
A Faster Algorithm for Detecting
Network Motifs

Sebastian Wernicke�

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

wernicke@minet.uni-jena.de

Abstract. Motifs in a network are small connected subnetworks that
occur in significantly higher frequencies than in random networks. They
have recently gathered much attention as a useful concept to uncover
structural design principles of complex networks. Kashtan et al. [Bioin-
formatics, 2004] proposed a sampling algorithm for efficiently performing
the computationally challenging task of detecting network motifs. How-
ever, among other drawbacks, this algorithm suffers from sampling bias
and is only efficient when the motifs are small (3 or 4 nodes). Based
on a detailed analysis of the previous algorithm, we present a new al-
gorithm for network motif detection which overcomes these drawbacks.
Experiments on a testbed of biological networks show our algorithm to
be orders of magnitude faster than previous approaches. This allows for
the detection of larger motifs in bigger networks than was previously
possible, facilitating deeper insight into the field.

1 Introduction

Motivation. Based on the idea that “evolution preserves modules that define
specific [...] functions” [20], Milo et al. [14,15] propose to uncover the struc-
tural design principles of biological networks1 by detecting small subnetworks
which occur in significantly higher frequencies than in random networks. These
“topological modules” [20] are called network motifs.2

Some excitement has surrounded the network motif approach with the origi-
nal paper by Milo et al. [15] being cited well over 40 times in some major scientific
journals as of June 2005. The analysis of network motifs has led to interesting
results (of which we only name a few here), e.g., in the areas of protein-protein
interaction prediction [1] and hierarchical network decomposition [7]. The tran-
scriptional network of Escherichia Coli displays motifs to which specific function-
alities such as the generation of temporal expression programs or the response to
� Supported by Deutsche Telekom Stiftung and Studienstiftung des deutschen Volkes.
1 We use the terms “network” and “node” for fields outside mathematics and computer

science. The terms “graph” and “vertex” are used for discussing algorithmic aspects.
2 Note that the term “network motif” has been used in other contexts as well and,

e.g., may also refer to a common subnetwork in a set of given networks [17] or to
any small labeled subnetwork (without considering connectivity or isomorphy) [5].

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 165–177, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

166 S. Wernicke

fluctuating external signals can be attributed [15,18], suggesting that network
motifs play key information processing roles in this type of network [9]. The
same motifs as in the transcriptional interaction network of E. Coli were also
identified for the yeast Saccharomyces Cerevisiae, possibly hinting that common
network function implies the sharing of common motifs [11].

To put motif research in proper perspective, it should be noted that it has
also been met with some criticism. Artzy-Randrup et al. [2] found that certain
random network models lead to a display of motifs although there is no explicit
selection mechanism for local structures (Milo et al. answer this criticism in [13]).
Vázquez et al. [19] demonstrated that global network features such as the clus-
tering coefficient also influence local features such as the abundance of certain
subgraphs.

Previous Work. Much work related to network motifs has been spent on inter-
preting and applying the general concept, but considerably less on the involved
algorithmics. Finding network motifs consists of three subtasks:

1. Find which subgraphs occur in the input graph (and in which number).
2. Determine which of these subgraphs are topologically equivalent (i.e., iso-

morphic) and group them into subgraph classes accordingly.
3. Determine which subgraph classes are displayed at a much higher frequency

than in random graphs (under a specified random graph model).

Performing the first subtask by explicitly enumerating all subgraphs of a certain
size can be time consuming due to their potentially large number even in small,
sparse networks. For this reason, Kashtan et al. [9] propose an algorithm that
estimates subgraph occurrences from a randomly sampled set of subgraphs. We
discuss this algorithm in full detail in Section 2, mentioning only in passing
here that it provides only biased sampling. This leads to considerable drawbacks
such as an inconsistent sampling quality and the need for a computationally
expensive bias correction. Besides [9], we are only aware of the work by Duke et
al. [6] on approximating the number of size-k subgraphs in a given graph. Their
algorithm, however, has no practical relevance since the input graph has to be
astronomically large (as compared to k) in order to ensure a reasonable quality
of approximation.

Much work has already been done concerning the second subtask and we rely
on the nauty algorithm [12] for performing it in practice.

As to the third subtask, the standard approach for determining subgraph sig-
nificance so far has been to explicitly generate an ensemble of random graphs un-
der a given random graph model. One popular of these random graph models—
which we also focus on in this work—is that of random graphs which preserve
the degree sequence of the original graph. (Alternative choices, e.g., additionally
preserve the number of bidirectional edges.) While there has been some research
concerning the properties of graphs with prescribed degree sequence (such as
the average path length [16]), the problem of subgraph distribution within such
graphs has only been studied for directed sparse random graphs with expected
degree sequences [8].

