive for parallel MPI
programs as can offer a truly transparent solution but is tighly coupled with the in-
ternals of a particular implementation. May require root privileges as LAM/BLCR.

The contribution of our work are two advanced implementations of checkpoint-
ing libraries, using coordinated ([8]) algorithms1:

PARUG: flexible user-guided version with fast MPI-2 file system calls saving
checkpoint collectively or through a dedicated master process, only necessary
data needs to be packed which is selected by the knowledgeable programmer in the
code. Thus it has the potential of saving only data necessary after restart.

PARCKPT: extensible, fast and transparent checkpointing version for any MPI im-
plementation using a sequential checkpointing library – a ckpt-based ([4])
version was developed with checkpoints saved locally or through a checkpoint
server (ckpt feature). Contrary to other transparent solutions like LAMMPI/
BLCR or MPICH-V, PARCKPT can be used with any MPI implementation giv-
ing transparent checkpointing, can also be adapted for use with other sequential
checkpointing libraries/tools examples of which are Condor ([5]) and Libckpt ([6]).

These benefits come at the cost of a slightly limited application model – synchronous
parallel application – it is assumed that all processes successively reach the same
points in the program code where checkpoint can occur and pending messages are not
considered at those points. This shortens time to checkpoint and the model is suitable
for a wide range of applications e.g. SPMD ([12]) or synchronous Master-Slave.

2 Proposed User-Guided Checkpointing

In PARUG, collective routine CX_CheckCheckpoint() (sample code shown in
Figure 1) needs to be inserted by the programmer into potential points where check-
points can occur denoting iterations, which can, if ordered by a signal earlier, save
the states of the processes using MPI-2. Alternatively, the state of the application can
be saved by one designated process if the programmer does not provide synchronized
operations.

The sequence of actions for the checkpointing procedure is as follows (Figure 1):

1. Send a SIGUSR1 signal to any MPI process which sets a global flag.
2. As soon as the process calls function CX_CheckCheckpoint() (potentially in

a loop of SPMD computations), the flag is read and asynchronous messages are sent
to the other processes. An iteration number (Paragraph 1, hidden from the program-
mer) for checkpointing to occur at is also propagated (received by MPI_Irecv
calls).

1 Available from authors, to be released at http://fox.eti.pg.gda.pl/∼pczarnul.

New User-Guided and ckpt-Based Checkpointing Libraries 353

Fig. 1. Proposed User-guided Approach: Inter Process Communication Schema

3. In the following operating modes of PARUG, corresponding actions occur:
– CX_SYNCHRONIZED: when the program reaches the required iteration number

all processes save data pointed by the programmer to one checkpoint file. All
processes can synchronize on CX_CheckCheckpoint() for checkpointing;

– CX_LOOSE: only one selected master process saves data to the checkpoint file
at the first call to CX_CheckCheckpoint().

Independently from the above, the library can operate in two modes:

1. Parallel data write (default) – checkpoint data is written/read by MPI_File
_write_at_all/ MPI_File_read_at_all MPI-2 functions which can
speed-up data write times/access by grouping, collective buffering etc. ([13]).

2. Data write through a master process – all checkpoint data from all processes is
sent to the process with MPI rank 0 which then writes data to a file using MPI-2
calls.

3 Proposed ckpt-Based Parallel MPI Checkpointing Library

In PARCKPT, no code changes are required but all MPI functions are replaced by wrap-
pers (preceded by RES_, sample code shown in Figure 2). The wrappers for MPI com-
munication routines denote the aforementioned potential checkpoint points and count
iterations internally which is used to calculate a global iteration number for check-
pointing. Thus, currently, the library can be used with synchronous applications with a
uniform number of communication actions per per process per iteration.

In this solution, a static library is linked with the original user application instead of
an MPI library. The new library includes functions substituting MPI functions (preceded
by RES_). Original MPI functions are called by another process, a wrapper. This makes
it possible to checkpoint the original processes using ckpt since the processes do not
call true MPI functions. The wrapper also prepares the MPI world before the start and
after the restart of the user application. For each process of the application a separate
wrapper process is created (Figure 2).

354 P. Czarnul and M. Frączak

Fig. 2. Proposed ckpt-based Checkpointing: Inter Process Communication Schema

Application–wrapper communication uses signals and shared memory i.e. the user
application only passes data through shared memory to the wrapper which calls MPI
functions. However, copying of user data into/from shared memory regions when pass-
ing/fetching it to/from the wrapper for sending/receiving decreases performance. We
attach the shared memory ’window’ to the memory region that already contains user
data – the buffers. This is done using the shmat function with the SHM_REMAP flag set
which removes all other memory mappings from that memory region though. Thus the
buffer data is saved in a temporary buffer and restored after the attachment. This causes
a serious slowdown once, but speeds things up if the same buffer is used repeatedly.

A typical scenario for start/checkpoint/restart looks as follows:

1. Preprocessing the application source code, substituting any calls to MPI functions
with their RES_ substitutes and page aligning data buffers.

2. Start of the wrapper which starts the user application process.
3. SIGUSR1 signal to an application process starts checkpointing.
4. During the next MPI action after receiving the signal, the process that received it

sends a specific MPI message to every other process of the application. The mes-
sage defines the checkpoint at some iteration in the future.

5. At the defined iteration processes order their wrappers to leave the MPI world
gracefully (call MPI_Finalize()) and exit.

6. The application processes checkpoint (using ckpt, [4]) and exit.
7. Upon restart the wrappers restart the application processes which continue without

noticing any checkpoint/restart.

Similarly to PARUG, we distinguish two subversions of the implementation:

1. standard – all processes simply write data in the local file system.
2. a ckpt server (implemented in ckpt) is used to which checkpoints are sent

over TCP and then saved locally).

New User-Guided and ckpt-Based Checkpointing Libraries 355

4 Experimental Results

4.1 Testbed Environment and Parallel MPI Application

All simulations used a 16-processor cluster (four 4-processor nodes, 512MB RAM
each) with Pentium III Xeons and Ethernet switches. On one node checkpoints were
saved locally (node g55) while the other nodes (g52-g53) saved to g55 via NFS.

We used an SPMD MPI application (LAMMPI 7.0.6, BLCR 0.3.1 for LAM/BLCR)
which runs 1000 time steps in which cells of a 2D domain are updated. The domain is di-
vided equally among the processors. Between iterations, processes exchange boundary
cell data. We varied the size of the domain from 32MB to 128MB. The implementation
corresponds to parallel applications like electromagnetic modeling or medical simula-
tions ([12]). For PARUG we pack the whole domain data. PARCKPT and LAM/BLCR
pack communication buffers etc. additionally. In practice, they will save more data than
PARUG. We aimed at the assessment of checkpoint/restart costs for all the methods.

4.2 Proposed User-Guided Approach vs Checkpointing with ckpt Library

Figure 3 presents PARUG’s execution times with one checkpoint/restart executed after
500 out of 1000 iterations. Within one node (2 and 4 processors on g55) the parallel
data write method was faster i.e. MPI-2 calls were more efficient than routing data
through one process on this node. However, for larger configurations, writes through a
master residing on node g55were faster than even MPI-2 collective calls. The internode
NFS throughput appeared to be lower compared to native MPI send/recvs and fast disk
access from node g55 or the rcp internode throughput (measured).

Figure 4 shows execution times for the standard and ckptserv versions of PAR-
CKPT, with one checkpoint/restart executed after 500 out of 1000 iterations. The ckpt
server version is faster for configurations larger than one node. On one node standard
writes to separate files are faster than routing through one local process.

Fig. 3. PARUG: Execution Times of the Test-
bed Application with One Checkpoint/Restart

Fig. 4. PARCKPT: Execution Times of
the Testbed Application with One Check-
point/Restart

356 P. Czarnul and M. Frączak

4.3 Comparison of Parallel MPI Checkpointing Methods

Finally, we compared both PARUG and PARCKPT (combinations of best subversions)
against each other and LAM/BLCR (Table 1, Figures 5 and 6). Both PARCKPT and
LAM/BLCR use sequential checkpointing libraries in a parallel MPI environment.

Table 1. Comparison of Tested Parallel Checkpointing Methods

Method Subversion Ckpt+Restart Time Features
PARUG MPI-2 ver-

sion
slow on NFS, fast
on SMP node

flexible, not transparent to programmer, fast, packs
only necessary data, can restart on different no of

designated
master

fast on NFS, slow
on SMP node

processes than checkpointed, limited programming
model (extendable with some programming effort)

PAR
CKPT

std local
writes

slow on NFS, fast
on SMP node

theoretically (almost) fully transparent although re-
quires synchronous operations, limited set of MPI
functions supported now, fast, checkpoints larger

ckptserv fast on NFS, slow
on SMP node

than PARUG and LAM/BLCR, uses LINUX-
specific memory mappings for high performance

LAMMPI/BLCR slower than
PARUG, faster
than PARCKPT
for smaller sizes,
slower for larger

fully transparent to programmer, easy-to-use,
checkpoints smaller than PARCKPT, only slightly
larger than PARUG, *for 1-node checkpoints of
app processes appeared several seconds earlier than
the mpirun checkpoint. The application processes
were working until that time. The former yields
times very close (but longer) to PARUG (although
the mpirun checkpoint is required to restart).

PARUG is the fastest (see LAM/BLCR note * in Table 1) since it packs/unpacks
least data and apparently because of fast collective MPI-2 calls within one SMP node.
On larger configurations it uses one designated master on node g55. It is followed by:

– On 2 and 4 processors (one node): LAM/BLCR generates smaller checkpoints than
PARCKPT. This can account for faster LAM/BLCR for smaller sizes. For larger
checkpoints LAM/BLCR was slower. [10] and [14] list performance limitations of
BLCR, namely for larger checkpoints in the VMADump module used by BLCR.
These are ([10]) writing memory pages using separate write() calls and making
copies of pages while checkpointing which can cause memory overuse and swap-
ping. LAM/BLCR empties the network from pending messages while keeping the
application working unlike PARCKPT. Also see note * in Table 1.

– On 8-16 processors: PARCKPT is faster than LAM/BLCR – it sends checkpoints
from processes via TCP to ckptsrv on node g55 rather than saving locally via the
slow NFS as LAM/BLCR does. LAM/BLCR failed to run any MPI application on
more than two nodes (cr_init() failed).

We also assessed the overhead of the following components for the testbed appli-
cation without checkpointing, compared to a standard MPI application without check-
pointing: LAMMPI with BLCR – no measurable overhead, ckptserv – no measurable

New User-Guided and ckpt-Based Checkpointing Libraries 357

Fig. 5. Comparison of Checkpointing Approaches: Execution Times of the Testbed Application
with One Checkpoint/Restart

Fig. 6. Comparison of Checkpointing Approaches: Checkpoint/Restart Times

overhead compared to the standard PARCKPT version, PARCKPT – the overhead due
to the additional wrappers and shared memory communication and signal synchroniza-
tion – from 2% on 4 processors to 6% on 16 processors for the domain size of 128MB.

5 Summary and Future Work

We have presented two new checkpointing libraries, their design and showed they offer
better performance than LAM/BLCR for large checkpoints in a specific (NFS) environ-
ment, at the cost of a constrained application model. For the two solutions, we have in-
vestigated two subversions with fast MPI-2 calls/designated master process for PARUG
and local writes/ckptserv for PARCKPT. We showed the latter options are faster on a
shared NFS on two or more nodes while the former on single SMP nodes. NFS opti-
mizations will be investigated as well. We plan on the incorporation of other checkpoint-
ing libraries into the PARCKPT scheme. Currently our PARCKPT supports a limited
set of MPI functions which will be extended. We have also developed a parser for user
applications which replaces MPI calls with PARCKPT-specific wrappers.

358 P. Czarnul and M. Frączak

References

1. Silva, L., Silva, J.: System-level versus user-defined checkpointing. In: Proceedings. Seven-
teenth IEEE Symposium on Reliable Distributed Systems. (1998) 68–74

2. Czarnul, P.: Programming, Tuning and Automatic Parallelization of Irregular Divide-and-
Conquer Applications in DAMPVM/DAC. International Journal of High Performance Com-
puting Applications 17 (2003) 77–93

3. CUMULVS: (Collaborative User Migration, User Library for Visualization and Steering)
Distributed Computing Group, Computer Science and Mathematics Division, Oak Ridge
National Laboratory, http://www.csm.ornl.gov/cs/cumulvs.html.

4. Zandy, V.C.: (ckpt library) http://www.cs.wisc. edu/∼zandy/ckpt/.
5. Condor Team, Attention: Professor Miron Livny, Dept of Computer Sciences, 1210 W. Day-

ton St., Madison, WI 53706-1685, (608) 262-0856 or miron@cs.wisc.edu Condor Team,
Computer Sciences Department, University of Wisconsin-Madison, Madison, WI: (The Con-
dor Project, CondorâĂŹs Checkpoint Mechanism)

6. J.S.Plank, M.Beck, G.Kingsley, K.Li: libckpt: Transparent Checkpointing Under UNIX.
Conference Proceedings USENIX Winter 1995 Technical Conference (1995)

7. Romanov, S., Malashonok, D.Y., Iskra, K., Gubala, T.: The Dynamite checkpointer 2.0.
Faculty of Science, Informatics Institute. (2003)
http://www.science.uva.nl/research/scs/Software/ckpt/#hector.

8. Bronevetsky, G., Marques, D., Pingali, K., Stodghill, P.: Automated application-level check-
pointing of mpi programs. In: Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming, San Diego, California, USA (2003) 84–94

9. Sankaran, S., Squyres, J., Barrett, B., Lumsdaine, A., Duell, J., Hargrove, P., Roman, E.:
The lam/mpi checkpoint/restart framework: System-initiated checkpointing. Los Alamos
Computer Science Institute (LACSI) Symposium (2003)

10. Duell, J., Hargrove, P., Roman, E.: The Design and Implementation of Berkeley Lab’s Linux
Checkpoint/Restart. In: Future Technologies Group white paper. (2003)

11. Franck Cappello, Project Leader at al.: (Mpich-v: Mpi implementation for volatile resources)
http://www.lri.fr/∼bouteill/MPICH-V.

12. Czarnul, P., Grzeda, K.: Parallel Simulations of Electrophysiological Phenomena in My-
ocardium on Large 32 and 64-bit Linux Clusters. In: 11th European PVM/MPI Users Group
Meeting Budapest, Hungary, September 19 - 22, 2004. Proceedings. (Volume 3241/2004.)

13. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Interface.
(1997) University of Tennessee, Knoxville, Tennessee.

14. Sankaran, S., Squyres, J., Barrett, B., Lumsdaine, A., Duell, J., Hargrove, P., Roman, E.: The
LAM/MPI Checkpoint/Restart Framework: System-Initiated Checkpointing, Los Alamos
Computer Science Institute (LACSI) Symposium (2003)

Performance Profiling Overhead Compensation
for MPI Programs

Sameer Shende1, Allen D. Malony1, Alan Morris1, and Felix Wolf2

1 Department of Computer and Information Science,
University of Oregon

{sameer, malony, amorris}@cs.uoregon.edu
2 Innovative Computing Laboratory, University of Tennessee

fwolf@cs.utk.edu

Abstract. Performance profiling of MPI programs generates overhead during
execution that introduces error in profile measurements. It is possible to track and
remove overhead online, but it is necessary to communicate execution delay be-
tween processes to correctly adjust their interdependent timing. We demonstrate
the first implementation of a onlne measurement overhead compensation system
for profiling MPI programs. This is implemented in the TAU performance sys-
tems. It requires novel techniques for delay communication in the use of MPI.
The ability to reduce measurement error is demonstrated for problematic test
cases and real applications.

Keywords: Performance measurement, analysis, parallel computing, profiling,
message passing, overhead compensation.

1 Introduction

When a parallel program is profiled, measurement operations generate overhead that
affects the performance observed. We call this performance intrusion [2]. Performance
profiling tools typically report intrusion as a percentage slowdown of total execution
time, but the intrusion effects themselves will be distributed throughout the profile re-
sults. While performance intrusion can alter program execution and, thus, perceived per-
formance (i.e., performance perturbation), performance profiling tools rarely attempt to
adjust the performance measurements to compensate for the intrusion.

In earlier work [3], we present a technique to measure overhead on each process of a
parallel computation and remove its local effects. But these are not the only effects over-
head intrusion can cause. Due to inter-process communication, the delays introduced by
intrusion will propagate between processes. In more recent work [4], we specify models
for parallel overhead compensation and the algorithms that must be used when profiling
message passing parallel programs. These models show why it is necessary to commu-
nicate intrusion delays with every message communication. However, this is not so easy
to accomplish.

This paper presents our results for the implementation of the parallel profile over-
head compensation models in an MPI environment. Such overhead compensation tech-
niques have never been implemented before. Here we outline our approach to piggyback

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 359–367, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

360 S. Shende et al.

intrusion delay on messages. We demonstrate the technique with applications and show
that measurement error due to overhead can be removed, locally and globally.

Section §2 provides a brief background on the problem. Our solution approach is
presented in Section §3. Section §4 outlines our experimental environment and shows
the results of our validation tests. Conclusions and future work are given in Section §5.

2 Problem Background

Events are actions that occur during program execution. Typical events include interval
events that are characterized by a pair of actions marking entry and exit, and atomic
events that occur at a single place or time. Tools insert measurement code to track the
performance of a parallel program as made visible by the instrumented events. Execut-
ing the measurement code introduces overhead. If an event trace is collected, there are
techniques to analyze the trace and compensate the measurement overhead [7,8,9,10],
including the correction of perturbation effects.

Unfortunately, this type of analysis is not possible with profile-based measurements
where all compensation decisions must be made at the time the event occurs, more
or less. This raises the problem of how to track delays between processes. Basically,
measurement overhead occurring on one process affects events on other processes that
are causally related [12]. Consider a process that executes a measured routine a large
number of times (and thus incurs a large overhead associated with the entry and exit
instrumentation), and then sends a message to another process that blocks waiting for
the message. If the receiving process has accrued little measurement overhead before
the receive operation, the message receipt will be delayed. Without the receiver knowing
that that delay was due to the measurement overhead in the sender, the receiver’s profile
will end up accounting for the sender’s overhead as its waiting time, when in reality, it
may not have waited at all.

To accurately re-construct events in all the processes, we must account for the time
spent executing instrumentation calls in the sender process and subtract this time from
the wait time in the receive, if any. To do so, we propose a scheme where local delays
are propagated along with inter-process communication events in the form of piggy-
back messages. The delay value represents how much sooner a process would have
executed the given communication operation if there was no measurement overhead in
the process. The receiving process extracts this piggyback message and adjusts its local
delay. What is interesting is that the adjustment cannot be any greater than the waiting
time for the current receive.

Consider two cases. In the first case, the remote delay is equal to or exceeds the
sum of the waiting time and the local delay. In this case, the waiting time in the absence
of instrumentation is zero, as the message would be received as soon as the receive
call is executed. In the second case, the remote delay is less than the sum of the local
delay and the waiting time. Here, depending on whether the remote delay is less than or
greater than the local delay, the uninstrumented waiting time may be more or less than
the current waiting time. On receiving the piggyback message, the receiver compares
the local delay with the remote delay. The adjustment of wait time is the difference in
the remote delay and the local delay: Ad justment = remote(delay) − local(delay).

Performance Profiling Overhead Compensation for MPI Programs 361

This adjustment is subtracted from the original wait time to give the new waiting time:
Wnew = W − Ad justment = W − (remote(delay) − local(delay)).

If we consider the beginning of the wait time and the receipt of the message as two
events, then, if there is no delay in the local receiving process, the point that corre-
sponds to the beginning of the wait routine is shifted to the left by the amount equal to
the local delay. And the point where the message is received shifts by an amount equal
to the remote delay. The distance between the two points is the new waiting period. The
adjustment (or the difference between the remote and local delays) may be positive,
negative, or zero corresponding to when the remote process experiences more, less or
the same delay as compared to the local process. Correspondingly, the wait time may
decrease, increase, or remain the same respectively, but it can never be adjusted to be
negative. This adjustment of waiting time is propagated along the callstack of the receiv-
ing process, so the inclusive time spent in all ancestor routines is adjusted accordingly.
This is a necessary calculation in order to properly compute profiling measurements.
When we compute the local delay (at both sender and receiver processes), we assess
the measurement overhead and then subtract the waiting time adjustments that have
been made in the program. This value is then sent along with a message. Thus, delays
from one process reach all processes that have causally related events.

The full details of our parallel profile compensation algorithms are described in our
earlier paper [4].

3 Implementation

To test our models of parallel overhead compensation, we built a prototype using the
TAU performance system [5] and the Message Passing Interface (MPI). Our goal was
to produce a widely portable prototype that could be efficiently implemented and easily
applied. We chose MPI as the communication substrate due to its wide acceptance in
the parallel computing community as the de-facto message communication standard, as
well as due to its portable tool support.

3.1 MPI Profiling Support

MPI supports creation of portable profiling and tracing tools using its profiling inter-
face, PMPI. This interface allows a tool to interpose a library between the application
and the MPI substrate and intercept one or more MPI calls. MPI provides a name-
shifted interface to all its calls. For example, an MPI call such as MPI Send() is also
available as PMPI Send(). Both are guaranteed by the MPI standard to provide the
same functionality. Furthermore, if a tool defines an MPI Send() call, it takes prece-
dence over the MPI library’s MPI Send() call (this is done by using weak bindings for
defining the library’s calls). The tool can then define one or more MPI bindings and
create measurement timers and start and stop them around the name-shifted version of
the corresponding MPI call. Every MPI implementation must implement this profiling
interface to conform to the MPI standard. This mechanism allows vendors of parallel
systems to optimize the implementation of MPI to their target platforms and at the same
time expose the hooks for tracking MPI performance to tool builders without providing
them access to their proprietary source code.

362 S. Shende et al.

3.2 Schemes to Piggyback Delay

To transmit the local delays encountered in a process (due to program instrumenta-
tion) to other processes, we examined several alternatives. The first scheme modifies
the source code of the underlying MPI implementation by extending the header sent
along with a message in the communication substrate (Photon [11] uses this approach).
Unfortunately, it is not portable to all MPI implementations and relies on a specially
instrumented communication library. The second scheme sends an additional message
containing the delay information for every data message. This scheme only requires
changes to the portable MPI wrapper interposition library for the tool. While it is
portable to all MPI implementations, it has a performance penalty associated with trans-
mitting an additional message, a penalty not incurred by the first scheme. As a result,
the overhead caused by the additional message would require further compensation.

The third scheme copies the contents of the original message and creates a new
message with our own header that would include the delay information. This scheme
has the portability advantage of the second scheme and avoids the second scheme’s
transmission of an additional message. However, copying contents of a message could
prove to be an expensive operation, especially in the context of large messages that are
transmitted in point-to- point communication operations.

We implemented a modification of the third scheme, but instead of building a new
message and copying buffers in and out of messages (at the sender and the receiver),
we create a new datatype. This new datatype is a structure with two members. The
first member is a pointer to the original message buffer comprised of n elements of
the datatype passed to the MPI call. The second member is a double precision num-
ber that contains the local delay value. Once created, the structure is committed as a
new user-defined datatype and MPI is instructed to send or receive one element of the
new datatype. Internally, MPI may transmit the new message by composing the mes-
sage from the two members by using vector read and write calls instead of its scalar
counterparts. This efficient transmission of the delay value is portable to all MPI imple-
mentations, sends only a single message, and avoids expensive copying of data buffers
to construct and extract messages.

3.3 TAU Overhead Compensation Prototype

To test the validity of our parallel profile compensation models, we built the portable
prototype within the TAU performance system [5]. We previously implemented local
overhead compensation, and now included the parallel compensation support. TAU

computes parallel profile data during execution for each instrumented event. At run-
time, TAU maintains an event callstack for each thread of execution. This callstack has
performance information for the currently executing event (e.g., a routine entry) and its
ancestors. We compute the delay that a process sees locally by first adding the number
of completed calls to half the number of entries along the thread’s callstack. We assume
that an enter profile call takes roughly the same time as an exit profile call, which is
true is most cases. Once we know the total number of timer calls and the total overhead
associated with calling the enter and exit methods (see [3] for details), their product
gives the local timer overhead. We keep track of adjusted wait times in a process, as

Performance Profiling Overhead Compensation for MPI Programs 363

explained earlier and subtract it from the local overhead to compute the local delay.
This delay value is then piggybacked with a message.

Mapping MPI Calls. The essence of our parallel overhead compensation scheme is
that whenever two processes interact with each other, the receiver is made aware of
the sender’s delay value, or how much sooner the communication operation would
have taken place in the absence of instrumentation. We have discussed above how this
scheme operates for synchronous message communication operations using MPI Send
and MPI Recv. In this section we explore how other MPI calls can be made aware of
remote delays.

Asynchronous Operations. When storing or retrieving the piggyback value, we create
an auto variable on the stack in our wrapper routines for MPI Send or MPI Recv. Syn-
chronization operations involve loads or stores to this variable. The logic to process the
piggyback value when it is received is incorporated in the MPI Recv wrapper routine.
Here, we compare the local and remote delays to arrive at how much adjustment needs
to be made to the waiting time. Now let us examine the asynchronous MPI Isend and
MPI Irecv calls. When the user issues the MPI Isend call, we compute the local delay
and create a global variable where this is stored. The location of this global piggyback
variable in the heap memory is used when we create our struct for a new datatype for
sending the message.

On the receiving side, a similar arrangement of the piggyback value is used. When
the message is finally received, MPI automatically copies the contents of the piggyback
value into the heap where this value is to be stored. We also create a map that links
the address of the MPI request to the address of this piggyback value. The logic that
compares the local and remote delays cannot be incorporated in the MPI Irecv wrapp-
per due to the very nature of the asynchronous operation (the values are not received
when the routine executes). Hence, we do not adjust the time spent in MPI Irecv as we
did for MPI Recv. Instead, an asynchronous message is visible to the program only af-
ter executing the MPI Wait, MPI Test, or variants of these calls (Waitall, Waitsome,
Testall, Testsome) to wait for or test one or more requests. When a request is satis-
fied, we examine the map and retrieve the value of the piggyback variable where the
remote process’ overhead is stored. Then, a comparison of local and remote delays and
an adjustment of waiting time is made on the receiving side. When more than one mes-
sage is received by the process, we need to examine all the remote delays to determine
how much time the process would have waited in the absence of instrumentation. We
discuss this in more detail next with collective operations.

Collective Operations. Consider the class of collective operations supported by MPI.
Let us first examine the MPI Gather call where each process in a given communica-
tor provides a single data item to MPI. The process designated with the rank of root
gathers all the data in an array. It is important to communicate the local delays from
each process to the root process. To do this, we form a message with the piggyback
delay value and call a single MPI Gather call. At the receiving end, we receive a sin-
gle contiguous buffer where the application data and the delay values are put together
in a single buffer. We extract the piggyback values out of this buffer and construct the
application buffer with the rest. Once we get an array of the delay values from each

364 S. Shende et al.

process we compute the minimum delay value from the group of processes. Since the
collective operation cannot complete without the message with the minimum delay, it
must adjust its waiting time based on this value. So, the collective operation reduces to
the case where the receiver gets a message from one process that has the least delay in
the communicator. We can now apply the performance overhead compensation model
as described in the previous section.

When broadcasting a message from one task to several, MPI Bcast is modelled
based on the two process overhead compensation model (see [4]). We create a new
datatype, on the root process, that embeds the original message and the local delay
value. This message is sent to all other members of the group. Each receiver compares
the remote delay with its local delay and makes adjustments to the waiting time and
local overhead, as if it had received a single message from the remote task. We use the
model described earlier to do this.

To model MPI Scatter, which distributes a distinct message to all members of the
group, we create a new datatype that includes the overhead from the root process. This
is similar to the MPI Gather operation. After the operation is completed, each receiver
examines the remote overhead and treats it as if it had received a single message from
the root node, applying our previous scheme for compensating for perturbation.

MPI Barrier requires all tasks to block until all processes invoke this routine.
MPI Barrier is implemented as a combination of two operations: MPI Gather and
MPI Bcast, sending the local delay from each task to the root task (arbitrarily selected
as the process with the least rank in the communicator). This task examines the local
delay and compares it with the task with the least delay, adjusts its wait time and then
sends the new local delay to all tasks using the MPI Bcast operation. This mechanism
preserves the efficiencies that the underlying MPI substrate may provide in implement-
ing a collective operation. By mapping one MPI routine to another, we exploit those
efficiencies.

4 Experimental Results

We validate our parallel performance intrusion compensation model using a prototype
implemented within the TAU performance system. To illustrate the problem, we ex-
amine a parallel MPI application that computes the value of π using the Monte-carlo
integration algorithm. The program calculates the area under the pi function curve from
0 to 1. The program comprises of a master (or server) task that generates work packets
with a set of random numbers. The master task waits for a request from any worker and
sends the chunk of randomly generated numbers to it. For each pair of numbers that
is given to a particular worker, it finds out if the pair of cartesian co-ordinates repre-
sented by the numbers is below or above the pi function curve. Then, collectively, the
workers estimate the value of pi iteratively until it is within a given error range. This
simple example highlights how instrumentation overheads accumulated at the worker
tasks are communicated to the master task. We execute the application in four modes:
when there is no TAU instrumentation, with instrumentation without any compensation,
with local perturbation compensation, and finally, with parallel perturbation compensa-
tion. As shown in table 1, these experiments are shown as distinct columns and we show

Performance Profiling Overhead Compensation for MPI Programs 365

Fig. 1. Parallel overhead compensation in TAU

366 S. Shende et al.

Table 1. A comparison of parallel overhead compensation scheme in Monte-carlo integrator

Task No instrumentation No compensation Local compensation Parallel compensation

Master 73.926 128.179 139.56 73.926
Worker 73.834 128.173 73.212 73.909

the time spent in the worker and master tasks. We show the minimum times spent in the
respective tasks. The timer overhead associated with a TAU timer was 480 nanoseconds
on an Intel R©Itanium2 Linux machine running at 1.5 GHz. The accuracy of compensa-
tion improves when we use high resolution timers, such as those provided by PAPI[1].

The results in Figure 1 and Table 1 show that local compensation schemes do man-
age to reduce the overhead in the worker tasks, but they fail in the master. The parallel
compensation scheme reduces the overhead properly in both master and worker tasks.

5 Conclusion

Most parallel performance measurement tools ignore the overhead incurred by their
use. Tool developers attempt to build the measurement system as efficiently as possible,
but do not attempt to quantify the intrusion other than as a percentage slowdown in ex-
ecution time. Our earlier work on overhead compensation in parallel profiling showed
that the intrusion effects on the performance of events local to a process can be cor-
rected [3] and also modeled how local overheads affected performance delay across the
computation [4]. This paper implements those parallel models in the context of MPI
message passing and demonstrates that parallel overhead compensation can be effec-
tive in practice to improve measurement error. The engineering feats to accomplish the
implementation are novel. In particular, the approach to delay piggybacking can be gen-
eralized to other problems where additional information must be sent with messages.

It is important to understand that we are not saying that the performance profile we
produce with overhead compensation represents the actual performance profile of an
uninstrumented execution. The performance uncertainty principle [2] implies that the
accuracy of performance data is inversely correlated with the degree of performance in-
strumentation. Our goal is to improve the tradeoff, that is, to improve the accuracy of the
performance being measured during profiling. What we are saying in this paper is that the
performanceprofiles produced with our models for performance overhead compensation
will be more accurate than performance results produced without compensation.

Acknowledgements

This research is supported by the U.S. Department of Energy, Office of Science contract
DE-FG02-05ER25680.

References

1. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Programming Interface
for Performance Evaluation on Modern Processors,” International Journal of High Perfor-
mance Computing Applications, 14(3):189–204, Fall 2000.

Performance Profiling Overhead Compensation for MPI Programs 367

2. A. Malony, “Performance Observability,” Ph.D. thesis, University of Illinois, Urbana-
Champaign, 1991.

3. A. Malony and S. Shende, “Overhead Compensation in Performance Profiling,” Euro-Par
Conference, LNCS 3149, Springer, pp. 119–132, 2004.

4. A. Malony and S. Shende, “Models for On-the-Fly Compensation of Measurement Overhead
in Parallel Performance Profiling,” (to appear) Euro-Par Conference, LNCS, Springer 2005.

5. A. Malony, S. Shende, “Performance Technology for Complex Parallel and Distributed Sys-
tems,” In G. Kotsis, P. Kacsuk (eds.), Distributed and Parallel Systems, From Instruction Par-
allelism to Cluster Computing, Third Workshop on Distributed and Parallel Systems (DAP-
SYS 2000), Kluwer, pp. 37–46, 2000.

6. A. Malony, et al., “Advances in the TAU Performance System,” In V. Getov, M. Gerndt, A.
Hoisie, A. Malony, B. Miller (eds.), Performance Analysis and Grid Computing, Kluwer,
Norwell, MA, pp. 129–144, 2003.

7. A. Malony, D. Reed, and H. Wijshoff, “Performance Measurement Intrusion and Perturbation
Analysis,” IEEE Transactions on Parallel and Distributed Systems, 3(4):433–450, July 1992.

8. A. Malony and D. Reed, “Models for Performance Perturbation Analysis,” ACM/ONR Work-
shop on Parallel and Distributed Debugging, pp. 1–12, May 1991.

9. A. Malony, “Event Based Performance Perturbation: A Case Study,” Principles and Practices
of Parallel Programming (PPoPP), pp. 201–212, April 1991.

10. S. Sarukkai and A. Malony, “Perturbation Analysis of High-Level Instrumentation for SPMD
Programs,” Principles and Practices of Parallel Programming (PPoPP), pp. 44–53, May
1993.

11. J. Vetter, “Dynamic Statistical Profiling of Communication Activity in Distributed Applica-
tions,” ACM SIGMETRICS Joint International Conference on Measurement and Modeling
of Computer Systems, ACM, 2002.

12. L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,” Communi-
cations of the ACM, 21(7), 558–565, July 1978.

Network Bandwidth Measurements and Ratio
Analysis with the HPC Challenge Benchmark

Suite (HPCC)

Rolf Rabenseifner, Sunil R. Tiyyagura, and Matthias Müller

High-Performance Computing-Center (HLRS), University of Stuttgart,
Allmandring 30, D-70550 Stuttgart, Germany
{rabenseifner, sunil, mueller}@hlrs.de

www.hlrs.de/people/rabenseifner/, .../sunil/, .../mueller/

Abstract. The HPC Challenge benchmark suite (HPCC) was released
to analyze the performance of high-performance computing architectures
using several kernels to measure different memory and hardware access
patterns comprising latency based measurements, memory streaming,
inter-process communication and floating point computation. HPCC de-
fines a set of benchmarks augmenting the High Performance Linpack used
in the Top500 list. This paper describes the inter-process communication
benchmarks of this suite. Based on the effective bandwidth benchmark, a
special parallel random and natural ring communication benchmark has
been developed for HPCC. Ping-Pong benchmarks on a set of process
pairs can be used for further characterization of a system. This paper
analyzes first results achieved with HPCC. The focus of this paper is
on the balance between computational speed, memory bandwidth, and
inter-node communication.

Keywords: HPCC, network bandwidth, effective bandwidth, Linpack,
HPL, STREAM, DGEMM, PTRANS, FFTE, latency, benchmarking.

1 Introduction and Related Work

The HPC Challenge benchmark suite (HPCC) [5,6] was designed to provide
benchmark kernels that examine different aspects of the execution of real appli-
cations. The first aspect is benchmarking the system with different combinations
of high and low temporal and spatial locality of the memory access. HPL (High
Performance Linpack) [4], DGEMM [2,3] PTRANS (parallel matrix transpose)
[8], STREAM [1], FFTE (Fast Fourier Transform) [11], and RandomAccess are
dedicated to this task. Other aspects are measuring basic parameters like achiev-
able computational performance (again HPL), the bandwidth of the memory ac-
cess (STREAM copy or triad), and latency and bandwidth of the inter-process
communication based on ping-pong benchmarks and on parallel effective band-
width benchmarks [7,9].

This paper describes in Section 2 the latency and bandwidth benchmarks used
in the HPCC suite. Section 3 analyzes bandwidth and latency measurements

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 368–378, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Network Bandwidth Measurements and Ratio Analysis 369

submitted to the HPCC web interface [5]. In Section 4, the ratio between com-
putational performance, memory and inter-process bandwidth is analyzed to
compare system architectures (and not only specific systems). In Section 5, the
ratio analysis is extended to the whole set of benchmarks to compare the largest
systems in the list and also different network types.

2 Latency and Bandwidth Benchmark

The latency and bandwidth benchmark measures two different communication
patterns. First, it measures the single-process-pair latency and bandwidth, and
second, it measures the parallel all-processes-in-a-ring latency and bandwidth.

For the first pattern, ping-pong communication is used on a pair of processes.
Several different pairs of processes are used and the maximal latency and minimal
bandwidth over all pairs is reported. While the ping-pong benchmark is executed
on one process pair, all other processes are waiting in a blocking receive. To limit
the total benchmark time used for this first pattern to 30 sec, only a subset of
the set of possible pairs is used. The communication is implemented with MPI
standard blocking send and receive.

In the second pattern, all processes are arranged in a ring topology and
each process sends and receives a message from its left and its right neighbor in
parallel. Two types of rings are reported: a naturally ordered ring (i.e., ordered
by the process ranks in MPI COMM WORLD), and the geometric mean of the
bandwidth of ten different randomly chosen process orderings in the ring. The
communication is implemented (a) with MPI standard non-blocking receive and
send, and (b) with two calls to MPI Sendrecv for both directions in the ring.
Always the fastest of both measurements are used. For latency or bandwidth
measurement, each ring measurement is repeated 8 or 3 times – and for random
ring with different patterns – and only the best result is chosen. With this type of
parallel communication, the bandwidth per process is defined as total amount of
message data divided by the number of processes and the maximal time needed
in all processes. The latency is defined as the maximum time needed in all
processes divided by the number of calls to MPI Sendrecv (or MPI Isend) in
each process. This definition is similar to the definition with ping-pong, where
the time is measured for the sequence of a send and a recv, and again send and
recv, and then divided by 2. In the ring benchmark, the same pattern is done by
all processes instead of a pair of processes. This benchmark is based on patterns
studied in the effective bandwidth communication benchmark [7,9].

For benchmarking latency and bandwidth, 8 byte and 2,000,000 byte long
messages are used. The major results reported by this benchmark are:

• maximal ping pong latency,
• average latency of parallel communication in randomly ordered rings,
• minimal ping pong bandwidth,
• bandwidth per process in the naturally ordered ring,
• average bandwidth per process in randomly ordered rings.

370 R. Rabenseifner, S.R. Tiyyagura, and M. Müller

Additionally reported values are the latency of the naturally ordered ring, and
the remaining values in the set of minimum, maximum, and average of the ping-
pong latency and bandwidth.

Especially the ring based benchmarks try to model the communication behav-
ior of multi-dimensional domain-decomposition applications. The natural ring is
similar to the message transfer pattern of a regular grid based application, but
only in the first dimension (adequate ranking of the processes is assumed). The
random ring fits to the other dimensions and to the communication pattern of
unstructured grid based applications. Therefore, the following analysis is mainly
focused on the random ring bandwidth.

3 Analysis of HPCC Uploads

Fig. 1 is based on base-run uploads to the HPCC web-page. Therefore, the qual-
ity of the benchmarking, i.e., choosing the best compiler options and benchmark
parameters was done by the independent institutions that submitted results.
The authors have added two results from the NEC SX-6+ and some results for
fewer number of processes on NEC SX-8 and Cray XT3 [12]. For IBM BlueGene,
an additional optimized measurement is also shown in some of the figures. The
measurements are sorted by the random ring bandwidth, except that all mea-
surements belonging to some platform or network type are kept together at the
position of their best bandwidth.

The diagram consists of three bands: 1) the ping-pong and random ring
latencies, 2) the minimal ping-pong, natural ring, and random ring bandwidth-
bars together with a background curve showing the accumulated Linpack (HPL)
performance, and 3) the ratios natural ring to ping-pong, random ring to ping-
pong, and additionally random ring to natural ring.

The systems on the upper part of the figure have a random ring bandwidth
less than 300 MB/s, the systems on the lower part are between 400 MB/s and
1.5 GB/s. Concentrating on the lower part, one can see that all systems show a
degradation for larger CPU counts. Cray and NEC systems are clusters of SMP
nodes. The random ring bandwidth benchmark uses mainly inter-node connec-
tions whereas the natural ring bandwidth uses only one inter-node connection in
both directions and all other connections are inside of the SMP nodes. Therefore
one can see a significant difference between the random ring and the natural ring
bandwidth. One exception is the multi-threaded measurement on a NEC SX-6+
(0.5625 GHz); here, all three bandwidth values are nearly equivalent because on
each SMP, only one MPI process is running. The ratio natural ring to ping-ping
bandwidth varies between 0.4 and 1.0, random ring to ping-pong between 0.1
and 0.45, and random to natural ring between 0.1 and 0.7. With the IBM High
Performance Switch (HPS), the reported random ring bandwidth values (0.72-
0.75 GB/s) are nearly independent from the number of processes (64 to 256 [1.07
Tflop/s]), while the Cray X1 shows a degradation from 1.03 GB/s with 60 MSPs
(0.58 Tflop/s) to 0,43 GB/s with 252 MSPs (2.38 Tflop/s). For some systems,
the random ring latency and performance is summarized in Tab. 1.

Network Bandwidth Measurements and Ratio Analysis 371

Fig. 1. Base runs of the HPC Challenge bandwidth and latency benchmarks, Status
June 27, 2005

372 R. Rabenseifner, S.R. Tiyyagura, and M. Müller

Table 1. Comparison of bandwidth and latency on HPCC entries with more than 0.4
Tflop/s with three exceptions: For SGI Numalink, only MPT 1.10 values are shown,
the older MPT 1.8-1 values are omitted, and for Sun Fire and NEC SX-6, smaller
systems are reported because on larger systems, HPCC results are not yet available,
and the Dell Xeon cluster is included for network comparison. Note, that each thread
is running on a CPU, but the communication and the second HPL value are measured
with MPI processes.

Switch CPU Proc. Number Random Ping- Rand. Ping- HPL Linpack Balance:
Speed of MPI Ring Pong Ring Pong accumu- per Communi./

processes Bandw. Bandw. Lat. Lat. lated process Comput.
GHz x threads GB/s GB/s μs μs Gflop/s Gflop/s byte/kflop

IBM Colony IBM Power 4 1.3 256x1 0.0046 0.108 374 87 654 2.55 1.8
Quadrics switch Alpha 21264B 1.0 484x1 0.023 0.280 40 16 618 1.28 17.8

Myrinet 2000 Intel Xeon 3 3.066 256x1 0.032 0.241 22 22 1030 4.02 8.1
Sun Fire Link Ultra Sparc III 0.9 128x1 0.056 0.468 9 5 75 0.59 94.5

Infiniband Intel Xeon 2.46 128x1 0.156 0.738 12 12 413 3.23 48.2
SGI Numalink Intel Itanium 2 1.56 128x1 0.211 1.8 6 3 639 4.99 42.2

SGI Altix 3700 Bx2 Intel Itanium 2 1.6 128x1 0.897 3.8 4 2 521 4.07 220.
Infiniband, 4x,

InfinIO 3000 Intel Xeon 2.4 32x1 0.178 0.374 10 7 101 3.17 56.3
Myrinet 2000 Intel Xeon 2.4 32x1 0.066 0.245 19 9 97 3.03 21.7

SCI, 4x4 2d Torus Intel Xeon 2.4 32x1 0.048 0.121 9 4 100 3.13 15.2
Gigabit Ethernet, Intel Xeon 2.4 32x1 0.038 0.117 42 37 97 3.02 12.5

PowerConnect 5224
NEC SX-6 IXS NEC SX-6 0.5 192x1 0.398 6.8 30 7 1327 6.91 57.5
NEC SX-6 IXS NEC SX-6 0.5 128x1 0.429 6.9 27 7 905 7.07 60.7
NEC SX-6 IXS NEC SX-6 0.5 64x1 0.487 5.2 26 7 457 7.14 68.1
NEC SX-6 IXS NEC SX-6 0.5 32x1 0.661 6.9 18 7 228 7.14 92.6

NEC SX-6+ IXS NEC SX-6+ 0.5625 32x1 0.672 6.8 19 7 268 8.37 80.3
NEC SX-6+ IXS+) NEC SX-6+ 0.5625 4x8 6.759 7.0 8 6 (268) (66.96) (100.9)

IBM HPS IBM Power 4+ 1.7 64x4 0.724 1.7 8 6 1074 16.79 43.1
IBM HPS IBM Power 4+ 1.7 32x4 0.747 1.7 8 6 532 16.62 45.0
Cray X1 Cray X1 MSP 0.8 252x1 0.429 4.0 22 10 2385 9.46 45.3
Cray X1 Cray X1 MSP 0.8 124x1 0.709 4.9 20 10 1205 9.72 72.9
Cray X1 Cray X1 MSP 0.8 120x1 0.830 3.7 20 10 1061 8.84 93.9
Cray X1 Cray X1 MSP 0.8 64x1 0.941 4.2 20 9 522 8.15 115.4
Cray X1 Cray X1 MSP 0.8 60x1 1.033 3.9 21 9 578 9.63 107.3

+ This row is based on an additional measurement with the communication benchmark
software. The HPL value of this row is taken from the previous row because there
isn’t a benchmark value available and significant differences between single- and multi-
threaded HPL execution are not expected. The last two columns are based on this HPL
value.

For the bandwidth values, the achievable percentage on the random ring from
the ping-pong varies between 4% and 48% with one exception: If only one (but
multi-threaded) MPI process is running on each SMP node of a NEC SX-6+,
random ring and ping-pong bandwidth are nearly the same. For the latency
values, the ratio ping-pong to random varies between 0.23 and 0.99. On only
a few systems, the ping-pong latency and the random ring latency are similar
(e.g., on Infiniband, IBM HPS, NEC SX-6+ multithreaded).

These examples not only show the communication performance of different
network types, but also that the ping-pong values are not enough for a compari-
son. The ring based benchmark results are needed to analyze these interconnects.

4 Balance of Communication to Computation

For multi-purpose HPC systems, the balance of processor speed, along with
memory, communication, and I/O bandwidth is important. In this section, we

Network Bandwidth Measurements and Ratio Analysis 373

analyze the ratio of inter-node communication bandwidth to the computational
speed. To characterize the communication bandwidth between SMP nodes, we
use the random ring bandwidth, because for a large number of SMP nodes,
most MPI processes will communicate with MPI processes on other SMP nodes.
This means, with 8 or more SMP nodes, the random ring bandwidth reports the
available inter-node communication bandwidth per MPI process. To characterize
the computational speed, we use the HPL Linpack benchmark value divided by
the number of MPI processes, because HPL can achieve nearly peak on cache-
based and on vector systems, and with single- and multi-threaded execution. The
ratio of the random ring bandwidth to the HPL divided by the MPI process count
expresses the communication-computation balance in byte/flop (see in Fig. 1)
or byte/kflop (used in Tab. 1). Although the balance is calculated based on
MPI processes, its value should be in principle independent of the programming
model, i.e., whether each SMP node is used with several single-threaded MPI
processes, or some (or one) multi-threaded MPI processes, as long as the number
of MPI processes on each SMP node is large enough that they altogether are
able to saturate the inter-node network [10].

Table 1 shows that the balance is quite different. Currently, the HPCC table
lacks of the information, how many network adapters are used on each SMP
nodes, i.e., the balance may be different if a system is measured with exactly the
same interconnect and processors but with a smaller or larger amount of net-
work adapters per SMP node. On the reported installations, the balance values
start with 1.8 / 8.1 / 17.8 B/kflop on IBM Colony, Myrinet 2000 and Quadrics
respectively. SGI Numalink, IBM High Performance Switch, Infiniband, and the
largest Cray X1 configuration have a balance between 40 and 50 B/kflop. High
balance values are observed on Cray XD1, Sun Fire Link (but only with 0.59
Gflops per MPI process), NEC SX-6 and on Cray X1 and X1E. The best values
for large systems are for Cray XT3 and NEC SX-8 (see also Fig. 2).

For NEC SX-6, the two different programming models single- and multi-
threaded execution were used. With the single-threaded execution, 25% of the
random ring connections involve only intra-node communications. Therefore only
0.504 GB/s (75% from 0.672 GB/s) represent the inter-node communication
bandwidth per CPU. The inter-node bandwidth per node (with 8 CPUs) is
therefore 4.02 GB/s respectively. The balance of inter-node communication to
computation is characterized by the reduced value 60.2 byte/kflop. With multi-
threaded execution, all communication is done by the master-threads and is
inter-node communication. Therefore, the random ring bandwidth is measured
per node. It is significantly better with the multi-threaded application program-
ming scheme (6.759 GB/s) than with single-threaded (4.02 GB/s). Implications
on optimal programming models are discussed in [10].

Fig. 2 shows the scaling of the accumulated random ring performance with the
computational speed. For this, the HPCC random ring bandwidth was multiplied
with the number of MPI processes. The computational speed is benchmarked
with HPL. The left diagram shows absolute communication bandwidth, whereas
the right diagram plots the ratio of communication to computation speed. Better

374 R. Rabenseifner, S.R. Tiyyagura, and M. Müller

Fig. 2. Accumulated random ring bandwidth versus HPL Linpack performance

scaling with the size of the system is expressed by horizontal or a less decreasing
ratio curve. E.g., the Cray X1 and X1E curves show a stronger decrease than
the NEC SX-6 or SX-8. Interpolation at 3 TFlop/s gives a ratio of 30 B/kflop
on Cray X1E, 40 B/kflop on SGI Altix 700 Bx2, 62 B/kflop on NEC SX-8, and
67 B/kflop on Cray XT3.

5 Ratio-Based Analysis of All Benchmarks

Fig. 3 compares the memory bandwidth with the computational speed analog
to Fig. 2. The accumulated memory bandwidth is calculated as the product of
the number of MPI processes with the embarrassingly parallel STREAM triad
HPCC result. There is a factor of about 100 between the best and the worst
random ring ratio values in Fig. 2, but only a factor of 25 with the memory
bandwidth rations in Fig. 3 (right diagram). But looking at the systems with
the best memory and network scaling the differences in the memory scaling are
more significant. E.g., while NEC SX-8 and Cray XT3 have both shown best
network bandwidth ratios, here, NEC SX-8 provides 2.4 times more memory
bandwidth per Tflop/s than the Cray XT3. The CPU counts also indicate that
different numbers of CPUs are needed to achieve similar computational speed.

Fig. 4 and Fig. 5 are comparing the systems based on several HPCC bench-
marks. This analysis is similar to the current Kiviat diagram analysis on the
HPCC web page [5], but it uses always embarrassingly parallel benchmark re-
sults instead of single process results, and it uses only accumulated global system
values instead of per process values. If one wants to compare the balance of sys-
tems with quite different total system performance, this comparison can be done

Network Bandwidth Measurements and Ratio Analysis 375

Fig. 3. Accumulated stream triad bandwidth versus HPL Linpack performance

Fig. 4. Comparing the largest clusters in the HPCC list. Each system is normalized
with its HPL value.

hardly on the basis of absolute performance numbers. Therefore in Fig. 4 and
Fig. 5, all benchmark results (except of latency values) are normalized with the
HPL system performance, i.e., divided by the HPL value. Only the left column
can be used to compare the absolute performance of the systems. This normaliza-

376 R. Rabenseifner, S.R. Tiyyagura, and M. Müller

Fig. 5. Comparing different node interconnects

tion is also indicated by normalized HPL value in the second column that is per
definition always 1. Each column itself is additionally divided by largest value in
the column, i.e., the best value is always 1. The columns are sorted together to
show influences: HPL and DGEMM are reporting performance with high tem-
poral and spatial locality. FFT has a low spatial locality, and PTRANS a low
temporal locality. FFT and PTRANS are strongly influenced by the memory
bandwidth benchmark (EP STREAM copy) and the inter-process bandwidth
benchmark (random ring). The two right-most columns are latency based: The
reciprocal value of the random ring inter-process latency, and the Random Access
benchmark ratio. Fig. 4 compares systems with more than 1 Tflop/s, whereas
Fig. 5 analyzes the four different networks on a Dell Intel Xeon cluster.

