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Abstract. We present several new results pertaining to haplotyping.
The first set of results concerns the combinatorial problem of reconstruct-
ing haplotypes from incomplete and/or imperfectly sequenced haplotype
data. More specifically, we show that an interesting, restricted case of
Minimum Error Correction (MEC) is NP-hard, question earlier claims
about a related problem, and present a polynomial-time algorithm for the
ungapped case of Longest Haplotype Reconstruction (LHR). Secondly, we
present a polynomial time algorithm for the problem of resolving geno-
type data using as few haplotypes as possible (the Pure Parsimony Hap-
lotyping Problem, PPH) where each genotype has at most two ambiguous
positions, thus solving an open problem posed by Lancia et al in [15].

1 Introduction

If we abstractly consider the human genome as a string over the nucleotide al-
phabet {A, C, G, T}, it is widely known that the genomes of any two humans are
more than 99% similar. In other words, it is known that, at most sites along the
genome, humans all have the same nucleotide. At certain specific sites along the
genome, however, variability is observed across the human population. These
sites are known as Single Nucleotide Polymorphisms (SNPs) and are formally
defined as the sites on the human genome where, across the human population,
two or more nucleotides are observed and each such nucleotide occurs in at least
5% of the population. It turns out that these sites, which occur (on average)
approximately once per thousand bases, capture the bulk of human genetic vari-
ability; the string of nucleotides found at the SNP sites of a human - the haplotype
of that individual - can thus be thought of as a “fingerprint” for that individual.
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It is further apparent that, for most SNP sites, only two nucleotides are seen;
sites where three or four nucleotides are possible are comparatively rare. Thus,
from a combinatorial perspective, a haplotype can be abstractly expressed as a
string over the alphabet {0, 1}. Indeed, the biologically-motivated field of SNP
and haplotype analysis - which is at the forefront of “real-world” bioinformat-
ics - has spawned an impressively rich and varied assortment of combinatorial
problems, which are well described in surveys such as [4] and [§]. In this paper
we focus on three such combinatorial problems; the first two are related to the
problem of haplotyping a single individual, and the third is related to the prob-
lem of explaining the genetic variability of a population using as few haplotypes
as possible.

The first two problems are both variants of the Single Individual Haplotyp-
ing Problem (SIH), introduced in [14]. The STH problem amounts to determining
the haplotype of an individual using (potentially) incomplete and/or imperfect
fragments of sequencing data. The situation is further complicated by the fact
that, being a diploid organism, a human has two versions of each chromosome;
one each from the individual’s mother and father. Hence, for a given interval
of the genome, a human actually has two haplotypes. Thus, the SIH problem
can be more accurately described as finding the two haplotypes of an individual
given fragments of sequencing data where the fragments potentially have read
errors and, crucially, where it is not known which of the two chromosomes each
fragment was read from. There are four well-known variants of the problem:
Minimum Fragment Removal (MFR), Minimum SNP Removal (MSR), Mini-
mum Error Correction (MEC), and Longest Haplotype Reconstruction (LHR).
In this paper we give results for MEC and LHR and refer the reader to [3] for
information about MFR and MSR.

1.1 Minimum Error Correction (MEC)

This is the problem where the input is a matrix M of SNP fragments. Each
column of M represents an SNP site and thus each element of the matrix denotes
the (binary) choice of nucleotide seen at that SNP location on that fragment.
An element of the matrix can thus either be ‘0’; ‘1’ or a hole, represented by
-’ which denotes lack of knowledge or uncertainty about the nucleotide at that
site. We use M[i, j] to refer to the value found at row 4, column j of M, and
use M[i] to refer to the ith row. We say that two rows ri,79 of the matrix
are in conflict if there exists a column j such that M[ry,j] # M][re,j] and
M[ry, 4], Mre, j] € {0,1}. We say that a matrix is feasible if the rows of the
matrix can be partitioned into two sets such that all rows within each set are
pairwise non-conflicting. The goal with MEC is thus to “correct” (or “flip”) as
few entries of the input matrix as possible (i.e. convert 0 to 1 or vice-versa)
to make the resulting matrix feasible. The motivation behind this is that all
rows of the input matrix were sequenced from one haplotype or the other, and
that any deviation from that haplotype occurred because of read-errors during
sequencing.
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In the context of haplotyping, MEC has been discussed - sometimes under a
different name - in papers such as [], [18], [7] and (implicitly) [14]. One question
arising from this discussion is how the distribution of holes in the input data
affects computational complexity. To explain, let us first define a gap (in a string
over the alphabet {0, 1, —}) as a maximal contiguous block of holes that is flanked
on both sides by non-hole values. For example, the string ---0010--- has no
gaps, —0--10-111 has two gaps, and -0-----1-- has one gapE The problem
variant Ungapped-MEC' is where every row of the input matrix is ungapped i.e.
all holes appear at the start or end.