A Faster Algorithm for Detecting Network Motifs 167

Contribution and Structure of this Work. We give significant improvements for
the first and third subtask of motif detection. Based on a comprehensive anal-
ysis of the drawbacks encountered when using the subgraph sampling approach
proposed by Kashtan et al. [9], Section 2 presents a new algorithm for sub-
graph sampling which does not suffer from these drawbacks (and has some ad-
ditional useful features). While this comes at the price of only being able to
control the expected number of samples, our proposed algorithm is much easier
to implement and experiments in Section 4 reveal it to be orders of magnitude
faster than the algorithm of Kashtan et al. As to the task of determining sub-
graph significance, Section 3 proposes a new approach that does not require the
explicit generation of random graphs with a prescribed degree sequence. This
approach leads to a faster algortithm that is moreover able to focus on deter-
mining the significance of specific subgraphs (which is not possible with previous
approaches).

The proposed new algorithms have been implemented in C++, the source code
is freely available online at http://www.minet.uni-jena.de/˜wernicke/motifs/.
We show in Section 4 that in a testbed of biological networks, our algorithm
detects network motifs significantly faster than the implementation of Kashtan
et al. This enables the analysis of larger networks and more complex motifs than
previously possible.

2 A Faster Algorithm for Subgraph Sampling

Introduction. The algorithm for subgraph sampling suggested by Kashtan et
al. [9] is based on the idea that we start by selecting a random edge in the
input graph and then randomly extend this subgraph until we obtain a con-
nected subgraph with the desired number of vertices. Subsection 2.1 discusses
this approach and its main drawbacks. We present a new approach to subgraph
sampling (which is based on randomized enumeration) in Subsection 2.2. Note
that, due to lack of space, we omit the proofs of the theorems and lemmas
presented in this section.

Notation. Basic familiarity with graph-theoretic terminology is assumed. Given
a graph G = (V, E) (which can be directed), we let n := |V | and assume that
all vertices in V are uniquely labeled by the integers 1, . . . , n. We write “u > v”
to abbreviate “label(u) > label(v).” For a set V ′ ⊆ V of vertices, its neighbor-
hood N(V ′) is the set of all vertices from V \ V ′ which are adjacent to at least
one vertex in V ′.

A connected subgraph that is induced by a vertex set of cardinality k is
called size-k subgraph. For a given integer k, the set of all size-k subgraphs
in G can be partitioned into sets Si

k(G) called subgraph classes where two
size-k subgraphs belong to the same subgraph class if and only if they are
isomorphic. The concentration Ci

k(G) of a subgraph class Si
k(G) is defined as

Ci
k(G) := |Si

k(G)| · (
∑

j |Sj
k(G)|)−1. For a graph G, an integer k, and a set R of

168 S. Wernicke

size-k subgraphs that were randomly sampled in G by an algorithm A, a map-
ping Ĉi

k : (R, G) → [0, 1] is called an estimator for Ci
k(G). We say that Ĉi

k(R, G)
is unbiased (with respect to A) if the expected value of Ĉi

k(R, G) equals Ci
k(G)

and biased otherwise.

2.1 The Previous Approach: Edge Sampling

For a given graph G = (V, E) and an integer k ≥ 3, Kashtan et al. [9] suggest to
sample a random subgraph by starting with a randomly chosen edge and then
adding neighboring vertices until a subgraph of the desired size k is obtained:

Algorithm: Edge Sampling(G, k) (esa)

Input: A graph G = (V, E) and an integer 2 ≤ k ≤ |V |.
Output: Vertices of a randomly chosen size-k subgraph in G.

01 {u, v} ← random edge from E
02 V ′ ← {u, v}
03 while |V ′| �= k do
04 {u, v} ← random edge from V ′ × N(V ′)
05 V ′ ← V ′ ∪ {u} ∪ {v}
06 return V ′

As already noted in [9], esa has a bias for sampling certain subgraphs more
often than others. Figure 1 shows a concrete example we have constructed to
illustrate this. The total number of connected size-3 subgraphs both in G1 and G2

G1 G2

Fig. 1. Graphs G1 and G2 have an equal number of (connected) size-3 subgraphs.
The subgraph occurs exactly once in each of them. As outlined in the text, esa

oversamples the subgraph in both G1 and G2. The oversampling is worse for G1.

is 28. Since the subgraph occurs exactly once each in G1 and G2, we should
expect that esa samples with probability 1