6 Conclusions

The HPC Challenge benchmark suite and the uploaded results from many HPC
systems are a good basis for comparing the balance between computational
speed, inter-process communication and memory bandwidth. The figures pre-
sented in this paper clearly show the strengths and weaknesses of various sys-
tems. One can see that several systems provide a similar balance between compu-
tational speed, network bandwidth and memory bandwidth, although hardware
architectures vary between MPP concepts (e.g., Cray XT3, IBM BlueGene/L),
clusters of vector SMP nodes (NEC SX-8, Cray X1E), constellations (IBM), and
ccNUMA architectures (SGI). One can also see that the gap between best and
worst balance ratios is more than 25. The number of CPUs needed to achieve

Network Bandwidth Measurements and Ratio Analysis 377

similar accumulated performance and network and memory bandwidth is also
quite different. Especially the curves in Fig. 2–3 can be used for interpolation
and to some extent also for extrapolation. Outside of the scope of the HPCC
database is the price-performance ratio. In this paper, most scaling was done on
the basis of the HPL system performance. In a procurement, relating the per-
formance data additionally to real costs will give additional hints on pros and
cons of the systems.

Acknowledgments

The authors would like to thank all persons and institutions that have uploaded
data to the HPCC database, Jack Dongarra and Piotr Luszczek, for the invi-
tation to Rolf Rabenseifner to include his effective bandwidth benchmark into
the HPCC suite, Holger Berger for the HPCC results on the NEC SX-6+ and
helpful discussions on the HPCC analysis, David Koester for his helpful remarks
on the HPCC Kiviat diagrams, and Gerrit Schulz and Michael Speck, student
co-workers, who have implemented parts of the software.

References

1. John McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computing. (http://www.cs.virginia.edu/stream/)

2. Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, Iain S. Duff: A set of level
3 basic linear algebra subprograms. ACM Transactions on Mathematical Software
(TOMS), 16(1):1–17, March 1990.

3. Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, Iain S. Duff: Algorithm
679; a set of level 3 basic linear algebra subprograms: model implementation and
test programs. ACM Transactions on Mathematical Software (TOMS), 16(1):18–
28, March 1990.

4. Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet: The LINPACK benchmark:
Past, present, and future. Concurrency nd Computation: Practice and Experience,
15:1–18, 2003.

5. Jack Dongarra and Piotr Luszczek: Introduction to the HPCChallenge Bench-
mark Suite. Computer Science Department Tech Report 2005, UT-CS-05-544.
(http://icl.cs.utk.edu/hpcc/).

6. Panel on HPC Challenge Benchmarks: An Expanded View of High End Computers.
SC2004 November 12, 2004
(http://www.netlib.org/utk/people/JackDongarra/SLIDES/hpcc-sc2004-panel.htm).

7. Alice E. Koniges, Rolf Rabenseifner and Karl Solchenbach: Benchmark Design
for Characterization of Balanced High-Performance Architectures. In IEEE Com-
puter Society Press, proceedings of the 15th International Parallel and Distributed
Processing Symposium (IPDPS’01), Workshop on Massively Parallel Processing
(WMPP), April 23-27, 2001, San Francisco, USA, Vol. 3. In IEEE Computer So-
ciety Press (http://www.computer.org/proceedings/).

8. Parallel Kernels and Benchmarks (PARKBENCH)
(http://www.netlib.org/parkbench/)

378 R. Rabenseifner, S.R. Tiyyagura, and M. Müller

9. Rolf Rabenseifner and Alice E. Koniges: Effective Communication and File-I/O
Bandwidth Benchmarks. In J. Dongarra and Yiannis Cotronis (Eds.), Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, proceedings of
the 8th European PVM/MPI Users’ Group Meeting, EuroPVM/MPI 2001, Sep. 23-
26. Santorini, Greece, pp 24-35.

10. Rolf Rabenseifner: Hybrid Parallel Programming on HPC Platforms. In proceedings
of the Fifth European Workshop on OpenMP, EWOMP ’03, Aachen, Germany,
Sept. 22-26, 2003, pp 185-194

11. Daisuke Takahashi, Yasumasa Kanada: High-Performance Radix-2, 3 and 5 Par-
allel 1-D Complex FFT Algorithms for Distributed-Memory Parallel Computers.
Journal of Supercomputing, 15(2):207–228, Feb. 2000.

12. Nathan Wichmann: Cray and HPCC: Benchmark Developments and Results from
Past Year. Proceedings of CUG 2005, May 16-19, Albuquerque, NM, USA.

A Space and Time Sharing Scheduling Approach
for PVM Non-dedicated Clusters�

Mauricio Hanzich2, Francesc Giné1, Porfidio Hernández2, Francesc Solsona1,
and Emilio Luque2

1 Departamento de Informática e Ingenieŕıa Industrial,
Universitat de Lleida, Spain

{sisco, francesc}@eps.udl.es
2 Departamento de Informática, Universitat Autònoma de Barcelona, Spain
{porfidio.hernandez, emilio.luque}@uab.es, mauricio@aomail.uab.es

Abstract. Wasted resources are a common reality in open laboratories
in any University today [2]. Our aim is to take advantage of those re-
sources to do parallel computation without disturbing the local tasks
excessively. In order to implement a system that lets us execute parallel
applications in a non-dedicated cluster, we propose a new environment,
termed CISNE, that integrates Time and Space Sharing scheduling over
non-dedicated PVM clusters.

1 Introduction

The studies in [2] indicate that the workstations in a NOW are under-loaded.
Our aim is to take advantage of those idle resources to do parallel computa-
tion without disturbing the local tasks. Many alternatives have been proposed
for dealing with such a non-dedicated environment, including migration as Con-
dor [4], load balancing as Mosix [1], etc. The main drawback of Condor and
Mosix is the high cost in doing process migration. Also, they do not consider
the relationship between distributed and local applications to enhace the re-
source utilization. Furthermore, Condor allows parallel jobs to run only when
a workstation’s owner is not using this machine. Thus, such systems focus on
coarse-grained idle periods (on a scale of minutes or hours). However, there are
other cycles available that such systems do not harvest.

Due to the above reasons, our proposal is oriented towards the Job Scheduling
alternative. Parallel job scheduling in a non-dedicated cluster can be performed
at two different levels, Space and Time Sharing. Space Sharing (SS) scheduling
deals with three different kinds of problems. The first class, faces the problem
of selecting the best set of nodes for executing an application (Node Selection
policies), considering a non-dedicated cluster and its state. The second set of
policies deals with the Job Selection process (i.e. First Fit, Best Fit, Just First,

� This work was supported by the MCyT under contract TIC 2001-2592 and partially
supported by the Generalitat de Catalunya -Grup de Recerca Consolidat 2001SGR-
00218.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 379–387, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

380 M. Hanzich et al.

etc) from a waiting queue, while the third set deals with the Job Ordering or
prioritization process (i.e. FCFS, Shortest Job First - SJF, Smallest Number of
Processors First - SNPF, etc). It worth pointing out that the influence of the
Job Ordering policy over the resulting scheduling is fully determined by the Job
Selection policy.

Once the parallel job has been assigned to a set of nodes, the Time Sharing
(TS) scheduling deals with the problem of distributing the CPU time among
the parallel and local tasks. Based on the previous work performed in [5], a
coscheduling approach is selected. Coscheduling deals with minimizing synchro-
nization/communication waiting time between remote processes [3]. Thus, co-
scheduling may be applied to reduce message waiting time and to make good
use of the idle CPU cycles by executing distributed applications in a cluster or
NOW system.

The solution presented in this paper is an integral environment, called
CISNE. CISNE is made up of LoRaS (a Space Sharing system) and CCS [6]
(the coscheduling component). CCS implements an implicit coscheduling tech-
nique based on identifying the coscheduling necessities of cooperating tasks by
gathering and analyzing implicit runtime information, basically communication
events and memory requirements. Also, a social contract [7] is provided in the
CCS system. This contract is based on insulating a workstation owner from the
effects of parallel jobs by allocating local resources increasing the priority of
local users. LoRaS provides the ability to join Space Sharing techniques with co-
scheduling ones. The main objective in doing so is to find the combination that
provides the best parallel job performance. In order to enhace the coscheduling
profits, LoRaS considers the cluster state, the job requirements and the local
load.

The integration of Space and Time sharing systems in a non-dedicated envi-
ronment is a complex problem and has several aspects to deal with. The lack of
studies in this field has driven us to evaluate several scheduling alternatives with
the help of CISNE, which also provides a means for selecting and configuring
several Space Sharing combinations.

The remainder of this paper is outlined as follows: in section 2, the CISNE
system is presented. In section 3, the SS policies implemented by CISNE are de-
picted. The efficiency measurements of CISNE under our scheduling alternatives
are performed in Section 4. Finally, the main conclusions and future work are
explained in Section 5.

2 CISNE

CISNE (Cooperative & Integrated Scheduler for Non-dedicated Environments)
is a framework which provides a means to merge Space Sharing (SS) and Time
Sharing (TS) scheduling towards non-dedicated cluster systems. Figure 1.left
depicts the general architecture of the CISNE system. In this figure, the CCS
module represents our TS system, carried out by an implicit coscheduling tech-
nique. The SS system is supplied by the LoRaS schema using a client-server

A Space and Time Sharing Scheduling Approach 381

approach for launching applications and controlling the cluster state. Besides,
the interaction between both systems is depicted in the figure.

CCS provides a coscheduling technique for parallel jobs without excessively
disturbing the response time of local tasks. Furthermore, CCS controls the as-
signment of the resources between parallel and local applications by balancing
them according to a social contract, in which the minimum resource require-
ments of the local applications are guaranteed. Given that the CCS system was
extensively presented in the past [6], in the present work we center our attention
in the newer SS system.

Fig. 1. CISNE general architecture (left) and LoRaS internal structure (right)

The LoRaS (Long Range Scheduler) schema deals with the SS scheduling. It
is responsible for mapping both MPI and PVM distributed applications. Nev-
ertheless, we are currently restricted to launching PVM jobs, because a part of
CCS is implemented inside the PVM daemon. The information considered by
LoRaS for taking its scheduling decisions is the following:

– Cluster state. It comprises information for each cluster node, such as load
average, memory occupancy, local user activity and the MultiProgramming
Level (MPL) of parallel applications running in the cluster.

– The resource requirements of the distributed applications waiting in the
queue to be launched.

– CCS characteristics. It comprises the level of resources given to the parallel
applications by the social contract applied by CCS.

The LoRaS components and their main features are (see figure 1.right):

– Client : sends a Job Execution Request (JER) to the server module on behalf
of a parallel user.

– Server : the admittance of new JERs to be executed in the system is per-
formed by the server module. This JER is then forwarded to the Job Sched-
uler module.

382 M. Hanzich et al.

– Job Scheduler : this module is responsible for making job scheduling decisions
when a new JER is received in the server. This scheduling decision is car-
ried out by three different policies (explained in depth in the next section),
applied in the following order:
• First of all, the JERs are arranged according to one job ordering policy,

settled by the system administrator.
• Next, one job is selected from the queue according to the job selection

policy.
• Finally, the best set of nodes to run the chosen job is selected according

to the node selection policy.
– Policy (submodule of Job Scheduler): this module allows the set of policies

managed by the Job Scheduler to be established and configured. This module
is designed in such a way that it is easy to change its functionality, and hence,
the LoRaS scheduling system for implementing our proposals.

– Job Dispatcher : considering that every job can have its own characteristics,
it is necessary to configure the job before launching it. This module is re-
sponsible for doing this work before sending it to be executed in the selected
set of nodes.

– Node Control : this module has two different functions. On one hand, it
launches and controls the job execution. On the other hand, it gathers infor-
mation from the node state and informs the Job scheduler (and hence, the
policy submodule) so that it can take better scheduling decisions.

It is worth pointing out that LoRaS has been implemented integrally in the
user space, including the CCS system which is a time critical system. Thus, the
portability of the CISNE system is guaranteed.

3 Implemented SS Policies

The Job Scheduler module of LoRaS selects the next parallel job and the best
set of nodes according to the Job Ordering (JO), job selection (JS) and the node
selection policies, all of which are described below.

The parallel jobs are arranged into the waiting queue according to one of the
following JO policies: FCFS (First Come First Serve), SJF (Shortest Job First),
SNPF (Smallest Number of Processors First) and SCDF (Smallest Cumulative
Demand First). The SNPF policy orders the queue by increasing number of
requested processors. On the other hand, the SCDF policy orders the queue by
the increasing product of the requested processors and time.

One job is selected from the waiting queue according to one of the following
JS policies: Best Fit , First Fit and Just First.

It is important to remark that both kinds of JO and JS policies could be
combined. The way they are merged determines the resulting policy for selecting
a job from the queue. Table 1 shows the resultant policies from the merging job
selection policies with the ordering ones.

It should be noted that the resulting policy can be exclusively oriented to JS
or JO policies. This is so because the JO policy is irrelevant if the JS process

A Space and Time Sharing Scheduling Approach 383

Table 1. The resultant policies from the merging of JS and JO policies

searches the whole queue to select a job, as the Best Fit (BFit) policy does. In
this case, the resulting policy (JS + JO) is oriented towards the maximization of
the resource usage without considering the priority of the queued jobs. On the
other hand, a policy like Just First (JFirst), selects the first job in the queue,
hence the resulting policy is the same as the JO one. With such a policy, the
priorities of the jobs are totally preserved at the cost of some possible resource
wasting. A compromise case is the First Fit (FFit) policy, which searches the
queue until it finds a suitable job to execute. In this case, the JO policy has an
intermediate influence on the resulting policy. It means that for a pair of fitting
jobs, the policy will select the highest prioritary.

On the other hand, we still need to determine the best set of nodes for
executing a given job and the current cluster state. This is done according to
two different Node Selection policies:

– Uniform. it is characterized by the following: (a) it merges communication
and computation bound applications in the same node and (b) it runs ap-
plications in an ordered manner, whenever possible. By ordering the appli-
cations we mean to launch tasks making up a pair of parallel applications in
the same set of nodes, balancing the workload across the cluster. An example
can be seen in figure 2.a, where J3 shares its nodes with, and only with J2.

– Normal. unlike the uniform policy, it merges the parallel job independently
of its communication/computation characteristics and placement over the
cluster. An example can be observed in figure 2.b, where the J3 shares its
nodes with J1 and J2.

In order to help CCS to perform better, both Uniform and Normal policies
stop launching applications over those nodes with a load over the established
social contract.

Fig. 2. Uniform (a) and Normal (b) job distribution

384 M. Hanzich et al.

4 Experimentation

In order to carry out the experimentation, we first describe our environment,
the exercised workloads and metrics. In the second subsection, we present a set
of results that shows how CISNE performs under our defined SS policies.

4.1 Environment

In order to evaluate our assumptions we have to represent a non-dedicated clus-
ter. On one hand, we need to emulate some local user activity and, on the other
hand, we need some parallel applications that arrive at some intervals.

The local workload was carried out by running a synthetic benchmark. This
allowed the CPU load, memory requirements and network traffic used by the
local user to be fixed. In order to assign these values in a realistic way, we
monitored the average resources used by real users. According to this monitoring,
we defined two local user profiles. The first profile identifies 65% of the users with
high needs on inter-activeness (called XWindows user: 15% CPU, 35% Mem.,
0,5KB/sec LAN), while the other profile distinguishes 35% of the users with web
navigation needs (called Internet user: 20% CPU, 60% Mem., 3KB/sec. LAN).
This benchmark alternates CPU activity with interactivity by means of running
several system calls and different data transfers to memory. According to the
level of occupation of our monitored laboratories, we loaded 25% of the nodes
with local workload in our experiments.

The parallel workload was a list of 90 PVM NAS parallel applications (CG,
IS, MG, BT) with a size of 2, 4 or 8 tasks that reached the system following a
Poisson distribution [3]. The parallel applications were merged so that the entire
workload had a balanced requirement of computation and communication. It is
important to note that the MPL reached for the workload depends on the system
state at each moment, but in no case surpassed an MPL = 4. This threshold is
based on the results shown in [6].

Both workloads were executed in a Linux cluster using 16 P-IV (1,8GHz)
nodes with 512MB of memory and a fast ethernet interconnection network.

In order to show the CISNE performance under our proposed policies, we
divide the experimentation into two parts. In a first step, we show the behavior
of the mixed policies from table 1 by means of the applications turnaround
time, and fixing the node selection policy to Normal with a MPL ≤ 4. Besides,
some results showing the stability, and hence predictability, of those policies
are presented using the standard deviation. In a second step, we compare a
FCFS-JFirst-Normal policy, with an MPL = 1, termed Basic, with our Normal
and Uniform policies. In this case, the MPL is greater than 1 and again the
other policies are set to FCFS-JFirst. In this second experiment we also measure
the application turnaround time as a user metric and the workload makespan
(turnaround of the whole workload) as a system metric.

4.2 Results

In the first part of the experimentation, we show the CISNE performance for the
different policies set in table 1. It is important to remark that these experiments

A Space and Time Sharing Scheduling Approach 385

are much more extensive [8], but for space reasons we only include a few here.
In figure 3.left it is possible to observe how those policies that use BFit as their
job selection sub-policy increase the turnaround time of the applications. This is
due a resource usage maximization that increase the average MPL, and hence,
the average application execution time is incremented affecting the turnaround.
Considering that we are using resources that would otherwise be wasted, the
usage maximization is not as important as applications performance. Therefore,
we can see how policies that take into account the job priorities (those combined
with JFirst or FFit), enhance the job turnaround time obtaining almost the same
results, which are better for the application performance. The only difference we
can find among them is for FCFS policy that forces a strict application arrival
ordering and hence increases the application waiting time, resulting in a greater
turnaround time.

In figure 3.right we present some results showing the stability, and hence,
predictability of each mix. From the figure it is clear that any policy merged
with FCFS is more stable, although more restrictive, than the other merges.
Considering the policy, the mix with a FFit policy is a little more stable than
the others policies in general. On the other hand, a mix with a JFirst policy (i.e.
just considering the job ordering), gives us a more unstable merge.

The next step in our evaluation refers to the Node Selection policies. In
figure 4.left it is possible to observe that the benefits of incrementing the parallel
MPL are around 200% comparing our proposals with the Basic policy, from the
applications turnaround point of view. This is due to the incredible reduction in
the waiting time (800%), while the execution time is not incremented by more
than 35%. Besides, we could also observe how a uniform distribution of jobs
enhances the execution time. This effect is related to an enhancement of the
coscheduling system performance that can now approximate a global context
switch due to the same load characteristics throughout the cluster.

From the system point of view, figure 4.right shows the workload makespan.
From this figure, it is clear that there is a relation between the turnaround and

Fig. 3. Parallel application turnaround time (left) and turnaround standard deviation
(right), for the evaluated policies

386 M. Hanzich et al.

Fig. 4. Application wait, execution and turnaround time (left) and workload makespan
(right), for the evaluated node selection policies, using CISNE

the makespan. Again a uniform policy gives us the best results. The reason is the
execution time reduction that also impact on the waiting time and hence in the
overall turnaround time. Nevertheless, the difference is not as much noticeable
as in the case of the turnaround. This is due to the jobs inter-arrival time, which
sets a minimum for the makespan value, and could not be less than the arrival
time of the last job to the system. Hence, the makespan value tends to be more
homogeneous than the individual applications turnaround time.

5 Conclusions and Future Work

This work presents a set of new SS policies oriented towards dynamically-cosche-
duled, non-dedicated clusters. Besides, it describes a new integral system, named
CISNE, that considers both SS and TS concerns, which is applied on a non-
dedicated PVM cluster. Using this framework (CISNE + proposed policies), the
paper analyzes how the performance of a dynamic coscheduling system could
be affected by the SS policy over a non-dedicated cluster. With this aim, we
evaluated several policies oriented towards Node Selection (Uniform, Normal),
Job Selection (BFit, FFit and JFirst) and Job Ordering (FCFS, SJF, SNPF and
SCDF) process. We found that policies that include BFit as its policy enhance
the resource usage but decrease the application performance. Hence, considering
that the resources being used are otherwise wasted, it is preferable to apply any
other scheme that enhances the application turnaround time.

Moreover, we present a couple of other policies that are intended to enhance
the coscheduling performance by distributing the applications more cleverly. We
find that an ordered arrangement of the applications (i.e. Uniform policy) gives
better results from the parallel user and system point of view.

Considering future work, we want to increase the system predictability, let-
ting us establish the turnaround time into a certain range. In order to do this,
we will include a historical system that lets us estimate some parameters for
the executing jobs. Besides, we will study the characterization of the parallel
applications and how this could be included into the estimating schema. On the
other hand, we want to extend the system for considering MPI applications.

A Space and Time Sharing Scheduling Approach 387

References

1. A. Barak, S. Guday and R.G. Wheeler. “The MOSIX Distributed Operating System:
Load Balancing for Unix”. Springer-Verlag . LNCS, vol. 672. 1993.

2. A. Acharya and S. Setia. “Availability and Utility of Idle Memory in Workstation
Clusters”. In Proc. of the 1999 ACM SIGMETRICS, Vol. 27, pp 35/46. 1999.

3. D. G. Feitelson. Packing schemes for gang scheduling. In Job Scheduling Strategies
for Parallel Processing, D. G. Feitelson and L. Rudolph (Eds.), Springer-Verlag.
LNCS, vol. 1162, pp. 89-110. 1996.

4. M. Litzkow, M. Livny and M. Mutka. “Condor - A Hunter of Idle Workstations”. In
Proceedings of the 8th International Conference of Distributed Computing Systems,
pp. 104–111. 1988.

5. F. Solsona, F. Giné, P. Hernández, E. Luque. ”Implementing Explicit and Implicit
Coscheduling in a PVM Environment”. EuroPar 2000, LNCS, vol. 1900, pp 1164-
1170. 2000.

6. M. Hanzich, F. Giné, P. Hernández, F. Solsona and E. Luque. ”Coscheduling and
Multiprogramming Level in a Non-dedicated Cluster”. EuroPVM’2004, LNCS, vol.
3241, pp. 327-336. 2004.

7. R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson and D.A. Pat-
terson. “The Interaction of Parallel and Sequential Workloads on a Network of
Workstations”. ACM SIGMETRICS’95, pp.267-277. 1995.

8. M. Hanzich. “Combining Space and Time Sharing on a Non-Dedicated NOW”.
Master’s thesis. Universitat Autònoma de Barcelona. 2004.

Efficient Hardware Multicast Group
Management for Multiple MPI Communicators

over InfiniBand�

Amith R. Mamidala, Hyun-Wook Jin, and Dhabaleswar K. Panda

Department of Computer Science and Engineering,
The Ohio State University

{mamidala, jinhy, panda}@cse.ohio-state.edu

Abstract. MPI provides a set of primitives that allow processes to dy-
namically create communicators on the fly. This set of primitives can
be exploited by the applications where only a certain group of processes
need to participate at any given time. Also, these primitives play an im-
portant role in the context of dynamic process management of MPI-2.
Special attention has to be paid in creating MPI communicators with
InfiniBand’s hardware multicast support as it involves the high over-
head of interaction between the application and an external multicast
management entity. In this paper, we propose different design alterna-
tives of efficiently creating the communicators dynamically. The basic
idea behind the schemes proposed is to remove most of the overhead
of the hardware multicast group construction from the critical path of
the application. Our results indicate that by using Multicast Pool and
Lazy approaches of group construction proposed in the paper, we can
significantly reduce the overhead by a factor of as much as 4.8 and 3.9,
repectively, compared to the Basic approach.

Keywords: MPI, Communicator, Multicast, InfiniBand and Subnet
Management.

1 Introduction

Message Passing Interface(MPI) [10] programming model has become the de-
facto standard to develop parallel applications. MPI provides a rich collection of
point-to-point and collective communication primitives for the application to take
advantage of. These primitives are associated with a well defined Communicator
object in MPI. Communicators provide a mechanism to construct distinct com-
munication spaces for process groups to operate, isolating them from the rest of
the communication flow. Also, they encapsulate several internal communication
data structures during the program execution.
� This research is supported in part by Department of Energy’s Grant #DE-FC02-

01ER25506; National Science Foundation’s grants #CCR-0204429, #CCR-0311542
and #CNS-0403342; grants from Intel and Mellanox; and equipment donations from
Intel, Mellanox, AMD and Apple.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 388–398, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Hardware Multicast Group Management 389

InfiniBand Architecture (IBA) [6] which is emerging as the next genera-
tion interconnect for I/O and interprocessor communication, has several features
which directly impact the performance of the application. One of the notable fea-
tures of InfiniBand is its support for hardware multicast. By using this feature,
a message posted to a hardware multicast group is delivered to all the processes
attached to this group in an efficient and scalable manner. In our earlier research,
we have shown that significant performance can be achieved by leveraging this
primitive to implement collective operations like MPI Bcast, MPI Barrier and
MPI Allreduce [7] [8]. One primary assumption taken in the above approaches
is that all the processes communicate within a single communicator context.
Thus, it was suffice to construct a single hardware multicast group statically at
the initialization phase serving all the processes.

However, majority of the applications use more than one communicator ob-
ject during their execution. This is because all the processes may not need to
communicate with each other. Also, the creation of a new communicator is im-
perative in the context of dynamic process management of MPI-2, where new
processes can be spawned from an already existing group of processes. To utilize
the hardware multicast of InfiniBand, these communicators have to be mapped
to hardware multicast groups and this mapping needs to be done on the fly.
More importantly, the multicast groups have to be dynamically set up.

In IBA, construction of hardware multicast groups involves a series of man-
agement actions. Some of these involve the interaction of the MPI processes
with an external IBA multicast management and the rest pertain to the fab-
ric configuration by the multicast management entity. Only after the success-
ful completion of these management actions the multicast group can be used.
Depending on the size of the hardware multicast group and the IBA fabric,
all these tasks can take considerable amount of time. From the MPI appli-
cation perspective, the overhead of these operations should be as minimal as
possible.

In this paper, we present several ways of constructing hardware multicast
groups dynamically. We propose several design alternatives to efficiently map the
communicators to these newly created hardware multicast groups. Our designs
of using Multicast Pool and Lazy approaches of group construction outperform
the Basic approach by a factor of as much as 4.8 and 3.9, respectively, on a 32-
node cluster. We have implemented our proposed designs and integrated them
into MVAPICH [2], a popular implementation of MPI over InfiniBand which is
being used by more than 230 organizations world-wide. The rest of the paper is
organized as follows. In Section 2 we provide the background, Section 3 provides
the motivation for our work, Section 4 presents the various design alternatives
followed by performance evaluation, related work and conclusion.

2 InfiniBand Hardware Multicast Groups

The InfiniBand Architecture (IBA) [6] defines a switched network fabric for
interconnecting processing nodes and I/O nodes. It provides a communication

390 A.R. Mamidala, H.-W. Jin, and D.K. Panda

and management infrastructure for inter-processor communication and I/O.
Especially, it provides support for hardware multicast. A hardware multicast
group in IBA is realized as a set of ports connected together using a logical
spanning tree. Each hardware multicast group has a unique Multicast Group
IDentifier (MGID). The routing of multicast packets posted on a multicast group
is handled using routing tables present in all the participating switches of the
IBA fabric. The nodes join and leave a multicast group through a management
action involving Subnet Management and Subnet Administration classes of IBA
management. In the remaining part of the paper we use the term multicast
management entity to describe the body which implements the functionality of
these classes.

The multicast management entity is responsible for handling all the oper-
ations specific to multicast group construction from the end nodes. These op-
erations are the following: Multicast Group Create which is issued by an
end node to create a multicast group. This is an explicit operation in IBA to
provide a single control of group characteristics like Message Transfer Unit, etc.
and allow members to join subversively. Multicast Group Join which is is-
sued by the end node to join the multicast group and Multicast Group Leave
which is issued for leaving the group. All these requests are transported us-
ing MAnagement Datagrams called MADs. The multicast management entity
on receiving the Join/Leave requests, constructs the multicast spanning tree
and updates the participating switches in the IBA fabric with the new routing
information.

3 Motivation: Mapping Between Multicast Groups and
MPI Communicators

Communicators play an important role during MPI communication. Communi-
cator objects encapsulate information about all the processes that communicate
with each other. This is required for the underlying MPI implementation which
interacts with the network device in the forwarding of the messages.

One important information which is required in a communicator to support
hardware multicast is that of Multicast Group IDentifier (MGID). Consider a
scenario where one process wants to send a message to all the other processes
in the communicator. This process issues a MPI Bcast call with the communi-
cator object as one of its parameter. The underlying MPI layer then posts the
message to the multicast group identified by MGID and the actual forwarding
is automatically taken care of by the IBA layer.

Figure 1 illustrates the relationship between the communicators and the
hardware multicast groups. Let us consider an MPI application consisting of five
processes, (P0-P4) as an example. These processes are launched on a subnet con-
sisting of four end nodes (N0-N3) connected by a switch. Processes with global
ranks three, four and five (i.e., P2, P3 and P4) are present in one communica-
tor. The local ranks of these processes in the communicator are indicated in the

Efficient Hardware Multicast Group Management 391

G_RANK = 5

P 0G_RANK = 1

G_RANK = 3

G_RANK = 4

L_RANK = 3

L_RANK = 2

L_RANK = 1

G_RANK = 2

MULTICAST GROUP

COMMUNICATOR

P 4

N 0

N 1

N 3

N 2

PORT: 0

PORT:1

PORT:2

PORT: 3

SWITCH

(4−PORT)

P 2 P 3

P 1

Fig. 1. Mapping between IBA Multicast Groups and MPI Communicators

L_RANK = 1

L_RANK = 0 L_RANK = 2

P 1 P 2

P 0 P 3

PORT: 1

PORT: 4PORT:2

PORT:3

MANAGEMENT ENTITY

1

2

2

3

Fig. 2. Multicast Group Setup Operations

figure. For these processes to use hardware multicast, the communicator has to
be mapped to the hardware multicast group consisting of port numbers 2 and 3.

In the remaining sections of the paper, we explain how this mapping is done
during communicator creation. An important factor to consider is that issuing
the Create/Join requests mentioned in the earlier section does not imply that
the hardware multicast group is ready for use. This is because the multicast
management entity has to first process these requests and construct a spanning
tree containing the participating ports. Second, the routing tables in the fabric
have to be updated to reflect the logical tree topology. The IBA specification
does not define any specific mechanism of informing the processes of the com-
pletion of these tasks. Moreover, on large scale clusters, setting up multicast
routing information can take considerable time if the size of the multicast group
is comparable to the cluster size. This leads to the following questions:

1. How can the MPI application know when the multicast group is ready for
use?

392 A.R. Mamidala, H.-W. Jin, and D.K. Panda

2. Can we minimize the overhead of multicast group construction from the
MPI perspective?

We address these challenges in the following sections of the paper.

4 Communicator Creation Mechanism

Though there are two types of communicators intra and inter defined in MPI,
we focus on intra communicators in this paper. We have implemented all our
designs using the MPI Comm create function. The inputs to this function are
an already existing communicator object, a process group object comprising of a
new subset of processes and the final communicator object. MPI Comm create
is a collective call invoked by all the processes in the existing communicator. In
the following discussions, we focus on the communicator creation in the context
of mapping these to the hardware multicast groups. All the other steps like the
assignment of a unique context and the local ranks have already been done by
the time we start constructing the multicast group.

4.1 Basic Design

The following steps are involved in the basic communicator construction. All of
these are illustrated in Figure 2.

Multicast create and join: In this step, the process whose local rank is zero
issues a create request to the multicast management entity specifying the Multi-
cast Group IDentifier (MGID)(step 1 in Figure 2). The remaining processes then
issue join requests to the multicast management entity using the same MGID
(step 2 in Figure 2). All these requests carry the port identifiers so that the
management entity knows which all ports would like to join a multicast group.
The multicast management entity after receiving and validating the requests
computes a logical spanning tree containing the ports specified in the requests.
It then updates all the routing tables of the participating switches in the fabric
(step 3 in Figure 2). At this point of time, the set up of hardware multicast
group is complete.

However, the participating processes have no knowledge of this information.
One approach to accomplish this would be to let the multicast management
entity notify the MPI application after updating the routing tables. Another
approach would be to let the MPI application discover about the completion
independently. We have taken the latter approach in all our designs as it does not
depend on any particular implementation of the multicast management entity.
We refer to this approach as multicast testing.

Multicast testing: In this approach, the following algorithm is implemented
by all the processes after they finish issuing the requests. Process with rank zero
who is the root, posts a multicast ping message to the new hardware multicast
group and waits for Acks from all the other processes. If the routing has been
done, the message is received by all the processes and these processes soon post
the Acks to the root. On the other hand, if routing is not complete then the

Efficient Hardware Multicast Group Management 393

message may not arrive at some of the processes. These processes block waiting
for the ping message. Meanwhile, the root retransmits the ping message after a
certain time-out interval. This process repeats until everyone has received the
ping message.

4.2 Lazy Approach

Although the Basic design is good for its simplicity, it is blocking in nature.
The application has to wait for the multicast management entity to process
the requests and update the routing tables. Until then, all the processes block
in the multicast testing. Depending on the size of the cluster and the multicast
group this can take a considerable amount of time. Instead of doing the multicast
testing in an eager fashion within the communicator creation call, we do this in
a lazy manner by calling this routine every time a collective call is made. We do
this until the multicast testing phase is over. We accomplish this by making the
multicast testing as a non-blocking routine.

Asynchronous return: The new multicast testing is implemented in the fol-
lowing manner. The root process posts the ping message and checks for the
arrival of the Acks from the rest of the processes. It does not block for the Acks
to arrive. In the subsequent collective calls to this routine, it repeatedly checks
for the progress of the Acks. It reposts the ping message only if the timeout
is exceeded. The root keeps an estimate of the time elapsed by recording the
time-stamps in the communicator object. The remaining processes behave in a
similar fashion. They check for the ping messages in a non-blocking fashion and
post the Acks soon after discovering the ping message.

Point-to-Point fall back: One important issue requiring detailed attention is
the progress of the collective communication call before the communicator is
ready for hardware multicast. In our approach, all the collective communication
traffic is transmitted via point-to-point messaging until the root discovers that
the routing has been done.

This approach overcomes the drawbacks of the Basic design. Due to the
asynchronous nature of the multicast testing routine, overlap of computation as
well as communication is easily achievable.

4.3 Multicast Group Pool Based Design

Though the Lazy approach can effectively hide the overhead of hardware multi-
cast group construction in the MPI application, it still has some drawbacks. The
benefits of hardware multicast in an application is reduced if the set-up time of
the multicast groups is high and the collective communication follows the setting
up of these communicators. Using our earlier design, the communication traffic
falls back to point-to-point if the multicast groups are not set up. But, this does
not improve the performance of the application.

Multicast Group Pool: We overcome the drawback mentioned above using a
complementary approach of setting up communicators explained as follows. The

394 A.R. Mamidala, H.-W. Jin, and D.K. Panda

basic idea in this design is to have a certain pre-defined pool of multicast groups
already constructed. These groups contain all the processes to begin with. In the
communicator construction routine, instead of participating nodes joining the
multicast group, the non-participating nodes leave a multicast group chosen from
the pool. There are several advantages of using this approach. First of all, since
the multicast groups are already set-up the routing tables in the fabric are in
place. So, when the application calls communicator creation function we can use
the multicast group directly and we avoid the overhead of the multicast testing
phase. This approach considerably improves the utility of the hardware multicast
groups in an application. Secondly, the multicast pool can be maintained easily
as most of the overhead is due to the multicast management entity and can be
done in the background. We now explain the steps involved in this design.

When a call to the communicator creation is made, first a multicast group is
chosen from the available list of multicast groups already constructed. If this pool
is empty we fall back to the Lazy approach explained in the previous section.
Once an available multicast group is obtained, the non-participating processes is-
sue leave requests to the management entity. The list of non-participating process
can be easily obtained by subtracting the set of the processes involved in the
communicator from the global set involving all the processes. This global set is
the MPI GROUP WORLD process group in MPI. Once a multicast group is con-
sumed from the pool, it is immediately replenished by making all the processes
issue requests for group construction. We also need to check for multicast test-
ing before including the group in the pool. However, this check is done in the
background by the application. The initial pool can be either constructed by the
management entity or by the MPI application in the initialization phase. We
have taken the latter approach in our implementation.

5 Performance Evaluation

Each node in our experimental testbed has dual Intel Xeon 2.66 GHz processors,
512 KB L2 cache, and PCI-X 64-bit 133 MHz bus. They are equipped with
MT23108 InfiniBand HCAs with PCI-X interfaces. An InfiniScale MTS14400
switch is used to connect all the nodes. OpenSM, version 1.7.0, is the multicast
management entity used in our tests.

5.1 Basic Hardware Group Setup Latencies

OpenSM has two parameters which affect the performance of multicast group
creation. These are: 1) timeout which is the time for transaction timeouts in
milliseconds and 2) maxMADs which is the number of MADs that can be out-
standing on the wire at any given point of time. We measure multicast testing
to tune these parameters as this reflects the time taken by OpenSM to configure
routing tables. Figure 3 shows these results. From these we have chosen 10 ms for
timeout and the number of outstanding MADs is set to maximum for OpenSM
to deliver best performance.

Efficient Hardware Multicast Group Management 395

 0

 50

 100

 150

 200

 250

 10 15 20 25 30 35 40 45 50

L
a

te
n

c
y
 (

m
s
)

transaction timeout (ms)

MADs: max
MADs: 500

MADs: 1

Fig. 3. Tuning of Multicast Testing

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30

L
a

te
n

c
y
 (

m
s
)

nodes

create
join

leave
multicast testing

Fig. 4. Overhead of Basic Multicast
Group Operations

Figure 4 indicates the results of the basic multicast group operations like
create, join and leave. We also present the multicast testing time for varying
number of nodes. As the figure indicates, multicast testing overhead is very high
compared to the latencies of issuing create, join or leave requests. This is because
as explained in the previous sections, after the requests are issued the manage-
ment entity has to compute the spanning tree and update routing information
of the switches in the fabric.

5.2 Effective Latency of Suggested Schemes

To compare the different schemes suggested in the paper we have measured the
effective latency which is the latency of MPI Bcast operation together with the
communicator creation time. We have chosen the size of the message to be 1024
bytes in all our tests. The benchmark is constructed by calling communicator
creation followed by the communication calls as many as the number of iterations
specified. This is done for communicator sizes of 16 and 32 respectively.

In Figure 5 we measure the effective latencies for varying number of iterations
for all the three schemes: Basic, Lazy and Pool. We have also taken the tradi-
tional point-to-point collectives as the reference. We refer to this as the Original
design in the figures. As shown in the figure, the Pool based design outperforms
all the rest. This is because multicast testing phase can be fully overlapped with
the communicator creation operations and also the multicast group is immedi-
ately available. For the Lazy approach, we see the benefits of hardware multicast
with the increasing number of iterations. This is because of the increasing per-
centage of communication using hardware multicast rather than point-to-point.
The basic design performs poorly compared to all the designs. This is due to
the high overhead associated with the multicast testing which is not overlapped
with communication. Figure 6 shows the same trend for communicator size of
32. Note that the latencies of Pool and Lazy are almost the same for 16 and
32 for higher number of iterations. This is due to the scalability of hardware
multicast.

396 A.R. Mamidala, H.-W. Jin, and D.K. Panda

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900 1000

L
a

te
n

c
y
 (

u
s
)

iterations

Original
Pool
Lazy

Basic

Fig. 5. Effective Latency with Collec-
tives 16 processes

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900 1000

L
a

te
n

c
y
 (

u
s
)

iterations

Original
Pool
Lazy

Basic

Fig. 6. Effective Latency with Collec-
tives 32 processes

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35

L
a

te
n

c
y
 (

u
s
)

computation time (ms)

Original
Pool
Lazy

Basic

Fig. 7. Effective Latency with Computa-
tion and Collectives 16 processes

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35

L
a

te
n

c
y
 (

u
s
)

computation time (ms)

Original
Pool
Lazy

Basic

Fig. 8. Effective Latency with Computa-
tion and Collectives 32 processes

To understand the overlap with computation we have introduced some com-
putation between the communicator creation and the communication in the
benchmark used for the above experiments. Figures 7 and 8 show the trend
with increasing computation for sizes 16 and 32 respectively. The Lazy approach
due to its asynchronous nature can overlap communicator creation with com-
putation where as the Basic cannot. The Pool based design on the other hand
can immediately take the benefits of hardware multicast. However, the initial
latencies for size 32 are higher than for size 16 due to the increased overhead of
creating larger hardware multicast group. As Figure8 indicates, the Pool based
design and the Lazy approaches improve the effective latency by a factor of 4.9
and 3.8, respectively.

6 Related Work

Various aspects of subnet management like subnet discovery, routing and setting
up of forwarding tables have been studied using simulation techniques by the

Efficient Hardware Multicast Group Management 397

authors in [3] [4] [9]. Paper [5] deals with implementing MPI collective opera-
tions using IP multicast over Fast Ethernet. In [11], the authors propose different
designs for constructing IP multicast groups. Also, collectives have been imple-
mented using hardware multicast and NACK-based schemes in [1]. Our work
differs from these as we provide dynamic schemes of hardware multicast group
construction in the context of InfiniBand and we overlap these with the appli-
cation progress.

7 Conclusions and Future Work

In this paper, we propose efficient schemes of dynamically constructing commu-
nicators with hardware multicast support in InfiniBand. The basic idea behind
the schemes is to overlap the group construction with the progress of the ap-
plication. The Multicast Pool and the Lazy approaches proposed in this paper
move most of the overhead of multicast group creation out of the critical path
of the application execution. We have evaluated these schemes together with
the Basic scheme and found that the Multicast Pool performs the best of all
the three followed by the Lazy scheme. Multicast Pool and Lazy schemes im-
prove the Effective Latency by a factor of 4.9 and 3.8 respectively. In our future
work, we would like to evaluate the impact of these schemes on a range of MPI
applications with and without dynamic process creation.

Acknowledgements. We would like to thank Eitan Zahavi, Dror Goldenberg
and Eitan Rabin from Mellanox for providing helpful comments.

References

1. Multicast collectives. http://vmi.ncsa.uiuc.edu.
2. MVAPICH: MPI over InfiniBand Project.

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/.
3. A. Bermudez, R. Casado, F. J. Quiles, T. M. Pinkston, and J. Duato. Evaluation

of a Subnet Management Mechanism for InfiniBand Networks. In Proceedings of
ICPP, 2003.

4. A. Bermudez, R. Casado, F. J. Quiles, T. M. Pinkston, and J. Duato. On the
InfiniBand Subnet Discovery Process. In Proceedings of Cluster Computing, 2003.

5. H. A. Chen, Y. O. Carrasco, and A. W. Apon. MPI Collective Operations over IP
Multicast. In Workshop PC-NOW 2000, 2000.

6. InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.2.
http://www.infinibandta.org, October 2004.

7. J. Liu, A. R. Mamidala, and D. K. Panda. Fast and Scalable MPI-Level Broadcast
using InfiniBand’s Hardware Multicast Support. In Proceedings of IPDPS, 2004.

8. A. R. Mamidala, J. Liu, and D. K. Panda. Efficient Barrier and Allreduce Infini-
Band Clusters using Hardware Multicast and Adaptive Algorithms . In Proceedings
of Cluster Computing, 2004.

9. J. C. Sancho, A. Robles, and J. Duato. Effective Strategy to Compute Forwarding
Tables for InfiniBand Networks. In Proceedings of ICPP, 2001.

398 A.R. Mamidala, H.-W. Jin, and D.K. Panda

10. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI–The Com-
plete Reference. Volume 1 - The MPI-1 Core, 2nd edition. The MIT Press, 1998.

11. X. Yuan, S. Daniels, A. Faraj, and A. Karwande. Group Management Schemes for
Implementing MPI Collective Communication over IP-Multicast. In The 6th Inter-
national Conference on Computer Science and Informatics, Durham, NC, March
8-14 2002.

Assessing MPI Performance on QsNetII

Pablo E. Garćıa1, Juan Fernández1,
Fabrizio Petrini2, and José M. Garćıa1

1 Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores,
Universidad de Murcia, 30071 Murcia, Spain

{pablo.garcia, juanf, jmgarcia}@ditec.um.es
2 CCS-3 Modeling, Algorithms & Informatics,

Los Alamos National Laboratory, Los Alamos, NM 87545, USA
fabrizio@lanl.gov

Abstract. To evaluate the communication capabilities of clusters, we
must take into account not only the interconnection network but also
the system software. In this paper, we evaluate the communication ca-
pabilities of a cluster based on dual-Opteron SMP nodes interconnected
with QsNetII . In particular, we study the raw network performance, the
ability of MPI to overlap computation and communication, and the ap-
propriateness of the local operating systems to support parallel process-
ing. Experimental results show a stable system with a really efficient
communication subsystem which is able to deliver 875 MB/s unidirec-
tional bandwidth, 1.6 μsec unidirectional latency, and up to 99.5% CPU
availability while communication is in progress.

1 Introduction

Clusters have become the most successful player in the high-performance com-
puting arena in the last decade. At the time of this writing, many of the fastest
systems in the Top500 list [14] are clusters. These systems are typically assembled
from commodity off-the-shelf (COTS) components. In particular, there is a grow-
ing interest in those systems assembled with SMP nodes based on 64-bit proces-
sors –mainly Itanium2 and Opteron– interconnected with high-performance net-
works, such as Infiniband [11], Myrinet [12] or Quadrics [13].

Performance of large-scale clusters is determined by the parallel efficiency
of the entire system as a whole rather than by the peak performance of in-
dividual nodes. In order to achieve a high degree of parallel efficiency, there
must be a proper balance over the entire system: processor, memory subsystem,
interconnect, and system software. If we focus on the communication capabili-
ties, we must pay attention not only to the interconnection network but also to
the communication system software. In this case, while Myrinet, Infiniband and
Quadrics are the preferred choices for the cluster interconnect, MPI [10] is the
de facto standard communication library for message-passing, and Linux is the
most popular choice for operating the cluster nodes.

The traditional approach to evaluate the communication capabilities of a
cluster primarily relies on bandwidth and latency tests. Even though the band-
width and latency figures are significant, they are not enough to characterize

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 399–406, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

400 P.E. Garćıa et al.

the system behavior when running scientific and engineering applications in a
cluster. There are other aspects that have a great impact in the communication
performance as well. On the one hand, the ability of the MPI layer to over-
lap communication and computation may limit the CPU availability for user
applications. An efficient MPI implementation should leverage modern network
interface cards to offload protocol processing. On the other hand, the commodity
OSes running in every node may interfere with user-level processes. The nodes
of a cluster should be properly tuned in order to minimize the computational
noise introduced by unnecessary dæmons, services, and tools. In this paper, we
focus on analyzing all these aspects on a cluster based on dual-Opteron SMP
nodes interconnected with QsNetII from Quadrics.

The rest of the paper is organized as follows. The next section presents the
main features of QsNetII . In particular, both the Elan4 network interface card
and the Elite4 switch are described. In Section 3, different performance aspects
of a QsNetII -based cluster assembled with Opteron nodes are analyzed. Finally,
we conclude with some remarks and an outline of future work.

2 QsNetII

QsNet from Quadrics have become one of the preferred choices to interconnect
large-scale clusters since its appearance in 1996 [14]. This success is due to the
fact that QsNet provides low-latency and high-bandwidth interprocessor commu-
nication through a standard interface for systems based on commodity process-
ing nodes. The latest version, QsNetII , was released in 2004. Some large-scale
systems based on QsNetII , such as Thunder [14], have already been deployed.

QsNetII consists of two ASICs: Elan4 and Elite4. Elan4 is the core for the
QsNetII network interface card (NIC). The Elan4 NICs connect commodity
processing nodes to the QsNetII network through a standard interface, PCI-X.
In turn, Elite4 is capable of driving eight bidirectional links at 1.3 GB/sec each
way. The Elite4 switches form a multistage network to interconnect the Elan4
NICs attached to the processing nodes. These are the most salient aspects of
QsNetII :

– 64-bit architecture. Both the Elan4 and the Elite4 components have an in-
ternal 64-bit architecture and fully support a 64-bit virtual address space.

– PCI-X interface. Elan4 NICs implement a 64-bit, 133 MHz, PCI-X interface.
– DMA engine. User processes can perform read/write from/on remote mem-

ory locations by just issuing Remote DMA (RDMA) commands to the Elan4.
– Event engine. Events are used for synchronization purposes and available to

the Elan4 processors and the main CPU. Events are triggered upon comple-
tion of communication operations (e.g. RDMA transactions).

– Virtual operation. QsNetII extends the conventional virtual memory mech-
anism so that user processes can transfer data directly between their virtual
address spaces.

– Programmability. In addition to the internal command processor, the Elan4
NICs provide a 64-bit RISC programmable thread processor.

Assessing MPI Performance on QsNetII 401

– Support for collectives. QsNetII provides hardware-supported multicast op-
erations over subnets of nodes to cut down the synchronization time.

– Reliability. QsNetII implements a packet-level link protocol in hardware
which is able to detect faults, route packets around faulty areas, and even
retransmit lost packets. Moreover, packets are CRC-protected to detect data
corruption.

2.1 Elan4

The Elan4 NICs are in charge of injecting and receiving packets into and from
the network. In addition, every Elan4 NIC incorporates a programmable thread
processor to offload higher-level protocol processing to the NIC. The Elan4 NIC
functional units are interconnected using several separate 64-bit data buses to
increase concurrency and reduce latency operation. The main Elan4’s functional
units are the command processor, the thread processor, the DMA engine, the
event engine, and the Short Transaction Engine (STEN). The command proces-
sor processes commands from either the main CPU or other Elan4’s functional
units. Under this model, there is a command port mapped directly into the user
process’s address space. Each command port is no more than a command queue
where user processes can directly issue one or more commands to the Elan4 with-
out OS intervention. In this way, the command processor executes commands
from different user processes on their behalf. Also, the command processor con-
trols the thread processor, the DMA engine, the event engine and the STEN.
The thread processor is a 200 MHz, 64-bit RISC programmable thread processor
enriched with special instructions to support lightweight threads. This thread
processor can be programmed in C and is used to aid the implementation of com-
munication libraries without explicit intervention from the main CPU. The Short
Transaction Engine (STEN) is closely integrated with the command processor.
This specialized functional unit is optimized to handle short messages. For fur-
ther details about Elan4 see [5].

2.2 Elite4

The Elite4 is an eight-port crossbar, with two virtual channels per link, that can
deliver 1.3 GB/sec each way. QsNetII connects the Elite4 switches in a quater-
nary fat-tree topology. The Elite4 switches use source routing to implement an
up/down routing algorithm which takes advantage of this topology. The rout-
ing tags can identify either a single output link or a group of links for multicast
transfers. The routing algorithm is adaptive in the up phase and deterministic in
the down phase. The implementation of this routing algorithm is highly efficient
and introduces a delay of approximately 20 ns per switch.