In this paper we offer what we believe is the first concrete proof that
Ungapped-MEC (and hence the more general MEC) is NP-hard. We do so by
reduction from the optimisation version of MAX-CUT. As far as we are aware,
other claims of this result are based explicitly or implicitly on results found in
[11]; as we discuss in Section[2], we conclude that the results in [I1] cannot be used
for this purpose. Directly related to this, we define the problem Binary-MEC,
where the input matrix contains no holes; as far as we know the complexity of
this problem is still - intriguingly - open.

1.2 Longest Haplotype Reconstruction (LHR)

In this variant of the SIH problem, the input is again an SNP matrix M with
elements drawn from {0, 1, —}. Recall that the rows of a feasible matrix M can
be partitioned into two sets such that all rows within each set are pairwise non-
conflicting. Having obtained such a partition, we can reconstruct a haplotype
from each set by merging all the rows in that set together. (We define this for-
mally later in Section [Bl) With LHR the goal is to remove rows such that the
resulting matrix is feasible and such that the sum of the lengths of the two
resulting haplotypes is maximised. In this paper we show that Ungapped-LHR
(where ungapped is defined as before) is polynomial-time solvable and give a
dynamic programming algorithm for this which runs in time O(n?m + n?) for
an n X m input matrix. This improves upon the result of [14] which also showed
a polynomial-time algorithm for Ungapped-LHR but under the restricting as-
sumption of non-nested input rows.

1.3 Pure Parsimony Haplotyping Problem (PPH)

As mentioned earlier, there are actually two haplotypes for any given inter-
val of an individual’s genome. With current sequencing techniques it is still
considered impractical to read the two haplotypes separately; instead, a single
string is returned - the genotype - which combines the data from the two haplo-
types but, in doing so, loses some information. Thus, whereas a haplotype is a
string over the {0, 1} alphabet, a genotype is a string over the {0, 1,2} alphabet.

! The case where each row of the input matrix has at most 1 gap is considered bio-
logically relevant because double-barreled shotgun sequencing produces two disjoint
intervals of sequencing data.
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A ‘0’ (respectively, ‘1’) entry in the genotype means that both chromosomes
have a ‘0’ (respectively, ‘1’) at that position. In contrast, a ‘2’ entry means
that the two haplotypes differ at that location: one has a ‘0’ while the other
has a ‘1’ but we don’t know which goes where. Thus, a ‘2’-site of a genotype
is called an ambiguous position. We say that two haplotypes resolve a given
genotype if that genotype is the result of combining the two haplotypes in the
above manner. For example, the pair of haplotypes 0110 and 0011 resolve the
genotype 0212.

It follows that a genotype with a > 1 ambiguous positions can be resolved
in 2¢~! ways. Now, suppose we have a population of individuals and we obtain
(without errors) the genotype of each individual. The Pure Parsimony Haplotyp-
ing Problem (PPH) is as follows:- given a set of genotypes, what is the smallest
number of haplotypes such that each genotype is resolved by some pair of the
haplotypes? In [15] it is shown that PPH is hard (i.e. NP-hard and APX-hard)
even in the restricted case where no genotype has more than 3 ambiguous posi-
tions. The case of 2 ambiguous positions per genotype is left as an open question
n [15]. In this paper we resolve this question by providing a polynomial-time
algorithm for this problem that has a running time of O(mnlog(n) + n3/2) for
n genotypes each of length m.