28 within both graphs. However,
Pr[esa samples in G1] = 1

9 · 1 + 2
9 · 2

8 = 1
6 and Pr[esa samples in G2] =

3
12 · 2

8 = 1
16 . This illustrates some crucial problems of esa: The subgraph

is oversampled and—as a direct consequence—the only other occurring size-3
subgraph is undersampled. The oversampling of is worse for G1 than it
is for G2 and it is possible to show (using an adaption of the above example)
that the magnitude of the oversampling cannot be estimated simply from the
number of edges neighboring the oversampled subgraph. Given a set R of size-k
subgraphs that were randomly sampled using esa, the demonstrated bias can
be overcome by using the following (unbiased) estimator [9]:

Ĉi
k(R, G) :=

∑
{G′∈R | G′∈Si

k(G)}(Pr[G′ is sampled by esa])−1

∑
G′∈R(Pr[G′ is sampled by esa])−1 . (1)

A Faster Algorithm for Detecting Network Motifs 169

The main idea here is that each subgraph is (ex post facto) scored inversely pro-
portional to the probability that esa samples it. While it is possible to correctly
estimate Ci

k(G) in this way, several disadvantages remain:

– The bias itself remains. E.g., subgraphs which appear in low concentration
and are at the same time undersampled by esa are hardly ever found.3

– Computing (1) is expensive since the calculation of each single probability
can require as much as O(kk) time [9].

– We have no estimate as to what fraction of subgraphs has been sampled.
– esa can sample the same subgraph multiple times.

In the next subsection we suggest a new approach to subgraph sampling that
overcomes these problems.

2.2 The New Approach: Randomized Enumeration

The idea here is to start with an algorithm that efficiently enumerates all size-k
subgraphs. This algorithm is then modified to randomly “skip” some of these
subgraphs during its execution, yielding an unbiased subgraph sampling
algorithm.

Enumerating all size-k subgraphs. Given a graph G = (V, E), the following algo-
rithm enumerates all of its size-k subgraphs (with Nexcl(v, V ′) := N({v})\N(V ′)
being the exclusive neighborhood of v with respect to V ′ ⊆ V):

Algorithm: EnumerateSubgraphs(G, k) (esu)

Input: A graph G = (V, E) and an integer 1 ≤ k ≤ |V |.
Output: All size-k subgraphs in G.

01 for each vertex v ∈ V do
02 VExtension ← {u ∈ N({v}) | u > v}
03 call ExtendSubgraph({v}, VExtension, v)
04 endfor

ExtendSubgraph(VSubgraph, VExtension, v)
E1 if |VSubgraph| = k then output G[VSubgraph] and return
E2 while VExtension �= ∅ do
E3 Remove an arbitrarily chosen vertex w from VExtension

E4 V ′
Extension ← VExtension ∪ {u ∈ Nexcl(w, VSubgraph) | u > v}

E5 call ExtendSubgraph(VSubgraph ∪ {w}, V ′
Extension, v)

E6 return

The basic idea of esu is that—starting with a vertex v from the input graph—
we add only those vertices to the VExtension set that have two properties: Their
3 Kashtan et al. [9] observe that esa can accurately estimate the concentra-

tion of Si
k(G) with less than (Ci

k(G))−1 samples for subgraphs which are
oversampled. In return however, other subgraphs might be missed completely for
far more than (Ci

k(G))−1 samples and would consistently be overlooked as motif
candidates.

170 S. Wernicke

({1}, {2, 3, 4, 5}) ({2}, {3, 6, 7}) ({3}, {8, 9})
({4}, ∅) ({6}, ∅)

({7}, ∅)

({8}, ∅)

({9}, ∅)

({2, 3}, {6, 7, 8, 9})

({2, 6}, {7})

({2, 7}, ∅)

({3, 8}, {9})

({3, 9}, ∅)

({1, 2}, {3, 4, 5, 6, 7})

({1, 3}, {4, 5, 8, 9})

({1, 4}, {5})

({1, 5}, ∅)

({5}, ∅)

Root

1 2

3

1 4

2

1 5

2

1 6

2

1 7

2

3 4

1

3 5

1

3 8

1

3 9

1

1 5

4

2 6

3

2 7

3

2 8

3

2 9

3

2 7

6

3 8

9

1 2

3

4

5 6

7

8 9

G

Fig. 2. The above esu-tree corresponds to calling EnumerateSubgraphs(G, 3). The
tree has 16 leafs which correspond to the 16 size-3 subgraphs in G.

label must be larger than that of v and they must not be neighbor to a vertex
in VSubgraph (other than the newly added vertex w). Some more insight into the
structure of esu can be gained by the following visualization.