At the link level, packets are divided into smaller 32-bit flits to use wormhole
flow control. Every packet transmission creates a virtual circuit between the
source and the destination node. The virtual circuit is closed after the destination
node acknowledges packet reception.

402 P.E. Garćıa et al.

3 Performance Evaluation

In this section, we present the performance results obtained in our initial evalua-
tion of a cluster based on dual-Opteron SMP nodes interconnected with QsNetII .
In particular, we have conducted experiments to measure the basic network per-
formance , the ability of QsNetII ’s MPI to overlap computation and communi-
cation, and the level of intrusiveness of the local OS in user-level computation.
Table 1 summarizes the experimental setup.

Table 1. Experimental Setup

Characteristic Description

Nodes

Processor 2xAMD Opteron 244 1.8 GHz
Chipset AMD-8131 HyperTransport
I/O Bus 64-bit PCI-X (66, 100, and 133 MHz)
BIOS AMIBIOS 08.00.10
Memory 1x1GB DDR400

Interconnect
NIC QM500b A02 PCI-X Elan4
Switch QS8A B01 8-port Elite4

Software

Kernel 2.4.21-178.x86 64 / 2.4.21-4.16qsnet
OS SuSE Linux 9.0 (x86-64)
Libraries qsnet2libs-1.6.9-0 / qsnetmpi-1.24-37
Compiler gcc-3.3.1-23
Launcher SLURM 0.3.8-1

3.1 Network Performance

To expose the network performance of QsNetII as seen by parallel applications,
we wrote our microbenchmarks at the MPI level. We perform two different ex-
periments to characterize the network in terms of latency and bandwidth. Unidi-
rectional bandwidth and latency are computed using a simple microbenchmark
where two processes residing in two different nodes exchange messages. In this
case, both processes invoke alternatively MPI Send and MPI Receive operations
in a loop for different message sizes. In turn, bidirectional bandwidth and latency
are obtained using a similar experiment where both processes send and receive
messages simultaneously using MPI Isend and MPI Irecv operations. Figure 1(a)
shows the MPI unidirectional and bidirectional bandwidth. The peak unidirec-
tional bandwidth, obtained as half of the measured bidirectional traffic, is 875
MB/s, whereas in the bidirectional case is 857 MB/s. Figure 1(b) shows the
MPI unidirectional and bidirectional latency. The minimum achievable latency
is 1.58μsec for unidirectional traffic and 3.41μsec for bidirectional traffic. This
remarkable low latencies are made possible by the QsNetII software infrastruc-
ture which provides zero-copy, user-level network access. Finally note that these
results indicate that Quadrics has improved the internal design of QsNetII over
the previous version of QsNet which showed a significant gap between unidi-
rectional and bidirectional figures [7]. This improvement is due to the fact that
Elan4 incorporates several separate 64-bit data buses [5].

Assessing MPI Performance on QsNetII 403

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

64 128 512 1k 2k 4k 8k 16k 64k 512k 2M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

Unidirectional Bandwidth
Bidirectional Bandwidth

(a) Bandwidth

0

5

10

4 8 16 32 64 128 256 512 1k 2k 4k

La
te

nc
y

(u
se

c)

Message Size (Bytes)

Unidirectional Latency
Bidirectional Latency

(b) Latency

Fig. 1. Network performance

3.2 Overlapping Computation and Communication

Network interface cards for modern cluster interconnects, such as Myrinet [1]
or Quadrics [7], provide programmable processors and substantial memory. This
trend opens a wide range of design possibilities for communication protocols
since this added capability allows the host processor to delegate certain tasks to
the NIC [9]. This offloading of protocol processing has two significant benefits.
First, moving communication protocol processing to the NIC increases the avail-
ability of the host processor for use by application programs, that is, to overlap
computation and communication. Second, NIC-based collectives show dramati-
cally reduced latency and increased consistency over host-based versions when
used in large-scale clusters [6].

In this section, we measure the ability of QsNetII ’s MPI to overlap computa-
tion and communication. This capability is influenced not only by the character-
istics of the underlying network, but also by the quality of the MPI implemen-
tation. In order to characterize the overlapping of computation and communica-
tion, we measure the processor availability –how much the processor is available
to application programs– while communication is in progress. To do so, we use a
test, namely post-compute-wait test [4], which combines computation and MPI
communication.

Post-Compute-Wait Test. This test consists of a worker process and a part-
ner support process running on two separate nodes. The worker process posts
a non-blocking send and a receive directed to the partner process, performs
some parametric amount of computation, and waits for the pending send and
receive calls to complete. The support process posts a matching send and receive.
The worker process code is instrumented to time the non-blocking call phase,
the compute phase, and the wait phase. The compute phase is a do-nothing
loop which keeps the host processor busy, without timers or system calls, for
a predefined amount of time. This loop performs neither memory accesses nor
I/O in order to avoid operations which might introduce non-determinism in the

404 P.E. Garćıa et al.

experiments. Using this test, we have conducted several experiments in order to
obtain (i) the maximum achievable bandwidth given specific message sizes and
computational granularities and (ii) the CPU availability figure defined as the
ratio between the total compute phase time and the total execution time.

CPU Availability and Bandwidth. In figure 2(a), we show the maximum
achievable bandwidth when we increased the computational granularity up to 1
ms for four different message sizes. As expected, when the computation time is
shorter than message latency, the sustained bandwidth is very close to the maxi-
mum achievable bandwidth as depicted in figure 1(a). In turn, figure 2(b) shows
the CPU availability for 32 KB messages when we increase the computational
granularity up to 1 ms. Note that, in this case, as soon as the computation time
exceeds the roundtrip message latency, the CPU availability is about 95.9% and
grows up to 99.5%.

Finally, it is worth noting that this test provides an additional check of
whether the MPI library complies with the progress rule of the MPI standard.
This rule determines that the non-blocking send and receive calls must com-
plete independently of a process making MPI library calls. As we have shown,
QsNetII ’s MPI perfectly complies with this rule.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000

B
an

dw
id

th
 (

M
B

/s
)

Computation Time (usec)

4k
32k
64k

128k

(a) Bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
P

U
 a

va
ila

bi
lit

y
(%

)

Computation Time (usec)

32k

(b) CPU availability

Fig. 2. Post-compute-wait test

3.3 Computational Noise

Performance of many parallel applications is limited by the ability of the en-
tire system to globally synchronize all nodes. However, local operating systems
running on the cluster nodes lack global awareness about parallel applications.
Local OS kernels and system dæmons are randomly scheduled across cluster
nodes. This unpredictable behavior has a significant impact on tightly-coupled
applications in which activities on the compute nodes are highly synchronized.
Moreover, this performance bottleneck get worse as cluster size increases [8].

Several techniques have been proposed in the literature to minimize the im-
pact of system activities on the overall performance of a parallel application.

Assessing MPI Performance on QsNetII 405

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 500 1000 1500 2000

Ite
ra

tio
ns

Computation Time (usec)

(a) Node 0, Processor 0

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 500 1000 1500 2000

Ite
ra

tio
ns

Computation Time (usec)

(b) Node 0, Processor 1

Fig. 3. Computational noise test

On the one hand, several authors have proposed different co-scheduling schemes
to synchronize system activities across cluster nodes [2,3]. On the other hand,
performance may be improved by just measuring the computational noise due
to periodic system activities which may harm performance in order to remove
them or ameliorate their impact [8]. The use of the above mentioned coschedul-
ing techniques is not commonly used, since it requires kernel-level modifications.
Therefore, in this section, we follow the second approach. We use a simple mi-
crobenchmark which quantifies computational noise due to system activities. In
this microbenchmark, each node performs 1 million iterations of a synthetic com-
putation which performs neither memory accesses nor I/O. Each synthetic com-
putation has been calibrated to take about 1 ms in the absence of noise, that is,
the run time for each iteration should always be the same in a noiseless machine.

In figures 3(a) and 3(b), we show the results for the first and the second
processor on the master node, respectively1. From these results we can derive
two interesting conclusions. First, the nodes of our cluster are noiseless even in
the worse case which corresponds to the master node. Second, the distribution
for the second processor has the very same shape but it is slightly displaced
to the right on both nodes. This indicates that some kind of system activity is
taking place only in the second processor. In this case, the only candidate is the
kernel which might be descheduling the microbenchmark process in the second
processor more often.

4 Conclusions and Future Work

In this paper, we have presented our initial analysis of the communication ca-
pabilities for a cluster based on dual-Opteron SMP nodes interconnected with
QsNetII . Our experimental results show that this platform has an extraordi-
nary potential for high-performance cluster computing. The communication sub-
system provides can rely on an extremely efficient network, a high degree of
1 Results for slave nodes are similar and we omit them in the sake of brevity.

406 P.E. Garćıa et al.

overlapping between computation and communication, and a really low level of
computational noise due to system software interference.

Future work include scalability analysis for larger configurations, perfor-
mance analysis for different traffic patterns, and study of different scenarios
to offload protocol processing to the Elan4 NIC.

References

1. Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, 15(1):29–36, February 1995.

2. Juan Fernández, Eitan Frachtenberg, and Fabrizio Petrini. BCS-MPI: A New
Approach in the System Software Design for Large-Scale Parallel Computers. In
Proceedings of IEEE/ACM Conference on SuperComputing, Phoenix, AZ (USA),
November 2003.

3. Terry Jones, William Tuel, and Brian Maskell. Improving the Scalability of Parallel
Jobs by adding Parallel Awareness to the Operating System. In Proceedings of
IEEE/ACM Conference on SuperComputing, Phoenix, AZ (USA), November 2003.

4. William Lawry, Christopher Wilson, and Arthur B. Maccabe. COMB: A Portable
Benchmark Suite for Assessing MPI Overlap. In Proceedings of IEEE International
Conference on Cluster Computing, Chicago, IL (USA), September 2002.

5. Quadrics Supercomputers World Ltd. Elan4 Reference Manual.
6. Adam Moody, Juan Fernández, Fabrizio Petrini, and Dhabaleswar K. Panda. Scal-

able NIC-Based Reduction on Large-Scale Clusters. In Proceedings of IEEE/ACM
Conference on SuperComputing, Phoenix, AZ (USA), November 2003.

7. Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Fracht-
enberg. The Quadrics Network: High-Performance Clustering Technology. IEEE
Micro, 22(1):46–57, January/February 2002.

8. Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the 8192 Proces-
sors of ASCI Q. In Proceedings of ACM/IEEE Conference on SuperComputing,
Phoenix, AZ (USA), November 2003.

9. Piyush Shivam, Pete Wyckoff, and Dhabaleswar K. Panda. EMP: Zero-copy
OS-bypass NIC-driven Gigabit Ethernet Message Passing. In Proceedings of
IEEE/ACM Conference on SuperComputing, Denver, CO (USA), November 2001.

10. Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI: The Complete Reference. MIT Press, 1996.

11. www.infinibandta.org. Infiniband Trade Association.
12. www.myri.com. Myricom, Inc.
13. www.quadrics.com. Quadrics Supercomputers World Ltd.
14. www.top500.org. Top500 Supercomputing Sites.

Optimised Gather Collectives on QsNetII

Duncan Roweth and David Addison

Quadrics Ltd, Bristol, United Kingdom

Abstract. In this paper we describe the implementation of the gather
and allgather collectives on QsNetII . Results from a cluster of 980 4-
CPU nodes show good latencies, bandwidths and scaling, with a 3920
process, 8-byte, gather completing in 88 microsecs.

Keywords: Gather, AllGather, QsNet, Parallel, Collective.

1 Introduction

Many scientific applications exhibit the need for communication patterns that
involve global data movement and global control[1]. Barrier synchronization,
broadcast, gather, scatter, reduce and global exchange are typical examples of
collective communication patterns.

QsNetII is the latest generation of Quadrics interconnect (see [2] and [3], it
consists of two ASICs: Elan4 and Elite4. The Elan4 communication processor
forms the interface between a processing node and a high performance multi-
stage network. It has a 64 bit internal architecture and supports 64 bit virtual
addresses. The Elan4 generates and accepts packets to and from the network. In
addition, it provides local processing power to implement the high-level message
passing protocols required in parallel processing. The network is constructed
from Elite4 switch components that are capable of switching eight bi-directional
communications links. Each link carries data in both directions simultaneously at
1.3 Gbytes/sec. The link bandwidth is shared between two virtual channels. The
network supports point-to-point transfer between arbitrary nodes and broadcast
across selected ranges of nodes.

In this paper we describe how the QsNetII components are used to imple-
menting gather operations, information on the implementation of other collec-
tives can be found in[4].

2 QsNet

The main features of QsNetII are low latency, high bandwidth, scalability, reli-
able transmission and a commodity host adapter interface. Many scientific ap-
plications are very sensitive to the MPI[5] communication latency. The Elan
adapter minimizes this latency by providing specialized units to quickly pipeline
small messages into the network, perform protocol processing and notify the
completion of the communication primitive. Its pipelined DMA engine uses split
transaction reads to maximize host adapter bandwidth. QsNetII is designed to
scale to thousands of nodes, both in terms of hardware capability and system

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 407–414, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

408 D. Roweth and D. Addison

software design. QsNetII is used in Thunder at Lawrence Livermore National
Lab (the fifth most powerful computer in the world at the time of writing[6])
and mpp2 at Pacific Northwest National Lab, both 1024-node systems with
IA64 CPUs. QsNetII implements a reliable transmission protocol in hardware,
and is able to detect faults, route packets around faulty switches and re-transmit
packets in the presence of data errors. The Elan4 network adapter contains the
following functional units: a pipelined DMA engine, a 64-bit microprocessor,
an MMU, 32KB of 4-way set associative cache, a command processor that de-
fines a virtual command queue interface, a short message-processing unit called
STEN (Small Transaction Engine), a 1.3 Gbyte/sec each way network interface
connection and a PCI-X, 64-bit, 133 MHz host interface.

User processes can perform remote read/write memory operations by issu-
ing DMA commands to the Elan4. The DMA engine services a queue of out-
standing DMA requests and ensures that they are completed reliably. The DMA
engine can handle arbitrary source and destination buffer alignment as well as en-
dian conversions. In addition, there are facilities to issue broadcasts and queued
DMAs. The DMA engine processes 2 DMAs concurrently to overlap the start-
up/finish latency and maintain full PCI-X read bandwidth.

The completion of a data transfer can be signalled by setting of an event in
both source and destination processes. Events can be a simple word in memory
(allowing a process to poll them), but the event engine allows a number of more
sophisticated operations to be performed. A main processor interrupt can be
generated (allowing a process to poll an event for some period of time and then
sleep in the device driver) or a copy can occur. Event copies are of particular
interest, as they can be used to initiate further DMAs. For example, the comple-
tion of one DMA can be used to copy the descriptor for another to a command
queue. Its completion can trigger a third and so on. The main processor need
only prepare the DMA descriptors and issue the first. It can then perform other
work until finally waiting on completion of the last DMA. QsNetII supports
counted events; a wait event of 3 for example will fire when 3 set events have
occurred. This mechanism allows us to construct arbitrary trees of processes
where an event in the parent fires when each child has completed an operation.

The Elan adapters connect each node to a multi-stage switch network con-
structed from Elite switches. Each switch is an 8 by 8 bi-directional full crossbar
with 2 virtual channels per link. Networks are constructed using in a fat tree
topology. This network maintains full bi-section bandwidth.

The Elite4 switch supports broadcast operations in hardware. A DMA packet
input on one link can be sent on to a range of output links. Broadcast packets are
routed up the broadcast tree (any one of the many trees in the QsNetII network)
to a point high enough that all destination nodes can be reached, then down to all
of the nodes in the range. Acknowledgements are combined back up this tree and
a single success or failure token is returned to the source. This mechanism allows
data to be sent to all nodes in much the same time as it can be sent to any one.

The Quadrics software stack includes both MPI and Shmem[7] interfaces.
These libraries are implemented with libelan, which provides inter-process

Optimised Gather Collectives on QsNetII 409

communication primitives and libelan4, the device specific command issue li-
brary. The interface between MPI and libelan is device independent, allowing
the same MPI library to be used for both Elan4 adapters and the older Elan3
adapters installed in many AlphaServer SC and Linux clusters. Dynamic libraries
are used throughout, allowing the same user binary to run on different systems
of either generation.

MPI collectives operate on arbitrary subsets of processes called communica-
tors. The COMM WORLD communicator contains all processes; it is created
by the call to MPI Init(). Further communicators containing a subset of the
processes can be created and destroyed dynamically. Quadrics libraries map
MPI communicators onto a group structure. Each group structure will have its
own data Elan events, buffers etc.

MPI collectives do not require each process to supply symmetric addresses
(a symmetric variable is at the same address in each process); a gather for
example, can collect data from different addresses in each process to a buffer
whose address is only known at the root. Shmem collectives however, require
the use of symmetric variables. The Elan library collectives handle both cases,
with a flags field being used to indicate whether source and destination addresses
are symmetric.

3 Gather Algorithms

In the simplest gather algorithms each process sends a fixed size element to
the root using a message passing routine such as MPI Send and the root process
receives them using MPI Recv. The time taken to complete the call scales linearly
with the message passing latency and the number of processes.

The simple gather algorithm should work well for large element sizes where
bandwidth into the root node controls performance, but its latency is poor. An
alternative is to used a tree based gather algorithm, in which each process sends
its elements and those of children up to its parent. In the MPICH 1.25 release
a recursive doubling algorithm is used to gather elements on a binary tree[5]. In
libelan we use trees of variable branching ratio.

The result of a gather is available only at the root process, in an allgather all
processes receive the result. This can be achieved using a gather followed by a
broadcast or using a ring algorithm[9]. In the ring algorithm each process sends
its own elements to its neighbour. It then sends on the elements it has received
from its neighbour, and so on in n steps until each process has received the
elements from all n processes. We would expect the ring algorithm to perform
relatively poorly for small element sizes, but for large element sizes it should
achieve close to optimal bandwidth.

4 Gather Implementation

In the gather function the root process collects a fixed size block of data from
each process.

410 D. Roweth and D. Addison

void elan_gather(ELAN_GROUP *g, void *sbuf, void *dbuf,
size_t size, int root, ELAN_FLAGS flags);

If the destination address is symmetric this can be implemented in a straight-
forward manner using a barrier followed by a call to elan doput(). The barrier is
required to ensure that the root process has entered the collective. If the desti-
nation buffer is not known to be symmetric then point-to-point message passing
primitives are used instead.

The performance of this algorithm is shown by the plots labelled “Simple” in
figures 1 and 2. Latency increases linearly with the number of processes, but is
low (less than one microsecond per element) because of the Elan adapter’s ability
to process multiple such operations concurrently. The host interface limits gather
bandwidth to between 820 and 910 Mbytes/sec depending upon the node type.
Full bandwidth is sustained for large numbers of processes; it is not reduced by
end point contention.

Tree based gather algorithms have been implemented to improve latency, we
use a balanced tree of branching ratio 4 by default. Leaf nodes send data to their
parents. Intermediate nodes add their own data and forward to their parents,
and so on to the root. On completion of the gather the root process performs a
broadcast set event releasing the other processes from the collective. In the first
tree algorithm (labelled “Main” in figures 1 and 2), the intermediate processes
poll in the main CPU until data arrives from their children and then send their
data and that of their children on to their parent. This results in a significant
reduction in latency (112 microsecs for a 3920 process 8-byte gather on 980 4-
CPU nodes rather than 6598). Scaling of this algorithm is good, but the need
to involve the main CPU on intermediate nodes can lead to poor performance

Fig. 1. Gather times as a function of element size for 64 processes

Optimised Gather Collectives on QsNetII 411

Fig. 2. Gather times as a function of number of processes, 8 byte elements

on large systems as all processes must be scheduled in order to progress the
collective[10].

We have implemented a second tree based gather algorithm in which the Elan
Event processor is used to chain the puts, reducing main processor involvement
and PCI traffic. Each child sends its elements to adapter memory in its parent
and then sets an event to signal completion of the transfer. The parent copies in
its data and sets the event again. When the event count reaches the number of
children plus one, the event fires and the adapter sends the data on up the tree
without involving the main CPU. This algorithm reduces the gather latency
further; with the time for a 3920 process 8-byte gather on 980 falling to 88
microsecs.

QsNet is generally deployed in multi-CPU nodes (2-16 CPUs is typical) with
one MPI or Shmem process running on each CPU. Where a gather operation
involves multiple processes per node we can first gather the local elements to
per-node a shared memory buffer. The gather is then performed on a tree formed
from the first process on each node. This approach reduces the number of network
transfers. It works well for small element sizes.

Note that MPI allows non-trivial mapping of subgroups to nodes. When
gathering over nodes it is necessary to unpick the mapping of processes to nodes
and copy data out from a library buffer to the user’s buffer. This limits the
element size at which the shared memory optimisation is efficient.

Our tree algorithms are primarily to reduce gather latency, but they also
deliver good bandwidth, by using buffers the NIC they avoid the need to copy
data across the PCI bus on intermediate nodes. However, the adapter memory
requirements scale as element size group size / branching ratio. This restricts
the maximum element size as adapter SDRAM is a limited resource. The library

412 D. Roweth and D. Addison

Fig. 3. Gather bandwidths for 64 HP RX2600 nodes

switches to the put based algorithm as the element size increases, as illustrated
in figure 3.

5 AllGather Implementation

The QsNet hardware broadcast allows the root process in a gather to broadcast
the result to all nodes with a simple put. In figure 4 we compare the results of

Fig. 4. AllGather bandwidths

Optimised Gather Collectives on QsNetII 413

this implementation of Allgather with those obtained using the ring algorithm.
The single process per node results show that the tree gather and broadcast
algorithm achieves significantly higher bandwidth at small element sizes. As the
element size increases the gap narrows. Both algorithms achieve 400-450 Mbytes
a second for large element sizes as we would expect. However, most MPI and
Shmem applications run one process per CPU. Data received from the network
must be copied to each local process. On commodity nodes allgather bandwidth
is dominated by the node’s memory copy performance.

In figure 4 we see that the aggregate allgather bandwidth with 4 processes per
4-CPU node peaks at 275 Mbytes per second for elements of size 1K, but drops
to 200Mbytes/sec for large element sizes. Optimal QsNet hardware broadcast
bandwidth is achieved when an application is run on a set of nodes that occupy
physically contiguous range of network ports. Network broadcast bandwidth
drops when the application is run on non-contiguous nodes. We use the gather
and broadcast allgather algorithm for small element sizes, switching to the ring
algorithm for large sizes if the application where hardware broadcast is less
efficient.

6 Conclusions and Further Work

We have shown that QsNetII systems can perform an 8-byte gather over 256
process on 64 4-CPU nodes in 24 microsecs and 3920 process on 980 nodes
in 88 microsecs. We have also shown that both gather and allgather saturate
link bandwidth for large element sizes. Allgather performance on SMP nodes is
limited by memory copy performance, not network bandwidth.

We are working on optimisations for multi-rail systems in which each node
has 4 or 16 CPUs and 2,4 or 8 adapters. We are also looking into using fnomial
trees, which should reduce the time before data starts arriving at the root node.

7 Benchmark Programs

The results reported in this paper were all obtained using the gping benchmark
program supplied with the QsNetII release. This program measures the time
taken to complete 1000 repetitions of the gather collective, reporting the average.
Source code is included in the open source release, available from the Quadrics
website. Similar results are obtained using other MPI benchmark suites, with
for example gping, PMB and SkaMPI all reporting 18-19 microsecs for a 256
process, 8 byte AllGather.

The authors would like to thank Lawrence Livermore National Lab and Pa-
cific Northwest National Lab for access to the systems used in preparing this
paper. We would also like to acknowledge Adam Moody of Lawrence Livermore
National Lab, Fabrizio Petrini of Los Alamos National Lab and Jon Beecroft of
Quadrics for their help and encouragement.

414 D. Roweth and D. Addison

References

[1] Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg and Adolfy Hoisie. Hardware -
and Software Based Collective Communication on the Quadrics Network. In Pro-
ceedings of the 2001 IEEE International Symposium on Network Computing and
Applications (NCA 2001) Cambridge, Mass, October 8-10, 2001.

[2] David Addison, Jon Beecroft, David Hewson, Moray McLaren and Fabrizio
Petrini. Quadrics QsNetII : A network for Supercomputing Applications. In Hot
Chips 15, Stanford University, CA, August 2003

[3] Jon Beecroft, David Addison, David Hewson, Moray McLaren, Fabrizio Petrini
and Duncan Roweth. Quadrics QsNetII : Pushing the Limit of the Design of High-
Performance Networks for Supercomputers. In IEEE Micro. To appear, 2005.

[4] Duncan Roweth, Ashley Pittman and Jon Beecroft. Optimised Collectives on
QsNetII www.quadrics.com/documentation.

[5] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and Jack Dongarra.
MPI: The Complete Reference. The MIT Press, 1998, Volume 1, The MPI Core.
The MIT Press, Cambridge, Massachusetts, 2nd edition, September 1998 ISBN0-
262-69215-5.

[6] Hans W. Meuer, Erich Strohmaier, Jack J. Dongarra and Horst D. Simon. Top500
Supercomputer Sites June 2003 Available from www.top500.org

[7] Cray Man Page Collection: Shared Memory Access (SHMEM) S?2383?23, avail-
able from the Cray http://website www.cray.com/craydoc.

[8] Elan Programming Manual. Available from www.quadrics.com/documentation
[9] Gregory D Benson, Cho-Wai Chu, Qing Huang and Sadik G Caglar. A Compar-

ison of MPICH Allgather Algorithms on Switched Networks in Lecture Notes in
Computer Science Springer-Verlag GmbH, October 2003, pp. 335-343.

[10] Fabrizio Petrini, Darren Kerbyson and Scott Pakin. The Case of the Missing Su-
percomputer Performance: Achieving Optimal Performance on the 8,192 Proces-
sors of ASCI Q. In IEEE/ACM SC2003, Phoenix, AZ, November 2003.

An Evaluation of Implementation Options
for MPI One-Sided Communication

William Gropp and Rajeev Thakur

Mathematics and Computer Science Division,
Argonne National Laboratory,

Argonne, IL 60439, USA
{gropp, thakur}@mcs.anl.gov

Abstract. MPI defines one-sided communication operations—put, get,
and accumulate—together with three different synchronization mecha-
nisms that define the semantics associated with the initiation and com-
pletion of these operations. In this paper, we analyze the requirements
imposed by the MPI Standard on any implementation of one-sided com-
munication. We discuss options for implementing the synchronization
mechanisms and analyze the cost associated with each. An MPI imple-
menter can use this information to select the implementation method
that is best suited (has the lowest cost) for a particular machine envi-
ronment. We also report on experiments we ran on a Linux cluster and
a Sun SMP to determine the gap between the performance that could
be achievable and what is actually achieved with MPI.

1 Introduction

Over the past decade, one-sided communication has emerged as a promising
paradigm for high-performance communication on low-latency networks. The
advantage of one-sided communication lies in its asynchronous nature: Unlike
in point-to-point (or two-sided) communication where the sender and receiver
explicitly call send and receive functions, in one-sided communication only the
origin process calls the data-transfer function (put or get), and data transfer
takes place without the target process explicitly calling any function to transfer
the data. This model allows parallel programs to be less synchronizing and al-
lows communication hardware to move data from one process to another with
maximal efficiency. Nonetheless, some synchronization mechanism is needed in
the programming model for the target process to indicate when its memory is
ready for being read or written by a remote process and to specify when the
data transfer is completed.

Because of the growing popularity of one-sided communication, the MPI
Forum defined a specification for one-sided communication in MPI-2 [8]. MPI
defines three data-transfer functions for one-sided communication: put (remote
write), get (remote read), and accumulate (remote update). These data-transfer
functions must be used together with one of three synchronization mechanisms—
fence, post-start-complete-wait, and lock-unlock—as shown in Figure 1. Many

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 415–424, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

416 W. Gropp and R. Thakur

Process 0 Process 1
MPI_Win_fence(win)
MPI_Put(1)
MPI_Get(1)
MPI_Win_fence(win)

MPI_Win_fence(win)
MPI_Put(0)
MPI_Get(0)
MPI_Win_fence(win)

a. Fence synchronization

Process 0 Process 1 Process 2
MPI_Win_post(0,2)

MPI_Win_start(1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_complete(1)

MPI_Put(1)
MPI_Win_start(1)

MPI_Get(1)
MPI_Win_complete(1)

MPI_Win_wait(0,2)

b. Post-start-complete-wait synchronization

Process 0 Process 1 Process 2
MPI_Win_create(&win)
MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

MPI_Win_create(&win)

MPI_Win_free(&win)

MPI_Win_create(&win)
MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

c. Lock-unlock synchronization

Fig. 1. The three synchronization mechanisms for one-sided communication in MPI.
The numerical arguments indicate the target rank.

MPI implementations, including all vendor MPIs, support one-sided commu-
nication, with varying levels of optimization [1,2,4,6,7,9,10,12,14,15]. Nonethe-
less, Gabriel et al. [3] found that, because of the synchronization overhead in
one-sided communication, regular point-to-point communication performs bet-
ter than one-sided communication in five MPI implementations: NEC, Hitachi,
IBM, Sun, and LAM. The only exceptions were NEC and Sun MPI when window
memory allocated with the special function MPI Alloc mem is used. Clearly, it
is necessary to study the costs associated with the synchronization mechanisms
and optimize the implementations. In this paper, we analyze the semantics of the
synchronization mechanisms, discuss options for implementing them, and ana-
lyze the overhead. This information is useful to MPI implementers in deciding
which implementation method to use for a particular machine environment.

2 Fence Synchronization

Figure 1a illustrates the fence method of synchronization. In MPI, the memory
region that a process exposes to one-sided communication is called a window,
and a collection of processes create a window object that is used in subsequent
one-sided communication functions. MPI Win fence is collective over the com-
municator associated with the window object. A process may issue one-sided
operations after the first call to MPI Win fence returns. The next call to fence

An Evaluation of Implementation Options 417

completes the one-sided operations issued by this process as well as the oper-
ations targeted at this process by other processes. An implementation of fence
synchronization must support the following semantics: A one-sided operation
cannot access a process’s window until that process has called fence, and the
second fence on a process cannot return until all processes needing to access
that process’s window have completed doing so.

2.1 Implementing Fence

In general, an implementation has two options for implementing fence: immediate
and deferred.

Immediate Method. This method implements the synchronization and com-
munication operations as they are issued. A simple implementation of this option
is to perform a barrier in the first fence; perform the puts, gets, and accumulates
as they are called; and perform another barrier at the end of the second fence
after all the one-sided operations have completed. The first barrier ensures that
all processes know that all other processes have reached the first fence and that
it is now safe to access their windows. The second barrier ensures that a process
does not return from the second fence until all other processes have finished
accessing its window.

On a distributed-memory environment without hardware support for barri-
ers, a barrier can be implemented by using the dissemination algorithm [5] with
0-byte messages. If p is the number of processes and α is the latency (or startup
time) per message, this algorithm costs (lg p)α. The immediate method requires
two barriers, which cost 2(lg p)α. This method is expensive in environments
where the latency is high, such as on clusters and networks running TCP. It is
appropriate for environments where barriers can be fast, such as shared-memory
systems or machines with hardware support for barriers, such as the Cray T3E
and IBM BG/L.

Deferred Method. This method [12] takes advantage of the MPI feature that
puts, gets, and accumulates are nonblocking and are guaranteed to be com-
pleted only when the following synchronization function returns. In the deferred
method, the first fence does nothing and simply returns. The ensuing puts, gets,
and accumulates are simply queued up locally. All the work is done in the second
fence, where each process first goes through its list of queued one-sided oper-
ations and determines, for every other process i, whether any of the one-sided
operations have i as the target. This information is stored in an array, such that
a 1 in the ith location of the array means that one or more one-sided opera-
tions are targeted to process i, and a 0 means otherwise. All processes then do
a reduce-scatter sum operation on this array (as in MPI Reduce scatter). As
a result, each process knows how many processes will be performing one-sided
operations on its window, and this number is stored in a counter in the window
object. Each process then performs the data transfer for its one-sided operations
and ensures that the counter at the target is decremented when all the one-sided
operations from this process to that target have been completed. As a result,

418 W. Gropp and R. Thakur

a process can return from the second fence when the one-sided operations is-
sued by that process have completed locally and when the counter in its window
object reaches 0, indicating that all other processes have finished accessing its
window.

This method thus eliminates the need for a barrier in the first fence and
replaces the barrier at the end of the second fence by a reduce-scatter at the
beginning of the second fence before any data transfer. After that, all processes
can do their communication independently and return when they are done (asyn-
chronously). This method also enables optimizations such as message reordering,
scheduling, and aggregation, which the immediate method does not.

On a distributed-memory system, a reduce-scatter operation on an array of
p short integers (2 bytes) costs (lg p)α + 2(p− 1)β [13], where β is the transfer
time per byte between two processes. Because of the lower latency term, this
method is preferred over the immediate method on systems where the latency
is relatively high, such as on clusters.

2.2 Performance

To determine how MPI implementations perform for fence synchronization, we
measured the cost of two MPI Barriers, one MPI Reduce scatter, and two
MPI Win fences on a Myrinet-connected Linux cluster at Argonne and a Sun
SMP at the University of Aachen in Germany. On the Linux cluster, we used a
beta version of MPICH2 1.0.2 with the GASNET channel on top of GM. On the
Sun SMP, we used Sun MPI. We performed the operations several times in a
loop, calculated the average time for one iteration, and then the maximum time
taken by all processes. We used MPI Alloc mem to allocate window memory and
passed assert MPI MODE NOPRECEDE to the first fence and (MPI MODE NOSTORE |
MPI MODE NOPUT | MPI MODE NOSUCCEED) to the second fence.

Figure 2 shows the results. On the Linux cluster, the cost of two barriers is
far more than the cost of a single reduce-scatter. Therefore, the deferred method
is the preferred option, which is what MPICH2 uses in this case. We see that
the cost of two fences is almost the same as that of a reduce-scatter. On the

 20

 40

 60

 80

 100

 120

 140

 28 24 20 16 12 8 4

T
im

e
(m

ic
ro

se
c)

Processes

Myrinet Linux Cluster

two barriers
one reduce-scatter

two fences

 0

 10

 20

 30

 40

 50

 60

 24 20 16 12 8 4

T
im

e
(m

ic
ro

se
c.

)

Processes

Sun SMP

two barriers
one reduce-scatter

two fences

Fig. 2. Time taken for two barriers, one reduce-scatter, and two fences on a Myrinet-
connected Linux cluster using MPICH2 (left) and on a Sun SMP using Sun MPI (right)

An Evaluation of Implementation Options 419

Sun SMP, Sun MPI has a very fast implementation of barrier, and therefore the
immediate method is the preferred implementation strategy for fence. From the
graph, it appears that Sun MPI does use the immediate method, because the
time for two fences is only slightly higher than the time for two barriers.

3 Post-Start-Complete-Wait Synchronization

Fence synchronization, being collective over the entire communicator associated
with the window object, results in unnecessary overhead when only small subsets
of processes actually communicate with each other. To avoid this drawback, MPI
defines a second synchronization mechanism in which only subsets of processes
need to synchronize, as shown in Figure 1b. A process that wishes to expose
its local window to remote accesses calls MPI Win post, which takes as argu-
ment an MPI Group object that specifies the set of processes that will access
the window. A process that wishes to perform one-sided communication calls
MPI Win start, which also takes as argument an MPI Group object that spec-
ifies the set of processes that will be the target of one-sided operations from
this process. After issuing all the one-sided operations, the origin process calls
MPI Win complete to complete the operations at the origin. The target calls
MPI Win wait to complete the operations at the target.

An implementation of post-start-complete-wait synchronization must take
into account the following semantics: A one-sided operation cannot access a
process’s window until that process has called MPI Win post, and a process
cannot return from MPI Win wait until all processes that need to access that
process’s window have completed doing so and called MPI Win complete.

3.1 Implementing Post-Start-Complete-Wait

We again consider the immediate and deferred methods for implementing post-
start-complete-wait. A few intermediate options also exist [4,8] but, for simplic-
ity, we do not consider them here.

Immediate Method. In this method, MPI Win start blocks until it receives a
message from all processes in the target group indicating that they have called
MPI Win post. Puts, gets, and accumulates are performed as they are called.
MPI Win complete waits until all one-sided operations initiated by that process
have completed locally and then sends a done message to each target process.
On the target, MPI Win wait blocks until it receives the done message from
each origin process. Assuming that the size of the origin and target groups is g,
the overhead of this method is 2gα. This method is appropriate in environments
with low latency and native support for one-sided communication, such as shared
memory, so that the data transfer can be initiated as soon as it is called.

Deferred Method. This method defers data transfer until the second syn-
chronization call [12]. In MPI Win post, if the assert MPI MODE NOCHECK is not
specified, the process sends a zero-byte message to each process in the origin

420 W. Gropp and R. Thakur

group to indicate that MPI Win post has been called. It also sets the counter in
its window object to the size of this group. On the origin side, MPI Win start
does nothing and simply returns. All one-sided operations are simply queued
up locally. In MPI Win complete, the origin process first waits to receive the
zero-byte messages from the processes in the target group. It then performs all
the one-sided operations and ensures that the window counter at the target gets
decremented when all the one-sided operations from this process to that target
have been completed. MPI Win complete returns when all its operations have
locally completed. On the target, MPI Win wait simply blocks and invokes the
progress engine until its window counter reaches zero, indicating that all origin
processes have finished accessing its window.

Thus the only synchronization in this method is the wait at the begin-
ning of MPI Win complete for a zero-byte message from the processes in the
target group, and this too can be eliminated if the user specifies the assert
MPI MODE NOCHECK to MPI Win post and MPI Win start (similar to MPI Rsend).
If the size of the origin and target groups is g, the overhead of this method is gα.
Therefore, the deferred method is faster in environments where latency is high.

4 Lock-Unlock Synchronization

In the lock-unlock synchronization method, the origin process calls MPI Win lock
to obtain either shared or exclusive access to the window on the target, as shown
in Figure 1c. After issuing the one-sided operations, it calls MPI Win unlock. The
target does not make any synchronization call. When MPI Win unlock returns,
the one-sided operations are guaranteed to be completed at the origin and the
target. MPI Win lock is not required to block until the lock is acquired, except
when the origin and target are one and the same process. Implementing lock-
unlock synchronization when the window memory is not directly accessible by
all origin processes requires the use of an asynchronous agent at the target to
cause progress to occur because one cannot assume that the user program at the
target will call any MPI functions that will cause progress periodically [8].

4.1 Implementing Lock-Unlock

We consider the immediate and deferred methods of implementing lock-unlock.

Immediate Method. In this method,MPI Win lock sends a lock-request packet
to the target and waits for a lock-granted reply. Puts, gets, and accumulates are
performed as they are called. MPI Win unlockwaits until all one-sided operations
initiated by that process have completed locally and then sends an unlock request
to the target. It also waits to receive an acknowledgment from the target that all
the one-sided operations issued from this process have completed at the target,
as required by the semantics of MPI Win unlock. The cost for acquiring the lock
is 2α, and the cost for releasing the lock is also 2α. Therefore, the total cost of
this method is 4α, assuming no lock contention.

An Evaluation of Implementation Options 421

Deferred Method. In this method [12], MPI Win lock does nothing and simply
returns. All one-sided operations are simply queued up locally. In
MPI Win unlock, the origin sends a lock-request packet to the target and waits
for a lock-granted reply. It then performs the one-sided operations. When these
operations have completed locally, it sends an unlock request to the target and, in
the general case, waits for a reply from the target indicating that the operations
have completed at the target.

The deferred method also costs 4α in the general case, but it permits several
optimizations that the immediate method does not. One optimization is that if
any of the one-sided operations is a get, it can be reordered and performed last.
Since the origin must wait to receive data in the get, when the get completes, it
implies that the one-sided operations have also completed at the target (assuming
ordered completion). In this case, an additional acknowledgment is not needed
from the target, thereby reducing the cost to 3α. Another optimization in the
case of a single put, get, or accumulate is that the origin can perform it as
an atomic lock-(put/get/accumulate)-unlock request without having to wait for
a lock-granted reply. If the operation is a get, even the additional completion
acknowledgment from the target is not needed. These optimizations reduce the
cost of lock-unlock to α and 0, respectively, because the lock request becomes
part of the data transfer.

5 Analysis for Shared-Memory Environments

Shared-memory environments offer unique opportunities for optimizing MPI one-
sided communication because of their support for atomic operations for fast
synchronization and the ability to directly copy data to/from the user’s buffer on
the target if the window memory was allocated with MPI Alloc mem. We analyze
in further detail the implementation of one-sided communication on shared-
memory environments with lock-unlock synchronization. Consider this simple
example that puts n longs into the memory window on the process specified by
rank:

MPI_Win_lock(MPI_MODE_EXCLUSIVE, rank, 0, win);
MPI_Put(buf, n, MPI_LONG, rank, 0, n, MPI_LONG, win);
MPI_Win_unlock(rank, win);

We assume that the window memory was allocated with MPI Alloc mem and is
directly accessible by a remote process. If we ignore error checking of function
parameters, an MPI implementation need perform only the following steps for
each of the above functions.

MPI Win lock
1. Make a routine call with four arguments
2. Convert win into an address (if not already an address)
3. Look up the address of the lock at the target (indexed access into win)
4. Check shared or exclusive access
5. Remote update for the lock

422 W. Gropp and R. Thakur

MPI Win put

1. Make a routine call with eight arguments
2. Convert win into an address (if not already an address)
3. Check that the remote memory is directly accessible
4. Get the base address of the remote memory (indexed access into win)
5. Get the displacement unit (indexed access into win)
6. Determine whether origin data is contiguous and get length (access datatype

and multiply count by datatype size)
7. Determine whether target data is contiguous
8. Perform the copy of local to remote memory

MPI Win unlock

1. Make a routine call with two arguments
2. Convert win into an address (if not already an address)
3. Look up the address of the lock at the target (indexed access into win)
4. Remote update for the unlock

While the number of steps may seem large, they in fact involve relatively few
instructions. However, the access to remote memory, either for the lock accesses
or for the memory copy at the end of the MPI Put step, may require hundreds of
processor cycles. To determine the cost of performing the above steps, we wrote
a shared-memory program using OpenMP [11] in which one thread performs the
equivalent of lock, put, and unlock on another thread. We wrote four versions
of this program:

1. A single routine OpenMP program where the lock, put, and unlock are all
performed in the main routine by simply setting and clearing a flag for the
lock and unlock steps and using memcpy to move the data.

2. The lock, put, and unlock operations are performed in separate routines,
thus adding function-call overhead.

3. An MPI Win-like structure is added so that the addresses of the lock and the
memory at the target have to be obtained by indexing into the structure.

4. The routines use the same arguments as the corresponding MPI functions.
This version adds more arguments to the routines and requires an extra
lookup in the win structure for the displacement unit at the target.

We ran these programs on a Sun SMP (Sun Fire E6900, 1.2 GHz Ultra
Sparc IV) at the University of Aachen with the Sun OpenMP compiler. We also
ran the MPI version of the program with Sun MPI and a beta version of MPICH2
1.0.2 with the sshm (scalable shared memory) channel. For windows allocated
with MPI Alloc mem, this version of MPICH2 uses the immediate method to
implement all three synchronization methods in the sshm channel.

Table 1 shows the time taken to move 8, 256, 1024, and 64K longs (4 bytes)
by these programs. The results show that the fastest MPI version is slower
by a factor of 1.4 to 2 than the OpenMP version with all MPI features. We
plan to investigate the cause of this difference in further detail, but preliminary
studies indicate that the cost of MPI Win lock followed by MPI Win unlock is

An Evaluation of Implementation Options 423

Table 1. Time in seconds to perform a lock-put-unlock operation on a Sun SMP. n is
the number of longs (4 bytes) moved. OpenMP 1 is a simple OpenMP implementation
of this operation. The other three OpenMP programs add more features. OpenMP 4
mimics the steps an MPI implementation must implement. The last two columns show
the times for two MPI implementations: Sun MPI and MPICH2.

OpenMP 1 OpenMP 2 OpenMP 3 OpenMP 4
n (simple) (routines) (win struct) (all MPI args) Sun MPI MPICH2
8 4.5e-7 4.8e-7 4.9e-7 5.4e-7 1.1e-6 1.3e-6

256 1.1e-6 1.1e-6 1.1e-6 1.2e-6 1.7e-6 1.9e-6
1024 4.7e-6 4.9e-6 5.0e-6 5.1e-6 5.2e-6 6.6e-6
64K 2.5e-4 2.6e-4 2.6e-4 2.7e-4 4.3e-4 5.4e-4

itself roughly twice as large as the equivalent steps in the OpenMP version. This
may be due to the difference in the handling of thread and process locks in the
operating system, and we plan to investigate this issue further.

6 Conclusions and Future Work

MPI one-sided communication has the potential to deliver high performance to
applications. However, MPI implementations need to implement it efficiently,
with particular emphasis on minimizing the overhead added by the synchro-
nization functions. In this paper, we have analyzed the minimum requirements
an implementation must meet to honor the semantics specified by the MPI
Standard. We have discussed and analyzed several implementation options and
recommended which option to use in which environments. Our analysis of the
performance of lock-put-unlock on the Sun SMP demonstrates that MPI imple-
mentations are not too far off from delivering what can be delivered by using
direct shared memory, although there is room for improvement. We plan to in-
vestigate in further detail where the additional gap lies and how much of it can
be reduced with clever implementation strategies.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-
31-109-ENG-38. We thank Chris Bischof for giving us access to the Sun SMP
machines at the University of Aachen.

References

1. Noboru Asai, Thomas Kentemich, and Pierre Lagier. MPI-2 implementation on
Fujitsu generic message passing kernel. In Proc. of SC99: High Performance Net-
working and Computing, November 1999.

424 W. Gropp and R. Thakur

2. S. Booth and E. Mourão. Single sided MPI implementations for SUN MPI. In
Proc. of SC2000: High Performance Networking and Computing, November 2000.

3. Edgar Gabriel, Graham E. Fagg, and Jack J. Dongarra. Evaluating dynamic com-
municators and one-sided operations for current MPI libraries. Int’l Journal of
High-Performance Computing Applications, 19(1):67–80, Spring 2005.

4. Maciej Golebiewski and Jesper Larsson Träff. MPI-2 One-Sided Communications
on a Giganet SMP Cluster. In Proc. of the 8th European PVM/MPI Users’ Group
Meeting, pages 16–23, September 2001.

5. Debra Hensgen, Raphael Finkel, and Udi Manbet. Two algorithms for barrier
synchronization. International Journal of Parallel Programming, 17(1):1–17, 1988.

6. Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, Darius
Buntinas, Rajeev Thakur, and William Gropp. Efficient implementation of MPI-2
passive one-sided communication over InfiniBand clusters. In Proc. of the 11th
European PVM/MPI Users’ Group Meeting, pages 68–76, September 2004.

7. Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, William
Gropp, and Rajeev Thakur. High performance MPI-2 one-sided communication
over InfiniBand. In Proc. of the 4th Int’l Symp. on Cluster Computing and the
Grid (CCGrid 2004), April 2004.

8. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997. http://www.mpi-forum.org/docs/docs.html.

9. Elson Mourão and Stephen Booth. Single sided communications in multi-protocol
MPI. In Proc. of the 7th European PVM/MPI Users’ Group Meeting, pages 176–
183, September 2000.

10. Fernando Elson Mourão and João Gabriel Silva. Implementing MPI’s one-sided
communications for WMPI. In Proc. of the 6th European PVM/MPI Users’ Group
Meeting, pages 231–238, September 1999.

11. OpenMP. http://www.openmp.org.
12. Rajeev Thakur, William Gropp, and Brian Toonen. Optimizing the Synchro-

nization Operations in MPI One-Sided Communication Int’l Journal of High-
Performance Computing Applications, 19(2):119–128, Summer 2005.

13. Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective
communication operations in MPICH. Int’l Journal of High-Performance Com-
puting Applications, 19(1):49–66, Spring 2005.

14. Jesper Larsson Träff, Hubert Ritzdorf, and Rolf Hempel. The implementation of
MPI-2 one-sided communication for the NEC SX-5. In Proc. of SC2000: High
Performance Networking and Computing, November 2000.

15. Joachim Worringen, Andreas Gäer, and Frank Reker. Exploiting transparent re-
mote memory access for non-contiguous and one-sided-communication. In Proc. of
the 2002 Workshop on Communication Architecture for Clusters, April 2002.

A Comparison of Three MPI Implementations
for Red Storm

Ron Brightwell

Scalable Computing Systems, Sandia National Laboratories�

P.O. Box 5800 Albuquerque, NM 87185-1110
rbbrigh@sandia.gov

Abstract. Cray Red Storm is a new distributed memory massively parallel com-
puting platform designed to scale to tens of thousands of nodes. Red Storm has a
custom network designed around the Cray SeaStar network interface and router.
In this paper, we present an evaluation of three different MPI implementations for
Red Storm: the vendor-supported MPICH2 implementation, and two other imple-
mentations based on MPICH 1.2.6. We discuss the differences in these implemen-
tations and show how various implementation strategies impact performance and
scalability.

Keywords: MPI, Red Storm, XT3, Portals, Performance.

1 Introduction

Cray Red Storm is a new distributed memory massively parallel computing platform de-
signed to scale to tens of thousands of processors. The Cray XT3 is the official product
from Cray that differs slightly from the Red Storm platform that has been installed at
Sandia National Laboratories in Albuquerque, New Mexico, USA. The XT3 has a three-
dimensional torus network, while the Red Storm system is torus only in one direction.
This limitation allows the Red Storm system to support more easily switching large
sections of the machine between classified and unclassified computing. Other than this
feature, the hardware and software environment of Red Storm is identical to the XT3.
Henceforth, we will simply refer to Red Storm, since that is the platform on which all
of our experiments were performed.

Like any other distributed memory parallel computing platform, the performance
of the network and the performance of the MPI implementation are critical to the
overall performance, scalability, and, ultimately, the success of the machine. For Red
Storm, Cray has designed and implemented a custom network interface and router chip,
called the Cray SeaStar [1], specifically to meet the demands of a large-scale distributed
memory scientific computing machine. The network performance requirements for Red
Storm were ambitious when they were first proposed in 2002. The network is required

� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 425–432, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

426 R. Brightwell

to deliver 1.5 GB/s of network bandiwidth into each compute node and 2.0 GB/s of link
bandwidth. The one-way MPI latency requirement between nearest neighbors is 2 μsec
and is 5 μsec between the two furthest nodes.

In this paper, we discuss the design, implementation, and performance of three
different MPI libraries for Red Storm. Each of these libraries has different features
that have different performance and scalability implications. We describe these dif-
ferences and show performance results from several communication micro-benchmark
tests. We also compare the performance of MPI to the performance of the lowest-level
communication mechanism employed by the SeaStar. Our results show that the over-
head of the MPI implementation for point-to-point message passing operations is less
than 0.5 μsec.

The rest of this paper is organized as follows. The following section provides de-
tails of the hardware and software environment on Red Storm. Section 3 describes the
three different implementations of MPI for Red Storm. A performance comparison of
the three implementations is presented in Section 4, and relevant conclusions of this
work are summarized in Section 5. Section 6 outlines plans for continued research and
development activities surrounding MPI on Red Storm.