Since writing the original version of this paper we have learned that, inde-
pendently, Lancia and Rizzi have come up with a similar result [16] that was
submitted for publication at the end of 2004.

2 Minimum Error Correction (MEC)

For a length-m string X € {0,1,—}"™, and a length-m string Y € {0,1}™, we
define d(X,Y) as being equal to the number of mismatches between the strings
i.e. positions where X is 0 and Y is 1, or vice-versa; holes do not contribute
to the mismatch count. An n x m SNP matrix M is feasible iff there exist two
strings (haplotypes) Hy, Hy € {0,1}™, such that for all rowsr € M, d(r, H;) =0
or d(r, Hy) = 0. A flip is where a 0 entry is converted to a 1, or vice-versa. Note
that, in our formulation of the problem, we do not allow flipping to or from
holes, and the haplotypes H; and H, may not contain holes.

Problem: Ungapped-MEC
Input: An ungapped SNP matrix M
Output: The smallest number of flips needed to make M feasible.

Note that Ungapped-MEC is an optimisation problem, not a decision problem,
hence the use of “NP-hard” in the following lemma rather than “NP-complete”.
A decision version may be obtained by adding a flip upperbound in the range
[0, nm).

Lemma 1. Ungapped-MEC is NP-hard.

Proof. We give a polynomial-time reduction from the optimisation version of
MAX-CUT, which is the problem of computing the size of a maximum cut in
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a graphfd Let G = (V, E) be the input to MAX-CUT, where E is undirected.
(Without loss of generality we identify V' with the natural numbers 1,2, ..., |V].)
We construct an instance M of Ungapped-MEC as follows. M has 2k + | E| rows
and 2|V| columns where k = 2|E||V|?. We use My to refer to the first k rows of
M, M; to refer to the second k rows of M, and Mg to refer to the remaining |E|
rows. The first k/|V| rows of My all have the following pattern: a 0 in the first
column, a 0 in the second column, and the rest of the row is holes. The second
k/|V| rows of My all have a 0 in the third column, a 0 in the fourth column, and
the rest holes; we continue this pattern i.e. each row in the jth block of k/|V|
rows in My (1 < j <|V]) has a0 in column 25 —1, a 0 in column 27, and the rest
holes. M is defined identically except that 1s are used instead of O0s. Each row
of Mg encodes an edge from E:- for an edge (4,j) (where ¢ is the numerically
lower endpoint) we specify that columns 2i — 1 and 24 contain 0s, columns 25 — 1
and 25 contain 1s, and for all ¢ # i, j, column 2¢ — 1 contains 0 and column 2c¢
contains 1.
Suppose t is the largest cut possible in G. We claim that:

Ungapped-M EC(M) = |E|(|]V] —2) + 2(|E| — 1) (1)

From this ¢ (i.e. MAX-CUT(G)) can easily be computed. First, note that the
solution to Ungapped-MEC(M) is trivially upperbounded by |V||E|. This follows
because we could simply flip every 1 entry in Mg to 0; the resulting overall matrix
would be feasible because we could just take Hy as the all-0 string and H; as
the all-1 string. Now, we say a haplotype H has the double-entry property if,
for all odd-indexed positions (i.e. columns) j in H, the entry at position j of
H is the same as the entry at position j + 1. We argue that a minimal number
of feasibility-inducing flips will always lead to two haplotypes H;, Ho such that
both haplotypes have the double-entry property and, further, H; is the bitwise
complement of Ha. (We describe such a pair of haplotypes as partition-encoding.)
This is because, if Hy, Ha are not partition-encoding, then at least k/|V| > |V||E|
(in contrast with zero) entries in My and/or M; will have to be flipped, meaning
this strategy is doomed to begin with.