Definition 1. With a call to EnumerateSubgraphs(G, k), we associate a
tree-graph called esu-tree which represents the recursive function calls. The root
at depth 0 represents the call of EnumerateSubgraphs(G, k). Each call of
ExtendSubgraph(VSubgraph, VExtension, v) is represented by an edge from the
vertex representing the caller function to a vertex representing the callee. The
callee vertex is labeled (VSubgraph, VExtension) and located at depth |VSubgraph|.

The structure of the tree is illustrated in an example in Figure 2. Omitting the
proof here, it is also the basis to establish the correctness of the esu algorithm.

Theorem 2. Given a graph G and k ≥ 2, esu enumerates all size-k subgraphs
in G (each size-k subgraph is output exactly once).
�

The tree structure to represent esu exposes some useful properties. E.g.,
using a technique by Knuth [10], we can randomly explore paths in the tree
in order to quickly estimate the total number of size-k subgraphs in the input
graph. Probably the most important feature of the esu-tree, however, is that we
can use it to efficiently sample subgraphs uniform at random (i.e., without bias).

Uniformly sampling size-k subgraphs. The esu algorithm completely traverses
its corresponding esu-tree. Where complete traversal is too time-expensive, we
can explore only parts of the esu-tree such that each leaf is reached with equal
probability. For this purpose, a probability 0 < pd ≤ 1 is introduced for each
depth 1 ≤ d ≤ k in the tree. With pd, we determine for each child vertex
at depth d whether we traverse the subtree rooted at it. This is implemented
by replacing line 03 of the esu algorithm with “With probability p1, call Ex-

tendSubgraph(. . .)” and line E5 with “With probability pd, call ExtendSub-

A Faster Algorithm for Detecting Network Motifs 171

graph(. . .)” (where d := |VSubgraph|+1).4 We call this new algorithm rand-esu.
(To simplify the discussion, we will also use this name when all pd are set to 1,
in which case rand-esu is equivalent to esu.) rand-esu visits each leaf of the
esu-tree with equal probability and hence estimating subgraph concentrations
from its output is straightforward (the proofs are omitted).

Lemma 3. rand-esu visits each leaf in the esu-tree with probability
∏

d pd.
�

Theorem 4. Given a graph G, an integer k, and 0 < pd ≤ 1 for 1 ≤ d ≤ k.
Let R be a set of size-k subgraphs obtained by running rand-esu on G using
the probabilities pd. Then, Ĉi

k(R, G) := |{G′ ∈ R | G′ ∈ Si
k(G)}| / |R| is an

unbiased estimator for Ci
k(G).
�

It remains to discuss how the values pd should be chosen. If we wish to
sample an expected fraction 0 < q < 1 of all size-k subgraphs using rand-esu,
we have to ensure that

∏
1≤d≤k pd = q (we omit a rigorous proof of this here).

However, this still leaves us to choose the individual values, i.e., do we uniformly
set every pd equal to k

√
q or are there better choices? Some observations are:

– Choosing whether or not to explore a subtree whose root is close to the
root of the esu-tree generally has a higher influence on the total number of
explored leafs than for a subtree whose root is farther from it.

– The parameters pd influence the distribution of the sampling, i.e., if pd is
small for small d, some local neighborhoods in the input graph are likely not
to be explored at all while others will be explored extensively.

– The running time is influenced from an amortized point of view: If the pd

values are large for small values of d (and hence small for larger d), much of
the esu-tree is explored but only comparably few leafs are reached.

As a general rule from these observations, the parameters pd should be larger for
small d and become smaller as d increases—as long as the sacrifice made with
respect to the amortized running time per sample is acceptable. This ensures a
lower variance for the number of samples and the exploration of many different
regions in the input graph.

Concluding this section, while rand-esu—as compared to esa—requires a
choice of sampling parameters and only allows for controlling the expected num-
ber of samples, it has a lot to offer in return. Most importantly it is unbiased,
which rules out the respective disadvantages of esa. Also, it is much faster (see
Section 4) and easier to implement since we do not require any bias-correcting
parts. Contrary to esa, our new algorithm never samples more subgraphs than
the input graph contains and results become exact as the number of samples
reaches the total number of size-k subgraphs in the input graph.
4 In order to reduce the sampling variance, the following more sophisticated method

may be used: For a tree vertex at depth d with x children, randomly choose x′

of the x children (where x′ = �x · pd� with probability 1 − (x · pd − �x · pd�) and
x′ = �x · pd� otherwise) and explore exactly these. It can be shown that this does
not change the probability of a leaf being explored.