2 Red Storm

The following describes the hardware and software environment of the Red Storm sys-
tem that was used for our experiments. A more detailed description of Red Storm can
be found in [2].

2.1 Hardware

The Red Storm system installed at Sandia is composed of 10,368 compute nodes in 108
cabinets. The network is configured in a 27 x 16 x 24 mesh topology. Each compute
node contains a 2.0 GHz AMD Opteron processor with 2 GB of main memory. Each
node also contains a SeaStar network interface and router chip attached via a Hyper-
Transport (HT) link. In addition to independent send and receive DMA engines, the
SeaStar has an embedded 500 MHz PowerPC 440 processor for offloading network
protocol processing activities and 384 KB of local scratch memory. The physical links
in the network support up to 2.5 GB/s of data payload in each direction. The interface
to the Opteron uses 800 MHz HT, which provides a theoretical peak of 3.2 GB/s per
direction. After protocol overhead, the link is expected to deliver a peak payload rate of
2.8 GB/s.

2.2 Software

Compute nodes in Red Storm run a third-generation lightweight kernel called Cata-
mount. Catamount is a follow-on to the Puma/Cougar [3] lightweight kernel that ran
on Sandia’s ASCI Red [4] machine. Catamount has been enhanced to provide running
applications in full 64-bit mode on the Opteron and has also undergone some small
changes to integrate it into Cray’s system management infrastructure. Red Storm ser-
vice nodes run SuSE Linux.

A Comparison of Three MPI Implementations for Red Storm 427

The software environment for the SeaStar is based on the Portals [5] network pro-
gramming interface developed jointly by Sandia and the University of New Mexico.
Portals provides one-sided data movement operations between disjoint processes. How-
ever, unlike most one-sided programming interfaces, the target of a remote operation is
not a virtual address or memory key. Rather, the ultimate destination of an incoming
message is determined solely by the receiver when the message arrives. The receiver
is responsible for putting Portals objects together in a way that meets the needs of
the upper-level protocol. Portals are very much like protocol building blocks that can
be combined to meet a variety of needs. In the case of Red Storm, every service that
uses the network does so via Portals, whether it be loading a job onto a compute node,
network-based file systems, or MPI communication.

Portals is currently an active area of development for Red Storm. The current im-
plementation of Portals for Red Storm handles much of the protocol processing on the
Opteron and does not use the PowerPC to its fullest capabilities. This approach allows
for a single instance of firmware for the PowerPC that supports both the physically con-
tiguous memory model of Catamount and the non-contiguous physical memory model
for Linux. When a new message arrives at the network interface, the SeaStar interrupts
the host processor, which then processes the message header, traverses the Portals data
structures, and programs the DMA engines on the SeaStar appropriately. The results
that we present in Section 4 are using this interrupt-driven mode. The results are quite
encouraging, given the cost of using interrupts. We expect an implementation that of-
floads all of the protocol processing to the PowerPC on the SeaStar to be available
within the next few months, and it will be interesting to compare those results as well.

3 MPI Implementations

In this section we describe the three different MPI libraries that have been implemented
for Portals on Red Storm.

3.1 MPICH2-0.97

The Cray supported version of MPI for Red Storm is based on MPICH2 [6]. They
have created a Portals device for MPICH2 (version 0.97) that supports all of the MPI-2
functionality except for the dynamic process creation functions and the connect/accept
functions. The organization of the Portals structures and protocols used for this imple-
mentation to implement the MPI point-to-point communication operations are essen-
tially identical to those describe in [7]. However, Cray has made a few small changes to
their implementation. Rather than having each non-blocking send and receive operation
use a separate Portals event queue, this implementation uses only two event queues to-
tal: one for unexpected messages and one for all other types of communication events.
Cray likely took this strategy to reduce the complexity of the implementation and to re-
duce the amount of memory needed for event queues on the SeaStar. A drawback to this
approach is that the time needed to complete an operation is no longer specific to that
operation. For example, when waiting on a message to arrive for a posted receive, this
implementation must handle all other events that occur while waiting for the message
to arrive. This strategy assumes that there is outstanding work to be done while waiting
for communication operations to complete.

428 R. Brightwell

3.2 MPICH-1.2.6

This implementation was developed in support of the previous version of Portals that
ran on the Cplant [8] Linux cluster at Sandia. It was ported forward to the current ver-
sion of Portals that runs on Red Storm. Like the MPICH2 implementation from Cray,
the Portals structures and protocols are essentially identical to the those described in [7],
with one exception. This implementation has an optimization for very short messages
that is similar to message “copy blocks” or “bounce buffers” used in other MPI imple-
mentations [9,10].

Previously, the short message protocol was implemented by creating a Portals mem-
ory descriptor over the region of memory to be sent and then invoking the Portals put
operation to deliver this data to the destination. In order to avoid the overhead of creat-
ing a new memory descriptor each time a short message is sent, the MPI library creates
a large memory descriptor during initialization. It divides this memory up into several
short message buffers. When a short message is to be sent, the MPI library copies the
message into one of these buffers and sends it. From the user point of view, the send is
complete because the user buffer is free to modify the buffer. From a Portals point of
view, the put operation may not have completed, since the events signifying completion
may still be pending. The completion events for very short messages will be consumed
whenever the library is blocked waiting for an operation to complete or whenever a
short message is to be sent and there are no free short message buffers available. So,
in addition to avoiding the overhead of creating and destroying a memory descriptor
for each short message, this optimization attempts to hide the cost of consuming events
associated with short messages. This approach also helps reduce the number of memory
descriptors used for non-blocking short messages. The very short message optimization
can be disabled via an environment variable, making it easy to measure the performance
gained by using this strategy.

3.3 MPICH-1.2.6 Using SHMEM

Since Portals provides one-sided operations, it can easily support the Cray SHMEM [11]
programming model (provided the operating system maps static variables at identical
locations in separate processes, as Catamount does). Thus, it is possible to use the MPI
implementation developed for SHMEM [12] on Red Storm. This is not a complete im-
plementation of SHMEM (which Cray plans to provide for the XT3), but rather a small
subset of SHMEM interface.

This implementation has a few advantages over the others in terms of Portals re-
source usage. Unlike the other two implementations, the number of Portals data struc-
tures that MPI uses is fixed. The SHMEM subset library creates eight memory descrip-
tors and one event queue. These structures are created during MPI initialization and
remain persistent throughout the life of the process. The other implementations cre-
ate and destroy memory descriptors, match entries, and sometimes event queues as the
process runs. This can be an advantage for applications that have large numbers of out-
standing operations where the limited amount of memory on the SeaStar is a problem.
In addition, the SHMEM implementation implements flow control at the user-level, so
there is no way to exhaust the resources for handling unexpected messages. The other
implementations allocate a fixed amount of space during initialization for unexpected

A Comparison of Three MPI Implementations for Red Storm 429

message, and if this space is exceeded, the application process is terminated with a
resource exhaustion error.

The main drawback of this implementation is that it performs all of the matching
semantics of MPI at the user-level. The MPI library is responsible for maintaining the
posted receive queue and traversing it each time a new message arrives. The other im-
plementations take advantage of the matching semantics of Portals.

4 Micro-Benchmarks and Results

In order to measure the performance of the three MPI libraries, we use two micro-
benchmarks. The first is a standard ping-pong latency and bandwidth benchmark devel-
oped at Sandia. This benchmark measures the ideal case where a receive is pre-posted.
We also have a version of this benchmark that measures latency and bandwidth at the
Portals level so that we can measure the overhead incurred by MPI.

The second benchmark used is the NetPIPE [13] benchmark. We used the standard
MPI-1 module that comes with the distribution and measured latency and bandwidth
using the standard ping-pong, ping-pong with pre-posting, bi-directional ping-pong,
and streaming modes. We also developed a Portals module for NetPIPE so that we
could again measure the overhead of MPI in these various modes.

Figure 1 shows the results of the Sandia benchmark for Portals, MPICH 1.2.6,
MPICH 1.2.6 without the short message optimization, MPICH2, and MPICH 1.2.6 us-
ing SHMEM. The zero-length latency is 5.23 μsec, 5.64 μsec, 6.25 μsec, 8.12 μsec,
and 11.74 μsec respectively. The MPI overhead for zero-length messages starts out rel-
atively small, only 0.41 μsec, but eventually steadies at around 1.17 μsec for 64 bytes
and beyond. Interestingly, the very short message protocol in MPICH 1.2.6 only ends up
being a win for messages smaller than 320 bytes. The very short message switch point
is currently set at 8 KB, so this number will need to be tuned as Portals development
continues.

Figure 2 shows the NetPIPE latency performance for both the default mode of oper-
ation and for the mode that insures that a receive is pre-posted. For this test, the latency

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

shmem
mpich2

mpich-1.2.6 no vshort
mpich-1.2.6

portals

Fig. 1. MPI latency performance

430 R. Brightwell

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

shmem-preposted
shmem

mpich2-preposted
mpich-1.2.6-preposted no vshort ls 5

mpich-1.2.6-preposted
mpich2

mpich-1.2.6 no vshort
mpich-1.2.6

Fig. 2. NetPIPE latency performance

for a one-byte message for MPICH 1.2.6 is 5.9 μsec, 6.6 μsec for MPICH 1.2.6 without
the very short message optimization, and 7.97 μsec for MPICH2. This graph clearly
shows a jump at 12 bytes, which is the largest amount user data that can fit in a single
Portals header packet and be serviced by a single interrupt on the SeaStar. Messages
larger than 12 bytes require two interrupts to be serviced. For this test, pre-posting re-
ceives does not offer a performance gain.

Figure 3(a) shows the bandwidth results for NetPIPE. Both MPICH 1.2.6 and
MPICH2 perform similarly up to the long message protocol crossover point of 128
KB. At that point, MPICH2 continues to perform well, but MPICH 1.2.6 falls off to
only about 700 MB/s. The long message protocol for both implementations is eager,
which means that a message will be sent across the wire twice if the message is un-
expected. For this particular test, MPICH 1.2.6 gets the initial message to the receiver
before the receive is posted, but since MPICH2 is slightly slower, it gets the message
there after the receive has been posted. If we insure that a receive is always pre-posted,
MPICH 1.2.6 performs as well as MPICH2. The asymptotic bandwidth is a little over
1.1 GB/s.

Figure 3(b) shows the bi-directional bandwidth results for NetPIPE. There is virtu-
ally no difference between MPICH 1.2.6 and MPICH2 for bi-directional bandwidth.

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

portals
mpich-1.2.6 preposted

mpich-1.2.6
mpich2
shmem

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

portals
mpich-1.2.6

mpich2
shmem

(a) (b)

Fig. 3. NetPIPE uni-directional (a) and bi-directional (b) bandwidth

A Comparison of Three MPI Implementations for Red Storm 431

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

portals
mpich-1.2.6

mpich2
shmem

Fig. 4. NetPIPE Stream Bandwidth

Both are able to achieve an asymptotic bandwidth of a little more than 2.2 GB/s.
Even the SHMEM implementation is able to sustain this level at very large message
sizes.

Figure 4 shows the streaming bandwidth results for NetPIPE. The interesting result
in this data is that the very short message optimization in MPICH 1.2.6 actually allows
for greater performance than what the raw Portals performance can provide. The Por-
tals module in NetPIPE waits for completion events after each message is sent, while
the very short message optimization does not. This overhead is reflected in messages
smaller than 8 KB. Beyond 8 KB, the performance of MPICH 1.2.6 and MPICH2 are
nearly identical. However, there is an unexplained drop in performance for MPICH
1.2.6 for messages greater than 1 MB. This is most likely attributed to some of the
streaming messages being sent across the wire twice due to a matching receive not
being pre-posted.

5 Conclusions

In this paper, we have compared the performance using micro-benchmarks of three dif-
ferent implementations of MPI on the Cray Red Storm platform. Despite the current
interrupt-driven implementation of Portals for Red Storm, MPI zero-byte half round
trip latency is a little more than 5 μsec. While this number is more than twice the re-
quirements for Red Storm, we expect this will improve significantly once a full offload
implementation of Portals is completed. The bandwidth numbers indicate that the Cray
SeaStar is able to deliver more than 1.1 GB/s of uni-directional bandwidth and is able to
maintain that level of performance in both directions simultaneously. The MPICH 1.2.6
version slightly outperforms the MPICH2 implementation in terms of latency and band-
width. We have measured the overhead of MPI on top of Portals to be a little more than
a microsecond for short messages and have shown that a short message optimization
can also provide an increase in streaming bandwidth performance.

432 R. Brightwell

6 Future Work

We expect to do a much more in-depth analysis of the performance of the MPICH 1.2.6
and MPICH2 implementations using real applications. One important area of perfor-
mance yet to be analyzed is collective operations. We also plan to prototype some addi-
tional features, such as a rendezvous mode to avoid sending unexpected long messages
twice, in both implementations. We also plan to measure and compare the performance
of the MPICH2 one-sided operations to that of the point-to-point operations.

References

1. Alverson, R.: Red Storm. In: Invited Talk, Hot Chips 15. (2003)
2. Camp, W.J., Tomkins, J.L.: Thor’s hammer: The first version of the Red Storm MPP archi-

tecture. In: In Proceedings of the SC 2002 Conference on High Performance Networking
and Computing, Baltimore, MD (2002)

3. Shuler, L., Jong, C., Riesen, R., van Dresser, D., Maccabe, A.B., Fisk, L.A., Stallcup, T.M.:
The Puma operating system for massively parallel computers. In: Proceeding of the 1995
Intel Supercomputer User’s Group Conference, Intel Supercomputer User’s Group (1995)

4. Timothy G. Mattson, David Scott, S.R.W.: A TeraFLOPS Supercomputer in 1996: The ASCI
TFLOP System. In: Proceedings of the 1996 International Parallel Processing Symposium.
(1996)

5. Brightwell, R., Hudson, T.B., Maccabe, A.B., Riesen, R.E.: The Portals 3.0 message passing
interface. Technical Report SAND99-2959, Sandia National Laboratories (1999)

6. Gropp, W.: MPICH2: A new start for MPI implementations. In Kranzlmuller, D., Kacsuk,
P., Dongarra, J., Volkert, J., eds.: Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 9th European PVM/MPI Users’ Group Meeting, Linz, Austria. Volume
2474 of Lecture Notes in Computer Science., Springer-Verlag (2002)

7. Brightwell, R., Maccabe, A.B., Riesen, R.: Design, implementation, and performance of
MPI on Portals 3.0. International Journal of High Performance Computing Applications 17
(2003) 7–20

8. Brightwell, R., Fisk, L.A., Greenberg, D.S., Hudson, T.B., Levenhagen, M.J., Maccabe, A.B.,
Riesen, R.E.: Massively Parallel Computing Using Commodity Components. Parallel Com-
puting 26 (2000) 243–266

9. Chaussumier, F., Desprez, F., Prylli, L.: Asynchronous Communications in MPI – the
BIP/Myrinet Approach. In Dongarra, J., Luque, E., Margalef., T., eds.: Proceedings of
the EuroPVM/MPI’99 conference. Number 1697 in Lecture Notes in Computer Science,
Barcelona, Spain, Springer Verlag (1999) 485–492

10. Dimitrov, R., Skjellum, A.: An efficient MPI implementation for Virtual Interface (VI)
Architecture-enabled cluster computing. In: Proceedings of the Third MPI Developers’ and
Users’ Conference. (1999) 15–24

11. Cray Research, Inc.: SHMEM Technical Note for C, SG-2516 2.3. (1994)
12. Brightwell, R.: A new MPI implementation for Cray SHMEM. In: Recent Advances in

Parallel Virtual Machine and Message Passing Interface: 11th European PVM/MPI Users’
Group Meeting. (2004)

13. Snell, Q.O., Mikler, A., Gustafson, J.L.: NetPIPE: A network protocol independent perfor-
mance evaluator. In: Proceedings of the IASTED International Conference on Intelligent
Information Management and Systems. (1996)

Probing the Applicability of Polarizable
Force-Field Molecular Dynamics for Parallel
Architectures: A Comparison of Digital MPI

with LAM-MPI and MPICH2

Benjamin Almeida1, Reema Mahajan2, Dieter Kranzlmüller3, Jens Volkert3,
and Siegfried Höfinger1

1 Novartis Institutes for BioMedical Research,
IK@N Operations and In Silico Sciences,

Brunnerstraße 59, A-1235, Vienna, Austria
{benjamin.almeida, siegfried.hoefinger}@novartis.com

http://www.nibr.novartis.com
2 Department of Chemical Engineering,
Indian Institute of Technology, Delhi,

Hauz Khas, New Delhi-16, India
reema.mahajan@gmail.com
http://www.iitd.ernet.in

3 Joh Kepler University Linz,
Altenberger Straße 69, A-4040, Linz, Austria

{kranzlmueller, volkert}@gup.uni-linz.ac.at
http://www.gup.uni-linz.ac.at

Abstract. Polarizable Force Fields have a great potential in improv-
ing the quality of Molecular Dynamics simulations. Especially for the
description of solvents such kind of simulations are greatly appreciated
because of the important role solvation plays in all kind of biomedical
research. The open source package TINKER is taken for parallelization
of a routine made for the proper usage of Polarizable Force Fields. Profil-
ing with the GNU tool gprof identifies the relevant target subroutines to
parallelize. MPI is used for the parallelization. Several different parallel
platforms and several different versions of MPI are tested and compared.
Parallel scalability with reasonable amounts of parallel operating CPUs
seems to be limited beyond a factor of 2.5. Appraisal of the present MPI-
implementation of the TINKER Molecular Dynamics program using Po-
larizable Force Fields for large scale computation will heavily depend on
the relative availability of computing resources within a given production
environment.

Keywords: MPI, Polarizable Force Fields, Molecular Dynamics, MPICH2,
LAM-MPI.

1 Introduction

Drug discovery is influenced by a great variety of physico-chemical factors that
either favour or hinder the binding of drug-like molecules — the medicine — to

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 433–440, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

434 B. Almeida et al.

important bioactive sites within the human body. Among many others, solvation
is one such key-player in the set of determinants that will affect the process of
drug ligation to its biological target. Therefore, a better understanding of sol-
vation in general as well as the underlying molecular principles in particular are
most desirable subject-matters of greatest interest to pharmaceutical research
and medicinal chemistry of today [1].

Atomic scale detail of the behaviour of solvents may be obtained from Mole-
cular Dynamics simulations (MD). Here, a whole assembly of individual solvent
molecules — in combination with the target biomolecule and the putative drug
— become subject to computer simulations aimed at a realistic and dynamic
description of all the individual components and their interplay. MD in this re-
spect may be seen as the theoretical machinery behind this molecular system
that tries to model all the occurring physico-chemical interactions as accurate
as possible. MD in particular will carry out in each of the simulated time steps a
sum over all arising pairs of atoms and apply some inter particle potential, that
usually incorporates empirically derived parameters — the so called Force Field
(FF) [2]. In addition to such static interactions, the kinetic energy is also covered
from individual velocities assigned to each atom, which in turn will constitute
the thermic disorder. Recent advances in the development of FFs have been
made with the introduction of atomic polarization effects — Polarizable Force
Field Molecular Dynamics (PFFMD) [3] [4]. Initial results suggest a markedly
improved quality of the description with PFFMD especially when it comes to
solvation effects. Unfortunately PFFs are computationally intensive and concep-
tually more complex than traditional MD simulations that make use of static
atomic partial charges instead. It therefore appears to be only a natural attempt
to pursue optimization strategies in PFFMD via parallel computing. Especially
with regard to demanding scientific applications more advanced GRID systems
allow the user to allocate whole bundles of compute nodes, that may be employed
in parallel to solve a common computational task. However, such parallel com-
puting in the GRID will need to clearly prove its advantage over the conventional
serial approach in order to justify the increased allocation of computer resources.

In the present article we describe the possibility of parallel PFFMD by us-
ing the Message Passing Interface, MPI [5]. We focus on the PFFMD module
coming with the open source package TINKER [6]. The next section summarizes
profiling data obtained from the runtime behaviour of a typical PFFMD run.
In the subsequent section an outline of the parallel algorithm and its principal
limitation is given. Finally, in the last section parallel performance data obtained
with different versions of MPI on a realistic test case are presented, compared
and analyzed.

2 Profiling of a Typical PFFMD Application with GNU’s
gprof

A water box consisting of 216 individual water molecules was set up and mini-
mized, annealed and equilibrated at 298 K thereby using the AMOEBA PFF [3]

Probing the Applicability of Polarizable Force-Field 435

coming with the TINKER package for molecular modeling [6]. The dynamic pro-
gram was re-compiled on a single CPU of type Intel/PIII 1 GHz with the profiling
flag -pg invoked, which will result in code that may be run-time analyzed with the
profiling tool gprof from GNU. A test run of 100 steps of MD was profiled and an-
alyzed. The corresponding call graph is represented in Fig.1. As becomes evident
from the graph, subroutines induce0a and image are the functions that consume
most of the total execution time of the program (87.6 %). Further branches in
the call graph that also claim significant fractions of the CPU time are empole1a
(6.5 %), torque1 (3.4 %) and ehal1a (2.4 %). Taken together this subset of
mentioned routines will make up already 99.9 % of the total execution time. A
graphical representation of the relative consumption of the CPU time is given
in Fig. 2. Since subroutine image is called from the inner part of subroutine

Fig. 1. Call graph and partial CPU time occupancy of various subroutines during
execution of 100 steps of PFFMD with the TINKER program dynamic as observed
with the GNU profiling tool gprof. 5th level subroutine induce0a and 6th level sub-
routine image are reported to be the major consumers of the total CPU time. Further
optimization should therefore focus on these routines.

436 B. Almeida et al.

Fig. 2. Summary of the profiling results obtained with the GNU profiling tool gprof.
The data is due to the run time behaviour of 100 steps of PFFMD with the TINKER
program dynamic of a water box containing 216 water molecules. The identified main
routines of CPU time consumption are induce0a and image both making up approxi-
mately 87.6 % of the total CPU time.

induce0a multiple times, the most obvious first trial of parallelization was to
split the outermost loop in subroutine induce0a into fractions and compute each
of these fractions in parallel. However care must be taken that the splitting of
the loop will occur at an appropriate point in the code outside the region where
the call to subroutine image will actually take place, so that each parallel task
can still continue to call subroutine image independently from its own interior
part a number of times.

3 Parallel Algorithm and Basic Constraints in PFFMD

Following the insights gained from the profiling data represented in the previous
section, subroutine induce0a.f became the primary target of all MPI paralleliza-
tion efforts. The central algorithm to be parallelized consists of a two-stage
process. In the initial phase the calculation of the induced dipole moments due
to all permanent multipoles is performed. This is done within a double loop over
all inducible sites, i.e. all atomic centres. Once referring to a certain centre (outer
loop) the action of all the other permanent multipoles residing on all the other
centres is summed together (inner loop) and accumulated in a field-variable. In a
subsequent single loop these field values become multiplied with the polarizabil-
ity and thus establish a first set of directly induced dipoles at each atomic centre.
Then the second stage of the algorithm is reached. Again a double loop over all
inducible sites is performed. However, the active elements of this second inner
loop now are formed by the induced dipole moments computed in the initial
phase (transient multipoles). All this leads to another field which is considered

Probing the Applicability of Polarizable Force-Field 437

within a subsequent single loop over all atomic sites, where at each atom position
the dipole moment becomes modified from these second component of the field
— ”mutual” induced dipoles. The process is still continued once the initial set
of induced dipoles has been modified a first time. Indeed after the first modifi-
cation the calculation of the field values is repeated over and over again and in
the course of these iterative refinements a final self-consistent solution to all the
”mutual” induced dipoles is obtained [3]. The two-step logic of the algorithm
posed a major challenge for the parallel variant of the program. This is because
the individual threads working in parallel cannot do their job independently but
need to communicate and share data in the beginning and end of each iteration.
Therefore a centralized code design adopting a traditional master/slave model
seemed to be a reasonable choice for a first parallel version. In so doing the out-
ermost loop in subroutine induce0a, which runs over all atomic centres, was split
and subsections of this loop were distributed over a number of parallel threads.
Each of these parallel threads computed fragments of the field values and sent
back their fractional results to the master, who had to properly assemble these
partial results and re-construct a global array of field values. All data communi-
cation between master and slaves was done in blocking mode. Due to its iterative
nature strong dependency on inter-node communication times was anticipated.

4 Parallel Performance with Different Versions of MPI

30 steps of PFFMD were carried out on a realistic test case of a huge water box
containing 4000 water molecules. Our MPI implementation (as described in the
previous section) of the TINKER dynamic program was employed on

– An Alpha cluster consisting of 4 processor nodes of type ES40 67, 667 MHz,
OS TRU64, Digital MPI,

– An AMD/Opteron cluster consisting of 2 processor nodes of type AMD
Opteron 1.8 GHz, OS SUSE LINUX 9.1, LAM-MPI 7.0.3,

– The same AMD/Opteron cluster but using MPICH2 v1.0 instead of LAM-
MPI.

A summary of the obtained timings with increasing numbers of CPUs is pre-
sented in Table 1. A graphical representation of the measured speedup data is
given in Fig. 3.

5 Discussion

In the present study a real world application of widespread use in the compu-
tational chemistry community has been analyzed for its parallel performance
characteristics when using MPI to parallelize the most demanding parts of the
program, i.e. subroutine induce0a. The observed scaling with increasing size of
the parallel machine deserves further exemplification.

438 B. Almeida et al.

Table 1. Observed Speedup for MPI-Parallel PFFMD on a huge water box of 4000
water molecules using different versions of MPI. Selected parallel platforms were a
cluster of Alphas ES40, 667 MHz EV67 as well as an AMD/Opteron cluster, 1.8 GHz.
The MPI versions used were Digital MPI, LAM-MPI and MPICH2.

Nr. CPUs Exe Time Exe Time Exe Time Speedup Speedup Speedup
working Alpha Opteron Opteron Alpha Opteron Opteron

in 667 MHz 1.8 GHz 1.8 GHz 667 MHz 1.8 GHz 1.8 GHz
parallel Digital-MPI LAM-MPI MPICH2 Digital-MPI LAM-MPI MPICH2

[s] [s] [s]

1 9883 3427 3450 — — —
2 7765 2781 2792 1.273 1.232 1.236
3 6179 2315 2316 1.600 1.480 1.490
4 5203 2007 2027 1.900 1.708 1.702
5 4601 1842 1844 2.148 1.861 1.871
6 4248 1701 1721 2.327 2.015 2.005
7 3821 1588 1629 2.587 2.158 2.118
8 3915 1527 1545 2.524 2.244 2.233
9 3490 1480 1502 2.832 2.316 2.297
10 3305 1436 1454 2.990 2.387 2.373
11 3150 1408 1425 3.138 2.434 2.421
12 3073 1383 1393 3.216 2.478 2.477
13 3099 1348 1365 3.189 2.542 2.528
14 2992 1332 1363 3.303 2.573 2.531
15 3226 1311 1334 3.064 2.614 2.586
16 — 1305 1316 — 2.626 2.622

When using similar conditions for the AMD/Opteron cluster but changing
just the version of MPI, i.e. LAM-MPI versus MPICH2, the parallel perfor-
mance data looks rather similar. This holds true for absolute execution times
(see Table 1 columns 3 and 4) as well as speedup factors (see Fig. 3 bottom
two curves of hollow and filled triangles). Rare exceptions are most likely the
effect of non-ideal load balance and/or competing system tasks that start up
spontaneously and limit the actually available compute resources to a certain
node. The quasi-identic behaviour of LAM-MPI with MPICH2 is remarkable in
two respects. At first the LAM-MPI traffic was routed over a dedicated network
switch, while MPICH2 was using a more general NFS switch and was therefore
somewhat generally limited as far as communication was concerned. Next our
present MPI implementation of the TINKER dynamic program did not make
use of any typical MPICH2 features, such as parallel I/O, remote memory ac-
cess, or dynamic process management, so the comparison is really focussing on
the raw performance of either MPI version.

The inferior absolute performance on the Alpha ES40 cluster is somewhat
compensated by a better scaling characteristics, although at certain points the
increase in the number of parallel CPUs leads to a sudden off-leveling in per-

Probing the Applicability of Polarizable Force-Field 439

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18

Sp
ee

du
p

Number of Parallel Operating CPUs

Observed Speedup for MPI−PFFMD

Alpha Digital−MPI
AMD/Opteron LAM−MPI

AMD/Opteron MPICH2
Ideal Amdahl Behaviour

Fig. 3. Speedup data measured for a 30 step PFFMD run on different parallel platforms
with different versions of MPI (test system: a huge water box containing 4000 water
molecules). Ideal behaviour according to Amdahl’s Law with a serial fraction of 0.124
(see section 2) is also included.

formance (e.g. compare 7 CPUs to 8 or 14 CPUs to 15 in Fig. 3). Again this is
almost certainly an effect coming from the OS, that sometimes starts up unre-
lated system tasks which will consume a fraction of the allocated CPU.

Amdahl’s Law reveals a different scaling behaviour to the one observed on
either parallel platform (see Fig. 3 leftmost curve). In fact, it appears as if the
present parallel scalability is growing below than the square of the number of
CPUs employed. Thus within a cost-effective resource management it seems ap-
propriate not to advise the present MPI implementation for large production
runs. However, if hardware resources do play less a role within a certain com-
puting facility, then a twofold acceleration factor may be easily reached from the
present parallel approach using 6 to 8 CPUs.

A possible explanation to the non-Amdahl trend could certainly lie in the
heavy demand on data communication (see section 3). In addition to that the
second most costly routine image is also called from other subroutines in the
dynamic program, for example ebond, eangle, etors and elj, each of which have
not been taken into account for parallel execution within our present MPI im-
plementation of the TINKER dynamic program.

6 Conclusion

The subroutine induce0a of the TINKER Molecular Dynamics (MD) program
dynamic has been parallelized with MPI. This way a thorough investigation of
the usage of MD based on Polarizable Force Fields (PFF) on parallel platforms
could be undertaken. A variety of different MPI implementations, i.e. Digital

440 B. Almeida et al.

MPI, LAM-MPI, MPICH2 was tested and showed rather similar trend in scal-
ability. The parallel induce0a module exhibits poor speedup characteristics be-
yond a factor of 2.5 most likely because of a strong dependence on inter-node
communication times. Recommendation of the present MPI-implementation of
the TINKER program dynamic using PFF is thus only justified when computing
resources are abundant, as is the case in certain formations of the GRID. Twofold
acceleration is roughly achieved with parallel employment of 6 to 8 CPUs.

Acknowledgment

The authors would like to thank Wolfgang Michael Terényi and Roland Felnhofer
from Novartis IK@N Vienna and Pascal Afflard from Novartis IK@N Basel for
support with the HPC-infrastructure.

References

1. Kubinyi, H.: Drug research: myths, hype and reality. Nat. Rev. Drug Discovery 2
(2003) 665–668

2. Kollman, P., Dixon, R., Cornell, W., Fox, T., Chipot, C., Pohorille, A.: The De-
velopment/Application of a ’Minimalist’ Organic/Biochemical Molecular Mechanic
Force Field using a Combination of ab Initio Calculations and Experimental Data. in
Computer Simulation of Biomolecular Systems, Eds. van Gunsteren, W.F., Weiner,
P.K., Wilkinson, A.J. 3 Escom, The Netherlands, (1997) 83–96

3. Ren, P., Ponder, J.W.: Polarizable Atomic Multipole Water Model for Molecular
Mechanics Simulation. J. Phys. Chem. B 107 (2003) 5933–5947

4. Ponder, J.W., Case D.A: Force Fields for Protein Simulation. Adv. Prot. Chem. 66
(2003) 27–85

5. Dongarra, J. et.al.: MPI: A Message-Passing Interface Standard; (1995)
http://www-unix.mcs.anl.gov/mpi/

6. Ponder, J.W.: http://dasher.wustl.edu/tinker/ (2005) version 4.2

Symmetrical Data Sieving for Noncontiguous
I/O Accesses in Molecular Dynamics

Simulations�

M.B. Ibáñez, F. Garćıa, and J. Carretero

Universidad Carlos III de Madrid,
Departamento de Informática,

Grupo de Arquitectura de Computadores,
Madrid, 28911, España

{mblanca, fgarcia, jcarrete}@arcos.inf.uc3m.es

Abstract. This article analyzes the impact of different solutions of I/O
performance problem on Molecular Dynamics (MD) simulation. MD ac-
cesses data in a non-contiguous way, with unpredictable patterns that
change as the simulation progresses. Such application drastically affect
the performance of Parallel File Systems. We show that there is a strong
relation between the distribution of the atoms on the simulation space
and MD I/O performance. We propose a variant of data sieving approach
that uses the symmetry of the MD’s access pattern to minimize the num-
ber of I/O operations, and behaves considerably better than other tested
solutions.

Keywords: Irregular applications, Data sieving, Noncontiguous I/O,
Molecular Dynamics.

1 Introduction

Molecular Dynamics (MD) belongs to an important class of parallel scientific
applications that are irregular and dynamic. They are dynamic because their
access patterns change during the simulation, and irregular because the patterns
of data access and computation are unknown until run time. Accesses to data
often have poor spatial and temporal locality, which leads to ineffective use of
the memory hierarchy [4]. Because both processor and memory technology is
evolving rapidly, I/O has become the bottleneck in high-performance computing
for these type of applications.

Parallel file systems such as PVFS provide a high-performance I/O infrastruc-
ture for storage of applications with contiguous access of data. Nevertheless,
applications with noncontiguous I/O access patterns exhibit an unacceptable
performance for large data sets. Current solutions to this performance problem
involve calling the file system for every contiguous file region, using collective
� This work has been supported by the Spanish Ministry of Science under the TIN2004-

02156 contract.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 441–448, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

442 M.B. Ibáñez, F. Garćıa, and J. Carretero

I/O techniques or reducing I/O accesses by describing any noncontiguous I/O
patterns [2], [6], [7]. In order to perform eficiently, these techniques require regu-
larities in the data access patterns that are not present in MD simulations. The
aim of this paper is to analyze under which conditions the former approaches can
be applied to molecular dynamics and to propose new methods for improving
I/O performance on these applications based on the prediction of spatioal data
access patterns.

The rest of this paper is organized as follows. In Section 2, we overview
different solutions given to the noncontiguous data access pattern problem that
we consider for this work. In Section 3 we describe the Molecular Dynamics
application and show compact and sparse access patterns that a simulation can
exhibit. In Section 4 we analyze the performance improvement that solutions
presented in Section 2 cause over a substance at its two extreme states: balanced
and unbalanced. Based on these results and on the particular access pattern of
MD simulations, we present a new solution to the noncontiguous data access
pattern problem (Section 5). Section 6 concludes the paper.

2 Different Approaches for Noncontiguous I/O

There are a limited variety of interfaces that describe the I/O patterns of sci-
entific applications. The I/O methods support do not match efficiently with the
types of I/O operations that scientific applications perform [3]. Parallel file sys-
tems provide interfaces such as multiple I/O, data sieving I/O and list I/O for
improving performance of applications. Following, we describe these interfaces
and in which contexts they have proven to be useful.

In parallel file systems, access to each noncontiguous file data region requires
a separate I/O request. Handling noncontiguous access is called multiple I/O [2].
The drawback of this approach is the large cost of transmitting and processing
many individual data requests. As the number of processors increases, the I/O
problem becomes worse.

Data sieving is a client-based collective I/O method that intends to reduce
the number of I/O calls to the underlying file system by moving large regions
of continuous data from file to a memory buffer and then extracting the desired
regions according to the needs of the application. If the noncontiguous regions
of different processors show spatial locality, this approach can avoid many I/O
requests.

List I/O is a discontiguous access method useful for describing noncontiguous
access patterns of data in memory and in file. Each access can be handled in a
single I/O request.

It is well known that multiple I/O should not be considered for large-scale
scientific applications with noncontiguous accesses patterns [2]. For applications
where most of the noncontiguous regions of different processors show spatial
locality, data sieving produces good results [2]. Finally, list I/O interface can
perform a noncontiguous I/O data access with fewer I/O calls in an optimized
implementation [3].

Symmetrical Data Sieving for Noncontiguous I/O Accesses 443

3 Molecular Dynamics

In this section we examine the relevant characteristics of MD simulations in
terms of their I/O behavior. This will guide our work in the rest of the paper.

MD simulations consider the interaction of particles within a defined volume,
usually a parallelepiped. Each particle interacts with the others within a specified
cutoff radius. At each time step, it is necessary to compute forces and update
positions and velocities of all particles. In the integration of the motion equations,
the bodies can move independently, leaving one area of the space and entering to
another one. In order to adapt to these changes, the application requires periodic
recalculation of which particles can interact with which.

We carried out our experiences with a modified Plimpton’s code [5]. The code
uses an n × n matrix F (the Fij element represent the force on atom i due to
atom j) and X , a vector of length n that stores the position of each atom. Each
iteration consists of the steps showed at Figure 1.

(1) Construct neighbor list every 20 steps
(2) Compute elements of F
(3) Update atom positions in X using F
(4) Compute temperature, energy and pressure of the system

Fig. 1. General program structure

Computations are inherently parallel, every process is responsible of comput-
ing the positions, velocities and forces of a subset of atoms (steps two, three and
four) and need the current positions of all the atoms at step one.

Because the dynamic nature of the problem, the access pattern used to com-
pute forces, temperature, energy and pressure of the system in MD program is
irregular (see Figure 2). The indirectly referenced loop bounds of the inner j loop
vary across iterations of the outer i loop. The construction of nlist and nnlist is
done at step one of the algorithm (see Figure 1).

DO i = 1, nlocal
DO j = nnlist(i), nnlist(i + 1) − 1

G = G + function(x(nlist(j)))
END DO

END DO

Fig. 2. Irregular pattern of MD program

Typically this generic access pattern causes a bad performance behavior when
parallel I/O is used.

We are interested on analyzing the impact of the atom distribution on the
I/O performance. To do this, we classify the substances depending on how sparse
are the neighbors of their atoms. A balanced substance has the neighbors of its
atoms nearby, its access pattern is compact as the one showed at Figure 3(left).

444 M.B. Ibáñez, F. Garćıa, and J. Carretero

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

1

5

9

13

17

21

25

29

33

0

20000

40000

60000

80000

100000

120000

140000

N
u

m
b

e
r
 o

f
 a

c
c
e
s
s
e
s

Slice number
S

li
c
e
 n

u
m

b
e
r

Balanced

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

1

5

9

1

17

21

25

29

33

0

20000

40000

60000

80000

100000

120000

140000

N
u

m
b

e
r
 o

f
 a

c
c
e
s
s
e
s

Slice number

S
li
c
e
 n

u
m

b
e
r

Unbalanced

Fig. 3. Access pattern of a balanced and an unbalanced substances

An unbalance substance has the neighbors of its atoms on several regions of the
simulation space (see Figure 3(right)); its access pattern is not only irregular but
also sparse. Most MD simulations start with a balanced substance and evolve to
a substance in an unbalanced state.

4 Preliminary Experiments on the Noncontiguous Data
Access Pattern Problem

In this section we present and analyze a set of experiments we performed for two
substances, one balanced and other unbalanced. We use the classical solutions
to the noncontiguous access pattern problem previously described in Section 2,
for these substances.

The experiments were carried out on a cluster of 8 dual nodes connected
with a Gigabit Ethernet communication network and a fast Ethernet network.
We used only the Gigabit Ethernet for our testing purposes. Each compute node
includes 2 Pentium III running at 1.0 GHz, 1GB of RAM and two disks of 200GB
and 40GB. The system runs Debian/GNU Linux with a 2.4 series kernel. The
Parallel File System used was PVFS with the MPI-IO interface through ROMIO.
We worked with various numbers of compute nodes and 8 PVFS I/O nodes.

4.1 Multiple I/O

The data access pattern of Molecular Dynamics simulations involves an impor-
tant amount of small I/O requests; those are produced each time an atom must
interact with its neighbors. Figure 4 shows how the write bandwidth scales lin-
early with the size of the problem while the read bandwidth exhibits very low
values. This bad performance is a consequence of the irregularity of the sub-
stance’s access pattern.

Symmetrical Data Sieving for Noncontiguous I/O Accesses 445

0

10

20

30

40

50

60

70

512 768 1408 2816 5504 11008 21952

Number of Atoms

B
a
n

d
w

id
th

 (
M

B
/

s
e
c
)

Write Bandwidth Read Bandwidth

Fig. 4. Read and Write Bandwidth for different sizes of the problem. These results are
obtained by using 8 processors and balanced substances.

4.2 Data Sieving I/O

Data Sieving method moves a continuous region of a file to a memory buffer. its
success depends on the spatial locality of the access, i.e. successive data demands
will access neughboring elements in the buffer.

Fig. 5. Number of I/O accesses using different buffer sizes. Balanced and Unbalanced
substances of 21952 atoms.

Figure 5 show the variation of the number of I/O accesses for two substances
with the size of the buffers. For the balanced substance, the number of small
I/O requests decreases when a memory buffer of 8KB is used. In spite of the
increase of the size of the buffers, the number of I/O calls is not the minimum.
On the other hand, the unbalanced substance improves slightly its behavior to
the extent of the memory buffer but the number of I/O calls remains high.

446 M.B. Ibáñez, F. Garćıa, and J. Carretero

4.3 List I/O

In a MD simulation the positions of the atoms change every step, the neighbors
of each atom must be recomputed every twenty iterations. On the other hand,
the List I/O approach requires to build a map of all the file accesses in order
to identify contiguous areas. The map must be rebuilt at least every twenty
iterations to guarantee accuracy. This task will produce a significant overhead,
thus we do not consider this approach in this work.

5 Symmetrical Data Sieving I/O

According to figure 5, the data sieving approach may improve the application’s
performance by decreasing the number of I/O accesses. Over balanced sub-
stances, the method causes a moderate improvement up to a certain size of
the memory buffer, after which the amount of I/O remains invariable. On the
other hand, the performance improvement is gradual and proportional to the
buffer size over unbalanced substances, but the number of I/O accesses stays
high. The reason of this behavior is that for balanced substances, the neighbors
of an atom are in its close environment, both to its right and to its left side
in the file. While for unbalanced substances, the neighbors of a given atom are
distributed on a broad file region. With the data sieving I/O approach, it is not
possible to eliminate totally the small I/O requests on MD applications because
the method does not consider the symmetric nature of the access pattern.

We propose a new approach that combines data sieving optimization with
a prediction of the spatial access pattern of MD applications. The symmetrical
data sieving approach handles noncontiguous accesses by moving data in a single

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 16 32 48 64 80 96

Size of the buffer (KB)

N
u

m
b

e
r
 o

f
I
/

O
 a

c
c
e
s
s
e
s

8 clients, balanced substance 8 clients, unbalanced substance

4 clients, balanced substance 4 clients, unbalanced substance

Fig. 6. Results of the symmetrical data sieving method. Number of I/O accesses using
different buffer sizes. Balanced and unbalanced substances of 21952 atoms.

Symmetrical Data Sieving for Noncontiguous I/O Accesses 447

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 20 40 60 80

Size of the data buffer (KB)

N
u

m
b

e
r
 o

f
I
/

O
 a

c
c
e
s
s
e
s

Data Sieving Symmetrical Data Sieving

Fig. 7. Comparison of symmetrical data sieving and data sieving methods over unbal-
anced substances. Substance of 21952 atoms.

chunk into a temporary buffer. The buffer comprises two equal size file intervals:
one starting at the first requested byte bs up to the last requested byte be, and
the interval preceding bs. For balanced substances, the buffer will contain an
atom and most of its neighbors. Thus, the data placed into the buffer will be
extensively used by the client.

The results described in Figure 6 showed the tendency expected for symmet-
rical data sieving I/O. For the balanced substance and with a small symmetrical
buffer, the number of I/O accesses is the minimum. In this case, as the client has
all the data it needs to carry out its work, the performance is not disturbed by
the I/O access problem. By contrast, for the unbalanced substance, the increase
of the symmetrical buffer size, does not fully remove the I/O access problems.
Nevertheless, Figure 7 shows that symmetrical data sieving method behaves
better that data sieving method even for unbalanced substances.

6 Conclusions

As Molecular Dynamics simulations access its data in a noncontiguous way, I/O
has become the bottleneck in high-performance computing for these applica-
tions. Our experiments show that current solutions to this issue improve I/O
performance but the problem still persists.

In this work we present two MD’s relevant characteristics that must be taken
into account to solve the I/O performance problem. First, computing atom pa-
rameters implies accessing information that is for atoms both to the right as to
the left of the atom. Second, as the simulation evolves, the distribution of the
atoms changes and the accesses become more sparsed. It is worth noting that
these characteristics are shared by N-body problems in general.

We propose a new solution to the noncontiguous access problem called Sym-
metrical Data Sieving I/O, based on a collective I/O implementation technique
and a prediction of the spatial access pattern of MD applications. The prediction

448 M.B. Ibáñez, F. Garćıa, and J. Carretero

considers the symmetry in the access pattern of the substances. Our initial eval-
uation of the efficacy of the prediction combined with the data sieving method,
shows that our solution behaves better than other I/O access methods. The
Symmetrical Data Sieving I/O approach has shorter optimal performance when
the substance is unbalanced. In order to minimize the amount of atomic I/O
access for unbalanced substances, additional approaches must be explored.

References

1. Carns, P., Ligon, W., Ross, R., Thakur, R.: PVFS: A Parallel File System for Linux
Clusters. Proc. of the Extreme Linux Track: 4th Annual Linux Showcase and Con-
ference. (2000) 317–327.

2. Ching, A., Choudhary, A., Liao, W.: Noncontiguous I/O through PVFS. Proceedings
of the IEEE International Conference on Cluster Computing. (2002) 405–414.

3. Ching, A., Choudhary, A., Coloma, K., Liao, W.: Noncontiguous I/O Accesses
Through MPI-IO. Proceedings of the 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid. (2003) 104–111.

4. Mellor-Crummey, J., Whalley, D., Kennedy, K.: Improving Memory Hierarchy Per-
formance for Irregular Applications. Proceedings of the International Conference of
Supercomputing. (1999) 425–433.

5. Plimpton, S.: Fast Parallel Algorithms for Short–Range Molecular Dynamics. Jour-
nal of Computational Physics. 117 (1995) 1–19.

6. Thakur, R., Choudhary, R. Borawekar, R., More, S. Kuditipudi, S.: Passion: Opti-
mized I/O for Parallel Applications. IEEE Computer. 29(6) (1996) 70–78.

7. Thakur, R., Gropp, W., Lusk, E.: Data Sieving and Collective I/O in ROMIO. Proc.
of the 7th Symposium on the Frontiers of Massively Parallel Computation. (1999)
182–189.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 449 – 456, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Simulation of Ecologic Systems Using MPI

D. Mostaccio, R. Suppi, and E. Luque

Computer Architecture and Operating Systems Department,
University Autonoma of Barcelona,
08193 Bellaterra, Barcelona, Spain

Diego.Mostaccio@aomail.uab.es,
{Remo.Suppi, Emilio.Luque}@uab.es

Abstract. The simulation of ecological models for individual oriented models
presents multiple advantages for the biologist since it enables the more accurate
reproduction of species behaviour. However, the drawback of this type of simu-
lation is the large amount of computing needed to accomplish real simulations
(thousands of individuals). Distributed simulation is an excellent tool for solv-
ing this type of problem. In the present paper, a model of these characteristics
(Fish Schools) is analyzed and the corresponding distributed simulator based on
MPI and using conservative algorithms is developed. In order to verify the
goodness of this simulation, a set of experiments is accomplished and the
speedup with respect to a sequential simulator is computed.

1 Introduction

Simulations of such complex systems as, for example, certain ecological systems,
require a high processing capacity. DES (Distributed Event Simulation) enables users
to obtain efficient solutions in acceptable time periods as long as the parallelism of
the simulated model allows for a reasonable degree of concurrency.

Fish-Schools were the ecological model used for this work, which enabled us to
simulate fish movements in an open environment. Two models can be used for the
simulation of this type of system: aimed at population and aimed at individual. In the
first, the modelling of the system is a complex task although the computing require-
ments are fewer. In the individual oriented, have a reduced cost in the modelling
phase and gives better (more accurate) results, but the simulation time increases con-
siderably when the quantity of individuals is increased.

In this sense, DES reduces the simulation times in individual oriented models
through the distribution of the simulated individuals in different computing nodes.
Simulation distribution implies communication between the different processes in order
to exchange data and update the global state of the simulation. Experiences with eco-
logical model simulation using PVM [1] as a communications library presented certain
problems with simulation scalability and the size of the population to be simulated. This
work presents the design, implementation and validation of a Fish-School DES simula-
tor for individual oriented models using MPI [2] as a communication library.

Event synchronization in a distributed simulation (DES) can be accomplished in
two possible ways: optimistic simulation and conservative simulation. In accordance

450 D. Mostaccio, R. Suppi, and E. Luque

with the previous experiences of the group, the present work is aimed at distributed
and conservative simulation, since the excessive optimism (generally in the frontier
zone of the model) of the first algorithms prejudices the efficiency of the simulation.
[3, 4, 10]

This paper is organized as follows: section two concentrates on Individual oriented
Models (IoM). Section three focuses on Distributed Event Simulation as well as the
design and implementation of the Fish-School DES simulator. Section four presents
the experiments carried out to validate the results of the simulation and shows the
performance obtained. Section five summarizes the conclusions obtained and outlines
future work.

2 Individual Oriented Model (IoM)

Biologists and ecologists need to study and analyze the behaviour and system dynam-
ics of ecosystem populations. The ecosystems studied are essentially dynamic systems
with feedback behaviour. Ecological systems contain auto-regulation mechanisms but
the many different studies of them have not obtained results comparable with those
obtained for other disciplines (automatic control, traffic networks...).

Lotka and Volterra [5-7] represent the interaction between preys and predators and
the most common ecologic models are developed using these definitions. These mod-
els are based on the interaction between species and describe their behaviour through
differential equations, obtaining very good results for very limited, small models.

Individual Oriented Models (IoM) are an acceptable solution with considerable
reference to the previous models. These models are based on the individual’s behav-
iour and not on the community or group. IoM is based on the individual being consid-
ered through simple rules and the observation of the interaction between them in an
ecosystem. There are two important advantages to these models: they are independent
of the quantity of individuals and can simulate a very complex ecosystem from a
simple element (individual) without describing the community analytically.

Moreover, in the Volterra’s model when the individuals’ number is increased, the
equations to be resolved are highly complex. IoM scalability is only limited by the
computing capacity of the system and we can o obtain very good results in acceptable
times. Recent advances in cluster technology and communications provide us with the
large computing capacity for IoM simulation.

2.1 Characteristics of Fish Schools

One of the most representative applications of IoM is used to describe the movement
of given species. IoM use allows us to determine the movement of a group of species
by using the movement of each member.

IoM uses very simple, biologically definite rules that are applied to each member
to obtain the movement of the colony. Movements in Fish-Schools are governed by
three basic postulates from the point of view of the individual: a) avoiding collisions,
b) speed coupling and c) obtaining a position in the centre of the group.

These rules express both the individual’s need for survival and its instinct for pro-
tection (the need to escape from predators). Each fish in the model is represented as a

 Simulation of Ecologic Systems Using MPI 451

point in a three-dimensional space with an associated speed and each fish changes
position and speed simultaneously after a certain period t. The actions that the model
describes for each fish are:

• Each fish chooses up to X neighbour fish (X=4 seems sufficient for most
schools), which will be those nearest and with direct vision. (Figure
1).