Now, for a given partition-encoding pair of haplotypes, it follows that - for
each row in M¢ - we will have to flip either |V| — 2 or |V| entries to reach its
nearest haplotype. This is because, irrespective of which haplotype we move a
row to, the |V| — 2 pairs of columns not encoding end-points (for a given row)
will always cost 1 flip each to fix. Then either 2 or 0 of the 4 “endpoint-encoding”
entries will also need to be flipped; 4 flips will never be necessary because then
the row could move to the other haplotype, requiring no extra flips. Ungapped-
MEC thus maximises the number of rows which require |V| — 2 rather than |V|
flips. If we think of H; and Hs as encoding a partition of the vertices of V' (i.e.
a vertex i is on one side of the partition if H; has 1s in columns 2i — 1 and 23,
and on the other side if Hy has 1s in those columns), it follows that each row

2 The reduction given here can easily be converted into a Karp reduction from the
decision version of MAX-CUT to the decision version of Ungapped-MEC.
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requiring |V'| — 2 flips corresponds to a cut-edge in the vertex partition defined
by H; and H,. Equation [ follows. O

Comment - a rediscovered open problem?

The MEC problem, as defined earlier, is technically speaking the evaluation
variantd of the MEC problem. Consider the closely-related constructive version:

Problem: Constructive-MEC
Input: An SNP matrix M.
Output: For an input matrix M of size n x m, two haplotypes Hy, Hy € {0,1}™
minimising:
D(Hy,Hy) = Y min(d(r, Hy),d(r, Hy)) (2)

rows reM

Owing to space restraints we omit the prooﬂ but we can prove that Constructive-
MEC is polynomial-time Turing interreducible with its evaluation counterpart,
MEC. We mention this correspondence because, when expressed as a construc-
tive problem, it can be seen that MEC is in fact a specific type of clustering
problem, a topic of intensive study in the literature. More specifically, we are
trying to find two representative “median” (or “consensus”) strings such that
the sum, over all input strings, of the distance between each input string and
its nearest median, is minimised. Related to this, let us define a further problem:

Problem: Binary-Constructive-MEC
Input: An SNP matrix M that does not contain any holes
Output: As for Constructive-MEC

Our deferred proof of interreducibility between Constructive-MEC and MEC also
holds for this restricted version of the problem, proving that Binary-
Constructive-MEC is solvable in polynomial time iff Binary-MEC is solvable
in polynomial time. This interreducibility is potentially useful because we now
argue, in contrast to claims in the existing literature, that the complexity of
Binary-MEC / Binary-Constructive-MEC is actually still open.

To elaborate, it is claimed in several papers (such as [I]) that a problem
essentially equivalent to Binary-Constructive-MEC is NP-hard. Such claims in-
evitably refer to the seminal paper Segmentation Problems by Kleinberg, Pa-
padimitriou, and Raghavan (KPR), which has appeared in multiple different
forms since 1998 (e.g. [11], [12] and [13].) Close examination of the KPR paper(s),
and personal communication with the authors [19], has confirmed that the KPR
papers actually discuss two superficially similar, but essentially different, prob-
lems. One problem is essentially equivalent to Binary-Constructive-MEC, and

3 See [2] for a more detailed explanation of terminology in this area.

4 The proof will appear in a forthcoming journal version of this paper. Most of the work
is reducing the constructive version to the evaluation version; the other direction is
trivial and uses only one oracle call.



134 R. Cilibrasi et al.

the other is a more general (and thus, potentially, a more difficult) problemﬁ In
the same communication the authors have admitted that they have no proof of
hardness for the former problem i.e. the problem that is isomorphic to Binary-
Constructive-MEC.

Thus we conclude that the complexity of Binary-Constructive-MEC / Binary-
MEC is still open. From an approximation viewpoint the problem has been
quite well-studied; the problem has a Polynomial Time Approximation Scheme
(PTAS) because it is a special form of the Hamming 2-Median Clustering Prob-
lem, for which a PTAS is demonstrated in [I0]. Other approximation results
appear in [I1], [1], [I3], [I7] and a heuristic for a similar (but not identical)
problem appears in [18]. We also know that, if the number of haplotypes to be
found is specified as part of the input (and not fixed as 2), the problem becomes
NP-hard; we again defer this proof to a forthcoming, longer version of this pa-
per. Finally, it may also be relevant that the “geometric” version of the problem
(where rows of the input matrix are not drawn from {0, 1} but from R™, and
Euclidean distance is used instead of Hamming distance) is also open from a com-
plexity viewpoint [I7]. (However, the version using Euclidean-distance-squared
is known to be NP-hard [5].)