172 S. Wernicke

3 Direct Calculation of Motif Significance

The Previous Approach. As already mentioned in the introduction, motif detec-
tion includes the subtask of determining subgraph significance. In this work, we
consider the case where the significance of a subgraph is determined by compar-
ing its concentration in the given graph G to its mean concentration 〈Ci

k(G)〉 in
random graphs with the same degree sequence [15,9]. It is suggested in [15,9] to
estimate

〈
Ci

k(G)
〉

by generating a large ensemble of random graphs (typically
at least 1000) with the same degree sequence as the original graph and then
sampling subgraphs in these random graphs. The random graphs are generated
from the original graph by randomly switching edges between vertices, which
requires a lot of switching operations while at the same time it is never certain
when proper randomization has been reached. Also with this method, we are
likely to spend lots of excess computational efforts estimating the concentra-
tions of subgraph classes we are not interested in.5 In this section we propose
an algorithm for determining subgraph significance without the need to explic-
itly generate random graphs (assuming the background model of random graphs
with the same degree sequence). We also gain the ability to focus our estimation
of significance on specific subgraphs.

Direct Calculation of Subgraph Significance. Milo et al. observe that the total
number of size-k subgraphs within an ensemble of large graphs with the same
degree sequence does not vary much (see supplementary online material to [14]
for details). This allows us to estimate

〈
Ci

k(G)
〉

by

〈Ci
k(G)〉 ≈ 〈Ĉi

k(G)〉 :=

∑
G′∈DegSeq(G) |Si

k(G′)|
∑

G′∈DegSeq(G)
∑

i |Si
k(G′)| (2)

where DegSeq(G) is the set of all graphs G′ that have the same degree sequence
as G. Since all graphs G′ can be viewed as graphs over the same set of vertices
(because they differ only in their edge sets), Equation (2) can also be written as

〈Ĉi
k(G)〉=

∑
{v1,...,vk}⊆V |{G′ ∈ DegSeq(G) | G′[{v1, . . . , vk}] ∈ Si

k}|
∑

{v1,...,vk}⊆V |{G′ ∈ DegSeq(G) | G′[{v1, . . . , vk}] connected}| .

(3)
Both the nominator and denominator of this equation can be estimated in a
Monte Carlo approach—i.e., by randomly sampling size-k subsets of the vertices
in the input graph—as long as we are able to perform the following calculation:
Given G and {v1, . . . , vk}, find |{G′ ∈ DegSeq(G) | G′[{v1, . . . , vk}] ∈ Si

k}|. As
it turns out, this number is indeed possible to calculate using two theorems
(one for undirected graphs and one for the directed case) due to Bender and
Canfield [3,4]. Without going into technical details here, these theorems allow us

5 This is especially important for sparse networks where a randomly sampled sub-
graph is likely to be a tree. Trees, however, are often considered to be uninteresting
motifs [5].

A Faster Algorithm for Detecting Network Motifs 173

Table 1. Number of size-k subgraphs and the number of respective subgraph classes
that occur in our test instances for 3 ≤ k ≤ 6. (All instances are directed graphs).

nodes edges subgraphs subgraph classes
size-3 size-4 size-5 size-6 size-3 size-4 size-5 size-6

coli 423 519 5 206 83 893 1 433 502 22 532 584 4 17 83 390
yeast 688 1 079 13 150 183 174 2 508 149 32 883 898 7 33 173 888

elegans 306 2 345 47 322 1 394 259 43 256 069 1 309 307 357 13 197 7 071 286 375
ythan 135 597 9 487 169 733 2 908 118 45 889 039 8 57 629 9 339

to calculate for a given degree sequence how many graphs there are which realize
exactly this degree sequence under the constraint that a certain subgraph is fixed.
Given a subgraph class Si

k and k vertices {v1, . . . , vk}, we can thus consider all
(at most k!) ways in which {v1, . . . , vk} can induce a subgraph from Si

k and
hence estimate the nominator in Equation (3).

An analogous approach (considering all ways in which the given vertices can
be connected) can be used to estimate the denominator in Equation (3). Omit-
ting the details here, it is possible to show that this does not require the explicit
consideration of every connected size-k subgraph but only of kk−2 subgraphs for
undirected graphs and 2 · (2k)k−2 in the directed case. At first glance it might
seem as if this is prohibitively expensive to calculate, but for two reasons it actu-
ally promises a gain in efficiency: Firstly, the denominator in Equation (3) is the
same for all subgraph classes and hence has to be calculated only once. Secondly,
the number of occurring subgraph classes is often far less than the total number
of subgraphs (see Table 1). Experiments which are discussed in the next section
confirm this expected performance gain.