• Each fish reacts in accordance with the direction and distance of each
neighbour. Three influence radios and three possible reactions are es-
tablished. The final reaction will be the average of the reactions ex-
perienced by each neighbour.
o If the neighbour is found within the smaller radio, the fish will

carry out an “opposed to address” movement – repulsion action –
(to avoid collisions).

o If the neighbour is within a second influence radio, the fish will
adopt the same direction as the neighbour.

o If the neighbour is within a third radio, the fish will move towards
it.

• Each fish calculates its news position according to the new direction.

This generates a very simple model that enables the description of complex behav-
iour. However, very high computing power is necessary, since the complexity algo-
rithm is O(N2), where N is the number of fish (each fish attempts to find the
neighbouring fish by inspecting all other fish in the school). [7, 8]

Fig. 1. Neighbour selection in the Fish Schools model

Each fish Fi is defined by its position pi and velocity vi, and chooses its potential
neighbours by watching concentric zones of increasing radio until finding X Fish. The
potential neighbours are chosen using the algorithm of front priority.

Each fish Fi, once they have selected the X neighbour, must then determine the re-
action (rotation of the vi) to each fish Fj. βij will be the Fi reaction with respect to Fj
expressed in spherical coordinates. Each fish Fj can be found within one of three pos-
sible areas of influence with respect to Fi (R1,R2,R3):

452 D. Mostaccio, R. Suppi, and E. Luque

• If Dist(Fj, Fi) ≤ R1, Fi has a repulsion reaction with respect to Fj.

• If R1<Dist(Fj, Fi) ≤ R2, Fi adopts a parallel position with respect to Fj.

• If R2< Dist(Fj, Fi) ≤ R3, Fi is guided toward Fi.

Finally, reaction β (mean value for all βij) and vi is rotated according to β value.

3 Distributed Event Simulation (DES)

The development of the simulation involved determination of a set of logical proc-
esses (LP) inside the architecture of the distributed system. Each LP generates and
shares events that are interchanged in the computing systems as messages. The infor-
mation contained in these messages is event type, specific data of this event and the
time of occurrence.

Each LP simulates a section of the simulation world and this LP is assigned to a
computing node in the distributed computing system. Fish movement in the same
section does not generate events for other LP (there is no message exchange) but if a
fish goes from one section to another, there is a migration message from the LP when
the fish leaves for the LP where the fish enters.

This situation of event exchange (messages) with time-stamped can generate causal-
ity errors (the LP simulated time at which a message arrives - event - is superior to the
time-stamped of the new event). In order to solve this problem, there are two mecha-
nisms in the DES: Conservative and optimistic algorithms. The conservative approach
uses synchronization to avoid causality errors. In this algorithm, the events are proc-
essed when it is sure that the execution order is correct. On the other hand, in optimis-
tic algorithms, each LP processes the events as soon as they are available and this exe-
cution, in some instances, can involve causality errors. Nevertheless, the algorithm has
a detection mechanism for avoiding these errors and recovering causality. [9, 3]

3.1 Conservative and Distributed Simulator: Design and Development

As mentioned previously, our work is based on conservative simulation due to the
fact that the optimistic simulation presents, for this type of model, low efficiency due
to excessive optimism (the algorithm generates rollbacks chains).

The conservative distributed simulator for IoM was designed and developed using
the MPI communication library. The use of PVM presents certain problems with the
scalability (size of colonies) and simulator stability for a huge number of individuals
(thousands of individuals) due to the size of PVM daemon buffers and the PVM dae-
mon synchronization overhead. [1, 2]

A very important aspect of these models is individual distribution in the distributed
computing architecture. Loret et al. [7] propose a model distribution that assigns static
group partitions of fishes to each processor and the selection of candidate neighbours
is implemented using centralized data structures.

Our solution is based on the dividing the problem division into a set of logical
processes (LP), which will be executed in the different processors. For each LP, an
initial partition of the problem (number of fish) and this number will change

 Simulation of Ecologic Systems Using MPI 453

dynamically during the simulation. The LPs have a physical zone of the problem to
simulate (spatially explicit simulation) and the fish movement will imply migrations
between the LPs.

Two possible interactions are used in the simulation run that consider fish position:
information exchange and migration. The actual design implements three messages
types (EvRequest, EvAnswer, EvMigration) and two internal events (NextStep, EvRe-
sume) in order to control the simulation state machine (figure 2).

The event sequence is: simulation start consuming the EvNextStep event (initial
event is added to the event list during simulation start up and initial fish distribution).
In the simulation loop, the new fish positions are calculated but it is necessary to
know the position and speed of all potential neighbours (the possible neighbours in
the same LP or in the LP of the contiguous block).

The request for information from the neighbour block (if necessary) is performed
by sending an EvRequest message and in the conservative simulation this LP is
blocked waiting for an answer (Wait for Answer). The answers are generated for the
neighbour’s LPs as EvAnswer and the simulation is restarted in the waiting LP by
consuming an EvRessumeStep event and then EvNextStep.

When the fish position update generates a situation in which the placement of this
fish is in another block (LP), a migration event is produced (EvMigration) and a se-
quence of operations is called in order to send a message (fish) to the contiguous
block (fish migration) and to update the data structures of the current LP. The EvLast-
Step event is generated in order to end the simulation in the DES.

Fig. 2. Machine state of the DES Fish Schools

4 Experimental Results

The verification and validation of the model and simulator were made using a Beo-
wulf cluster with Linux and Fast Ethernet. In order to analyze the performance of the
distributed simulator versus a serial simulator, a sequential simulator has been devel-
oped. This simulator has only one event list and runs on a single computer (one

454 D. Mostaccio, R. Suppi, and E. Luque

processor). As a performance measure, frame time generation was selected. This
measurement is the time necessary to compute the next position and speed for all
individuals in the simulated world.
 The experimentation framework was made using a different configuration of the
simulator parameters: fish number (100 to 25,000 individuals), computing nodes and
LP processes (1 to 32), and ecosystem size (300x300x300) and fish density are con-
stants for all experiment sets. Figure 3 shows the frame time using the sequential
simulator with the fish population in the range of 100-25000 individuals.

0,11 0,34 1,08 3,33 10,27 32,01
101,79

431,18

1350,52

0

200

400

600

800

1000

1200

1400

T
im

e/
fr

am
e

[s
ec

/f
ra

m
e]

10 200 400 800 1600 3200 6400 1280025000

Number of fish

Fig. 3. Time per frame in the sequential simulator

The sequential simulator can carry out animations in real time only for 100 fishes
(10 frames/sec). An increase in the number of fish implies that the simulator can not
generate data in real time (400 fish 1 frame/sec).

The second step of the experiment set was the execution of the DES for a different
fish number configuration (100-25000) and for a different number of computing
nodes (2-32). In order to compare the distributed and serial simulator, the speedup
was obtained (fig. 4). As can be observed, there are values higher than the linearity.

This situation is due to calculation of the neighbour position. In the sequential al-
gorithm there is only one block and all individuals are computed, but in the DES only
the individuals of the same block and the contiguous blocks are computed. In the first
case, the algorithm complexity is O(N2) and in the second it is O(N2/n) where n is the
number of LPs.

Figure 4 shows the performance using the processing time only (without commu-
nications) and figure 5 shows the time per frame obtained considering the communi-
cation time and the LP blocking time (waiting for the answer from the neighbour).
The time per frame in the sequential simulator for a colony size of 6400 individuals
(or smaller) is always smaller than in the DES and independent of the number of
processors. The advantage of DES is the huge number of individuals and computing
nodes (i.e. 8 processors and 25000 individuals). The simulation time in the DES was
reduced by a factor of 3.45 with respect to the sequential simulator (considering
communication and waiting time) for the same (simulated) frame number.

 Simulation of Ecologic Systems Using MPI 455

0

100

200

300

400

500

600

700

1 2 4 8 16 32

Number of Processors

Sp
ee

du
p

100

200

400

800

1600

3200

6400

12800

25000

Fishes

Fig. 4. Performance using the processing time only (without communications)

0

200

400

600

800

1000

1200

1400

1600

100 200 400 800 1600 3200 6400 12800 25000
Number of fishes

T
im

e/
fr

am
e

[s
ec

/f
ra

m
e]

1
2
4
8
16
32

Processors

Fig. 5. Time per frame including communication and waiting time

5 Conclusions

The ecological systems simulation is a field that requires large computing capacity
powers when individual oriented models are used. The Distributed Event Simulation
(DES) is an excellent tool for solving this type of problem.

The present work analyzes the DES in Individual oriented models (specifically fish
movement) using a distributed simulation based on conservative algorithms. The
results obtained demonstrate that it is a viable option but that conservative algorithms
impose a strong limitation on the method possibilities.

In order to measure the benefits of DES a set of experiments has been performed.
These experiments were performed using a sequential simulator and the results were

456 D. Mostaccio, R. Suppi, and E. Luque

compared with the distributed simulator. In conclusion we can observe that the DES
is recommendable for large simulation environments (7000 individual or more) but
there are also acceptable results for a smaller number of individuals. The main restric-
tion of DES conservative simulation is its communication and blocking time but even
with these times, the simulation speedup is acceptable.

Future work will be aimed at:

 Improving the conservative distributed algorithm in order to reduce the
restrictions imposed by the communication and blocking time.

 Analysing the possibilities of optimistic algorithms with optimism control
in order to control rollback chains.

 Developing a simulation environment in order to execute interactive DES
simulation with real time animation.

 Improving the Fish School model in order to include predators, obstacles,
more than one species, energy control, and individual ages in order to be
able to serve the different analysis needs of biologists and ecologists.

References

1. Geist, A., Beguelin, A., Dongarra, J, Jiang, W., Manchek, R., Sunderman, V. Parallel Vir-
tual Machine. A Users' Guide and Tutorial for Networked Parallel Computing. The MIT
Press, 1994.

2. Message Passing Interface Forum. MPI: A Message-Passing Interface standard. Technical
report, 1995. http://www.mpi-forum.org.

3. Suppi, R., Cores, F, Luque, E., Improving Optimistic PDES in PVM Environments, Lecture
Notes in Computer Science ISSN 0302-9743, Springer-Verlag, Vol. 2329(1), pages 107-
116, 2002.

4. Remo Suppi, Daniel Fernández, Emilio Luque. Fish Schools: PDES Simulation and Real
Time 3D Animation. Lecture Notes in Computer Science 3-540-21946-3, ISSN 0302-9743
Springer-Verlag EC. Vol.: 3019, pages: 505-512, 2004.

5. Smith, M. J. Models in Ecology, Cambridge University Press, 1994.
6. Kreft, J. Booth, G, Wimpenny, W. T. J. BacSim, a simulator for individual-based model-

ling of bacterial colony growth, Microbiology Journal, 144, pages 3275-3287, 1998.
7. Lorel, H, Sonnenschein, M., Using Parallel Computers to simulate individual oriented

models: a case study, Proceedings of the 1995 European Simulation Multiconference
(ESM), pages 526-531, June 1995.

8. Husth, A., Wissel, C. The simulation of movement of fish schools, Journal of Theoretical
Biology, 156, 365:385, 1992.

9. Serrano, M., Suppi, R., Luque, E. Parallel Discrete Event Simulation, State of art. Com-
puter architecture and Operating Systems Department. University Autonoma of Barcelona.
2000. http://pirdi.uab.es

10. Langlais, M., Latu G., Roman J. and Silan P.. Parallel numerical simulation of a marine
host-parasite system. Europar'99 Parallel Processing. pp. 677-685. LNCS 1685 - Springer
Verlag. 1999.

Load Balancing and Computing Strategies in
Pipeline Optimization for Parallel Visualization

of 3D Irregular Meshes

Andrea Clematis1, Daniele D’Agostino1, and Vittoria Gianuzzi2

1 IMATI-CNR, Via de Marini 6, 16149 Genova, Italy
{clematis, dago}@ge.imati.cnr.it

2 DISI University of Genova, Via Dodecaneso 35, 16146 Genova, Italy
gianuzzi@disi.unige.it

Abstract. Parallel visualization is assuming an increasing role in the
deployment of Web and Grid based systems for scientific applications.
The visualization process consists of a set of filters or components that
are executed in a pipelined assembly that should be adaptively configured
on the basis of user requirements, processing architecture and network
characteristics. In this paper we focus our attention on the visualiza-
tion of 3D irregular meshes produced by the interrogation of volumetric
data using an isosurface extraction algorithm. We consider a simplified
pipeline consisting of two components: isosurface extraction, and mesh
simplification. We show that also in this simple case an in-deep analysis
is necessary in order to optimize the whole pipeline. In fact different im-
plementation and load balancing strategies are possible for each single
component, but the whole pipeline optimization could be achieved com-
bining non-optimal implementation of individual stages. Moreover the
quality of the produced mesh should be considered in the selection of an
adequate component implementation. The proposed analysis permits to
point out trade-offs and algorithmic requirements that should be consid-
ered in the design of a complete visualization system for advanced Grid
applications.

1 Introduction

In the scientific community, the interrogation and visualization of 3D data, pro-
duced by complex simulations or by acquisition instruments, is of paramount
importance. In many cases scientists from different disciplines would like to ac-
cess remote data repositories, to perform their interrogation and analysis, and
to get the results visualized on their local computer [1,2,3,4].

In this paper we are interested in addressing problems and possible solutions
in the design of an adaptive pipeline of operations for parallel visualization of
3D irregular meshes. The pipeline is the core of a visualization system [5] that
allows the interrogation of 3D data collections, and the proper visualization of
results on local clients.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 457–466, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

458 A. Clematis, D. D’Agostino, and V. Gianuzzi

Fig. 1. A data processing pipeline for remote visualization

Figure 1 provides an example of such pipeline. The isosurface extraction
module performs 3D data interrogation and produces a Triangulated Irregular
Network that may be processed by the simplification and/or by the compression
module in order to permit progressive visualization and to perform latency tol-
erant interaction with remote clients. In fact meshes are often composed by so
many triangles that rendering is very difficult, and the size of models heavily im-
pacts also on transmission time, because the available communication bandwidth
can be a considerable bottleneck.

Depending on the size of the produced isosurface, the kind of the client and
other architectural parameters, the pipeline will consist of different subsets of
components.

A parallel implementation of the isosurface extraction, simplification and
compression algorithms is often necessary in order to reduce the execution time.
Considering each component by itself it is possible to find the most efficient al-
gorithm. However, it is not possible to affirm that the best result for the whole
pipeline is obtained combining such algorithms, in fact different, not optimal al-
gorithms could lead to a more efficient pipeline execution. Also the quality of the
produced mesh must be considered when selecting component implementation.
In this paper we discuss load balancing and computing strategies for a simplified
pipeline composed by the isoextraction and the simplification modules.

The paper is organized in the following way: in Section 2 and 3 we shortly
describe the two components of the pipeline, and their parallelization; in Sec-
tion 4 we discuss the issue of a global optimization of the pipeline, presenting
experimental results, followed by conclusions and future works in Section 5.

2 Domain Partitioning and Load Balancing for Isosurface
Extraction

Pseudocode 1.1 presents an high level description of the Marching Cubes algo-
rithm [6], the classical approach to extract isosurfaces from volumetric data sets.
A volumetric data set consists of values corresponding to points disposed over a
regular grid, and it is usually structured in a set of planes, called slices.

Load Balancing and Computing Strategies in Pipeline Optimization 459

Listing 1.1. Marching cubes algorithm for isosurface extraction

f o r each c e l l in the volume
i f the c e l l i s t r ave r s ed by the i s o s u r f a c e (a c t i v e c e l l)

compute l o c a l t r i a n g u l a t i o n

For our purposes it is important to underline that the test operation, necessary
to determine active cells that are traversed by the isosurface, has a unitary cost
that is considerably lower than computation of the local triangulation. However
since the test is executed on all the cells of the data set its total cost is nor-
mally the highest one. If we define numC the number of cells of a data set and
numAC(v) ≤ numC the number of active cells for the isovalue v, a simplified
analytic formulation of the computational cost of the algorithm is obtained as the
sum of the time necessary to check all the cells (TScan) and the time necessary
to construct the triangulation (TConstr):

TIsoExtr(v) = TScan + TConstr

TScan = C1 ∗ numC

TConstr = C2 ∗ numAC(v), C2 > C1

(1)

We have experimentally determined the value of the constants C1 = 8.3 ∗ 10−8

sec. and C2 = 3.5 ∗ 10−7 sec. on a PC whose characteristics are described in
Section 4.

A first straightforward parallelization strategy for this algorithm is to adopt
the “processor farm” paradigm and to partition the original data set into a
set of independent tasks, each one made by contiguous slices, that are assigned
to different workers. In order to obtain an efficient implementation we should
divide the domain in a number of tasks considerably greater than the number
of workers. In fact volume partitions intersected by the isosurface produce tasks
that are more costly to evaluate with respect to empty ones, and load balancing
is obtained using fine grained domain partitioning.

The use of fine grained tasks, that is necessary to implement an efficient
processor farm, has some drawbacks, the most important is the production of
over-partitioned isosurface like in Figure 2(a). This point may cause some impor-
tant problems especially when a further processing step, such as simplification,
is necessary. However the processor farm strategy is auto-balancing, and the exe-
cution time needed with fine grained tasks, to extract the isosurface on a cluster
of n processors is:

TFarm � 1
n
∗ TIsoExtr(v) + TOverhead Farm (2)

with a normally low value of TOverhead Farm.
Other parallelization strategies are possible, in fact the Marching cubes algo-

rithm can be re-arranged in order to obtain a data parallel version that permits
to produce an output evenly distributed on the processors and with better topo-
logical characteristics. In fact, the fine grained partitioning of the resulting mesh

460 A. Clematis, D. D’Agostino, and V. Gianuzzi

Fig. 2. The different partitions of a mesh using four processes. The left one is produced
by the farm version with a number of tasks equal to 4 times the number of workers,
the right one is produced by the balanced data parallel version.

can be avoided at the cost of an additional load balancing step. In [7] we proposed
this strategy, described in the following.

Looking at code of Listing 1.1, the general loop can be re-arranged so that the
whole data set is scanned in order to find out active cells, then the isosurface is
extracted considering only slices containing active cells. Thus, the isosurface ex-
traction can be decomposed in 2 steps, where the first step is the scanning of the
active cells, and the second step is the construction of the triangles composing
the isosurface. Considering an execution distributed on n processors, the data set
is initially equally partitioned among the processors. Then each process analyses
the cells and records the number of intersection points for each slice. Such infor-
mation is sent to a coordinator process that re-partition the active slices among
the processes in order to balance the number of intersection points. Finally, each
processor re-analyses its active cells and computes the isosurface. In Figure 2(b)
we present an example of volume partitions among four processes, after the load
balancing stage. Each worker receives the part of the volume between two lines.
The number of active cells (and consequently triangles and edges) in each par-
tition is about the same. We called this version of the algorithm Balanced Data
Parallel (Bal DP).

Considering formula 1, the time TBal DP needed to execute this algorithm
is:

TBal DP � max
i

(
1
n

TScan +
1
n

TConstr + TScan ∗ αi) + TOverhead LB (3)

where i ranges on the set of all processes, αi is the percentage of the active cells
re-scanned by the i-th processor during the second step of the algorithm, and
TOverhead LB is due to load balancing.

Load Balancing and Computing Strategies in Pipeline Optimization 461

With a suitable choice of the fragmentation size, the execution time TFarm re-
sults to be lower than TBal DP , due to the overhead imposed by the re-scanning of
the data set cells and load balancing (See Section 4 for experimental results). How-
ever, the mesh obtained using the Data Parallel version is not over partitioned.

3 Parallel Simplification

The goal of the simplification step is to reduce the number of triangles that
compose the isosurface preserving its main characteristics, and hence its quality.
This operation is very important for different reasons, for example in order to
speed up the transmission of very large meshes.

Several proposals were made to simplify triangular meshes. For a survey see
[8]. We chose the Garland-Heckbert algorithm proposed in [9] because it produces
high quality simplified meshes. Pseudocode 1.2 presents an high level description
of the algorithm

Listing 1.2. Garland-Heckbert algorithm for mesh simplification

f o r each ver tex o f the mesh
compute the quadr ic

f o r each manifo ld edge o f the mesh
eva lua te e r r o r and i n s e r t in the heap

whi le numTriangles > th r e sho ld do
s e l e c t the edge with the minimum e r r o r
edge c o l l a p s e
update the topo logy and the e r r o r o f neighbour edges

The algorithm evaluates all the manifold edges of the mesh on the basis of the
quadric error metrics. The cost assigned to each edge represents the amount of
error introduced in the mesh after its deletion with respect to the original mesh.
This is the reason why this algorithm is able to produce high quality results.
The edge collapse operation consists in the contraction of the selected edge in a
vertex and the deletion of the incident triangles.

In our pipeline we preserve mesh characteristics as holes, so only manifold
non-boundary edges can be collapsed. If we define numT the number of triangles
of the mesh, perc the percentage of triangles to leave in the simplified mesh, then
the number of edges to collapse is numER = (1−perc)∗numT

2 . Denoting TV alE

the time to build quadrics for the vertices, to evaluate the edges and to insert in
the heap, and TESel the time to collapse an edge, modify the topology and the
error of adjacent edges, a simplified analytic formulation of the computational
cost of the algorithm is:

TSimpl = TV alE + TESel

TV alE = numE ∗ (log2numE ∗K1 + K2)
TESel = numER ∗ (log2numE ∗K3 + K4)

(4)

462 A. Clematis, D. D’Agostino, and V. Gianuzzi

where numE is the number of edges of the mesh. In the above formulas the
log2numE factor represents the cost related to the heap management. For a
detailed discussion of the cost of the algorithm the reader may refer to [10].
In that report it is also shown that it exists a good accordance between cost
formulas and measured times.

When investigating for a parallelization strategy for this algorithm, a first
point is that the “processor farm” paradigm is not suitable if the purpose is
to keep the quality of the simplified mesh, because data cannot be processed
independently. In fact using processor farm a mesh is subdivided in independent
tasks, and the same amount of simplification will be required for each task, but
the quality of the resulting mesh would be generally very poor. As an example,
let us consider a mesh representing a mountain and a plain partitioned between
two processes: one process receives the mountain and the other the plain. If
both processes simplify the same percentage of triangles, the speed up of the
algorithm would be nearly linear, but the resulting mesh is too much detailed in
the plain and too few detailed in the mountain. Furthermore there is the problem
of edges that lie on the border between two processes. If only a process collapses
a shared edge, the resulting mesh is not topologically coherent and it needs a
costly post-processing step to rearrange data.

In [11] we proposed a parallel algorithm based on the data parallel approach
with a coordinator process. The input mesh is subdivided among N worker
processes (different from the coordinator). Each process evaluates independently
its edges and extracts an ordered list of candidate edges. These candidates are
the edges the process would collapse if it works independently. The coordinator
receives all these lists and globally selects the numER edges with the minor
error. Each process then removes only the edges indicated by the coordinator.

In this manner it is possible to achieve a good trade off between speed up and
quality. In the current version of the algorithm we don’t allow the simplification
of shared edges, but we plan to introduce it in an additional evaluation step.
It is to notice that the number of edges to collapse will not be equal for each
process. For this reason the number of selected edges numES will be greater
than the number of collapsed edges numER. In this manner, in the case of a
load balanced situation, the coordinator is able to select more than numER

N edges
for some processes and less for others.

4 Pipeline Optimization

In the previous Sections the possible parallelization strategies of each pipeline
component are described. Now we address the assembly of the different compo-
nent versions, and we consider the whole pipeline performance and the resulting
mesh quality as well as the figures of merits to evaluate the different implemen-
tations.

In Table 1 the characteristics of the data sets used for the experiments are
listed. In the same table the times for the sequential isosurface extraction and
simplification operations are shown. The percentage of simplification used is

Load Balancing and Computing Strategies in Pipeline Optimization 463

Table 1. This table summarizes the size of input data and the time for both the
sequential isosurface extraction and simplification components. Isosurfaces were sim-
plified to the 10% of the original triangles. Data in brackets are estimates obtained
using Equation 4 after experimental evaluation of costants K1,. . . ,K4.

Data set Id - Input file size % of Active Output size Isoextraction Simplification
Isovalue (Mbyte) cells (Triangles) (sec.) (sec.)
Bonsai 2 16 MB 11.7 3,896,985 3.4 (142.5)
Frog 1 30 MB 1.7 1,073,360 2.7 36.1

XmasTree 180 499.5 MB 0.9 4,514,539 30.2 (166.3)
VisFemale 1210 867 MB 1.5 13,642,014 54.5 (529.6)

10%, that is only 10% of triangles are kept in the final mesh. For large data
sets the simplification time is not available, since the sequential code cannot
handle large meshes, but an estimate determined using a cost model based on
Equation 4 is proposed.

Sequential computing times have been collected using a Linux PC equipped
with a 2.66 GHz Pentium processor, 512 MB of Ram and two EIDE disks inter-
faced in RAID 0. Parallel computing times have been collected using a cluster of
16 PCs with the previous characteristics, interconnected through an Ethernet -
Gigabit switch and having input data sets stored in a PVFS 1 parallel filesystem.

The more efficient parallel solution for the isosurface extraction component
is the “processor farm” paradigm, as shown in Table 2, since the load balancing
step of the Balanced Data Parallel version represents an overhead.

Table 2. Measured speed up for the Farm and the Balanced Data Parallel versions of
the isosurface extraction algorithm

Processors 4 8 16
Data Set F Bal DP F Bal DP F Bal DP
Bonsai 2 3.2 2.7 5 3.2 4.9 3.4
Frog 1 3.8 3.7 5.2 4.7 5.8 5.1

XmasTree 180 3.2 3.1 5.7 4.9 8.6 6.4
VisFemale 1210 3.1 2.6 5.8 4.2 5.3 5.9

The parallel simplification algorithm is costly with respect to the isosurface
extraction algorithm, as we can see in Table 1. The computational cost of the
simplification depends on both the number of edges to evaluate (numE) and the
number of edges to collapse (numER).

We may obtain three different pipeline configurations from the assembly of
the previously considered implementation of components.

Pipeline 1: Balanced Data Parallel Isoextraction → Simplification
The result of the balanced data parallel version of the isosurface extraction is
suitable for the simplification algorithm using the same number of processes. In

464 A. Clematis, D. D’Agostino, and V. Gianuzzi

fact, balancing the isosurface extraction on the active cells has the consequence
of producing an almost balanced output with nearly the same number of edges
for each process. Moreover the mesh partitions are coarse grained, thus reducing
the new borders. Finally if the two operations are executed by the same process
it is possible to keep the produced isosurface into main memory, and no data
movement is necessary between the two stages.

Pipeline 2: Farm Isoextraction → Simplification
The output of the farm algorithm for isosurface extraction, instead, is not suit-
able for the simplification step. First of all, it is not guaranteed that each worker
produces the same number of edges. A worker, in fact, may examine a number
of tasks without active cells. At the same time a region containing contiguous
part of the isosurface can be splitted in a large number of tasks to obtain load
balancing, thus creating a huge number of new borders.

Pipeline 3: Farm Isoextraction → Clusterization → Simplification
Both the problems of pipeline 2 canbe solvedwith an intermediate step between the
farmalgorithmof the isosurface extraction and the simplification.This stephas the
purpose to reassemble the triangulation produced for each “active task” into a set
of contiguous parts of the mesh balanced with respect to the number of triangles.
In this case the resulting mesh has a quality that is similar to that of pipeline 1.
Heavy data movements may be necessary during the clusterization stage.

While the solution proposed for pipeline 2 is not suitable because of the
quality of the resulting surface, the merits of the other two strategies should be
evaluated and compared also considering their efficiency.

Then we have:
TPipe1 = TBal DP + TSimpl

TPipe3 = TFarm + TClust + TSimpl

(5)

The choice between the two pipelines, thus depends on the comparison between
the overhead due to the Clusterization stage with respect to the additional re-
scanning required by the Bal DP algorithm.

Table 3 reports speed up for the two pipelines. Missing values are due to
the high number of page faults of the simplification algorithm. Values for ”Frog
1” are computed considering the actual results of the sequential simplification
component. In the other cases speed-up is evaluated considering an estimate of

Table 3. Measured speed up for the Pipeline 1 and 3

Bal DP → Simpl F → Simpl
���������Data Set

Workers
4 8 16 4 8 16

Bonsai 2 - 5.4 7.2 - 4.7 6.8
Frog 1 3.2 6.2 7.2 2.9 5.6 6.8

XmasTree 180 - 5.1 8.3 - 4.7 7.4
VisFemale 1210 - - 4.3 - - 3.1

Load Balancing and Computing Strategies in Pipeline Optimization 465

the sequential computing time for the simplification (Table 1). The lower speed
up of the ”VisFemale 1210” is due to memory trashing of the simplification al-
gorithm for this large mesh. It is important to point out that parallel computing
is in these cases an enabling technology that permits to obtain the desired re-
sults. Pipeline 1 provides better speed-up than pipeline 3. This despite the farm
isoextraction is more efficient than load balanced data parallel.

5 Conclusions and Future Works

In this paper we have considered the trade-offs that arise in the optimization
of a parallel visualization pipeline. The main point is that the choice of best
performing algorithms depends on the optimization of a simple pipeline stage
rather than on the optimization of the whole chain. In our evaluation we also
consider the quality of the resulting mesh as one of the parameters that drive
the proper algorithm selection.

In actual systems it is not possible to find out a single pipeline configuration
that performs at the best in all the cases. For this reason the present study is
just a starting point in order to properly define suitable criteria that drive the
selection in actual system implementations. It is worthwhile to remember that
the presented algorithmic analysis is just one aspect in order to implement a
dynamic and adaptive pipeline. A general solution to this and similar problems
is still far to be identified.

To this aim it is important the availability of convenient programming tools
to support the deployment, for each pipeline stage, of several components, each
one implementing a different algorithm, but all presenting the same interface. In
such a way, it is possible to dynamically compose the most efficient application
according to the needs of the client.

Acknowledgments

This work has been supported by MIUR programme L.449/97-00 High Per-
formance Distributed Computing Platform, and by FIRB strategic project on
Enabling Technologies for Information Society, Grid.it. The Christmas Tree data
set was generated by the Department of Radiology, University of Vienna and the
Institute of Computer Graphics and Algorithms. The VisFemale data set is by
the Departments of Cellular and Structural Biology, and Radiology, University
of Colorado School of Medicine, under the Human Visible Project grant.

References

1. E.W. Bethel and J. Shalf, Grid-distributed visualizations using connectionless pro-
tocols. In IEEE Computer Graphics and Applications, 23:2, 2003, pp. 51-59.

2. B. Hamann, W. Bethel, H.D. Simon and J.C. Meza, NERSC ”Visualization Green-
book” : Future Visualization Needs of the DOE Computational Science Community
Hosted at NERSC. In Int. Journal of High Performance Computing Applications,
17:2, SAGE, 2003, pp. 97-124.

466 A. Clematis, D. D’Agostino, and V. Gianuzzi

3. J. Shalf and E.W. Bethel, The Grid and Future Visualization System Architectures.
In IEEE Computer Graphics and Applications, 23:2, 2003, pp. 6-9.

4. Visapult, http://www-vis.lbl.gov/projects/visapult/
5. A. Clematis, D. D’Agostino, W. De Marco and V. Gianuzzi: A Web-Based Iso-

surface Extraction System for Heterogeneous Clients. In Proceedings of the 29th
Euromicro Conference, IEEE Computer Society Press, 2003, pp. 148-156.

6. W. Lorensen and H. Cline: Marching cubes: A high resolution 3-D surface con-
struction algorithm. In Computer Graphics, Vol. 21, 1987, pp.163-169.

7. A. Clematis, D. D’Agostino and V. Gianuzzi: An Online Parallel Algorithm for
Remote Visualization of Isosurfaces. In Proceedings of the 10th EuroPVM/MPI
Conference, LNCS, No. 2840, 2003, pp. 160-169.

8. C. Gotsman, S. Gumhold and L. Kobbelt: Simplification and Compression of 3-D
Meshes. In Tutorials on multiresolution in geometric modelling, A. Iske, E. Quak,
M. Floater (eds.), Springer, 2002.

9. M. Garland, and Paul S. Heckbert: Surface Simplification Using Quadric Error
Metrics. In Computer Graphics, Vol. 31, 1997, pp. 209-216.

10. D. D’Agostino: A Parallel Simplification Algorithm based on the Quadric Error
Metrics. Technical Report IMATI-CNR-Ge, No. 04/2005.

11. A. Clematis, D. D’Agostino, V. Gianuzzi and M. Mancini: Parallel Decimation
of 3D Meshes for Efficent Web based Isosurface Extraction. Parallel Computing:
Software Technology, Algorithms, Architectures & Applications, in Advances in
Parallel Computing series, 13, G.R. Joubert, W.E. Nagel, F.J. Peters, W.V. Walter,
Eds., Elsevier, 2004, pp. 159-166.

An Improved Mechanism for Controlling
Portable Computers in Limited Coverage Areas�

David Sánchez, Elsa M. Maćıas, and Álvaro Suárez

Grupo de Arquitectura y Concurrencia (GAC),
Department of Ingenieŕıa Telemática, University of Las Palmas de Gran Canaria,

Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
{dsanchez, emacias, asuarez}@dit.ulpgc.es

Abstract. A network formed by desktop and portable computers is a
useful environment for doing parallel computing. In this infrastructure
we implement Master/Slave parallel distributed programs which exhibit
strict data dependencies among iterations and parallel calculations inside
an iteration. In a previous work, we developed a load balancing strat-
egy that uses performance information of slave computers supplied by
a framework based on Simple Network Management Protocol (SNMP).
This strategy considers the received beacon strength in the portable com-
puters for executing this kind of applications efficiently. However, when
a portable computer is located in a limited coverage area, our frame-
work considers that this resource is unavailable, and therefore it can’t
be used for parallel computing. In this paper we present a mechanism
based on the extension of our SNMP framework that allows us to use
the computers while there is a wireless network connection.

1 Introduction

Nowadays, the proliferation of high performance portable computers and the
recent advances in wireless technologies allow combining wireless local area net-
works (WLAN) with traditional local area networks (LAN) for doing parallel
and distributed computing [1], being a hot topic for next years [2].

We have demonstrated that a computing environment formed by fixed and
portable computers can be efficiently used to implement Master/Slave applica-
tions with strict data dependencies among iterations. We consider the execution
of this kind of applications using our LAMGAC [3] middleware over MPI-2. It is
evident that the intrinsic heterogeneity of this natural but currently used com-
puting environment (different processing power and communication bandwidths)
makes that the efficient execution of these applications be a very difficult task.
If we do not consider load balancing strategies, long idle times will be obtained.

We have developed a load balancing strategy that uses performance informa-
tion of the slave computers for calculating the adequate data distribution, such
that all slave processes finishes at the same time per iteration. This performance
� Research partially supported by Canary Government under Contract: PI:164/2004.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 467–474, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

468 D. Sánchez, E.M. Maćıas, and Á. Suárez

information must be collected in background such that it does not degrade the
performance of parallel application. SNMP [4] is used efficiently in [5] for col-
lecting information of fixed resources that constitute a computing environment.
In [6] we developed a non-intrusive framework based on SNMP to get perfor-
mance parameters of the computers. These parameters are used for carrying out
an efficient load balancing in presence of heterogeneous computing power and
communication. Besides, we implemented an extension of LAMGAC to ease the
programming of the above parallel applications where a load balancing strategy
is necessary and the framework SNMP is used, which was presented in [7].

The dynamic behavior of portable computers implies to apply control tech-
niques to take into account the wireless beacon strength and the battery energy
level. Otherwise the master process can be infinitely locked if it is waiting for
results from some slave running on a portable computer that moves out of cov-
erage or its battery is empty. We modified LAMGAC and SNMP framework to
consider these issues [8]. In that work, when some portable computer was located
in a limited coverage area (weak wireless beacon strength) our load balancing
strategy did not estimate the load to distribute to the slave process because that
computer can go out of coverage with high probability. As a result, the over-
all processing power was reduced despite the fact that the slave process could
continue calculating and sending results while there was connection.

The new contribution is an improvement of our previous software framework
[8] to know in a precise way the portable computers with wireless network link
when they are in a limited coverage area. In this way, the processing power of the
environment is maximized, because each computer is used while it has a wireless
connection. Also, we propose a controlled data reception scheme to avoid that
the master process can lock when it waits for results that will not arrive.

The rest of the paper is organized as follows. In section 2 we briefly describe
the architecture used for executing Master/Slave applications in a LAN-WLAN
environment, as well as the main functions of LAMGAC. In section 3, we explain
the improved mechanism. Next, in section 4 we show some experimental results.
Finally, we sum up the conclusions.

2 Previous Work

Figure 1.a shows a graph of the combination of the LAN-WLAN. On one hand,
there is a master computer where runs the master process that distributes the
load to slave processes. Master computer can communicate with the LAN com-
puters and WLAN computers through an access point. On the other hand, the
slave computers of LAN are fix and they always have connection with the master
computer. However, the computers of WLAN can change their physical location,
even entering and going out of coverage.

We consider parallel applications in which the master process distributes (in
each iteration) a particular amount of data to each slave process (figure 1.b) that
is directly correlated with the calculation performance of the slave processors; it
is estimated with our load balancing strategy. Data distribution has to be made

An Improved Mechanism for Controlling Portable Computers 469

Send SNMP

notifications

Send results

Slave computer

Slave Process

SICA

Send data
Master computer

Master process

LAMGAC

middleware

TRM

shared memory

read/

write

write

(d)

LAMGAC

middleware
(c)

MPI-2

TCP

SNMP

UDP

IP

802.3 y 802.11

LAMGAC
TRM/

SICA

slave processes

 master process

iter i

iter i+1

spawned

process

(b)

master computer

LAN

WLAN

slave computers

(a)
in/out of coverage

access

point

Fig. 1. a) Hardware architecture, b) Master/Slave application dependencies structure,
c) Software architecture, d) SNMP framework and parallel program

from the master process because of the spawned processes at run time in the
portable computers only communicate with it. When each slave process finishes
its calculations it sends results to the master process. The master process must
receive the results of all slave processes before sending them the new data.

We implement this kind of applications using our LAMGAC middleware,
based on MPI-2, to manage the dynamic expansion of slave processes on the
portable computers that enter and go out of coverage at run time and to im-
plement a load balancing strategy (figure 1.c). We also use MPI for doing data
communications. We control the variation of the number of portable computers
in each iteration. Table 1 shows the main functions of LAMGAC.

Table 1. Main functions of LAMGAC

Functions Description
LAMGAC Update Updates the number of processes that runs in desktop

and portable computers
LAMGAC Balance Estimates the amount of data to be sent to the slave

processes for balancing the execution time
LAMGAC ItestBattery beacon Checks if there are portable computers in a limited

coverage area or its battery will empty soon
LAMGAC Store info Stores the effective computed load and the execution

time spent by a slave process in each iteration

To carry out an effective load balancing, we have designed a framework
based on SNMP that collects performance information about computers. We
briefly resume the interaction between this framework and the parallel program
(figure 1.d). In each slave computer there is running a Slave Information Collec-
tion Agent (SICA) that monitors some parameters of the computer performance
(system load, network latency, wireless link, battery level, etc) and notifies them
(with a PDU InformRequest) to Traps Reception Manager (TRM) when a sig-
nificant event has happened (a new slave process has started, the battery will

470 D. Sánchez, E.M. Maćıas, and Á. Suárez

empty soon or the wireless beacon strength is weak). The TRM process is located
in the master computer and is in charged of decoding the received performance
information from each agent about computers and store it in the shared mem-
ory, which is queried by LAMGAC functions. For example, this information is
used to estimate the adequate load to distribute to the slave processes when the
master process invokes LAMGAC Balance() function.

The functionality of TRM have been extended to control the portable com-
puters in a limited coverage area which is the contribution of this paper.

3 Improved Mechanism

In this section we present our improved mechanism, which is based on the control
of portable computers in limited coverage area and in a controlled data reception.

3.1 Control of Portable Computers

The aim of the new contribution is to use the portable computers located in a
limited coverage area until there is not network connection. This way, we take
advantage of processing power of computers for all the time that it be possible.

In order to implement the improvement mechanism we extended our SNMP
framework. In particular, we enlarged the TRM process. The enlargement con-
sists on creating a thread, by TRM process, when a portable computer is within
a reduced coverage area (thread SnmpPing in figure 2.a). That is, a thread is
created when TRM receives a notification with a value of lbLinkLevel below a
threshold. It creates a thread by each portable computer in this situation.

Every thread verifies the wireless network link state between the master
computer and the portable computer. For that, each thread implements a SNMP
GetRequest operation, which is periodically invoked to query lbLinkLevel object
in the management information base, LBGAC-MIB, of the portable computers.

Every thread is running while the portable computer is located in the limited
coverage area. That is, the thread finishes when the wireless beacon strength
is above a threshold (good coverage area) or when there is not network link
between master and slave computer (timeout of several consecutive GetRequest
operations expires). When the thread finishes, it writes in shared memory the
situation of portable computer: online or offline. This value is queried by the
beacon and battery function (LAMGAC ItestBattery beacon()) to inform to the
master process about slave processes running in unavailable portable computers.

The implementation of this improvement mechanism modifies the description
of LAMGAC ItestBattery beacon() function as follows (we emphasize in italic
format the modification with regard to the description shows in the table 1):
Checks if there are portable computers with a wireless network connection with
the master process or its battery will empty soon.

On the other hand, due to dynamic behaviour of the wireless channel, pro-
cessor load and location of portable computers, the time elapsed from the SNMP
query is realized to the response is received can vary in a considerable way at any
moment. It represents a tradeoff for choosing a value for GetRequest operation

An Improved Mechanism for Controlling Portable Computers 471

SnmpPing Thread

ip_slave, network latency

do

get lbLinkLevel

while (lbLinkLevel<threshold

and n_timeouts<X)

query

response

or timeout

Send SNMP

notifications

Send results

Slave computer

Slave Process

SICA

Send data
Master computer

Master process

LAMGAC

middleware

TRM

shared memory

read/

write

write

(a)

LAMGAC

middleware

{1} LAMGAC_ItestBattery_beacon (…);
{2} for all available process

MPI_Irecv (…);

{3} while there are reception operations not completed {

{4} MPI_Test_some (…);

{5} for new completed operations
LAMGAC_Store_info (…);

{6} LAMGAC_ItestBattery_beacon (…);

{7} for new unavailable process
 MPI_Cancel (…);

 }

(b)

Fig. 2. Improved mechanism: a) SnmpPing thread, b) Controlled reception scheme

timeout. A high timeout value implies a long wait time when the portable com-
puter is not available (out of coverage, channel failures, etc). In this situation,
beacon and battery function can indicate that there is a network connection
when it is not possible (it is invoked when SNMP operation timeout does not
have expired, and therefore, the information stored in shared memory represents
a false value). A low timeout value can imply that the SNMP query does not have
its SNMP response (for example, due to the congestion on the wireless channel,
timeout expires before the response arrives to destination). In this situation, the
function can return a value that indicates not network connection when there is.
Keeping in mind this tradeoff, we conclude the appropriate timeout value has
to be lightly above the time elapsed for implementing a successful query. We
calculate the timeout value for doing a query to the computer i (ci) as follows:

timeout(ci) = 2× t lat(ci) +
(sizeof(send) + sizeof(recv))

B
+ t get(ci) (1)

where:

• t lat(ci) is the network latency between the master and the slave portable
computer. For simplicity, we assume that this value is always equal for both
communication directions. This value and B parameter are estimated by
SICA when lamd daemon starts (LAM-MPI distribution), and sent to TRM
via notifications.

• sizeof(send) is the package size of GetRequest operation (92 bytes).
• sizeof(recv) is the package size of Response operation (93 bytes).
• B is network throughput between the master and the slave computer.
• t get(ci) is the time taken by SICA for decoding the query, calculate and

return the results to the TRM. This value depends several factors as: pro-
cessor speed, memory size, system load, etc. Therefore, in order to calculate
the above metric, we estimate this value in a empiric way. We realized many
measures about of time elapsed for a success SNMP Get-Request operation,
and we conclude that this value is approximately 0.7 ms. (in the computing
environment specified in the table 2 in section 4).

472 D. Sánchez, E.M. Maćıas, and Á. Suárez

3.2 Controlled Reception Scheme

Up to now, when the master process initiates the data reception, we suppose
that all receptions will be completed. However, if a portable computer is out of
coverage, the master process can be infinitely locked if the portable computer
does not come back to WLAN, because the master process is waiting for results
that will not be sent. In order to avoid this problem, we propose a controlled
reception scheme, which is based on LAMGAC and MPI functions. Next, we
explain the scheme.

Before master process initiates the reception operations, LAMGAC ItestBa-
ttery beacon() is called to check if there is some unavailable portable computer
(step 1 in figure 2.b). If so the reception operation is not implemented for slave
process running in that computer. Then, the master process initiates not block-
ing reception (step 2). Next, the master loops waiting results (step 3). Con-
tinuously, the master process tests if some reception operation has completed
(step 4). When a reception operation is completed, LAMGAC Store info() func-
tion is invoked to store performance information about process at the current it-
eration in the shared memory (step 5). This is necessary for load balancing tasks.
Next, the master process tests again if there are some new portable computers
that can not communicate with the master computer (step 6). If it occurs, the
reception operations corresponding to the processes running in those computers
are cancelled (step 7). Therefore, it has to be kept in mind by the programmer
for calculating again the results not received. This loop is repeated until there
are not results to receive.

4 Experimental Results

We have realized several experiments in a combination of IEEE 802.3 and IEEE
802.11 networks of computers under Linux operating system with the specifica-
tions of table 2, without and with the new improvement presented in this paper.
Every simulation was repeated 10 times obtaining a low standard deviation.
Sequential simulation was developed on the faster processor.

Table 2. Computing resources characteristics

Processor / Memory Size Network Card (Mbps) Latency (ms)
PIII 450Mhz/128 MB (master) 100
2 desktop computers PIV 2.4 Ghz/512 MB 100 0.05
2 portable computers PIV 2.4 Ghz/512 MB 11 0.95

In order to carry out the experiments we used as parallel application a Hw/Sw
Codesign tool [6] using the programming model specified in [7]. This tool esti-
mates the best Hw/Sw resources combination for a given VHDL input specifica-
tion of a voice recognition system. Before each data distribution master process
calculates, with a recursive procedure, all the possible combinations of Hw/Sw

An Improved Mechanism for Controlling Portable Computers 473

a) b)

Fig. 3. Experimental results: a) Thread overhead, b) Execution time improvement

resources for implementing a VHDL process of the system. As this procedure is
not parallelized the speedup is considerably reduced (figure 3.b).

4.1 Thread Overhead

A SnmpPing thread introduces overhead in the master computer, portable com-
puter and network. Therefore it is necessary to study its overhead in the execu-
tion time of parallel application. Overhead is due to:

• Master computer: create thread, build GetRequest operation, send query and
store data in shared memory.

• Portable computer: decode SNMP query, collect and send information.
• Network: UDP packets for get and response operations.

First and second item depends on performance and current load of computers.
The latter depends on network characteristics, as network latency and through-
put, and besides, it is affected by wireless network performance (congestion,
coverage, shared medium, etc). Keeping in mind this considerations, results pre-
sented in this section can vary from a computing environment to another.

To evaluate the thread overhead, we realized several experiments in the worst
possible scenario. That is, we forced the execution of threads from the beginning
of parallel application until it finishes. We only use two portable computers,
therefore we replicated the threads in these computers for doing measurements.

Figure 3.a shows the average execution time of Hw/Sw Codesign tool. As
it can see, execution time of parallel application follows approximately a linear
relationship with the number of executed threads, and it increases about nine
seconds for ten threads executed during all the execution of application. In any
case this time will have a minimum influence on the overall execution time of the
application, and therefore, its overhead is negligible. Besides, in a real scenario
the thread overhead is below to the results shown in this section, because the
thread is only created when the computer is inside limited coverage area.

4.2 Execution Time Improvement

In order to demonstrate the improvement of execution time when it is used the
new mechanism presented in this paper, we realized several simulations with the

474 D. Sánchez, E.M. Maćıas, and Á. Suárez

portable computers located inside a limited coverage area during some iterations.
Parallel application has eight iterations, and in the first four we put the portable
computers in this limited coverage area.

Figure 3.b shows the results. Experiment labeled as A-Parallel represents the
average execution time when is used the new mechanism. Experiments labeled
as B-Parallel and C-Parallel is the average execution time when is not used the
new contribution and there is one and two computers in that area, respectively.
As it can see, the execution time using the new mechanism improves.

5 Conclusions

In a previous work, our SNMP framework considered the portable computers as
unavailable when were located in a limited coverage area, because those com-
puters could go out of coverage with high probability. As a result, the overall
processing power was reduced despite the fact that the computers could con-
tinue calculating and sending results while there was connection. In this paper,
we presented a lightweight improvement of our SNMP framework to check the
wireless network link between the master and slave computers located in that
area. The collected information is used by a new data reception scheme to avoid
that the master process can be infinitely locked when it is waiting for results
that will not be sent from those computers. This new contribution allows us to
use the portable computers while there is a wireless network connection, and
therefore the processing power of the computing environment is maximized.

References

1. Cheng, L. Wanchoo, A., Marsic, I.: Hybrid Cluster Computing with Mobile Objects.
4th IEEE Conference on HPC. Beijin, China (2000) 909–914

2. Zomaya, A.: Mobile Computing: Opportunities for Parallel Algorithms Research.
15th IEEE IPDPS, USA (2002) 144–147

3. Maćıas, E., Suárez, A.: Solving Engineering Applications with LAMGAC over MPI-
2. 9th EuroPVM/MPI. Linz, Austria. LNCS 2474. Springer Verlag (2002) 130–137

4. Subramanian M.: Network Management: Principles and Practice. Addison-Wesley
(2000)

5. Busby, R., Nielsen, M., Andresen, D.: Enhancing NWS for Use in an SNMP Managed
Internetwork. 14th IEEE IPDPS, Cancún, Mexico (2000) 506–511

6. Sánchez D., Maćıas E., Suárez A.: Anticipating Performance Information of Newly
Portable Computers on the WLAN for Load Balancing”. 5th PPAM. Czestochowa,
Poland. LNCS 3019. Springer-Verlag (2003) 946–953

7. Sánchez D., Maćıas E., Suárez A.: A Library for Load Balancing in Master/Slave
Applications on a LAN-WLAN Environment. 12th IEEE Euromicro PDP. A Coruña,
Spain (2004) 168–175

8. Sánchez D., Maćıas E., Suárez A.: Load Balancing Detecting Battery Energy Level
and Wireless Beacon Strength. 12th IASTED PDCS, M del Rey, USA (2003)268–273

An MPI Implementation for Distributed
Signal Processing

J.A. Rico Gallego, J.C. Dı́az Mart́ın, and J.M. Álvarez Llorente

Departament of Computer Science, University of Extremadura,
Avda. de la Universidad s/n, 10071, Cáceres, Spain

{jarico, juancarl, llorente}@unex.es
http://gsd.unex.es

Abstract. Video, image and signal processing applications show a high
computational complexity and real-time restrictions. Hence they demand
task distribution on DSP multi-computers. Unfortunately, DSP vendors
offer these platforms nowadays with proprietary kernels and hardware
specific communication libraries. As a result, current applications are
hardware targeted and not portable at all. We understand that the use
of MPI in the signal processing world should help to improve this scenery.
This article describes a preliminary implementation of MPI for Sundance
machines. Size and performance figures are given.

Keywords: Digital signal processing, digital signal processors, DSP
multicomputers, MPI, communication middleware.