3 Longest Haplotype Reconstruction (LHR)

Suppose an SNP matrix M is feasible. Then we can partition the rows of M
into two sets, M; and M., such that the rows within each set are pairwise non-
conflicting. (The partition might not be unique.) From M; (i € {l,r}) we can
then build a haplotype H; by combining the rows of M; as follows: The jth
column of H; is set to 1 if at least one row from M, has a 1 in column j,
is set to 0 if at least one row from M; has a 0 in column j, and is set to
a hole if all rows in M; have a hole in column j. Note that, in contrast to
MEC, this leads to haplotypes that potentially contain holes. For example, sup-
pose one side of the partition contains rows 10--, -0-- and ---1; then the
haplotype we get from this is 10-1. We define the length of a haplotype as
the number of positions where it does not contain a hole; the haplotype 10-1
thus has length 3, for example. Now, the goal with LHR is to remove rows
from M to make it feasible but also such that the sum of the lengths of the
two resulting haplotypes is maximised. We define the function LHR(M) (which
gives a natural number as output) as being the largest value this sum-of-lengths
value can take, ranging over all feasibility-inducing row-removals and subsequent
partitions.

® In this more general problem, rows and haplotypes are viewed as vectors and the
distance between a row and a haplotype is their dot product. Further, unlike Binary-
Constructive-MEC, this problem allows elements of the input matrix to be drawn
arbitrarily from R. This extra degree of freedom - particularly the ability to simul-
taneously use positive, negative and zero values in the input matrix - is what (when
coupled with a dot product distance measure) provides the ability to encode NP-hard
problems.
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We provide a polynomial-time algorithm for the following variant of LHR:

Problem: Ungapped-LHR
Input: An ungapped SNP matrix M
Output: The value LHR(M), as defined above.

The LHR problem for ungapped matrices was proved to be polynomial time
solvable by Lancia et. al in [I4], but only with the genuine restriction that no
fragments are included in other fragments. Our algorithm improves this in the
sense that it works for all ungapped input matrices; our algorithm is similar in
style to the algorithm that solves MFR in the ungapped case by Bafna et. al. in
[3]. The complexity of LHR with gaps is still an open problem. Note that our
dynamic-programming algorithm computes Ungapped-LHR(M) but it can easily
be adapted to generate the rows that must be removed (and subsequently, the
partition that must be made) to achieve this maximum.

Lemma 2. Ungapped-LHR can be solved in time O(n*m + n?3)

Proof. Let M be the input to Ungapped-LHR, and assume the matrix has size
n x m. For row i define [(7) as the leftmost column that is not a hole and define
r (2) as the rightmost column that is not a hole. The rows of M are ordered such
that I(z) < I(j) if i < j. Define the matrix M; as the matrix consisting of the first
1 rows of M and two extra rows at the top: row 0 and row —1, both consisting
of all holes. Define OK (i) as the set of rows j < ¢ that are not in conflict with
row <.

For h,k <iand h,k > —1 and r(h) < r(k) define D[h, k;i] as the maximum
sum of lengths of two haplotypes such that:-

— each haplotype is a combination of rows from M;

— each row from M; can be used to build at most one haplotype (i.e. it cannot
be used for both haplotypes)

— row k is one of the rows used to build a haplotype and among such rows
maximizes r(-)

— row h is one of the rows used to build the other haplotype (than k) and
among such rows maximizes r(+)

The solution of the problem LHR(M) is given by

max  D[h, k;n] (1)
h,k|r(h)<r(k)