4 Experimental Studies

Method and Results. We have implemented our algorithms from Sections 2 and 3
in C++. The source code is freely obtainable online at http://www.minet.uni-
jena.de/˜wernicke/motifs/. As a comparison, we used the mfinder 1.1 tool6 by
Kashtan et al. which implements the esa algorithm. All tests were performed
on an AMD Athlon 64 3400+ with 2.4GHz, 512KB cache, and 1GB main mem-
ory running under the Debian GNU/Linux 3.1 operating system. Sources were
compiled with the GNU gcc/g++ 3.4.3 compiler using the option “-O3.”
The network instances for testing the algorithms were up-to-date versions of
the motif detection testbed used by Kashtan et al. [9]. The testbed consists
of the instances coli (transcriptional network of Escherichia Coli [18]), yeast

(transcriptional network of Saccharomyces Cerevisiae [15]), elegans (neuronal
network of Caenorhabditis Elegans [9]), and ythan (food web of the Ythan es-
tuary [21]). Some properties of these networks are summarized in Table 1. The
algorithms were compared both for their speed and quality; results and some
details as to the experimental setting are shown in Figure 3 and Table 2.

6 Source at http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html

174 S. Wernicke

(a)

COLI, RAND-ESU
YEAST, RAND-ESU
ELEGANS, RAND-ESU
YTHAN, RAND-ESU
COLI, ESA
YEAST, ESA
ELEGANS, ESA
YTHAN, ESA

3 4 5 6 7 8
subgraph size [vertices]

1

101

102

103

104

105

106

107
sa

m
pl

in
g

sp
ee

d
[s

ub
gr

ap
hs

 p
er

 s
ec

on
d]

(b)

COLI, RAND-ESU (coarse)
YEAST, RAND-ESU (coarse)
ELEGANS, RAND-ESU (coarse)
YTHAN, RAND-ESU (coarse)
COLI, RAND-ESU (fine)
YEAST, RAND-ESU (fine)
ELEGANS, RAND-ESU (fine)
YTHAN, RAND-ESU (fine)
COLI, ESA
YEAST, ESA
ELEGANS, ESA

10-1 1 101 102

sampled subgraphs [% of total]

0

20

40

60

80

100

sa
m

pl
in

g
qu

al
ity

 [%
 c

or
re

ct
 e

st
im

at
es

]

Fig. 3. (a) Sampling speed for different subgraph sizes on a semi-log scale (time mea-
surement does not include the grouping of sampled subgraphs into classes). For esu,
the curve shows the mean speed for three different settings of (p1, . . . , pk) that lead
to sampling of an expected 10% of all subgraphs: (1, . . . , 1, .316, .316), (1, . . . , 1, .5, .2),
and (1, . . . , 1, .1). (The speed of the deterministic esu algorithm—not shown here—
is slightly faster than that of rand-esu.) (b) Sampling quality for size-5 subgraphs
(size-4 for ythan) versus the percentage p of sampled subgraphs (semi-log scale). We
define the sampling quality as the percentage of subgraph classes Sk

i for which Ck
i is

estimated with at most 20% relative error (considering only those subgraph classes for
a given p that we would expect to sample at least 10 times on average). rand-esu was
run with two different settings of the pd values we refer to as “coarse” (1, . . . , 1,

√
p,

√
p)

and “fine” (1, . . . , 1, p). For our ythan instance, the mfinder tool reproducibly failed
to report results for more than 100 samples, hence this curve is not shown.

Discussion. Most notable in Figure 3a, rand-esu is much faster than the esa

sampling in mfinder. This amounts to several orders of magnitude for larger
subgraphs (k ≥ 5). For small sampling quantities, the “coarse” variant of rand-

esu proved to be faster than the “fine” variant (not explicitly shown in Fig-
ure 3a). However, Figure 3b shows that the resulting sampling quality from
using “coarse” settings for the pd values is relatively low when compared to that
of esa. The qualities are roughly equal for the “fine” variant with esa hav-
ing a slight advantage for sampling sizes above 1% and close to 100%. (Note
that for 100%, rand-esu is equivalent to esu and the results are exact.) Two
things are to be noted in this respect, though: Firstly, rand-esu is much faster
and can, e.g., fully enumerate all size-5 subgraphs in roughly the same time
that esa needs to sample 1% of them. Secondly, the sampling quality of the
“fine” variant appears to be more consistent for different networks, e.g., in some
percentage ranges esa has a very good sampling quality for elegans and a
comparably fair one for coli whereas the “fine” rand-esu remains much more
consistent here. Also note that—contrary to esa—statistical estimates about
the achieved sampling quality can be made with rand-esu because of its un-
biasedness and the ability to estimate the total number of subgraphs (espe-
cially with the “fine” variant where individual samples are fully independent of
each other).