1 Introduction and Goals

MPI [1] is an industry de-facto parallel programming standard based on the
message-passing paradigm. MPI is widely used to distribute complex applica-
tions, particularly in the scientific arena. On other hand, DSP processors deploy
architectures that are specialised on digital signal processing. DSP applications,
particularly those of real-time video processing demand a computational com-
plexity that if is far from being satisfied by current processors either DSP or
general purpose ones. The partition of the application in independent tasks and
its further distribution in DSP multicomputers seems to be the way to go, as in-
dustry developments confirm. The state of the art in DSP multicomputers is well
represented by the developments of Motorola, Sundance [2] or Hunt Engineering.
Our development hardware environment are Sundance SMT310Q PCI multicom-
puter carrier boards with four Texas Instruments [3] TMS320C6000 digital signal
processors. Unfortunately, vendors offer these kinds of platforms nowadays with
proprietary kernels and hardware specific communication libraries. DSP/BIOS
[4], Virtuoso, VxWorks, OSE or 3L Diamond [5] are well known examples to name
but a few. As a result, the common pattern in current applications is hardware
targeting, and they are not portable at all. Given this state of the art, our aim is
developing interfaces that allow building distributed applications achieving the
highest degree of portability without sacrifice performance. We understand that

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 475–482, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

476 J.A. Rico Gallego, J.C. Dı́az Mart́ın, and J.M. Álvarez Llorente

the Message Passing Interface standard (MPI) in the signal-processing world
should help to improve this scenery. A light and fast implementation of MPI is
a must to meet this goal. This paper describes the design principles and archi-
tecture of eMPI (standing for embedded MPI), a preliminary implementation of
MPI for Sundance multicomputers with these features.

Fig. 1. Multi-computer PCI SMT310Q by Sundance

Fig. 1 shows that our MPI implementation consists of three layers of software,
a commercial off the shelf RTOS, the Azequia distributed middleware and eMPI.
The rest of the paper is structured as follows. Section 2 presents Azequia, a
communication framework for DSP-based multi-computers. Section 3 introduces
eMPI, our MPI implementation. Section 4 gives size and performance figures.

2 Azequia: A MPI-Centric Middleware

A fast implementation of MPI should run over a fastdistributed communications
framework. That is why we developed Azequia [6]. Azequia runs currently on
the TMS320C6000 family of digital signal processors. Texas Instruments supplies
these DSPs with a small footprint stand-alone real-time operating system known
as DSP/BIOS. Azequia has been developed upon DSP/BIOS for easier porta-
bility between the TMS320 processor family. The Diamond distributed RTOS
case study will put Azequia in perspective. Under Diamond, a complete appli-
cation is a collection of one or more concurrently executing tasks. A task is a
multithreaded C program. Every task has a vector of input ports and a vector
of output ports that are used to connect tasks together and that are passed to
main. For instance, this sentence sends the upper character to ”the output port
0”: chan out word (toupper (c), out ports [0]); A program called the configurer
running in the PC host combines task image files to form the executable file.
A usersupplied textual configuration file drives the configurer. It specifies the
hardware -available processors and physical links connecting them, the software
-tasks and connections between them, and how tasks are assigned to processors.
The key issue here is that no dynamic addressing is involved, what makes tasks
communication transparent to specific locations. We understand that static con-
figuration solves most of current practical problems, but it fails to face technical
challenges such as runtime reconfiguration, task migration or fault tolerance in
the DSP world. Azequia is our contribution in that address. It proposes and re-
searches an original mechanism of process management that enable the creation

An MPI Implementation for Distributed Signal Processing 477

Fig. 2. The Azequia middleware

of remote tasks at run-time, as well as a stack of message passing interfaces
that make possible true location-transparent MPI-like communication in DSP
multi-computers.

Typically, signal processing leads to an algorithm that is applied to the cur-
rent window of one or more data streams in an infinite loop. In our model, a
loop iteration receives the input windows, does the computing task, and sends
the produced window. This simple activity pattern of an algorithm makes it
suitable for a single thread of execution. A thread that runs a DSP algorithm
is known as an operator. Hence, we assume a DSP distributed application as a
group of operators running in one or more machines that communicate through
the Azequia middleware as Fig. 2 shows. The addressing scheme is one of the
key features of a distributed system. Each thread in the system has assigned an
address that distinguishes it from the rest in a global scope. Threads are the end
points of a communication. The Azequia address is transparent to the thread
location. Its type is Addt t, a structure with the pair [group, rank]. There should
not be two groups with the same identifier. The rank identifies an operator inside
a group, ranging from 0 up to the maximum number of operators in the group.

Being a stand-alone RTOS, DSP/BIOS is not aware of other CPUs in a
multi-computer environment. Notwithstanding, Azequia uses only the tasking
(TSK primitives) and semaphores (SEM primitives) services of DSP/BIOS, for
basic concurrent support. Migration of Azequia to Pthreads or other RTOS
is straightforward. Azequia just builds a run-time local process management
facility upon which building a distributed one. Azequia is composed by six public
interfaces, shown by Fig. 3. KER, the kernel, provides the local management
and OPR the distributed one. It allows a thread to create an operator in a
given machine, as well as to destroy, start and kill it. Each operator type has a
wellknown name. The so named register is an internal kernel module that keeps

478 J.A. Rico Gallego, J.C. Dı́az Mart́ın, and J.M. Álvarez Llorente

Fig. 3. The Azequia interfaces

the features of the operators linked in memory, i.e., the name, the body function,
the parameters size and the stack size. It is used when creating a new operator.
The GRP interface operates groups. Groups are created, started and destroyed
as a whole. Upon these kernel primitives, Azequia builds two higher level, user
oriented communication libraries, called group communication (GC) and remote
procedure call (RPC). GC facility, much more similar to MPI, provides location
transparency. KER communication primitives come inspired by the basic MPI
ones, though exhibiting bigger and lower level functionally. They conform a
simple, but yet powerful and flexible interface:

int send (int sync, char *buffer, int cnt, int mchn,
Addr t src, Addr t dst, int tag, Rqst t *rqst,
uns timeout);

int recv (int sync, char *buffer, int cnt, int mchn,
Addr t src, int tag, Rqst t *rqst, Status *status,
uns timeout);

int waitany (int count, Rqst t *rqst, int *index, Status
*status);

int waitall (int count, Rqst t *rqst, Status **status);
void test (Rqst t rqst, int *flag, Status *status);

Note that, in contrast with its MPI counterparts, it is possible to send a message
to any thread, not only to those in the same group. This allows invoking RPCs
with other services or machines in order to create remote operators, for instance.
Besides, communication deadlines are provided as relative time-outs. The sync
parameter determines if send and recv operate either in synchronous (blocking)
or asynchronous (non-blocking) mode. Send primitive sends count bytes of buffer
buffer to dst operator, labeled with the tag tag. Recv primitive is similar.
The rqst object is returned only in asynchronous mode. Further waitany and
waitall suspend the invoking operator until the communication requests get
satisfied. Azequia provides the semantics of Diamond channels by means of the
CHN channel interface. Channels are implemented as an independent library
upon the GC interface. There are two kinds of channels, input and output ones.
Inside an operator, channels of the same sense are known by order number 0, 1,

An MPI Implementation for Distributed Signal Processing 479

2, The programmer just sends data to output channel and data arrives to the
connected operators.

3 EMPI

EMPI (embedded Message Passing Interface) is an in progress implementation
of MPI-2 standard. Most of current MPI implementations, including the most
widely used as MPICH [7] or LAM execute upon hardware platforms with lots
of processors and extensive use of dynamic memory. P4 ([8], [9]) is the base of
MPICH for clusters of UNIX workstations. We ported it to the C6000 family,
but its assumption of an underlying UNIX system makes it too heavy in order
to achieve the high efficiency demanded by a realtime environment. EMPI, in
contrast, is based on Azequia. Its more outstanding features are the assumption
of a static application model, and a single-process multi-threaded environment.
Though still a partial implementation, eMPI includes enough functionality to
implement virtually any MPI application. Besides of initialisation and termi-
nation primitives, it includes the point-to-point and collective communications
as broadcasting and barrier synchronization. Also predetermined and user de-
fined MPI collective operations, as well as management of groups and commu-
nicators. Low power consumption concerns make memory a much more scarce
resource in DSP platforms. Besides, real-time performance precludes run-time
dynamic allocation of memory. Azequia and eMPI run-time systems do not use
malloc. All data memory is reserved at compile time. Notwithstanding, applica-
tions are launched dynamically. Azequia groups are closed and represent a signal
processing application. An eMPI application is composed by MPI groups, and
an Azequia group acts as the container of these MPI groups. Therefore, an eMPI
application runs in the context of an Azequia group. The eMPI library keeps a
structure that statically stores a fixed number of applications as Fig. 4 shows.

An eMPI application is formed by a set of tasks and a set of groups. Each
task stores his own communicators. The creation of a communicator implies a
collective operation that sets-up its identifier. The pair composed by the ap-
plication -the Azequia group number- and the communicator identifies a ”com-
munication context”. Communicators with the same identifier in different tasks
share a group. In most MPI implementations the process remains as the fun-
damental parallel entity. Messages are sent and received in the process context.
Multithreading these processes demand an MPI re-entrant implementation. As
current DSP architectures do not provide protection between address spaces the
parallel entity must be the thread. Every Azequia thread has an independent
global address with its own message queue. Azequia threads, in summary, behave
as full right processes. Some other thread-based MPI implementations solve the
problem of shared global variables by pre-processing, putting this variables in
thread-specific data. This issue is left to the user in eMPI. Some implementations
send each message in two separate transmissions, one for the envelope and other
for the data. This is an unacceptable approach for our target DSP real-time
applications. In eMPI tag, data type and communicator identifier are packed in

480 J.A. Rico Gallego, J.C. Dı́az Mart́ın, and J.M. Álvarez Llorente

Fig. 4. Structure of an eMPI application

the Azequia tag parameter. Once done this, the whole message is sent. Azequia
takes the message from the input queue on tag basis. A single communication is
enough. For performance reasons, eMPI currently does not support the recep-
tion of messages lesser than expected. This is not a serious disadvantage in DSP
applications.

Fig. 5. Azequia vs. Diamond in shared memory

4 Size and Performance

Current eMPI text size is 18 Kb, while Azequia text size is 37 Kb. An eMPI
applica-tion can be stored in less than 6 Kb of data memory. EMPI intro-
duces around 1 ms overload upon Azequia. Fig. 5 shows the time it takes doing
send/receive for different short and long messages under 3L Diamond and Aze-
quia in a single TMS320C6416 processor. Note that Azequia and eMPI improve
Diamond results.

An MPI Implementation for Distributed Signal Processing 481

Fig. 6. eMPI vs. MPICH2 in shared memory.

Fig. 6 compares eMPI and MPICH2. A 1.73 GHz Pentium Centrino processor
runs MPICH2, while a 720 MHz TMS320C6416 runs eMPI. As it can be seen,
the performance of eMPI is quite similar to MPICH2, despite of the processors
speed difference.

5 Conclusion

We have presented an MPI implementation for DSP multicomputers built upon
a distributed middleware whose interfaces have been modeled after the MPI
standard. Under this assumption, eMPI has resulted quite fast and very small.
Besides the obvious portability advantages that it provides, we think that eMPI
has revealed MPI as a suitable standard for parallel signal processing in current
hardware. We are working on completing eMPI, improving its performance and
porting it to PC environments.

Acknowledgements

SICUBO S.L., the ”II Plan Regional de Investigación, Desarrollo Tecnológico e
Innovación de Extremadura” under Project 2PR03A042 and the Spanish Plan
Nacional I+D+I under Project TIC2003-08756 founded this work.

References

1. The MPI Forum. The MPI message-passing interface standard. June 1995.
2. http://www.sundance.com
3. http://www.ti.com
4. Texas Instruments: TMS320C6000 DSP/BIOS User’s Guide. Literature Number

SPRU303B, Texas Instruments (2002).
5. Diamond User Guide for Sundance Multiprocessor Technology Ltd. Version 2.2.1-

F. July, 2003. 3L Limited.
6. Juan C. Dı́az Mart́ın, Juan A. Rico Gallego, Jesús M. Álvarez Llorente, Carmen

Calvo Jurado, ”On Interface Design for Distributed Signal Processing”. 12th Euro-
pean Signal Processing Conference (EUSIPCO 2004). Vienna (Austria), September
6-10, 2004. ISBN 3-200-00165-8, pgs: 1365-1368.

482 J.A. Rico Gallego, J.C. Dı́az Mart́ın, and J.M. Álvarez Llorente

7. William Gropp, Ewing Lusk, Nathan Doss, Anthony Skjellum, ”A High Perfor-
mance, Portable Implementation of the MPI Message Passing Interface Standard”.
Parallel Computing, 22, pp. 789-828 (1996).

8. Ralph Butler, Ewng Lusk: Users Guide to the P4 Parallel Programming System.
Technical Report ANL-92/17, Argonne National Laboratory (1992).

9. Juan A. Rico, Juan C. Dı́az Mart́ın, José M. Rodŕıguez Garćıa, Jesús M. Álvarez
Llorente, Juan L. Garćıa Zapata, ”Porting P4 to Digital Signal Processing Plat-
forms”. EuroPVM/MPI 2003 (Venice, Italy). Lecture Notes in Computer Science,
ISSN 2-540-20149-1, pgs: 362-368

A Parallel Exponential Integrator
for Large-Scale Discretizations
of Advection-Diffusion Models�

L. Bergamaschi1, M. Caliari2, A. Mart́ınez1, and M. Vianello3

1 Department of Mathematical Methods and Models for Scientific Applications,
University of Padua, Italy

2 Department of Computer Science, University of Verona, Italy
3 Department of Pure and Applied Mathematics, University of Padua, Italy

Abstract. We propose a parallel implementation of the ReLPM (Real
Leja Points Method) for the exponential integration of large sparse
systems of ODEs, generated by Finite Element discretizations of 3D
advection-diffusion models. The performance of our parallel exponential
integrator is compared with that of a parallelized Crank-Nicolson (CN)
integrator, where the local linear solver is a parallel BiCGstab acceler-
ated with the approximate inverse preconditioner FSAI. We developed
message passing codes written in Fortran 90 and using the MPI standard.
Results on SP5 and CLX machines show that the parallel efficiency raised
by the two algorithms is comparable. ReLPM turns out to be from 3 to
5 times faster than CN in solving realistic advection-diffusion problems,
depending on the number of processors employed.

1 Finite Element Discretization of the
Advection-Diffusion Model

We consider the classical evolutionary advection-diffusion problem⎧⎪⎪⎨
⎪⎪⎩

∂c

∂t
= div(D∇c)− div(cv) + φ x ∈ Ω, t > 0

c(x, 0) = c0(x), x ∈ Ω;
c(x, t) = gD(x, t), x ∈ ΓD; 〈D∇c(x, t), ν〉 = gN(x, t), x ∈ ΓN; t > 0

(1)

with mixed Dirichlet and Neumann boundary conditions on ΓD ∪ ΓN = ∂Ω,
Ω ⊂ R

3. Equation (1) represents, e.g., a simplified model for solute transport
in groundwater flow (advection-dispersion), where c is the solute concentration,
D the hydrodynamic dispersion tensor, Dij = αT|v|δij + (αL − αT)vivj/|v|,
1 ≤ i, j ≤ d, v the average linear velocity of groundwater flow and φ the source.
� Work supported by the research project CPDA028291 “Efficient approximation

methods for nonlocal discrete transforms” of the University of Padova, and by the
MIUR PRIN 2003 project “Dynamical systems on matrix manifolds: numerical meth-
ods and applications” (co-ordinator L. Lopez, Bari).

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 483–492, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

484 L. Bergamaschi et al.

The standard Galerkin Finite Element (FE) discretization of (1) with nodes
{xi}N

i=1 and linear basis functions gives a large scale linear system of ODEs like{
P ċ = Hc + b, t > 0
c(0) = c0

(2)

where c = [c1(t), . . . , cN (t)]T, c0 = [c0(x1), . . . , c0(xN)]T, P is the symmetric
positive-definite mass matrix and H the (nonsymmetric) stiffness matrix. Bound-
ary conditions are incorporated in the matrix formulation (2) in the standard
ways.

2 Exponential Integration via Polynomial Approximation

In the sequel we consider stationary velocity, source and boundary conditions
in (1), which give constant H and b in system (2), which is the discrete approx-
imation of the PDE (1). As known, the solution can be written explicitly in the
exponential form

c(t) = c0 + tϕ(tP−1H)
[
P−1Hc0 + P−1b

]
, (3)

where ϕ(z) is the entire function ϕ(z) = (ez − 1)/z if z = 0, ϕ(0) = 1.
Applying the well known mass-lumping technique (sum on the diagonal of

all the row elements) to P , we obtain a diagonal mass matrix PL. Now system
(3) (with PL replacing P) can be solved by the exact and explicit exponential
time-marching scheme.

ck+1 = ck + Δtkϕ(ΔtkHL)vk, k = 0, 1, . . . ,

HL = P−1
L H, vk = HLck + P−1

L b. (4)

Exactness of the exponential integrator (4) entails that the time-steps Δtk can
be chosen, at least in principle, arbitrarily large with no loss of accuracy, making
it an appealing alternative to classical time-differencing integrators (cf. [6,5]).

However, the practical application of (4) rests on the possibility of approxi-
mating efficiently the exponential propagator ϕ(ΔtHL)v, where v ∈ R

N . To this
aim, we adopt the Real Leja Points Method (shortly ReLPM), recently proposed
in the framework of FD spatial discretization of advection-diffusion equations [5],
and extended to FE in [2]. Given a matrix A and a vector v, the ReLPM ap-
proximates the exponential propagator as ϕ(A)v ≈ pm(A)v, with pm(z) Newton
interpolating polynomial of ϕ(z)

pm(A) =
m−1∏
k=0

(A− ξkI) , m = 1, 2, . . . (5)

at a sequence of Leja points {ξk} in a compact subset of the complex plane
containing the spectrum (or the field of values) of the matrix A. Following [5,2],

A Parallel Exponential Integrator 485

an algorithm for the approximation of the advection-diffusion FE propagator
ϕ(ΔtHL)v can be easily developed, by means of Newton interpolation at “spec-
tral” Leja points. In the sequel, the compact subset used for estimating the
spectrum of HL in (4) will be an ellipse.

Algorithm ReLPM (Real Leja Points Method)

1. Input: HL, v, Δt, tol
2. Estimate the spectral focal interval [α, β] for ΔtHL, by Gershgorin’s theorem
3. Compute a sequence of Fast Leja Points {ξj} in [α, β] as in [1]
4. d0 := ϕ(ξ0), w0 := v, p0 := d0w0, m := 0
5. while eLeja

m := |dm| · ‖wm‖2 > tol
(a) z := HLwm

(b) wm+1 := Δt z− ξmwm

(c) m := m + 1
(d) compute the next divided difference dm

(e) pm := pm−1 + dmwm

6. Output: the vector pm : ‖pm − ϕ(ΔtHL)v‖2 ≈ eLeja
m ≤ tol

The ReLPM algorithm turns out to be quite simple and efficient. Indeed, being
based on two-term vector recurrences in real arithmetic, its storage occupancy
and computational cost are very small, already with one processor. For imple-
mentation details not reported here, we refer to [5].

2.1 Parallel ReLPM (Real Leja Points Method)

A standard data-parallel implementation of ReLPM has been performed. The
cost of computing the Leja points is negligible with respect to the rest of the
algorithm ([1]) and hence we decided that every processor performs step 3 sepa-
rately, without exchanging data. To perform an efficient parallel implementation
of the ReLPM we choose to partition the matrix HL by rows and the vectors
involved in algorithm ReLPM consequently. In this way the daxpy operations in
4, 5b and 5e are performed without any communication among processors. More-
over, estimation of the focal interval (step 2) and computation of the 2-norm of
a vector (to check the exit test) needs that the processors exchange only a scalar
(the result of their local computation). The matrix vector product of step 5a
requires the processors to communicate a number of elements of vector wm. We
employed the parallel sparse matrix vector routine, successfully experimented
in [4], which will be described in 3.3.

3 Parallel Implementation of Crank-Nicolson

3.1 Crank-Nicolson (CN) Method

Crank-Nicolson (CN) is a robust method, widely used in engineering applica-
tions, and a sound baseline benchmark for any advection-diffusion solver. In the

486 L. Bergamaschi et al.

case of the relevant ODEs system (2) (with stationary b), its variable step-size
version writes as(

P − Δtk
2

H

)
uk+1 =

(
P +

Δtk
2

H

)
uk +Δtk b, k = 0, 1, . . . , u0 = c0 , (6)

where, for estimation of the local truncation error and step-size control, we
have used standard finite-difference approximation of the third derivatives in
‖...c (tk)‖2Δt3k < 12 tol.

The large and sparse linear system in (6) is solved the BiCGstab iterative
method [9], preconditioned at each step, since the system matrix depends on
Δtk and hence varies from step to step. To accelerate the iterative solver, we
consider the “approximate inverse preconditioners”. They explicitly compute an
approximation to A−1 and their application needs only matrix vector products,
which are more effectively parallelized than solving two triangular systems, as in
the ILU preconditioner. We selected the FSAI (Factorized Sparse Approximate
Inverse) preconditioner proposed in [7], whose construction is more suited to
parallelization than other approaches [3].

3.2 FSAI Preconditioning

Let A be a symmetric positive definite matrix (SPD) and A = LALT
A be its

Cholesky factorization. The FSAI method gives an approximate inverse of A
in the factorized form H = GT

LGL, where GL is a sparse nonsingular lower
triangular matrix that approximates L−1

A . To construct GL one must first pre-
scribe a selected sparsity pattern SL ⊆ {(i, j) : 1 ≤ i = j ≤ n}, such that
{(i, j) : i < j} ⊆ SL, then a lower triangular matrix ĜL is computed by solving
the equations (ĜLA)ij = δij , (i, j) ∈ SL. The diagonal entries of ĜL are all
positive. Defining D = [diag(ĜL)]−1/2 and setting GL = DĜL, the precondi-
tioned matrix GLAGT

L is SPD and has diagonal entries all equal to 1.
The extension to the nonsymmetric case is straightforward; however the solv-

ability of the local linear systems, and the nonsingularity of the approximate
inverse, are only guaranteed if all the principal submatrix of A are non singular
(which is the case, for instance, if A + AT is SPD). In the nonsymmetric case
two preconditioner factors, GL and GU , must be computed. We limit ourselves
to nonsymmetric matrices with a symmetric nonzero pattern (which is the com-
mon situation in matrices arising from FE discretization of PDEs), and set the
sparsity patterns for GU factor as SL = ST

U . The preconditioned matrix reads
D = GLAGUD−1, with D = diag(GL) = diag(GU).

We set the sparsity patterns of the lower and upper triangular factors to
allow nonzeros corresponding to nonzeros in the lower and upper triangular
part of A2, respectively. Next we perform a postfiltration step of the already
constructed factors by using a small drop–tolerance parameter ε. The aim is to
reduce the number of nonzero elements of the preconditioner, in order to decrease
the arithmetic complexity of the iteration phase together with the communica-
tion complexity of multiplying the preconditioner by a vector.

For deeper implementation and performance details of parallel FSAI the
author is referred to [3].

A Parallel Exponential Integrator 487

3.3 Efficient Matrix-Vector Product

Following [4], we now briefly describe our implementation of the matrix-vector
product, which is tailored for application to sparse matrices and minimizes data
communication between processors. Within the ReLPM or CN algorithms, the
vector y = Bv has to be calculated for B = A, GL, GU . Assume that the N ×N
matrix B is uniformly partitioned by rows among the p processors, so that
n ≈ N/p rows are assigned to each processor. The same is done for the vector v.
The subset P r containing the nonzero elements belonging to processor r can be
subdivided into two disjoint subsets P r

1 = {bij ∈ P r, (i− 1)n + 1 ≤ j ≤ in} and
P r

2 = P r\P r
1 . Define the sets Cr

k , Rr
k of indices as: Cr

k = {j : bij ∈ P r
2 , k =

((j − 1) div n) + 1} ; Rr
k = {i : bij ∈ P r

2 , k = ((j − 1) div n) + 1}. Processor
r has in its local memory the elements of the vector v whose indices lie in the
interval [(r−1)n+1, rn]. Before computing the matrix-vector product processor
r: for every k such that Rr

k = ∅ sends to processor k the components of vector v
whose indices belongs to Rr

k; gets from every processor k such that Cr
k = ∅, the

elements of v whose indices are in Cr
k . At this point every processor is able to

complete locally its part of the matrix-vector product.

4 Parallel Experiments and Results

4.1 Description of the Test Cases

We now discuss in detail two examples (cf. [2]), concerning FE discretizations of
3D advection-dispersion models like (1).

Example 1. The domain is Ω = [0, 1] × [0, 0.5] × [0, 0.1], with a regular grid
of N = 161 × 81 × 41 = 534 681 nodes and 3 072 000 tetrahedral elements.
Here, φ ≡ 0 and c0 ≡ 1. Dirichlet boundary conditions are c = 0 on ΓD =
{0} × [0.2, 0.3] × [0, 1], while the Neumann condition ∂c/∂ν = 0 is prescribed
on ΓN = ∂Ω \ ΓD. The velocity is v = (v1, v2, v3) = (1, 0, 0), the transmissivity
coefficients are piecewise constant and vary by an order of magnitude depending
on the elevation of the domain, αL(z) = αT(z) ∈ {0.0025, 0.025}.
Example 2. Same problem as of Example 1. However, the domain is discretized
with a regular grid of N = 161×81×161≈ 2.1×106 nodes and about 12 millions
of tetrahedral elements. Matrix of discretization HL has roughly 2.1×106 rows
and 3.1×107 nonzero elements.

In these examples the boundary conditions and vanishing sources lead to a
zero steady state. The two integrators are employed on a time interval which
produces a decrease of two orders of magnitude of the initial solution norm.
While for CN the local time-step is selected adaptively, in order to guarantee a
local error below the given tolerance, for the exponential integrator there is no
restriction on the choice of Δtk, since it is exact for autonomous linear systems of
ODEs. To follow with some accuracy the evolution of the solution, we propose as

488 L. Bergamaschi et al.

in [5] to select the local time-step in (4) in such a way that the relative variation
of the solution be smaller than a given percentage η, that is

‖ck+1 − ck‖2 ≤ η · ‖ck‖2, 0 < η < 1 . (7)

If condition (7) is not satisfied, the time step Δtk is halved and ck+1 recomputed;
if it is satisfied with η/2 instead of η, the next time-step Δtk+1 is doubled.
Clearly, smaller values of η allow better tracking of the solution.

4.2 Parallel Programs and System’s Architecture

The parallel programs are fortran 90 message passing codes, written using the
MPI standard [8]. The message passing programming model is a distributed
memory model with explicit control parallelism. Message passing codes written
in MPI are obviously portable and should transfer easily to clustered SMP sys-
tems, which are gradually becoming more prominent in the HPC market. We
run the codes on two supercomputers located at the CINECA Supercomputer
center of Bologna, Italy (http://www.cineca.it).

IBM SP5 supercomputer, an IBM SP cluster 1600, made of 64 nodes p5-575
interconnected with a pairs of connections to the Federation HPS (High Pefor-
mance Switch). Globally the machine has 512 IBM Power5 processors, capable
of 4 double precision floating point operations per clock cycle, and 1.2 TBs of
memory. Each microprocessor is supported by 36 MB of Level 3 cache. The peak
performance of SP5 is 3.89 Tflops. Each p5-575 node contains 8 SMP processors
POWER5 at 1.9 GHz, with 16GB of memory each. The HPS switch is capable
of a bandwidth of up to 2GB/s unidirectional.

IBM Linux Cluster (CLX), made of 512 2way IBM X335 nodes. Each com-
puting node contains 2 Xeon Pentium IV processors. All the compute nodes
have 2GB of memory (1GB per processor). Most processors of CLX are Xeon
Pentium IV at 3.06 GHz with 512MB of L2 cache and the remaining ones,
bought at the beginning of 2005, are Xeon Pentium IV EM64T at 3.00GHz
with 1024MB of L2 cache. All the CLX processors are capable of 2 double pre-
cision floating point operations per cycle, using the INTEL SSE2 extensions.
All the nodes are interconnected to each other through a Myrinet network
(http://www.myricom.com), capable of a maximum bandwidth of 256MB/s be-
tween each pair of nodes. The global peak performance of CLX is of 6.1 TFlops.
Parallel programming on the CLX is mainly based on the MPICH-GM version
of MPI (myrinet enabled MPI).

4.3 Results Concerning Example 1

We show in this section the timings of the two MPI codes when solving the
problem described in Example 1. In the SP5 machine the running times were
obtained by using the nodes in dedicated mode, hence reserving to our own
use the entire node (8 processors) even to measure CPU times with 1,2, and 4

A Parallel Exponential Integrator 489

Table 1. Timings and speedups for Example 1 solved with CN with BiCGstab acce-
lerated by diagonal and mixed preconditionings on the IBM SP5

Diagonal mixed ε = 0.05
p iter Tp Tsol CPU Sp iter Tp Tsol CPU Sp

1 36224 19.8 5765.7 5872.2 14694 180.6 3870.7 4137.0
2 36140 10.1 2911.36 2968.5 2.0 14653 94.3 1907.0 2048.4 2.0
4 36382 4.4 1040.18 1078.5 5.4 14696 46.9 813.4 878.0 4.7
8 36196 1.7 471.4 480.8 12.2 14689 23.7 409.6 440.4 9.4

16 36276 0.9 254.5 260.5 22.5 14665 12.6 202.6 226.5 18.3

Table 2. Timings and speedups for Example 1 solved by parallel ReLPM on the IBM
SP5

η = 0.02 η = 0.05
p Steps iter CPU Sp Steps iter CPU Sp

1 239 17332 1282.2 98 18201 1343.3
2 239 17332 634.9 2.0 98 18201 663.2 2.0
4 239 17332 228.9 5.6 98 18201 237.1 5.7
8 239 17332 108.9 11.8 98 18201 113.4 11.8

16 239 17332 58.2 22.1 98 18201 63.1 21.3

processors. We did not take any advantage of shared memory inside the node.
In the CLX cluster only one of the two processors in each node were used, to
optimize memory accesses performance.

CN has been run with variable stepsize, leading to 479 time steps to complete
the simulation. To avoid the cost of constructing the FSAI preconditioner at
each time-step, we chose to compute it selectively, depending on the variation of
Δtk. Besides, an improved preconditioning strategy (mixed) is proposed which
consists in using Jacobi for the (well-conditioned) first steps, and FSAI for the
remaining. The switch between the two accelerators takes place the next timestep
after the solver first employs a number of iterations larger than a fixed value
(40). BiCGstab iterations are stopped when the residual rk satisfies ‖rk‖ ≤
10−4 ‖b‖. We report in Tables 1 and 2 the results of the codes running on the SP5
with a number o processors p = 1, · · · , 16. As for CN the number of BiCGstab
iterations (iter), and the CPU times for computing the preconditioner (Tp),
for the iterative solver (Tsol) and the overall CPU time are given, whereas for
ReLPM we provide the number of steps, the number of total inner iterations
(iter) and the overall CPU time. The mixed preconditioning strategy results
in a reduction of number of linear iterations and CPU time with respect to the
diagonal preconditioner.

The ReLPM has been run using η = 0.02 and 0.05, with similar performances.
Obviously, the value η = 0.02 allows a better tracking of the solution.

In Table 3 we report the summary of the results of the same runs on the CLX
machine. Here, the speedup values are between 11 and 16 hence yielding a parallel
efficiency of at least 70% on 16 processors. The timings results demonstrate

490 L. Bergamaschi et al.

Table 3. Summary of results on the CLX machine

Crank Nicolson ReLPM
Diagonal mixed η = 0.02 η = 0.05

p CPU Sp CPU Sp CPU Sp CPU Sp

1 8771.9 6484.1 1627.1 1425.7
16 810.2 10.8 552.8 11.7 99.7 16.3 119.2 11.9

that both codes scale well with increasing number of processors. Moreover, they
show a superspeedup when using more than 2 processors due to cache effects,
since only for p ≥ 4 the local matrix resides entirely in the Level 3 cache when
performing the matrix vector product.

4.4 Results Concerning Example 2

As in the previous example, CN has been run with variable stepsize, leading to
479 time steps to complete the simulation. We used the mixed preconditioning
strategy and set the limit number for Jacobi preconditioning to 60 iterations.
The same exit test as in Example 1 was used.

We report in Table 4 the timings concerning Example 2 on the SP5 with
p = 1, · · · , 64. As for CN, the code could not run for p = 1, 2 and 4. This
is so because the limit of 1.667 GB of available memory of the SP5 nodes is
not sufficient to hold the local system and preconditioner matrices when less
than 8 processors are used. As in the previous example, both codes scale well
with increasing number of processors again achieving a superspeedup for p ≥ 16
due to cache effects. We recall that both examples rely on the same differential
problem; however the discretization of Example 2 is made on a finer grid, which
yields an algebraic problem roughly four times larger than that of Example 1.
We note that CN is on the average four times slower than our ReLPM.

The summary of the performance results are reported in Figure 1. For ReLPM
on the SP5 we obtain perfect speedups up to 8 processors. For p > 8 the curves of
both CN and ReLPM are above that of the ideal speedup. Figure 1 demonstrates
that the scaling of the codes in the CLX machine decreases when using more

Table 4. Timings and speedups for Example 2 solved with CN accelerated with the
mixed preconditioner and ReLPM with η = 0.02 on the SP5. Symbol †stands for “out
of memory”. The speedups for CN have been computed as S∗

p = 8 ∗ T8/Tp.

Crank Nicolson ReLPM
mixed ε = 0.1 η = 0.02

p iter Tp Tsol CPU S∗
p steps iter CPU Sp

1 † † † † 238 17710 5308.2
2 † † † † † 238 17710 2672.6 2.0
4 † † † † † 238 17710 1342.2 4.0
8 18050 62.9 2337.0 2453.7 8.0 238 17710 661.4 8.0

16 18006 31.8 1020.0 1073.8 18.3 238 17710 237.2 22.4
32 18105 16.6 433.5 457.8 42.9 238 17710 132.1 40.2
64 18086 10.4 250.2 267.9 73.3 238 17710 66.4 79.9

A Parallel Exponential Integrator 491

2 4 8 16 32 64 128
Number of processors

2

4

8

16

32

64

128

sp
ee

du
p

Leja − CLX
Leja − SP5
CN − CLX
CN − SP5
Ideal

Fig. 1. Speedups vs p for ReLPM and CN on the SP5 and CLX supercomputers

than 32 processors. We think that a potential source of this poor scaling in the
CLX machine is the smaller bandwidth and higher latency of the interconnection
network with respect to the HPS of the SP5 machine.

5 Conclusions

A parallel implementation of two algorithms for the solution of advection-diffusion
equations on 3D domains has been proposed. Parallelization of ReLPM revealed
almost straightforward, being based on matrix-vector products and not requir-
ing linear system solutions. The CN solver has been carefully parallelized, with
special emphasis on the selection of an efficient parallel preconditioner. Results
on two supercomputers in the solution of a problem of more than 2 million un-
knowns show the very good scalability of the two codes, enhancing at the same
time the efficiency of ReLPM both in terms of CPU time and computer storage.

References

1. J. Baglama, D. Calvetti, and L. Reichel. Fast Leja points. Electron. Trans. Numer.
Anal., 7:124–140, 1998.

2. L. Bergamaschi, M. Caliari, and M. Vianello. The ReLPM exponential integrator
for FE discretizations of advection-diffusion equations. In M. Bubak, et al., editors,
ICCS 2004, Proceedings, Part IV, LNCS 3036, pages 434–442. Springer, 2004.

3. L. Bergamaschi and A. Mart́ınez. Parallel acceleration of Krylov solvers by factorized
approximate inverse preconditioners. In M. Daydè et al., editor, VECPAR 2004,
LNCS 3402, pages 623–636, Springer, 2005.

4. L. Bergamaschi and M. Putti. Efficient parallelization of preconditioned conjugate
gradient schemes for matrices arising from discretizations of diffusion equations.
In Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing, March, 1999. (CD–ROM).

492 L. Bergamaschi et al.

5. M. Caliari, M. Vianello, and L. Bergamaschi. Interpolating discrete advection-
diffusion propagators at spectral Leja sequences. J. Comput. Appl. Math., 172(1):79–
99, 2004.

6. M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large systems
of differential equations. SIAM J. Sci. Comput., 19(5):1552–1574, 1998.

7. L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse pre-
conditionings I. Theory. SIAM J. Matrix Anal. Appl., 14:45–58, 1993.

8. MPI Forum. MPI: A message passing interface standard, 1995. also available online
at http://www.mpi-forum.org/.

9. H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.,
13(2):631–644, 1992.

Parallel Grid Adaptation and Dynamic Load
Balancing for a CFD Solver

Christoph Troyer1, Daniele Baraldi2, Dieter Kranzlmüller1,
Heinz Wilkening2, and Jens Volkert1

1 GUP, Joh. Kepler University Linz,
Altenbergerstr. 69, A-4040 Linz, Austria

ctroyer@gup.uni-linz.ac.at
http://www.gup.uni-linz.ac.at

2 Institute for Energy, Joint Research Centre,
PO Box 2, 1755 ZG Petten, The Netherlands

http://www.jrc.nl

Abstract. In this paper we present the parallel version of a CFD solver
which works on unstructered 3-dimensional grids. The parallelization
was achieved using the MPI library. The program includes a method for
dynamically adapting a grid on a parallel computer. Grid adaptation is
one of the reasons that lead to a poor workload distribution. Therefore a
dynamic load balancing method was implemented in order to make sure
that the available hardware is utilized in an efficient way. The paper
concludes with the presentation of a performance test.

1 Introduction

The CFD solver under examination is called REACFLOW and was developed
at European Commission DG Joint Research Centres in Ispra and Petten [1,7].
REACFLOW is a finite volume code that runs on 2-D and 3-D unstructured
grids and is mainly used for simulating gas explosions on large industrial scales.
This is often the only way to study explosions that would be either too expensive
or too dangerous to be studied by physical experiments.

The size and complexity of the examined geometries, the unsteadiness of flow
phenomena and the high spatial resolution needed to model effects on a range of
geometrical scales put enourmous requirements on the numerical methods and
on the hardware. Depending on the problem size a complete simulation can take
several weeks if not months on a powerful single processor machine. Sometimes
the problem would not even fit into the memory of such a computer.

The parallelization of the code can solve these problems by allowing the
program to be executed on parallel hardware. The following section gives an
overview of how the most basic part of REACFLOW was parallelized. In Sec-
tion 3 and 4 we present a method for adapting the grid in parallel and how the
workload can be distributed evenly among the processors during a simulation.
An example showing the performance of the parallel version of REACFLOW is
presented in the last section.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 493–501, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

494 C. Troyer et al.

2 Basic Parallelization

The parallel version of REACFLOW was created by using domain decompo-
sition. This means that the problem data is split into pieces which are then
assigned to the processors of a parallel computer. We use either Metis [3] or
Jostle [6] to find the initial decomposition of the mesh. Neighbouring processor
subdomains overlap each other.

This overlap allows a processor to carry out all calculations of a computa-
tional phase without the need of communicating with other processors. Only
after each phase the intermediate results have to be exchanged for all grid nodes
in the overlap regions. The computational phases are:

– Calculation of the gradients;
– Convective solver;
– Diffusive solver;
– Turbulent solver and calculation of chemical source terms.

The inter-processor communication is done via message passing. We use the
MPI library [5], mainly for two reasons: It is a widely spread standard and it
makes it possible to develop code that can be executed on a range of different
hardware architectures.

3 Parallel Grid Adaptation

In many simulations the interesting parts of the flow domain are small compared
to the whole geometry. These are the regions with the steepest variable gradients,
for example a shock wave. In order to get a sufficient computational accuracy to
resolve the steep gradients the grid has to be very fine in such regions whereas
it can be coarse everywhere else. The problem is that phenomena like shock
waves and flame fronts are moving through the whole domain, which means
that a static grid has to be fine everywhere. Increasing the grid resolution leads
to higher memory requirements and longer computation times. Therefore it is
advantageous to have a dynamic adaptive grid capability, which allows to refine
or coarsen the grid dynamically.

In the scalar version of REACFLOW dynamic grid adaptation works as fol-
lows. The adaptation variables of two neighbouring control volumes are com-
pared and if the difference is above a given limit the two nodes are flagged
for refinement. If the difference is below a certain threshold then the nodes are
flagged for coarsening. After all control volume pairs have been checked the el-
ements are examined. If at least one of the nodes of an element is marked as
refinable then the element is marked as refinable as well. In case the first node of
an element is planned to be removed and none of the other nodes of this element
are flagged for refinement then the element is marked as removeable.

Once all elements have been examined the actual refinement and coarsening
can be initiated. Elements are refined by inserting an additional node between
the two endpoints of its longest edge. The longest edge is chosen in order to

Parallel Grid Adaptation and Dynamic Load Balancing 495

avoid getting very stretched elements which would lead to problems with the
flow solvers. Furthermore the additional node can only be inserted if the edge,
which is going to be divided, is the longest one for all elements that have this
edge in common. If one of these surrounding elements has an even longer edge,
then the algorithm tries to insert the new grid node at this newly found edge
which again has to be the longest one for all elements that are grouped around it.
This recursive procedure can lead to the insertion of grid nodes several elements
away from the position where it was intended to take place. It has turned out
that this can be seen as a useful feature since the grid gets already refined ahead
of the shock wave.

The scalar version of the grid adaptation code is hard to parallelize because
of its non-local nature. The refinement of one element can lead to the refinement
of a remote element. Whenever the algorithm moves away from an original refin-
able element in search of a terminal edge it would cause communication between
processors in case this search involves crossing inter-processor domain bound-
aries. Therefore a different way of refining the grid was chosen for the parallel
version of REACFLOW.

The main difference between the parallel and the scalar grid adaptation is the
way how terminal edges are found. The parallel version maintains for each edge
in the grid a flag whether it is the longest one for all of its surrounding elements.
Hence it is no longer necessary to examine elements in a recursive manner. If
an element is flagged as refinable then we can immediately determine whether
this element can actually be divided simply by checking the above mentioned
edge flag. The subsequent bisection of the element works again like in the scalar
version. This solution requires of course to update the edge flags of elements
which were affected by refinement or coarsening respectively.

The bisection of an element is illustrated in Figure 1. The element ABCD
was marked as refinable and AB is its longest edge. By looking at the edge
flag of AB we can tell that it is a terminal edge and immediately insert a new
node E between the nodes A and B and then divide all elements which are
grouped around AB. Two counters are associated with each edge. One is the
number of elements that have this edge in common (Nc), and the other one
stores the number of elements for which the edge in question is the longest one
(Nl). Apparently if the two counters are equal then the edge is a terminal edge.

A

B

C

D

E

Fig. 1. Bisection of an element

496 C. Troyer et al.

After refining or coarsening of elements all that has to be done is to update the
two counters for all affected edges. For each child element the longest edge is
determined and Nl of this edge is increased by one. The edge AB is replaced
by AE and a new edge EB is added. Both edges have Nl=0 and Nc is inherited
from the former edge AB. The new edges ED and EC have either Nc=2 or Nc=4
depending on whether they are located on the boundary of the problem geometry
or not. For the edge CD the counter Nc is increased by one and for the rest of
the edges Nc doesn’t change. At this point all necessary information is updated.

The only information that needs to be exchanged between the processors
are the two counters after each grid adaptation step. The grid coarsening works
exactly as in the scalar version and is completely local. The parallel version
simply prohibits the removal of grid nodes in the boundary region between two
processors and therefore saves some communication overhead. Elements in the
boundary regions are still coarsened in the end, because the boundaries are not
static due to load balancing.

4 Dynamic Load Balancing

In a parallel environment it is important that the workload is evenly distributed
among the processors in order to minimize the total runtime of a calculation.
There are several factors that have a negative impact on the workload distri-
bution. Due to grid adaptation the number of grid points within a processor
subdomain can increase significantly which puts additional burden on the af-
fected processors. The chemical solver of REACFLOW is another cause for a
poor workload distribution, because it treats different control volumes in a dif-
ferent way. The CPU time required for a single volume depends for example on
the temperature or the ratio of fuel to oxygen at this certain volume. The most
obvious reason for an imbalanced workload is the fact that a parallel computer is
shared among several users who can all run their applications at the same time.
All reasons for a poor workload distribution can be summarized as follows.

– Varying user load on different processors;
– Inhomogeneous hardware environment;
– Varying sizes of subdomains;
– Varying computational requirements of a subdomain.

By redistributing the workload dynamically one can assure to make the most
efficient use of the available hardware. The basic idea of a load balancing strategy
is to measure the runtime of parts of the code, decide whether rebalancing is
necessary, invoking a graph repartitioner like Jostle [6] or Parmetis [4] and finally
migrate the data.

Unfortunately CFD codes like REACFLOW consist of multiple computa-
tional phases, which are separated by phases of communication. During the
communication phases processors exchange intermediate results and therefore
have to wait for each other. Hence the runtime of a computational phase is
always determined by the processor with the biggest workload as illustrated in

Parallel Grid Adaptation and Dynamic Load Balancing 497

communication

calculation

time

pr
oc

es
so

rs

Fig. 2. Calculation phases in a SPMD program

Figure 2. The problem is that different phases can have different needs regarding
the workload distribution. The time needed for the convective solver for example
roughly depends on the number of control volumes whereas the runtime of the
chemical solver also depends on the state of the volumes. This means that a
distribution which is optimal regarding one phase can be unsuitable regarding
another one.

There are different solutions for this multi-phase problem. Each phase can
be balanced independently from others, but this requires to change partitions
between the phases which results in a considerable communication overhead. An-
other possibility is to take the requirements of all phases into account by putting
more weight onto the more time consuming phases, thus finding a compromise.
If there is a single phase that consumes considerably more time than all of the
other phases then one can concentrate on this phase when redistributing the
data.

It turned out that it was possible to split some of the phases of REACFLOW
into parts and reorder and recombine them in such a way that the result was a
single large phase and a set of rather small ones. The load balancing was then
optimized for this main phase, accepting that the resulting distribution would be
suboptimal for the small phases. Figure 3 shows the flow chart of the timestep
loop before and after the reordering of phases. The spacings between the blocks
are the points where the processors have to exchange messages.

The decision whether to rebalance or not is based on the so called load
imbalance factor. This factor is calculated as follows.

LIF =
Lmax

Lavg
= N

Lmax

Ltotal
(1)

N is the number of processors whereas Lmax, Lavg and Ltotal are the maximum,
average and total workloads for N processors. Lmax and Ltotal are obtained by
simply measuring the real time spent inside the main computational phase using
the function gettimeofday.

Once it has been decided to rebalance, the weights of the gridpoints are
needed as input for the mesh repartitioner. The weight of a node represents the
costs for doing all calculations for this node. Therefore the weight can be equated
with the node-related calculation time. In this case we use the C-function clock,
which returns the CPU-time. This is important, because the influence of varying

498 C. Troyer et al.

Turbulence

Chemistry

Diffusive

solver

Convective

solver

Gradients

Timestepsize Timestepsize

Conv.1

Conv.2

Diff.1

Conv.3

Diff.2 + Diff.3

Chemistry

Turbulence

Gradients

Fig. 3. Flow charts of the time loop before and after reordering

user load on different processors has to be eliminated in order to guarantee that
the node weight does not depend on the subdomain it belongs to.

Each node weight consists of a fixed part, which is related to the non-
chemistry calculations and a variable part which is related to the combustion
model. Within this model 3 classes of nodes can be identified: cold, burning and
burnt. Cold nodes have a temperature below a given threshold and are not taken
into account by the chemistry solver and their variable weight can be set to zero.
Burning and burnt nodes differ in their ratios of concentrations of fuel and oxy-
gen and their weights are determined in a statistical manner. Each timestep the
numbers of burning and burnt nodes are counted and the total time needed for
the combustion model is measured. This triplet of values can be interpreted as
a point in 3-dimensional space. After a couple of timesteps one can see that all
these points roughly form a plane and by using linear regression the parameters
of this plane, which equal to the variable weights of burning and burnt nodes,
can be calculated.

Once the node weights are available either Jostle or Parmetis is used to find
a new partitioning of the mesh. The actual data migration has to be done by
REACFLOW itself.

Parallel Grid Adaptation and Dynamic Load Balancing 499

5 Results

The test case presented here is a simulation of a detonation experiment in the
Russian RUT Facility [2], an underground tunnel filled with a combustible gas
mixture. The simulations ran on a 128 processor SGI Origin 3800.

The parallel calculations were done once with and once without dynamic load
balancing. In this test case the main reason for a poor workload distribution is
the dynamic refinement of the grid. Initially the grid contains only 3.600 nodes
and this number is increased up to 185.000 in the scalar version and up to 161.000

Fig. 4. Increasing number of grid points due to grid adaptation

Fig. 5. Initial coarse grid

Fig. 6. Refined grid after several timesteps

500 C. Troyer et al.

Fig. 7. Speedup with and without load balancing

in the parallel version of REACFLOW as shown in Figure 4. The difference is
explained by the different ways how elements are selected for refinement. Figure 5
and 6 show the initial grid and the adapted grid after several timesteps.

Figure 7 shows that the speedup can be improved significantly by rebalancing
the workload.

6 Conclusion

We have presented a communication-efficient method of adapting a grid in paral-
lel calculations. The experimental results show that grid adaptation requires the
workload to be redistributed during the simulation. Therefore a dynamic load
balancer was implemented which monitors the load distribution and repartitions
the problem data if necessary.

The parallel adaptation algorithm generally inserts less grid points compared
to the scalar version. In some cases this can have an impact on the results of
the calculation. It is possible to get a better approximation of the scalar grid
adaptation by adjusting a set of adaptation parameters, but it would be better
to have a method which is not based on trial and error. A possible solution
for this problem could be to force the refinement of elements which are in the
immediate neighbourhood of the refinement region.

The load balancer can be improved as well. Sometimes two or even more
redistribution steps are necessary until a balanced state is reached. This is a
problem especially in cases where the workload changes rapidly.

Parallel Grid Adaptation and Dynamic Load Balancing 501

References

1. M. Arienti, T. Huld and H. Wilkening: An Adaptive 3-D CFD Solver for Modeling
Transient Turbulent Deflagrations on Large Scale. ECCOMAS 98: Fourth Compu-
tational Fluid Dynamics Conference, Athens, Greece (1998)

2. W. Breitung, S.W. Dorofeev, A.A. Efimenko, A.S. Kochurko, R. Redlinger and
V.P. Sidorov: Large Scale Experiments on Hydrogen-Air Detonation Loads and their
Numerical Simulation. Proc. Int. Topical Meeting on Advanced Reactor Safety (ARS
’94), Pittsburgh, USA, Vol II, (1994) 733–745

3. G. Karypis and V. Kumar: METIS: Unstructured Graph Partitioning and Sparse
Matrix Ordering System. Technical report, Department of Computer Science, Uni-
versity of Minnesota, (1995)

4. G. Karypis, K. Schloegel and V. Kumar: ParMetis - Parallel Graph Partitioning
and Sparse Matrix Ordering Library. University of Minnesota, Department of Com-
puter Science and Engineering, Army HPC Research Center, Minneapolis, MN 55455
(2003)

5. Message Passing Interface Forum. MPI: A Message Passing Interface Standard. Int.
J. of Supercomputer Applications 8 (1994)

6. C. Walshaw and M. Cross: Dynamic Mesh Partitioning and Load-Balancing for
Parallel Computational Mechanics Codes. In B. H. V. Topping, editor, Computa-
tional Mechanics Using High Performance Computing. Saxe-Coburg Publications,
Stirling, (2002) 79–94 (Invited Chapter, Proc. Parallel and Distributed Computing
for Computational Mechanics, Weimar, Germany, 1999).