We distinguish three different cases in the calculation of the D[h, k;]. The
first case is when h, k < . Under these circumstances,

Dih,k;i] = D[h, k;i — 1] (2)
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This is because:-

— If r(2) > r(k): row i cannot be used for the haplotype that row & is used for,
because row k has maximal r(-) among all rows that are used for a haplotype

— If r(2) <r(k): row i cannot increase the length of the haplotype that row k
is used for (because also I(i) > I(k))

— the same arguments hold for h

The second case is when h = 7. In this case:

Dlickiil = max  Dljvksi— 1) +7(0) —max{r(). () 1} (3)
r(j)<r (i)
This results from the following. The definition of DI, k; ] says that row ¢ has
to be used for the other haplotype than k and amongst such rows maximizes
7(+). Therefore the maximum sum of lengths is achieved by adding row ¢ to the
optimal solution with the restriction that row j is the most-right-ending row,
for some j that agrees with 4, is not equal to k and ends before i. The term
r(i) — max{r(j),1(i) — 1} is the increase in length of the haplotype if row ¢ is
added.
The last case is when k = i:

Dlhiii]=  max {D[J}h;i — 1]+ r(i) —max{r(j), (i) — 1} if r(h) > r(j)
Y JSOK®, th Dlh, j;i = 1] + r(i) —max{r(j), (i) — 1} if r(h) <7r(j)
} (4)

The time for calculating all the OK (i) is O(n?*m). When all the OK (i) are
known, it takes O(n?) time to calculate all the DIh, k;i]. This is because we
need to calculate O(n?®) values DIh, k;i] (h,k < i) that take O(1) time each and
O(n?) values D[i, k;i] and also O(n?) values D[h,i;i] that take O(n) time each.
This leads to an overall time complexity of O(n?m + n?). O

4 The Pure Parsimony Haplotyping Problem (PPH)

We refer the reader to Section[I 3l for definitions, and note once again the similar,
independently-discovered result in [16].

Problem: 2-ambiguous Pure Parsimony Haplotyping Problem

Input: A set G of genotypes such that no genotype has more than 2 ambiguous
positions

Output: PPH(G), which is the smallest number of haplotypes that can be
used to resolve G.

Lemma 3. The 2-ambiguous Pure Parsimony Haplotyping Problem can be
solved in polynomial-time.

Proof. We let n = |G| denote the number of genotypes in G and let m denote
the length of each genotype in G. We will compute the solution, PPH(G), by
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reduction to the polynomial-time solvable problem MaxBIS, which is the prob-
lem of computing the cardinality of the maximum independent set in a bipartite
graph. First, some notation. A genotype is i-ambiguous if it contains 7 ambigu-
ous positions. Each genotype in G is thus either 0-ambiguous, 1-ambiguous, or
2-ambiguous. For a 0-ambiguous genotype g, we define h, as the string g. For
a l-ambiguous genotype g we let hg.o (respectively, hg.1) be the haplotype ob-
tained by replacing the ambiguous position in g with 0 (respectively, 1). For
a 2-ambiguous genotype g we let hg.; ; - where i, € {0,1} - be the haplotype
obtained by replacing the first (i.e. leftmost) ambiguous position in g with ¢, and
the second ambiguous position with j. A haplotype is said to have even (odd)
parity iff it contains an even (odd) number of 1s. Now, observe that there are
two ways to resolve a 2-ambiguous genotype g: (1) with haplotypes hg.00 and
hg:1,1 and (2) with hg.01 and hg.q1,0. Note that - depending on g - one of the ways
uses two even parity haplotypes, and the other uses two odd parity haplotypes.

We build a set H of haplotypes by stepping through the list of genotypes
and, for each genotype, adding the 1, 2 or 4 corresponding haplotypes to the set
H. (Note that, because H is a set, we discard duplicate haplotypes.) That is, for
a 0-ambiguous genotype g add hgy, for a 1-ambiguous genotype g add hg.9 and
hg:1, and for a 2-ambiguous genotype g add hg.0,0, Rg:0,1, Rg:1,0 and hg.1,1.