A Faster Algorithm for Detecting Network Motifs 175

Table 2. For directed size-3 subgraphs, the table shows the approximate subgraph
concentrations in random graphs based on the methods discussed in Section 3. For
estimating 〈Ci

k(G)〉, 10 000 random graphs were generated. The 〈Ĉi
k(G)〉 values are

based on 100 000 samples. Compared to the 〈Ci
k(G)〉 values, their calculation was a

few hundred times faster on our machine. For most subgraphs with 〈Ci
k(G)〉 > 10−5,

〈Ĉi
k(G)〉 appears to be a good approximation for 〈Ci

k(G)〉 (since often here, the ratio
〈Ci

k(G)〉/〈Ĉi
k(G)〉 is close to one).

coli 〈Ci
k〉 9.1e-1 3.7e-2 1.9e-4 5.0e-2 1.4e-3 2.1e-6 7.6e-8 3.4e-7 2.9e-6 2.9e-5 8.0e-7 – –

〈Ĉi
k〉 9.0e-1 4.2e-2 2.6e-4 5.5e-2 1.4e-3 2.1e-6 1.3e-7 8.7e-8 2.3e-6 4.4e-5 1.1e-7 8e-12 6e-15

〈Ci
k〉/〈Ĉi

k〉 1.0 0.9 0.7 0.9 1.0 1.0 0.6 3.9 1.3 0.7 7.4 – –
yeast 〈Ci

k〉 9.1e-1 3.7e-2 1.8e-4 5.0e-2 1.4e-3 9.5e-7 – 2.6e-7 2.3e-6 2.9e-5 3.4e-7 – –
〈Ĉi

k〉 8.9e-1 3.0e-2 1.2e-4 7.6e-2 1.2e-3 1.5e-6 2.8e-8 4.4e-8 5.4e-7 1.0e-5 1.0e-7 1e-14 1e-15
〈Ci

k〉/〈Ĉi
k〉 1.0 1.2 1.5 0.6 1.2 0.7 – 6.1 4.3 2.9 3.3 – –

eleg. 〈Ci
k〉 2.0e-1 3.3e-1 2.7e-2 3.7e-1 3.3e-2 1.7e-3 1.5e-3 2.0e-3 4.4e-3 2.9e-2 1.4e-3 3.8e-4 1.5e-5

〈Ĉi
k〉 2.0e-1 3.3e-1 2.9e-2 3.6e-1 3.6e-2 2.0e-3 1.9e-3 2.3e-3 4.7e-3 3.0e-2 1.5e-3 4.0e-4 1.5e-5

〈Ci
k〉/〈Ĉi

k〉 1.0 1.0 0.9 1.0 0.9 0.9 0.8 0.9 0.9 1.0 0.9 0.9 1.0
ythan 〈Ci

k〉 4.1e-1 2.3e-1 3.3e-2 2.2e-1 5.1e-2 3.0e-3 2.7e-3 2.8e-3 2.0e-3 3.6e-2 5.3e-3 1.1e-3 5.8e-5
〈Ĉi

k〉 3.7e-1 2.4e-1 3.9e-2 2.2e-1 5.6e-2 3.5e-3 4.8e-3 5.0e-3 3.0e-3 5.2e-2 8.1e-3 2.7e-3 7.5e-4
〈Ci

k〉/〈Ĉi
k〉 1.1 1.0 0.9 1.0 0.9 0.8 0.6 0.6 0.6 0.7 0.6 0.4 0.1

As to the estimation of subgraph significance, Table 2 shows that for most
subgraphs with 〈Ci

k(G)〉 > 10−5, 〈Ĉi
k(G)〉 is a good approximation in our exper-

imental setting. Further research should investigate the few exceptions, which
might hint that for some subgraphs a larger number of samples is needed. Given
that direct calculation with our tool was much faster than the explicit gener-
ation of random networks, further investigation in this respect appears to be
worthwhile. Also, note that with our new approach, the frequency of some sub-
graphs could be estimated for which the explicit generation of subgraphs did not
give any results due to an extremely low average concentration in the explicitly
generated random graphs.