7. H. Wilkening and T. Huld: An Adaptive 3-D CFD Solver for Modeling Explosions
on Large Industrial Environment Scales. Combustions Science and Technology 149
(1999) 361–387

4th International Special Session on:
Current Trends in Numerical Simulation for

Parallel Engineering Environments
ParSim 2005�

Carsten Trinitis1 and Martin Schulz2

1 Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR),
Institut für Informatik,

Technische Universität München, Germany
Carsten.Trinitis@in.tum.de

2 Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory,

Livermore, CA
schulzm@llnl.gov

The use of parallel programming and architectures has become essential for si-
mulating practical problems in engineering disciplines. The remarkable progress
in CPU power, system scalability, and interconnect technology, as well as the
introduction of new paradigms like computational Grids or E-Services, conti-
nues to provide new opportunities, as well as new challenges. These trends are
paralleled by progress in numerical simulation techniques and the integration of
software used to support a large variety of engineering applications.

Since its introduction at EuroPVM/MPI 2002, ParSim is dedicated to provi-
ding a forum for interdisciplinary cooperations in this important field. It brings
together researchers with different backgrounds to discuss current trends in par-
allel simulation. In contrast to traditional conferences, emphasis is put on the
presentation of up-to-date results with a short turn-around time. It is our hope
that this offers a unique opportunity to present new aspects in this dynamic field
and discuss them with a wide, interdisciplinary audience. The EuroPVM/MPI
conference series, as one of Europe’s prime events in parallel computation, serves
as an ideal surrounding for ParSim. This combination enables the participants
to present and discuss their work within the scope of both the session and the
host conference.

This year, 12 papers were submitted to ParSim and we selected five of them.
They cover both computer science aspects, including object oriented program-
ming and cooperative and interactive frameworks, as well as experiences with
special applications from various fields, including electrical engineering, civil en-
gineering and computational fluid dynamics. We are confident that this resulted
in an attractive program and we hope that this session will be an informal setting
for lively discussions and for fostering new collaborations.
� Part of this work was performed under the auspices of the U.S. Department of Energy

by University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. UCRL-ABS-213386.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 502–503, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

4th International Special Session on Current Trends 503

Several people contributed to this event. Thanks go to Jack Dongarra,
the EuroPVM/MPI general chair, and to Beniamino Di Martino and Dieter
Kranzlmüller, the PC chairs, for their encouragement and support to continue
the ParSim series at EuroPVM/MPI 2005. We would also like to thank the nu-
merous reviewers, who provided us with their reviews in such a short amount
of time (in most cases in just a few days) and thereby helped us to maintain
the tight schedule. Last, but certainly not least, we would like to thank all those
who took the time to submit papers and hence made this event possible in the
first place.

We hope this session will fulfill its purpose to provide new insights from both
the engineering and the computer science side and encourages interdisciplinary
exchange of ideas and cooperations. We hope that this will continue ParSim’s
tradition at EuroPVM/MPI.

Applying Grid Techniques to an Octree-Based
CSCW Framework

R.-P. Mundani1, I.L. Muntean1, H.-J. Bungartz1, A. Niggl2, and E. Rank2

1 Institut für Informatik, Technische Universität München, Germany
2 Lehrstuhl für Bauinformatik, Technische Universität München, Germany

Abstract. Many simulation tasks are intended as a mere stand-alone
application. Hence, integrating them into some embedding framework
often fails due to missing interfaces for data and information interchange.
Furthermore, keeping track of consistency among all embedded tasks and
participating experts can be very difficult and, thus, a lot of effort has
to be invested.

Within our approach, an octree-based CSCW framework for processes
arising in civil engineering both provides appropriate interfaces for process
integration and assures global consistency in a distributed cooperative
working environment. To some extent, by completely embedding simula-
tion tasks into this framework, a so-called problem solving environment
has been established.

To foster parallel processing and to further exploit the inherent hierar-
chy of this approach, grid techniques seem perfectly suited to adopt the
full potential of distributed and parallel computing. This not only allows
us to tackle large scenarios such as ensembles of buildings, it also gives
us the advantage of sophisticated level-of-detail studies without busting
capacities of the underlying hardware ressources.

1 Motivation

There exist a lot of specialised solutions or systems for simulation tasks related
to the fields of mechanical or civil engineering. Such systems have to fulfil dif-
ferent requirements from all involved applications. Thus, beside the necessity of
efficiently bridging the gap between CAD and simulation also consistency among
all participants has to be assured. The drawback of these customised systems
lies in their lack of flexibility to integrate further applications and their often
difficult porting to be run as high-performance application on a variety of clus-
ters and/or supercomputers using distributed computing services as provided by
grid techniques.

In [1,2], we presented an octree-based framework for CSCW and process inte-
gration of different applications from the field of civil engineering. Furthermore,
in [3] we have shown a hierarchical approach for organising computations based
on a finite element discretisation of p-version type. Due to this approach, even
huge problems can be efficiently processed as well as the amount of necessary re-
computations can be dramatically reduced in case the geometric model changes.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 504–511, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Applying Grid Techniques to an Octree-Based CSCW Framework 505

A further exploitation of this hierarchy combined with the idea of distributed
processing of the underlying simulation tasks inevitably points in the direction
of grid computing.

In this paper, we present the necessary changes of our approach to be run
as grid application, taking advantage of both distributed storage and distrib-
uted computations on several high-performance computers. Based on the Globus
Toolkit software we address the advantages of distributed storage (OGSA-DAI)
related to the underlying geometric model as well as to the results of a hierar-
chical nested-dissection approach for solving statics’ simulations based on the
p-version of finite elements.

2 Octree-Based CSCW Framework

The core architecture of our framework is designed as a client-server system. All
relevant geometric data including attributes (material parameters or boundary
values for simulation, for instance) are stored in a relational database manage-
ment system (RDBMS), only accessible by an octree-structure called control tree
(see [4] for details). These two components are referred to as server. Clients can
check out parts of the geometry from the server both as surface-oriented and
volume-oriented model, thus, both worlds can be served by this framework. The
latter one, a linearised octree coded as binary stream [1], is generated in real
time or on-the-fly due to a highly efficient algorithm using half-spaces (see [5]
for details).

Whenever a client wants to check in altered data the server performs an
octree-based collision detection, rejecting everything that interferes with other
parts of the model. Hence, global consistency can be achieved. For the moment,
several tasks have been integrated or embedded, resp., into this framwork, rang-
ing from CAD, CFD (computational fluid dynamics) [6], CSD (computational
structural dynamics) to visualisation, shortest-path algorithms [7], and evacua-
tion simulation [8]. Figure 1 depicts a schematic overview.

Here, integration means that a process can access shared data from the server
via services provided by the framework. In contrast to that, embedding means
a process has been made a part of the server, thus, it can be accessed by other
processes (from outside) as service, too. This is the first step towards a system
that provides all the computational facilities necessary to solve a target class of
problems, a so-called problem solving environment [9]. As shown in Fig. 1, CSD
has already been embedded into the framework, allowing a fast and efficient
processing of model variants and detailed studies with sophisticated p-version
type finite element codes due to a hierarchical approach.

By organising the elements of a finite element discretisation via an octree,
efficient hierarchical solvers can be applied [3]. This not only reduces the com-
putational effort whenever changes of the underlying geometric models occur
as only those parts directly influenced have to be recomputed, also the efficient
processing of large data sets comes into reach by exploiting the octree’s hier-
archy. Furthermore, this approach is predestinated for a parallel processing on

506 R.-P. Mundani et al.

CAD CFDVR/AR

EvacSim

CSD

RDBMS

Fig. 1. Schematic overview (left-hand side) of our octree-based CSCW framework with
all participating tasks so far – CAD, visualisation combined with shortest-path algo-
rithms (VR/AR), evacuation simulation (EvacSim), computational fluid dynamics, and
computational structural dynamics. On the right-hand side a sample octree model of
a car as used for CFD is shown.

clusters and supercomputers as issues related to domain decomposition and load
balancing can be easily addressed by the octree, too.

3 Computing and Storage Services for Grids

One of the most common toolkit software for building grid solutions and applica-
tions is the Globus Toolkit [10]. It allows sharing computing power, databases,
and other resources between different applications run at various sites under
the control of different institutions. It favors uniform access to these resources
and cooperative work done among several experts [11,12]. The toolkit includes
components and libraries for security, information infrastructure, resource man-
agement, data management, communication, fault detection, and portability,
required for the development of distributed systems [13]. Most of the software
components of the current version of the toolkit implement web services1 as their
basic infrastructure for distributed systems.

In order to satisfy the needs of an application for working with large sets of
data, GT4 (Globus Toolkit 4) provides the Open Grid Services Architecture –
Data Access and Integration (OGSA-DAI) component. For accessing the com-
puting power of high performance machines connected to grid, web services can
be developed on top of GT4 using corresponding MPI implementations (such as
MPICH-G22).

OGSA-DAI3 is middleware that supports the access and manipulation of data
from both XML and relational databases in grids. The services and functionality
it provides are designed for high level data integration. It supplies interfaces to
operate with web services (WS-I), the open grid services infrastructure (OGSI),

1 http://www.globus.org/ogsa/
2 http://www3.niu.edu/mpi/
3 http://www.ogsadai.org.uk

Applying Grid Techniques to an Octree-Based CSCW Framework 507

and with the web services resource framework (WS-RF). Data access and ma-
nipulation requirements are expressed in XML documents. Requests and their
responses are enclosed in perform documents or response documents, resp.

MPICH-G2 is a grid-enabled implementation of the MPI standard. It couples
different high performance computers using Globus services. Thus, it enables the
user to embed parallel paradigms in grid applications. Therefore, computation-
ally intensive tasks, which have high potential for parallelisation, can be executed
as grid applications.

4 Migrating the Octree-Based Framework to the Grid

Two main issues we address in this paper are related to the needs of storing
and handling very large CAD models coming from civil engineering applica-
tions, on the one hand, and to the usage of available computation resources (i. e.
high performance clusters) for carrying out various simulation tasks based on
these models, on the other hand. Both needs can be typically satisfied by grid
architectures.

4.1 The Service-Based Architecture of Our Framework

In Fig. 2, we present the new architecture of our octree-based CSCW framework.
An OGSA-DAI grid data service (DMS) is designed to be responsible for data
operations within our framework. The DMS service can access now different
databases, physically distributed on different database servers, whereas client
applications (such as CAD or CSD) are not aware of the physical location of data.
Queries for retrieving components/parts of a geometric model are formulated by
client applications enclosed in perform documents and sent to the DMS. The
latter one processes the XML documents, executes the queries, and delivers
response documents with XML formating back to clients.

Client

Client

VMS

SMS

DMS

OGSA−DAI

WS−RF

MPICH−G2

RDBMS

Fig. 2. The new service-based architecture of our CSCW framework from Fig. 1. The
provided services are: data management service (DMS), simulation management service
(SMS), and visualisation management service (VMS).

For accessing the computational resources in the grid, we have designed a
service called simulation management service (SMS). It implements the com-
putationally intensive parts of the CSD component. It also allows the parallel

508 R.-P. Mundani et al.

execution of the CSD solver on different high performance systems (clusters or
constellations) and the storage of the results in databases. The visualisation
management service (VMS) performs various post-processing operations on the
simulation data. Hence, computationally intensive simulation tasks are now ac-
cessible by other tasks and experts as grid services for a parallel and distributed
processing. Similar services can be developed for CFD or VR components as well.

4.2 Technical Changes/Transformations

Due to the service-oriented architecture, some major technical transforma-
tions/changes are applied to the architecture from Fig. 1. One of the changes
refers to the communication between the CSCW framework components. We
shifted it from a socket-based to a http-based one. For the implementation of
the grid services, we use WS-RF of GT4. The DMS, SMS, and VMS expose their
interfaces to client programs. These invoke the web services using grid clients
API (such as OGSA-DAI client API).

If previously the queries were expresed in SQL format and executed using
database-specific client API, they now conform to the OGSA-DAI client API.
As mentioned before, the SQL queries are packed into perform documents. An
example of a perform document used for asking our grid data service to retrieve
an object labelled GEOM 00000007 of a geometric model named uniqua 3s p4
is provided below. Here, the new manner of writing the queries can be seen.

<?xml version="1.0" encoding="UTF-8"?>

<perform xmlns="http://ogsadai.org.uk/namespaces/2005/03/types">

<flow name="getCompModel"> <sqlQueryStatement name="compFaces">

<expression>

select ID Face, ID Edge, Direction from face idx

where ID Object = "GEOM 00000007" AND Model = "uniqua 3s p4"

</expression>

<webRowSetStream name="compFacesOutput"/>

</sqlQueryStatement> </flow> </sequence>

</perform>

Another modification that affects clients refers to the internal mechanism of
cooperation between framework components. Previously, the components inter-
acted directly, without intermediate stages. With the new architecture, when
data interactions with the grid come into play, clients ask from a DAI service
group registry information about our data service. An instance of the service is
created by a Grid Data Service Factory, a handle is returned to the clients, and
finally the cooperation client–service can proceed.

The types of technical transformations mentioned above are the most relevant
ones in the current evolution stage of our CSCW framework.

5 A First Illustrative Example: CSD

Based on a finite element discretisation using hexahedral elements, in our ap-
proach all those elements are ordered in a hierarchical way by efficiently storing

Applying Grid Techniques to an Octree-Based CSCW Framework 509

the relevant data (stiffness matrices, loading vectors, and degrees of freedom
(DOF)) to an octree. Thus, hierarchical solvers such as the nested dissection
algorithm [14] can be applied. The main advantage of this approach is to exploit
the locality of geometric changes and, thus, to re-compute only those parts of the
tree where changes occur while still using the already computed results for the
rest. Furthermore, due to the tree’s hierarchy distributed and parallel processing
can easily be achieved as intended for the grid version of this services.

The entire computational process can be divided into two main tasks. In a
first bottom-up step – called assembly – local unknowns, i. e. unknowns fully
described at a certain tree level, can be eliminated, thus, forming new systems
of linear equations (SLE) handed to the next higher level. Once the root of the
tree is reached, the resulting SLE can now be solved. In a second top-down step
the (partial) solution is passed to all of a node’s sons, which themselves now can
compute the solution for the formerly eliminated unknowns (see [3] for details).

Fig. 3. Displacement field (shown exaggerated) as computed by our simulation service

One example processed with the current (serial) simulation service comprises
two floors of an office tower located in Vienna (see Fig. 3). The model consists of
4171 elements and was computed for polynomial degrees 1 to 4. After an initial
assembly/solution step some elements (stiffness matrices and loading vectors)
were replaced by altered ones and the entire model was re-computed. As Fig. 4
shows, the necessary time for the re-assembly is significant smaller than for the
initial one and, thus, a lot of computational effort can be saved. The relative costs
compared to a complete assembly step are shown in the last column (costs).

As most of the time (approx. 99%) during the solution step is spent at the
root level, this part has been outsourced to a multiprocessor server (Quad Ita-
nium). Thus, using OpenMP the SLE can be processed by running four threads
of a cg solver in parallel. Further enhancement can be achieved when running
the assembly step in parallel, too. By cutting the tree under the root node it
falls apart into eight disjoint parts called subtrees. Each subtree can be further
decomposed into smaller parts if necessary. As communication only takes place
from a subtree’s root node to the father’s root node once during assembly and
once during the solution step, each part can be processed nearly independent

510 R.-P. Mundani et al.

p DOFs Assembly Solution Re-Assmb. Costs [%]
1 23,856 10.795 s 2.661 s 0.660 s 6.114
2 84,660 192.193 s 19.355 s 9.375 s 4.878
3 145,464 795.036 s 53.439 s 36.853 s 4.635
4 255,606 2725.943 s 143.631 s 123.836 s 4.543

Fig. 4. Results for initial assembly, solution, and re-assembly of our simulation service
for the sample model (two floors of an office tower) with 4171 elements shown in Fig. 3

M 1 M 2 M 4M 3

COMMUNICATION (GRID SERVICES)

S 1 S 2 S 4S 3

Fig. 5. Future grid version of our simulation service: each subtree (Si) is processed on
a different machine (Mi) while storing all relevant data to an RDBMS. Data access and
communication takes place via grid services and is managed by the CSCW framework.

from all others. That also allows to store the subtrees on different systems (mul-
tiprocessor servers or clusters, e. g.) even located far away from each other, keept
completely transparent from the user.

By handling the usage of these distributed ressources via grid technologies,
the management of the embedded simulation service of our CSCW framework
can be efficiently processed as described in the previous section. To minimize
memory usage all data stored to a subtree’s nodes can be moved to a database,
thus, the “naked” tree structure is all remaining in memory. Again, the database
is accessed via grid services (OGSA-DAI) and, hence, has not to be close or local
to the machine processing a subtree. From the user’s point of view, communi-
cation still only takes place with the framework by accessing one or more of the
provided services. Thus, consistency among all user can still be assured by the
framework at any time.

As being no longer restricted to one system (with small resources) even larger
models with higher polynomial degrees of the underlying FEM discretisation can
be processed by this approach. Furthermore, being able to zoom in on parts of
the model and re-computing them with finer resolutions without the need of re-
computing the rest of the model, this will help to understand statics’ problems
in a much more vivid way.

6 Conclusion

In this paper, we presented an octree-based CSCW framework for processes from
the field of civil engineering. Beside classical approaches for the parallelisation

Applying Grid Techniques to an Octree-Based CSCW Framework 511

of the underlying simulation tasks, grid techniques seem perfectly suited for a
distributed processing related to both computation and storage. As we are still at
the beginning of our work, further research is necessary to evaluate the benefit
of this approach and to show its relevance for large engineering applications.
Nevertheless, current results sound very promising. Hence, this is the first step
in the direction of embedded simulation processes in a distributed environment
for cooperative working.

References

1. Mundani, R.P., Bungartz, H.J.: An octree-based framework for process integration
in structural engineering. In: Proc. of the 8th World Multi-Conf. on Systemics, Cy-
bernetics and Informatics. Volume II., Int. Institute of Informatics and Systemics
(2004) 197–202

2. Niggl, A., Romberg, R., Rank, E., Mundani, R.P., Bungartz, H.J.: A framework
for concurrent structure analysis in building industry. In: Proc. of the 5th Euro-
pean Conf. on Product and Process Modelling in the Building and Construction
Industry, A.A. Balkema Publishers (2004)

3. Mundani, R.P., Bungartz, H.J., Rank, E., Niggl, A., Romberg, R.: Extending the
p-version of finite elements by an octree-based hierarchy. To appear in Proc. of the
16th Int. Conf. on Domain Decomposition Methods (2005)

4. Mundani, R.P., Bungartz, H.J.: Octrees for cooperative work in a network-based
environment. In: Proc. of the 10th Int. Conf. on Computing in Civil and Building
Engineering, VDG Weimar (2004)

5. Mundani, R.P., Bungartz, H.J., Rank, E., Romberg, R., Niggl, A.: Efficient algo-
rithms for octree-based geometric modelling. In: Proc. of the Ninth Int. Conf. on
Civil and Structural Engineering Computing, Civil-Comp Press (2003)

6. Brenk, M., Bungartz, H.J., Mehl, M., Mundani, R.P., Düster, A., Scholz, D.: Ef-
ficient interface treatment for fluid-strcuture interaction on cartesian grids. To
appear in Proc. of Coupled Problems 2005 (2005)

7. Drexl, T.: Entwicklung intelligenter Pfadsuchsysteme für Architekturmodelle am
Beispiel eines Kiosksystems (Info-Point) für die FMI Garching. Diplomarbeit,
Institut für Informatik, Technische Universität München (2003)

8. Mundani, R.P., Bungartz, H.J., Giesecke, S.: Integrating evacuation planning into
an octree-based cscw framework for structural engineering. To appear in Proc. of
the 22nd CIB-W78 Conf. on Information Technology in Construction (2005)

9. Gallopoulos, E., Houstis, E., Rice, J.R.: Computer as thinker/doer: Problem-
solving environments for computational science. IEEE Computational Science &
Engineering 1 (1994) 11–23

10. Foster, I.: A globus primer toolkit (2005)
11. Foster, I., Keselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable

virtual organizations. Int. J. Supercomputer Applications 15 (2001)
12. Foster, I., Keselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open

grid services architecture for distributed systems integration (2002)
13. Foster, I., Keselman, C.: The Grid: Blueprint for a Future Computing Infrastruc-

ture. Morgan Kaufmann Publishers (1999)
14. George, J.A.: Nested dissection of a regular finite element mesh. SIAM Journal on

Numerical Analysis 10 (1973) 345–363
15. Kra, D.: Six strategies for grid application enablement, part 1: Overview (2004)

Parallel Modeling of Transient States Analysis
in Electrical Circuits

Jaroslaw Forenc1, Andrzej Jordan1,2, and Marek Tudruj2,3

1 Bialystok Technical University, Faculty of Electrical Engineering,
45D Wiejska St., 15-351 Bialystok, Poland

{jarekf, jordana}@pb.bialystok.pl
2 Polish-Japanese Institute of Information Technology,

86 Koszykowa St., 02-008 Warsaw, Poland
3 Institute of Computer Science, Polish Academy of Sciences,

21 Ordona St., 01-237 Warsaw, Poland
tudruj@pjwstk.edu.pl

Abstract. In this paper a speculative method for parallel modeling of
transient states analysis of electrical circuits in distributed systems is
presented. Solving systems of linear or nonlinear ordinary differential
equations that describe the transient states is a purely sequential process.
The proposed speculative computation method converts involved sequen-
tial computations into intensively parallel ones. The general idea of this
method is based on decomposition of the analysed time domain into sub-
intervals in which parallel solving is done based on speculatively assumed
initial conditions. Parallel computations in subsequent time sub-intervals
are conducted with the use of sequential numerical Runge-Kutta method.
Application of the method for simulation of functioning of a DC motor
with a controlled integration step size is shown.

1 Introduction

Numerical analysis of transient states in large and complicated electrical circuits
is usually very time consuming and, thereby, costly. In such a case, achieving
high accuracy of computation results in a short time requires applying high per-
formance computer systems [1]. Transient states in electrical circuits are often
described by systems of ordinary differential equations (ODEs), linear or nonlin-
ear. Most of numerical methods for solving these kinds of systems of equations
are typically sequential [2]. Several approaches towards the parallel solution of
ODEs have been developed, e.g. extrapolation methods [3], multiple shooting [4],
relaxation techniques [5] and Runge-Kutta methods, which are iterated Runge-
Kutta methods [6,7]. They are based on implicit Runge-Kutta methods and
classical embedded Runge-Kutta methods. A good overview of parallel methods
of ODE solving can be found in papers [8,9,10] and monographs [11,12].

The speculative method that we propose in this paper originates in the ap-
proach to the parallel analysis of transient states in electrical circuits first pub-
lished in [13,14]. The main aim of this method is to reduce the time of the

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 512–519, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Parallel Modeling of Transient States Analysis in Electrical Circuits 513

analysis that is the time of the ODEs system solving. The general idea of the
speculative method is based on decomposition of the time domain. Computations
in the particular sub-intervals of time are conducted in parallel with the use of
one of the well-known sequential numerical methods for ODEs systems solving.
Parallel computations require knowledge of initial conditions at the beginning of
each sub-interval. In the speculative method, instead of one condition, a set of
speculative initial conditions is determined for each state variable. Therefore, the
computations in particular sub-intervals are conducted repeatedly but with dif-
ferent initial conditions. The final solution in the entire analysis interval consists
of selected solutions from particular sub-intervals.

In this paper we use a modified speculative method where several initial con-
ditions are determined, but the computations in each sub-interval are performed
only once with the use of one processor [15,16]. The novelty of this paper is the
application of the fourth-order Runge-Kutta method with a step size control, as
sequential numerical method of ODEs system solving in the modified speculative
method. As an example of the application of this method, the analysis of the
transient state in a nonlinear model of a DC-motor powered by a solar voltage
generator after a global linearization of three nonlinear equations which describe
this state, will be shown.

2 The Modified Speculative Method Algorithm

The algorithm of the modified speculative method is composed of two main
stages. In the first stage, the total time interval of the transient analysis is divided
into sub-intervals and the initial conditions, necessary for parallel computations,
are determined. In the second stage, main computations are conducted and the
final solution is determined.

The first stage of the modified speculative method is executed sequentially
by the master processor. In this stage the total time interval of the transient
analysis, i.e. the time interval (t0, tN), is divided into a given number of N sub-
intervals (ti, ti+1), i = 0, 1, . . . , N − 1. These sub-intervals will be also denoted
by Pi, i = 0, 1, . . . , N − 1 (Fig. 1).

In the case of the application of the numerical method with a controlled
integration step size, the total time interval of the transient analysis should
be divided in the way which ensures similar number of integration steps and
thereby, similar time of computations in each sub-interval. In the fourth or-
der Runge-Kutta method with an automatic control of a step size, the size of
the integration step h, thus the number of steps in particular sub-intervals, is
considerably dependent on the nature of the plot. In this case, applying the
simplest, equal, division of the total time interval of the transient analysis is
not optimal. In order to get similar time of computations in each sub-interval,
computations are executed in the whole interval (t0, tN) with assumed low ac-
curacy εL (e.g. εL = 10−1 ÷ 10−3) and approximate solution xp

0, x
p
1, . . . , x

p
m at

points tp0, t
p
1, . . . , t

p
m (where tp0 = t0 and tpm = tN) is obtained. Then, the ob-

tained number of points m of approximate solution is divided by the number of

514 J. Forenc, A. Jordan, and M. Tudruj

x(t)

t

t
0

t
1

t
3

t
5

t
N-1

t
N

P
0

. . .

. . .

the total time interval of the transient analysis

t
2

t
4

P
1

P
2

P
3

P
4

P
N-1

1

Fig. 1. Division of the total time interval of the transient analysis into sub-intervals;
1 - approximate solution determined with a low accuracy εL

sub-intervals N , obtaining, according to equation (1), points t1, t2, . . . , tN−1
which are the division of the total time interval of the transient analysis (Fig. 1).

ti = tp(i·m
N), i = 1, 2, . . . , N − 1 (1)

In this way, the total time interval of the transient analysis (t0, tN) has been
divided into non-equal sub-intervals. The sub-intervals in which state variables
oscillate, have a shorter length comparing sub-intervals in which the function is
even.

In order to execute parallel computations in particular sub-intervals, it is
necessary to know the initial conditions at the beginning of each sub-interval.
At the point t0, these conditions are known from the assumption. For the rest
of the points t1, t2, . . . , tN−1, instead of one condition, a set of initial conditions
is determined for each state variable. For this purpose, previous computations
with a low accuracy εL are used. In the Runge-Kutta method with an automatic
control of the step size, the determination of the solution at each point requires
one execution of computations with step h and two with step h/2 [2]. In this way,
two solutions at each point are obtained. The absolute value of the difference
of computations with step h (xi,j,h, i = 1, 2, . . . , N − 1, j = 1, 2, . . . , n, where n
is the number of state variables) and h/2 (xi,j,h/2), at points t1, t2, . . . , tN−1,
multiplied by safety coefficient k (assumed ”a priori”), determines the length of
the section (Δxi,j) in which the initial conditions for the particular sub-intervals
will be presented:

Δxi,j = |xi,j,h/2 − xi,j,h| · k, i = 1, 2, . . . , N − 1, j = 1, 2, . . . , n (2)

As the beginning of each section (xs
i,j), the values computed with step h/2 are

assumed:

xs
i,j = xi,j,h/2, i = 1, 2, . . . , N − 1, j = 1, 2, . . . , n (3)

Parallel Modeling of Transient States Analysis in Electrical Circuits 515

while the end of the section (xe
i,j) is the shift for his length in the convergence

direction to the exact solution:

xe
i,j = xi,j,h/2 ±Δxi,j , i = 1, 2, . . . , N − 1, j = 1, 2, . . . , n (4)

The values of the state variables computed with both steps, h and h/2, deter-
mine the convergence direction to the exact solution. If xi,j,h > xi,j,h/2, then
in equation (4) sign ”−” occurs, otherwise sign ”+” occurs. The obtained sec-
tion divided (for each state variable) into a particular number of sub-intervals
determines the sets of initial conditions (Fig. 2) from which one will be finally
the initial condition used in computations. In order to determine this number,
the master processor executes computations in the first sub-interval (t0, t1) with
a high accuracy εH (the same as for main computations in the second stage of
the algorithm). Next, it compares the obtained state variables values at time
point t1 with the initial conditions at the same time point and registers the
numbers of the initial conditions (separately for each state variable), which are
closest to the values computed with a high accuracy εH . At the rest of the time
points t2, t3, . . . , tN−1, such points are chosen that have the same numbers as
determined above.

t t

PP P

Fig. 2. Evaluation of the initial conditions in the modified speculative method; 1 -
approximate solution determined with step h, 2 - approximate solution determined
with step h/2, 3 - unknown exact solution

The second stage of the modified speculative algorithm is executed in par-
allel. The number of processors used for computations is smaller by one than
the number of sub-intervals N because computations in the sub-interval (t0, t1)
were already executed in the first stage of the algorithm. Before the computa-
tions start, the master processor sends the initial data (i.e. initial conditions
determined in the first stage of the algorithm) to slave processors. All processors
execute parallel computations in their sub-intervals with a high accuracy εH . The
master processor executes computations in the sub-interval (t1, t2), the first slave

516 J. Forenc, A. Jordan, and M. Tudruj

processor - in the sub-interval (t2, t3), the second slave processor - in the sub-
interval (t3, t4), etc. When the computations are finished, the slave processors
send the obtained results to the master processor, which saves the final solution
on its local hard disk.

3 Numerical Example

As an example of the application of the presented method, the analysis of tran-
sient state in a nonlinear model of a DC-motor powered by a solar generator [17]
will be presented. The transient state in this motor is described by the system
of three nonlinear ODEs:

ẋ1 = −a1e
ax1 − a2x2 + u

ẋ2 = a3x1 − a4x2 − a5x3
ẋ3 = a6x2 − a7x3

x1(0) = x1,0, x2(0) = 0, x3(0) = 0

(5)

where x1(t) is the generator voltage, x2(t) is the current of the DC-motor and
x3(t) is the rotation speed of the motor. The rest of coefficients on the right
hand side of equations (5) result from the parameters of the DC-motor and the
solar generator.

We applied global linearization [18,19] of these equations in order to examine
the dynamics of the system. In the global linearization method, the change of
state variables is introduced:

z1 = x1
z2 = −a1e

ax1 − a2x2
z3 = a3x1 − a4x2 − a5x3

(6)

and after basic transformations a system of linear equations is obtained:

ż1 = z2 + u
ż2 = z3 + ḡ2(x, u)

ż3 = b1z1 + b2z2 + b3z3 + ḡ3(x, u)

z1(0) = x1,0, z2(0) = −a1e
ax1,0 , z3(0) = a3x1,0

(7)

where

ḡ2(x, u) = aa1e
ax1(a1e

ax1 + a2x2 − u)− (1− a2) · (a3x1 − a4x2 − a5x3)
ḡ3(x, u) = a6x1 − a1a4e

ax1 − (a2a4 + a5a6)x2 + a5a7x3 + a3u
(8)

Coefficients bi, i = 1, 2, 3 were chosen in such a way as to ensure stability of
obtained equations: b1 = −a6, b2 = a3 − a4, b3 = −a4.

The required state variables are determined by means of inverse transforma-
tion:

x̃1 = z1
x̃2 = − 1

a2
(z2 + a1e

az1)
x̃3 = 1

a5
(−z3 + a3z1 + a4

a2
(z2 + a1e

az1))
(9)

Parallel Modeling of Transient States Analysis in Electrical Circuits 517

Accurate solution of the linear equations (7) requires a very small integration
step [15]. In such a case, the application of the modified speculative method can
be helpful and allows to reduce the computations time.

The computations were carried out with the use of the cluster of five work-
stations. Each node in the cluster contains Intel Xeon 2.66 GHz processor, 1 GB
of RAM and 80 GB of disk space. Individual nodes are connected by Gigabit
Ethernet. The software environment is Fedora Core 1 Linux and LAM/MPI 7.03.

For the modified speculative algorithm, the following parameters of compu-
tations were set up: on the basis of computations with a low accuracy εL = 10−2,
the total time interval of the transient analysis (t0, tN) - 0.0÷ 0.09s was divided
into 6 non-equal sub-intervals with the length: (t0, t1) - 9.22 · 10−4s, (t1, t2) -
1.72 · 10−3s, (t2, t3) - 7.06 · 10−3s, (t3, t4) - 7.25 · 10−3s, (t4, t5) - 9.50 · 10−3s,
(t5, t6) - 6.35·10−2s. For each sub-interval 10 initial conditions were assigned. The
main computations were carried out with the assumed high accuracy εH = 10−7.

Fig. 3 and Fig. 4 present the obtained results for state variables x̃1(t) - the
generator voltage and x̃2(t) - the current of a DC-motor, respectively. These
results were obtained in the case of division of the total time interval of the
transient analysis into 6 sub-intervals. In order to compare the results obtained
by the modified speculative method, the system of nonlinear equations (5) was
solved with application of the sequential algorithm of the fourth-order Runge-
Kutta method with fixed integration step size h = 10−9 s. The solution of the
modified speculative method is convergent with the solution obtained by the
sequential algorithm.

19.5

20

20.5

21

21.5

22

22.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

x1 [V]

t [s]

~

Fig. 3. Solution of the state variable x̃1(t)

Fig. 5 presents the value of the estimated speedup. In order to determine
the speedup, the total time interval of the transient analysis was divided into 3,
4, 5 and 6 sub-intervals (in the case of 2 sub-intervals only one processor was
used). During this estimation only the number of the Runge-Kutta method calls,
which means the evaluation of state variables values according to the fourth-
order Runge-Kutta method formulas, was taken into consideration. The time of
communication between processors was omitted. It must be stressed that the

518 J. Forenc, A. Jordan, and M. Tudruj

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

x2 [A]

t [s]

~

Fig. 4. Solution of the state variable x̃2(t)

4.35

3.22

2.71

1.86

1

2

3

4

5

1 2 3 4 5

Speedup

Number of Processors

Fig. 5. Estimated speedup in the modified speculative method

communication between processors occurs only at the beginning and at the end
of the second stage of the modified speculative method algorithm. For this reason
the communication time has only a little influence on the speedup.

4 Conclusions

Application of the speculative computation method enables a reduction of the
computation time in the analysis of transient states described by systems of
ordinary differential equations. The application of the method with an automatic
control of integration step size considerably reduces the time of computations
comparing the methods with a fixed integration step. In the presented example,
a good speedup and good accuracy of the solution were obtained.

This work has been supported by the KBN Grant No.: 3T10A 066 27 and
internal PJIIT grants.

Parallel Modeling of Transient States Analysis in Electrical Circuits 519

References

1. Machowski, J., Bialek, J.W., Bumby, J.R.: Power System Dynamics and Stability,
John Wiley & Sons, New York (1997)

2. Press, W.H., Flannery, B.P., Teukolsky S.A., Vetterling, W.T.: Numerical Recipes
in C: The Art Of Scientific Computing, Camridge University Press (1993)

3. Lustman, L., Neta, B., Gragg W.: Solution of Ordinary Differential Initial Value
Problems on an Intel Hypercube, Computer and Mathematics with Applications 23
(1992) 65–72

4. Khalaf, M. S., Hutchinson D.: Parallel Algorithms for Initial Value Problems: Par-
allel Shooting, Parallel Computing 18 (1992) 661–673

5. Prince, P.J., Dormand, J.R.: High Order Embedded Runge-Kutta Formulae, Journal
of Computational and Applied Mathematics 7 (1981) 67–75

6. Van der Houwen, P. J., Sommeijer B. P.: Iterated Runge-Kutta Methods on Parallel
Computers, SIAM Journal on Scientific and Statistical Computing with Stepsize
Control, Journal of Computational and Applied Mathematics 29 (1990) 111–127

7. Rauber, T., Runger, G.: Iterated Runge-Kutta Methods on Distributed Memory
Multiprocessors, Euromicro Workshop on Parallel and Distributed Processing (1995)
12–19

8. Burrage, K.: Parallel Methods for Initial Problems, Applied Numerical Mathematics
11 (1993), 5–25

9. Gear, C.W.: Massive Parallelism Across Space in ODEs, Applied Numerical Math-
ematics 11 (1993) 27–43

10. Gear, C.W., Xuhai, X.: Parallelism Across Time in ODEs, Applied Numerical
Mathematics 11 (1993) 45–68

11. Petcu D.: Parallelism in Solving Ordinary Differential Equations, Mathematical
Monographs 64, Tipografia Universitatii (1998)

12. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations,
Oxford Science Publications (1995)

13. Forenc J., Jordan A., Tudruj M.: A Survey of Speculative Methods for Transient
State Analysis, PARELEC’2002, IEEE Computer Society (2002) 353–358

14. Jordan A., Forenc J., Tudruj M.: Speculative Parallel Processing Applied to Mod-
elling of Initial Problems. COMPEL, Vol. 24, No. 1 (2005) 127–144

15. Forenc J., Jordan A.: The Modified Speculative Method for the Transient States
Analysis. PARELEC’2004, IEEE Computer Society (2004) 189–193

16. Forenc J.: A New Approach to the Speculative Method for the Transient States
Analysis, SPIE 5775 (2005) 406–413

17. Jordan, A., Benmouna, M., Bensenane, A., Borucki, A.: Optimal Linearization of
Non-Linear State Equations, Automatique, Systems Analysis and Control (1987)
263–271

18. Kaczorek, T., Jordan, A., Forenc, J.: Global Linearization of a Non-Linear Model of
a DC Drive System, The Second Grant Conference: Numerical Methods in Modelling
of Electric Devices, Warsaw (2002) 7–16

19. Kaczorek, T.: Lie algebra, Seminar of the Department of Theoretical Electrotech-
nics and Metrology, Bialystok (2003), (unpublished paper)

The COOLFluiD Parallel Architecture

Dries Kimpe1,3, Andrea Lani2, Tiago Quintino2,3, Stefaan Poedts1,
and Stefan Vandewalle3

1 Centre for Plasma-Astroyphysics, K.U.Leuven, Celestijnenlaan 200B,
B-3001 Leuven, Belgium

Dries.Kimpe@wis.kuleuven.be
2 Von Karman Institute, Aerospace Dept., Waterloose steenweg 72,

B-1640 Sint-Genesius-Rode, Belgium
3 Scientific Computing Group, K.U.Leuven, Celestijnenlaan 200A,

B-3001 Leuven, Belgium

Abstract. This paper discusses the parallel design of COOLFluiD (Computa-
tional Object Oriented Library for Fluid Dynamics), a state-of-the-art C++
framework for multi-physics simulations using multiple numerical methods on
unstructured grids. By using advanced techniques and specific design patterns,
flexibility and modularity are assured. COOLFluiD was recently adapted to sup-
port parallel computations on distributed memory machines. For this, a parallel
layer was added, designed to minimize impact on both users and software de-
velopers, while maintaining high performance. From the user’s point of view,
parallelisation is fully transparent. The techniques making this possible will be
discussed. Also presented is a technique for reconciling generic programming
with libraries requiring explicit type information.

1 Introduction

Since long, scientific simulation codes have supported parallel architectures. Usually,
such a code only supports one parallel model, although sometimes compilation with-
out parallelisation is still possible. However, in the latter case parallelisation is gen-
erally very intrusive, polluting the code with #ifdef MPI (or equivalent) blocks[8,9].
Others[3] require the user to link with a special emulation library which creates the illu-
sion of a single-cpu parallel machine. Combined with the dynamical nature of scientific
codes, these practices often reduce the lifetime of such projects to a few years, before
they eventually break down under their own complexity.

In 2001, the COOLFluiD project was started. Its goals were to be clean, modular
and maintainable and to be able to serve as a base code for a long period. It is written
in C++ and uses object orientation to facilitate code reuse and modularity. Generic
programming and advanced template techniques are used to regain some of the speed
lost due to the object orientation.

The target audience of COOLFluiD consists mainly of two groups. The first group
are the end users, running the software to simulate physical phenomena. They want
COOLFluiD to deliver high performance and require it to be easy to use. The second
group consists of the developers extending the functionality of COOLFluiD. They want
the code to be clean, modular and stable.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 520–527, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The COOLFluiD Parallel Architecture 521

Upon introducing the parallelisation, the expectations of both groups had to be re-
spected. In this paper, we will focus on the design changes that made this possible. More
information concerning COOLFluiD’s general design can be found in [4] and [5].

2 Design of the COOLFluiD Parallel Layer

The task of the parallel layer consists mainly of hiding specific implementation details.
It should conceal the parallelisation from the rest of the framework, promote code reuse
between serial and parallel versions and decouple the framework from a specific parallel
paradigm. This is realised by exporting a number of high-level concepts to the layers
above.

It is common practice to add an abstraction layer to make a code independent
of the underlaying layers. However, every indirection layer introduces overhead. The
COOLFluiD parallel layer is an exception to this, as it is only present at source code
level. By using advanced C++ techniques, the compiler is able to remove almost all
traces of this indirection, and only inlined model specific code remains after
compilation.

2.1 Parallel Models

Within the parallel layer, the parallel model represents a certain parallel implementation
(e.g. MPI[1], PVM[2]). The used parallel model is only known to the parallel layer. In
the code, each concept is provided by a template class, of which the template parame-
ter identifies the parallel model. This class is subsequently specialised for every model.
There is almost absolute freedom in how this is done, as there is no inheritance rela-
tionship between the general concept and its specialisation. As is common in generic
programming, each specialisation only has to “look like” the original (also referred to
as duck typing[12]). As this does not rely on virtual functions, the exact specialisation
used is completely known at compile time, giving enormous freedom to the optimiser
to generate efficient code.

Every model has a tag class associated with it. This class contains no variables
or member functions, and is never instantiated. The tag only is used for overloading
the different concepts. Most concepts also have a suitable default for their template
parameter. At compile time, this default is aliased to one of the tag classes by taking into
account the available models and the preference of the user. For example, the reduction
concept defaults to the tag GLOBAL. Outside of the parallel layer, only these aliases are
used. When compiling with MPI support, the configuration system will alias GLOBAL to
MPI, the tag class of the MPI model implementation. When compiling without parallel
support, GLOBAL will alias NONE, the tag class of the serial implementation. This way,
client code using the concepts is independent of the selected parallel model.

This scheme has a number of advantages compared to the more common alterna-
tive of selectively including header files (containing the specific code written for one
model). Although our scheme does not allow run-time selection of the model (as this
would always create some runtime overhead), it does allow easy sharing of code be-
tween different models. It even allows combining different models in the same program.
Certain modules and plug-ins could be compiled both with and without MPI support,

522 D. Kimpe et al.

allowing COOLFluiD – when appropriate – to select optimal serial algorithms even
when it was configured and compiled with support for parallel execution!

2.2 The Parallel Environment

The Parallel Environment (PE) is a first example of such a concept. This singleton class
represents the execution environment. It initialises the parallel computer and – when
necessary – takes care of transparent registration of data types and operations. The PE
class is the only source of explicit parallelisation details (e.g. the number of available
CPU’s).

2.3 The Datastorage

Some completely new operations, previously unexisting in the serial version were nec-
essary. The synchronisation of the unknowns between the different CPU’s is an example
of this. These operations are handled, whenever possible, by extending existing high
level structures and implementing them as parallel concepts. Because of the modular
nature of the framework, a facility had to be created that allowed sharing of data be-
tween unrelated modules. For this, the datastorage was created. It allows storing and
registering data under a name, by which other modules can retrieve it. In COOLFluiD,
mesh information (including unknowns) is stored in such a fashion.

In a parallel simulation, these unknowns need to be synchronised between iterations.
To enable this, the datastorage was promoted to a concept. This means the every parallel
model should provide a datastorage implementation which, although is not exactly alike
at the type level, looks and feels the same to the programmer. For performance reasons,
no default template parameter is is provided for the datastorage. As the datastorage is
heavily used, the overhead of allowing distributed access to every instance would be
too large. The programmer explicitly has to specify if a distributed, global datastorage
or a purely local one is needed. This is done by providing the LOCAL or GLOBAL tag as
one of the template arguments.

Global data can be accessed by other CPU’s in an easy model independent way
without requiring explicit parallelisation details as rank or communicator. Each model
provides an optimized datastorage implementation, making full use of any advanced
capabilities the model supports. The serial model has the old datastorage as its imple-
mentation, extended by empty inlined synchronisation methods.

LOCAL always aliases the the old non-parallel datastorage. When the user preferred
MPI support, the global datastorage is provided by the MPI model. However, when con-
figured without parallelisation, both GLOBAL and LOCAL alias the serial model, allowing
all code to be compiled without changes and without any performance overhead.

2.4 Implementing a New Parallel Model

Every parallel model has to provide a specialised version of each concept. By careful
code design, their number could be kept to an absolute minimum. For explicit simula-
tions, next to model specific workarounds – such as the MPI type mapping – only three
concepts need to be coded when adding a new parallel model.

The COOLFluiD Parallel Architecture 523

COOLFluiD was designed for distributed memory machines. It relies on domain
decomposition to divide the workload between processors. Still, implementing a shared
memory model is possible, although more research is necessary to see if a fully shared
datastorage implementation is feasible.

2.5 Example

When modifying COOLFluiD to support parallel architectures, the code had to be
changed in surprisingly few places. One of these was in the computation of the residual.
This is a typical mesh computation, in which a numerical value is computed locally at
each mesh point, after which all values are to be summed into one numerical result. In
COOLFLuiD, this is done by a functor (a class implementing operator()). In a paral-
lel simulation, the residual has to be gathered from all CPU’s. Hence, when compiling
with MPI support, the code should transform into a call to MPI Allreduce. However,
on systems lacking parallel support, the same code has to compile without overhead.
Listing 1 shows the neccesairy modifications that make this possible.

Listing 1 The old and new residual code (simplified)
// Old code
class ComputeResidual { // CalcResidual is provided elsewhere
double operator () { return CalcResidual (); }

};
// Modified code
class ComputeResidual : public Parallel::GlobalReduce {
typedef double RESULTTYPE;
double operator () { return GR_GetGlobalValue(); }
RESULTTYPE GR_GetLocalValue() { return CalcResidual (); }
void GR_Combine(RESULTTYPE & T1, RESULTTYPE & T2, RESULTTYPE & Out)

{ Out = T1 + T2; }
};

The GlobalReduce concept is the key to this transformation. To use it, the Compute-
Residual class only needs to be extended with two small functions and a typedef. The
typedef is neccesary to expose the resulting data type of the residual (a double or float in
this case) to the GlobalReduce class. The first function, GR GetLocalValue() is just
the old operator() returning the local residual. The second function, GR Combine()
should return the combination of its two input parameters. Operator() is adapted to re-
turn the value of GR GetGlobalValue(), a function inherited from the GlobalReduce
class.

These small changes make it possible for the ComputeResidual class to do the
right thing without even knowing the concrete parallel model: the hidden extra tem-
plate parameter, defaulting to GLOBAL, will make sure the right model specific code
is used. When compiled with MPI support, the code fragment returns the combined
residual. In the serial implementation of the concept, GR GetGlobalValue() merely
returns GR GetLocalValue(). As such, when compiling without parallel support, the
call to GR GetGlobalValue() results in the inlining of GR GetLocalValue() inside

524 D. Kimpe et al.

operator(), resulting in exactly the same code as existed before the parallelisation of
COOLFluiD.

3 Hiding MPI

COOLFluiD strongly relies on generic programming techniques to allow both code
modularity and efficiency to coexist. Most concepts are generic in nature: for instance,
the reduce concept demonstrated above should handle any C++ type, including user
defined ones. However, some libraries[1][2][13], such as the MPI library, force the user
to specify the type of the data involved. Special care is required when calling these
libraries from generic code.

3.1 Goals

Because of their explicit type parameter the MPI C (or C++) language bindings do
not interact well with generic programming. Therefore, the COOLFluiD MPI Parallel
Model needs a type mapping facility, which transparently translates C++ datatypes to
their corresponding MPI type definitions. This facility has two main tasks: it has to
map C++ types to their corresponding library type value, and also has to automatically
register all other C++ types, including user defined types. To ensure the highest perfor-
mance, this mapping should be done at compile time whenever possible. In all other
cases, overhead should be as low as possible. In order to respect the modularity and
layer goals, no code modification outside of the parallel layer is allowed.

3.2 The COOLFluiD Automatic Type Mapping Facility

All of the above goals were obtained by using a combination of type traits[6], template
classes and self-registering singletons[7]. The type system is accessed through a tem-
plate function with one template parameter and no “ordinary” function parameters. It
returns the MPI type corresponding to its template parameter, which has to be speci-
fied by the programmer. A helper function taking a normal function parameter is also
provided. It enables the compiler to deduce the corresponding C++ type, relieving the
programmer of this task, and hence diminishing the opportunity for mistakes.

The mapping function is really a family of functions of which the exact function
contents differ greatly depending on the structure of the type involved. By using type
traits, the layout of a given type is detected at compile time. If the type has a predefined
library equivalent (e.g. MPI DOUBLE), the mapping is performed at compile time by an
inline function which only returns the corresponding library type. Most optimisers are
able to “see through” small inline functions, enabling them to replace the function call
by the returned value.

New types are, on first usage, constructed appropriately by using the correct MPI
type constructors. For example, in case of an array, its size and base type are deduced,
and code is inserted to register the type at runtime by a call to MPI Type vector. The
base type is handled in a recursive way, allowing full mixing of arbitrary types. How-
ever, because of current language limitiations (C++ is lacking reflection support), struc-
tures and classes cannot be deduced automatically. In these cases the option is given

The COOLFluiD Parallel Architecture 525

to have them automatically registered as an array of bytes, which is not a problem in
homogenous clusters. Alternatively, the user can declare its own registration routine,
which will take precedence over the automatic routines. This is also useful for register-
ing types that supersede the C++ type system (e.g. non-contiguous types). The newly
registered type is stored, and subsequent requests to map this type will immediately
return the stored type. All created types are also remembered, and are released when
the type system is shut down. As all type properties are deduced from the type itself, no
external code needs to be modified.

3.3 Overhead

By making use of inline functions, the automatic type registration system is able to
achieve zero overhead for any native MPI type. The overhead for user defined types is
limited to exactly one if-test. Even this last test can be avoided if the user guarantees
the type will have been preregisterered. Listings 2 and 3 show the generated assembler
code for native MPI code and the code generated by the COOLFluiD type system for
both simple types and user types. All tested compilers (versions 3.3 and 3.4 of the GNU
C++ compiler and versions 7 and 8 of the Intel compiler) were able to perform these
optimisations. As listing 2 shows, the automatic type mapping generates optimal code,
indistinguishable from hand-coded calls. The example lists the generated assembler
code when calling a function expecting an MPI data type.