We are now ready to build a bipartite graph B = (V, E) as follows, where
V has bipartition V* U V~. For each h € H we introduce a vertex, which we
also refer to as h; all h with even parity are put into V* and all h with odd
parity are put into V. For each 0-ambiguous genotype g € G we introduce a
set Ip(g) of four vertices and we connect each vertex in Iy(g) to hg. For each
1-ambiguous genotype g € G we introduce two sets of vertices I;(g,0) and
I (g, 1), both containing two vertices. Each vertex in I (g, 0) is connected to hg.g
and each vertex in I;(g, 1) is connected to hg.1. Finally, for each 2-ambiguous
g € G we introduce (to V* and V™ respectively) two sets of vertices I»(g, +)
and I2(g, —), each containing 4 vertices. We connect every vertex in I2(g, +) to
every vertex in Iz(g, —), connect every vertex in I2(g,+) to the two odd parity
haplotypes resolving ¢, and connect every vertex in Is(g, —) to the two even
parity haplotypes resolving g. This completes the construction of B.

A maximum-size independent set (MIS) of B is a largest set of mutually
non-adjacent vertices of B. Observe that, in a MIS of B, all the vertices of Iy(g)
must be in the MIS, for all 0-ambiguous g. To see this, note firstly that, if at
least one vertex of Iy(g) is in the M IS, we should put all of Iy(g) in the MIS.
Secondly, suppose all the vertices in I(g) are out of the MIS, but hy is in the
MIS. Then we could simply remove hg from the MIS and add in all the vertices
of Ip(g), leading to a larger MIS:- contradiction! By a similar argument we see
that, for all 1-ambiguous g € G, all of I1(g,0) and I1(g,1) must be in the MIS.
Now, consider I(g,+) and Iz(g,—), for all 2-ambiguous g € G. We argue that
either I5(g,+) is wholly in the MIS, or I5(g, —) is wholly in the MIS. Suppose,
by way of argument, that there exists a g such that both Iy(g,+) and I2(g, —)
are completely out of the MIS. If we are (wlog) free to add all the vertices in
I>(g,+) to the MIS we have an immediate contradiction. So I»(g, +) is prevented



138 R. Cilibrasi et al.

from being in the MIS by the fact that one or two of the haplotypes to which
it is connected are already in the MIS. But we could then build a bigger MIS
by removing those (at most) two haplotypes from the MIS and adding the four
vertices I2(g, +); contradiction!

We can think of the presence of an I set in the MIS as denoting that the
genotype it represents is resolved using the haplotypes to which it is attached.
Hence, every haplotype that is used for at least one resolution will not be in
the MIS, and unused haplotypes will be in the MIS. Hence, a MIS will try and
minimise the number of haplotypes used to resolve the given genotypes. Indeed,

MaxBIS(B) =4n+ (|H| — PPH(QG)) (1)
So we can use a polynomial-time algorithm for MaxBIS to compute PPH(G). O

Running time

The above algorithm can be implemented in time O(mnlog(n) + n®/?). First
we build the graph B. We can without too much trouble build a graph repre-
sentation of B - that combines adjacency-matrix and adjacency-list features -
in O(mnlog(n)) time. For each g € G, add its corresponding I set(s) and add
the (at most) 4 haplotypes corresponding to g, without eliminating duplicates,
and at all times efficiently maintaining adjacency information. Then sort the list
of haplotypes and eliminate duplicate haplotypes (by merging their adjacency
information into one single haplotype.) It is not too difficult to do this in such a
way that, in the final data structure representing the graph, adjacency queries
can be answered, and adjacency-lists returned, in O(1) time. This whole graph
construction process takes O(mnlog(n)) time.

A maximum independent set in a bipartite graph can be constructed from a
maximum matching. A maximum matching in B can be found in time O(n?%/?)
because, in our case, |V| = O(n) and |E| = O(n) [9]. Once the maximum match-
ing is found, it needs O(|E| + |V]) time to find a maximum independent set [6].
Thus finding a maximum independent set takes O(n®/?) time overall.
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