5 Conclusion

Based on a detailed analysis of previous approaches we have presented new al-
gorithmic techniques which allow for a faster detection of network motifs and
offer useful additional features such as unbiased subgraph sampling and a specif-
ically targeted detection of subgraph significance. This enables motif detection
for larger motifs and larger networks than was previously possible and hopefully
facilitates future research in the field.

Further research could improve the presented sampling technique, e.g., by
examining how the labeling of the vertices in the input graph affects the sampling
quality or seeing if rand-esu can be tweaked to selectively sample “interesting”
parts of the input graph. For subgraph significance, we have shown that a direct
calculation scheme may serve as a fast and accurate alternative to the explicit
generation of random networks. It would be interesting to further explore this

176 S. Wernicke

path by extending the scheme to classes of random background models other
than those that solely preserve the degree sequence.

Acknowledgments. The author is grateful to Jens Gramm (Tübingen), Falk
Hüffner (Jena), and Rolf Niedermeier (Jena) for helpful discussions and com-
ments and to an anonymous referee of WABI 2005 for some insightful remarks
on this work.

References

1. I. Albert and R. Albert. Conserved network motifs allow protein-protein interaction
prediction. Bioinformatics, 20(18):3346–3352, 2004.

2. Y. Artzy-Randrup, S. J. Fleishman, N. Ben-Tal, and L. Stone. Comment on “net-
work motifs: Simple building blocks of complex networks” and “superfamilies of
designed and evolved networks”. Science, 305:1007c, 2004.

3. E. A. Bender. The asymptotic number of non-negative matrices with given row
and column sums. Disc. Appl. Math., 10:217–223, 1974.

4. E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs with
given degree sequences. J. Comb. Theor. A, 24:296–307, 1978.

5. J. Berg and M. Lässig. Local graph alignment and motif search in biological
networks. PNAS, 101(41):14689–14694, 2004.

6. R. A. Duke, H. Lefmann, and V. Rödl. A fast approximation algorithm for comput-
ing the frequencies of subgraphs in a given graph. SIAM J. Comp., 24(3):598–620,
1995.

7. S. Itzkovitz, R. Levitt, N. Kashtan, et al. Coarse-graining and self-dissimilarity of
complex networks. Phys. Rev. E, 71:016127, 2005.

8. S. Itzkovitz, R. Milo, N. Kashtan, et al. Subgraphs in random networks. Phys.
Rev. E, 68(026127), 2003.

9. N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics,
20(11):1746–1758, 2004.

10. D. E. Knuth. Estimating the efficiency of backtrack programs. In Selected papers
on Analysis of Algorithms. Stanford Junior University, Palo Alto, 2000.

11. T. I. Lee, N. J. Rinaldi, F. Robert, et al. Transcriptional regulatory networks in
Saccharomyces Cerevisiae. Science, 298:799–804, 2002.

12. B. D. McKay. Practical graph isomorphism. Congr. Numer., 30:45–87, 1981.
13. R. Milo, S. Itzkovitz, N. Kashtan, et al. Response to comment on “network motifs:

Simple building blocks of complex networks” and “superfamilies of designed and
evolved networks”. Science, 305:1007d, 2004.

14. R. Milo, S. Itzkovitz, N. Kashtan, et al. Superfamilies of designed and evolved
networks. Science, 303(5663):1538–1542, 2004.

15. R. Milo, S. S. Shen-Orr, S. Itzkovitz, et al. Network motifs: Simple building blocks
of complex networks. Science, 298(5594):824–827, 2002.

16. M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E, 64:026118, 2001.

17. S. Ott, A. Hansen, S. Kim, and S. Miyano. Superiority of network motifs over
optimal networks and an application to the revelation of gene network evolution.
Bioinformatics, 21(2):227–238, 2005.

A Faster Algorithm for Detecting Network Motifs 177

18. S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcrip-
tional regulation network of Escherichia Coli. Nature Gen., 31(1):64–68, 2002.

19. A. Vázquez, R. Dobrin, D. Sergi, et al. The topological relationship between the
large-scale attributes and local interaction patterns of complex networks. PNAS,
101(52):17940–17945, 2004.

20. A. Vespignani. Evolution thinks modular. Nature Gen., 35(2):118–119, 2003.
21. R. J. Williams and N. D. Martinez. Simple rules yield complex food webs. Nature,

404:180–183, 2000.

	Introduction
	A Faster Algorithm for Subgraph Sampling
	The Previous Approach: Edge Sampling
	The New Approach: Randomized Enumeration

	Direct Calculation of Motif Significance
	Experimental Studies
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