Listing 2 “Native” MPI code and automatic type mapping for built-in types
Direct specification of the type: Accept(MPI_DOUBLE);
movl MPI_DOUBLE, %edx
movl %edx, (%esp)
call Accept

Automatic type mapping: Accept(MPIDataTypeHelper<double>::GetType());
movl MPI_DOUBLE, %edx
movl %edx, (%esp)
call Accept

Listing 3 Using the type mapping system with a user-defined type (simplified)
Accept(MPIDatatypeHelper<UserType>::GetType());
cmpb $0, guard variable for GetType<UserType>()::Type
jne .L3
movb $1, guard variable for GetType<UserType>()::Type
code for constructing the MPI representation of UserType omitted

.L3: movl GetType<UserType>()::Type, %edx
movl %edx, (%esp)
call Accept

526 D. Kimpe et al.

3.4 Related Work

MPI C++ Bindings. The MPI C++ bindings are only a thin layer on top of MPI.
For generic programming, they provide no added value but grouping the many MPI
functions inside an appropriate namespace and class. Transfer functions still require an
explicit parameter specifying the type of the data involved.

C++2MPI. Although C++2MPI[11] can be used to generate the C++ type to MPI
type mappings, the tool is not useable in a framework like COOLFluiD. It requires
special #pragma markers around every user type that will be transferred through MPI.
As such, it requires changes in the core framework and in modules not related to the
parallelisation. This is not acceptable, as this clearly violates the design goals stated at
the start of the project. Moreover, C++2MPI requires preprocessing of the source code
by a seperate tool. This tool would again need to be run on almost every file of the whole
project (as each module could declare a type which could subsequently be transferred
to another cpu).

OOMPI. Object Oriented MPI (OOMPI) is a class library specification that encapsu-
lates the functionality of MPI into a functional class hierarchy. Unlike the MPI C++
bindings, it does not closely adhere to the MPI C bindings. It is a layer on top of MPI
to provide an object oriented interface. As such, it is comparable to the MPI type ab-
straction system present in COOLFluiD. In OOMPI, all data transfer functions accept
an OOMPI_Message class that describes both the data location and the datatype. The
library provides constructors for the built-in types, so a native type can be passed any-
where a OOMPI_Message is expected. The compiler automatically promotes this type
to the class type required by the transfer functions. Although this promotion is very
lightweight[10], it happens on every invocation. The OOMPI documentation states that:

Message objects could be eliminated entirely by declaring each communication
function in terms of every base data type. However, this would result in an
enormous number of almost identical member functions.

However, this is exactly what is done by the COOLFluiD type system: for every type
passed to MPI, the compiler generates code to register and free it – if not a built-in type
– and creates a small inlined function to return the actual MPI data type.

4 Conclusions and Future Work

COOLFluiD proves that a flexible, maintainable parallel simulation code can be created
by using modern software techniques and a careful design. Moreover, parallelisation
can be (almost) completely shielded from end users and developers. It includes a type
mapping system, designed to ease integrating MPI into generic libraries.

Work has started on loosely coupled simulations, in which two or more completely
seperated COOLFluiD instances (running different physical models) exchange simu-
lation data. This will also be handled by employing the techniques presented in this
paper. For this, a third parallel model alias (REMOTE) will be introduced. It will en-
able COOLFluiD to use shared memory, MPI or other paradigms as inter-simulation
communication channels, independently of the selected intra-simulation communica-
tion model.

The COOLFluiD Parallel Architecture 527

References

1. Message Passing Interface Forum, MPI: A message-passing interface standard,
http://www.mpi-forum.org.

2. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM: Parallel
virtual machine: a users’ guide and tutorial for networked parallel computing, MIT Press.
1995.

3. Argonne National Laboratory, PETSc. Portable, Extensible Toolkit for Scientific Computa-
tion, http://www-unix.mcs.anl.gov/petsc, 2004.

4. A. Lani, T. Quintino, D. Kimpe, H. Deconinck and S. Vandewalle, The COOLFluiD Frame-
work: Design Solutions fo High Performant Object Oriented Numerical Simulations of Par-
tial Differential Equations, International Conference on Computational Science 2005, 279-
286.

5. P. De Ceuninck, T. Quintino, S. Vandewalle, H. Deconink. Object-Oriented Framework
for Multi-Method Parallel PDE software, ECOOP’03 - European Conference for Object-
Oriented Programming in the workshop Parallel/High-Performance Object-Oriented Scien-
tific Computing.

6. Nathan Myers, A New and Useful Template Technique: Traits, C++ Report, June 1995.
7. J. Beveridge, Self-Registering Objects in C++, Dr. Dobb’s Journal, August 1998b.
8. G. Toth, A General Code for Modeling MHD flows on Parallel Computers: Versatile Ad-

vection Code, IAU Colloquium No. 153 on Magnetodynamic Phenomena in the Solar At-
mosphere, Makuhari, Japan Proceedings p. 471-472, 1995.

9. G. Gray, T. Kolda, APPSPACK 4.0: Asynchronous Parallel Pattern
Search for Derivative-Free Optimization, Sandia National Laboratories,
http://software.sandia.gov/appspack.

10. P. Rijks, J. Squyres, A. Lumsdaine, Performance Benchmarking of Object Oriented MPI,
Technical report, University of Notre Dame Department of Computer Science and Engineer-
ing, 1999.

11. R. Hillson, M. Iglewski, C++2MPI: A Software Tool for Automatically Generating MPI
Datatypes from C++ Classes, 2000 International Conference on Parallel Computing in Elec-
trical Engineering (PARELEC 2000), 13-17, 2000.

12. A. Koenig, B. E. Moo, Templates and Duck Typing, C/C++ Users Journal June, 2005.
13. The National Center for Supercomputing Applications, HDF5 Homepage,

http://hdf.ncsa.uiuc.edu/HDF5/.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 528 – 535, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Calculation of Single-File Diffusion Using Grid-Enabled
Parallel Generic Cellular Automata Simulation

Marcus Komann, Christian Kauhaus, and Dietmar Fey

Friedrich-Schiller-University Jena, Germany
marcus.komann@web.de, kauhaus@inf.uni-jena.de,

dietmar.fey@uni-jena.de

Abstract. Parallel execution of simulation runs has become indispensable in
different research areas recently. One of the most promising and powerful
models in science are cellular automata (CA). This paper describes the
approach to migrate parallel execution of a cellular automata simulation
program called ParCASim via grid-capable message passing from cluster to
grid environments. The applicability of the program is demonstrated for the
calculation of sophisticated single-file diffusion problems and exploits the
improved compute power of the underlying grid in order to deliver results faster
and more precise than on classic cluster architecture. In this paper, we discuss
ParCASim as a tool, and the utilised cluster-to-cluster interconnection is
outlined. Furthermore, the paper describes single-file diffusion and how it is
calculated via the CA model. Finally, time and efficiency measurements are
taken which show the applicability of the approach.

1 Introduction

The importance of parallel and distributed computing has increased much in the last
years due to the inability of single computers to solve some sophisticated
computational problems efficiently. Some problems are even impossible to solve on a
single computer because their size exceeds the computer’s physical memory.
Scientists have come across these problems in many different areas, for example
meteorology (e. g. weather forecast [MLB01]), medicine (myocardium phenomena
research [CzG04]), microsystems design (photo detector engineering [FKK04]), fluid
dynamics (channel flow [DFP03]) etc.

To solve these problems, the use of cluster computers has raised much interest
because it provides plenty of compute power for a much lower price than dedicated
supercomputers. The production of cheap high performance network hardware has
contributed to this development because processor power already was available for
acceptable prices before. This fast network hardware can now be used along with
powerful processors to form an efficient execution platform for scientific research and
simulation.

A lot of successful research effort has been made recently in homogeneous
computing environments like clusters along with the development of middleware and
programming languages. But with increasingly demanding applications and much idle

 Calculation of Single-File Diffusion 529

computing power among especially desktop computers the need for the connection
and concurrent usage of systems with different hard- and software is constantly rising.

A cluster computer is able to speedup a parallel program by using more compute
power on the parts of the program which could be calculated concurrently.
Nonetheless, a cluster only has limited resources even if these limits can be high.
They exist due to the cluster’s design and architecture. If someone wants to execute a
program which does not fit in the cluster’s memory or which would use too much
time on an existing cluster these limitations have to be overcome. This can be done by
extending the cluster with new computational nodes, where each node might exhibit
different capabilities regarding processor, memory performance, interconnects,
external networking facility, operating system and so on. Especially if these nodes are
idle nodes like unused desktop computers in a company or a university it would be
nice to utilise their additional compute power to gain scientific results faster or with
higher precision.

Many physical, biological, chemical, social or economical processes problems can
be described using cellular automata and therefore the demand for high speed
simulation programs is large. There are already some parallel CA simulators like
CARPET/CAMEL. But they are only able to run on single clusters. One special
problem which needs particular high-speed research is the single-file diffusion
problem which is one of our current research projects. Because of this demand and
because CA are very well scalable and can be parallelised relatively easy we built a
generic parallel CA simulation program which is capable not only of running on a
cluster but also in a grid environment. This program can simulate a vast variety of
cellular automata and – due to its parallel implementation – is able to calculate huge
setups very fast.

This paper is organised as follows. After the introduction we shortly outline
cellular automata and the simulation program ParCASim along with the single-file
diffusion problem and how it is solved by using CA in chapter 2. Chapter 3 describes
the setup of the utilised cluster and grid and the middleware used. Finally we present
taken measurements and results and end with conclusions.

2 Cellular Automata

2.1 Introduction

One might say that the basic laws of physics relevant to everyday phenomena are all
found and understood completely (not considering quantum mechanics). But there are
some common natural systems whose complex structure and behaviour make it very
difficult or even impossible to describe them analytically. For example, the laws that
specify the freezing of water and the conduction of heat have long been known, but
analysing their consequences for the intricate patterns of snowflake growth has not
yet been possible. Many large and complex systems might be broken down into
identical parts of which each follows simple rules. But when these components are
put together they also might show a much more complicated and sophisticated
behaviour because of interaction of the several components.

530 M. Komann, C. Kauhaus, and D. Fey

One could try to simulate the whole system by simulating each of the components
separately. That approach can work for some of the systems but in most cases it will
fail. In order to find out about the system, one has to try to filter the mathematical
essence by simulation and observation of the complete system instead. The desire in
such an approach would be to identify fundamental analytical mechanisms that are
common to various natural systems and could therefore be used more generally. In
order to find and analyse the mathematical basis for our generation of high
complexity, one must identify simple mathematical systems that capture the essence
of the process. Cellular automata (CA) are a candidate class of such systems.

2.2 The Model

CA are discrete dynamical universes whose behaviour is completely specified in
terms of local transition rules. Local extension is represented by a uniform grid
consisting of local objects called cells which contain only few data each. Time
advances in discrete steps and (depending on the local rule) at each step each cell
computes its new state from that of its adjacent neighbours. Therefore, the system's
laws are local and uniform but it is possible to gain knowledge about long-term
behaviour of the whole complex system.

It should be noted that it is currently unknown whether there are better algorithms
than straightforward simulation for getting to know the state of a designated cell at
one given point in time although this is the desired aim. This problem is complete for
P [GHR95]. Besides, it might be important to know the state of the cells after every
transition and this is why there is no way of dodging step-by-step simulation.

There is lots of literature around on the subject of cellular automata. A very
detailed look on CA along with some elaborately information can be found in
[Wol02a] and [Ila02]. A closer look to questions of complexity is given in [Wol02b].

A classic, standard cellular automaton A=(L, Q,, N, , Q0) is defined by a regular
lattice geometry L in which the single cells are embedded, a finite set of states Q
(sometimes also called alphabet), a local, uniform and finite neighbourhood N, a
transition function : QN x Q Q which applies for each cell and an initial setting Q0
of the lattice cells.

The states of all cells change according to the transition function to new states of Q
after discrete time steps. The state of the whole automaton changes spatially parallel
and synchronously to the global clock and is heavily dependant on the starting
configuration.

2.3 ParCASim

ParCASim means parallel cellular automata simulator. It uses MPI as communication
facility on a cluster and IMPI [GHD00] in grid environments. It was designed to
simulate a vast variety of different CA. ParCASim uses an input file where the
different attributes of the CA are specified (like dimension, size, number of states,
radius, neighbourhood, edge type and the amount of iterations). In order to give the
user the possibility to write his own generic transition function ParCASim is able to
use either a transition table from the input file or a generic rule file which can be
written by the user. It was designed to simulate huge lattices in possibly high

 Calculation of Single-File Diffusion 531

dimensions. There are already existing CA simulators which can be used for small
setups. ParCASim is intended for complex and highly-demanding scientific
applications where it is important to have the possibility to utilise generic and/or non-
deterministic transition functions.

2.4 Single-File Diffusion

Single-file diffusion refers to the one-dimensional motion of particles in materials
which are that narrow that mutual passage of particles is excluded. Since the sequence
of particles remains the same, this leads to strong deviations from normal diffusion,
e.g. an increase of the particle mean-square-displacement as t1/2. Besides theoretical
interest, the single-file diffusion problem is encountered in various fields (one-
dimensional hopping conductivity, ion transport in biological membranes, channelling
in zeolithes).

This type of diffusion can be modelled very well using CA. To do so, one has to
create a one-dimensional automaton with the desired amount of particles referring to
cells in the CA. The ordering of the particles doesn’t change but their state might
modify according to certain influences especially by their neighbours. This can be
simulated by applying the local transition rule to the cells. The unforeseeable
behaviour of the single particles can then be observed by simulating the lattice as we
do with ParCASim.

3 Cluster and Grid Measurement

In order to compute the single-file diffusion problem efficiently we decided to try to
execute simulations both on cluster and on grid. This chapter describes the approach,
the hardware setups and the middleware used. The results are shown at the end.

3.1 The Testing Environment

The testing environment is situated at the department of computer architecture at the
Friedrich-Schiller-University in Jena/Germany. In order to proof the feasibility of
ParCASim in a grid environment we have built a heterogeneous setup which consists
of two different computer systems.

Sun. The first one is a SUN Sparc Enterprise 2500. It has 5 equal Sparc processors
and 3 GB of RAM and is running Solaris 8. This machine is connected to the internet
via a 100MBit/s SUN network adapter.

Cluster. The second part of our heterogeneous system is a Beowulf-style [Ste99]
cluster. This cluster consists of eight worker nodes and one master node. The eight
nodes have Intel Pentium IV processors with two gigahertz cpu frequency and 512
MB RAM. The master node consists of a 2.4 gigahertz hyperthreading Pentium IV
with 2 GB RAM. The whole system is interconnected via Gigabit Ethernet and has a
100 megabits-per-second connection to the internet on the head node. Only this PC
has a public IP address. All other nodes have internal IP addresses and are not directly
accessible from the outside. Because the head node uses two different network

532 M. Komann, C. Kauhaus, and D. Fey

interface controllers for inside and outside communication an adequate middleware
has to deliver some routing infrastructure to enable nodes from outside the cluster to
communicate with the internal nodes.

Grid Middleware. We tried several message-passing middleware systems like PACX
[PAC03], MPICH/Madeleine [Aum02] etc, of which most did not work correctly or did
not work at all. Most of these systems use gateway nodes to connect different clusters
to one another. The usual way to provide heterogeneity is by enabling the
programmer to use a new set of libraries for linking his program and new program
start-up mechanisms. These libraries are typically built on so-called devices which are
stated below the MPI communication library. This approach requires to solve many
sophisticated problems like message routing, effective implementation of collective
operations, reliable ordered message submission within different communication
methods, packet bundling strategies, protocol conversion or addressing issues in
possibly incompatible networks, dealing with firewalls and maybe even effective load
balancing.

In the end we found the LAM implementation of IMPI [GHD00, SLG00] to be most
suitable for our purposes. The architecture has four parts: a server where
implementations synchronise at start-up, a client which acts as a representative for
one MPI implementation, one or more hosts which belong to a specific client (the
cluster nodes) and processes which run on a specific host. The clients take care of
inter-cluster communication via providing inter-cluster nodes TCP/IP connections.

While testing IMPI on our heterogeneous environment we encountered the
problem that IMPI routing did not operate as intended. Processes from within the
cluster (only internal and no public IP address) were not able to send messages to the
outside. The forwarding through the head node (with public IP address) did not work
out as proposed in the specification. The IMPI router process was unable to do a
network address translation when sending messages from one of the worker nodes to
the SUN nodes.

To solve this problem we enhanced our heterogeneous environment by adding
openMosix [Bar03] to the cluster. This is a Linux kernel extension which allows users
to look at a cluster as one system (also called single system image). It is able to
migrate processes from a busy node to another one running the same kernel. This
could be used for load balancing and for preventing memory swapping (resource
sharing) and results in improved overall performance. Our approach is the following:
We start all cluster processes on the head node and use openMosix to migrate them to
other nodes in the cluster. Hence, openMosix takes care of communication of intra-
cluster nodes.

3.2 Measurement Results

We only provide a sample measurement result here to express proof of concept
because achievable speedup is heavily dependant on the specific calculated CA.
Especially in the grid environment, where message latency might be high and if the
time nodes compute is relatively slow in comparison to message time, then speedup
might be very low. Hence, parallel execution only makes sense if the time consumed
by computation is high in comparison to message passing time. But for large,

 Calculation of Single-File Diffusion 533

complex lattices this is a given fact and this is what ParCASim is intended for. The
reason for this lies in the structure of a partitioned CA simulation. Every node gets
one part of the complete lattice and has to communicate a certain amount of data with
it’s neighbours before each iteration step to receive the neighbour cells itself doesn’t
compute. If these steps themselves only take very short time the overhead in
communication kills the speedup gained with higher amount of nodes and compute
power.

We started with calculating a problem on one of the SUN processors and added the
other processors step-by-step until five afterwards. When we reached this maximum
amount of Sparcs, and thus fastest possible execution on this architecture, we went to
grid execution by attaching cluster nodes one by one up to nine.

Fig. 1 and Figure 2 show the results achieved when calculating a lattice with 1
million and with 10 million cells in 100 iterations and a simple rule file. These
simulations took 312 and 3171 seconds on a single processor of the SUN computer.
First, it can be seen that parallel execution is useful both on homogeneous and on
heterogeneous systems but especially on grid. The SUN alone needs 69 and 682
seconds with maximum amount of processors. Second, moving to grid lets us gain
even more. Using all available nodes the calculation only took 56 and 203 seconds in
the end. More complex rule files or larger lattices would add to this fact because the
ratio between communication time and computation time would be smaller what
would lead to less overhead and even faster execution times.

The small rise in Fig. 1 between five and six (moving to grid) processors is due to
increased communication overhead in grid which appears because of slower
underlying network hardware in the heterogeneous system. This overhead was 23
seconds in our examples and is larger than computation power gained by adding one
of the cluster nodes. Using further cluster nodes pays off with faster execution but we
reach saturation very fast in this example as we do not decrease execution time
significantly later on by adding more processors. Fig. 2 does not show this behaviour
because overhead is smaller than gained computation power and adding nodes further
on speeds up computation.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Nodes

E
xe

cu
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

Fig. 1. Results with 106 cells and 100 iterations

534 M. Komann, C. Kauhaus, and D. Fey

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Nodes

E
xe

cu
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

Fig. 2. Results with 107 cells and 100 iterations

4 Conclusions

We presented a working fast generic cellular automata simulator for complex and
possibly non-deterministic lattices and showed how single-file diffusion problems can
be solved by using it. Calculating these diffusion phenomena is a current subject of
research in Jena and will be expanded in future. We also outlined the setup of a
heterogeneous computing environment using IMPI and openMosix to connect a Linux
cluster and a SUN Sparc machine and how this grid can be used to speed up the
parallel CA simulation. Measurements were taken on cluster and on grid which
showed the feasibility of the approach. Complex cellular automata can be simulated in
much shorter amount of time by parallelising them and by furthermore executing the
parallel program not only on cluster but on grid.

References

[Aum02] O. Aumage: Heterogeneous multi-cluster networking with the Madeleine III
communication library, In Proceedings of 16th International Parallel and Distributed
Processing Symposium (IPDPS 2002), page 85, Washington – Brussels – Tokyo,
2002

[Bar03] M. Bar, Maya, Anu, Asmita, Snehal, Krushna (MAASK): Introduction to
openMosix, Linux Congress, 2003

 [CzG04] P. Czarnul, K. Grzeda: Parallel Simulations of Electrophysiological Phenomena in
Myocardium on Large 32 and 64-bit Linux Clusters, In D. Kranzmüller, P. Kaczuk
and J. Dongarra (editors): Recent Advances in Parallel Virtual Machine and
Message Passing Interface, number 3241 in LNCS, pages 234 - 241, Springer, 2004

[DFP03] J. Denev, T. Frank, K. Pachler: Large Eddy Simulalow using a PC-cluster
Architecture, In I. Lirkov, S. Margenov, J. Wasniewski, Y Plamen (editors): Large-
Scale Scientific Computing, number 2907 in LNCS, Springer, 2004

 Calculation of Single-File Diffusion 535

[FKK04] D. Fey, M. Komann, C. Kauhaus: A framework for optimising parameter studies on
a cluster computer by the example of micro-system design, In D. Kranzmüller, P.
Kaczuk and J. Dongarra (editors): Recent Advances in Parallel Virtual Machine and
Message Passing Interface, number 3241 in LNCS, pages 436 – 441, Springer,
2004

[GHD00] W. L. George, J. G. Hagedorn, J. E. Devaney: IMPI: Making MPI Interoperable
and complete IMPI specification, number 105 in Journal of Research of the
National Institute of Standards and Technology, 2000

[GHR95] R. Greenlaw, H. J. Hoover, W. L. Ruzzo: Limits to Parallel Computation, Oxford:
Oxford University Press, 1995

[Ila02] A. Ilachinski: Cellular Automata: a discrete universe, Singapore (et. al.): World
Scientific, 2002

[MLB01] J. Michalakes, R. Loft, A. Bourgeois: Performance-Portability and the Weather
Research and Forecast Model, HPC Asia 2001

[PAC03] R. Keller: PACX documentation, HLRS Stuttgart, Germany, 2003
[SLG00] J. M. Squyres, A. Lumsdaine, W. L. George, J. G. Hagedorn, J. E. Devaney: The

Interoperable Message Passing Interface (IMPI) Extensions to LAM/MPI,
Proceedings of MPI Developer's Conference (MPIDC) 2000, Cornell University,
NY, 2000

[Ste99] T. L. Sterling: How to build a Beowulf: a guide to the implementation and
application of PC cluster, Cambridge, Mass (et. al.): MIT Press, 1999

[Wol02a] S. Wolfram: A new kind of science, Champaign, Ill: Wolfram Media, 2002
[Wol02b] S. Wolfram: Cellular automata and complexity: collected papers, Boulder, Co:

Westview-Press, 2002

Harnessing High-Performance Computers
for Computational Steering

Petra Wenisch1, Oliver Wenisch2, and Ernst Rank1

1 Technical University Munich, Arcisstrasse 21, 80290 Munich, Germany
{wenisch, rank}@bv.tum.de

http://www.inf.bauwesen.tu-muenchen.de
2 Leibniz Computing Center, Barerstrasse 21, 80333 Munich, Germany

wenisch@lrz.de
http://www.lrz.de

Abstract. This study presents a computational steering project to-
gether with optimization approaches to counteract problems of inter-
active use when coupling a supercomputer with a visualization inter-
face, allowing for user interaction during a running computational fluid
dynamics (CFD) simulation. The underlying Lattice Boltzmann-based
CFD computation and grid generation is performed on a supercomputer
while the steering and data visualization of the simulation is done on a
graphical front-end application on an external system. The interaction
during a simulation run comprises not only the variation of parameters,
but also the modification of the geometry and hence the computational
grid. The simulation kernel shows good parallel efficiency on the Hi-
tachi SR8000 supercomputer at the Leibniz Computing Center (LRZ)
and therefore enables an online simulation which instantly reacts to user
manipulations.

1 Introduction

Numerical CFD simulations are gaining increasing importance as a valuable sup-
plement to classical wind-tunnel experiments. However, an accurate computation
of a fluid flow scenario is still a time-consuming process and requires resources
of powerful clusters or supercomputers to keep the computation time reasonably
short. The pre-design phase of buildings or even huge ships usually lasts only
a few weeks and later changes to the design incur a dramatic increase in costs
[1]. Therefore, an interactive tool is desired to perform several case studies in a
very short time to achieve preliminary investigations, possibly followed by just
a few carefully selected simulations with more details. The present interactive
CFD application was developed with this kind of issues in mind. It concentrates
on indoor air flow simulations and allows the user to interact with flow para-
meters, boundary conditions, and geometry within the simulated scene during a
simulation run.

The first part of this paper gives a brief introduction to the Lattice Boltz-
mann method. Subsequently, the main aspects of computational steering, viz.
the simulation kernel, grid generation and, most importantly, the communication
concept will be discussed.

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 536–543, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Harnessing High-Performance Computers for Computational Steering 537

2 The Lattice Boltzmann Method

The Lattice-Boltzmann method (LBM) has emerged as a complementary tech-
nique for the computation of fluid flow phenomena [2,3]. Common numerical
methods for the simulation of fluid dynamics are based on a discretization of the
Navier-Stokes nonlinear partial differential equations. The LBM represents an
alternative approach consisting of a discrete microscopic model combined with
statistical physics. By computing the dynamics of particle densities for a discrete
number of velocities and directions at each grid point appropriately, quantities
such as mass and momentum are conserved to fulfill the hydrodynamic laws.
The Lattice-Boltzmann algorithm computes the ‘collision’ of microscopic, ‘vir-
tual particles’ and updates the velocity distribution functions within each sim-
ulation time-step. Collision is represented by the evaluation of the new velocity
distribution functions and, luckily, does not require data exchange with adjacent
grid nodes. ‘Propagation‘ refers to the migration of these distribution functions
to neighboring cells. Typically, the LBM is implemented on uniform Cartesian
grids making this approach to solving the Navier-Stokes equation particularly
well-suited for taking advantage of the parallelization and vectorization capabil-
ities of high-performance supercomputers like the 2 TFlop/s Hitachi SR8000 at
the LRZ in Munich [4].

3 Computational Steering

Usually, large and compute-intensive CFD simulations are run non-interactively
as batch processes on queuing systems of high-performance computers. After
the pre-processing step, i.e. after mapping the CAD data onto a computational
grid and defining the boundary conditions, a file or a database describing this
setup information is generated and submitted to a batch queue. As soon as
the required resources (a sufficient number of free processors and amount of
memory) are available, computation starts and saves its output to disk. The
user evaluates the simulation results during the subsequent post-processing step.
These steps are often carried out on different hardware architectures, e.g. desktop
PC, supercomputer and graphics workstation, respectively.

This kind of workflow is practical for problems when one is interested in ob-
taining detailed information in a fluid flow investigation. For the wide variety and
the explorative environment needed in case studies, however, the user would like
to interact with a running simulation and to visualize the corresponding phys-
ical reaction immediately. This is the basic idea behind computational steering
[5]. It requires the integration of the above-mentioned steps, viz. pre-processing,
computation and post-processing, into a single environment.

To fulfill the requirement of immediate or at least low latency response to
user interaction during a running simulation, a fast CFD solver must be run on
a supercomputer or cluster and has to be coupled to a steering and visualization
workstation by an efficient communication concept. In addition, the computa-
tion kernel has to allow for a fast grid modification during the simulation, and

538 P. Wenisch, O. Wenisch, and E. Rank

both steering and visualization should be available to the user within a single
environment. These aspects will be described in the following.

3.1 Kernel Optimization and Grid Generation

To establish the basis for interactive numerical computation, special care has
been taken to take full advantage of the vectorization and parallelization capa-
bilities of the specialized Hitachi SR8000 hardware.

The SR8000 is a pseudo-vector machine with 8 directly available CPUs on
each SMP node [11]. Therefore, the fluid domain computation has been par-
allelized in slices on several nodes via MPI. In addition, the computing loops
were parallelized using the 8 CPUs within each node (in COMPAS mode) by
OpenMP directives.

Figure 1 illustrates the performance and scaling of the simulation kernel
after the optimizations on the SR8000. The benchmarks were performed with a
constant grid size of 100x280x180 per slave (weak scaling) and with a total grid
size of 300x280x180 (strong scaling).

The improvements were accomplished by specifically rewriting the main com-
putation loops to enable the optimizing Hitachi compiler to use its vectorizing
and pre-fetching capabilities much more efficiently. Details can be found in [12].

1 2 3 4 5
10

20

30

40

50

60

70

80

90

100

ideal scaling

weak scaling

strong scaling

comute nodes (8 CPUs each)

M
Lu

p/
s

Fig. 1. Offline simulations without steering and visualization: At a high level of ab-
solute performance the application shows high efficiency for strong and weak scaling
with 86 and 89 %, respectively

Finally, fast grid generation is also an essential requirement for an interac-
tively steerable CFD application to allow the modification of the geometry, e.g.
by inserting or deleting obstacles. In our application, the user can load arbitrary
triangulated, CAD-generated geometries which the grid generator (described in
detail in [13]) transforms onto a uniform Cartesian grid representation required
by the Lattice-Boltzmann method (see section 2). The corresponding voxeliza-
tion algorithm for an optimized grid generation is based on the hierarchical
space-partitioning concept of an octree.

Harnessing High-Performance Computers for Computational Steering 539

3.2 Communication Concept

In the following, we concentrate on an appropriate design of communication
to meet the special technical challenges of computational steering. The visual-
ization workstation provides the functionality to display the current data and
interact with the simulated scene at the same time. Following user interaction,
the modifications are forwarded to the supercomputer. There the new configu-
ration is incorporated immediately and new results are sent to the visualization
client, where the user can observe the adaptation of the fluid flow. Fig 2 shows
the different components of the application and the corresponding data flows.

The slave processes (SIM-S) on the supercomputer mainly perform the LB
computation. To achieve good performance, it is essential to use vendor-optimized
intra-machine MPI for the communication with other processes. As long as no
interaction has occurred, they send current results at user-defined, regular in-
tervals and check for updated computational grids. In the event of interaction,
a new grid is received and new results can be sent after just a few time-steps to
give the user fast initial feedback depending on his manipulations. Consequently,
the transmission intervals are not necessarily regular throughout the run.

On the visualization side (VIS), an additional communication thread is started
to check for incoming results and to send user modifications without interrupt-
ing steering and post-processing. To keep the data transfer as short and infre-
quent as possible, only modifications to the setup are forwarded. Therefore, the

VIS SIM-M

SIM-S SIM-S SIM-S SIM-S SIM-S

interactiondata

propagation

e.g. Hitachi SR8000

MPICH-G2/PACX-MPI

vendor-optimized MPI

e.g. SGI Onyx2

computation results

computation grid &
computationdata

VIS SIM-M

SIM-S SIM-S SIM-S SIM-S SIM-S

interactiondata

propagation

e.g. Hitachi SR8000

MPICH-G2/PACX-MPI

vendor-optimized MPI

e.g. SGI Onyx2

computation results

computation grid &
computationdata

Fig. 2. Application scheme showing the visualization (VIS) and the simulation consist-
ing of a master node (SIM-M) and computation slaves (SIM-S). At the LRZ, the VIS
process is usually run on a separate graphics workstation, whereas the simulation uses
several nodes on the Hitachi SR8000. Within the SR8000, all processes communicate
via a vendor-optimized version of MPI. Inter-machine communication between VIS and
SIM-M is implemented using either Globus MPICH-G2 or PACX MPI. The simulation
side transfers its most recent pressure and velocity fields to the visualization at short
intervals during which the user can analyze these results. The user is able to change
the scene geometry or simulation parameters throughout the ongoing computation.

540 P. Wenisch, O. Wenisch, and E. Rank

transmission process is not triggered until after the user has completed any mod-
ifications. Since the results are not necessarily sent at regular intervals either,
the receipt of data is, in essence, an event-driven process in both directions.

Usually, the visualization is done on an external graphics workstation with
a different hardware architecture from that of the supercomputer. To enable
the slaves to use vendor-optimized MPI, an appropriate message-forwarding li-
brary for heterogeneous communication has to be used. In this respect, we have
tested the Globus MPICH-G2 [6] and PACX-MPI [7] libraries. With its multi-
functional Globus framework, MPICH-G2 opens the application to the world of
grid computing and is accordingly becoming more popular on supercomputer
sites. Unfortunately, our efforts to port MPICH-G2 to the SR8000 with vendor-
MPI enabled have not been successful so far. Therefore, we are unable to present
performance data for this library. In contrast, PACX-MPI can easily be used in
conjunction with vendor-optimized MPI for internal communication on the Hi-
tachi. One drawback of PACX-MPI is the fact that it starts two extra MPI
processes on each system for internal issues. Since the Hitachi has just 8 interac-
tive nodes, it was only possible to use 6 of them for the application. In addition,
we observed that performance decreased by approximately 5 percent due to the
overhead caused by PACX-MPI, which is still acceptable [8].

To uncouple communication due to interactive steering and computation, an
additional process (SIM-M) has been introduced on the supercomputer. We will
refer to this as the master node which communicates with the steering terminal.
It checks in both directions whether new data is available, and pre-processes the
data before forwarding it to its final destination. The decoupling of computation
and communication is shown in Fig. 3 for a trace collected with the Intel Trace
Analyzer [9]. Another important task for the master is to collect results from
the slaves and send them, combined in a single message, to the visualization
client to avoid additional latencies. This is especially important when the net-
work connection between supercomputer and visualization client is limited by
routers, firewalls, and slow connections maybe even in ’competition’ with other
users. Finally, Fig. 3 reveals the main advantage of introducing a collector node:
During the time-consuming transfer of results (from process 1 to 0), the slave
processes (2-4) are able to overlap computation with communication as long as
the computation time is longer than the communication time. It is necessary
to point out that using non-blocking MPI communication on the SR8000 (and
several other MPI implementation, cf [10]) does not allow this overlap. Fig. 4
shows that the performance of the application decreases dramatically without a
collector node.

In particular, we found that the network connection of the SR8000 to any
other computer is fairly unsatisfactory (25 MB/s maximum throughput on its
single Gigabit Ethernet line). To demonstrate the quality of the communication
strategy in a hypothetic high-performance network, the application was run en-
tirely on the SR8000 to measure the scalability at the communication thread of
the visualization (see left graph in Fig. 4). The Hitachi interconnect provides a
maximum throughput of 780 MB/s between two nodes, which is satisfactory for

Harnessing High-Performance Computers for Computational Steering 541

Fig. 3. This trace depicts the distribution of computation and communication. In this
case, we recorded 5 processes, namely visualization (process 0), simulation master
(process 1), and 3 slaves (processes 2-4). The timeline is given on the abscissa and covers
11 time-steps starting from the application’s initialization. Red marks represent MPI
function calls while green shows periods of computation or other application-specific
processing. Frequent checks for user interaction and time-consuming communication
to an external machine can be taken off the computation processes by introducing a
master node.

this kind of application. More recent systems such as the SGI Altix 3700 Bx2
(installed in 2005 at the LRZ) offer a similar bandwidth for external up- and
downlink (10 GE interfaces). The graph shows the efficiencies for strong scal-
ing for various transmission intervals in forwarding results for a constant total
problem size of 300x280x180 grid nodes. Even in the case of this rather highly
resolved grid we achieve a frame update rate of 0.5 Hz. Since the communication
volume increases with larger grids, weak scaling measurements are not relevant
for this type of application.

To demonstrate the performance gain using a master node, the measurements
have been carried out with the computation running on the Hitachi SR8000 at
LRZ and the visualization on an external Opteron PC at the Chair for Bauin-
formatik (TUM). True scaling of the application could only be achieved using a
master node in combination with long update intervals of the visualized scene
(see right graph in Fig. 4).

To achieve high update rates even for high-resolution grids and external visu-
alization we propose using compression for external communication. If possible,
reducing the size of the data sets could also improve performance. However, we
estimate that together with the corresponding (but unavoidable) overhead for
describing and reconstructing the reduced data set the performance gain may
again be equalized. Finally, moving the postprocessing and graphics computa-
tion onto the supercomputer (maybe even in a parallel version) seems the most
promising solution for this dilemma, but may not always be applicable. This
is especially true for the Hitachi SR8000, which is not well-suited to support
postprocessing or visualization due to its bad performance in non-vectorizable
code. Thus, we consider porting the application to another HPC system with

542 P. Wenisch, O. Wenisch, and E. Rank

1 2 3 4 5
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

interval 5

interval 10

interval 20

interval 30

ideal scaling

compute nodes (8 CPUs each)

M
Lu

p/
s

1 2 3 4 5
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

ideal scaling

interval 40

interval 60

interval 80

int. 40 no SIM-M

int. 60 no SIM-M

int. 80 no SIM-M

compute nodes (8 CPUs each)

M
Lu

p/
s

Fig. 4. These two graphs show the scaling behavior for various update intervals in
dependence on the number of computation nodes used. Performance is measured in
MLup/s (million lattice site updates per second) in the visualization process. The
left-hand panel refers to runs with both visualization and simulation processes on the
SR8000 to emulate a ’high-performance network situation’. Runs with update intervals
of 10 or more time steps show good scaling already, whereas shorter intervals have
a negative influence. On the right-hand panel, visualization is done externally. Runs
using more computation nodes show a similar scaling behavior as before, although in
this case, the update interval has to be significantly longer (60 instead of 10 time steps).
In contrast, the application shows poor scaling efficiency (<50%) in all cases when the
master node (SIM-M) is omitted.

improved networking and postprocessing capabilities thereby disregarding a (mi-
nor) performance degradation for the simulation kernel. This could be, e.g., the
combination of the new SGI Tornado and Prism systems, which will be installed
at the LRZ in 2006.

4 Conclusion and Outlook

We have presented approaches of optimization for a computational steering CFD
environment. While the CFD kernel is processing continuously in the back-
ground, it updates simulation results for the visualization client at regular in-
tervals. At the same time, the simulated scene can be modified interactively and
the kernel will instantly incorporate the changes. Due to the efficient grid gener-
ation, the modification of complex geometries is well supported. Performing the
simulation on the Hitachi SR800 and the visualization on an external graphics
workstation the achieved frame update rate using moderately fine grids is quite
satisfactory. To overcome the bottleneck arising from the downloading of large
data from the supercomputer, future developments will focus on ways to transfer
part of the postprocessing onto the HPC system or using current technology like
high-bandwidth interconnects in SGI HPC and visualization systems.

Further improvements will cover local grid refinement at the boundaries as
well as the integration of turbulence and thermal phenomena into the kernel
making the performance requirements of the code even more demanding.

Harnessing High-Performance Computers for Computational Steering 543

5 Acknowledgements

The authors would like to express their gratitude to Dr. Matthias Brehm (LRZ)
for assisting during the optimization process, Irene Geiseler (also LRZ) for help
with the complex scheduling of the interactive application. For assistance with
optimizing and using PACX and MPICH-G2 on different architectures, we would
like to thank Thomas Zeiser (RRZE), Rainer Keller (HLRS) and Helmut Heller
(LRZ). This project has received financial support from KONWIHR (funded by
the state of Bavaria), which is gratefully acknowledged.

References

1. Henkel S.: Ventilation and Smoke Simulation in Cargo Holds and Engine Rooms
on board of RORO-Ferries, Proceedings RoomVent2004, Coimbra, Portugal (2004)

2. Krafczyk, M.: Gitter-Boltzmann Methoden: Von der Theorie zur Anwendung, Pro-
fessoral dissertation, LS Bauinformatik, TU München (2001)

3. Treeck, C. v.: Gebäudemodell-basierte Simulation von Raumluftströmungen, PhD
Thesis, LS Bauinformatik, TU München (2004)

4. Pohl, T., Deserno, F., Thürey, N., Rüde, U., Lammers, P., Wellein, G., Zeiser, T.:
Performance Evaluation of Parallel Large-Scale Lattice Boltzmann Applications on
Three Supercomputer Architectures, Proceedings SC04, Pittsburgh, USA (2004)

5. Mulder, J. D., Wijk, J. van, Liere, R. van: A Survey of Computational Steering
Environments, Future generation computer systems, 15(2), (1999)

6. http://www3.niu.edu/mpi
7. http://www.hlrs.de/organization/pds/projects/pacx-mpi
8. Keller, R., High Performance Computing Center Stuttgart: Personal Comm. (2005)
9. http://www.intel.com/software/products/cluster/tcollector/index.htm

10. White III, J. B. and Bova, S. W.: Where’s the Overlap? An Analysis of Popular
MPI Implementations, MPIDC’99

11. http://www.lrz-muenchen.de/services/compute/hlrb/hardware-en
12. Wenisch, P., Wenisch, O., and Rank, E.: Optimizing an Interactive CFD Simulation

on a Supercomputer for Computational Steering in a Virtual Reality Environment,
in print, Springer, Germany (2005)

13. Wenisch, P. and Wenisch, O.: Fast octree-based Voxelisation of 3D Boundary
Representation-objects, Technical Report, LS Bauinformatik, TU München (2004)

Author Index

Addison, David 407
Almási, George 57
Almeida, Benjamin 433
Angskun, Thara 67
Augustin, Werner 301

Bad́ıa, José M. 148
Baraldi, Daniele 493
Barrett, B. 175, 225
Bergamaschi, L. 483
Bornemann, Markus 217
Bosilca, George 7, 67, 76, 175
Bradshaw, Rick 333
Brightwell, Ron 425
Broeckhove, Jan 268
Brown, G. 200
Bubak, Marian 317
Bungartz, H.-J. 504
Buntinas, Darius 156

Caliari, M. 483
Cantone, Giovanni 209
Carretero, J. 441
Carson, Brett 325
Castain, R.H. 225
Chai, L. 200
Chan, Anthony 138
Choudhary, Alok 102
Clematis, Andrea 457
Coloma, Kenin 102
Cotronis, Yiannis 343
Czarnul, Pawe�l 351

D’Agostino, Daniele 457
Daniel, D.J. 225
Debudaj-Grabysz, Agnieszka 18
Desai, Narayan 333
de Sande, Francisco 148
Dewolfs, David 268
Dhaene, Tom 268
Dongarra, Jack J. 67, 76, 309
D’Onofrio, Salvatore 94
Dorta, Antonio J. 148
Dózsa, Gábor 57
Drosinos, Nikolaos 28

Erway, C. Chris 57

Fagg, Graham E. 7, 67, 76, 225, 268
Falessi, Davide 209
Falzone, Chris 138
Fernández, Juan 399
Fey, Dietmar 528
Forenc, Jaroslaw 512
Frattolillo, Franco 94
Fr ↪aczak, Marcin 351
Funika, W�lodzimierz 317

Gallego, J.A. Rico 475
Garćıa, F. 441
Garćıa, José M. 399
Garćıa, Pablo E. 399
Geist, Al 1
Genaud, Stéphane 276
Gianuzzi, Vittoria 457
Giné, Francesc 379
Graham, R.L. 175
Gregoretti, F. 285
Gropp, William D. 4, 8, 138, 156, 415
Gupta, P. 200

Hanzich, Mauricio 379
Hernández, Porfidio 379
Höfinger, Siegfried 433
Huang, Wei 191

Ibáñez, M.B. 441

Jin, Hyun-Wook 191, 388
Jorba, Josep 293
Jordan, Andrzej 512

Kauhaus, Christian 528
Kielmann, Thilo 217
Kimpe, Dries 520
Komann, Marcus 528
Kouril, Michal 167
Kranzlmüller, Dieter 433, 493
Kurzyniec, Dawid 268

Laccetti, G. 285
Langou, Julien 76

546 Author Index

Lani, Andrea 520
Latham, Robert 84, 119
Liao, Wei-keng 102
Llorente, J.M. Álvarez 475
Lucas, Hipolito Vasquez 110
Luckow, André 258
Ludwig, Thomas 110
Lumsdaine, A. 175
Luque, Emilio 293, 379, 449
Lusk, Ewing 5, 8, 138, 333

Maćıas, Elsa M. 467
Mahajan, Reema 433
Malony, Allen D. 309, 359
Mamidala, Amith R. 388
Mancini, Emilio P. 38
Marcarelli, Sonya 38
Margalef, Tomas 293
Mart́ınez, A. 483
Mart́ın, J.C. Dı́az 475
Mason, Ian A. 325
Mohr, Bernd 309
Moore, Shirley 309
Morris, Alan 359
Mostaccio, D. 449
Müller, Matthias 368
Mundani, R.-P. 504
Muntean, I.L. 504
Murli, A. 285

Niggl, A. 504
Noronha, R. 200

Oliva, G. 285

Pagourtzis, Aris 28
Panda, Dhabaleswar K. 191, 388
Panda, D.K. 200
Paul, Jerome L. 167
Pennella, Guido 209
Petrini, Fabrizio 399
Petrone, Mario 241
Pjesivac-Grbovic, Jelena 67
Poedts, Stefaan 520
Polydoras, Paul 343

Quintana, Enrique S. 148
Quintino, Tiago 520

Rabenseifner, Rolf 18, 368
Rank, Ernst 504, 536
Rasmussen, C.E. 183

Rattanapoka, Choopan 276
Ripke, Andreas 48
Ritrovato, Pierluigi 38
Ross, Robert 84, 119
Roweth, Duncan 407

Sánchez, David 467
Santhanaraman, Gopalakrishnan 191
Scafuri, U. 285
Schnor, Bettina 258
Schulz, Martin 502
Serafini, Thomas 9
Shende, Sameer 309, 359
Solsona, Francesc 379
Souliou, Dora 28
Springer, Paul L. 250
Squyres, J.M. 175, 183, 225
Steinmacher-Burow, Burkhardt 57
Straub, Marc-Oliver 301
Suárez, Álvaro 467
Sunderam, Vaidy 6, 268
Suppi, R. 449

Thakur, Rajeev 84, 119, 415
Tiyyagura, Sunil R. 368
Toonen, Brian 84
Torres, Rafael Mart́ınez 233
Träff, Jesper Larsson 48, 129
Trinitis, Carsten 502
Troyer, Christoph 493
Tudruj, Marek 512

Vandewalle, Stefan 520
van Nieuwpoort, Rob V. 217
Vasil’ev, Igor 38
Vianello, M. 483
Villano, Umberto 38
Volkert, Jens 433, 493

Ward, Lee 102
Wenisch, Oliver 536
Wenisch, Petra 536
Wilkening, Heinz 493
Wismüller, Roland 317
Wolf, Felix 309, 359
Woodall, T.S. 225
Worsch, Thomas 301

Zanghirati, Gaetano 9
Zanni, Luca 9
Zarrelli, Roberto 241

	Frontmatter
	Invited Talks
	New Directions in PVM/Harness Research
	Towards a Productive MPI Environment
	Components of Systems Software for Parallel Systems
	Virtualization in Parallel Distributed Computing

	Tutorials
	Advanced Message Passing and Threading Issues
	Using MPI-2: A Problem-Based Approach

	Algorithms
	Some Improvements to a Parallel Decomposition Technique for Training Support Vector Machines
	Nesting OpenMP in MPI to Implement a Hybrid Communication Method of Parallel Simulated Annealing on a Cluster of SMP Nodes
	Computing Frequent Itemsets in Parallel Using Partial Support Trees
	A Grid-Aware Branch, Cut and Price Implementation
	An Optimal Broadcast Algorithm Adapted to SMP Clusters
	Efficient Implementation of Allreduce on BlueGene/L Collective Network
	Scalable Fault Tolerant MPI: Extending the Recovery Algorithm
	Hash Functions for Datatype Signatures in MPI

	Extensions and Improvements
	Implementing MPI-IO Shared File Pointers Without File System Support
	An Efficient Parallel File System for Cluster Grids
	Cooperative Write-Behind Data Buffering for MPI I/O
	Hint Controlled Distribution with Parallel File Systems
	Implementing Byte-Range Locks Using MPI One-Sided Communication
	An Improved Algorithm for (Non-commutative) Reduce-Scatter with an Application
	Collective Error Detection for MPI Collective Operations
	Implementing OpenMP for Clusters on Top of MPI
	Designing a Common Communication Subsystem
	Dynamic Interoperable Message Passing
	Analysis of the Component Architecture Overhead in Open MPI
	A Case for New MPI Fortran Bindings
	Design Alternatives and Performance Trade-Offs for Implementing MPI-2 over InfiniBand
	Designing a Portable MPI-2 over Modern Interconnects Using uDAPL Interface
	Experiences, Strategies and Challenges in Adapting PVM to {\itshape VxWorks}<Superscript>{\itshape TM}</Superscript> Hard Real-Time Operating System, for Safety-Critical Software
	MPJ/Ibis: A Flexible and Efficient Message Passing Platform for Java

	Cluster and Grid
	The Open Run-Time Environment (OpenRTE): A Transparent Multi-cluster Environment for High-Performance Computing
	PVM-3.4.4 + IPv6: Full Grid Connectivity
	Utilizing PVM in a Multidomain Clusters Environment
	Enhancements to PVM's BEOLIN Architecture
	Migol: A Fault-Tolerant Service Framework for MPI Applications in the Grid
	Applicability of Generic Naming Services and Fault-Tolerant Metacomputing with FT-MPI
	A Peer-to-Peer Framework for Robust Execution of Message Passing Parallel Programs on Grids
	MGF: A Grid-Enabled MPI Library with a Delegation Mechanism to Improve Collective Operations

	Tools and Environments
	Automatic Performance Analysis of Message Passing Applications Using the KappaPI 2 Tool
	Benchmarking One-Sided Communication with SKaMPI 5
	A Scalable Approach to MPI Application Performance Analysis
	High-Level Application Specific Performance Analysis Using the G-PM Tool
	ClusterGrind: Valgrinding LAM/MPI Applications
	MPISH2: Unix Integration for MPI Programs
	Ensemble-2: Dynamic Composition of MPMD Programs
	New User-Guided and <Literal>ckpt</Literal>-Based Checkpointing Libraries for Parallel MPI Applications,

	Performance
	Performance Profiling Overhead Compensation for MPI Programs
	Network Bandwidth Measurements and Ratio Analysis with the HPC Challenge Benchmark Suite (HPCC)
	A Space and Time Sharing Scheduling Approach for PVM Non-dedicated Clusters
	Efficient Hardware Multicast Group Management for Multiple MPI Communicators over InfiniBand
	Assessing MPI Performance on QsNet<Superscript>{\itshape II}</Superscript>
	Optimised Gather Collectives on QsNet<Superscript>{\itshape II}</Superscript>
	An Evaluation of Implementation Options for MPI One-Sided Communication
	A Comparison of Three MPI Implementations for Red Storm

	Applications
	Probing the Applicability of Polarizable Force-Field Molecular Dynamics for Parallel Architectures: A Comparison of Digital MPI with LAM-MPI and MPICH2
	Symmetrical Data Sieving for Noncontiguous I/O Accesses in Molecular Dynamics Simulations
	Simulation of Ecologic Systems Using MPI
	Load Balancing and Computing Strategies in Pipeline Optimization for Parallel Visualization of 3D Irregular Meshes
	An Improved Mechanism for Controlling Portable Computers in Limited Coverage Areas
	An MPI Implementation for Distributed Signal Processing
	A Parallel Exponential Integrator for Large-Scale Discretizations of Advection-Diffusion Models
	Parallel Grid Adaptation and Dynamic Load Balancing for a CFD Solver

	Special Session: ParSim 2005
	4<Superscript>{\itshape th}</Superscript> International Special Session on: Current Trends in Numerical Simulation for Parallel Engineering Environments ParSim 2005
	Applying Grid Techniques to an Octree-Based CSCW Framework
	Parallel Modeling of Transient States Analysis in Electrical Circuits
	The COOLFluiD Parallel Architecture
	Calculation of Single-File Diffusion Using Grid-Enabled Parallel Generic Cellular Automata Simulation
	Harnessing High-Performance Computers for Computational Steering

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

